WO2002099091A2 - Endo-beta-1,4-glucanase from bacillus - Google Patents
Endo-beta-1,4-glucanase from bacillus Download PDFInfo
- Publication number
- WO2002099091A2 WO2002099091A2 PCT/DK2002/000381 DK0200381W WO02099091A2 WO 2002099091 A2 WO2002099091 A2 WO 2002099091A2 DK 0200381 W DK0200381 W DK 0200381W WO 02099091 A2 WO02099091 A2 WO 02099091A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- endo
- glucanase
- beta
- enzyme
- polypeptide
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/24—Hydrolases (3) acting on glycosyl compounds (3.2)
- C12N9/2402—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
- C12N9/2405—Glucanases
- C12N9/2434—Glucanases acting on beta-1,4-glucosidic bonds
- C12N9/2437—Cellulases (3.2.1.4; 3.2.1.74; 3.2.1.91; 3.2.1.150)
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/38—Products with no well-defined composition, e.g. natural products
- C11D3/386—Preparations containing enzymes, e.g. protease or amylase
- C11D3/38645—Preparations containing enzymes, e.g. protease or amylase containing cellulase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y302/00—Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
- C12Y302/01—Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
- C12Y302/01004—Cellulase (3.2.1.4), i.e. endo-1,4-beta-glucanase
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/582—Recycling of unreacted starting or intermediate materials
Definitions
- the present invention relates to an enzyme exhibiting endo-beta-1 ,4-glucanase activity which enzyme is endogenous to the strain Bacillus sp., DSM 12648, to an isolated polynucleotide molecule encoding such an endo-beta-1 , 4-glucanase, and use of the enzyme in the detergent, paper and pulp, oil drilling, oil extraction, wine and juice, food ingredients, animal feed or textile industries.
- Cellulose is a polymer of glucose linked by beta-1 ,4-glucosidic bonds. Cellulose chains form numerous intra- and intermolecular hydrogen bonds, which result in the formation of insoluble cellulose micro-fibrils. Microbial hydrolysis of cellulose to glucose involves the following three major classes of cellulases: (i) endo-glucanases (EC 3.2.1.4) which cleave beta-1 ,4-glucosidic links randomly throughout cellulose molecules, also called endo-beta-1 , 4- glucanases; (ii) cellobiohydrolases (EC 3.2.1.91 ) which digest cellulose from the non-reducing end, releasing cellobiose; and (iii) beta-glucosidases (EC 3.2.1.21 ) which hydrolyse cellobiose and low molecular-weight cellodextrins to release glucose.
- endo-glucanases EC 3.2.1.4
- cellobiohydrolases EC 3.
- Beta-1 ,4-glucosidic bonds are also present in other naturally occurring polymers, e.g. in the beta-glucans from plants such as barley and oats.
- endo- glucanases also provide hydrolysis of such non-cellulose polymers.
- Cellulases are produced by many micro-organisms and are often present in multiple forms. Recognition of the economic significance of the enzymatic degradation of cellulose has promoted an extensive search for microbial cellulases, which can be used industrially. As a result, the enzymatic properties and the primary structures of a large number of cellulases have been investigated.
- cellulases consist of a cellulose-binding domain (CBD) and a catalytic domain (CAD) separated by a linker which may be rich in proline and hydroxy amino acid residues.
- CBDs cellulose-binding domain
- CAD catalytic domain
- Another classification of cellulases has been established on the basis of the similarity of their CBDs (Gilkes et al. (1991)) giving five families of glycosyl hydrolases (l-V).
- Cellulases are synthesized by a large number of microorganisms which include fungi, actinomycetes, myxobacteria and true bacteria but also by plants. Especially endo-beta-1 , 4- glucanases of a wide variety of specificities have been identified.
- cellulolytic enzymes An important industrial use of cellulolytic enzymes is for treatment of paper pulp, e.g. for improving the drainage or for de-inking of recycled paper.
- Another important industrial use of cellulolytic enzymes is for treatment of cellulosic textile or fabrics, e.g. as ingredients in detergent compositions or fabric softener compositions, for bio-polishing of new fabric (garment finishing), and for obtaining a "stone-washed" look of cellulose-containing fabric, especially denim, and several methods for such treatment have been suggested, e.g.
- JP patent application no. 13049/1999 discloses a heat resistant alkaline cellulase derived from Bacillus sp. KSM-S237 (deposited as FERM- P-16067) suitable for detergents.
- the object of the present invention is to provide novel enzymes and enzyme compositions having substantial beta-1 ,4-glucanase activity under slightly acid to alkaline conditions and improved performance in paper pulp processing, textile treatment, laundry pro- Dets, extraction processes or in animal feed; preferably such novel well-performing endo- glucanases are producible or produced by using recombinant techniques in high yields.
- the inventors have found a novel enzyme having substantial endo-beta-1 , 4- glucanase activity (classified according to the Enzyme Nomenclature as EC 3.2.1.4), which enzyme is endogenous to a strain of Bacillus sp. AA349 (DSM 12648), and the inventors have succeeded in cloning and expressing a DNA sequence encoding such an enzyme.
- the endo- beta-1 , 4-glucanase of the invention has stability and activity properties that make it exceptionally well-suited for use in applications involving aqueous alkaline solutions that contain surfactants and/or bleaches. Such application conditions are very commonly found, both within household and industrial detergents, textile finishing treatments and in the manufacture or recycling of cellulosic pulps.
- beta-1 , 4-glucanase of the invention maintains its activity to an exceptional extent under such relevant application conditions it is contemplated that it will be more useful than other known enzymes, e.g., when used in detergents, for paper/pulp processing or for textile treatments. Also it is noted that the beta-1 ,4-glucanase of the invention is not significantly inactivated by Fe(ll) ions. A sensitivity of the enzyme activity to the presence of ferrous ions could place restrictions on the applicability of the enzyme, such as in processes taking place in metal containers.
- the present invention relates to an enzyme exhibiting endo-beta-1 ,4-glucanase activity (EC 3.2.1.4) which is selected from one of (a) a polypeptide encoded by all or part of the DNA sequence of SEQ ID NO:1 ; (b) a polypeptide produced by culturing a cell comprising the sequence of SEQ ID NO:1 under conditions wherein the DNA sequence is expressed; (c) an endo-beta-1 ,4-glucanase enzyme having a sequence of at least 97%, preferably 98%, more preferred 98.5%, even more preferred 99% identity to (I) positions 1-773 of SEQ ID NO:2, or a fragment thereof that has endo-glucanase activity, (II) the amino acid sequence of positions 1 to about 340 of SEQ ID NO:2 and (III) the amino acid sequence of positions 1 to from between about 540 and 773 of SEQ ID NO:2, when identity is determined by GAP provided in the GCG program
- the invention relates to an isolated polynucleotide molecule, preferably a DNA molecule, encoding the catalytically active domain of an enzyme exhibiting endo-beta-1 ,4-glucanase activity which molecule is selected from the group consisting of (a) polynucleotide molecules comprising a nucleotide sequence as shown in SEQ ID NO:1 from nucleotide 1 to nucleotide 2322, (b) species homologs of (a); (c) polynucleotide molecules that encode a polypeptide that is at least 97%, preferably 98%, more preferred 98.5%, even more preferred 99% identical to the amino acid sequence of SEQ ID NO:2 from amino acid residue 1 to amino acid residue 773, and (c) degenerate nucleotide sequences of (a) or (b); preferably a polynucleotide molecule capable of hybridizing to a denatured double-stranded DNA probe under medium stringency conditions,
- the invention provides an expression vector comprising a DNA segment which is, e.g., a polynucleotide molecule of the invention; a cell comprising the DNA segment or the expression vector; and a method of producing an enzyme exhibiting endo-glucanase activity, which method comprises culturing the cell under conditions permitting the production of the enzyme, and recovering the enzyme from the culture.
- the invention provides an isolated enzyme exhibiting endo- beta-1 , 4-glucanase activity, characterized in (i) being free from homologous impurities and (ii) the enzyme is produced by the method described above.
- the endo-glucanase exhibits activity at a pH in the range of 5-11 , preferably with a pH optimum at 6-10.5, and at temperatures from 20 to 60°C.
- the endo-glucanase comprises a catalytically active domain belonging to family 5 of glycosyl hydrolases (this domain corresponds to about position 1 to about position 340 of
- SEQ ID NO: 2 are domains of unknown function.
- the endo-glucanase of the invention is advantageous in a number of industrial applications, especially in detergent compositions due to improved anti-redeposition and detergency effects, and in the treatment of textile.
- the strain Bacillus sp. AA349 which has been isolated from a soil sample originating in Greece, was deposited by the inventors according to the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure at the Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Mascheroder Weg 1b, D-38124 Braunschweig, Federal Republic of Germany, on 25 January 1999 under the deposition number DSM 12648.
- the term "functional enzymatic properties" as used herein is intended to mean physical and chemical properties of a polypeptide exhibiting one or more catalytic activities.
- Examples of functional enzymatic properties are enzymatic activity, specific enzymatic activity, relative enzymatic activity to the maximum activity (measured as a function of either pH or temperature), stability (degradation of enzymatic activity over time), DSC melting temperature, N- terminal amino acid sequence, molecular weight (usually measured in SDS-PAGE), isoelectric point (pi).
- expression vector denotes a DNA molecule, linear or circular, that comprises a segment encoding a polypeptide of interest operably linked to additional segments that provide for its transcription.
- additional segments may include promoter and terminator sequences, and may optionally include one or more origins of replication, one or more selectable markers, an enhancer, a polyadenylation signal, and the like.
- Expression vectors are generally derived from plasmid or viral DNA, or may contain elements of both.
- the expression vector of the invention may be any expression vector that is conveniently subjected to recombinant DNA procedures, and the choice of vector will often depend on the host cell into which the vector is to be introduced.
- the vector may be an autonomously replicating vector, i.e.
- the vector which exists as an extrachromosomal entity, the replication of which is independent of chromosomal replication, e.g. a plasmid.
- the vector may be one which, when introduced into a host cell, is integrated into the host cell genome and replicated together with the chromosome(s) into which it has been integrated.
- recombinant expressed or “recombinantly expressed” used herein in connection with expression of a polypeptide or protein is defined according to the standard definition in the art. Recombinant expression of a protein is generally performed by using an expression vector as described immediately above.
- isolated when applied to a polynucleotide molecule, denotes that the polynucleotide has been removed from its natural genetic milieu and is thus free of other extraneous or unwanted coding sequences, and is in a form suitable for use within genetically engineered protein production systems.
- isolated molecules are those that are separated from their natural environment and include cDNA and genomic clones.
- Isolated DNA molecules of the present invention are free of other genes with which they are ordinarily associated, but may include naturally occurring 5' and 3' untranslated regions such as promoters and terminators. The identification of associated regions will be evident to one of ordinary skill in the art (see for example, Dynan and Tijan, Nature 316:774-78, 1985).
- the term "an isolated polynucleotide” may alternatively be termed "a cloned polynucleotide”.
- the term "isolated” indicates that the protein is found in a condition other than its native environment.
- the isolated protein is substantially free of other proteins, particularly other homologous proteins (i.e. "ho- mologous impurities” (see below)). It is preferred to provide the protein in a greater than 40% pure form, more preferably greater than 60% pure form.
- the protein in a highly purified form, i.e., greater than 80% pure, more preferably greater than 95% pure, and even more preferably greater than 99% pure, as determined by SDS-PAGE.
- isolated protein/polypeptide may alternatively be termed "purified protein/polypeptide”.
- homologous impurities means any impurity (e.g. another polypeptide than the polypeptide of the invention), which originate from the homologous cell from which the polypeptide of the invention is originally obtained.
- obtained from means that the polynucleotide and/or polypeptide is produced by the specific source, or by a cell in which a gene from the source have been inserted.
- operably linked when referring to DNA segments, denotes that the segments are arranged so that they function in concert for their intended purposes, e.g. transcription initiates in the promoter and proceeds through the coding segment to the terminator
- polynucleotide denotes a single- or double-stranded polymer of deoxyribo- nucleotide or ribonucleotide bases read from the 5' to the 3' end.
- Polynucleotides include RNA and DNA, and may be isolated from natural sources, synthesized in vitro, or prepared from a combination of natural and synthetic molecules.
- complements of polynucleotide molecules denotes polynucleotide molecules having a complementary base sequence and reverse orientation as compared to a ref- erence sequence.
- sequence 5' ATGCACGGG 3' is complementary to 5' CCCGTGCAT 3'.
- degenerate nucleotide sequence denotes a sequence of nucleotides that includes one or more degenerate codons (as compared to a reference polynucleotide molecule that encodes a polypeptide).
- Degenerate codons contain different triplets of nucleotides, but encode the same amino acid residue (i.e., GAU and GAC triplets each encode Asp).
- promoter denotes a portion of a gene containing DNA sequences that provide for the binding of RNA polymerase and initiation of transcription. Promoter sequences are commonly, but not always, found in the 5' non-coding regions of genes.
- secretory signal sequence denotes a DNA sequence that encodes a poly- peptide (a "secretory peptide") that, as a component of a larger polypeptide, directs the larger polypeptide through a secretory pathway of a cell in which it is synthesized.
- secretory peptide a poly- peptide
- the larger peptide is commonly cleaved to remove the secretory peptide during transit through the secretory pathway.
- an isolated polynucleotide of the invention will hybridize to similar sized regions of SEQ ID NO:1 or a sequence complementary thereto, under at least medium stringency conditions.
- polynucleotides of the invention will hybridize to a denatured double- stranded DNA probe comprising either the full sequence encoding the catalytic domain of the enzyme which sequence is shown in positions 1-2322 of SEQ ID NO:1 or any probe comprising a subsequence of SEQ ID NO:1 having a length of at least about 100 base pairs under at least medium stringency conditions, but preferably at high stringency conditions as described in detail below.
- Suitable experimental conditions for determining hybridization at medium, or high stringency between a nucleotide probe and a homologous DNA or RNA sequence involves presoaking of the filter containing the DNA fragments or RNA to hybridize in 5 x SSC (Sodium chloride/Sodium citrate, Sambrook et al.
- Molecules to which the oligonucleotide probe hybridizes under these conditions are detected using an x-ray film.
- the isolated polynucleotides of the present invention include DNA and RNA.
- Methods for isolating DNA and RNA are well known in the art.
- DNA and RNA encoding genes of interest can be cloned in Gene Banks or DNA libraries by means of methods known in the art.
- Polynucleotides encoding polypeptides having endo-glucanase activity of the invention are then identified and isolated by, for example, hybridization or PCR.
- the present invention further provides counterpart polypeptides and polynucleotides from different bacterial strains (orthologs or paralogs).
- bacterial strains orthologs or paralogs.
- endo- glucanase polypeptides from gram-positive alkalophilic strains, including species of Bacillus.
- Species homologues of a polypeptide with endo-glucanase activity of the invention can be cloned using information and compositions provided by the present invention in combination with conventional cloning techniques.
- a DNA sequence of the present invention can be cloned using chromosomal DNA obtained from a cell type that expresses the protein. Suitable sources of DNA can be identified by probing Northern blots with probes designed from the sequences disclosed herein. A library is then prepared from chromosomal DNA of a positive cell line.
- a DNA sequence of the invention encoding an polypeptide having endo-glucanase activity can then be isolated by a variety of methods, such as by probing with probes designed from the sequences disclosed in the present specification and claims or with one or more sets of degenerate probes based on the disclosed sequences.
- a DNA sequence of the invention can also be cloned using the polymerase chain reaction, or PCR (Mullis, U.S. Patent 4,683,202), using primers designed from the sequences disclosed herein.
- the DNA library can be used to transform or transfect host cells, and expression of the DNA of interest can be detected with an antibody (monoclonal or polyclonal) raised against the endo-glucanase cloned from B. sp., DSM 12648, expressed and purified as described in Materials and Methods and Examples 1 and 2, or by an activity test relating to a polypeptide having endo-glucanase activity.
- the endo-glucanase encoding part of the DNA sequence shown in SEQ ID NO:1 and/or an analogue DNA sequence of the invention may be cloned from a strain of the bacterial species Bacillus sp., preferably the strain DSM12648, producing the enzyme with endo-glucanase activity, or another or related organism as described herein.
- the disclosed sequence information herein relating to a polynucleotide sequence encoding an endo-beta- 1 ,4-glucanase of the invention can be used as a tool to identify other homologous endo- glucanases.
- PCR polymerase chain reaction
- PCR can be used to amplify sequences encoding other homologous endo-glucanases from a variety of microbial sources, in particular of different Bacillus species.
- POLYPEPTIDES The sequence of amino acids in position 1 to position 773 of SEQ ID NO:2 is a mature endo-glucanase sequence with a calculated molecular weight of 86 kDa. It is believed that positions 1 to about 340 of SEQ ID NO:2 are the catalytically active domain of the of the present endo-glucanase enzyme. It is also believed that positions from about 340 to about 540 are the cellulose binding domain of the present endo-glucanase enzyme. The function of the remainder of the sequence, i.e., from about position 540 to position 773, is at present unknown.
- the present invention provides an endo-glucanase enzyme comprising (i) the amino acid sequence of position 1 to position 773 of SEQ ID NO:2, or a fragment thereof that has endo-glucanase activity.
- a fragment of position 1 to position 773 of SEQ ID NO:2 is a polypeptide, which have one or more amino acids deleted from the amino and/or carboxyl terminus of this amino acid sequence.
- the present invention provides an endo-glucanase enzyme comprising (ii) the amino acid sequence of positions 1 to about 340 of SEQ ID NO:2, since it is contemplated that such a mono-domain endo-glucanase is also useful in the industrial applications described herein.
- the present invention provides an endo- glucanase enzyme comprising (iii) the amino acid sequence of positions 1 to from between about 540 and 773 of SEQ ID NO:2, since it is contemplated that such an endo-glucanase comprising the catalytically active domain and the cellulose binding domain is also useful in the industrial applications described herein.
- such fragment is a polypeptide which consists of position 1 to position 663 ⁇ 50 amino acids, preferably 1 to 663 ⁇ 25 amino acids.
- the present invention also provides endo-glucanase polypeptides that are substantially homologous to the polypeptide of (i), (ii), or (iii) above and species homologs (paralogs or orthologs) thereof.
- substantially homologous is used herein to denote polypeptides being at least 97%, preferred 98%, more preferred 98.5% identical, and most preferably 99% or more identical to the sequence shown in amino acids nos. 1-773 of SEQ ID NO:2, or a fragment thereof that has endo-glucanase activity, or its orthologs or paralogs. Percent sequence identity is determined by conventional methods, by means of computer programs known in the art such as GAP provided in the GCG program package (Program Manual for the Wisconsin Package, Version 8, August 1994, Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA 53711) as disclosed in Needleman, S.B.
- GAP with the following settings for DNA sequence comparison: GAP creation penalty of 5.0 and GAP extension penalty of 0.3.
- Substantially homologous proteins and polypeptides are characterized as having one or more amino acid substitutions, deletions or additions. These changes are preferably of a minor nature, that is conservative amino acid substitutions (see Table 2) and other substitutions that do not significantly affect the folding or activity of the protein or polypeptide; small deletions, typically of one to about 30 amino acids; and small amino- or carboxyl-terminal extensions, such as an amino-terminal methionine residue, a small linker peptide of up to about 20-25 residues, or a small extension that facilitates purification (an affinity tag), such as a poly-histidine tract, protein A (Nilsson et al., EMBO J.
- Aromatic phenylalanine tryptophan tyrosine
- non-standard amino acids such as 4- hydroxyproline, 6- ⁇ /-methyl lysine, 2-aminoisobutyric acid, isovaline and a-methyl serine
- a limited number of non-conservative amino acids, amino acids that are not encoded by the genetic code, and unnatural amino acids may be substituted for amino acid residues.
- "Unnatural amino acids” have been modified after protein synthesis, and/or have a chemical structure in their side chain(s) different from that of the standard amino acids.
- Unnatural amino acids can be chemically synthesized, or preferably, are commercially available, and include pipecolic acid, thiazolidine carboxylic acid, dehydroproline, 3- and 4-methylproline, and 3,3- dimethylproline.
- Essential amino acids in the endo-glucanase polypeptides of the present invention can be identified according to procedures known in the art, such as site-directed mutagenesis or alanine-scanning mutagenesis (Cunningham and Wells, Science 244: 1081-1085, 1989). In the latter technique, single alanine mutations are introduced at every residue in the molecule, and the resultant mutant molecules are tested for biological activity (i.e endo-glucanase activity) to identify amino acid residues that are critical to the activity of the molecule. See also, Hilton et al., J. Biol. Chem. 271 :4699-4708, 1996.
- the active site of the enzyme or other biological interaction can also be determined by physical analysis of structure, as determined by such techniques as nuclear magnetic resonance, crystallography, electron diffraction or photoaffinity labeling, in conjunction with mutation of putative contact site amino acids. See, for example, de Vos et al., Science 255:306-312, 1992; Smith et al., J. Mol. Biol. 224:899-904, 1992; Wlodaver et al., FEBS Lett. 309:59-64, 1992.
- the identities of essential amino acids can also be inferred from analysis of homologies with polypeptides which are related to a polypeptide according to the invention.
- these authors disclose methods for simultaneously randomizing two or more positions in a polypeptide, or recombination/shuffling of different mutations (W095/17413, W095/22625), followed by selecting for functional a polypeptide, and then sequencing the mutagenized polypeptides to determine the spectrum of allowable substitutions at each position.
- Other methods that can be used include phage display (e.g., Lowman et al., Biochem. 30:10832-10837, 1991 ; Ladner et al., U.S. Patent No. 5,223,409; Huse, WIPO Publication WO 92/06204) and region-directed mutagenesis (Derbyshire et al., Gene 46:145, 1986; Ner et al., DNA 7:127, 1988).
- Mutagenesis/shuffling methods as disclosed above can be combined with high- throughput, automated screening methods to detect activity of cloned, mutagenized polypep- tides in host cells.
- Mutagenized DNA molecules that encode active polypeptides can be recovered from the host cells and rapidly sequenced using modern equipment. These methods allow the rapid determination of the importance of individual amino acid residues in a polypeptide of interest, and can be applied to polypeptides of unknown structure.
- polypeptides that are substantially homologous to the polypeptides of (I), (II), or (III) above and retain the endo-glucanase activity of the wild-type protein.
- the endo-glucanase enzyme of the invention may, in addition to the enzyme core comprising the catalytically active domain, i.e. positions 1 -about 340 of SEQ ID NO:2, also comprise a cellulose binding domain (CBD), the cellulose binding domain and the catalytically active domain being operably linked.
- the cellulose binding domain (CBD) may exist as an integral part of the encoded enzyme as described above and in the appended SEQ ID NO:2, or be a CBD from another origin, introduced into the endo-glucanase thus creating an enzyme hybrid.
- the term "cellulose-binding domain" is intended to be understood as defined by Peter Tomme et al.
- CBDs Cellulose-Binding Domains: Classification and Properties
- This definition classifies more than 120 cellulose-binding domains into 10 families (l-X), and demonstrates that CBDs are found in various enzymes such as cellulases (endo-glucanases), xylanases, mannanases, arabinofuranosidases, acetyl esterases and chitinases.
- CBDs have also been found in algae, e.g.
- Enzyme hybrids are known in the art, see e.g. WO 90/00609 and WO 95/16782, and may be prepared by transforming into a host cell a DNA construct comprising at least a fragment of DNA encoding the cellulose- binding domain ligated, with or without a linker, to a DNA sequence encoding the endo- glucanase and growing the host cell to express the fused gene. Enzyme hybrids may be described by the following formula:
- CBD is the N-terminal or the C-terminal region of an amino acid sequence corresponding to at least the cellulose-binding domain
- MR is the middle region (the linker), and may be a bond, or a short linking group preferably of from about 2 to about 100 carbon atoms, more preferably of from 2 to 40 carbon atoms; or is preferably from about 2 to about 100 amino acids, more preferably of from 2 to 40 amino acids
- X is an N-terminal or C- terminal region of a polypeptide corresponding at least to the catalytically active domain encoded by the DNA sequence of the invention.
- the cellulose binding domain corresponding to from about position 340 to about position 540 of SEQ ID NO:2 can be used to form hybrids with endo-glucanases from sources other than Bacillus sp. AA349 and with other proteins.
- Examples of endo- glucanases from other sources replacing the endo-glucanase of positions 1 to about 340 of SEQ ID NO:2 include endo-glucanases from: (a) Bacillus lautus for instance Bacillus lautus NCIMB 40250 disclosed in W09110732, (b) Humicola insolens DSM1800 disclosed in W09117243 (c) Fusarium oxysporium DSM2672 disclosed in W09117243 and (d) Bacillus sp. AC13 NCIMB 40482 disclosed in EP0651785.
- Polyclonal antibodies especially mono-specific polyclonal antibodies, to be used in determining immunological cross-reactivity may be prepared by use of a purified cellulolytic enzyme. More specifically, antiserum against the endo-glucanase of the invention may be raised by immunizing rabbits (or other rodents) according to the procedure described by N. Axelsen et al. in: A Manual of Quantitative Immunoelectrophoresis, Blackwell Scientific Publications, 1973, Chapter 23, or A. Johnstone and R. Thorpe, Immunochemistry in Practice, Blackwell Scientific Publications, 1982 (more specifically p. 27-31).
- Purified immunoglobulins may be obtained from the antisera, for example by salt precipitation ((NH 4 ) 2 S0 4 ), followed by dialysis and ion exchange chromatography, e.g. on DEAE-Sephadex.
- Immunochemical characterization of proteins may be done either by Ouchterlony double-diffusion analysis (O. Ouchterlony in: Handbook of Experimental Immunology (D.M. Weir, Ed.), Blackwell Scientific Publications, 1967, pp. 655-706), by rocket immunoelectrophoresis or by crossed immunoelectrophoresis (N. Axelsen et al. in: A Manual of Quantitative Immunoelectrophoresis, Blackwell Scientific Publications, 1973, Chapters 2, 3 and 4).
- the term "obtained from” or “obtainable from” as used herein in connection with a specific source means that the enzyme is produced or can be produced by the specific source, or by a cell in which a gene from the source have been inserted.
- the endo-glucanase of the invention may be obtained from a gram-positive bacterium belonging to a strain of the genus Bacillus, in particular a strain of Bacillus sp. AA349.
- the endo-glucanase of the invention is obtained from the strain Bacillus sp. AA349, DSM 12648.
- a DNA sequence encoding an enzyme homologous to the enzyme of the invention may be obtained from other strains belonging to the genus Bacillus.
- strain Bacillus sp. AA349 from which the endo-glucanase of the invention has been cloned has been deposited under the deposition number DSM 12648.
- the present invention relates to a DNA construct for use in the integration of the polynucleotide of the invention into the host cell genome.
- the construct must comprise the polynucleotide of the invention flanked by two polynucleotide sequences, a first and a second DNA sequence, which flanking sequences each must comprise at least one subsequence of sufficient homology to a region on the host cell genome in order for efficient recombination to occur.
- a recombinant vector comprising a DNA construct encoding the enzyme of the invention may be any vector, which may conveniently be subjected to recombinant DNA procedures, and the choice of vector will often depend on the host cell into which it is to be introduced.
- the vector may be an autonomously replicating vector, i.e. a vector, which exists as an extra-chromosomal entity, the replication of which is independent of chromosomal replication, e.g. a plasmid.
- the vector may be one which, when introduced into a host cell, is integrated into the host cell genome in part or in its entirety and replicated together with the chromosome(s) into which it has been integrated.
- the vector is preferably an expression vector in which the DNA sequence encoding the enzyme of the invention is operably linked to additional segments required for transcription of the DNA.
- the expression vector is derived from plasmid or viral
- DNA may contain elements of both.
- operably linked indicates that the segments are arranged so that they function in concert for their intended purposes, e.g. transcription initiates in a promoter and proceeds through the DNA sequence coding for the enzyme.
- the promoter may be any DNA sequence, which shows transcriptional activity in the host cell of choice and may be derived from genes encoding proteins either homologous or heterologous to the host cell.
- suitable promoters for use in bacterial host cells include the promoter of the Bacillus stearothermophilus maltogenic amylase gene, the Bacillus licheniformis alpha- amylase gene, the Bacillus amyloliquefaciens alpha-amylase gene, the Bacillus subtilis alkaline protease gene, or the Bacillus pumilus xylosidase gene, or the phage Lambda P R or
- P L promoters or the E. coli lac, tr or tac promoters are preferred promoters or the E. coli lac, tr or tac promoters.
- the DNA sequence encoding the enzyme of the invention may also, if necessary, be operably connected to a suitable terminator.
- the recombinant vector of the invention may further comprise a DNA sequence enabling the vector to replicate in the host cell in question.
- the vector may also comprise a selectable marker, e.g. a gene the product of which complements a defect in the host cell, or a gene encoding resistance to e.g. antibiotics like kanamycin, chloramphenicol, erythromycin, tetracycline, spectinomycine, or the like, or resistance to heavy metals or herbicides.
- a selectable marker e.g. a gene the product of which complements a defect in the host cell, or a gene encoding resistance to e.g. antibiotics like kanamycin, chloramphenicol, erythromycin, tetracycline, spectinomycine, or the like, or resistance to heavy metals or herbicides.
- a secretory signal sequence (also known as a leader sequence, prepro sequence or pre sequence) may be provided in the recombinant vector.
- the secretory signal sequence is joined to the DNA sequence encoding the enzyme in the correct reading frame.
- Secretory signal sequences are commonly positioned 5' to the DNA sequence encoding the enzyme.
- the secretory signal sequence may be that normally associated with the enzyme or may be from a gene encoding another secreted protein.
- the cloned DNA molecule introduced into the host cell may be either homologous or heterologous to the host in question. If homologous to the host cell, i.e. produced by the host cell in nature, it will typically be operably connected to another promoter sequence or, if applicable, another secretory signal sequence and/or terminator sequence than in its natural environment.
- the term "homologous” is intended to include a DNA sequence encoding an enzyme native to the host organism in question.
- heterologous is intended to include a DNA sequence not expressed by the host cell in nature. Thus, the DNA sequence may be from another organism, or it may be a synthetic sequence.
- the host cell into which the cloned DNA molecule or the recombinant vector of the invention is introduced may be any cell which is capable of producing the desired enzyme and includes bacteria, yeast, fungi and higher eukaryotic cells.
- Examples of bacterial host cells which on cultivation are capable of producing the enzyme of the invention may be a gram-positive bacteria such as a strain of Bacillus, in particular Bacillus alkalophilus, Bacillus amyloliquefaciens, Bacillus brevis, Bacillus lautus, Bacillus lentus, Bacillus licheniformis, Bacillus circulans, Bacillus coagulans, Bacillus megatherium, Bacillus stearothermophilus, Bacillus subtilis and Bacillus thuringiensis, a strain of Lactobacillus, a strain of Streptococcus, a strain of Streptomyces, in particular Streptomyces lividans and Streptomyces murinus, or the host cell may be a gram-negative bacteria such as a strain of Escherichia coli.
- the transformation of the bacteria may be effected by protoplast transformation, electroporation, conjugation, or by using competent cells in a manner known per se (cf. e.g. Sambrook et al. (1989) Molecular cloning: A laboratory manual, Cold Spring Harbor lab., Cold Spring Harbor, NY).
- the enzyme When expressing the enzyme in a bacterium such as Escherichia coli, the enzyme may be retained in the cytoplasm, typically as insoluble granules (known as inclusion bodies), or may be directed to the periplasmic space by a bacterial secretion sequence. In the former case, the cells are lysed and the granules are recovered and denatured after which the enzyme is refolded by diluting the denaturing agent. In the latter case, the enzyme may be recovered from the periplasmic space by disrupting the cells, e.g. by sonication or osmotic shock, to release the contents of the periplasmic space and recovering the enzyme.
- a gram-positive bacterium such as a strain of
- the enzyme may be retained in the cytoplasm, or may be directed to the extracellular medium by a bacterial secretion sequence.
- a fungal host cell which on cultivation may be capable of producing the enzyme of the invention is e.g. a strain of Aspergillus or Fusarium, in particular Aspergillus awamori, Aspergillus nidulans, Aspergillus niger, Aspergillus oryzae, and Fusarium oxysporum, and a strain of Trichoderma, preferably Trichoderma harzianum, Trichoderma reesei and Trichoderma wide.
- Fungal cells may be transformed by a process involving protoplast formation and transformation of the protoplasts followed by regeneration of the cell wall in a manner known per se.
- the use of a strain of Aspergillus as a host cell is described in EP 238,023 (Novozymes A/S), the contents of which are hereby incorporated by reference.
- Examples of a host cell of yeast origin which on cultivation may be capable of producing the enzyme of the invention is e.g.
- a strain of Hansenula sp. a strain of Kluyveromyces sp., in particular Kluyveromyces lactis and Kluyveromyces marcianus
- a strain of Pichia sp. a strain of Saccharomyces, in particular Saccharomyces carlsbergensis, Saccharomyces cerevisae, Saccharomyces kluyveri and Saccharomyces uvarum
- a strain of Schizosaccharomyces sp. in particular Schizosaccharomyces pombe
- Yarrowia sp. in particular Yarrowia lipolytica.
- Examples of a host cell of plant origin which on cultivation may be capable of producing the enzyme of the invention is e.g. a plant cell of Solanum tuberosum or Nicotiana tabacum.
- the present invention provides a method of producing an isolated enzyme according to the invention, wherein a suitable host cell, which has been transformed with a DNA sequence encoding the enzyme, is cultured under conditions permitting the production of the enzyme, and the resulting enzyme is recovered from the culture.
- an isolated polypeptide e.g. an enzyme
- a polypeptide which is essentially free of other polypeptides e.g., at least about 20% pure, preferably at least about
- isolated polypeptide may alternatively be termed “purified polypeptide”.
- heterologous impurities mean any impurities (e.g. other polypeptides than the enzyme of the invention) originating from the homologous cell from which the enzyme of the invention is originally obtained.
- the homologous host cell may be a strain of Bacillus sp. AA349.
- the medium used to culture the transformed host cells may be any conventional medium suitable for growing the host cells in question.
- the expressed cellulolytic enzyme may conveniently be secreted into the culture medium and may be recovered therefrom by well-known procedures including separating the cells from the medium by centrifugation or filtration, precipitating proteinaceous components of the medium by means of a salt such as ammonium sulphate, followed by chromatographic procedures such as ion exchange chromatography, affinity chromatography, or the like.
- Enzyme compositions in a still further aspect, relates to an enzyme composition comprising an enzyme exhibiting endo-glucanase activity as described above.
- the enzyme composition of the invention may, in addition to the endo-glucanase of the invention, comprise one or more other enzyme types, for instance hemicellulase such as xylanase and mannanase, other cellulase or endo-beta-1 ,4-glucanase components, chitinase, lipase, esterase, pectinase, cutinase, phytase, oxidoreductase (peroxidase, haloperoxidase, oxidase, laccase), protease, amylase, reductase, phenoloxidase, ligninase, pullulanase, pec- tate lyase, xyloglucanase, pectin acetyl esterase, polygalacturonase, rhamnogalacturonase, pectin lyase
- the enzyme composition may be prepared in accordance with methods known in the art and may be in the form of a liquid or a dry composition.
- the enzyme composition may be in the form of a granulate or a micro-granulate.
- the enzyme to be included in the composition may be stabilized in accordance with methods known in the art.
- Endo-glucanases have potential uses in a lot of different industries and applications. Examples are given below of preferred uses of the enzyme composition of the invention.
- the dosage of the enzyme composition of the invention and other conditions under which the composition is used may be determined on the basis of methods known in the art.
- the enzyme composition according to the invention may be useful for at least one of the following purposes.
- Biomass degradation The enzyme or the enzyme composition according to the invention may be applied advantageously e.g. as follows:
- def ⁇ bration i.e. treatment of material containing cellulosic fibers with hydrolytic enzymes prior to the refining or beating which results in reduction of the energy consumption due to the hydrolysing effect of the enzymes on the surfaces of the fibers.
- fibre modification i.e. improvement of fibre properties where partial hydrolysis across the fibre wall is needed which requires deeper penetrating enzymes (e.g. in order to make coarse fibers more flexible).
- the drainability of papermaking pulps may be improved by treatment of the pulp with hydrolysing enzymes.
- Use of the enzyme or enzyme composition of to the invention may be more effective, e.g. result in a higher degree of loosening bundles of strongly hydrated micro-fibrils in the fines fraction that limits the rate of drainage by blocking hollow spaces between the fibers and in the wire mesh of the paper machine.
- the treatment of lignocellulosic pulp may, e.g., be performed as described in WO 93/08275, WO 91/02839 and WO 92/03608.
- the enzyme or enzyme composition of the invention may be useful in a detergent composition for household or industrial laundering of textiles and garments, and in a process for machine wash treatment of fabrics comprising treating the fabrics during one or more washing cycle of a machine washing process with a washing solution containing the enzyme or enzyme preparation of the invention.
- the detergent composition used in the washing process comprises conventional ingredients such as surfactants (anionic, nonionic, zwitterionic, amphoteric), builders, bleaches (perborates, percarbonates or hydrogen peroxide) and other ingredients, e.g. as described in WO 97/01629 which is hereby incorporated by reference in its entirety.
- surfactants anionic, nonionic, zwitterionic, amphoteric
- builders bleaches (perborates, percarbonates or hydrogen peroxide) and other ingredients, e.g. as described in WO 97/01629 which is hereby incorporated by reference in its entirety.
- bleaches perborates, percarbonates or hydrogen peroxide
- other ingredients e.g. as described in WO 97/01629 which is hereby incorporated by reference in its entirety.
- the endo-beta-1 , 4-glucanase of the invention provides advantages such as improved stain removal and decreased soil redeposition. Certain stains, for example certain food
- the cellulosic fibres of the fabrics may possess, particularly in the "non- crystalline" and surface regions, beta-glucan polymers that are degraded by this enzyme. Hydrolysis of such beta-glucans, either in the stain or on the fabric, during the washing process decreases the binding of soils onto the fabrics.
- Household laundry processes are carried out under a range of conditions. Commonly, the washing time is from 5 to 60 minutes and the washing temperature is in the range 15 - 60°C, most commonly from 20 - 40°C.
- the washing solution is normally neutral or alkaline, most commonly with pH 7 - 10.5.
- Bleaches are commonly used, particularly for laundry of white fabrics. These bleaches are commonly the peroxide bleaches, such as sodium perborate, sodium percarbonate or hydrogen peroxide.
- the present invention relates to use of the endo-glucanase of the invention in textile finishing processes, such as bio-polishing.
- Bio-polishing is a specific treatment of the yarn surface which improves fabric quality with respect to handle and appearance without loss of fabric wettability. The most important effects of bio-polishing can be characterized by less fuzz and pilling, increased gloss/luster, improved fabric handle, increased durable softness and altered water absorbency.
- Bio-polishing usually takes place in the wet processing during the manufacture of knitted and woven fabrics. Wet processing comprises such steps as e.g. desizing, scouring, bleaching, washing, dying/printing and finishing. During each of these steps, the fabric is more or less subjected to mechanical action.
- the fabric proceeds to an optional desizing stage, followed by a scouring stage, etc.
- Desizing is the act of removing size from textiles.
- warp yarns Prior to weaving on mechanical looms, warp yarns are often coated with size consisting of starch or starch derivatives in order to increase their tensile strength. After weaving, the size coating must be removed before further processing of the fabric in order to ensure a homogeneous and wash-proof result.
- impurities are removed from the fabric.
- the endo-glucanase of the invention can advantageously be used in the scouring of cellulosic and cotton textiles, as well as bast fibers and may improve efficiency of removal of impurities.
- One of the most commonly used methods for delivering durable press to cellulosic textiles is via finishing with cellulose crosslinking chemistry.
- Crosslinking immobilizes cellulose at a molecular level and substantially reduces shrinking and wrinkling of cellulosic garments.
- Treatment of durable press treated cellulosic textiles with the endo-glucanase of the invention may result in a selective relaxation of stressed regions to minimize edge abrasion.
- the endo-glucanase of the invention can be used to efficiently remove excess carboxymethyl cellulose-based print paste from textile and equipment used in the printing process. It is known that in order to achieve the effects of bio-polishing, a combination of cellulolytic and mechanical action is required.
- a "stone-washed" look localized abrasion of the colour) in dyed fabric, especially in denim fabric or jeans
- the treatment with an endo-glucanase of the present invention, alone or in combination with other enzymes may be carried out either alone such as disclosed in US 4,832,864, together with a smaller amount of pumice than required in the traditional process, or together with perlite such as disclosed in WO 95/09225.
- Treatment of denim fabric with the endo-glucanase of the invention may reduce backstaining compared to conventional methods.
- the Bacillus sp. DSM 12648 mentioned above comprises the endo-beta-1 , 4- glucanase encoding DNA sequence shown in SEQ ID NO:1.
- B.subtilis PL2306 This strain is the B.subtilis DN1885 with disrupted apr and npr genes (Diderichsen, B., Wedsted, U., Hedegaard, L., Jensen, B. R., Sj ⁇ holm, C. (1990) Cloning of aldB, which encodes alpha-acetolactate decarboxylase, an exoenzyme from Bacillus brevis. J. Bacteriol., 172, 4315-4321) disrupted in the transcriptional unit of the known Bacillus subtilis cellulase gene, resulting in cellulase negative cells. The disruption was performed essentially as described in Eds. A.L. Sonenshein, J.A. Hoch and Richard Losick (1993) Bacillus subtilis and other Gram-Positive Bacteria, American Society for microbiology, p.618.
- Competent cells were prepared and transformed as described by Yasbin, R.E., Wilson, G.A. and Young, F.E. (1975) Transformation and transfection in lysogenic strains of Ba- c/7/us subtilis: evidence for selective induction of prophage in competent cells. J. Bacteriol, 121 :296-304.
- Enzymes for DNA manipulations were used according to the manufacturer's instructions (e.g. restriction endonucleases, ligases etc. are obtainable from New England Biolabs, Inc.).
- This plasmid is a pUB110 derivative essentially containing elements making the plasmid propagate in Bacillus subtilis, kanamycin resistance gene and having a strong promoter and signal peptide cloned from the amyL gene of B.licheniformis ATCC14580.
- the signal peptide contains a Sacll site making it convenient to clone the DNA encoding the mature part of a protein in-fusion with the signal peptide. This results in the expression of a Pre- protein which is directed towards the exterior of the cell.
- the plasmid was constructed by means of ordinary genetic engineering and is briefly described in the following.
- the pUB110 plasmid (McKenzie, T. et al., 1986, Plasmid 15:93-103) was digested with the unique restriction enzyme Neil.
- a PCR fragment amplified from the amyL promoter encoded on the plasmid pDN1981 (P.L. J ⁇ rgensen et al., 1990, Gene, 96, p37-41.) was di- gested with Neil and inserted in the Neil digested pUB110 to give the plasmid pSJ2624.
- the two PCR primers used have the following sequences:
- the primer #LWN5494 inserts a Notl site in the plasmid.
- the plasmid pSJ2624 was then digested with Sacl and Notl and a new PCR fragment amplified on amyL promoter encoded on the pDN1981 was digested with Sacl and Notl and this DNA fragment was inserted in the Sacl-Notl digested pSJ2624 to give the plasmid pSJ2670.
- This cloning replaces the first amyL promoter cloning with the same promoter but in the opposite direction.
- the two primers used for PCR amplification have the following sequences:
- PCR fragment amplified from a cloned DNA sequence encoding the alkaline amylase SP722 (Patent # W09526397-A1 ) was digested with Pstl and Bell and inserted to give the plasmid pMOL944.
- the two primers used for PCR amplification have the following sequence: #LWN7864 (SEQ ID NO:7) 5 " -AACAGCTGATCACGACTGATCTTTTAGCTTGGCAC-3 *
- the primer #LWN7901 inserts a Sacll site in the plasmid.
- the strain DSM 12648 was propagated in liquid medium 2xTY containing 1% carboxymethyl-cellulose + (0,1 M Na2C03 + 0,1 M NaHC03 separately autoclaved and added aseptically after cooling to room temperature). After 16 hours of incubation at 30°C and 300 rpm, the cells were harvested, and genomic DNA was isolated by the method described by Pitcher et al. [Pitcher, D. G., Saunders, N. A., Owen, R. J; Rapid extraction of bacterial genomic DNA with guanidium thiocyanate; Lett Appl Microbiol 1989, 8:151-156].
- LB agar (as described in Ausubel, F. M. et al. (eds.): “Current protocols in Molecular Biology", John Wiley and Sons, 1995).
- LBPG is LB agar supplemented with 0.5% Glucose and 0.05 M potassium phosphate, pH 7.0 AZCL-HE-cellulose is added to LBPG-agar to 0.5 % AZCL- HE-cellulose is from Megazyme, Australia.
- BPX media is described in EP 0 506 780 (WO 91/09129).
- Cal 18-2 media is described in patent application WO 00/75344 A1 ).
- ECU method In the ECU method the ability of the enzyme sample to reduce the viscosity of a solution of carboxymethyl-cellulose (CMC) is determined, and the result is given in ECU. The reduction in viscosity is proportional to the endo-cellulase activity.
- CMC type 7LFD from Hercules, pH 7.5 in 0.1 M phosphate buffer, CMC concentration 31.1 g per liter reaction at 40°C for 30 minutes.
- a vibration viscosimeter such as MIVI 3000, Sofraser, France is used to measure the viscosity.
- Cellazyme C is an endo-glucanase assay substrate, supplied in tablet form by Megazyme International Ireland Ltd. Reference is made to Megazyme's pamphlet CZC 7/99 which states: "The substrate is prepared by dyeing and cross-linking HE-cellulose to produce a material which hydrates in water but is water insoluble. Hydrolysis by endo-beta-1 , 4- glucanase produces water-soluble dyed fragments, and the rate of release of these (increase in absorbance at 590nm) can be related directly to enzyme activity.”
- the enzyme sample is added to 6ml of a suitable buffer in a test tube, one Cella- zyme C tablet is added and dispersed by shaking the tube, then the tube is placed in a water bath at 40°C. The contents are mixed by brief shaking after approximately 15, 30, 45 and 60 minutes. After 60 minutes the solution is filtered through Whatman GF/C filters, 9cm diameter. The absorbance of the filtered solution is measured at 590nm.
- oligonucleotides were used in a PCR reaction in HiFidelityTM PCR buffer (Boehringer Mannheim, Germany) supplemented with 200 ⁇ M of each dNTP, 2.6 units of HiFidelityTM Expand enzyme mix and 200 pmol of each primer. Chromosomal DNA isolated from Bacillus sp. DSM12648 as described above was used as template.
- the PCR reaction was performed using a DNA thermal cycler (Landgraf, Germany). One incubation at 94°C for 1 min followed by ten cycles of PCR performed using a cycle profile of denaturation at 94°C for 15 sec, annealing at 60°C for 60 sec, and extension at 72°C for 120sec, followed by twenty cycles of denaturation at 94°C for 15 sec, 60°C for 60 sec and 72°C for 120 sec (at this elongation step 20 sec are added every cycle). 5 ⁇ l aliquots of the amplification product was analysed by electrophoresis in 0.7 % agarose gels (NuSieve, FMC). The appearance of a DNA fragment size 2.4 kb indicated proper amplification of the gene segment.
- the isolated PCR DNA fragment was then ligated to the Sacll- Notl digested and purified pMOL944. The ligation was performed overnight at 16 C C using 0.5 ⁇ g of each DNA fragment, 1 U of T4 DNA ligase and T4 ligase buffer (Boehringer Mannheim, Germany).
- the ligation mixture was used to transform competent B. subtilis PL2306.
- the transformed cells were plated onto LBPG-10 ⁇ g/ml of kanamycin-agar plates. After 18 hours incubation at 37°C colonies were seen on the plates. Several clones were analyzed by isolating plasmid DNA from overnight culture broths.
- MB1181-7 One such positive clone was re-streaked several times on agar plates as used above; this clone was called MB1181-7.
- the clone MB1181-7 was grown overnight in TY- 10 ⁇ g/ml kanamycin at 37°C, and next day 1 ml of cells were used to isolate a plasmid from the cells using the Qiaprep Spin Plasmid Miniprep Kit #27106 according to the manufacturers recommendations for B. subtilis plasmid preparations.
- This DNA was sequenced and revealed a DNA sequence identical to the endo-glucanase gene in SEQ ID NO:1 bp 1- 2322 encoding the mature endo-glucanase.
- the derived protein sequence is represented in SEQ ID NO:2.
- MB1181-7 obtained as described in Example 1 was grown in 15 x 200 ml Cal-18-2 media with 10 ⁇ g/ml of kanamycin, in 500 ml two-baffled shake flasks, for 4 days at 37°C at 300 rpm, whereby about 2500 ml of culture broth was obtained.
- the culture fluid was flocculated by adding 50% CaCI 2 (10 ml per liter of culture broth) together with 11% sodium alumi- nate (10 ml per liter of culture broth), maintaining the pH between 7.0 and 7.5 by adding 20% formic acid.
- the supernatant was clarified using Whatman glass filters GF/D and C. Then ultrafiltration was used to concentrate and reduce the ionic strength of the solution.
- the ultra- filtration membrane was Filtron UF with a cut-off of 10 kDa. After ultra-filtration the solution had conductivity ⁇ 3mS/cm. The pH was adjusted to pH 8.0.
- the N-terminal sequence was determined. The result was: XEGNTRE (SEQ ID NO:11)
- the X was the injection, and could be A as found in the sequence based on the DNA sequence. Thus this N-terminal sequence does agree with the N-terminal sequence of SEQ ID NO:2.
- the protein concentration was determined using a molar extinction coefficient of 145800 (based on the amino acid composition deduced from the sequence).
- Rabbit polyclonal mono-specific serum was raised against the purified enzyme using conventional techniques.
- the serum formed a single precipitate in agarose gels with the endo-glucanase of the invention.
- the stability of the endo-glucanase from Example 2 was evaluated under the following conditions.
- a solution of a powder detergent with bleach was prepared.
- the powder detergent was IEC-A detergent, supplied by wfk Testgewebe GmbH, D-41379, Germany. This is an IEC 60456 Washing Machine Reference Base Detergent, type A.
- the bleach was IEC 60456 sodium perborate tetrahydrate, type SPB, also supplied by wfk Testgewebe. Concentrations: Powder detergent, IEC-A: 4.0 g per liter Sodium perborate tetrahydrate: 1.0 g per liter Sodium bicarbonate: 0.5 g per liter
- a solution of the enzyme, with activity 2.4 ECU/ml was prepared by diluting the sample from Example 2 with water.
- the activity in the heat treated and reference samples was then determined.
- the so- lutions were thawed and then 1 ml pH9.5 buffer (see below) was added, giving total volume 6ml.
- the activity was assayed using the Cellazyme C tablet method, as described in Materials & Methods section above.
- the pH 9.5 buffer was prepared by mixing a) and b) to give pH9.5: a) 0.25M phosphate buffer pH 7.0 (prepared from NaH 2 PO 4 .H 2 O and NaOH), containing 5.0g/l of Berol 537 (nonionic surfactant from Akzo Nobel) b) 0.25M sodium carbonate, containing 5.0 g/l of Berol 537 (nonionic surfactant from Akzo Nobel)
- Example 2 The stability of the endo-glucanase obtained in Example 2 was evaluated under the following conditions.
- sodium perborate bleach sodium perborate, tetrahydrate, type SPB from wfk Testgewebe
- a solution of the enzyme, with activity 2.5 ECU/ml was prepared by diluting the sample from Example 2 with water. 100 ⁇ l of the enzyme dilution was added to each of the pre-heated test tubes, and the solution was mixed. The solutions were kept at 50°C for the specified period, then cooled in ice water, and then stored frozen.
- Reference samples were prepared by adding 0, 50, 100, 150 ⁇ l of the same enzyme solution into 5ml samples of the bleach solution at room temperature, then cooling and freezing.
- a 1 mM solution of Fe(ll) sulphate was prepared by dissolving FeS0 4 .7H 2 0 (Merck, p.a.) in 0.1 M glycine buffer, pH9.
- the enzyme is not inactivated by treatment with 1mM Fe(ll) ions.
- wash performance test This test demonstrates the stain removal and anti-redeposition effects of the endo- glucanase obtained in Example 2. Additionally this test demonstrates that the enzyme performance is essentially unchanged when sodium perborate bleach is included.
- Cotton swatches are stained with beta-glucan (from barley) plus carbon black. Soiled swatches are washed together with clean swatches. After washing the swatches are rinsed and dried. The soil removal from the soiled switches and the soil redeposition onto the clean swatches is determined by reflectance measurements. The soil removal and soil redeposition after washing without or with addition of the endo-glucanase are compared.
- Swatches Cut from 100% cotton fabric, type #2003 (Tanigashira, Osaka, Japan), pre-washed at 40°C as a precaution to remove any water soluble contaminations, size 5x5cm, weight approximately 0.3g.
- Washing equipment Stirred beakers, beaker volume 250 ml, with temperature control by water bath heating.
- the equipment is a multi-beaker miniature agitator washer.
- Detergent solution Prepared by adding the following into deionised water. Sodium carbonate, 0.5 g per liter
- Surfac SDBS80 sodium alkylbenzene sulphonate
- Nonionic surfactant Berol 537 (Akzo Nobel), 1.0 g per liter Sodium perborate, type SPB from wfk Testgewebe, either 0 or 1.0 g per liter
- Solution pH is approximately 9.5.
- washing procedure 100ml detergent solution is added to each beaker.
- the water bath temperature is 40°C.
- the mechanical agitators are operated at approximately 125 rpm.
- the detergent solutions are pre-warmed for 10 minutes and then the endo-glucanase and the swatches are added.
- three soiled swatches (prepared as described below) and three clean swatches are added to each beaker. After washing for 30 minutes, the swatches are removed from the detergent solution, rinsed under running tap water for 5 minutes, spread flat on absorbent paper and allowed to dry.
- Reflectance measurements Made using a Macbeth 7000 Color Eye reflectance spectrophotometer. In the case of the soiled swatches, each swatch is measured once in the center of the soiled area, then the average value is calculated. In the case of the clean swatches, each swatch is measured once on each side, then the average value is calculated.
- the reflectance measurements are all made at 500nm.
- Soiled swatches are made using beta-glucan (from barley) and carbon black ("carbon for detergency tests" supplied by Sentaku Kagaku Kyokai, Tokyo, Japan). Dissolve about 0.67g of beta-glucan in 100ml tap water by stirring and warming to >50°C. Add 0.33g carbon black. Blend with an UltraTurrax T25 blender, speed 4000 rpm for 2 minutes. Apply 250 ⁇ l of the beta-glucan/carbon onto the center of each swatch. Allow to dry overnight at room temperature.
- the swatches used in this example had an average reflectance value of 93.5 before soil application and 17.5 after soiling.
- Endo-glucanase addition The endo-glucanase from Example 2 was added to give an activity concentration of 0, 20 or 100 ECU per liter of detergent solution.
- the endo-glucanase increased the removal of soil from the fabric, as seen by the increased reflectance value of the stained swatches after washing with endo-glucanase as compared to the result after washing without endo-glucanase.
- the endo-glucanase also de- creases the soil redeposition, as seen by the increased reflectance value of the clean swatches after washing with endo-glucanase.
- the improvements of soil removal and anti- redeposition provided by the endo-glucanase are essentially unchanged by the addition of the bleach.
- Clean cotton fabric is washed together with soiled cotton fabric in a solution of a household detergent.
- the wash is carried out in a Terg-O-Tometer. During the wash, soil is released from the soiled fabric into the detergent liquor. This soil can then redeposit onto the clean cotton. After washing, the cotton fabrics are rinsed and dried, and then measured with a reflectance spectrophotometer in order to detect the degree of soil redeposition.
- Detergent Powder household detergent, Asian.
- Detergent concentration 0.67g/l in water with hardness 4°dH.
- Cotton fabric Total of 33g fabric per T-O-T beaker, comprising suitably sized pieces of: white woven cotton, #2003 (Tanigashira, Osaka, Japan), total weight 11g white cotton interlock, total weight 13g soiled cotton fabric, type EMPA101 (EMPA, Switzerland), total weight 9g.
- wash Temperature 25°C, wash time 40 minutes, at 125 rpm. After washing the #2003 cotton is rinsed under running tap water for 10 minutes, then dried.
- the enzyme was first diluted with water to give a solution with activity approximately 0.07 ECU/ml.
- the PHBAH reagent was prepared as follows: Dissolve 1.5g hydroxybenzoic acid hydrazide and 5.0g potassium sodium tartrate in 100ml of 2% w/w sodium hydroxide in water.
- buffer concentration was 0.1 M.
- Acetate buffers pH4.0, 4.5, 5.0, 5.5.
- MES buffers pH 6.0 (MES is 2-[N-morpholino]ethane sulfonic acid)
- MOPS buffers pH 6.5, 7.0, 7.5
- MOPS is 3-[N-morpholino]propane sulfonic acid
- Barbiturate buffers pH8.0, 8.5
- the enzyme has about 90% or more of the maximum activity in the pH range from 8.1 to 10.5.
- the activity of the endo-glucanase from Example 2 was measured at a range of temperatures, using a reaction pH of 10.0.
- the enzyme was first diluted with water to give a solution with activity approximately 0.07 ECU/ml.
- the absorbance at 410nm (minus the blank value) is a measure of the activity of the enzyme.
- the enzyme has high activity at temperatures from 20 to 60°C, highest at temperatures around 40 - 50°C.
- Biopolishing using the endo-glucanase of the invention in a continuous apparatus Biopolishing using the endo-glucanase of the invention in a continuous apparatus.
- Knitted Fabric 460 (Test Fabrics Inc.), which is 100% cotton bleached interlock.
- the fabric is cut into 20x30 cm pieces weighing about 12.5 g each.
- the weight of each swatch is determined after conditioning for at least 24 hours at 65 ⁇ 2% relative humidity and 21 ⁇ 2°C (70 ⁇ 3°F).
- the endo-glucanase of the invention obtained in Example 2 is formulated in 15 mM sodium phosphate.
- the test is made with variable enzyme concentrations and at different pH. Swatches are contacted with enzyme solutions for less than 45 seconds and then padded through a pad, after which they are weighed and hung immediately in a Mathis steam range (Type PSA-HTF) (Werner Mathis USA Inc. Concord, NC). The percentage of solution on fabric (% wet pick-up) and ratio of endo-glucanase activity to fabric is determined.
- Fabric swatches are treated at 90°C and 100% relative humidity for 90 minutes. All swatches are then transferred and rinsed in de-ionized water for at least 5 minutes, after which they are air dried. Finally, the swatches are conditioned at 65 ⁇ 2% relative humidity and 21 ⁇ 2°C (70 ⁇ 3°F) temperature for at least 24 hours before evaluation.
- Fabric strength is measured on Mullen Burst tester model C according to ASTM D3786 - 87: Standard Test Method for Hydraulic Bursting Strength of Knitted Goods and Nonwoven Fab- rics -Diaphragm Bursting Strength Tester Method, and strength loss is determined. Pilling note is measured according to ASTM D 4970 -89: Standard Test Method for Pilling Resistance and Other Related Surface Changes of Textiles Fabrics (Martindale Pressure Tester Method). After 500 revolutions, pilling on the fabric is evaluated visually against a standard scale 1 to 5, where 1 indicates very severe pilling and 5 indicates no pilling.
- Biopolishing using the endo-glucanase of the invention in a continuous apparatus Biopolishing using the endo-glucanase of the invention in a continuous apparatus.
- Biopolishing is carried out essentially as described in Example 10, except that the buffer consist of 9.53 g sodium tetraborate decahydrate dissolved in 2.5 I deionized water and is adjusted to pH 9.2.
- Swatches are padded and treated as described in Example 10.
- the fabric wet pick-up is 94%.
- the fabric is treated for 90 min at pH 9.2, 90°C, and relative humidity 100%.
- the rinsing, drying, evaluating procedures are the same as in Example 10.
- the following experiment is performed to evaluate the effect of the endo-glucanase obtained in Example 2 in combined scouring and biopolishing.
- the fabric used is Fabric 4600, which is an unscoured and unbleached 100% cotton fabric.
- Fabric preparation and buffer are the same as described in Example 11 above.
- the bulk solution contains: (a) The endo-glucanase of Example 2 in a buffer as described in Example 2 above, at a concentration of 6.12 CMCU/ml and 4.9 CMCU/g fabric; and (b) thermostable pectate lyase at a concentration of 1.93 mv-mol/ml/min. Swatches are padded and treated as described in Example 10.
- the fabric wet pick-up is 80%.
- Treatment conditions are pH 9.2, 90°C, relative humidity (RH) 100%, and treatment is for 90 min.
- the rinsing, drying, evaluating procedures are the same as described in Example 10 above.
- Wetting speed is evaluated according to the Standard AATCC (American Association of Textile Chemists and Colorists) Test Method 79-1995 "Absorbency of Bleached Textiles". A water drop from 1 cm high burette is allowed to fall to a taut surface of fabric specimen. The time for water disappearance on the fabric surface is recorded as wetting time.
- EXAMPLE 13 Denim Abrasion The following example illustrates the use of the endo-glucanase of the invention obtained in Example 2 to treat denim jeans or other garments and to produce denim garments with a uniformly localized color variation (denim abrasion).
- Abrasion refers to the faded color of warp- dyed denim due to combined effects of cellulase treatment and mechanical action. The resulting effect is a fabric appearance similar to that of stone-washed denim achieved with pumice stones.
- Amylase AQUAZYMTM ULTRA 1200L (from Novozymes A/S)
- Denim Abrasion Protocol Equipment Tonello G1 30 Washing/Dyeing/Stone washing machine (Tonello S.r.l., Via della Fisica, 1/3, Sarcedo (VI) - Italia).
- Denim Abrasion is measured as average L * (higher L* corresponds to more abrasion), and Backstaining is measured as average b* (more negative b*, "bluer,” corresponds to more backstaining) on a HunterLab Labscan XE Spectrophotometer (Hunter Associates Laboratory, Inc., Reston, VA 20190 USA).
- Tear Strength The tear strength of the denim samples is determined using an Elmendorf Tearing tester according to ASTM D 1424-83 "Standard Test Method for Tear Resistance of Woven Fabrics by Falling Pendulum (Elmendorf) Apparatus.”
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Enzymes And Modification Thereof (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Detergent Compositions (AREA)
- Fodder In General (AREA)
- Processing Of Solid Wastes (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
Abstract
Description
Claims
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES02735093.3T ES2521615T3 (en) | 2001-06-06 | 2002-06-06 | Endo-beta-1,4-glucanase |
JP2003502201A JP4242761B2 (en) | 2001-06-06 | 2002-06-06 | Endo-β-1,4-glucanase |
AU2002311012A AU2002311012A1 (en) | 2001-06-06 | 2002-06-06 | Endo-beta-1,4-glucanase from bacillus |
US10/479,446 US7041488B2 (en) | 2001-06-06 | 2002-06-06 | Endo-beta-1,4-glucanase from bacillus |
MXPA03011194A MXPA03011194A (en) | 2001-06-06 | 2002-06-06 | Endo-beta-1,4-glucanase from bacillus. |
DK02735093.3T DK1399543T3 (en) | 2001-06-06 | 2002-06-06 | ENDO-BETA-1,4-GLUCANASE |
EP02735093.3A EP1399543B1 (en) | 2001-06-06 | 2002-06-06 | Endo-beta-1,4-glucanase |
US11/044,363 US7141403B2 (en) | 2001-06-06 | 2005-01-26 | Endo-beta-1,4-glucanases |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DKPA200100879 | 2001-06-06 | ||
DKPA200100879 | 2001-06-06 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10479446 A-371-Of-International | 2002-06-06 | ||
US11/044,363 Division US7141403B2 (en) | 2001-06-06 | 2005-01-26 | Endo-beta-1,4-glucanases |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2002099091A2 true WO2002099091A2 (en) | 2002-12-12 |
WO2002099091A3 WO2002099091A3 (en) | 2003-04-10 |
Family
ID=8160547
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DK2002/000381 WO2002099091A2 (en) | 2001-06-06 | 2002-06-06 | Endo-beta-1,4-glucanase from bacillus |
Country Status (8)
Country | Link |
---|---|
EP (1) | EP1399543B1 (en) |
JP (1) | JP4242761B2 (en) |
CN (2) | CN1633496A (en) |
AU (1) | AU2002311012A1 (en) |
DK (1) | DK1399543T3 (en) |
ES (1) | ES2521615T3 (en) |
MX (1) | MXPA03011194A (en) |
WO (1) | WO2002099091A2 (en) |
Cited By (286)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004053039A3 (en) * | 2002-12-11 | 2004-07-29 | Novozymes As | Detergent composition comprising endo-glucanase |
WO2005001064A2 (en) | 2003-06-25 | 2005-01-06 | Novozymes A/S | Polypeptides having alpha-amylase activity and polypeptides encoding same |
EP1641910A2 (en) * | 2003-07-02 | 2006-04-05 | Diversa Corporation | Glucanases, nucleic acids encoding them and methods for making and using them |
WO2007057418A1 (en) * | 2005-11-16 | 2007-05-24 | Novozymes A/S | Polypeptides having endoglucanase activity and polynucleotides encoding same |
EP1867708A1 (en) * | 2006-06-16 | 2007-12-19 | The Procter and Gamble Company | Detergent Compositions |
EP1867707A1 (en) * | 2006-06-16 | 2007-12-19 | The Procter and Gamble Company | Detergent compositions |
EP1876226A1 (en) | 2006-07-07 | 2008-01-09 | The Procter and Gamble Company | Detergent compositions |
EP1876227A1 (en) * | 2006-07-07 | 2008-01-09 | The Procter and Gamble Company | Detergent Compositions |
EP1882731A1 (en) * | 2006-06-16 | 2008-01-30 | The Procter and Gamble Company | Detergent compositions |
WO2008040818A1 (en) | 2006-10-06 | 2008-04-10 | Novozymes A/S | Detergent compositions and the use of enzyme combinations therein |
WO2008007319A3 (en) * | 2006-07-07 | 2008-05-15 | Procter & Gamble | A composition comprising a cellulase and a bleach catalyst |
EP1923455A2 (en) | 2003-02-18 | 2008-05-21 | Novozymes A/S | Detergent compositions |
EP2157162A1 (en) | 2008-08-13 | 2010-02-24 | The Procter and Gamble Company | Particulate bleaching composition comprising enzymes |
WO2010108000A1 (en) | 2009-03-18 | 2010-09-23 | The Procter & Gamble Company | Structured fluid detergent compositions comprising dibenzylidene polyol acetal derivatives and detersive enzymes |
WO2010108002A1 (en) | 2009-03-18 | 2010-09-23 | The Procter & Gamble Company | Structured fluid detergent compositions comprising dibenzylidene sorbitol acetal derivatives |
WO2011134809A1 (en) | 2010-04-26 | 2011-11-03 | Novozymes A/S | Enzyme granules |
US8101393B2 (en) | 2006-02-10 | 2012-01-24 | Bp Corporation North America Inc. | Cellulolytic enzymes, nucleic acids encoding them and methods for making and using them |
WO2012080201A2 (en) | 2010-12-17 | 2012-06-21 | Henkel Ag & Co. Kgaa | Storage-stable liquid washing or cleaning agent containing protease and cellulase |
DE102010063743A1 (en) | 2010-12-21 | 2012-06-21 | Henkel Ag & Co. Kgaa | Liquid surfactant preparation containing lipase and phosphonate |
WO2012139964A1 (en) | 2011-04-13 | 2012-10-18 | Henkel Ag & Co. Kgaa | Expression method |
DE102011007627A1 (en) | 2011-04-18 | 2012-10-18 | Henkel Ag & Co. Kgaa | Detergents or cleaning agents with solid enzyme preparation |
DE102011007695A1 (en) | 2011-04-19 | 2012-10-25 | Henkel Ag & Co. Kgaa | Phosphate-free dishwashing detergent |
WO2012163855A1 (en) | 2011-05-31 | 2012-12-06 | Henkel Ag & Co. Kgaa | Expression vectors for an improved protein secretion |
DE102011118037A1 (en) | 2011-06-16 | 2012-12-20 | Henkel Ag & Co. Kgaa | Dishwashing detergent with bleach catalyst and protease |
EP2537918A1 (en) | 2011-06-20 | 2012-12-26 | The Procter & Gamble Company | Consumer products with lipase comprising coated particles |
WO2012175401A2 (en) | 2011-06-20 | 2012-12-27 | Novozymes A/S | Particulate composition |
US8426184B2 (en) | 2005-03-15 | 2013-04-23 | Bp Corporation North America | Cellulases, nucleic acids encoding them and methods for making and using them |
DE102012201297A1 (en) | 2012-01-31 | 2013-08-01 | Basf Se | expression methods |
WO2013110766A1 (en) | 2012-01-26 | 2013-08-01 | Novozymes A/S | Use of polypeptides having protease activity in animal feed and detergents |
WO2013131964A1 (en) | 2012-03-07 | 2013-09-12 | Novozymes A/S | Detergent composition and substitution of optical brighteners in detergent compositions |
DE102012206571A1 (en) | 2012-04-20 | 2013-10-24 | Henkel Ag & Co. Kgaa | Storage-stable washing or cleaning agent with increased cleaning performance |
WO2013167581A1 (en) | 2012-05-07 | 2013-11-14 | Novozymes A/S | Polypeptides having xanthan degrading activity and polynucleotides encoding same |
WO2013189972A2 (en) | 2012-06-20 | 2013-12-27 | Novozymes A/S | Use of polypeptides having protease activity in animal feed and detergents |
CN103608356A (en) * | 2011-04-29 | 2014-02-26 | 丹尼斯科美国公司 | Detergent compositions containing bacillus agaradhaerens mannanase and methods of use thereof |
DE102012215107A1 (en) | 2012-08-24 | 2014-02-27 | Basf Se | Solid dishwashing detergent with improved protease performance |
WO2014053594A1 (en) | 2012-10-05 | 2014-04-10 | Novozymes A/S | Preventing adhesion of bacteria |
WO2014087011A1 (en) | 2012-12-07 | 2014-06-12 | Novozymes A/S | Preventing adhesion of bacteria |
DE102012224038A1 (en) | 2012-12-20 | 2014-06-26 | Henkel Ag & Co. Kgaa | Enzyme-containing granular composition, used to prepare particulate washing/cleaning agents for textiles, carpets or natural fibers, comprises enzyme containing granular particles, and enzyme free granular particles with water-soluble salt |
WO2014183921A1 (en) | 2013-05-17 | 2014-11-20 | Novozymes A/S | Polypeptides having alpha amylase activity |
WO2014207227A1 (en) | 2013-06-27 | 2014-12-31 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
WO2014207224A1 (en) | 2013-06-27 | 2014-12-31 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
WO2015001017A2 (en) | 2013-07-04 | 2015-01-08 | Novozymes A/S | Polypeptides having anti-redeposition effect and polynucleotides encoding same |
US8999912B2 (en) | 2007-07-09 | 2015-04-07 | The Procter & Gamble Company | Detergent compositions |
WO2015049370A1 (en) | 2013-10-03 | 2015-04-09 | Novozymes A/S | Detergent composition and use of detergent composition |
DE102013226835A1 (en) | 2013-12-20 | 2015-06-25 | Henkel Ag & Co. Kgaa | Detergents or cleaners with reduced surfactant content |
WO2015150457A1 (en) | 2014-04-01 | 2015-10-08 | Novozymes A/S | Polypeptides having alpha amylase activity |
WO2015181119A2 (en) | 2014-05-27 | 2015-12-03 | Novozymes A/S | Lipase variants and polynucleotides encoding same |
WO2015189371A1 (en) | 2014-06-12 | 2015-12-17 | Novozymes A/S | Alpha-amylase variants and polynucleotides encoding same |
AU2013202671B2 (en) * | 2003-07-02 | 2016-03-03 | Bp Corporation North America Inc. | Glucanases, nucleic acids encoding them and methods for making and using them |
WO2016041676A1 (en) | 2014-09-18 | 2016-03-24 | Unilever Plc | Whitening composition |
WO2016079110A2 (en) | 2014-11-19 | 2016-05-26 | Novozymes A/S | Use of enzyme for cleaning |
WO2016079305A1 (en) | 2014-11-20 | 2016-05-26 | Novozymes A/S | Alicyclobacillus variants and polynucleotides encoding same |
DE102014225475A1 (en) | 2014-12-10 | 2016-06-16 | Henkel Ag & Co. Kgaa | Washing or cleaning agent with special a-amylase and defined viscosity |
DE102014225478A1 (en) | 2014-12-10 | 2016-06-16 | Henkel Ag & Co. Kgaa | Washing or cleaning agent with special a-amylase and defined water activity aw |
DE102014226681A1 (en) | 2014-12-19 | 2016-06-23 | Henkel Ag & Co. Kgaa | Liquid surfactant composition with special surfactant combination and enzyme |
DE102014226293A1 (en) | 2014-12-17 | 2016-06-23 | Henkel Ag & Co. Kgaa | Detergent with improved stain removal |
WO2016096996A1 (en) | 2014-12-16 | 2016-06-23 | Novozymes A/S | Polypeptides having n-acetyl glucosamine oxidase activity |
WO2016110379A1 (en) | 2015-01-06 | 2016-07-14 | Unilever Plc | Laundry composition |
WO2016135351A1 (en) | 2015-06-30 | 2016-09-01 | Novozymes A/S | Laundry detergent composition, method for washing and use of composition |
WO2016162558A1 (en) | 2015-04-10 | 2016-10-13 | Novozymes A/S | Detergent composition |
WO2016162556A1 (en) | 2015-04-10 | 2016-10-13 | Novozymes A/S | Laundry method, use of dnase and detergent composition |
WO2016184944A1 (en) | 2015-05-19 | 2016-11-24 | Novozymes A/S | Odor reduction |
EP3106508A1 (en) | 2015-06-18 | 2016-12-21 | Henkel AG & Co. KGaA | Detergent composition comprising subtilase variants |
WO2016202739A1 (en) | 2015-06-16 | 2016-12-22 | Novozymes A/S | Polypeptides with lipase activity and polynucleotides encoding same |
WO2016202785A1 (en) | 2015-06-17 | 2016-12-22 | Novozymes A/S | Container |
EP3127995A1 (en) | 2015-08-07 | 2017-02-08 | Henkel AG & Co. KGaA | Novel, whiteness reinforcing detergent |
EP3127996A1 (en) | 2015-08-07 | 2017-02-08 | Henkel AG & Co. KGaA | Washing agent with ironing aid |
DE102015215160A1 (en) | 2015-08-07 | 2017-02-09 | Henkel Ag & Co. Kgaa | New whitening-enhancing detergent |
DE102015215591A1 (en) | 2015-08-14 | 2017-02-16 | Henkel Ag & Co. Kgaa | Low-water, two-phase liquid detergent with acidic pH |
WO2017046260A1 (en) | 2015-09-17 | 2017-03-23 | Novozymes A/S | Polypeptides having xanthan degrading activity and polynucleotides encoding same |
WO2017046232A1 (en) | 2015-09-17 | 2017-03-23 | Henkel Ag & Co. Kgaa | Detergent compositions comprising polypeptides having xanthan degrading activity |
WO2017060505A1 (en) | 2015-10-07 | 2017-04-13 | Novozymes A/S | Polypeptides |
WO2017064253A1 (en) | 2015-10-14 | 2017-04-20 | Novozymes A/S | Polypeptides having protease activity and polynucleotides encoding same |
WO2017064269A1 (en) | 2015-10-14 | 2017-04-20 | Novozymes A/S | Polypeptide variants |
WO2017093318A1 (en) | 2015-12-01 | 2017-06-08 | Novozymes A/S | Methods for producing lipases |
WO2017174769A2 (en) | 2016-04-08 | 2017-10-12 | Novozymes A/S | Detergent compositions and uses of the same |
WO2017186943A1 (en) | 2016-04-29 | 2017-11-02 | Novozymes A/S | Detergent compositions and uses thereof |
WO2017207762A1 (en) | 2016-06-03 | 2017-12-07 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
WO2017220422A1 (en) | 2016-06-23 | 2017-12-28 | Novozymes A/S | Use of enzymes, composition and method for removing soil |
WO2018002261A1 (en) | 2016-07-01 | 2018-01-04 | Novozymes A/S | Detergent compositions |
WO2018001959A1 (en) | 2016-06-30 | 2018-01-04 | Novozymes A/S | Lipase variants and compositions comprising surfactant and lipase variant |
WO2018007435A1 (en) | 2016-07-05 | 2018-01-11 | Novozymes A/S | Pectate lyase variants and polynucleotides encoding same |
WO2018007573A1 (en) | 2016-07-08 | 2018-01-11 | Novozymes A/S | Detergent compositions with galactanase |
WO2018011277A1 (en) | 2016-07-13 | 2018-01-18 | Novozymes A/S | Bacillus cibi dnase variants |
DE102016213567A1 (en) | 2016-07-25 | 2018-01-25 | Henkel Ag & Co. Kgaa | Propylene glycol esters as textilpflegende ingredients |
DE102016213568A1 (en) | 2016-07-25 | 2018-01-25 | Henkel Ag & Co. Kgaa | Polymers of vinylpyrrolidone and / or vinyl acetate as textilpflegende ingredients |
DE102016213569A1 (en) | 2016-07-25 | 2018-01-25 | Henkel Ag & Co. Kgaa | Acylglutamate as textilpflegende ingredients |
WO2018037064A1 (en) | 2016-08-24 | 2018-03-01 | Henkel Ag & Co. Kgaa | Detergent compositions comprising xanthan lyase variants i |
WO2018037062A1 (en) | 2016-08-24 | 2018-03-01 | Novozymes A/S | Gh9 endoglucanase variants and polynucleotides encoding same |
WO2018037061A1 (en) | 2016-08-24 | 2018-03-01 | Novozymes A/S | Xanthan lyase variants and polynucleotides encoding same |
WO2018037065A1 (en) | 2016-08-24 | 2018-03-01 | Henkel Ag & Co. Kgaa | Detergent composition comprising gh9 endoglucanase variants i |
WO2018060216A1 (en) | 2016-09-29 | 2018-04-05 | Novozymes A/S | Use of enzyme for washing, method for washing and warewashing composition |
EP3309249A1 (en) | 2013-07-29 | 2018-04-18 | Novozymes A/S | Protease variants and polynucleotides encoding same |
WO2018077938A1 (en) | 2016-10-25 | 2018-05-03 | Novozymes A/S | Detergent compositions |
DE102016221849A1 (en) | 2016-11-08 | 2018-05-09 | Henkel Ag & Co. Kgaa | A surfactant composition containing an amylase |
EP3321360A2 (en) | 2013-01-03 | 2018-05-16 | Novozymes A/S | Alpha-amylase variants and polynucleotides encoding same |
WO2018089211A1 (en) | 2016-11-08 | 2018-05-17 | Ecolab Usa Inc. | Non-aqueous cleaner for vegetable oil soils |
WO2018099762A1 (en) | 2016-12-01 | 2018-06-07 | Basf Se | Stabilization of enzymes in compositions |
WO2018108865A1 (en) | 2016-12-12 | 2018-06-21 | Novozymes A/S | Use of polypeptides |
US10047321B2 (en) | 2016-12-22 | 2018-08-14 | Henkel Ag & Co. Kgaa | Liquid surfactant compositions having a modified oxo-alcohol derivative |
WO2018177936A1 (en) | 2017-03-31 | 2018-10-04 | Novozymes A/S | Polypeptides having dnase activity |
WO2018177938A1 (en) | 2017-03-31 | 2018-10-04 | Novozymes A/S | Polypeptides having dnase activity |
WO2018178061A1 (en) | 2017-03-31 | 2018-10-04 | Novozymes A/S | Polypeptides having rnase activity |
EP3385361A1 (en) | 2017-04-05 | 2018-10-10 | Henkel AG & Co. KGaA | Detergent compositions comprising bacterial mannanases |
EP3385362A1 (en) | 2017-04-05 | 2018-10-10 | Henkel AG & Co. KGaA | Detergent compositions comprising fungal mannanases |
WO2018185267A1 (en) | 2017-04-06 | 2018-10-11 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2018185269A1 (en) | 2017-04-06 | 2018-10-11 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2018185152A1 (en) | 2017-04-04 | 2018-10-11 | Novozymes A/S | Polypeptide compositions and uses thereof |
WO2018184817A1 (en) | 2017-04-06 | 2018-10-11 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2018184873A1 (en) | 2017-04-06 | 2018-10-11 | Novozymes A/S | Detergent compositions and uses thereof |
WO2018185181A1 (en) | 2017-04-04 | 2018-10-11 | Novozymes A/S | Glycosyl hydrolases |
WO2018185150A1 (en) | 2017-04-04 | 2018-10-11 | Novozymes A/S | Polypeptides |
WO2018185280A1 (en) | 2017-04-06 | 2018-10-11 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2018184816A1 (en) | 2017-04-06 | 2018-10-11 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2018185285A1 (en) | 2017-04-06 | 2018-10-11 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2018184818A1 (en) | 2017-04-06 | 2018-10-11 | Novozymes A/S | Cleaning compositions and uses thereof |
EP3401385A1 (en) | 2017-05-08 | 2018-11-14 | Henkel AG & Co. KGaA | Detergent composition comprising polypeptide comprising carbohydrate-binding domain |
WO2018206535A1 (en) | 2017-05-08 | 2018-11-15 | Novozymes A/S | Carbohydrate-binding domain and polynucleotides encoding the same |
EP3412761A1 (en) | 2017-06-07 | 2018-12-12 | Henkel AG & Co. KGaA | Anti-pilling laundry sheet |
WO2019038059A1 (en) | 2017-08-24 | 2019-02-28 | Henkel Ag & Co. Kgaa | Detergent compositions comprising gh9 endoglucanase variants ii |
WO2019038057A1 (en) | 2017-08-24 | 2019-02-28 | Novozymes A/S | Xanthan lyase variants and polynucleotides encoding same |
DE102017215015A1 (en) | 2017-08-28 | 2019-02-28 | Henkel Ag & Co. Kgaa | Method for improved expression of enzymes |
WO2019038060A1 (en) | 2017-08-24 | 2019-02-28 | Henkel Ag & Co. Kgaa | Detergent composition comprising xanthan lyase variants ii |
WO2019038058A1 (en) | 2017-08-24 | 2019-02-28 | Novozymes A/S | Gh9 endoglucanase variants and polynucleotides encoding same |
EP3453757A1 (en) | 2013-12-20 | 2019-03-13 | Novozymes A/S | Polypeptides having protease activity and polynucleotides encoding same |
CN109477042A (en) * | 2016-05-26 | 2019-03-15 | 诺维信公司 | Purposes, cleaning compositions and the method for washing of enzyme |
EP3456809A1 (en) | 2012-10-04 | 2019-03-20 | Ecolab USA, Inc. | Pre-soak technology for laundry and other hard surface cleaning |
WO2019057758A1 (en) | 2017-09-20 | 2019-03-28 | Novozymes A/S | Use of enzymes for improving water absorption and/or whiteness |
WO2019057902A1 (en) | 2017-09-22 | 2019-03-28 | Novozymes A/S | Novel polypeptides |
WO2019076800A1 (en) | 2017-10-16 | 2019-04-25 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2019081721A1 (en) | 2017-10-27 | 2019-05-02 | Novozymes A/S | Dnase variants |
DE102017125558A1 (en) | 2017-11-01 | 2019-05-02 | Henkel Ag & Co. Kgaa | CLEANING COMPOSITIONS CONTAINING DISPERSINE I |
WO2019084350A1 (en) | 2017-10-27 | 2019-05-02 | The Procter & Gamble Company | Detergent compositions comprising polypeptide variants |
DE102017125559A1 (en) | 2017-11-01 | 2019-05-02 | Henkel Ag & Co. Kgaa | CLEANSING COMPOSITIONS CONTAINING DISPERSINE II |
DE102017125560A1 (en) | 2017-11-01 | 2019-05-02 | Henkel Ag & Co. Kgaa | CLEANSING COMPOSITIONS CONTAINING DISPERSINE III |
WO2019086530A1 (en) | 2017-11-01 | 2019-05-09 | Novozymes A/S | Polypeptides and compositions comprising such polypeptides |
WO2019086528A1 (en) | 2017-11-01 | 2019-05-09 | Novozymes A/S | Polypeptides and compositions comprising such polypeptides |
WO2019086532A1 (en) | 2017-11-01 | 2019-05-09 | Novozymes A/S | Methods for cleaning medical devices |
US10329549B2 (en) | 2006-08-04 | 2019-06-25 | Bp Corporation North America Inc. | Glucanases, nucleic acids encoding them and methods for making and using them |
US10385291B2 (en) | 2016-12-22 | 2019-08-20 | Henkel Ag & Co. Kgaa | Liquid surfactant compositions and associated methods |
WO2019162000A1 (en) | 2018-02-23 | 2019-08-29 | Henkel Ag & Co. Kgaa | Detergent composition comprising xanthan lyase and endoglucanase variants |
WO2019168650A1 (en) | 2018-02-28 | 2019-09-06 | The Procter & Gamble Company | Methods of cleaning |
WO2019168649A1 (en) | 2018-02-28 | 2019-09-06 | The Procter & Gamble Company | Cleaning compositions |
WO2019180111A1 (en) | 2018-03-23 | 2019-09-26 | Novozymes A/S | Subtilase variants and compositions comprising same |
EP3553172A1 (en) | 2012-08-16 | 2019-10-16 | Novozymes A/S | Method for treating textile with endoglucanase |
WO2019201785A1 (en) | 2018-04-19 | 2019-10-24 | Novozymes A/S | Stabilized cellulase variants |
WO2019201783A1 (en) | 2018-04-19 | 2019-10-24 | Novozymes A/S | Stabilized cellulase variants |
WO2019201793A1 (en) | 2018-04-17 | 2019-10-24 | Novozymes A/S | Polypeptides comprising carbohydrate binding activity in detergent compositions and their use in reducing wrinkles in textile or fabric. |
WO2019206994A1 (en) | 2018-04-26 | 2019-10-31 | Basf Se | Lipase enzymes |
WO2020002608A1 (en) | 2018-06-29 | 2020-01-02 | Novozymes A/S | Detergent compositions and uses thereof |
WO2020002255A1 (en) | 2018-06-29 | 2020-01-02 | Novozymes A/S | Subtilase variants and compositions comprising same |
WO2020002604A1 (en) | 2018-06-28 | 2020-01-02 | Novozymes A/S | Detergent compositions and uses thereof |
WO2020007863A1 (en) | 2018-07-02 | 2020-01-09 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2020008024A1 (en) | 2018-07-06 | 2020-01-09 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2020008043A1 (en) | 2018-07-06 | 2020-01-09 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2020007875A1 (en) | 2018-07-03 | 2020-01-09 | Novozymes A/S | Cleaning compositions and uses thereof |
EP3608403A2 (en) | 2014-12-15 | 2020-02-12 | Henkel AG & Co. KGaA | Detergent composition comprising subtilase variants |
EP3611260A1 (en) | 2013-07-29 | 2020-02-19 | Novozymes A/S | Protease variants and polynucleotides encoding same |
EP2242830B2 (en) † | 2008-01-04 | 2020-03-11 | The Procter & Gamble Company | Enzyme and fabric hueing agent containing compositions |
WO2020070009A1 (en) | 2018-10-02 | 2020-04-09 | Novozymes A/S | Endonuclease 1 ribonucleases for cleaning |
WO2020070011A1 (en) | 2018-10-02 | 2020-04-09 | Novozymes A/S | Cleaning composition |
WO2020070063A2 (en) | 2018-10-01 | 2020-04-09 | Novozymes A/S | Detergent compositions and uses thereof |
WO2020070199A1 (en) | 2018-10-03 | 2020-04-09 | Novozymes A/S | Polypeptides having alpha-mannan degrading activity and polynucleotides encoding same |
WO2020070014A1 (en) | 2018-10-02 | 2020-04-09 | Novozymes A/S | Cleaning composition comprising anionic surfactant and a polypeptide having rnase activity |
WO2020070249A1 (en) | 2018-10-03 | 2020-04-09 | Novozymes A/S | Cleaning compositions |
WO2020070209A1 (en) | 2018-10-02 | 2020-04-09 | Novozymes A/S | Cleaning composition |
WO2020074499A1 (en) | 2018-10-09 | 2020-04-16 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2020074144A1 (en) | 2018-10-11 | 2020-04-16 | Henkel Ag & Co. Kgaa | Liquid composition with dihydroxyterephthalic acid diamide compound with a high surfactant quantity |
WO2020074141A1 (en) | 2018-10-11 | 2020-04-16 | Henkel Ag & Co. Kgaa | Use of transition metal-free tinting dyes in combination with catechol derivatives |
WO2020074142A1 (en) | 2018-10-11 | 2020-04-16 | Henkel Ag & Co. Kgaa | Laundry detergent composition comprising a catechol metal complex compound |
WO2020074545A1 (en) | 2018-10-11 | 2020-04-16 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2020074143A1 (en) | 2018-10-11 | 2020-04-16 | Henkel Ag & Co. Kgaa | Multi-component detergent comprising a catechol metal complex |
WO2020074140A1 (en) | 2018-10-11 | 2020-04-16 | Henkel Ag & Co. Kgaa | Liquid detergent with catechol compound |
WO2020074498A1 (en) | 2018-10-09 | 2020-04-16 | Novozymes A/S | Cleaning compositions and uses thereof |
EP3647398A1 (en) | 2018-10-31 | 2020-05-06 | Henkel AG & Co. KGaA | Cleaning compositions containing dispersins v |
EP3647397A1 (en) | 2018-10-31 | 2020-05-06 | Henkel AG & Co. KGaA | Cleaning compositions containing dispersins iv |
WO2020114965A1 (en) | 2018-12-03 | 2020-06-11 | Novozymes A/S | LOW pH POWDER DETERGENT COMPOSITION |
WO2020114968A1 (en) | 2018-12-03 | 2020-06-11 | Novozymes A/S | Powder detergent compositions |
EP3666872A1 (en) | 2018-12-12 | 2020-06-17 | Henkel AG & Co. KGaA | Phosphonated acrylic copolymers for surface hydrophilization |
WO2020127775A1 (en) | 2018-12-21 | 2020-06-25 | Novozymes A/S | Detergent pouch comprising metalloproteases |
WO2020127796A2 (en) | 2018-12-21 | 2020-06-25 | Novozymes A/S | Polypeptides having peptidoglycan degrading activity and polynucleotides encoding same |
EP3690037A1 (en) | 2014-12-04 | 2020-08-05 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
EP3702452A1 (en) | 2019-03-01 | 2020-09-02 | Novozymes A/S | Detergent compositions comprising two proteases |
WO2020188095A1 (en) | 2019-03-21 | 2020-09-24 | Novozymes A/S | Alpha-amylase variants and polynucleotides encoding same |
EP3715442A1 (en) | 2016-03-23 | 2020-09-30 | Novozymes A/S | Use of polypeptide having dnase activity for treating fabrics |
WO2020200600A1 (en) | 2019-04-04 | 2020-10-08 | Henkel Ag & Co. Kgaa | Use of a mannanase enzyme in combination with catechol derivatives |
WO2020201403A1 (en) | 2019-04-03 | 2020-10-08 | Novozymes A/S | Polypeptides having beta-glucanase activity, polynucleotides encoding same and uses thereof in cleaning and detergent compositions |
EP3722406A1 (en) | 2014-04-11 | 2020-10-14 | Novozymes A/S | Detergent composition |
WO2020207944A1 (en) | 2019-04-10 | 2020-10-15 | Novozymes A/S | Polypeptide variants |
WO2020208056A1 (en) | 2019-04-12 | 2020-10-15 | Novozymes A/S | Stabilized glycoside hydrolase variants |
EP3739029A1 (en) | 2014-07-04 | 2020-11-18 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
EP3741849A2 (en) | 2014-12-19 | 2020-11-25 | Novozymes A/S | Protease variants and polynucleotides encoding same |
EP3741848A2 (en) | 2014-12-19 | 2020-11-25 | Novozymes A/S | Protease variants and polynucleotides encoding same |
WO2021009067A1 (en) | 2019-07-12 | 2021-01-21 | Novozymes A/S | Enzymatic emulsions for detergents |
WO2021030676A1 (en) | 2019-08-14 | 2021-02-18 | Ecolab Usa Inc. | Methods of cleaning and soil release of highly oil absorbing substrates employing optimized extended chain nonionic surfactants |
EP3786269A1 (en) | 2013-06-06 | 2021-03-03 | Novozymes A/S | Alpha-amylase variants and polynucleotides encoding same |
WO2021037895A1 (en) | 2019-08-27 | 2021-03-04 | Novozymes A/S | Detergent composition |
WO2021053127A1 (en) | 2019-09-19 | 2021-03-25 | Novozymes A/S | Detergent composition |
WO2021064068A1 (en) | 2019-10-03 | 2021-04-08 | Novozymes A/S | Polypeptides comprising at least two carbohydrate binding domains |
WO2021105336A1 (en) | 2019-11-29 | 2021-06-03 | Basf Se | Compositions comprising polymer and enzyme |
WO2021122118A1 (en) | 2019-12-20 | 2021-06-24 | Henkel Ag & Co. Kgaa | Cleaning compositions comprising dispersins vi |
WO2021122117A1 (en) | 2019-12-20 | 2021-06-24 | Henkel Ag & Co. Kgaa | Cleaning composition coprising a dispersin and a carbohydrase |
WO2021123307A2 (en) | 2019-12-20 | 2021-06-24 | Novozymes A/S | Polypeptides having proteolytic activity and use thereof |
WO2021122120A2 (en) | 2019-12-20 | 2021-06-24 | Henkel Ag & Co. Kgaa | Cleaning compositions comprising dispersins viii |
WO2021121394A1 (en) | 2019-12-20 | 2021-06-24 | Novozymes A/S | Stabilized liquid boron-free enzyme compositions |
WO2021133701A1 (en) | 2019-12-23 | 2021-07-01 | The Procter & Gamble Company | Compositions comprising enzymes |
WO2021130167A1 (en) | 2019-12-23 | 2021-07-01 | Novozymes A/S | Enzyme compositions and uses thereof |
WO2021148364A1 (en) | 2020-01-23 | 2021-07-29 | Novozymes A/S | Enzyme compositions and uses thereof |
US11103118B2 (en) | 2014-08-01 | 2021-08-31 | Ecolab Usa Inc. | Method of manual surface cleaning using cleaning textiles and of washing said cleaning textiles |
EP3872175A1 (en) | 2015-06-18 | 2021-09-01 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
EP3878960A1 (en) | 2014-07-04 | 2021-09-15 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
EP3878957A1 (en) | 2014-05-27 | 2021-09-15 | Novozymes A/S | Methods for producing lipases |
EP3892708A1 (en) | 2020-04-06 | 2021-10-13 | Henkel AG & Co. KGaA | Cleaning compositions comprising dispersin variants |
WO2021204838A1 (en) | 2020-04-08 | 2021-10-14 | Novozymes A/S | Carbohydrate binding module variants |
WO2021214059A1 (en) | 2020-04-21 | 2021-10-28 | Novozymes A/S | Cleaning compositions comprising polypeptides having fructan degrading activity |
WO2021259099A1 (en) | 2020-06-24 | 2021-12-30 | Novozymes A/S | Use of cellulases for removing dust mite from textile |
EP3936593A1 (en) | 2020-07-08 | 2022-01-12 | Henkel AG & Co. KGaA | Cleaning compositions and uses thereof |
WO2022010906A1 (en) | 2020-07-06 | 2022-01-13 | Ecolab Usa Inc. | Peg-modified castor oil based compositions for microemulsifying and removing multiple oily soils |
WO2022008732A1 (en) | 2020-07-10 | 2022-01-13 | Basf Se | Enhancing the activity of antimicrobial preservatives |
WO2022010911A1 (en) | 2020-07-06 | 2022-01-13 | Ecolab Usa Inc. | Foaming mixed alcohol/water compositions comprising a structured alkoxylated siloxane |
WO2022010893A1 (en) | 2020-07-06 | 2022-01-13 | Ecolab Usa Inc. | Foaming mixed alcohol/water compositions comprising a combination of alkyl siloxane and a hydrotrope/solubilizer |
EP3950939A2 (en) | 2015-07-06 | 2022-02-09 | Novozymes A/S | Lipase variants and polynucleotides encoding same |
EP3957711A2 (en) | 2015-10-28 | 2022-02-23 | Novozymes A/S | Detergent composition comprising amylase and protease variants |
WO2022043321A2 (en) | 2020-08-25 | 2022-03-03 | Novozymes A/S | Variants of a family 44 xyloglucanase |
WO2022063699A1 (en) | 2020-09-22 | 2022-03-31 | Basf Se | Improved combination of protease and protease inhibitor with secondary enzyme |
WO2022074037A2 (en) | 2020-10-07 | 2022-04-14 | Novozymes A/S | Alpha-amylase variants |
WO2022084303A2 (en) | 2020-10-20 | 2022-04-28 | Novozymes A/S | Use of polypeptides having dnase activity |
DE102021100563A1 (en) | 2021-01-13 | 2022-07-14 | Henkel Ag & Co. Kgaa | COMPOSITION CONTAINING PERFUMES AND ENZYMES |
EP4032966A1 (en) | 2021-01-22 | 2022-07-27 | Novozymes A/S | Liquid enzyme composition with sulfite scavenger |
EP4039806A1 (en) | 2021-02-04 | 2022-08-10 | Henkel AG & Co. KGaA | Detergent composition comprising xanthan lyase and endoglucanase variants with im-proved stability |
WO2022171872A1 (en) | 2021-02-12 | 2022-08-18 | Novozymes A/S | Stabilized biological detergents |
WO2022171780A2 (en) | 2021-02-12 | 2022-08-18 | Novozymes A/S | Alpha-amylase variants |
EP4053256A1 (en) | 2021-03-01 | 2022-09-07 | Novozymes A/S | Use of enzymes for improving fragrance deposition |
WO2022189521A1 (en) | 2021-03-12 | 2022-09-15 | Novozymes A/S | Polypeptide variants |
EP4060036A1 (en) | 2021-03-15 | 2022-09-21 | Novozymes A/S | Polypeptide variants |
WO2022194673A1 (en) | 2021-03-15 | 2022-09-22 | Novozymes A/S | Dnase variants |
WO2022199418A1 (en) | 2021-03-26 | 2022-09-29 | Novozymes A/S | Detergent composition with reduced polymer content |
WO2022268885A1 (en) | 2021-06-23 | 2022-12-29 | Novozymes A/S | Alpha-amylase polypeptides |
WO2023274925A1 (en) | 2021-06-30 | 2023-01-05 | Henkel Ag & Co. Kgaa | Cleaning composition with improved anti-gray performance and/or anti-pilling performance |
WO2023274923A1 (en) | 2021-06-30 | 2023-01-05 | Henkel Ag & Co. Kgaa | Composition with improved moisture management performance |
WO2023057367A1 (en) | 2021-10-08 | 2023-04-13 | Unilever Ip Holdings B.V. | Laundry composition |
WO2023118015A1 (en) | 2021-12-21 | 2023-06-29 | Basf Se | Environmental attributes for care composition ingredients |
EP4206309A1 (en) | 2021-12-30 | 2023-07-05 | Novozymes A/S | Protein particles with improved whiteness |
WO2023144071A1 (en) | 2022-01-28 | 2023-08-03 | Unilever Ip Holdings B.V. | Laundry composition |
WO2023144110A1 (en) | 2022-01-28 | 2023-08-03 | Unilever Ip Holdings B.V. | Laundry composition |
EP4234664A1 (en) | 2022-02-24 | 2023-08-30 | Evonik Operations GmbH | Composition comprising glucolipids and enzymes |
WO2023165507A1 (en) | 2022-03-02 | 2023-09-07 | Novozymes A/S | Use of xyloglucanase for improvement of sustainability of detergents |
WO2023165950A1 (en) | 2022-03-04 | 2023-09-07 | Novozymes A/S | Dnase variants and compositions |
WO2023194204A1 (en) | 2022-04-08 | 2023-10-12 | Novozymes A/S | Hexosaminidase variants and compositions |
WO2023232194A1 (en) | 2022-06-01 | 2023-12-07 | Henkel Ag & Co. Kgaa | Detergents and cleaning agents with an improved enzyme stability |
WO2023232192A1 (en) | 2022-06-01 | 2023-12-07 | Henkel Ag & Co. Kgaa | Detergent and cleaning agent with improved enzyme stability |
DE102022205594A1 (en) | 2022-06-01 | 2023-12-07 | Henkel Ag & Co. Kgaa | PERFORMANCE-IMPROVED AND STORAGE-STABLE PROTEASE VARIANTS |
DE102022205591A1 (en) | 2022-06-01 | 2023-12-07 | Henkel Ag & Co. Kgaa | DETERGENT AND CLEANING AGENTS WITH IMPROVED ENZYME STABILITY |
WO2024020445A1 (en) | 2022-07-20 | 2024-01-25 | Ecolab Usa Inc. | Novel nonionic extended surfactants, compositions and methods of use thereof |
WO2024033135A2 (en) | 2022-08-11 | 2024-02-15 | Basf Se | Amylase variants |
WO2024033136A1 (en) | 2022-08-11 | 2024-02-15 | Basf Se | Amylase variants |
EP4324900A1 (en) | 2022-08-17 | 2024-02-21 | Henkel AG & Co. KGaA | Detergent composition comprising enzymes |
WO2024037686A1 (en) | 2022-08-16 | 2024-02-22 | Henkel Ag & Co. Kgaa | Performance-enhanced protease variants x |
DE102022208891A1 (en) | 2022-08-16 | 2024-02-22 | Henkel Ag & Co. Kgaa | PERFORMANCE IMPROVED PROTEASE VARIANTS |
WO2024037685A1 (en) | 2022-08-16 | 2024-02-22 | Henkel Ag & Co. Kgaa | Performance-enhanced protease variants ix |
DE102022208890A1 (en) | 2022-08-16 | 2024-02-22 | Henkel Ag & Co. Kgaa | PERFORMANCE IMPROVED PROTEASE VARIANTS IX |
WO2024046952A1 (en) | 2022-08-30 | 2024-03-07 | Novozymes A/S | Improvements in or relating to organic compounds |
DE102022209246A1 (en) | 2022-09-06 | 2024-03-07 | Henkel Ag & Co. Kgaa | DETERGENT AND CLEANING PRODUCT CONTAINING TANNASE II |
DE102022209245A1 (en) | 2022-09-06 | 2024-03-07 | Henkel Ag & Co. Kgaa | DETERGENT AND CLEANING PRODUCT CONTAINING TANNASE I |
WO2024088689A1 (en) | 2022-10-28 | 2024-05-02 | Henkel Ag & Co. Kgaa | Natural dye coloring with improved color intensity |
WO2024094733A1 (en) | 2022-11-04 | 2024-05-10 | Basf Se | Polypeptides having protease activity for use in detergent compositions |
WO2024094735A1 (en) | 2022-11-04 | 2024-05-10 | Basf Se | Polypeptides having protease activity for use in detergent compositions |
WO2024094732A1 (en) | 2022-11-04 | 2024-05-10 | Basf Se | Polypeptides having protease activity for use in detergent compositions |
WO2024099756A1 (en) | 2022-11-09 | 2024-05-16 | Henkel Ag & Co. Kgaa | Two-step dyeing method using natural dyes with improved color intensity |
WO2024115082A1 (en) | 2022-11-30 | 2024-06-06 | Henkel Ag & Co. Kgaa | Improved washing performance through the use of a protease fused with a special adhesion promoter peptide |
WO2024121070A1 (en) | 2022-12-05 | 2024-06-13 | Novozymes A/S | Protease variants and polynucleotides encoding same |
DE102022213537A1 (en) | 2022-12-13 | 2024-06-13 | Henkel Ag & Co. Kgaa | WASHING AND CLEANING PRODUCTS CONTAINING PROTEASE |
DE102022213538A1 (en) | 2022-12-13 | 2024-06-13 | Henkel Ag & Co. Kgaa | WASHING AND CLEANING PRODUCTS CONTAINING PROTEASE |
WO2024126483A1 (en) | 2022-12-14 | 2024-06-20 | Novozymes A/S | Improved lipase (gcl1) variants |
EP4389864A1 (en) | 2022-12-20 | 2024-06-26 | Basf Se | Cutinases |
WO2024131880A2 (en) | 2022-12-23 | 2024-06-27 | Novozymes A/S | Detergent composition comprising catalase and amylase |
DE102023200106A1 (en) | 2023-01-10 | 2024-07-11 | Henkel Ag & Co. Kgaa | ENZYME-CONTAINING WASHING AND CLEANING AGENTS |
WO2024156628A1 (en) | 2023-01-23 | 2024-08-02 | Novozymes A/S | Cleaning compositions and uses thereof |
EP4414443A1 (en) | 2023-02-09 | 2024-08-14 | Henkel AG & Co. KGaA | Cleaning composition comprising polyesterase |
WO2024175294A1 (en) | 2023-02-24 | 2024-08-29 | Henkel Ag & Co. Kgaa | Detergents and cleaning agents comprising dispersin |
WO2024175295A1 (en) | 2023-02-24 | 2024-08-29 | Henkel Ag & Co. Kgaa | Detergents and cleaning agents comprising dispersin and fragrance |
DE102023201696A1 (en) | 2023-02-24 | 2024-08-29 | Henkel Ag & Co. Kgaa | WASHING AND CLEANING PRODUCTS WITH DISPERSIN |
DE102023202218A1 (en) | 2023-03-13 | 2024-09-19 | Henkel Ag & Co. Kgaa | Indigo-based dye with improved dyeing properties |
WO2024188836A1 (en) | 2023-03-13 | 2024-09-19 | Henkel Ag & Co. Kgaa | Indigo-based dye with improved stability and improved dyeing properties |
WO2024194245A1 (en) | 2023-03-21 | 2024-09-26 | Novozymes A/S | Detergent compositions based on biosurfactants |
WO2024213513A1 (en) | 2023-04-12 | 2024-10-17 | Novozymes A/S | Compositions comprising polypeptides having alkaline phosphatase activity |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101210237B (en) * | 2006-12-30 | 2010-09-29 | 中国科学院上海生命科学研究院 | Animal endogenous interior contact-beta-1,4-dextranase and application thereof |
EP2546339B1 (en) | 2010-03-12 | 2016-09-07 | Kao Corporation | Mutated alkaline celluase |
JP5727170B2 (en) * | 2010-07-30 | 2015-06-03 | 花王株式会社 | Mutant cellulase |
WO2017037097A1 (en) * | 2015-09-01 | 2017-03-09 | Novozymes A/S | Laundry method |
KR101784665B1 (en) * | 2016-07-07 | 2017-11-07 | 고려대학교 산학협력단 | Novel β-1,6-endoglucanase for producing gentiobiose and glucose from β-glucan |
CN113215135A (en) * | 2021-06-17 | 2021-08-06 | 福建中烟工业有限责任公司 | Application of endoglucanase in improvement of cigarette raw materials |
Citations (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1368599A (en) | 1970-09-29 | 1974-10-02 | Unilever Ltd | Softening compositions |
US4683202A (en) | 1985-03-28 | 1987-07-28 | Cetus Corporation | Process for amplifying nucleic acid sequences |
EP0238023A2 (en) | 1986-03-17 | 1987-09-23 | Novo Nordisk A/S | Process for the production of protein products in Aspergillus oryzae and a promoter for use in Aspergillus |
EP0307564A2 (en) | 1987-09-15 | 1989-03-22 | Ecolab Inc. | Methods that introduce variations in color density into dyed cellulosic fabrics |
WO1990000609A1 (en) | 1988-07-08 | 1990-01-25 | The University Of British Columbia | Cellulose binding fusion proteins |
WO1991002839A1 (en) | 1989-08-25 | 1991-03-07 | Novo Nordisk A/S | Process for treatment of lignocellulosic pulp |
WO1991009129A1 (en) | 1989-12-18 | 1991-06-27 | Novo Nordisk A/S | Stable integration of dna in bacterial genomes |
EP0435876A1 (en) | 1988-09-15 | 1991-07-10 | Ecolab Inc | Compositions and methods to vary color density. |
WO1991010732A1 (en) | 1990-01-19 | 1991-07-25 | Novo Nordisk A/S | An enzyme exhibiting cellulase activity |
WO1991017244A1 (en) | 1990-05-09 | 1991-11-14 | Novo Nordisk A/S | An enzyme capable of degrading cellulose or hemicellulose |
WO1991017243A1 (en) | 1990-05-09 | 1991-11-14 | Novo Nordisk A/S | A cellulase preparation comprising an endoglucanase enzyme |
WO1992003608A1 (en) | 1990-08-24 | 1992-03-05 | Novo Nordisk A/S | Process for treatment of lignocellulosic pulp and apparatus for performance of the process |
WO1992006204A1 (en) | 1990-09-28 | 1992-04-16 | Ixsys, Inc. | Surface expression libraries of heteromeric receptors |
WO1993008275A1 (en) | 1991-10-18 | 1993-04-29 | Novo Nordisk A/S | Thermostable xylanase from a strain of rhodothermus marinus |
US5223409A (en) | 1988-09-02 | 1993-06-29 | Protein Engineering Corp. | Directed evolution of novel binding proteins |
WO1993020278A1 (en) | 1992-04-06 | 1993-10-14 | Novo Nordisk A/S | A process for defuzzing and depilling cellulosic fabrics |
WO1995009225A1 (en) | 1993-09-27 | 1995-04-06 | Novo Nordisk A/S | A composition and a method for the treatment of dyed fabric |
EP0651785A1 (en) | 1992-07-02 | 1995-05-10 | Novo Nordisk A/S | ALKALOPHILIC $i(BACILLUS sp. AC13) AND PROTEASE, XYLANASE, CELLULASE OBTAINABLE THEREFROM |
WO1995016782A1 (en) | 1993-12-17 | 1995-06-22 | Genencor International, Inc. | Novel cellulase enzymes and systems for their expression |
WO1995017413A1 (en) | 1993-12-21 | 1995-06-29 | Evotec Biosystems Gmbh | Process for the evolutive design and synthesis of functional polymers based on designer elements and codes |
WO1995022625A1 (en) | 1994-02-17 | 1995-08-24 | Affymax Technologies N.V. | Dna mutagenesis by random fragmentation and reassembly |
WO1995024471A1 (en) | 1994-03-08 | 1995-09-14 | Novo Nordisk A/S | Novel alkaline cellulases |
WO1995026398A1 (en) | 1994-03-28 | 1995-10-05 | Novo Nordisk A/S | A modified cellulase and an enzyme preparation comprising a modified cellulase |
WO1995026397A1 (en) | 1994-03-29 | 1995-10-05 | Novo Nordisk A/S | Alkaline bacillus amylase |
WO1997001629A1 (en) | 1995-06-28 | 1997-01-16 | Novo Nordisk A/S | A cellulase with reduced mobility |
JPH1113049A (en) | 1997-06-24 | 1999-01-19 | Takenaka Doboku Co Ltd | Improving method for organic soil ground |
WO2000075344A1 (en) | 1999-06-02 | 2000-12-14 | Novozymes A/S | Pectate lyase fusion for expression and secretion of polypeptides |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9505475D0 (en) * | 1995-03-17 | 1995-05-03 | Danisco | Enzyme |
DE60029955T4 (en) * | 1999-05-28 | 2007-12-27 | Novozymes A/S | NEW ENDO-BETA-1.4-GLUKANASES |
-
2002
- 2002-06-06 CN CNA028113527A patent/CN1633496A/en active Pending
- 2002-06-06 CN CN201010167246.XA patent/CN101864406B/en not_active Expired - Lifetime
- 2002-06-06 EP EP02735093.3A patent/EP1399543B1/en not_active Expired - Lifetime
- 2002-06-06 ES ES02735093.3T patent/ES2521615T3/en not_active Expired - Lifetime
- 2002-06-06 DK DK02735093.3T patent/DK1399543T3/en active
- 2002-06-06 WO PCT/DK2002/000381 patent/WO2002099091A2/en active Application Filing
- 2002-06-06 JP JP2003502201A patent/JP4242761B2/en not_active Expired - Fee Related
- 2002-06-06 MX MXPA03011194A patent/MXPA03011194A/en active IP Right Grant
- 2002-06-06 AU AU2002311012A patent/AU2002311012A1/en not_active Abandoned
Patent Citations (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1368599A (en) | 1970-09-29 | 1974-10-02 | Unilever Ltd | Softening compositions |
US4683202A (en) | 1985-03-28 | 1987-07-28 | Cetus Corporation | Process for amplifying nucleic acid sequences |
US4683202B1 (en) | 1985-03-28 | 1990-11-27 | Cetus Corp | |
EP0238023A2 (en) | 1986-03-17 | 1987-09-23 | Novo Nordisk A/S | Process for the production of protein products in Aspergillus oryzae and a promoter for use in Aspergillus |
EP0307564A2 (en) | 1987-09-15 | 1989-03-22 | Ecolab Inc. | Methods that introduce variations in color density into dyed cellulosic fabrics |
US4832864A (en) | 1987-09-15 | 1989-05-23 | Ecolab Inc. | Compositions and methods that introduce variations in color density into cellulosic fabrics, particularly indigo dyed denim |
WO1990000609A1 (en) | 1988-07-08 | 1990-01-25 | The University Of British Columbia | Cellulose binding fusion proteins |
US5223409A (en) | 1988-09-02 | 1993-06-29 | Protein Engineering Corp. | Directed evolution of novel binding proteins |
EP0435876A1 (en) | 1988-09-15 | 1991-07-10 | Ecolab Inc | Compositions and methods to vary color density. |
WO1991002839A1 (en) | 1989-08-25 | 1991-03-07 | Novo Nordisk A/S | Process for treatment of lignocellulosic pulp |
WO1991009129A1 (en) | 1989-12-18 | 1991-06-27 | Novo Nordisk A/S | Stable integration of dna in bacterial genomes |
EP0506780A1 (en) | 1989-12-18 | 1992-10-07 | Novo Nordisk As | Stable integration of dna in bacterial genomes. |
WO1991010732A1 (en) | 1990-01-19 | 1991-07-25 | Novo Nordisk A/S | An enzyme exhibiting cellulase activity |
WO1991017244A1 (en) | 1990-05-09 | 1991-11-14 | Novo Nordisk A/S | An enzyme capable of degrading cellulose or hemicellulose |
WO1991017243A1 (en) | 1990-05-09 | 1991-11-14 | Novo Nordisk A/S | A cellulase preparation comprising an endoglucanase enzyme |
WO1992003608A1 (en) | 1990-08-24 | 1992-03-05 | Novo Nordisk A/S | Process for treatment of lignocellulosic pulp and apparatus for performance of the process |
WO1992006204A1 (en) | 1990-09-28 | 1992-04-16 | Ixsys, Inc. | Surface expression libraries of heteromeric receptors |
WO1993008275A1 (en) | 1991-10-18 | 1993-04-29 | Novo Nordisk A/S | Thermostable xylanase from a strain of rhodothermus marinus |
WO1993020278A1 (en) | 1992-04-06 | 1993-10-14 | Novo Nordisk A/S | A process for defuzzing and depilling cellulosic fabrics |
EP0651785A1 (en) | 1992-07-02 | 1995-05-10 | Novo Nordisk A/S | ALKALOPHILIC $i(BACILLUS sp. AC13) AND PROTEASE, XYLANASE, CELLULASE OBTAINABLE THEREFROM |
WO1995009225A1 (en) | 1993-09-27 | 1995-04-06 | Novo Nordisk A/S | A composition and a method for the treatment of dyed fabric |
WO1995016782A1 (en) | 1993-12-17 | 1995-06-22 | Genencor International, Inc. | Novel cellulase enzymes and systems for their expression |
WO1995017413A1 (en) | 1993-12-21 | 1995-06-29 | Evotec Biosystems Gmbh | Process for the evolutive design and synthesis of functional polymers based on designer elements and codes |
WO1995022625A1 (en) | 1994-02-17 | 1995-08-24 | Affymax Technologies N.V. | Dna mutagenesis by random fragmentation and reassembly |
WO1995024471A1 (en) | 1994-03-08 | 1995-09-14 | Novo Nordisk A/S | Novel alkaline cellulases |
WO1995026398A1 (en) | 1994-03-28 | 1995-10-05 | Novo Nordisk A/S | A modified cellulase and an enzyme preparation comprising a modified cellulase |
WO1995026397A1 (en) | 1994-03-29 | 1995-10-05 | Novo Nordisk A/S | Alkaline bacillus amylase |
WO1997001629A1 (en) | 1995-06-28 | 1997-01-16 | Novo Nordisk A/S | A cellulase with reduced mobility |
JPH1113049A (en) | 1997-06-24 | 1999-01-19 | Takenaka Doboku Co Ltd | Improving method for organic soil ground |
WO2000075344A1 (en) | 1999-06-02 | 2000-12-14 | Novozymes A/S | Pectate lyase fusion for expression and secretion of polypeptides |
Non-Patent Citations (32)
Title |
---|
"Bacillus subtilis and other Gram-Positive Bacteria", 1993, AMERICAN SOCIETY FOR MICROBIOLOGY, pages: 618 |
"Current protocols in Molecular Biology", 1995, JOHN WILEY AND SONS |
"Molecular Biological Methods for Bacillus", 1990, JOHN WILEY AND SONS |
0. OUCHTERLONY: "Handbook of Experimental Immunology", 1967, BLACKWELL SCIENTIFIC PUBLICATIONS, pages: 655 - 706 |
A. JOHNSTONE, R. THORPE: "Immunochemistry in Practice", 1982, BLACKWELL SCIENTIFIC PUBLICATIONS, pages: 27 - 31 |
BOWIE, SAUER, PROC. NATL. ACAD. SCI. USA, vol. 86, 1989, pages 2152 - 2156 |
CUNNINGHAM, WELLS, SCIENCE, vol. 244, 1989, pages 1081 - 1085 |
DE VOS ET AL., SCIENCE, vol. 255, 1992, pages 306 - 312 |
DERBYSHIRE ET AL., GENE, vol. 46, 1986, pages 145 |
DIDERICHSEN, B., WEDSTED, U., HEDEGAARD, L., JENSEN, B. R., SJOHOLM, C.: "Cloning of aldB, which encodes alpha-acetolactate decarboxylase, an exoenzyme from Bacillus brevis", J. BACTERIOL., vol. 172, 1990, pages 4315 - 4321 |
DYNAN, TIJAN, NATURE, vol. 316, 1985, pages 774 - 778 |
FEINBERG, A. P., VOGELSTEIN, B., ANAL. BIOCHEM., vol. 132, 1983, pages 6 - 13 |
FORD ET AL., PROTEIN EXPRESSION AND PURIFICATION, vol. 2, 1991, pages 95 - 107 |
GILBERT, H.J., HAZLEWOOD, G.P., J. GEN. MICROBIOL., vol. 139, 1993, pages 187 - 194 |
HENRISSAT, B., BAIROCH, A.: "New families in the classification of glycosyl hydrolases based on amino acid sequence similarities", BIOCHEM. J., vol. 293, 1993, pages 781 - 788 |
HENRISSAT, B.: "A classification of glycosyl hydrolases based on amino acid sequence similarities", BIOCHEM. J., vol. 280, 1991, pages 309 - 316 |
HILTON ET AL., J. BIOL. CHEM., vol. 271, 1996, pages 4699 - 4708 |
LOWMAN ET AL., BIOCHEM., vol. 30, 1991, pages 10832 - 10837 |
MCKENZIE, T. ET AL., PLASMID, vol. 15, 1986, pages 93 - 103 |
N. AXELSEN ET AL.: "A Manual of Quantitative Immunoelectrophoresis", 1973, BLACKWELL SCIENTIFIC PUBLICATIONS |
NEEDLEMAN, S.B., WUNSCH, C.D., JOURNAL OF MOLECULAR BIOLOGY, vol. 48, 1970, pages 443 - 453 |
NER ET AL., DNA, vol. 7, 1988, pages 127 |
NILSSON ET AL., EMBO J., vol. 4, 1985, pages 1075 |
NILSSON ET AL., METHODS ENZYMOL., vol. 198, no. 3, 1991 |
P.L. JORGENSEN, GENE, vol. 96, 1990, pages 37 - 41 |
PETER TOMME ET AL.: "Cellulose-Binding Domains: Classification and Properties'' in ''Enzymatic Degradation of Insoluble Carbohydrates", 1996, ACS SYMPOSIUM SERIES |
PITCHER, D. G., SAUNDERS, N. A., OWEN, R. J: "Rapid extraction of bacterial genomic DNA with guanidium thiocyanate", LETT APPL MICROBIOL, vol. 8, 1989, pages 151 - 156 |
REIDHAAR-OLSON, SAUER, SCIENCE, vol. 241, 1988, pages 53 - 57 |
SAMBROOK ET AL.: "Molecular cloning: A laboratory manual", 1989, COLD SPRING HARBOR LAB. |
SMITH ET AL., J. MOL. BIOL., vol. 224, 1992, pages 899 - 904 |
WLODAVER ET AL., FEBS LETT., vol. 309, 1992, pages 59 - 64 |
YASBIN, R.E., WIL- SON, G.A., YOUNG, F.E.: "Transformation and transfection in lysogenic strains of Bacillus subtilis: evidence for selective induction of prophage in competent cells", J. BACTERIOL, vol. 121, 1975, pages 296 - 304 |
Cited By (386)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004053039A3 (en) * | 2002-12-11 | 2004-07-29 | Novozymes As | Detergent composition comprising endo-glucanase |
EP2311941A1 (en) * | 2002-12-11 | 2011-04-20 | Novozymes A/S | Detergent composition comprising endo-glucanase |
EP1923455A2 (en) | 2003-02-18 | 2008-05-21 | Novozymes A/S | Detergent compositions |
WO2005001064A2 (en) | 2003-06-25 | 2005-01-06 | Novozymes A/S | Polypeptides having alpha-amylase activity and polypeptides encoding same |
EP2409981A1 (en) * | 2003-07-02 | 2012-01-25 | Verenium Corporation | Glucanases, nucleic acids encoding them and methods for making and using them |
EP2404929A1 (en) * | 2003-07-02 | 2012-01-11 | Verenium Corporation | Glucanases, nucleic acids encoding them and methods for making and using them |
EP2404928A1 (en) * | 2003-07-02 | 2012-01-11 | Verenium Corporation | Glucanases, nucleic acids encoding them and methods for making and using them |
EP2404930A1 (en) * | 2003-07-02 | 2012-01-11 | Verenium Corporation | Glucanases, nucleic acids encoding them and methods for making and using them |
EP2404931A1 (en) * | 2003-07-02 | 2012-01-11 | Verenium Corporation | Glucanases, nucleic acids encoding them and methods for making and using them |
JP2011087583A (en) * | 2003-07-02 | 2011-05-06 | Verenium Corp | Glucanase, nucleic acid encoding the same, and method for making and using the same |
JP2007529993A (en) * | 2003-07-02 | 2007-11-01 | シンジェンタ パーティシペーションズ アーゲー | Glucanases, nucleic acids encoding them and methods for making and using them |
CN101370819A (en) * | 2003-07-02 | 2009-02-18 | 维莱尼姆公司 | Glucanases, nucleic acids encoding them and methods for making and using them |
CN108486086A (en) * | 2003-07-02 | 2018-09-04 | 维莱尼姆公司 | Dextranase, encode they nucleic acid and preparation and use their method |
CN103484485B (en) * | 2003-07-02 | 2017-08-15 | Bp法人北美有限公司 | Dextranase, encode they nucleic acid and preparation and use their method |
EP1641910A2 (en) * | 2003-07-02 | 2006-04-05 | Diversa Corporation | Glucanases, nucleic acids encoding them and methods for making and using them |
JP2017038598A (en) * | 2003-07-02 | 2017-02-23 | ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド | Glucanases, nucleic acids encoding them and methods for making and using them |
AU2013202671B2 (en) * | 2003-07-02 | 2016-03-03 | Bp Corporation North America Inc. | Glucanases, nucleic acids encoding them and methods for making and using them |
EP1641910A4 (en) * | 2003-07-02 | 2009-05-27 | Verenium Corp | Glucanases, nucleic acids encoding them and methods for making and using them |
US8426184B2 (en) | 2005-03-15 | 2013-04-23 | Bp Corporation North America | Cellulases, nucleic acids encoding them and methods for making and using them |
WO2007057418A1 (en) * | 2005-11-16 | 2007-05-24 | Novozymes A/S | Polypeptides having endoglucanase activity and polynucleotides encoding same |
US8309338B2 (en) | 2005-11-16 | 2012-11-13 | Novozymes A/S | Polypeptides having endoglucanase activity and polynucleotides encoding same |
US9175275B2 (en) | 2006-02-10 | 2015-11-03 | Bp Corporation North America Inc. | Celluloytic enzymes, nucleic acids encoding them and methods for making and using them |
US9127263B2 (en) | 2006-02-10 | 2015-09-08 | Bp Corporation North America Inc. | Celluloytic enzymes, nucleic acids encoding them and methods for making and using them |
US8101393B2 (en) | 2006-02-10 | 2012-01-24 | Bp Corporation North America Inc. | Cellulolytic enzymes, nucleic acids encoding them and methods for making and using them |
EP1867708A1 (en) * | 2006-06-16 | 2007-12-19 | The Procter and Gamble Company | Detergent Compositions |
EP1882731A1 (en) * | 2006-06-16 | 2008-01-30 | The Procter and Gamble Company | Detergent compositions |
WO2007144855A1 (en) * | 2006-06-16 | 2007-12-21 | The Procter & Gamble Company | Detergent compositions |
CN101473023B (en) * | 2006-06-16 | 2014-07-23 | 宝洁公司 | Detergent compositions |
EP1867708B1 (en) | 2006-06-16 | 2017-05-03 | The Procter and Gamble Company | Detergent compositions |
WO2007144857A1 (en) * | 2006-06-16 | 2007-12-21 | The Procter & Gamble Company | Detergent compositions |
EP1867707A1 (en) * | 2006-06-16 | 2007-12-19 | The Procter and Gamble Company | Detergent compositions |
WO2008007320A3 (en) * | 2006-07-07 | 2008-03-13 | Procter & Gamble | Detergent compositions |
WO2008007318A3 (en) * | 2006-07-07 | 2008-03-13 | Procter & Gamble | Detergent compositions |
WO2008007318A2 (en) * | 2006-07-07 | 2008-01-17 | The Procter & Gamble Company | Detergent compositions |
EP1876227A1 (en) * | 2006-07-07 | 2008-01-09 | The Procter and Gamble Company | Detergent Compositions |
US8846598B2 (en) | 2006-07-07 | 2014-09-30 | The Procter & Gamble Company | Composition comprising a cellulase and a bleach catalyst |
WO2008007319A3 (en) * | 2006-07-07 | 2008-05-15 | Procter & Gamble | A composition comprising a cellulase and a bleach catalyst |
WO2008007320A2 (en) * | 2006-07-07 | 2008-01-17 | The Procter & Gamble Company | Detergent compositions |
EP1876226A1 (en) | 2006-07-07 | 2008-01-09 | The Procter and Gamble Company | Detergent compositions |
US10329549B2 (en) | 2006-08-04 | 2019-06-25 | Bp Corporation North America Inc. | Glucanases, nucleic acids encoding them and methods for making and using them |
WO2008040818A1 (en) | 2006-10-06 | 2008-04-10 | Novozymes A/S | Detergent compositions and the use of enzyme combinations therein |
EP2272943A1 (en) | 2006-10-06 | 2011-01-12 | Novozymes A/S | Detergent compositions and the use of enzyme combinations therein |
US8999912B2 (en) | 2007-07-09 | 2015-04-07 | The Procter & Gamble Company | Detergent compositions |
EP2242830B2 (en) † | 2008-01-04 | 2020-03-11 | The Procter & Gamble Company | Enzyme and fabric hueing agent containing compositions |
EP2157162A1 (en) | 2008-08-13 | 2010-02-24 | The Procter and Gamble Company | Particulate bleaching composition comprising enzymes |
WO2010108000A1 (en) | 2009-03-18 | 2010-09-23 | The Procter & Gamble Company | Structured fluid detergent compositions comprising dibenzylidene polyol acetal derivatives and detersive enzymes |
WO2010108002A1 (en) | 2009-03-18 | 2010-09-23 | The Procter & Gamble Company | Structured fluid detergent compositions comprising dibenzylidene sorbitol acetal derivatives |
WO2011134809A1 (en) | 2010-04-26 | 2011-11-03 | Novozymes A/S | Enzyme granules |
EP2840134A1 (en) | 2010-04-26 | 2015-02-25 | Novozymes A/S | Enzyme granules |
DE102010063457A1 (en) | 2010-12-17 | 2012-06-21 | Henkel Ag & Co. Kgaa | Storage stable liquid washing or cleaning agent containing protease and cellulase |
WO2012080201A2 (en) | 2010-12-17 | 2012-06-21 | Henkel Ag & Co. Kgaa | Storage-stable liquid washing or cleaning agent containing protease and cellulase |
EP3260537A1 (en) | 2010-12-17 | 2017-12-27 | Basf Se | Storage-stable liquid washing or cleaning agent containing protease and cellulase |
WO2012084582A1 (en) | 2010-12-21 | 2012-06-28 | Henkel Ag & Co. Kgaa | Liquid surfactant preparation containing lipase and phosphonate |
DE102010063743A1 (en) | 2010-12-21 | 2012-06-21 | Henkel Ag & Co. Kgaa | Liquid surfactant preparation containing lipase and phosphonate |
WO2012139964A1 (en) | 2011-04-13 | 2012-10-18 | Henkel Ag & Co. Kgaa | Expression method |
DE102011007313A1 (en) | 2011-04-13 | 2012-10-18 | Henkel Ag & Co. Kgaa | expression methods |
WO2012143280A1 (en) | 2011-04-18 | 2012-10-26 | Henkel Ag & Co. Kgaa | Detergents or cleaning agents having a solid enzyme formulation |
US8927481B2 (en) | 2011-04-18 | 2015-01-06 | Henkel Ag & Co. Kgaa | Detergents or cleaning agents having a solid enzyme formulation |
DE102011007627A1 (en) | 2011-04-18 | 2012-10-18 | Henkel Ag & Co. Kgaa | Detergents or cleaning agents with solid enzyme preparation |
WO2012143315A1 (en) | 2011-04-19 | 2012-10-26 | Henkel Ag & Co. Kgaa | Phosphate-free dishwashing detergent |
DE102011007695A1 (en) | 2011-04-19 | 2012-10-25 | Henkel Ag & Co. Kgaa | Phosphate-free dishwashing detergent |
CN103608356A (en) * | 2011-04-29 | 2014-02-26 | 丹尼斯科美国公司 | Detergent compositions containing bacillus agaradhaerens mannanase and methods of use thereof |
DE102011118032A1 (en) | 2011-05-31 | 2012-12-06 | Henkel Ag & Co. Kgaa | Expression vectors for improved protein secretion |
EP3118310A1 (en) | 2011-05-31 | 2017-01-18 | Basf Se | Expression vectors for enhanced protein secretion |
WO2012163855A1 (en) | 2011-05-31 | 2012-12-06 | Henkel Ag & Co. Kgaa | Expression vectors for an improved protein secretion |
EP3527661A1 (en) | 2011-05-31 | 2019-08-21 | Basf Se | Expression vectors for enhanced protein secretion |
DE102011118037A1 (en) | 2011-06-16 | 2012-12-20 | Henkel Ag & Co. Kgaa | Dishwashing detergent with bleach catalyst and protease |
WO2012171980A1 (en) | 2011-06-16 | 2012-12-20 | Henkel Ag & Co. Kgaa | Dishwashing liquid having bleaching catalyst and protease |
EP2537918A1 (en) | 2011-06-20 | 2012-12-26 | The Procter & Gamble Company | Consumer products with lipase comprising coated particles |
WO2013003025A1 (en) | 2011-06-20 | 2013-01-03 | The Procter & Gamble Company | Consumer products with lipase comprising coated particles |
WO2012175401A2 (en) | 2011-06-20 | 2012-12-27 | Novozymes A/S | Particulate composition |
WO2013110766A1 (en) | 2012-01-26 | 2013-08-01 | Novozymes A/S | Use of polypeptides having protease activity in animal feed and detergents |
DE102012201297A1 (en) | 2012-01-31 | 2013-08-01 | Basf Se | expression methods |
WO2013113689A1 (en) | 2012-01-31 | 2013-08-08 | Basf Se | Expression method |
WO2013131964A1 (en) | 2012-03-07 | 2013-09-12 | Novozymes A/S | Detergent composition and substitution of optical brighteners in detergent compositions |
DE102012206571A1 (en) | 2012-04-20 | 2013-10-24 | Henkel Ag & Co. Kgaa | Storage-stable washing or cleaning agent with increased cleaning performance |
WO2013156396A1 (en) | 2012-04-20 | 2013-10-24 | Henkel Ag & Co. Kgaa | Storage-stable detergent or cleaning agent having increased cleaning performance |
WO2013167581A1 (en) | 2012-05-07 | 2013-11-14 | Novozymes A/S | Polypeptides having xanthan degrading activity and polynucleotides encoding same |
WO2013189972A2 (en) | 2012-06-20 | 2013-12-27 | Novozymes A/S | Use of polypeptides having protease activity in animal feed and detergents |
EP3553172A1 (en) | 2012-08-16 | 2019-10-16 | Novozymes A/S | Method for treating textile with endoglucanase |
DE102012215107A1 (en) | 2012-08-24 | 2014-02-27 | Basf Se | Solid dishwashing detergent with improved protease performance |
EP3456809A1 (en) | 2012-10-04 | 2019-03-20 | Ecolab USA, Inc. | Pre-soak technology for laundry and other hard surface cleaning |
WO2014053594A1 (en) | 2012-10-05 | 2014-04-10 | Novozymes A/S | Preventing adhesion of bacteria |
EP3176260A1 (en) | 2012-10-05 | 2017-06-07 | Novozymes A/S | Preventing adhesion of bacteria |
WO2014087011A1 (en) | 2012-12-07 | 2014-06-12 | Novozymes A/S | Preventing adhesion of bacteria |
EP3556836A1 (en) | 2012-12-07 | 2019-10-23 | Novozymes A/S | Preventing adhesion of bacteria |
DE102012224038A1 (en) | 2012-12-20 | 2014-06-26 | Henkel Ag & Co. Kgaa | Enzyme-containing granular composition, used to prepare particulate washing/cleaning agents for textiles, carpets or natural fibers, comprises enzyme containing granular particles, and enzyme free granular particles with water-soluble salt |
EP3321360A2 (en) | 2013-01-03 | 2018-05-16 | Novozymes A/S | Alpha-amylase variants and polynucleotides encoding same |
WO2014183921A1 (en) | 2013-05-17 | 2014-11-20 | Novozymes A/S | Polypeptides having alpha amylase activity |
EP3786269A1 (en) | 2013-06-06 | 2021-03-03 | Novozymes A/S | Alpha-amylase variants and polynucleotides encoding same |
WO2014207227A1 (en) | 2013-06-27 | 2014-12-31 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
WO2014207224A1 (en) | 2013-06-27 | 2014-12-31 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
WO2015001017A2 (en) | 2013-07-04 | 2015-01-08 | Novozymes A/S | Polypeptides having anti-redeposition effect and polynucleotides encoding same |
EP3309249A1 (en) | 2013-07-29 | 2018-04-18 | Novozymes A/S | Protease variants and polynucleotides encoding same |
EP3611260A1 (en) | 2013-07-29 | 2020-02-19 | Novozymes A/S | Protease variants and polynucleotides encoding same |
EP3613853A1 (en) | 2013-07-29 | 2020-02-26 | Novozymes A/S | Protease variants and polynucleotides encoding same |
WO2015049370A1 (en) | 2013-10-03 | 2015-04-09 | Novozymes A/S | Detergent composition and use of detergent composition |
EP3453757A1 (en) | 2013-12-20 | 2019-03-13 | Novozymes A/S | Polypeptides having protease activity and polynucleotides encoding same |
DE102013226835A1 (en) | 2013-12-20 | 2015-06-25 | Henkel Ag & Co. Kgaa | Detergents or cleaners with reduced surfactant content |
WO2015150457A1 (en) | 2014-04-01 | 2015-10-08 | Novozymes A/S | Polypeptides having alpha amylase activity |
EP3722406A1 (en) | 2014-04-11 | 2020-10-14 | Novozymes A/S | Detergent composition |
EP3878957A1 (en) | 2014-05-27 | 2021-09-15 | Novozymes A/S | Methods for producing lipases |
EP3760713A2 (en) | 2014-05-27 | 2021-01-06 | Novozymes A/S | Lipase variants and polynucleotides encoding same |
WO2015181119A2 (en) | 2014-05-27 | 2015-12-03 | Novozymes A/S | Lipase variants and polynucleotides encoding same |
WO2015189371A1 (en) | 2014-06-12 | 2015-12-17 | Novozymes A/S | Alpha-amylase variants and polynucleotides encoding same |
EP3739029A1 (en) | 2014-07-04 | 2020-11-18 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
EP3878960A1 (en) | 2014-07-04 | 2021-09-15 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
US11103118B2 (en) | 2014-08-01 | 2021-08-31 | Ecolab Usa Inc. | Method of manual surface cleaning using cleaning textiles and of washing said cleaning textiles |
WO2016041676A1 (en) | 2014-09-18 | 2016-03-24 | Unilever Plc | Whitening composition |
WO2016079110A2 (en) | 2014-11-19 | 2016-05-26 | Novozymes A/S | Use of enzyme for cleaning |
WO2016079305A1 (en) | 2014-11-20 | 2016-05-26 | Novozymes A/S | Alicyclobacillus variants and polynucleotides encoding same |
EP3690037A1 (en) | 2014-12-04 | 2020-08-05 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
US20170275568A1 (en) * | 2014-12-10 | 2017-09-28 | Henkel Ag & Co. Kgaa | DETERGENT OR CLEANING AGENT WITH SPECIAL a-AMYLASE AND DEFINED WATER ACTIVITY Aw |
DE102014225478A1 (en) | 2014-12-10 | 2016-06-16 | Henkel Ag & Co. Kgaa | Washing or cleaning agent with special a-amylase and defined water activity aw |
DE102014225475A1 (en) | 2014-12-10 | 2016-06-16 | Henkel Ag & Co. Kgaa | Washing or cleaning agent with special a-amylase and defined viscosity |
US10760036B2 (en) | 2014-12-15 | 2020-09-01 | Henkel Ag & Co. Kgaa | Detergent composition comprising subtilase variants |
EP3608403A2 (en) | 2014-12-15 | 2020-02-12 | Henkel AG & Co. KGaA | Detergent composition comprising subtilase variants |
WO2016096996A1 (en) | 2014-12-16 | 2016-06-23 | Novozymes A/S | Polypeptides having n-acetyl glucosamine oxidase activity |
DE102014226293A1 (en) | 2014-12-17 | 2016-06-23 | Henkel Ag & Co. Kgaa | Detergent with improved stain removal |
WO2016096575A1 (en) | 2014-12-17 | 2016-06-23 | Henkel Ag & Co. Kgaa | Textile treatment agent with improved stain removal |
DE102014226681A1 (en) | 2014-12-19 | 2016-06-23 | Henkel Ag & Co. Kgaa | Liquid surfactant composition with special surfactant combination and enzyme |
EP3741849A2 (en) | 2014-12-19 | 2020-11-25 | Novozymes A/S | Protease variants and polynucleotides encoding same |
EP3741848A2 (en) | 2014-12-19 | 2020-11-25 | Novozymes A/S | Protease variants and polynucleotides encoding same |
WO2016110379A1 (en) | 2015-01-06 | 2016-07-14 | Unilever Plc | Laundry composition |
WO2016162558A1 (en) | 2015-04-10 | 2016-10-13 | Novozymes A/S | Detergent composition |
WO2016162556A1 (en) | 2015-04-10 | 2016-10-13 | Novozymes A/S | Laundry method, use of dnase and detergent composition |
WO2016184944A1 (en) | 2015-05-19 | 2016-11-24 | Novozymes A/S | Odor reduction |
WO2016202739A1 (en) | 2015-06-16 | 2016-12-22 | Novozymes A/S | Polypeptides with lipase activity and polynucleotides encoding same |
WO2016202785A1 (en) | 2015-06-17 | 2016-12-22 | Novozymes A/S | Container |
EP4071244A1 (en) | 2015-06-18 | 2022-10-12 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
EP3872175A1 (en) | 2015-06-18 | 2021-09-01 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
EP3106508A1 (en) | 2015-06-18 | 2016-12-21 | Henkel AG & Co. KGaA | Detergent composition comprising subtilase variants |
WO2016135351A1 (en) | 2015-06-30 | 2016-09-01 | Novozymes A/S | Laundry detergent composition, method for washing and use of composition |
EP3950939A2 (en) | 2015-07-06 | 2022-02-09 | Novozymes A/S | Lipase variants and polynucleotides encoding same |
DE102015215158A1 (en) | 2015-08-07 | 2017-02-09 | Henkel Ag & Co. Kgaa | New, whiteness-enhancing detergent |
EP3127995A1 (en) | 2015-08-07 | 2017-02-08 | Henkel AG & Co. KGaA | Novel, whiteness reinforcing detergent |
DE102015215163A1 (en) | 2015-08-07 | 2017-02-09 | Henkel Ag & Co. Kgaa | Detergent with ironing aid |
DE102015215160A1 (en) | 2015-08-07 | 2017-02-09 | Henkel Ag & Co. Kgaa | New whitening-enhancing detergent |
EP3127996A1 (en) | 2015-08-07 | 2017-02-08 | Henkel AG & Co. KGaA | Washing agent with ironing aid |
DE102015215591A1 (en) | 2015-08-14 | 2017-02-16 | Henkel Ag & Co. Kgaa | Low-water, two-phase liquid detergent with acidic pH |
WO2017046260A1 (en) | 2015-09-17 | 2017-03-23 | Novozymes A/S | Polypeptides having xanthan degrading activity and polynucleotides encoding same |
WO2017046232A1 (en) | 2015-09-17 | 2017-03-23 | Henkel Ag & Co. Kgaa | Detergent compositions comprising polypeptides having xanthan degrading activity |
EP3708660A2 (en) | 2015-10-07 | 2020-09-16 | Novozymes A/S | Polypeptides |
WO2017060505A1 (en) | 2015-10-07 | 2017-04-13 | Novozymes A/S | Polypeptides |
EP4324919A2 (en) | 2015-10-14 | 2024-02-21 | Novozymes A/S | Polypeptide variants |
WO2017064269A1 (en) | 2015-10-14 | 2017-04-20 | Novozymes A/S | Polypeptide variants |
WO2017064253A1 (en) | 2015-10-14 | 2017-04-20 | Novozymes A/S | Polypeptides having protease activity and polynucleotides encoding same |
EP3957711A2 (en) | 2015-10-28 | 2022-02-23 | Novozymes A/S | Detergent composition comprising amylase and protease variants |
WO2017093318A1 (en) | 2015-12-01 | 2017-06-08 | Novozymes A/S | Methods for producing lipases |
EP3715442A1 (en) | 2016-03-23 | 2020-09-30 | Novozymes A/S | Use of polypeptide having dnase activity for treating fabrics |
WO2017174769A2 (en) | 2016-04-08 | 2017-10-12 | Novozymes A/S | Detergent compositions and uses of the same |
WO2017186943A1 (en) | 2016-04-29 | 2017-11-02 | Novozymes A/S | Detergent compositions and uses thereof |
EP3693449A1 (en) | 2016-04-29 | 2020-08-12 | Novozymes A/S | Detergent compositions and uses thereof |
CN109477042A (en) * | 2016-05-26 | 2019-03-15 | 诺维信公司 | Purposes, cleaning compositions and the method for washing of enzyme |
WO2017207762A1 (en) | 2016-06-03 | 2017-12-07 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
WO2017220422A1 (en) | 2016-06-23 | 2017-12-28 | Novozymes A/S | Use of enzymes, composition and method for removing soil |
WO2018001959A1 (en) | 2016-06-30 | 2018-01-04 | Novozymes A/S | Lipase variants and compositions comprising surfactant and lipase variant |
WO2018002261A1 (en) | 2016-07-01 | 2018-01-04 | Novozymes A/S | Detergent compositions |
WO2018007435A1 (en) | 2016-07-05 | 2018-01-11 | Novozymes A/S | Pectate lyase variants and polynucleotides encoding same |
WO2018007573A1 (en) | 2016-07-08 | 2018-01-11 | Novozymes A/S | Detergent compositions with galactanase |
WO2018011276A1 (en) | 2016-07-13 | 2018-01-18 | The Procter & Gamble Company | Bacillus cibi dnase variants and uses thereof |
WO2018011277A1 (en) | 2016-07-13 | 2018-01-18 | Novozymes A/S | Bacillus cibi dnase variants |
EP3950941A2 (en) | 2016-07-13 | 2022-02-09 | Novozymes A/S | Dnase polypeptide variants |
DE102016213567A1 (en) | 2016-07-25 | 2018-01-25 | Henkel Ag & Co. Kgaa | Propylene glycol esters as textilpflegende ingredients |
DE102016213568A1 (en) | 2016-07-25 | 2018-01-25 | Henkel Ag & Co. Kgaa | Polymers of vinylpyrrolidone and / or vinyl acetate as textilpflegende ingredients |
DE102016213569A1 (en) | 2016-07-25 | 2018-01-25 | Henkel Ag & Co. Kgaa | Acylglutamate as textilpflegende ingredients |
EP3275983A1 (en) | 2016-07-25 | 2018-01-31 | Henkel AG & Co. KGaA | Polymers of vinylpyrrolidone and/or vinylacetate as textile care agents |
EP3275982A1 (en) | 2016-07-25 | 2018-01-31 | Henkel AG & Co. KGaA | Acylglutamate as textile care ingredients |
WO2018019593A1 (en) | 2016-07-25 | 2018-02-01 | Henkel Ag & Co. Kgaa | Propylene glycol ester as fabric care constituents |
WO2018037062A1 (en) | 2016-08-24 | 2018-03-01 | Novozymes A/S | Gh9 endoglucanase variants and polynucleotides encoding same |
WO2018037064A1 (en) | 2016-08-24 | 2018-03-01 | Henkel Ag & Co. Kgaa | Detergent compositions comprising xanthan lyase variants i |
WO2018037061A1 (en) | 2016-08-24 | 2018-03-01 | Novozymes A/S | Xanthan lyase variants and polynucleotides encoding same |
WO2018037065A1 (en) | 2016-08-24 | 2018-03-01 | Henkel Ag & Co. Kgaa | Detergent composition comprising gh9 endoglucanase variants i |
WO2018060216A1 (en) | 2016-09-29 | 2018-04-05 | Novozymes A/S | Use of enzyme for washing, method for washing and warewashing composition |
WO2018077938A1 (en) | 2016-10-25 | 2018-05-03 | Novozymes A/S | Detergent compositions |
WO2018089211A1 (en) | 2016-11-08 | 2018-05-17 | Ecolab Usa Inc. | Non-aqueous cleaner for vegetable oil soils |
WO2018086846A1 (en) | 2016-11-08 | 2018-05-17 | Henkel Ag & Co. Kgaa | Surfactant composition comprising an amylase |
US11608480B2 (en) | 2016-11-08 | 2023-03-21 | Henkel Ag & Co. Kgaa | Surfactant composition comprising an amylase |
DE102016221849A1 (en) | 2016-11-08 | 2018-05-09 | Henkel Ag & Co. Kgaa | A surfactant composition containing an amylase |
WO2018099762A1 (en) | 2016-12-01 | 2018-06-07 | Basf Se | Stabilization of enzymes in compositions |
WO2018108865A1 (en) | 2016-12-12 | 2018-06-21 | Novozymes A/S | Use of polypeptides |
US10047321B2 (en) | 2016-12-22 | 2018-08-14 | Henkel Ag & Co. Kgaa | Liquid surfactant compositions having a modified oxo-alcohol derivative |
US10385291B2 (en) | 2016-12-22 | 2019-08-20 | Henkel Ag & Co. Kgaa | Liquid surfactant compositions and associated methods |
WO2018177938A1 (en) | 2017-03-31 | 2018-10-04 | Novozymes A/S | Polypeptides having dnase activity |
WO2018177936A1 (en) | 2017-03-31 | 2018-10-04 | Novozymes A/S | Polypeptides having dnase activity |
WO2018178061A1 (en) | 2017-03-31 | 2018-10-04 | Novozymes A/S | Polypeptides having rnase activity |
WO2018185152A1 (en) | 2017-04-04 | 2018-10-11 | Novozymes A/S | Polypeptide compositions and uses thereof |
WO2018185181A1 (en) | 2017-04-04 | 2018-10-11 | Novozymes A/S | Glycosyl hydrolases |
WO2018185150A1 (en) | 2017-04-04 | 2018-10-11 | Novozymes A/S | Polypeptides |
WO2018184767A1 (en) | 2017-04-05 | 2018-10-11 | Henkel Ag & Co. Kgaa | Detergent compositions comprising bacterial mannanases |
EP3385361A1 (en) | 2017-04-05 | 2018-10-10 | Henkel AG & Co. KGaA | Detergent compositions comprising bacterial mannanases |
EP3385362A1 (en) | 2017-04-05 | 2018-10-10 | Henkel AG & Co. KGaA | Detergent compositions comprising fungal mannanases |
EP3967756A1 (en) | 2017-04-06 | 2022-03-16 | Novozymes A/S | Detergent compositions and uses thereof |
EP3626809A1 (en) | 2017-04-06 | 2020-03-25 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2018185267A1 (en) | 2017-04-06 | 2018-10-11 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2018185269A1 (en) | 2017-04-06 | 2018-10-11 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2018184817A1 (en) | 2017-04-06 | 2018-10-11 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2018184873A1 (en) | 2017-04-06 | 2018-10-11 | Novozymes A/S | Detergent compositions and uses thereof |
WO2018185280A1 (en) | 2017-04-06 | 2018-10-11 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2018184816A1 (en) | 2017-04-06 | 2018-10-11 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2018185285A1 (en) | 2017-04-06 | 2018-10-11 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2018184818A1 (en) | 2017-04-06 | 2018-10-11 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2018206178A1 (en) | 2017-05-08 | 2018-11-15 | Henkel Ag & Co. Kgaa | Detergent composition comprising polypeptide comprising carbohydrate-binding domain |
WO2018206535A1 (en) | 2017-05-08 | 2018-11-15 | Novozymes A/S | Carbohydrate-binding domain and polynucleotides encoding the same |
EP3401385A1 (en) | 2017-05-08 | 2018-11-14 | Henkel AG & Co. KGaA | Detergent composition comprising polypeptide comprising carbohydrate-binding domain |
EP3412761A1 (en) | 2017-06-07 | 2018-12-12 | Henkel AG & Co. KGaA | Anti-pilling laundry sheet |
WO2019038059A1 (en) | 2017-08-24 | 2019-02-28 | Henkel Ag & Co. Kgaa | Detergent compositions comprising gh9 endoglucanase variants ii |
WO2019038057A1 (en) | 2017-08-24 | 2019-02-28 | Novozymes A/S | Xanthan lyase variants and polynucleotides encoding same |
WO2019038060A1 (en) | 2017-08-24 | 2019-02-28 | Henkel Ag & Co. Kgaa | Detergent composition comprising xanthan lyase variants ii |
WO2019038058A1 (en) | 2017-08-24 | 2019-02-28 | Novozymes A/S | Gh9 endoglucanase variants and polynucleotides encoding same |
DE102017215015A1 (en) | 2017-08-28 | 2019-02-28 | Henkel Ag & Co. Kgaa | Method for improved expression of enzymes |
WO2019057758A1 (en) | 2017-09-20 | 2019-03-28 | Novozymes A/S | Use of enzymes for improving water absorption and/or whiteness |
CN111247235A (en) * | 2017-09-20 | 2020-06-05 | 诺维信公司 | Use of enzymes to improve water absorption and/or whiteness |
WO2019057902A1 (en) | 2017-09-22 | 2019-03-28 | Novozymes A/S | Novel polypeptides |
WO2019076800A1 (en) | 2017-10-16 | 2019-04-25 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2019081721A1 (en) | 2017-10-27 | 2019-05-02 | Novozymes A/S | Dnase variants |
WO2019084350A1 (en) | 2017-10-27 | 2019-05-02 | The Procter & Gamble Company | Detergent compositions comprising polypeptide variants |
WO2019081724A1 (en) | 2017-10-27 | 2019-05-02 | Novozymes A/S | Dnase variants |
WO2019084349A1 (en) | 2017-10-27 | 2019-05-02 | The Procter & Gamble Company | Detergent compositions comprising polypeptide variants |
WO2019086526A1 (en) | 2017-11-01 | 2019-05-09 | Henkel Ag & Co. Kgaa | Cleaning compositions containing dispersins iii |
WO2019086532A1 (en) | 2017-11-01 | 2019-05-09 | Novozymes A/S | Methods for cleaning medical devices |
WO2019086521A1 (en) | 2017-11-01 | 2019-05-09 | Henkel Ag & Co. Kgaa | Cleaning compositions containing dispersins ii |
DE102017125560A1 (en) | 2017-11-01 | 2019-05-02 | Henkel Ag & Co. Kgaa | CLEANSING COMPOSITIONS CONTAINING DISPERSINE III |
WO2019086520A1 (en) | 2017-11-01 | 2019-05-09 | Henkel Ag & Co. Kgaa | Cleaning compositions containing dispersins i |
DE102017125559A1 (en) | 2017-11-01 | 2019-05-02 | Henkel Ag & Co. Kgaa | CLEANSING COMPOSITIONS CONTAINING DISPERSINE II |
DE102017125558A1 (en) | 2017-11-01 | 2019-05-02 | Henkel Ag & Co. Kgaa | CLEANING COMPOSITIONS CONTAINING DISPERSINE I |
EP4379029A1 (en) | 2017-11-01 | 2024-06-05 | Novozymes A/S | Polypeptides and compositions comprising such polypeptides |
WO2019086530A1 (en) | 2017-11-01 | 2019-05-09 | Novozymes A/S | Polypeptides and compositions comprising such polypeptides |
WO2019086528A1 (en) | 2017-11-01 | 2019-05-09 | Novozymes A/S | Polypeptides and compositions comprising such polypeptides |
WO2019162000A1 (en) | 2018-02-23 | 2019-08-29 | Henkel Ag & Co. Kgaa | Detergent composition comprising xanthan lyase and endoglucanase variants |
WO2019168650A1 (en) | 2018-02-28 | 2019-09-06 | The Procter & Gamble Company | Methods of cleaning |
WO2019168649A1 (en) | 2018-02-28 | 2019-09-06 | The Procter & Gamble Company | Cleaning compositions |
WO2019180111A1 (en) | 2018-03-23 | 2019-09-26 | Novozymes A/S | Subtilase variants and compositions comprising same |
WO2019201793A1 (en) | 2018-04-17 | 2019-10-24 | Novozymes A/S | Polypeptides comprising carbohydrate binding activity in detergent compositions and their use in reducing wrinkles in textile or fabric. |
WO2019201785A1 (en) | 2018-04-19 | 2019-10-24 | Novozymes A/S | Stabilized cellulase variants |
WO2019201783A1 (en) | 2018-04-19 | 2019-10-24 | Novozymes A/S | Stabilized cellulase variants |
WO2019206994A1 (en) | 2018-04-26 | 2019-10-31 | Basf Se | Lipase enzymes |
WO2020002604A1 (en) | 2018-06-28 | 2020-01-02 | Novozymes A/S | Detergent compositions and uses thereof |
WO2020002255A1 (en) | 2018-06-29 | 2020-01-02 | Novozymes A/S | Subtilase variants and compositions comprising same |
WO2020002608A1 (en) | 2018-06-29 | 2020-01-02 | Novozymes A/S | Detergent compositions and uses thereof |
WO2020007863A1 (en) | 2018-07-02 | 2020-01-09 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2020007875A1 (en) | 2018-07-03 | 2020-01-09 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2020008043A1 (en) | 2018-07-06 | 2020-01-09 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2020008024A1 (en) | 2018-07-06 | 2020-01-09 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2020070063A2 (en) | 2018-10-01 | 2020-04-09 | Novozymes A/S | Detergent compositions and uses thereof |
WO2020070009A1 (en) | 2018-10-02 | 2020-04-09 | Novozymes A/S | Endonuclease 1 ribonucleases for cleaning |
WO2020070011A1 (en) | 2018-10-02 | 2020-04-09 | Novozymes A/S | Cleaning composition |
WO2020070014A1 (en) | 2018-10-02 | 2020-04-09 | Novozymes A/S | Cleaning composition comprising anionic surfactant and a polypeptide having rnase activity |
WO2020070209A1 (en) | 2018-10-02 | 2020-04-09 | Novozymes A/S | Cleaning composition |
WO2020070199A1 (en) | 2018-10-03 | 2020-04-09 | Novozymes A/S | Polypeptides having alpha-mannan degrading activity and polynucleotides encoding same |
WO2020070249A1 (en) | 2018-10-03 | 2020-04-09 | Novozymes A/S | Cleaning compositions |
WO2020074498A1 (en) | 2018-10-09 | 2020-04-16 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2020074499A1 (en) | 2018-10-09 | 2020-04-16 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2020074143A1 (en) | 2018-10-11 | 2020-04-16 | Henkel Ag & Co. Kgaa | Multi-component detergent comprising a catechol metal complex |
US11560532B2 (en) | 2018-10-11 | 2023-01-24 | Henkel Ag & Co. Kgaa | Detergent composition with catechol metal complex compound |
WO2020074144A1 (en) | 2018-10-11 | 2020-04-16 | Henkel Ag & Co. Kgaa | Liquid composition with dihydroxyterephthalic acid diamide compound with a high surfactant quantity |
WO2020074141A1 (en) | 2018-10-11 | 2020-04-16 | Henkel Ag & Co. Kgaa | Use of transition metal-free tinting dyes in combination with catechol derivatives |
WO2020074142A1 (en) | 2018-10-11 | 2020-04-16 | Henkel Ag & Co. Kgaa | Laundry detergent composition comprising a catechol metal complex compound |
WO2020074545A1 (en) | 2018-10-11 | 2020-04-16 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2020074140A1 (en) | 2018-10-11 | 2020-04-16 | Henkel Ag & Co. Kgaa | Liquid detergent with catechol compound |
US11566206B2 (en) | 2018-10-11 | 2023-01-31 | Henkel Ag & Co. Kgaa | Multi-component detergent comprising catechol metal complex |
EP3647398A1 (en) | 2018-10-31 | 2020-05-06 | Henkel AG & Co. KGaA | Cleaning compositions containing dispersins v |
WO2020088958A1 (en) | 2018-10-31 | 2020-05-07 | Henkel Ag & Co. Kgaa | Cleaning compositions containing dispersins v |
EP3647397A1 (en) | 2018-10-31 | 2020-05-06 | Henkel AG & Co. KGaA | Cleaning compositions containing dispersins iv |
WO2020088957A1 (en) | 2018-10-31 | 2020-05-07 | Henkel Ag & Co. Kgaa | Cleaning compositions containing dispersins iv |
WO2020114968A1 (en) | 2018-12-03 | 2020-06-11 | Novozymes A/S | Powder detergent compositions |
WO2020114965A1 (en) | 2018-12-03 | 2020-06-11 | Novozymes A/S | LOW pH POWDER DETERGENT COMPOSITION |
EP3666872A1 (en) | 2018-12-12 | 2020-06-17 | Henkel AG & Co. KGaA | Phosphonated acrylic copolymers for surface hydrophilization |
WO2020127775A1 (en) | 2018-12-21 | 2020-06-25 | Novozymes A/S | Detergent pouch comprising metalloproteases |
WO2020127796A2 (en) | 2018-12-21 | 2020-06-25 | Novozymes A/S | Polypeptides having peptidoglycan degrading activity and polynucleotides encoding same |
EP3702452A1 (en) | 2019-03-01 | 2020-09-02 | Novozymes A/S | Detergent compositions comprising two proteases |
WO2020178102A1 (en) | 2019-03-01 | 2020-09-10 | Novozymes A/S | Detergent compositions comprising two proteases |
WO2020188095A1 (en) | 2019-03-21 | 2020-09-24 | Novozymes A/S | Alpha-amylase variants and polynucleotides encoding same |
WO2020201403A1 (en) | 2019-04-03 | 2020-10-08 | Novozymes A/S | Polypeptides having beta-glucanase activity, polynucleotides encoding same and uses thereof in cleaning and detergent compositions |
WO2020200600A1 (en) | 2019-04-04 | 2020-10-08 | Henkel Ag & Co. Kgaa | Use of a mannanase enzyme in combination with catechol derivatives |
WO2020207944A1 (en) | 2019-04-10 | 2020-10-15 | Novozymes A/S | Polypeptide variants |
WO2020208056A1 (en) | 2019-04-12 | 2020-10-15 | Novozymes A/S | Stabilized glycoside hydrolase variants |
WO2021009067A1 (en) | 2019-07-12 | 2021-01-21 | Novozymes A/S | Enzymatic emulsions for detergents |
WO2021030676A1 (en) | 2019-08-14 | 2021-02-18 | Ecolab Usa Inc. | Methods of cleaning and soil release of highly oil absorbing substrates employing optimized extended chain nonionic surfactants |
WO2021037895A1 (en) | 2019-08-27 | 2021-03-04 | Novozymes A/S | Detergent composition |
WO2021053127A1 (en) | 2019-09-19 | 2021-03-25 | Novozymes A/S | Detergent composition |
WO2021064068A1 (en) | 2019-10-03 | 2021-04-08 | Novozymes A/S | Polypeptides comprising at least two carbohydrate binding domains |
WO2021105336A1 (en) | 2019-11-29 | 2021-06-03 | Basf Se | Compositions comprising polymer and enzyme |
WO2021122117A1 (en) | 2019-12-20 | 2021-06-24 | Henkel Ag & Co. Kgaa | Cleaning composition coprising a dispersin and a carbohydrase |
WO2021122120A2 (en) | 2019-12-20 | 2021-06-24 | Henkel Ag & Co. Kgaa | Cleaning compositions comprising dispersins viii |
WO2021121394A1 (en) | 2019-12-20 | 2021-06-24 | Novozymes A/S | Stabilized liquid boron-free enzyme compositions |
WO2021123307A2 (en) | 2019-12-20 | 2021-06-24 | Novozymes A/S | Polypeptides having proteolytic activity and use thereof |
WO2021122118A1 (en) | 2019-12-20 | 2021-06-24 | Henkel Ag & Co. Kgaa | Cleaning compositions comprising dispersins vi |
WO2021133701A1 (en) | 2019-12-23 | 2021-07-01 | The Procter & Gamble Company | Compositions comprising enzymes |
WO2021130167A1 (en) | 2019-12-23 | 2021-07-01 | Novozymes A/S | Enzyme compositions and uses thereof |
WO2021148364A1 (en) | 2020-01-23 | 2021-07-29 | Novozymes A/S | Enzyme compositions and uses thereof |
EP3892708A1 (en) | 2020-04-06 | 2021-10-13 | Henkel AG & Co. KGaA | Cleaning compositions comprising dispersin variants |
WO2021204838A1 (en) | 2020-04-08 | 2021-10-14 | Novozymes A/S | Carbohydrate binding module variants |
WO2021214059A1 (en) | 2020-04-21 | 2021-10-28 | Novozymes A/S | Cleaning compositions comprising polypeptides having fructan degrading activity |
WO2021259099A1 (en) | 2020-06-24 | 2021-12-30 | Novozymes A/S | Use of cellulases for removing dust mite from textile |
WO2022010906A1 (en) | 2020-07-06 | 2022-01-13 | Ecolab Usa Inc. | Peg-modified castor oil based compositions for microemulsifying and removing multiple oily soils |
WO2022010893A1 (en) | 2020-07-06 | 2022-01-13 | Ecolab Usa Inc. | Foaming mixed alcohol/water compositions comprising a combination of alkyl siloxane and a hydrotrope/solubilizer |
WO2022010911A1 (en) | 2020-07-06 | 2022-01-13 | Ecolab Usa Inc. | Foaming mixed alcohol/water compositions comprising a structured alkoxylated siloxane |
WO2022008387A1 (en) | 2020-07-08 | 2022-01-13 | Henkel Ag & Co. Kgaa | Cleaning compositions and uses thereof |
EP3936593A1 (en) | 2020-07-08 | 2022-01-12 | Henkel AG & Co. KGaA | Cleaning compositions and uses thereof |
WO2022008732A1 (en) | 2020-07-10 | 2022-01-13 | Basf Se | Enhancing the activity of antimicrobial preservatives |
WO2022043321A2 (en) | 2020-08-25 | 2022-03-03 | Novozymes A/S | Variants of a family 44 xyloglucanase |
WO2022063699A1 (en) | 2020-09-22 | 2022-03-31 | Basf Se | Improved combination of protease and protease inhibitor with secondary enzyme |
WO2022074037A2 (en) | 2020-10-07 | 2022-04-14 | Novozymes A/S | Alpha-amylase variants |
WO2022084303A2 (en) | 2020-10-20 | 2022-04-28 | Novozymes A/S | Use of polypeptides having dnase activity |
DE102021100563A1 (en) | 2021-01-13 | 2022-07-14 | Henkel Ag & Co. Kgaa | COMPOSITION CONTAINING PERFUMES AND ENZYMES |
EP4032966A1 (en) | 2021-01-22 | 2022-07-27 | Novozymes A/S | Liquid enzyme composition with sulfite scavenger |
WO2022157311A1 (en) | 2021-01-22 | 2022-07-28 | Novozymes A/S | Liquid enzyme composition with sulfite scavenger |
EP4039806A1 (en) | 2021-02-04 | 2022-08-10 | Henkel AG & Co. KGaA | Detergent composition comprising xanthan lyase and endoglucanase variants with im-proved stability |
WO2022167251A1 (en) | 2021-02-04 | 2022-08-11 | Henkel Ag & Co. Kgaa | Detergent composition comprising xanthan lyase and endoglucanase variants with improved stability |
WO2022171872A1 (en) | 2021-02-12 | 2022-08-18 | Novozymes A/S | Stabilized biological detergents |
WO2022171780A2 (en) | 2021-02-12 | 2022-08-18 | Novozymes A/S | Alpha-amylase variants |
WO2022184568A1 (en) | 2021-03-01 | 2022-09-09 | Novozymes A/S | Use of enzymes for improving fragrance deposition |
EP4053256A1 (en) | 2021-03-01 | 2022-09-07 | Novozymes A/S | Use of enzymes for improving fragrance deposition |
WO2022189521A1 (en) | 2021-03-12 | 2022-09-15 | Novozymes A/S | Polypeptide variants |
EP4060036A1 (en) | 2021-03-15 | 2022-09-21 | Novozymes A/S | Polypeptide variants |
WO2022194668A1 (en) | 2021-03-15 | 2022-09-22 | Novozymes A/S | Polypeptide variants |
WO2022194673A1 (en) | 2021-03-15 | 2022-09-22 | Novozymes A/S | Dnase variants |
WO2022199418A1 (en) | 2021-03-26 | 2022-09-29 | Novozymes A/S | Detergent composition with reduced polymer content |
WO2022268885A1 (en) | 2021-06-23 | 2022-12-29 | Novozymes A/S | Alpha-amylase polypeptides |
WO2023274925A1 (en) | 2021-06-30 | 2023-01-05 | Henkel Ag & Co. Kgaa | Cleaning composition with improved anti-gray performance and/or anti-pilling performance |
WO2023274923A1 (en) | 2021-06-30 | 2023-01-05 | Henkel Ag & Co. Kgaa | Composition with improved moisture management performance |
WO2023057367A1 (en) | 2021-10-08 | 2023-04-13 | Unilever Ip Holdings B.V. | Laundry composition |
WO2023118015A1 (en) | 2021-12-21 | 2023-06-29 | Basf Se | Environmental attributes for care composition ingredients |
EP4206309A1 (en) | 2021-12-30 | 2023-07-05 | Novozymes A/S | Protein particles with improved whiteness |
WO2023126254A1 (en) | 2021-12-30 | 2023-07-06 | Novozymes A/S | Protein particles with improved whiteness |
WO2023144071A1 (en) | 2022-01-28 | 2023-08-03 | Unilever Ip Holdings B.V. | Laundry composition |
WO2023144110A1 (en) | 2022-01-28 | 2023-08-03 | Unilever Ip Holdings B.V. | Laundry composition |
EP4234664A1 (en) | 2022-02-24 | 2023-08-30 | Evonik Operations GmbH | Composition comprising glucolipids and enzymes |
WO2023165507A1 (en) | 2022-03-02 | 2023-09-07 | Novozymes A/S | Use of xyloglucanase for improvement of sustainability of detergents |
WO2023165950A1 (en) | 2022-03-04 | 2023-09-07 | Novozymes A/S | Dnase variants and compositions |
WO2023194204A1 (en) | 2022-04-08 | 2023-10-12 | Novozymes A/S | Hexosaminidase variants and compositions |
WO2023232193A1 (en) | 2022-06-01 | 2023-12-07 | Henkel Ag & Co. Kgaa | Detergents and cleaning agents with an improved enzyme stability |
WO2023232194A1 (en) | 2022-06-01 | 2023-12-07 | Henkel Ag & Co. Kgaa | Detergents and cleaning agents with an improved enzyme stability |
DE102022205594A1 (en) | 2022-06-01 | 2023-12-07 | Henkel Ag & Co. Kgaa | PERFORMANCE-IMPROVED AND STORAGE-STABLE PROTEASE VARIANTS |
DE102022205591A1 (en) | 2022-06-01 | 2023-12-07 | Henkel Ag & Co. Kgaa | DETERGENT AND CLEANING AGENTS WITH IMPROVED ENZYME STABILITY |
DE102022205593A1 (en) | 2022-06-01 | 2023-12-07 | Henkel Ag & Co. Kgaa | DETERGENT AND CLEANING AGENTS WITH IMPROVED ENZYME STABILITY |
DE102022205588A1 (en) | 2022-06-01 | 2023-12-07 | Henkel Ag & Co. Kgaa | DETERGENT AND CLEANING AGENTS WITH IMPROVED ENZYME STABILITY |
WO2023232192A1 (en) | 2022-06-01 | 2023-12-07 | Henkel Ag & Co. Kgaa | Detergent and cleaning agent with improved enzyme stability |
WO2024020445A1 (en) | 2022-07-20 | 2024-01-25 | Ecolab Usa Inc. | Novel nonionic extended surfactants, compositions and methods of use thereof |
WO2024033135A2 (en) | 2022-08-11 | 2024-02-15 | Basf Se | Amylase variants |
WO2024033136A1 (en) | 2022-08-11 | 2024-02-15 | Basf Se | Amylase variants |
WO2024037686A1 (en) | 2022-08-16 | 2024-02-22 | Henkel Ag & Co. Kgaa | Performance-enhanced protease variants x |
DE102022208891A1 (en) | 2022-08-16 | 2024-02-22 | Henkel Ag & Co. Kgaa | PERFORMANCE IMPROVED PROTEASE VARIANTS |
WO2024037685A1 (en) | 2022-08-16 | 2024-02-22 | Henkel Ag & Co. Kgaa | Performance-enhanced protease variants ix |
DE102022208890A1 (en) | 2022-08-16 | 2024-02-22 | Henkel Ag & Co. Kgaa | PERFORMANCE IMPROVED PROTEASE VARIANTS IX |
EP4324900A1 (en) | 2022-08-17 | 2024-02-21 | Henkel AG & Co. KGaA | Detergent composition comprising enzymes |
WO2024046952A1 (en) | 2022-08-30 | 2024-03-07 | Novozymes A/S | Improvements in or relating to organic compounds |
DE102022209246A1 (en) | 2022-09-06 | 2024-03-07 | Henkel Ag & Co. Kgaa | DETERGENT AND CLEANING PRODUCT CONTAINING TANNASE II |
EP4335922A1 (en) | 2022-09-06 | 2024-03-13 | Henkel AG & Co. KGaA | Detergent and cleaning product containing tannase i |
EP4335921A1 (en) | 2022-09-06 | 2024-03-13 | Henkel AG & Co. KGaA | Detergent and cleaning product containing tannase ii |
DE102022209245A1 (en) | 2022-09-06 | 2024-03-07 | Henkel Ag & Co. Kgaa | DETERGENT AND CLEANING PRODUCT CONTAINING TANNASE I |
WO2024088689A1 (en) | 2022-10-28 | 2024-05-02 | Henkel Ag & Co. Kgaa | Natural dye coloring with improved color intensity |
DE102022211482A1 (en) | 2022-10-28 | 2024-05-08 | Henkel Ag & Co. Kgaa | Natural dye coloring with improved color intensity |
WO2024094733A1 (en) | 2022-11-04 | 2024-05-10 | Basf Se | Polypeptides having protease activity for use in detergent compositions |
WO2024094735A1 (en) | 2022-11-04 | 2024-05-10 | Basf Se | Polypeptides having protease activity for use in detergent compositions |
WO2024094732A1 (en) | 2022-11-04 | 2024-05-10 | Basf Se | Polypeptides having protease activity for use in detergent compositions |
DE102022211856A1 (en) | 2022-11-09 | 2024-05-16 | Henkel Ag & Co. Kgaa | Two-stage dyeing process with natural dyes with improved color intensity |
WO2024099756A1 (en) | 2022-11-09 | 2024-05-16 | Henkel Ag & Co. Kgaa | Two-step dyeing method using natural dyes with improved color intensity |
WO2024115082A1 (en) | 2022-11-30 | 2024-06-06 | Henkel Ag & Co. Kgaa | Improved washing performance through the use of a protease fused with a special adhesion promoter peptide |
DE102022131732A1 (en) | 2022-11-30 | 2024-06-06 | Henkel Ag & Co. Kgaa | Improved washing performance through the use of a protease fused with a special adhesion promoter peptide |
WO2024121070A1 (en) | 2022-12-05 | 2024-06-13 | Novozymes A/S | Protease variants and polynucleotides encoding same |
DE102022213537A1 (en) | 2022-12-13 | 2024-06-13 | Henkel Ag & Co. Kgaa | WASHING AND CLEANING PRODUCTS CONTAINING PROTEASE |
DE102022213538A1 (en) | 2022-12-13 | 2024-06-13 | Henkel Ag & Co. Kgaa | WASHING AND CLEANING PRODUCTS CONTAINING PROTEASE |
WO2024125929A1 (en) | 2022-12-13 | 2024-06-20 | Henkel Ag & Co. Kgaa | Detergents and cleaning agents containing protease |
WO2024125930A1 (en) | 2022-12-13 | 2024-06-20 | Henkel Ag & Co. Kgaa | Detergents and cleaning agents containing protease |
WO2024126483A1 (en) | 2022-12-14 | 2024-06-20 | Novozymes A/S | Improved lipase (gcl1) variants |
EP4389864A1 (en) | 2022-12-20 | 2024-06-26 | Basf Se | Cutinases |
WO2024132625A1 (en) | 2022-12-20 | 2024-06-27 | Basf Se | Cutinases |
WO2024131880A2 (en) | 2022-12-23 | 2024-06-27 | Novozymes A/S | Detergent composition comprising catalase and amylase |
DE102023200106A1 (en) | 2023-01-10 | 2024-07-11 | Henkel Ag & Co. Kgaa | ENZYME-CONTAINING WASHING AND CLEANING AGENTS |
WO2024149552A1 (en) | 2023-01-10 | 2024-07-18 | Henkel Ag & Co. Kgaa | Enzyme-containing detergents and cleaning agents |
WO2024156628A1 (en) | 2023-01-23 | 2024-08-02 | Novozymes A/S | Cleaning compositions and uses thereof |
EP4414443A1 (en) | 2023-02-09 | 2024-08-14 | Henkel AG & Co. KGaA | Cleaning composition comprising polyesterase |
DE102023201696A1 (en) | 2023-02-24 | 2024-08-29 | Henkel Ag & Co. Kgaa | WASHING AND CLEANING PRODUCTS WITH DISPERSIN |
WO2024175295A1 (en) | 2023-02-24 | 2024-08-29 | Henkel Ag & Co. Kgaa | Detergents and cleaning agents comprising dispersin and fragrance |
WO2024175294A1 (en) | 2023-02-24 | 2024-08-29 | Henkel Ag & Co. Kgaa | Detergents and cleaning agents comprising dispersin |
DE102023201692A1 (en) | 2023-02-24 | 2024-08-29 | Henkel Ag & Co. Kgaa | WASHING AND CLEANING PRODUCTS WITH DISPERSIN AND FRAGRANCE |
DE102023201695A1 (en) | 2023-02-24 | 2024-08-29 | Henkel Ag & Co. Kgaa | WASHING AND CLEANING PRODUCTS WITH DISPERSIN |
WO2024175293A1 (en) | 2023-02-24 | 2024-08-29 | Henkel Ag & Co. Kgaa | Detergents and cleaning agents comprising dispersin |
DE102023202218A1 (en) | 2023-03-13 | 2024-09-19 | Henkel Ag & Co. Kgaa | Indigo-based dye with improved dyeing properties |
WO2024188836A1 (en) | 2023-03-13 | 2024-09-19 | Henkel Ag & Co. Kgaa | Indigo-based dye with improved stability and improved dyeing properties |
DE102023202220A1 (en) | 2023-03-13 | 2024-09-19 | Henkel Ag & Co. Kgaa | Indigo-based dye with improved stability and dyeing properties |
WO2024188833A1 (en) | 2023-03-13 | 2024-09-19 | Henkel Ag & Co. Kgaa | Indigo-based dyeing agent with improved dyeing properties |
WO2024194245A1 (en) | 2023-03-21 | 2024-09-26 | Novozymes A/S | Detergent compositions based on biosurfactants |
WO2024213513A1 (en) | 2023-04-12 | 2024-10-17 | Novozymes A/S | Compositions comprising polypeptides having alkaline phosphatase activity |
Also Published As
Publication number | Publication date |
---|---|
AU2002311012A1 (en) | 2002-12-16 |
EP1399543A2 (en) | 2004-03-24 |
JP4242761B2 (en) | 2009-03-25 |
CN1633496A (en) | 2005-06-29 |
CN101864406B (en) | 2016-03-30 |
JP2004536593A (en) | 2004-12-09 |
ES2521615T3 (en) | 2014-11-13 |
WO2002099091A3 (en) | 2003-04-10 |
MXPA03011194A (en) | 2004-02-26 |
EP1399543B1 (en) | 2014-08-13 |
DK1399543T3 (en) | 2014-11-03 |
CN101864406A (en) | 2010-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7041488B2 (en) | Endo-beta-1,4-glucanase from bacillus | |
EP1399543B1 (en) | Endo-beta-1,4-glucanase | |
US8501448B2 (en) | Family 44 xyloglucanases | |
US6207436B1 (en) | Endo-B-1,4-glucanases from saccharothrix | |
EP1259594B1 (en) | Family 44 xyloglucanases | |
EP1002060B1 (en) | Alkaline xyloglucanase | |
EP1185631B9 (en) | Novel endo-beta-1,4-glucanases | |
EP0972016B1 (en) | A thermostable endo-beta-1,4-glucanase | |
US7256030B1 (en) | Family 9 endo-β-1,4-glucanases | |
MXPA99011756A (en) | Alkaline xyloglucanase |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2002735093 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10479446 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: PA/a/2003/011194 Country of ref document: MX Ref document number: 2003502201 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 028113527 Country of ref document: CN |
|
WWP | Wipo information: published in national office |
Ref document number: 2002735093 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |