System zur automatischen Isolierung von lebenden Zellen aus tierischen Geweben
Beschreibung
Die Erfindung betrifft ein System, welches die vollautomatische und standardisierte
Dissoziierung von tierischen Geweben und die anschliessende Isolierung von lebenden Zellen ermöglicht. Anwendungsgebiete der Erfindung sind die biomedizinische Forschung und Entwicklung.
Aus tierischen Geweben isolierte Zellen spielen eine wichtige Rolle in der biomedizinischen Forschung und bei der Entwicklung von Arzneimitteln und theraupeutischen Methoden. Sie dienen zur Anlage primärer Zellkulturen, die für Funktionsuntersuchungen, Wirksamkeitstests oder andere präklinische Experimente eingesetzt werden (Animal Cell Culture Techniques, M. Clynes (Hrsg.), 1998, Springer; In Nitro Models, D. Anderson, 1990, Drug Safety 5: 27-39), zur Entwicklung von Ersatzgewebe aus Stammzellen und zur Gewinnung von biologischem Material wie DΝS, RΝS oder Proteinen. Der Aufreinigung von spezifischen Zellen aus Geweben kommt mit der rasanten Entwicklung der funktioneilen Genomforschung zunehmende Bedeutung zu. Beispielsweise können bestimmte Genmanipulationen in transgenen Tieren embryonal lethal wirken, so daß mögliche Funktionen des untersuchten Proteins, die erst im postnatalen Tier eintreten, nicht in vivo untersucht werden können. Die Isolierung und anschliessende Kultivierung von Zellen aus embryonalem Gewebe erlaubt Untersuchungen dieser Funktionen in vitro. Eine weitere Aufgabe der funktionellen Genomforschung besteht in der Analyse von Expressionsmustern von Proteinen in bestimmten Zellen, beispielsweise ein Nergleich der Proteinmuster in verschiedenen Entwicklungsabschnitten oder zwischen krankem und gesundem Gewebe (z. B. Tumorcharakterisierung). Hier besteht das Problem, daß jedes Gewebe eine Vielzahl von verschiedenen Zelltypen enthält und daß Veränderungen im Expressionsmuster in bestimmten Zellen, die nur in kleiner Anzahl vorhanden sind, nicht detektiert werden können aufgrund der niedrigen Menge an Protein oder Boten-RΝS. Dieses Problem kann dadurch gelöst werden, daß das biologische Material nicht aus dem gesamten Gewebe isoliert wird, sondern aus einer durch vorherige Dissoziation und Aufreinigung gewonnenen, homogenen Population des für die spezifische Fragestellung relevanten Zelltyps.
Gegenwärtig gibt es eine Reihe von Methoden für die Isolierung von Zellen aus tierischen Geweben (Culture of Animal Cells, 3. Aufl., R.I. Freshney, 1994, Wiley;
Animal Cell Culture Techniques, M. Clynes (Hrsg.), 1998, Springer; Cell and Tissue Culture. Laboratory Procedures in Biotechnology, A. Doyle & J.B. Griffiths (Hrsg.), 1998, Wiley/VCH; Cells. A Laboratory Manual: Vol 1: Culture and Biochemical Analysis of Cells, Spector et al. (Hrsg.), 1998, Cold Spring Harbor Press). Prinzipiell wird das Gewebe zunächst dem Tier entnommen, dann der Zellverband mechanisch und oder enzymatisch aufgelöst und der gewünschte Zelltyp anschliessend durch geeignete Selektionsverfahren isoliert.
Die bisherigen Präparations- und Isolationsverfahren sind aber mit einer Reihe von Nachteilen behaftet: Sie sind allgemein kostenintensiv, da sie von entsprechend ausgebildeten und erfahrenen Fachkräften unter grossem Zeit- und Materialaufwand manuell durchgeführt werden, die Ausbeute an verwendbaren Zellen erheblich schwanken kann und die Verfahren von Labor zu Labor unterschiedlich durchgeführt werden. Bisher gibt es keine Möglichkeit, die Isolierung von Zellen aus tierischem Gewebe zu automatisieren und zu standardisieren und damit die Kosten zu senken und die Zuverlässigkeit und Vergleichbarkeit der Zell-Präparationen zu erhöhen.
Der Erfindung liegt daher die Aufgabe zugrunde, eine vollautomatisierte und standardisierte Präparation von lebenden Zellen mit maximaler Ausbeute zu ermöglichen. Es soll ein modular aufgebautes System entwickelt werden, welches an verschiedene Anwendungen angepasst werden kann, von der reinen Gewebedissoziation bis hin zur Aufreinigung von bestimmten Zelltypen, welche selektierbare Merkmale enthalten. Weiterhin soll es die verlustfreie Verarbeitung von Gewebeproben, die nur in kleinen Mengen zur Verfügung stehen (z.B. Biopsiematerial), die sichere Handhabung von Risikomaterial (z. B. von infiziertem Gewebe), die Gewinnung beliebig grosser Mengen an Zellen durch Dauerbetrieb und die mögliche Kombination mit weiteren Anwendungen, wie beispielsweise der anschliessenden Transfektion der isolierten Zellen mittels geeigneter Geräte, erlauben.
Diese Aufgabe wird gemäß den in den Patentansprüchen dargelegten Maßnahmen realisiert, sie wird nachfolgend näher beschrieben:
Aufbau und Funktionsprinzip
Das System besteht aus dem in Abbildung 1 und 2 dargestellten Hohlraum- Verbund. Dieser setzt sich aus verschiedenen Abschnitten zusammen, welche je nach Anwendung kombiniert werden können. Zunächst wird im Dissoziierungsabschnitt der Gewebeverband
enzymatisch und mechanisch aufgelöst und eine Zellsuspension gewonnen. In einem nachfolgenden Reinigungsschritt werden unerwünschte Zellbruchstücke und beschädigte Zellen im Subtraktionsabschnitt aus der Suspension entfernt. Schliesslich können gewünschte Zellen durch eine entsprechende Kombination von Subtraktions- und/oder Selektionsschritten isoliert werden. Die Subtraktion und Selektion von Zellen und Zellbruchstücken erfolgt durch Erkennungsmoleküle (Antikörper, Lektine, Peptide o.a.), welche spezifisch an Moleküle auf Zellen oder Zellbruchstücken binden. Diese Erkennunsmoleküle können beispielsweise an magnetische Partikel gekoppelt werden. Die mit magnetischen Partikeln beladenen Zellen werden dann durch entsprechend starke Magnetfelder im Subtraktions- oder Selektionsabschnitt immobilisiert. Alternativ können die Erkennungsmoleküle durch Bindung an vorbereitete Oberflächen reversibel immobilisiert werden. Das System wird in einem Versorgungsbehälter untergebracht, der die Steuerungselektronik, Vorratsbehälter sowie Pumpen, Ventile und Schläuche für die Versorgung mit den notwendigen Lösungen enthält. Jene Teile, welche mit biologischem Material oder Präparationslösungen in Berührung stehen, bestehen aus inertem, nichttoxischem und hitzebeständigem Material. Das System sollte mit Sensoren für die Temperatur, pH-Wert, Sauerstoff-Partialdruck und Turbidität ausgestattet sein. Das System kann auch so ausgeführt werden, dass die mit Zellen in Kontakt tretenden Teile in einem Bauteil zusammengefasst werden und somit nach einer gewissen Nutzungssdauer ausgetauscht werden können.
Ablauf
Ausgangsmaterial für die Präparation sind Gewebestücke oder -schnitte. Diese werden in die Aufnahmekammer (1) eingebracht. Die Kammer wird über einen Verschluss (la) geschlossen, und das Gewebe durch einen Flüssigkeitsstrom aus Zulauf (lb) über den Ablauf (lc) in eine drehbar gelagerte Trommel (2) in der Inkubationskammer gespült (3). Abbildung 3 zeigt eine mögliche Ausführung der Inkubationskammer in Frontansicht. Die Drehbewegung des Zylinders während der Inkubation wird durch wechselnde Magnetfelder angetrieben, welche durch ausserhalb der Inkubationskammer (3) angebrachte Elektromagneten (3 c) erzeugt werden und auf an der Aussenseite des Zylinders (2) befindliche Dauermagneten (2a) einwirken. Der Zylinder enthält nach innen gerichtete Einkerbungen (2b), welche das darauf liegende Gewebe in Bewegung halten. Der Zylinder ist ausserdem mit wasserdurchlässige Poren (2c) versehen, welche einen Austausch der Präparationslösungen erlauben, das Gewebe aber zurückhalten. Schliesslich trägt der Zylinder aussen Erhebungen (2d), welche die Durchmischung der Enzymlösung verbessern. Für die Enzymbehandlung wird die Präparationslösung in der
Inkubationskammer über den Zulauf (3 a) und den Ablauf (3b) durch Enzymlösung ausgetauscht. Das Gewebe wird dam in der Enzymlösung inkubiert. Dabei wird der Zylinder (2) langsam gedreht, damit ständig die Enzymlösung durchmischt und das Gewebe bewegt werden. Alternativ kann die Inkubationskammer aus einem Schlauch bestehen, dessen Enden miteinander verbunden sind. Die im Schlauch befindliche Flüssigkeit mit dem Gewebe wird dann während der Inkubation durch aussen angebrachte Schlauchpumpen in Bewegung gehalten.
Während der Inkubation sollten der Sauerstoffpartialdruck und die Temperatur über entsprechende Sensoren und Regelkreise konstant gehalten werden. Die Temperierung und Begasung der Inkubationslösung kann bereits im Vorratsbehälter erfolgen oder direkt in der Inkubationskammer. Nach einer vom Gewebe abhängigen Inkubationszeit wird die Enzymbehandlung gestoppt, indem die Enzymlösung über den Zulauf (3 a) und den Ablauf (3b) durch Enzyminhibitor-Lösung ausgetauscht wird.
Nach der Enzymbehandlung werden die Gewebestücke durch einen Flüssigkeitsstrom aus Zulauf (lb) über die Übergangskammer (4) in die Dissoziationskammer (5) gebracht (Abb. 1). Die Dissoziationskammer wird anschliessend über den Zulauf (4a) vollständig mit Lösung gefüllt. In der Dissoziationskammer wird der Gewebeverband mechanisch aufgelöst, indem die Gewebestücke wiederholt Dissoziationselemente (6) passieren, welche an mindestens einer Stelle in der Dissoziationskammer angebracht sind (Abb. 4 - 6). Diese Dissoziationselemente üben Scherkräfte auf das Gewebe aus, welche bei wiederholten Passagen sukzessive verstärkt werden können und so die allmähliche Auslösung von Einzelzellen aus dem Gewebeverband ermöglichen. Der Durchmesser der Dissoziationskammer ist um die Dissoziationselemente herum verringert, so daß die Gewebestücke die Dissoziationselemente mit erhöhtem Druck passieren. Die Dissoziationskammer kann in zwei Ausführungen konstruiert werden, welche die wiederholte Passage der Gewebestücke durch die Dissoziationselemente ermöglichen. Beide Ausführungen sind in Abbildung 4 dargestellt. In Ausführung 1 besteht die Dissoziationskammer aus einer ringförmigen, geschlossenen Röhre, welche zumindest teilweise aus Schlauchmaterial bestehen kann. Die Lösung mit den Gewebestücken kommt über den Zulauf (5a) in die Kammer und wird durch Propeller (5b) oder aussen angebrachte Schlauchpumpen in zirkulierende Bewegung gebracht, so daß die Gewebestücke wiederholt die Dissoziationselemente (6) passieren. Die Propellerbewegung wird durch ein Magnetfeld angetrieben, welches durch einen aussen angebrachten Elektromagneten (5c) erzeugt wird. In Ausführung 2 besteht die Dissoziationskammer aus einem Zylinder, welcher an den Enden durch bewegliche Kolben oder Membranen (5e) wasserdicht abgeschlossen ist. Die Lösung mit den Gewebestücken
kommt über Zulauf (5f) in die Kammer und wird durch die synchrone Bewegung der beiden Kolben oder Membranen im Zylinder hin- und her bewegt, so daß die Gewebestücke wiederholt die in der Mitte angebrachten Dissoziationselemente (6) passieren. Hierbei ist wichtig, daß der durch einen Kolben oder eine Membran realisierte Abschluss der unteren Kammer auf seiner Innenfläche mit einem Propeller (5g) oder einer ähnlichen Vorrichtung versehen ist, welche von einem ausserhalb der Kammer angebrachten Elektromagneten (5h) in Bewegung gebracht wird. Der Propeller sorgt vor jeder Aufwärtsbewegung des Kolbens für die Aufwirbelung der Gewebestücke. Damit wird sichergestellt, daß alle Gewebestücke die Dissoziationselemente passieren und nicht auf der Kolbenfläche liegen bleiben.
Die Dissoziationselemente, welche veränderbare Scherkräfte auf das Gewebe ausüben sollen, können in verschiedenen Ausfüllrungen konstruiert werden. In Ausführung 1 (Abb. 5) bestehen die Dissoziationselemente aus einer Reihe von drehbar gelagerten Messern oder Drähten (6a). Im ersten Durchgang stehen die Messer alle in einer Reihe und zerschneiden das Gewebe grob (Stellung 1; Abb. 5). Für die nächsten Durchgänge werden die Messerzwischenräume, welche die Gewebeteile passieren müssen, immer kleiner (Stellung 2-3; Abb. 5), so daß die auf das Gewebe einwirkende Scherkraft sukzessive erhöht wird. Die Arretierung der Messer in den verschiedenen Positionen erfolgt magnetisch über aussen entsprechend positionierte Elektromagneten (6b). In Ausführung 2 (Abb. 6) bestehen die Dissoziationselemente aus Gittern oder Lochblenden (6c) und in Ausführung 3 (Abb. 6) aus einer einfachen Verengung der Dissoziationskammer (6d). Diese Dissoziationselemente werden in verschiedenen Varianten realisiert (Abb. 6), welche sich im Gitterabstand, Loch- oder Verengungsdurchmesser unterscheiden. Um die für die Gewebedissoziation erforderliche sukzessive Erhöhung der Scherkraft zu erreichen, werden nacheinander Element- Varianten mit immer kleineren Verengungen in die Dissoziationskammer eingebracht. Dazu wird ein geeigneter Satz an Element- Varianten in einem Magazin untergebracht, welches in Ausführung 1 Kassetten-förmig (6e, Abb. 7) oder in Ausführung 2 zylinderförmig realisiert wird (6f; Abb. 8). Die linear oder kreisförmige Bewegung der Magazine führt zum Austausch der Elementvarienten in der Dissoziationskammer. Alternativ können die verschiedenen Elementvarianten in verschiedenen Dissoziationskammern untergebracht sein, welche das Gewebe dann nacheinander passieren muss. Die Verengungs-Durchmesser der bei jeder Präparation verwendeten Elementvarianten müssen der Art des Gewebes angepasst werden. Dabei gilt, daß der Verengungsdurchmesser der Elemente desto kleiner sein muss, je zäher das Gewebe ist.
Für die Gewinnung von lebensfähigen Zellen ist es essentiell, daß die Dissoziation regelmässig unterbrochen wird und jene Zellen, welche bereits aus dem Gewebe losgelöst wurden, aus der Dissoziationskammer abgeführt werden, damit sie durch weitere Dissoziationsschritte nicht beschädigt werden. Dazu enthalten die Dissoziationskammern mindestens einen verschliessbaren Ablauf (5d, 5i; Abb. 4), welcher mit einem Sieb versehen ist. Dieses Sieb lässt nur einzelne Zellen durch (Porendurchmesser abhängig von Zellgrösse, ca. 10 bis 50 Mikrometer). Der Ablauf ist so angebracht, daß nur aus dem Gewebeverband ausgelöste Zellen, welche in der Lösung schweben, abfliessen. Zur Abführung losgelöster Zellen wird der Ablauf (5d, 5i) mit einer gewissen Verzögerung nach Unterbrechung der Dissoziation geöffnet. In dieser Zeit können undissoziierte Gewebestücke auf den Boden der Dissoziationskammer sedimentieren. Dazu muss die Dissoziationskammer längs des Gravitationsfeldes ausgerichtet sein. Die losgelösten Zellen gelangen dann über eine Übergangskammer (7; Abb. 1) in die mittlere Mischungskammer (8; Abb. 9), welche aus einer ringförmigen, geschlossenen Röhre besteht. Das aus der Dissoziationskammer ausgetretene Lösungsvolumen wird durch frische Lösung ersetzt.
Nachdem die gewünschte Zahl an Zellen durch eine entsprechende Anzahl an Dissoziations-Durchgängen erreicht worden ist, wird die in der mittleren Mischungskammer (8) befindliche Zellsuspension über den Zulauf (8a; Abb. 1) mit magnetischen Partikeln versetzt. Diese Partikel tragen auf ihrer Oberfläche Moleküle, welche spezifische Erkennungsmoleküle auf Zellbruchstücken und toten Zellen binden. Die Mischungskammer wird vollständig mit Lösung aufgefüllt und die Zellsuspension während der Inkubationsphase durch Propeller (8b) oder durch aussen angebrachte Schlauchpumpen in Bewegung gehalten. Die Suspension wird dann durch einen an Zulauf (8a) angelegten Überdruck über die Sammelkammer (9) in die röhrenförmige Subtraktionskammer (10) gebracht. Diese Kammer weist auf einer Seite eine magnetisierbare Oberfläche auf, welche zur effizienten Abreicherung von unerwünschtem Zellmaterial vergrössert ist. Zur Immobilisierung des mit magnetischen Partikeln beladenen Zellmaterials in der Kammer wird ein entsprechend grosses Magnetfeld durch aussen angebrachte Elektromagneten (10b) erzeugt. Alternativ kann das Magnetfeld auch durch Dauermagneten erzeugt werden, deren Abstand zur Subtraktionskammer verändert werden kann. Der Durchmesser der Subtraktionskammer ist in der senkrecht zur aufgefalteten Seite stehenden Richtung verringert, so daß die Zellen möglichst nahe an die magnetisierte Seite herangeführt und so Partikel-behaftete Zellen effizient abgefangen werden. Nach einer gewissen Inkubationszeit werden intakte, nichthaftende Zellen durch Anlegen eines Überdruckes im Zulauf (10c) über die Verteilungskammer (11) in eine der
seitlichen Mischungskammern (12a, 12b; Abb. 9) gepresst. Das in der Subtraktionskammer immobilisierte Zellmaterial wird dann nach Abschalten des Magnetfeldes durch einen Flüssigkeitsstrom aus dem Zulauf (10c) über den Ablauf (lOd) ausgewaschen. Die Subtraktionskammer steht damit für nachfolgende Abreicherungsschritte wieder zur Verfügung.
In den seitlichen Mischungskammern (12a, 12b) werden die Zellen wieder mit magnetischen Partikeln versetzt. Diese können entweder ungewünschte Zellen binden, welche dann über die Subtraktionskammer der Suspension entzogen werden, oder gewünschte Zellen erkennen, welche in der Selektionskammer (13; Abb. 11, 12) zurückgehalten werden. Für die Selektion wird die Zellsuspension über die Sammelkammer (9) und den Zulauf (13a) in die Selektionskammer (13) gebracht. Diese Kammer ist ähnlich gebaut wie die Mischungskammern. In ihr wird die mit magnetischen Partikeln versetzte Zellsuspension durch Propeller (13b) in zirkulierende Bewegung versetzt. Sie enthält an mindestens einer Stelle eine magnetisierbare Immobilisierungszone (14; Abb. 11, 12), welche die zirkulierenden Zellen wiederholt passieren. Hier können die gewünschten, Partikel-tragenden Zellen nach und nach festgehalten und der Suspension entzogen werden. Die Immobilisierungszone ist zur Abführung der selektierten Zellen vom Rest der Kammer durch steuerbare Klappen (14a) abtrennbar und enthält einen Zu- (14b) und Ablauf (14c). Zur effizienten Entfernung der gewünschten Zellen enthält die Zone eine stark vergrösserte Oberfläche, welche durch einen aussen angebrachten Elektromagneten (14d) magnetisiert werden kann. Diese Oberfläche kann in zwei Ausführungen realisiert werden. In Ausführung 1 (Abb. 11) besteht sie aus einem stark verzweigten, magnetisierbaren Fangarm (14e), der in die Selektionskammer eingelagert ist. In Ausführung 2 (Abb. 12) besteht sie aus einer starken Auffaltung des entsprechenden Abschnitts der Selektionskammerwand (14f) und einem aussen angebrachten Elektromagneten (14g). Ähnlich wie bei der Subtraktionskammer ist der Durchmesser der Immobilisierungszone in dieser Ausführung in der senkrecht zur aufgefalteten Seite stehenden Richtung stark verkleinert, so daß Zellen möglichst nahe an die magnetisierte Seite herangeführt werden. Sobald eine ausreichende Anzahl an Zellen immobilisiert worden ist, wird der
Flüssigkeitsstrom gestoppt und die Immobilisierungszone vom Rest der Selektionskammer abgetrennt. Hier ist wichtig, daß das Volumen der Zone die Endkonzentration der Zellen bestimmt und daher entsprechend klein gehalten werden muss. Zur Gewinnung der Zellen wird das Magnetfeld abgeschaltet und die Zellen werden durch einen Flüssigkeitsstrom aus dem Zulauf (14b) über den Ablauf (14c) in einen Ausgang (15) gespült, welcher standardisierte Gefässe, wie beispielsweise Zentrifugenröhrchen, aufnehmen kann.
Alternativ zu den magnetischen Partikeln kann die Immobilisierung von Zellen und Zellbruchstücken in der Subtraktions- und Selektionskammer über spezielle Oberflächen in den Kammern erfolgen, welche eine reversible Bindung von Erkennungsmolekülen erlauben.
Bezugszeichenliste
1 Aufnahmekammer la Verschluss lb Zulauf lc Ablauf
2 Trommel
2a Dauermagneten
2b Einkerbungen
2c wasserdurchlässige Poren
2d Erhebungen
3 Inkubationskammer
3a Zulauf
3b Ablauf
3c Elektromagneten
4 Übergangskammer
4a Zulauf
5 Dissoziationskammer
5a Zulauf
5b Propeller
5c Elektromagnete
5d Ablauf
5e Kolben oder Membran
5f Zulauf
5g Propeller
5h Elektromagnet
5i Ablauf
6 Dissoziationseiemete
6a drehbar gelagerte Messer oder Drähte
6b Elektromagnete
6c Gitter oder Lochblenden
d Verengung der Dissoziationskammer e Kassettenförmiges Magazin f Zylinderföπniges Magazin
Übergangskammer
Mittlere Mischungskammer a Zulauf b Propeller
Sammelkammer 0 Subtraktionskammer 0a Auffaltungen 0b Elektromagnete 0c Zulauf Od Ablauf 1 Verteilungskammer 2a, b - Seitliche Mischungskammern 3 Selektionskammer 3a Zulauf 3b Propeller 4 Inimobilisierungszone 4a Steuerbare Klappen 4b Zulauf 4c Ablauf 4d Elektromagneten 4e Magnetisierbarer Fangarm 4f S elektionskammerwand 4g Elektromagnenten 5 Ausgang