WO1994008139A1 - Hydraulic pump/motor - Google Patents

Hydraulic pump/motor Download PDF

Info

Publication number
WO1994008139A1
WO1994008139A1 PCT/JP1993/001413 JP9301413W WO9408139A1 WO 1994008139 A1 WO1994008139 A1 WO 1994008139A1 JP 9301413 W JP9301413 W JP 9301413W WO 9408139 A1 WO9408139 A1 WO 9408139A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
fluid pressure
motor
fluid
housing
Prior art date
Application number
PCT/JP1993/001413
Other languages
French (fr)
Japanese (ja)
Inventor
Toshio Okamura
Original Assignee
Toshio Okamura
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshio Okamura filed Critical Toshio Okamura
Publication of WO1994008139A1 publication Critical patent/WO1994008139A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/34Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
    • F04C2/356Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C2/3562Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C11/00Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations
    • F04C11/001Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations of similar working principle

Definitions

  • the present invention relates to a fluid pressure pump or a fluid pressure pump motor as a fluid pressure motor, and in particular, forms a pressure receiving projection that partitions a fluid working chamber on an outer peripheral portion of a rotor housed in a rotor housing chamber of a housing; And a fluid pump z motor provided with a vane mechanism for partitioning a fluid working chamber.
  • the rotary rotor type motor / compressor described in Japanese Patent Application Laid-Open No. HEI 4-1496 is a compressor incorporating an electric motor.
  • a rotor housing chamber having a circular cross section is provided in a housing.
  • the stator of the induction motor (smaller than the inner diameter of the rotor), in which a cylindrical rotor having a smaller diameter is mounted in the rotor accommodating chamber and a plurality of induction coils are mounted in the rotor.
  • a part of the inner peripheral surface of the rotor is attracted by the magnetized coil of the stator and contacts the stator, and a part of the outer peripheral surface of the rotor is the inner peripheral surface of the rotor housing chamber.
  • a fluid working chamber is formed outside the rotor in the rotor housing chamber, and a vane mechanism for partitioning the fluid working chamber is provided in the housing, and on both sides of the vane mechanism of the housing.
  • a supply port and an outlet port are formed.
  • a rotor housing chamber 202 having a circular cross section is formed in a housing 201, and a cylindrical body eccentric with respect to its axis is formed in the rotor housing chamber 202.
  • the rotor 203 is rotatably housed integrally with the shaft member 204, and a part of the outer peripheral surface of the rotor 203 is slidably contacted with the inner peripheral surface of the rotor housing chamber 202, and
  • a fluid working chamber 205 is formed outside the rotor 203 of the rotor housing chamber 202, and a vane mechanism 206 that partitions the fluid working chamber 205 is formed in the housing 201.
  • the vane mechanism 206 mounts a movable partition member 208 in a mounting hole 207 formed in the housing 201 such that the movable partition member 208 can move forward and backward with respect to the rotor accommodating chamber 202.
  • the partition member 208 is elastically urged toward the rotor accommodating chamber 202 by a spring 209, and the supply port 210 exits on both sides of the vane mechanism 206.
  • the fluid pressure pump / motor 200 When the fluid pressure pump / motor 200 is used as a fluid pressure motor, when fluid pressure is supplied from the supply port 210 to the first working chamber 205a, the first working chamber 205a The fluid pressure acts on the rotor 203, the fluid in the second working chamber 205b is discharged from the outlet port 211, and the rotor 203 is driven to rotate clockwise.
  • the fluid pressure pump motor 200 When the fluid pressure pump motor 200 is used as a fluid pressure pump, the shaft member 204 is driven to rotate clockwise by an electric motor or the like (not shown), and the shaft member 204 is moved from the supply port 210 to the first port.
  • the rotation angle range where the pressure receiving area of the rotor receives the maximum is narrow, and the rotation angle range where the maximum torque and the maximum discharge amount are output is narrow. In other words, there is a problem that the size of the fluid pressure pump Z motor increases.
  • An object of the present invention is to make it possible to simplify the structure of a fluid pump motor having a rotor, to reduce the wear of a rotary rotor to increase its durability, and to increase the supply fluid pressure and discharge fluid pressure. In other words, it is necessary to increase the rotation angle range for outputting the maximum torque and the maximum discharge amount to increase the capacity, that is, to reduce the size. Disclosure of the invention
  • a fluid pressure pump / motor includes: a housing; a rotor housing chamber having a circular cross-section formed in the housing; a rotor housed in the rotor housing chamber so as to be rotatable around its shaft; A fluid working chamber formed in a portion outside of the rotor, and a shaft member connected to the rotor and extending out of the housing.
  • a pressure receiving projection formed on the rotor and projecting to an inner peripheral surface of the rotor accommodating chamber so as to partition the fluid working chamber;
  • a seal portion formed at an outer peripheral end portion of the pressure receiving protrusion portion and slidably contacting an inner peripheral surface of the rotor receiving hole in a surface contact manner and in a sealable manner;
  • a partition member, and a biasing hand for biasing the movable partition member toward the rotor A vane mechanism having a step and
  • the housing includes a supply port and an outlet port formed near the leading side and the trailing side of the movable partition member of the vane mechanism in the rotor rotation direction, respectively.
  • a fluid working chamber is formed on the outer peripheral side of the rotor in the rotor housing chamber, and the fluid working chamber includes a pressure receiving projection of the rotor and a movable partition member of the vane mechanism. And is divided into a supply-side fluid working chamber portion communicating with the supply port and an outlet-side fluid working chamber portion communicating with the outlet port.
  • the fluid pressure of the supply-side fluid working chamber acts on one side of the pressure receiving projection of the rotor.
  • the discharge pressure (drain pressure in the case of a hydraulic motor, and atmospheric pressure in the case of an air motor) acts on the other side of the pressure receiving projection of the rotor. It is driven to rotate by the pressure difference.
  • the pressure receiving protrusion of the rotor approaches the vane mechanism, the movable partition member retreats and the rotor passes through the vane mechanism, and the pressure receiving protrusion of the rotor returns to the supply-side fluid working chamber portion of the supply side. Due to the fluid pressure acting, the rotor will continue to rotate.
  • the rotor has at least one pressure receiving projection projecting to the inner peripheral surface of the rotor housing chamber so as to partition the fluid working chamber.
  • a seal portion is formed at the outer peripheral end of the pressure receiving protrusion so as to be in sliding contact with the inner peripheral surface of the rotor accommodating chamber so as to be able to seal, the wear resistance of the seal portion is enhanced and its durability is improved.
  • the efficiency of the fluid pressure pump motor can be increased by improving the sealing performance of the seal portion at the same time, and the supply fluid pressure and the discharge fluid pressure can be increased.
  • FIG. 1 is a cross-sectional view of a hydraulic pump motor according to an embodiment of the present invention.
  • FIG. 2 is a side view of the hydraulic pump motor of FIG.
  • Fig. 3 is a vertical cross-sectional view (cross-sectional view taken along the line 3-3 in Fig. 1) of the hydraulic pump Z motor in Fig. 1.
  • FIG. 4 is a hydraulic circuit diagram for the hydraulic motor of the hydraulic pump / motor of FIG. 1
  • FIG. 5 is a hydraulic circuit diagram of the hydraulic pump of the hydraulic pump motor of FIG. 1
  • FIG. It is a cross-sectional view of the fluid pressure pump of the first alternative embodiment
  • FIG. 7 is a longitudinal sectional view (sectional view taken along line 7-7 in FIG. 6) of the fluid pressure pump / motor shown in FIG.
  • FIG. 8 is a cross-sectional view of a fluid pressure pump motor of a first modified example.
  • FIG. 9 is a sectional view of a main part of the fluid pressure pump motor shown in FIG.
  • FIG. 10 is a sectional view of a main part of the fluid pressure pump / motor of FIG. 8,
  • FIG. 11 is a cross-sectional view of a fluid pressure pump Z motor according to a second modification
  • FIG. 12 is a hydraulic circuit diagram of the hydraulic pump / motor of the hydraulic pump / motor of FIG. 11;
  • FIG. 13 is a hydraulic circuit diagram of the hydraulic pump / motor of the hydraulic pump / motor of FIG. 11;
  • FIG. 14 is a cross-sectional view of a fluid pressure pump motor of a third modified example,
  • FIG. 15 is a cross-sectional view of the hydraulic pump Z motor unit of the second alternative embodiment
  • FIG. 16 is a vertical cross-sectional view of the unit of FIG. 15 (line 16—16 in FIG. 15).
  • FIG. 17 is a hydraulic circuit diagram for the hydraulic motor of the unit of FIG. 15;
  • FIG. 18 is a hydraulic circuit diagram for the hydraulic motor of the unit of FIG. 15;
  • FIG. 19 is a partial view of a modification of the unit of FIG. 15 corresponding to FIG.
  • FIG. 20 is a hydraulic circuit diagram for the hydraulic pump of the unit of FIG. 15;
  • FIG. 21 is a hydraulic circuit diagram for the hydraulic pump of the unit of FIG. 15;
  • FIG. 22 is a hydraulic circuit diagram of a hydraulic pump Z motor unit of a third alternative embodiment
  • FIG. 23 is a hydraulic circuit diagram of a hydraulic pump pump motor unit of a fourth alternative embodiment
  • FIG. 24 is a longitudinal sectional view of a fluid pressure pump motor according to the prior art. BEST MODE FOR CARRYING OUT THE INVENTION
  • the fluid pressure motor M includes a housing 1, a ⁇ -motor 2, an output shaft 3, a vane mechanism 4, and the like.
  • the housing 1 includes a housing main body 10 having a cylindrical rotor housing hole 5a therein, a first end plate 11 for closing a right end side of the housing main body 10, and a left end side of the housing main body 10 for closing the left end side.
  • the housing 1 is formed with a second end plate 12 and the like, and a rotor housing chamber 5 is formed in the housing 1 in which both ends of the rotor housing hole 5a are closed by the first and second end plates 11 and 12.
  • the housing 1 and the rotor 2 are made of a material such as iron, steel, stainless steel, aluminum, aluminum alloy, synthetic resin, FRP (fiber reinforced synthetic resin), or high-strength ceramic. Can also be configured.
  • the rotor 2 has a cylindrical rotor body 20 and a pressure receiving projection 21 integrally formed on the rotor body 20 so as to protrude outside the outer periphery of the rotor body 20.
  • 1 is formed in parallel with the axis X of the rotor housing 5 and the same length as the rotor main body 20, and the tip of the pressure receiving projection 21 comes into surface contact with the inner peripheral surface of the rotor housing 5.
  • sea A seal portion 22 is formed so as to be slidably contactable with each other. On both sides of the seal portion 22, a gentle curved surface gradually increasing in diameter from the outer peripheral surface of the rotor body 20 toward the seal portion 22. 23 and 23 are formed symmetrically with respect to the seal portion 22.
  • the seal portion 22 is formed to have a predetermined width (for example, a width of about 5 to 20 mm) in the circumferential direction, it has excellent sealing properties.
  • the right end surface 24 of the rotor 2 is in sliding contact with the first end plate 11, and the left end surface 25 of the mouth 2 is in sliding contact with the second end plate 12 with a small gap or little gap. It is formed as follows.
  • the output shaft 3 is for taking out the rotation of the rotor 2 to the outside of the housing 1.
  • the output shaft 3 is disposed concentrically with the axis X of the rotor housing chamber 5. It extends outside the housing 1 through the shaft hole in the center of the stator 2 and the holes in the first and second end plates 11 and 12, and the output shaft 3 is connected to the rotor 2 via a key.
  • the output shaft 3 supporting the rotor 2 is fixed to the first and second end plates 11 and 12 via bearings 32 and 33 so as to be rotatable at both ends.
  • Reference numerals 14 and 15 denote bolts for fixing the first and second end plates 11 and 12 to the housing body
  • reference numeral 13 denotes a holding plate (this can be omitted)
  • reference numeral 16 Is a bolt for fixing the holding plate 13 to the housing body 10.
  • a slit-shaped mounting hole 40 parallel to the axis X of the rotor housing chamber 5 is formed in the housing main body 10 at one side of the housing main body 10.
  • a movable partition member 41 is slidably mounted in the mounting hole 40, and the movable partition member 41 is provided with three compression members mounted between the movable partition member 41 and the spring receiving member 42.
  • the coil spring 43 elastically urges toward the rotor accommodating chamber 5, so that the seal portion 41s at the tip of the movable partition member 41 is always in sliding contact with the outer peripheral surface of the rotor 2 so as to be able to seal. is there.
  • the seal part 41 s has a width of at least about 2 to 3 mm in the circumferential direction, and is in sliding contact with the outer peripheral surface of the rotor 2 in a face-to-face manner to prevent passage of the fluid.
  • the movable partition member 41 is made of a metal material having low friction and excellent wear resistance (for example, Or brass, copper-lead alloy, aluminum alloy, etc.), but may be made of a synthetic resin material with high strength and rigidity, or a material such as FRP (textile reinforced synthetic resin) or ceramic.
  • the movable partition member 41 slides on the inner surface of the mounting hole 40 so as to be substantially sealable with a small gap.
  • the inner surface of the mounting hole 40 is hardened (nitriding, carburizing, etc.) or a small gap between the inner surface of the mounting hole 40 and the movable partition member 41 is supplied. Providing suitable lubrication means also improves the sealing performance.
  • the spring receiving member 42 is fixed to the housing main body 10 with a gasket 46 (which can be omitted) by, for example, six bolts 44. Pressurized air of a predetermined pressure is supplied to the spring accommodating chamber 47 between the movable partition member 41 and the spring receiving member 42, and the movable partition member 41 is compressed by the compressed air and three compression coil springs 43.
  • the movable partition member 41 may be configured to be elastically urged, or may be configured to elastically urge the movable partition member 41 only by pressurized air.
  • the housing main body 10 has a first passage 6 opened on the right end surface thereof formed above the mounting hole 40.
  • the housing main body 10 has a second passage 7 opened on the right end surface thereof.
  • One or a plurality of first ports 6a formed below the hole 40 and branched from the first passage 6 are opened to the rotor housing chamber 5 at a position near the upper side of the movable partition member 41, and the second passage 7
  • One or a plurality of second boats 7a branched from the opening are opened to the rotor housing chamber 5 near the lower side of the movable partition member 41.
  • a working chamber 50 formed outside the rotor 2 is divided into a first working chamber 51 and a second working chamber 52 by a movable partition member 41, and
  • the movable partition member 41 advances and retreats while sliding the seal portion 41 s at the tip of the movable partition member 41 against the outer peripheral surface of the rotor 2, so that the rotor 2 is rotatable.
  • a hydraulic or pressurized air is supplied to the first passage 6 and the second passage 7 is released to an oil tank or the atmosphere, the fluid pressure is supplied from the first port 6a to the first working chamber 51, 1 Fluid pressure in the working chamber 51 acts on the pressure receiving projection 21 of the rotor 2.
  • Second working chamber 5 2 Since the pressure of the fluid inside is the drain pressure or the atmospheric pressure, the rotor 2 has a pressure difference between the fluid pressure of the first working chamber 51 and the drain pressure or the atmospheric pressure of the second working chamber 52, and the pressure receiving protrusion 2
  • the torque equal to the product of the cross-sectional area of the rectangular shape of 1 and the distance from the axis X of the rotor 2 (the center X of the rotor chamber 5) to the pressure receiving center of the pressure receiving protrusion 21 acts on the rotor 2. Rotate in the direction of arrow A. However, when the movable partition member 41 is in contact with the curved surface 23 on the trailing side in the rotor rotation direction of the pressure receiving projection 21, the torque is somewhat reduced because the pressure receiving area is small.
  • the supply of the fluid pressure causes the first working chamber 51 to expand, and the discharge of the fluid causes the second working chamber 52 to shrink while the rotor 2 rotates, and the seal portion 22 to move the movable partition member 4.
  • the first working chamber 51 communicates with the second port ⁇ a, but the rotor 2 continues to rotate by inertia and the movable partition member 4
  • the seal portion 22 of the rotor 2 passes through the movable partition member 41 and the first port 6a
  • the fluid pressure of the first working chamber 51 acts on the pressure receiving projection 21 of the rotor 2, and By repeating in the same manner as described above, the rotor 2 rotates continuously and smoothly.
  • the first working chamber 51 has the drain pressure or the atmospheric pressure
  • the rotor 2 rotates in the direction of arrow B.
  • the first port 6a or the second port 7a on the leading side in the rotation direction of the rotor 2 with respect to the movable partition member 41 becomes a supply port for supplying fluid pressure, and the rotation of the rotor 2
  • the second port ⁇ a or the first port 6a on the directional trailing side is the outlet port for discharging fluid.
  • the seal portion 22 of the pressure receiving projection 21 is in sliding contact with the inner peripheral surface of the rotor housing chamber 5 in a surface-contact manner, the seal portion 22 has excellent sealing properties, and the seal portion 22 is hardly worn and has durability. Is improved.
  • the pressure receiving projection 21 is formed to have a narrow width covering about 1/4 of the outer peripheral portion of the rotor 2, the sealing portion 22 of the rotor 2 passes through the supply ports (6a, 7a). . Since the pressure receiving area is maximized early, the output torque is maximized early.
  • the pressure receiving projection 21 is formed as follows. It can be formed in about 1/3 of the outer circumference of the motor 2 or in a range of about 1 / 2.In this case, the rate of increase of the radius from the axis of the curved surface 23 is smaller, and The resistance acting on the rotor 2 from the partition member 41 is reduced, and the forward / backward responsiveness of the movable partition member 41 is improved.
  • the urging force for elastically urging the movable partition member 41 toward the rotor storage chamber 5 is greater than the force of the movable partition member 41 being pushed outward by the fluid pressure acting on the movable partition member 41.
  • the movable partition member 41 needs to have strength and rigidity so as not to be deformed by a fluid pressure acting on the movable partition member 41.
  • the hydraulic motor M is a hydraulic motor
  • the hydraulic circuit is as shown in FIG. 4, and the hydraulic tank 53, the hydraulic pump 54, and the electromagnetic directional valve 55 supply the hydraulic pressure to the first port 6a. Then, the rotor 2 rotates clockwise. Conversely, when hydraulic pressure is supplied to the second port 7a, the rotor 2 rotates counterclockwise.
  • the fluid pressure motor M when used as the fluid pressure pump P, an electric motor or an air motor for rotating the output ⁇ 3 is connected to the output ⁇ 3, and the output shaft 3 is driven ⁇ (3)
  • the drive shaft (3) is driven to rotate in the direction of arrow A in FIG. 3
  • the fluid before pressurization is sucked from the first port 6a through the first passage 6, and
  • the fluid pressure discharged from the 2 port 7a is supplied to the outside from the second passage 7. That is, the fluid sucked into the first working chamber 51 moves to the second working chamber 52 via the rotation of the rotor 2, and the fluid in the second working chamber 52 is added by the rotation of the rotor 2. Pressurized and discharged to the second port 7a.
  • the hydraulic circuit when the fluid pressurizing pump P is a hydraulic pump is as shown in FIG. 5, in which the electric motor 56 drives the drive shaft (3) to rotate, and the oil in the oil tank 57 is supplied to the first passage. After passing through 6, the fluid is sucked into the first port 6a, and the pressurized fluid is discharged to the second port ⁇ a and supplied to the outside from the second passage 7.
  • the housing 1A is welded to the housing main body 60 made of a cylindrical member, the first end plate 61, the second end plate 62, and the side of the housing main body 60. It is composed of a block member 63 and the like fixed at.
  • a port storage chamber 5A similar to the rotor storage chamber 5 is formed, and a rotor 2A is stored in the rotor storage chamber 5A.
  • the rotor 2A is the same as the rotor 2 and includes a rotor body 64 and a pressure receiving protrusion 65 integrally formed therewith.
  • a sealing portion 66 is provided at the tip of the pressure receiving protrusion 65. Curved surfaces 67, 67 are formed on both sides of the seal portion 66.
  • An annular seal groove 78 is formed on each of the left and right end surfaces of the rotor 2A, and an annular seal member 79 is mounted in these seal grooves 78.
  • Reference numerals 68 and 69 denote bolts and nuts connecting the first end plate 61 and the second end plate 62 with the housing body 60 interposed therebetween, and reference numeral 32A denotes a bearing.
  • the output shaft 3A is similar to the output shaft 3 and extends outside the housing 1A through the first end plate 61, the rotor 2A, and the second end plate 62, and is opposed to the rotor 2A. It is fixed so that it cannot rotate.
  • a mounting hole 70 is formed in the housing body 60 and the block member 63, and the first movable partition member 72 and the second movable partition member 73 are formed in the mounting hole 70.
  • the movable partition member 7 comprises a spring receiving member 7 4 fixed to the outer surface of the block member 6 3 with a plurality of bolts 75, and a first movable partition member 7. 2 is urged toward the rotor housing chamber 5 A by three compression coil springs 76, and the second movable partition member 73 is moved toward the rotor housing chamber 5 A by three compression coil springs 77. Being energized.
  • Reference numeral 73a denotes a cutout portion formed in the second movable partition member 73 to apply the force of the spring 76 to the first movable partition member 72
  • reference numeral 72a denotes Apply the force of the spring 7 7 to the second movable partition member 7 3
  • the notch formed in the first movable partition member 72 to be added is shown. However, the notches 72a and 73a may be omitted as necessary.
  • a first passage 6A and a second passage 7A having an oval cross section are formed in the same manner as in the previous embodiment, and a first port 6b communicating with the first passage 6A, A second port ⁇ b communicating with the second passage 7A is formed in the housing 1A.
  • the operation of the fluid pressure monitor MA is the same as that of the fluid pressure motor M, except that the movable partition member ⁇ 1 is composed of a first movable partition member 72 and a second movable partition member 73,
  • the movable seal member 7 2 s at the front end of the movable partition member 72 and the seal portion 73 s at the front end of the second movable partition member 73 are in sliding contact with the outer peripheral surface of the rotor 2 A.
  • the contact portion between the partition member 71 and the rotor 2A is double-sealed, and the sealing performance is improved, making it suitable for a hydraulic motor or the like that supplies a relatively high fluid pressure.
  • annular seal members 67 are mounted on the left and right end surfaces of the rotor 2A, it is suitable for a hydraulic motor such as a hydraulic motor that supplies a relatively high fluid pressure.
  • the fluid pressure motor M A of this embodiment can also be applied as a fluid pressure pump similarly to the fluid pressure motor M.
  • a seal 80 at the tip of the pressure receiving projection 65A of the rotor 2B is formed in the circumferential direction to have a wide width of, for example, about 10 mm or more.
  • curved surfaces 8 1, 81 which gradually increase in diameter from the peripheral surface of the rotor body 64 and reach the seal portion 80 are formed, and the shaft of the rotor 2B is formed on the seal portion 80.
  • a seal groove 82 oriented in the direction of the center is formed, and the seal groove 82 is made of synthetic rubber or synthetic resin (eg, nylon, etc.) or metal (eg, iron, brass, copper lead alloy, aluminum alloy, etc.).
  • the seal member 83 is attached, and the seal member 83 is in surface contact with the inner peripheral surface of the rotor housing chamber 5A.
  • a communication hole communicating from the curved surfaces 8 1, 8 1 to the bottom of the seal groove 82 is formed. It is also possible to employ a configuration in which the member 83 is urged by fluid pressure.
  • An annular seal groove 78 is formed on each of the left and right end surfaces of the rotor 2A, and an annular seal member 79 is attached to the seal groove 78.
  • the sealing member 85 is also mounted on the sealing groove 85 extending to the sealing groove 82.
  • the seal members 79 and 86 may be made of synthetic rubber, synthetic resin (for example, nylon, etc.) or metal, or may be a composite seal member including a plurality of parts. With the above configuration, the sealing performance can be improved.
  • a first vane mechanism 4A and a second vane mechanism 4B are provided in a housing 1A so as to be rotationally symmetric with respect to an axis X of a rotor accommodating chamber 5A.
  • the first boat 6b and the second port 7b are formed on the upper and lower sides of the first vane mechanism 4A, and the second port 7b and the first port are formed on the upper and lower sides of the second vane mechanism 4B.
  • Port 6b is formed.
  • the rotor 2C is formed with two pressure receiving portions 65, 65 every 180 degrees in the circumferential direction in a rotationally symmetric manner with respect to the axis X thereof.
  • the output torque force is about twice as large as that of the fluid pressure motor MA1, so the fluid pressure motor is downsized. it can.
  • the two pressure receiving parts 65, 65 contact the vane mechanism 4A, 4B at the same time, the output torque will decrease a little, so the two pressure receiving parts 65, 65 will be 4A, 4B, the force to provide the vane mechanism 4A, 4B non-rotationally symmetric with respect to the center X, or the two pressure receiving portions 65, 65 with respect to the axis X. It may be formed non-rotationally symmetric.
  • the hydraulic circuit when using the hydraulic motor MA 2 in Fig. 11 as a hydraulic motor is As shown in Fig.12.
  • Reference numeral 90 denotes an oil tank, 91 denotes a hydraulic pump, and 92 denotes an electromagnetic directional control valve.
  • Reference numeral 93 denotes an electric motor that rotationally drives the drive shaft 3A
  • reference numeral 94 denotes an oil tank.
  • the fluid pressure motor MA3 shown in FIG. 14 instead of the rotor 2C of the fluid pressure motor MA2 shown in FIG. 11, three pressure receiving protrusions are provided on the outer periphery of the rotor 2D every 120 degrees. 65, 65, 65 are formed.
  • the operation of the fluid pressure motor M A3 is the same as that of the fluid pressure motor MA 2. However, since each of the three pressure receiving protrusions 65, 65, 65 comes into contact with the vane mechanism 4A, 4B, the torque fluctuation force is reduced. Then, the efficiency of the fluid pressure motor M A3 increases.
  • each vane mechanism In the case of a relatively large hydraulic motor or hydraulic pump, three or more vane mechanisms and first and second ports corresponding to each vane mechanism are provided, and four or more The pressure receiving projection 65 may be formed.
  • the housing of the first fluid pressure motor Ml includes a first end plate 101, a housing main body 104A, and an intermediate plate 102A, and a cylindrical rotor housing chamber 105 in this housing.
  • A is formed, and the rotor accommodating chamber 105A accommodates a rotor 106A similar to the rotor 2 described above, and a vane mechanism 107A is provided on the side of the housing body 104A.
  • a mounting hole 109 A for mounting the movable partition member 108 A of the vane mechanism 107 A is formed in the housing body 104 A, and the first end plate 101 and the intermediate plate 1 are formed.
  • the movable partition member 108A is slidably mounted in the mounting hole 109A, and the spring 110 is moved toward the rotor accommodating chamber 105A. Being energized.
  • the panel receiving plate 1 1 1 is fixed to the housing main body 104 A with bolts 1 12.
  • the housing of the second fluid pressure motor M2 includes the intermediate plate 102A, a housing body 104B having the same structure as the housing body 104A, and an intermediate plate 102B. Have been.
  • the housing of the third fluid pressure motor M3 is composed of the intermediate plate 102B, a housing body 104 having the same structure as the housing body 104A, and a second end plate 103. Has been established. Other structures are the same as those of the first fluid pressure motor Ml, so the rotor storage chamber 105C, rotor 106C, vane mechanism 107C, mounting hole 109C, OK The description of the moving partition member 108C is omitted.
  • An output shaft 113 common to the three fluid pressure motors M 1, M 2, and M 3 includes a first end plate 101, a rotor 106 A, an intermediate plate 102 A, and a rotor 1. 06 B, the intermediate plate 102 B, the rotor 106 C, and the second end plate 103, and extends to the outside of the second end plate 103.
  • the end plates 101, 103 and the two intermediate plates 102A, 102B are rotatably supported via bearings 114, respectively, and the output shaft 113 is connected to the rotor 106A.
  • 106 B, and 106 C are connected to each other so that they cannot rotate relative to each other.
  • An example of a fluid passage formed in a housing when the three fluid pressure motors M 1, M 2, and M 3 are driven in series will be described.
  • the housing main body 104A, 104B, 104C has a first passage 12OA, 12OB, 120C located above the vane mechanism and a vane mechanism. Second passages 12 A, 12 B, and 12 C located on the lower side are formed. 1st end plate 1 0 1 shaped
  • the formed vertical hole 122 communicates with the first passageway 12OA, and the vertical hole 123A formed in the intermediate plate 102A communicates with the second passageway 122A and the first passageway 122A.
  • the vertical hole 123B formed in the intermediate plate 102B communicates with the passage 120B, and communicates with the second passage 122B and the first passage 120C.
  • the vertical hole 122 formed in the end plate 103 communicates with the second passage 122C.
  • the first passage 120 A, 120 B, 120 C is provided with a movable partition member 108 A, 108 B, 108 In the vicinity of the upper side of C, the first ports 125 A, 125 B, 125 C communicating with the rotor accommodating chambers 105 A, 105 B, 105 C, and the second passages 12 A, 1 A 2nd B, 121C is connected to the rotor housing chambers 105A, 105B, 105C in the vicinity of the lower side of the movable partition member 108A, 108B, 108C.
  • Ports 126 A, 126 B, and 126 C are formed, respectively, powerfully.
  • the fluid pressure that rotationally drives the rotor 106A of the first fluid pressure motor M1 is supplied to the second fluid pressure motor M2, and after rotating the rotor 106B, the third fluid pressure motor After being supplied to M3 and rotating the rotor 106C, it is discharged from the vertical hole 124.
  • the rotors 106A, 106B, 106C rotate in the direction of arrow A in FIG.
  • the fluid pressure is supplied from the vertical hole 124 and discharged from the vertical hole 122, the flow direction of the fluid pressure is reversed, and the rotor ⁇ 06 A, 106 B, 106 C , Rotate in the opposite direction to arrow A.
  • the three fluid pressure motors M1, M2, M3 are straightforward!
  • each fluid pressure motor When driven, the output torque of each fluid pressure motor does not increase so much because the pressure difference between the first working chamber and the second working chamber in each fluid pressure motor does not increase so much. Or, the pressure difference between the fluid pressure supplied to the 124 and the drain pressure discharged from the vertical hole 124 or 122 is increased, and the efficiency of utilizing the fluid pressure is improved.
  • the rotor 106A, 106B, 106C having the same structure, and the housing body 104 having the same structure have the same structure.
  • A, 104 B, 104 C, vane mechanism 107 A, 107 B, 107 C of the same structure can be used, and intermediate between the first end plate 101 and the second end plate 103
  • the plates 102A, 102B can be formed to have substantially the same structure.
  • the number of fluid pressure motors incorporated in the fluid pressure motor unit MU may be two or four or more. Also, the axial lengths of the plurality of fluid pressure motors can be made different.
  • the fluid pressure motor unit MU by independently forming the fluid passages in the fluid pressure motors M1, 2, and M3, it is possible to drive the individual fluid pressure motors independently. However, even in this case, the rotors 106A, 106B, and 106C rotate integrally.
  • the output torque can be switched to a plurality of steps, and the output shaft rotation speed can be set to a plurality of steps. Switching becomes possible. For example, in a hydraulic motor unit incorporating six hydraulic motors, the output torque can be switched to six stages (torque T1, T2, ⁇ T6) if the pressure of the supplied hydraulic pressure is constant. In addition, when the flow rate of the supplied fluid pressure is constant, the rotation speed can be switched to six stages (rotation speeds N1, N2, ⁇ ⁇ ⁇ N6).
  • the hydraulic motor unit MU is a hydraulic motor unit, and a hydraulic circuit when the hydraulic motor unit is driven in series is as shown in FIG. 17, for example.
  • the hydraulic circuit is provided with an oil tank 130, a hydraulic pump 131, an electromagnetic directional switching valve 132, and the like.
  • the hydraulic motor unit MU is a hydraulic motor unit, and a hydraulic circuit for driving the hydraulic motor units in parallel is as shown in FIG. 18, for example.
  • the hydraulic circuit includes an oil tank 133, a hydraulic pump 134, a solenoid directional control valve 135, and solenoid on-off valves 13 provided in the passages of the first ports 125A, 125B, and 125C, respectively.
  • the solenoid on-off valves 1336A and 1338A are opened and the solenoid on-off valve 1337A is closed.
  • the solenoid on-off valves 136A and 138A are closed and the solenoid on-off valve 137A is opened.
  • the oil in the first fluid pressure motor M1 circulates through the electromagnetic on-off valve 137A, and the rotor 106A enters an idling state.
  • a panel receiving bar 1 17 for receiving the outer end of the spring 110 is provided, The position may be switchable.
  • Each spring receiving bar 1 17 has, for example, three When the rods of the hydraulic cylinder 118 are connected to drive the fluid pressure motors M1, 2, M3, the hydraulic pump 118 sends the hydraulic pressure to the hydraulic cylinder 118 via the electromagnetic directional control valve 139. When the fluid pressure motors M1, M2, and M3 are not driven, the solenoid directional control valve 1 39 is switched to discharge the hydraulic pressure of the hydraulic cylinder 1 18 and the spring receiving bar 1 With a reversal of 17 forces, the biasing force of the spring 110 does not act on the movable partition members 108 A, 108 B, and 108 C. As a result, the rotors 106A, 106B, 106C are idle.
  • the fluid pressure motor unit MU is applicable as a fluid pressure pump unit.
  • the output shaft 113 is configured as a drive shaft (113) that is rotationally driven by an electric motor or an air motor.
  • the first boat 125A, 125B, 125C becomes a suction port for sucking the fluid before pressurization.
  • the second ports 126A, 126B, and 126C serve as discharge ports for discharging the pressurized fluid, and the first to third fluid pressure motors M1, M2, and the third to third fluids.
  • the pressure pumps are MlP, M2P, M3P.
  • the fluid pressure motor unit MU is configured as a hydraulic pump unit MUP, and a hydraulic circuit in a case where the hydraulic pump unit MUP is driven in series is, for example, as shown in FIG.
  • the drive shaft (113) is rotationally driven by an electric motor (142), and the oil supplied from the oil tank (143) is pressurized by the first fluid pressurizing pump (M1P) by the pressure P.
  • M1P first fluid pressurizing pump
  • the pressurized fluid is discharged from the third fluid pressurizing pump M 3 P.
  • the hydraulic circuit when the hydraulic pump units M UP are driven in parallel is as shown in FIG.
  • the drive shaft (113) is driven to rotate by an electric motor 144.
  • the solenoid on-off valves 146A and 147A are opened and the solenoid on-off valve 148A is closed.
  • the solenoid on-off valve 146A> 147A is closed and the solenoid on-off valve 148A is opened.
  • the oil in the first fluid pressurizing pump MILP circulates through the electromagnetic on-off valve 148A, and the rotor 106A idles.
  • the second fluid pressurizing pump M2P and the third fluid pressurizing pump M3P are driven.
  • the discharge amount of hydraulic pressure can be switched in three stages (discharge amount Q1, Q2, Q3), and the discharge pressure can be switched in three stages (discharge pressure P1, P2, P3). Can be switched. Then, assuming that Q 1> Q2> Q3 and PKP 2 ⁇ P 3, the combination of the discharge amount Q and the discharge pressure P is (Q l, P 1) (Q2, P 2), (Q3, P 3) Obviously, the discharge amount Q and the discharge pressure P is (Q l, P 1) (Q2, P 2), (Q3, P 3) Becomes
  • this hydraulic pump unit MUP is suitable, for example, as a hydraulic pump for driving a hydraulic actuator with various combinations of low load / high speed drive, medium load / medium speed drive, high load / low speed drive. It will be.
  • the configuration shown in FIG. 19 can be employed.
  • another embodiment of the fluid pressure motor unit will be described.
  • the air motor Ma and the hydraulic pump MP h are united like the fluid pressure motor unit MU, and the output shaft of the air motor Ma and the drive shaft of the hydraulic pump MP h are integrated. ⁇ It is composed of the member 150, and the air motor Ma is driven by the pressurized air supplied from the air pump 151, and the oil supplied from the oil tank 152 is pressurized by the hydraulic pump MPh and discharged. I do.
  • the hydraulic motor Mh and the small air pump MPa having a short length in the ⁇ direction are unitized in the same manner as the fluid pressure motor unit MU, and the air pump
  • the drive shaft of the MP a and the output shaft of the hydraulic motor M h are constituted by an integral shaft member 15 3, and the hydraulic motor M h is driven by the hydraulic pressure supplied from the hydraulic pump 15 4.
  • the air pump MPa is driven with the rotational driving force of the hydraulic motor M h to generate pressurized air, and the pressurizing fan is used as a vane mechanism.
  • the movable partition member 158 is urged toward the rotor 159 by the spring 157 of the spring storage chamber 156 and the pressurized air.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hydraulic Motors (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Abstract

A hydraulic pump/motor as a hydraulic pump or hydraulic motor having a rotating type rotor characterized in that a rotor accommodating chamber having a circular cross section is formed in a housing, that a rotor is accommodated in said rotor accommodating chamber, that a fluid operation chamber is formed outside said rotor in said rotor accommodating chamber and a shaft member adapted to rotate integrally with said rotor extends outwardly of said housing. A pressure receiving projection is integrally formed on the rotor, and a sealing portion is formed on this pressure receiving projection, the sealing portion being adapted to be brought into sliding contact with the inner circumferential surface of the rotor accommodating chamber in a surface contacting fashion. A vane mechanism is provided in the housing in which a movable partition member is biassed toward the rotor by means of a spring, and furthermore in the housing a supply port and an exit port are formed in positions on the sides of the vane mechanism. A pair of vane mechanisms may be provided in the housing, a plurality of pressure receiving projections may be provided on the rotor, and the movable partition member of each vane mechanism may be constituted by a plurality of members. Moreover, a plurality of the afore-mentioned hydraulic pumps/motors may be arranged in series to form a unit, and a common shaft member may be provided for the plurality of hydraulic pumps/motors.

Description

明 細 書 流体圧ポンプ Zモータ 技術分野  Description Fluid pressure pump Z motor Technical field
本発明は、 流体加圧ポンプ又は流体圧モータとしての流体圧ポンプノモータに 閬し、 特にハウジングのロータ収容室に収容したロータの外周部に流体作動室を 仕切る受圧突部を形成し、 ハウジングに流体作動室を仕切るベーン機構を設けた 流体圧ポンプ zモータに関するものである。 背景技術  The present invention relates to a fluid pressure pump or a fluid pressure pump motor as a fluid pressure motor, and in particular, forms a pressure receiving projection that partitions a fluid working chamber on an outer peripheral portion of a rotor housed in a rotor housing chamber of a housing; And a fluid pump z motor provided with a vane mechanism for partitioning a fluid working chamber. Background art
従来、 種々の複雑な構造の容積型の流体圧ボンプノモータが実用化されている 。 回転型ロータを備えた容積型の流体圧ポンプ モータは比較的構造が簡単であ るものの、 ロータに複数のベ一ンを装着したベーンポンプ/モータや、 ロータに 複数の出没自在の仕切り部材を装着してなるスリ ツバポンプ/モータでは、 π— タ及びその付属機構の構造が複雑化する。  2. Description of the Related Art Conventionally, positive displacement fluid pressure pump motors having various complicated structures have been put to practical use. Displacement type hydraulic pump motor with rotating rotor Although the structure is relatively simple, a vane pump / motor with multiple vanes mounted on the rotor and multiple retractable partition members mounted on the rotor In such a slit pump / motor, the structure of the π-motor and its attached mechanism is complicated.
ここで、 特開平 4一 1 4 9 6号公報に記載された回転ロータ型モータ/コンプ レッサは、 電動モータを組み込んだコンプレッサであり、 このコンプレッサにお いては、 ハウジングに断面円形のロータ収容室が形成され、 ロータ収容室にそれ よりも小径の円筒状のロータが装着され、 そのロータ内に複数の誘導コイルを装 着してなる誘導電動機のステータ (ロータの内径よりも小径である) がロータ収 容室と同心状に装着され、 ロータの内周面の一部がステータの磁化されたコイル に吸引されてステータに接触し、 ロータの外周面の一部がロータ収容室の内周面 に接触し、 ロータ収容室のうちのロータの外側に流体作動室が形成され、 ハウジ ングに、 流体作動室を仕切るベーン機構が設けられ、 ハウジングのベーン機構の 両側部には、 供給ポートと出口ポートとが形成されている。 誘導コィルへの通電を所定回転方向へ切り換えると、 ロータはステ一タに吸引 された状態を保持しつつ、 ステータの回りを回転して、 供給ポートから吸入され た空気を流体作動室内で加圧して出口ボートへ吐出するようになっている。 本発明の着想過程において、 本願発明者は、 図 2 4に示すような流体圧ポンプ モータ 2 0 0を考えついた。 Here, the rotary rotor type motor / compressor described in Japanese Patent Application Laid-Open No. HEI 4-1496 is a compressor incorporating an electric motor. In this compressor, a rotor housing chamber having a circular cross section is provided in a housing. The stator of the induction motor (smaller than the inner diameter of the rotor), in which a cylindrical rotor having a smaller diameter is mounted in the rotor accommodating chamber and a plurality of induction coils are mounted in the rotor. A part of the inner peripheral surface of the rotor is attracted by the magnetized coil of the stator and contacts the stator, and a part of the outer peripheral surface of the rotor is the inner peripheral surface of the rotor housing chamber. And a fluid working chamber is formed outside the rotor in the rotor housing chamber, and a vane mechanism for partitioning the fluid working chamber is provided in the housing, and on both sides of the vane mechanism of the housing. A supply port and an outlet port are formed. When the power supply to the induction coil is switched to a predetermined rotation direction, the rotor rotates around the stator while maintaining the state of being sucked by the stator, and pressurizes the air sucked from the supply port in the fluid working chamber. Discharge to the exit boat. In the conception process of the present invention, the inventor of the present application came up with a fluid pump motor 200 as shown in FIG.
この流体圧ポンプノモータ 2 0 0においては、 ハウジング 2 0 1内に断面円形 のロータ収容室 2 0 2が形成され、 このロータ収容室 2 0 2にその軸心に対して 偏心した円柱体状のロータ 2 0 3が軸部材 2 0 4と一体的に回転可能に収容され 、 ロータ 2 0 3の外周面の一部がロータ収容室 2 0 2の内周面にシール可能に摺 接され、 ロータ収容室 2 0 2のうちのロータ 2 0 3の外側には、 流体作動室 2 0 5が形成され、 ハウジング 2 0 1には、 流体作動室 2 0 5を仕切るベ一ン機構 2 0 6が設けられ、 ベ一ン機構 2 0 6は、 ハウジング 2 0 1に形成した装着孔 2 0 7に可動仕切り部材 2 0 8をロータ収容室 2 0 2に対して進退自在に装着し、 可 動仕切り部材 2 0 8をスプリング 2 0 9でロータ収容室 2 0 2の方へ弾性付勢し てなり、 そのべーン機構 2 0 6の両側に供給ポート 2 1 0と出口ポ一ト 2 1 丄 と が形成されている。  In this fluid pressure pump motor 200, a rotor housing chamber 202 having a circular cross section is formed in a housing 201, and a cylindrical body eccentric with respect to its axis is formed in the rotor housing chamber 202. The rotor 203 is rotatably housed integrally with the shaft member 204, and a part of the outer peripheral surface of the rotor 203 is slidably contacted with the inner peripheral surface of the rotor housing chamber 202, and A fluid working chamber 205 is formed outside the rotor 203 of the rotor housing chamber 202, and a vane mechanism 206 that partitions the fluid working chamber 205 is formed in the housing 201. The vane mechanism 206 mounts a movable partition member 208 in a mounting hole 207 formed in the housing 201 such that the movable partition member 208 can move forward and backward with respect to the rotor accommodating chamber 202. The partition member 208 is elastically urged toward the rotor accommodating chamber 202 by a spring 209, and the supply port 210 exits on both sides of the vane mechanism 206. Port one DOO 2 1 丄 and are formed.
前記流体圧ポンプ/モータ 2 0 0を流体圧モータとして使用する場合、 前記供 給ポート 2 1 0から第 1作動室 2 0 5 aへ流体圧を供給すると、 第 1作動室 2 0 5 a内の流体圧がロータ 2 0 3に作用し、 第 2作動室 2 0 5 b内の流体が出口ポ ート 2 1 1から排出され、 ロータ 2 0 3が時計回り方向へ回転駆動される。 前記流体圧ポンプノモータ 2 0 0を流体加圧ポンプとして使用する場合、 軸部 材 2 0 4を図示外の電動モータ等で時計回り方向へ回転駆動し、 前記供給ポート 2 1 0から第 1作動室 2 0 5 aへ流体を吸入すると、 ロータ 2 0 3の回転により 第 2作動室 2 0 5 b内の流体が加圧されて、 出口ポート 2 1 1から吐出される。 前記公報に記載のものを舍めて従来の容積型の種々の流体圧ポンプノモータで は、 構造が複雑で、 製作コス卜が高価になるという問題がある。 前記図 2 4の流体圧ポンプノモータ、 或いは、 特公平 1 一 1 5 7 1 4号公報に 記載の回転型圧縮機では、 ロータの外周面とロータ収容室の内周面とが線接触的 に接触するため、 摩耗しやすく、 耐久性に欠けること、 それ故供給する流体圧や 吐出圧を高くできないこと、 等の問題がある。 When the fluid pressure pump / motor 200 is used as a fluid pressure motor, when fluid pressure is supplied from the supply port 210 to the first working chamber 205a, the first working chamber 205a The fluid pressure acts on the rotor 203, the fluid in the second working chamber 205b is discharged from the outlet port 211, and the rotor 203 is driven to rotate clockwise. When the fluid pressure pump motor 200 is used as a fluid pressure pump, the shaft member 204 is driven to rotate clockwise by an electric motor or the like (not shown), and the shaft member 204 is moved from the supply port 210 to the first port. When the fluid is sucked into the working chamber 205a, the rotation of the rotor 203 pressurizes the fluid in the second working chamber 205b and is discharged from the outlet port 211. The conventional displacement-type various fluid pressure pump motors, including those described in the above-mentioned publications, have a problem that the structure is complicated and the production cost is high. In the fluid pressure pump motor shown in FIG. 24 or the rotary compressor described in Japanese Patent Publication No. 1115714, the outer peripheral surface of the rotor and the inner peripheral surface of the rotor chamber are in line contact. Because of this, there are problems such as easy wear and lack of durability, and the inability to increase the supplied fluid pressure and discharge pressure.
更に、 ロータがロータ収容室の蚰心に対して偏心しているため、 ロータが受圧 する受圧面積が最大になる回転角範囲が狭く、 最大トルクや最大吐出量を出力す る回転角範囲が狭くなる、 つまり、 流体圧ポンプ Zモータ力く大型化するという問 題がある。  Furthermore, since the rotor is eccentric with respect to the center of the rotor chamber, the rotation angle range where the pressure receiving area of the rotor receives the maximum is narrow, and the rotation angle range where the maximum torque and the maximum discharge amount are output is narrow. In other words, there is a problem that the size of the fluid pressure pump Z motor increases.
本発明の目的は、 ロータを有する流体圧ポンプ モータにおいて、 構造を簡単 化すること、 回転型ロータの摩耗を少なくして耐久性を高めること、 供給流体圧 や吐出流体圧の高圧化を可能とすること、 最大トルクや最大吐出量を出力する回 転角度範囲を大きくして大容量化つまり小型化を図ることである。 発明の開示  An object of the present invention is to make it possible to simplify the structure of a fluid pump motor having a rotor, to reduce the wear of a rotary rotor to increase its durability, and to increase the supply fluid pressure and discharge fluid pressure. In other words, it is necessary to increase the rotation angle range for outputting the maximum torque and the maximum discharge amount to increase the capacity, that is, to reduce the size. Disclosure of the invention
本発明の流体圧ポンプ/モータは、 ハウジングと、 そのハウジングに形成され た円形断面のロータ収容室と、 このロータ収容室にその蚰心回りに回転自在に収 容されたロータと、 ロータ収容室のうちのロータより外側の部分に形成された流 体作動室と、 ロータに連結されてハウジング外へ延びる軸部材とを備えた流体加 圧ポンプ又は流体圧モータとしての流体圧ポンプ Zモータにおいて、  A fluid pressure pump / motor according to the present invention includes: a housing; a rotor housing chamber having a circular cross-section formed in the housing; a rotor housed in the rotor housing chamber so as to be rotatable around its shaft; A fluid working chamber formed in a portion outside of the rotor, and a shaft member connected to the rotor and extending out of the housing.
前記ロータに形成され、 流体作動室を仕切るようにロータ収容室の内周面まで 突出する受圧突部と、  A pressure receiving projection formed on the rotor and projecting to an inner peripheral surface of the rotor accommodating chamber so as to partition the fluid working chamber;
前記受圧突部の外周端部に形成され、 ロータ収容孔の内周面に面接触状にかつ シール可能に摺接するシール部と、  A seal portion formed at an outer peripheral end portion of the pressure receiving protrusion portion and slidably contacting an inner peripheral surface of the rotor receiving hole in a surface contact manner and in a sealable manner;
前記ハゥジングに形成された装着孔と、 この装着孔にロータ収容室に対して進 退自在に装着され流休作動室を仕切るように内端部がロータの外周面にシール可 能に摺接する可動仕切部材と、 この可動仕切部材をロータの方へ付勢する付勢手 段とを備えたベーン機構と、 A mounting hole formed in the housing; and a movable hole which is mounted to the mounting hole so as to be able to move forward and backward with respect to the rotor accommodating chamber, and whose inner end is slidably contacted with the outer peripheral surface of the rotor so as to partition the floating operation chamber. A partition member, and a biasing hand for biasing the movable partition member toward the rotor A vane mechanism having a step and
前記ハウジングのうちの、 ベ一ン機構の可動仕切部材のロータ回転方向リーデ ィング側付近と トレーリング側付近とに夫々形成された供給ポートおよび出口ポ 一トとを備えたものである。  The housing includes a supply port and an outlet port formed near the leading side and the trailing side of the movable partition member of the vane mechanism in the rotor rotation direction, respectively.
本発明の流体圧ポンプ モータにおいては、 ロータ収容室のうちのロータの外 周側には、 流体作動室が形成され、 この流体作動室は、 ロータの受圧突部とベー ン機構の可動仕切部材とで夫々仕切られ、 供給ポートに通じる供給側流体作動室 部分と出口ポートに通じる出口側流体作動室部分とに分けられている。  In the fluid pressure pump motor according to the present invention, a fluid working chamber is formed on the outer peripheral side of the rotor in the rotor housing chamber, and the fluid working chamber includes a pressure receiving projection of the rotor and a movable partition member of the vane mechanism. And is divided into a supply-side fluid working chamber portion communicating with the supply port and an outlet-side fluid working chamber portion communicating with the outlet port.
流体圧モータとして使用する場合、 供給ポートから供給側流体作動室部分に流 体圧を供給すると、 ロータの受圧突部の一方側には、 供給側流体作動室部分の流 体圧が作用し、 また、 ロータの受圧突部の他方側には、 出口側流体作動室部分の 排出圧 (油圧モータの場合はドレン圧、 またエアモータの場合は大気圧) が作用 するため、 ロータは流体圧と排出圧の差圧で回転駆動される。 そして、 ロータの 受圧突部がベ一ン機構に差し掛かると、可動仕切部材が後退してロータがべ一ン 機構を通過し、 ロータの受圧突部には操り返し供給側流体作動室部分の流体圧が 作用するので、 ロータは回転し続けることになる。  When used as a fluid pressure motor, when fluid pressure is supplied from the supply port to the supply-side fluid working chamber, the fluid pressure of the supply-side fluid working chamber acts on one side of the pressure receiving projection of the rotor. In addition, the discharge pressure (drain pressure in the case of a hydraulic motor, and atmospheric pressure in the case of an air motor) acts on the other side of the pressure receiving projection of the rotor. It is driven to rotate by the pressure difference. When the pressure receiving protrusion of the rotor approaches the vane mechanism, the movable partition member retreats and the rotor passes through the vane mechanism, and the pressure receiving protrusion of the rotor returns to the supply-side fluid working chamber portion of the supply side. Due to the fluid pressure acting, the rotor will continue to rotate.
流体加圧ポンプとして使用する場合、 蚰部材を外部の電動モータ等の回転駆動 手段で回転駆動すると、 回転するロータによって、 供給ポートから供給側流体怍 動室部分へ流体が吸入され、 ロータがベーン機構を通過する毎に、 供給側流体作 動室部分が出口側流体作動室部分に切り換えられ、 その出口側流体作動室部分の 流体がロータで加圧されて、 出口ポートから吐出されることになる。 こうして、 供給側流体作動室部分への流体の吸入と出口側流体作動室部分からの吐出とが並 行してなされることになる。  When used as a fluid pressurizing pump, when the shaft member is rotationally driven by a rotary driving means such as an external electric motor, fluid is sucked from the supply port into the supply-side fluid chamber by the rotating rotor, and the rotor is turned into a vane. Each time the fluid passes through the mechanism, the supply fluid working chamber is switched to the outlet fluid working chamber, and the fluid in the outlet fluid working chamber is pressurized by the rotor and discharged from the outlet port. Become. Thus, the suction of the fluid into the supply-side fluid working chamber and the discharge from the outlet-side fluid working chamber are performed in parallel.
この簡単な構造の容積型の流体圧ポンプ /モータにおいては、 前記ロータに、 流体作動室を仕切るようにロータ収容室の内周面まで突出する少なくとも 1つの 受圧突部を形成したので、 ロータの外周部の比較的狭い範囲の受圧突部に形成で き、 最大トルクまたは最大吐出量となるロータ回転角度範囲を大きくできるから 、 流体圧ポンプノモータの大容量化つまり小型化を図ることができる。 In this simple-structure positive displacement hydraulic pump / motor, the rotor has at least one pressure receiving projection projecting to the inner peripheral surface of the rotor housing chamber so as to partition the fluid working chamber. Can be formed on a relatively narrow range of pressure receiving protrusions on the outer periphery In this case, since the rotor rotation angle range at which the maximum torque or the maximum discharge amount is obtained can be increased, the capacity of the hydraulic pump motor can be increased, that is, the size can be reduced.
更に、 前記受圧突部の外周端部に、 ロータ収容室の内周面に面接触状にかつシ ール可能に摺接するシール部を形成したので、 シール部の耐摩耗性を高めてその 耐久性を向上させ、 同時にシール部のシール性を高めて流体圧ポンプノモータの 効率を高くし、 且つ供給流体圧や吐出流体圧を高めることができる。 図面の簡単な説明  Further, since a seal portion is formed at the outer peripheral end of the pressure receiving protrusion so as to be in sliding contact with the inner peripheral surface of the rotor accommodating chamber so as to be able to seal, the wear resistance of the seal portion is enhanced and its durability is improved. The efficiency of the fluid pressure pump motor can be increased by improving the sealing performance of the seal portion at the same time, and the supply fluid pressure and the discharge fluid pressure can be increased. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の実施例に係る流体圧ポンプノモータの横断面図であり、 図 2は、 図 1の流体圧ポンプ モータの側面図であり、 FIG. 1 is a cross-sectional view of a hydraulic pump motor according to an embodiment of the present invention. FIG. 2 is a side view of the hydraulic pump motor of FIG.
図 3は、 図 1の流体圧ポンプ Zモータの縦断面図 (図 1の 3— 3線断面図) であ り、 Fig. 3 is a vertical cross-sectional view (cross-sectional view taken along the line 3-3 in Fig. 1) of the hydraulic pump Z motor in Fig. 1.
図 4は、 図 1の流体圧ポンプ/モータの流体圧モータ用の油圧回路図であり、 図 5は、 図 1の流体圧ボンプノモータの流体加圧ポンプ用油圧回路図であり、 図 6は、 第 1別実施例の流体圧ポンプの横断面図であり、 FIG. 4 is a hydraulic circuit diagram for the hydraulic motor of the hydraulic pump / motor of FIG. 1, FIG. 5 is a hydraulic circuit diagram of the hydraulic pump of the hydraulic pump motor of FIG. 1, and FIG. It is a cross-sectional view of the fluid pressure pump of the first alternative embodiment,
図 7と、 図 6の流体圧ポンプ/モータの縦断面図 (図 6の 7— 7線断面図) であ 、 FIG. 7 is a longitudinal sectional view (sectional view taken along line 7-7 in FIG. 6) of the fluid pressure pump / motor shown in FIG.
図 8は、 第 1変形例の流体圧ポンプノモータの断面図であり、 FIG. 8 is a cross-sectional view of a fluid pressure pump motor of a first modified example.
図 9は、 図 8の流体圧ポンプノモータの要部断面図であり、 FIG. 9 is a sectional view of a main part of the fluid pressure pump motor shown in FIG.
図 1 0は、 図 8の流体圧ポンプ/モータの要部断面図であり、 FIG. 10 is a sectional view of a main part of the fluid pressure pump / motor of FIG. 8,
図 1 1は、 第 2変形例の流体圧ポンプ Zモータの断面図であり、 FIG. 11 is a cross-sectional view of a fluid pressure pump Z motor according to a second modification,
図 1 2は、 図 1 1の流体圧ポンプ/モータの流体圧モータ用油圧回路図であり、 図 1 3は、 図 1 1の流体圧ポンプ/モータの流体圧ポンプ用油圧回路図であり、 図 1 4は、 第 3変形例の流体圧ポンプノモータの断面図であり、 FIG. 12 is a hydraulic circuit diagram of the hydraulic pump / motor of the hydraulic pump / motor of FIG. 11; FIG. 13 is a hydraulic circuit diagram of the hydraulic pump / motor of the hydraulic pump / motor of FIG. 11; FIG. 14 is a cross-sectional view of a fluid pressure pump motor of a third modified example,
図 1 5は、.第 2別実施例の流体圧ポンプ Zモータュニッ トの横断面図であり、 図 1 6は、 図 1 5のュニットの縦断面図 (図 1 5の 1 6— 1 6線断面図) であり 図 1 7は、 図 1 5のュニッ トの流体圧モータ用油圧回路図であり、 FIG. 15 is a cross-sectional view of the hydraulic pump Z motor unit of the second alternative embodiment, and FIG. 16 is a vertical cross-sectional view of the unit of FIG. 15 (line 16—16 in FIG. 15). Cross section) FIG. 17 is a hydraulic circuit diagram for the hydraulic motor of the unit of FIG. 15;
図 1 8は、 図 1 5のュニッ トの流体圧モータ用油圧回路図であり、 FIG. 18 is a hydraulic circuit diagram for the hydraulic motor of the unit of FIG. 15;
図 1 9は、 図 1 5のュニッ トの変形例の図 1 6相当部分図であり、 FIG. 19 is a partial view of a modification of the unit of FIG. 15 corresponding to FIG.
図 2 0は、 図 1 5のュニッ トの流体圧ポンプ用油圧回路図であり、 FIG. 20 is a hydraulic circuit diagram for the hydraulic pump of the unit of FIG. 15;
図 2 1は、 図 1 5のュニッ トの流体圧ポンプ用油圧回路図であり、 FIG. 21 is a hydraulic circuit diagram for the hydraulic pump of the unit of FIG. 15;
図 2 2は、 第 3別実施例の流体圧ポンプ Zモータュニッ トの油圧回路図であり、 図 2 3は、 第 4別実施例の流体圧ボンプノモータュニッ トの油圧回路図であり、 図 2 4は、 先行技術に係る流体圧ポンプノモータの縦断面図である。 発明を実施するための最良の形態 FIG. 22 is a hydraulic circuit diagram of a hydraulic pump Z motor unit of a third alternative embodiment, and FIG. 23 is a hydraulic circuit diagram of a hydraulic pump pump motor unit of a fourth alternative embodiment. FIG. 24 is a longitudinal sectional view of a fluid pressure pump motor according to the prior art. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施例について図面に基いて説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
最初に第 1番目の実施例について説明する。  First, the first embodiment will be described.
図 1〜図 3に示すように、 流体圧モータ Mは、 ハウジング 1と、 σ—タ 2と、 出力蚰 3と、 ベ一ン機構 4等で構成されている。  As shown in FIGS. 1 to 3, the fluid pressure motor M includes a housing 1, a σ-motor 2, an output shaft 3, a vane mechanism 4, and the like.
前記ハウジング 1は、 内部に円筒状のロータ収容孔 5 aを有するハウジング本 体 1 0と、 ハウジング本体 1 0の右端側を塞ぐ第 1端板 1 1と、 ハウジング本体 1 0の左端側を塞ぐ第 2端板 1 2等で構成され、 ハウジング 1内にはロータ収容 孔 5 aの両端部を第 1及び第 2端板 1 1 , 1 2で塞いだロータ収容室 5力形成さ れている。 前記ハウジング 1及びロータ 2は、 鐧、 铸鉄、 ステンレス、 アルミ二 ゥム、 アルミ合金、 合成樹脂、 F R P (繊維強化合成樹脂) 又は強度の高いセラ ミック等の材料で構成される力 その他の材料で構成することも出来る。  The housing 1 includes a housing main body 10 having a cylindrical rotor housing hole 5a therein, a first end plate 11 for closing a right end side of the housing main body 10, and a left end side of the housing main body 10 for closing the left end side. The housing 1 is formed with a second end plate 12 and the like, and a rotor housing chamber 5 is formed in the housing 1 in which both ends of the rotor housing hole 5a are closed by the first and second end plates 11 and 12. . The housing 1 and the rotor 2 are made of a material such as iron, steel, stainless steel, aluminum, aluminum alloy, synthetic resin, FRP (fiber reinforced synthetic resin), or high-strength ceramic. Can also be configured.
前記ロータ 2は、 円柱体状のロータ本体 2 0と、 ロータ本体 2 0の外周外に突 出するようにロータ本体 2 0に一体形成された受圧突部 2 1を有し、 受圧突部 2 1は、 ロータ収容室 5の軸心 Xと平行で且つロータ本体 2 0と同じ長さに形成さ れ、 受圧突部 2 1の先端部には、 ロータ収容室 5の内周面に面接触的にかつシー ル可能に摺接するシール部 2 2が形成され、 シール部 2 2の両側には、 ロータ本 体 2 0の外周面から徐々にシール部 2 2に向かって大径化する緩湾曲状の湾曲面 2 3 , 2 3がシール部 2 2に対して対称に形成されている。 前記シール部 2 2は 、 周方向に所定の幅 (例えば、 5〜2 O m m位の幅) に形成されているため、 シ ール性に優れる。 前記ロータ 2の右端面 2 4は第 1端板 1 1に、 また口一タ 2の 左端面 2 5は第 2端板 1 2に、 微小の隙間をもって又は隙間を殆ど持たずに、 摺 接するように形成してある。 The rotor 2 has a cylindrical rotor body 20 and a pressure receiving projection 21 integrally formed on the rotor body 20 so as to protrude outside the outer periphery of the rotor body 20. 1 is formed in parallel with the axis X of the rotor housing 5 and the same length as the rotor main body 20, and the tip of the pressure receiving projection 21 comes into surface contact with the inner peripheral surface of the rotor housing 5. And sea A seal portion 22 is formed so as to be slidably contactable with each other. On both sides of the seal portion 22, a gentle curved surface gradually increasing in diameter from the outer peripheral surface of the rotor body 20 toward the seal portion 22. 23 and 23 are formed symmetrically with respect to the seal portion 22. Since the seal portion 22 is formed to have a predetermined width (for example, a width of about 5 to 20 mm) in the circumferential direction, it has excellent sealing properties. The right end surface 24 of the rotor 2 is in sliding contact with the first end plate 11, and the left end surface 25 of the mouth 2 is in sliding contact with the second end plate 12 with a small gap or little gap. It is formed as follows.
前記出力軸 3は、 ロータ 2の回転をハウジング 1外へ取り出す為のもので、 こ の出力軸 3は、 ロータ収容室 5の軸心 Xと同心状に配設され、 出力軸 3は、 。一 タ 2の中心部の軸孔と、 第 1及び第 2端板 1 1 , 1 2の蚰孔とを揷通してハウジ ング 1外へ延び、 出力轴 3は、 キーを介して、 ロータ 2に相対回転不能に固定さ れ、 ロータ 2を支持する出力軸 3は、 軸受 3 2 , 3 3を介して第 1及び第 2端板 1 1 , 1 2に回転自在に両端支持されている。  The output shaft 3 is for taking out the rotation of the rotor 2 to the outside of the housing 1. The output shaft 3 is disposed concentrically with the axis X of the rotor housing chamber 5. It extends outside the housing 1 through the shaft hole in the center of the stator 2 and the holes in the first and second end plates 11 and 12, and the output shaft 3 is connected to the rotor 2 via a key. The output shaft 3 supporting the rotor 2 is fixed to the first and second end plates 11 and 12 via bearings 32 and 33 so as to be rotatable at both ends.
尚、 符号 1 4 , 1 5は第 1及び第 2端板 1 1 , 1 2をハウジング本体】 0に固 定する為のボルト、 符号 1 3は押え板 (これは省略可能) 、 符号 1 6は押え板 1 3をハウジング本体 1 0に固定するボルトである。  Reference numerals 14 and 15 denote bolts for fixing the first and second end plates 11 and 12 to the housing body 0, reference numeral 13 denotes a holding plate (this can be omitted), and reference numeral 16 Is a bolt for fixing the holding plate 13 to the housing body 10.
前記べーン機構 4について説明すると、 ハウジング本体 1 0の一側部において 、 ハウジング本体 1 0には、 ロータ収容室 5の軸心 Xと平行で水平なスリッ ト状 の装着孔 4 0が形成され、 その装着孔 4 0には、 可動仕切部材 4 1が摺動自在に 装着され、 可動仕切部材 4 1は、 その可動仕切部材 4 1とバネ受け部材 4 2間に 装着された 3つの圧縮コイルスプリ ング 4 3によりロータ収容室 5の方へ弾性付 勢され、 可動仕切部材 4 1の先端のシール部 4 1 sがロータ 2の外周面に常時シ ール可能に摺接するように構成してある。 前記シール部 4 1 sは、 少なくとも、 周方向に約 2〜 3 mmの幅を有し、 ロータ 2の外周面に面接触的に摺接して、 流 体の通過を阻止している。  To explain the vane mechanism 4, a slit-shaped mounting hole 40 parallel to the axis X of the rotor housing chamber 5 is formed in the housing main body 10 at one side of the housing main body 10. A movable partition member 41 is slidably mounted in the mounting hole 40, and the movable partition member 41 is provided with three compression members mounted between the movable partition member 41 and the spring receiving member 42. The coil spring 43 elastically urges toward the rotor accommodating chamber 5, so that the seal portion 41s at the tip of the movable partition member 41 is always in sliding contact with the outer peripheral surface of the rotor 2 so as to be able to seal. is there. The seal part 41 s has a width of at least about 2 to 3 mm in the circumferential direction, and is in sliding contact with the outer peripheral surface of the rotor 2 in a face-to-face manner to prevent passage of the fluid.
前記可動仕切部材 4 1は、 低摩擦で耐摩耗性に優れる金属材料 (例えば、 铸鉄 や真鍮や銅鉛合金やアルミ合金等) で構成されるが、 強度 ·剛性の高い合成樹脂 材料や F R P (織維強化合成樹脂) やセラミック等の材料で構成してもよい。 前 記可動仕切部材 4 1は、 装着孔 4 0の内面に微小の隙間をもって略シール可能に 摺接している。 但し、 必要に応じて、 装着孔 4 0の内面を硬化処理 (窒化処理、 浸炭処理、 等) したり、 装着孔 4 0の内面と可動仕切部材 4 1間の微小隙間にォ ィルを供給する潤滑手段を設ければ、 シール性も向上する。 The movable partition member 41 is made of a metal material having low friction and excellent wear resistance (for example, Or brass, copper-lead alloy, aluminum alloy, etc.), but may be made of a synthetic resin material with high strength and rigidity, or a material such as FRP (textile reinforced synthetic resin) or ceramic. The movable partition member 41 slides on the inner surface of the mounting hole 40 so as to be substantially sealable with a small gap. However, if necessary, the inner surface of the mounting hole 40 is hardened (nitriding, carburizing, etc.) or a small gap between the inner surface of the mounting hole 40 and the movable partition member 41 is supplied. Providing suitable lubrication means also improves the sealing performance.
前記バネ受け部材 4 2は、 例えば、 6本のボルト 4 4により、 ハウジング本体 1 0にガスケッ ト 4 6 (これは、 省略可能である) を介在させた状態で固定され ている。 尚、 可動仕切部材 4 1とバネ受け部材 4 2間のスプリング収容室 4 7に 所定圧の加圧エアを供給し、 この加圧エアと 3つの圧縮コイルスプリ ング 4 3で 可動仕切部材 4 1を弾性付勢するように構成してもよいし、 また、 加圧エアのみ で可動仕切部材 4 1を弾性付勢するように構成してもよい。  The spring receiving member 42 is fixed to the housing main body 10 with a gasket 46 (which can be omitted) by, for example, six bolts 44. Pressurized air of a predetermined pressure is supplied to the spring accommodating chamber 47 between the movable partition member 41 and the spring receiving member 42, and the movable partition member 41 is compressed by the compressed air and three compression coil springs 43. The movable partition member 41 may be configured to be elastically urged, or may be configured to elastically urge the movable partition member 41 only by pressurized air.
前記ハウジング本体 1 0には、 その右端面に開口する第 1通路 6が装着孔 4 0 の上側に形成され、 また、 ハウジング本体 1 0には、 その右端面に開口する第 2 通路 7が装着孔 4 0の下側に形成され、 第 1通路 6から分岐した 1つ又は複数の 第 1ポート 6 aが可動仕切部材 4 1の上側近傍位置でロータ収容室 5に開口され 、 第 2通路 7から分岐した 1つ又は複数の第 2ボート 7 aが可動仕切部材 4 1の 下側近傍位置でロータ収容室 5に開口されている。  The housing main body 10 has a first passage 6 opened on the right end surface thereof formed above the mounting hole 40.The housing main body 10 has a second passage 7 opened on the right end surface thereof. One or a plurality of first ports 6a formed below the hole 40 and branched from the first passage 6 are opened to the rotor housing chamber 5 at a position near the upper side of the movable partition member 41, and the second passage 7 One or a plurality of second boats 7a branched from the opening are opened to the rotor housing chamber 5 near the lower side of the movable partition member 41.
前記流体圧モータ Mの作用について説明する。  The operation of the fluid pressure motor M will be described.
前記ロータ収容室 5内において、 ロータ 2の外側に形成された作動室 5 0は、 可動仕切部材 4 1によって、 第 1作動室 5 1と第 2作動室 5 2とに区画され、 口 ータ 2が回転するとき、 可動仕切部材 4 1は、 その先端のシール部 4 1 sをロー タ 2の外周面に摺接させつつ進退移動するため、 ロータ 2は回転可能である。 前記第 1通路 6に油圧又は加圧ェァを供給し、 第 2通路 7を油タンク又は大気 に解放すると、 その流体圧は第 1ポート 6 aから第 1作動室 5 1に供給され、 第 1作動室 5 1内の流体圧がロータ 2の受圧突部 2 1に作用する。 第 2作動室 5 2 内の流体の圧力はドレン圧又は大気圧なので、 ロータ 2には、 第 1作動室 5 1 の 流体圧と第 2作動室 5 2のドレン圧又は大気圧との圧力差と、 受圧突部 2 1の矩 形状の断面積と、 ロータ 2の軸心 X (ロータ収容室 5の蚰心 X ) から受圧突部 2 1の受圧中心までの距離との積に等しいトルクが作用し、 ロータ 2が矢印 A方向 へ回転する。 但し、 可動仕切部材 4 1が受圧突部 2 1のロータ回転方向トレーリ ング側の湾曲面 2 3に接触しているときには、 受圧面積が小さいためトルクが幾 分小さくなる。 In the rotor housing chamber 5, a working chamber 50 formed outside the rotor 2 is divided into a first working chamber 51 and a second working chamber 52 by a movable partition member 41, and When the rotor 2 rotates, the movable partition member 41 advances and retreats while sliding the seal portion 41 s at the tip of the movable partition member 41 against the outer peripheral surface of the rotor 2, so that the rotor 2 is rotatable. When a hydraulic or pressurized air is supplied to the first passage 6 and the second passage 7 is released to an oil tank or the atmosphere, the fluid pressure is supplied from the first port 6a to the first working chamber 51, 1 Fluid pressure in the working chamber 51 acts on the pressure receiving projection 21 of the rotor 2. Second working chamber 5 2 Since the pressure of the fluid inside is the drain pressure or the atmospheric pressure, the rotor 2 has a pressure difference between the fluid pressure of the first working chamber 51 and the drain pressure or the atmospheric pressure of the second working chamber 52, and the pressure receiving protrusion 2 The torque equal to the product of the cross-sectional area of the rectangular shape of 1 and the distance from the axis X of the rotor 2 (the center X of the rotor chamber 5) to the pressure receiving center of the pressure receiving protrusion 21 acts on the rotor 2. Rotate in the direction of arrow A. However, when the movable partition member 41 is in contact with the curved surface 23 on the trailing side in the rotor rotation direction of the pressure receiving projection 21, the torque is somewhat reduced because the pressure receiving area is small.
前記流体圧の供給により第 1作動室 5 1が拡大し、 また、 流体の排出により第 2作動室 5 2が縮小しつつ、 ロータ 2が回転し、 そのシール部 2 2が可動仕切部 材 4 1に接近し、 第 2ポート 7 aを通過すると、 第 1作動室 5 1が第 2ポート Ί aに連通されるが、 ロータ 2は慣性回転を続け、 可動仕切部材 4 1の退入を介し て、 ロータ 2のシール部 2 2が可動仕切部材 4 1と第 1ポ一ト 6 aを通過すると 、 第 1作動室 5 1の流体圧がロータ 2の受圧突部 2 1に作用し、 前記と同様に繰 り返して、 ロータ 2が連続的に滑らかに回転する。  The supply of the fluid pressure causes the first working chamber 51 to expand, and the discharge of the fluid causes the second working chamber 52 to shrink while the rotor 2 rotates, and the seal portion 22 to move the movable partition member 4. When approaching 1 and passing through the second port 7a, the first working chamber 51 communicates with the second port Ίa, but the rotor 2 continues to rotate by inertia and the movable partition member 4 When the seal portion 22 of the rotor 2 passes through the movable partition member 41 and the first port 6a, the fluid pressure of the first working chamber 51 acts on the pressure receiving projection 21 of the rotor 2, and By repeating in the same manner as described above, the rotor 2 rotates continuously and smoothly.
これに対して、 第 2通路 7に流体圧を供給し、 第 1通路 6を油タンク又は大気 に解放すると、 前記とは反対に、 第 1作動室 5 1がドレン圧又は大気圧で、 第 2 作動室 5 2に流体圧が供給されるため、 ロータ 2は、 矢印 B方向へ回転する。 つ まり、 可動仕切部材 4 1に対して、 ロータ 2の回転方向リーディ ング側の第 1ポ 一ト 6 a又は第 2ポ一ト 7 aが流体圧を供給する供給ポートとなり、 ロータ 2の 回転方向トレーリング側の第 2ポート Ί a又は第 1ポート 6 aが流体を排出する 出□ポートとなる。  On the other hand, when the fluid pressure is supplied to the second passage 7 and the first passage 6 is released to the oil tank or the atmosphere, the first working chamber 51 has the drain pressure or the atmospheric pressure, 2 Since fluid pressure is supplied to the working chamber 52, the rotor 2 rotates in the direction of arrow B. In other words, the first port 6a or the second port 7a on the leading side in the rotation direction of the rotor 2 with respect to the movable partition member 41 becomes a supply port for supplying fluid pressure, and the rotation of the rotor 2 The second port Ίa or the first port 6a on the directional trailing side is the outlet port for discharging fluid.
前記受圧突部 2 1のシール部 2 2がロータ収容室 5の内周面に面接触状に摺接 しているため、 シール性に優れ、 かつシール部 2 2が摩耗しにく く耐久性が向上 する。  Since the seal portion 22 of the pressure receiving projection 21 is in sliding contact with the inner peripheral surface of the rotor housing chamber 5 in a surface-contact manner, the seal portion 22 has excellent sealing properties, and the seal portion 22 is hardly worn and has durability. Is improved.
前記受圧突部 2 1は、 ロータ 2の外周部の約 1 / 4部分にわたる狭い幅に形成 してあるため、 ロータ 2のシール部 2 2が供給ポート ( 6 a , 7 a ) を通過後-. 早期に受圧面積が最大になるから、 出力トルクが早期に最大になる。 Since the pressure receiving projection 21 is formed to have a narrow width covering about 1/4 of the outer peripheral portion of the rotor 2, the sealing portion 22 of the rotor 2 passes through the supply ports (6a, 7a). . Since the pressure receiving area is maximized early, the output torque is maximized early.
但し、 受圧突部 2 1の両側の湾曲面 2 3の曲率を変えて、 受圧突部 2 1を、 。 ータ 2の外周部の約 1 / 3部分又は約 1 / 2の範囲に形成することもでき、 この 場合、 湾曲面 2 3の軸心からの半径の増加率力、'小さくなる分、 可動仕切部材 4 1 からロータ 2に作用する抵抗が小さくなり、 可動仕切部材 4 1の進退応答性が向 上する。  However, by changing the curvature of the curved surfaces 23 on both sides of the pressure receiving projection 21, the pressure receiving projection 21 is formed as follows. It can be formed in about 1/3 of the outer circumference of the motor 2 or in a range of about 1 / 2.In this case, the rate of increase of the radius from the axis of the curved surface 23 is smaller, and The resistance acting on the rotor 2 from the partition member 41 is reduced, and the forward / backward responsiveness of the movable partition member 41 is improved.
尚、 可動仕切部材 4 1をロータ収容室 5の方へ弾性付勢する付勢力は、 可動仕 切部材 4 1に作用する流体圧により可動仕切部材 4 1が外方へ押される力以上に 大きく設定する必要があり、 また、 可動仕切部材 4 1は、 それに作用する流体圧 で変形しないような強度 ·剛性を備えている必要がある。  The urging force for elastically urging the movable partition member 41 toward the rotor storage chamber 5 is greater than the force of the movable partition member 41 being pushed outward by the fluid pressure acting on the movable partition member 41. The movable partition member 41 needs to have strength and rigidity so as not to be deformed by a fluid pressure acting on the movable partition member 41.
前記流体圧モータ Mが油圧モータである場合の油圧回路は、 図 4に示す通りで 、 油タンク 5 3、 油圧ポンプ 5 4、 電磁方向切換弁 5 5により、 第 1ポート 6 a に油圧を供給すると、 ロータ 2が時計回りに回転し、 これと反対に、 第 2ポート 7 aに油圧を供給すると、 ロータ 2が反時計回りに回転する。  When the hydraulic motor M is a hydraulic motor, the hydraulic circuit is as shown in FIG. 4, and the hydraulic tank 53, the hydraulic pump 54, and the electromagnetic directional valve 55 supply the hydraulic pressure to the first port 6a. Then, the rotor 2 rotates clockwise. Conversely, when hydraulic pressure is supplied to the second port 7a, the rotor 2 rotates counterclockwise.
ここで、 前記流体圧モータ Mを、 流体加圧ポンプ Pとして使用する場合、 前記 出力轴 3に、 それを回転駆動する為の電動モータやエアモータが連結され、 出力 軸 3が駆動轴 (3 ) として構成され、 その駆動軸 ( 3 ) を図 3の矢印 A方向へ回 転駆動する場合には、 第 1通路 6を介して第 1ポート 6 aから加圧前の流体が吸 入され、 第 2ポート 7 aから吐出される流体圧は、 第 2通路 7より外部へ供給さ れることになる。 即ち、 第 1作動室 5 1に吸入された流体は、 ロータ 2の回転を 介して、 第 2作動室 5 2へ移動し、 第 2作動室 5 2内の流体は、 ロータ 2の回転 により加圧されて第 2ポート 7 aへ吐出される。  Here, when the fluid pressure motor M is used as the fluid pressure pump P, an electric motor or an air motor for rotating the output 轴 3 is connected to the output 轴 3, and the output shaft 3 is driven 轴 (3) When the drive shaft (3) is driven to rotate in the direction of arrow A in FIG. 3, the fluid before pressurization is sucked from the first port 6a through the first passage 6, and The fluid pressure discharged from the 2 port 7a is supplied to the outside from the second passage 7. That is, the fluid sucked into the first working chamber 51 moves to the second working chamber 52 via the rotation of the rotor 2, and the fluid in the second working chamber 52 is added by the rotation of the rotor 2. Pressurized and discharged to the second port 7a.
この流体加圧ポンプ Pが油圧ポンプである場合の油圧回路は、 図 5に示す通り であり、 電動モータ 5 6で駆動蚰 (3 ) が回転駆動され、 油タンク 5 7の油が第 1通路 6を経て、 第 1ポート 6 aへ吸入され、 加圧流体は第 2ポート Ί aへ吐出 され、 第 2通路 7から外部へ供給される。 次に、 前記実施例を部分的に修正した実施例について、 図 6〜図 7に基いて簡 単に説明する。 The hydraulic circuit when the fluid pressurizing pump P is a hydraulic pump is as shown in FIG. 5, in which the electric motor 56 drives the drive shaft (3) to rotate, and the oil in the oil tank 57 is supplied to the first passage. After passing through 6, the fluid is sucked into the first port 6a, and the pressurized fluid is discharged to the second port Ίa and supplied to the outside from the second passage 7. Next, an embodiment in which the above-described embodiment is partially modified will be briefly described with reference to FIGS.
この流体圧モータ M Aにおいては、 ハウジング 1 Aが、 円筒状の部材からなる ハウジング本体 6 0と、 第 1端板 6 1と、 第 2端板 6 2と、 ハウジング本体 6 0 の側部に溶接にて固定されたブロック部材 6 3等で構成されている。  In this fluid pressure motor MA, the housing 1A is welded to the housing main body 60 made of a cylindrical member, the first end plate 61, the second end plate 62, and the side of the housing main body 60. It is composed of a block member 63 and the like fixed at.
ハゥジング 1 A内には、 前記ロータ収容室 5と同様の口ータ収容室 5 Aが形成 され、 このロータ収容室 5 Aには、 ロータ 2 Aが収容されている。  In the housing 1A, a port storage chamber 5A similar to the rotor storage chamber 5 is formed, and a rotor 2A is stored in the rotor storage chamber 5A.
このロータ 2 Aは、 ロータ 2と同様のもので、 ロータ本体 6 4とそれに一体形 成された受圧突部 6 5とから構成され、 受圧突部 6 5の先端部にはシール部 6 6 が形成され、 シール部 6 6の両側には湾曲面 6 7 , 6 7が形成されている。 このロータ 2 Aの左右両端面には、 環状のシール溝 7 8力く夫々形成され、 これ らのシール溝 7 8に環状のシール部材 7 9が装着されている。 尚、 符号 6 8 , 6 9は、 ハウジング本体 6 0を挟んで第 1端板 6 1と第 2端板 6 2とを連結するボ ルトとナッ ト、 符号 3 2 Aは軸受けを示す。  The rotor 2A is the same as the rotor 2 and includes a rotor body 64 and a pressure receiving protrusion 65 integrally formed therewith. A sealing portion 66 is provided at the tip of the pressure receiving protrusion 65. Curved surfaces 67, 67 are formed on both sides of the seal portion 66. An annular seal groove 78 is formed on each of the left and right end surfaces of the rotor 2A, and an annular seal member 79 is mounted in these seal grooves 78. Reference numerals 68 and 69 denote bolts and nuts connecting the first end plate 61 and the second end plate 62 with the housing body 60 interposed therebetween, and reference numeral 32A denotes a bearing.
出力軸 3 Aは、 前記出力軸 3と同様のもので、 第 1端板 6 1とロータ 2 Aと第 2端板 6 2とを揷通してハウジング 1 A外へ延び、 ロータ 2 Aに相対回転不能に 固定されている。  The output shaft 3A is similar to the output shaft 3 and extends outside the housing 1A through the first end plate 61, the rotor 2A, and the second end plate 62, and is opposed to the rotor 2A. It is fixed so that it cannot rotate.
ベーン機構 4 Aについて説明すると、 ハウジング本体 6 0とブロック部材 6 3 とに装着孔 7 0が形成され、 この装着孔 7 0に、 第 1可動仕切部材 7 2と第 2可 動仕切部材 7 3とからなる可動仕切部材 7 1力く摺動自在に装着され、 プロック部 材 6 3の外側面には、 バネ受け部材 7 4が複数のボルト 7 5で固定され、 第 1可 動仕切部材 7 2は、 3本の圧縮コイルスプリング 7 6でロータ収容室 5 Aの方へ 付勢され、 第 2可動仕切部材 7 3は、 3本の圧縮コイルスプリング 7 7でロータ 収容室 5 Aの方へ付勢されている。 尚、 符号 7 3 aは、 スプリング 7 6の力を第 1可動仕切部材 7 2に付加する為に第 2可動仕切部材 7 3に形成した切り欠き部 を示し、 また、 符号 7 2 aは、 スプリング 7 7の力を第 2可動仕切部材 7 3に付 加する為に第 1可動仕切部材 7 2に形成した切り欠き部を示す。 但し、 切り欠き 部 7 2 a , 7 3 aは、 必要に応じて省略してもよい。 To explain the vane mechanism 4A, a mounting hole 70 is formed in the housing body 60 and the block member 63, and the first movable partition member 72 and the second movable partition member 73 are formed in the mounting hole 70. The movable partition member 7 comprises a spring receiving member 7 4 fixed to the outer surface of the block member 6 3 with a plurality of bolts 75, and a first movable partition member 7. 2 is urged toward the rotor housing chamber 5 A by three compression coil springs 76, and the second movable partition member 73 is moved toward the rotor housing chamber 5 A by three compression coil springs 77. Being energized. Reference numeral 73a denotes a cutout portion formed in the second movable partition member 73 to apply the force of the spring 76 to the first movable partition member 72, and reference numeral 72a denotes Apply the force of the spring 7 7 to the second movable partition member 7 3 The notch formed in the first movable partition member 72 to be added is shown. However, the notches 72a and 73a may be omitted as necessary.
前記ブロック部材 6 3には、 長円形断面の第 1通路 6 Aと第 2通路 7 Aとが前 記実施例と同様に形成され、 第 1通路 6 Aに連通した第 1ポート 6 bと、 第 2通 路 7 Aに連通した第 2ポート Ί bとがハウジング 1 Aに形成されている。  In the block member 63, a first passage 6A and a second passage 7A having an oval cross section are formed in the same manner as in the previous embodiment, and a first port 6b communicating with the first passage 6A, A second port Ίb communicating with the second passage 7A is formed in the housing 1A.
この流体圧モ一タ M Aの作用ついては、 前記流体圧モータ Mと同様であるが、 可動仕切部材 Ί 1が第 1可動仕切部材 7 2と第 2可動仕切部材 7 3とで構成され 、 第 1可動仕切部材 7 2の先端のシール部 7 2 sと、 第 2可動仕切部材 7 3の先 端のシール部 7 3 sとが、 ロータ 2 Aの外周面にシール可能に摺接するため、 可 動仕切部材 7 1とロータ 2 Aとの接触部が二重にシールされ、 そのシール性能が 向上し、 油圧モータ等、 比較的高圧の流体圧を供給する流体圧モータに好適とな る。 前記ロータ 2 Aの左右の端面に、 環状のシール部材 6 7を装着してあるため 、 比較的高圧の流体圧を供給する油圧モータ等の流体圧モータに好適となる。 この実施例の流体圧モータ M Aも前記流体圧モータ Mと同様に流体加圧ボンプ として適用することができる。  The operation of the fluid pressure monitor MA is the same as that of the fluid pressure motor M, except that the movable partition member Ί1 is composed of a first movable partition member 72 and a second movable partition member 73, The movable seal member 7 2 s at the front end of the movable partition member 72 and the seal portion 73 s at the front end of the second movable partition member 73 are in sliding contact with the outer peripheral surface of the rotor 2 A. The contact portion between the partition member 71 and the rotor 2A is double-sealed, and the sealing performance is improved, making it suitable for a hydraulic motor or the like that supplies a relatively high fluid pressure. Since the annular seal members 67 are mounted on the left and right end surfaces of the rotor 2A, it is suitable for a hydraulic motor such as a hydraulic motor that supplies a relatively high fluid pressure. The fluid pressure motor M A of this embodiment can also be applied as a fluid pressure pump similarly to the fluid pressure motor M.
ここで、 前記実施例の流体圧モータ M Aの構成を分的に変更した変更例につい て説明する。 但し、 同一のものに同一符号を付して説明を省略した。  Here, a description will be given of a modified example in which the configuration of the fluid pressure motor MA of the embodiment is partially changed. However, the same components are denoted by the same reference numerals and description thereof is omitted.
図 8〜図 1 0の流体圧モータ M A 1示すように、 ロータ 2 Bの受圧突部 6 5 A の先端のシール部 8 0が周方向に例えば約 1 0 m m以上の広幅に形成され、 シー ル部 8 0の両側には、 ロータ本体 6 4の周面から徐々に大径化してシール部 8 0 に達する湾曲面 8 1 , 8 1が形成され、 シール部 8 0にロータ 2 Bの軸心方向向 きのシール溝 8 2が形成され、 そのシール溝 8 2に合成ゴムや合成樹脂 (例えば 、 ナイロン等) 又は金属 (例えば、 铸鉄ゃ真鍮や銅鉛合金やアルミ合金等) 製の シール部材 8 3が装着され、 シール部材 8 3は、 ロータ収容室 5 Aの内周面に面 接触状に接触している。  As shown in the fluid pressure motor MA 1 of FIGS. 8 to 10, a seal 80 at the tip of the pressure receiving projection 65A of the rotor 2B is formed in the circumferential direction to have a wide width of, for example, about 10 mm or more. On both sides of the rotor portion 80, curved surfaces 8 1, 81 which gradually increase in diameter from the peripheral surface of the rotor body 64 and reach the seal portion 80 are formed, and the shaft of the rotor 2B is formed on the seal portion 80. A seal groove 82 oriented in the direction of the center is formed, and the seal groove 82 is made of synthetic rubber or synthetic resin (eg, nylon, etc.) or metal (eg, iron, brass, copper lead alloy, aluminum alloy, etc.). The seal member 83 is attached, and the seal member 83 is in surface contact with the inner peripheral surface of the rotor housing chamber 5A.
尚、 湾曲面 8 1 , 8 1からシール溝 8 2の底部に連通する連通孔を形成し、 シ 一ル部材 8 3を流体圧で付勢するように構成することもできる。 A communication hole communicating from the curved surfaces 8 1, 8 1 to the bottom of the seal groove 82 is formed. It is also possible to employ a configuration in which the member 83 is urged by fluid pressure.
また、 ロータ 2 Aの左右両端面には、 環状のシール溝 7 8が形成され、 そのシ ール溝 7 8には、 環状のシール部材 7 9が装着され、 また、 シール溝 7 8からシ ール溝 8 2まで延びるシール溝 8 5にも、 シール部材 8 6力装着されている。 前 記シール部材 7 9 , 8 6は、 合成ゴムや合成樹脂 (例えば、 ナイロン等) 又は金 属製のものでもよいし、 複数の部品からなる複合的なシール部材でもよい。 以上 の構成によりシール性を高めることができる。  An annular seal groove 78 is formed on each of the left and right end surfaces of the rotor 2A, and an annular seal member 79 is attached to the seal groove 78. The sealing member 85 is also mounted on the sealing groove 85 extending to the sealing groove 82. The seal members 79 and 86 may be made of synthetic rubber, synthetic resin (for example, nylon, etc.) or metal, or may be a composite seal member including a plurality of parts. With the above configuration, the sealing performance can be improved.
図 1 1に示す流体圧モータ M A 2においては、 ハウジング 1 Aに、 ロータ収容 室 5 Aの軸心 Xに対して回転対称に、 第 1ベーン機構 4 Aと第 2ベーン機構 4 B が設けられ、 第 1ベーン機構 4 Aの上下両側に第 1ボート 6 bと第 2ポ一ト 7 b が形成され、 また、 第 2ベ一ン機構 4 Bの上下両側に第 2ポート 7 bと第 1ポー ト 6 bとが形成される。 更に、 ロータ 2 Cには、 その軸心 Xに対して回転対称に 、 周方向 1 8 0度おきに 2つの受圧部 6 5 , 6 5が形成されている。  In a fluid pressure motor MA2 shown in FIG. 11, a first vane mechanism 4A and a second vane mechanism 4B are provided in a housing 1A so as to be rotationally symmetric with respect to an axis X of a rotor accommodating chamber 5A. The first boat 6b and the second port 7b are formed on the upper and lower sides of the first vane mechanism 4A, and the second port 7b and the first port are formed on the upper and lower sides of the second vane mechanism 4B. Port 6b is formed. Further, the rotor 2C is formed with two pressure receiving portions 65, 65 every 180 degrees in the circumferential direction in a rotationally symmetric manner with respect to the axis X thereof.
前記 2つの第 1ポート 6 b , 6 bに流体圧を供給し、 かつ 2つの第 2ポート 7 , 7 bを油タンクや大気へ解放すると、 ロータ 2 Cは矢印 A方向へ回転し、 また 、 前記 2つの第 2ボート 7 b , 7 bに流体圧を供給し、 かつ 2つの第 1ポ一ト 6 b, 6 bを油タンクや大気へ解放すると、 ロータ 2 Cは矢印 Aと反対方向へ回転 することになる。  When the fluid pressure is supplied to the two first ports 6b, 6b and the two second ports 7, 7b are released to the oil tank or the atmosphere, the rotor 2C rotates in the direction of arrow A, and When fluid pressure is supplied to the two second boats 7b, 7b and the two first ports 6b, 6b are released to the oil tank or the atmosphere, the rotor 2C moves in the direction opposite to the arrow A. It will rotate.
この流体圧モータ M A 2では、 2つの受圧突部 6 5に流体圧が作用するため、 流体圧モータ M A 1に比較して、 出力トルク力く約 2倍になるから、 流体圧モータ を小型化できる。 但し、 2つの受圧部 6 5, 6 5が同時に、 ベーン機構 4 A , 4 Bに接触すると、 出力トルクが少し低下するので、 2つの受圧部 6 5 , 6 5が順 々にべ一ン機構 4 A, 4 Bに接触するように、 ベーン機構 4 A , 4 Bを蚰心 X に対して非回転対称に設ける力、、 又は 2つの受圧部 6 5 , 6 5を軸心 Xに対して 非回転対称に形成してもよい。  In the fluid pressure motor MA2, since the fluid pressure acts on the two pressure receiving protrusions 65, the output torque force is about twice as large as that of the fluid pressure motor MA1, so the fluid pressure motor is downsized. it can. However, if the two pressure receiving parts 65, 65 contact the vane mechanism 4A, 4B at the same time, the output torque will decrease a little, so the two pressure receiving parts 65, 65 will be 4A, 4B, the force to provide the vane mechanism 4A, 4B non-rotationally symmetric with respect to the center X, or the two pressure receiving portions 65, 65 with respect to the axis X. It may be formed non-rotationally symmetric.
図 1 1の流体圧モータ M A 2を油圧モータとして使用する場合の油圧回路は、 図 1 2に示すようになる。 符号 9 0は油タンク、 9 1は油圧ポンプ、 9 2は電磁 方向切換弁を示す。 The hydraulic circuit when using the hydraulic motor MA 2 in Fig. 11 as a hydraulic motor is As shown in Fig.12. Reference numeral 90 denotes an oil tank, 91 denotes a hydraulic pump, and 92 denotes an electromagnetic directional control valve.
図 1 1の流体圧モータ MA 2を油圧ポンプ MA 2 Pとして使用する場合の油圧 回路は、 図 1 3に示すようになる。 符号 9 3は、 駆動軸 3 Aを回転駆動する電動 モータ、 9 4は油タンクを示す。  The hydraulic circuit when the fluid pressure motor MA2 in FIG. 11 is used as the hydraulic pump MA2P is as shown in FIG. Reference numeral 93 denotes an electric motor that rotationally drives the drive shaft 3A, and reference numeral 94 denotes an oil tank.
図 1 4に示す流体圧モータ M A 3においては、 図 1 1の流体圧モータ MA 2の ロータ 2 Cの代わりに、 ロータ 2 Dの外周部には、 1 2 0度おきに 3つの受圧突 部 6 5 , 6 5 , 6 5が形成される。 この流体圧モータ M A 3の作動は、 流体圧モ —タ MA 2と同様である。 但し、 3つの受圧突部 6 5 , 6 5 , 6 5が 1つずつ、 ベーン機構 4 A, 4 Bに接触するので、 トルク変動力く少なくなる。 そして、 流体 圧モータ M A 3の効率が高くなる。  In the fluid pressure motor MA3 shown in FIG. 14, instead of the rotor 2C of the fluid pressure motor MA2 shown in FIG. 11, three pressure receiving protrusions are provided on the outer periphery of the rotor 2D every 120 degrees. 65, 65, 65 are formed. The operation of the fluid pressure motor M A3 is the same as that of the fluid pressure motor MA 2. However, since each of the three pressure receiving protrusions 65, 65, 65 comes into contact with the vane mechanism 4A, 4B, the torque fluctuation force is reduced. Then, the efficiency of the fluid pressure motor M A3 increases.
尚、 比較的大型の流体圧モータや流体圧ポンプの場合、 3つ以上のベーン機構 及び各べーン機構に対応する第 1ポートと第 2ポートを設け、 かつ π—タには 4 つ以上の受圧突部 6 5を形成することもできる。  In the case of a relatively large hydraulic motor or hydraulic pump, three or more vane mechanisms and first and second ports corresponding to each vane mechanism are provided, and four or more The pressure receiving projection 65 may be formed.
次に、 前記流体圧モータ Mと同様の 3つの流体圧モータ M 1 , 2 , M 3を一 体的に組み込んだ流体圧モータュニッ ト M Uについて、 図 1 5と図 1 6に基いて 説明する。  Next, a fluid pressure motor unit MU in which three fluid pressure motors M 1, 2, and M 3 similar to the fluid pressure motor M are integrally incorporated will be described with reference to FIGS. 15 and 16.
第 1流体圧モータ M lのハウジングは、 第 1端板 1 0 1、 ハウジング本体 1 0 4 Aと、 中間板 1 0 2 Aで構成され、 このハウジング内に円筒状のロータ収容室 1 0 5 Aが形成され、 ロータ収容室 1 0 5 Aには、 前記ロータ 2と同様のロータ 1 0 6 Aが収容され、 ハウジング本体 1 0 4 Aの側部にベーン機構 1 0 7 Aが設 けられ、 このべ一ン機構 1 0 7 Aの可動仕切部材 1 0 8 Aを装着する装着孔 1 0 9 Aは、 ハウジング本体 1 0 4 Aに形成され、 第 1端板 1 0 1と中間板 1 0 2 A とで両側を塞がれ、 この装着孔 1 0 9 Aに可動仕切部材 1 0 8 Aが摺動自在に装 着され、 スプリング 1 1 0でロータ収容室 1 0 5 Aの方へ付勢されている。 パネ 受け板 1 1 1はボルト 1 1 2でハウジング本体 1 0 4 Aに固定されている。 第 2流体圧モータ M 2のハウジングは、 前記中間板 1 0 2 Aと、 前記ハウジン グ本体 1 0 4 Aと同一構造のハウジング本体 1 0 4 Bと、 中間板 1 0 2 Bとで構 成されている。 The housing of the first fluid pressure motor Ml includes a first end plate 101, a housing main body 104A, and an intermediate plate 102A, and a cylindrical rotor housing chamber 105 in this housing. A is formed, and the rotor accommodating chamber 105A accommodates a rotor 106A similar to the rotor 2 described above, and a vane mechanism 107A is provided on the side of the housing body 104A. A mounting hole 109 A for mounting the movable partition member 108 A of the vane mechanism 107 A is formed in the housing body 104 A, and the first end plate 101 and the intermediate plate 1 are formed. The movable partition member 108A is slidably mounted in the mounting hole 109A, and the spring 110 is moved toward the rotor accommodating chamber 105A. Being energized. The panel receiving plate 1 1 1 is fixed to the housing main body 104 A with bolts 1 12. The housing of the second fluid pressure motor M2 includes the intermediate plate 102A, a housing body 104B having the same structure as the housing body 104A, and an intermediate plate 102B. Have been.
その他の構造は、 第 1流体圧モータ M 1と同様であるので、 ロータ収容室 1 0 5 A、 ロータ 1 0 6 B、 ベーン機構 1 0 7 B、 装着孔 1 0 9 B、 可動仕切部材 1 0 8 Bについての説明は省略する。  Other structures are the same as those of the first fluid pressure motor M1, so that the rotor housing chamber 105A, the rotor 106B, the vane mechanism 107B, the mounting hole 109B, the movable partition member 1 Description of 08B is omitted.
第 3流体圧モータ M 3のハウジングは、 前記中間板 1 0 2 Bと、 前記ハウジン グ本体 1 0 4 Aと同一構造のハウジング本体 1 0 4じと、 第 2端板 1 0 3とで構 成されている。 その他の構造は、 第 1流体圧モータ M lと同様であるので、 ロー タ収容室 1 0 5 C、 ロータ 1 0 6 C、 ベ一ン機構 1 0 7 C、 装着孔 1 0 9 C、 可 動仕切部材 1 0 8 Cについての説明は省略する。  The housing of the third fluid pressure motor M3 is composed of the intermediate plate 102B, a housing body 104 having the same structure as the housing body 104A, and a second end plate 103. Has been established. Other structures are the same as those of the first fluid pressure motor Ml, so the rotor storage chamber 105C, rotor 106C, vane mechanism 107C, mounting hole 109C, OK The description of the moving partition member 108C is omitted.
前記 3つの流体圧モータ M 1 , M 2 , M 3に共通の出力軸 1 1 3は、 第 1端板 1 0 1と、 ロータ 1 0 6 Aと、 中間板 1 0 2 Aと、 ロータ 1 0 6 Bと、 中間板 1 0 2 Bと、 ロータ 1 0 6 Cと、 第 2端板 1 0 3とを挿通して、 第 2端板 1 0 3の 外側へ延び、 第 1及び第 2端板 1 0 1, 1 0 3と 2つの中間板 1 0 2 A , 1 0 2 Bに夫々軸受け 1 1 4を介して回転自在に支持され、 出力軸 1 1 3は、 ロータ 1 0 6 A, 1 0 6 B , 1 0 6 Cに相対回転不能に連結されている。 前記第 1端板 1 0 1と、 ハウジング本体 1 0 4 Aと、 中間板 1 0 2 Aと、 ハウジング本体 1 0 4 Bと、 中間板 1 0 2 Bと、 ハウジング本体 1 0 4 Cと、 第 2端板 1 0 3には、 4 つのボルト孔 1 1 5が連通状に透設され、 これら 4つのボルト孔 1 1 5に夫々挿 通させた通しボルト 1 1 6により 3組のハウジングは一体的に固定されている。 前記 3つの流体圧モータ M 1 , M 2 , M 3を直列駆動する場合に、 ハゥジング に形成される流体通路の一例について説明する。  An output shaft 113 common to the three fluid pressure motors M 1, M 2, and M 3 includes a first end plate 101, a rotor 106 A, an intermediate plate 102 A, and a rotor 1. 06 B, the intermediate plate 102 B, the rotor 106 C, and the second end plate 103, and extends to the outside of the second end plate 103. The end plates 101, 103 and the two intermediate plates 102A, 102B are rotatably supported via bearings 114, respectively, and the output shaft 113 is connected to the rotor 106A. , 106 B, and 106 C are connected to each other so that they cannot rotate relative to each other. The first end plate 101, a housing body 104A, an intermediate plate 102A, a housing body 104B, an intermediate plate 102B, a housing body 104C, Four bolt holes 1 15 are penetrated through the second end plate 103 in a communicating manner, and three sets of housings are formed by through bolts 1 16 inserted through these four bolt holes 1 15 respectively. It is fixed integrally. An example of a fluid passage formed in a housing when the three fluid pressure motors M 1, M 2, and M 3 are driven in series will be described.
ハウジング本体 1 0 4 A, 1 0 4 B , 1 0 4 Cには、 ベ一ン機構の上側に位置 する第 1通路 1 2 O A , 1 2 O B , 1 2 0 Cと、 ベ一ン機構の下側に位置する第 2通路 1 2 1 A , 1 2 1 B , 1 2 1 Cとが形成されている。 第 1端板 1 0 1に形 成された縦孔 1 22は、 第 1通路 1 2 OAに連通し、 中間板 1 0 2 Aに形成され た縦孔 1 2 3 Aは、 第 2通路 1 2 1 Aに連通し且つ第 1通路 1 20 Bに連通し、 中間板 1 0 2 Bに形成された縦孔 1 2 3 Bは、 第 2通路 1 2 1 Bに連通し且つ第 1通路 1 2 0 Cに連通し、 第 2端板 1 03に形成された縦孔 1 2 4は、 第 2通路 1 2 1 Cに連通している。 The housing main body 104A, 104B, 104C has a first passage 12OA, 12OB, 120C located above the vane mechanism and a vane mechanism. Second passages 12 A, 12 B, and 12 C located on the lower side are formed. 1st end plate 1 0 1 shaped The formed vertical hole 122 communicates with the first passageway 12OA, and the vertical hole 123A formed in the intermediate plate 102A communicates with the second passageway 122A and the first passageway 122A. The vertical hole 123B formed in the intermediate plate 102B communicates with the passage 120B, and communicates with the second passage 122B and the first passage 120C. The vertical hole 122 formed in the end plate 103 communicates with the second passage 122C.
前記ハウジング本体 1 04 A, 1 0 4 B, 1 0 4 Cには、 第 1通路 1 20 A, 1 20 B, 1 2 0 Cを、 可動仕切部材 1 08 A, 1 08 B, 1 0 8 Cの上側近傍 において、 ロータ収容室 1 0 5 A, 1 05 B, 1 05 Cに連通させる第 1ポート 1 25 A, 1 2 5 B, 1 25 Cと、 第 2通路 1 2 1 A, 1 2 1 B, 1 2 1 Cを、 可動仕切部材 1 08 A, 1 0 8 B, 1 08 Cの下側近傍において、 ロータ収容室 1 05A, 1 0 5 B, 1 05 Cに連通させる第 2ポート 1 26 A, 1 2 6 B, 1 26 Cと力く、 夫々形成されている。  In the housing body 104 A, 104 B, 104 C, the first passage 120 A, 120 B, 120 C is provided with a movable partition member 108 A, 108 B, 108 In the vicinity of the upper side of C, the first ports 125 A, 125 B, 125 C communicating with the rotor accommodating chambers 105 A, 105 B, 105 C, and the second passages 12 A, 1 A 2nd B, 121C is connected to the rotor housing chambers 105A, 105B, 105C in the vicinity of the lower side of the movable partition member 108A, 108B, 108C. Ports 126 A, 126 B, and 126 C are formed, respectively, powerfully.
前記縦孔 1 2 2に油圧又は加圧ヱァを供給し、 縦孔 1 24を油タンク又は大気 へ解放すると、 その流体圧は、 第 1通路 1 2 0 A、 第 1ポート 1 25 A、 第 1流 体圧モータ M lの作動室、 第 2ポート 1 26A、 第 2通路 1 2 1 A、 縦孔 1 2 3 A、 第 1通路 1 2 0 B、 第 1ポート 1 25 B、 第 2流体圧モータ M 2の作動室、 第 2ポート 1 2 6 B、 第 2通路 1 2 1 B、 縦孔 1 23 B、 第 1通路 1 2 0 C、 第 1ポート 1 25 C、 第 3流体圧モータ M 3の作動室、 第 2ポート 1 2 6 C、 第 2 通路 1 2 1 C、 縦孔 1 2 4の順に流れることになる。  When a hydraulic or pressurized pressure is supplied to the vertical hole 122 and the vertical hole 124 is released to the oil tank or the atmosphere, the fluid pressure is increased to a first passage 120 A, a first port 125 A, Working chamber of 1st fluid pressure motor Ml, 2nd port 126A, 2nd passage 1 2 1A, vertical hole 1 2 3A, 1st passage 1 20B, 1st port 125B, 2nd Working chamber of fluid pressure motor M2, 2nd port 1 26B, 2nd passage 1 2 1B, vertical hole 123B, 1st passage 120C, 1st port 125C, 3rd fluid pressure The working chamber of the motor M3, the second port 1 26C, the second passage 1 2 1C, and the vertical hole 1 24 flow in this order.
従って、 第 1流体圧モータ M 1のロータ 1 06 Aを回転駆動した流体圧は、 第 2流体圧モータ M 2へ供給され、 ロータ 1 0 6 Bを回転駆動させた後、 第 3流体 圧モータ M 3へ供給され、 ロータ 1 0 6 Cを回転駆動させた後、 縦孔 1 24から 排出されることになる。 この場合、 ロータ 1 06 A, 1 0 6 B, 1 0 6 Cは、 図 1 6の矢印 A方向へ回転する。 但し、 縦孔 1 24から流体圧を供給し、 縦孔 1 2 2から排出する場合には、 流体圧が流れる方向が逆になつて、 ロータ〗 06 A, 1 0 6 B, 1 06 Cは、 矢印 Aと反対方向へ回転する。 以上のように 3つの流体圧モータ M 1, M2, M 3を直歹!!駆動する場合には、 各流体圧モータにおける第 1作動室と第 2作動室間の圧力差はあまり大きくなら ないため、 各流体圧モータの出力トルクは、 あまり大きくならないが、 縦孔 1 2 2又は 1 24に供給される流体圧と、 縦孔 1 24又は 1 22から排出されるドレ ン圧との圧力差が、 大きくなり、 流体圧活用の効率が向上する。 Accordingly, the fluid pressure that rotationally drives the rotor 106A of the first fluid pressure motor M1 is supplied to the second fluid pressure motor M2, and after rotating the rotor 106B, the third fluid pressure motor After being supplied to M3 and rotating the rotor 106C, it is discharged from the vertical hole 124. In this case, the rotors 106A, 106B, 106C rotate in the direction of arrow A in FIG. However, when the fluid pressure is supplied from the vertical hole 124 and discharged from the vertical hole 122, the flow direction of the fluid pressure is reversed, and the rotor〗 06 A, 106 B, 106 C , Rotate in the opposite direction to arrow A. As described above, the three fluid pressure motors M1, M2, M3 are straightforward! When driven, the output torque of each fluid pressure motor does not increase so much because the pressure difference between the first working chamber and the second working chamber in each fluid pressure motor does not increase so much. Or, the pressure difference between the fluid pressure supplied to the 124 and the drain pressure discharged from the vertical hole 124 or 122 is increased, and the efficiency of utilizing the fluid pressure is improved.
この流体圧モータユニッ ト MUでは、 3つの流体圧モータ M l, M2, M3の 軸方向長さが等しいため、 同一構造のロータ 106 A, 1 06 B, 1 06 C、 同 一構造のハウジング本体 104 A, 1 04 B, 1 04 C、 同一構造のベ一ン機構 1 07 A, 107 B, 1 07 Cを用いることができ、 しかも、 第 1端板 10 1と 第 2端板 1 03と中間板 102 A, 1 02 Bを略同一構造に形成できる。 前記の ような共通部品を用いて、 ュニッ ト化される流体圧モータの数を変えることで、 種々の容量の流体圧モ一タユニットを構成することができる。  In the fluid pressure motor unit MU, since the three fluid pressure motors Ml, M2, and M3 have the same axial length, the rotor 106A, 106B, 106C having the same structure, and the housing body 104 having the same structure have the same structure. A, 104 B, 104 C, vane mechanism 107 A, 107 B, 107 C of the same structure can be used, and intermediate between the first end plate 101 and the second end plate 103 The plates 102A, 102B can be formed to have substantially the same structure. By changing the number of hydraulic motors to be united using the above-described common parts, hydraulic motor units of various capacities can be configured.
即ち、 流体圧モータュニッ ト MUに組み込む流体圧モータの数は 2つでもよく 4以上でもよい。 また、 複数の流体圧モータの軸方向長さを異ならせることもで きる。 流体圧モータュニッ ト MUにおいて、 流体通路を各流体圧モータ M 1 , 2, M 3に独立に形成することにより、 個々の流体圧モータを独立に駆動するこ とも可能である。 但し、 この場合でも、 ロータ 1 06 A, 106 B, 1 06 Cは 、 一体的に回転する。  That is, the number of fluid pressure motors incorporated in the fluid pressure motor unit MU may be two or four or more. Also, the axial lengths of the plurality of fluid pressure motors can be made different. In the fluid pressure motor unit MU, by independently forming the fluid passages in the fluid pressure motors M1, 2, and M3, it is possible to drive the individual fluid pressure motors independently. However, even in this case, the rotors 106A, 106B, and 106C rotate integrally.
前記流体圧モータユニッ ト MUの各流体圧モータ Ml, M2, M 3を独立躯動 可能な油圧回路を設ける場合、 出力トルクを複数段階に切り換え可能になり、 出 力軸の回転数を複数段階に切り換え可能になる。 例えば、 6つの流体圧モータを 組み込んだ流体圧モータュニッ トでは、 供給する流体圧の圧力が一定の場合には 出力トルクを 6段階 ( トルク T 1, T2, · · T6 ) に切り換え可能であり、 ま た、 供給する流体圧の流量が一定の場合には回転速度を 6段階 (回転速度 N 1 , N2, · · N6 ) に切り換え可能である。  When a hydraulic circuit that can independently operate each of the fluid pressure motors Ml, M2, and M3 of the fluid pressure motor unit MU is provided, the output torque can be switched to a plurality of steps, and the output shaft rotation speed can be set to a plurality of steps. Switching becomes possible. For example, in a hydraulic motor unit incorporating six hydraulic motors, the output torque can be switched to six stages (torque T1, T2, ··· T6) if the pressure of the supplied hydraulic pressure is constant. In addition, when the flow rate of the supplied fluid pressure is constant, the rotation speed can be switched to six stages (rotation speeds N1, N2, · · · N6).
T KT 2 < · · <T 6、 Ν 1 > Ν 2 > · ·〉Ν 6、 とすると、 出力トルク Τ と回転速度 Nの組合せは、 (T l, N l ) , (T2, N 2 ) ( · · (T 6, N 6 ) となる。 従って、 このような流体圧モータユニッ ト MUでもって、 自動車の変 速機構を構成することが出来る。 T KT 2 <· · <T 6, Ν 1> Ν 2> · Ν Ν 6, the output torque Τ And the rotation speed N are (T l, N l), (T 2, N 2) ( · · (T 6, N 6). Therefore, with such a fluid pressure motor unit MU, A speed change mechanism can be configured.
前記流体圧モータュニッ ト MUが油圧モータュニッ トであり、 その油圧モータ ュニッ トを直列駆動する場合の油圧回路は、 例えば、 図 1 7に示すようになる。 油圧回路には、 油タンク 1 30、 油圧ポンプ 1 3 1、 電磁方向切換弁 1 3 2等 が、 設けられている。  The hydraulic motor unit MU is a hydraulic motor unit, and a hydraulic circuit when the hydraulic motor unit is driven in series is as shown in FIG. 17, for example. The hydraulic circuit is provided with an oil tank 130, a hydraulic pump 131, an electromagnetic directional switching valve 132, and the like.
前記前記流体圧モータュニッ ト MUが油圧モータュニッ トであり、 その油圧モ —タュニッ トを並列駆動する場合の油圧回路は、 例えば図 18に示すようになる 。 油圧回路には、 油タンク 1 33、 油圧ポンプ 1 34、 電磁方向切換弁 1 35、 第 1ポート 1 2 5A, 1 25 B, 1 2 5 Cの通路に夫々介設された電磁開閉弁 1 3 6A, 1 36 B, 1 3 6 C、 第 2ボート 1 26 A, 1 2 6 B, 126 Cの通路 に夫々介設された電磁開閉弁 1 38 A, 1 3 8 B, 1 3 8 C、 第 1ポート 1 2 5 A, 1 2 5 B, 1 25 Cと第 2ボート 1 2 6 A, 1 26 B, 1 2 6 Cとを接続す る通路に夫々介設された電磁開閉弁 1 37 A, 1 37 B, 1 37 Cなどが設けら れている。  The hydraulic motor unit MU is a hydraulic motor unit, and a hydraulic circuit for driving the hydraulic motor units in parallel is as shown in FIG. 18, for example. The hydraulic circuit includes an oil tank 133, a hydraulic pump 134, a solenoid directional control valve 135, and solenoid on-off valves 13 provided in the passages of the first ports 125A, 125B, and 125C, respectively. 6A, 1 36B, 1 36C, 2nd boat 126A, 1 26B, 126C Solenoid on-off valves 138A, 138B, 138C Solenoid on-off valves 1 37 provided in the passages connecting the first ports 1 25 A, 125 B, 125 C and the second boats 126 A, 126 B, 126 C, respectively A, 137 B, 137 C, etc. are provided.
例えば、 第 1流体圧モータ M 1を駆動する場合には、 電磁開閉弁 1 3 6 A, 1 3 8 Aが開かれ且つ電磁開閉弁 1 3 7 Aが閉じられる。 これに対して、 第 1流体 圧モータ M 1を駆動させない場合には、 電磁開閉弁 1 36 A, 1 38 Aが閉じら れ且つ電磁開閉弁 1 37 Aが開かれる。 これにより、 第 1流体圧モータ M 1内の 油は電磁開閉弁 1 37 Aを通過して循環し、 ロータ 1 06 Aが空転状態となる。 このことは、 第 2及び第 3流体圧モータ M 2, M 3についても同様である。 前記電磁開閉弁 1 3 7 A, 1 37 B, 1 3 7 Cを設ける代わりに、 図 1 9に示 すように、 スプリング 1 1 0の外端部を受け止めるパネ受けバー 1 1 7を設け、 その位置を切り換え可能に構成してもよい。  For example, when driving the first fluid pressure motor M1, the solenoid on-off valves 1336A and 1338A are opened and the solenoid on-off valve 1337A is closed. On the other hand, when the first fluid pressure motor M1 is not driven, the solenoid on-off valves 136A and 138A are closed and the solenoid on-off valve 137A is opened. As a result, the oil in the first fluid pressure motor M1 circulates through the electromagnetic on-off valve 137A, and the rotor 106A enters an idling state. This is the same for the second and third fluid pressure motors M2 and M3. Instead of providing the solenoid on-off valves 13 7 A, 13 7 B, 13 7 C, as shown in Fig. 19, a panel receiving bar 1 17 for receiving the outer end of the spring 110 is provided, The position may be switchable.
各バネ受けバー 1 1 7には、 バネ受け部材 1 1 1内に構成された例えば 3つの 油圧シリンダ 1 1 8のロッドが連結され、 流体圧モータ M 1, 2, M3を駆動 する場合には、 油圧ポンプ 1 38から電磁方向切換弁 1 39を介して、 油圧シリ ンダ 1 1 8に油圧を供給し、 また、 流体圧モータ M l, M2, M 3を駆動しない 場合には、 電磁方向切換弁 1 39を切り換えて、 油圧シリ ンダ 1 1 8の油圧を排 出すると、 バネ受けバー 1 1 7力後退して、 スブリング 1 1 0の付勢力が可動仕 切部材 1 0 8 A, 1 08 B, 1 08 Cに作用しなくなる。 その結果、 ロータ 1 0 6 A, 1 0 6 B, 1 0 6 Cは空転状態となる。 Each spring receiving bar 1 17 has, for example, three When the rods of the hydraulic cylinder 118 are connected to drive the fluid pressure motors M1, 2, M3, the hydraulic pump 118 sends the hydraulic pressure to the hydraulic cylinder 118 via the electromagnetic directional control valve 139. When the fluid pressure motors M1, M2, and M3 are not driven, the solenoid directional control valve 1 39 is switched to discharge the hydraulic pressure of the hydraulic cylinder 1 18 and the spring receiving bar 1 With a reversal of 17 forces, the biasing force of the spring 110 does not act on the movable partition members 108 A, 108 B, and 108 C. As a result, the rotors 106A, 106B, 106C are idle.
前記流体圧モータュニッ ト MUは、 流体加圧ポンプユニッ トとして適用可能で あるが、 この場合、 前記出力軸 1 1 3は、 電動モータやエアモータで回転駆動さ れる駆動蚰 ( 1 1 3 ) に構成され、 ロータ 1 06八が図1 6の矢印 A方向へ回転 駆動されるものとすると、 第 1ボート 12 5 A, 1 25 B, 1 2 5 Cが加圧前の 流体を吸入する吸入ポートになり、 第 2ポート 1 26 A, 1 26 B, 1 26 Cが 加圧流体を吐出する吐出ポートになり、 第 1〜第 3流体圧モータ M l , M2, 3力く、 第 1〜第 3流体加圧ポンプ M l P, M2 P, M3 Pとなる。  The fluid pressure motor unit MU is applicable as a fluid pressure pump unit. In this case, the output shaft 113 is configured as a drive shaft (113) that is rotationally driven by an electric motor or an air motor. Assuming that the rotor 106-8 is driven to rotate in the direction of arrow A in FIG. 16, the first boat 125A, 125B, 125C becomes a suction port for sucking the fluid before pressurization. The second ports 126A, 126B, and 126C serve as discharge ports for discharging the pressurized fluid, and the first to third fluid pressure motors M1, M2, and the third to third fluids. The pressure pumps are MlP, M2P, M3P.
前記流体圧モータユニッ ト MUを油圧ポンプユニッ ト MUPとして構成し、 こ の油圧ポンプュニッ ト MUPを直列駆動する場合の油圧回路は、 例えば、 図 2 0 に示すとおりである。 駆動軸 ( 1 1 3 ) は、 電動モータ 1 4 2により回転駆動さ れ、 油タンク 1 4 3から供給される油は、 第 1流体加圧ポンプ M 1 Pにより厶 P だけ加圧され、 次に第 2流体加圧ポンプ M 2 Pにより約 ΔΡだけ加圧され、 次に 第 3流体加圧ポンプ M 3 Pにより約 Δ Pだけ加圧され、 こうして合計約 3 Δ Pに 加圧された加圧流体が第 3流体加圧ポンブ M 3 Pから吐出されることになる。 前記油圧ポンプュニッ ト M UPを並列駆動する場合の油圧回路は、 図 2 1に示 すとおりである。 駆動軸 ( 1 1 3 ) は、 電動モータ 1 4 4により回転駆動される 。 油圧回路には、 油タンク 1 4 5、 第 1ポート 1 2 5 A, 1 25 B, 1 25 Cの 通路に夫々介設された電磁開閉弁 1 4 6 A, 1 6 B, 1 460、 第2ポ一ト 1 2 6 A, 1 26 B, 1 2 6 Cの通路に夫々介設された電磁開閉弁 1 4 7 A, 1 4 7 B, 1 47 C、 第 1ポート 1 25 A, 1 25 B, 125 Cと第 2ポート 1 26 A, 126 B, 1 26 Cとを接続する通路に夫々介設された電磁開閉弁 148 A , 1 48 B, 1 48 Cなどが設けられている。 The fluid pressure motor unit MU is configured as a hydraulic pump unit MUP, and a hydraulic circuit in a case where the hydraulic pump unit MUP is driven in series is, for example, as shown in FIG. The drive shaft (113) is rotationally driven by an electric motor (142), and the oil supplied from the oil tank (143) is pressurized by the first fluid pressurizing pump (M1P) by the pressure P. Is pressurized by about Δ 加 圧 by the second fluid pressurizing pump M 2 P, then pressurized by about ΔP by the third fluid pressurizing pump M 3 P, and thus the pressurized to about 3 ΔP in total. The pressurized fluid is discharged from the third fluid pressurizing pump M 3 P. The hydraulic circuit when the hydraulic pump units M UP are driven in parallel is as shown in FIG. The drive shaft (113) is driven to rotate by an electric motor 144. In the hydraulic circuit, there are oil tanks 144, electromagnetic on-off valves 146A, 16B, 1460, and 1460, which are provided in the passages of ports 1 25A, 125B, and 125C, respectively. 2 ports 1 26 A, 126 B, 126 B Solenoid on-off valves installed in passages of C respectively 1 4 7 A, 1 4 7 B, 147 C, solenoid on-off valves 148 A provided in the passage connecting the first port 125 A, 125 B, 125 C and the second port 126 A, 126 B, 126 C respectively , 148 B, 148 C and so on.
例えば、 第 1流体加圧ポンプ Ml Pを駆動させる場合には、 電磁開閉弁 1 46 A, 147 Aを開き、 電磁開閉弁 1 48 Aを閉じる。 例えば、 第 1流体加圧ボン プ M l Pを駆動させない場合には、 電磁開閉弁 146A> 1 47 Aを閉じ、 電磁 開閉弁 1 48Aを開く。 すると、 第 1流体加圧ポンプ Ml P内の油は、 電磁開閉 弁 1 48 Aを通過して循環し、 ロータ 106 Aが空転状態となる。 このことは、 第 2流体加圧ポンプ M2 P, 第 3流体加圧ポンプ M3 Pについても同様である。 この油圧ポンプュニッ ト MUPにおいては、 油圧の吐出量を 3段階 (吐出量 Q 1 , Q2, Q3 ) に切り換え可能で、 また、 吐出圧を 3段階 (吐出圧 P 1, P 2 , P 3) に切り換え可能である。 そして、 Q 1 >Q2>Q3、 P KP 2 <P 3 、 とすると、 吐出量 Qと吐出圧 Pの組合せは、 (Q l, P 1 ) (Q2, P 2 ) 、 (Q3, P 3 ) となる。  For example, when driving the first fluid pressurizing pump MIP, the solenoid on-off valves 146A and 147A are opened and the solenoid on-off valve 148A is closed. For example, when the first fluid pressurizing pump MIP is not driven, the solenoid on-off valve 146A> 147A is closed and the solenoid on-off valve 148A is opened. Then, the oil in the first fluid pressurizing pump MILP circulates through the electromagnetic on-off valve 148A, and the rotor 106A idles. The same applies to the second fluid pressurizing pump M2P and the third fluid pressurizing pump M3P. In this hydraulic pump unit MUP, the discharge amount of hydraulic pressure can be switched in three stages (discharge amount Q1, Q2, Q3), and the discharge pressure can be switched in three stages (discharge pressure P1, P2, P3). Can be switched. Then, assuming that Q 1> Q2> Q3 and PKP 2 <P 3, the combination of the discharge amount Q and the discharge pressure P is (Q l, P 1) (Q2, P 2), (Q3, P 3) Becomes
従って、 この油圧ポンプュニッ ト MUPは、 例えば、 油圧ァクチユエ一タを、 低負荷 ·高速駆動、 中負荷 ·中速駆動、 高負荷 ·低速駆動、 の種々の組合せで駆 動する為の油圧ポンプとして好適のものとなる。 尚、 電磁方向切換 1 48A, 1 48 B, 1 48 Cを設ける代わりに、 前記図 19の構成を採用可能である。 次に、 前記流体圧モータュニッ トのその他の実施例について説明する。  Therefore, this hydraulic pump unit MUP is suitable, for example, as a hydraulic pump for driving a hydraulic actuator with various combinations of low load / high speed drive, medium load / medium speed drive, high load / low speed drive. It will be. Instead of providing the electromagnetic direction switching 148A, 148B, 148C, the configuration shown in FIG. 19 can be employed. Next, another embodiment of the fluid pressure motor unit will be described.
図 22に示すように、 エアモータ Maと、 油圧ポンプ MP hとを、 前記流体圧 モータュニッ ト MUと同様にュニッ ト化し、 エアモータ M aの出力軸と油圧ボン プ M P hの駆動軸とを一体の轴部材 1 50で構成し、 エアポンプ 15 1から供給 する加圧エアでエアモータ M aを躯動し、 油タンク 152から供給される油を油 圧ポンプ MP hで加圧して、 吐出するように構成する。  As shown in FIG. 22, the air motor Ma and the hydraulic pump MP h are united like the fluid pressure motor unit MU, and the output shaft of the air motor Ma and the drive shaft of the hydraulic pump MP h are integrated.構成 It is composed of the member 150, and the air motor Ma is driven by the pressurized air supplied from the air pump 151, and the oil supplied from the oil tank 152 is pressurized by the hydraulic pump MPh and discharged. I do.
図 23に示すように、 油圧モータ Mhと、 轴方向長さの短い小型のエアポンプ MP aとを、 前記流体圧モータュニッ ト MUと同様にュニッ ト化し、 エアポンプ M P aの駆動轴と油圧モータ M hの出力軸とを一体の軸部材 1 5 3で構成し、 油 圧ポンプ 1 5 4から供給される油圧で油圧モータ M hを駆動し、 この油圧モータ hの回転駆動力で外部の回転機器を駆動するとともに、 油圧モータ M hの回転 駆動力でエアポンプ M P aを駆動して加圧エアを発生させ、 その加圧ヱァをべ一 ン機構 1 5 5のスプリング収容室 1 5 6へ導入し、 スプリング収容室 1 5 6のス プリング 1 5 7と加圧エアとで、 可動仕切部材 1 5 8をロータ 1 5 9の方へ付勢 する。 As shown in FIG. 23, the hydraulic motor Mh and the small air pump MPa having a short length in the 轴 direction are unitized in the same manner as the fluid pressure motor unit MU, and the air pump The drive shaft of the MP a and the output shaft of the hydraulic motor M h are constituted by an integral shaft member 15 3, and the hydraulic motor M h is driven by the hydraulic pressure supplied from the hydraulic pump 15 4. In addition to driving the external rotating equipment with the rotational driving force, the air pump MPa is driven with the rotational driving force of the hydraulic motor M h to generate pressurized air, and the pressurizing fan is used as a vane mechanism. The movable partition member 158 is urged toward the rotor 159 by the spring 157 of the spring storage chamber 156 and the pressurized air.

Claims

請求の範囲 The scope of the claims
1 . ハウジングと、 そのハウジングに形成された円形断面のロータ収容室と、 こ のロータ収容室にその軸心回りに回転自在に収容されたロータと、 ロータ収容室 のうちのロータより外側の部分に形成された流体作動室と、 ロータに連結されて ハゥジング外へ延びる軸部材とを備えた流体加圧ポンブ又は流体圧モータとして の流体圧ポンブ Zモータにおいて、 1. A housing, a rotor accommodating chamber having a circular cross section formed in the housing, a rotor accommodated in the rotor accommodating chamber so as to be rotatable around its axis, and a portion of the rotor accommodating chamber outside the rotor. A fluid pressure pump or a fluid pressure motor having a shaft member connected to a rotor and extending out of the housing.
前記ロータに形成され、 流体作動室を仕切るようにロータ収容室の内周面まで 突出する受圧突部と、  A pressure receiving projection formed on the rotor and projecting to an inner peripheral surface of the rotor accommodating chamber so as to partition the fluid working chamber;
前記受圧突部の外周端部に形成され、 ロータ収容孔の内周面に面接触状にかつ シール可能に摺接するシール部と、  A seal portion formed at an outer peripheral end portion of the pressure receiving protrusion portion and slidably contacting an inner peripheral surface of the rotor receiving hole in a surface contact manner and in a sealable manner;
前記ハウジングに形成された装着孔と、 この装着孔にロータ収容室に対して進 退自在に装着され流体作動室を仕切るように内端部がロータの外周面にシール可 能に摺接する可動仕切部材と、 この可動仕切部材をロータの方へ付勢する付勢手 段とを備えたベーン機構と、  A mounting hole formed in the housing, and a movable partition which is mounted in the mounting hole so as to be able to move back and forth with respect to the rotor accommodating chamber and has an inner end slidably contacting the outer peripheral surface of the rotor so as to partition the fluid working chamber. A vane mechanism comprising: a member; and a biasing means for biasing the movable partition member toward the rotor;
前記ハウジングのうちの、 ベーン機構の可動仕切部材のロータ回転方向リ一デ ィング側付近とトレーリング側付近とに夫々形成された供給ポートおよび出口ポ 一卜と、  A supply port and an outlet port formed in the vicinity of the rotor rotating direction leading side and the trailing side of the movable partition member of the vane mechanism in the housing;
を備えたことを特徴とする流体圧ポンプノモータ。  A fluid pressure pump motor comprising:
2 . 請求の範囲第 1項に記載の流体圧ポンプ モータにおいて、 2. In the hydraulic pump motor according to claim 1,
前記ロータ力、 ロータ収容室の軸心と同心の円柱体状のロータ本体と、 その口 ータ本体の外周面から突出するように一体形成された前記受圧突部とを備え、 前記受圧突部のシール部の両側には、 ロータ本体の外周面からシール部に向か つて大径化する湾曲面が対称に形成され、  A rotor body having a columnar shape concentric with the axis of the rotor housing chamber and the pressure receiving protrusion integrally formed so as to protrude from an outer peripheral surface of the rotor body; On both sides of the seal portion, curved surfaces that increase in diameter from the outer peripheral surface of the rotor body toward the seal portion are formed symmetrically.
前記供給ポートを出口ボートに、 前記出口ポートを供給ポートに切り換えるこ とにより、 ロータの回転方向が切換え可能に構成されたことを特徴とする流体圧 ポンプ /"モータ。 A fluid pressure, wherein the rotation direction of the rotor is switchable by switching the supply port to an outlet boat and the outlet port to a supply port. Pump / "motor.
3 . 請求の範囲第 1項に記載の流体圧ポンプ Zモータにおいて、  3. The hydraulic pump Z motor according to claim 1,
前記べ一ン機構の可動仕切部材が、 重ね合わせた複数の可動仕切部材からなり The movable partition member of the vane mechanism comprises a plurality of movable partition members stacked on each other.
、 これら複数の可動仕切部材の各内端部に、 ロータの外周面にシール可能に摺接 するシール部が夫々形成されたことを特徴とする流体圧ポンプ/モータ。 A fluid pump / motor, wherein seal portions are formed at respective inner ends of the plurality of movable partition members so as to slidably contact the outer peripheral surface of the rotor.
4 . 請求の範囲第 1項に記載の流体圧ポンプ/モータにおいて、  4. The fluid pressure pump / motor according to claim 1,
前記ハウジングに、 ロータ収容室の軸心を挟んで対向状に位置する 2つのべ一 ン機構を設け、 前記ロータに複数の受圧突部を設けたことを特徴とする流体圧ポ ンプ モータ。  A fluid pump motor, wherein the housing is provided with two vane mechanisms located opposite to each other with the axis of the rotor chamber interposed therebetween, and the rotor is provided with a plurality of pressure receiving projections.
5 . 請求の範囲第 1項に記載の流体圧ボンプノモータにおいて、 5. In the fluid pressure pump motor according to claim 1,
前記受圧突部のシール部に形成されたシール溝にシール部材が装着され、 前記ロータの軸直交端面に形成された環状のシール溝に環状のシール部材が装 着されたことを特徴とする流体圧ポンプ モータ。  A fluid, wherein a seal member is mounted in a seal groove formed in a seal portion of the pressure receiving protrusion, and an annular seal member is mounted in an annular seal groove formed on an end surface orthogonal to the axis of the rotor. Pressure pump motor.
6 . 請求の範囲第 1項、 第 2項、 第 3項、 第 4項又は第 5項に記載の流体圧ボン プ Zモータにおいて、  6. The fluid pressure pump Z motor according to claim 1, 2, 3, 4, or 5,
複数の流体圧ポンプノモータが軸方向に直列状に並設され、 これら複数の流体 圧ポンプ モータのハウジングがュニッ ト状に連結され、 複数の流体圧ポンプ モータの蚰部材がー体的に回転するように連結されたことを特徴とする流体圧ポ ンプノモータ。  A plurality of fluid pressure pump motors are arranged in series in the axial direction, the housings of the plurality of fluid pressure pump motors are connected in a unit shape, and the members of the plurality of fluid pressure pump motors rotate physically. A fluid pressure pump motor, wherein the fluid pressure pump motor is connected in such a way that
7 . 請求の範囲第 6項に記載の流体圧ポンプノモータにおいて、 7. The fluid pressure pump motor according to claim 6, wherein
複数の流体圧ポンプ Zモータの蚰部材が共通の 1つの轴部材で構成されたこと を特徴とする流体圧ポンプノモータ。  A fluid pump pump motor, wherein a plurality of fluid pump Z motors are composed of a common single member.
8. 請求の範囲第 6項に記載の流体圧ポンプ/モータにおいて、  8. In the fluid pressure pump / motor according to claim 6,
複数の流体圧ポンプノモータを直列的に接続する直列駆動用流体圧回路を設け たことを特徴とする流体圧ポンプ Zモータ。  A fluid pump Z motor, comprising a series drive fluid pressure circuit for connecting a plurality of fluid pressure pump motors in series.
9 . 請求の範囲第 6項に記載の流体圧ポンプ. Zモータにおいて-. 複数の流体圧ボンプノモータを並列的に接続する並列駆動用流体圧回路を設け たことを特徴とする流体圧ポンプノモータ。 9. Fluid pressure pump according to claim 6. Z motor-. A fluid pressure pump motor having a parallel drive fluid pressure circuit for connecting a plurality of fluid pressure pump motors in parallel.
1 0 . 請求の範囲第 9項に記載の流体圧ポンプ Zモータにおいて、 10. The fluid pressure pump Z motor according to claim 9, wherein:
前記並列駆動用流体圧回路に、 各流体圧ポンプ/モータの供給ポートと出口ポ 一トとを連通させる開位置と連通させない閉位置とに切換え可能な切換え弁を設 けたことを特徴とする流体圧ボンプノモータ。  A fluid characterized in that the parallel drive fluid pressure circuit is provided with a switching valve capable of switching between an open position for communicating a supply port and an outlet port of each fluid pressure pump / motor and a closed position for non-communication. Compression pump motor.
PCT/JP1993/001413 1992-09-29 1993-09-29 Hydraulic pump/motor WO1994008139A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP28530192A JPH06108981A (en) 1992-09-29 1992-09-29 Fluid pressure pump/motor
JP4/285301 1992-09-29

Publications (1)

Publication Number Publication Date
WO1994008139A1 true WO1994008139A1 (en) 1994-04-14

Family

ID=17689759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/001413 WO1994008139A1 (en) 1992-09-29 1993-09-29 Hydraulic pump/motor

Country Status (2)

Country Link
JP (1) JPH06108981A (en)
WO (1) WO1994008139A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997037132A1 (en) * 1996-03-29 1997-10-09 Xiaoying Yun Rotary pump
WO1999058855A1 (en) * 1998-05-08 1999-11-18 Xiaoying Yun A rotary piston pump
CN101846071A (en) * 2010-05-18 2010-09-29 常熟威玛乳品机械有限公司 Viscous material conveying pump
US20150167668A1 (en) * 2012-04-26 2015-06-18 Closed Joint Stock Company "Novomet-Perm" Multistage vane pump
FR3028572A1 (en) * 2014-11-19 2016-05-20 Renault Sa HYDRAULIC PUMP WITH STACKING UNIT MODULES TO MODIFY THE SIZE AND CYLINDER
CN106468178A (en) * 2015-08-21 2017-03-01 姚镇 Application presses tumbler, rotation system and the fluid machinery of gate valve mechanism
CN109681657A (en) * 2017-10-18 2019-04-26 北京星油科技有限公司 Gate valve, gate valve system, rotating device and the fluid machinery using it
CN110005606A (en) * 2019-03-28 2019-07-12 云大信 A kind of card slot pump installation and flow rate adjusting method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2483563A2 (en) * 2009-09-28 2012-08-08 Tecumseh Products Company Rotary compressor
CN102852788B (en) * 2012-07-16 2015-12-02 杭州玛瑟斯液压技术有限公司 A kind of vane pump
DE102013101029A1 (en) * 2013-02-01 2014-08-07 Emitec Gesellschaft Für Emissionstechnologie Mbh Device for providing a liquid additive
CN104912599A (en) * 2014-05-16 2015-09-16 摩尔动力(北京)技术股份有限公司 Round cylinder multistage fluid mechanism, and apparatus comprising mechanism
CN107061278B (en) * 2017-04-28 2020-11-24 广东美芝制冷设备有限公司 Rotary compressor and slip sheet, slip sheet groove and compression assembly thereof
CN110296076B (en) * 2019-07-12 2020-10-16 珠海格力节能环保制冷技术研究中心有限公司 Roller assembly, pump body assembly, compressor, gas compression system and heat pump system
CN112796989B (en) * 2020-12-30 2022-08-23 北京星油科技有限公司 Rotating device, rotating system, and fluid machine
CN112943601A (en) * 2021-03-16 2021-06-11 大连绿鑫泵业有限公司 Novel crocodile pump

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928725A (en) * 1972-07-14 1974-03-14
JPS49113203U (en) * 1973-01-25 1974-09-27
JPS5217908U (en) * 1976-06-16 1977-02-08
JPS5390008A (en) * 1977-01-19 1978-08-08 Kato Kaken Yuugen Rotary body for use in transferring fluid material and generation of torque
JPS57203895A (en) * 1981-06-08 1982-12-14 Mitsubishi Heavy Ind Ltd Rotary compressor
JPS5914990U (en) * 1982-07-22 1984-01-30 芝浦メカトロニクス株式会社 high viscosity pump

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928725A (en) * 1972-07-14 1974-03-14
JPS49113203U (en) * 1973-01-25 1974-09-27
JPS5217908U (en) * 1976-06-16 1977-02-08
JPS5390008A (en) * 1977-01-19 1978-08-08 Kato Kaken Yuugen Rotary body for use in transferring fluid material and generation of torque
JPS57203895A (en) * 1981-06-08 1982-12-14 Mitsubishi Heavy Ind Ltd Rotary compressor
JPS5914990U (en) * 1982-07-22 1984-01-30 芝浦メカトロニクス株式会社 high viscosity pump

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997037132A1 (en) * 1996-03-29 1997-10-09 Xiaoying Yun Rotary pump
WO1999058855A1 (en) * 1998-05-08 1999-11-18 Xiaoying Yun A rotary piston pump
US6468045B1 (en) 1998-05-08 2002-10-22 Xiaoying Yun Rotary piston pump
CN101846071A (en) * 2010-05-18 2010-09-29 常熟威玛乳品机械有限公司 Viscous material conveying pump
US20150167668A1 (en) * 2012-04-26 2015-06-18 Closed Joint Stock Company "Novomet-Perm" Multistage vane pump
US9297380B2 (en) * 2012-04-26 2016-03-29 Joint Stock Company “Novomet-Perm” Multistage vane pump
FR3028572A1 (en) * 2014-11-19 2016-05-20 Renault Sa HYDRAULIC PUMP WITH STACKING UNIT MODULES TO MODIFY THE SIZE AND CYLINDER
EP3023642A1 (en) * 2014-11-19 2016-05-25 Renault S.A.S. Hydraulic pump with stackable individual modules for modifying the size and displacement
CN106468178A (en) * 2015-08-21 2017-03-01 姚镇 Application presses tumbler, rotation system and the fluid machinery of gate valve mechanism
WO2017032271A1 (en) * 2015-08-21 2017-03-02 姚镇 Rotating apparatus and rotating system applying pressing gate valve mechanism, and fluid machinery
CN106468178B (en) * 2015-08-21 2018-06-08 北京星旋世纪科技有限公司 Using the tumbler, rotation system and fluid machinery for pressing gate valve mechanism
US11111918B2 (en) 2015-08-21 2021-09-07 Beijing Rostar Technology Co. Ltd. Rotary device, rotary system, and fluid machinery, to which press-actuated gate valve mechanism is applied
CN109681657A (en) * 2017-10-18 2019-04-26 北京星油科技有限公司 Gate valve, gate valve system, rotating device and the fluid machinery using it
CN109681657B (en) * 2017-10-18 2020-12-25 北京星油科技有限公司 Rotating device and fluid machine using same
CN110005606A (en) * 2019-03-28 2019-07-12 云大信 A kind of card slot pump installation and flow rate adjusting method

Also Published As

Publication number Publication date
JPH06108981A (en) 1994-04-19

Similar Documents

Publication Publication Date Title
WO1994008139A1 (en) Hydraulic pump/motor
JP3408005B2 (en) Multi-cylinder rotary compressor
KR101305404B1 (en) Membrane pump
US6283723B1 (en) Integrated compressor expander apparatus
US5895209A (en) Variable capacity pump having a variable metering orifice for biasing pressure
US20060039815A1 (en) Fluid displacement pump
JPH0861269A (en) Scroll type compressor
CN113266610B (en) Radial plunger hydraulic device adopting hydraulic control check valve for flow distribution and working method
WO1996027937A1 (en) Electric hydraulic hybrid motor
WO1997043548A1 (en) Hydraulic pressure control system for a pump
JPH1193856A (en) Variable-displacement pump
US5094597A (en) Variable discharge pump
JP3886534B2 (en) Continuously variable hydraulic transmission with neutral set hydraulic circuit
EP1882081A2 (en) Balancing plate-shuttle ball
JP3584999B2 (en) ELECTRO-HYDRAULIC HYBRID MOTOR, ITS CONTROL DEVICE, AND ITS CONTROL METHOD
US3380392A (en) Low-pressure roller pump
JPH1193860A (en) Variable-displacement pump
JPH05223064A (en) Variable capacity type rotary vane pump
JP3588168B2 (en) Electric motor driven pump device
EP0867614A1 (en) Rotary type hydraulic transformer
US20090238709A1 (en) Magnetic vane ejection for a rotary vane air motor
JP3725785B2 (en) Spool valve for fluid control
US4861236A (en) Birotational pump
JP3569759B2 (en) Variable capacity swash plate type hydraulic machine
JPS63203959A (en) Working oil distributing device for swash type hydraulic device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase