WO2002063667A1 - Dispositif et procede de traitement au plasma - Google Patents

Dispositif et procede de traitement au plasma Download PDF

Info

Publication number
WO2002063667A1
WO2002063667A1 PCT/JP2002/001111 JP0201111W WO02063667A1 WO 2002063667 A1 WO2002063667 A1 WO 2002063667A1 JP 0201111 W JP0201111 W JP 0201111W WO 02063667 A1 WO02063667 A1 WO 02063667A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency power
plasma
mounting table
chamber
substrate
Prior art date
Application number
PCT/JP2002/001111
Other languages
English (en)
French (fr)
Inventor
Taro Ikeda
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Priority to EP02711436A priority Critical patent/EP1365446A4/en
Priority to KR1020037010433A priority patent/KR100855617B1/ko
Publication of WO2002063667A1 publication Critical patent/WO2002063667A1/ja
Priority to US10/635,651 priority patent/US7578946B2/en
Priority to US11/642,910 priority patent/US20070102119A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02046Dry cleaning only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32137Radio frequency generated discharge controlling of the discharge by modulation of energy
    • H01J37/32155Frequency modulation
    • H01J37/32165Plural frequencies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • H01L21/32136Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas
    • H01L21/32137Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas of silicon-containing layers

Definitions

  • the present invention relates to a plasma processing apparatus and a plasma processing method.
  • a plasma processing apparatus that performs a predetermined process using a plasma on a semiconductor wafer to be processed (hereinafter simply referred to as a wafer) is used.
  • a plasma processing apparatus there are a type using an inductively coupled plasma (ICP) and a type using a capacitively coupled plasma (CCP).
  • ICP inductively coupled plasma
  • CCP capacitively coupled plasma
  • the plasma density of inductively coupled plasma is higher than that of capacitively coupled plasma
  • the bias voltage is 10 to 20 V, which is lower than that of 100 to 200 V for capacitively coupled plasma. It is possible to perform the processing with high efficiency and small damage to the wafer.
  • FIG. 5A is a cross-sectional view showing an example of a conventional plasma etching apparatus using inductively coupled plasma.
  • the plasma etching apparatus 200 includes a susceptor 203 on which a wafer to be processed is placed, and a chamber 201 provided therein, which communicates above the chamber 201.
  • a high-frequency power source 206 connected to the antenna 205.
  • an induction electromagnetic field is formed in the peruger 202.
  • a plasma of the processing gas is generated, and thereby the plasma processing is performed on the wafer W.
  • an oblique electric field is formed from the antenna 205 toward the susceptor 203 as shown by an arrow in FIG.
  • the etchant is obliquely incident on the wafer surface to break the shape of the fine pattern formed on the wafer surface, and electrons are obliquely incident on the wafer surface to accumulate charge. is there.
  • Japanese Patent Application Laid-Open No. 5-20672 discloses that a Faraday shield is used.
  • the Faraday shield 2007 is a cylindrical member made of a conductor provided between the peruger 202 and the antenna 205 of the plasma etching apparatus 200 '.
  • the vertical component of the electric field is removed, so that an oblique electric field is prevented from being formed.
  • the electric field in the vertical direction is removed as described above, there is a problem that the electric field component effective for plasma ignition becomes small, so that it becomes difficult to ignite the plasma.
  • the present invention has been made in view of such circumstances. It is another object of the present invention to provide a plasma processing apparatus and a plasma processing method in which inconvenience due to an oblique electric field hardly occurs immediately after plasma ignition while using inductively coupled plasma. It is another object of the present invention to provide a plasma processing apparatus and a plasma processing method that can reliably ignite plasma even when a Faraday shield is used in an inductively coupled plasma system. Disclosure of the invention
  • a first aspect of the present invention is to provide a plasma processing method for a substrate to be processed, comprising: a container for accommodating a substrate to be processed; A processing container, a conductive mounting table provided in the accommodation section, on which the substrate to be processed is mounted, and antenna means provided outside the insulator wall and forming an induced magnetic field in the plasma forming section.
  • the present invention provides a plasma processing apparatus characterized in that: According to the first aspect, there is provided a conductive member provided outside the insulator wall so as to face the mounting table, and a second high-frequency power supply for supplying high-frequency power to the mounting table.
  • the mounting table and the conductive member Since the electric field formed between the substrate and the substrate can be in a dominant state, the adverse effects caused by the electric field formed obliquely to the substrate to be processed can be suppressed.
  • a conductive member provided above the ceiling wall so as to face the mounting table, and a second high-frequency power supply for supplying high-frequency power to the mounting table.
  • a bell jar provided with a chamber for accommodating a substrate to be processed and an insulating side wall and a top wall so as to communicate with the chamber,
  • a conductive mounting table provided in the chamber and on which the substrate to be processed is mounted
  • an antenna unit provided outside a side wall of the bell jar to form an induction electromagnetic field in the bell jar;
  • Supply high frequency power A first high-frequency power supply, gas supply means for supplying a plasma generation gas which is dissociated by an induction electromagnetic field formed by the antenna means to be plasma, and a processing gas for performing plasma processing;
  • a Faraday shield provided between the antenna means, a conductive member provided above the top wall so as to face the mounting table, and a second high-frequency power supply for supplying high-frequency power to the mounting table.
  • the present invention provides a plasma processing apparatus comprising:
  • a Faraday shield provided between the bell jar and the antenna means, a conductive member provided above the top wall to face the mounting table, Since the apparatus includes the second high-frequency power supply that supplies high-frequency power to the mounting table, during plasma ignition, high-frequency power is supplied from the second high-frequency power supply to the mounting table and the second high-frequency power supply is connected to the conductive table. Since an electric field necessary for plasma ignition can be applied by forming an electric field perpendicular to the substrate to be processed in between, an electric field in an oblique direction to the substrate to be processed is formed using the Faraday shield. It is possible to reliably ignite the plasma while preventing this.
  • the mounting table preferably has a heating mechanism for heating the substrate to be processed. Thereby, the reaction of the plasma treatment can be promoted.
  • a fourth aspect of the present invention provides a chamber for accommodating a substrate to be processed, a bell jar provided above the chamber so as to communicate with the chamber one, and having a side wall and a top wall made of an insulator; A conductive mounting table provided in the chamber and on which a substrate to be processed is mounted; antenna means provided outside a side wall of the peruger to form an induction electromagnetic field in the peruger; A first high-frequency power supply for supplying high-frequency power to the means, a plasma generation gas which is dissociated by an induction electromagnetic field formed by the antenna means and becomes plasma, and a processing gas for performing plasma processing A gas supply means, a conductive member provided above the ceiling wall so as to face the mounting table, and a second high-frequency power supply for supplying high-frequency power to the mounting table.
  • a plasma processing method for performing plasma processing using a plasma processing apparatus comprising: supplying high-frequency power to the mounting table from the second high-frequency power supply; and supplying a high-frequency power to the substrate between the mounting table and the conductive member.
  • a plasma is formed by forming an electric field perpendicular to the After that, high-frequency power is supplied to the antenna means from the first high-frequency power source, an induction electromagnetic field is formed in the bell jar to form inductively coupled plasma, and the substrate to be processed is subjected to plasma processing.
  • a characteristic plasma processing method is provided.
  • high-frequency power is supplied from the second high-frequency power source to the mounting table, and an electric field perpendicular to the substrate to be processed is formed between the mounting table and the conductive member. Then, high-frequency power is supplied from the first high-frequency power source to the antenna means, an inductive electromagnetic field is formed in the perger, an inductive coupling plasma is formed, and the substrate to be processed is subjected to plasma processing. Therefore, prior to the induction electromagnetic field, a plasma can be formed by forming an electric field perpendicular to the substrate to be processed between the mounting table and the conductive member. It is possible to prevent the electric field in the oblique direction immediately after the ignition from adversely affecting the substrate to be processed.
  • a champer for accommodating a substrate to be processed, a bell jar provided above the chamber so as to communicate with the chamber one, and having a side wall and a top wall made of an insulator;
  • a conductive mounting table provided in the chamber and on which a substrate to be processed is mounted;
  • antenna means provided outside a side wall of the bell jar to form an induction electromagnetic field in the perjar; and the antenna means;
  • a first high-frequency power supply for supplying high-frequency power to the plasma, and a gas for supplying a plasma generation gas that becomes dissociated by an induction electromagnetic field formed by the antenna means and become a plasma, and a processing gas for performing plasma processing
  • a plasma processing method for performing a plasma process using a plasma processing apparatus comprising a conductive member and a second high-frequency power supply for supplying high-frequency power to the mounting table, wherein the second high-frequency power supply Supplying high-frequency power, forming an electric field between the mounting table and the conductive member to ignite plasma, and thereafter supplying high-frequency power from the first high-frequency power supply to the antenna means;
  • the present invention provides a plasma processing method characterized by forming an inductively coupled plasma by forming an induction electromagnetic field in the substrate and performing a plasma treatment on the substrate to be processed.
  • the high-frequency power is supplied from the second high-frequency power supply to the mounting table. And an electric field is formed between the mounting table and the conductive member to ignite plasma, and then high-frequency power is supplied from the first high-frequency power supply to the antenna means and guided into the peruger. Since an electromagnetic field is formed to form inductively coupled plasma, and the substrate to be processed is subjected to plasma processing, an electric field is formed between the mounting table and the conductive member prior to the induction electromagnetic field, so that plasma ignition is performed. In some cases, a required electric field can be applied by an electric field formed between the mounting table and the conductive member. Therefore, a Faraday shield that prevents an oblique electric field from being formed on the substrate to be processed. Even when the treatment is performed with inductively coupled plasma using, the plasma can be reliably ignited.
  • the first high-frequency power supply be configured to start supplying high-frequency power after the second high-frequency power supply starts supplying high-frequency power.
  • plasma is ignited by the electric field formed by the high-frequency power from the second high-frequency power supply, and after the plasma is ignited, the plasma processing is performed by the inductively-coupled plasma formed by the high-frequency power from the first high-frequency power supply. It can be performed.
  • the second high-frequency power supply be configured to stop supplying high-frequency power after the first high-frequency power supply starts supplying high-frequency power. This can prevent a large bias voltage from being generated on the substrate to be processed.
  • the above-described plasma processing method is applied to a process of removing a natural oxide film formed on the substrate to be processed.
  • an inert gas such as a neon gas, a helium gas, a xenon gas or the like can be used instead of the argon gas.
  • FIG. 1 shows a pre-cleaning apparatus to which the plasma processing apparatus according to the first embodiment of the present invention is applied.
  • FIG. 1 is a schematic configuration diagram showing a metal film forming system provided with a thinning device.
  • FIG. 2 is a schematic sectional view of the plasma processing apparatus according to the first embodiment of the present invention.
  • FIG. 3 is a perspective view of a Faraday shield in the pre-cleaning device shown in FIG.
  • FIG. 4 is a schematic sectional view of a precleaning device according to a second embodiment of the present invention.
  • FIG. 5A is a schematic sectional view showing an example of a conventional inductively coupled plasma type plasma etching apparatus.
  • FIG. 5B is a diagram showing a behavior of an etchant of a conventional inductively coupled plasma type plasma etching apparatus.
  • FIG. 5C is a schematic cross-sectional view showing one example of a conventional plasma etching apparatus provided with a Faraday shield.
  • FIG. 1 is a schematic configuration diagram showing a metal film forming system including a pre-cleaning device to which a plasma processing device according to a first embodiment of the present invention is applied.
  • a transfer chamber 10 is arranged at the center, and two cassette chambers 11 and 12, a degassing chamber 13 and a Ti film forming apparatus 14 are arranged around the transfer chamber 10.
  • Pre-cleaning device 15 according to the embodiment, TiN film forming device 16, A1 film forming device 1 7
  • tungsten (W) film forming apparatus When a metal layer made of tungsten (W) is formed, a tungsten (W) film forming apparatus is used. In this embodiment, an A1 film forming apparatus will be described as an example.) It is a multi-chamber overnight set up.
  • a barrier layer is formed on a semiconductor wafer (hereinafter simply referred to as a wafer W) in which a contact hole or a via hole is formed, and an A1 (aluminum) layer is formed thereon.
  • a wafer W semiconductor wafer
  • A1 aluminum
  • the transfer arm 19 The wafer W is charged into the degassing chamber 113 to degas the wafer W. After that, the wafer W is loaded into the Ti film forming apparatus 14 to form a Ti film, and further, the wafer W is loaded into the Ti N film forming apparatus 16 to form a TiN film to form a barrier. Form a layer. Next, the A1 layer is formed by the A1 film forming apparatus 17. At this point, the predetermined film formation is completed. After that, the wafer W is cooled in the cooling chamber 118 and stored in the cassette chamber 112.
  • a barrier layer formed on the impurity diffusion region and the interlayer insulating film A device having a metal layer formed on the layer and conducting with the impurity diffusion region is manufactured.
  • FIG. 2 is a schematic sectional view of the pre-cleaning device 15.
  • the pre-cleaning device 15 includes a substantially cylindrical chamber 131, and a substantially cylindrical peruger 13 provided above the chamber 131 so as to be continuous with the chamber 131.
  • a susceptor (mounting table) 33 made of a conductive material for horizontally supporting the wafer W to be processed is placed in the chamber 1 3 1 while being supported by a cylindrical support member 35. Have been.
  • a conductive member 49 made of a conductive material is provided above the bell jar 32 so as to face the susceptor 33 as in the case of the susceptor 33.
  • a second high-frequency power supply 34 is connected to the susceptor 33, and by supplying high-frequency power from the second high-frequency power supply 34 to the susceptor 33, the susceptor 33 is connected.
  • An electric field perpendicular to the wafer W is formed between the conductive member 49 and the conductive member 49.
  • a susceptor is embedded in the susceptor 33, and the power supply 37 supplies power to the heater 36 to heat the wafer W to a predetermined temperature. .
  • the bell jar 32 is formed of, for example, an electrically insulating material such as quartz or a ceramic material, and is provided with a substantially cylindrical slit portion 44 a that is vertically elongated at predetermined intervals as shown in FIG.
  • a Faraday shield 44 is arranged, and a coil 42 as an antenna member is wound outside the Faraday shield 44.
  • a first high frequency power supply 43 having a frequency of, for example, 450 kHz is connected to the coil 42.
  • the Faraday shield 44 has a function of preventing the formation of an oblique electric field from the coil 42 to the susceptor 33.
  • a clamp ring 38 which can clamp and hold the outer edge of the wafer W placed on the susceptor 33, and this clamp ring 38 It is configured to be able to move up and down by a lifting mechanism (not shown).
  • the clamp ring 38 is raised to a predetermined position when the wafer W is loaded into the chamber 31 and transferred to a support bin (not shown) provided in the susceptor 33, and After the wafer is immersed in the susceptor 33 and the wafer W is placed on the susceptor 33, when the wafer W is clamped and held, the position where the wafer W comes into contact with the outer edge of the wafer W and is clamped. Is lowered to
  • the side wall of the chamber 31 has an opening 46, and a gate valve 47 is provided at a position corresponding to the opening 46 on the outside of the chamber 31.
  • a gate valve 47 is opened. In this state, the wafer W is transferred between the adjacent load opening chamber (not shown) and the chamber 31.
  • a gas supply nozzle 48 is further provided on a side wall of the chamber 31, and gas supplied from a gas supply mechanism 60 described later is supplied from the gas supply nozzle 48 to the chamber 31 and the base. Supplied into Luzier 32.
  • Gas supply mechanism 6 0 Yes supplies A r gas as the plasma generation gas A r gas supply sources 61, and the H 2 gas supply source 6 2 supplying H 2 gas as a process gas for etching are doing.
  • the Ar gas supply source 61 is connected to a gas line 63, and the gas line 63 is provided with a mass mouth controller 67 and opening and closing valves 65, 69 before and after the controller.
  • a gas line 64 is connected to the H 2 gas supply source 62, and the gas line 64 is provided with a mass opening port controller 68 and opening and closing valves 66, 70 before and after it. I have.
  • the gas lines 63 and 64 are connected to a gas line 71, and the gas line 71 is connected to a gas supply nozzle 48.
  • An exhaust pipe 50 is connected to the bottom wall of the chamber 31.
  • An exhaust device 51 including a vacuum pump is connected to 50. By operating the exhaust device 51, the inside of the chamber 31 and the bell jar 32 can be maintained at a predetermined degree of vacuum.
  • the gate valve 47 is opened, the wafer W is loaded into the chamber 13 1 by the transfer arm 19 provided in the transfer chamber 10, and the support pin of the susceptor 33 (not shown) Transfer the wafer W to the top.
  • the clamp ring 38 is lowered to clamp the outer edge of the wafer W.
  • the gate valve 47 is closed, and the inside of the chamber 13 and the peruger 132 is evacuated by the exhaust device 51 to a predetermined reduced pressure state.
  • a high-frequency power is supplied from the second high-frequency power supply 34 to the susceptor 33 while introducing Ar gas into the jar 31 and the bell jar 32 at a predetermined flow rate.
  • An electric field is formed perpendicularly to the wafer W with the member 49, and the electric field excites Ar gas to ignite the plasma.
  • the supply of high-frequency power from the first high-frequency power supply 43 to the coil 42 is started to form an induction electromagnetic field in the bell jar 32, and the susceptor is supplied from the second high-frequency power supply 34.
  • supply of high-frequency power to 33 will be stopped, and plasma will be maintained by an induced electromagnetic field thereafter.
  • the supply of high-frequency power from the second high-frequency power supply 34 may be maintained after the supply of high-frequency power from the first high-frequency power supply 43 starts. In such a state, the flow rate from the Ar gas supply source 61 was reduced, and the introduction of H 2 gas from the H 2 gas supply source 62 into the chamber 131 was started.
  • the Faraday shield 44 prevents the coil 42 from forming an oblique electric field with respect to the surface of the wafer W, whereby ions and electrons are obliquely incident on the surface of the wafer W, and The shape of the surface pattern of W is prevented from being broken, and the charge is prevented from being accumulated on the wafer W.
  • inductively coupled plasma is inherently low in bias voltage, so that damage is small.
  • a r gas feed rate and the H 2 gas supply source 62 or al of the H 2 gas from the exhaust amount and A r gas supply source 61 exhaust system 51 The supply amount is adjusted so that the inside of the chamber 31 and the bell jar 32 have the same degree of vacuum as the transfer chamber 10, and the support pins protrude from the susceptor 33 to lift the wafer W and open the gate pulp 47. Then, the transfer arm 19 is advanced into the chamber 31 to take out the wafer W, whereby the process in the precleaning apparatus 15 is completed.
  • the conditions of such a process include, for example, the power of the first high-frequency power supply 43: 500 to: 1000 W, the frequency: 450 kHz, the power of the second high-frequency power supply 34: 500 to: L 000 W, the frequency: 13 56 MHz, heating temperature of heater 36: 50 to 500 ° C, pressure in chamber 31: 0.133 to 13.3 Pa (0.1 to 10 OmT 0 rr).
  • Ar gas flow rate from 0 to 0.050 in the range of L / mi n (0 ⁇ 50 s ccm ), H 2 gas flow rate from 0 to 0.200 in the range of L / mi n (0 ⁇ 200 s ccm ) can be it it appropriate gas supply, and more particularly, ignition time of a r gas flow: 0. 050 L / mi n ( 50 sc cm), at the time of the process a r gas flow rate / H 2 gas flow rate: 0.008 / 0.012 L / min (8/12 sccm).
  • a natural oxide film on Si, CoSi, W, WSi, and TiSi can be appropriately removed.
  • a conventional inductively-coupled plasma processing apparatus when the oblique electric field from the coil 42 to the susceptor 33 is removed using the Faraday shield 44, the electric field becomes weaker, and the plasma becomes difficult to ignite.
  • the pre-cleaning step can be performed by inductively coupled plasma.
  • the plasma can be assisted by the magnetic field component, so that the ratio of Ar can be reduced while the ratio of H 2 is increased, and the plasma density and bias voltage are reduced. Can be controlled independently, so that a low bias voltage can be achieved while increasing the plasma density. This As a result, it is possible to remove the natural oxide film very efficiently.
  • Ar cannot be reduced because the plasma is not stable, and it is not possible to independently control the plasma density and the bias voltage. The oxide film cannot be removed.
  • FIG. 4 is a cross-sectional view showing a pre-cleaning device to which the plasma processing device of the present embodiment is applied.
  • the pre-cleaning device 15 ′ is configured similarly to the pre-cleaning device 15 of the first embodiment except that the Faraday shield 44 is not provided ′.
  • a pre-cleaning device 1 5 similarly to the pre-cleaning device 1 5 of the first embodiment shaped state, by supplying a high frequency power from the second RF power supply 3 4 susceptor evening one 3 3 Plasma Then, high-frequency power is supplied from the first high-frequency power supply 43 to the coil 42 to form an inductively coupled plasma and perform a plasma treatment to remove a natural oxide film formed on the wafer W. be able to.
  • high-frequency power is supplied from the second high-frequency power supply 34 to the susceptor 33 before supplying power from the first high-frequency power supply 43 as described above. Since an electric field perpendicular to the wafer W is formed between the evening 33 and the conductive member 49, the electric field in the direction perpendicular to the wafer W can be in a dominant state. As a result, an oblique electric field is not formed immediately after the plasma ignition, which is likely to cause inconveniences such as deterioration of the surface properties of the wafer W and accumulation of charges caused by the oblique electric field. The effects of accumulation can be reduced. After the plasma is ignited in this manner, high-frequency power is supplied from the first high-frequency power supply 43 to the coil 42, thereby achieving high efficiency and high efficiency by inductive coupling plasma as in the first embodiment. Plasma processing can be performed with low damage.
  • the present invention can be variously modified without being limited to the above embodiment.
  • the present invention is applied to a pre-cleaning apparatus for removing a natural oxide film in a metal film forming system.
  • the present invention is applied to another plasma etching apparatus for performing contact etching and the like.
  • This plasma processing apparatus can also be configured by placing a conductor plate dropped on the ground above a bell jar of an existing inductively coupled plasma processing apparatus. In this way, when the existing apparatus is configured by simple modification, the apparatus cost of the present invention can be extremely low.
  • the substrate to be processed is not limited to a semiconductor wafer, and may be another substrate.
  • a conductive member provided outside the insulator wall so as to face the mounting table, and a second high-frequency power supply that supplies high-frequency power to the mounting table
  • high-frequency power is supplied from the second high-frequency power source to the mounting table to form an electric field between the mounting table and the conductive member.
  • the electric field formed between the mounting table and the conductive member can be in a dominant state, so that adverse effects caused by an electric field formed obliquely to the substrate to be processed are suppressed. Can be. Therefore, a plasma processing apparatus and a plasma processing method capable of performing processing with extremely high processing accuracy and high efficiency are provided.
  • a conductive member provided above the ceiling wall so as to face the mounting table, and a second high-frequency power supply for supplying high-frequency power to the mounting table.
  • a second high-frequency power supply for supplying high-frequency power to the mounting table.
  • a Faraday shield provided between the bell jar and the antenna means, a conductive member provided above the top wall to face the mounting table, And a second high-frequency power supply for supplying high-frequency power to the mounting table during plasma ignition to supply high-frequency power to the mounting table from the second high-frequency power supply to cause a gap between the mounting table and the conductive member.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

明 細 書 ブラズマ処理装置およびプラズマ処理方法 技術分野
本発明は、 プラズマ処理装置およびプラズマ処理方法に関する。 背景技術
半導体製造工程においては、 被処理体である半導体ウェハ (以下、 単にウェハ と記す) にプラズマを用いて所定の処理を施すプラズマ処理装置が利用されてい る o
このようプラズマ処理装置としては、 誘導結合プラズマ (ICP: Inductive Coup led Plasma) を利用するものと、 容量結合プラズマ (CCP:Capacitive Coupled P lasma) を利用するものとが挙げられる。 これらのうち、 誘導結合プラズマでは容 量結合プラズマよりもプラズマ密度が高く、 かつ、 バイアス電圧が 1 0〜2 0 V と容量結合プラズマの場合の 1 0 0 ~ 2 0 0 Vよりも低いため、 高効率でかつゥ ェハに与えるダメージの小'さい処理を行うことができる。
図 5 Aは、 誘導結合ブラズマを利用した従来のブラズマエヅチング装置の一例 を示す断面図である。 このプラズマエッチング装置 2 0 0は、 被処理体であるゥ ェハが載置されるサセプ夕 2 0 3がその内部に設けられたチャンバ一 2 0 1と、 チャンバ一 2 0 1の上方に連通するように設けられたペルジャ一 2 0 2と、 ベル ジャー 2 0 2の外周に卷回されたアンテナ 2 0 5と、 サセプ夕 2 0 3に接続され た高周波バイアス電源 2 0 4と、 アンテナ 2 0 5に接続された高周波電源 2 0 6 とを具備しており、 高周波電源 2 0 6からアンテナ 2 0 5に高周波電力を供給す ることによりペルジャ一 2 0 2内に誘導電磁界を形成して処理ガスのプラズマを 発生させ、 これによりウェハ Wにプラズマ処理を施すように構成されている。
しかし、 このようなプラズマエッチング装置 2 0 0においては、 図 5 A中に矢 印で示すようにアンテナ 2 0 5からサセプ夕 2 0 3に向けての斜め方向の電界が 形成され、 特にプラズマ点火直後に、 この斜め方向の電界によって図 5 Bに示す Z ようにエツチャントがウェハ表面に対して斜めに入射してウェハ表面に形成され た微細パターンの形状を崩したり、 ウェハ表面に電子が斜め方向に入射してチヤ ―ジが蓄積したりする問題がある。
このような問題の原因となる斜め方向の電界を除去する方法として、 例えば特 開平 5— 2 0 6 0 7 2号公報には、 ファラデーシールドを用いることが示されて いる。 例えば図 5 Cに示すように、 ファラデーシールド 2 0 7は、 プラズマエツ チング装置 2 0 0 'のペルジャ 2 0 2とアンテナ 2 0 5との間に設けられた導電 体からなる筒状部材であり、 その軸方向と水平な電界成分を短絡する作用により、 電界の垂直成分を除去することによって斜め方向の電界が形成されないようにす る。 しかしながら、 このように垂直方向の電界が除去されると、 プラズマ点火に 有効な電界成分が小さくなるためブラズマが点火しにくくなるという問題がある 本発明は、 かかる事情に鑑みてなされたものであって、 誘導結合プラズマを利 用しつつ、 プラズマ点火直後に斜め方向の電界による不都合が生じ難いプラズマ 処理装置およびプラズマ処理方法を提供することを目的とする。 また、 誘導結合 プラズマ方式においてファラデーシールドを用いても、 プラズマを確実に点火す ることができるブラズマ処理装置およびブラズマ処理方法を提供することを目的 とする。 発明の開示
上記課題を解決するため、 本発明第 1の観点は、 被処理基板を収容する収容部 とこの収容部と連通し絶縁体壁を有するブラズマ形成部とからなり、 被処理基板 にプラズマ処理を施す処理容器と、 前記収容部に設けられ、 被処理基板が載置さ れる導電性の載置台と、 前記絶縁体壁の外側に設けられ前記ブラズマ形成部に誘 導電磁界を形成するアンテナ手段と、 前記アンテナ手段に高周波電力を供給する 第 1の高周波電源と、 前記アンテナ手段により形成された誘導電磁界により解離 してプラズマとなるブラズマ生成ガスおよびブラズマ処理を行うための処理ガス を供給するガス供給手段と、 前記載置台に対向するように前記絶縁体壁の外側に 設けられた導電性部材と、 前記載置台に高周波電力を供給する第 2の高周波電源 とを具備することを特徴とするプラズマ処理装置を提供する。 上記第 1の観点によれば、 前記載置台に対向するように前記絶縁体壁の外側に 設けられた導電性部材と、 前記載置台に高周波電力を供給する第 2の高周波電源 とを具備するので、 プラズマ点火時に、 前記第 2の高周波電源から前記載置台に 高周波電力を供給して前記載置台と前記導電性部材との間に電界を形成すること により、 前記載置台と前記導電性部材との間に形成される電界が支配的な状態と することができるから、 前記被処理基板に対して斜め向きに形成される電界によ つて生じる悪影響を抑制することができる。
また、 本発明の第 2の観点は、 被処理基板を収容するチャンバ一と、 前記チヤ ンバーと連通するようにその上方に設けられ、 絶縁体からなる側壁および天壁を 有するベルジャーと、 前記チャンバ一内に設けられ被処理基板が載置される導電 性の載置台と、 前記ペルジャ一の側壁の外側に設けられ、 前記ペルジャ一内に誘 導電磁界を形成するアンテナ手段と、 前記アンテナ手段に高周波電力を供給する 第 1の高周波電源と、 前記アンテナ手段により形成された誘導電磁界により解離 してブラズマとなるブラズマ生成ガスおよびブラズマ処理を行うための処理ガス を供給するガス供給手段と、 前記天壁の上方に前記載置台と対向して設けられた 導電性部材と、 前記載置台に高周波電力を供給する第 2の高周波電源とを具備す ることを特徴とするプラズマ処理装置を提供する。
上記第 2の観点によれば、 前記天壁の上方に前記載置台と対向して設けられた 導電性部材と、 前記載置台に高周波電力を供給する第 2の高周波電源とを具備す るので、 プラズマ点火時に、 前記第 2の高周波電源から前記載置台に高周波電力 を供給して前記載置台と前記導電性部材との間に前記被処理基板に対して垂直な 電界を形成することにより、 前記被処理基板に対して垂直な電界が支配的な状態 とすることができるから、 前記被処理基板に対して斜め向きに形成される電界に よって生じる悪影響を確実に抑制することができる。
さらに、 本発明の第 3の観点は、 被処理基板を収容するチャンバ一と、 前記チ ャンバ一と連通するようにその上方に設けられ、 絶縁体からなる側壁および天壁 を有するベルジャーと、 前記チャンバ一内に設けられ被処理基板が載置される導 電性の載置台と、 前記ベルジャーの側壁の外側に設けられ、 前記ベルジャー内に 誘導電磁界を形成するアンテナ手段と、 前記アンテナ手段に高周波電力を供給す る第 1の高周波電源と、 前記アンテナ手段により形成された誘導電磁界により解 離してプラズマとなるブラズマ生成ガスおよびプラズマ処理を行うための処理ガ スを供給するガス供給手段と、 前記ベルジャーと前記アンテナ手段との間に設け られたファラデ一シールドと、 前記天壁の上方に前記載置台と対向して設けられ た導電性部材と、 前記載置台に高周波電力を供給する第 2の高周波電源とを具備 することを特徴とするプラズマ処理装置を提供する。
上記第 3の観点によれば、 前記ベルジャーと前記アンテナ手段との間に設けら れたファラデーシールドと、 前記天壁の上方に前記載置台と対向して設けられた 導電性部材と、 前記載置台に高周波電力を供給する第 2の高周波電源とを具備す るので、 プラズマ着火時に、 前記第 2の高周波電源から前記載置台に高周波電力 を供給して前記載置台と前記導電性部材との間に前記被処理基板と垂直な電界を 形成することにより、 プラズマの点火に必要な電界を印加することができるから、 ファラデーシールドを用いて被処理基板に対して斜め方向の電界が形成されるこ とを防止しつつ、 ブラズマの点火を確実に行うことが可能となる。
上記第 1から第 3のいずれの観点においても、 前記載置台は、 被処理基板を加 熱する加熱機構を有することが好ましい。 これによりプラズマ処理の反応を促進 することができる。
さらにまた、 本発明の第 4の観点は、 被処理基板を収容するチャンバ一と、 前 記チャンバ一と連通するようにその上方に設けられ、 絶縁体からなる側壁および 天壁を有するベルジャーと、 前記チャンバ一内に設けられ被処理基板が載置され る導電性の載置台と、 前記ペルジャ一の側壁の外側に設けられ、 前記ペルジャ一 内に誘導電磁界を形成するアンテナ手段と、 前記アンテナ手段に高周波電力を供 給する第 1の高周波電源と、 前記アンテナ手段により形成された誘導電磁界によ り解離してプラズマとなるブラズマ生成ガスおよびプラズマ処理を行うための処 理ガスを供給するガス供給手段と、 前記天壁の上方に前記載置台と対向して設け られた導電性部材と、 前記載置台に高周波電力を供給する第 2の高周波電源とを 具備するプラズマ処理装置を用いてプラズマ処理を行うプラズマ処理方法であつ て、 前記第 2の高周波電源から前記載置台に高周波電力を供給し、 前記載置台と 前記導電性部材との間に被処理基板に対して垂直な電界を形成してプラズマを形 成し、 その後前記第 1の高周波電源から前記アンテナ手段に高周波電力を供給し、 前記ベルジャー内に誘導電磁界を形成して誘導結合プラズマを形成し、 被処理基 板にプラズマ処理を施すことを特徴するプラズマ処理方法を提供する。
上記第 4の観点によれば、 前記第 2の高周波電源から前記載置台に高周波電力 を供給し、 前記載置台と前記導電性部材との間に被処理基板に対して垂直な電界 を形成してプラズマを形成し、 その後前記第 1の高周波電源から前記アンテナ手 段に高周波電力を供給し、 前記ペルジヤー内に誘導電磁界を形成して誘導結合プ ラズマを形成し、 被処理基板にプラズマ処理を施すので、 誘導電磁界に先立って 前記載置台と導電性部材との間に被処理基板に対して垂直な電界を形成してブラ ズマを形成することができ、 これにより誘導電磁界でブラズマを点火した場合に 問題となる、 点火直後に斜め方向の電界が被処理基板に悪影響を及ぼすことを防 止することができる。
さらにまた、 本発明の第 5の観点は、 被処理基板を収容するチャンパ一と、 前 記チャンバ一と連通するようにその上方に設けられ、 絶縁体からなる側壁および 天壁を有するベルジャーと、 前記チャンバ一内に設けられ被処理基板が載置され る導電性の載置台と、 前記ベルジャーの側壁の外側に設けられ、 前記ペルジャ一 内に誘導電磁界を形成するアンテナ手段と、 前記アンテナ手段に高周波電力を供 給する第 1の高周波電源と、 前記アンテナ手段により形成された誘導電磁界によ り解離してブラズマとなるブラズマ生成ガスおよびプラズマ処理を行うための処 理ガスを供給するガス供給手段と、 前記ベルジャーと前記アンテナ手段との間に 設けられたファラデーシールドと、 前記天壁の上方に前記載置台と対向して設け られた導電性部材と、 前記載置台に高周波電力を供給する第 2の高周波電源とを 具備するプラズマ処理装置を用いてプラズマ処理を行うプラズマ処理方法であつ て、 前記第 2の高周波電源から前記載置台に高周波電力を供給し、 前記載置台と 前記導電性部材との間に電界を形成してプラズマを点火し、 その後前記第 1の高 周波電源から前記アンテナ手段に高周波電力を供給し、 前記ベルジャー内に誘導 電磁界を形成して誘導結合ブラズマを形成し、 被処理基板にブラズマ処理を施す ことを特徴とするプラズマ処理方法を提供する。
上記第 5の観点によれば、 前記第 2の高周波電源から前記載置台に高周波電力 を供給し、 前記載置台と前記導電性部材との間に電界を形成してブラズマを点火 し、 その後前記第 1の高周波電源から前記アンテナ手段に高周波電力を供給し、 前記ペルジャ一内に誘導電磁界を形成して誘導結合プラズマを形成し、 被処理基 板にプラズマ処理を施すので、 誘導電磁界に先立って前記載置台と導電性部材と の間に電界を形成することにより、 ブラズマ点火時に必要な電界を前記載置台と 前記導電性部材との間に形成される電界によって印加することができるから、 被 処理基板に対して斜め方向の電界が形成されることを防止するファラデーシール ドを用いて誘導結合プラズマで処理する場合であっても、 プラズマの点火を確実 に行うことが可能となる。
上記第 4または第 5の観点においては、 前記第 1の高周波電源は、 前記第 2の 高周波電源が高周波電力の供給を開始した後に、 高周波電力の供給を開始する構 成とすることが好ましい。 これにより、 前記第 2の高周波電源からの高周波電力 により形成された電界でプラズマを点火しつつ、 プラズマの点火後は前記第 1の 高周波電源からの高周波電力により形成された誘導結合ブラズマでブラズマ処理 を行うことができる。 この場合に、 前記第 2の高周波電源は、 前記第 1の高周波 電源が高周波電力の供給を開始した後に、 高周波電力の供給を停止する構成とす ることが好ましい。 これにより前記被処理基板に大きなバイァス電圧が生じるこ とを防止することができる。
また、 上記のプラズマ処理方法においては、 被処理基板を加熱しながらプラズ マ処理を施すことが好ましい。 これによりプラズマ処理の反応を促進することが できる。
さらに、 上記のプラズマ処理方法は、 前記被処理基板上に形成された自然酸化 膜を除去する処理に適用することが好適である。 この場合には、 前記プラズマ生 成ガスおよび前記処理ガスとしては、 アルゴンガスおよび水素ガスを用いること が好適である。 さらに、 アルゴンガスに代えてネオンガス、 ヘリウムガス、 キセ ノンガス等の不活性ガスを用いることも可能である。 図面の簡単な説明
図 1は、 本発明の第 1の実施形態に係るプラズマ処理装置を適用したプリクリ —ニング装置を備えたメタル成膜システムを示す概略構成図である。
図 2は、 本発明の第 1の実施形態に係るプラズマ処理装置の概略断面図である。 図 3は、 図 2に示したプリクリーニング装置におけるファラデーシールドの斜 視図である。
図 4は、 本発明の第 2の実施形態に係るプリクリ一二ング装置の概略断面図で める。
図 5 Aは、 従来の誘導結合プラズマ方式のブラズマエッチング装置の一例を示 す概略断面図である。
図 5 Bは、 従来の誘導結合プラズマ方式のプラズマエッチング装置のエツチヤ ントの挙動を示す図である。
図 5 Cは、 従来のファラデーシールドを備えたブラズマエヅチング装置の一例 を示す概略断面図である。 発明を実施するための最良の形態
以下、 添付図面を参照して、 本発明の第 1の実施の形態について説明する。 図 1は、 本発明の第 1の実施形態に係るプラズマ処理装置を適用したプリクリ —ニング装置を備えたメタル成膜システムを示す概略構成図である。 このメタル 成膜システム 2 0は、 中央に搬送室 1 0が配置され、 その周囲に 2つのカセット チャンバ一 1 1, 1 2 , 脱ガス用チャンバ一 1 3、 T i成膜装置 1 4、 本実施形 態に係るプリクリーニング装置 1 5、 T i N成膜装置 1 6、 A 1成膜装置 1 7
(タングステン (W) からなるメタル層を形成する場合はタングステン (W) 成 膜装置であるが、 本実施形態では A 1成膜装置を例にして説明する。 ) および冷 却チャンバ一 1 8が設けられたマルチチャンバ一夕イブである。
このようなメタル成膜システム 2 0においては、 コンタクトホールまたはビア ホールが形成された半導体ウェハ (以下、 単にウェハ Wという。 ) にバリア層を 形成し、 その上に A 1 (アルミニウム) 層を形成してホールの埋め込みと A 1配 線の形成を行う。 具体的には、 まず搬送アーム 1 9により、 カセットチャンバ一
1 1からウェハ Wを一枚取り出し、 プリクリーニング装置 1 5に装入してウェハ Wの表面に形成されている自然酸化膜を除去する。 次に、 搬送アーム 1 9により ウェハ Wを脱ガス用チャンバ一 1 3に装入してウェハ Wの脱ガスを行う。 その後、 ウェハ Wを T i成膜装置 1 4に装入して T i膜の成膜を行い、 さらに T i N成膜 装置 1 6に装入して T i Nの成膜を行ってバリア層を形成する。 次いで、 A 1成 膜装置 1 7で A 1層を形成する。 ここまでで所定の成膜は終了し、 その後ウェハ Wは冷却チャンバ一 1 8で冷却され、 カセットチャンバ一 1 2に収容される。 このようにして、 例えば、 不純物拡散領域に達するコンタクトホールが形成さ れた層間絶縁膜の設けられたウェハ W上に、 この不純物拡散領域および層間絶縁 膜上に形成されたバリア層と、 このバリア層上に形成され、 不純物拡散領域と導 通する金属層とを有するデバイスが製造される。
次に、 上記メタル成膜システム 2 0に搭載されている本実施形態のプリクリ一 ニング装置 1 5について詳細に説明する。 図 2は、 プリクリーニング装置 1 5の 概略断面図である。 図 2に示すように、 プリクリーニング装置 1 5は、 略円筒状 のチャンバ一 3 1と、 チャンバ一 3 1の上方にチャンバ一 3 1と連続するように 設けられた略円筒状のペルジャ一 3 2とを有している。 チャンバ一 3 1内には被 処理体であるウェハ Wを水平に支持するための導電性材料からなるサセプ夕一 (載置台) 3 3が円筒状の支持部材 3 5に支持された状態で配置されている。 ベ ルジャー 3 2の上方には、 サセプ夕一 3 3と対向するように、 サセプ夕一 3 3と 同様に導電性材料からなる導電性部材 4 9が設けられている。
サセプ夕一 3 3には第 2の高周波電源 3 4が接続されており、 この第 2の高周 波電源 3 4からサセプ夕一 3 3に高周波電力を供給することにより、 サセプ夕一 3 3と導電性部材 4 9との間にウェハ Wに対して垂直な電界が形成されるように なっている。 さらに、 サセプ夕一 3 3にはヒ一夕一 3 6が埋設されており、 電源 3 7からヒー夕一 3 6に給電することにより、 ウェハ Wを所定の温度に加熱可能 に構成されている。
ベルジャー 3 2は、 例えば石英やセラミックス材料等の電気絶縁材料で形成さ れており、 その周囲には図 3に示すように所定間隔で縦長に開口したスリツト部 4 4 aの設けられた略円筒状のファラデーシールド 4 4が配置され、 さらにその 外側にアンテナ部材としてのコイル 4 2が卷回されている。 コイル 4 2には、 例 えば 4 5 0 k H zの周波数を有する第 1の高周波電源 4 3が接続され、 この第 1 の高周波電源 4 3からコイル 4 2に高周波電力を供給することにより、 ペルジャ 一 3 2内に誘導電磁界が形成されるようになっている。 また、 ファラデーシール ド 4 4は、 コイル 4 2からサセプ夕一 3 3に向けての斜め方向の電界の形成を防 止する機能を有している。
サセプ夕一 3 3上方には、 サセプ夕一 3 3上に載置されたウェハ Wの外縁をク ランプして保持可能なクランプリング 3 8が設けられており、 このクランプリン グ 3 8は、 図示しない昇降機構により昇降可能に構成されている。 クランプリン グ 3 8は、 チャンバ一 3 1内にウェハ Wを搬入してサセプ夕一 3 3に設けられた 支持ビン (図示せず) 上に受け渡す際には所定位置まで上昇され、 前記支持ビン をサセプ夕一 3 3内に没入させてウェハ Wをサセプター 3 3上に載置した後、 ゥ ェハ Wをクランプして保持する際にはウェハ Wの外縁に当接してクランプする位 置まで下降される。
また、 チャンバ一 3 1の側壁は開口 4 6を有しており、 チャンバ一 3 1の外側 の開口 4 6と対応する位置にはゲートバルブ 4 7が設けられ、 このゲートバルブ 4 7を開にした状態でウェハ Wが隣接するロード口ヅク室 (図示せず) とチャン バ一3 1内との間で搬送されるようになっている。 さらに、 チャンバ一 3 1の側 壁にはガス供給ノズル 4 8がさらに設けられており、 このガス供給ノズル 4 8よ り後述するガス供給機構 6 0から供給されるガスがチャンバ一 3 1およびべルジ ヤー 3 2内に供給される。
ガス供給機構 6 0は、 プラズマ生成ガスとして A rガスを供給する A rガス供 給源 6 1、 および、 エッチング処理のための処理ガスとして H 2ガスを供給する H 2ガス供給源 6 2を有している。 A rガス供給源 6 1は、 ガスライン 6 3が接続さ れ、 このガスライン 6 3にはマスフ口一コントローラ 6 7とその前後の開閉バル ブ 6 5 , 6 9とが設けられている。 また、 H 2ガス供給源 6 2にはガスライン 6 4 が接続され、 このガスライン 6 4にはマスフ口一コントロ一ラ 6 8とその前後の 開閉バルブ 6 6 , 7 0とが設けられている。 これらガスライン 6 3 , 6 4はガス ライン 7 1に接続され、 このガスライン 7 1がガス供給ノズル 4 8と接続されて いる。
また、 チャンバ一 3 1の底壁には、 排気管 5 0が接続されており、 この排気管 5 0には真空ポンプを含む排気装置 5 1が接続されている。 この排気装置 5 1を 作動させることにより、 チャンバ一 3 1およびベルジャー 3 2内は所定の真空度 に維持可能になっている。
次に、 このように構成されるプリクリ一ニング装置 1 5によりウェハ W上に形 成された自然酸化膜を除去する動作について説明する。
まず、 ゲートバルブ 4 7を開にして、 搬送室 1 0に設けられた搬送アーム 1 9 によりチャンバ一 3 1内にウェハ Wを装入し、 サセプ夕一 3 3の支持ピン (図示 せず) 上にウェハ Wを受け渡す。 次いで、 前記支持ピンをサセプ夕一 3 3内に没 入させてウェハ Wをサセプ夕一 3 3上に載置した後、 クランプリング 3 8を下降 させてウェハ W外縁をクランプさせる。 その後、 ゲートバルブ 4 7を閉にして、 排気装置 5 1によりチャンバ一 3 1およびペルジャ一 3 2内を排気して所定の減 圧状態にし、 この減圧状態で A rガス供給源 6 1からチャンバ一 3 1およびベル ジャー 3 2内に所定流量で A rガスを導入しつつ、 第 2の高周波電源 3 4からサ セプ夕一 3 3に高周波電力を供給してサセプ夕一 3 3と導電性部材 4 9との間に ウェハ Wに対して垂直に電界を形成し、 この電界により A rガスを励起させプラ ズマを点火する。
プラズマを点火した後、 第 1の高周波電源 4 3からコイル 4 2への高周波電力 の供給を開始してベルジャー 3 2内に誘導電磁界を形成するとともに、 第 2の高 周波電源 3 4からサセプ夕一 3 3への高周波電力の供給を停止し、 以降は誘導電 磁界によりプラズマを維持するようにする。 なお、 必要な場合は、 第 1の高周波 電源 4 3からの高周波電力の供給開始後に、 第 2の高周波電源 3 4からの高周波 電力の供給を維持してもよい。 このような状態で、 A rガス供給源 6 1からの流 量を減少させるとともに、 H 2ガス供給源 6 2からチャンバ一 3 1内に H 2ガスの 導入を開始し、 ヒ一夕一 3 6によりウェハ Wを加熱しながら、 ウェハ W上の自然 酸化膜をエッチング除去する処理を行う。 この際、 ファラデーシ一ルド 4 4によ つて、 コイル 4 2がウェハ W表面に対して斜めの電界を形成することが防止され、 これによりウェハ W表面にイオンや電子が斜めに入射してウェハ Wの表面パター ンの形状が崩れたり、 ウェハ Wにチャージが蓄積することが防止される。 また、 誘導結合プラズマは本質的にバイアス電圧が低いためダメージが小さい。 以上のようにしてウェハ W上の自然酸化膜を除去した後、 排気装置 51の排気 量ならびに A rガス供給源 61からの A rガス供給量および H 2ガス供給源 62か らの H2ガス供給量を調節してチャンバ一 31およびベルジャー 32内を搬送室 1 0と同等の真空度にするとともに、 前記支持ピンをサセプ夕一 33から突出させ てウェハ Wを持ち上げさせ、 ゲートパルプ 47を開にして搬送アーム 19をチヤ ンバ一 31内に進入させてウェハ Wを取り出させることにより、 プリクリ一ニン グ装置 15における工程は終了する。
このようなプロセスの条件としては、 例えば、 第 1の高周波電源 43の電力: 500〜: 1000 W、 周波数: 450 kHz、 第 2の高周波電源 34の電力: 5 00〜: L 000W、 周波数: 13. 56 MHz、 ヒーター 36の加熱温度: 50 〜500°C、 チャンバ一 31内の圧力: 0. 133〜 13. 3Pa (0. 1〜1 0 OmT 0 r r) とすることができる。 また、 Arガス流量は 0〜0. 050 L /mi n (0〜50 s ccm) の範囲で、 H2ガス流量は 0〜0. 200 L/mi n (0〜200 s ccm) の範囲でそれそれ適宜ガス供給することができるが、 より詳細には、 点火時の A rガス流量: 0. 050 L/mi n ( 50 s c cm)、 プロセス時の A rガス流量/ H 2ガス流量: 0. 008/0. 012 L/mi n (8/12 s c cm) とすることができる。
以上のようにしてプラズマ処理することにより、 例えば Si, Co Si, W, WSi, Ti S i上の自然酸化膜を、 適切に除去することができる。 従来の誘導 結合プラズマ方式のプラズマ処理装置では、 ファラデーシールド 44を用いてコ ィル 42からサセプ夕一 33に向かう斜め方向の電界を除去すると電界が弱くな るためプラズマが点火し難くなるという問題があつたが、 上記構成によればサセ プ夕一 33と導電性部材 49との間に形成される電界によりプラズマの点火を確 実に行うことができ、 かつ、 プラズマの点火後は誘導電磁界による誘導結合ブラ ズマによりプリクリーニング工程を行ことができる。
このように誘導結合プラズマを利用することにより、 磁界成分でプラズマをァ シストすることができるので H2の比率を高めつつ A rの比率を少なくすることが でき、 また、 プラズマ密度とバイアス電圧とを独立にコントロールすることが可 能となるのでプラズマ密度を高くしつつ低バイアス電圧とすることができる。 こ れらにより、 極めて効率よく自然酸化膜の除去を行うことが可能となる。 容量結 合プラズマでは、 プラズマが安定しないため A rを少なくすることができず、 ま た、 プラズマ密度とバイアス電圧とを独立にコントロールすることも不可能であ るため、 このように効率よく自然酸化膜の除去を行うことはできない。
次に、 本発明の第 2の実施形態について説明する。
図 4は、 本実施形態のプラズマ処理装置を適用したプリクリーニング装置を示 す断面図である。 このプリクリーニング装置 1 5 ' は、 ファラデーシールド 4 4 を設けていない点以外は第 1の実施形態のプリクリ一二ング装置 1 5と同様に構 成されている'。 このようなプリクリーニング装置 1 5 5 によれば、 第 1の実施形 態のプリクリーニング装置 1 5と同様に、 第 2の高周波電源 3 4からサセプ夕一 3 3に高周波電力を供給してプラズマを点火した後、 第 1の高周波電源 4 3から コイル 4 2に高周波電力を供給して誘導結合ブラズマを形成してブラズマ処理す る処理動作によりウェハ W上に形成された自然酸化膜を除去することができる。 本実施形態においては、 プラズマ点火時に、 第 1の高周波電源 4 3からの給電 に先立って、 上述のように第 2の高周波電源 3 4からサセプ夕一 3 3に高周波電 力を供給し、 サセプ夕一 3 3と導電性部材 4 9との間にウェハ Wと垂直な電界を 形成するので、 ウェハ Wに対して垂直な方向の電界が支配的な状態とすることが できる。 これにより、 斜め方向の電界によって生じるウェハ Wの表面性状の劣化 やチャージの蓄積等の不都合が生じやすいプラズマ点火直後に斜め方向の電界が 形成されないので、 前記ウェハ Wの表面性状の劣化やチャージの蓄積等の影響を 少なくすることができる。 また、 このようにしてプラズマを点火した後には、 第 1の高周波電源 4 3からコイル 4 2に高周波電力を供給することにより、 第 1の 実施形態と同様に誘導結合ブラズマによつて高効率かつ低ダメージでブラズマ処 理を行うことができる。
なお、 本発明は上記実施形態に限定されることなく種々変形可能である。 例え ば、 上記実施形態では本発明をメタル成膜システムにおいて自然酸化膜の除去を 行うプリクリーニング装置に適用した場合を示したが、 本発明はコンタクトエツ チング等を行う他のプラズマエツチング装置に適用することも可能であり、 さら には、 本発明をプラズマ C V D等その他のプラズマ処理装置に適用することも可 能である。 また、 このプラズマ処理装置は、 既存する誘導結合プラズマ処理装置 のベルジャー上方に、 グランドに落とされた導体板を載置することによつても構 成することができる。 このように既存の装置に簡単な改造を施すことにより構成 した場合には、 本発明の装置コストは極めて低く抑えることが可能である。 さら に、 被処理基板は半導体ウェハに限らるものではなく、 他の基板であってもよい。 以上説明したように、 本発明によれば、 前記載置台に対向するように前記絶縁 体壁の外側に設けられた導電性部材と、 前記載置台に高周波電力を供給する第 2 の高周波電源とを具備するので、 プラズマ点火時に、 前記第 2の高周波電源から 前記載置台に高周波電力を供給して前記載置台と前記導電性部材との間に電界を 形成することにより、 前記処理容器内を前記載置台と前記導電性部材との間に形 成される電界が支配的な状態とすることができるから、 前記被処理基板に対して 斜め向きに形成される電界によって生じる悪影響を抑制することができる。 した がって、 処理の精度が極めて高く、 かつ、 効率よく処理を行うことの可能なブラ ズマ処理装置およびブラズマ処理方法が提供される。
また、 本発明によれば、 前記天壁の上方に前記載置台と対向して設けられた導 電性部材と、 前記載置台に高周波電力を供給する第 2の高周波電源とを具備する ので、 プラズマ点火時に、 前記第 2の高周波電源から前記載置台に高周波電力を 供給して前記載置台と前記導電性部材との間に前記被処理基板に対して垂直な電 界を形成することにより、 前記被処理基板に対して垂直な電界が支配的な状態と することができるから、 前記被処理基板に対して斜め向きに形成される電界によ つて生じる悪影響を確実に抑制することができる。 したがって、 処理の精度が極 めて高く、 かつ、 効率よく処理を行うことの可能なプラズマ処理装置およびブラ ズマ処理方法が確実に提供される。 '
さらに、 本発明によれば、 前記ベルジャーと前記アンテナ手段との間に設けら れたファラデーシールドと、 前記天壁の上方に前記載置台と対向して設けられた 導電性部材と、 前記載置台に高周波電力を供給する第 2の高周波電源とを具備す るので、 プラズマ着火時に、 前記第 2の高周波電源から前記載置台に高周波電力 を供給して前記載置台と前記導電性部材との間に前記被処理基板と垂直な電界を 形成することにより、 プラズマの点火に必要な電界を印加することができるから、 ファラデーシールドを用いて被処理基板に対して斜め方向の電界が形成されるこ とを防止しつつ、 プラズマ点火を確実に行うことが可能となる。 したがって、 誘 導結合プラズマ方式にファラデーシールドを併用した場合にプラズマが点火し難 くなるという問題を解消したブラズマ処理装置およびブラズマ処理方法が実現さ れ 。

Claims

請 求 の 範 囲
1 . 被処理基板を収容する収容部とこの収容部と連通し絶縁体壁を有するプ ラズマ形成部とからなり、 被処理基板にプラズマ処理を施す処理容器と、 前記収容部に設けられ、 被処理基板が載置される導電性の載置台と、 前記絶縁体壁の外側に設けられ前記プラズマ形成部に誘導電磁界を形成するァ ンテナ手段と、
前記アンテナ手段に高周波電力を供給する第 1の高周波電源と、
前記アンテナ手段により形成された誘導電磁界により解離してブラズマとなる ブラズマ生成ガスおよびブラズマ処理を行うための処理ガスを供給するガス供給 手段と、
前記載置台に対向するように前記絶体壁の外側に設けられた導電性部材と、 前記載置台に高周波電力を供給する第 2の高周波電源と
を具備することを特徴とするプラズマ処理装置。
2 . 被処理基板を収容するチャンバ一と、
前記チヤンバーと連通するようにその上方に設けられ、 絶縁体からなる側壁お よび天壁を有するベルジャーと、
前記チャンバ一内に設けられ被処理基板が載置される導電性の載置台と、 前記ベルジヤーの側壁の外側に設けられ、 前記ペルジヤー内に誘導電磁界を形 成するアンテナ手段と、
前記アンテナ手段に高周波電力を供給する第 1の高周波電源と、
前記アンテナ手段により形成された誘導電磁界により解離してプラズマとなる ブラズマ生成ガスおよびブラズマ処理を行うための処理ガスを供給するガス供給 手段と、
前記天壁の上方に前記載置台と対向して設けられた導電性部材と、
前記載置台に高周波電力を供給する第 2の高周波電源と
を具備することを特徴とするプラズマ処理装置。
3 . 被処理基板を収容するチャンバ一と、
前記チャンバ一と連通するようにその上方に設けられ、 絶縁体からなる側壁お よび天壁を有するベルジャーと、
前記チャンバ一内に設けられ被処理基板が載置される導電性の載置台と、 前記ベルジャ一の側壁の外側に設けられ、 前記ベルジヤー内に誘導電磁界を形 成するアンテナ手段と、
前記アンテナ手段に高周波電力を供給する第 1 p高周波電源と、
前記アンテナ手段により形成された誘導電磁界により解離してプラズマとなる プラズマ生成ガスおよびプラズマ処理を行うための処理ガスを供給するガス供給 手段と、
前記ペルジャ一と前記アンテナ手段との間に設けられたファラデーシールドと、 前記天壁の上方に前記載置台と対向して設けられた導電性部材と、
前記載置台に高周波電力を供給する第 2の高周波電源と
を具備することを特徴とするプラズマ処理装置。
4 . 前記載置台は、 被処理基板を加熱する加熱機構を有することを特徴とす る請求項 1から請求項 3のいずれか 1項に記載のプラズマ処理装置。
5 . 被処理基板を収容するチャンバ一と、 前記チャンバ一と連通するように その上方に設けられ、 絶縁体からなる側壁および天壁を有するベルジャーと、 前 記チャンバ一内に設けられ被処理基板が載置される導電性の載置台と、 前記ベル ジャ一の側壁の外側に設けられ、 前記べルジャ一内に誘導電磁界を形成するアン テナ手段と、 前記アンテナ手段に高周波電力を供給する第 1の高周波電源と、 前 記アンテナ手段により形成された誘導電磁界により解離してブラズマとなるブラ ズマ生成ガスおよびプラズマ処理を行うための処理ガスを供給するガス供給手段 と、 前記天壁の上方に前記載置台と対向して設けられた導電性部材と、 前記載置 台に高周波電力を供給する第 2の高周波電源とを具備するブラズマ処理装置を用 いてプラズマ処理を行うブラズマ処理方法であって、
前記第 2の高周波電源から前記載置台に高周波電力を供給し、 前記載置台と前 記導電性部材との間に被処理基板に対して垂直な電界を形成してブラズマを形成 し、 その後前記第 1の高周波電源から前記アンテナ手段に高周波電力を供給し、 前記ベルジャー内に誘導電磁界を形成して誘導結合プラズマを形成し、 被処理基 板にプラズマ処理を施すことを特徴するプラズマ処理方法。
6 . 被処理基板を収容するチャンバ一と、 前記チャンバ一と連通するように その上方に設けられ、 絶縁体からなる側壁およぴ天壁を有するペルジャ一と、 前 記チヤンバー内に設けられ被処理基板が載置される導電性の載置台と、 前記ベル ジャ一の側壁の外側に設けられ、 前記ベルジヤー内に誘導電磁界を形成するアン テナ手段と、 前記アンテナ手段に高周波電力を供給する第 1の高周波電源と、 前 記アンテナ手段により形成された誘導電磁界により解離してプラズマとなるブラ ズマ生成ガスおよびプラズマ処理を行うための処理ガスを供給するガス供給手段 と、 前記ペルジャーと前記アンテナ手段との間に設けられたファラデーシールド と、 前記天壁の上方に前記載置台と対向して設けられた導電性部材と、 前記載置 台に高周波電力を供給する第 2の高周波電源とを具備するプラズマ処理装置を用 いてプラズマ処理を行うプラズマ処理方法であって、
前記第 2の高周波電源から前記載置台に高周波電力を供給し、 前記載置台と前 記導電性部材との間に電界を形成してブラズマを点火し、 その後前記第 1の高周 波電源から前記アンテナ手段に高周波電力を供給し、 前記ベルジャー内に誘導電 磁界を形成して誘導結合ブラズマを形成し、 被処理基板にブラズマ処理を施すこ とを特徴とするブラズマ処理方法。
7 . 前記第 2の高周波電源は、 前記第 1の高周波電源が高周波電力の供給を 開始した後に、 高周波電力の供給を停止することを特徴とする請求項 5または請 求項 6に記載のプラズマ処理方法。
8 . 被処理基板を加熱しながらプラズマ処理を施すことを特徴とする請求項 5から請求項 7のいずれか 1項に記載のプラズマ処理方法。
9 . 前記プラズマ処理は、 被処理基板上に形成された自然酸化膜を除去する 処理であることを特徴とする請求項 5から請求項 8のいずれか 1項に記載のブラ ズマ処理方法。
1 0 . 前記プラズマ生成ガスおよび前記処理ガスは、 アルゴンガスおよび水 素ガスからなることを特徴とする請求項 9に記載のプラズマ処理方法。
PCT/JP2002/001111 2001-02-08 2002-02-08 Dispositif et procede de traitement au plasma WO2002063667A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP02711436A EP1365446A4 (en) 2001-02-08 2002-02-08 PLASMA PROCESSING DEVICE AND PROCESS
KR1020037010433A KR100855617B1 (ko) 2001-02-08 2002-02-08 플라즈마 처리 장치 및 플라즈마 처리 방법
US10/635,651 US7578946B2 (en) 2001-02-08 2003-08-07 Plasma processing system and plasma processing method
US11/642,910 US20070102119A1 (en) 2001-02-08 2006-12-21 Plasma processing system and plasma processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-32711 2001-02-08
JP2001032711A JP2002237486A (ja) 2001-02-08 2001-02-08 プラズマ処理装置およびプラズマ処理方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/635,651 Continuation-In-Part US7578946B2 (en) 2001-02-08 2003-08-07 Plasma processing system and plasma processing method

Publications (1)

Publication Number Publication Date
WO2002063667A1 true WO2002063667A1 (fr) 2002-08-15

Family

ID=18896596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/001111 WO2002063667A1 (fr) 2001-02-08 2002-02-08 Dispositif et procede de traitement au plasma

Country Status (6)

Country Link
US (2) US7578946B2 (ja)
EP (1) EP1365446A4 (ja)
JP (1) JP2002237486A (ja)
KR (1) KR100855617B1 (ja)
CN (1) CN100375244C (ja)
WO (1) WO2002063667A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102360868A (zh) * 2011-09-28 2012-02-22 四川得弘电子科技有限公司 一种用于内燃发动机点火的电磁耦合装置

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070048447A1 (en) * 2005-08-31 2007-03-01 Alan Lee System and method for forming patterned copper lines through electroless copper plating
KR100741916B1 (ko) * 2004-12-29 2007-07-24 동부일렉트로닉스 주식회사 플라즈마 처리장치 및 그 세정방법
CN103503579B (zh) * 2011-02-03 2017-02-22 泰克纳等离子系统公司 高性能感应等离子体焰炬
WO2012111090A1 (ja) * 2011-02-15 2012-08-23 富士電機株式会社 放射性物質を伴う樹脂減容処理装置およびその動作方法
CN102776491B (zh) * 2011-05-12 2015-08-12 东京毅力科创株式会社 成膜装置和成膜方法
JP5870568B2 (ja) 2011-05-12 2016-03-01 東京エレクトロン株式会社 成膜装置、プラズマ処理装置、成膜方法及び記憶媒体
US9966236B2 (en) 2011-06-15 2018-05-08 Lam Research Corporation Powered grid for plasma chamber
JP5644719B2 (ja) * 2011-08-24 2014-12-24 東京エレクトロン株式会社 成膜装置、基板処理装置及びプラズマ発生装置
JP5712874B2 (ja) * 2011-09-05 2015-05-07 東京エレクトロン株式会社 成膜装置、成膜方法及び記憶媒体
CN103014745B (zh) * 2011-09-28 2015-07-08 北京北方微电子基地设备工艺研究中心有限责任公司 一种等离子体预清洗装置
KR20130063871A (ko) * 2011-12-07 2013-06-17 삼성전자주식회사 자기 소자 및 그 제조 방법
JP5803714B2 (ja) * 2012-02-09 2015-11-04 東京エレクトロン株式会社 成膜装置
JP6051788B2 (ja) * 2012-11-05 2016-12-27 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ発生装置
JP5939147B2 (ja) 2012-12-14 2016-06-22 東京エレクトロン株式会社 成膜装置、基板処理装置及び成膜方法
CN105789011B (zh) * 2014-12-24 2018-01-26 中微半导体设备(上海)有限公司 感应耦合型等离子体处理装置
JP6295439B2 (ja) * 2015-06-02 2018-03-20 パナソニックIpマネジメント株式会社 プラズマ処理装置及び方法、電子デバイスの製造方法
CN106653549B (zh) * 2015-11-03 2020-02-11 中微半导体设备(上海)股份有限公司 一种半导体加工设备
JP6584355B2 (ja) * 2016-03-29 2019-10-02 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
US10358715B2 (en) 2016-06-03 2019-07-23 Applied Materials, Inc. Integrated cluster tool for selective area deposition
JP6446418B2 (ja) 2016-09-13 2018-12-26 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置およびプログラム
CN106898861A (zh) * 2017-03-01 2017-06-27 合肥工业大学 一种工作于太赫兹频段的等离子体天线
CN107256822B (zh) * 2017-07-27 2019-08-23 北京北方华创微电子装备有限公司 上电极组件及反应腔室
US10544519B2 (en) * 2017-08-25 2020-01-28 Aixtron Se Method and apparatus for surface preparation prior to epitaxial deposition
CN111868895B (zh) * 2018-03-22 2024-07-19 株式会社国际电气 基板处理装置、半导体装置的制造方法及静电屏蔽罩
CN112687514B (zh) * 2021-03-13 2021-06-15 北京凯德石英股份有限公司 钟罩及应用其的等离子去胶机

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0641013A2 (en) * 1993-08-27 1995-03-01 Applied Materials, Inc. High density plasma CVD and etching reactor
EP0685873A1 (en) * 1994-06-02 1995-12-06 Applied Materials, Inc. Inductively coupled plasma reactor with an electrode for enhancing plasma ignition
JPH10275694A (ja) * 1997-03-31 1998-10-13 Hitachi Ltd プラズマ処理装置及び処理方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4352685A (en) * 1981-06-24 1982-10-05 Union Carbide Corporation Process for removing nitrogen from natural gas
US6068784A (en) 1989-10-03 2000-05-30 Applied Materials, Inc. Process used in an RF coupled plasma reactor
JPH04196528A (ja) * 1990-11-28 1992-07-16 Toshiba Corp マグネトロンエッチング装置
JP2635267B2 (ja) 1991-06-27 1997-07-30 アプライド マテリアルズ インコーポレイテッド Rfプラズマ処理装置
US6488807B1 (en) 1991-06-27 2002-12-03 Applied Materials, Inc. Magnetic confinement in a plasma reactor having an RF bias electrode
US6077384A (en) * 1994-08-11 2000-06-20 Applied Materials, Inc. Plasma reactor having an inductive antenna coupling power through a parallel plate electrode
KR100238627B1 (ko) * 1993-01-12 2000-01-15 히가시 데쓰로 플라즈마 처리장치
US5865896A (en) * 1993-08-27 1999-02-02 Applied Materials, Inc. High density plasma CVD reactor with combined inductive and capacitive coupling
US5449432A (en) * 1993-10-25 1995-09-12 Applied Materials, Inc. Method of treating a workpiece with a plasma and processing reactor having plasma igniter and inductive coupler for semiconductor fabrication
US5460689A (en) * 1994-02-28 1995-10-24 Applied Materials, Inc. High pressure plasma treatment method and apparatus
US5688357A (en) * 1995-02-15 1997-11-18 Applied Materials, Inc. Automatic frequency tuning of an RF power source of an inductively coupled plasma reactor
US5710486A (en) * 1995-05-08 1998-01-20 Applied Materials, Inc. Inductively and multi-capacitively coupled plasma reactor
US5897712A (en) * 1996-07-16 1999-04-27 Applied Materials, Inc. Plasma uniformity control for an inductive plasma source
JP2000164712A (ja) * 1998-11-27 2000-06-16 Sony Corp 電子装置の製造方法
US6447637B1 (en) * 1999-07-12 2002-09-10 Applied Materials Inc. Process chamber having a voltage distribution electrode
US6447636B1 (en) * 2000-02-16 2002-09-10 Applied Materials, Inc. Plasma reactor with dynamic RF inductive and capacitive coupling control
KR100856451B1 (ko) * 2000-04-25 2008-09-04 도쿄엘렉트론가부시키가이샤 소재의 플라즈마 세정장치 및 방법
US6652711B2 (en) * 2001-06-06 2003-11-25 Tokyo Electron Limited Inductively-coupled plasma processing system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0641013A2 (en) * 1993-08-27 1995-03-01 Applied Materials, Inc. High density plasma CVD and etching reactor
EP0685873A1 (en) * 1994-06-02 1995-12-06 Applied Materials, Inc. Inductively coupled plasma reactor with an electrode for enhancing plasma ignition
JPH10275694A (ja) * 1997-03-31 1998-10-13 Hitachi Ltd プラズマ処理装置及び処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1365446A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102360868A (zh) * 2011-09-28 2012-02-22 四川得弘电子科技有限公司 一种用于内燃发动机点火的电磁耦合装置

Also Published As

Publication number Publication date
EP1365446A4 (en) 2006-01-04
KR20030086996A (ko) 2003-11-12
US20070102119A1 (en) 2007-05-10
CN100375244C (zh) 2008-03-12
US7578946B2 (en) 2009-08-25
US20040050329A1 (en) 2004-03-18
KR100855617B1 (ko) 2008-09-01
EP1365446A1 (en) 2003-11-26
CN1554114A (zh) 2004-12-08
JP2002237486A (ja) 2002-08-23

Similar Documents

Publication Publication Date Title
WO2002063667A1 (fr) Dispositif et procede de traitement au plasma
CN112135925B (zh) 成膜装置和成膜方法
KR101331420B1 (ko) 기판 처리 장치 및 반도체 장치의 제조 방법
KR101054481B1 (ko) 재치대 구조, 이를 이용한 처리 장치, 이 장치의 사용 방법, 및 이를 실행시키는 프로그램을 격납한 컴퓨터 판독가능 기록매체
KR101575734B1 (ko) 기판 처리 장치 및 반도체 장치의 제조 방법
KR100656214B1 (ko) 플라즈마 처리 방법
JP2001284340A (ja) 半導体製造装置および半導体装置の製造方法
KR101257985B1 (ko) 플라즈마 처리 방법 및 플라즈마 처리 장치
US8043471B2 (en) Plasma processing apparatus
US20100239781A1 (en) Method for in-chamber preprocessing in plasma nitridation processing, plasma processing method, and plasma processing apparatus
JP4052454B2 (ja) 酸化シリコン膜又は窒化シリコン膜の製造方法
JP3549188B2 (ja) 半導体基板への薄膜成膜方法
JP4079834B2 (ja) プラズマ処理方法
JP4861208B2 (ja) 基板載置台および基板処理装置
JP4810281B2 (ja) プラズマ処理装置
TW202230511A (zh) 基板處理方法及基板處理裝置
JP2004228181A (ja) プラズマ処理装置およびプラズマ処理方法
TWI244696B (en) Process for reducing particle formation during etching
TW202223996A (zh) 半導體裝置之製造方法、基板處理裝置及程式
KR101397413B1 (ko) 플라즈마 식각 장치를 이용한 웨이퍼 식각 방법

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020037010433

Country of ref document: KR

Ref document number: 028046854

Country of ref document: CN

Ref document number: 10635651

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2002711436

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020037010433

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2002711436

Country of ref document: EP