WO2006073135A1 - Heat exchange tube, heat exchanger, and refrigerating cycle - Google Patents

Heat exchange tube, heat exchanger, and refrigerating cycle Download PDF

Info

Publication number
WO2006073135A1
WO2006073135A1 PCT/JP2005/024252 JP2005024252W WO2006073135A1 WO 2006073135 A1 WO2006073135 A1 WO 2006073135A1 JP 2005024252 W JP2005024252 W JP 2005024252W WO 2006073135 A1 WO2006073135 A1 WO 2006073135A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
exchange tube
heat
brazing
heat exchanger
Prior art date
Application number
PCT/JP2005/024252
Other languages
French (fr)
Japanese (ja)
Inventor
Akihiko Takano
Original Assignee
Valeo Thermal Systems Japan Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Thermal Systems Japan Corporation filed Critical Valeo Thermal Systems Japan Corporation
Priority to JP2006550877A priority Critical patent/JPWO2006073135A1/en
Publication of WO2006073135A1 publication Critical patent/WO2006073135A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0391Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits a single plate being bent to form one or more conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/046Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being linear, e.g. corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/0073Gas coolers

Definitions

  • the present invention includes a flow path for circulating a medium, a heat exchange tube for exchanging heat of the medium by heat transmitted to the heat exchange tube, a heat exchanger provided with the heat exchange tube, and the heat exchanger The refrigeration cycle provided.
  • heat exchangers such as radiators and evaporators used in refrigeration cycles
  • flat heat exchange tubes and corrugated outer fins are laminated alternately to form a core, and One with an end connected to the tank is known.
  • the refrigerant which is a medium, is taken into the heat exchanger from the inlet provided in the tank, flows through the heat exchange tube while being heat-exchanged by the heat transmitted to the core, and passes through the outlet provided in the tank to the outside. Discharged.
  • Such a heat exchanger is manufactured by integrally assembling components such as a heat exchange tube, a fin, and a tank, and brazing the assembly;
  • Patent Documents 1 to 5 described below disclose heat exchange tubes constituting a heat exchanger.
  • a heat exchange tube a tube formed by forming a strip-shaped material into a predetermined shape and brazing it is known. The material is formed by roll forming. The brazing of the heat exchange tube is performed at the same time as the brazing of the assembly in the furnace.
  • This type of heat exchange tube has a configuration in which beads are provided at important points of the material and the flow paths are partitioned by the beads. The top of the bead is brazed inside the flow path. By dividing the flow path with a bead, it is possible to improve the pressure resistance strength of the heat exchange tube and the heat exchange efficiency of the medium.
  • the heat exchange tube is an extruded tube. It has been known. Compared to extrusion molding, the heat exchange tube has a merit that an A1-Zn alloy layer can be provided on the outer surface of the tube. According to the A 1—Zn alloy layer, the corrosion resistance of the heat exchange tube is improved, and as a result, the thickness of the heat exchange tube can be further reduced.
  • Patent Document 1 Japanese Utility Model Publication 6 3— 1 6 5 0 8
  • Patent Document 2 Japanese Patent Application Laid-Open No. 5-1 7 7 2 8 6
  • Patent Document 3 Japanese Patent Laid-Open No. 11-2 4 8 3 8 3
  • Patent Document 4 Japanese Patent Laid-Open No. 2 0 0 1— 1 7 4 1 6 7
  • Patent Document 5 International Publication No. 0 0/5 2 4 0 9 Pamphlet
  • heat exchange tubes have tended to be downsized and refined to further improve the performance of heat exchangers.
  • improving the reliability of brazing and securing brazing strength are increasingly important issues.
  • the heat exchange tubes used in the radiator are required to have very high pressure resistance. Therefore, a configuration for manufacturing the heat exchange tube by mouth forming is currently being studied.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to obtain a heat exchange tube having a more rational structure in consideration of the current manufacturing technology. Disclosure of the invention
  • the invention described in claim 1 of the present application includes a flow path through which a medium is circulated, and in the heat exchange tube for exchanging heat of the medium by heat transmitted to the heat exchange tube, the heat exchange tube has a strip shape.
  • the material is molded and brazed,
  • a bead for partitioning the flow path is provided in the material, and a heat exchange tube having a structure in which a plate body for brazing the top of the bead is provided in the heat exchange tube.
  • the invention described in claim 2 of the present application is the heat exchanger tube according to claim 1, wherein the heat exchange tube has flat portions formed by facing the materials to each other, and the beads are provided in the flat portions, respectively.
  • the body is a heat exchange tube having a configuration provided between the flat portions.
  • the invention described in claim 3 of the present application is the heat exchange tube according to claim 1 or 2, wherein the heat exchanger tube is used for a heat exchanger of a refrigeration cycle in which the pressure on the high pressure side exceeds the critical point of the medium.
  • the invention described in claim 4 of the present application is a heat exchanger configured to include the heat exchange tube according to any one of claims 1 to 3.
  • FIG. 1 is an explanatory diagram showing a refrigeration cycle according to an embodiment of the present invention.
  • FIG. 2 is a front view showing a heat exchanger according to an embodiment of the present invention.
  • FIG. 3 is an explanatory view showing a cross section of a heat exchange tube according to an embodiment of the present invention.
  • FIG. 4 is an explanatory view showing a brazed portion of the heat exchange tube according to the embodiment of the present invention.
  • FIG. 5 is an explanatory view showing a cross section of a heat exchange tube according to an embodiment of the present invention.
  • FIG. 6 is an explanatory view showing a cross section of a heat exchange tube according to an embodiment of the present invention.
  • FIG. 7 is an explanatory view showing a cross section of a heat exchange tube according to an embodiment of the present invention.
  • FIG. 8 is an explanatory view showing a cross section of a heat exchange tube according to an embodiment of the present invention.
  • FIG. 9 is an explanatory view showing a cross section of a heat exchange tube according to an embodiment of the present invention.
  • FIG. 10 is an explanatory view showing a brazed portion of a heat exchange tube according to a conventional example.
  • the refrigeration cycle 1 shown in FIG. 1 is for in-vehicle air conditioning installed in an automobile.
  • the compressor 2 compresses the refrigerant
  • the radiator 10 cools the refrigerant compressed by the compressor 2, and the radiator.
  • the decompressor 3 expands by decompressing the refrigerant cooled at 10; the evaporator 4 that evaporates the refrigerant decompressed by the decompressor 3; and the refrigerant that flows out of the evaporator 4 is separated into a gas layer and a liquid layer.
  • an accumulator 5 for sending the refrigerant in the air layer to the compressor 2.
  • C 0 2 is used as the refrigerant, and the pressure inside the radiator 10 exceeds the critical point of the refrigerant depending on the usage conditions such as the temperature.
  • an internal heat exchanger 6 for exchanging heat between the high pressure side and the low pressure side of the refrigerant is provided between the radiator 10 and the decompressor 3 and between the accumulator 5 and the compressor 2.
  • the internal heat exchanger 6 improves the efficiency of the refrigeration cycle 1 by exchanging heat between the high-pressure side refrigerant and the low-pressure side refrigerant.
  • the arrows in Fig. 1 indicate the direction of refrigerant circulation.
  • the radiator 100 which is a heat exchanger of this example, has alternating flat tubes 20 0 through which a refrigerant as a medium flows and corrugated fins 30 0 alternately.
  • side braids 800 as reinforcing members are provided on the upper and lower sides of the core 400. The end of side braid 800 is supported by each tank 300.
  • the refrigerant sent from the compressor 2 flows from the inlet portion 600.
  • the refrigerant that has flowed out of the outlet portion 700 is sent to the expansion valve 3.
  • the core 4 0 0 is ventilated by a fan (not shown), and the refrigerant is heat-exchanged by heat transmitted to the core 4 0 0. O
  • the radiator 100 is composed of a plurality of aluminum alloys constituting a tube 200, a fin 300, a tank 50, an inlet 60, an outlet 70, and a side plate 80. After assembling the manufactured parts together, the assembly is manufactured by brazing in a furnace. In addition, when brazing in the furnace, brazing materials and flux required for brazing are provided at the key points of each member.
  • the heat exchange tube 20 0 of this example includes a plurality of flow paths 2 0 1 that circulate the medium, and heat exchange of the refrigerant is performed by heat transmitted to the heat exchange tube 2 0 0.
  • This heat exchange tube 200 is formed by molding and brazing a strip-shaped material made of aluminum alloy. The material is formed by roll forming.
  • the material is provided with a bead 2 0 2 that partitions the flow path 2 0 1.
  • a plate body 2 10 made of aluminum alloy for brazing the top of the bead 20 2 is provided inside the heat exchange tube 2 0 0.
  • This heat exchange tube 200 is of a flat type and has a flat portion 20 3 made of materials facing each other.
  • One end of the heat exchange tube 200 in the width direction is a bent portion 20 4 formed by bending the material, and the other end is a joined end formed by joining the end portions of the material. It is 2 0 5.
  • the beads 20 2 are provided in the flat portions 20 3, respectively.
  • the thickness of the material is 0.25 to 0.45 mm
  • the thickness of the plate body 2 1 0 is 0.05 to 0.20 mm
  • the thickness of the heat exchange tube is 1. 2 to 1.8 mm.
  • the plate body 2 10 is provided between the flat portions 20 3 and is brazed to the bead 2 0 2 and the end portion in the width direction of the material. According to such a configuration, it is possible to reliably improve the brazing strength at the top of the bead 220. As a result, the pressure resistance performance of the heat exchange tube 200 is improved.
  • a large fillet F by brazing can be secured, and the brazing width a can be Can be enlarged.
  • the brazing width a may be smaller than the bead width b, as shown in FIG. 10 (A).
  • the brazing width a becomes larger than the width of the bead 20 2. This is because the brazing angle of the brazed portion is reduced by providing the plate body 2 10. Stress concentration occurs in the part where the brazing width a is smaller than the width b of the bead 20 2 due to the pressure of the refrigerant, and this causes a significant decrease in pressure resistance. In this case, such inconvenience can be avoided.
  • the brazing width a is It never gets smaller. If the tops of the beads 20 2 are brazed directly, as shown in Fig. 10 (B), the brazing width a is further reduced, but according to this example, Inconvenience can be avoided. In other words, it has excellent robustness against dimensional errors (r 0 b u st: robustness).
  • the brazing material necessary for such brazing was not provided for the strip-shaped material, but was provided on the plate body 210. That is, the plate body 2 10 is a brazing sheet formed by cladding a brazing material. With this configuration, it is possible to minimize the brazing material. The concept is explained below.
  • the brazing material containing silicon is indispensable for brazing, but after brazing, it becomes a factor that erodes the core material (that is, a factor of erosion). desirable.
  • the member made by brazing the brazing material is manufactured by superposing the core material and the brazing material at a predetermined ratio and rolling them, so that the thickness of the brazing layer of the brazing material is reduced. Is lower than the thickness of the material. According to current technology, the lower limit of the cladding layer thickness is about 5% of the material thickness. Furthermore, comparing the plate thickness of the material with the plate thickness of the plate body 210, The thickness of the material can be set thinner than the thickness of the material due to the structure of the heat exchange tube 200.
  • the amount of brazing material used can be reduced, and the depth of the silicon diffusion layer in the material can be reduced, so that the thickness of the material can be made thinner.
  • an Al-Zn alloy layer is provided as a sacrificial layer for improving the corrosion resistance of the heat exchange tube 200 on one surface of the material that is the outer surface of the heat exchange tube 200.
  • the plate body 210 does not contain Zn in the brazing material and the core material.
  • the plate body 2 1 0 contains Zn, the diffusion of Z ⁇ also occurs from the inside of the heat exchange tube 2 0 0, so that the remaining core material thickness in the material is reduced and heat exchange is performed.
  • the corrosion resistance of the exchange tube 20 0 is deteriorated, according to this example, since the plate body 2 1 0 does not contain ⁇ , such inconvenience is avoided.
  • the radiator tube 200 in this example is more rationally constructed based on the current manufacturing technology, and in particular, according to the pressure of the refrigerant that is in the supercritical state. Thus, the reliability of brazing is surely improved to ensure the required pressure resistance.
  • the configuration of the heat exchange tube 200 in this example can also be applied to a heat exchange tube used for the evaporator 4.
  • the configuration of each part in this example can be appropriately changed in design within the technical scope described in the claims, and is of course not limited to the above.
  • the plate body 2 1 0 may be appropriately drilled.
  • the brazing material is provided on the plate body 210, but it is also possible to clad the filter material on the belt-shaped material if the corrosion resistance is sufficiently secured.
  • the shapes of the bent end portion 20 4 and the joint end portion 20 5 can be arbitrarily changed.
  • FIG. 6 it is also possible to extend the plate body 2 10 from the joining end 2 0 5 and wind it around the outer periphery of the heat exchange tube 2 0 0.
  • the plate body 2 10 may be provided with a hook portion 2 11. If the pair of materials are assembled by using the hook portion 211, the heat exchange tube 200 can be more accurately and firmly formed. Industrial applicability
  • the heat exchange tube of the present invention can be used very suitably as a heat exchange tube used in a radiator of a supercritical refrigeration cycle.
  • a radiator including this heat exchange tube is suitable for a supercritical refrigeration cycle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

A heat exchange tube exchanging a heat with a medium, comprising flow passages (201) for flowing the medium therein. The heat exchange tube is formed by molding and brazing a band-like material. Beads (202) forming the flow passages are formed on the material, and a plate body (210) to which the tops of the beads are brazed is installed in the heat exchange tube. In the heat exchange, flat parts are formed by forming the material to face each other, the beads are formed on the flat parts, and the plate body is installed between the flat parts. Also, the heat exchange tube is installed in a heat exchanger, and the heat exchanger is installed in a refrigerating cycle.

Description

曰月糸田 β  Uzuki Itoda β
熱交換チューブ、 熱交換器、 及び冷凍サイクル 技術分野  Heat exchange tubes, heat exchangers, and refrigeration cycles
本発明は、 媒体を流通する流路を備え、 当該熱交換チューブに伝わ る熱にて媒体の熱交換をする熱交換チューブ、 この熱交換チューブを 備えた熱交換器、 及びこの熱交換器を備えた冷凍サイクルに関する。 背景技術  The present invention includes a flow path for circulating a medium, a heat exchange tube for exchanging heat of the medium by heat transmitted to the heat exchange tube, a heat exchanger provided with the heat exchange tube, and the heat exchanger The refrigeration cycle provided. Background art
冷凍サイ クルに用いられる放熱器やエバポレー夕等の熱交換器と しては、 偏平型の熱交換チューブとコルゲート型のアウターフィ ンと を交互に積層してコアをなすとともに、 チュ一ブの端部をタンクに接 続してなるものが知られている。 媒体たる冷媒は、 タンクに設けられ た入口部から熱交換器の内部に取り入れられて、 コアに伝わる熱にて 熱交換されつつ熱交換チューブを流通し、 タンクに設けられた出口部 から外部に排出される。 また、 このような熱交換器は、 熱交換チュー プ、 フィ ン、 タンク等の構成部材を一体に組み立てるとともに、 その 組み立て体を;^中ろう付けして製造されている。  For heat exchangers such as radiators and evaporators used in refrigeration cycles, flat heat exchange tubes and corrugated outer fins are laminated alternately to form a core, and One with an end connected to the tank is known. The refrigerant, which is a medium, is taken into the heat exchanger from the inlet provided in the tank, flows through the heat exchange tube while being heat-exchanged by the heat transmitted to the core, and passes through the outlet provided in the tank to the outside. Discharged. Such a heat exchanger is manufactured by integrally assembling components such as a heat exchange tube, a fin, and a tank, and brazing the assembly;
後記特許文献 1乃至 5には、 熱交換器を構成する熱交換チューブが 開示されている。 熱交換チューブとしては、 帯状の素材を所定の形状 に成形し、 これをろう付けしてなるものが知られている。 素材の成形 は、 ロールフォ一ミ ングにて行われる。 熱交換チューブのろう付けは、 前述した組み立て体の炉中ろう付けと同時になされる。  Patent Documents 1 to 5 described below disclose heat exchange tubes constituting a heat exchanger. As a heat exchange tube, a tube formed by forming a strip-shaped material into a predetermined shape and brazing it is known. The material is formed by roll forming. The brazing of the heat exchange tube is performed at the same time as the brazing of the assembly in the furnace.
この種の熱交換チューブは、 素材の要所にビ一 ドを設け、 ビードに て流路を区画する構成となっている。 ビ一ドの頂部は、 流路の内部に ろう付けされる。 ビ一ドにて流路を区画することによれば、 熱交換チ ユーブの耐圧強度、 及び媒体の熱交換効率を向上することが可能であ This type of heat exchange tube has a configuration in which beads are provided at important points of the material and the flow paths are partitioned by the beads. The top of the bead is brazed inside the flow path. By dividing the flow path with a bead, it is possible to improve the pressure resistance strength of the heat exchange tube and the heat exchange efficiency of the medium.
Ό Ό
また、 熱交換チューブとしては、 この他にも、 押出し成形チューブ が知られている。 熱交換チュ一ブを口一ルフォ一ミ ングする場合は、 押出し成形する場合と比較すると、 その外面に A 1— Z n合金層を設 けることができるという利点がある。 A 1— Z n合金層によれば、 熱 交換チューブの耐食性が向上されるので、 結果的に、 熱交換チューブ の肉厚をより薄くすることができる。 In addition to this, the heat exchange tube is an extruded tube. It has been known. Compared to extrusion molding, the heat exchange tube has a merit that an A1-Zn alloy layer can be provided on the outer surface of the tube. According to the A 1—Zn alloy layer, the corrosion resistance of the heat exchange tube is improved, and as a result, the thickness of the heat exchange tube can be further reduced.
特許文献 1 実開昭 6 3— 1 6 5 0 8号公報  Patent Document 1 Japanese Utility Model Publication 6 3— 1 6 5 0 8
特許文献 2 特開平 5— 1 7 7 2 8 6号公報  Patent Document 2 Japanese Patent Application Laid-Open No. 5-1 7 7 2 8 6
特許文献 3 特開平 1 1— 2 4 8 3 8 3号公報  Patent Document 3 Japanese Patent Laid-Open No. 11-2 4 8 3 8 3
特許文献 4 特開 2 0 0 1— 1 7 4 1 6 7号公報  Patent Document 4 Japanese Patent Laid-Open No. 2 0 0 1— 1 7 4 1 6 7
特許文献 5 国際公開第 0 0 / 5 2 4 0 9号パンフレ ッ ト さて近年、 熱交換チューブは、 熱交換器の性能をより向上するべく 小型化且つ精密化される傾向にあり、 その性能及び製造性を向上する にあたっては、 ろう付けの信頼性の向上、 及びろう付け強度の確保等 がますます重要な課題となっている。 特に、 放熱器の内部の圧力が媒 体 (つま り冷媒) の臨界点を超える超臨界冷凍サイクルにおいて、 放 熱器に用いられる熱交換チューブは、 非常に高い耐圧性能が要求され るものであ り、 その熱交換チューブを口一ルフォ一ミ ングにて製造す るための構成が現在検討されている。 本発明は、 かかる事情に鑑みて なされたものであり、 その目的は、 現状の製造技術を踏まえつつ、 よ り合理的に構成された熱交換チューブを得ることである。 発明の開示  Patent Document 5 International Publication No. 0 0/5 2 4 0 9 Pamphlet In recent years, heat exchange tubes have tended to be downsized and refined to further improve the performance of heat exchangers. In improving manufacturability, improving the reliability of brazing and securing brazing strength are increasingly important issues. In particular, in a supercritical refrigeration cycle in which the pressure inside the radiator exceeds the critical point of the medium (that is, the refrigerant), the heat exchange tubes used in the radiator are required to have very high pressure resistance. Therefore, a configuration for manufacturing the heat exchange tube by mouth forming is currently being studied. The present invention has been made in view of such circumstances, and an object of the present invention is to obtain a heat exchange tube having a more rational structure in consideration of the current manufacturing technology. Disclosure of the invention
本願第 1請求項に記載した発明は、 媒体を流通する流路を備え、 当 該熱交換チューブに伝わる熱にて前記媒体の熱交換をする熱交換チ ユープにおいて、 当該熱交換チューブは、 帯状の素材を成形し、 ろう 付けしてなるものであり、  The invention described in claim 1 of the present application includes a flow path through which a medium is circulated, and in the heat exchange tube for exchanging heat of the medium by heat transmitted to the heat exchange tube, the heat exchange tube has a strip shape. The material is molded and brazed,
前記素材には、 前記流路を区画するビ一ドを設け、 当該熱交換チュ ープの内部には、 前記ビードの頂部をろう付けするプレー ト体を設け た構成の熱交換チューブである。 本願第 2請求項に記載した発明は、 請求項 1 において、 当該熱交換 チューブは、 前記素材を互いに対向してなる偏平部を有し、 前記ビー ドは、 前記偏平部にそれぞれ設け、 前記プレー ト体は、 前記偏平部の 間に設けた構成の熱交換チューブである。 A bead for partitioning the flow path is provided in the material, and a heat exchange tube having a structure in which a plate body for brazing the top of the bead is provided in the heat exchange tube. The invention described in claim 2 of the present application is the heat exchanger tube according to claim 1, wherein the heat exchange tube has flat portions formed by facing the materials to each other, and the beads are provided in the flat portions, respectively. The body is a heat exchange tube having a configuration provided between the flat portions.
本願第 3請求項に記載した発明は、 請求項 1又は 2において、 高圧 側の圧力が前記媒体の臨界点を超える冷凍サイ クルの熱交換器に用 いる構成の熱交換チューブである。  The invention described in claim 3 of the present application is the heat exchange tube according to claim 1 or 2, wherein the heat exchanger tube is used for a heat exchanger of a refrigeration cycle in which the pressure on the high pressure side exceeds the critical point of the medium.
本願第 4請求項に記載した発明は、 請求項 1乃至 3のいずれか記載 の熱交換チューブを備えた構成の熱交換器である。  The invention described in claim 4 of the present application is a heat exchanger configured to include the heat exchange tube according to any one of claims 1 to 3.
本願第 5請求項に記載した発明は、 請求項 4記載の熱交換器を備え た構成の冷凍サイクルである。 図面の簡単な説明  The invention described in claim 5 of the present application is a refrigeration cycle including the heat exchanger described in claim 4. Brief Description of Drawings
図 1は、 本発明の実施例に係り、 冷凍サイクルを示す説明図である。 図 2は、 本発明の実施例に係り、 熱交換器を示す正面図である。 図 3は、 本発明の実施例に係り、 熱交換チューブの断面を示す説明 図である。  FIG. 1 is an explanatory diagram showing a refrigeration cycle according to an embodiment of the present invention. FIG. 2 is a front view showing a heat exchanger according to an embodiment of the present invention. FIG. 3 is an explanatory view showing a cross section of a heat exchange tube according to an embodiment of the present invention.
図 4は、 本発明の実施例に係り、 熱交換チューブのろう付け個所を 示す説明図である。  FIG. 4 is an explanatory view showing a brazed portion of the heat exchange tube according to the embodiment of the present invention.
図 5は、 本発明の実施例に係り、 熱交換チューブの断面を示す説明 図である。  FIG. 5 is an explanatory view showing a cross section of a heat exchange tube according to an embodiment of the present invention.
図 6は、 本発明の実施例に係り、 熱交換チューブの断面を示す説明 図である。  FIG. 6 is an explanatory view showing a cross section of a heat exchange tube according to an embodiment of the present invention.
図 7は、 本発明の実施例に係り、 熱交換チューブの断面を示す説明 図である。  FIG. 7 is an explanatory view showing a cross section of a heat exchange tube according to an embodiment of the present invention.
図 8は、 本発明の実施例に係り、 熱交換チューブの断面を示す説明 図である。  FIG. 8 is an explanatory view showing a cross section of a heat exchange tube according to an embodiment of the present invention.
図 9は、 本発明の実施例に係り、 熱交換チューブの断面を示す説明 図である。 図 1 0は、 従来例に係り、 熱交換チューブのろう付け個所を示す説 明図である。 発明を実施するための最良の形態 FIG. 9 is an explanatory view showing a cross section of a heat exchange tube according to an embodiment of the present invention. FIG. 10 is an explanatory view showing a brazed portion of a heat exchange tube according to a conventional example. BEST MODE FOR CARRYING OUT THE INVENTION
以下に、 本発明の実施例を図面に基づいて説明する。  Embodiments of the present invention will be described below with reference to the drawings.
図 1 に示す冷凍サイクル 1は、 自動車に搭載される車内空調用のも のであり、 冷媒を圧縮する圧縮機 2 と、 圧縮機 2で圧縮された冷媒を 冷却する放熱器 1 0 と、 放熱器 1 0で冷却された冷媒を減圧して膨張 する減圧機 3 と、 減圧機 3で減圧された冷媒を蒸発するエバポレー夕 4 と、 エバポレー夕 4から流出する冷媒を気層と液層に分離して気層 の冷媒を圧縮機 2へ送るアキュムレータ 5 とを備えている。 冷媒とし ては、 C 0 2を採用しており、 放熱器 1 0の内部の圧力は、 気温等の 使用条件により、 冷媒の臨界点を超える。 また、 放熱器 1 0 と減圧機 3 との間及びアキュムレ一夕 5 と圧縮機 2 との間には、 冷媒の高圧側 と低圧側とを熱交換する内部熱交換器 6を設けている。 内部熱交換器 6は、 高圧側の冷媒と低圧側の冷媒とを熱交換することによ り、 冷凍 サイクル 1の効率を向上するものである。 尚、 図 1 中の矢印は、 冷媒 の循環方向を示す。 The refrigeration cycle 1 shown in FIG. 1 is for in-vehicle air conditioning installed in an automobile. The compressor 2 compresses the refrigerant, the radiator 10 cools the refrigerant compressed by the compressor 2, and the radiator. The decompressor 3 expands by decompressing the refrigerant cooled at 10; the evaporator 4 that evaporates the refrigerant decompressed by the decompressor 3; and the refrigerant that flows out of the evaporator 4 is separated into a gas layer and a liquid layer. And an accumulator 5 for sending the refrigerant in the air layer to the compressor 2. C 0 2 is used as the refrigerant, and the pressure inside the radiator 10 exceeds the critical point of the refrigerant depending on the usage conditions such as the temperature. Further, an internal heat exchanger 6 for exchanging heat between the high pressure side and the low pressure side of the refrigerant is provided between the radiator 10 and the decompressor 3 and between the accumulator 5 and the compressor 2. The internal heat exchanger 6 improves the efficiency of the refrigeration cycle 1 by exchanging heat between the high-pressure side refrigerant and the low-pressure side refrigerant. The arrows in Fig. 1 indicate the direction of refrigerant circulation.
図 2乃至図 4に示すように、 本例の熱交換器たる放熱器 1 0 0は、 媒体たる冷媒を流通する偏平状のチューブ 2 0 0 とコルゲー ト型の フィ ン 3 0 0 とを交互に積層してなるコア 4 0 0 と、 各チューブ 2 0 0の端部がそれぞれ挿入接続された複数の夕ンク 5 0 0 と、 タンク 5 0 0 に設けられた冷媒の入口部 6 0 0及び出口部 7 0 0 とを備えて いる。 また、 コア 4 0 0の上下側部には、 補強部材たるサイ ドブレ一 ト 8 0 0を設けている。 サイ ドブレ一ト 8 0 0の端部は、 各タンク 3 0 0にそれぞれ支持されている。 コンプレッサ 2から送られる冷媒は、 入口部 6 0 0から流入する。 出口部 7 0 0から流出した冷媒は、 膨張 弁 3へと送られる。 コア 4 0 0に対しては、 図示を省略したファンに よって通風がなされ、 冷媒は、 コア 4 0 0に伝わる熱にて熱交換され る o As shown in FIG. 2 to FIG. 4, the radiator 100, which is a heat exchanger of this example, has alternating flat tubes 20 0 through which a refrigerant as a medium flows and corrugated fins 30 0 alternately. A plurality of cores 5 0 0 into which end portions of the tubes 2 0 0 are respectively inserted and connected, and a refrigerant inlet portion 6 0 0 provided in the tank 5 0 0 and And an outlet portion 7 0 0. In addition, side braids 800 as reinforcing members are provided on the upper and lower sides of the core 400. The end of side braid 800 is supported by each tank 300. The refrigerant sent from the compressor 2 flows from the inlet portion 600. The refrigerant that has flowed out of the outlet portion 700 is sent to the expansion valve 3. The core 4 0 0 is ventilated by a fan (not shown), and the refrigerant is heat-exchanged by heat transmitted to the core 4 0 0. O
前記放熱器 1 0 0は、 チューブ 2 0 0、 フィ ン 3 0 0、 タンク 5 0 0、 入口部 6 0 0、 出口部 7 0 0、 及びサイ ドプレート 8 0 0を構成 する複数のアルミ合金製の部材を一体に組み立てた後、 その組み立て 体を炉中にてろう付けして製造する。 また、 このような炉中ろう付け に際し、 各部材の要所には、 ろう付けに要するろう材及びフラックス が設けられる。  The radiator 100 is composed of a plurality of aluminum alloys constituting a tube 200, a fin 300, a tank 50, an inlet 60, an outlet 70, and a side plate 80. After assembling the manufactured parts together, the assembly is manufactured by brazing in a furnace. In addition, when brazing in the furnace, brazing materials and flux required for brazing are provided at the key points of each member.
図 3に示すように、 本例の熱交換チューブ 2 0 0は、 媒体を流通す る複数の流路 2 0 1 を備え、 当該熱交換チューブ 2 0 0に伝わる熱に て冷媒の熱交換をするものである。 この熱交換チューブ 2 0 0は、 ァ ルミ合金製の帯状の素材を成形し、 ろう付けしてなるものである。 素 材の成形は、 ロールフォーミ ングにて行われている。  As shown in FIG. 3, the heat exchange tube 20 0 of this example includes a plurality of flow paths 2 0 1 that circulate the medium, and heat exchange of the refrigerant is performed by heat transmitted to the heat exchange tube 2 0 0. To do. This heat exchange tube 200 is formed by molding and brazing a strip-shaped material made of aluminum alloy. The material is formed by roll forming.
素材には、 流路 2 0 1を区画するビード 2 0 2 を設けている。 また、 熱交換チューブ 2 0 0の内部には、 ビード 2 0 2の頂部をろう付けす るアルミ合金製のプレート体 2 1 0を設けている。  The material is provided with a bead 2 0 2 that partitions the flow path 2 0 1. In addition, a plate body 2 10 made of aluminum alloy for brazing the top of the bead 20 2 is provided inside the heat exchange tube 2 0 0.
この熱交換チューブ 2 0 0は、 偏平型のものであり、 素材を互いに 対向してなる偏平部 2 0 3を有する。 熱交換チューブ 2 0 0の幅方向 の一方の端部は、 素材を屈曲してなる折り曲げ部 2 0 4となっており、 他方の端部は、 素材の端部を接合してなる接合端部 2 0 5 となってい る。 ビード 2 0 2は、 各偏平部 2 0 3にそれぞれ設けられている。 本 例の場合、 素材の板厚は 0. 2 5〜 0. 4 5 mm、 プレート体 2 1 0 の板厚は 0. 0 5 ~ 0. 2 0 mm、 熱交換チューブの厚さは 1. 2〜 1. 8 mmとなっている。  This heat exchange tube 200 is of a flat type and has a flat portion 20 3 made of materials facing each other. One end of the heat exchange tube 200 in the width direction is a bent portion 20 4 formed by bending the material, and the other end is a joined end formed by joining the end portions of the material. It is 2 0 5. The beads 20 2 are provided in the flat portions 20 3, respectively. In this example, the thickness of the material is 0.25 to 0.45 mm, the thickness of the plate body 2 1 0 is 0.05 to 0.20 mm, and the thickness of the heat exchange tube is 1. 2 to 1.8 mm.
プレー ト体 2 1 0は、 偏平部 2 0 3の間に設けられ、 ビード 2 0 2 及び素材の幅方向の端部とろう付けされている。 このような構成によ ると、 ビー ド 2 0 2の頂部のろう付け強度を確実に向上することが可 能となる。 その結果、 熱交換チューブ 2 0 0の耐圧性能が向上される。  The plate body 2 10 is provided between the flat portions 20 3 and is brazed to the bead 2 0 2 and the end portion in the width direction of the material. According to such a configuration, it is possible to reliably improve the brazing strength at the top of the bead 220. As a result, the pressure resistance performance of the heat exchange tube 200 is improved.
すなわち、 本例の構成によると、 図 4 ( A) に示すように、 ろう付 けによるフィ レッ ト Fを大きく確保することができ、 ろう付け幅 aを 拡大することができる。 仮に、 ビ一 ド 2 0 2の頂部同士を直接ろう付 けすると、 図 1 0 ( A ) に示すように、 ろう付け幅 aがビー ドの幅 b よ り も小さく なる場合がある。 しかるに本例では、 フィ レッ ト Fを大 き く確保するこ とによ り、 ろう付け幅 aがビ一ド 2 0 2の幅わより も 大き くなつている。 これは、 プレー ト体 2 1 0 を設けるこ とにより、 ろう付け個所の挟み角が小さ く なるためである。 冷媒の圧力によって、 ビ一 ド 2 0 2 の幅 b よ り もろう付け幅 aが小さい部位には応力集中 が生じるので、 これが耐圧性能を著し く低下させる原因となるが、 本 例によれば、 そのような不都合を回避するこ とができる。 That is, according to the configuration of this example, as shown in Fig. 4 (A), a large fillet F by brazing can be secured, and the brazing width a can be Can be enlarged. If the tops of the beads 20 2 are brazed directly, the brazing width a may be smaller than the bead width b, as shown in FIG. 10 (A). However, in this example, by securing a large fillet F, the brazing width a becomes larger than the width of the bead 20 2. This is because the brazing angle of the brazed portion is reduced by providing the plate body 2 10. Stress concentration occurs in the part where the brazing width a is smaller than the width b of the bead 20 2 due to the pressure of the refrigerant, and this causes a significant decrease in pressure resistance. In this case, such inconvenience can be avoided.
更に、 本例の構成によると、 図 4 ( B ) に示すよう に、 微妙な寸法 誤差の影響から ビ一 ド 2 0 2 に位置ずれが生じた場合であっても、 ろ う付け幅 aが小さ く なることはない。 仮に、 ビ一 ド 2 0 2の頂部同士 を直接ろう付けすると、 図 1 0 ( B ) に示すように、 ろう付け幅 aが 一層小さ くなつてしまうが、 本例によれば、 そのような不都合を回避 することができる。 つま り、 寸法誤差に対するロバス ト性 ( r 0 b u s t : 堅牢性) に優れたものとなっている。  Furthermore, according to the configuration of this example, as shown in FIG. 4 (B), even if the positional deviation occurs in the bead 20 2 due to the influence of a delicate dimensional error, the brazing width a is It never gets smaller. If the tops of the beads 20 2 are brazed directly, as shown in Fig. 10 (B), the brazing width a is further reduced, but according to this example, Inconvenience can be avoided. In other words, it has excellent robustness against dimensional errors (r 0 b u st: robustness).
尚、 このようなろう付けに必要なろう材は、 帯状の素材には設けず に、 プレート体 2 1 0 に設けた。 すなわちプレート体 2 1 0 は、 ろう 材をクラ ヅ ドしてなるブレージングシー トである。 このような構成に よる と、 ろう材を必要最小限に抑えるこ とが可能である。 以下に、 そ の考え方を説明する。  The brazing material necessary for such brazing was not provided for the strip-shaped material, but was provided on the plate body 210. That is, the plate body 2 10 is a brazing sheet formed by cladding a brazing material. With this configuration, it is possible to minimize the brazing material. The concept is explained below.
まず、 シリコンを含むろう材は.、 ろう付けには不可欠ではあるもの の、 ろう付け後には芯材を侵食する要因(つま りエロージョ ンの要因) となる故に、 可能なかぎり少量に抑えることが望ましい。 そして、 ろ う材をクラッ ドしてなる部材は、 芯材とろう材とを所定の割合で重ね 合わせ、 これを圧延して製造されることから、 ろう材のクラ ッ ド層の 厚さには、 その素材の板厚に対して下限が生じる。 現在の技術による と、 クラ ッ ド層の厚さの下限は、 素材の板厚に対して約 5 %となって いる。 更に、 素材の板厚とプレー ト体 2 1 0の板厚とを比較すると、 素材の板厚は、 熱交換チューブ 2 0 0の構造上、 素材の板厚より も薄 く設定することが可能である。 故に、 ろう材を少量に抑えるには、 プ レート体 2 1 0にのみろう材をクラッ ドするとよい訳である。 このよ うな構成によると、 ろう材の使用量を低減でき、 素材におけるシリコ ン拡散層の深さを浅くすることができるので、 素材の板厚をより薄く することが可能となる。 First, the brazing material containing silicon is indispensable for brazing, but after brazing, it becomes a factor that erodes the core material (that is, a factor of erosion). desirable. The member made by brazing the brazing material is manufactured by superposing the core material and the brazing material at a predetermined ratio and rolling them, so that the thickness of the brazing layer of the brazing material is reduced. Is lower than the thickness of the material. According to current technology, the lower limit of the cladding layer thickness is about 5% of the material thickness. Furthermore, comparing the plate thickness of the material with the plate thickness of the plate body 210, The thickness of the material can be set thinner than the thickness of the material due to the structure of the heat exchange tube 200. Therefore, in order to keep the brazing material to a small amount, it is better to clad the brazing material only on the plate body 2 10. According to such a configuration, the amount of brazing material used can be reduced, and the depth of the silicon diffusion layer in the material can be reduced, so that the thickness of the material can be made thinner.
更に、 熱交換チューブ 2 0 0の外面となる素材の一方の表面には、 熱交換チューブ 2 0 0の耐食性を向上する犠牲層として、 A l— Z n 合金層を設けている。 また、 プレート体 2 1 0は、 ろう材及び芯材と もに Z nを含有しないものとなっている。 ここで仮に、 プレート体 2 1 0が Z nを含有していると、 熱交換チューブ 2 0 0の内側からも Z ηの拡散が生じるので、 素材における残存芯材厚さが薄くなり、 熱交 換チューブ 2 0 0の耐食性が劣化することとなるが、 本例によれば、 プレー.ト体 2 1 0が Ζ ηを含有しないものであるため、 そのような不 都合は回避される。  Furthermore, an Al-Zn alloy layer is provided as a sacrificial layer for improving the corrosion resistance of the heat exchange tube 200 on one surface of the material that is the outer surface of the heat exchange tube 200. The plate body 210 does not contain Zn in the brazing material and the core material. Here, if the plate body 2 1 0 contains Zn, the diffusion of Z η also occurs from the inside of the heat exchange tube 2 0 0, so that the remaining core material thickness in the material is reduced and heat exchange is performed. Although the corrosion resistance of the exchange tube 20 0 is deteriorated, according to this example, since the plate body 2 1 0 does not contain Ζη, such inconvenience is avoided.
以上説明したように、 本例の放熱器チューブ 2 0 0は、 現状の製造 技術を踏まえつつ、 よ り合理的に構成されたものであり、 特に、 超臨 界状態となる冷媒の圧力に応じて、 所要の耐圧性能を確保するべく、 ろう付けの信頼性を確実に向上してなるものである。 尚、 本例の熱交 換チューブ 2 0 0の構成は、 エバポレ一夕 4に用いられる熱交換チュ —ブに応用することも可能である。  As described above, the radiator tube 200 in this example is more rationally constructed based on the current manufacturing technology, and in particular, according to the pressure of the refrigerant that is in the supercritical state. Thus, the reliability of brazing is surely improved to ensure the required pressure resistance. The configuration of the heat exchange tube 200 in this example can also be applied to a heat exchange tube used for the evaporator 4.
本例における各部の構成は、 請求の範囲に記載した技術的範囲にお いて適宜に設計変更が可能であり、 上述したものに限定されないこと は勿論である。 プレート体 2 1 0には、 適宜大きさの孔をぁけるなど してもよい。 また、 本例ではプレート体 2 1 0にろう材を設けたが、 耐食性が十分に確保されるのであれば、 帯状の素材にろぅ材をクラッ ドすることも可能である。  The configuration of each part in this example can be appropriately changed in design within the technical scope described in the claims, and is of course not limited to the above. The plate body 2 1 0 may be appropriately drilled. In this example, the brazing material is provided on the plate body 210, but it is also possible to clad the filter material on the belt-shaped material if the corrosion resistance is sufficiently secured.
更に、 図 5に示すように、 折り曲げ端部 2 0 4及び接合端部 2 0 5 の形状は、 任意に設計変更することが可能である。 図 6に示すように、 接合端部 2 0 5からプレート体 2 1 0を延出し、 熱交換チューブ 2 0 0の外周に巻き付けるよう に構成することも可 能である。 Further, as shown in FIG. 5, the shapes of the bent end portion 20 4 and the joint end portion 20 5 can be arbitrarily changed. As shown in FIG. 6, it is also possible to extend the plate body 2 10 from the joining end 2 0 5 and wind it around the outer periphery of the heat exchange tube 2 0 0.
図 7に示すように、 プレート体 2 1 0を巻き付けることにより、 そ れそれビー ド 2 0 2 を設けた一対の素材を組付けるよう に構成する ことも可能である。 この場合、 熱交換チューブ 2 0 0の幅方向の端部 は、 双方ともに接合端部 2 0 5 となる。  As shown in FIG. 7, it is also possible to assemble a pair of materials each provided with a bead 20 2 by winding a plate body 2 10. In this case, both end portions in the width direction of the heat exchange tubes 20 0 become joint end portions 2 5.
更に、 図 8及び図 9に示すように、 プレート体 2 1 0にはフヅク部 2 1 1を設けてもよい。 フック部 2 1 1 を利用して一対の素材を組付 けるように構成すれば、 熱交換チューブ 2 0 0は、 よ り正確且つ堅固 に成形することが可能となる。 産業上の利用可能性  Further, as shown in FIGS. 8 and 9, the plate body 2 10 may be provided with a hook portion 2 11. If the pair of materials are assembled by using the hook portion 211, the heat exchange tube 200 can be more accurately and firmly formed. Industrial applicability
本発明の熱交換チューブは、 超臨界冷凍サイクルの放熱器に用いら れる熱交換チューブとして極めて好適に利用することができる。 また、 この熱交換チューブを備えた放熱器は、 超臨界冷凍サイクルに好適で ある。  The heat exchange tube of the present invention can be used very suitably as a heat exchange tube used in a radiator of a supercritical refrigeration cycle. In addition, a radiator including this heat exchange tube is suitable for a supercritical refrigeration cycle.

Claims

言青求の範囲 Range of wording
1 . 媒体を流通する流路を備え、 当該熱交換チューブに伝わる熱に て前記媒体の熱交換をする熱交換チューブにおいて、 1. In a heat exchange tube having a flow path through which a medium flows and exchanging heat of the medium by heat transferred to the heat exchange tube,
当該熱交換チューブは、 帯状の素材を成形し、 ろう付けしてなるも のであり、  The heat exchange tube is formed by molding and brazing a strip-shaped material.
前記素材には、 前記流路を区画するビ一ドを設け、  The material is provided with a bead that partitions the flow path,
当該熱交換チューブの内部には、 前記ビードの頂部をろう付けする プレー ト体を設けたことを特徴とする熱交換チューブ。  A heat exchange tube, wherein a plate body for brazing the top of the bead is provided inside the heat exchange tube.
2 . 当該熱交換チューブは、 前記素材を互いに対向してなる偏平部 を有し、 2. The heat exchange tube has flat portions formed by facing the materials to each other,
前記ビ一ドは、 前記侷平部にそれそれ設け、  The bead is provided on the flat portion,
前記プレート体は、 前記偏平部の間に設けたことを特徴とする請求 項 1記載の熱交換チューブ。  The heat exchange tube according to claim 1, wherein the plate body is provided between the flat portions.
3 . 高圧側の圧力が前記媒体の臨界点を超える冷凍サイクルの熱交 換器に用いることを特徴とする請求項 1又は 2記載の熱交換チュー ブ。 3. The heat exchange tube according to claim 1 or 2, wherein the heat exchange tube is used in a heat exchanger of a refrigeration cycle in which a pressure on a high pressure side exceeds a critical point of the medium.
4 . 請求項 1乃至 3のいずれか記載の熱交換チューブを備えたこと を特徴とする熱交換器。  4. A heat exchanger comprising the heat exchange tube according to any one of claims 1 to 3.
5 . 請求項 4記載の熱交換器を備えたことを特徴とする冷凍サイク ル。  5. A refrigeration cycle comprising the heat exchanger according to claim 4.
PCT/JP2005/024252 2005-01-07 2005-12-27 Heat exchange tube, heat exchanger, and refrigerating cycle WO2006073135A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006550877A JPWO2006073135A1 (en) 2005-01-07 2005-12-27 Heat exchange tube, heat exchanger, and refrigeration cycle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-003228 2005-01-07
JP2005003228 2005-01-07

Publications (1)

Publication Number Publication Date
WO2006073135A1 true WO2006073135A1 (en) 2006-07-13

Family

ID=36647614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/024252 WO2006073135A1 (en) 2005-01-07 2005-12-27 Heat exchange tube, heat exchanger, and refrigerating cycle

Country Status (2)

Country Link
JP (1) JPWO2006073135A1 (en)
WO (1) WO2006073135A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013213666A (en) * 2013-07-11 2013-10-17 Alfa Laval Corporate Ab Plate heat exchanger
US9103597B2 (en) 2008-04-04 2015-08-11 Alfa Laval Corporate Ab Plate heat exchanger

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002062062A (en) * 2000-08-22 2002-02-28 Zexel Valeo Climate Control Corp Heat exchanger
JP2003071532A (en) * 2001-09-05 2003-03-11 Showa Denko Kk Method for manufacturing flattened tube and flattened tube manufactured by the same method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002062062A (en) * 2000-08-22 2002-02-28 Zexel Valeo Climate Control Corp Heat exchanger
JP2003071532A (en) * 2001-09-05 2003-03-11 Showa Denko Kk Method for manufacturing flattened tube and flattened tube manufactured by the same method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9103597B2 (en) 2008-04-04 2015-08-11 Alfa Laval Corporate Ab Plate heat exchanger
JP2013213666A (en) * 2013-07-11 2013-10-17 Alfa Laval Corporate Ab Plate heat exchanger

Also Published As

Publication number Publication date
JPWO2006073135A1 (en) 2008-06-12

Similar Documents

Publication Publication Date Title
JP4724594B2 (en) Heat exchanger
US20050011637A1 (en) Heat exchanger and tube for heat exchanger
JP2007278556A (en) Heat exchanger
JP2007298260A (en) Heat exchanger
JP2004077079A (en) Heat exchanger, its manufacturing method, tube connection structure of header tank for heat exchanger and refrigeration system
EP1726907A1 (en) Heat exchanger
JPH10325645A (en) Refrigerant evaporator
JP2007147172A (en) Heat exchanger
US20030192681A1 (en) Heat exchanger having projecting fluid passage
US20080264620A1 (en) Flat Tube, Platelike Body for Making the Flat Tube and Heat Exchanger
JP2007125590A (en) Heat exchanger and method for manufacturing heat exchanger
WO2006073135A1 (en) Heat exchange tube, heat exchanger, and refrigerating cycle
JP2006078163A (en) Flat tube, plate body for manufacturing flat tube, and heat exchanger
JP4542552B2 (en) Heat exchanger
JP2004183960A (en) Heat exchanger
JP4626472B2 (en) Heat exchanger and heat exchanger manufacturing method
JP3840736B2 (en) Laminate heat exchanger
JP2009250600A (en) Copper flat heat-transfer pipe
JP2007113895A (en) Heat exchanger and manufacturing method of heat exchanger
JP2006297472A (en) Manufacturing method of heat exchanger, and fin and tube of heat exchanger
JP7569757B2 (en) Heat exchanger
JP2007147173A (en) Heat exchanger and its manufacturing method
JP4334311B2 (en) Heat exchanger
JP2003106793A (en) Heat exchanger
JP2008101886A (en) Heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006550877

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 05822575

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5822575

Country of ref document: EP