WO2002085830A1 - Process for producing bisphenol a - Google Patents

Process for producing bisphenol a Download PDF

Info

Publication number
WO2002085830A1
WO2002085830A1 PCT/JP2002/003540 JP0203540W WO02085830A1 WO 2002085830 A1 WO2002085830 A1 WO 2002085830A1 JP 0203540 W JP0203540 W JP 0203540W WO 02085830 A1 WO02085830 A1 WO 02085830A1
Authority
WO
WIPO (PCT)
Prior art keywords
acetone
bisphenol
exchange resin
acid
mercaptan
Prior art date
Application number
PCT/JP2002/003540
Other languages
French (fr)
Japanese (ja)
Inventor
Masahiro Iwahara
Original Assignee
Idemitsu Petrochemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co., Ltd. filed Critical Idemitsu Petrochemical Co., Ltd.
Publication of WO2002085830A1 publication Critical patent/WO2002085830A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/11Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms
    • C07C37/20Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms using aldehydes or ketones

Definitions

  • the present invention relates to bisphenol A [2,2-bis (4-hydroxyphenol)]. More specifically, in the production of bisphenol A by condensing phenol and acetone using an acid-type ion-exchange resin catalyst partially modified with an iodamine compound, the mercaptan compound
  • the present invention relates to a method for stably producing bisphenol A at a high conversion by suppressing a decrease in catalytic activity due to methanol, which is an impurity in acetone, by adding the compound.
  • Bisphenol A is known to be an important compound as a raw material for engineering plastics such as polycarbonate resin and polyarylate resin, or as a raw material for epoxy resins, and the demand for bisphenol A has been increasing in recent years.
  • This bisphenol A is produced by condensing excess phenol and acetone in the presence of an acidic catalyst and optionally a cocatalyst such as a sulfur compound.
  • an acidic catalyst used in this reaction, inorganic mineral acids such as sulfuric acid and hydrogen chloride have been used in the past, but cation exchange resins have recently attracted attention (UK Patent No. 842209). No. 8,495,655 and No. 8,339,91), which have been used industrially.
  • alkyl mercaptans having or not having a substituent such as methyl mercaptan, ethyl mercaptan, and thiodaricholic acid are known to be effective (US Patent No. 235 No. 242, specification No. 2,775,620). These mercaptans have the effect of increasing the reaction rate and increasing the selectivity.
  • 2- (2-hydroxyphenyl) -12- (4-hydroxyphenyl) propane (o, ⁇ '-isomer) is mainly produced as a reaction by-product, and other trisphenols are produced. And polyphenols are generated.
  • raw materials such as polycarbonate resin and polyarylate resin
  • bisphenol / A with high purity and low content of these by-products is required.
  • mercaptans are used as a co-catalyst to increase the reaction rate, suppress the generation of the by-products, and increase the selectivity.
  • an acid-type ion exchange resin partially modified with an iodiamine-containing compound is known.
  • bisphenol A is produced by condensing phenol and acetone with this modified acid-type ion-exchange resin as a catalyst
  • methanol which is an impurity in acetone. Occurs. Therefore, in order to solve such a problem, a method has been proposed in which a small amount of water is present in the reaction raw material to suppress the decrease in the catalyst activity (Japanese Patent Application Laid-Open No. HEI 6-172722).
  • the reaction raw material is purified in advance, and the impurities in the raw material, R—X (R is an alkyl group, a ⁇ enyl group, a cycloalkyl group or a cycloalkenyl group, and X is ⁇ , a halogen atom,
  • R—X R is an alkyl group, a ⁇ enyl group, a cycloalkyl group or a cycloalkenyl group, and X is ⁇ , a halogen atom
  • the present invention provides a method for producing bisphenol by condensing phenol and acetone using an acid-type ion-exchange resin catalyst partially modified with an iodiamine-containing compound. It is an object of the present invention to provide a method for stably producing bisphenol A at a high conversion rate while suppressing a decrease in catalytic activity due to methanol, Things.
  • the present inventor has conducted intensive studies to achieve the above object, and as a result, using a catalyst in which the modification rate of an acid-type ion exchange resin partially modified with an iodiamin compound is in a specific range, a mercaptan compound is prepared. It has been found that the purpose can be achieved by the addition. The present invention has been completed based on such findings.
  • the methanol concentration in acetone is 4%.
  • the modified acid-type ion exchange resin having a modification ratio of 15 to 50 mol% is used, and a mercaptan compound is added.
  • the modification rate in the present invention means a molar modification rate of an acid-type ion-exchange resin with a sulfonic acid group-containing diamine compound.
  • the method of the present invention is a method for producing bisphenol A by condensing phenol and acetone with an acid-type ion-exchange resin partially modified with an iodiamine-containing compound as a catalyst
  • the base acid-type ion exchange resin used in the modified acid-type ion-exchange resin is not particularly limited, and those conventionally used as a catalyst for bisphenol A can be used. Accordingly, a strongly acidic sulfonic acid type ion exchange resin is preferred.
  • the sulfonic acid type ion exchange resin is not particularly limited as long as it is a strongly acidic ion exchange resin having a sulfonic acid group.
  • examples thereof include a sulfonated styrene-dibutylbenzene copolymer, a sulfonated crosslinked styrene polymer, and phenol formaldehyde sulfone.
  • Acid resins, benzene formaldehyde sulfonic acid resins and the like can be mentioned.
  • the iodiamine-containing compound used for the partial modification of the acid-type ion-exchange resin is not particularly limited, and any one of conventionally known compounds that can be used for the modification of the acid-type ion-exchange resin is used. Can be appropriately selected and used.
  • diamine compound examples include 3-mercaptomethyl pyridine, 3- (2 Mercaptoalkylpyridines such as 1-mercaptoethyl) pyridine, 4- (2-mercaptoethyl) pyridine, and mercaptoalkylamines such as 2-mercaptoethylamine, 3-mercaptopropylamine, and 4-mercaptobutylamine Thiazolidine, 2,2-dimethylthiazolidine, thiazolidines such as 2-methyl-2-phenylthiazolidine, 3-methylthiazolidine, and aminothiophenols such as 4-aminothiophenol, and the like.
  • 4- (2-mercaptoethyl) pyridine, 2-mercaptoethylamine and 2,2-dimethylthiazolidine are preferred.
  • iodiamine-containing compounds may be in a free form, or may be in the form of an addition salt of an acidic substance such as hydrochloric acid or a quaternary ammonium salt.
  • the method for partially modifying the above-mentioned base acid-type ion-exchange resin using these iodiamine-containing compounds can be modified by reacting an acid-type ion exchange resin with an iodamine compound in a suitable solvent, preferably an aqueous solvent such as water, so as to obtain a desired modification rate.
  • a suitable solvent preferably an aqueous solvent such as water
  • the reaction may be carried out at room temperature or, if necessary, with heating.
  • a sulfonic acid group as an ion exchange group reacts with an amino group in the ioamine compound, and an io group is introduced into a part of the ion exchange group to be modified.
  • a modified acid-type ion exchange resin having a modification ratio of 15 to 50 mol% is used when the methanol concentration in the raw material acetone is 400 to 700,000 weight ppin. .
  • the present inventors have used an acid-type ion-exchange resin partially modified with an iodamine-containing compound as a catalyst for condensation of phenol and acetone!
  • the sulfonic acid group acts as a catalyst
  • methanol which is an impurity in acetone, reacts with the mercapto group of the iodiamine-containing compound in the modified acid-type ion-exchange resin to form methyl sulfide.
  • methanol which is an impurity in acetone
  • a small amount of a mercaptan compound is added to the reaction system, and the mercaptan compound is reacted with methanol, which is an impurity in acetone, to react the mercapto group of the thiopamine-containing compound in the modified acid-type ion exchange resin with methanol. By suppressing it, the catalyst life can be prolonged.
  • Examples of the mercaptan compound include methyl mercaptan, ethyl mercaptan, n-cap pinolemercaptan, i-propinolemenolecaptan, n-ptinolemenorecaptan, sec-butyl mercaptan, t-butyltinolemenorecaptan, Alkyl mercaptans having 1 to 10 carbon atoms, such as pentinoremercaptan, hexyl menolecaptan, heptylmercaptan, octylmenolecaptan, nonolemenolecaptan, and decylmercaptan, are among these. Alkyl mercaptans having 1 to 3 carbon atoms are preferred.
  • the amount of the mercaptan compound to be added is preferably 1/20 to 1Z500 (molar ratio), preferably 1 to 50 to 1/400 (molar ratio) based on acetone.
  • the addition amount can be arbitrarily changed according to the methanol concentration in the raw material acetone, the reaction state of acetone and phenol, and the degree of deterioration of the modified acid-type ion exchange resin catalyst.
  • the methanol concentration is high or the degree of deterioration of the catalyst is severe, the added amount of the mercaptan compound increases.
  • the addition of the mercaptan compound of the present invention not only has the effect of extending the catalyst life, but also promotes the reaction of forming bisphenol A by the cocatalytic effect of the mercaptan compound, thereby improving the overall catalytic activity.
  • the water content of phenol as a raw material is generally 500 to 100 ppm in a reagent or an industrial product.
  • the water content of the raw material acetone is also included in the range of 100 to 300 ppm.
  • the use ratio of phenol and acetone is not particularly limited, but the amount of unreacted acetone is reduced from the viewpoint of easy purification and economical efficiency of the produced bisphenol A. It is desirable to have as little as possible, and it is therefore advantageous to use the phenol in excess of the stoichiometric amount.
  • the reaction solvent is generally not required, except that the reaction liquid is reacted at a low temperature at which the viscosity of the reaction liquid is too high or the solidification hardens the operation.
  • the condensation reaction between phenol and acetone in the present invention is carried out by continuously supplying phenol and acetone to a reactor filled with an acid-type ion-exchange resin partially modified with the above-described iodamine-containing compound.
  • a fixed bed continuous reaction system can be used. In this case, one reactor may be used, or two or more reactors may be arranged in series or in parallel.
  • the acetone / phenol molar ratio is usually selected in the range of 1/30 to 1Z3, preferably 1/20 to 1/5. If the molar ratio is less than 1/30, the reaction rate may be too slow. If the molar ratio is more than 1 Z3, the generation of impurities may increase, and the selectivity of bisphenol A tends to decrease.
  • the method of supplying the phenol, acetone and mercaptan compound to the reactor is not particularly limited, but it is preferable to separately supply the acetone and mercaptan compound to each reactor.
  • the reaction temperature is selected in the range of usually 40 to 150 ° C, preferably 55 to 100 ° C. If the temperature is lower than 40 ° C, the reaction rate is low, and the viscosity of the reaction solution is extremely high. In some cases, the reaction solution may be solidified. If the temperature exceeds 150 ° C, the reaction control becomes difficult, and bisphenol The selectivity of A ( ⁇ , 'one) decreases, and the modified acid-type ion-exchange The fat may decompose or deteriorate.
  • the LHSV (liquid hourly space velocity) of the raw material mixture is usually selected in the range of 0.2 to 30 hr—preferably 0.5 to 20 hr— 1 .
  • the reaction mixture coming out of the reactor is subjected to a post-treatment by a known method, and bisphenol A is taken out.
  • concentration is performed prior to crystallization.
  • the concentration conditions are not particularly limited, but the concentration is usually performed at a temperature of 130 to 170 ° C and a pressure of 13 to 53 kPa. If the temperature is lower than 130 ° C, a high vacuum is required. If the temperature is higher than 1 ⁇ 0 ° C, impurities may increase or coloring may occur.
  • the concentration of bisphenol A in the concentrated residual liquid is advantageously in the range of 25 to 40 weight 0/0. If the concentration is less than 25% by weight, the recovery of bisphenol A is low, and if it exceeds 40% by weight, it becomes difficult to transfer the slurry after crystallization.
  • Crystallization of the adduct of bisphenol A and phenol from the concentrated residue is usually carried out by vacuum cooling crystallization, which utilizes the latent heat of water evaporation under reduced pressure.
  • vacuum cooling crystallization method about 3 to 20% by weight of water is added to the concentrated residue, and crystallization is performed at a normal temperature of 40 to 70 ° C and a pressure of 3 to 13 kPa. Processing is performed. If the amount of water added is less than 3% by weight, the heat removal ability is not sufficient, and the weight is 20%. If the ratio exceeds / 0 , the dissolution opening of bisphenol A becomes large, which is not preferable. If the crystallization temperature is lower than 40 ° C, the viscosity of the crystallized liquid may increase or solidify. If it exceeds 70 ° C, the dissolution loss of bisphenol A increases, which is not preferable.
  • the thus-crystallized adduct of bisphenol A and phenol is separated by a known method, and is usually washed with phenol.
  • the washed adduct is separated into bisphenol A and phenol.
  • the temperature is usually selected in the range of 130 to 200 ° C, preferably in the range of 150 to 180 ° C.
  • Orientation pressure is usually selected in the range of 3 to 20 kPa.
  • Bisphenol A obtained by this separation treatment is substantially completely removed by a method such as steam stripping to remove residual phenol therein, thereby obtaining high-quality bisphenol A.
  • a sulfonic acid type ion-exchange resin denatured with 20 mol% of 2-mercaptoethylamine as a catalyst [Mitsubishi Chemical Corporation Product name: DIAION SK-104H] 69.3 Milliliter (swelled with water) was filled. The two reactors were connected in series.
  • the first-stage reactor was charged with 277 milliliters of phenol and the first and second stages were charged with 500 ppm by weight of methanol and 1/400 ppm of ethyl mercaptan (vs. The reaction was carried out while maintaining the reaction temperature at 75 ° C. by dividing and passing acetonitrile containing 15.6 tons / mole ratio (15.6 torr / mol).
  • Example 1 a sulfonic acid type ion-exchange resin (described above) modified with 2,2-dimethylthiazolidine at 25 mol% was used as a catalyst, and methanol (1000 ppm by weight) and ethyl mercaptan (1/20) were used. The procedure was performed in the same manner as in Example 1 except that the acetone was changed to 0 (molar ratio to acetone).
  • Example 1 a sulfonic acid-type ion-exchange resin (described above) modified with 2,2-dimethylthiazolidine at 25 mol% was used as a catalyst, and methanol 5,000 weight 111 and ethyl mercaptan 1/1 were used. The procedure was performed in the same manner as in Example 1 except that the acetone was changed to include acetone (molar ratio to acetone).
  • Example 1 a sulfonic acid type ion-exchange resin (described above) modified with 45 mol% of 2,2-dimethylthiazolidine was used as a catalyst, and methanol 5,000 weight 111 and ethyl mercaptan 1/50 were used. (Mole ratio to acetone) The procedure was performed in the same manner as in Example 1 except that the acetone was changed to include acetone.
  • Example 1 a sulfonic acid type ion-exchange resin (described above) denatured by 30 mol% with 4 _ (2-mercaptoethyl) pyridine was used as a catalyst. The procedure was carried out in the same manner as in Example 1 except that the acetone was changed to contain ethyl mercaptan 1/200 (molar ratio to acetone).
  • Example 1 a sulfonic acid-type ion-exchange resin (described above) modified with 2-mercaptoethylamine by 10 mol% was used as a catalyst, and was changed to acetone containing 1,000,000 ppm by weight of methanol. Except for the above, the procedure was the same as in Example 1.
  • Example 1 was carried out in the same manner as in Example 1 except that acetone containing 5,000 weight ppm of methanol was used.
  • Example 1 a sulfonic acid-type ion-exchange resin (described above) modified with 2,2-dimethylthiazolidine at 25 mol% was used as the catalyst, and the catalyst was changed to acetone containing 100,000 weight-methanol.
  • a sulfonic acid-type ion-exchange resin (described above) modified with 2,2-dimethylthiazolidine at 25 mol% was used as the catalyst, and the catalyst was changed to acetone containing 100,000 weight-methanol.
  • Example 1 using 4 i (2 Merukaputechiru) pyridine 7 mole 0/0 denatured sulphonic acid type ion-exchange resin (supra) as a catalyst, the Aseton containing methanol 4, 0 0 0 weight m Except having changed, it carried out similarly to Example 1.
  • Example 1 As the catalyst, 1 6 mole at 2-dimethyl-thiazolidine 0/0 denatured Example 2 except that the sulfonic acid type ion-exchange resin (described above) was used, and the acetone was changed to contain 200,000 wt.% Methanol and ethyl mercaptan 1Z400 (molar ratio to acetone). This was performed in the same manner as in 1.
  • Bisphenol A when bisphenol A is produced by condensing phenol and acetone using an acid-type ion exchange resin catalyst partially modified with an iodiamine-containing compound, by adding a mercaptan compound, Bisphenol A can be stably produced at a high conversion rate by suppressing a decrease in catalytic activity due to methanol, which is an impurity of phenol.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

A process for producing bisphenol A which comprises condensing phenol with acetone using as a catalyst an acid-form ion-exchange resin partially modified with a sulfurized amine compound, characterized in that when the acetone has a methanol concentration of 400 to 7,000 weight ppm, then the modified acid-form ion-exchange resin is one having a degree of modification of 15 to 50 mol% and a mercaptan compound (preferably ethyl mercaptan) is added. Due to the addition of the mercaptan compound, the catalytic activity can be inhibited from being reduced by the methanol contained as an impurity in the acetone. Thus, bisphenol A can be produced with a high conversion and high selectivity.

Description

明 細 書 ビスフヱノール Aの製造方法  Description Bisphenol A Production Method
技術分野 Technical field
本発明は、 ビスフエノール A 〔2, 2—ビス (4ーヒ ドロキシフエ二ノレ) プロノヽ。 ン〕 の製造方法の改良に関し、 更に詳しくは、 含ィォゥァミン化合物で部分的に変性 した酸型イオン交換樹脂触媒を用い、 フエノールとアセトンを縮合させてビスフエノ ール Aを製造するに際し、 メルカプタン化合物を添加することにより、 アセトン中の 不純物であるメタノールによる触媒活性の低下を抑え、 高い転化率でビスフエノール Aを安定して製造する方法に関するものである。 背景技術  The present invention relates to bisphenol A [2,2-bis (4-hydroxyphenol)]. More specifically, in the production of bisphenol A by condensing phenol and acetone using an acid-type ion-exchange resin catalyst partially modified with an iodamine compound, the mercaptan compound The present invention relates to a method for stably producing bisphenol A at a high conversion by suppressing a decrease in catalytic activity due to methanol, which is an impurity in acetone, by adding the compound. Background art
ビスフエノール Aはポリカーポネ一ト樹脂ゃポリアリレート樹脂などのエンジニア リングプラスチック、 あるいはエポキシ樹脂などの原料として重要な化合物であるこ とが知られており、 近年その需要はますます増大する傾向にある。  Bisphenol A is known to be an important compound as a raw material for engineering plastics such as polycarbonate resin and polyarylate resin, or as a raw material for epoxy resins, and the demand for bisphenol A has been increasing in recent years.
このビスフエノール Aは、 酸性触媒及び場合により用いられる硫黄化合物などの助 触媒の存在下に、 過剰のフエノールとアセトンとを縮合させることにより製造される。 この反応において用いられる酸触媒としては、 従来、 硫酸や塩化水素などの無機鉱 酸が用いられていたが、 近年、 陽イオン交換樹脂が注目され (英国特許第 8 4 2 2 0 9号明細書、 同第 8 4 9 5 6 5号明細書、 同第 8 8 3 3 9 1号明細書) 、 工業的に用 いられるようになった。  This bisphenol A is produced by condensing excess phenol and acetone in the presence of an acidic catalyst and optionally a cocatalyst such as a sulfur compound. As the acid catalyst used in this reaction, inorganic mineral acids such as sulfuric acid and hydrogen chloride have been used in the past, but cation exchange resins have recently attracted attention (UK Patent No. 842209). No. 8,495,655 and No. 8,339,91), which have been used industrially.
一方、 助触媒として用いられる硫黄化合物としては、 メチルメルカブタン、 ェチル メルカプタン、 チォダリコール酸などの置換基を有する若しくは有しないアルキルメ ルカブタン類が有効であることが知られている (米国特許第 2 3 5 9 2 4 2号明細書、 同第 2 7 7 5 6 2 0号明細書) 。 このメルカプタン類は、 反応速度を上げるとともに、 選択率を向上させる作用を有している。 例えば、 ビスフエノール Aの製造において、 反応副生物として、 主に 2— (2—ヒ ドロキシフエニル) 一 2— (4—ヒ ドロキシフ ェニル) プロパン (o , ρ ' —体) が生成し、 その他トリスフェノール、 ポリフヱノ ールなどが生成する。 特に、 ポリカーポネ^ "ト樹脂やポリアリレート榭脂などの原料 として用いる場合、 これらの副生物の含有量が少なく、 着色のない高純度のビスフエ /ール Aが要求される。 このため、 反応速度を上げるとともに、 上記副生物の生成を 抑え、 選択率を高めるために、 助触媒としてメルカプタン類が用いられる。 On the other hand, as the sulfur compound used as a cocatalyst, alkyl mercaptans having or not having a substituent such as methyl mercaptan, ethyl mercaptan, and thiodaricholic acid are known to be effective (US Patent No. 235 No. 242, specification No. 2,775,620). These mercaptans have the effect of increasing the reaction rate and increasing the selectivity. For example, in the production of bisphenol A, 2- (2-hydroxyphenyl) -12- (4-hydroxyphenyl) propane (o, ρ'-isomer) is mainly produced as a reaction by-product, and other trisphenols are produced. And polyphenols are generated. In particular, raw materials such as polycarbonate resin and polyarylate resin When used, bisphenol / A with high purity and low content of these by-products is required. For this reason, mercaptans are used as a co-catalyst to increase the reaction rate, suppress the generation of the by-products, and increase the selectivity.
近年、 上記陽イオン交換樹脂とメルカブタン類を併用する代わりに、 触媒として、 酸型イオン交換樹脂のスルホン酸基の一部にィォゥ含有基を導入してなる各種の変性 酸型イオン交換樹脂を用いることが行われている。  In recent years, instead of using the above-mentioned cation exchange resin and mercaptans in combination, various modified acid-type ion-exchange resins obtained by introducing an i-containing group into a part of the sulfonic acid groups of the acid-type ion-exchange resin are used as a catalyst. That is being done.
この変性酸型イオン交換樹脂の一つとして、 含ィォゥァミン化合物で部分的に変性 した酸型イオン交換樹脂が知られている。 しかしながら、 この変性酸型イオン交換榭 脂を触媒とし、 フ nノールとァセトンを縮合させてビスフエノール Aを製造する場合、 ァセトン中の不純物であるメタノールによって、 該触媒の活性が低下するという問題 が生じる。 そこで、 このような問題を解決するために、 反応原料中に少量の水を存在 させることにより、 該触媒活性の低下を抑制する方法が提案されている (特開平 6— 1 7 2 2 4 1号公報、 特開平 1 0— 1 7 5 8 9 8号公報、 特開平 1 0— 2 5 1 1 7 9 号公報、 特開平 1 0— 2 5 1 1 8 0号公報) 。 しかしながら、 この方法においては、 水による触媒活性の低下が新たに生じるため、 触媒活性の低下を抑制する効果が充分 に発揮されず、 必ずしも満足レ得る方法とはいえない。  As one of the modified acid-type ion exchange resins, an acid-type ion exchange resin partially modified with an iodiamine-containing compound is known. However, when bisphenol A is produced by condensing phenol and acetone with this modified acid-type ion-exchange resin as a catalyst, there is a problem that the activity of the catalyst is reduced by methanol, which is an impurity in acetone. Occurs. Therefore, in order to solve such a problem, a method has been proposed in which a small amount of water is present in the reaction raw material to suppress the decrease in the catalyst activity (Japanese Patent Application Laid-Open No. HEI 6-172722). Japanese Patent Application Laid-Open No. H10-175898, Japanese Patent Application Laid-Open No. H10-251,179, Japanese Patent Application Laid-Open No. H10-210,180). However, in this method, since the catalytic activity is newly decreased by water, the effect of suppressing the catalytic activity is not sufficiently exhibited, and it cannot be said that the method is necessarily satisfactory.
一方、 反応原料を予め精製処理し、 該原料中の不純物である R— X ( Rはアルキル 基、 ア^^ケニル基、 シクロアルキル基又はシクロアルケニル基、 Xは Ο Η、 ハロゲン 原子、 カルポキシレート基、 サルフェート基又はスルホネート基) で表される化合物 の含有量を 0 . 1重量%未満に低減する方法が提案されている (特開平 6— 2 5 0 4 7号公報) 。  On the other hand, the reaction raw material is purified in advance, and the impurities in the raw material, R—X (R is an alkyl group, a ^^ enyl group, a cycloalkyl group or a cycloalkenyl group, and X is Ο, a halogen atom, A method for reducing the content of the compound represented by the formula (1), a sulfate group or a sulfonate group to less than 0.1% by weight has been proposed (JP-A-6-25047).
しかしながら、 この方法は、 予め原料のフエノール及びアセトンを精製処理しなけ ればならず、 原料の精製工程が増え、 必ずしも満足し得る方法とはいえない。  However, in this method, phenol and acetone as raw materials must be purified in advance, and the number of steps for purifying the raw materials increases, which is not always a satisfactory method.
発明の開示 Disclosure of the invention
本発明は、 このような状況下で、 含ィォゥァミン化合物で部分的に変性した酸型ィ オン交換樹脂触媒を用い、 フエノールとアセトンを縮合させてビスフエノール Αを製 造するに際し、 ァセトン中の不純物であるメタノールによる触媒活性の低下を抑え、 高い転化率でビスフ ノール Aを安定して製造する方法を提供することを目的とする ものである。 Under such circumstances, the present invention provides a method for producing bisphenol by condensing phenol and acetone using an acid-type ion-exchange resin catalyst partially modified with an iodiamine-containing compound. It is an object of the present invention to provide a method for stably producing bisphenol A at a high conversion rate while suppressing a decrease in catalytic activity due to methanol, Things.
本発明の他の目的は、 明細書の後述の記載から明らかである。  Other objects of the present invention will be apparent from the following description of the specification.
本発明者は、 前記目的を達成するために鋭意研究を重ねた結果、 含ィォゥァミン化 合物で部分的に変性した酸型イオン交換樹脂の変性率が特定範囲にある触媒を用い、 メルカプタン化合物を添加することにより、 その目的を達成し得ることを見出した。 本発明は、 かかる知見に基づいて完成したものである。  The present inventor has conducted intensive studies to achieve the above object, and as a result, using a catalyst in which the modification rate of an acid-type ion exchange resin partially modified with an iodiamin compound is in a specific range, a mercaptan compound is prepared. It has been found that the purpose can be achieved by the addition. The present invention has been completed based on such findings.
すなわち、 本発明は、 含ィォゥァミン化合物で部分的に変性した酸型イオン交換樹 脂を触媒とし、 フ ノールとアセトンを縮合させてビスフエノール Aを製造するに当 たり、 アセトン中のメタノール濃度が 4 0 0〜7 0 0 0重量 p p mの場合、 上記変性 酸型イオン交換樹脂として変性率 1 5〜5 0モル%のものを用い、 メルカプタン化合 物を添加することを特徴とするビスフ; nノール Aの製造方法を提供するものである。 なお、 本発明における変性率とは、 酸型イオン交換樹脂のスルホン酸基の含ィォゥァ ミン化合物によるモル変性率を意味する。 発明を実施するための最良の形態  That is, in the present invention, when an acid-type ion exchange resin partially modified with an iodiamine-containing compound is used as a catalyst, and phenol and acetone are condensed to produce bisphenol A, the methanol concentration in acetone is 4%. In the case of 0 to 700 ppm by weight, the modified acid-type ion exchange resin having a modification ratio of 15 to 50 mol% is used, and a mercaptan compound is added. Is provided. The modification rate in the present invention means a molar modification rate of an acid-type ion-exchange resin with a sulfonic acid group-containing diamine compound. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の方法は、 触媒として、 含ィォゥァミン化合物で部分的に変性した酸型ィォ ン交換榭脂を用い、 フエノールとアセトンとを縮合させ、 ビスフエノール Aを製造す る方法であって、 上記変性酸型イオン交換榭脂に用いられるベースの酸型イオン交換 樹脂としては、 特に制限はなく、 従来ビスフエノール Aの触媒として慣用されている ものを用いることができるが、 特に触媒活性などの点から、 強酸性であるスルホン酸 型イオン交換樹脂が好適である。  The method of the present invention is a method for producing bisphenol A by condensing phenol and acetone with an acid-type ion-exchange resin partially modified with an iodiamine-containing compound as a catalyst, The base acid-type ion exchange resin used in the modified acid-type ion-exchange resin is not particularly limited, and those conventionally used as a catalyst for bisphenol A can be used. Accordingly, a strongly acidic sulfonic acid type ion exchange resin is preferred.
該スルホン酸型イオン交換樹脂については、 スルホン酸基を有する強酸性イオン交 換榭脂であれば特に制限はなく、 例えばスルホン化スチレン一ジビュルベンゼンコポ リマー、 スルホン化架橋スチレンポリマー、 フエノールホルムアルデヒ ドースルホン 酸樹脂、 ベンゼンホルムアルデヒ ドースルホン酸樹脂などを挙げることができる。 一方、 上記酸型イオン交換榭脂の部分変性に用いられる含ィォゥァミン化合物とし ては特に制限はなく、 酸型イオン交換樹脂の変性に用いることのできる従来公知の化 合物の中から任意のものを適宜選択して用いることができる。  The sulfonic acid type ion exchange resin is not particularly limited as long as it is a strongly acidic ion exchange resin having a sulfonic acid group. Examples thereof include a sulfonated styrene-dibutylbenzene copolymer, a sulfonated crosslinked styrene polymer, and phenol formaldehyde sulfone. Acid resins, benzene formaldehyde sulfonic acid resins and the like can be mentioned. On the other hand, the iodiamine-containing compound used for the partial modification of the acid-type ion-exchange resin is not particularly limited, and any one of conventionally known compounds that can be used for the modification of the acid-type ion-exchange resin is used. Can be appropriately selected and used.
該含ィォゥアミン化合物の例としては、 3—メルカプトメチルビリジン、 3— ( 2 一メルカプトェチル) ピリジン、 4― ( 2—メルカプトェチル) ピリジンなどのメル カプトアルキルピリジン類、 2—メルカプトェチルァミン、 3—メルカプトプロピル ァミン、 4—メルカプトブチルアミンなどのメルカプトアルキルァミン類、 チアゾリ ジン、 2 , 2 _ジメチルチアゾリジン、 2—メチルー 2—フエ二ルチアゾリジン、 3 ーメチルチアゾリジンなどのチアゾリジン類、 4一アミノチオフエノ一ルなどのアミ ノチオフエノ一ル類などが挙げられるが、 これらの中で、 4 - ( 2—メルカプトェチ ル) ピリジン、 2 _メルカプトェチルァミン及び 2 , 2—ジメチルチアゾリジンが好 ましい。 Examples of the diamine compound include 3-mercaptomethyl pyridine, 3- (2 Mercaptoalkylpyridines such as 1-mercaptoethyl) pyridine, 4- (2-mercaptoethyl) pyridine, and mercaptoalkylamines such as 2-mercaptoethylamine, 3-mercaptopropylamine, and 4-mercaptobutylamine Thiazolidine, 2,2-dimethylthiazolidine, thiazolidines such as 2-methyl-2-phenylthiazolidine, 3-methylthiazolidine, and aminothiophenols such as 4-aminothiophenol, and the like. Among them, 4- (2-mercaptoethyl) pyridine, 2-mercaptoethylamine and 2,2-dimethylthiazolidine are preferred.
これらの含ィォゥァミン化合物は、 遊離の形態であってもよく、 塩酸などの酸性物 質の付加塩や第四級アンモニゥム塩などの形態であってもよい。  These iodiamine-containing compounds may be in a free form, or may be in the form of an addition salt of an acidic substance such as hydrochloric acid or a quaternary ammonium salt.
これらの含ィォゥァミン化合物を用いて、 前述のベースとなる酸型イオン交換樹脂 を部分変性する方法としては特に制限はなく、 従来公知の方法を用いることができる。 例えば、 適当な溶媒、 好ましくは水などの水性溶媒中において、 酸型イオン交換樹 脂と含ィォゥァミン化合物を、 所望の変性率になるように反応させることによって、 変性することができる。 反応は常温で行ってもよく、 必要ならば加温して行ってもよ い。 この反応により、 イオン交換基であるスルホン酸基と含ィォゥァミン化合物の中 のァミノ基とが反応し、 イオン交換基の一部にィォゥ含有基が導入され、 変性される。 本発明の方法においては、 原料のァセトン中のメタノール濃度が 4 0 0〜 7 0 0 0 重量 p p inの場合、 変性率が 1 5〜5 0モル%の変性酸型イオン交換樹脂が用いられ る。  There is no particular limitation on the method for partially modifying the above-mentioned base acid-type ion-exchange resin using these iodiamine-containing compounds, and a conventionally known method can be used. For example, it can be modified by reacting an acid-type ion exchange resin with an iodamine compound in a suitable solvent, preferably an aqueous solvent such as water, so as to obtain a desired modification rate. The reaction may be carried out at room temperature or, if necessary, with heating. By this reaction, a sulfonic acid group as an ion exchange group reacts with an amino group in the ioamine compound, and an io group is introduced into a part of the ion exchange group to be modified. In the method of the present invention, a modified acid-type ion exchange resin having a modification ratio of 15 to 50 mol% is used when the methanol concentration in the raw material acetone is 400 to 700,000 weight ppin. .
本発明者は、 フエノールとアセトンの縮合触媒として、 含ィォゥァミン化合物で部 分的に変性した酸型ィオン交換榭脂を用!/、る場合、 変性酸型ィオン交換樹脂中の未変 性部分のスルホン酸基が触媒となり、 アセトン中の不純物であるメタノールが、 該変 性酸型ィオン交換榭脂中の含ィォゥアミン化合物のメルカプト基と反応して、 メチル スフィ ドが生成するために、 その触媒活性が低下することを見出した。  The present inventors have used an acid-type ion-exchange resin partially modified with an iodamine-containing compound as a catalyst for condensation of phenol and acetone! The sulfonic acid group acts as a catalyst, and methanol, which is an impurity in acetone, reacts with the mercapto group of the iodiamine-containing compound in the modified acid-type ion-exchange resin to form methyl sulfide. Was found to decrease.
つまり、 反応系に微量のメルカプタン化合物を添加し、 メルカプタン化合物とァセ トン中の不純物であるメタノールと反応させ、 変性酸型イオン交換樹脂中の含ィォゥ ァミン化合物のメルカプト基とメタノールとの反応を抑制することにより、 触媒寿命 を長くすることができる。 メルカプタン化合物としては、 メチルメルカプタン、 ェチルメルカプタン、 n—プ 口ピノレメルカプタン、 i 一プロピノレメノレカプタン、 n—プチノレメノレカブタン、 s e c —ブチルメルカプタン、 t一プチノレメノレカプタン、 ペンチノレメルカプタン、 へキシル メノレカブタン、 ヘプチルメルカブタンン、 ォクチルメノレカプタン、 ノュノレメノレカプタ ン、 デシルメルカプタンなどの炭素数 1〜1 0のアルキルメルカプタン類が挙げられ るが、 これらの中で、 炭素数 1〜3のアルキルメルカプタン類が好ましい。 That is, a small amount of a mercaptan compound is added to the reaction system, and the mercaptan compound is reacted with methanol, which is an impurity in acetone, to react the mercapto group of the thiopamine-containing compound in the modified acid-type ion exchange resin with methanol. By suppressing it, the catalyst life can be prolonged. Examples of the mercaptan compound include methyl mercaptan, ethyl mercaptan, n-cap pinolemercaptan, i-propinolemenolecaptan, n-ptinolemenorecaptan, sec-butyl mercaptan, t-butyltinolemenorecaptan, Alkyl mercaptans having 1 to 10 carbon atoms, such as pentinoremercaptan, hexyl menolecaptan, heptylmercaptan, octylmenolecaptan, nonolemenolecaptan, and decylmercaptan, are among these. Alkyl mercaptans having 1 to 3 carbon atoms are preferred.
メルカプタン化合物の添加量としては、 その添加量がァセトンに対し 1/ 2 0〜lZ 5 0 0 (モル比) 、 好ましくは 1ノ 5 0〜1/ 4 0 0 (モル比) がよい。  The amount of the mercaptan compound to be added is preferably 1/20 to 1Z500 (molar ratio), preferably 1 to 50 to 1/400 (molar ratio) based on acetone.
添加量は、 原料のアセトン中のメタノール濃度、 アセトンとフエノールの反応状況、 変性酸型ィォン交換樹脂触媒の劣化度合いに応じ、 任意に変更することができる。 メタノール濃度が高い場合や触媒の劣化度合いが激しい場合には、 メルカプタン化合 物の添加量は多くなる。  The addition amount can be arbitrarily changed according to the methanol concentration in the raw material acetone, the reaction state of acetone and phenol, and the degree of deterioration of the modified acid-type ion exchange resin catalyst. When the methanol concentration is high or the degree of deterioration of the catalyst is severe, the added amount of the mercaptan compound increases.
本発明のメルカプタン化合物の添加は、 触媒寿命を延長する効果の他、 メルカプタ ン化合物の助触媒効果によりビスフエノール A生成反応も促進し、 全体的な触媒活性 が向上することになる。  The addition of the mercaptan compound of the present invention not only has the effect of extending the catalyst life, but also promotes the reaction of forming bisphenol A by the cocatalytic effect of the mercaptan compound, thereby improving the overall catalytic activity.
本発明においては、 原料中の水分は 5 0 0〜5 0 0 0重量 p p m程度の割合で含有 するものを用いることができる。  In the present invention, it is possible to use a raw material containing water at a ratio of about 500 to 500,000 weight ppm.
ところで、 原料のフエノールの水分量は、 試薬又は工業品には一般的に 5 0 0〜1 0 0 0 p p m含まれている。 原料のァセトンの水分量も同様に 1 0 0 0〜3 0 0 0 p p m含まれている。  By the way, the water content of phenol as a raw material is generally 500 to 100 ppm in a reagent or an industrial product. Similarly, the water content of the raw material acetone is also included in the range of 100 to 300 ppm.
又、 プロセス的には過剰量のフエノールと未反応のァセトンを回収しリサイクルさ せるが、 上記のような水分にするのはかなりの精製が必要である。 このビスフエノー ル Aの反応では、 生成物のビスフエノール Aと等モルの水が発生する。 例えば、 原 料としてァセトン フエノール = 1/ 1 0 (モル比) の条件において、 アセトンの 2 0 %の転化率で 4 0 0 0 p p m程度、 5 0 %の転化率で 9 0 0 0 p p m程度、 7 0 % の転化率で 1 3 0 0 0 p p m程度の水濃度となる。 つまり、 原料中の水分量が 5 0 0〜2 0 0 0 p p m程度のときは、 上記のように反応により生成する水の方が多い為、 反応成績には殆ど影響がなレ、。  In process, excess phenol and unreacted acetone are collected and recycled, but the above-mentioned water requires considerable purification. In this reaction of bisphenol A, water is produced in an equimolar amount with the product bisphenol A. For example, under the condition of acetone phenol = 1/10 (molar ratio) as a raw material, about 4.0 ppm of acetone at a conversion of 20%, about 900 ppm at a conversion of 50%, At a conversion of 70%, the water concentration is about 1300 ppm. In other words, when the amount of water in the raw material is about 500 to 2000 ppm, the amount of water generated by the reaction is larger as described above, and the reaction result is hardly affected.
実際、 0 . 0 5〜0 . 2 %の水分添加では、 メタノールの影響の抑制効果は殆どな い。 しかし、 水分は目的物であるビスフエノール Aの生成を抑制し、 0 . 4 %程度以 上原料中に存在すると大きな活性低下につながる。 In fact, with the addition of 0.05 to 0.2% water, the effect of methanol No. However, water suppresses the production of the target substance, bisphenol A, and if it is present in the raw material in an amount of about 0.4% or more, the activity is greatly reduced.
本発明のビスフエノー/レ Aの製造方法においては、 フエノールとァセトンとの使用 割合は特に制限はないが、 生成するビスフヱノール Aの精製の容易さや経済性などの 点から、 未反応のアセトンの量はできるだけ少ないことが望ましく、 したがって、 フ ェノールを化学量論的量よりも過剰に用いるのが有利である。  In the process for producing bisphenol A / re A according to the present invention, the use ratio of phenol and acetone is not particularly limited, but the amount of unreacted acetone is reduced from the viewpoint of easy purification and economical efficiency of the produced bisphenol A. It is desirable to have as little as possible, and it is therefore advantageous to use the phenol in excess of the stoichiometric amount.
通常、 アセトン 1モル当たり、 通常 3〜 3 0モル、 好ましくは 5〜 2 0モルのフエ ノールが用いられる。  Usually, 3 to 30 moles, preferably 5 to 20 moles, of phenol are used per mole of acetone.
又、 このビスフエノール Aの製造においては、 反応溶媒は、 反応液の粘度が高過ぎ たり、 凝固して運転が困難になるような低温で反応させる以外は、 一般に必要ではな レ、。  In the production of bisphenol A, the reaction solvent is generally not required, except that the reaction liquid is reacted at a low temperature at which the viscosity of the reaction liquid is too high or the solidification hardens the operation.
本発明におけるフエノールとァセトンとの縮合反応は、 前述の含ィォゥァミン化合 物で部分的に変性した酸型イオン交換樹脂を充填した反応器に、 フ ノールとァセト ンを連続的に供給して反応させる固定床連続反応方式を用いることができる。 この際、 反応器は 1基でもよく、 又 2基以上を直列又は並列に配置してもよい。  The condensation reaction between phenol and acetone in the present invention is carried out by continuously supplying phenol and acetone to a reactor filled with an acid-type ion-exchange resin partially modified with the above-described iodamine-containing compound. A fixed bed continuous reaction system can be used. In this case, one reactor may be used, or two or more reactors may be arranged in series or in parallel.
工業的には、 該変性酸型イオン交換樹脂を充填した反応器を 2基以上直列に連結し、 固定床多段連続反応方式を採用するのが、 特に有利である。  Industrially, it is particularly advantageous to employ a fixed-bed multistage continuous reaction system in which two or more reactors filled with the modified acid-type ion exchange resin are connected in series.
この固定床連続反応方式における反応条件について説明する。  The reaction conditions in this fixed bed continuous reaction system will be described.
まず、 アセトン/フエノールモル比は、 通常 1 / 3 0〜1 Z 3、 好ましくは 1 / 2 0〜1ノ5の範囲で選ばれる。 このモル比が 1 / 3 0より小さい場合、 反応速度が遅 くなりすぎるおそれがあり、 1 Z 3より大きいと不純物の生成が多くなり、 ビスフエ ノール Aの選択率が低下する傾向がある。  First, the acetone / phenol molar ratio is usually selected in the range of 1/30 to 1Z3, preferably 1/20 to 1/5. If the molar ratio is less than 1/30, the reaction rate may be too slow. If the molar ratio is more than 1 Z3, the generation of impurities may increase, and the selectivity of bisphenol A tends to decrease.
本発明においては、 フエノール、 アセトン及びメルカプタン化合物の反応器への供 給方法は特に制限はないが、 アセトン及びメルカブタン化合物を各反応器に分割供給 することが好ましい。  In the present invention, the method of supplying the phenol, acetone and mercaptan compound to the reactor is not particularly limited, but it is preferable to separately supply the acetone and mercaptan compound to each reactor.
又、 反応温度は、 通常4 0〜1 5 0 °0、 好ましくは 5 5〜1 0 0 °Cの範囲で選ばれ る。 該温度が 4 0 °C未満では反応速度が遅い上、 反応液の粘度が極めて高く、 場合に より、 固化するおそれがあり、 1 5 0 °Cを超えると反応制御が困難となり、 かつビス フエノール A ( ρ, ' 一体) の選択率が低下する上、 触媒の変性酸型イオン交換樹 脂が分解又は劣化することがある。 The reaction temperature is selected in the range of usually 40 to 150 ° C, preferably 55 to 100 ° C. If the temperature is lower than 40 ° C, the reaction rate is low, and the viscosity of the reaction solution is extremely high. In some cases, the reaction solution may be solidified.If the temperature exceeds 150 ° C, the reaction control becomes difficult, and bisphenol The selectivity of A (ρ, 'one) decreases, and the modified acid-type ion-exchange The fat may decompose or deteriorate.
更に、 原料混合物の LHSV (液時空間速度) は、 通常 0. 2〜30 h r— 好 ましくは 0. 5〜 20 h r— 1の範囲で選ばれる。 Further, the LHSV (liquid hourly space velocity) of the raw material mixture is usually selected in the range of 0.2 to 30 hr—preferably 0.5 to 20 hr— 1 .
本発明の方法においては、 反応器から出てきた反応混合物は、 公知の方法により後 処理が施され、 ビスフエノール Aが取り出される。 次に、 この後処理の一例について 説明すると、 まず晶析に先立って濃縮を行う。 濃縮条件については特に制限はないが、 通常温度 1 30〜1 70°C、 圧力 1 3〜5 3 k P aの条件で濃縮が行われる。 温度が 1 30°C未満では高真空が必要となり、 1 Ί 0°Cを超えると不純物が増加したり、 着 色の原因となる。 又、 濃縮残液のビスフエノール Aの濃度は 25〜40重量0 /0の範囲 にあるのが有利である。 この濃度が 25重量%未満ではビスフエノール Aの回収率が 低く、 40重量%を超えると晶析後のスラリ一の移送が困難となる。 In the method of the present invention, the reaction mixture coming out of the reactor is subjected to a post-treatment by a known method, and bisphenol A is taken out. Next, an example of this post-treatment will be described. First, concentration is performed prior to crystallization. The concentration conditions are not particularly limited, but the concentration is usually performed at a temperature of 130 to 170 ° C and a pressure of 13 to 53 kPa. If the temperature is lower than 130 ° C, a high vacuum is required. If the temperature is higher than 1Ί0 ° C, impurities may increase or coloring may occur. The concentration of bisphenol A in the concentrated residual liquid is advantageously in the range of 25 to 40 weight 0/0. If the concentration is less than 25% by weight, the recovery of bisphenol A is low, and if it exceeds 40% by weight, it becomes difficult to transfer the slurry after crystallization.
濃縮残液からのビスフヱノール Aとフヱノールの付加物の晶析は、 通常減圧下で水 の蒸発潜熱を利用して冷却する真空冷却晶析法によって行われる。 この真空冷却晶析 法においては、 該濃縮残液に、 水を 3〜2 0重量%程度添加し、 通常温度 4 0〜7 0°C、 圧力 3〜 1 3 k P aの条件で晶析処理が行われる。 上記水の添加量が 3重量% 未満では除熱能力が十分ではなく、 20重量。 /0を超えるとビスフエノール Aの溶解口 スが大きくなり、 好ましくない。 又晶析温度が 40°C未満では晶析液の粘度の増大や 固化をもたらすおそれがあり、 70°Cを超えるとビスフエノール Aの溶解ロスが大き くなり、 好ましくない。 Crystallization of the adduct of bisphenol A and phenol from the concentrated residue is usually carried out by vacuum cooling crystallization, which utilizes the latent heat of water evaporation under reduced pressure. In this vacuum cooling crystallization method, about 3 to 20% by weight of water is added to the concentrated residue, and crystallization is performed at a normal temperature of 40 to 70 ° C and a pressure of 3 to 13 kPa. Processing is performed. If the amount of water added is less than 3% by weight, the heat removal ability is not sufficient, and the weight is 20%. If the ratio exceeds / 0 , the dissolution opening of bisphenol A becomes large, which is not preferable. If the crystallization temperature is lower than 40 ° C, the viscosity of the crystallized liquid may increase or solidify. If it exceeds 70 ° C, the dissolution loss of bisphenol A increases, which is not preferable.
次に、 このようにして晶析されたビスフエノール Aとフエノールの付加物は、 公知 の方法により分離したのち、 通常、 フエノールにより洗浄処理が施される。 次いで、 洗浄処理された付加物をビスフヱノール Aとフヱノールとに分離処理するが、 この場 合、 温度は通常 1 30〜200°C、 好ましくは 1 50〜 1 80 °Cの範囲で選ばれ、 一 方圧力は通常 3〜 20 k P aの範囲で選定される。  Next, the thus-crystallized adduct of bisphenol A and phenol is separated by a known method, and is usually washed with phenol. Next, the washed adduct is separated into bisphenol A and phenol. In this case, the temperature is usually selected in the range of 130 to 200 ° C, preferably in the range of 150 to 180 ° C. Orientation pressure is usually selected in the range of 3 to 20 kPa.
この分離処理により得られたビスフエノール Aは、 その中の残留フエノールをスチ 一ムストリッピングなどの方法により、 実質上完全に除去することによって、 高品質 のビスフエノール Aが得られる。  Bisphenol A obtained by this separation treatment is substantially completely removed by a method such as steam stripping to remove residual phenol therein, thereby obtaining high-quality bisphenol A.
次に、 本発明を実施例により、 更に詳しく説明するが、 本発明は、 これらの例によ つてなんら限定されるものではない。 実施例 1 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. Example 1
内径 1 2 m:m、 高さ 1 2 0 0 mmの充填層式の反応器に、 触媒として 2—メルカプ トェチルアミ ンにて 2 0モル%変性したスルホン酸型イオン交換樹脂 〔三菱化学 (株) 製、 商品名 : ダイヤイオン S K— 1 0 4 H〕 6 9 . 3 ミ リ リ ッ トル (水で膨 潤) を充填した。 この反応器を 2基直列に連結した。  In a packed bed reactor with an inner diameter of 12 m: m and a height of 1200 mm, a sulfonic acid type ion-exchange resin denatured with 20 mol% of 2-mercaptoethylamine as a catalyst [Mitsubishi Chemical Corporation Product name: DIAION SK-104H] 69.3 Milliliter (swelled with water) was filled. The two reactors were connected in series.
第 1段目の反応器に、 フエノール 2 7 7ミリ リツ トル 時間を、 第 1段目と第 2段 目にそれぞれメタノール 5 0 0重量 p p m及ぴェチルメルカプタン 1/ 4 0 0 (対ァ セ トンモル比) を含むァセトン 1 5 . 6 ミ リ リ ツ トルノ時間を分割、 通液し、 反応温 度を 7 5 °Cに保持して反応を行った。  The first-stage reactor was charged with 277 milliliters of phenol and the first and second stages were charged with 500 ppm by weight of methanol and 1/400 ppm of ethyl mercaptan (vs. The reaction was carried out while maintaining the reaction temperature at 75 ° C. by dividing and passing acetonitrile containing 15.6 tons / mole ratio (15.6 torr / mol).
反応混合物を経時的に分析し、 フエノールの転化率を求めた、 その結果を第 1表に 示す。  The reaction mixture was analyzed over time to determine the conversion of phenol. The results are shown in Table 1.
実施例 2  Example 2
実施例 1において、 触媒として 2, 2—ジメチルチアゾリジンにて 2 5モル%変性 したスルホン酸型イオン交換樹脂 (前出) を用い、 メタノール 1 , 0 0 0重量p p m 及びェチルメルカプタン 1/ 2 0 0 (対ァセトンモル比) を含むァセトンに変更した 以外は、 実施例 1 と同様にして実施した。  In Example 1, a sulfonic acid type ion-exchange resin (described above) modified with 2,2-dimethylthiazolidine at 25 mol% was used as a catalyst, and methanol (1000 ppm by weight) and ethyl mercaptan (1/20) were used. The procedure was performed in the same manner as in Example 1 except that the acetone was changed to 0 (molar ratio to acetone).
その結果を第 1表に示す。  Table 1 shows the results.
実施例 3  Example 3
実施例 1において、 触媒として 2, 2—ジメチルチアゾリジンにて 2 5モル%変性 したスルホン酸型イオン交換樹脂 (前出) を用い、 メタノール 5, 0 0 0重量 111 及ぴェチルメルカプタン 1/ 1 0 0 (対ァセトンモル比) を含むァセトンに変更した 以外は、 実施例 1 と同様にして実施した。  In Example 1, a sulfonic acid-type ion-exchange resin (described above) modified with 2,2-dimethylthiazolidine at 25 mol% was used as a catalyst, and methanol 5,000 weight 111 and ethyl mercaptan 1/1 were used. The procedure was performed in the same manner as in Example 1 except that the acetone was changed to include acetone (molar ratio to acetone).
その結果を第 1表に示す。  Table 1 shows the results.
実施例 4  Example 4
実施例 1において、 触媒として 2, 2—ジメチルチアゾリジンにて 4 5モル%変性 したスルホン酸型イオン交換樹脂 (前出) を用い、 メタノール 5 , 0 0 0重量 111 及びェチルメルカブタン 1/ 5 0 (対ァセトンモル比) を含むァセトンに変更した以 外は、 実施例 1と同様にして実施した。  In Example 1, a sulfonic acid type ion-exchange resin (described above) modified with 45 mol% of 2,2-dimethylthiazolidine was used as a catalyst, and methanol 5,000 weight 111 and ethyl mercaptan 1/50 were used. (Mole ratio to acetone) The procedure was performed in the same manner as in Example 1 except that the acetone was changed to include acetone.
その結果を第 1表に示す。 実施例 5 Table 1 shows the results. Example 5
実施例 1において、 触媒として 4 _ ( 2—メルカプトェチル) ピリジンにて 3 0モ ル%変性したスルホン酸型イオン交換樹脂 (前出) を用い、 メタノール 1, 0 0 0重 量 p p m及ぴェチルメルカプタン 1/ 2 0 0 (対アセトンモル比) を含むアセトンに 変更した以外は、 実施例 1と同様にして実施した。  In Example 1, a sulfonic acid type ion-exchange resin (described above) denatured by 30 mol% with 4 _ (2-mercaptoethyl) pyridine was used as a catalyst. The procedure was carried out in the same manner as in Example 1 except that the acetone was changed to contain ethyl mercaptan 1/200 (molar ratio to acetone).
その結果を第 1表に示す。 Table 1 shows the results.
実施例 1〜5において、 ビスフエノール Aの選択率は 9 3 %以上あり、 良好な結果 が得られた。  In Examples 1 to 5, the selectivity of bisphenol A was 93% or more, and good results were obtained.
比較例 1  Comparative Example 1
実施例 1において、 触媒として 2—メルカプトェチルァミンにて 1 0モル%変性し たスルホン酸型イオン交換樹脂 (前出) を用い、 メタノール 1 , 0 0 0重量p p mを 含むァセトンに変更した以外は、 実施例 1と同様にして実施した。  In Example 1, a sulfonic acid-type ion-exchange resin (described above) modified with 2-mercaptoethylamine by 10 mol% was used as a catalyst, and was changed to acetone containing 1,000,000 ppm by weight of methanol. Except for the above, the procedure was the same as in Example 1.
その結果を第 1表に示す。  Table 1 shows the results.
比較例 2  Comparative Example 2
実施例 1において、 メタノーノレ 5 , 0 0 0重量 p p mを含むアセトンに変更した以 外は、 実施例 1と同様にして実施した。  Example 1 was carried out in the same manner as in Example 1 except that acetone containing 5,000 weight ppm of methanol was used.
その結果を第 1表に示す。  Table 1 shows the results.
比較例 3  Comparative Example 3
実施例 1において、 触媒として 2, 2—ジメチルチアゾリジンにて 2 5モル%変性 したスルホン酸型イオン交換樹脂 (前出) を用い、 メタノール 1 0 , 0 0 0重量 mを含むァセトンに変更した以外は、 実施例 1と同様にして実施した。  In Example 1, a sulfonic acid-type ion-exchange resin (described above) modified with 2,2-dimethylthiazolidine at 25 mol% was used as the catalyst, and the catalyst was changed to acetone containing 100,000 weight-methanol. Was carried out in the same manner as in Example 1.
その結果を第 1表に示す。  Table 1 shows the results.
比較例 4  Comparative Example 4
実施例 1において、 触媒として 4一 (2—メルカプトェチル) ピリジン 7モル0 /0変 性したスルホン酸型イオン交換樹脂 (前出) を用い、 メタノール 4 , 0 0 0重量 mを含むァセトンに変更した以外は、 実施例 1と同様にして実施した。 In Example 1, using 4 i (2 Merukaputechiru) pyridine 7 mole 0/0 denatured sulphonic acid type ion-exchange resin (supra) as a catalyst, the Aseton containing methanol 4, 0 0 0 weight m Except having changed, it carried out similarly to Example 1.
その結果を第 1表に示す。  Table 1 shows the results.
比較例 5  Comparative Example 5
実施例 1において、 触媒として 2 , 2—ジメチルチアゾリジンにて 1 6モル0 /0変性 したスルホン酸型イオン交換樹脂 (前出) を用い、 メタノール 2 0, 0 0 0重量 m及ぴェチルメルカプタン 1Z 4 0 0 (対アセ トンモル比) を含むアセトンに変更し た以外は、 実施例 1 と同様にして実施した。 In Example 1, 2 as the catalyst, 1 6 mole at 2-dimethyl-thiazolidine 0/0 denatured Example 2 except that the sulfonic acid type ion-exchange resin (described above) was used, and the acetone was changed to contain 200,000 wt.% Methanol and ethyl mercaptan 1Z400 (molar ratio to acetone). This was performed in the same manner as in 1.
その結果を第 1表に示す。  Table 1 shows the results.
比較例 1〜4においては、 ビスフエノール Aの選択率は転化率の低下と共に低下し、 8 0 0時間後には 9 0 %以下となつた。  In Comparative Examples 1 to 4, the selectivity of bisphenol A decreased with a decrease in the conversion, and became less than 90% after 800 hours.
第 1表 _ 1 アセトン中 メ;ゅフ。タン 変 H«イオン交漏脂 Table 1 _ 1 in acetone. Tan Modified H «Ion exchange grease
のメタノ-ル 化"^  Of methanol "^
(対アセトン 変 I·生率 、直 S PHU モル比) 含ィォゥァミン化合物  (Acetone conversion I rate, direct S PHU molar ratio) Iodiamine-containing compounds
( \モしル /»%)  (\ Module / »%)
2-力 プトェチルァミン 20 500 1/400 雞例 2 2, 2 メ げァ; Π ン 25 1, 000 1/200 細列 3 2, 2—シ"メ けァソ"リシ"ン 25 5, 000 1/100 雞例 4 2, 2-'ン "メ けァソ、'リシ"ン 45 5, 000 1/50 雞例 5 4一 (2— ダトェチル)ピリシ"ン 30 1, 000 1/200 比較例 1 2-Mf トェチルァミン 10 1, 000 0 比糊 2 2 -メ;ゆ,トェチルァミン 20 5, 000 0 比較例 3 2, 2-シ"メチ; ァソ"リシ"ン 25 10, 000 0 比較例 4 4— (2 - ゆプトェチル)ピリシ"ン 7 4, 000 0 比較例 5 2, 2-シ"メチ/げァソ "リシ"ン 16 20, 000 1/400 第 1表一 2 2-Strength Putethylamine 20 500 1/400 Example 2 2,2 Membrane; Pin 25 1,000 1,000 1/200 Row 3 2, 2—Mesh Membrane 25 5,000 1 / 100 雞 Example 4 2, 2-'Min., 'Risin' 45 5 000 1/50 雞 Example 5 4-1 (2-detethyl) pylicin 30 1, 000 1/200 Comparative example 1 2-Mf Toethylamine 10 1, 000 0 Specific glue 2 2 -Me; Yu, Toethylamine 20 5,000 000 0 Comparative example 3 2,2-Si "Methi;Aso" Risin 25 25 000 0 Comparative example 4 4— (2-Yuputethyl) pyricin 7 4 000 0 Comparative Example 5 2,2-Si 2 Table 1 I 2
Figure imgf000012_0001
Figure imgf000012_0001
産業上の利用の可能性 Industrial applicability
本発明によれば、 含ィォゥァミン化合物で部分的に変性した酸型イオン交換樹脂触 媒を用い、 フエノールとァセトンを縮合させてビスフエノール Aを製造するに際し、 メルカプタン化合物を添加することにより、 ァセトン中の不純物であるメタノールに よる触媒活性の低下を抑え、 高い転化率でビスフエノール Aを安定して製造すること ができる。  According to the present invention, when bisphenol A is produced by condensing phenol and acetone using an acid-type ion exchange resin catalyst partially modified with an iodiamine-containing compound, by adding a mercaptan compound, Bisphenol A can be stably produced at a high conversion rate by suppressing a decrease in catalytic activity due to methanol, which is an impurity of phenol.

Claims

請 求 の 範 囲 The scope of the claims
1 含ィォゥァミン化合物で部分的に変性した酸型イオン交換樹脂を触媒とし、 フエ ノールとァセトンを縮合させてビスフエノール Aを製造するに当たり、 ァセトン中の メタノール濃度が 4 0 0〜 7 0 0 0重量 p p mの場合、 上記変性酸型イオン交換榭脂 として変性率 1 5〜5 0モル%のものを用い、 メルカプタン化合物を添加することを 特徴とするビスフエノール Aの製造方法。 (1) When bisphenol A is produced by condensing phenol and acetone using an acid-type ion exchange resin partially modified with an iodiamine-containing compound as a catalyst, the methanol concentration in the acetone is 400 to 700% by weight. In the case of ppm, a process for producing bisphenol A, characterized in that a modified acid type ion exchange resin having a modification ratio of 15 to 50 mol% is used, and a mercaptan compound is added.
2 メルカプタン化合物が炭素数 1〜 3のアルキルメルカプタンであり、 その添加量 がアセトンに対し 1 2 0〜1ノ 5 0 0 (モル比) である請求項 1記載のビスフエノ一 ル Aの製造方法。 2. The method for producing bisphenol A according to claim 1, wherein the mercaptan compound is an alkyl mercaptan having 1 to 3 carbon atoms, and the amount of the added mercaptan is from 120 to 500 (molar ratio) with respect to acetone.
3 アルキルメルカプタンがェチルメルカプタンであり、 その添加量がアセトンに対 し1 5 0〜1 4 0 0 (モル比) である請求項 2記載のビスフエノール Aの製造方法。 3. The process for producing bisphenol A according to claim 2, wherein the alkyl mercaptan is ethyl mercaptan, and the amount thereof is 150 to 140 (molar ratio) to acetone.
4 酸型イオン交換樹脂が強酸性スルホン酸型ィオン交換樹脂である請求項 1記載の ビスフヱノール Aの製造方法。 4. The method for producing bisphenol A according to claim 1, wherein the acid-type ion exchange resin is a strongly acidic sulfonic acid-type ion exchange resin.
5 含ィォゥアミン化合物が、 メルカプトアルキルピリジン類、 メルカプトアルキル アミン類、 チアゾリジン類及びアミノチオフヱノール類からなる群から選ばれる少な く とも 1種である請求項 1記載のビスフエノール Aの製造方法。 5. The process for producing bisphenol A according to claim 1, wherein the diamine-containing compound is at least one member selected from the group consisting of mercaptoalkylpyridines, mercaptoalkylamines, thiazolidines, and aminothiophenols.
6 反応装置として、 反応器を 2基以上直列に連結した装置を用い、 アセトン及びメ ルカプタン化合物を各反応基に分割添加することにより縮合反応を行う請求項 1記載 のビスフエノール Aの製造方法。 6. The process for producing bisphenol A according to claim 1, wherein a condensation reaction is performed by using a device in which two or more reactors are connected in series as a reaction device and adding acetone and a mercaptan compound to each of the reaction groups in a divided manner.
7 アセトン Zフエノールのモル比が 1/ 3 0〜lZ 3であり、 反応温度が 4 0〜 1 5 0 °Cである条件下で縮合反応を行う請求項 6記載のビスフユノール Aの製造方法。 7. The process for producing bisphenol A according to claim 6, wherein the condensation reaction is carried out under the condition that the molar ratio of acetone Z phenol is 1/30 to 1Z 3 and the reaction temperature is 40 to 150 ° C.
PCT/JP2002/003540 2001-04-17 2002-04-09 Process for producing bisphenol a WO2002085830A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001118012A JP2002316962A (en) 2001-04-17 2001-04-17 Method for producing bisphenol a
JP2001/118012 2001-04-17

Publications (1)

Publication Number Publication Date
WO2002085830A1 true WO2002085830A1 (en) 2002-10-31

Family

ID=18968461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/003540 WO2002085830A1 (en) 2001-04-17 2002-04-09 Process for producing bisphenol a

Country Status (4)

Country Link
JP (1) JP2002316962A (en)
MY (1) MY139605A (en)
TW (1) TWI238818B (en)
WO (1) WO2002085830A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8143456B2 (en) 2007-08-29 2012-03-27 Dow Global Technologies Llc Method of reducing methanol in recycle streams in bisphenol-A production process
US8436055B2 (en) 2003-09-30 2013-05-07 Mitsui Chemicals, Inc. Modified acidic ion-exchange resin and method for preparing bisphenol
CN112739676A (en) * 2018-07-06 2021-04-30 巴杰许可有限责任公司 Treatment of residual streams from bisphenol manufacture

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7491855B2 (en) * 2003-06-04 2009-02-17 Sabic Innovative Plastics Ip B.V. Integrated process for the production of bisphenol A from cumene hydroperoxide
US7154010B2 (en) * 2003-06-04 2006-12-26 General Electric Company Integrated process for the production of bisphenol A from cumene hydroperoxide
US20120283485A1 (en) * 2011-05-02 2012-11-08 Umesh Krishna Hasyagar Robust promoter catalyst system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625042A (en) * 1992-07-08 1994-02-01 Idemitsu Petrochem Co Ltd Production of 2,2-bis@(3754/24)4-hydroxyphenyl)propane
JPH0692889A (en) * 1992-09-11 1994-04-05 Idemitsu Petrochem Co Ltd Production of 2,2-bis@(3754/24)4-hydroxyphenyl)propane
JPH08325185A (en) * 1995-06-01 1996-12-10 Chiyoda Corp Production of bisphenol a
JPH11246458A (en) * 1998-02-26 1999-09-14 Mitsubishi Chemical Corp Production of bisphenol
WO2000053315A1 (en) * 1999-03-09 2000-09-14 Idemitsu Petrochemical Co., Ltd. Process for preparing catalyst for use in bisphenol production

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625042A (en) * 1992-07-08 1994-02-01 Idemitsu Petrochem Co Ltd Production of 2,2-bis@(3754/24)4-hydroxyphenyl)propane
JPH0692889A (en) * 1992-09-11 1994-04-05 Idemitsu Petrochem Co Ltd Production of 2,2-bis@(3754/24)4-hydroxyphenyl)propane
JPH08325185A (en) * 1995-06-01 1996-12-10 Chiyoda Corp Production of bisphenol a
JPH11246458A (en) * 1998-02-26 1999-09-14 Mitsubishi Chemical Corp Production of bisphenol
WO2000053315A1 (en) * 1999-03-09 2000-09-14 Idemitsu Petrochemical Co., Ltd. Process for preparing catalyst for use in bisphenol production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8436055B2 (en) 2003-09-30 2013-05-07 Mitsui Chemicals, Inc. Modified acidic ion-exchange resin and method for preparing bisphenol
US8143456B2 (en) 2007-08-29 2012-03-27 Dow Global Technologies Llc Method of reducing methanol in recycle streams in bisphenol-A production process
CN112739676A (en) * 2018-07-06 2021-04-30 巴杰许可有限责任公司 Treatment of residual streams from bisphenol manufacture

Also Published As

Publication number Publication date
JP2002316962A (en) 2002-10-31
TWI238818B (en) 2005-09-01
MY139605A (en) 2009-10-30

Similar Documents

Publication Publication Date Title
JP4723105B2 (en) Method for producing bisphenol A
US5631338A (en) Process for preparing bisphenol A
JP2002205966A (en) Method for producing bisphenol a
WO2001049640A1 (en) Process for producing bisphenol a
WO2002085830A1 (en) Process for producing bisphenol a
KR100847190B1 (en) Method for producing bisphenol a
TW575548B (en) Method for producing bisphenol A
US6784324B2 (en) Process for producing bisphenol A
JP4995372B2 (en) Method for producing bisphenol A
CN100546720C (en) The manufacture method of modified ion-exchange resin and bisphenols
JP2002069023A (en) Method for producing bisphenol
JP2002255879A (en) Method for bisphenol a production
JP4338966B2 (en) Method for producing bisphenol A
JPH0245439A (en) Production of bisphenol
US6326522B1 (en) Process for production of 1,3-di(2-p-hydroxyphenyl-2-propyl)benzene
JP2002060360A (en) Method for producing bisphenol
JPH02196746A (en) Production of 4,4'-(1-phenylethylidene)bisphenol
JP2009196929A (en) Method for producing bisphenols

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CN ID IN KR SG US ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase