WO2006034062A1 - Gastrointestinal anchor - Google Patents
Gastrointestinal anchor Download PDFInfo
- Publication number
- WO2006034062A1 WO2006034062A1 PCT/US2005/033220 US2005033220W WO2006034062A1 WO 2006034062 A1 WO2006034062 A1 WO 2006034062A1 US 2005033220 W US2005033220 W US 2005033220W WO 2006034062 A1 WO2006034062 A1 WO 2006034062A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- anchor
- anchoring
- bodily lumen
- intraluminal
- tube
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F5/00—Orthopaedic methods or devices for non-surgical treatment of bones or joints; Nursing devices; Anti-rape devices
- A61F5/0003—Apparatus for the treatment of obesity; Anti-eating devices
- A61F5/0013—Implantable devices or invasive measures
- A61F5/0076—Implantable devices or invasive measures preventing normal digestion, e.g. Bariatric or gastric sleeves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
- A61F2/07—Stent-grafts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/89—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure the wire-like elements comprising two or more adjacent rings flexibly connected by separate members
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
- A61F2/915—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2002/045—Stomach, intestines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
- A61F2/07—Stent-grafts
- A61F2002/072—Encapsulated stents, e.g. wire or whole stent embedded in lining
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
- A61F2/07—Stent-grafts
- A61F2002/075—Stent-grafts the stent being loosely attached to the graft material, e.g. by stitching
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2002/828—Means for connecting a plurality of stents allowing flexibility of the whole structure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/848—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents having means for fixation to the vessel wall, e.g. barbs
- A61F2002/8483—Barbs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/95—Instruments specially adapted for placement or removal of stents or stent-grafts
- A61F2002/9534—Instruments specially adapted for placement or removal of stents or stent-grafts for repositioning of stents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2210/00—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2210/0076—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof multilayered, e.g. laminated structures
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0008—Fixation appliances for connecting prostheses to the body
- A61F2220/0016—Fixation appliances for connecting prostheses to the body with sharp anchoring protrusions, e.g. barbs, pins, spikes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0025—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2220/005—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements using adhesives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0025—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2220/0058—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements soldered or brazed or welded
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0025—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2220/0066—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements stapled
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0025—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2220/0075—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements sutured, ligatured or stitched, retained or tied with a rope, string, thread, wire or cable
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0014—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
- A61F2250/0036—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in thickness
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0014—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
- A61F2250/0037—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in height or in length
Definitions
- Anchors are used in the treatment of patients to secure devices at a desired location within a natural bodily lumen.
- anchors can be used to secure tubes within the digestive tract, such as intestinal sleeves.
- intestinal sleeves anchored within the gastrointestinal tract are described in U.S. Application Nos. 10/339,786 filed on January 9, 2O03, claiming priority to U.S. Provisional Application No. 60/430,321 filed on December 2, 2002; 10/858,852 filed on June 16, 2004, claiming priority to U.S. Provisional Application Nos. 60/528,084 filed on December 9, 2003 and 60/544,527 filed on December 14, 2004, incorporated herein by reference in their entirety.
- This invention is generally related to articles and methods for anchoring within a natural bodily lumen, and particularly to articles and methods for anchoring atraumatically.
- stiff anchors can traumatize surrounding tissue. This is particularly true in biological applications in which the anchor operates against softer bodily tissues.
- a stiff anchor may be used within a bodily lumen, such as the intestine to prevent a medical device (e.g., a sleeve) from migrating therein.
- the anchor includes barbs adapted to pierce a portion of the lumen. For the barbs to be effective, at least some of them must engage the tissue at all times. To accomplish this continued engagement, anchors provide a sufficient securing force adapted to maintain the barbs within the tissue. As this securing force can be substantial, tissue damage at the proximal and distal ends of the anchor are likely to occur.
- anchors To anchor within a lumen, anchors generally apply at least some outward force directed toward the inner walls of the lumen.
- the anchoring force can vary from a minimal force (e.g., to hold hooks in position) to a more substantial force (e.g., forming an interference fit).
- a minimal force e.g., to hold hooks in position
- a more substantial force e.g., forming an interference fit
- the inner walls of a lumen typically contain tissue that is soft and particularly vulnerable to irritation. Thus, in these applications a greater force increases the risk that the anchor will lead to trauma by way of irritation or even tissue damage.
- the present invention relates to an intraluminal anchor adapted for implanting within a natural bodily lumen.
- the intraluminal anchor includes an elongated anchor having a longitudinal axis adapted for alignment with the natural bodily lumen.
- the elongated anchor includes a primary anchoring region adapted to expand against the lumen.
- the anchor also includes secondary anchoring regions disposed along either side of the primary anchoring region.
- the secondary anchoring regions are also adapted to expand against the lumen with the primary anchoring region expanding to a greater extent than the outer ends of the secondary anchoring regions.
- the intraluminal anchor also includes an elongated anchoring member that, when implanted, provides at least two different radial forces at respective positions along its length.
- At least one of the radial forces is primarily a securing force adapted to anchor within the natural bodily lumen.
- the other radial force is a transitional force adapted to mitigate damage to the natural bodily lumen.
- the intraluminal anchor defines an interior lumen allowing for continued functioning of the natural bodily lumen.
- the elongated anchoring member can include plural anchoring elements each providing a respective radial force, at least one of the elements providing a different radial force from the others.
- each of the plural anchoriag elements By positioning each of the plural anchoriag elements at a respective position along the length of the intraluminal anchor, the respective radial forces, including the different radial force, are disposed at different lengths along the natural bodily lumen.
- the different radial force can be provided by forming one or more of the anchoring elements from a different material than the other anchoring elements.
- the different materials provide different compliance values that produce different radial forces when implanted.
- the different anchoring elements can be formed from the same material but in a different configuration, such as its shape or thickness. At least some of the anchoring elements can be coupled to each other. For example, in some embodiments at least one joining member is coupled between adjacent anchoring elements, the joining member coupling two or more anchoring elements together.
- At least one of the anchoring elements can be formed from an elongated wire.
- the elongated wire can be formed in any suitable shape, such as a helix or an oscillating (i.e., wave-shaped) pattern.
- the wave-shaped pattern distributes the respective radial force over the length of the anchoring element while also improving performance of the anchoring element's respective radial expansion and contraction.
- the intraluminal anchor can include at least one external barb adapted to penetrate tissue of the natural bodily lumen. The external barb is located at a predetermined position along the length of the intraluminal anchor, the corresponding radial force acting to press the barb into the tissue.
- the at least one external barb can be coupled to one of the anchoring elements.
- the force of the coupled anchoring element then acts to hold the barb within the tissue.
- the external barb can be a bi-directional barb.
- Bi ⁇ directional barbs are particularly well suited for applications in which the intraluminal anchor is subjected to external forces acting in either direction along the natural bodily lumen.
- the bi-directional barb includes a first barb segment adapted to oppose proximal movement and a second barb segment adapted to oppose distal movement.
- Such barbs are well suited to gastrointestinal applications in which the device is subjected to the substantial axial forces of peristalsis.
- the anchor is radially collapsible for endoscopic insertion.
- the intraluminal anchor can also include a drawstring to facilitate repositioning and/or removal.
- the drawstring for example, can be provided at a proximal end of the device and be adapted for engagement by a removal device, such as a hook.
- the drawstring when engaged, can be pushed or pulled by the removal device, in opposition to the stationary intraluminal anchor, to at least partially collapse at least part of the intraluminal anchor.
- the device With a reduced diameter, the device can be removed through, or repositioned within, the natural bodily lumen.
- at least a portion of the device is drawn into a retrieval hood, sheath, or overtube prior to removal.
- the intraluminal anchor is coupled to an elongated tube at a proximal end of the tube, the tube being adapted to extend distally within the natural bodily lumen.
- the elongated anchoring element can be coupled to the elongated tube in any of a number of different ways.
- the anchoring element can be mechanically fastened using sutures, staples, or the like.
- the anchoring element can be bonded to the tube, using a chemical adhesive and/or heat welding.
- the tube is thin- walled, and flexible.
- the tube can be formed as a sleeve having extremely thin and floppy walls, the sleeve tending to collapse upon itself.
- the anchoring element can secured between at least two overlapping layers of the sleeve.
- the overlapping layers can then be attached to each other using any available fastening technique including bonding together at least a portion of the overlapping layers of the sleeve.
- the elongated anchoring element can be formed from a homogeneous hollow tube.
- the thickness of the tube can be altered (i.e., tapered) along the length of the tube, such that different portions of the tube provide different spring forces.
- the tapered tube provides different forces along its length and therefore different forces along the bodily lumen according to the thickness of the tube.
- the tapered tube can be further modified using known techniques (e.g., laser cutting) to promote radial expansion and contraction of the device.
- Fig. IA is a schematic diagram illustrating a prior art intraluminal anchor implanted within a natural bodily lumen.
- Fig. IB is a schematic diagram illustrating an embodiment of an intraluminal anchor according to the principles of the invention implanted within a natural bodily lumen.
- Fig. 2 is a schematic diagram illustrating an embodiment of an intraluminal anchor.
- Fig. 3 is a schematic diagram illustrating an embodiment of a bendable, intraluminal anchor.
- Fig. 4 A is a schematic diagram illustrating an alternative embodiment of the intraluminal anchor shown in Fig. 1.
- Fig. 4B is an exemplary radial-force profile for the intraluminal anchor of Fig. 4A.
- Figs. 5 A and 5B are schematic diagrams illustrating alternative embodiments of the intraluminal anchor shown in Fig. 2 having cross-linking members.
- Fig. 6 is a schematic diagram illustrating an alternative embodiment of the intraluminal anchor shown in Fig. 4A having multiple coupled wave elements.
- Fig. 7 is a schematic diagram illustrating a cross-sectional view of an embodiment of the intraluminal anchor device shown in Fig. 2 attached to a tube and implanted within a natural bodily lumen.
- Fig. 8 is a schematic diagram illustrating a cross-sectional view of the intraluminal anchor device shown in Fig. 7 implanted within the proximal duodenum.
- Fig. 9A is a schematic diagram illustrating an embodiment of a shaped tube.
- Fig. 9B is a schematic diagram illustrating an embodiment of an intraluminal anchor formed from the shaped tube shown in Fig. 9A.
- Fig. 9C is an exemplary radial-force profile for the intraluminal anchor of
- An anchor is adapted for anchoring within a natural bodily lumen while allowing continued functionality of the lumen and providing minimal trauma to the surrounding anatomy.
- Such an anchor provides a securing force acting upon the surrounding anatomy to hold the anchor fast, even in the presence of anticipated biological forces. For example, the securing force would hold a gastrointestinal anchor in position even in the presence of peristalsis. Anchoring against such forces, however, may require substantial securing force that could otherwise damage the surrounding tissue.
- FIG. IA A cross-section of a natural bodily lumen 20 including an anchor 10b' is illustrated in Fig. IA.
- the lumen defines a natural diameter, D 1 , that may vary over time.
- the anchor provides a radially-outward securing force directed against the luminal walls.
- the anchor 10b' when implanted can increase the intraluminal diameter (i.e., D 2 ) as shown.
- the sharp transition from the anchored region to the unsupported adjacent region applies a strain to the tissue, particularly at the ends of the anchor 25. As shown, tissue stretching can occur over a first distance A 1 . Such a strain can lead to irritation of the tissue or even damage over time.
- the anchor also provides a transitional force that is different from the securing force and acts upon an adjacent region of the surrounding anatomy.
- a transitional force that is different from the securing force and acts upon an adjacent region of the surrounding anatomy.
- an anchor 10b" providing a securing force is surrounded on either side by another anchoring element 10a", 10c" providing a lesser, transitional force.
- the transitional force allows for a more gradual decrease in anchoring force from a central region along the length of the anchor and thus less trauma.
- the transition from an expanded diameter D 2 to the natural luminal diameter D 1 occurs over a second distance A 2 , that is greater than first distance A 1 .
- the securing force can be applied, or focused where needed, while the transitional force can distribute the pressure loading to the surrounding anatomy.
- the transitional force is a lesser force than the securing force, providing a gradual transition from the luminal region subjected to the securing force, to adjacent, unsupported luminal regions.
- the anchor can be used in combination with another instrument, such as a feeding tube or a gastrointestinal sleeve, to secure the instrument at a predetermined location within the bodily lumen.
- FIG. 2 schematically illustrates an exemplary embodiment of an intraluminal anchor 100.
- the anchor 100 has an overall axial-length 'L' measured length- wise with respect to the lumen and defines an interior channel 115 configured to allow continued operation of the lumen when implanted therein.
- the anchor 100 can have a generally cylindrical shape, having a length 'L', a diameter 'D', and defining an interior channel 115.
- the anchor provides a radially-outward spring force directed against the adjacent walls of the natural bodily lumen (i.e., the anchor includes an annular, radial spring providing a force corresponding to a displacement of the spring along its radius).
- the radial force includes a securing force, sufficient to secure the anchor 100 in place under anticipated bodily forces, hi particular, the outward radial force is varied along the length of the anchor to provide a transitional force, reducing the likelihood of damage to surrounding tissue.
- the anchor When implanted within a natural bodily lumen, the anchor provides a transition along the lumen from soft tissue, to a low compliance region (i.e., transitional force), to a higher compliance region (i.e., securing force), again to a low compliance region, and ultimately back to unsupported, soft tissue.
- the anchor includes a spring providing the desired securing force.
- the force produced by the spring is defined by an associated spring rate relating to its compliance or stiffness.
- the spring rate can be determined by one or more anchor features including its type of material, material thickness, dimensions, and shape.
- a radial spring a greater force results from a greater radial displacement.
- such a radial spring preferably has a relaxed diameter (i.e., no load diameter) that is greater than the largest anticipated intraluminal diameter.
- the implanted anchor is always subjected to a compressive force causing radial compression and leading to an opposing securing force.
- Compliant anchors are described in U.S. Application No. 11/147,992 filed on June 8, 2005, incorporated herein by reference in its entirety.
- an anchor implanted within the proximal duodenum of an adult human may experience intraluminal diameter variations from about 25-millimeters or less, to greater than 50-millimeters.
- the anchor 100 can provide a varied force by using plural anchoring elements.
- the anchor 100 can include three or more different anchoring elements 110a, 110b and 110c (generally 110), as shown.
- Each of the anchoring elements 110a, 110b and 110c can be annular, as shown, and occupy a respective axial sub-length 'I 1 ,' 'I 2 ,' and 'I 3 .
- each of the anchoring elements 110 can be separated from its neighboring anchoring element by a respective distance 'S 1 ,' 'S 2 .
- the one or more of the distances can be negative, suggesting that the elements overlap.
- the overall length of the anchor 100 is determined as the sum of the sub-lengths of the anchoring elements and any distances provided therebetween.
- Each of the annular anchoring elements 110 can be sized and shaped to conform to the walls of the surrounding lumen with its opening collinearly aligned with a luminal axis.
- the anchoring elements 110 are coupled together using a respective cross-linking, or joining member 120a, 120b (generally 120), as shown.
- the joining member 120 can be a rigid member or strut, such as a wire or rod. Use of rigid struts can reduce or substantially eliminate axial compression of the device.
- the joining member 120 can be flexible, such as a wire, tape, or thread (e.g., a suture). Such flexible members can permit axial compression but not expansion, so the length can be less than or equal to a maximum length. If axial compression and expansion is desired, the joining members 120 can include elastic elements. Such flexibility can be beneficial to both patient comfort and anchoring effectiveness.
- the joining members 120 are formed integrally to the anchoring elements 110 themselves. An embodiment of a flexible elongated anchor 200 is illustrated in Fig. 3.
- the elongated anchor 200 can include more than one anchoring element 210a, 210b, 210c, each capable of independent movement with respect to the other elements.
- the anchor 200 may include joining members 220a, 220b, but they are selected and positioned to allow a desired flexibility. For example, rigid joining members can be aligned along one side of the anchor 200, allowing the anchor to bend towards that side.
- FIG. 4A An alternative embodiment of an intraluminal anchor 300 is illustrated in Fig. 4A.
- the anchor 300 includes multiple anchoring elements 310a, 310b, 310c in a collinear arrangement with adjacent elements 310 abutting.
- a corresponding force-versus-distance graph for the anchor 300 is illustrated in Fig. 4B.
- the graph illustrates the different radially-outward forces provided by each of the anchoring elements 310 (Fig. 4A) versus its respective distance as measured along a central axis of the anchor 300.
- the greater radial force is provided by the central element 310b, having a representative force of F 2 .
- the corresponding force can be substantially constant across the axial length subtended by the second anchoring element 310b (i.e., from L/3 to 2L/3, assuming all three elements are of equal length L/3).
- forces Fi and F 3 provided by the adjacent first and third anchoring elements 310a, 310c are lesser forces, as shown in the graph (e.g., at region 320).
- the greater force F 2 corresponds to a securing force to hold the anchor in place when implanted; whereas, the lesser forces Fi and F 3 correspond to transitional forces lessening the likelihood of damage to surrounding tissue.
- the structure of the anchoring elements 310 allows the elements to provide different forces along their respective sub-lengths.
- anchoring elements 310 are radial springs, they have an associated spring constant.
- the radial force provided by the anchoring element 310 is thus a result of the spring constant and the amount of radial compression.
- Anchoring element configurations that allow for varied compression along the anchor sub-length will lead to a corresponding varied radial force.
- the outer anchoring elements 310a, 310c are each coupled at one end to the central anchoring element 310b, they may have a different diameter on each end.
- the central anchoring element 31 Ob is stiffer, it may have a greater diameter than a less stiff element. In general, there is no limit to the number of anchoring elements that can be provided or to the particular stiffness profile desired.
- the securing force produced by the anchor can include a radial component directed outward and pressing against the walls of the surrounding lumen.
- the securing force can also include an axial component provided by a barb.
- the magnitude of the securing force preferably depends on the intended application being selected to sufficiently secure the anchor without being excessive. Limiting the maximum force is important as substantial forces acting against the luminal walls are more apt to traumatize the surrounding tissue.
- the radially-outward force of an anchor is varied by varying the stiffness (or compliance) of the anchor along its length. Such a feature provides for greater flexibility in tailoring the anchor to its intended delivery location.
- the thickness of the anchor member can be varied to control the desired stiffness, such that a portion of the anchor is relatively stiff, whereas another portion of the anchor is relatively soft.
- the stiffer portion of the anchor can be used to distend that portion of the bodily lumen within which it is implanted.
- the stiffness is then reduced towards the proximal and distal ends of the anchor to reduce any trauma to the tissue of the bodily lumen.
- a side view of a flexible intraluminal anchor 400' is illustrated in Fig. 5A.
- the anchor 400' is allowed to flex and bend.
- the joining members 420' are not necessary for embodiments in which the elements 410 are each coupled to the same tube or sleeve.
- the anchoring elements 410' are each formed from a respective continuous wire fashioned into the oscillating, wave-shaped pattern shown. Viewed along an axis (not shown), the anchor 400' would appear as an open circle or hoop. Wave-shaped anchors and related matters are described in U.S. Application No.
- the central anchoring element 410b' is formed from a relatively thick wire, such as a 0.023 inch diameter Nitinol wire.
- the additional anchoring elements 410a', 410c' are formed from a thinner wire, such as a 0.014 inch diameter Nitinol wire. Using wires formed from the same material, the thicker wire results in a greater stiffness than the thinner wire.
- the central anchoring 41 Ob 'element provides a greater radially-outward force when compressed than either of the two surrounding anchoring elements 410a', 410c'.
- the spring rate can also be varied by altering the axial length of a wave-shaped anchoring element, shorter elements being stiffer than longer ones. Also, the spring rate can be varied by altering the number of oscillations for a give anchoring element, elements with more oscillations being stiffer.
- the wires can be formed from any suitable material, such as metals, metal alloys (e.g., stainless steel and Nitinol), and/or synthetic materials (e.g., plastic).
- the material is bio-compatible, although it is possible to use non bio ⁇ compatible material that is coated or encapsulated in a bio-compatible material.
- Anchoring can be accomplished using an interference fit between the intraluminal anchor and the inner walls of the lumen. Alternatively or in addition, anchoring can be accomplished using other means including sutures, staples, surgical adhesives and/or barbs or hooks. In the exemplary embodiment, at least one external barb 425' is be attached to the central anchoring element 410b'.
- the barb 425' When implanted, the barb 425' is held in place within muscular tissue by the stiffness and corresponding radially-outward force of the 0.023 inch diameter wire.
- the central anchor element 410b provides a substantial force to keep the barb 425' inserted into the surrounding tissue. Without the first and third anchoring elements 410a', 410c', the securing force provided by the middle anchoring element 410b' could lead to tissue irritation or even damage at the ends of the element 410b'.
- each of the anchoring elements is formed in a wave shape.
- a linear element i.e., a wire
- Such a wire form can be shaped on a cylindrical mandrel. The two ends of the wire are joined together (e.g., crimped, soldered, or chemically or thermally bonded) forming a continuous structure.
- An anchoring element thus formed provides a relatively small surface area in contact with the natural bodily lumen, while allowing the anchor to provide a relatively large diameter (e.g., 25 to 50 or more millimeters for gastrointestinal applications).
- the oscillations result in relatively straight segments 412a, 412b (generally 412) interconnected at nodes 414a, 414b (generally 414).
- the nodes 414 When compressed in a radial direction, the nodes 414 flex allowing the relatively straight segments 412 to become more aligned with respect to each other.
- the diameter of the anchor 400' can be reduced substantially to allow for its insertion and/or removal through a relatively small diameter. For example, in some intestinal applications, a 50-millimeter diameter device is adapted to be inserted through a 12-millimeter diameter catheter. When released, the anchor 400' expands with spring force against the walls of the bodily lumen.
- the anchoring elements 410a', 410b', 410c' may be separated by respective distances S 1 , S 2 as shown, or one or more of the elements may be adjacent or even overlapping.
- An alternative embodiment of a wave-shaped wire anchor 400" is illustrated in Fig. 5B.
- the anchoring 400" also includes multiple anchoring elements 410a", 410b", 410c" that may or may not be interconnected by joining members 420a", 420b". As shown, one or more of the anchoring elements 410a", 410b", 410c" can overlap another anchor element to varying degrees. At least one advantage of such an overlap is a reduction in the overall length of the anchor 400".
- FIG. 6 A side view of an alternative embodiment of an intraluminal anchor 500 is illustrated in Fig. 6.
- the anchor 500 includes multiple anchoring elements 510a, 510b, 510c, again shown as wave-shaped elements for illustrative purposes, that are interconnected to each other.
- the anchoring elements 510a, 510b, 510c can be interconnected by mechanical fasteners, chemical adhesives, thermal bonding, welding, soldering, and/or weaving. The interconnection may be fixed, or in the case of a weave, capable of longitudinal compression.
- the intraluminal anchor can be used to anchor an elongated tube within a natural bodily lumen.
- An exemplary device 600 including an intraluminal anchor, similar to the one described above in reference to Fig. 5 A, and coupled to the proximal end of an elongated tube 615 is illustrated in Fig. 7.
- the tube 615 may be rigid, semi-rigid or flexible.
- Gastrointestinal sleeves and related matters are described in U.S. Application No. 10/339,786, filed January 9, 2003, which claims the benefit of U.S. Provisional Application No. 60/430,321, filed December 2, 2002; and U.S. Application No. 10/726,011, filed on December 2, 2003, which claims the benefit of U.S. Provisional Application No. 60/512,145 filed October 17, 2003. The entire teachings of all of these applications are incorporated herein by reference.
- the anchoring elements 610a, 610b, 610c can be bonded to the tube (e.g., chemically bonded using an adhesive, or thermally bonded).
- the anchoring elements 610 can also be mechanically coupled to the elongated tube 615.
- the anchoring elements 610 can be coupled using a suture, a surgical staple, and/or by threading the anchoring element itself through perforations in the elongated tube.
- the anchoring elements 610 are encapsulated within the elongated tube 615.
- the elongated tube 615 can be formed as a sleeve.
- a portion the sleeve can then be used to encapsulate the anchoring elements by folding one end of the sleeve back upon itself to cover both the interior and exterior of the anchoring elements 610.
- the portions of the elongated tube forming the overlapping portion 617 can. then be coupled together, thereby capturing the anchoring elements 610 and securing them in place with respect to each other and with respect to the elongated tube 615.
- the overlapping portions of the tube 617 can be bonded together (e.g., chemically bonded using an adhesive, or thermally bonded).
- the overlapping portions of the tube 617 can be mechanically fastened together.
- the overlapping portions of the elongated tube 617 can be coupled together using sutures, staples, clasps, or any other suitable mechanical fastener.
- the anchor 600 can include " barbs 620 that protrude externally from the anchor 600 to penetrate the surrounding tissue.
- the device 600 as implanted within a portion of an animal's intestine 630 illustrated in cross section. Shown are the intestinal wall 630 including an inner mucosal layer 632 in communication with the anchor 600 and a surrounding layer of muscular tissue 634.
- the barbs 620 are adapted to penetrate the mucosal layer 632 and into the muscular tissue 634 of the intestine 630.
- the barbs 620 actually penetrate the outer walls of the intestine 630.
- the barbs 620 provide an axial securing force component, with the anchoring element 610b providing a securing force adapted to maintain the barbs into engagement with the muscular tissue 634.
- the anchoring element to which the barbs 620 are coupled should be relatively stiff.
- the stiffness of the supporting anchoring element 610b maintains a radial force ensuring that the barbs 620 are driven into the tissue.
- the stiffness is sufficient to force the supporting anchoring element 610b through the mucosal layer 632, abutting it to the layer of muscular tissue 634.
- the stiffness of the anchoring element 310b can lead to irritation and possibly damage to the surrounding tissue.
- additional anchoring elements 610a, 610c are provided on either side of the anchoring element 610b.
- the additional anchoring elements 610a, 610c are less stiff ⁇ i.e., softer) than the central anchoring element 610b.
- the transition between unanchored portions of the lumen and the stiff anchoring element 610b is spread over a larger surface area to achieve the desired anchoring force at the barbs 620 in a gradual manner.
- the additional anchoring elements 610a, 610c provide a strain relief on both sides of the stiff anchoring element 610b to minimize trauma to the tissue, as shown in Fig. IB.
- FIG. 8 An exemplary embodiment of an intraluminal anchor anchoring an elongated flexible sleeve within the intestine of an animal is illustrated in Fig. 8.
- a lower portion of the stomach 700 is shown terminating in a pyloric sphincter 705.
- the proximal duodenum 715 Distal to the sphincter 705 is the proximal duodenum 715, sometimes referred to as the duodenal bulb.
- the device of Fig. 7 is implanted with the anchor being situated distal to the pyloric sphincter 705, preferably within the duodenal bulb 715.
- the sleeve 600 can extend through the duodenum 710 and into the jejunum 720.
- the radial force, or stiffness can be controlled by varying a physical property of the anchoring element.
- the elongated anchoring element can be formed from a tapered tube.
- the tube can be shaped to vary its wall thickness.
- the axial taper can be accomplished by injection moulding to a desired shape and/or by removing material from a solid elongated tube. The result in either case is an anchoring element having differing thicknesses along its central axis.
- Figure 9A illustrates a cross-sectional view of an exemplary tube 800 after having both ends tapered from a thicker middle section.
- a stainless steel or alloy (e.g., Nitinol) tube 800 can be shaped by grinding it and/or turning it on a lathe to selectably remove material along its length.
- the tube 800 can be tapered from a relatively thick portion along the tube middle, to a relatively thin portion at the tube's ends (with this approach, any conceivable profile is possible).
- the shaped tube 800 once tapered, can be further processed to form an expandable anchor.
- apertures 920 can be cut into the shaped tube 900 walls using a laser.
- the remaining portions of the shaped tube 910 can form a continuous structure such as the interconnected network of struts 910 shown, or even a wave structure as described above. Again, the resulting structure provides an interior lumen 915, while also being radially compressible.
- a corresponding force-versus-distance profile for the exemplary tiibe 900 is illustrated in Fig. 9C. As will be appreciated by those of skill in the art, there are many potential variations to these methods and articles. Those variations are encompassed by this invention.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Transplantation (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Cardiology (AREA)
- Gastroenterology & Hepatology (AREA)
- Pulmonology (AREA)
- Child & Adolescent Psychology (AREA)
- Obesity (AREA)
- Nursing (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Prostheses (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP05797460.2A EP1799145B1 (en) | 2004-09-17 | 2005-09-16 | Gastrointestinal anchor |
AU2005287010A AU2005287010B2 (en) | 2004-09-17 | 2005-09-16 | Gastrointestinal anchor |
JP2007532514A JP2008513129A (en) | 2004-09-17 | 2005-09-16 | Intraluminal anchor device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US61103804P | 2004-09-17 | 2004-09-17 | |
US60/611,038 | 2004-09-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006034062A1 true WO2006034062A1 (en) | 2006-03-30 |
Family
ID=35610001
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2005/033220 WO2006034062A1 (en) | 2004-09-17 | 2005-09-16 | Gastrointestinal anchor |
Country Status (5)
Country | Link |
---|---|
US (3) | US7815591B2 (en) |
EP (2) | EP3195829A1 (en) |
JP (1) | JP2008513129A (en) |
AU (1) | AU2005287010B2 (en) |
WO (1) | WO2006034062A1 (en) |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008117315A1 (en) | 2007-03-23 | 2008-10-02 | Invatec Technology Center Gmbh | Endoluminal prosthesis |
US7678068B2 (en) | 2002-12-02 | 2010-03-16 | Gi Dynamics, Inc. | Atraumatic delivery devices |
US7682330B2 (en) | 2003-12-09 | 2010-03-23 | Gi Dynamics, Inc. | Intestinal sleeve |
US7695446B2 (en) | 2002-12-02 | 2010-04-13 | Gi Dynamics, Inc. | Methods of treatment using a bariatric sleeve |
WO2010071776A1 (en) * | 2008-12-17 | 2010-06-24 | Med Institute, Inc. | Tapered stent and flexible prosthesis |
US7758535B2 (en) | 2002-12-02 | 2010-07-20 | Gi Dynamics, Inc. | Bariatric sleeve delivery devices |
GB2467097A (en) * | 2008-11-06 | 2010-07-21 | Cook William Europ | Stent graft |
US7766973B2 (en) | 2005-01-19 | 2010-08-03 | Gi Dynamics, Inc. | Eversion resistant sleeves |
US7766861B2 (en) | 2002-12-02 | 2010-08-03 | Gi Dynamics, Inc. | Anti-obesity devices |
US7771382B2 (en) | 2005-01-19 | 2010-08-10 | Gi Dynamics, Inc. | Resistive anti-obesity devices |
US7815591B2 (en) | 2004-09-17 | 2010-10-19 | Gi Dynamics, Inc. | Atraumatic gastrointestinal anchor |
US7819836B2 (en) | 2006-06-23 | 2010-10-26 | Gi Dynamics, Inc. | Resistive anti-obesity devices |
US7976488B2 (en) | 2005-06-08 | 2011-07-12 | Gi Dynamics, Inc. | Gastrointestinal anchor compliance |
US8057420B2 (en) | 2003-12-09 | 2011-11-15 | Gi Dynamics, Inc. | Gastrointestinal implant with drawstring |
US8137301B2 (en) | 2002-12-02 | 2012-03-20 | Gi Dynamics, Inc. | Bariatric sleeve |
US8702642B2 (en) | 2009-07-10 | 2014-04-22 | Metamodix, Inc. | External anchoring configurations for modular gastrointestinal prostheses |
US8801647B2 (en) | 2007-02-22 | 2014-08-12 | Gi Dynamics, Inc. | Use of a gastrointestinal sleeve to treat bariatric surgery fistulas and leaks |
US9044300B2 (en) | 2009-04-03 | 2015-06-02 | Metamodix, Inc. | Gastrointestinal prostheses |
US9173760B2 (en) | 2009-04-03 | 2015-11-03 | Metamodix, Inc. | Delivery devices and methods for gastrointestinal implants |
US9198791B2 (en) | 2010-07-22 | 2015-12-01 | Endobetix Ltd. | Pancreaticobiliary diversion device |
US9278019B2 (en) | 2009-04-03 | 2016-03-08 | Metamodix, Inc | Anchors and methods for intestinal bypass sleeves |
US9456917B2 (en) | 2013-08-28 | 2016-10-04 | Ethicon Endo-Surgery, Inc. | Endoscopic transoral duodenal sleeve applier |
US9622897B1 (en) | 2016-03-03 | 2017-04-18 | Metamodix, Inc. | Pyloric anchors and methods for intestinal bypass sleeves |
US9907681B2 (en) | 2013-03-14 | 2018-03-06 | 4Tech Inc. | Stent with tether interface |
US10058323B2 (en) | 2010-01-22 | 2018-08-28 | 4 Tech Inc. | Tricuspid valve repair using tension |
US10159699B2 (en) | 2013-01-15 | 2018-12-25 | Metamodix, Inc. | System and method for affecting intestinal microbial flora |
US10238518B2 (en) | 2007-02-27 | 2019-03-26 | Agt Inc. | Implantable weight control device |
US10350099B2 (en) | 2006-09-01 | 2019-07-16 | Ethicon Endo-Surgery, Inc. | Devices and methods for anchoring an endoluminal sleeve in the GI tract |
US10433963B2 (en) | 2010-01-22 | 2019-10-08 | 4Tech Inc. | Tissue anchor and delivery tool |
US10449050B2 (en) | 2013-01-09 | 2019-10-22 | 4 Tech Inc. | Soft tissue depth-finding tool |
US10751209B2 (en) | 2016-05-19 | 2020-08-25 | Metamodix, Inc. | Pyloric anchor retrieval tools and methods |
US11013630B2 (en) | 2016-01-13 | 2021-05-25 | Agt, Inc. | Implantable weight control device to promote early and prolonged satiety in a bariatric patient |
US11684502B2 (en) | 2017-07-21 | 2023-06-27 | Gi Dynamics, Inc. | Segmented gastrointestinal devices and methods of use thereof |
Families Citing this family (123)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101810521B (en) | 2001-08-27 | 2015-05-13 | 辛尼科有限责任公司 | Satiation devices and methods |
US7837669B2 (en) * | 2002-11-01 | 2010-11-23 | Valentx, Inc. | Devices and methods for endolumenal gastrointestinal bypass |
US20090149871A9 (en) * | 2002-11-01 | 2009-06-11 | Jonathan Kagan | Devices and methods for treating morbid obesity |
US7037344B2 (en) * | 2002-11-01 | 2006-05-02 | Valentx, Inc. | Apparatus and methods for treatment of morbid obesity |
US20060015125A1 (en) * | 2004-05-07 | 2006-01-19 | Paul Swain | Devices and methods for gastric surgery |
US7794447B2 (en) * | 2002-11-01 | 2010-09-14 | Valentx, Inc. | Gastrointestinal sleeve device and methods for treatment of morbid obesity |
US8070743B2 (en) * | 2002-11-01 | 2011-12-06 | Valentx, Inc. | Devices and methods for attaching an endolumenal gastrointestinal implant |
US9060844B2 (en) | 2002-11-01 | 2015-06-23 | Valentx, Inc. | Apparatus and methods for treatment of morbid obesity |
US20070032879A1 (en) * | 2002-12-02 | 2007-02-08 | Levine Andy H | Anti-buckling sleeve |
EP1610719B1 (en) * | 2003-03-28 | 2010-01-13 | GI Dynamics, Inc. | Sleeve for delayed introduction of enzymes into the intestine |
US20040220682A1 (en) * | 2003-03-28 | 2004-11-04 | Gi Dynamics, Inc. | Anti-obesity devices |
US20050247320A1 (en) | 2003-10-10 | 2005-11-10 | Stack Richard S | Devices and methods for retaining a gastro-esophageal implant |
US8206456B2 (en) | 2003-10-10 | 2012-06-26 | Barosense, Inc. | Restrictive and/or obstructive implant system for inducing weight loss |
US20060212042A1 (en) * | 2005-03-17 | 2006-09-21 | Lamport Ronald B | Removal and repositioning device |
US8147561B2 (en) | 2004-02-26 | 2012-04-03 | Endosphere, Inc. | Methods and devices to curb appetite and/or reduce food intake |
US8585771B2 (en) | 2004-02-26 | 2013-11-19 | Endosphere, Inc. | Methods and devices to curb appetite and/or to reduce food intake |
US7931693B2 (en) * | 2004-02-26 | 2011-04-26 | Endosphere, Inc. | Method and apparatus for reducing obesity |
DE602005027570D1 (en) * | 2004-07-09 | 2011-06-01 | Gi Dynamics Inc | DEVICES FOR PLACING A GASTROTINTESTINAL SLEEVE |
DK1804888T3 (en) | 2004-10-15 | 2014-02-24 | Bfkw Llc | bariatric device |
KR101696006B1 (en) | 2004-10-15 | 2017-01-13 | 비에프케이더블유, 엘엘씨 | Bariatric device and method for recipient with altered anatomy |
US20070049801A1 (en) * | 2005-08-24 | 2007-03-01 | Lamport Ronald B | Endoscope accessory |
US7881797B2 (en) * | 2006-04-25 | 2011-02-01 | Valentx, Inc. | Methods and devices for gastrointestinal stimulation |
US9060835B2 (en) | 2006-05-26 | 2015-06-23 | Endosphere, Inc. | Conformationally-stabilized intraluminal device for medical applications |
WO2008005510A2 (en) * | 2006-07-06 | 2008-01-10 | Synecor, Llc | Systems and methods for restoring function of diseased bowel |
EP2572673B1 (en) | 2006-09-02 | 2015-08-19 | Boston Scientific Scimed, Inc. | Intestinal sleeves and associated deployment systems and methods |
EP2114302B1 (en) | 2007-02-14 | 2018-12-26 | Bfkw, Llc | Mucosal capture fixation of medical device |
US8529431B2 (en) | 2007-02-14 | 2013-09-10 | Bfkw, Llc | Bariatric device and method |
EP2134303A1 (en) * | 2007-03-29 | 2009-12-23 | Jaime Vargas | Intragastric implant devices |
US9642693B2 (en) * | 2007-04-13 | 2017-05-09 | W. L. Gore & Associates, Inc. | Medical apparatus and method of making the same |
US9717584B2 (en) * | 2007-04-13 | 2017-08-01 | W. L. Gore & Associates, Inc. | Medical apparatus and method of making the same |
US20080255678A1 (en) * | 2007-04-13 | 2008-10-16 | Cully Edward H | Medical apparatus and method of making the same |
US20090012544A1 (en) * | 2007-06-08 | 2009-01-08 | Valen Tx, Inc. | Gastrointestinal bypass sleeve as an adjunct to bariatric surgery |
WO2008154450A1 (en) * | 2007-06-08 | 2008-12-18 | Valentx, Inc. | Methods and devices for intragastric support of functional or prosthetic gastrointestinal devices |
US20090012541A1 (en) * | 2007-06-11 | 2009-01-08 | Valentx, Inc. | Expandable fastener system with flower petal-shaped retention elements |
US20110137227A1 (en) * | 2007-07-16 | 2011-06-09 | Mckinley James T | Methods and devices for delivering or delaying lipids within a duodenum |
WO2009036244A1 (en) | 2007-09-12 | 2009-03-19 | Endometabolic Solutions, Inc. | Devices and methods for treatment of obesity |
US20090182355A1 (en) * | 2007-12-20 | 2009-07-16 | Levine Andy H | Porous barbs for long-term anchoring in the gastrointestinal tract |
AU2009208951A1 (en) | 2008-02-01 | 2009-08-06 | Medical And Surgical Review, P.C. | Methods and devices for anchoring a gastroenterologic sleeve |
US8100850B2 (en) | 2008-04-09 | 2012-01-24 | E2 Llc | Pyloric valve devices and methods |
WO2009126268A1 (en) * | 2008-04-09 | 2009-10-15 | Endocore Llc | Pyloric valve |
US10350050B2 (en) * | 2008-05-01 | 2019-07-16 | Ethicon Endo-Surgery, Inc. | Method for gastric volume reduction surgery |
AU2009246137B2 (en) | 2008-05-15 | 2013-10-10 | Cook Medical Technologies Llc | Systems, devices and methods for accessing a bodily opening |
EP2367505B1 (en) * | 2008-09-29 | 2020-08-12 | Edwards Lifesciences CardiAQ LLC | Heart valve |
US20140135900A9 (en) | 2008-10-10 | 2014-05-15 | Kevin Heraty | Medical device suitable for location in a body lumen |
JP2012505004A (en) * | 2008-10-10 | 2012-03-01 | ヴェリヤン・メディカル・リミテッド | Stent suitable for intravascular deployment |
WO2010088509A1 (en) * | 2009-01-30 | 2010-08-05 | Wilson-Cook Medical, Inc. | Expandable port for accessing a bodily opening |
FR2941858B1 (en) * | 2009-02-10 | 2011-03-11 | Charam Khosrvaninejad | SURGICAL DEVICE CAPABLE OF REALIZING THE TEMPORARY PROTECTION OF ANASTOMOSIS |
US8702641B2 (en) | 2009-04-03 | 2014-04-22 | Metamodix, Inc. | Gastrointestinal prostheses having partial bypass configurations |
US10456276B2 (en) * | 2009-05-08 | 2019-10-29 | Veryan Medical Limited | Medical device suitable for location in a body lumen |
US8834361B2 (en) | 2009-05-15 | 2014-09-16 | Cook Medical Technologies Llc | Systems, devices and methods for accessing a bodily opening |
US20100305590A1 (en) * | 2009-05-29 | 2010-12-02 | Gi Dynamics, Inc. | Transpyloric Anchoring |
US8597224B2 (en) | 2010-03-26 | 2013-12-03 | IBIS Medical, Inc. | Intragastric implant devices |
US8475525B2 (en) * | 2010-01-22 | 2013-07-02 | 4Tech Inc. | Tricuspid valve repair using tension |
US20120046731A1 (en) * | 2010-04-14 | 2012-02-23 | Abbott Vascular | Intraluminal scaffold with conforming axial strut |
US8579964B2 (en) | 2010-05-05 | 2013-11-12 | Neovasc Inc. | Transcatheter mitral valve prosthesis |
US20120004677A1 (en) | 2010-05-21 | 2012-01-05 | Balbierz Daniel J | Tissue-acquisition and fastening devices and methods |
US9526648B2 (en) | 2010-06-13 | 2016-12-27 | Synerz Medical, Inc. | Intragastric device for treating obesity |
US10010439B2 (en) | 2010-06-13 | 2018-07-03 | Synerz Medical, Inc. | Intragastric device for treating obesity |
US10420665B2 (en) | 2010-06-13 | 2019-09-24 | W. L. Gore & Associates, Inc. | Intragastric device for treating obesity |
US8628554B2 (en) | 2010-06-13 | 2014-01-14 | Virender K. Sharma | Intragastric device for treating obesity |
WO2012135652A1 (en) * | 2011-03-30 | 2012-10-04 | Ams Research Corporation | Implants, tools, and methods for treatment of pelvic conditions |
US9744033B2 (en) | 2011-04-01 | 2017-08-29 | W.L. Gore & Associates, Inc. | Elastomeric leaflet for prosthetic heart valves |
US9308087B2 (en) | 2011-04-28 | 2016-04-12 | Neovasc Tiara Inc. | Sequentially deployed transcatheter mitral valve prosthesis |
US9554897B2 (en) | 2011-04-28 | 2017-01-31 | Neovasc Tiara Inc. | Methods and apparatus for engaging a valve prosthesis with tissue |
EP2709555B1 (en) * | 2011-05-20 | 2018-08-15 | Bfkw, Llc | Intraluminal device with enhanced anti-migration |
US10117765B2 (en) | 2011-06-14 | 2018-11-06 | W.L. Gore Associates, Inc | Apposition fiber for use in endoluminal deployment of expandable implants |
FR2978345B1 (en) | 2011-07-25 | 2013-08-30 | Charam Khosrovaninejad | SURGICAL DEVICE FOR ANCHOR CONTROL IN INTESTINES. |
US8870947B2 (en) | 2011-09-16 | 2014-10-28 | W.L. Gore & Associates, Inc. | Medical device fixation anchors |
US9554806B2 (en) | 2011-09-16 | 2017-01-31 | W. L. Gore & Associates, Inc. | Occlusive devices |
EP2760523A1 (en) * | 2011-09-27 | 2014-08-06 | Ibis Medical Inc. | Intragastric implant devices |
WO2013052528A1 (en) | 2011-10-04 | 2013-04-11 | Cook Medical Technologies Llc | Reduced wire profile stent |
US9782282B2 (en) | 2011-11-14 | 2017-10-10 | W. L. Gore & Associates, Inc. | External steerable fiber for use in endoluminal deployment of expandable devices |
US9877858B2 (en) | 2011-11-14 | 2018-01-30 | W. L. Gore & Associates, Inc. | External steerable fiber for use in endoluminal deployment of expandable devices |
WO2013134227A1 (en) | 2012-03-06 | 2013-09-12 | Bfkw, Llc | Intraluminal device delivery technique |
US9375308B2 (en) | 2012-03-13 | 2016-06-28 | W. L. Gore & Associates, Inc. | External steerable fiber for use in endoluminal deployment of expandable devices |
US8882828B2 (en) * | 2012-04-27 | 2014-11-11 | Medtronic Vascular, Inc. | Ring on a closed web stent-graft for use in tip capture |
US9345573B2 (en) | 2012-05-30 | 2016-05-24 | Neovasc Tiara Inc. | Methods and apparatus for loading a prosthesis onto a delivery system |
US9050168B2 (en) | 2012-05-31 | 2015-06-09 | Valentx, Inc. | Devices and methods for gastrointestinal bypass |
US9451960B2 (en) | 2012-05-31 | 2016-09-27 | Valentx, Inc. | Devices and methods for gastrointestinal bypass |
US9681975B2 (en) | 2012-05-31 | 2017-06-20 | Valentx, Inc. | Devices and methods for gastrointestinal bypass |
BR112015000384A2 (en) | 2012-07-13 | 2017-06-27 | Gi Dynamics Inc | gastrointestinal implant device, treatment method and method of removing gastrointestinal implant |
US10583002B2 (en) | 2013-03-11 | 2020-03-10 | Neovasc Tiara Inc. | Prosthetic valve with anti-pivoting mechanism |
US9610179B2 (en) | 2013-03-12 | 2017-04-04 | Cook Medical Technologies Llc | Atraumatic stent crowns |
US9757264B2 (en) | 2013-03-13 | 2017-09-12 | Valentx, Inc. | Devices and methods for gastrointestinal bypass |
US9554932B2 (en) | 2013-03-15 | 2017-01-31 | Ez-Off Weight Loss, Llc | System and method for gastric restriction and malabsorption |
US9833350B2 (en) | 2013-03-15 | 2017-12-05 | Ez-Off Weightloss, Llc | Anchorable size-varying gastric balloons for weight loss |
CN103142262B (en) * | 2013-03-31 | 2014-12-10 | 万平 | Inner coverage membrane for duodenum |
US9572665B2 (en) | 2013-04-04 | 2017-02-21 | Neovasc Tiara Inc. | Methods and apparatus for delivering a prosthetic valve to a beating heart |
US11911258B2 (en) | 2013-06-26 | 2024-02-27 | W. L. Gore & Associates, Inc. | Space filling devices |
US10219799B2 (en) | 2013-08-05 | 2019-03-05 | Endo-Tagss, Llc | Transabdominal gastric device and method |
WO2015020977A2 (en) | 2013-08-05 | 2015-02-12 | Pattison Mary | Transabdominal gastric surgery system and method |
US9789239B2 (en) * | 2013-08-16 | 2017-10-17 | Simpore, Inc. | Nanoporous silicon nitride membranes, and methods for making and using such membranes |
US20150112418A1 (en) * | 2013-10-22 | 2015-04-23 | Medtronic Vascular, Inc. | Segmented Balloon Expandable Stent Graft With Reduced Foreshortening |
US20150196412A1 (en) * | 2014-01-15 | 2015-07-16 | Terumo Kabushiki Kaisha | Bypass device, support frame for bypass device, and method |
US20150196413A1 (en) * | 2014-01-15 | 2015-07-16 | Terumo Kabushiki Kaisha | Bypass device, support frame for bypass device, and method |
WO2015168402A1 (en) | 2014-04-30 | 2015-11-05 | Lean Medical Technologies, LLC | Gastrointestinal device |
CN106659563B (en) | 2014-06-26 | 2019-03-08 | 波士顿科学国际有限公司 | Medical device and method for preventing that bile reflux occurs after bariatric surgery |
KR101628711B1 (en) * | 2014-06-26 | 2016-06-09 | 주식회사 에스앤지바이오텍 | Stent With External Flow Path |
CN106999272B (en) | 2014-09-18 | 2018-12-11 | 波士顿科学国际有限公司 | The device for Weight reduction bracket for allowing pyloric sphincter normally to play a role |
US11020213B2 (en) | 2014-12-29 | 2021-06-01 | Bfkw, Llc | Fixation of intraluminal device |
US11013629B2 (en) | 2014-12-29 | 2021-05-25 | Bfkw, Llc | Fixation of intraluminal device |
KR20170099910A (en) | 2014-12-29 | 2017-09-01 | 비에프케이더블유, 엘엘씨 | Fixation of intraluminal device |
US20180028339A1 (en) | 2015-02-13 | 2018-02-01 | Gi Dynamics, Inc. | Devices and methods for placing a gastrointestinal device |
FR3034307B1 (en) | 2015-04-03 | 2021-10-22 | Univ Grenoble 1 | IMPLANTABLE INTESTINAL REACTOR |
WO2016183495A2 (en) | 2015-05-14 | 2016-11-17 | W. L. Gore & Associates, Inc. | Devices and methods for occlusion of an atrial appendage |
CN105708588A (en) * | 2016-01-19 | 2016-06-29 | 杨首男 | Degradable prostate stent |
WO2017132676A1 (en) | 2016-01-29 | 2017-08-03 | Gi Dynamics, Inc. | Flanged gastrointestinal devices and methods of use thereof |
US11318008B2 (en) | 2016-01-29 | 2022-05-03 | Gi Dynamics, Inc. | Gastrointestinal implant delivery systems and methods |
US10779980B2 (en) | 2016-04-27 | 2020-09-22 | Synerz Medical, Inc. | Intragastric device for treating obesity |
US10813781B2 (en) | 2016-10-04 | 2020-10-27 | Ez-Off Weight Loss, Llc | Sleeve-anchorable gastric balloon for weight loss |
US10736764B2 (en) | 2017-01-30 | 2020-08-11 | Apollo Endosurgery Us, Inc. | Duodenal sleeve and anchor and methods of implantation |
WO2018209259A1 (en) * | 2017-05-11 | 2018-11-15 | Northwestern University | Intravascular retrievable cell delivery system |
EP3654890A4 (en) | 2017-07-21 | 2021-08-04 | GI Dynamics, Inc. | Gastrointestinal device delivery systems and methods of use thereof |
US11173023B2 (en) | 2017-10-16 | 2021-11-16 | W. L. Gore & Associates, Inc. | Medical devices and anchors therefor |
FR3072557B1 (en) | 2017-10-19 | 2019-11-08 | Safeheal | COMPLEX SURGICAL DEVICE FOR THE PRODUCTION AND PROTECTION OF ANASTOMOSIS |
KR102614314B1 (en) | 2017-10-25 | 2023-12-14 | 보스톤 싸이엔티픽 싸이메드 인코포레이티드 | Stent with atraumatic spacer |
US10888444B2 (en) | 2017-11-01 | 2021-01-12 | Boston Scientific Scimed, Inc. | Esophageal stent including a valve member |
US11491038B2 (en) | 2018-07-26 | 2022-11-08 | Endobetes Inc. | Lumen reinforcement and anchoring system |
US10743857B2 (en) * | 2018-07-26 | 2020-08-18 | Endobetes, Inc. | Lumen reinforcement and anchoring system |
US12127958B2 (en) | 2019-03-25 | 2024-10-29 | Bfkw, Llc | Intraluminal device and method with anti-migration |
US20220287818A1 (en) * | 2021-03-15 | 2022-09-15 | The Corporation Of Mercer University | Stents and methods of making and using the same |
USD987826S1 (en) | 2021-03-15 | 2023-05-30 | The Corporation Of Mercer University | Patmas weave stent |
USD987080S1 (en) | 2021-09-16 | 2023-05-23 | The Corporation Of Mercer University | Patmas lantern stent |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000028922A1 (en) * | 1998-11-12 | 2000-05-25 | Advanced Cardiovascular Systems, Inc. | Stent having non-uniform structure |
WO2000042945A1 (en) * | 1999-01-22 | 2000-07-27 | Al Saadon Khalid | Expandable endovascular medical tubular stent |
US20020065545A1 (en) * | 1995-10-30 | 2002-05-30 | Leonhardt Howard J. | Apparatus for engrafting a blood vessel |
US20020177890A1 (en) * | 1996-01-05 | 2002-11-28 | Lenker Jay A. | Stent graft loading and deployment device and method |
US20040093065A1 (en) | 2002-11-13 | 2004-05-13 | Allium Inc. | Endoluminal lining |
Family Cites Families (288)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1899781A (en) | 1932-04-27 | 1933-02-28 | Twiss John Russell | Stomach tube or the like |
US2464933A (en) | 1946-09-28 | 1949-03-22 | Arthur L Kaslow | Gastrointestinal tube |
US3780740A (en) | 1972-11-01 | 1973-12-25 | J Rhea | Intubation device and method of advancing a tube past the pylorus |
US4133315A (en) | 1976-12-27 | 1979-01-09 | Berman Edward J | Method and apparatus for reducing obesity |
US4134405A (en) | 1977-01-10 | 1979-01-16 | Smit Julie A | Catheter and intestine tube and method of using the same |
US4315509A (en) | 1977-01-10 | 1982-02-16 | Smit Julie A | Insertion and removal catheters and intestinal tubes for restricting absorption |
US4341218A (en) | 1978-05-30 | 1982-07-27 | University Of California | Detachable balloon catheter |
WO1980000007A1 (en) | 1978-06-02 | 1980-01-10 | A Rockey | Medical sleeve |
DE2824893C2 (en) | 1978-06-07 | 1980-04-24 | Willy Ruesch Gmbh & Co Kg, 7053 Kernen | Enteral treatment probe |
US4246893A (en) | 1978-07-05 | 1981-01-27 | Daniel Berson | Inflatable gastric device for treating obesity |
US4270542A (en) | 1978-10-09 | 1981-06-02 | Plumley Peter F | Gastro-intestinal tubes |
US4265694A (en) | 1978-12-14 | 1981-05-05 | The United States Of America As Represented By The Department Of Health, Education And Welfare | Method of making unitized three leaflet heart valve |
US4271827A (en) | 1979-09-13 | 1981-06-09 | Angelchik Jean P | Method for prevention of gastro esophageal reflux |
US4416267A (en) | 1981-12-10 | 1983-11-22 | Garren Lloyd R | Method and apparatus for treating obesity |
US4403604A (en) | 1982-05-13 | 1983-09-13 | Wilkinson Lawrence H | Gastric pouch |
DE3326061A1 (en) | 1982-07-23 | 1984-02-02 | Otto Dr. med. 2943 Esens Wörner | Introduction and filling device for a stomach balloon |
US4607618A (en) | 1983-02-23 | 1986-08-26 | Angelchik Jean P | Method for treatment of morbid obesity |
US4905693A (en) | 1983-10-03 | 1990-03-06 | Biagio Ravo | Surgical method for using an intraintestinal bypass graft |
US5693083A (en) | 1983-12-09 | 1997-12-02 | Endovascular Technologies, Inc. | Thoracic graft and delivery catheter |
US5669936A (en) | 1983-12-09 | 1997-09-23 | Endovascular Technologies, Inc. | Endovascular grafting system and method for use therewith |
US5104399A (en) | 1986-12-10 | 1992-04-14 | Endovascular Technologies, Inc. | Artificial graft and implantation method |
US4617932A (en) | 1984-04-25 | 1986-10-21 | Elliot Kornberg | Device and method for performing an intraluminal abdominal aortic aneurysm repair |
US4580568A (en) | 1984-10-01 | 1986-04-08 | Cook, Incorporated | Percutaneous endovascular stent and method for insertion thereof |
US4648383A (en) | 1985-01-11 | 1987-03-10 | Angelchik Jean P | Peroral apparatus for morbid obesity treatment |
US4763653A (en) | 1985-02-19 | 1988-08-16 | Rockey Arthur G | Medical sleeve |
GB8603099D0 (en) | 1986-02-07 | 1986-03-12 | Blass K G | Gastrointestinal module |
EP0257091B1 (en) | 1986-02-24 | 1993-07-28 | Robert E. Fischell | An intravascular stent and percutaneous insertion system |
SE459473B (en) | 1987-02-13 | 1989-07-10 | Stig Bengmark | HOSE DEVICE, SPECIFICALLY BEFORE ADMINISTRATION OF FOODS DIRECTLY IN THE GAS |
US5041126A (en) | 1987-03-13 | 1991-08-20 | Cook Incorporated | Endovascular stent and delivery system |
US4800882A (en) | 1987-03-13 | 1989-01-31 | Cook Incorporated | Endovascular stent and delivery system |
US4823808A (en) | 1987-07-06 | 1989-04-25 | Clegg Charles T | Method for control of obesity, overweight and eating disorders |
US4846836A (en) | 1988-10-03 | 1989-07-11 | Reich Jonathan D | Artificial lower gastrointestinal valve |
US4913141A (en) | 1988-10-25 | 1990-04-03 | Cordis Corporation | Apparatus and method for placement of a stent within a subject vessel |
US5236423A (en) | 1988-12-13 | 1993-08-17 | Endomed Corporation | Facilitating endoscopy |
US5314473A (en) | 1989-07-20 | 1994-05-24 | Godin Norman J | Prosthesis for preventing gastric reflux into the esophagus |
US5057091A (en) | 1989-07-31 | 1991-10-15 | Corpak, Inc. | Enteral feeding tube with a flexible bolus and feeding bolus |
US5035706A (en) | 1989-10-17 | 1991-07-30 | Cook Incorporated | Percutaneous stent and method for retrieval thereof |
US5059166A (en) | 1989-12-11 | 1991-10-22 | Medical Innovative Technologies R & D Limited Partnership | Intra-arterial stent with the capability to inhibit intimal hyperplasia |
US5176617A (en) | 1989-12-11 | 1993-01-05 | Medical Innovative Technologies R & D Limited Partnership | Use of a stent with the capability to inhibit malignant growth in a vessel such as a biliary duct |
US5135516A (en) | 1989-12-15 | 1992-08-04 | Boston Scientific Corporation | Lubricious antithrombogenic catheters, guidewires and coatings |
US5037387A (en) | 1990-01-24 | 1991-08-06 | Corpak, Inc. | Method of positioning an enteral feeding tube within a patient's body |
US5152756A (en) | 1990-01-24 | 1992-10-06 | Corpak, Inc. | Distal gripping tip for enteral feeding tube |
US5290294A (en) | 1990-04-17 | 1994-03-01 | Brian Cox | Method and apparatus for removal of a foreign body cavity |
US5578071A (en) | 1990-06-11 | 1996-11-26 | Parodi; Juan C. | Aortic graft |
US5360443A (en) | 1990-06-11 | 1994-11-01 | Barone Hector D | Aortic graft for repairing an abdominal aortic aneurysm |
ATE135555T1 (en) | 1990-10-09 | 1996-04-15 | Cook Inc | PERCUTANE STENT ARRANGEMENT |
DE69116130T2 (en) | 1990-10-18 | 1996-05-15 | Ho Young Song | SELF-EXPANDING, ENDOVASCULAR DILATATOR |
US5190561A (en) | 1991-01-23 | 1993-03-02 | Surgical Innovations, Inc. | Tissue and organ extractor |
DK32091D0 (en) | 1991-02-25 | 1991-02-25 | Mogens Thyge Corfitsen | Apparatus for feeding an object through a body channel |
US5254133A (en) | 1991-04-24 | 1993-10-19 | Seid Arnold S | Surgical implantation device and related method of use |
US5314472A (en) | 1991-10-01 | 1994-05-24 | Cook Incorporated | Vascular stent |
US5443498A (en) | 1991-10-01 | 1995-08-22 | Cook Incorporated | Vascular stent and method of making and implanting a vacsular stent |
US5876445A (en) | 1991-10-09 | 1999-03-02 | Boston Scientific Corporation | Medical stents for body lumens exhibiting peristaltic motion |
US5662713A (en) | 1991-10-09 | 1997-09-02 | Boston Scientific Corporation | Medical stents for body lumens exhibiting peristaltic motion |
US5456713A (en) | 1991-10-25 | 1995-10-10 | Cook Incorporated | Expandable transluminal graft prosthesis for repairs of aneurysm and method for implanting |
US5720776A (en) | 1991-10-25 | 1998-02-24 | Cook Incorporated | Barb and expandable transluminal graft prosthesis for repair of aneurysm |
EP0539237A1 (en) | 1991-10-25 | 1993-04-28 | Cook Incorporated | Expandable transluminal graft prosthesis for repair of aneurysm and method for implanting |
US5693084A (en) | 1991-10-25 | 1997-12-02 | Cook Incorporated | Expandable transluminal graft prosthesis for repair of aneurysm |
US5387235A (en) | 1991-10-25 | 1995-02-07 | Cook Incorporated | Expandable transluminal graft prosthesis for repair of aneurysm |
US5318530A (en) | 1991-12-06 | 1994-06-07 | Bissel Medical Products, Inc. | Gastrointestinal tube with inflatable bolus |
US5507767A (en) | 1992-01-15 | 1996-04-16 | Cook Incorporated | Spiral stent |
US5279553A (en) | 1992-04-02 | 1994-01-18 | Martin J. Winkler | Transpyloric jejunostomy cannulating system |
US5540712A (en) * | 1992-05-01 | 1996-07-30 | Nitinol Medical Technologies, Inc. | Stent and method and apparatus for forming and delivering the same |
US5401241A (en) | 1992-05-07 | 1995-03-28 | Inamed Development Co. | Duodenal intubation catheter |
US5405378A (en) | 1992-05-20 | 1995-04-11 | Strecker; Ernst P. | Device with a prosthesis implantable in the body of a patient |
US5246456A (en) | 1992-06-08 | 1993-09-21 | Wilkinson Lawrence H | Fenestrated gastric pouch |
US5507771A (en) | 1992-06-15 | 1996-04-16 | Cook Incorporated | Stent assembly |
US5306300A (en) * | 1992-09-22 | 1994-04-26 | Berry H Lee | Tubular digestive screen |
US5322501A (en) | 1992-10-02 | 1994-06-21 | Mahmud Durrani Ayaz | Continent urethral stent for treating and preventing urethral stricture after surgery |
WO1994022379A1 (en) | 1993-03-30 | 1994-10-13 | Instent Inc. | Temporary stent system |
DE4316673C1 (en) | 1993-05-12 | 1995-01-12 | Ethicon Gmbh | Flexible implant |
US5480423A (en) | 1993-05-20 | 1996-01-02 | Boston Scientific Corporation | Prosthesis delivery |
US5417697A (en) | 1993-07-07 | 1995-05-23 | Wilk; Peter J. | Polyp retrieval assembly with cauterization loop and suction web |
EP0657147B1 (en) | 1993-11-04 | 1999-08-04 | C.R. Bard, Inc. | Non-migrating vascular prosthesis |
US5665064A (en) | 1993-12-06 | 1997-09-09 | Sherwood Medical Company | Gastroenteric feeding tube for endoscopic placement and method of use |
US5389090A (en) | 1994-02-07 | 1995-02-14 | Cathco, Inc. | Guiding catheter with straightening dilator |
US5492530A (en) | 1994-02-07 | 1996-02-20 | Cathco, Inc. | Method for accessing the coronary arteries from the radial or brachial artery in the arm |
ES2141576T5 (en) | 1994-02-25 | 2006-08-01 | Robert E. Fischell | VASCULAR EXTENSIONER |
US5643312A (en) | 1994-02-25 | 1997-07-01 | Fischell Robert | Stent having a multiplicity of closed circular structures |
US5423851A (en) | 1994-03-06 | 1995-06-13 | Samuels; Shaun L. W. | Method and apparatus for affixing an endoluminal device to the walls of tubular structures within the body |
EP0754017B1 (en) | 1994-04-29 | 2002-06-19 | SciMed Life Systems, Inc. | Stent with collagen |
US5743874A (en) | 1994-08-29 | 1998-04-28 | Fischell; Robert E. | Integrated catheter for balloon angioplasty and stent delivery |
US6015429A (en) | 1994-09-08 | 2000-01-18 | Gore Enterprise Holdings, Inc. | Procedures for introducing stents and stent-grafts |
US5569219A (en) | 1994-09-13 | 1996-10-29 | Hakki; A-Hamid | Collapsible catheter |
US5611787A (en) | 1994-10-13 | 1997-03-18 | Methodist Hospital Of Indiana, Inc. | Method and device for gastric line insertion |
AU3783195A (en) | 1994-11-15 | 1996-05-23 | Advanced Cardiovascular Systems Inc. | Intraluminal stent for attaching a graft |
US5624430A (en) | 1994-11-28 | 1997-04-29 | Eton; Darwin | Magnetic device to assist transcorporeal guidewire placement |
CA2163708C (en) | 1994-12-07 | 2007-08-07 | Robert E. Fischell | Integrated dual-function catheter system for balloon angioplasty and stent delivery |
FR2728156B1 (en) | 1994-12-16 | 1997-05-30 | Fouere Alain | INTERNAL EXTENSIBLE SLEEVE FOR SURGICAL USE FOR DILATION OF PHYSIOLOGICAL CONDUITS |
US5630797A (en) | 1995-01-17 | 1997-05-20 | Imagyn Medical, Inc. | Everting catheter system and method of utilizing the same |
US5715832A (en) | 1995-02-28 | 1998-02-10 | Boston Scientific Corporation | Deflectable biopsy catheter |
CA2171896C (en) | 1995-03-17 | 2007-05-15 | Scott C. Anderson | Multi-anchor stent |
US5605530A (en) | 1995-03-23 | 1997-02-25 | Fischell; Robert E. | System for safe implantation of radioisotope stents |
US5730698A (en) | 1995-05-09 | 1998-03-24 | Fischell; Robert E. | Balloon expandable temporary radioisotope stent system |
US5639274A (en) | 1995-06-02 | 1997-06-17 | Fischell; Robert E. | Integrated catheter system for balloon angioplasty and stent delivery |
US20020193828A1 (en) | 2001-06-14 | 2002-12-19 | Cook Incorporated | Endovascular filter |
US5713948A (en) | 1995-07-19 | 1998-02-03 | Uflacker; Renan | Adjustable and retrievable graft and graft delivery system for stent-graft system |
US5562697A (en) | 1995-09-18 | 1996-10-08 | William Cook, Europe A/S | Self-expanding stent assembly and methods for the manufacture thereof |
BE1009746A3 (en) | 1995-11-07 | 1997-07-01 | Dereume Jean Pierre Georges Em | Capture device introduced in a cavity of a human or animal body. |
US5607442A (en) | 1995-11-13 | 1997-03-04 | Isostent, Inc. | Stent with improved radiopacity and appearance characteristics |
KR100404275B1 (en) * | 1995-11-20 | 2004-03-12 | 코닌클리케 필립스 일렉트로닉스 엔.브이. | Electrically conductive wire |
US5840009A (en) | 1995-12-05 | 1998-11-24 | Isostent, Inc. | Radioisotope stent with increased radiation field strength at the ends of the stent |
US5722984A (en) | 1996-01-16 | 1998-03-03 | Iso Stent, Inc. | Antithrombogenic radioactive coating for an intravascular stent |
US5690642A (en) | 1996-01-18 | 1997-11-25 | Cook Incorporated | Rapid exchange stent delivery balloon catheter |
US5695516A (en) | 1996-02-21 | 1997-12-09 | Iso Stent, Inc. | Longitudinally elongating balloon expandable stent |
NZ331269A (en) * | 1996-04-10 | 2000-01-28 | Advanced Cardiovascular System | Expandable stent, its structural strength varying along its length |
US6074673A (en) | 1996-04-22 | 2000-06-13 | Guillen; Manuel | Slow-release, self-absorbing, drug delivery system |
US5669932A (en) | 1996-05-29 | 1997-09-23 | Isostent, Inc. | Means for accurately positioning an expandable stent |
US5697971A (en) | 1996-06-11 | 1997-12-16 | Fischell; Robert E. | Multi-cell stent with cells having differing characteristics |
WO1998008884A1 (en) | 1996-08-26 | 1998-03-05 | Tyndale Plains-Hunter, Ltd. | Hydrophilic and hydrophobic polyether polyurethanes and uses therefor |
US5749825A (en) | 1996-09-18 | 1998-05-12 | Isostent, Inc. | Means method for treatment of stenosed arterial bifurcations |
US5895391A (en) | 1996-09-27 | 1999-04-20 | Target Therapeutics, Inc. | Ball lock joint and introducer for vaso-occlusive member |
US6027508A (en) | 1996-10-03 | 2000-02-22 | Scimed Life Systems, Inc. | Stent retrieval device |
US6530951B1 (en) | 1996-10-24 | 2003-03-11 | Cook Incorporated | Silver implantable medical device |
US5792172A (en) | 1996-12-23 | 1998-08-11 | Isostent, Inc. | Multifold balloon for stent deployment |
US5879282A (en) | 1997-01-21 | 1999-03-09 | Cordis A Johnson And Johnson Company | Catheter having an expandable radioactive source |
US6152956A (en) | 1997-01-28 | 2000-11-28 | Pierce; George E. | Prosthesis for endovascular repair of abdominal aortic aneurysms |
US5759174A (en) | 1997-01-29 | 1998-06-02 | Cathco, Inc. | Angioplasty balloon with an expandable external radiopaque marker band |
US6241757B1 (en) | 1997-02-04 | 2001-06-05 | Solco Surgical Instrument Co., Ltd. | Stent for expanding body's lumen |
US5735859A (en) | 1997-02-14 | 1998-04-07 | Cathco, Inc. | Distally attachable and releasable sheath for a stent delivery system |
US6035856A (en) | 1997-03-06 | 2000-03-14 | Scimed Life Systems | Percutaneous bypass with branching vessel |
US5830229A (en) | 1997-03-07 | 1998-11-03 | Micro Therapeutics Inc. | Hoop stent |
US5792144A (en) | 1997-03-31 | 1998-08-11 | Cathco, Inc. | Stent delivery catheter system |
FR2762989B1 (en) | 1997-05-12 | 1999-09-03 | Braun Celsa Sa | SYSTEM FOR REPAIRING AN ANATOMIC DUCT BY A PROGRESSIVE OPENING IMPLANT |
US5913895A (en) | 1997-06-02 | 1999-06-22 | Isostent, Inc. | Intravascular stent with enhanced rigidity strut members |
US5820584A (en) | 1997-08-28 | 1998-10-13 | Crabb; Jerry A. | Duodenal insert and method of use |
US5925063A (en) | 1997-09-26 | 1999-07-20 | Khosravi; Farhad | Coiled sheet valve, filter or occlusive device and methods of use |
US6099552A (en) | 1997-11-12 | 2000-08-08 | Boston Scientific Corporation | Gastrointestinal copression clips |
US6254642B1 (en) | 1997-12-09 | 2001-07-03 | Thomas V. Taylor | Perorally insertable gastroesophageal anti-reflux valve prosthesis and tool for implantation thereof |
AUPP083597A0 (en) | 1997-12-10 | 1998-01-08 | William A Cook Australia Pty Ltd | Endoluminal aortic stents |
US6589213B2 (en) | 1997-12-12 | 2003-07-08 | Wilson-Cook Medical Incorporated | Body canal intrusion instrumentation having bi-directional coefficient of surface friction with body tissue |
JPH11196006A (en) * | 1997-12-26 | 1999-07-21 | Nec Corp | Parallel processing syndrome calculation circuit and reed solomon decoding circuit |
US5916195A (en) | 1998-02-04 | 1999-06-29 | Argomed Ltd. | Internal catheter |
DK174814B1 (en) | 1998-02-25 | 2003-12-01 | Cook William Europ | stent device |
US6077296A (en) | 1998-03-04 | 2000-06-20 | Endologix, Inc. | Endoluminal vascular prosthesis |
US6179868B1 (en) | 1998-03-27 | 2001-01-30 | Janet Burpee | Stent with reduced shortening |
US6776791B1 (en) | 1998-04-01 | 2004-08-17 | Endovascular Technologies, Inc. | Stent and method and device for packing of same |
US6013019A (en) | 1998-04-06 | 2000-01-11 | Isostent, Inc. | Temporary radioisotope stent |
US6524336B1 (en) | 1998-04-09 | 2003-02-25 | Cook Incorporated | Endovascular graft |
US6450989B2 (en) | 1998-04-27 | 2002-09-17 | Artemis Medical, Inc. | Dilating and support apparatus with disease inhibitors and methods for use |
US6332877B1 (en) | 1998-05-12 | 2001-12-25 | Novartis Ag | Ostomy tube placement tip |
US6293960B1 (en) | 1998-05-22 | 2001-09-25 | Micrus Corporation | Catheter with shape memory polymer distal tip for deployment of therapeutic devices |
KR20010052481A (en) | 1998-06-02 | 2001-06-25 | 쿡 인코포레이티드 | Multiple-sided intraluminal medical device |
US6102887A (en) | 1998-08-11 | 2000-08-15 | Biocardia, Inc. | Catheter drug delivery system and method for use |
US6312461B1 (en) | 1998-08-21 | 2001-11-06 | John D. Unsworth | Shape memory tubular stent |
US6746489B2 (en) | 1998-08-31 | 2004-06-08 | Wilson-Cook Medical Incorporated | Prosthesis having a sleeve valve |
US6302917B1 (en) * | 1998-08-31 | 2001-10-16 | Wilson-Cook Medical Incorporated | Anti-reflux esophageal prosthesis |
US6190403B1 (en) | 1998-11-13 | 2001-02-20 | Cordis Corporation | Low profile radiopaque stent with increased longitudinal flexibility and radial rigidity |
US6120533A (en) | 1998-11-13 | 2000-09-19 | Isostent, Inc. | Stent delivery system for a radioisotope stent |
US6251064B1 (en) | 1998-12-11 | 2001-06-26 | Enteric Medical Technologies, Inc. | Method for creating valve-like mechanism in natural body passageway |
GB9902823D0 (en) | 1998-12-23 | 1999-03-31 | Dow Corning Sa | Biocompatible coatings |
US6356782B1 (en) | 1998-12-24 | 2002-03-12 | Vivant Medical, Inc. | Subcutaneous cavity marking device and method |
IL128286A (en) | 1999-01-29 | 2004-01-04 | Sightline Techn Ltd | Propulsion of a probe in the colon using a flexible sleeve |
US6322538B1 (en) | 1999-02-18 | 2001-11-27 | Scimed Life Systems, Inc. | Gastro-intestinal tube placement device |
US6428558B1 (en) | 1999-03-10 | 2002-08-06 | Cordis Corporation | Aneurysm embolization device |
US6338345B1 (en) | 1999-04-07 | 2002-01-15 | Endonetics, Inc. | Submucosal prosthesis delivery device |
AU4335700A (en) | 1999-04-07 | 2000-10-23 | Endonetics, Inc. | Implantable monitoring probe |
US6146323A (en) | 1999-05-14 | 2000-11-14 | Isostent, Inc. | Delivery catheter for a radioisotope stent |
US6270521B1 (en) | 1999-05-21 | 2001-08-07 | Cordis Corporation | Stent delivery catheter system for primary stenting |
US7160312B2 (en) | 1999-06-25 | 2007-01-09 | Usgi Medical, Inc. | Implantable artificial partition and methods of use |
US7637905B2 (en) | 2003-01-15 | 2009-12-29 | Usgi Medical, Inc. | Endoluminal tool deployment system |
AU757744B2 (en) | 1999-07-16 | 2003-03-06 | Cook Medical Technologies Llc | Stent adapted for tangle-free deployment |
US6221043B1 (en) | 1999-08-13 | 2001-04-24 | Isostent, Inc. | Stent delivery catheter with enhanced balloon shape |
KR100341019B1 (en) | 1999-08-18 | 2002-06-20 | 신경민 | The flexible self- expandable stent foundation device |
US20030055492A1 (en) | 1999-08-20 | 2003-03-20 | Shaolian Samuel M. | Transluminally implantable venous valve |
US6652555B1 (en) | 1999-10-27 | 2003-11-25 | Atritech, Inc. | Barrier device for covering the ostium of left atrial appendage |
GB9925636D0 (en) | 1999-10-29 | 1999-12-29 | Angiomed Ag | Method of, and device for, installing a stent in a sleeve |
US6736829B1 (en) | 1999-11-11 | 2004-05-18 | Linvatec Corporation | Toggle anchor and tool for insertion thereof |
US6458153B1 (en) | 1999-12-31 | 2002-10-01 | Abps Venture One, Ltd. | Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof |
US6936065B2 (en) | 1999-11-22 | 2005-08-30 | Cordis Corporation | Stent delivery system having a fixed guidewire |
US6375660B1 (en) | 1999-11-22 | 2002-04-23 | Cordis Corporation | Stent delivery system with a fixed guide wire |
US7011673B2 (en) | 1999-11-22 | 2006-03-14 | Fischell Robert E | Stent delivery system with a fixed guide wire |
EP1108400A1 (en) | 1999-12-13 | 2001-06-20 | Biomedix S.A. | Removable fixation apparatus for a prosthesis in a body vessel |
US20030042804A1 (en) * | 1999-12-30 | 2003-03-06 | Cook Michael Andrew | Three layer vibration damping washer for an electric motor |
JP3679674B2 (en) | 2000-02-03 | 2005-08-03 | オリンパス株式会社 | Endoscope |
DE60136183D1 (en) | 2000-02-10 | 2008-11-27 | Obtech Medical Ag | CONTROLLED DEVICE FOR THE TREATMENT OF SODBRENCES AND ACIDES |
WO2001067993A2 (en) | 2000-03-14 | 2001-09-20 | Cook Incorporated | Endovascular stent graft |
US6315708B1 (en) | 2000-03-31 | 2001-11-13 | Cordis Corporation | Stent with self-expanding end sections |
US6387114B2 (en) | 2000-04-28 | 2002-05-14 | Scimed Life Systems, Inc. | Gastrointestinal compression clips |
US6540789B1 (en) | 2000-06-15 | 2003-04-01 | Scimed Life Systems, Inc. | Method for treating morbid obesity |
US6540775B1 (en) | 2000-06-30 | 2003-04-01 | Cordis Corporation | Ultraflexible open cell stent |
US7737109B2 (en) | 2000-08-11 | 2010-06-15 | Temple University Of The Commonwealth System Of Higher Education | Obesity controlling method |
US20030050684A1 (en) | 2001-09-10 | 2003-03-13 | Abrams Robert M. | Internal restraint for delivery of self-expanding stents |
US6699278B2 (en) | 2000-09-22 | 2004-03-02 | Cordis Corporation | Stent with optimal strength and radiopacity characteristics |
US6932838B2 (en) | 2000-09-29 | 2005-08-23 | Tricardia, Llc | Venous valvuloplasty device and method |
US6635069B1 (en) | 2000-10-18 | 2003-10-21 | Scimed Life Systems, Inc. | Non-overlapping spherical three-dimensional coil |
US6494909B2 (en) | 2000-12-01 | 2002-12-17 | Prodesco, Inc. | Endovascular valve |
US20050182483A1 (en) | 2004-02-11 | 2005-08-18 | Cook Incorporated | Percutaneously placed prosthesis with thromboresistant valve portion |
US6802846B2 (en) | 2001-02-12 | 2004-10-12 | Ams Research Corporation | Foreign body retrieval device and method |
US6623518B2 (en) | 2001-02-26 | 2003-09-23 | Ev3 Peripheral, Inc. | Implant delivery system with interlock |
US20020143387A1 (en) | 2001-03-27 | 2002-10-03 | Soetikno Roy M. | Stent repositioning and removal |
KR100457630B1 (en) | 2001-04-04 | 2004-11-18 | (주) 태웅메디칼 | Flexible self-expandable stent and methods for making the stent for lumen |
US6761733B2 (en) | 2001-04-11 | 2004-07-13 | Trivascular, Inc. | Delivery system and method for bifurcated endovascular graft |
US6676692B2 (en) | 2001-04-27 | 2004-01-13 | Intek Technology L.L.C. | Apparatus for delivering, repositioning and/or retrieving self-expanding stents |
US7144393B2 (en) | 2001-05-15 | 2006-12-05 | Dipoto Gene P | Structure for receiving surgical instruments |
WO2002096325A1 (en) | 2001-05-27 | 2002-12-05 | Schurr Marc O | Medical implant |
US6558400B2 (en) | 2001-05-30 | 2003-05-06 | Satiety, Inc. | Obesity treatment tools and methods |
US7083629B2 (en) | 2001-05-30 | 2006-08-01 | Satiety, Inc. | Overtube apparatus for insertion into a body |
US6537300B2 (en) | 2001-05-30 | 2003-03-25 | Scimed Life Systems, Inc. | Implantable obstruction device for septal defects |
US6821291B2 (en) | 2001-06-01 | 2004-11-23 | Ams Research Corporation | Retrievable stent and method of use thereof |
US6537247B2 (en) | 2001-06-04 | 2003-03-25 | Donald T. Shannon | Shrouded strain relief medical balloon device and method of use |
US20030032941A1 (en) | 2001-08-13 | 2003-02-13 | Boyle William J. | Convertible delivery systems for medical devices |
US6845776B2 (en) | 2001-08-27 | 2005-01-25 | Richard S. Stack | Satiation devices and methods |
US6675809B2 (en) | 2001-08-27 | 2004-01-13 | Richard S. Stack | Satiation devices and methods |
US20040117031A1 (en) | 2001-08-27 | 2004-06-17 | Stack Richard S. | Satiation devices and methods |
US7097665B2 (en) | 2003-01-16 | 2006-08-29 | Synecor, Llc | Positioning tools and methods for implanting medical devices |
US6731030B2 (en) * | 2001-08-30 | 2004-05-04 | Integral Ro Design Ltd. | High performance bridge rectifier for diode-rectified alternating current generator |
US6790237B2 (en) | 2001-10-09 | 2004-09-14 | Scimed Life Systems, Inc. | Medical stent with a valve and related methods of manufacturing |
US7594926B2 (en) | 2001-11-09 | 2009-09-29 | Boston Scientific Scimed, Inc. | Methods, systems and devices for delivering stents |
US6740121B2 (en) | 2001-11-09 | 2004-05-25 | Boston Scientific Corporation | Intragastric stent for duodenum bypass |
US6755869B2 (en) | 2001-11-09 | 2004-06-29 | Boston Scientific Corporation | Intragastric prosthesis for the treatment of morbid obesity |
US20040158229A1 (en) | 2002-01-24 | 2004-08-12 | Quinn David G. | Catheter assembly and method of catheter insertion |
US7637919B2 (en) | 2002-01-30 | 2009-12-29 | Olympus Corporation | Anastomosis system for performing anastomosis in body |
US7335210B2 (en) | 2002-04-03 | 2008-02-26 | Julie Ann Smit | Endoscope and tools for applying sealants and adhesives and intestinal lining for reducing food absorption |
US6699263B2 (en) | 2002-04-05 | 2004-03-02 | Cook Incorporated | Sliding suture anchor |
US7146984B2 (en) | 2002-04-08 | 2006-12-12 | Synecor, Llc | Method and apparatus for modifying the exit orifice of a satiation pouch |
ES2575354T3 (en) | 2002-04-08 | 2016-06-28 | Boston Scientific Scimed, Inc. | Satiety devices and procedures |
CN1662224B (en) | 2002-04-15 | 2010-09-08 | 舒特和雷切尔Gbr公司 | Agent for producing a sensation of satiety and for weight loss |
JP2005524485A (en) | 2002-05-09 | 2005-08-18 | ディー.イーガン トマス | Gastric bypass prosthesis |
DK1509271T3 (en) | 2002-05-29 | 2006-03-13 | Cook William A Australia | Trigger wire system for a prosthetic placement device |
US20030236565A1 (en) | 2002-06-21 | 2003-12-25 | Dimatteo Kristian | Implantable prosthesis |
JP4654032B2 (en) | 2002-06-28 | 2011-03-16 | クック インコーポレイティド | Chest indwelling device |
US6773440B2 (en) | 2002-07-02 | 2004-08-10 | Satiety, Inc. | Method and device for use in tissue approximation and fixation |
US7175589B2 (en) | 2002-07-02 | 2007-02-13 | The Foundry Inc. | Methods and devices for luminal and sphincter augmentation |
US20040019388A1 (en) | 2002-07-24 | 2004-01-29 | Starkebaum Warren L. | Methods and implants for retarding stomach emptying to treat eating disorders |
US6746460B2 (en) | 2002-08-07 | 2004-06-08 | Satiety, Inc. | Intra-gastric fastening devices |
US7211114B2 (en) | 2002-08-26 | 2007-05-01 | The Trustees Of Columbia University In The City Of New York | Endoscopic gastric bypass |
ES2349952T3 (en) | 2002-08-29 | 2011-01-13 | St. Jude Medical, Cardiology Division, Inc. | IMPLANTABLE DEVICES FOR CONTROLLING THE INTERNAL CIRCUMFERENCE OF AN ANATOMICAL ORIFICE OR LUMEN. |
US7033384B2 (en) | 2002-08-30 | 2006-04-25 | Satiety, Inc. | Stented anchoring of gastric space-occupying devices |
US7214233B2 (en) | 2002-08-30 | 2007-05-08 | Satiety, Inc. | Methods and devices for maintaining a space occupying device in a relatively fixed location within a stomach |
US7666195B2 (en) | 2002-09-09 | 2010-02-23 | Brian Kelleher | Device and method for endoluminal therapy |
NZ539713A (en) | 2002-10-11 | 2008-07-31 | Novocell Inc | Implantation of encapsulated biological materials for treating diseases |
US7220237B2 (en) | 2002-10-23 | 2007-05-22 | Satiety, Inc. | Method and device for use in endoscopic organ procedures |
US7229428B2 (en) | 2002-10-23 | 2007-06-12 | Satiety, Inc. | Method and device for use in endoscopic organ procedures |
US9060844B2 (en) | 2002-11-01 | 2015-06-23 | Valentx, Inc. | Apparatus and methods for treatment of morbid obesity |
US8070743B2 (en) | 2002-11-01 | 2011-12-06 | Valentx, Inc. | Devices and methods for attaching an endolumenal gastrointestinal implant |
US7794447B2 (en) | 2002-11-01 | 2010-09-14 | Valentx, Inc. | Gastrointestinal sleeve device and methods for treatment of morbid obesity |
US7037344B2 (en) | 2002-11-01 | 2006-05-02 | Valentx, Inc. | Apparatus and methods for treatment of morbid obesity |
US6656194B1 (en) | 2002-11-05 | 2003-12-02 | Satiety, Inc. | Magnetic anchoring devices |
US20040133147A1 (en) | 2002-11-06 | 2004-07-08 | Woo Sang Hoon | Intestinal bypass device to treat obesity |
US7122058B2 (en) | 2002-12-02 | 2006-10-17 | Gi Dynamics, Inc. | Anti-obesity devices |
US20070032879A1 (en) | 2002-12-02 | 2007-02-08 | Levine Andy H | Anti-buckling sleeve |
US7678068B2 (en) | 2002-12-02 | 2010-03-16 | Gi Dynamics, Inc. | Atraumatic delivery devices |
US7025791B2 (en) | 2002-12-02 | 2006-04-11 | Gi Dynamics, Inc. | Bariatric sleeve |
US7608114B2 (en) | 2002-12-02 | 2009-10-27 | Gi Dynamics, Inc. | Bariatric sleeve |
US7766973B2 (en) | 2005-01-19 | 2010-08-03 | Gi Dynamics, Inc. | Eversion resistant sleeves |
US7695446B2 (en) | 2002-12-02 | 2010-04-13 | Gi Dynamics, Inc. | Methods of treatment using a bariatric sleeve |
US20040143342A1 (en) | 2003-01-16 | 2004-07-22 | Stack Richard S. | Satiation pouches and methods of use |
AU2003206172A1 (en) | 2003-01-23 | 2004-08-13 | Nam, Jeung Hee | Lumen expanding stent and method for making the same |
WO2004069332A1 (en) | 2003-02-03 | 2004-08-19 | Enteromedics Inc. | Intraluminal electrode |
US7444183B2 (en) | 2003-02-03 | 2008-10-28 | Enteromedics, Inc. | Intraluminal electrode apparatus and method |
WO2004073782A1 (en) | 2003-02-19 | 2004-09-02 | Taewoong Medical Co., Ltd | Stent for high frequency thermotherapy |
US20040181242A1 (en) | 2003-03-12 | 2004-09-16 | Stack Richard S. | Articulated suturing system |
US7182745B2 (en) | 2003-03-25 | 2007-02-27 | Boston Scientific Scimed, Inc. | Retaining stent |
US20040220682A1 (en) | 2003-03-28 | 2004-11-04 | Gi Dynamics, Inc. | Anti-obesity devices |
EP1610719B1 (en) | 2003-03-28 | 2010-01-13 | GI Dynamics, Inc. | Sleeve for delayed introduction of enzymes into the intestine |
US7175638B2 (en) | 2003-04-16 | 2007-02-13 | Satiety, Inc. | Method and devices for modifying the function of a body organ |
US20050221072A1 (en) | 2003-04-17 | 2005-10-06 | Nanosys, Inc. | Medical device applications of nanostructured surfaces |
KR100561713B1 (en) | 2003-05-23 | 2006-03-20 | (주) 태웅메디칼 | Flexible self-expandable stent and methods for making the stent |
US9498366B2 (en) | 2003-07-28 | 2016-11-22 | Baronova, Inc. | Devices and methods for pyloric anchoring |
EP1648345A4 (en) | 2003-07-29 | 2006-11-02 | Taewoong Medical Co Ltd | Self-expandable stent |
US20050038415A1 (en) | 2003-08-06 | 2005-02-17 | Rohr William L. | Method and apparatus for the treatment of obesity |
US7314489B2 (en) | 2003-08-20 | 2008-01-01 | Ethicon Endo-Surgery, Inc. | Method and apparatus to facilitate nutritional malabsorption |
US20050085787A1 (en) | 2003-10-17 | 2005-04-21 | Laufer Michael D. | Minimally invasive gastrointestinal bypass |
US7054690B2 (en) | 2003-10-22 | 2006-05-30 | Intrapace, Inc. | Gastrointestinal stimulation device |
US20060212042A1 (en) | 2005-03-17 | 2006-09-21 | Lamport Ronald B | Removal and repositioning device |
US7815589B2 (en) | 2003-12-09 | 2010-10-19 | Gi Dynamics, Inc. | Methods and apparatus for anchoring within the gastrointestinal tract |
US8057420B2 (en) | 2003-12-09 | 2011-11-15 | Gi Dynamics, Inc. | Gastrointestinal implant with drawstring |
US7998220B2 (en) | 2004-02-04 | 2011-08-16 | Murphy Timothy P | Methods for treating obesity |
US20070265709A1 (en) | 2004-02-25 | 2007-11-15 | Mayo Foundatio For Medical Education And Research | Gastric Bypass Devices and Methods |
US7931693B2 (en) | 2004-02-26 | 2011-04-26 | Endosphere, Inc. | Method and apparatus for reducing obesity |
US7946976B2 (en) | 2004-03-23 | 2011-05-24 | Michael Gertner | Methods and devices for the surgical creation of satiety and biofeedback pathways |
US7255675B2 (en) | 2004-03-23 | 2007-08-14 | Michael Gertner | Devices and methods to treat a patient |
US20050228415A1 (en) | 2004-03-23 | 2005-10-13 | Michael Gertner | Methods and devices for percutaneous, non-laparoscopic treatment of obesity |
AU2005231323B2 (en) | 2004-03-26 | 2011-03-31 | Ethicon Endo-Surgery, Inc | Systems and methods for treating obesity |
US7909839B2 (en) | 2004-05-26 | 2011-03-22 | Bariatec Corporation | Gastric bypass band and surgical method |
US7112186B2 (en) | 2004-05-26 | 2006-09-26 | Shah Tilak M | Gastro-occlusive device |
US7803195B2 (en) | 2004-06-03 | 2010-09-28 | Mayo Foundation For Medical Education And Research | Obesity treatment and device |
DE602005027570D1 (en) | 2004-07-09 | 2011-06-01 | Gi Dynamics Inc | DEVICES FOR PLACING A GASTROTINTESTINAL SLEEVE |
EP3195829A1 (en) | 2004-09-17 | 2017-07-26 | GI Dynamics, Inc. | Gastrointestinal achor |
US7833279B2 (en) | 2004-11-12 | 2010-11-16 | Enteromedics Inc. | Pancreatic exocrine secretion diversion apparatus and method |
US7771382B2 (en) | 2005-01-19 | 2010-08-10 | Gi Dynamics, Inc. | Resistive anti-obesity devices |
US8366673B2 (en) | 2005-02-03 | 2013-02-05 | Cook Medical Technologies Llc | Method and devices for selective endoscopic retrograde cholangiopancreatography |
US8114142B2 (en) * | 2005-03-30 | 2012-02-14 | Boston Scientific Scimed, Inc. | Catheter |
US7976488B2 (en) | 2005-06-08 | 2011-07-12 | Gi Dynamics, Inc. | Gastrointestinal anchor compliance |
US20070049801A1 (en) | 2005-08-24 | 2007-03-01 | Lamport Ronald B | Endoscope accessory |
US7819836B2 (en) | 2006-06-23 | 2010-10-26 | Gi Dynamics, Inc. | Resistive anti-obesity devices |
US8801647B2 (en) | 2007-02-22 | 2014-08-12 | Gi Dynamics, Inc. | Use of a gastrointestinal sleeve to treat bariatric surgery fistulas and leaks |
-
2005
- 2005-09-16 EP EP16205480.3A patent/EP3195829A1/en not_active Withdrawn
- 2005-09-16 AU AU2005287010A patent/AU2005287010B2/en not_active Ceased
- 2005-09-16 US US11/229,352 patent/US7815591B2/en active Active
- 2005-09-16 JP JP2007532514A patent/JP2008513129A/en active Pending
- 2005-09-16 EP EP05797460.2A patent/EP1799145B1/en not_active Not-in-force
- 2005-09-16 WO PCT/US2005/033220 patent/WO2006034062A1/en active Application Filing
-
2010
- 2010-09-15 US US12/882,606 patent/US20110004230A1/en not_active Abandoned
-
2018
- 2018-02-28 US US15/908,295 patent/US20190038445A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020065545A1 (en) * | 1995-10-30 | 2002-05-30 | Leonhardt Howard J. | Apparatus for engrafting a blood vessel |
US20020177890A1 (en) * | 1996-01-05 | 2002-11-28 | Lenker Jay A. | Stent graft loading and deployment device and method |
WO2000028922A1 (en) * | 1998-11-12 | 2000-05-25 | Advanced Cardiovascular Systems, Inc. | Stent having non-uniform structure |
WO2000042945A1 (en) * | 1999-01-22 | 2000-07-27 | Al Saadon Khalid | Expandable endovascular medical tubular stent |
US20040093065A1 (en) | 2002-11-13 | 2004-05-13 | Allium Inc. | Endoluminal lining |
Cited By (70)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7935073B2 (en) | 2002-12-02 | 2011-05-03 | Gi Dynamics, Inc. | Methods of treatment using a bariatric sleeve |
US7678068B2 (en) | 2002-12-02 | 2010-03-16 | Gi Dynamics, Inc. | Atraumatic delivery devices |
US9901474B2 (en) | 2002-12-02 | 2018-02-27 | Gi Dynamics, Inc. | Anti-obesity devices |
US7695446B2 (en) | 2002-12-02 | 2010-04-13 | Gi Dynamics, Inc. | Methods of treatment using a bariatric sleeve |
US9750596B2 (en) | 2002-12-02 | 2017-09-05 | Gi Dynamics, Inc. | Bariatric sleeve |
US9278020B2 (en) | 2002-12-02 | 2016-03-08 | Gi Dynamics, Inc. | Methods of treatment using a bariatric sleeve |
US7758535B2 (en) | 2002-12-02 | 2010-07-20 | Gi Dynamics, Inc. | Bariatric sleeve delivery devices |
US9155609B2 (en) | 2002-12-02 | 2015-10-13 | Gi Dynamics, Inc. | Bariatric sleeve |
US8882698B2 (en) | 2002-12-02 | 2014-11-11 | Gi Dynamics, Inc. | Anti-obesity devices |
US7766861B2 (en) | 2002-12-02 | 2010-08-03 | Gi Dynamics, Inc. | Anti-obesity devices |
US8870806B2 (en) | 2002-12-02 | 2014-10-28 | Gi Dynamics, Inc. | Methods of treatment using a bariatric sleeve |
US8486153B2 (en) | 2002-12-02 | 2013-07-16 | Gi Dynamics, Inc. | Anti-obesity devices |
US8162871B2 (en) | 2002-12-02 | 2012-04-24 | Gi Dynamics, Inc. | Bariatric sleeve |
US8137301B2 (en) | 2002-12-02 | 2012-03-20 | Gi Dynamics, Inc. | Bariatric sleeve |
US8057420B2 (en) | 2003-12-09 | 2011-11-15 | Gi Dynamics, Inc. | Gastrointestinal implant with drawstring |
US9095416B2 (en) | 2003-12-09 | 2015-08-04 | Gi Dynamics, Inc. | Removal and repositioning devices |
US9744061B2 (en) | 2003-12-09 | 2017-08-29 | Gi Dynamics, Inc. | Intestinal sleeve |
US7981163B2 (en) | 2003-12-09 | 2011-07-19 | Gi Dynamics, Inc. | Intestinal sleeve |
US9237944B2 (en) | 2003-12-09 | 2016-01-19 | Gi Dynamics, Inc. | Intestinal sleeve |
US7682330B2 (en) | 2003-12-09 | 2010-03-23 | Gi Dynamics, Inc. | Intestinal sleeve |
US9585783B2 (en) | 2003-12-09 | 2017-03-07 | Gi Dynamics, Inc. | Methods and apparatus for anchoring within the gastrointestinal tract |
US9084669B2 (en) | 2003-12-09 | 2015-07-21 | Gi Dynamics, Inc. | Methods and apparatus for anchoring within the gastrointestinal tract |
US7815589B2 (en) | 2003-12-09 | 2010-10-19 | Gi Dynamics, Inc. | Methods and apparatus for anchoring within the gastrointestinal tract |
US8834405B2 (en) | 2003-12-09 | 2014-09-16 | Gi Dynamics, Inc. | Intestinal sleeve |
US8303669B2 (en) | 2003-12-09 | 2012-11-06 | Gi Dynamics, Inc. | Methods and apparatus for anchoring within the gastrointestinal tract |
US8771219B2 (en) | 2003-12-09 | 2014-07-08 | Gi Dynamics, Inc. | Gastrointestinal implant with drawstring |
US8628583B2 (en) | 2003-12-09 | 2014-01-14 | Gi Dynamics, Inc. | Methods and apparatus for anchoring within the gastrointestinal tract |
US7815591B2 (en) | 2004-09-17 | 2010-10-19 | Gi Dynamics, Inc. | Atraumatic gastrointestinal anchor |
US8096966B2 (en) | 2005-01-19 | 2012-01-17 | Gi Dynamics, Inc. | Eversion resistant sleeves |
US7771382B2 (en) | 2005-01-19 | 2010-08-10 | Gi Dynamics, Inc. | Resistive anti-obesity devices |
US7766973B2 (en) | 2005-01-19 | 2010-08-03 | Gi Dynamics, Inc. | Eversion resistant sleeves |
US8920358B2 (en) | 2005-01-19 | 2014-12-30 | Gi Dynamics, Inc. | Resistive anti-obesity devices |
US7976488B2 (en) | 2005-06-08 | 2011-07-12 | Gi Dynamics, Inc. | Gastrointestinal anchor compliance |
US8425451B2 (en) | 2005-06-08 | 2013-04-23 | Gi Dynamics, Inc. | Gastrointestinal anchor compliance |
US7819836B2 (en) | 2006-06-23 | 2010-10-26 | Gi Dynamics, Inc. | Resistive anti-obesity devices |
US10350099B2 (en) | 2006-09-01 | 2019-07-16 | Ethicon Endo-Surgery, Inc. | Devices and methods for anchoring an endoluminal sleeve in the GI tract |
US8801647B2 (en) | 2007-02-22 | 2014-08-12 | Gi Dynamics, Inc. | Use of a gastrointestinal sleeve to treat bariatric surgery fistulas and leaks |
US10238518B2 (en) | 2007-02-27 | 2019-03-26 | Agt Inc. | Implantable weight control device |
CN101636130B (en) * | 2007-03-23 | 2012-04-25 | 因瓦泰克技术中心有限公司 | Endoluminal prosthesis |
WO2008117315A1 (en) | 2007-03-23 | 2008-10-02 | Invatec Technology Center Gmbh | Endoluminal prosthesis |
JP2010522015A (en) * | 2007-03-23 | 2010-07-01 | インヴァテック テクノロジー センター ジーエムビーエイチ | Lumen prosthesis |
AU2007350131B2 (en) * | 2007-03-23 | 2013-05-02 | Invatec Technology Center Gmbh | Endoluminal prosthesis |
GB2467097A (en) * | 2008-11-06 | 2010-07-21 | Cook William Europ | Stent graft |
GB2467097B (en) * | 2008-11-06 | 2011-01-12 | Cook William Europ | Stent member |
US8092516B2 (en) | 2008-11-06 | 2012-01-10 | Cook Medical Technologies Llc | Stent member |
US8734502B2 (en) | 2008-12-17 | 2014-05-27 | Cook Medical Technologies Llc | Tapered stent and flexible prosthesis |
WO2010071776A1 (en) * | 2008-12-17 | 2010-06-24 | Med Institute, Inc. | Tapered stent and flexible prosthesis |
US9314327B2 (en) | 2008-12-17 | 2016-04-19 | Cook Medical Technologies Llc | Tapered stent and flexible prosthesis |
US9173760B2 (en) | 2009-04-03 | 2015-11-03 | Metamodix, Inc. | Delivery devices and methods for gastrointestinal implants |
US9278019B2 (en) | 2009-04-03 | 2016-03-08 | Metamodix, Inc | Anchors and methods for intestinal bypass sleeves |
US9962278B2 (en) | 2009-04-03 | 2018-05-08 | Metamodix, Inc. | Modular gastrointestinal prostheses |
US9044300B2 (en) | 2009-04-03 | 2015-06-02 | Metamodix, Inc. | Gastrointestinal prostheses |
US10322021B2 (en) | 2009-04-03 | 2019-06-18 | Metamodix, Inc. | Delivery devices and methods for gastrointestinal implants |
US8702642B2 (en) | 2009-07-10 | 2014-04-22 | Metamodix, Inc. | External anchoring configurations for modular gastrointestinal prostheses |
US10058323B2 (en) | 2010-01-22 | 2018-08-28 | 4 Tech Inc. | Tricuspid valve repair using tension |
US10433963B2 (en) | 2010-01-22 | 2019-10-08 | 4Tech Inc. | Tissue anchor and delivery tool |
US9198791B2 (en) | 2010-07-22 | 2015-12-01 | Endobetix Ltd. | Pancreaticobiliary diversion device |
US10449050B2 (en) | 2013-01-09 | 2019-10-22 | 4 Tech Inc. | Soft tissue depth-finding tool |
US11793839B2 (en) | 2013-01-15 | 2023-10-24 | Metamodix, Inc. | System and method for affecting intestinal microbial flora |
US10159699B2 (en) | 2013-01-15 | 2018-12-25 | Metamodix, Inc. | System and method for affecting intestinal microbial flora |
US9907681B2 (en) | 2013-03-14 | 2018-03-06 | 4Tech Inc. | Stent with tether interface |
US10307280B2 (en) | 2013-08-28 | 2019-06-04 | Ethicon Endo-Surgery, Inc. | Endoscopic transoral duodenal sleeve applier |
US9456917B2 (en) | 2013-08-28 | 2016-10-04 | Ethicon Endo-Surgery, Inc. | Endoscopic transoral duodenal sleeve applier |
US11013630B2 (en) | 2016-01-13 | 2021-05-25 | Agt, Inc. | Implantable weight control device to promote early and prolonged satiety in a bariatric patient |
US9622897B1 (en) | 2016-03-03 | 2017-04-18 | Metamodix, Inc. | Pyloric anchors and methods for intestinal bypass sleeves |
US20170252195A1 (en) | 2016-03-03 | 2017-09-07 | Metamodix, Inc. | Pyloric anchors and methods for intestinal bypass sleeves |
US10729573B2 (en) | 2016-03-03 | 2020-08-04 | Metamodix, Inc. | Pyloric anchors and methods for intestinal bypass sleeves |
US10751209B2 (en) | 2016-05-19 | 2020-08-25 | Metamodix, Inc. | Pyloric anchor retrieval tools and methods |
US11666470B2 (en) | 2016-05-19 | 2023-06-06 | Metamodix, Inc | Pyloric anchor retrieval tools and methods |
US11684502B2 (en) | 2017-07-21 | 2023-06-27 | Gi Dynamics, Inc. | Segmented gastrointestinal devices and methods of use thereof |
Also Published As
Publication number | Publication date |
---|---|
US20110004230A1 (en) | 2011-01-06 |
AU2005287010B2 (en) | 2010-04-15 |
EP3195829A1 (en) | 2017-07-26 |
EP1799145A1 (en) | 2007-06-27 |
US7815591B2 (en) | 2010-10-19 |
AU2005287010A1 (en) | 2006-03-30 |
EP1799145B1 (en) | 2016-12-21 |
US20190038445A1 (en) | 2019-02-07 |
JP2008513129A (en) | 2008-05-01 |
US20060064120A1 (en) | 2006-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20190038445A1 (en) | Atraumatic gastrointestinal anchor | |
US11564818B2 (en) | Vascular implant | |
US11129618B2 (en) | Tissue anchor for securing tissue layers | |
JP4512597B2 (en) | Device fixed in gastrointestinal tract and fixing method | |
EP2547286B1 (en) | Bariatric device and method for weight loss | |
US10076330B2 (en) | Tissue anchor for securing tissue layers | |
JP4290888B2 (en) | Wound sheet stent graft with outer skeleton | |
JP6659219B2 (en) | Esophageal stent | |
US20150190259A1 (en) | Transpyloric anchoring | |
EP3407803B1 (en) | Flanged gastrointestinal devices | |
JP2000510006A (en) | Venous valve capacity recovery device | |
WO2013163762A1 (en) | Device for soft tissue support and method for anchoring | |
US20190298560A1 (en) | Systems and methods for anchoring and restraining gastrointestinal prostheses | |
EP2882352B1 (en) | Devices for securing medical devices within an anatomy | |
EP3937846B1 (en) | Intraluminal device | |
CN118804729A (en) | System and method for stabilizing an anti-movement anchoring system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2007532514 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2005797460 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005797460 Country of ref document: EP Ref document number: 2005287010 Country of ref document: AU |
|
ENP | Entry into the national phase |
Ref document number: 2005287010 Country of ref document: AU Date of ref document: 20050916 Kind code of ref document: A |
|
WWP | Wipo information: published in national office |
Ref document number: 2005287010 Country of ref document: AU |
|
WWP | Wipo information: published in national office |
Ref document number: 2005797460 Country of ref document: EP |