WO2002066598A1 - System zur automatischen isolierung von lebenden zellen aus tierischen geweben - Google Patents

System zur automatischen isolierung von lebenden zellen aus tierischen geweben Download PDF

Info

Publication number
WO2002066598A1
WO2002066598A1 PCT/DE2002/000590 DE0200590W WO02066598A1 WO 2002066598 A1 WO2002066598 A1 WO 2002066598A1 DE 0200590 W DE0200590 W DE 0200590W WO 02066598 A1 WO02066598 A1 WO 02066598A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
dissociation
tissue
cells
chambers
Prior art date
Application number
PCT/DE2002/000590
Other languages
English (en)
French (fr)
Inventor
Frank W. Pfrieger
Original Assignee
Max-Delbrück-Centrum für Molekulare Medizin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10116155A external-priority patent/DE10116155A1/de
Application filed by Max-Delbrück-Centrum für Molekulare Medizin filed Critical Max-Delbrück-Centrum für Molekulare Medizin
Publication of WO2002066598A1 publication Critical patent/WO2002066598A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M45/00Means for pre-treatment of biological substances
    • C12M45/02Means for pre-treatment of biological substances by mechanical forces; Stirring; Trituration; Comminuting

Definitions

  • the invention relates to a system which is fully automatic and standardized
  • Cells isolated from animal tissues play an important role in biomedical research and in the development of pharmaceuticals and therapeutic methods. They are used to create primary cell cultures that are used for functional tests, efficacy tests or other preclinical experiments (Animal Cell Culture Techniques, M. Clynes (ed.), 1998, Springer; In Nitro Models, D. Anderson, 1990, Drug Safety 5: 27-39), for the development of replacement tissue from stem cells and for the extraction of biological material such as D ⁇ S, R ⁇ S or proteins.
  • the purification of specific cells from tissues is becoming increasingly important with the rapid development of functional genome research. For example, certain genetic manipulations in transgenic animals can have an embryonic lethal effect, so that possible functions of the protein under investigation, which only occur in the postnatal animal, cannot be investigated in vivo.
  • the isolation and subsequent cultivation of cells from embryonic tissue allows studies of these functions in vitro.
  • Another task of functional genome research is the analysis of expression patterns of proteins in certain cells, for example a comparison of the protein patterns in different developmental stages or between sick and healthy tissue (e.g. tumor characterization).
  • the problem here is that each tissue contains a multitude of different cell types and that changes in the expression pattern in certain cells, which are only present in small numbers, cannot be detected due to the low amount of protein or messenger R ⁇ S.
  • This problem can be solved in that the biological material is not isolated from the entire tissue, but from a homogeneous population of the cell type relevant to the specific question obtained by prior dissociation and purification.
  • the object of the invention is therefore to enable a fully automated and standardized preparation of living cells with maximum yield.
  • the aim is to develop a modular system that can be adapted to various applications, from pure tissue dissociation to the purification of certain cell types that contain selectable features. Furthermore, it should be the loss-free processing of tissue samples that are only available in small quantities (e.g. biopsy material), the safe handling of risk material (e.g. infected tissue), the extraction of any large amount of cells through continuous operation and the possible combination with other applications, such as the subsequent transfection of the isolated cells using suitable devices.
  • tissue samples that are only available in small quantities (e.g. biopsy material), the safe handling of risk material (e.g. infected tissue), the extraction of any large amount of cells through continuous operation and the possible combination with other applications, such as the subsequent transfection of the isolated cells using suitable devices.
  • the system consists of the cavity composite shown in Figures 1 and 2. This consists of different sections, which can be combined depending on the application. First, in the dissociation section, the tissue association enzymatically and mechanically dissolved and a cell suspension obtained. In a subsequent cleaning step, undesired cell fragments and damaged cells in the subtraction section are removed from the suspension. Finally, desired cells can be isolated by an appropriate combination of subtraction and / or selection steps. The subtraction and selection of cells and cell fragments is carried out by recognition molecules (antibodies, lectins, peptides or the like) which bind specifically to molecules on cells or cell fragments. These recognition molecules can be coupled to magnetic particles, for example.
  • recognition molecules antibodies, lectins, peptides or the like
  • the cells loaded with magnetic particles are then immobilized in the subtraction or selection section by correspondingly strong magnetic fields.
  • the recognition molecules can be reversibly immobilized by binding to prepared surfaces.
  • the system is housed in a supply container, which contains the control electronics, storage containers as well as pumps, valves and hoses for the supply with the necessary solutions.
  • Those parts that come into contact with biological material or preparation solutions consist of inert, non-toxic and heat-resistant material.
  • the system should be equipped with sensors for temperature, pH, oxygen partial pressure and turbidity.
  • the system can also be designed in such a way that the parts that come into contact with cells are combined in one component and can therefore be replaced after a certain period of use.
  • the starting material for the preparation is tissue pieces or sections. These are introduced into the receiving chamber (1).
  • the chamber is closed by a closure (la), and the tissue is rinsed (3) by a liquid flow from the inlet (lb) via the outlet (lc) into a rotatably mounted drum (2) in the incubation chamber.
  • Figure 3 shows a possible version of the incubation chamber from the front.
  • the rotary movement of the cylinder during the incubation is driven by changing magnetic fields, which are generated by electromagnets (3 c) attached outside the incubation chamber (3) and act on permanent magnets (2a) located on the outside of the cylinder (2).
  • the cylinder contains inward notches (2b) which keep the tissue on it moving.
  • the cylinder is also provided with water-permeable pores (2c), which allow the preparation solutions to be exchanged, but which retain the tissue.
  • the cylinder has elevations (2d) on the outside which improve the mixing of the enzyme solution.
  • the preparation solution is used in the Incubation chamber through the inlet (3 a) and the outlet (3b) replaced by enzyme solution.
  • the tissue is then incubated in the enzyme solution.
  • the cylinder (2) is rotated slowly so that the enzyme solution is constantly mixed and the tissue is moved.
  • the incubation chamber can consist of a tube, the ends of which are connected to one another. The liquid in the tube with the tissue is then kept in motion during the incubation by external tube pumps.
  • the oxygen partial pressure and the temperature should be kept constant using appropriate sensors and control loops.
  • the temperature and fumigation of the incubation solution can take place in the storage container or directly in the incubation chamber.
  • the enzyme treatment is stopped by exchanging the enzyme solution via the inlet (3 a) and the outlet (3b) for an enzyme inhibitor solution.
  • the tissue pieces are brought into the dissociation chamber (5) by a liquid flow from the inlet (lb) via the transition chamber (4) (Fig. 1).
  • the dissociation chamber is then completely filled with solution via the inlet (4a).
  • the tissue bond is dissolved mechanically by repeatedly passing the tissue pieces through dissociation elements (6) which are attached to at least one point in the dissociation chamber (Fig. 4 - 6).
  • These dissociation elements exert shear forces on the tissue, which can be successively increased with repeated passages and thus enable the gradual release of individual cells from the tissue structure.
  • the diameter of the dissociation chamber is reduced around the dissociation elements so that the tissue pieces pass the dissociation elements with increased pressure.
  • the dissociation chamber can be constructed in two versions, which allow the repeated passage of the tissue pieces through the dissociation elements. Both versions are shown in Figure 4.
  • the dissociation chamber consists of an annular, closed tube, which can at least partially consist of hose material.
  • the solution with the tissue pieces comes into the chamber via the inlet (5a) and is circulated by propellers (5b) or externally attached peristaltic pumps, so that the tissue pieces repeatedly pass through the dissociation elements (6).
  • the propeller movement is driven by a magnetic field, which is generated by an electromagnet (5c) attached to the outside.
  • the dissociation chamber consists of a cylinder, which is sealed at the ends by movable pistons or membranes (5e).
  • the solution with the tissue pieces comes into the chamber via the inlet (5f) and is moved back and forth in the cylinder by the synchronous movement of the two pistons or membranes, so that the tissue pieces repeatedly pass through the dissociation elements (6) attached in the middle.
  • the end of the lower chamber which is realized by a piston or a membrane, is provided on its inner surface with a propeller (5g) or a similar device which is set in motion by an electromagnet (5h) attached outside the chamber.
  • the propeller whirls up the pieces of tissue before each upward movement of the piston. This ensures that all pieces of tissue pass through the dissociation elements and do not remain on the piston surface.
  • the dissociation elements which are to exert variable shear forces on the tissue, can be constructed in different fillings.
  • the dissociation elements consist of a series of rotatably mounted knives or wires (6a). In the first round, the knives are all in a row and roughly cut the tissue (position 1; Fig. 5). For the next rounds, the spaces between the knives that have to pass through the tissue parts become smaller and smaller (position 2-3; Fig. 5), so that the shear force acting on the tissue is gradually increased. The knives are locked in the various positions magnetically via the correspondingly positioned electromagnets (6b).
  • the dissociation elements consist of grids or perforated diaphragms (6c) and in version 3 (Fig.
  • These dissociation elements are realized in different variants (Fig. 6), which differ in the grid spacing, hole or constriction diameter.
  • element variants with ever smaller constrictions are introduced into the dissociation chamber one after the other.
  • a suitable set of element variants is housed in a magazine, which is realized in version 1 cassette-shaped (6e, Fig. 7) or in version 2 cylindrical (6f; Fig. 8).
  • the linear or circular movement of the magazines leads to the exchange of the elemental variations in the dissociation chamber.
  • the different element variants can be accommodated in different dissociation chambers, which the tissue must then pass through one after the other.
  • the narrowing diameters of the element variants used in each preparation must be adapted to the type of tissue. It applies that the narrower the diameter of the elements, the tougher the tissue.
  • the dissociation chambers contain at least one closable drain (5d, 5i; Fig. 4), which is provided with a sieve. This sieve only allows individual cells to pass through (pore diameter depending on cell size, approx. 10 to 50 micrometers). The sequence is such that only cells released from the tissue and floating in the solution flow away.
  • the process (5d, 5i) is opened with a certain delay after the dissociation has been interrupted. During this time, undissociated pieces of tissue can sediment on the bottom of the dissociation chamber. To do this, the dissociation chamber must be aligned along the gravitational field.
  • the detached cells then pass through a transition chamber (7; Fig. 1) into the middle mixing chamber (8; Fig. 9), which consists of an annular, closed tube. The solution volume emerging from the dissociation chamber is replaced by fresh solution.
  • the cell suspension located in the middle mixing chamber (8) is mixed with magnetic particles via the inlet (8a; Fig. 1). These particles have molecules on their surface that bind specific recognition molecules to cell fragments and dead cells.
  • the mixing chamber is completely filled with solution and the cell suspension is kept in motion during the incubation phase by propellers (8b) or by external peristaltic pumps.
  • the suspension is then brought into the tubular subtraction chamber (10) by an overpressure applied to the inlet (8a) via the collecting chamber (9).
  • This chamber has a magnetizable surface on one side, which is enlarged for the efficient depletion of undesired cell material.
  • a correspondingly large magnetic field is generated by electromagnets (10b) attached to the outside.
  • the magnetic field can also be generated by permanent magnets whose distance from the subtraction chamber can be changed.
  • the diameter of the subtraction chamber is reduced in the direction perpendicular to the unfolded side, so that the cells are brought as close as possible to the magnetized side, and cells with particles are efficiently intercepted.
  • intact, non-adherent cells are placed in one of the cells by applying an overpressure in the inlet (10c) via the distribution chamber (11) lateral mixing chambers (12a, 12b; Fig. 9) pressed.
  • the cell material immobilized in the subtraction chamber is then washed out of the inlet (10c) via the outlet (10d) by a liquid flow after the magnetic field has been switched off.
  • the subtraction chamber is thus available again for subsequent depletion steps.
  • the cells are mixed with magnetic particles again. These can either bind unwanted cells, which are then withdrawn from the suspension via the subtraction chamber, or recognize desired cells, which are retained in the selection chamber (13; Fig. 11, 12).
  • the cell suspension is brought into the selection chamber (13) via the collecting chamber (9) and the inlet (13a).
  • This chamber is built similar to the mixing chambers.
  • the cell suspension mixed with magnetic particles is set in circulating motion by propellers (13b). It contains a magnetizable immobilization zone (14; Fig. 11, 12) at at least one point, which the circulating cells pass repeatedly.
  • the desired particle-bearing cells can be gradually captured and removed from the suspension.
  • the immobilization zone can be separated from the rest of the chamber by controllable flaps (14a) and contains an inlet (14b) and outlet (14c).
  • the zone contains a greatly enlarged surface, which can be magnetized by an electromagnet (14d) attached to the outside.
  • This surface can be implemented in two versions. In version 1 (Fig. 11) it consists of a strongly branched, magnetizable catch arm (14e), which is embedded in the selection chamber. In version 2 (Fig. 12) it consists of a strong unfolding of the corresponding section of the selection chamber wall (14f) and an electromagnet (14g) attached to the outside.
  • the diameter of the immobilization zone in this embodiment is greatly reduced in the direction perpendicular to the unfolded side, so that cells are brought as close as possible to the magnetized side. As soon as a sufficient number of cells have been immobilized, the
  • the magnetic field is switched off and the cells are flushed by a liquid flow from the inlet (14b) via the outlet (14c) into an outlet (15) which can hold standardized vessels, such as centrifuge tubes.
  • cells and cell fragments can be immobilized in the subtraction and selection chamber via special surfaces in the chambers, which allow reversible binding of recognition molecules.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Die Erfindung betrifft ein System, welches die vollautomatische und standardisierte Dissoziierung von tierischen Geweben und die anschliessende Isolierung von lebenden Zellen ermöglicht. Anwendungsgebiete der Erfindung sind die biomedizinische Forschung und Entwicklung.

Description

System zur automatischen Isolierung von lebenden Zellen aus tierischen Geweben
Beschreibung
Die Erfindung betrifft ein System, welches die vollautomatische und standardisierte
Dissoziierung von tierischen Geweben und die anschliessende Isolierung von lebenden Zellen ermöglicht. Anwendungsgebiete der Erfindung sind die biomedizinische Forschung und Entwicklung.
Aus tierischen Geweben isolierte Zellen spielen eine wichtige Rolle in der biomedizinischen Forschung und bei der Entwicklung von Arzneimitteln und theraupeutischen Methoden. Sie dienen zur Anlage primärer Zellkulturen, die für Funktionsuntersuchungen, Wirksamkeitstests oder andere präklinische Experimente eingesetzt werden (Animal Cell Culture Techniques, M. Clynes (Hrsg.), 1998, Springer; In Nitro Models, D. Anderson, 1990, Drug Safety 5: 27-39), zur Entwicklung von Ersatzgewebe aus Stammzellen und zur Gewinnung von biologischem Material wie DΝS, RΝS oder Proteinen. Der Aufreinigung von spezifischen Zellen aus Geweben kommt mit der rasanten Entwicklung der funktioneilen Genomforschung zunehmende Bedeutung zu. Beispielsweise können bestimmte Genmanipulationen in transgenen Tieren embryonal lethal wirken, so daß mögliche Funktionen des untersuchten Proteins, die erst im postnatalen Tier eintreten, nicht in vivo untersucht werden können. Die Isolierung und anschliessende Kultivierung von Zellen aus embryonalem Gewebe erlaubt Untersuchungen dieser Funktionen in vitro. Eine weitere Aufgabe der funktionellen Genomforschung besteht in der Analyse von Expressionsmustern von Proteinen in bestimmten Zellen, beispielsweise ein Nergleich der Proteinmuster in verschiedenen Entwicklungsabschnitten oder zwischen krankem und gesundem Gewebe (z. B. Tumorcharakterisierung). Hier besteht das Problem, daß jedes Gewebe eine Vielzahl von verschiedenen Zelltypen enthält und daß Veränderungen im Expressionsmuster in bestimmten Zellen, die nur in kleiner Anzahl vorhanden sind, nicht detektiert werden können aufgrund der niedrigen Menge an Protein oder Boten-RΝS. Dieses Problem kann dadurch gelöst werden, daß das biologische Material nicht aus dem gesamten Gewebe isoliert wird, sondern aus einer durch vorherige Dissoziation und Aufreinigung gewonnenen, homogenen Population des für die spezifische Fragestellung relevanten Zelltyps.
Gegenwärtig gibt es eine Reihe von Methoden für die Isolierung von Zellen aus tierischen Geweben (Culture of Animal Cells, 3. Aufl., R.I. Freshney, 1994, Wiley; Animal Cell Culture Techniques, M. Clynes (Hrsg.), 1998, Springer; Cell and Tissue Culture. Laboratory Procedures in Biotechnology, A. Doyle & J.B. Griffiths (Hrsg.), 1998, Wiley/VCH; Cells. A Laboratory Manual: Vol 1: Culture and Biochemical Analysis of Cells, Spector et al. (Hrsg.), 1998, Cold Spring Harbor Press). Prinzipiell wird das Gewebe zunächst dem Tier entnommen, dann der Zellverband mechanisch und oder enzymatisch aufgelöst und der gewünschte Zelltyp anschliessend durch geeignete Selektionsverfahren isoliert.
Die bisherigen Präparations- und Isolationsverfahren sind aber mit einer Reihe von Nachteilen behaftet: Sie sind allgemein kostenintensiv, da sie von entsprechend ausgebildeten und erfahrenen Fachkräften unter grossem Zeit- und Materialaufwand manuell durchgeführt werden, die Ausbeute an verwendbaren Zellen erheblich schwanken kann und die Verfahren von Labor zu Labor unterschiedlich durchgeführt werden. Bisher gibt es keine Möglichkeit, die Isolierung von Zellen aus tierischem Gewebe zu automatisieren und zu standardisieren und damit die Kosten zu senken und die Zuverlässigkeit und Vergleichbarkeit der Zell-Präparationen zu erhöhen.
Der Erfindung liegt daher die Aufgabe zugrunde, eine vollautomatisierte und standardisierte Präparation von lebenden Zellen mit maximaler Ausbeute zu ermöglichen. Es soll ein modular aufgebautes System entwickelt werden, welches an verschiedene Anwendungen angepasst werden kann, von der reinen Gewebedissoziation bis hin zur Aufreinigung von bestimmten Zelltypen, welche selektierbare Merkmale enthalten. Weiterhin soll es die verlustfreie Verarbeitung von Gewebeproben, die nur in kleinen Mengen zur Verfügung stehen (z.B. Biopsiematerial), die sichere Handhabung von Risikomaterial (z. B. von infiziertem Gewebe), die Gewinnung beliebig grosser Mengen an Zellen durch Dauerbetrieb und die mögliche Kombination mit weiteren Anwendungen, wie beispielsweise der anschliessenden Transfektion der isolierten Zellen mittels geeigneter Geräte, erlauben.
Diese Aufgabe wird gemäß den in den Patentansprüchen dargelegten Maßnahmen realisiert, sie wird nachfolgend näher beschrieben:
Aufbau und Funktionsprinzip
Das System besteht aus dem in Abbildung 1 und 2 dargestellten Hohlraum- Verbund. Dieser setzt sich aus verschiedenen Abschnitten zusammen, welche je nach Anwendung kombiniert werden können. Zunächst wird im Dissoziierungsabschnitt der Gewebeverband enzymatisch und mechanisch aufgelöst und eine Zellsuspension gewonnen. In einem nachfolgenden Reinigungsschritt werden unerwünschte Zellbruchstücke und beschädigte Zellen im Subtraktionsabschnitt aus der Suspension entfernt. Schliesslich können gewünschte Zellen durch eine entsprechende Kombination von Subtraktions- und/oder Selektionsschritten isoliert werden. Die Subtraktion und Selektion von Zellen und Zellbruchstücken erfolgt durch Erkennungsmoleküle (Antikörper, Lektine, Peptide o.a.), welche spezifisch an Moleküle auf Zellen oder Zellbruchstücken binden. Diese Erkennunsmoleküle können beispielsweise an magnetische Partikel gekoppelt werden. Die mit magnetischen Partikeln beladenen Zellen werden dann durch entsprechend starke Magnetfelder im Subtraktions- oder Selektionsabschnitt immobilisiert. Alternativ können die Erkennungsmoleküle durch Bindung an vorbereitete Oberflächen reversibel immobilisiert werden. Das System wird in einem Versorgungsbehälter untergebracht, der die Steuerungselektronik, Vorratsbehälter sowie Pumpen, Ventile und Schläuche für die Versorgung mit den notwendigen Lösungen enthält. Jene Teile, welche mit biologischem Material oder Präparationslösungen in Berührung stehen, bestehen aus inertem, nichttoxischem und hitzebeständigem Material. Das System sollte mit Sensoren für die Temperatur, pH-Wert, Sauerstoff-Partialdruck und Turbidität ausgestattet sein. Das System kann auch so ausgeführt werden, dass die mit Zellen in Kontakt tretenden Teile in einem Bauteil zusammengefasst werden und somit nach einer gewissen Nutzungssdauer ausgetauscht werden können.
Ablauf
Ausgangsmaterial für die Präparation sind Gewebestücke oder -schnitte. Diese werden in die Aufnahmekammer (1) eingebracht. Die Kammer wird über einen Verschluss (la) geschlossen, und das Gewebe durch einen Flüssigkeitsstrom aus Zulauf (lb) über den Ablauf (lc) in eine drehbar gelagerte Trommel (2) in der Inkubationskammer gespült (3). Abbildung 3 zeigt eine mögliche Ausführung der Inkubationskammer in Frontansicht. Die Drehbewegung des Zylinders während der Inkubation wird durch wechselnde Magnetfelder angetrieben, welche durch ausserhalb der Inkubationskammer (3) angebrachte Elektromagneten (3 c) erzeugt werden und auf an der Aussenseite des Zylinders (2) befindliche Dauermagneten (2a) einwirken. Der Zylinder enthält nach innen gerichtete Einkerbungen (2b), welche das darauf liegende Gewebe in Bewegung halten. Der Zylinder ist ausserdem mit wasserdurchlässige Poren (2c) versehen, welche einen Austausch der Präparationslösungen erlauben, das Gewebe aber zurückhalten. Schliesslich trägt der Zylinder aussen Erhebungen (2d), welche die Durchmischung der Enzymlösung verbessern. Für die Enzymbehandlung wird die Präparationslösung in der Inkubationskammer über den Zulauf (3 a) und den Ablauf (3b) durch Enzymlösung ausgetauscht. Das Gewebe wird dam in der Enzymlösung inkubiert. Dabei wird der Zylinder (2) langsam gedreht, damit ständig die Enzymlösung durchmischt und das Gewebe bewegt werden. Alternativ kann die Inkubationskammer aus einem Schlauch bestehen, dessen Enden miteinander verbunden sind. Die im Schlauch befindliche Flüssigkeit mit dem Gewebe wird dann während der Inkubation durch aussen angebrachte Schlauchpumpen in Bewegung gehalten.
Während der Inkubation sollten der Sauerstoffpartialdruck und die Temperatur über entsprechende Sensoren und Regelkreise konstant gehalten werden. Die Temperierung und Begasung der Inkubationslösung kann bereits im Vorratsbehälter erfolgen oder direkt in der Inkubationskammer. Nach einer vom Gewebe abhängigen Inkubationszeit wird die Enzymbehandlung gestoppt, indem die Enzymlösung über den Zulauf (3 a) und den Ablauf (3b) durch Enzyminhibitor-Lösung ausgetauscht wird.
Nach der Enzymbehandlung werden die Gewebestücke durch einen Flüssigkeitsstrom aus Zulauf (lb) über die Übergangskammer (4) in die Dissoziationskammer (5) gebracht (Abb. 1). Die Dissoziationskammer wird anschliessend über den Zulauf (4a) vollständig mit Lösung gefüllt. In der Dissoziationskammer wird der Gewebeverband mechanisch aufgelöst, indem die Gewebestücke wiederholt Dissoziationselemente (6) passieren, welche an mindestens einer Stelle in der Dissoziationskammer angebracht sind (Abb. 4 - 6). Diese Dissoziationselemente üben Scherkräfte auf das Gewebe aus, welche bei wiederholten Passagen sukzessive verstärkt werden können und so die allmähliche Auslösung von Einzelzellen aus dem Gewebeverband ermöglichen. Der Durchmesser der Dissoziationskammer ist um die Dissoziationselemente herum verringert, so daß die Gewebestücke die Dissoziationselemente mit erhöhtem Druck passieren. Die Dissoziationskammer kann in zwei Ausführungen konstruiert werden, welche die wiederholte Passage der Gewebestücke durch die Dissoziationselemente ermöglichen. Beide Ausführungen sind in Abbildung 4 dargestellt. In Ausführung 1 besteht die Dissoziationskammer aus einer ringförmigen, geschlossenen Röhre, welche zumindest teilweise aus Schlauchmaterial bestehen kann. Die Lösung mit den Gewebestücken kommt über den Zulauf (5a) in die Kammer und wird durch Propeller (5b) oder aussen angebrachte Schlauchpumpen in zirkulierende Bewegung gebracht, so daß die Gewebestücke wiederholt die Dissoziationselemente (6) passieren. Die Propellerbewegung wird durch ein Magnetfeld angetrieben, welches durch einen aussen angebrachten Elektromagneten (5c) erzeugt wird. In Ausführung 2 besteht die Dissoziationskammer aus einem Zylinder, welcher an den Enden durch bewegliche Kolben oder Membranen (5e) wasserdicht abgeschlossen ist. Die Lösung mit den Gewebestücken kommt über Zulauf (5f) in die Kammer und wird durch die synchrone Bewegung der beiden Kolben oder Membranen im Zylinder hin- und her bewegt, so daß die Gewebestücke wiederholt die in der Mitte angebrachten Dissoziationselemente (6) passieren. Hierbei ist wichtig, daß der durch einen Kolben oder eine Membran realisierte Abschluss der unteren Kammer auf seiner Innenfläche mit einem Propeller (5g) oder einer ähnlichen Vorrichtung versehen ist, welche von einem ausserhalb der Kammer angebrachten Elektromagneten (5h) in Bewegung gebracht wird. Der Propeller sorgt vor jeder Aufwärtsbewegung des Kolbens für die Aufwirbelung der Gewebestücke. Damit wird sichergestellt, daß alle Gewebestücke die Dissoziationselemente passieren und nicht auf der Kolbenfläche liegen bleiben.
Die Dissoziationselemente, welche veränderbare Scherkräfte auf das Gewebe ausüben sollen, können in verschiedenen Ausfüllrungen konstruiert werden. In Ausführung 1 (Abb. 5) bestehen die Dissoziationselemente aus einer Reihe von drehbar gelagerten Messern oder Drähten (6a). Im ersten Durchgang stehen die Messer alle in einer Reihe und zerschneiden das Gewebe grob (Stellung 1; Abb. 5). Für die nächsten Durchgänge werden die Messerzwischenräume, welche die Gewebeteile passieren müssen, immer kleiner (Stellung 2-3; Abb. 5), so daß die auf das Gewebe einwirkende Scherkraft sukzessive erhöht wird. Die Arretierung der Messer in den verschiedenen Positionen erfolgt magnetisch über aussen entsprechend positionierte Elektromagneten (6b). In Ausführung 2 (Abb. 6) bestehen die Dissoziationselemente aus Gittern oder Lochblenden (6c) und in Ausführung 3 (Abb. 6) aus einer einfachen Verengung der Dissoziationskammer (6d). Diese Dissoziationselemente werden in verschiedenen Varianten realisiert (Abb. 6), welche sich im Gitterabstand, Loch- oder Verengungsdurchmesser unterscheiden. Um die für die Gewebedissoziation erforderliche sukzessive Erhöhung der Scherkraft zu erreichen, werden nacheinander Element- Varianten mit immer kleineren Verengungen in die Dissoziationskammer eingebracht. Dazu wird ein geeigneter Satz an Element- Varianten in einem Magazin untergebracht, welches in Ausführung 1 Kassetten-förmig (6e, Abb. 7) oder in Ausführung 2 zylinderförmig realisiert wird (6f; Abb. 8). Die linear oder kreisförmige Bewegung der Magazine führt zum Austausch der Elementvarienten in der Dissoziationskammer. Alternativ können die verschiedenen Elementvarianten in verschiedenen Dissoziationskammern untergebracht sein, welche das Gewebe dann nacheinander passieren muss. Die Verengungs-Durchmesser der bei jeder Präparation verwendeten Elementvarianten müssen der Art des Gewebes angepasst werden. Dabei gilt, daß der Verengungsdurchmesser der Elemente desto kleiner sein muss, je zäher das Gewebe ist. Für die Gewinnung von lebensfähigen Zellen ist es essentiell, daß die Dissoziation regelmässig unterbrochen wird und jene Zellen, welche bereits aus dem Gewebe losgelöst wurden, aus der Dissoziationskammer abgeführt werden, damit sie durch weitere Dissoziationsschritte nicht beschädigt werden. Dazu enthalten die Dissoziationskammern mindestens einen verschliessbaren Ablauf (5d, 5i; Abb. 4), welcher mit einem Sieb versehen ist. Dieses Sieb lässt nur einzelne Zellen durch (Porendurchmesser abhängig von Zellgrösse, ca. 10 bis 50 Mikrometer). Der Ablauf ist so angebracht, daß nur aus dem Gewebeverband ausgelöste Zellen, welche in der Lösung schweben, abfliessen. Zur Abführung losgelöster Zellen wird der Ablauf (5d, 5i) mit einer gewissen Verzögerung nach Unterbrechung der Dissoziation geöffnet. In dieser Zeit können undissoziierte Gewebestücke auf den Boden der Dissoziationskammer sedimentieren. Dazu muss die Dissoziationskammer längs des Gravitationsfeldes ausgerichtet sein. Die losgelösten Zellen gelangen dann über eine Übergangskammer (7; Abb. 1) in die mittlere Mischungskammer (8; Abb. 9), welche aus einer ringförmigen, geschlossenen Röhre besteht. Das aus der Dissoziationskammer ausgetretene Lösungsvolumen wird durch frische Lösung ersetzt.
Nachdem die gewünschte Zahl an Zellen durch eine entsprechende Anzahl an Dissoziations-Durchgängen erreicht worden ist, wird die in der mittleren Mischungskammer (8) befindliche Zellsuspension über den Zulauf (8a; Abb. 1) mit magnetischen Partikeln versetzt. Diese Partikel tragen auf ihrer Oberfläche Moleküle, welche spezifische Erkennungsmoleküle auf Zellbruchstücken und toten Zellen binden. Die Mischungskammer wird vollständig mit Lösung aufgefüllt und die Zellsuspension während der Inkubationsphase durch Propeller (8b) oder durch aussen angebrachte Schlauchpumpen in Bewegung gehalten. Die Suspension wird dann durch einen an Zulauf (8a) angelegten Überdruck über die Sammelkammer (9) in die röhrenförmige Subtraktionskammer (10) gebracht. Diese Kammer weist auf einer Seite eine magnetisierbare Oberfläche auf, welche zur effizienten Abreicherung von unerwünschtem Zellmaterial vergrössert ist. Zur Immobilisierung des mit magnetischen Partikeln beladenen Zellmaterials in der Kammer wird ein entsprechend grosses Magnetfeld durch aussen angebrachte Elektromagneten (10b) erzeugt. Alternativ kann das Magnetfeld auch durch Dauermagneten erzeugt werden, deren Abstand zur Subtraktionskammer verändert werden kann. Der Durchmesser der Subtraktionskammer ist in der senkrecht zur aufgefalteten Seite stehenden Richtung verringert, so daß die Zellen möglichst nahe an die magnetisierte Seite herangeführt und so Partikel-behaftete Zellen effizient abgefangen werden. Nach einer gewissen Inkubationszeit werden intakte, nichthaftende Zellen durch Anlegen eines Überdruckes im Zulauf (10c) über die Verteilungskammer (11) in eine der seitlichen Mischungskammern (12a, 12b; Abb. 9) gepresst. Das in der Subtraktionskammer immobilisierte Zellmaterial wird dann nach Abschalten des Magnetfeldes durch einen Flüssigkeitsstrom aus dem Zulauf (10c) über den Ablauf (lOd) ausgewaschen. Die Subtraktionskammer steht damit für nachfolgende Abreicherungsschritte wieder zur Verfügung.
In den seitlichen Mischungskammern (12a, 12b) werden die Zellen wieder mit magnetischen Partikeln versetzt. Diese können entweder ungewünschte Zellen binden, welche dann über die Subtraktionskammer der Suspension entzogen werden, oder gewünschte Zellen erkennen, welche in der Selektionskammer (13; Abb. 11, 12) zurückgehalten werden. Für die Selektion wird die Zellsuspension über die Sammelkammer (9) und den Zulauf (13a) in die Selektionskammer (13) gebracht. Diese Kammer ist ähnlich gebaut wie die Mischungskammern. In ihr wird die mit magnetischen Partikeln versetzte Zellsuspension durch Propeller (13b) in zirkulierende Bewegung versetzt. Sie enthält an mindestens einer Stelle eine magnetisierbare Immobilisierungszone (14; Abb. 11, 12), welche die zirkulierenden Zellen wiederholt passieren. Hier können die gewünschten, Partikel-tragenden Zellen nach und nach festgehalten und der Suspension entzogen werden. Die Immobilisierungszone ist zur Abführung der selektierten Zellen vom Rest der Kammer durch steuerbare Klappen (14a) abtrennbar und enthält einen Zu- (14b) und Ablauf (14c). Zur effizienten Entfernung der gewünschten Zellen enthält die Zone eine stark vergrösserte Oberfläche, welche durch einen aussen angebrachten Elektromagneten (14d) magnetisiert werden kann. Diese Oberfläche kann in zwei Ausführungen realisiert werden. In Ausführung 1 (Abb. 11) besteht sie aus einem stark verzweigten, magnetisierbaren Fangarm (14e), der in die Selektionskammer eingelagert ist. In Ausführung 2 (Abb. 12) besteht sie aus einer starken Auffaltung des entsprechenden Abschnitts der Selektionskammerwand (14f) und einem aussen angebrachten Elektromagneten (14g). Ähnlich wie bei der Subtraktionskammer ist der Durchmesser der Immobilisierungszone in dieser Ausführung in der senkrecht zur aufgefalteten Seite stehenden Richtung stark verkleinert, so daß Zellen möglichst nahe an die magnetisierte Seite herangeführt werden. Sobald eine ausreichende Anzahl an Zellen immobilisiert worden ist, wird der
Flüssigkeitsstrom gestoppt und die Immobilisierungszone vom Rest der Selektionskammer abgetrennt. Hier ist wichtig, daß das Volumen der Zone die Endkonzentration der Zellen bestimmt und daher entsprechend klein gehalten werden muss. Zur Gewinnung der Zellen wird das Magnetfeld abgeschaltet und die Zellen werden durch einen Flüssigkeitsstrom aus dem Zulauf (14b) über den Ablauf (14c) in einen Ausgang (15) gespült, welcher standardisierte Gefässe, wie beispielsweise Zentrifugenröhrchen, aufnehmen kann. Alternativ zu den magnetischen Partikeln kann die Immobilisierung von Zellen und Zellbruchstücken in der Subtraktions- und Selektionskammer über spezielle Oberflächen in den Kammern erfolgen, welche eine reversible Bindung von Erkennungsmolekülen erlauben.
Bezugszeichenliste
1 Aufnahmekammer la Verschluss lb Zulauf lc Ablauf
2 Trommel
2a Dauermagneten
2b Einkerbungen
2c wasserdurchlässige Poren
2d Erhebungen
3 Inkubationskammer
3a Zulauf
3b Ablauf
3c Elektromagneten
4 Übergangskammer
4a Zulauf
5 Dissoziationskammer
5a Zulauf
5b Propeller
5c Elektromagnete
5d Ablauf
5e Kolben oder Membran
5f Zulauf
5g Propeller
5h Elektromagnet
5i Ablauf
6 Dissoziationseiemete
6a drehbar gelagerte Messer oder Drähte
6b Elektromagnete
6c Gitter oder Lochblenden d Verengung der Dissoziationskammer e Kassettenförmiges Magazin f Zylinderföπniges Magazin
Übergangskammer
Mittlere Mischungskammer a Zulauf b Propeller
Sammelkammer 0 Subtraktionskammer 0a Auffaltungen 0b Elektromagnete 0c Zulauf Od Ablauf 1 Verteilungskammer 2a, b - Seitliche Mischungskammern 3 Selektionskammer 3a Zulauf 3b Propeller 4 Inimobilisierungszone 4a Steuerbare Klappen 4b Zulauf 4c Ablauf 4d Elektromagneten 4e Magnetisierbarer Fangarm 4f S elektionskammerwand 4g Elektromagnenten 5 Ausgang

Claims

Patentansprüche
1. System zur automatischen Isolierung von lebenden Zellen aus tierischen Geweben, welches aus einem Verbund aus Hohlräumen besteht, welcher zur Gewebe-Dissoziierung dient.
2. System nach Anspruch 1 dadurch gekennzeichnet, daß zusätzlich zum Dissoziierungsabschnitt weitere Verbünde aus Hohlräumen angeschlossen sind, welche zur Mischung, zur Zeil-Subtraktion und zur Zeil-Selektion dienen.
3. System nach Anspruch 1 und 2, dadurch gekennzeichnet, daß jene Teile, welche mit biologischem Material oder Präparationslösungen in Berührung kommen, aus chemisch inertem und nicht-toxischem Material bestehen.
4. System nach Anspruch 1 und 2, dadurch gekennzeichnet, daß sämtliche Öffnungen nach aussen sowie alle Übergänge zwischen Kammern durch magnetisch, pneumatisch, hydraulisch oder elektrisch betriebene Klappen oder Schleusen wasserdicht verschlossen werden können.
5. System nach Anspruch 1, dadurch gekennzeichnet, daß der Abschnitt zur Gewebedissoziierung aus den nacheinander angeordneten Elementen einer Aufnahmekammer (1), einer Inkubationskammer (3), einer Übergangskammer (4) und einer Dissoziationskammer (5) besteht, wobei die Aufnahmekammer oder die Übergangskammer jeweils mit den nachfolgenden Kammern zusammengefasst werden können.
6. System nach Anspruch 1 und 5, dadurch gekennzeichnet, daß die Aufhahmekammer mindestens einen Zugang (la) zur Aufnahme von Gewebematerial, einen Zulauf (lb) zur Ausspülung des Gewebes und einen Ablauf (lc) enthält, welcher die Verbindung zur nachfolgenden Inkubationskammer herstellt.
7. System nach Anspruch 1 und 5, dadurch gekennzeichnet, dass die Inkubationskammer in Ausführung 1 als Hohlraum realisiert wird, in dem sich eine drehbar gelagerte Trommel (2) befindet.
8. System nach Anspruch 1 und 5, dadurch gekennzeichnet, daß die Inkubationskammer in Ausführung 2 durch einen Hohlzylinder realisiert wird, der selbst dreh- oder kippbar gelagert ist und durch aussen angebrachte Vorrichtungen bewegt werden kann.
9. System nach Anspruch 1 und 5, dadurch gekennzeichnet, daß die Inkubationskammer in Ausführung 3 mindestens teilweise durch einen Schlauch realisiert wird, welcher durch eine aussen angebrachte Vorrichtung, wie beispielsweise eine Schlauchpumpe, bewegt werden kami.
10. System nach Anspruch 1 und 7, dadurch gekennzeichnet, daß die Trommel (2) in Ausführung 1 der Inkubationskammer Magneten trägt, und daß an den entsprechenden Stellen an der Aussenseite der Inkubationskammer Elektromagneten angebracht sind, welche die Bewegung der Trommel antreiben.
11. System nach Anspruch 1 und 7, dadurch gekennzeichnet, daß das Innere der Trommel (2) in Ausführung 1 der Inkubationskammer direkt mit dem Inneren der vor- und nachgeschalteten Kammern, aber nicht mit dem Raum zwischen Inkubationskammer und Trommel verbunden ist.
12. System nach Anspruch 1 und 7, dadurch gekennzeichnet, daß die Trommel (2) in Ausführung 1 der Inkubationskammer nach innen und aussen gerichtete Einkerbungen (2b) beziehungsweise Erhebungen (2d) trägt, welche eine Durchmischung einer Flüssigkeit ermöglichen.
13. System nach Anspruch 1 und 7, dadurch gekennzeichnet, daß die Trommel (2) in Ausführung 1 der Inkubationskammer Poren enthält (2c), welche Gewebematerial von Flüssigkeiten abtrennen.
14. System nach Anspruch 1, 5, 8 und 9, dadurch gekennzeichnet, daß die Ausführungen 2 und 3 der Inkubationskammer jeweils mindestens einen Ablauf enthalten, welcher mit einem Sieb versehen ist, welches Gewebematerial von Flüssigkeiten abtrennt.
15. System nach Anspruch 1 und 5, dadurch gekennzeichnet, daß die Dissoziationskammer nach Ausführung 1 durch eine ringförmige, geschlossene Röhre oder nach Ausführung 2 durch einen Hohlzylinder realisiert wird.
16. System nach Anspruch 1 und 15, dadurch gekennzeichnet, daß die Ausführung 1 der Dissoziationskammer zur Bewegung einer darin befindlichen Flüssigkeit im Inneren mindestens einen durch aussen angebrachte Elektromagneten angetriebenen Propeller (5b) enthält oder zumindest teilweise aus Schlauchmaterial besteht, welches durch eine an der Aussenseite angebrachte Vorrichtung, beispielweise eine Schlauchpumpe, bewegt werden kann.
17. System nach Anspruch 1 und 15, dadurch gekennzeichnet, daß die Ausführung 2 der Dissoziationskammer an beiden Seiten durch bewegbare Kolben oder Membranen (5e) wasserdicht abgeschlossen wird, welche eine darin befindliche Flüssigkeit bewegen.
18. System nach Anspruch 1 und 17, dadurch gekennzeichnet, daß die Ausführung 2 der Dissoziationskammer auf einer Seite des durch einen Kolben oder eine Membran realisierten Abschlusses einen durch aussen angebrachte Elektromagneten angetriebenen Propeller (5g) trägt, welcher für die Aufwirbelung der Gewebeteile sorgt.
19. System nach Anspruch 1 und 15, dadurch gekennzeichnet, daß die Dissoziationskammer an mindestens einer Stelle Dissoziationselemente enthält, welche bei jeder Passage Scherkräfte auf Gewebestücke ausüben und so die mechanische Auslösung von einzelnen Zellen aus dem Gewebeverband ermöglichen.
20. System nach Anspruch 1 und 19, dadurch gekennzeichnet, daß die Dissoziationselemente in Ausführung 1 durch eine Reihe von drehbar gelagerten, dicht aufeinander folgenden Messern oder Drähten realisiert werden (6a), welche durch aussen angebrachte Magneten gegeneinander verstellt werden können, so daß die Zwischenräume zwischen den Messern oder Drähten und damit die auf das Gewebe einwirkenden Scherkräfte verändert werden können.
21. System nach Anspruch 1 und 19, dadurch gekennzeichnet, daß die Dissoziationselemente in Ausführung 2 durch Gitter oder Lochblenden (6c) oder in
Ausführung 3 durch einfache Verengungen des Hohlraumdurchmessers (6d) realisiert werden.
22. System nach Anspruch 1 und 21, dadurch gekennzeichnet, daß die Ausführungen 2 und 3 der Dissoziationselemente in Element- Varianten mit unterschiedlichen Gitterabständen, Loch- oder Verengungsdurchmesser realisiert werden, so daß die auf das Gewebe einwirkenden Scherkräfte verändert werden können.
23. System nach Anspruch 1 und 22, dadurch gekennzeichnet, daß in Ausführung a) die Element- Varianten der Dissoziationselemente der Ausführung 2 und 3 in einem Kassetten- (6e) oder Zylinder-förmigen Magazin (6f) untergebracht sind, welches den Austausch der Elementvarianten in der Dissoziationskammer ermöglicht.
24. System nach Anspruch 1 und 22, dadurch gekennzeichnet, dass in Ausführung b) die Element-Varianten der Dissoziationselemente der Ausführung 2 und 3 in jeweils verschiedenen Dissoziationskammern eingebaut werden, welche das Gewebe nacheinander passieren muss.
25. System nach Anspruch 1 und 15, dadurch gekennzeichnet, daß die Dissoziationskammer mindestens einen Ablauf (5d, 5i) enthält, welcher mit einem Sieb versehen ist, welches einzelne Zellen von Gewebestücken abtrennt.
26. System nach Anspruch 1 und 25, dadurch gekennzeichnet, daß der Ablauf (5d, 5i) der Dissoziationskammer an einer Stelle der Kammer angebracht sind, welche die Abführung von aus dem Gewebeverband ausgelösten, nicht sedimentierten Zellen erlaubt.
27. System nach Anspruch 1 und 2, dadurch gekennzeichnet, daß der Mischungsabschnitt aus mindestens einer Mischungskammer (8) besteht, welche in eine Sammelkammer (9) mündet.
28. System nach Anspruch 1, 2 und 27, dadurch gekennzeichnet, daß die Mischungskammer (8) über die Übergangskammer (7) mit der Dissoziationskammer verbunden ist.
29. System nach Anspruch 1, 2 und 27, dadurch gekennzeichnet, daß Mischungskammern zusätzlich zu den Verbindungen zu den vor- und nachgeschalteten Kammern jeweils mindestens einen separaten Zulauf besitzen.
30. System nach Anspruch 1 und 2, dadurch gekennzeichnet, daß der Subtraktionsabschnitt aus einer Subtraktionskammer (10) besteht, welche über die Sammelkammer (9) mit den
Mischungskammern verbunden ist.
31. System nach Anspruch 1, 2 und 30, dadurch gekennzeichnet, daß die Subtraktionskammer innen mindestens eine Immobilisierungszone enthält.
32. System nach Anspruch 1, 2 und 30, dadurch gekennzeichnet, daß ein Ausgang der Subtraktionskammer in eine Verteilungskammer (11) mündet, welche Verbindungen zu den Mischungskammern enthält.
33. System nach Anspruch 1, 2, 5, 27 und 30, dadurch gekennzeichnet, daß die Inkubationskammer (3), die Übergangskammern (4 und 7), die Sammelkammer (9) und die Subktrationskammer (10) zusätzlich zu den Verbindungen zu den vor- und nachgeschalteten Kammern j eweils mindestens einen Zulauf und einen Ablauf haben.
34. System nach Anspruch 1 und 2, dadurch gekennzeichnet, daß der Selektionsabschnitt aus einer Selektionskammer (13) besteht, welche über die Sammelkammer (9) mit den Mischungskammern verbunden ist.
35. System nach Anspruch 1, 2 und 34, dadurch gekennzeichnet, daß die Selelctionskammer innen mindestens eine Immobilisierungszone (14) enthält, welche durch
Klappen (14a) oder andere Vorrichtungen vom Rest der Selektionskammer abtrennbar ist und welche mindestens einen separaten Zulauf (14b) und einen Ablauf (14c) aufweist.
36. System nach Anspruch 1, 2 und 35, dadurch gekennzeichnet, daß der Ablauf der Immobilisierungszone (14c) in einen Ausgang (15) mündet, welcher standardisierte Gefässe aufnehmen kann.
37. System nach Anspruch 1, 2, 31 und 35 dadurch gekennzeichnet, daß die Immobilisierungszone eine stark vergrösserte Oberfläche aufweist (10a, 14f), welche entweder durch Auffaltung der inneren Kammerwand oder durch Einbringung eines Materials mit entsprechender Oberflächenstruktur realisiert werden kann.
38. System nach Anspruch 1, 2 und 37, dadurch gekennzeichnet, daß die Immobilisierungszone in Ausführung 1 aussen Magneten (10b) trägt, welche im Inneren befindliche magnetische Partikel, welche an Zellen gebunden sind, immobilisieren, oder in Ausführung 2 auf der Kammerwand oder über das eingebrachte Material eine spezielle Oberfläche aufweist, welche die reversible Bindung von Molekülen wie Antikörpern oder Lektinen erlaubt, welche wiederum spezifisch an Moleküle auf Zellen oder Zellbruchstücken binden.
39. System nach Anspruch 1, 2 und 38, dadurch gekennzeichnet, dass die in Ausführung 1 der Immobilisierungszone aussen angebrachten Magneten entweder als Dauermagneten realisiert werden, deren Abstand zur Kammer verändert werden kann, oder als Elektromagneten, deren Magnetfeld an- und abgeschaltet werden kann.
40. System nach Anspruch 1, 2 und 37 dadurch gekennzeichnet, daß in der Immobilisierungszone der Kammerdurchmesser in der senkrecht zur oberflächenvergrösserten Seite stehenden Richtung stark verkleinert ist, so daß der räumliche Abstand von in der Suspension befindlichen Zellen zu dieser Seite minimiert wird.
41. System nach Anspruch 1, 2, 27, 30 und 34, dadurch gekennzeichnet, daß die Mischungs-, Subtraktions- und Selektionskammern als ringförmige, geschlossene Röhren realisiert werden, welche zur Bewegung darin befindlicher Flüssigkeiten in ihrem Inneren jeweils mindestens einen durch aussen angebrachte Elektromagneten angetriebenen Propeller enthalten oder zumindest teilweise aus flexiblem Schlauchmaterial bestehen, welches durch eine an der Aussenseite angebrachte Vorrichtung, beispielweise eine Schlauchpumpe, bewegt werden kann.
42. System nach Anspruch 1, 2, 5, 27, 30 und 34, dadurch gekennzeichnet, dass jene Teile, welche mit biologischem Material in Kontakt kommen, in einer Ausführungsvariante zu einem Bauteil zusammengefasst werden, welches nach einer gewissen Nutzungssdauer ausgetauscht werden kann.
43. System nach Anspruch 1, 2 und 42, dadurch gekennzeichnet, dass das austauschbare Bauteil der Ausführungsvariante in verschiedenen Varianten realisiert werden kann, welche sich in Eigenschaften wie Innenraum-Volumen oder Beschichtungsmaterial unterscheiden und somit die Verarbeitung unterschiedlicher Gewebemengen und -typen erlauben.
44. System nach Anspruch 1, 2, 5, 37 und 38, dass die Inlcubationskammer und die Dissoziationskammer in einer Ausführungsvariante jeweils ebenfalls mindestens eine Immobilisierungszone enthalten, welche direkt oder indirekt die Immobilisierung von Molekülen wie beispielsweise Enzymen ermöglichen, welche für die Verarbeitung des Gewebes verwendet werden.
PCT/DE2002/000590 2001-02-20 2002-02-20 System zur automatischen isolierung von lebenden zellen aus tierischen geweben WO2002066598A1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10107942 2001-02-20
DE10107942.7 2001-02-20
DE10116155A DE10116155A1 (de) 2001-02-20 2001-03-31 System zur automatischen Isolierung von lebenden Zellen aus tierischen Geweben
DE10116155.7 2001-03-31

Publications (1)

Publication Number Publication Date
WO2002066598A1 true WO2002066598A1 (de) 2002-08-29

Family

ID=26008562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2002/000590 WO2002066598A1 (de) 2001-02-20 2002-02-20 System zur automatischen isolierung von lebenden zellen aus tierischen geweben

Country Status (1)

Country Link
WO (1) WO2002066598A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2998744A1 (de) * 2014-09-17 2016-03-23 Siemens Healthcare Diagnostics Products GmbH Inkubationseinrichtung für ein automatisches Analysegerät
EP2970856A4 (de) * 2013-03-14 2016-10-26 Avita Medical Ltd Systeme und verfahren zur gewebeverarbeitung und herstellung von zellsuspensionen daraus
US10631974B2 (en) 2001-02-07 2020-04-28 Avita Medical Ltd Cell suspension preparation technique and device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5035708A (en) * 1985-06-06 1991-07-30 Thomas Jefferson University Endothelial cell procurement and deposition kit
EP0446450A1 (de) * 1990-02-09 1991-09-18 Thomas Jefferson University Vorrichtung zur Sammlung und Verarbeitung von fetten Geweben zur Herstellung von Endothel-Zellprodukt
WO1994003645A1 (en) * 1992-07-31 1994-02-17 Thomas Jefferson University Device and method for processing fat tissue to produce endothelial cell product
US5409833A (en) * 1993-07-01 1995-04-25 Baxter International Inc. Microvessel cell isolation apparatus
US5786207A (en) * 1997-05-28 1998-07-28 University Of Pittsburgh Tissue dissociating system and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5035708A (en) * 1985-06-06 1991-07-30 Thomas Jefferson University Endothelial cell procurement and deposition kit
EP0446450A1 (de) * 1990-02-09 1991-09-18 Thomas Jefferson University Vorrichtung zur Sammlung und Verarbeitung von fetten Geweben zur Herstellung von Endothel-Zellprodukt
WO1994003645A1 (en) * 1992-07-31 1994-02-17 Thomas Jefferson University Device and method for processing fat tissue to produce endothelial cell product
US5409833A (en) * 1993-07-01 1995-04-25 Baxter International Inc. Microvessel cell isolation apparatus
US5786207A (en) * 1997-05-28 1998-07-28 University Of Pittsburgh Tissue dissociating system and method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10631974B2 (en) 2001-02-07 2020-04-28 Avita Medical Ltd Cell suspension preparation technique and device
US10729536B2 (en) 2001-02-07 2020-08-04 Avita Medical Ltd Cell suspension preparation technique and device
EP2970856A4 (de) * 2013-03-14 2016-10-26 Avita Medical Ltd Systeme und verfahren zur gewebeverarbeitung und herstellung von zellsuspensionen daraus
US10626358B2 (en) 2013-03-14 2020-04-21 Avita Medical Ltd Systems and methods for tissue processing and preparation of cell suspension therefrom
EP3674396A1 (de) * 2013-03-14 2020-07-01 Avita Medical Ltd. Systeme und verfahren zur gewebeverarbeitung und herstellung von zellsuspensionen daraus
US11124752B2 (en) 2013-03-14 2021-09-21 Avita Medical Ltd Systems and methods for tissue processing and preparation of cell suspension therefrom
EP2998744A1 (de) * 2014-09-17 2016-03-23 Siemens Healthcare Diagnostics Products GmbH Inkubationseinrichtung für ein automatisches Analysegerät
JP2016061788A (ja) * 2014-09-17 2016-04-25 シーメンス ヘルスケア ダイアグノスティクス プロダクツ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 自動分析装置用の培養デバイス(incubationdevice)
US9804180B2 (en) 2014-09-17 2017-10-31 Siemens Healthcare Diagnostics Products Gmbh Incubation device and methods for automatic movement of a reaction vessel therein for an automatic analysis apparatus

Similar Documents

Publication Publication Date Title
DE102005054924B4 (de) Vorrichtung und Verfahren zum Extrahieren einer Abstrichprobe
DE69305163T2 (de) Reaktor mit veraenderlichem volumen und zellkulturverfahren
DE69408461T2 (de) Reinigungsmethode und entsprechende vorrichtung
EP0017766B1 (de) Inkubationseinrichtung zur Behandlung von histologischen Präparaten
DE69103621T2 (de) Modulare vorrichtung zum sammeln, inkubieren und filtrieren von mehreren proben.
DE69634794T2 (de) Verfahren und gerät für die flüssigkeitsbehandlung mittels eines verteilers
EP0819255B1 (de) System zur freisetzung und isolierung von nukleinsäuren
DE69222826T2 (de) Behälter für flüssige proben und befestigbare test-module
DE69929099T2 (de) Gerät zur Extraktion von Nukleinsäuren
DE10319045A1 (de) Vorrichtung und Verfahren zur Aufbereitung Biopolymerhaltiger Flüssigkeiten
DE69019620T2 (de) Apparat und methode zur aseptischen entnahme von flüssigkeitsproben aus einer sterilen flüssigkeitsquelle.
DE102014207774B4 (de) Verfahren und Vorrichtung zur Aufreinigung von biologischen Molekülen
WO2003044537A1 (de) Vorrichtung und verfahren zum behandeln von magnetpartikeln
EP2926905A1 (de) Mikrofluidische vorrichtung und verfahren zum analysieren einer probe biologischen materials
DE102005039175A1 (de) Vorrichtung und Verfahren zum Abtrennen von magnetischen Partikeln aus einer Flüssigkeit
EP0098286A1 (de) Verfahren und vorrichtung zur abtrennung von organischen stoffen aus einer suspension oder lösung.
DE3314937C2 (de)
DE102008057317A1 (de) Vorrichtung und Verfahren zur Aufreinigung von Biomolekülen
DE69624483T2 (de) Umkehrbarer membraneinsatz zur kultivierung von zellen
DE29505652U1 (de) Gefäß zur kontaminationsreduzierten Behandlung von Flüssigkeiten
DE3249399T1 (de) Einrichtung zur sterilen Probeentnahme aus einem Fermenter
WO2002066598A1 (de) System zur automatischen isolierung von lebenden zellen aus tierischen geweben
WO2005098019A2 (de) Verfahren und einrichtung zum testen bakterizider wirkung von substanzen
DE10116155A1 (de) System zur automatischen Isolierung von lebenden Zellen aus tierischen Geweben
DE29718238U1 (de) Pipette

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP