WO2004009958A1 - Apparatus and method for collecting underground hydrocarbon gas resources - Google Patents
Apparatus and method for collecting underground hydrocarbon gas resources Download PDFInfo
- Publication number
- WO2004009958A1 WO2004009958A1 PCT/JP2003/009092 JP0309092W WO2004009958A1 WO 2004009958 A1 WO2004009958 A1 WO 2004009958A1 JP 0309092 W JP0309092 W JP 0309092W WO 2004009958 A1 WO2004009958 A1 WO 2004009958A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- methane
- methane hydrate
- optical fiber
- laser beam
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 12
- 239000004215 Carbon black (E152) Substances 0.000 title abstract description 4
- 229930195733 hydrocarbon Natural products 0.000 title abstract description 4
- 150000002430 hydrocarbons Chemical class 0.000 title abstract description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 70
- NMJORVOYSJLJGU-UHFFFAOYSA-N methane clathrate Chemical compound C.C.C.C.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O NMJORVOYSJLJGU-UHFFFAOYSA-N 0.000 claims abstract description 54
- 239000013307 optical fiber Substances 0.000 claims abstract description 35
- 239000011435 rock Substances 0.000 claims abstract description 14
- 239000012530 fluid Substances 0.000 claims abstract description 13
- 238000007667 floating Methods 0.000 claims description 22
- 239000000835 fiber Substances 0.000 claims description 10
- 230000015572 biosynthetic process Effects 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 7
- 239000010453 quartz Substances 0.000 claims description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 7
- 239000012510 hollow fiber Substances 0.000 claims description 3
- 238000000926 separation method Methods 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 20
- 239000013535 sea water Substances 0.000 abstract description 7
- 239000007789 gas Substances 0.000 abstract description 6
- 230000005540 biological transmission Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 4
- 238000005553 drilling Methods 0.000 description 4
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 3
- 229910052740 iodine Inorganic materials 0.000 description 3
- 239000011630 iodine Substances 0.000 description 3
- 230000001678 irradiating effect Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000000630 rising effect Effects 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- -1 Kaiei Substances 0.000 description 1
- 235000019738 Limestone Nutrition 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000009412 basement excavation Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000013305 flexible fiber Substances 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
- E21B43/24—Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
- E21B43/2401—Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection by means of electricity
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B41/00—Equipment or details not covered by groups E21B15/00 - E21B40/00
- E21B41/0099—Equipment or details not covered by groups E21B15/00 - E21B40/00 specially adapted for drilling for or production of natural hydrate or clathrate gas reservoirs; Drilling through or monitoring of formations containing gas hydrates or clathrates
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B7/00—Special methods or apparatus for drilling
- E21B7/14—Drilling by use of heat, e.g. flame drilling
- E21B7/15—Drilling by use of heat, e.g. flame drilling of electrically generated heat
Definitions
- the present invention relates to an apparatus and a method for collecting hydrocarbon gas such as methane gas from methane hydrate existing in the ground.
- a plurality of water molecules gather to form a cage such as a dodecahedron, a tetrahedron, or a hexahedron, and the methane molecule is confined in the cage to become one molecule, and the molecule is crystalline. Or they are randomly gathered.
- This methane hydrate is found deep underground around the world, in rocks below the seabed and in Siberia. Notably, it has been confirmed that it is widely distributed under the seabed, such as off Shikoku, around Japan, and is expected as an energy resource.
- Methane hydrate is formed under low pressure and high pressure. As shown in the phase equilibrium curve diagram in Fig. 8, the relationship between temperature and pressure is low. When methane hydrate is formed at the left side of the curve and the temperature is increased or the pressure is decreased (right side of the curve), it separates into methane gas and water.
- the phase In order to separate methane gas from methane hydrate, the phase must be on the right side of the phase equilibrium curve shown in Fig. 8. That is, at the same pressure, the temperature must be raised by several tens of degrees or more. In addition, 79 cals of heat energy per gram of ice is required as latent heat to dissolve in water from ice, and a large amount of heat energy is required to heat methane hydrate, including the heat of melting. .
- methane hydrate does not exist in the form of pools like oil, but is widely distributed in the ground in the form of solids.
- the method of sucking whole methane gas from there is not applicable.
- the present invention has been conceived to solve such a problem, and transmits heat energy from the sea or land to a stratum where methane hydrate is present without heat loss, thereby obtaining methane hydrate.
- the purpose is to heat the rate and collect methane gas efficiently. Disclosure of the invention
- the underground gas resource collection device of the present invention a floating marine structure or a laser oscillator installed on the ground, and a laser beam output from the laser oscillator
- the method of collecting gas resources underground is directed to a method in which a laser beam output from a floating marine structure or a laser oscillator installed on the ground is guided by an optical fiber to a stratum in which methane hydrate is stored. It heats the stratum containing methane hydrate, decomposes methane hydrate, separates methane gas, and collects floating methane gas.
- Fig. 1 shows the marine or marine gas used in the underground methane gas resource collection system of the present invention. Schematic diagram showing an embodiment of ground equipment,
- FIG. 2 is a longitudinal sectional view showing a first embodiment of a pipe lowered into a stratum where methane hydrate is present and a distal end portion of a flexible tube passing through an optical fiber;
- FIG. I is a cross-sectional view showing reels at sea or ground equipment,
- Fig. 4 is a characteristic curve showing the spectral characteristics of the transmission loss of quartz fiber.
- FIG. 5 is a longitudinal sectional view showing a second embodiment of a distal end portion of a flexible tube passing through a pipe and an optical fiber
- FIG. 6 is a longitudinal sectional view showing a third embodiment of a distal end portion of a flexible tube passing through a pipe and an optical fiber
- FIG. 7 is a longitudinal sectional view showing a modification of the third embodiment of the distal end portion of the flexible tube passing through the pipe and the optical fiber.
- FIG. 8 is a phase equilibrium curve diagram of methane hydrate. BEST MODE FOR CARRYING OUT THE INVENTION
- Floating offshore structure (offshore equipment) Lower the drilling pipe from A to the seabed, and then excavate the formation under the seabed to formation B where methane hydrate is present to form a well.
- the formation of this well can be formed by the same technology as oil drilling.
- the underground renewable gas resource collection device of the present invention includes a floating offshore structure A, in which a pipe 3 is lowered into an excavated well.
- a device a device for lowering a flexible tube 2 previously passed through an optical fiber 11 into a pipe 3, a reel 6 for winding the flexible tube 2, and a laser beam passing through the optical fiber 11.
- a laser oscillator 4 for sending, a pump 5 for sending a fluid (water, seawater, gas) using a gap between the flexible tube 2 and the optical fiber 1, and a flow in a gap between the pipe 3 and the flexible tube 2.
- a floating object processing device 7 for separating methane gas from the floating object that floated through the road is provided.
- the pipe 3 is lowered to the well 9 excavated from the floating offshore structure A.
- one central hole 32 and a circular array A block 31 having a plurality of holes 33 formed therein is attached.
- the flexible tube 2 previously passed through the optical fiber 1 is lowered into the pipe 3.
- a plurality of centering springs 34 which are bent in an arc shape, are attached near the tip of the flexible tube 2, and when the tip of the flexible tube 2 reaches the block 31 of the pipe 3, it is set to be acceptable.
- the distal end of the flexible tube 2 is guided to the center hole 32 of the block 31 so that the distal end of the flexible tube 2 projects below the block 31.
- the distal end of the flexible tube 2 protects the distal end of the optical fiber 11, attaches a lens that focuses or diffuses the transmitted laser beam, attaches a prism that reflects laterally, or An irradiation nozzle 11 for directly irradiating without attaching any lens or the like is connected.
- the upper end of the pipe 3 is closed by the pulp 36 passing through the flexible tube 2, and the floating material rising in the pipe 3 is guided to the floating material processing device A via the valve 21. As if they were combined.
- the flexible tube 2 into which the optical fiber 11 has been previously inserted is wound around the reel 6 by a necessary and expected length.
- the fiber 1 and the flexible tube 2 are connected to the laser oscillator 4 and the pump 5 via a swivel 61 for coaxially connecting the fiber 1 and a flexible fiber swivel joint 62.
- the optical fiber 11 transmits the laser beam output from the laser oscillator 4, and the flexible tube 2 sends a fluid (water, seawater, gas) using the gap with the optical fiber 11.
- the flexible tube 2 is configured to be ejected from the irradiation nozzle 11 at the tip.
- COIL Oxygene Iodine Laser
- YAG laser device that generates a laser beam by electric energy
- a quartz fiber with a diameter of 0.6 mm can transmit a laser beam (energy) of 4 kW or more, and a quartz fiber with a diameter of l mm can be used to transmit more than 10 kW. It is possible to transmit a laser beam of several tens of kilowatts or more to a geological layer containing methane hydrate at a distance of more than 100 m if several quartz fibers are bundled. is there.
- the optical fiber 1 a hollow fiber having a wide transmission band can be used.
- the hollow fiber has an inner wall coated with aluminum, silver or copper to form a reflective film. The use of an optical fiber with such a wide transmission band enables the transmission of a laser beam with an optimum wavelength that can be absorbed by various fluids fed in or a fluid generated in the stratum containing methane hydrate.
- Pipe 3 descends from floating offshore structure A into well 9 formed by excavation to formation B where methane hydrate is present. This near the tip of the pipe 3, since the pipes. Packer 35 is attached, by a pipe 'packer 35 is inflated by remote control to seal the gap between pipe 3 and the well 9. Further, the gap between the pipe 3 and the stratum can be sealed by the pipe / packer 35.
- a block 31 having substantially the same outer diameter as that of the pipe 3 is attached.
- the block 31 has a hole 32 through which the flexible tube 2 passes through the core and a circular arrangement.
- a plurality of holes 33 serving as liquid or gas passages are drilled. ;
- the flexible tube 2 passing through the optical fiber 11 wound on the reel 6 is pulled out and lowered in the pipe 3. Since a plurality of centering springs 43 bent in an arc shape are attached to the outer periphery of the distal end of the flexible tube 2, the distal end of the flexible tube 2 is connected to the center hole 32 of the block 31. The tip of the flexible tube 2 can be projected below the block 31.
- the laser beam of carpentry energy output from the laser oscillator 4 is transferred from the tip of the optical fiber 11 to a place where methane hydrate is present.
- Layer When irradiating B and heating rock and methane hydrate, methane hydrate is decomposed and separated into water and methane gas.
- the types of rocks that coexist with methane hydrate are sandstone, limestone, and shale.However, the energy of the irradiated laser beam causes it to be finely crushed and turned into powder. Produces any physical phenomenon.
- the pump (5) When the pump (5) is operated to eject a fluid (water, Kaiei, gas) from the tip of the flexible tube (2), the crushed rock is divided into a plurality of holes (33) arranged in a circle of a block (31) and a pipe. It rises with the separated methane gas through the flow passage in the gap between 3 and the flexible tube 2, and the rock can be easily removed.
- the methane gas rising in the pipe 3 and the crushed rock are guided together with the fluid (water, seawater, and gas) to the floating material treatment device 7 installed in the floating marine structure A, where the methane gas is separated. Collected.
- the laser beam emitted from the tip of the optical fiber 11 tends to spread, but we want to irradiate the area near the tip of the optical fiber 11 more widely.
- a concave lens may be attached to the irradiation nozzle 11 at the tip of the optical fiber.
- a convex lens may be attached to the irradiation nozzle 11 at the tip of the optical fiber.
- the fluid (water, seawater, gas) supplied through the flexible tube 2 is jetted to the tip of the optical fiber 1, so that the tip (including the lens) of the optical fiber 1 is cleaned.
- the field of view of the laser beam can be secured.
- the laser beam is irradiated in the same direction (vertically downward) as the pipe 3 descended into the well 9, but as shown in FIG.
- the flexible tube 2 is projected obliquely downward using a block 31a in which the center hole 32 is bent obliquely downward as the block 31 to be attached to the tip of the underground, the rocks underground are inclined obliquely downward by the energy of the laser beam. It is possible to excavate.
- an irradiation nozzle 11a provided with a prism 37 for reflecting a laser beam in the lateral direction is attached to the tip of the flexible tube 2. Then, a turbine that is rotated by a fluid (water, seawater, gas) supplied through the flexible tube 2 is provided, and the irradiation nozzle 11a is rotated. Can be irradiated.
- a fluid water, seawater, gas
- the laser beam is applied to the deep stratum where methane hydrate is present with a small loss using an optical fiber.
- the transmission that is, the energy for heating can be transmitted with high efficiency, so that the methane hydrate power, Methane gas can be collected efficiently, and the economic and practical effects are extremely large.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Drilling And Exploitation, And Mining Machines And Methods (AREA)
- Earth Drilling (AREA)
- Laser Surgery Devices (AREA)
Abstract
Heat energy is sent without heat loss from the sea surface or land surface to a stratum containing methane hydrate, and the energy heats the methane hydrate so that methane gas is efficiently collected. An underground hydrocarbon gas resources-collecting apparatus is provided with a laser oscillator installed on a floating-type marine structure or on the ground, an optical fiber (1) inserted in a tube (2) that is guided to a stratum (B) containing methane hydrate, and means for supplying fluid (water, seawater, gas) to the stratum (B) through a gap between the tube (2) and the optical fiber (1). The stratum (B) containing methane hydrate is heated by laser beam to crush rock, and the methane hydrate is decomposed to separate methane gas. The methane gas and crushed rock are collected together with water or seawater.
Description
明 細 書 地下賦存炭化水素ガス資源収集装置および収集方法 技術分野 Description Underground renewable hydrocarbon gas resource collection device and collection method
この発明は、 地中に賦存するメタンハイドレートからメタンガスなどの炭化水 素ガスを収集する装置および方法に関する。 背景技術 The present invention relates to an apparatus and a method for collecting hydrocarbon gas such as methane gas from methane hydrate existing in the ground. Background art
地中には石油をはじめ、 種々の地下資源が埋蔵されているが、 最近地下資源と してメタンハイドレートが注目されている。 Various underground resources including oil are buried in the ground, but methane hydrate has recently attracted attention as an underground resource.
メタンハイドレートは、 複数個の水分子が集まって 12面体、 14面体、 16面体 などのケージを形成し、 そのケージの中にメタン分子が閉じこめられて一つの分 子となり、 その分子が結晶状またはランダムに集合したものである。 In methane hydrate, a plurality of water molecules gather to form a cage such as a dodecahedron, a tetrahedron, or a hexahedron, and the methane molecule is confined in the cage to become one molecule, and the molecule is crystalline. Or they are randomly gathered.
このメタンハイドレートは、 海底下の 石中やシベリアなど世界各地の地下深 くに賦存している。 注目すべきことに日本周辺においても、 四国沖などの海底下 に広く賦存していることが確認され、 エネルギー資源として期待されている。 This methane hydrate is found deep underground around the world, in rocks below the seabed and in Siberia. Notably, it has been confirmed that it is widely distributed under the seabed, such as off Shikoku, around Japan, and is expected as an energy resource.
+メタンハイドレートは、 低温度で高圧力のもとに形成されたもので、 第 8図の 相平衡曲線図に温度と圧力との関係を示すように、 低温度で高圧力の状態 (曲線 の左側) においてメタンハイドレートを形成し、 温度を上昇させるか圧力を低下 させると (曲線の右側)、 メタンガスと水に分離する。 + Methane hydrate is formed under low pressure and high pressure. As shown in the phase equilibrium curve diagram in Fig. 8, the relationship between temperature and pressure is low. When methane hydrate is formed at the left side of the curve and the temperature is increased or the pressure is decreased (right side of the curve), it separates into methane gas and water.
メタンハイドレートからメタンガスを分離するには、 第 8図に示す相平衡曲線 の右側の状態にしなければならない。 すなわち、 同じ圧力においては、 温度を数 十度以上、 上昇させなければならない。 さらに、 氷から水に溶解ざせる潜熱とし て氷 1 g当たり 7 9 calの熱エネルギーを必要とし、 その溶解熱を含めて、 メタ ンハイドレートを加熱するために多くの熱エネルギーを必要とする。 In order to separate methane gas from methane hydrate, the phase must be on the right side of the phase equilibrium curve shown in Fig. 8. That is, at the same pressure, the temperature must be raised by several tens of degrees or more. In addition, 79 cals of heat energy per gram of ice is required as latent heat to dissolve in water from ice, and a large amount of heat energy is required to heat methane hydrate, including the heat of melting. .
地中に賦存するメタンハイドレートに熱エネルギーを供給してメタンガスを採 収する方法として、 メタンハイドレートを賦存する地層まで海底を掘削して孔を あけ、 この孔を経て海上から水蒸気や熱水を送り込んで、 メタンハイ ドレートを
加熱することによりメタンハイドレートの温度を上昇させて、 気化したメタンガ スを採収する方法が試験的に行われている。 As a method of collecting methane gas by supplying thermal energy to methane hydrate existing in the ground, drilling and drilling a hole in the seabed to the formation where methane hydrate is present, Send in hot water to remove methane hydrate A test method is being conducted in which the temperature of methane hydrate is raised by heating to collect vaporized methane gas.
この方法によると、試験的に少量のメタンガスを採収することは可能であるが、 海上から水蒸気や熱水を送り込んでも、 数千 mも離れた地層に賦存するメタンハ イドレートに到達する前に水蒸気や熱水が冷却されて熱エネルギーが失われ、 極 めて非効率的であって産業として成り立たない。 According to this method, it is possible to collect a small amount of methane gas on a trial basis, but even if steam or hot water is sent from the sea, it will not reach the methane hydrate rate existing in the stratum several thousand meters away. Steam and hot water are cooled and heat energy is lost, making them extremely inefficient and not viable as an industry.
また、 メタンハイドレートは、 石油のように溜まりを作って賦存しているので はなく、 地中に広く固体状で分布しているから、 石油を掘削するように、 一力所 に孔をぁけて、 そこから全体のメタンガスを吸い上げる手法は適用できないとい う課題がある。 In addition, methane hydrate does not exist in the form of pools like oil, but is widely distributed in the ground in the form of solids. However, there is a problem that the method of sucking whole methane gas from there is not applicable.
そこで、 この発明は、 このような課題を解決するために考えられたもので、 海 上または陸上からメタンハイドレートが賦存している地層まで、 熱損失なく熱ェ ネルギーを伝送し、 メタンハイドレートを加熱して、 効率よくメタンガスを収集 することを目的としている。 発明の開示 Therefore, the present invention has been conceived to solve such a problem, and transmits heat energy from the sea or land to a stratum where methane hydrate is present without heat loss, thereby obtaining methane hydrate. The purpose is to heat the rate and collect methane gas efficiently. Disclosure of the invention
この発明の地下賦存ガス資源収集装置 、 浮遊式海洋構造物または地上に設置 されたレーザー発振器と、 このレーザー発振器から出力されるレーザー光線を、 The underground gas resource collection device of the present invention, a floating marine structure or a laser oscillator installed on the ground, and a laser beam output from the laser oscillator
1 1
メタンハイドレートを賦存する地層へ導 光ファイバ一とを具備し、 レーザー光 線によりメタンハイドレートを賦存する地層を加熱し、 メタンハイドレートを分 解してメタンガスを分離し、 浮上するメタンガスを収集するものである。 Equipped with a light guide fiber to the stratum containing methane hydrate and heating the stratum containing methane hydrate with a laser beam to separate methane hydrate to separate methane gas and float methane gas Is to collect.
この発明の地下賦存ガス資源収集方法は、 浮遊式海洋構造物または地上に設置 されたレーザー発振器から出力されるレーザー光線を、 光ファイバ一によりメタ ンハイドレートを賦存する地層へ導いて、 レーザー光線によりメタンハイドレー トを賦存する地層を加熱し、メタンハイドレートを分解してメタンガスを分離し、 浮上するメタンガスを収集するものである。 図面の簡単な説明 The method of collecting gas resources underground according to the present invention is directed to a method in which a laser beam output from a floating marine structure or a laser oscillator installed on the ground is guided by an optical fiber to a stratum in which methane hydrate is stored. It heats the stratum containing methane hydrate, decomposes methane hydrate, separates methane gas, and collects floating methane gas. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 この発明の地下賦存メタンガス資源収集装置で使用する海上または
地上設備の実施の形態を示す概要図、 Fig. 1 shows the marine or marine gas used in the underground methane gas resource collection system of the present invention. Schematic diagram showing an embodiment of ground equipment,
第 2図は、 メタンハイドレートが賦存する地層に降下させたパイプおよぴ光フ アイパーを揷通した可撓性チューブの先端部の第 1の実施形態を示す縦断面図、 第 3図は、 海上または地上設備におけるリールを示す断面図、 FIG. 2 is a longitudinal sectional view showing a first embodiment of a pipe lowered into a stratum where methane hydrate is present and a distal end portion of a flexible tube passing through an optical fiber; FIG. Is a cross-sectional view showing reels at sea or ground equipment,
第 4図は、 石英ファイバーの伝送損失の分光特性を示す特性曲線、 Fig. 4 is a characteristic curve showing the spectral characteristics of the transmission loss of quartz fiber.
第 5図は、 パイプおよび光ファイバーを揷通した可撓性チューブの先端部の第 2の実施形態を示す縦断面図、 FIG. 5 is a longitudinal sectional view showing a second embodiment of a distal end portion of a flexible tube passing through a pipe and an optical fiber,
第 6図は、 パイプおよび光ファイバーを揷通した可撓性チューブの先端部の第 3の実施形態を示す縦断面図、 FIG. 6 is a longitudinal sectional view showing a third embodiment of a distal end portion of a flexible tube passing through a pipe and an optical fiber,
第 7図は、 パイプおよび光ファイバーを揷通した可撓性チューブの先端部の第 3の実施形態の変形を示す縦断面図、 ' FIG. 7 is a longitudinal sectional view showing a modification of the third embodiment of the distal end portion of the flexible tube passing through the pipe and the optical fiber.
第 8図は、 メタンハイドレートの相平衡曲線図である。 発明を実施するための最良の形態 FIG. 8 is a phase equilibrium curve diagram of methane hydrate. BEST MODE FOR CARRYING OUT THE INVENTION
(第 1の実施形態) (First Embodiment)
浮遊式海上構造物 (洋上設備) Aから ¾削パイプを海底面まで下ろし、 さらに 海底面下の地層をメタンハイドレートが賦存する地層 Bまで掘削して坑井を形成 する。 この坑井の形成は、 石油掘削の技術と同じ技術により形成することができ る。 Floating offshore structure (offshore equipment) Lower the drilling pipe from A to the seabed, and then excavate the formation under the seabed to formation B where methane hydrate is present to form a well. The formation of this well can be formed by the same technology as oil drilling.
この発明の地下賦存ガス資源収集装置は、 第 1図に示すように、 浮遊式海上構 造物 Aを備え、 この浮遊式海上構造物 Aには、 掘削した坑井にパイプ 3を降下さ せる装置と、 予め光ファイバ一 1を揷通した可撓性チューブ 2をパイプ 3内に降 下させる装置と、 可撓性チューブ 2を卷き取るリール 6と、 光ファイバ一 1を経 てレーザー光線を送るレーザー発振器 4と、 可撓性チューブ 2と光ファイバ一 1 との隙間を利用して流体 (水、 海水、 気体) を送り込むポンプ 5と、 パイプ 3と 可撓性チューブ 2との間隙の流路を経て浮上した浮上物からメタンガスを分離す る浮上物処理装置 7とを備えている。 As shown in FIG. 1, the underground renewable gas resource collection device of the present invention includes a floating offshore structure A, in which a pipe 3 is lowered into an excavated well. A device, a device for lowering a flexible tube 2 previously passed through an optical fiber 11 into a pipe 3, a reel 6 for winding the flexible tube 2, and a laser beam passing through the optical fiber 11. A laser oscillator 4 for sending, a pump 5 for sending a fluid (water, seawater, gas) using a gap between the flexible tube 2 and the optical fiber 1, and a flow in a gap between the pipe 3 and the flexible tube 2. A floating object processing device 7 for separating methane gas from the floating object that floated through the road is provided.
第 2図に示すように、 浮遊式海上構造物 Aから掘削した坑井 9にパイプ 3を降 下させる。 このパイプ 3の先端には、 中心の 1つの孔 32および円形に配列され
た複数の孔 33を穿孔したブロック 31が取り付けられている。 As shown in Fig. 2, the pipe 3 is lowered to the well 9 excavated from the floating offshore structure A. At the end of this pipe 3, one central hole 32 and a circular array A block 31 having a plurality of holes 33 formed therein is attached.
さらに、 予め光フアイパー 1を揷通した可撓性チューブ 2をパイプ 3内に降下 させる。 この可撓性チューブ 2の先端近傍には、 円弧状に曲げた複数の芯出し用 スプリング 34が取り付けられており、 可撓性チューブ 2の先端がパイプ 3のブ ロック 31まで到達したとき、 可撓性チューブ 2の先端をプロック 31の中心孔 32 に案内して、 可撓性チューブ 2の先端をブロック 31の下に突出させる。 Further, the flexible tube 2 previously passed through the optical fiber 1 is lowered into the pipe 3. A plurality of centering springs 34, which are bent in an arc shape, are attached near the tip of the flexible tube 2, and when the tip of the flexible tube 2 reaches the block 31 of the pipe 3, it is set to be acceptable. The distal end of the flexible tube 2 is guided to the center hole 32 of the block 31 so that the distal end of the flexible tube 2 projects below the block 31.
可撓性チューブ 2の先端には、 光ファイバ一 1の先端部を保護するとともに、 伝送されて来たレーザー光線を集束または拡散させるレンズを取り付けたり、 側 方に反射させるプリズムを取り付けたり、 または、 レンズ等何も取り付けないで 直接照射させる照射ノズル 11が結合されている。 The distal end of the flexible tube 2 protects the distal end of the optical fiber 11, attaches a lens that focuses or diffuses the transmitted laser beam, attaches a prism that reflects laterally, or An irradiation nozzle 11 for directly irradiating without attaching any lens or the like is connected.
浮遊式海上構造物 Aにおいて、 パイプ 3の上端は、 可撓性チューブ 2を揷通し たパルプ 36によって閉じられ、 パイプ 3内を上昇してきた浮上物をバルブ 21を 介して浮上物処理装置 A導くように結合きれている。 In the floating offshore structure A, the upper end of the pipe 3 is closed by the pulp 36 passing through the flexible tube 2, and the floating material rising in the pipe 3 is guided to the floating material processing device A via the valve 21. As if they were combined.
第 3図に示すように、 浮遊式海上構造物 Aにおいて、 予め光ファイバ一 1を挿 通した可撓性チューブ 2が、 見込まれる必要な長さだけリール 6に卷き取られて おり、 光フアイパー 1および可撓性チューブ 2を同軸状に結合するスィベル 61 およぴ光フアイパー用スィベルジョイン 62 を介して、 レーザー発振器 4およ ぴポンプ 5に結合されている。 As shown in FIG. 3, in the floating type offshore structure A, the flexible tube 2 into which the optical fiber 11 has been previously inserted is wound around the reel 6 by a necessary and expected length. The fiber 1 and the flexible tube 2 are connected to the laser oscillator 4 and the pump 5 via a swivel 61 for coaxially connecting the fiber 1 and a flexible fiber swivel joint 62.
そして、 光ファイバ一 1は、 レーザー発振器 4から出力されるレーザー光線を 伝送させ、可撓性チューブ 2は、光ファイバ一 1との隙間を利用して、流体(水、 海水、 気体) を送り込んで可撓性チューブ 2の先端の照射ノズル 11 より噴出さ せるように構成されている。 The optical fiber 11 transmits the laser beam output from the laser oscillator 4, and the flexible tube 2 sends a fluid (water, seawater, gas) using the gap with the optical fiber 11. The flexible tube 2 is configured to be ejected from the irradiation nozzle 11 at the tip.
レーザー発振器 4として、 石英ファイバーの伝送損失が少ない波長域 (1 . 0 〜 1 . 3 m) のレーザー光線を化学的に発生する沃素レーザー装置 (Chemically Pumped Oxygene Iodine Laser: C O I Lと略称されてレ、る)、 またはレーザー光線 を電気エネルギーにより発生する Y A Gレーザー装置が適している。 すなわち、 石英ファイバーの伝送損失の分光特性を す第 4図の特性曲線より明らかなよう に、 沃素レーザー装置から出力される波長 (1 . 3 m) のレーザー光線、 Y A Gレーザー装置から出力される波長 (ΐ '· 0 6 μ πι) のレーザー光線を、 少ない
損失で長距離を伝送することができる。 As the laser oscillator 4, a chemically pumped Oxygene Iodine Laser (COIL), which chemically generates a laser beam in a wavelength range (1.0 to 1.3 m) where the transmission loss of quartz fiber is small, is referred to as COIL. ) Or a YAG laser device that generates a laser beam by electric energy is suitable. In other words, as is clear from the characteristic curve in FIG. 4 showing the spectral characteristics of the transmission loss of the quartz fiber, the laser beam of the wavelength (1.3 m) output from the iodine laser device and the wavelength (1.3 m) output from the YAG laser device ΐ '· 0 6 μ πι) Long distance transmission with loss.
直径 0 . 6 mmの石英フアイパーを使用すると、 4 k W以上のレーザー光線 (ェ ネルギー) を伝送できることが実験的に立証されており、 直径 l mmの石英ファ ィバーを使用すると、 1 0 k W以上のレーザー光線の伝送が十分可能であり、 数 本の石英ファイバーを束ねると、 1 0 0 0 m以上離れたメタンハイドレートを賦 存する地層まで数 1 0 k W以上のレーザー光線を伝送することも可能である。 光フアイパー 1として、 伝送帯域が広い中空ファイバーを使用することができ る。 中空ファイバ一は、 内壁に、 アルミ-ゥム、 銀または銅をコートして反射膜 を形成したものである。 このような伝送帯域が広い光ファイバ一を使用すると、 送り込んだ各種の流体や、 メタンハイドレートを賦存する地層で発生した流体で 吸収される最適な波長のレーザー光線を伝送することができる。 It has been experimentally proved that a quartz fiber with a diameter of 0.6 mm can transmit a laser beam (energy) of 4 kW or more, and a quartz fiber with a diameter of l mm can be used to transmit more than 10 kW. It is possible to transmit a laser beam of several tens of kilowatts or more to a geological layer containing methane hydrate at a distance of more than 100 m if several quartz fibers are bundled. is there. As the optical fiber 1, a hollow fiber having a wide transmission band can be used. The hollow fiber has an inner wall coated with aluminum, silver or copper to form a reflective film. The use of an optical fiber with such a wide transmission band enables the transmission of a laser beam with an optimum wavelength that can be absorbed by various fluids fed in or a fluid generated in the stratum containing methane hydrate.
次に、 このように構成されたメタンガス資源収集装置を使用してメタンガスを 収集する工程を説明する。 Next, a process of collecting methane gas using the methane gas resource collection device configured as described above will be described.
メタンハイドレートが賦存する地層 Bまで掘削して形成された坑井 9に、 浮遊 式海上構造物 Aからパイプ 3を降下させる。 このパイプ 3の先端近傍には、 パイ プ .パッカー 35 が取り付けられているので、 遠隔操作によりパイプ'パッカー 35 を膨張させてパイプ 3と坑井 9との隙間を密封させる。 また、 パイプ ·パッ カー 35によりパイプ 3と地層との隙間を密封させることもできる。 Pipe 3 descends from floating offshore structure A into well 9 formed by excavation to formation B where methane hydrate is present. This near the tip of the pipe 3, since the pipes. Packer 35 is attached, by a pipe 'packer 35 is inflated by remote control to seal the gap between pipe 3 and the well 9. Further, the gap between the pipe 3 and the stratum can be sealed by the pipe / packer 35.
このパイプ 3の先端には、 パイプ 3とほぼ同じ外径を有するプロック 31 が取 り付けられており、 このプロック 31 の,心に可撓性チューブ 2を揷通する孔 32 および円形に配列された液体またはガス通路となる複数の孔 33 が穿孔されてい る。 ; At the tip of the pipe 3, a block 31 having substantially the same outer diameter as that of the pipe 3 is attached. The block 31 has a hole 32 through which the flexible tube 2 passes through the core and a circular arrangement. A plurality of holes 33 serving as liquid or gas passages are drilled. ;
リール 6に卷かれている光ファイバ一 1を揷通した可撓性チューブ 2を引き出 しながら、 パイプ 3の中を降下させる。 そして、 可撓性チューブ 2の先端部の外 周には、 円弧状に曲げた複数の芯出し用スプリング 43 が取り付けられているの で、 可撓性チューブ 2の先端をプロック 31の中心孔 32に案内して、 可撓性チュ ープ 2の先端をプロック 31の下に突出させることができる。 The flexible tube 2 passing through the optical fiber 11 wound on the reel 6 is pulled out and lowered in the pipe 3. Since a plurality of centering springs 43 bent in an arc shape are attached to the outer periphery of the distal end of the flexible tube 2, the distal end of the flexible tube 2 is connected to the center hole 32 of the block 31. The tip of the flexible tube 2 can be projected below the block 31.
レーザー発振器 4を動作させて、 レーザー発振器 4から出力される大工ネルギ 一のレーザー光線を光ファイバ一 1の先端よりメタンハイドレートが賦存する地
層: Bを照射させて、 岩石やメタンハイドレートを加熱すると、 メタンハイドレー トは分解されて、 水とメタンガスに分離される。 By operating the laser oscillator 4, the laser beam of carpentry energy output from the laser oscillator 4 is transferred from the tip of the optical fiber 11 to a place where methane hydrate is present. Layer: When irradiating B and heating rock and methane hydrate, methane hydrate is decomposed and separated into water and methane gas.
メタンハイドレートと共存する岩石の種類は、 砂岩、 石灰岩、 頁岩などである が、 照射されたレーザー光線のエネルギ によって細かく破砕されて粉状になる 力、大きく割れるか、溶融するか、蒸発するかのいずれかの物理的現象を生じる。 ポンプ 5を動作させて、 流体 (水、 海永、 気体) を可撓性チューブ 2の先端よ り噴出させると、粉砕された岩石は、プロック 31の円形に配列された複数の孔 33 およびパイプ 3と可撓性チューブ 2との間隙の流路を経て、 分離されたメタンガ スとともに上昇し、 岩石を容易に除去することができる。 The types of rocks that coexist with methane hydrate are sandstone, limestone, and shale.However, the energy of the irradiated laser beam causes it to be finely crushed and turned into powder. Produces any physical phenomenon. When the pump (5) is operated to eject a fluid (water, Kaiei, gas) from the tip of the flexible tube (2), the crushed rock is divided into a plurality of holes (33) arranged in a circle of a block (31) and a pipe. It rises with the separated methane gas through the flow passage in the gap between 3 and the flexible tube 2, and the rock can be easily removed.
パイプ 3内を上昇したメタンガスおよぴ粉碎された岩石は、 流体 (水、 海水、 気体) とともに浮遊式海洋構造物 Aに設置された浮上物処理装置 7に導かれて、 メタンガスを分離して収集される。 The methane gas rising in the pipe 3 and the crushed rock are guided together with the fluid (water, seawater, and gas) to the floating material treatment device 7 installed in the floating marine structure A, where the methane gas is separated. Collected.
光ファイバ一 1内を多重反射しながら通過したのち、 光ファイバ一 1の先端か ら放射されるレーザー光線のビームは拡がる傾向を有しているが、 光ファイバ一 1の先端付近をより広く照射したい場合には、 光フアイバーの先端の照射ノズル 11に凹レンズを取り付ければよいのである。 . After passing through the optical fiber 11 with multiple reflections, the laser beam emitted from the tip of the optical fiber 11 tends to spread, but we want to irradiate the area near the tip of the optical fiber 11 more widely. In that case, a concave lens may be attached to the irradiation nozzle 11 at the tip of the optical fiber. .
また、 光ファイバ一 1の先端から放射されるレーザー光線を拡散させることな く集束させたい場合には、 光ファイバ一の先端の照射ノズル 11 に凸レンズを取 り付ければよいのである。 Further, when it is desired to focus the laser beam emitted from the tip of the optical fiber 11 without diffusing, a convex lens may be attached to the irradiation nozzle 11 at the tip of the optical fiber.
光ファイバ一 1の先端部には、 可撓性チューブ 2を経て供給された流体 (水、 海水、 気体) が噴射しているので、 光ファイバ一の先端部 (レンズを含む) が洗 浄され、 かつ、 レーザー光線のビームの視野を確保することができる。 The fluid (water, seawater, gas) supplied through the flexible tube 2 is jetted to the tip of the optical fiber 1, so that the tip (including the lens) of the optical fiber 1 is cleaned. In addition, the field of view of the laser beam can be secured.
水は、 第 4図の特性曲線図に示すように、 沃素レーザー装置から出力される波 長 (1 . 3 m)、 Y A Gレーザー装置から出力される波長 (1 . 0 6 μ πι) にお ける吸収が比較的少なく、 数 m以内であれば水を介して岩石を有効に照射するこ とができる。 また、 メタンハイドレートから分解した汚濁水をレーザー光線によ つて加熱し、 この加熱された水 (湯) によりメタンハイドレートを間接的に加熱 することができる。
(第 2の実施形態) As shown in the characteristic curve diagram in Fig. 4, water is emitted at the wavelength (1.3 m) output from the iodine laser device and at the wavelength (1.06 μπι) output from the YAG laser device. If the absorption is relatively low and within a few meters, the rock can be effectively irradiated through water. In addition, the contaminated water decomposed from methane hydrate is heated by a laser beam, and methane hydrate can be indirectly heated by the heated water (hot water). (Second embodiment)
以上で説明した第 1の実施形態においては、 坑井 9に降下させたパイプ 3と同 じ方向 (垂直下方) にレーザー光線のビームを照射させているが、 第 5図に示す ように、 パイプ 3の先端に取り付けるブロック 31として、 中心孔 32を斜め下方 に曲げたブロック 31 aを使用して、 可撓性チューブ 2を斜め下方に突出させる と、 レーザー光線のエネルギーで地中の岩石を斜め下方に掘削することが可能で ある。 In the first embodiment described above, the laser beam is irradiated in the same direction (vertically downward) as the pipe 3 descended into the well 9, but as shown in FIG. When the flexible tube 2 is projected obliquely downward using a block 31a in which the center hole 32 is bent obliquely downward as the block 31 to be attached to the tip of the underground, the rocks underground are inclined obliquely downward by the energy of the laser beam. It is possible to excavate.
(第 3の実施形態) (Third embodiment)
第 6図に示すように、 可撓性チューブ 2の先端に、 レーザー光線のビームを横 方向へ反射させるプリズム 37を設けた照射ノズル 11 aを取り付ける。 そして、 可撓性チューブ 2を経て供給する流体 (水、 海水、 気体) によって回転するター " ビンを設けて、 照射ノズル 11 aを回転させると、 全周にわたってレーザ一光線 のビームを横方向へ照射することができる。 As shown in FIG. 6, an irradiation nozzle 11a provided with a prism 37 for reflecting a laser beam in the lateral direction is attached to the tip of the flexible tube 2. Then, a turbine that is rotated by a fluid (water, seawater, gas) supplied through the flexible tube 2 is provided, and the irradiation nozzle 11a is rotated. Can be irradiated.
また、 照射ノズル 11 aに設けたプリズム 37を交換することにより、 第 7図に 示すように、 レーザー光線のビームを任意の角度に照射することができる。 Further, by exchanging the prism 37 provided in the irradiation nozzle 11a, it is possible to irradiate the laser beam at an arbitrary angle as shown in FIG.
さらに、 レーザー光線のビームを全周にわたって横方向へ照射しながら、 可撓 性チューブ 2を降下させると、 大きな容積の地層を掘削することも可能である。 以上で説明した実施の形態においては、 浮遊式海上構造物 Aを利用してメタン ハイドレートが賦存する地層 Bからメタンガスを収集する手法を説明したが、 地 上設備を利用しても同様にメタンガスを収集することができる。 また、 第 5図に 示す実施形態に、 第 6図または第 7図に示す照射ノズル 11 aを適用して横方向 または斜め方向に向かって大きな容積の地層を掘削することも可能である。 産業上の利用可能性 Furthermore, when the flexible tube 2 is lowered while irradiating the beam of the laser beam in the lateral direction over the entire circumference, it is possible to excavate a large volume stratum. In the embodiment described above, the method of collecting methane gas from the geological layer B where methane hydrate is present using the floating type offshore structure A has been described. Methane gas can be collected. In addition, it is also possible to apply the irradiation nozzle 11a shown in FIG. 6 or FIG. 7 to the embodiment shown in FIG. Industrial applicability
以上の実施の形態に基づく説明から明らかなように、 この楽明の地下賦存メタ ガス資源収集装置によると、 レーザー光線を光ファイバ一を利用してメタンハイ ドレートが賦存する深い地層まで少ない損失で伝送すること、 すなわち、 加熱の ためのエネルギーを高効率で伝送することができるので、 メタンハイドレート力、
らメタンガスを効率よく収集することができ、 経済的かつ実用上の効果は極めて 大きい。
As is clear from the description based on the above embodiment, according to the underground-recovered metagas resource collection device of this invention, the laser beam is applied to the deep stratum where methane hydrate is present with a small loss using an optical fiber. The transmission, that is, the energy for heating can be transmitted with high efficiency, so that the methane hydrate power, Methane gas can be collected efficiently, and the economic and practical effects are extremely large.
Claims
1 . 浮遊式海洋構造物または地上に設置されたレーザー発振器と、 該レーザー発 振器から出力されるレーザー光線を、 メタンハイドレートを賦存する地層へ導く 光ファイバ一とを具備し、 上記レーザー光線によりメタンハイドレートを賦存す る地層を加熱し、 メタンハイドレートを分解してメタンガスを分離し、 浮上する メタンガスを収集することを特徵とする地下賦存ガス資源収集装置。 1. A floating marine structure or a laser oscillator installed on the ground, and an optical fiber that guides a laser beam output from the laser oscillator to a stratum containing methane hydrate. An underground gas resource collection system that heats a stratum containing methane hydrate, decomposes methane hydrate, separates methane gas, and collects floating methane gas.
2 . 浮遊式海洋構造物または地上に設置されたレーザー発振器と、 該レーザー発 振器から出力されるレーザー光線を、 メタンハイドレートを賦存する地層へ導く チューブに揷通された光ファイバ一と、 上記チューブと光ファイバ一との間隙を 経て上記地層へ流体を供給する手段とを具備し、 上記レーザー光線によりメタン ハイドレートを賦存する地層を加熱して岩石を粉砕するとともにメタンハイドレ ートを分解してメタンガスを分離し、 メタンガスおよび粉砕した岩石を流体とと もに収集することを特徴とする地下賦存ガス資源収集装置。 2. A laser oscillator installed on a floating offshore structure or on the ground, and an optical fiber passed through a tube that guides the laser beam output from the laser oscillator to a stratum containing methane hydrate. Means for supplying a fluid to the formation through the gap between the tube and the optical fiber; heating the formation containing methane hydrate by the laser beam to pulverize rocks and decompose methane hydrate A methane gas separation device for collecting methane gas and crushed rock together with a fluid.
3 . レーザー発振器は、 化学的にレーザ 光線を発生する C O I Lレーザー装置 であることを特徴とする請求の範囲 1または請求の範囲 2に記載の地下賦存ガス 3. The underground gas as claimed in claim 1 or claim 2, wherein the laser oscillator is a COIL laser device that chemically generates a laser beam.
4 . 光ファイバ一は、 石英ファイバーであることを特徴とする請求の範囲 1また は請求の範囲 2に記載の地下賦存ガス資源収集装置。 4. The underground gas resource collection device according to claim 1 or claim 2, wherein the optical fiber is a quartz fiber.
5 . 光ファイバ一は、 中空ファイ^ーであることを特徴とする請求の範囲 1また は請求の範囲 2に記載の地下賦存ガス資源収集装置。 5. The underground renewable gas resource collection device according to claim 1 or 2, wherein the optical fiber is a hollow fiber.
6 . 浮遊式海洋構造物または地上に設置されたレーザー発振器から出力されるレ 一ザ一光線を、光ファイバ一によりメタンハイドレートを賦存する地層へ導いて、 上記レーザー光線によりメタンハイドレートを賦存する地層を加熱し、 メタンハ ィドレートを分解してメタンガスを分離し、 浮上するメタンガスを収集すること を特徴とする地下賦存ガス資源収集方法。 6. A laser beam emitted from a floating marine structure or a laser oscillator installed on the ground is guided by an optical fiber to a stratum containing methane hydrate, and methane hydrate is applied by the laser beam. A method for collecting resources from underground resources, comprising heating existing strata, decomposing methane hydrate, separating methane gas, and collecting floating methane gas.
7 . 浮遊式海洋構造物または地上に設置されたレーザー発振器から出力されるレ 一ザ一光線を、 チューブに揷通された光ファイバ一によりメタンハイドレートを 賦存する地層へ導くとともに、 上記チューブと光ファイバ一との間隙を経て上記
、流体を供給し、 上記レーザー光線によりメタンハイドレートを賦存する地 層を加熱して岩石を粉碎するとともにメタンハイドレートを分解してメタンガス を分離し、 メタンガスおよび粉砕した岩石を流体とともに収集することを特徴と する地下賦存ガス資源収集方法。
7. The laser beam emitted from the floating marine structure or the laser oscillator installed on the ground is guided to the methane hydrate-bearing stratum by the optical fiber passed through the tube, and Through the gap between Supplying the fluid, heating the stratum containing methane hydrate by the above laser beam to shatter the rock and decompose methane hydrate to separate methane gas, and collect methane gas and crushed rock together with the fluid. Underground gas resources collection method characterized by:
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002-211917 | 2002-07-22 | ||
JP2002211917 | 2002-07-22 | ||
JP2002-341841 | 2002-11-26 | ||
JP2002341841A JP3506696B1 (en) | 2002-07-22 | 2002-11-26 | Underground renewable hydrocarbon gas resource collection device and collection method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2004009958A1 true WO2004009958A1 (en) | 2004-01-29 |
Family
ID=30772224
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2003/009092 WO2004009958A1 (en) | 2002-07-22 | 2003-07-17 | Apparatus and method for collecting underground hydrocarbon gas resources |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP3506696B1 (en) |
WO (1) | WO2004009958A1 (en) |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7490664B2 (en) | 2004-11-12 | 2009-02-17 | Halliburton Energy Services, Inc. | Drilling, perforating and formation analysis |
US8424617B2 (en) | 2008-08-20 | 2013-04-23 | Foro Energy Inc. | Methods and apparatus for delivering high power laser energy to a surface |
US8464794B2 (en) | 2009-06-29 | 2013-06-18 | Halliburton Energy Services, Inc. | Wellbore laser operations |
US8571368B2 (en) | 2010-07-21 | 2013-10-29 | Foro Energy, Inc. | Optical fiber configurations for transmission of laser energy over great distances |
US8627901B1 (en) | 2009-10-01 | 2014-01-14 | Foro Energy, Inc. | Laser bottom hole assembly |
US8662160B2 (en) | 2008-08-20 | 2014-03-04 | Foro Energy Inc. | Systems and conveyance structures for high power long distance laser transmission |
US8684088B2 (en) | 2011-02-24 | 2014-04-01 | Foro Energy, Inc. | Shear laser module and method of retrofitting and use |
US8720584B2 (en) | 2011-02-24 | 2014-05-13 | Foro Energy, Inc. | Laser assisted system for controlling deep water drilling emergency situations |
US8783360B2 (en) | 2011-02-24 | 2014-07-22 | Foro Energy, Inc. | Laser assisted riser disconnect and method of use |
US8783361B2 (en) | 2011-02-24 | 2014-07-22 | Foro Energy, Inc. | Laser assisted blowout preventer and methods of use |
WO2014200630A3 (en) * | 2013-06-10 | 2015-04-23 | Saudi Arabian Oil Company | Downhole deep tunneling tool and method using high power laser beam |
US9027668B2 (en) | 2008-08-20 | 2015-05-12 | Foro Energy, Inc. | Control system for high power laser drilling workover and completion unit |
US9074422B2 (en) | 2011-02-24 | 2015-07-07 | Foro Energy, Inc. | Electric motor for laser-mechanical drilling |
US9080425B2 (en) | 2008-10-17 | 2015-07-14 | Foro Energy, Inc. | High power laser photo-conversion assemblies, apparatuses and methods of use |
US9089928B2 (en) | 2008-08-20 | 2015-07-28 | Foro Energy, Inc. | Laser systems and methods for the removal of structures |
US9138786B2 (en) | 2008-10-17 | 2015-09-22 | Foro Energy, Inc. | High power laser pipeline tool and methods of use |
US9242309B2 (en) | 2012-03-01 | 2016-01-26 | Foro Energy Inc. | Total internal reflection laser tools and methods |
US9244235B2 (en) | 2008-10-17 | 2016-01-26 | Foro Energy, Inc. | Systems and assemblies for transferring high power laser energy through a rotating junction |
US9267330B2 (en) | 2008-08-20 | 2016-02-23 | Foro Energy, Inc. | Long distance high power optical laser fiber break detection and continuity monitoring systems and methods |
US9347271B2 (en) | 2008-10-17 | 2016-05-24 | Foro Energy, Inc. | Optical fiber cable for transmission of high power laser energy over great distances |
US9360643B2 (en) | 2011-06-03 | 2016-06-07 | Foro Energy, Inc. | Rugged passively cooled high power laser fiber optic connectors and methods of use |
US9360631B2 (en) | 2008-08-20 | 2016-06-07 | Foro Energy, Inc. | Optics assembly for high power laser tools |
WO2016133480A1 (en) * | 2015-02-16 | 2016-08-25 | Göksel Osman Zühtü | A system and a method for exploitation of gas from gas hydrate formations |
US9562395B2 (en) | 2008-08-20 | 2017-02-07 | Foro Energy, Inc. | High power laser-mechanical drilling bit and methods of use |
US9664012B2 (en) | 2008-08-20 | 2017-05-30 | Foro Energy, Inc. | High power laser decomissioning of multistring and damaged wells |
US9669492B2 (en) | 2008-08-20 | 2017-06-06 | Foro Energy, Inc. | High power laser offshore decommissioning tool, system and methods of use |
US9719302B2 (en) | 2008-08-20 | 2017-08-01 | Foro Energy, Inc. | High power laser perforating and laser fracturing tools and methods of use |
US9845652B2 (en) | 2011-02-24 | 2017-12-19 | Foro Energy, Inc. | Reduced mechanical energy well control systems and methods of use |
CN109236179A (en) * | 2018-11-26 | 2019-01-18 | 中国工程物理研究院激光聚变研究中心 | A kind of laser assisted drilling test unit and its application method |
US10385668B2 (en) | 2016-12-08 | 2019-08-20 | Saudi Arabian Oil Company | Downhole wellbore high power laser heating and fracturing stimulation and methods |
US10415338B2 (en) | 2017-07-27 | 2019-09-17 | Saudi Arabian Oil Company | Downhole high power laser scanner tool and methods |
CN111058763A (en) * | 2020-01-06 | 2020-04-24 | 中国矿业大学(北京) | Laser drilling rock breaking device and method |
CN112368461A (en) * | 2018-06-13 | 2021-02-12 | 杉本昭寿 | Resource collection system |
US10941618B2 (en) | 2018-10-10 | 2021-03-09 | Saudi Arabian Oil Company | High power laser completion drilling tool and methods for upstream subsurface applications |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4662232B2 (en) * | 2003-11-10 | 2011-03-30 | 鹿島建設株式会社 | Gas hydrate production method and system |
JP4887012B2 (en) * | 2004-07-16 | 2012-02-29 | 昭壽 杉本 | Method and apparatus for gas recovery from gas hydrate and method for regasification of gas hydrate |
US20070267220A1 (en) * | 2006-05-16 | 2007-11-22 | Northrop Grumman Corporation | Methane extraction method and apparatus using high-energy diode lasers or diode-pumped solid state lasers |
JP4950805B2 (en) * | 2007-08-20 | 2012-06-13 | 浜松ホトニクス株式会社 | Methane hydrate mining method and methane hydrate mining apparatus |
JP2010017864A (en) * | 2008-07-08 | 2010-01-28 | Japan Drilling Co Ltd | Rock processing method using laser beam and its apparatus |
KR101506469B1 (en) | 2013-09-09 | 2015-03-27 | 한국지질자원연구원 | Apparatus for solution mining by cycling process |
KR101510826B1 (en) | 2013-11-19 | 2015-04-10 | 한국지질자원연구원 | Apparatus and Method for solution mining by cycling process having improved blades |
JP2015141090A (en) * | 2014-01-28 | 2015-08-03 | 日本海洋掘削株式会社 | Processing apparatus installation method and removal target removal method |
NO340973B1 (en) * | 2015-12-22 | 2017-07-31 | Aker Solutions As | Subsea methane hydrate production |
CN107420074A (en) * | 2017-09-06 | 2017-12-01 | 中国矿业大学(北京) | A kind of lower combustible ice reservoir recovery method in sea and device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10317869A (en) * | 1997-05-21 | 1998-12-02 | Sanwa Kaihatsu Kogyo Kk | Development drilling method for methane hydrate present in sea bottom stratum |
JP2000282775A (en) * | 1999-03-29 | 2000-10-10 | Taiyo Kogyo Corp | Method and device for collecting methane hydrate gas |
JP2001280055A (en) * | 2000-03-31 | 2001-10-10 | Minoru Kamiya | Methane hydrate collecting device |
-
2002
- 2002-11-26 JP JP2002341841A patent/JP3506696B1/en not_active Expired - Fee Related
-
2003
- 2003-07-17 WO PCT/JP2003/009092 patent/WO2004009958A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10317869A (en) * | 1997-05-21 | 1998-12-02 | Sanwa Kaihatsu Kogyo Kk | Development drilling method for methane hydrate present in sea bottom stratum |
JP2000282775A (en) * | 1999-03-29 | 2000-10-10 | Taiyo Kogyo Corp | Method and device for collecting methane hydrate gas |
JP2001280055A (en) * | 2000-03-31 | 2001-10-10 | Minoru Kamiya | Methane hydrate collecting device |
Cited By (63)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7490664B2 (en) | 2004-11-12 | 2009-02-17 | Halliburton Energy Services, Inc. | Drilling, perforating and formation analysis |
US7938175B2 (en) | 2004-11-12 | 2011-05-10 | Halliburton Energy Services Inc. | Drilling, perforating and formation analysis |
US9664012B2 (en) | 2008-08-20 | 2017-05-30 | Foro Energy, Inc. | High power laser decomissioning of multistring and damaged wells |
US8820434B2 (en) | 2008-08-20 | 2014-09-02 | Foro Energy, Inc. | Apparatus for advancing a wellbore using high power laser energy |
US8511401B2 (en) | 2008-08-20 | 2013-08-20 | Foro Energy, Inc. | Method and apparatus for delivering high power laser energy over long distances |
US9267330B2 (en) | 2008-08-20 | 2016-02-23 | Foro Energy, Inc. | Long distance high power optical laser fiber break detection and continuity monitoring systems and methods |
US9360631B2 (en) | 2008-08-20 | 2016-06-07 | Foro Energy, Inc. | Optics assembly for high power laser tools |
US9089928B2 (en) | 2008-08-20 | 2015-07-28 | Foro Energy, Inc. | Laser systems and methods for the removal of structures |
US9562395B2 (en) | 2008-08-20 | 2017-02-07 | Foro Energy, Inc. | High power laser-mechanical drilling bit and methods of use |
US9027668B2 (en) | 2008-08-20 | 2015-05-12 | Foro Energy, Inc. | Control system for high power laser drilling workover and completion unit |
US8636085B2 (en) | 2008-08-20 | 2014-01-28 | Foro Energy, Inc. | Methods and apparatus for removal and control of material in laser drilling of a borehole |
US8662160B2 (en) | 2008-08-20 | 2014-03-04 | Foro Energy Inc. | Systems and conveyance structures for high power long distance laser transmission |
US8424617B2 (en) | 2008-08-20 | 2013-04-23 | Foro Energy Inc. | Methods and apparatus for delivering high power laser energy to a surface |
US10036232B2 (en) | 2008-08-20 | 2018-07-31 | Foro Energy | Systems and conveyance structures for high power long distance laser transmission |
US8701794B2 (en) | 2008-08-20 | 2014-04-22 | Foro Energy, Inc. | High power laser perforating tools and systems |
US9719302B2 (en) | 2008-08-20 | 2017-08-01 | Foro Energy, Inc. | High power laser perforating and laser fracturing tools and methods of use |
US8757292B2 (en) | 2008-08-20 | 2014-06-24 | Foro Energy, Inc. | Methods for enhancing the efficiency of creating a borehole using high power laser systems |
US8997894B2 (en) | 2008-08-20 | 2015-04-07 | Foro Energy, Inc. | Method and apparatus for delivering high power laser energy over long distances |
US9669492B2 (en) | 2008-08-20 | 2017-06-06 | Foro Energy, Inc. | High power laser offshore decommissioning tool, system and methods of use |
US9284783B1 (en) | 2008-08-20 | 2016-03-15 | Foro Energy, Inc. | High power laser energy distribution patterns, apparatus and methods for creating wells |
US8826973B2 (en) | 2008-08-20 | 2014-09-09 | Foro Energy, Inc. | Method and system for advancement of a borehole using a high power laser |
US8869914B2 (en) | 2008-08-20 | 2014-10-28 | Foro Energy, Inc. | High power laser workover and completion tools and systems |
US8936108B2 (en) | 2008-08-20 | 2015-01-20 | Foro Energy, Inc. | High power laser downhole cutting tools and systems |
US9080425B2 (en) | 2008-10-17 | 2015-07-14 | Foro Energy, Inc. | High power laser photo-conversion assemblies, apparatuses and methods of use |
US9327810B2 (en) | 2008-10-17 | 2016-05-03 | Foro Energy, Inc. | High power laser ROV systems and methods for treating subsea structures |
US9347271B2 (en) | 2008-10-17 | 2016-05-24 | Foro Energy, Inc. | Optical fiber cable for transmission of high power laser energy over great distances |
US9244235B2 (en) | 2008-10-17 | 2016-01-26 | Foro Energy, Inc. | Systems and assemblies for transferring high power laser energy through a rotating junction |
US9138786B2 (en) | 2008-10-17 | 2015-09-22 | Foro Energy, Inc. | High power laser pipeline tool and methods of use |
US8540026B2 (en) | 2009-06-29 | 2013-09-24 | Halliburton Energy Services, Inc. | Wellbore laser operations |
US8534357B2 (en) | 2009-06-29 | 2013-09-17 | Halliburton Energy Services, Inc. | Wellbore laser operations |
US8528643B2 (en) | 2009-06-29 | 2013-09-10 | Halliburton Energy Services, Inc. | Wellbore laser operations |
US8678087B2 (en) | 2009-06-29 | 2014-03-25 | Halliburton Energy Services, Inc. | Wellbore laser operations |
US8464794B2 (en) | 2009-06-29 | 2013-06-18 | Halliburton Energy Services, Inc. | Wellbore laser operations |
US8627901B1 (en) | 2009-10-01 | 2014-01-14 | Foro Energy, Inc. | Laser bottom hole assembly |
US8879876B2 (en) | 2010-07-21 | 2014-11-04 | Foro Energy, Inc. | Optical fiber configurations for transmission of laser energy over great distances |
US8571368B2 (en) | 2010-07-21 | 2013-10-29 | Foro Energy, Inc. | Optical fiber configurations for transmission of laser energy over great distances |
US8783360B2 (en) | 2011-02-24 | 2014-07-22 | Foro Energy, Inc. | Laser assisted riser disconnect and method of use |
US9845652B2 (en) | 2011-02-24 | 2017-12-19 | Foro Energy, Inc. | Reduced mechanical energy well control systems and methods of use |
US8684088B2 (en) | 2011-02-24 | 2014-04-01 | Foro Energy, Inc. | Shear laser module and method of retrofitting and use |
US9291017B2 (en) | 2011-02-24 | 2016-03-22 | Foro Energy, Inc. | Laser assisted system for controlling deep water drilling emergency situations |
US9074422B2 (en) | 2011-02-24 | 2015-07-07 | Foro Energy, Inc. | Electric motor for laser-mechanical drilling |
US8783361B2 (en) | 2011-02-24 | 2014-07-22 | Foro Energy, Inc. | Laser assisted blowout preventer and methods of use |
US8720584B2 (en) | 2011-02-24 | 2014-05-13 | Foro Energy, Inc. | Laser assisted system for controlling deep water drilling emergency situations |
US9784037B2 (en) | 2011-02-24 | 2017-10-10 | Daryl L. Grubb | Electric motor for laser-mechanical drilling |
US9360643B2 (en) | 2011-06-03 | 2016-06-07 | Foro Energy, Inc. | Rugged passively cooled high power laser fiber optic connectors and methods of use |
US9242309B2 (en) | 2012-03-01 | 2016-01-26 | Foro Energy Inc. | Total internal reflection laser tools and methods |
CN105392954A (en) * | 2013-06-10 | 2016-03-09 | 沙特阿拉伯石油公司 | Downhole deep tunneling tool and method using high power laser beam |
US9217291B2 (en) | 2013-06-10 | 2015-12-22 | Saudi Arabian Oil Company | Downhole deep tunneling tool and method using high power laser beam |
WO2014200630A3 (en) * | 2013-06-10 | 2015-04-23 | Saudi Arabian Oil Company | Downhole deep tunneling tool and method using high power laser beam |
WO2016133470A1 (en) * | 2015-02-16 | 2016-08-25 | Göksel Osman Zühtü | A system and a method for exploitation of gas from gas-hydrate formations |
WO2016133480A1 (en) * | 2015-02-16 | 2016-08-25 | Göksel Osman Zühtü | A system and a method for exploitation of gas from gas hydrate formations |
US10927656B2 (en) | 2015-02-16 | 2021-02-23 | Osman Zuhtu Goksel | System and a method for exploitation of gas from gas hydrate formations |
US10385668B2 (en) | 2016-12-08 | 2019-08-20 | Saudi Arabian Oil Company | Downhole wellbore high power laser heating and fracturing stimulation and methods |
US10415338B2 (en) | 2017-07-27 | 2019-09-17 | Saudi Arabian Oil Company | Downhole high power laser scanner tool and methods |
KR20210019010A (en) * | 2018-06-13 | 2021-02-19 | 아키토시 스기모토 | Resource collection system |
CN112368461A (en) * | 2018-06-13 | 2021-02-12 | 杉本昭寿 | Resource collection system |
EP3808933A4 (en) * | 2018-06-13 | 2022-04-27 | Sugimoto, Atsushi | Resource collection system |
KR102676429B1 (en) | 2018-06-13 | 2024-06-20 | 스기모토 아쯔시 | resource collection system |
US10941618B2 (en) | 2018-10-10 | 2021-03-09 | Saudi Arabian Oil Company | High power laser completion drilling tool and methods for upstream subsurface applications |
US11359438B2 (en) | 2018-10-10 | 2022-06-14 | Saudi Arabian Oil Company | High power laser completion drilling tool and methods for upstream subsurface applications |
CN109236179A (en) * | 2018-11-26 | 2019-01-18 | 中国工程物理研究院激光聚变研究中心 | A kind of laser assisted drilling test unit and its application method |
CN109236179B (en) * | 2018-11-26 | 2024-05-03 | 中国工程物理研究院激光聚变研究中心 | Laser-assisted drilling test device and application method thereof |
CN111058763A (en) * | 2020-01-06 | 2020-04-24 | 中国矿业大学(北京) | Laser drilling rock breaking device and method |
Also Published As
Publication number | Publication date |
---|---|
JP2004108132A (en) | 2004-04-08 |
JP3506696B1 (en) | 2004-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2004009958A1 (en) | Apparatus and method for collecting underground hydrocarbon gas resources | |
US11072997B2 (en) | Shock waves for oil separation | |
RU2522016C2 (en) | Hole-making method and system using high-power laser | |
US7802384B2 (en) | Method and device for excavating submerged stratum | |
US8967298B2 (en) | Transmission of light through light absorbing medium | |
US10774621B2 (en) | Device and method for perforation of a downhole formation using acoustic shock waves | |
US20160153240A1 (en) | Device for laser drilling | |
JP6605210B2 (en) | Undersea hot water well drilling equipment | |
US9796047B2 (en) | Remote laser heating systems and methods | |
US20020169345A1 (en) | Methods and systems for extracting gases | |
JP4364748B2 (en) | Underground hydrocarbon gas resource collection device and collection method | |
US20210162545A1 (en) | Laser jets and nozzles, and operations and systems, for decommissioning | |
WO2023250027A1 (en) | Wellbore drilling and completion systems using laser head | |
US11982156B2 (en) | Laser mandrel for removal of scale in production equipment | |
WO2023250009A1 (en) | Wellbore drilling and completion systems using laser head | |
WO2022150306A1 (en) | Downhole ceramic disk rupture by laser | |
CN117295872A (en) | High power laser in situ heating and steam generating tool and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CA US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |