WO1991008850A1 - Method of manufacturing minute metallic balls uniform in size - Google Patents
Method of manufacturing minute metallic balls uniform in size Download PDFInfo
- Publication number
- WO1991008850A1 WO1991008850A1 PCT/JP1990/001591 JP9001591W WO9108850A1 WO 1991008850 A1 WO1991008850 A1 WO 1991008850A1 JP 9001591 W JP9001591 W JP 9001591W WO 9108850 A1 WO9108850 A1 WO 9108850A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- metal wire
- fine metal
- cutting
- fine
- wire
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 53
- 239000002184 metal Substances 0.000 claims abstract description 297
- 229910052751 metal Inorganic materials 0.000 claims abstract description 297
- 238000005520 cutting process Methods 0.000 claims abstract description 237
- 238000010438 heat treatment Methods 0.000 claims abstract description 67
- 238000002844 melting Methods 0.000 claims abstract description 60
- 230000008018 melting Effects 0.000 claims abstract description 60
- 229910001111 Fine metal Inorganic materials 0.000 claims description 324
- 238000000034 method Methods 0.000 claims description 124
- 239000000758 substrate Substances 0.000 claims description 56
- 230000008569 process Effects 0.000 claims description 30
- 239000013013 elastic material Substances 0.000 claims description 10
- 230000009471 action Effects 0.000 claims description 6
- 238000010008 shearing Methods 0.000 claims description 5
- 230000002093 peripheral effect Effects 0.000 claims description 4
- 230000003213 activating effect Effects 0.000 claims 1
- 238000007493 shaping process Methods 0.000 abstract 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 67
- 239000000463 material Substances 0.000 description 45
- 239000010931 gold Substances 0.000 description 34
- 229910052737 gold Inorganic materials 0.000 description 34
- 238000010586 diagram Methods 0.000 description 26
- 239000012535 impurity Substances 0.000 description 19
- 239000000919 ceramic Substances 0.000 description 17
- 238000010309 melting process Methods 0.000 description 12
- 150000002739 metals Chemical class 0.000 description 12
- 239000000853 adhesive Substances 0.000 description 11
- 230000001070 adhesive effect Effects 0.000 description 11
- 230000007246 mechanism Effects 0.000 description 9
- 229920001875 Ebonite Polymers 0.000 description 8
- 239000003990 capacitor Substances 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 230000008859 change Effects 0.000 description 7
- 239000002390 adhesive tape Substances 0.000 description 6
- 238000001816 cooling Methods 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 239000000155 melt Substances 0.000 description 6
- 238000005507 spraying Methods 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 238000005452 bending Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 210000000689 upper leg Anatomy 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 241000209094 Oryza Species 0.000 description 3
- 235000007164 Oryza sativa Nutrition 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 230000001678 irradiating effect Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 235000009566 rice Nutrition 0.000 description 3
- 238000007873 sieving Methods 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 230000009747 swallowing Effects 0.000 description 3
- 230000032258 transport Effects 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000003779 heat-resistant material Substances 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000007779 soft material Substances 0.000 description 2
- 239000011343 solid material Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910052724 xenon Inorganic materials 0.000 description 2
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 2
- FGRBYDKOBBBPOI-UHFFFAOYSA-N 10,10-dioxo-2-[4-(N-phenylanilino)phenyl]thioxanthen-9-one Chemical compound O=C1c2ccccc2S(=O)(=O)c2ccc(cc12)-c1ccc(cc1)N(c1ccccc1)c1ccccc1 FGRBYDKOBBBPOI-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 230000005068 transpiration Effects 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 230000003245 working effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/48—Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
- H01L21/4814—Conductive parts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/06—Metallic powder characterised by the shape of the particles
- B22F1/062—Fibrous particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/06—Metallic powder characterised by the shape of the particles
- B22F1/065—Spherical particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/04—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23D—PLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
- B23D23/00—Machines or devices for shearing or cutting profiled stock
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/04—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
- B22F2009/045—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by other means than ball or jet milling
- B22F2009/046—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by other means than ball or jet milling by cutting
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/30—Assembling printed circuits with electric components, e.g. with resistor
- H05K3/32—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
- H05K3/34—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
- H05K3/3457—Solder materials or compositions; Methods of application thereof
- H05K3/3478—Applying solder preforms; Transferring prefabricated solder patterns
Definitions
- the present invention is a T A B (T A B: Tap eAutoma ted Bonding) yafrifu used in the field of semiconductor mounting. It relates to a method for efficiently producing fine-sized fine metal spheres, which are required for "bumps" that play a role as bonding members in the chip bonding method.
- bumps Semiconductor mounting technologies that use bumps include T A B and the flip chip method. Metals such as gold are used as bumps in these fields, and various shapes such as spheres, squares, and intermediate shapes are used.
- the original function of the bump should play the role of electrically and mechanically joining two opposing conductive members.
- the bumps are aligned and placed between the two conductive members, and then heated and pressurized to join the two.
- the shape of the bump is a deformed cone-shaped sphere.
- Most of the bumps that are actually used in large numbers are close to a rectangular parallelepiped shape. The reason for this is that most of the bumps in practical use are The fact is that bumps with shapes that are easy to form by these methods are used, even if there are some functional problems, because they are manufactured by the methods of luck and etching.
- a metal mainly high-purity gold
- the mainstream method is to transfer the bump formed by the metal to the tip of the lid on the TAB tape side.
- the method using the metal method has the disadvantages that the equipment becomes large and the composition of the metal used as the bump is also restricted.
- the IC chip itself passes through the meshing process, which causes a problem that the yield of the IC chip deteriorates. There is also.
- An object of the present invention is to provide a fine gold sphere having a uniform size, a good shape, and no restrictions on purity and composition so that it can be used as it is for bumps required in the field of semiconductor mounting.
- the aim is to establish an efficient method that can be manufactured without sieving.
- a metal wire piece is cut to a certain length to obtain a metal wire piece, and the metal wire piece is heated to a temperature equal to or higher than the melting point of the metal. It is characterized by having a spheroidizing stage.
- the cutting length is about 1 mm at the longest from 0.5 strokes or less even if the material metal wire used is thin. It has to be a short one.
- the metal wire that is processed into extra fineness is extremely easily deformed, such as by bending under its own weight. It is very difficult to realize a device that can send an ultra-fine wire made of soft metal with a diameter of several tens of micron to a thin one, which is about 10 micron, without bending. There are difficulties.
- One of the features of the present invention is that a thin metal wire is cut to a certain length with high accuracy.
- molten metal has a high surface tension, so if a fine solid material of an appropriate shape is heated above the melting temperature, it naturally tends to change to a spherical shape in the molten state. Therefore, in principle, it is possible to make a metal sphere simply by melting a metal material having the same mass as the metal sphere to be obtained in advance and then gently cooling and solidifying it.
- the heating temperature for melting the material metal should be higher than the melting temperature of the metal, and if it is heated to a temperature higher than necessary, it should be avoided because it may cause changes in the components and deterioration of the surface texture. It was confirmed that the range slightly higher than the melting point of the metal from 0 to 100 is the desired range for the heating temperature. In addition, the smaller the size of the metal ball to be obtained, the lower the heating temperature is set. It is desirable to do. If it is unavoidably heated to a higher temperature, the retention temperature at high temperature should be shortened as much as possible to prevent evaporation, and the cooling rate until resolidification should be accelerated to prevent the growth of coarse dendries. It can prevent deterioration.
- FIG. 1 is a diagram showing an example of a situation in which cut metal wires are arranged side by side in a flat-bottomed crucible and melted in the first embodiment of the method of the present invention.
- Fig. 3 is a diagram showing the actual size distribution of the metal spheres obtained in the first embodiment.
- FIG. 4 is a schematic diagram of a second embodiment showing a cutting process in the method of the present invention
- FIG. 5 is a schematic diagram showing a modified example in the second embodiment
- FIG. 6 is a schematic diagram of a second embodiment. It is a schematic diagram which shows another modification example in.
- FIG. 7 and 8 a and 8 b are schematic views of a third embodiment showing the cutting process of the method of the present invention.
- Figures 9a to 9f show the cutting process in the present invention
- Fig. 10 shows a model diagram for explaining the operating state of the cutting process in the fourth embodiment
- Fig. 10 shows a part thereof by another means.
- Schematic diagram when replaced Fig. 11 is a schematic diagram showing an example when a feed roll is used
- Fig. 12 is a perspective view showing a modified example when cutting is performed more efficiently. be.
- Fig. 13 shows the cutting process in the method of the present invention.
- FIG. 14 Schematic block diagram of the cutting device used in the example
- Fig. 14 is a schematic partial enlarged view of the roller used to cut the fine metal wire using the micrometal wire cutting device
- Fig. 15 is the fifth implementation.
- Fig. 16 shows fine particles using a cutting device that is yet another modified example of the fifth embodiment.
- It is a schematic partial enlarged view of a roller when cutting a metal wire.
- FIG. 17 is a schematic view of the apparatus used in the sixth embodiment showing an example of the heating process in the method of the present invention.
- FIG. 18 is a schematic view of the apparatus used in the 7th embodiment showing an example of the heating process in the method of the present invention
- FIG. 19 is a schematic diagram of the apparatus used in the modified example of the 7th embodiment.
- .. --Fig. 20 is a schematic diagram of the apparatus used in the 5th and 8th examples showing an example of the heating process in the method of the present invention.
- Fig. 21 (a) is a schematic view of the substrate and holding lid used in the ninth embodiment when cutting and melting are performed at the same time in the method of the present invention
- Fig. 21 (b) shows the substrate and holding lid.
- Fig. 22 and Fig. 23 are the figures for explaining the method of laying the fine metal wire on the 0 substrate in the 9th embodiment
- Fig. 24 is the figure for laying the fine metal wire.
- Schematic diagram when the substrate and the holding lid are fixed FIGS. 25 and 26 show other examples of the holding lid used in this embodiment, FIGS. 27 and 28.
- the figure shows another example of the substrate used in this embodiment
- FIG. 29 is an explanatory diagram when three substrates are stacked and heated.
- Figure 30 shows an example of the case where the holding lid is not used by using fine metal wires formed in a corrugated shape in advance. The best mode for carrying out the invention
- a plurality of thin metal wires 2 are bundled and covered with a resin 3 such as vinyl chloride, cut to a certain length, and then the coating is peeled off to take out the metal wire 6 having a certain length.
- a resin 3 such as vinyl chloride
- 2B shows a method in which a plurality of metal wires 2 are sandwiched between tapes 4 and 5 in parallel, the tape is cut to a certain width, and then the metal wire 6 is taken out.
- the tape you can use adhesive tape coated with adhesive on one side and the same adhesive tape on the other side, but adhesive is not always necessary, so just apply paper etc. But it's enough. If you use an automatic cutting machine with a wide blade width, you can cut fine wire very efficiently.
- the metal wires 6 cut in this way are arranged in a crucible 1 that does not react with the metal as illustrated in Fig. 1, and are heated to the required temperature to make the dimensions uniform. A metal ball was obtained.
- Fine metal wire is within ⁇ 0.1 thigh by a commercially available automatic cutting machine. ⁇ ⁇
- the thin metal wire cut to a certain length is placed in a crucible made of metal, etc., which has the property of being hard to get wet, at a certain distance or more, and then vacuumed or inactive. It was heated in a gas atmosphere. This heating melts the material wire and makes it spherical due to the action of surface tension. By cooling after all the materials have melted, it can be solidified while maintaining a spherical shape. After the cooling was completed, the fine gold spheres to be taken out were obtained.
- a copper wire with a diameter of 0.1 stroke was cut to a length of 0.7 with an automatic cutting machine.
- the cut copper wires were lined up in a ceramic pit with a flat bottom at intervals of about 2 sq. And heated to 1120 in a vacuum furnace.
- the average diameter was 0.22
- the maximum and minimum diameters were 0.24 and 0.21 respectively, which were uniform sizes.
- the standard deviation was 1.9, 1 1 7 ⁇ . From the above results, it is considered that the diameter of the gold ball obtained in this example is within a very narrow range of about 1 1 1 to 1 2 3 m.
- Figure 3 shows the results of measuring the diameters of 245 of the obtained gold balls. All gold balls are distributed between 76 m and 8 4 ⁇ m, and the average value is 80.1 um and the standard deviation is 1.7, which is extremely uniform. I understand.
- the size distribution of the obtained metal spheres is large. Therefore, when only the spheres of a specific size are required, the unnecessary size spheres are removed by sieving or the like. Was indispensable.
- there are no restrictions on the composition or purity of the metal which is a problem in the metal method, and it was possible to freely select the most suitable metal or alloy for the application and process it into a spherical shape.
- the method of the present invention basically aims at the production of metal spheres having a uniform size, but any size can be used as long as the cutting length of the wire rod of the material has a uniform distribution. It can also be applied to applications for manufacturing metal spheres with a distribution.
- the first embodiment is extremely effective when attempting to accurately cut an ultrafine metal wire for a bump material with an existing cutting machine having a feed mechanism at a constant pitch. Therefore, it is suitable for relatively small-scale production.
- a soft material metal wire such as gold which is drawn to an ultrafine diameter of about 50 micron or less for bump production, is mixed with an adhesive or an arrangement material as an impurity.
- a cutting method that can cut a large amount of wire with high cutting accuracy and a large amount of less than 1 sq. Preferably less than 0.6 ⁇ by means that there is no room for it.
- the force to cut multiple ultra-fine metal wires at the same time, or if cutting one by one, the method with extremely high cutting speed is adopted. It is clear that it must be done.
- a plurality of ultrafine metal wires of the bump material are bundled or arranged in a flat line in advance, and these are cut at the same time.
- a covering material, adhesive, tape, etc. is used over the entire length of the ultrafine metal wire for parallel arrangement, these are later cut together with the ultrafine metal wire. It will take time to divide.
- the covering material, the adhesive, or the fixing material such as tape is used only at both ends of the ultrafine metal wires arranged in parallel, and the ultrafine metal supported by these both ends. No fixing material was used in the middle part of the wire.
- the ultrafine metal wires are arranged in this way, the method of cutting the arranged ultrafine metal wires to a certain length is inevitably adopted from one end. I can't do it. This is because the arrangement is only established by the support of both ends, and if the ends are separated even on one side, the arrangement will be instantly distorted. Since the same inconvenience naturally occurs when the flatness of the upper surface of the base is insufficient, the upper surface of the base should be used in a flat and clean state without fine dust. In order to cut the ultrafine metal wires arranged in such an unstable state to a certain length, it is effective to perform all cutting at the same time.
- a disk-shaped or straight line is used with respect to a fine metal wire stretched on a flat base such as hard rubber.
- a cutting jig in which the cutting edges are lined up at regular intervals according to the length of the target metal wire piece, the ultrafine metal wire was cut to the desired length in a short period of time. ..
- the cutting jig needs to be in contact with the cutting edge at all positions in the length direction of one ultrafine metal wire at the same time. If the time when the cutting edge touches differs depending on the position of the ultrafine metal wire in the length direction, the first cutting edge cuts the gold wire and at the same time the entire wire jumps up, making normal cutting impossible. It is necessary to pay attention to the point. Therefore, it is necessary that the height of the cutting edge is uniform at a certain level. Furthermore, when using a cylindrical cutting jig, the axis of the jig should be kept parallel to the length direction of the ultrafine metal wire, and when using a flat plate cutting jig, a flat base should be used.
- the ultrafine metal wires to be cut are first arranged side by side on the flat base surface in the number to be cut. In order to fix the arrangement, only adhesives, tapes, covering materials, etc. were used for both ends of the ultrafine metal wire, and these arrangement auxiliary materials were not used at all in the middle part of the ultrafine metal wire. .. For this reason, the arrangement auxiliary material was not mixed in the ultrafine metal wire piece after cutting, and it was possible to eliminate the concern that impurities would adversely affect the dissolution in the subsequent process.
- the entire length of the middle part of the ultrafine metal wire is cut at the same time by a cutting jig with multiple cutting edges that are disk-shaped or straight, it is a simple method to fix only both ends. By simply arranging them, it was possible to produce a large number of ultrafine metal wire pieces of a certain length at the same time.
- the cutting jig can be used repeatedly for a long period of time without damaging the cutting edge more than necessary.
- FIG. 4 is a perspective view showing an outline of a cutting example according to this embodiment.
- a gold wire with a diameter of 30 m as the material's ultra-fine metal wire 1 is arranged parallel to the upper surface of the hard rubber plate used as the flat base 3, and adhesive tape 2 is attached to both ends. It was fixed by the key. From one end of this hard rubber plate, trace the disc-shaped cutting edge 1 1 to the top surface of the hard rubber with a cylindrical cutting jig 10 fixed by arranging them at a pitch of 0.55. By moving it to the end, the extra-fine gold wire on the hard rubber was cut into pieces of 1 awake length.
- the gold wire pieces are placed in a flat-bottomed graphite crucible so that they do not come into contact with each other, and by heating at high frequency, a clean, size-aligned gold ball for bumps without impurities has been obtained.
- Small protrusions 5 are provided at regular intervals on both ends of the hard rubber plate used as the flat base 3, and the ultrafine metal wire is alternately passed between the small protrusions 5 at both ends. It is arranged in a fixed pitch.
- a gold wire with a diameter of 2 ⁇ / m was used as the ultrafine metal wire.
- a small amount of adhesive was applied to the part where the ultrafine metal wire was folded back along the small protrusion 5 to temporarily fix it.
- This extra-fine gold wire was cut by stacking a large number of razor blades 1 6 and using a cutting jig 15 made so that the cutting edge was flat. The razor blade spacing is set to 0.4 ran. From above the hard rubber plate 3 on which the gold wire 1 was stretched, the cutting jig 15 was lowered while maintaining the level, and the ultrafine gold wire was brought into contact so that the entire length was cut at almost the same time. ⁇ 1
- a large number of ultrafine metal wires 1 (gold wires with a diameter of 25 m) are bundled and glued at both ends. This was laid on the polypropyrene plate of the flat base 4 without slack, and the adhesive tape 2 was attached to the adhesive-hardened parts at both ends to fix it to the base.
- the standard-sized gold wire piece was melted in the same manner as in Example 1, and a fine gold ball suitable for use as a bump could be prepared.
- impurities are mixed in the standard-sized ultrafine metal wire piece of the bump material metal required when manufacturing the bump required by the TAB method or the like by the melting method.
- a pan is made by melting a fine metal wire of a certain length.
- Fine metal pieces with good length accuracy that can be used to make Can be cut in large quantities by means such that there is no room for adhesives and arrangement materials to be mixed as impurities, and the cut wire pieces are not entangled with each other in the melting process after cutting. It provides a cutting process for cutting in such a state that it can be supplied.
- the guide X having a fine hole with a small inner diameter through which the fine metal wire passes and the guide Y having a fine hole with a slightly larger inner diameter face each other.
- the fine metal wire sent out through the small hole of the guide X enters the slightly large small hole of the opposite guide Y for a certain length, the tips of the two opposing guides are placed together. It is characterized by cutting fine metal wires by applying shearing action between them.
- This example relates to cutting fine metal wires with a diameter of about ⁇ 50 / m or less, but the cut fine metal wire pieces are then arranged and melted so as not to interfere with each other. It is used to make a spherical bump. Therefore, it is important not to think about cutting alone, but to cut it so that it is easy to use in the melting process of the next process. In the melting process, first and foremost, avoid contamination with impurities. Attention needs to be paid to. It is necessary to avoid impurities that dissolve in the metal that becomes the bumps, as well as impurities that do not dissolve but adhere to the surface of the bumps created by melting. It goes without saying that it is better to remove these harmful impurities before they are heated to the high temperature of the metal, which is the melting temperature of the metal, rather than removing them after the bumps are completed.
- the cutting of the fine metal wire in this example is firstly a method in which impurities are not mixed, and secondly, if the metal wire pieces after cutting are not entangled.
- the aim is to realize a method of controlling even the intervals between metal wire pieces that are cut and fall into the receiver. bottom.
- the fine holes in the guide should be such that the outer diameter of the fine metal wire can be passed through at the last minute.
- the degree of clearance when passing through a fine metal wire varies depending on the type of metal, but it is necessary to keep it to about a few percent even if it is different.
- the small hole on the wire Y is too small, there is a risk that the deformed end after cutting will be attracted the next time it is sent, so this is a fine metal.
- Preferable results are obtained if the inner diameter is about twice that of the wire.
- the fine metal wire is cut to the desired length by shearing action between the blade or another guide at the position closest to the exit side of the guide.
- the cut wire pieces are discharged in a disjointed state, which is convenient for supply to the melting process.
- FIG. 7 is a schematic diagram showing the first cutting method in the third embodiment.
- a gold wire with a diameter of 30 ⁇ m was used as the material fine metal wire 1
- a ceramic grooved roll with a diameter of 5 was used as the feeder rolls 2 a and 2 b.
- This field roll functions to send the fine metal wire 1 through the small hole of the guide 3 to the waiting position of the cutting blades 5 a and ⁇ b by the rotation of the step motor (not shown).
- the guide is ceramic, and the cutting blade is a razor blade. Used.
- the length that the wire roll feeds at one time is adjusted by a drive part (not shown) so that it is equal to the length to be cut of the fine metal wire. I set it to send at the pitch of.
- the cutting blades 5 a and 5 b are, of course, kept in the released state.
- the cutting blade is activated and the fine metal is activated.
- a flat-bottomed graphite crucible is placed at the position where the cut wire piece falls, and the location is slightly shifted each time one wire piece falls. It was possible to set the crucible as it was removed into the melting furnace, and to efficiently manufacture bumps.
- the cutting blade was cut by sandwiching it from the left and right, but it is also possible to cut from one side using a rotary blade.
- Fig. 8a and Fig. 8b show the concept of the second cutting method of the third embodiment.
- the configuration of the fine metal wire 1, feed rolls 2 a, 2 b, and guide 3 is the same as in the previous example.
- the feature of this example is that the guide 4 is placed instead of the cutting blade under the guide 3.
- the fine metal wire 1 used was a gold wire with a diameter of 20 ⁇ m, but the small hole of the guide 3 had an inner diameter of 25 m, and the small hole of the guide 4 had an inner diameter of 40 ⁇ m. All guides are made of ceramics.
- the fine metal wire] is passed through the guide 3 and the guide 4 in succession.
- the fine metal wire was cut in a cutting manner by moving the lower guide 4 laterally by 0.5 ram with respect to the guide 3.
- the guide 4 was pulled back to the initial position, and then the fine metal wire was supplied to the inside of the guide 4 through the guide 3 by the wire roll.
- the feed roll stopped automatically, and the guide 4 moved horizontally to shear the fine metal wire.
- the standard length cutting of the material metal for bumps which is required when the bumps used in the TAB method etc. are manufactured by the melting method of fine metal wire pieces, is prevented from mixing impurities. It is now possible to process a large amount of wire, and it is possible to avoid the work of removing impurities before melting the fine metal wire pieces in the post-process and the cut wire pieces becoming agglomerates, and bumps. Efficient manufacturing has become possible.
- a soft material metal wire such as gold which is drawn to a small diameter of about 50 micron for bump production, is used as an impurity and is mixed with an adhesive or an arrangement material.
- the first cutting method of this embodiment is to pull out a certain length of the fine metal wire from the guide exit side by moving the holding part that holds the end of the fine metal wire, and then to the holding part. It is characterized by cutting fine metal wires with cutting blades installed in close proximity.
- a fine metal wire was pulled out from the guide by a certain length by a feeder placed on the exit side of the guide, and then provided in close proximity to the guide. It is characterized by cutting fine metal wires with a cutting tool.
- This example relates to the cutting of metal wire, but the cut metal wire pieces are then provided to form spherical bumps by arranging and melting them so that they do not dry out to each other. It is a thing. Therefore, it is important not to consider cutting alone, but to cut it so that it can be used in the melting process of the next process.
- the metal wire When cutting a metal wire of normal diameter to a certain length, the metal wire is intermittently sent out by a fixed length by a wire roll rotated by a step motor, and the cutting blade is operated for each step. If it is cut, a large number of metal wire pieces having the same length can be easily obtained.
- fine metal wire there is a problem that it is not easy to realize accurate feed itself because it bends when trying to feed it by feeder roll.
- it was effective to pull out the fine metal wire that has passed through the guide from the exit side of the guide. The following two methods were particularly effective as methods for drawing out fine metal wires with a constant length with high accuracy.
- the first is to provide a holding part for holding and fixing the tip of the fine metal wire by sandwiching all or part of the part that will be cut next, and cutting this holding part finely.
- Draw a fine metal wire by moving it away from the guide by a length that is often equivalent to the length of the metal wire. It is a way to put it out.
- a wire roll is installed on the exit side of the guide, and the above-mentioned wire is installed by a step motor or the like adjusted so as to correspond to the length of cutting such as 1 step. The method of pulling out the fine metal wire by rotating the lead roll was also effective.
- the part to be fixed should be limited to the part as close to the tip of the fine metal wire as possible. And if possible, I would like to grab the cutting edge side of the fine metal wire that is about to be cut off, not between the guide and the blade, but outside the blade. Then, the fine metal wire deformed by the swallowing will be cut off, and the position where the swallowing part will be fixed next is the position where the deformation due to the previous swallowing or cutting hardly affected. So, the method in this example This is because the reliability of automation is extremely high.
- the fine metal wire to be cut is intermittently pulled out from the output side of the guide by a length corresponding to a fixed cutting length.
- the fine metal wire is pulled out by the operation of the fiber roll or the holding part on the exit side of the guide.
- Cutting is performed by a cutting tool provided in close proximity to the feeder or holding section. Fine gold because it is a method of pulling out the fine metal wire from the exit side instead of sending it into the narrow guide hole.
- Cutting work suitable for mass production was carried out without the 10-genus line bending at the entrance of the guide hole or clogging inside.
- FIGs 9 a to 9 ⁇ are schematic diagrams showing the basic operation of this embodiment.
- a gold wire with a diameter of 20 m was used as the fine metal wire 1.
- the fine metal wire 1 is pulled downward through a guide 2 made of quartz and having a small hole with an inner diameter of 30 m.
- the tip of the fine metal wire 1 reaches between the holding parts 3 a and 3 b during release and the cutting blades 4 a and 4 b during the same release.
- clampers 5a and 5b were provided on the entry side of the guide 2 to prevent the fine metal wire 1 from flowing out naturally through the guide 2 (Fig. 9a).
- the holding parts 3 a and 3 b are made of ceramics, but first operate them to grip the fine metal wire 1 from the left and right. It was fixed (Fig. 9b). Next, clamper 5 a, ⁇ b And moved the holding parts 3a and 3b downward by d while holding the fine metal wire 1.
- a razor blade was used for the cutting blades 4 a and 4 b, but since the vertical movement of the cutting blades communicates with the holding parts 3 a and 3 b, it is cut by the downward movement of the holding part described above.
- the blades 4 a and 4 b also moved downward by d (Fig. 9c). By the operation up to this point, the fine metal wire is pulled out from the guide 2 by the length d to the exit side.
- Cutting blades 4 a and 4 b are operated horizontally to make a fine metal wire.
- the wire diameter d of the fine metal wire was 0.3, 0.5, and 0.8, respectively, but in each case, it was possible to cut with an accuracy of ⁇ 0.1. rice field.
- Example 1 the roles of the clampers 5a and 5b are insignificant. Prevents the fine metal wire from naturally coming out and back from the guide when the holding parts 3 a and 3 b are released. It was this. This role can also be assigned by other means, such as Example I, which does not depend on the clamper.
- the guide 21 has a spiral shape to have the function of a clamper. Holding part 3 a : 3 b and cutting edge 4 a,
- the resistance provided by the inner wall of the guide as it passes through the spiral guide 2 1 causes it to rest in the pulled-out position, as in Example 1 despite the lack of a clamper.
- the cutting was done with good accuracy.
- FIG 11 is a schematic diagram of the equipment used.
- 1 is a fine gold wire
- 2 is a guide
- 3 a and 3 b are holding parts
- 4 a> 4 b is a cutting tool.
- Feed rolls 6 a and 6 b were installed on the exit side of the guide 2.
- This field mouthpiece was made of ceramic with a diameter of 3 and was installed 10 mm away from the exit side of the guide 2. The roll was rotated by a step motor (not shown), and the fine metal wire was intermittently pulled out to the exit side of the guide 2 by a fixed length.
- a gold wire with a diameter of 30 / m was used as the fine metal wire 1.
- the cutting length was 0.4, and accurate cutting was possible.
- the method in the fourth embodiment accurately cuts a fine metal wire in a single wire state, but in order to further improve the cutting efficiency, a plurality of cutting elements for each single wire are combined and arranged in parallel. It is also possible to process.
- Figure 12 shows an example of this, when four fine metal wires 1 are cut at the same time.
- Guide 2 is made of ceramics, but it is split in half and has a groove inside to allow fine metal wires to pass through, and is used in a state where it is aligned from the left and right.
- the fiber rolls 6 a and 6 b are also made of ceramics and are grooved rolls to allow fine metal wires to pass straight through. The rotation of the roll uses a step motor (not shown in the figure), and four fine metal wires 1 can be pulled out by the same length at the same time.
- the holding parts 3 a and 3 b and the cutting blades 4 a and 4 b can also act on the four fine metal wires 1 at the same time, and both of them can act on the four fine metal wires 1 at the same time.
- the feeder rotates to pull out a fine metal wire of a certain length, and first the holding parts 3a and 3b are closed to fix the tip of the fine metal wire, and then the cutting tool 4a, 4 b works and disconnects.
- the fine metal wire can be cut with high accuracy without contacting impurities, and the cut wire pieces can be taken out one by one in a disjointed state. Therefore, the subsequent melting step It was easy to supply to.
- the processed metal wire is extremely difficult to handle because it bends under its own weight.
- it is necessary to accurately send out a bendable metal wire by a certain length, but it is thin from a wire diameter of several tens of micron made of soft metal. It is extremely difficult to send a single thin wire of about 10 micron with high accuracy.
- Example 5 was made based on the above circumstances, and can cut a fine metal wire into a wire piece of a certain length with high efficiency and high accuracy, and is different from the fine metal of Examples 1 to 4. A wire cutting process is provided.
- a first roll in which cutting blades are formed at regular intervals in the circumferential direction, a second roll abutting on the first roll, and the first roll are described.
- the fine metal wire is provided by providing a guide portion for guiding the fine metal wire between the second roll and at least one of the first roll or the second roll. It is characterized by having a step of holding and pulling in between the first roll and the second wire and cutting with the cutting blade.
- outer peripheral portion of the second roll may be formed of an elastic material.
- the fine metal wire guided by the guide portion is held between the rotating rolls and drawn between the two mouths, so that the easily bendable fine metal wire is drawn with high accuracy. Can be done.
- the drawn fine metal wire is cut by a cutting blade.
- the friction interval of the cutting blade according to the cutting dimensions, it is possible to cut fine metal wires to a certain length with high accuracy.
- the outer peripheral part of the second roll is formed of an elastic material. As a result, the frictional force when the fine metal wire is held and pulled in by both rolls becomes large.
- Fig. 13 shows a schematic configuration diagram of the fine metal wire cutting process, which is the fifth embodiment of the present invention
- Fig. 14 shows the roller when cutting the fine metal wire using the fine metal wire cutting device. It is a schematic partial enlarged view.
- a gold wire with a wire diameter of 20 m is used as the fine metal wire.
- the cutting process of the fine metal wire which is work i ng ex amp le 1, consists of a wire roll 2 for sending out the fine metal wire 30 and a small hole with an inner diameter of 30 m for guiding the fine metal wire 30.
- a metal wire portion 4 having a wire and a pair of rolls 6 a and 6 b arranged below the wire portion 4.
- a large number of cutting blades 2 2 are formed on the metal cutting roll (1st roll) 6 a at regular intervals in the circumferential direction.
- the pitch spacing of the cutting blades 2 2 is determined by the size of the required spherical bump and the wire diameter of the fine metal wire used. In this working ex amp le, we are considering the case where a spherical bump with a diameter of 80 m is formed by a gold wire with a diameter of 20 ⁇ , so the pitch interval is set to 0.85.
- the outer circumference of the holding roll (second roll) 6 b is made of elastic material 25. This is to increase the frictional force so that the fine metal wire 30 can be pulled in easily and reliably.
- the holding roll 6b is provided with a cutting load adjusting mechanism 8. This is to adjust the contact pressure between the cutting roll 6a and the presser foot 6b.
- the thickness of both mouths 6 a and 6 b (dimensions in the direction perpendicular to the paper surface in Fig. 1), about 2 wires are sufficient because the fine metal wire 30 is thin, and the diameter is large. Approximately 10 mm is sufficient.
- the reaction of the force pushing the material 2 ⁇ is maximized, and the fine metal wire 30 is cut.
- the fine metal wire 30 can be pulled in, and the fine metal wire can be cut at regular intervals (pitch spacing of the cutting blade) with high accuracy.
- a cleaning mechanism 10 using a brassiere or the like is provided below the cutting roll 6a. This is because if you continue to cut a fine metal wire, for example, a gold wire, gold force will accumulate on the cutting blade 2 2 and you will be able to cut.
- an elastic material is used for the outer periphery of one roll 6b, and a cutting blade having a constant pitch interval is formed on the other roll 6a to draw in a fine metal wire. It is possible to cut the wire to a certain length with high accuracy by pulling it in between 6 a and 6 b of both mouths by frictional force without cutting in the middle of. In addition, by changing the pitch interval of the cutting blades, it is possible to cut fine metal wires to any length. Furthermore, since the roll is mechanically rotated, it is faster than the conventional one and fine gold.
- the metal wire pieces cut by the process shown in this working example are melted in the melting process, which is the next process, to form spherical bumps.
- the melting process one metal wire piece is melted separately without interfering with each other.
- the cut metal wire pieces will fall on a conveyor (not shown) placed below the roll, for example, a conveyor (not shown), so that they will be placed on the capacitor.
- the metal wire pieces can be easily separated and placed one by one at regular intervals. Therefore, it is possible to continuously shift from the cutting process to the melting process, which is the next process.
- Fig. 15 is the second working example of the present invention.
- the pitch spacing of the cutting blades 2 2 is set as in the first working example by forming the holding teeth 2 4 between the cutting blades 2 2 and the cutting blades 2 2. Narrowing is not easy due to the processing of the cutting roll 1 6 a. Therefore, this working example is suitable for cutting fine metal wire 30 for a long time. For example, if you need a spherical bump with a diameter of 120 m, you can use a fine metal wire 30 with a wire diameter of 20 m as in the first working example. Since it is only necessary to cut the wire to a length of 2.8 mni, the pitch interval of the cutting blade 2 2 is also 2.8 thighs. With this tight interval, it is easy to process the cutting roll 16. Other actions ⁇ The effects are the same as in the I working example.
- FIG. 16 is a schematic partial enlarged view of a roller when cutting a fine metal wire using the process of cutting a fine metal wire, which is the third working example of the present invention.
- the third working example differs from the first working example in that the corrugated presser teeth 27 are formed on the outer circumference of the presser roll 26 b.
- the other configurations are the same as in the first working example.
- the corrugated presser teeth 27 are formed on the outer circumference of the presser roll 2 6 b, the fine metal wire 30 is rolled by the roller 6 a, 2 6 with a larger frictional force than in the first working example. It can be pulled in between b.
- the corrugated presser teeth 2 7 and the cutting blade 2 2 are squeezed together to rotate the rollers 6 a and 2 6 b, so that the arc length of the corrugated presser teeth 2 7 cuts a fine metal wire 30.
- the corrugated presser teeth 27 may be made of ordinary metal. It may also be formed of an elastic material c .
- the fine metal wire 30 draws an arc between the rollers, so the fine metal wire 30 is hard to cut even if it is strong. It is suitable when using a highly elastic material.
- the fine metal wire is cut by a simple mechanism by using a pair of rolls in which cutting blades are formed at regular intervals on one outer peripheral portion. It is possible to cut continuously with high accuracy. --It is possible to provide a cutting process for fine metal wires that can improve productivity.
- Example 1 the metal used as the material for bumps is processed into fine wires, and after cutting the metal wires to a fixed length, they are separated from each other. It was melted and solidified in, and a spherical bump was obtained by using the surface tension.
- This Example 6 is performed based on the above circumstances, and provides a spheroidizing process capable of improving work efficiency by a simple device.
- the metal wire piece is freely dropped in the furnace core tube vertically arranged in the heating means, and the metal wire piece is heated to a temperature equal to or higher than the melting point of the metal used for the metal wire piece. It is characterized in that the metal wire piece is sphericalized by heating and melting the metal wire piece. It is desirable to install a lid at the lower end of the core tube.
- the metal wire piece that freely falls in the core tube is heated to a temperature equal to or higher than the melting point of the metal used for the metal wire piece by a heating means and melted. Since the molten metal has a large surface tension and spheroidizes itself, the metal wire piece is deformed into a spheroidal shape while falling in the core tube to become a fine metal sphere.
- a lid at the lower end of the core tube it is possible to prevent the upper airflow from being generated inside the tube.
- Figure 17 is a schematic diagram of the equipment used in this work ins example.
- a gold wire piece metal wire piece
- a gold ball fine metal ball
- the device shown in Fig. 17 recovers the core tube 2 which is the fall path of the metal wire piece 10, the heating furnace 4 for melting the metal wire piece 10, and the formed fine metal ball 20. It consists of a lid 6 to be used. Quartz glass with an inner diameter of about 5 sir and a length of about 1000 baskets was used for the furnace core tube 2, and a vertical annular electric furnace with a length of 500 was used as the heating furnace 4.
- the heating furnace 4 has a temperature distribution that has the maximum temperature near the lower end.
- the maximum temperature in the heating furnace 4 is 1300.
- the maximum temperature of the heating furnace 4 is set higher than the melting point of gold because, as explained below, the core tube 2 as short as possible ensures that the free-falling metal wire pieces are above the melting point. This is for heating.
- the lid 6 is made of stone English glass and is fitted to the lower end of the furnace core tube 2.
- the lid 6 is for preventing the updraft generated by the high-temperature heating furnace 4 and for recovering the solidified fine metal spheres.
- the distance between the heating furnace 4 and the lid 6 was about 200 mm.
- the inside of the furnace core tube 2 uses a normal atmospheric atmosphere.
- Metal wire cut by a fine metal wire cutting device (not shown) Piece 10 was dropped from above the core tube 2 and entered the core tube 2. When the metal wire piece 10 fell into the furnace core tube 2 and entered the heating furnace 4, the temperature began to rise sharply. The metal wire piece melts when the temperature rises above the melting point of the metal.
- the molten metal has a large surface tension, so that it changes into a spherical shape by itself in the molten state. Therefore, this molten metal changes into a spherical shape while passing through the heating furnace 4, but when it leaves the heating furnace 4, the temperature drops sharply and this metal begins to solidify. At the end, the metal sphere fell on the lid 6 and solidified to obtain a uniform and beautiful fine metal sphere 20.
- the process of collecting fine metal balls is completed simply by inserting the metal wire pieces into the furnace core tube. Since it can be performed all at once, it is possible to improve work efficiency and mass productivity. Furthermore, by equipping the device of this working example with, for example, a device for cutting fine metal wires one by one at regular intervals in the upper part of the furnace core tube of this embodiment, the fine metal wires can be cut as much as the cutting process. The spheroidization step of the metal wire piece and the recovery step of the fine metal ball can be continuously performed.
- the gold wire piece is used.
- the passing speed in the heating furnace can be known from the initial falling speed of the metal wire piece.
- the required length of the heating furnace and the maximum temperature are determined by the size of the metal wire piece and the melting point of the metal. Therefore, when manufacturing fine metal balls using other metals, it is necessary to change the size of the furnace core tube and heating furnace, the temperature of the heating furnace, and so on. In addition, depending on the metal, it may be necessary to replace the inside of the furnace core tube with a specific gas atmosphere so that a chemical reaction does not occur in the high-temperature heating furnace.
- the present invention is not limited to this, for example, the furnace core tube without a lid.
- the lower end of the pot may be tapered so that the fine metal ball can be collected from the opening hole at the lower end.
- a belt capacitor or the like can be placed below the core tube to continuously collect fine metal balls.
- a fine metal ball can be easily manufactured by melting a freely falling metal wire piece by using a heating means and utilizing the large surface tension of the molten metal. Since this can be done, it is possible to provide a spheroidizing process that can improve work efficiency and mass productivity with a simple device.
- Example 7 This embodiment can improve work efficiency and mass productivity, and provides a spheroidizing process different from that of Example 6 c.
- the metal wire piece transported by the transporting means is heated by the heating means to a temperature equal to or higher than the melting point of the metal used for the metal wire piece and melted.
- the feature is that the metal wire piece is spheroidized by this. ..
- the metal wire piece is transported by a transporting step, and during the transporting, the metal wire piece is heated to a temperature equal to or higher than the melting point of the metal by a heating means and melted. Since the molten metal has a large surface tension and spheroidizes itself, the metal wire piece is deformed into a sphere during transportation and becomes a fine metal sphere.
- Fig. 18 is a schematic diagram of the equipment used in the manufacturing process of fine metal spheres.
- a gold wire piece metal wire piece
- a gold ball fine metal ball with a diameter of 80 / m. do.
- the equipment shown in Fig. 18 is a heat-resistant rotary table 2 that conveys the metal wire piece 10 and a moving motor (not shown) of the rotary table 2 and a U-shape that melts the metal wire piece 10.
- Mold heating furnace 4 and the times to collect the formed fine metal spheres 20 It consists of a vessel 6 and a guide 8 for dropping the fine metal sphere 20 on the westward table 2 into the collection container 6.
- the turntable 2 is made of ceramic and is formed in a circular shape with a diameter of about 200 thighs.
- the maximum temperature in the heating furnace 4 is the melting point of gold
- the metal wire piece 10 cut by the fine metal wire cutting device (not shown) is placed on the rotary table 2.
- the metal wire piece 10 rotates with the turntable 2, and when it enters the heating table 4, the temperature begins to rise sharply. Then, the metal wire piece melts when the temperature rises above the melting point of the metal.
- molten metal has a large surface tension, so it changes into a spherical shape in the molten state. Therefore, this molten metal changes into a spherical shape while passing through the heating furnace 4, but when it exits the heating furnace 4, the temperature drops sharply and this metal begins to solidify.
- the metal spheres are dropped into the recovery vessel 6 by the guide 8 to obtain 20 fine metal spheres.
- the process of collecting the fine metal spheres can be performed automatically just by placing the metal wire pieces on the rotary table.
- the device of this embodiment can be used for the process of cutting fine metal wires and for cutting metal wire pieces.
- the spheroidization step and the fine metal recovery step can be performed continuously.
- Fig. 19 is a schematic diagram of the equipment used in the method for manufacturing fine metal spheres.
- the material and size of the metal wire piece used are the same as those in the first working example.
- the device shown in Fig. 19 is a tunnel type that melts the metal wire piece 10 and the belt capacitor 3 that conveys the metal wire piece 10, the drive motor of the belt capacitor 3 (not shown), and the metal wire piece 10 It consists of a heating tunnel 4 a and a recovery container 6 a for collecting the formed fine metal balls 20. Since the belt controller 3 needs to be heat resistant in order to pass through the heating furnace 4a, a belt made of heat-resistant steel chains with a large number of small ceramic plates attached is attached. I'm using it.
- a metal wire piece 10 cut by a fine metal wire cutting device (not shown) is quietly placed from above, for example, the belt capacitor 3.
- the dropped metal wire piece 10 is carried by the belt capacitor 3 and when it enters the heating furnace 4 a, the temperature begins to rise sharply a.
- the metal wire piece 10 has a temperature higher than the melting point of the metal. When it rises high, it melts and changes to a spherical shape. After heating ⁇ 4 a, the temperature drops sharply and the metal begins to solidify. Finally, the metal spheres fell from the belt condenser 3 and were collected in the collection container 6 to obtain a uniform and beautiful fine metal sphere 20 t.
- the present invention is not limited to this, and other metals suitable for bumps may be used.
- the melting point differs depending on the metal, it is necessary to set the maximum temperature of the heating furnace and change the material and speed of the rotary table and belt capacitor accordingly.
- the metal wire pieces transported by the transporting means are melted by using the heating means, and the large surface tension of the molten metal is utilized to easily make the fine metal. Since it is possible to manufacture balls, it is possible to provide a method for manufacturing fine metal balls, which can improve work efficiency and mass productivity.
- Example 8 the cost of the heating / melting means used in Example 7 A high-tech energy beam was used.
- the step of arranging the metal wire pieces of a certain length in the transport means in a state of being separated from each other and the step of arranging the metal wire pieces are separated from each other. It is characterized by having a stage in which the metal wire piece is irradiated with a high-tech energy beam in the transport process and the metal wire piece is heated to a temperature equal to or higher than the melting point of the metal wire piece to be melted.
- the metal wire piece is heated to a temperature equal to or higher than the melting point of the metal by irradiating the metal wire piece with a high energy beam according to the above configuration and melted.
- the molten metal has a large surface tension and spheroidizes itself to become a fine metal sphere.
- Figure 20 is a schematic diagram of the equipment used in this working example.
- a gold wire piece metal wire piece
- a gold ball fine metal ball
- the device shown in Fig. 20 irradiates the heat-resistant rotary table 2, which is a means for transporting the metal wire piece 10, the drive motor (not shown) of the rotary table 2, and the metal wire piece 10.
- High energy beam irradiator 4 and formed fine metal sphere 20 The rotary table 2 is made of ceramics and is formed in a disk shape. The diameter was about 200 ⁇ . Since this method has a smaller heating area than other heating methods, it is not necessary to form the entire rotating table 2 with a ceramic, and a metal wire piece is placed, for example. It is also possible to make only the donut-shaped part into a ceramic.
- a high-grade xenon lamp is used as the beam source for the high-tech Nergi beam irradiator 4 (for example, beam-spot welda).
- the high-energy beam illuminating device 4 may include a condensing mechanism using a concave mirror, a convex lens, or the like, which can further condense the high-energy beam.
- This high-tech energy beam irradiator 4 can heat the object up to 2000'C.
- the metal wire piece 10 cut by the fine metal wire cutting device (not shown) is placed on the image transfer table 2 and the rotary table 2 is driven to perform high-tech work.
- the metal wire piece 10 was moved to the irradiation position of the energy beam.
- the metal wire piece was heated to a temperature higher than the melting point of the metal and melted.
- molten metal has a large surface tension, so it changes to a spherical shape in the molten state. Therefore, this molten metal has a spherical shape while being irradiated with a high energy beam. Transformed into.
- the rotary table 2 moves the molten and spherical metal out of the irradiation range of the high energy beam, and transports the next metal wire piece to the irradiation position of the high-tech energy beam.
- the spherically formed metal was gently cooled and solidified to form a fine metal sphere 20 with a diameter of 80 m.
- the next piece of metal wire is irradiated with a high-tech energy beam.
- Each metal wire piece placed on the rotary table 2 in this way is continuously heated * melted in order, and the formed fine metal sphere 20 is finally dropped into the collection container 6 by the guide 8 and collected. rice field.
- the process of collecting the fine metal spheres can be automatically performed only by placing the metal wire piece on the rotary table, so that the work efficiency can be improved. It is possible to improve and improve mass productivity.
- the apparatus of this embodiment is provided with, for example, an apparatus for cutting fine metal wires one by one at regular intervals at the upper part of the transfer table of this embodiment, so that the fine metal wires can be cut.
- the step of spheroidizing the cut metal wire piece and the step of collecting the fine metal ball can be performed continuously.
- the method of this embodiment has not been taken up in the past. Since it can be applied to metals and alloys, it is possible to easily and efficiently manufacture fine metal spheres with an appropriate composition as bumps.
- the melting point differs depending on the metal used, so it is necessary to change the heating temperature and the speed of the rotary table according to the metal. Also, depending on the metal used, it may be heated in a specific gas atmosphere so that a chemical reaction does not occur at high temperatures.
- the present invention is not limited to this, and a laser, an infrared heater, or the like is used as a high energy source. May be used as a beam source c
- an infrared irradiation device using an infrared heater has a maximum heating temperature of about 1200'C, so a metal with a low melting point used as a material for soldering is melted. Suitable for when to do.
- the present invention is not limited to this, and the belt compressor or the like is used. May be used.
- the belt capacitor it is necessary to form the belt capacitor using a material having excellent heat resistance. For example, you can make a belt out of heat-resistant steel chains and attach a number of small ceramic plates on top of it to form a belt condenser.
- metal wire pieces are manually placed in a melting tray or the like at regular intervals. Had to line up
- the metal wire may be cut and melted. In many cases, it is desirable to be able to integrate the process of making a fine metal ball.
- This embodiment is based on the above circumstances, and provides a method for producing fine metal balls that can be easily mass-produced while improving work efficiency.
- a fine metal wire is stretched on the upper surface of a heat-resistant substrate having a recess formed on the upper surface, and then the stretched fine metal wire is heated and melted. By doing this, the fine metal wire is cut and spheroidized at the same time to obtain a fine metal sphere.
- the substrate has a large number of recesses having at least the same size of the opening of the portion where the fine metal wire is stretched. It is desirable that it is formed.
- the fine metal wire be heated and melted after the heat-resistant holding lid is placed on the upper surface of the substrate on which the fine metal wire is stretched.
- the fine metal wire stretched on the upper surface of the substrate according to the above configuration, the fine metal wire was melted into a metal wire piece having the size of the opening of the recess, and was melted.
- the surface tension of the molten metal is used to spheroidize the metal wire piece.
- the large number of fused metal wire pieces are all the same. Since it has the same length, it is possible to easily mass-produce fine metal balls of uniform size.
- a heat-resistant holding lid is placed on the upper surface of the substrate on which the fine metal wire is stretched, and then the fine metal wire is heated and melted to cause thermal expansion when the fine metal wire is heated. It is possible to prevent the fusing position from shifting due to the deformation of the metal wire piece, and even if there is a difference in the fusing timing of the fine metal wire in each recess when a large number of recesses are formed in the substrate, each of them is surely performed. Fine metal wire can be blown at each recess.
- Fig. 2 1 A (a) is a schematic view of the substrate and the holding lid used in one embodiment of this Ming dynasty
- Fig. 21 B is a schematic side view of the substrate and the holding lid together.
- Fig. 23 is a diagram for explaining the method of stretching the fine metal wire on the substrate
- Fig. 24 is a schematic diagram when the substrate on which the fine metal wire is stretched and the holding lid are fixed.
- the substrate 10 is made of a heat-resistant material such as carbon or ceramics.
- the cross section of the groove 1 2 is not limited to a semicircle, but may be rectangular or V-shaped. However, if the cross-sectional shape is V-shaped, the bottom must be rounded with a radius of 0.05 ⁇ or more.
- it is desirable that the width ⁇ of the protrusion 1 4 between the swords is as narrow as possible.
- the width D of the groove opening is determined by the wire diameter of the fine metal wire and the size of the fine metal sphere to be manufactured. Also In the case of this wor king ex am ple, if the dimension of the width D of the groove opening is manufactured with an accuracy of soil 0. ⁇ mm, the variation in the length of the fused metal wire piece will be within about 10%. When formed into a metal sphere, the error in its radius is about 5%, and it is possible to produce a uniform fine metal sphere with high precision. Therefore, when fusing the fine metal wire described later, the gold wire on the protrusion 1 4 between the grooves has a great influence on the accuracy of the metal ball obtained even if it falls into any groove of the protrusion 1 4. No.
- a large number of pins 1 6 at both ends of the substrate 10 are spaced equal to the diameter of the bribe, and one end 5 part 5 pin 1 6 is the other end pin 1 6 It is provided so as to be located between. As a result, fine metal wires can be stretched almost in parallel on the upper surface of the substrate 10.
- the retainer lid 20 is also made of ceramics, which is placed on the substrate 10 and serves to fix the fine metal wire 2 stretched over the groove 1 2.
- the surface of the holding lid 20 facing the substrate 10 is processed to be flat.
- the holding lid 20 has a hole 2 2 corresponding to the pin 1 6. It is desirable that the gap created when the substrate 10 and the holding lid 200 are overlapped is as small as possible.
- the substrate 10 and the holding lid 20 were finished so that the gap was at most 0 to 10; about £ m.
- the fine metal wire was fixed by sandwiching the fine metal wire 2 between the substrate 10 processed in this way and the holding lid 20.
- a fine metal wire 2 was stretched so as to be perpendicular to the groove 1 2.
- Fig. 22 I laid a line around.
- a plurality of fine metal wires 2 may be arranged in parallel on the substrate 10 without providing pins on the base plate 10.
- a fine metal wire (gold wire) 2 After attaching a fine metal wire (gold wire) 2 to the substrate 10 and then placing the holding lid 20 on the substrate 10 with a clamp or a hinge or other fastener 30 as shown in Fig. 24. Fixed. In this state, the substrate is placed in a high temperature furnace, for example, an induction heating furnace, and the gold wire is melted at 1060 ° C. As soon as the gold wire melted, it was blown at the protrusion 1 4 between the grooves 1 2 and fell into the groove 1 2. In this example, since the width D of the groove 1 2 is formed to be 0.8 mm, the gold wire is also cut to the length of 0.8 ridge. In this way, the fused gold wire pieces are arranged in the groove at appropriate intervals (equivalent to the diameter of about pin 16).
- molten metal has a large surface tension, and when a fine solid material of an appropriate shape is heated above the melting temperature, it tends to change into a spherical shape by itself in the molten state. Therefore, it was possible to produce a fine metal sphere simply by melting a metal having the same mass as the metal sphere to be obtained in advance, and then gently cooling and solidifying it. Therefore, the metal wire pieces arranged at regular intervals in the groove 12 were melted in the furnace and formed into fine metal spheres of the same size. Finally, the substrate 10 was taken out of the furnace and cooled slowly to obtain fine metal spheres of the desired dimensions.
- the cutting step of the fine metal wire and the melting step of the metal wire piece can be performed in one step. Arrangement work is no longer required, and work efficiency in the fine metal manufacturing process can be improved. In addition, mass productivity could be improved by forming a large number of grooves 12 or forming long grooves 1 2.
- heat-resistant materials are used for the substrate] 0 and the holding lid 20 in this embodiment, these can be used semi-permanently once they are manufactured.
- Fig. 25 and Fig. 26 are diagrams showing other examples of the holding lid used in this embodiment.
- the holding lid 20 b shown in Fig. 26 has a corrugated cross section of the surface that fits the substrate 10.
- Each convex portion 2 6 of the waveform is formed so as to correspond to each groove 1 2 of the substrate 10.
- the fine metal wire is pressed to the lower side of the figure at the center of each groove 1 2 by the holding lid 20 b at the time of fusing. Therefore, when the fine metal wire is blown, the fine metal wire can be surely cut at each protrusion 14 and therefore the size of the metal wire piece after the fusing becomes uniform.
- Fig. 27 and Fig. 28 are diagrams showing other examples of the substrate used in this embodiment.
- the yield can be improved by using the substrate shown in Fig. 27 or Fig. 28.
- the case where one substrate is used has been described. May be used by stacking a plurality of sheets. For example, as shown in Fig. 29, three substrates 10 may be stacked and placed in a heating furnace. However, in this case, the bottom surface of the upper and middle boards 10 has the same accuracy as the holding lid. Need to finish.
- the substrate 10 the function of a holding lid in this way, the holding lid 20 only needs to cover the uppermost base plate 10 and thus the number of holding lids 20 is reduced.
- a large amount of fine metal balls can be easily manufactured in one process.
- the fine metal wire 2 is a straight line
- the fine metal wire is not limited to a straight line, and is formed into a waveform as shown in FIG. 2 ai may be formed to fit each groove 1 2.
- the fine metal wire 2 a is blown at each top 2 a 2 at the time of fusing, so that precise finishing of the protrusion 1 4 becomes unnecessary, and the substrate Easy to manufacture.
- the length of the metal wire piece is the length of the arc of each waveform.
- the holding lid can be omitted by forming the fine metal wire as shown in Fig. 30. Needless to say, it is possible to omit the holding lid when the accuracy of the fine metal ball is not required.
- the present invention is not limited to this, but one.
- the size can be different in one process. It is also possible to manufacture fine metal balls.
- the fine metal wire is stretched on the upper surface of the substrate and the substrate is heated to a high temperature to cut the fine metal wire and melt the cut metal wire piece. Since it can be performed in one step, it is possible to provide a method for manufacturing fine metal spheres, which can improve work efficiency and mass productivity in the process of manufacturing fine metal spheres.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Wire Processing (AREA)
- Powder Metallurgy (AREA)
Description
明 発明の名称
サイ ズの均一な微細金属球の製造方法 技術分野
本発明は、 半導体実装分野で使用される T A B ( T A B : Tap e A u t oma ted Bon d i n g ) ゃフ リ ッフ。チップ接合法 において接合部材と しての役割を果たす 「バンプ」 等て 必要とされる、 サイ ズの一細定な微細金属球を効率的に製 造するための方法に関する。
背景技術
バンプを使用する半導体実装技術と しては、 T A Bや フ リ ップチ ップ法等がある。 これらの分野におけるバン プとしては、 金等の金属が使用され、 その形も球形や直 方体およびそれらの中間的な形状等、 まちまちなものが 使用されている。
バンプ本来の機能は、 相対する二つの導電部材間を電 気的、 機械的に接合する役割を果たすべき ものである。 一般には、 バンプは上記二つの導電部材間に位置合わせ して配置された後、 加熱並びに加圧されて両者を接合す る。 このよう な機能から考える と、 バンプの形状は変形 しゃすい球形状が望ま しいのである力 実際に多 く 使用 されているバンプは直方体形状に近いものが大部分であ. る。 この理由は、 実用されているバンプはほとんどがメ
ツキやエ ッチングの方法によって作製されているため、 機能的に多少の問題はあっても、 これらの手法によって 形成し易い形状のバンプが使用されている、 という のが 実態である。 さ らに現在バンプ形成の最も一般的な方法 であるメ ツキによる方法に限っていえば、 上記の形状の 問題に加えて、 バンプとする金属の純度や組成の選択が 制限されるという欠点もある。
メ ツキによるバンプ形成の具体的な方法と しては、 I Cチップの電極部にバンプとなる金属 (主に高純度の金) を直接メ ツキ して形成するか、 または一旦ガラス基盤上 等にメ ツキによって形成したバンプを T A Bテ一プ側の リ一ド先端部に転写する方法が主流となっている。
しかしながら、 メ ツキによる方法ば設備が大き く なる 上に、 バンプとして使用する金属の組成にも制約を受け る という欠点がある。 また特に I Cチップの電極部に直 接メ ツキ してバンプを形成する場合には、 I Cチップそ のものがメ ツキ工程を通過することになつて、 I Cチ ッ プの歩留まりが悪化するという問題もある。
ところで、 これまで機能的に望ま しいにもかかわらず、 球形状のバンプが主流にならなかつた最大の原因は、 均 一なサイ ズで形状の良い金属球を得ることが困難だつた こ とによる と思われる。
微細金属球を製造するための従来法と しては、 水噴霧 法、 ガス噴霧法、 真空噴霧法、 遠心噴霧法、 ローラー噴 霧法、 超音波噴霧法等、 多 く の方法が知られている。 し
かし、 例えば水噴霧法による微細粉末は形状が不規則、 ガス噴霧法は微細粒を作り に く いという欠点がある。 比 較的小さな金属球を工業的な規模で製造できる方法と し ては; iS /、噴霧法力、ある力 、 Journal of Metals , January 1981, PP13-18 に記載されているよう に、 得られる金属 球の粒径は、 例えば 3 0 から 2 0 0 m程度の範西の分 布を持ってしま う。 従って、 このよう な方法で作製した 金属球をバンプのよう な用途に対して使用するためには- 出来上がった種々のサイ ズの中から特定サイ ズの金属球 だけをふるい分け等の方法によって選び出すこ とが必要 であった。 バンプと して使用できる微細金属球だけをェ 業的な規模でふるい分けるのは歩留りが著し く 低いため 実用的でな く 結果と して金属球をバンプと して使用する 試みも積極的には推進されなかった訳である。
発明の開示
本発明の目的は、 半導体実装分野で必要とするバンプ 用と してそのまま使用できるよう な、 サイ ズが均一で形 状が良く 、 しかも純度や組成に対して制約の無い微細金 属球を、 ふるい分け等によ らずに製造できる効率的な方 法を確立する こ とにある。
本発明のサイ ズの均一な微細金属球の製造方法は、 金 属細線を一定長さに切断して金属線片を得る段階と、 そ の金属の融点以上の温度に金属線片を加熱して球状化す る段階とを有する こ とを特徴とする。
サイ ズの均一なバンプを得るためには、 極細金属線の
切断長さを均一にするという点がまず重要である。 長さ の切断精度を上げるためには出来るだけ線径の細い素材 を使用して、 切断長さを長めに出来る方が有利である こ とは言うまでもない。 バンプのサイズは一般に直径 1 0 0 ミ ク ロ ンを下画る小さなものであるから、 使用する素材 金属線を細く しても、 切断長さは 0. 5 画以下から長く て も 1 mm程度の短いものとならざるを得ない。 しかも、 一 般的にバンプ用に供される金属は軟質のものが多いため、 これを極細に加工した金属線は、 自重で曲がるなど極め て変形しやすいものとなる。 軟質な金属で作られた直径 数十ミク ロンから細いものでは 1 0 ミクロ ン程度の極細 線は当然腰がないので、 曲がらぬように精度良く送るこ とのできる装置を実現するのは大変に困難がある。
本発明の特徴の 1つは、 金属細線を一定の長さに精度 良く切断する点にある。
次に本発明の特徴の他の 1つである、 金属線片を融点 以上に加熱溶融して球状化する段階について説明する。 一般に溶融金属は表面張力が高いので、 適当な形状の微 細な固体素材を溶融温度以上に加熱してやれば、 溶融状 態では自ずから球形状に変化する傾向を有する。 従って、 予め得よう とする金属球と同じ質量を持つた金属素材を 溶解した後静かに冷却して凝固させてやるだけで原理的 には金属球を作ることが可能である。
もちろん一定の重力下において大きな球を得よう とす ると、 いずれかのサイ ズ以上で表面張力より も重力の影
響が強く なり、 つぶされた球形にしかならない限界が存 在する。 しかし、 本発明の目的とするバンプ用の金属球 の範囲は、 通常直径が 0. 5 mmを越える こ とはないので、 重力による偏平化はほとんど問題にならない。
発明者らは、 この原理を使って微細金属球を効率的に つ く るための方法について検討し、 工業的な分野での実 用可能な技術とするための条件を調べた。 その結果、 最 も重要なボイ ン トは以下の多項目に集約される こ とが明 らかになつた。 '
①素材は不定型でも体積が一定であり さえすれば一定 サイ ズの球が得られるが、 質量が一定の素材を大量に準 備するためには、 素材と しては線材の利用が望ま しい。 均一な斬面積をもった線材を使用すれば、 長さを一定に 切断するだけで、 質量の一定な素材を大量に用意する こ とが容易に実現する。 また、 なるべ く 断面積の小さい線 材を使えば切断長さのバラ ッキによる質量の変動を小さ く する こ とができるので、 得られる金属球の寸法精度を 一層高めるこ とが可能となる。
②線材を素材と して使用する場合、 切断後の線材の断 面サイ ズと長さの比があま り に大き く なる と、 加熱して 溶融させた際に 1 本の素材が 2ケ以上の金属球に分解し てしま う場合がある。 前項では断面形状はなるべ く 小さ く て長さの長い線材が望ま しかったのであるが、 1 本の 線材から確実に 1 ケの球を作るという第 2 の条件を加え る と、 切断後の素材の断面サイ ズと長さの比に対しては
一定の望ましい範囲が存在することになる。 我々の検討 結果では断面が円形の普通の線材の場合には、 長さが直 径の約 1 0 0倍を越えなければ、 このような分解の起こ る恐れは小さいことが判つたので、.寸法精度との兼ね合 いから、 この比の望ましい範囲としては、 5〜 1 0 0倍 とするのが良い。
③切断した線材を溶解する場合、 素材の線材を一定以 上の間隔を隔てた状態で溶解しないと 2本以上の素材が 溶融後に合体して大きな球になってしまう恐れがある。 加熱中に素材が変形することもあるので、 できれば i mm 程度の間隔は確保しておく ことが望ましい。
④加熱時に素材表面が酸化したり溶解時に素材の一部 が蒸散するとバンプとして必要な清浄な表面が得られな く なつたり歩留まりが低下する等、 好ましく ない現象が 現れる。 従って、 金属の種類によっては酸化防止に対す る配慮が必須であり、 さらに特に蒸気圧の高い金属を扱 う場合には蒸散を防ぐために不活性ガス雰囲気中で溶解 する等の対策をとることが望ましい。
⑤素材金属を溶融させるための加熱温度はその金属の 溶融温度以上であれば良く、 必要以上に高い温度に加熱 すると、 成分の変化や表面性状の劣化に繫がるので避け るべきである。 金属の溶融点に対して、 0 〜 1 0 0 て程 度高めの範囲が加熱温度として望ま しい範囲であること が確認された。 さらに付け加えれば、 得よう とする金属 球のサイ ズが小さい場合ほど、 加熱温度を低め側に設定
することが望ま しい。 やむを得ず高めの温度に加熱した 場合には、 高温での保定温度を極力短く して蒸発を防ぐ とともに、 再凝固までの冷却速度を速めて粗大デン ド ラ ィ の成長を阻止すれば、 表面性状の悪化を防止すること ができる。
図面の簡単な説明
第 1図は本発明法の第 1実施例において、 切断した金 属線を平底坩堝に並べて溶解する状況の一例を示す図、 第 2 A図及び第 2 B図は線材を一定長さに大量に切断す るための方法を例示する図、 第 3図は第 1実施例におい て得られた金属球について実測したサイズ分布を示す図 である。
第 4図は本発明の方法における切断工程を示す第 2 の 実施例の模式図、 第 5図は第 2 の実施例での変形例を示 す模式図、 第 6図は第 2の実施例での別の変形例を示す 模式図である。
第 7図および第 8 a図、 第 8 b図は、 本発明方法の切 断工程を示す第 3実施例の模式図である。
第 9 a図〜第 9 f 図は本発明における切断工程を示す 第 4実施例での切断過程の動作状況を説明するための模 式図、 第 1 0図はその一部を別の手段で置き代えた場合 の模式図、 第 1 1 図はフィー ドロールを用いた場合一例 を示す模式図、 さ らに第 1 2図は切断をより能率良く実 施する場合の変形例を示す斜視図である。
第 1 3図は本発明方法における切断工程を示す第 5実
o 5
施例に使用した切断装置の概略構成図、 第 1 4図はその 微細金属線の切断装置を用いて微細金属線を切断すると きのローラの概略部分拡大図、 第 1 5図は第 5実施例の 変形例である切断装置を用いて微細金属線を切断すると きのローラの概略部分拡大図、 第 1 6図は第 5実施例で の更に別の変形例である切断装置を用いて微細金属線を 切断するときのローラの概略部分拡大図である。 第 1 7 .図は本発明方法における加熱工程の 1例を示す 第 6実施例において使用する装置の概略図である。
第 1 8図は本発明方法における加熱工程の 1例を示す 第 7実施例において使用する装置の概略図、 第 1 9図は 第 7実施例の変形例において使用する装置の概略図であ る。 - 第 2 0図は本発明方法における加熱工程の 1例を示す5 第 8実施例において使用する装置の概略図である。
第 2 1図 (a)は本発明方法において切断と溶融とを同時 におこなう場合の第 9実施例に用いる基板と押さえ蓋の 概略図、 第 2 1図 (b)はその基板と押さえ蓋を合わせたと き 0概略側面図、 第 2 2図、 第 2 3図は第 9実施例での0 基板に微細金属線を張る方法を説明するための図、 第 24 図はその微細金属線を張った基板と押さえ蓋とを固定し たときの概略図、 第 2 5図及び第 2 6図は本実施例に用 いられる押さえ蓋の他の例を示す図、 第 2 7図及び第 2 8 図は本実施例に用いちれる基板の他の例を示す図、 第 29 図は 3個の基板を積み重ねて加熱する場合の説明図、 第
3 0図は予め波形に形成された微細金属線を用いる こ と により押え蓋を使用しない場合の一例を示す図である。 発明を実施するための最良の形態
実施例 1
細い線を、 たわみを生じさせずに精度良く 切断するた めには、 第 2 A図及び第 2 B図に示すような第 1 実施例 が有効である。 第 2 A図は、 複数本の金属細線 2 を束ね て塩化ビニール等の樹脂 3 で被覆し、 これを一定長さに 切断した後に被覆をはがして、 一定長さの金属線 6 を取 り出す方法である。 ただし、 束ねる金属線の本数をあま り多 く し過ぎると、 被覆内で個々の金属線が曲がったり 捩れたりする結果、 切断精度の悪く なる場合がある。 一 方、 第 2 B図は複数本の金属線 2 をテープ 4及び 5 の間 に平行に並べて挟み込み、 このテープを一定幅に切断し てから金属線 6 を取り出す方法である。 テープとしては、 片側は接着剤の塗布された粘着テープ等を利用し、 もう 一方の側は同じ粘着テープを使っても良いが接着剤は必 ずしも必要ではないので、 紙等を当てるだけでも十分で ある。 刃幅の広い自動切断機を使用すれば、 非常に能率 良く細線材を切断するこ とができる。
このよう にして切断した金属線 6 は、 その金属と反応 する恐れの無い坩堝 1 内に第 1 図に例示したよう に配列 し、 これを必要な温度に加熱する こ とによって、 寸法の 揃った金属球が得られた。
金属細線は市販の自動切断機によって、 ± 0. 1 腿以内
ί
o
の誤差で精度良く切断することが出来た。 一定長さに切 断された金属細線は、 金属と濡れにく い特性をもつたグ ラファ イ ト等で作られた坩堝中に一定以上の間隔をとる ように配置した後、 真空または不活性ガス雰囲気中で加 熱された。 この加熱によって素材線材は溶融し、 表面張 力の作用によって球形になる。 全ての素材が溶融した後 に冷却するこ とによって、 球形を保ったまま凝固させる こ とができる。 冷却完了後に取り出し目的とする微細金 属球が得られた。
第 1実施例における Working examples は以下のとう り。
Working Example 1
直径 0. 1画の銅線を自動切断機で長さ 0. 7讓に切断し た。 こ の切断した銅線を、 底面の平らなセラ ミ ッ ク ス坩 堝に約 2讓程度の間隔を置いて並べ、 真空炉中で 1120て に加熱した。
得られた銅球の寸法を測定したところ、 平均直径が 0. 2 2讓で、 最大および最小直径は各々 0. 2 4 と 0. 2 1 讓という均一なサイズになっていた。
Working Example 2
直径 4 6 mの金線 1 0本を束ね、 第 2 A図のように して外側を塩化ビニールで被覆した。 この被覆金線を、 自動切断機を用いて 0. 5腿長さに細 ί .チ, 切断後に塩 化ビニール被覆を取り除いて、 長さの揃った多数の金線
を取り出した。 これらをグラフア イ ト坩堝の平らな底面
上にほぼ 1 ran間隔で並べ、 真空チャ ンバ一内に入れて高 周波誘導加熱法で溶解した。 温度は 1 080て と した。
得られた約 9000ケの金球をまずメ ッ シュ番号 1 2 0 の 標準ふるい (目の開き 1 2 5 m ) でふる う と、 全ての 金球がふるいの目を通過した。 次にメ ッ シュ番号 1 4 0
(目の開き 1 0 6 m ) のふるいにかける と、 このふる いの目を抜ける金球は一つも無かった。 さ らに、 1 0 0 ケの金球を取り 出して直径を測定したとこ ろ、 平均値は
1 1 7 μ , 標準偏差は 1. 9 であった。 以上の結果から、 本実施例で得られた金球の直径は、 ほぼ 1 1 1から 1 2 3 m程度の非常に狭い範囲に入っている ものと考えられ る。
Wo rk i n g Exa mp l e 3
直径 2 5 / mの金線を、 第 2 B図に示したよう な方法 で幅 1 8讓の粘着テープ上に 1 画ずつの間隔を置いて合 計 1 5本、 互いに平行を保つよう にして貼り付けた。 線 材を貼った後のテープ粘着面には同幅の紙テープを貼り 合わせて、 線材が粘着テープと紙テープとの間に挟みこ まれるよう にした。 この線材入り テープを、 自動切断機 によって長さ 0. 5 5讓ずつにスライ ス した。
スライ スしたテープには、 0. 5 5咖長さの一定長さに 切断された金線が各スライ ス毎に 1 5本ずっ舍まれてい るので、 これらをテープのついたままグラ フア イ ト坩堝 に並べて入れた。 これをまず大気中で 5 0 0 'Cに加熱し テープを燃焼させた。 その後真空雰囲気に変えた上で誘
導加熱法で 1170 °Cに加熱し、 金属線材を溶解した。 冷却 後にテープの燃えカスを除去する と、 大きさの揃った多 数の金球が得られた。
この work i ng ex a mp l e 3 においては加熱を 2段階と し て、 始めに低温の大気中で焼いてテープを燃焼させるェ 程を挿入した。 これは必ずしも必須ではないが、 素材金 属の活性度が高く てテープの不純物と反応する恐れのあ るよう な場合や、 テープの不純物が坩堝表面と反応する のを避けるためには有効な方法である。
得られた金球の内、 2 4 5 ケについて直径を測定した 結果を第 3図に示す。 すべての金球が 7 6 mから 8 4 μ mの間に分布しており、 平均値が 8 0. 1 u m標準偏差 が 1. 7 という極めて均一性の良い金球が得られている こ とが判る。
金属粉末を量産する従来の方法では、 得られる金属球 のサイ ズ分布が大きいため、 特定サイ ズの球だけを必要 とする場合にはふるい分け等によつて不要サイ ズの球を 除去する こ とが不可欠であった。 本発明の第 1 実施例に おいては、 素材の金属線材の長さを精度良く 切断して準 備するだけで、 バンプのように寸法精度を厳し く要求さ れる用途にたいしても、 ふるい分けを必要とせずにその まま使用できる金属球を量産する ことが可能となった。 しかも、 メ ツキ法で問題となるよう な金属の組成や純度 に制限がな く、 用途に対して最も適当な金属や合金を自 由に選んで球状に加工する こ とができた。
また、 本発明法は基本的にはサイ ズの揃った金属球の 製造を狙ったものであるが、 素材の線材の切断長さに一 定の分布を持たせるよう にすれば、 任意のサィ ズ分布を 持った金属球を製造する用途に対しても適用が可能であ る。
〔実施例 2 〕
バンプ素材用極細金属線を、 一定ピッチでの送り機構 を有する既存の切断機で精度良く 切断しょう とする場合 には、 第 1 実施例は極めて有効である。 そ して、 比較的 小規模の生産に適している。
第 2実施例は、 バンプ製造用と して 5 0 ミ ク ロ ン以下 程度の極細径に線引き されている金等の軟質の素材金属 線を、 不純物と して接着剤や配列用材料の混入する余地 の無いよう な手段によって、 能率良く しかも高い切断精 度で多量に且つ 1 删以下好ま し く は 0. 6 ππη以下の線片に 切断でき る切断方法を提供する。
極細金属線を能率的に切断するためには、 複数本の極 細金属線を同時に切断してい く 力、、 または 1 本ずつを切 断するのであれば切断速度の極端に早い方法を採用しな ければならないこ とは明白である。 第 2実施例において は、 バンプ素材の極細金属線は予め複数本を束ねるか平 行に配置しておいて、 これらを同時に切断してい く方法 による こ とを前提と した。 ただし平行配列するために極 細金属線の全長に渡 て被覆材、 接着材、 テープ等を用 いる と、 後にこれらが極細金属線と一緒に切断されて区
分けに手間取るようになる。 この点を避けるために、 第 2実施例では、 平行配列する極細金属線の両端部だけに 被覆材か接着剤かテープ等の固定材を用いるにとどめ、 これらの両端部に支持される極細金属線の中間部分には 一切の固定材を使用しないようにした。
しかしながら、 極細金属線をこのような仕方で配列す るこ とにしたために、 この配列された極細金属線を一定 長さに切断するのに、 一端から順次切断していく方法は 必然的に採用できな く なった。 両端部の支持によって配 列が成立しているだけだから、 片側たけでも端部を切り 離してしまう と、 配列は瞬時にバラバラに乱れてしまう ことになるからである。 これと同様の不都合は、 基盤上 面の平坦度が不十分な場合にも当然生じてしまうから、 基盤の上面は平坦でかつ微細なゴミ等のない清浄な状態 で使用すべきである。 このような不安定な状態で配列さ れた極細金属線を一定長さに切断するためには、 すべて の切断を同時に行ってしまう方法が有効である。
そこで第 2実施例では、 平行配列された極細金属線の 中間部全長を、 同時に切断できる方法について種々検討 を行った。 その結果、 円盤状もし く は直線状の刃先を持 つ複数の刃物を重ね合わせた特殊な切断用治具を採用す るこ とによって、 目的を容易に達成出来るこ とが確認せ られるに至った。
すなわち、 前述のように硬質ゴム等の平坦な基盤上に 張り渡した極細金属細線に対して、 円盤状もし く は直線
状を呈し目的とする金属線片の長さに合わせて一定間隔 で刃先の並んだ切断治具を用いる こ とによって、 極細金 属線は、 短時間の間に望みの長さに切断された。
次にこの実施例で注意すべき点に関し説明する。
素材の極細金属線を平坦な基盤上に配列する際には、 配列された線同士の平行が保たれていないと、 切断した 線片の長さ誤差を大き く する原因となる。 また極細金属 線を基盤上に二層以上の多層を為すよう に配列するのは 切口が変形するなどしてやはり切断精度を損ねるので、 極細金属線を束ねて配列するよう な場合も含め、 あま り に多 く の本数を重ねる こ とは避ける必要がある。
この実施例の場合はいずれの場合でも、 切断用治具は 1本の極細金属線の長さ方向のどの位置もが同時に刃先 に接触するよう にするこ とが必要である。 極細金属線の 長さ方向位置によって刃先の触れる時期が異なる と、 最 初の刃先が金線を切断したと同時にその線全体が跳ね上 がって、 正常な切断はできな く なってしま う点に注意が 必要である。 したがって、 刃先の高さは一定レベルに揃 つているこ とが必要である。 さ らに、 円筒状の切断用治 具を用いる場合には治具の軸線が極細金属線の長さ方向 と平行を保つよう に、 また平板状の切断用治具の場合に は平坦な基盤の上面と切断用治具の刃先が為す平面とが 互いに平行である力、、 少な く とも極細金属線の長さ方向 と切断用治具の刃先の並んでいる方向との平行を維持す るように、 それぞれ配慮する こ とが必要である。
この実施例においては、 切断すべき極細金属線をまず 平坦な基盤の面上に切断しよう とする本数だけ並べて配 列する。 配列を固定するためには、 極細金属線の両端部 分だけに接着剤、 テープ、 被覆材等.を用いるにとどめ、 極細金属線中間部分にはこれらの配列補助材を一切使用 しないようにした。 このため、 切断された後の極細金属 線片の中には配列補助材が混入することがなく、 後工程 の溶解において不純物が悪影響を及ぼす心配を不要のも のとすることができた。
さ らに、 円盤状もしく は直線状の複数の刃先を有する 切断治具によつて、 極細金属線は中間部全長が同時に切 断されてしまうため、 両端部のみを固定する簡単な方法 で配列しておく だけで、 一定長さの極細金属線片を同時 多量に製作することができた。
また、 切断すべき極細金属線を配列する平坦な基盤と しては、 硬質ゴムや各種のプラスチック等、 緻密で、 あ る程度の弾力性があって刃物より軟らかい素材を使用す ることが望ましく、 これによつて刃先を必要以上に傷つ けることな く、 切断用治具を長期に渡って繰り返し使用 することが可能となった。
f or k i n g Exa mp l e 1
第 4図は、 この実施例にしたがった切断例の概要を示 す斜視図である。 素材の極細金属線 1 として直径 30 m の金線を、 平坦な基盤 3 として使用した硬質ゴム板の上 面に平行に配列した上、 両端部に粘着テープ 2を貼り付
ける こ とによって固定した。 この硬質ゴム板の一端から、 円盤状の刃先 1 1 を 0. 5 5讓ピッチで並べて固定した円 筒状の切断用治具 1 0 を、 刃先が硬質ゴムの上面になぞ るよう にして他端まで移動させる こ とにより、 硬質ゴム 上の極細金線を 1 醒長さの線片に切断した。
切断後の金線片は平底の黒鉛坩堝中に互いに接触しな いよう に置き、 高周波加熱する ことによって、 不純物の 無い清浄でサイ ズの揃つたバンプ用金球を得る こ とがて きた。
Working Examp 1 e 2
この working example の概念を示す第 5図に従って説 明する。
平坦な基盤 3 と して用いた硬質ゴム板の両端には、 一 定間隔で小突起 5が設けられており、 極細金属線はこの 両端の小突起 5 の間を交互に通すこ とによって、 一定ピ ツチで配列されるよう にした。 この working example に おいては、 極細金属線としては直径 2 δ / mの金線を用 いた。 極細金属線が小突起 5 に沿って折り返し曲げられ る部分には、 少量の接着剤を塗布して仮固定を行った。 剃刀の刃 1 6を多数重ね合わせ、 刃先部分が平面状に なるよう に作られた切断用治具 1 5 を使って、 この極細 金線の切断を行った。 剃刀の刃の間隔は 0. 4 ranとなるよ う にした。 金線 1 を張った硬質ゴム板 3 の上方から、 こ の切断用治具 1 5 を水平を保ちながら下降させ、 極細金 線の全長がほぼ同時に切断されるよう に接触させた。
- 1
o 5
切断後の定尺の金線片は実施例 1 の場合と同様の方法 て溶解し、 バンプ用の清浄な微細金球を作製することか. できた。
orking Example 3
第 6図において多数の極細金属線 1 (直径 2 5 mの 金線) は、 束ねて両端を接着剤で固められている。 これ を平坦な基盤 4 のポリ プロ ピレン板の上にたるみの無い ように寝かせ、 両端の接着剤で固められた部分に粘着テ —プ 2をつけて基盤に固定した。
working example 1 で使用したのと同じ、 1 mmピッチ で複数の円盤状の刃先 1 1を重ね合わせた切断用治具 10 を回転させながら、 束ねた極細金線を固定したポリ プロ ピレン板の上方から水平を保ったまま下降させた。
切断後の定尺の金線片は実施例 1 の場合と同様の方法 で溶解し、 バンプと して使用するのに最適な微細金球を 作製する こ とができた。
第 2実施例で示した切断法により、 T A B法等で必要 となるバンプを溶解法で製造する場合に必要となるバン プ素材金属の定尺極細金属線片を、 不純物の混入が起こ
20 らないようにして多量に切断できるようになり、 後工程 で極細金属線片を溶解する場合の不純物除去作業が不要 となつたので、 バンプの能率的な製造が可能になった。 〔実施例 3 〕
本実施例では、 一定長さの微細金属線を溶融してパン
25 プを作製するために供し得る長さ精度の良い微細金属片
を、 不純物と して接着剤や配列用材料の混入する余地 0 無いよう な手段によ って多量に切断でき、 かつ切断後の 溶融過程に対して、 切断された線片が互いに絡み合わな いよう にして供給できるよう な状態で切断するための切 断工程を提供する。
本実施例の第 1 の切断方法では、 微小な内径を有する ガィ ド出側の先端部から微細金属線が一定長さだけ送り だされた時に、 上記ガイ ドの出側先端部に近接して設け た切断用刃物を作動させる こ とによって、 微铂金属線を 切断する こ とを特徴とする。
本実施例での第 2 の切断方法では、 微細金属線が通り 抜ける微小な内径の細穴を有するガイ ド X と、 これより やや大きな内径の細穴を有するガイ ド Yとを互いに向か い合わせて配置し、 ガイ ド Xの細穴を通して送り出され た微細金属線が対向するガイ ド Yのやや大きい細穴内部 に一定長さだけ入って時点で、 対向する二つのガィ ドの 先端部同士による剪断作用を加える こ とによって、 微細 金属線を切断するこ とを特徴とする。
この実施例は、 直径約 · 5 0 / m以下の微細金属線の切 断に関するが、 切断された微細金属線片は、 次に、 相互 に干渉しあわないよう に配列して溶融するこ とによって 球形状のバンプとするために供される ものである。 した がって切断単独で考えるのでな く 、 次工程の溶融過程て 使用しやすいよう に切断する という こ とが大切である。 溶融過程では、 何より もまず不純物の混入を避ける こ
とに注意が払われる必要がある。 バンプとなる金属の中 に溶け込むような不純物はもちろん、 溶け込みはな く て も溶融されて作られたバンプの表面に付着するよう な不 純物も避ける ことが必要である。 これらの有害な不純物 はバンプが完成してから除去するより は、 金属の溶融温 度という高温の状態まで加熱される以前に取り除いてお く方が望ま しいこ とは申すまでもない。
したがつてさきに示した第 1 実施例でのテープ等に微 細金属線を貼付する方法等においては、 使用したテープ が加熱時に完全に燃焼して跡方無く 消滅するようなもの で無い限り、 テープごと微細金属線を切断し終わった状 態で、 微細金属線片だけを取り出して溶融過程に回すの が確実である。 しかしこの選別作業はなかなか容易では ないので、 できるものならば、 不純物となるテープや接 着剤等を切断過程で使用しないですませるのが望ま しい。 さ らに溶融過程では、 1 本 1 本の金属線片が別々に、 互 いに干渉しない状態で溶融される こ とも必要である。 も し複数の金属線片が接触したままで溶融過程に入った場 合には、 複数の金属線片が合体した大きなバンプが得ら れてしまい用をなさな く なるからである。
以上のよう なことから、 この実施例の微細金属線の切 断は、 第 1 に不純物が混入しない方法である こ とと、 第 2 には切断した後の金属線片が絡ま り合わず できれば 切断されて受器に落ちる金属線片 1 本 1 本の間隔までも コ ン ト ロールしゃすい方法である こ と、 の実現を狙いと
した。
この狙いを実現するためには、 微細金属線を何の処理 も しない単一の線のままで高速で切断できる こ とが必要 である。 単線の状態で切断が行われさえすれば、 切断さ れた線片は切断部の下方に用意した受器等に受け、 同時 に受器の位置を少しずつ変化させるようにすれば、 受器 の同じ部分だけに線片が固ま ってしま う のを避ける こ と もできるよう になる。
微細金属線を単線の状態で切断する方法と しては、 微 0 細金属線がぎり ぎりで通り抜けるよう なノ ズル状の細穴 を有するガイ ドを作っておき、 このガイ ドから吐き出さ れる微細金属線をガイ ド出側直近に設けた刃物で切断す るか、 または上記のガイ ドを)( と し、 これよりやや大き めの細穴を有する別のガイ ド Yを用意して、 前記二つの ガイ ドを互いに向かい合わせて配置する時、 ガイ ド Xを 通して送り出された微細金属線が対向するガイ ド Yの細 穴内に一定長さだけ送り込まれた時点において対向する 二つのガイ ドを先端同士による剪断作用を加える こ とに よって微細金属線を切断するかのいずれかの方法がきわ めて有効である こ とがわかった。 前者の方法の場合には ガイ ドの出側に切断用の刃物を設置する必要があるが、 微細金属線を微小長さに切断する ものであるから、 剃刀 の刃のような厚みの小さなものが望ま しい。 またガイ ド の材質と しては、 長期間の使用に耐える必要があり、 か
つ特に後者の場合がそうである力 ガイ ドの端部同士の
摺り合わせによる剪断によつて微細金属線を切断するも のであるから、 セ ラ ミ ッ ク スや超硬合金等を使用する の が妥当である。
ガイ ドの細穴は微細金属線の外径がぎりぎりで通り抜 ける程度が良い。 微細金属線を通した場合のク リ ァラ ン スの大きさの程度は金属の種類によっても異なるが、 い ずれにしても数%程度に抑えることが必要である。 ただ し前記のガイ ド Yの方の細穴は、 あまり小さいと、 いつ たん切断した後の変形した端部が次に送る際に引つかか る虞れがあるので、 こちらの方は微細金属線の 2倍程度 の内径を持たせる方が好ま しい結果が得られる。
微細金属線はガイ ドの出側直近の位置で、 刃物もし ぐ はもう 1個のガイ ドとの間の剪断作用によって、 望む長 さに切断される。 切断された線片は 1本ずっばらばらの 状態で排出されるので、 溶融工程への供給にも好都合で ある。
Work i n g Examp l e 1
第 7図は、 第 3の実施例の内の第 1 の切断方法を示す 模式図である。 素材の微細金属線 1 として直径 3 0 μ m の金線を、 フィー ドロール 2 a , 2 b としては直径 5讓 のセ ラ ミ ッ ク ス製溝付きロールを用いた。 こ のフ ィ ー ド ロールは図示はしないステップモータ一の回転によって、 微細金属線 1 をガイ ド 3 の細穴を通して切断刃物 5 a , δ bの待機している位置まで送り込む働きをする。 ガイ ドはセラ ミ ッ ク ス、 切断刃物としては剃刀の刃を加工し
て用いた。 フ ィ ー ドロールが 1 回に送り込む長さは、 微 細金属線の切断すべき長さ と等し く なるよう に、 図示は しない駆動部分によって調整される力 この working example では 0. 6讓ずつのピッチで送るよう にセ ッ ト し た。
まずフ ィ ー ドロールが回転を始めて微細金属線 1 を送 り出している最中には、 切断刃物 5 a , 5 b はもちろん 解放された状態を保っている。 微細金属線の 1 回分の送 り だしが完了したところで、 切断刃物が作動して微細金
2
3
属線の切断を 1 回行って再び解放位置で停止する。 フ ィ 一ドロールが次の 1 回分の微細金属線を送り出し終える と、 切断刃物は再度作動して 2回目の切断を完了する。 このようにして次々 と切断が行われ、 切断された微細金 属線片は 1 本ずつばらばらの状態で落下して行く 。
この例においては、 切断された線片の落下して く る位 置に平底の黒鉛製坩堝を置き、 しかも線片が 1 本落下す るごとに少しずつ場所をずらせて行く こ とによって、 取 り外したそのままの坩堝を溶融炉中にセ ッ トする こ とが でき、 能率良く バンプを製作するこ とができた。
またこの例では切断刃物を左右から挟むよう にして切 断する方式と したが、 回転式の刃物を使って一方から切 断する こ とも可能である。
Working Example 2
第 3実施例の第 2 の切断方法の概念を示す第 8 a図第 8 b図に従って説明する。
微細金属線 1 とフィー ドロール 2 a , 2 b、 ガイ ド 3 までの構成は先の例の場合と同様である。 この例ではガ ィ ド 3 の下の切断刃物の代わりに、 ガイ ド 4を配した点 が特徴となつている。 使用した微細金属線 1 は直径 2 0 〃 mの金線であるが、 ガイ ド 3の細穴は内径 2 5 m、 ガイ ド 4 の細穴はこれより大きい内径 4 0 〃 mとした。 またガイ ドはいずれもセラ ミ ックス製である。
始め第 8 b図のように、 微細金属線】 はガイ ド 3 とガ ィ ド 4 を連続して通しておく。 切断する時には第 8 b図 のように、 下側のガイ ド 4をガイ ド 3 に対して 0. 5 ramだ け横に移動させることによって、 微細金属線を切断的に 切断した。 切断後は再びガイ ド 4を初期位置に引き戻す と、 続いてフ ィ ー ドロールによって微細金属線がガイ ド 3を通してガイ ド 4 の内部に供給された。 一定長さだけ 送り込まれるとフィー ドロールは自動的に停止し、 ガイ ド 4が水平方向に動いて微細金属線を剪断した。
このような方法によって、 非常に切断長さ精度のよい 状態で微細金属線を切断することができた。
第 3実施例により、 T A B法等で使用するバンプを微 細金属線片の溶融法で製造する場合に必要となるバンプ 用素材金属の定尺切断を、 不純物の混入が起こ らないよ うにして多量に処理できるようになり、 後工程で微細金 属線片を溶融する前の不純物除去作業や、 切断された線 片同士が塊になってしまうのを避けることができるよう になり、 バンプの能率的な製造が可能になつた。
〔第 4実施例〕
この実施例では、 バンプ製造用と して 5 0 ミ ク ロ ン ' 下程度の細径に線引きされている金等の軟質の素材金属 線を、 不純物と して接着剤や配列用材料の混入する余地 の無いような手段によって、 能率良く しかも高い切断精 度で多量に目的とする長さの線片に切断でき、 かつ切断 後の線片が互いに絡み合う こ との無いようにして切断で き且つ第 3実施例とは異なる切断工程を提供する。
この実施例の第 1 の切断方法は、 微細金属線の端部を 摑んだ保持部を動かすこ とにより、 ガイ ド出側から微細 金属線を一定長さだけ引き出した後、 前記保持部に近接 して設けた切断刃物によって微細金属線を切断する こ と を特徴とする。
この実施例での第 2 の切断方法は、 ガイ ド出側に配し たフ ィ ー ドロールによって微細金属線をガイ ドから一定 長さだけ引き出した後、 フ ィ ー ドロールに近接して設け た切断刃物によつて微細金属線を切断するこ とを特徴と する。
この実施例は金属線の切断に関するが、 切断された金 属線片は、 次に、 相互に干涉しあわないよう に配列して 溶融する こ とによって、 球形状のバンプとするために供 されるものである。 したがって切断単独で考えるのでな く 、 次工程の溶融過程で使用しゃすいよう に切断する と いう こ とが大切である。
以上のようなこ とから、 の実施例の極細金属の切断
は、 第 1 に不純物が混入しない方法であることと、 第 2 には切断した後の金属線片が絡み合わず、 できれば切断 されて受器に落ちる金属線片 1本 1本の間隔までもコ ン ト ロールしゃすい方法であること、 の実現を狙いとした c これらの狙いを満足するためには、 むき出しの微細金属 線を単線のままで 1 ケ所ずつ切断することによって、 切 断された線片を 1 本ずつ処理できるようにすることが必 要である。
通常の直径の金属線を一定長さに切断する場合であれ ば、 ステップモーターで回転するフ ィ一 ドロール等によ つて一定長さずつ断続的に金属線を送り出し、 ステップ ごとに切断刃物を作動させて切断すれば、 長さの揃った 多数の金属線片を容易に得ることができる。 ところが微 細金属線の場合には、 フィ一 ドロールで送ろう とすると 曲がってしまい、 精度の良い送りそのものが容易に実現 できないという問題があつた。 この点を解決するために は、 ガイ ドを通した微細金属線をガイ ドの出側から引き 出すことが有効であることが明らかになった。 一定長さ ずつ精度良く微細金属線を引き出す方法としては、 次の 二つの方法が特に効果的であつた。
第 1 は、 微細金属線の先端部の、 次に切断されてしま う部分の全部または一部を挟み込む等の方法で摑んで固 定するための保持部を設け、 この保持部を切断する微細 金属線の長さにちょ う ど相当する長さ分だけ、 ガイ ドか ら遠ざける方向に動かすことによつて微細金属線を引き
出す方法である。 また別な手段と して、 ガイ ドの出側に フ ィ ー ドロールを設置して、 1 ステ ップがち よ う ど切断 する長さに相当するよう に調整されたステ ップモータ一 等によって前記フ ィ ー ドロールを回転させる こ とによつ て微細金属線を引き出す方法も同じよう に有効であった。 このような方法によれば、 微細金属線は後方から送り出 す場合に生じがちな曲がり の心配が皆無となり、 またガ ィ ドの細穴部分に微細金属線が詰ま つてしま う という不 都合も、 極めて発生しに く く なる こ とが確認された c このようにして一定長さ 2ず 7つの微細金属線が引き出さ れて く る機構が実現したので、 次にこの微細金属線の供 給機構と整合する切断方法について検討を行った。 精度 のよい切断のためには、 切断刃物のできるだけ直近の部 分を固定した状態で刃物を作動させる こ とが必要である 固定部分が刃物から遠く なればそれだけ、 切断時の刃物 自体の動きによって微細金属線が大き く 動かされるこ と になり、 切断精度はそれだけ劣化する こ とが避けられな い。 しかも固定する部分は、 できるだけ微細金属線の先 端に近い部分に限定する必要がある。 そして出来れば、 ガイ ドと刃物の間ではな く、 刃物より外側の、 今切り落 とされよう といている微細金属線の最先端部側を摑みた い。 そうすれば、 摑みによって変形を受けた微細金属線 は切り落とされて しまい、 次に摑み部が固定しよう とす る位置は、 前回の摑みや切断による変形の影響がほとん ど及ばなかった位置となるので、 この実施例での方法を
自動化する場合の信頼性が著し く高いものとなるからで ある。
切断しょう とする微細金属線はガィ ドの出側から、 一 定の切断長さに相当する長さ分ずつが断続的に引き出さ れて来る。 微細金属線を引き出すのは、 ガイ ド出側のフ イー ドロールまたは保持部の動作による。 切断は、 フィ — ドロールまたは保持部に近接して設けられた切断刃物 によって行われる。 狭いガイ ド穴に微細金属線を送り込 むのでなく出側から引き出す方式であるために、 微細金
10 属線がガイ ド穴入り口で曲がったり内部で詰まつたりす ることなく、 量産向きの切断作業が行われた。
Work i ng Exam l e 1
第 9 a図から第 9 ί図までが、 この実施例の基本的な 動作を示す模式図である。 微細金属線 1 としては直径 20 mの金線を用いた。 前記微細金属線 1 は石英で作った 内径 3 0 m.の細穴を有するガイ ド 2を通して下方に引 き出されている。 その微細金属線 1 の先端部は、 解放中 の保持部 3 a , 3 b、 および同じ ぐ解放中の切断用刃物 4 a , 4 bの間まで達している。 またガイ ド 2の入り側 には、 ク ラ ンパー 5 a , 5 bを設けて、 微細金属線 1が ガイ ド 2を通して自然に流れ出るのを防止した (第 9 a 図) 。
保持部 3 a , 3 bはセラ ミ ックス製であるが、 まずこ れを動作させて、 微細金属線 1を左右から挟むように握
んで固定した (第 9 b図) 。 次にク ランパー 5 a , δ b
を解放する とともに保持部 3 a , 3 bを微細金属線 1 を 把持したままで、 下方に d だけ動かした。 切断刃物 4 a , 4 b と しては剃刀の刃を用いたが、 その上下方向の動き は保持部 3 a , 3 b と連通するよう にしてあるため、 前 記保持部の下方動作によって切断刃物 4 a , 4 b も一緒 に d だけ下方に移動した (第 9 c図) 。 こ こまでの動作 によって、 微細金属線はガイ ド 2から長さ d だけ出側に 引き出されたこ とになる。
こ こで再びク ラ ンパー 5 a , δ bを閉じる とと もに..
10 切断刃物 4 a , 4 bを水平方向に動作させて微細金属線
1 を切断した (第 9 d図) 。 切断刃物 4 a , 4 b は切断 後す ぐに元の待機位置に引き戻し、 更に微細金属線 1 を 摑んでいた保持部 3 a , 3 b も解放する と、 切断された 線片 1 0が落下した (第 9 e図) 。 最後に保持部 3 a : 3 b と切断刃物 4 a , 4 bを一緒に dだけ上昇させる と (第 9 f 図) 、 この状態は第 9 a図にしめした最初の状 態とま つた く 同等の状態に復元しているこ とがわかる。 したがつてこの第 9 a 図から第 9 f 図までの工程を橾り 返して行わせる こ とによって、 微細金属線 1 は長さ d の 均一な長さの線片に次々 と切断してい く こ とができる。
微細金属線の線径 d としては、 0. 3 , 0. 5 , 0. 8聽で 各々テス トを行ったが、 いずれの場合でも ± 0. 1 讓以内 の精度で切断する こ とができた。
Working Exam le 2 .
先の例 1 においてク ラ ンパー 5 a , 5 b の役割は、 微
細金属線をガイ ドの出側で摑んで引き出す作甩をする保 持部 3 a , 3 bが解放状態になった時に、 微細金属線が ガイ ドから自然に出たり戻ったりすることを防止するこ とであった。 この役割は実施例 I のよ うなク ラ ンパーに よらない別の手段によつても受け持たせることが可能で ある。
この例においては、 第 I 0図に示すように、 ガイ ド 21 を螺旋状とするこ とによって、 ク ラ ンパーの機能を併せ 持たせる ことにした。 保持部 3 a : 3 b と切断刃物 4 a ,
1 0 4 bは共に実施例 1 と同じものを用いた。 微細金属線 1
は螺旋状のガイ ド 2 1 の内部を通るさいにガイ ドの内壁 から与えられる抵抗によって、 引き出された位置で静止 するようになり、 クランパーが無いにもかかわらず、 実 施例 1 と同じように精度の良い切断が行われた。
Work i n g Examp l e 3
第 1 1図は使用した装置の模式図である。 1 は微細金 属線、 2 はガイ ド、 3 a , 3 b は保持部、 4 a > 4 bが 切断用刃物である。 ガイ ド 2の出側にはフィー ドロール 6 a , 6 bを設置した。 このフ ィ ー ド口一ルは直径 3讓 のセラ ミ ックス製で、 ガイ ド 2の出側から 1 0 mm離れた 位置に設置した。 ロールの回転は、 図示しないステップ モ一ターによって行い、 微細金属線を一定の長さずつ断 続的にガイ ド 2 の出側に引き出すようにした。
この例の場合には、.前記のようなフィ一 ドロールの作
用で微細金属線が切断刃物の位置に自動的に供給されて
く るので、 保持部 3 a > 3 b も切断刃物 4 a , 4 b も上 下方向には動かす必要がない。 保持部 3 a , 3 b も切断 刃物 4 a , 4 b も共に解放された状態の時に、 フィー ド ロールが 1 ステツプ回転して引き出した微細金属線】 の 先端都を、 まず保持部 3 a , 3 bが水平に動いて摑んで 固定した後、 切断刃物 4 a > 4 bが同じ く水平方向に動 いて微細金属線 1 を切断するようにした。
微細金属線 1 としては直径 3 0 / mの金線を用い.、 切 断長さは 0. 4隨として精度の良い切断ができた。
Working Exam le 4
第 4実施例での方法は微細金属線を単線の状態で精度 良く切断するものであるが、 切断の効率を更に向上させ るためには、 単線ごとの切断要素を複数組合わせて、 並 列処理することも可能である。 第 1 2図はその一例を示 すもので、 4本の微細金属線 1 を同時に切断する場合で ある。 ガイ ド 2 はセラ ミ ックス製であるが、 二つ割りの 状態で内側に微細金属線を通すための溝を持つものを、 左右から合わせた状態で使用している。 フ ィー ドロール 6 a , 6 b もセラ ミ ッ クス製で、 微細金属線をまっすぐ に通すために、 溝付きロールになっている。 ロールの回 転は図に示していないステップモーターを使用しており 4本の微細金属線 1 を同時に同じ長さだけ引き出すこと ができる。
保持部 3 a , 3 b並びに切断刃物 4 a , 4 b も 4本の 微細金属線 1 に同時に作用することができ、 両者が共に
解放された状態の時にフィ一 ドロールが回転して一定長 さの微細金属線を引き出し、 まず保持部 3 a , 3 bが閉 じて微細金属線の先端を固定した後に、 切断刃物 4 a , 4 bが動作して切断するようにした。
この方法で、 直径 2 0 の金線を長さ 0. 8 mmの均一 な線片に能率良く切断することができた。
この実施例では、 微細金属線を不純物に接触させずに 精度良く切断することができ、 しかも切断された線片は 1本 1本をバラバラの状態で取り出すこ とができるので, 後の溶融工程への供給も容易であつた。
〔実施例 5 〕
バンプに用いられるのは軟質金属が主であるだめ、 こ れを加工した金属線は、 自重で曲がるなど極めて取扱い に く いものとなる。 特に切断の長さの精度を高めるため には、 曲がりやすい金属線を一定長さだけ精度良く送り 出すことが必要であるが、 軟質な金属で作られた線径数 十ミ ク ロ ンから細いものでは 1 0 ミク ロン程度の単一の 細線を、 精度良く送り出すのは極めて困難である。
実施例 5 は上記事情に基づいてなされたものであり、 微細金属線を、 能率良く しかも高い精度で一定の長さの 線片に切断することができ且つ実施例 1〜 4 とは異なる 微細金属線の切断工程を提供する。
本発明方法に係る微細金属線の切断工程は、 円周方向 に一定の間隔で切断刃が形成された第 1 ロールと、 該第 1 ロールに当接される第 2 ロールと、 前記第 1 ロールと
前記第 2 ロールとの間に微細金属線を案内するガイ ド部 とを設ける段階と、 前記第 1 ロール又は第 2 ロールの う ち少なく とも一方を面転する こ とにより、 微細金属線を 前記第 1 ロールと前記第 2 —ルとの間に挾持して引き 込むと共に前記切断刃により切断する段階とを有するこ とを特徴とする。
また、 前記第 2 ロールの外周部を弾性素材により形成 してもよい。
この実施例は前記の構成によって、 ガイ ド部によって 案内された微細金属線は回転する両ロール間に挾持され て両口一ル間に引き込まれるので、 曲がりやすい微細金 属線を精度良く 引き込むことができる。 また、 引き込ま れた微細金属線は切断刃により切断される。 切断刃のビ ツチ間隔を切断寸法に合わせて設計することにより、 微 細金属線を一定の長さに精度良く切断するこ とができる < また、 第 2 ロールの外周部を弾性素材により形成する ことにより、 両ロールにより微細金属線を挾持して引き 込む際の摩擦力が大き く なる。
Work i ng Exarap 1 e 1
以下に本発明の第 5実施例を第 1 3図及び第 1 4図を 参照して詳細に説明する。 第 1 3図は本発明の第 5実施 例である微細金属線の切断工程の概略構成図、 第 1 4図 はその微細金属線の切断装置を用いて微細金属線を切断 するときのローラの概略部分拡大図である。 微細金属線 としては線径 2 0 mの金線を用いている。
work i ng ex amp l e 1 である微細金属線の切断工程は、 微細金属線 3 0を送り出すためのフ ィー ドロール 2 と、 微細金属線 3 0を案内するための内径 3 0 mの細穴を 有する石英製のガィ ド部 4 と、 ガイ.ド部 4 の下方に配置 された一対のロール 6 a , 6 b とを含むものである。 金属製の切断ロール (第 1 ロール) 6 a には第 1 3図 に示すように円周方向に一定間隔で多数の切断刃 2 2が 形成されている。 切断刃 2 2 のピッチ間隔は必要とする 球形状のバンプの大きさと使用する微細金属線の線径に よって決定される。 この work i n g ex amp l e においてば線 径 2 0 咖の金線により直径が 8 0 mの球形状のバンプ を形成する場合を考えているので、 ピッチ間隔は、 0. 85 删にしている。
押さえロール (第 2 ロール) 6 bは外周部が弾性素材 2 5 により形成されている。 これは摩擦力を大き く して 微細金属線 3 0の引き込みを容易且つ確実に行うためで ある。 また、 押さえロール 6 bには切断荷重調整機構 8 が設けられている。 これは、 切断ロール 6 a と押さえ口 ール 6 b との接触圧力を調整するためのものである。 尚 両口一ル 6 a , 6 bの厚さ (第 1図において紙面に垂直 な方向の寸法) は、 微細金属線 3 0が細いので、 約 2 讓 程度で充分であり、 またその直径は約 1 0 mm程度でよい 一般に、 微細金属線を一定の長さに切断する場合には 微細金属線をフイー ドロールだけで送り出そう とすると 曲がりが生じ、 精度の良い送り機構が実現できない。 こ
の working example 1 のフ ー ド口一ル 2 は、 装置の初 期セ ッティ ングの際に微細金属線 3 0 をガィ ド部 4 に送 り出すために設けたものであり、 装置の稼動時には微細 金属線 3 0 を軽く 支持するだけで、 送り出しは行わない c この working example においては微細金属線 3 0 の送り 出しは以下に説明するよう に一対のロール 6 a , 6 b に より行う。 したがって、 フ ィ ー ドロール 2 は省略する こ とも可能である。
この working example に示す構成を用いて微細金属線 3 0 を切断するには、 先ず微細金属線 3 () をフ ィ ー ド-口 —ル 2から入れ、 図示しないステ ップモーター等によつ てフ ィ ー ドロール 2 を回転する こ とにより、 微細金属線 3 0 をガイ ド部 4 の細穴に通す。 微細金属線 3 0 はガィ ド部 4 によって両口ール 6 a , 6 b間に案内される。 次 に、 図示しない駆動装置により両ロール 6 a , 6 bを回 転する。 これにより微細金属線 3 0 は両口ール 6 a , 6 b間に挾持されて引き込まれる。 この working example においては押さえロール 6 bの外周部を弾性素材 2 5 に より形成しているので、 微細金属線 3 0 を挾持して引き 込む際に微細金属線 3 0 を途中で切断してしま う こ とな く 、 しかも大きな摩擦力により両口一ル 6 a , 6 b間に 引き込むこ とができるので、 滑り によるずれを防止して 微細金属線 3 0 を確実に送る こ とができる。 そして、 微 細金属線 3 0が両ロール 6 a , 6 b の中心点を結ぶ直線 上に位置したときに-. 切断刃 2 2が微細金属線 3 0 と弾
- 1
δ
性素材 2 δ とを押す力の反作用が最大になり、 微細金属 線 3 0 が切断される。 このよう にロール 6; a , 6 bを回 転させるだけで微細金属線 3 0 を引き込み.、 且つ一定間 隔 (切断刃のピツチ間隔) に精度よ く 切断する こ とがで きる。
この working example 1 においては、 切断ロール 6 a の下方にブラ シゃノ ズル等を用いたク リ 一二ング機構 10 が設けられている。 これは、 微細金属線、 たとえば金線 の切断を続ける と、 切断刃 2 2 に金の力スが溜ま り、 切
10 断の精度が落ちたり、 切断不良が生ずるからである。
この working example 1 によれば、 一方のロール 6 b の外周部に弾性素材を使用し、 他方のロール 6 a に一定 のピッチ間隔を有する切断刃を形成したこ とにより、 微 細金属線を引き込みの途中で切断するこ とな く 、 摩擦力 により両口一ル 6 a , 6 b間に確実に引き込んで、 一定 の長さに精度よ く切断する こ とができる。 また、 切断刃 のピッチ間隔を変えることにより、 微細金属線を任意の 長さに切断する こ とができる。 更に、 機械的にはロール を回転ざせるだけなので、 従来のものより高速で微細金
20 属線を切断するこ とができる。
また、 この working example に示す工程により切断さ れた金属線片は、 次の工程である溶融工程で溶融されて 球形状のバンプに形成される。 溶融工程では、 1 本 丄 本 の金属線片が別々に、 互いに干渉しない状態で溶融され
25 る ことが必要である。
この working example の微細金属線の切断工程を用い れば、 切断された金属線片はロールの下方に配置した、 たとえばコ ンベア等の搬送装置 (図示しない) に落下す るので、 コ ンベア上に金属線片を容易に一定間隔に 1 本 1 本づっ区別して配置する こ とができ .、 したがって切断 工程から次工程である溶融工程に連続して移行する こ と が可能になる。
forking Example 2
第 1 5図は本発明の第 2 working example である微細
3
金属線の切断工程を用いて微 7細金属線を切断する ときの ローラの概略部分拡大図である。 第 2 working example 力 第 1 working example と異なるのは、 第 2 working example の切断 π—ル 1 6 a には、 切断刃 2 2 と切断刃 2 2 との間に押さえ歯 2 4が形成されている点である。 その他の構成は第 1 working example と同様である。 押 さえ歯 2 4 はその先端が丸 く 形成されており、 弾性素材 2 5 とともに、 微細金属線 3 0 を引き込む役割を果たす, この working example においては、 先端が丸く形成され た押さえ歯 2 4 を設けたことにより、 第 1 working example に比べてより大きな摩擦力によって、 押さえ歯 2 と弾性素材 2 5 とにより微細金属線 3 0 を挾持して 引き込むことができる。
この working example においては、 切断刃 2 2 と切断 刃 2 2 との間に押さえ歯 2 4 を形成したこ とにより、 切 断刃 2 2 のピッチ間隔を第 1 working example のよう に
狭く するのは切断ロール 1 6 a の加工上容易でない。 し たがって、 この working example では微細金属線 3 0を 長めに切断する場合に適している。 たとえば、 直径が 1 2 0 mの球形状のバンプを必要とする場合、 微細金 属線 30として第 1 working example と同様に線径が 20 mである ものを甩いると、 微細金属線 3 0を 2. 8 mniの 長さに切断すればよいので切断刃 2 2のピッチ間隔も 2. 8腿になる。 この位のピツチ間隔であれば、 切断ロ ー ル 1 6 の加工は容易である。 その他の作用 · 効果は第 I working example と同様でめる。
Working Example 3
第 1 6図は本発明の第 3 working example である微細 金属線の切断工程を用いて微細金属線を切断するときの ローラの概略部分拡大図である。 第 3 working example が第 1 working example と異なるのは、 押さえロ ール 26 bの外周部に波形押さえ歯 2 7を形成した点である。 そ の他の構成は第 1 working example と同様である。 この working example では押さえロール 2 6 bの外周部に波 形押さえ歯 27を形成してあるので第 1 working example に比べてより大きな摩擦力により微細金属線 3 0をロ ー ラ 6 a , 2 6 b間に引き込むことができる。 この working example の場合、 波形押さえ歯 2 7 と切断刃 2 2 とを嚙 み合わせてローラ 6 a , 2 6 bを回転させるので、 波形 押さえ歯 2 7 の弧長が微細金属線 3 0 の切断寸法になる , 尚、 波形押さえ歯 2 7 は通常の金属により形成してもよ
いし、 また弾性素材により形成してもよい c.
この working example 3 に示す微細金属線の切断工程 は、 微細金属線 3 0 が弧を描いてローラ間に引き込まれ るので、 微細金属線 3 0 と しては、 強がっても切れ難い 銅等のよう に弾力性に富む材料を用いる場合に適してい る。
尚、 上記の working example では、 微細金属線を 1 本 切断する場合について説明したが、 本発明はこれに限定 される ものではな く 、 微細金属線を 2本以上切断するよ う にしてもよい。 この場合には微細金属線の切断本数に 応じて、 ロールを厚く する必要がある こ とは言う までも ない。
以上説明したようにこの実施例によれば、 一方の外周 部に一定の間隔で切断刃を形成した一対のロールを用い て微細金属線を切断するこ とにより、 簡単な機構で微細 金属線を精度良く 、 連続して切断する こ とが可能になり - 生産性の向上を図る こ とができる微細金属線の切断工程 を提供する こ とができる。
〔実施例 6 〕
本発明方法の第 2 の特徴である球状化工程に関し、 実 施例 1 ではバンプ用の素材となる金属を微細線に加工し この金属線を定尺切断した後、 互いの間隔を隔てた状態 で溶融 , 凝固させ、 表面張力を利用 して球形状のバンプ を得た。
即ち実施例 1 の微細金属球の製造方法では、 所定長さ
に切断した金属線片を坩堝中に一定の間隔をとって配置 した後、 溶融していた。 これは、. お互いの金属線片が接 触したまま、 又は余りに近い位置に置かれたまま溶融ェ 程に入ると、 溶融時にこれらの金属線片が合体してしま う虞があるからである。 この方法においては、 金属線片 がすべて一定の長さを有すれば、 均一なサイ ズの微細金 属球を形成することができた。 しかしながら、 この金属 線片は長く ても 2 3譲という微小なものなので、 金属 線片の配列作業及び微細金属球の回収作業に手間がかか るという問題があ
この実施例 6 は上記事情に基づいてなされたものであ り、 簡易な装置により、 作業能率の向上を図ることがで きる球状化工程を提供する。
この実施例 6 の球状化工程は、 加熱手段において縦に 配置された炉芯管内を、 金属線片を自由落下させ、 前記 金属線片に用いている金属の融点以上の温度に前記金属 線片を加熱して溶融するこ とにより、 前記金属線片を球 状化することを特徴とする。 前記炉芯管の下端に蓋を設 けることが望ま しい。
前記の構成によって、 炉芯管の中を自由落下する金属 線片を、 加熱手段によりその金属線片に用いている金属 の融点以上の温度に加熱して溶融する。 溶融状態の金属 は表面張力が大き く、 自ら球状化するので、 金属線片は 炉芯管の中を落下中に球状に変形され、 微細金属球とな る。
また、 炉芯管の下端に蓋を設けるこ とにより、 管内に 上舁気流が発生するのを防止する こ とができる。
以下に本発明の a working examp 1 eを添付図面を参照 して説明する。 第 1 7図はこの work ins example におい て使用する装置の概赂図である。 この working example においては、 線径 2 5 fi m、 長さ 0. 5 5 nunの金線片 (金 属線片) を使用しており、 直径が 8 0 mの金球 (微細 金属球) を製造する。 .
第 1 7図に示す装置は、 金属線片 1 0 の落下路である 炉芯管 2 と、 金属線片 1 0 を溶融するための加熱炉 4 と、 形成された微細金属球 2 0を回収する蓋 6 とからなる。 炉芯管 2 には、 内径約 5 卿、 長さ約 1000籠の石英ガラス を使用し、 加熱炉 4 としては長さ 5 0 0 譲の縦型環状電 気炉を用いた。 加熱炉 4 は下端近傍において最高温度を 有するような温度分布を持たせた。 加熱炉 4 内の最高温 度は 1300てである。 加熱炉 4 の最高温度を金の融点より も高く設定しているのは、 以下に説明するように、 でき るだけ短い炉芯管 2 によって、 自由落下する金属線片を 確実に融点以上の温度に加熱するためである。 蓋 6 は石 英ガラスで形成され、 炉芯管 2の下端にはめ込まれてい る。 蓋 6 は高温の加熱炉 4 によって生ずる上昇気流を防 ぐとともに、 固化した微細金属球を回収するためのもの である。 加熱炉 4 と蓋 6 との間隔は約 2 0 0 mmであった, 尚、 炉芯管 2 の内部は通常の大気雰囲気を用いている。 微細金属線の切断装置 (不図示) で切断された金属線
片 1 0 は、 炉芯管 2 の上方から落下され、 炉芯管 2 に入 つた。 金属線片 1 0 は炉芯管 2内を落下し、 加熱炉 4 に 入ると、 温度が急激に上昇し始めた。 そして、 金属線片 は温度がその金属の融点より高く なったときに溶融した, 一般に溶融金属は表面張力が大きいので、 溶融状態では 自ら球形状に変化する。 したがって、 この溶融金属は加 熱炉 4内を通過中に球形状に変化するが、 加熱炉 4を出 ると温度が急に下がり、 この金属は凝固しはじめた。 最 後に金属球が蓋 6に落ち、 固化し均一で綺麗な微細金属 球 2 0が得られた。
このように、 この working example の微細金属の製造 方法においては、 金属線片を搬送するための装置を設け ることな く、 金属線片を炉芯管に入れるだけで微細金属 球の回収工程まで一度に行なう ことができるので、 作業 能率の向上と、 量産性の向上を図るこ とが可能になる。 さらに、 この working example の装置に、 たとえば微細 金属線を一定の間隔で一本毎に切断する装置を本実施例 の炉芯管の上部に備えることより、 微細金属線の切断ェ 程、 切断された金属線片の球状化工程及び微細金属球の 回収工程を連続して行う ことができる。
また、 この working example の微細金属の製造工程で は、 従来取り上げられなかった金属や合金にも適用する ことができるので、 バンプとして適切な組成の微細金属 球を能率良く製造することができる。
尚、 上記の working example 例においては、 金線片を
用いて金球を製造する場合について説明したが、 本発明 はこれに限定される ものではな く 、 バンプに相応しい他 の金属を使用してもよい。 一般に、 金属線片の落下初期 速度から、 加熱炉内の通過速度を知る こ とができ る。 ま た、 金属線片の大きさ とその金属の融点から、 必要な加 熱炉の長さ と最高温度とが決まる。 したがって、 他の金 属を用いて微細金属球を製造する場合には炉芯管と加熱 炉の大きさ、 加熱炉の温度等を変更する必要がある。 ま た、 金属によっては、 高温の加熱炉内において化学反応 が起こ らないよう に炉芯管内を特定のガス雰囲気で置換 する必要もある。
また、 上記の wor k i n g e xamp l e では、 炉芯管の下端部 に蓋を被せた場合について説明したが、 本発明はこれに 限定されるものではな く 、 たとえば蓋を用いずに、 炉芯 管の下端部をテーパー状に加工し、 下端の開口孔より微 細金属球を回収するよう にしてもよい。 これにより、 た とえば炉芯管の下方にベル ト コ ンベア等を配置し、 微細 金属球を連続的に回収する こ とも可能になる。
以上説明したようにこの実施例によれば、 自由落下す る金属線片を加熱手段を用いて溶融し、 溶融金属の大き な表面張力を利用する こ とによって、 容易に微細金属球 を製造する こ とができるので、 簡易な装置により作業能 率の向上を図り、 量産性の向上を図る こ とができる球状 化工程を提供する こ とができ る。
〔実施例 7 〕
この実施例は、 作業能率の向上と、 量産性の向上を図 ることができ且つ実施例 6 と異なる球状化工程を提供す る c
この実施例の微細金属球への球状化工程は、 搬送手段 により搬送される金属線片を、 加熱手段によって前記金 属線片に用いている金属の融点以上の温度に加熱して溶 融するこ とにより、 前記金属線片を球状化することを特 徴とする。 .
この実施例は前記の構成によって、 金属線片を搬送手 段により搬送し、 その搬送中に加熱手段により金属線片 をその金属の融点以上の温度に加熱して溶融する。 溶融 状態の金属は表面張力が大き く、 自ら球状化するので、 その金属線片は搬送中に球状に変形され、 微細金属球に なる。
Working Example 1
以下にこの実施例の第 1 working example を第 1 8図 を参照して説明する。 第 1 8図は微細金属球の製造工程 において使用する装置の概略図である。 この working example においては、 線径 2 5 m . 長さ 0. 5 5隱の金 線片 (金属線片) を使用しており、 直径が 8 0 / mの金 球 (微細金属球) を製造する。
第 1 8図に示す装置は、 金属線片 1 0を搬送する耐熱 性の回転テーブル 2 と、 回転テーブル 2の躯動用モータ (図示せず) と、 金属線片 1 0を溶融するコの字型の加 熱炉 4 と、 形成された微細金属球 2 0を回収する回収容
器 6 と、 西転テーブル 2上の微細金属球 2 0 を回収容器 6 に落とすためのガイ ド 8 とからなる。 回転テーブル 2 はセラ ミ ッ クス製で円形状に形成され、 その直径は約 2 0 0 腿である。 加熱炉 4 内の最高温度は金の融点
( 1060 Ϊ ) より少し高い 1200 'Cに設定している。
微細金属線の切断装置 (不図示) で切断された金属線 片 1 0 は、 回転テーブル 2 に載せられる。 金属線片 1 0 は回転テーブル 2 とともに回り、 加熱伊 4 に入る と、 温 度が急激に上昇し始める。 そ して、 金属線片は温度がそ の金属の融点より高 く なつたときに溶融する。 一般に溶 融金属は表面張力が大きいので、 溶融状態では自 ら球形 状に変化する。 したがって、 この溶融金属は加熱炉 4 内 を通過中に球形状に変化するが、 加熱炉 4 を出る と温度 が急に下がり、 この金属は凝固しはじめる。
最後に金属球がガイ ド 8 により回収容器 6 に落とされ、 微細金属球 2 0 が得られる。
尚、 金属線片を確実に溶融するために、 加熱炉の加熱 能力に応じて、 回転テーブルの速度を変える必要がある < 本発明者等が上記の装置及び金属線片を用い実際に試 験を行ったところ、 均一で綺麗な球形状の微細金属球を 得る ことができた。
このよう に、 この work i n g exa mp l e の微細金属球の製 造工程においては、 金属線片を回転テーブルに載せるだ けで微細金属球の回収工程まで自動的に行う こ とができ るので、 作業能率の向上と、 量産性の向上を図る こ とが
できる。 さらに、 本実施例の装置に、 たとえば微細金属 線を一定の間隔で一本毎に切断する装置を回転テーブル の上部に備えることにより、 微細金属線の切断工程、 切 断された金属線片の球状化工程及び微細金属の回収工程 を連続して行う ことができる。
また、 この working example 1 の方法では、 従来取り 上げられなかつた金属や合金にも適用するこ とができる ので、 バンプとして適切な組成の微細金属球を容易に能 率良く製造することができる。
forking Example 2
次に、 第 2 working example を第 1 9図を用いて説明 する。 第 1 9図は微細金属球の製造方法において使用す る装置の概略図である。 尚、 使用する金属線片の素材及 び大きさは第 1 working example におけるものと同一で ある。
第 1 9図に示す装置は、 金属線片 1 0を搬送するベル ト コ ンベア 3 と、 ベル ト コ ンベア 3 の駆動用モータ (図 示せず) と、 金属線片 1 0を溶融する トンネル型の加熱 炉 4 a と、 形成した微細金属球 2 0を回収する回収容器 6 a とからなる。 ベルトコ ンベア 3 は加熱炉 4 a の中を 通るために耐熱性を確保する必要があるので、 耐熱鋼の 鎖で作ったベル ト の上に、 セラ ミ ックス製の小さな皿を 多数取り付けたものを使用している。
微細金属線の切断装置 (不図示) で切断された金属線 片 1 0 は、 たとえばベル ト コ ンベア 3の上方から静かに
落とされる 金属線片 1 0 はベル ト コ ンベア 3 で搬送さ れ、 加熱炉 4 a に入る と、 温度が急激に上昇し始める a そして、 金属線片 1 0 はその温度がその金属の融点より 高く なつたときに、 溶融して球形状に変化する。 加熱^ 4 a を出る と温度が急に下がり、 この金属は凝固しはじ める。 最後に金属球がベル ト コ ンベア 3 から落下して、 回収容器 6 の中に補集され、 均一で綺麗な微細金属球 20 が得られた t
尚、 上記の第 1 及び第 2 w o r k i n g e x a m p 1 e sにおいては .
4
金線片を用いて金球を製造す 7る場合について説明したが、 これに限定される ものではな く 、 バンプに相応しい他の 金属を使用 してもよい。 このとき、 金属により融点が異 なるため、 それに応じて加熱炉の最高温度を設定したり、 回転テーブルやベル ト コ ンベアの材質や速度を変える必 要がある。 また、 金属によっては、 高温の加熱炉 4 内で 化学反応が起こ らないよう に、 加熱炉 4 内を特定のガス 雰囲気で置換する必要もある。
以上説明したよう にこの実施例によれば、 搬送手段に より搬送される金属線片を、 加熱手段を用いて溶融し、 溶融金属の大きな表面張力を利用する こ とによって、 容 易に微細金属球を製造する こ とができるので、 作業能率 の向上を図り、 量産性の向上を図る こ とができる微.細金 属球の製造方法を提供する こ とができる。
〔実施例 8 〕
実施例 8 では実施例 7 で使用した加熱 · 溶融手段の代
り に高工ネルギービームを使用した。
この実施例 8に示す微細金属球の製造方法における金 属線片の球状化工程は、 一定長さの金属線片を互いに隔 置された状態で搬送手段に配置する段階と、 金属線片の 搬送過程で金属線片に高工ネルギービームを照射し金属 線片の融点以上の温度に金属線片を加熱して溶融する段 階とを有することを特徴とする。
この実施例は前記の構成によって、 金属線片に高エネ ルギービームを照射する こ とにより、 金属線片をその金 属の融点以上に加熱して溶融する。 溶融した金属は表面 張力が大き く、 自ら球状化して、 微細金属球になる。
また、 集光手段を用いて高エネルギービームの最小ス ポッ ト径を小さ くするこ とにより微細な金属線片に高工 ネルギ一ビームを効率よ く 照射することができる。
forking example
以下にこの実施例の一 working example を添付図面を 参照して説明する。 第 2 0図はこの working example に おいて使用する装置の概略図である。 この working example においては、 線径 2 5 μ m 長さ 0. 5 5薩の金 線片 (金属線片) を使用しており、 直径が 8 0 mの金 球 (微細金属球) を製造した。
第 2 0図に示す装置は、 金属線片 1 0の搬送手段であ る耐熱性の回転テーブル 2 と、 回転テーブル 2 の駆動用 モータ (図示せず) と、 金属線片 1 0 に照射する高エネ ルギービーム照射装置 4 と、 形成された微細金属球 2 0
を回収する回収容器 6 と、 回転チーブル 2上の微細金属 球 2 0 を回収容器 6 に落とすためのガイ ド 8 とからなる 回転テーブル 2 はセラ ミ ッ ク ス製で円盤状に形成され、 その直径は約 2 0 0删であった。 尚、 この方法は、 他の 加熱方法に比べて加熱される領域が小さいので、 回転テ —ブル 2全体をセラ ミ ッ ク スで形成する必要はな く 、 金 属線片を載置する例えば ドーナツ状の部分だけを、 セラ ミ フ ク スにする こ と も可能である。
高工ネルギ一ビーム照射装置 4 ·のビーム源と して高轹 度キセノ ンラ ンプを使用 している (たとえば、 ビーム - スポ ッ ト · ゥエルダ一) 。 また、 高エネルギービーム照 射装置 4 は、 凹面鏡や凸レンズ等を用いた集光機構を内 蔵しているものでもよ く 、 これにより高エネルギービー ムを、 更に集光する こ とができる。 この高工ネルギ一ビ 一ム照射装置 4 により対象物を最高 2000 'Cに加熱するこ とができ る。
微細金属球 2 0 を製造するには、 先ず微細金属線の切 断装置 (不図示) で切断した金属線片 1 0 を、 画転テー ブル 2 に載せ、 回転テーブル 2 を駆動し、 高工ネルギー ビームの照射位置に金属線片 1 0を移動した。 次に、 こ の金属線片 1 0 に高エネルギービームを照射する こ とに よって、 金属線片をその金属の融点より高 く加熱して溶 融した。 一般に溶融金属は表面張力が大きいので、 溶融 状態では自 ら球形状に変化する。 したがって、 この溶融 金属は高エネルギービームを照射されている間に球形状
に変形した。 そして、 回転テーブル 2により、 溶融して 球形状になった金属を高ヱネルギービームの照射範囲の 外に移動し、 高工ネルギ一ビームの照射位置には次の金 属線片を搬送する。 球形状に形成された金属は静かに冷 却され凝固することにより直径 8 0 mの微細金属球 20 になった。 一方、 次の金属線片には高工ネルギービーム が照射される。 このよう に回転テーブル 2に載せられた 各金属線片は連続的に順序よ く加熱 * 溶融され、 形成 れた微細金属球 2 0 は最後にガイ ド 8により回収容器 6 に落とされ、 回収された。
レ ンズ等の集光機構を用いて集光した高工ネルギービ ームを使用した場合、 微細な金属線片に集光された高工 ネルギービームを照射する ことができ、 エネルギーを集 中化して効率良く微細な金属線片を加熱し短時間で溶融 するこ とができた。
このように、 この実施例の微細金属球の製造方法にお いては、 金属線片を回転テーブルに載せるだけで微細金 属球を回収する工程まで自動的に行う ことができるので、 作業能率の向上と、 量産性の向上を図ることができる。 さらに、 本実施例の装置に、 たとえば微細金属線を一定 の間隔で一本毎に切断する装置を本実施例の画転テープ ルの上部に備えるこ とにより、 微細金属線を切断するェ 程、 切断された金属線片を球状化する工程及び微細金属 球を回収する工程を連続して行う こ とができる。
また、 本実施例の方法は、 従来取り上げられなかった
金属や合金等にも適用する こ とができるので、 バンプと して適切な組成の微細金属球を容易に能率良く製造する こ とができる。 他の金属を用いて微細金属球を製造する 場合には、 使用する金属によって融点が異なるので、 そ の金属に応じて、 加熱温度や回転テーブルの速度を変え る必要がある。 また、 使用する金属に応じて、 高温下で 化学反応が起こ らないよう に特定のガス雰囲気内で加熱 するよう にしてもよい。
尚、 上記の実施例においては、 高エネルギ一ビーム源 と してキセノ ンラ ンプを使用した場合について説明した が、 本発明はこれに限定される ものではな く 、 レーザや 赤外線ヒータ等を高エネルギービーム源に用いてもよい c 特に、 赤外線ヒータを用いた赤外線照射装置は、 赤外線 ヒータ の最高加熱温度が約 1200 'Cであるので、 半田付用 の材料と して用いる融点の低い金属を溶融する場合に適 している。
また、 上記の実施例においては、 金属線片の搬送手段 と して画転テーブルを用いた場合について説明したが、 本発明はこれに限定される ものではな く 、 ベル ト コ ンペ ァ等を用いてもよい。 尚、 このとき、 当然のこ とながら ベル ト コ ンベアは耐熱性に優れた材料を用いて形成する 必要がある。 たとえば、 耐熱鋼の鎖でベル トを作り、 そ の上にセラ ミ ッ ク ス製の小さな皿を多数取り付けてベル トコ ンベアを形成すればよい。
以上説明したよう にこ の実施例によれば、 金属線片に
高エネルギービ一ムを照射して金属線片を溶融し、 溶融 金属の大きな表面張力を利用するこ とによって、 容易に 微細金属球を製造する こ とができるので、 作業能率と量 産性の向上を図るこ とができる微細金属球の製造方法を 提供する こ とができる。
〔実施例 9 )
実施例 7及び 8 の微細金属球の製造方法では、 微細金 属線を所定の長さに切断した後、 手作業で金属線片を溶 解用受皿等に 1本ずつ一定の間隔をおいて並べる必要が あった
微細金属線片を配列する手段は、 既述の方法も舍めて 種々考えられはするものの、 微細金属球の製造規模によ つては、 可能であれば金属線を切断する工程と溶融して 微細金属球とする工程を一体化できる方が望ま しい場合 も少な く ない。
この実施例は上記事情に基づいてなされたものであり、 作業能率の向上を図るとともに、 量産の容易な微細金属 球の製造方法を提供する。
この実施例 9に係る微細金属球の製造方法は、 上面に 凹部が形成された耐熱性の基板の上面に、 微細金属線を 張設した後、 張設した微細金属線を加熱して溶融するこ とにより微細金属線の切断及び球状化を同時におこない 微細金属球を得ることを特徴とする。
そして、 前記基板には、 少なく とも微細金属線が張設 される部分の開口部の大きさが同じである多数の凹部が
形成されている こ とが望ま しい。
また、 微細金属線が張設された前記基板の上面に耐熱 性の押さえ蓋を載置した後に微細金属線を加熱して溶融 する こ とが望ま しい。
この実施例は前記の構成によって、 基板の上面に張設 された微細金属線を加熱する こ とにより、 微細金属線を 凹部の開口部の大きさの金属線片に溶断すると共に、 溶 断した金属線片を凹部の底部により保持する こ とにより 溶融金属の表面張力を利用して金属線片を球状化する。
5
その後、 静かに冷却して凝固 Cさせる こ とにより微細金属 球を形成する。
そして、 前記基板に、 少な く とも微細金属線が張設さ れる部分の開口部の大きさが同じである多数の凹部を形 成する こ とにより、 溶断された多数の金属線片は全て同 じ長さを持つこ とになるので、 サイ ズの均一な微細金属 球を容易に量産する こ とができる。
また、 微細金属線が張設された前記基板の上面に耐熱 性の押さえ蓋を載置した後に微細金属線を加熱して溶融 するこ とにより、 微細金属線を加熱する際の熱膨張によ る金属線片の変形によって溶断する位置がずれるのを防 止したり、 また基板に多数の凹部を形成した場合におい て各凹部における微細金属線の溶断時期に相違が生じて も、 確実に各凹部毎に微細金属線を溶断する こ とができ る。
W ork i n g E x amp l e
以下にこの実施例の一 wor k i ng exa mp l e を第 2 1 A図 乃至第 2 4図を参照して説明する。 第 2 1 A図 (a)は本発 明の一実施例に用いる基板と押さえ蓋の概略図、 第 2 1 B図はその基板と押さえ蓋を合わせたときの概略側面図. 第 2 2図、 第 2 3図はその基板に微細金属線を張る方法 を説明するための図、 第 2 4図はその微細金属線を張つ た基板と押さえ蓋とを固定したときの概略図である。 こ の wor k i ng exa mp l e においては、 線径が 2 0 / mの金線
(微細金属線) を使用しており、 直径が 8 0 ;/ mの金球
(微細金属球) を製造した。
第 2 1 A図 (a)及び第 2 1 B図に示す耐熱性の基板 1 0 には一定幅の溝 (凹部) 1 2を多数形成した。 基板 1 0 はカーボンやセラ ミ ックス等の耐熱性材料により形成す るこ とが望ましい。 基板 1 0の寸法は、 特に制限はない が、 縦 A = 3 0 MI、 横 B = 5 0 讓であった。 また、 溝 12 の断面は半円形に形成し、 溝 1 2 の開口部の幅 D = 0. δ 腿、 搆 1 2間の突部 1 4の幅 Ε = 0. 1 腿、 溝 1 2の深さ Η = 0. 3 5 讓であつた。 実際には、 溝 1 2の形状には制 跟はない。 溝 1 2の断面は半円形に限らず、 矩形又は V 字形でもよい。 ただし、 断面形状を V字形に形成した場 合には、 最底部は半径 0. 0 5 隱以上の丸みをつける必要 がある。 また、 搆間の突部 1 4の幅 Εはできるだけ狭い ほうが望ましい。
溝の開口部の幅 Dは、 微細金属線の線径及び製造しよ う とする微細金属球の大きさによって決定される。 また
本 wor k i n g ex am p l e の場合、 溝の開口部の幅 Dの寸法は 土 0. 】 mmの精度で製作すれば、 溶断された金属線片の長 さのばらつきが約 1 0 %以内となり、 金属球に形成した ときには、 その半径の誤差は約 5 %程度になり、 高い精 度で均一な微細金属球を製造する こ とができる。 したが つて、 後述する微細金属線を溶断する際に、 溝間の突部 1 4上の金線は突部 1 4 の何方の溝に落ちても得られる 金属球の精度に大きな影響を及ぼさない。 また、 基板 1 0 の両端部には多数のピン 1 6 が赂ピ ンの直径と等しい間 隔をおいて、 且つ一方の端 5部 5のピ ン 1 6が他方の端部の ピン 1 6 の間に位置するように設けられている。 これに より基板 1 0 の上面に微細金属線をほぼ平行に張設する こ とができる。
押さえ蓋 2 0もセ ラ ミ ッ クス製であり、 これは基板 1 0 に重ねて、 溝 1 2 の上に張り巡らせた微細金属線 2 を固 定する役割を果たす。 押さえ蓋 2 0 の基板 1 0 に相対す る面は平坦に加工されている。 また、 押さえ蓋 2 0 には ピン 1 6 に対応する穴 2 2が形成されている。 尚、 基板 1 0 と押さえ蓋 2 0 0重ね合わせたときにできる隙間は できるだけ小さい方が望ま しい。 その隙間はせいぜい 0 〜 1 0 ;£ m程度になるよう に基板 1 0及び押さえ蓋 2 0 を仕上げた。 このよう にして加工した基板 1 0 と押さえ 蓋 2 0 とによつて微細金属線 2 を間に挟むこ とにより、 微細金属線を固定した。
微細金属球を製造するためには、 先ず基板 1 0 の上面
δ δ
に溝 1 2に垂直になるように微細金属線 2を張設した。 この work i n g ex a mp l e においては第 2 2図に示すように 基板 1 0 の両端部に設けられたピン 1 6 に、 微細金属線 2を順次引っ掛けることにより、 基板 1 0の上面に微細 金属線を張り巡らした。 また、 第 2 3図に示すように基 板 1 0 にピンを設けず、 複数の微細金属線 2を基板 1 0 上に平行に配列してもよい。 こ のよ う に複数の微細金属 線 2を配列した場合には、 特に、 微細金属線 2を固定す るための押さえ蓋 2 0を用いる意義が大きい。
0 基板 1 0に微細金属線 (金線) 2を張った後、 押さえ 蓋 2 0を基板 1 0に載せ、 第 2 4図に示すようにク ラ ン プ又は蝶番等の止め具 3 0で固定した。 この状態で基板 を高温の炉、 たとえば誘導加熱炉に入れ、 1060 °Cで金線 を溶融する。 金線は溶融すると同時に溝 1 2の間の突部 1 4で溶断され、 溝 1 2 の中に落ちた。 本実施例におい ては、 溝 1 2 の幅 Dを 0. 8 mmに形成しているので、 金線 も 0. 8删の長さに切断された。 こう して、 溶断された金 線片は溝の中で適当な間隔 (約ピン 1 6の直径と同等) をもって配列される。
0 一般に、 溶融金属は表面張力が大き く適当な形状の微 細な固体素材を溶融温度以上に加熱してやると、 溶融状 態では、 自ら球形状に変化する傾向がある。 したがって. 予め得よう とする金属球と同じ質量をもった金属を溶解 した後、 静かに冷却して凝固するだけで微細金属球を製 造することができた。
したがって、 溝 1 2 の中で一定の間隔で配列された金 属線片は炉の中で溶融し、 同じ大きさの微細金属球に形 成された。 最後に、 基板 1 0 を炉から出してゆっ く り と 冷却する こ とにより望まれた寸法の微細金属球が得られ た。
以上のよう に本実施例の微細金属球の製造方法におい ては、 微細金属線の切断工程と金属線片の溶融工程とを 一工程で行う こ とができるので、 切断後の金属線片の配 列作業が不要となり、 微細金属の製造工程における作業 効率の向上を図る こ とができた。 また、 溝 1 2 を多数形 成するか又は溝 1 2 を長く 形成する こ とにより、 量産性 の向上を図る こ とができた。
また、 本実施例においては基板 】 0 と押さえ蓋 2 0 と に耐熱性材料を用いているので、 これらは一度製作すれ ば半永久的に使用するこ とができ る。
第 2 5図及び第 2 6図は本実施例に用いられる押さえ 蓋の他の例を示す図である。 第 2 5図に示す押さえ蓋 2 0 a は基板 1 0 の溝 1 2 の突部 1 4 に対応する部分に幅 F = 0. 2 mm、 深さ G = 0. 1 隨の窪み部 2 4が形成されてい る。 押さえ蓋 2 0 a をこのよう に形成する こ とにより、 押さえ蓋 2 0 a の窪み部 2 と窪み部 2 4 との間は仕上 げが不要となり、 押さえ蓋 2 0 a の加工が容易となる。 第 2 6図に示す押さえ蓋 2 0 b は基板 1 0 に合わさる 面の断面が波形に形成されている。 波形の各凸部 2 6 は 基板 1 0 の各溝 1 2 に対応するよ う に形成されている。
第 2 6図に示す押さえ蓋 2 0 bを使用することにより、 溶断時には押さえ蓋 2 0 bによつて微細金属線を各溝 1 2 の中央部分において同図の下側に押圧するようになるの で、 微細金属線の溶断時において確実に各突部 1 4で微 細金属線を切断することができ、 したがって溶断後の金 属線片の寸法が均一なものとなる。
第 2 7図及び第 2 8図は本実施例に用いられる基板の 他の例を示す図である。 第 2 7図に示す基板 1 0 aの特 徵は、 第 2 1図及び第 2 2図に示す基板 1 0 の溝 1 2 に 仕切り壁 1 8を設けることにより、 溝 1 2を、 長さ J = 4 mmの小部屋 1 2 a に区切ったことにある。 尚、 仕切り 壁 1 8 の厚さは L = l 讓である。 また、 第 2 8図に示す 基板 1 0 bの特徴は、 溝の代わりに直径 M =約 4 譲の穴 部 1 9を設けたことにある。 第 2 7図又は第 2 8図に示 す基板を使用することにより、 微細金属線を溶断したと きに、 各金属線片は各小部屋 1 2 a又は穴部 1 9 に一つ ずつ落ちるため、 複数の金属線片が重なって溶融され、 サイズの大きな不良品が形成されることを防止すること ができる。 したがって、 第 2 7図又は第 2 8図の基板を 用いることにより、 歩留まりの向上を図ることができる, 尚、 上記の実施例では、 基板を 1 つ使用する場合につ いて説明したが、 基板は複数枚を積み重ねて使用しても よい。 たとえば、 第 2 9図に示すように 3個の基板 1 0 を積み重ねて加熱炉に入れてもよい。 但し、 この場合、 上段と中段の基板 1 0 の底面は押さえ蓋と同様の精度で
仕上げる必要がある。 このよう に基板 1 0 に押さえ蓋の 機能を持たせる こ とにより、 押さえ蓋 2 0 は最上段の基 板 1 0 にのみ被せればよいので、 押さえ蓋 2 0 の数を少 な く する こ とができ、 また一工程で多量の微細金属球を 容易に製造する こ とができ る。
また、 上記の実施例では、 微細金属線 2 が直線である 場合について説明したが、 微細金属線は直線に限らず、 たとえば第 3 0図に示すよう に波形に形成し、 且つ波形 の各底部 2 a i が各溝 1 2 に合わさるよう に形成しても よい。 かかる微細金属線 2 5 a 9を使用するこ とにより、 溶 断時には、 微細金属線 2 a は各頂部 2 a 2 で溶断される ので、 突部 1 4 の精密な仕上げは不要となり、 基板の製 作が容易になる。 但し、 この場合には、 金属線片の長さ は各波形の円弧の長さになる。
また、 上記の実施例では溶断時には、 押さえ蓋を使用 する場合について説明したが、 微細金属線を第 3 0図に 示すよう に形成する こ とにより、 押さえ蓋を省略する こ とも可能である。 尚、 微細金属球の精度が要求されない 場合には、 押さえ蓋を省略するこ とが可能であるこ とは 言う までもない。
更に、 上記の実施例においては、 基板の溝や穴部等が 一定のサイ ズを持つよう に形成された場合について説明 したが、 本発明はこれに限定される ものではな く 、 一つ の基板においてサイ ズの異なる数種類の溝や穴部等を形 成して使用する こ とにより、 一工程で異なるサイ ズの微
細金属球を製造する ことも可能である。
以上説明したようにこの実施例によれば、 微細金属線 を基板の上面に張り、 その基板を高温に加熱する こ とに より、 微細金属線の切断と切断された金属線片の溶融と を一工程で行う こ とができるので、 微細金属球の製造ェ 程における作業能率と量産性の向上を図るこ とができる 微細金属球の製造方法を提供する ことができる。
産業上の利用可能性
以上説明したように、 本発明によればサイ ズが均一で 形状が良く、 しかも純度や組成に対して制約のない微細 金属球を効率的に製造できる ものであり、 半導体実装分 野で必要とするバンプ用のサイ ズの均一な微細金属球の 製造方法と して使用できる。
Claims
1. 金属細線を一定長さに切断し金属線片を得る段階と、 その金属の融点以上の温度に金属線片を加熱し溶融して 金属線片を球状化する段階とを有する、 サイ ズの均一な 微細金属球の製造方法。
2. 金属細線の一定長さへの切断は、 平坦な基盤の上に 複数本の極細金属線を平行に配列する段階と、 一定間隔 で刃先の並んだ切断用治具を用いて前記極細金属線を切 断する段階とを有する請求の範囲第 1 項の方法:
10 3. 金属細線の一定長さへの切断は、 微小な内径を有す るガイ ド出側の先端部から微細金属線が一定長さだけ送 りだされた時に、 上記ガイ ドの出側先端部に近接して設 けた切断用刃物を作動させる段階を有する請求の範囲第 1 項の方法。
4. 金属細線の一定長さへの切断は、 微細金属線が通り 抜ける微小な内径の細穴を有するガイ ド Xと、 これより やや大きな内径の細穴を有するガイ ド Yとを互いに向い 合わせて配置する段階と、 ガイ ド Xの細穴を通して送り 出された微細金属線が対向するガイ ド Yのやや大きい細 穴内部に一定長さだけ.入った時点で、 対向する二つのガ ィ ドの先端部同士による剪断作用を加える段階とを有す る請求の範囲第 1項の方法。
6. 金属細線の一定長さへの切断は、 ガイ ド出側に配し たフ ィ一 ドロールによつて微細金属.線をガイ ドから一定 長さだけ引き出す段階と、 フィ ー ドロールに近接して設 けた切断刃物によって微細金属線を切断する段階とを有 する請求の範囲第 1 項の方法。
7. 金属細線の一定長さへの切断は、 円周方向に一定の 間隔で切断刃が形成された 6第 1 ロールと、 該第 1 ロール
2
に当接される第 2 ロールと、 前記第 1 ロールと前記第 2 ロールとの間に微細金属線を案内するガイ ド部とを備え た切断装置を設ける段階と、 前記第 1 ロール又は第 2 口 —ルのう ち少なく とも一方を回転することにより、 微細 金属線を前記第 1 ロールと前記第 2 ロールとの間に挾持 して引き込むと共に前記切断刃により切断する段階とを 有する、 請求の範囲第 1項の方法。
8. 前記第 2 ロールの外周部を弾性素材により形成した 請求項 Ί記載の方法。
9. 一定長さの金属線片の加熱は、 縦に配置された炉芯 管内を、 金属線片を自由落下させ、 前記金属線片に用い ている金属の融点以上の温度に前記金属線片を加熱して 溶融するこ とにより、 前記金属線片を球状化する請求の 範囲第 1項の方法。
10 . 前記炉芯管の下端に蓋を設けた請求項 9記載の方法,
1 1 . 一定長さの金属線片の加熱は、 搬送手段に金属線片
を互いに隔置した状態で配置する段階と、 搬送過程で金 属線片を加熱手段内を通過させて金属線片の融点以上の 温度に金属線片を加熱して溶融する段階とを有する請求 の範囲第 1項の方法。
12 . —定の長さの金属線片の加熱は、 搬送手段に金属線 片を互いに隔置した状態で配置する段階と、 搬送過程で 金属線片に高エネルギービームを照射し金属線片の融点 以上の温度に金属線片を加熱して溶融する段階とを有す る請求の範囲第 1 項の方法。
6
13 . 前記高エ ネルギービーム 3を集光手段を用いて集光し た後に、 前記金属線片に照射する請求項 12記載の方法。
14 . 上面に凹部が形成された耐熱性の基板の上面に、 微 細金属線を張設した後、 張設した微細金属線を融点以上 に加熱して溶融することにより微細金属線の切断及び球 状化を同時におこない微細金属球を得るこ とを特徴とす る微細金属球の製造方法。
15 . 前記基板には、 少な く とも微細金属線が張設される 部分の開口部の大きさが同じである多数の凹部が形成さ れている請求項 14記載の微細金属球の製造方法。
16 . 微細金属線が張設された前記基板の上面に耐熱性の 押さえ蓋を載置した後に微細金属線を加熱して溶融する 請求項 14又は 15記載の微細金属球の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP91900363A EP0457920B1 (en) | 1989-12-07 | 1990-12-06 | Method of manufacturing minute metallic balls uniform in size |
DE69032249T DE69032249T2 (de) | 1989-12-07 | 1990-12-06 | Verfahren zur herstellung winziger metallischer kugeln gleichmässiger grösse |
KR1019910700856A KR960000332B1 (ko) | 1989-12-07 | 1990-12-06 | 연질금속구 또는 연질합금구의 제조방법 |
Applications Claiming Priority (18)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP01320296A JP3087254B2 (ja) | 1989-12-07 | 1989-12-07 | サイズの均一な微細金属球の製造方法 |
JP1/320296 | 1989-12-07 | ||
JP2035256A JPH03238132A (ja) | 1990-02-15 | 1990-02-15 | 極細金属線の切断方法 |
JP2/35256 | 1990-02-15 | ||
JP2109780A JP2775984B2 (ja) | 1990-04-24 | 1990-04-24 | 微細金属線の切断方法 |
JP2109779A JPH049239A (ja) | 1990-04-24 | 1990-04-24 | 微細金属線の切断方法 |
JP2/109780 | 1990-04-24 | ||
JP2/109779 | 1990-04-24 | ||
JP2179265A JPH0466603A (ja) | 1990-07-06 | 1990-07-06 | 微細金属球の製造方法 |
JP2/179263 | 1990-07-06 | ||
JP2/179265 | 1990-07-06 | ||
JP2179264A JPH0466602A (ja) | 1990-07-06 | 1990-07-06 | 微細金属球の製造方法 |
JP2179263A JPH0466601A (ja) | 1990-07-06 | 1990-07-06 | 微細金属球の製造方法 |
JP2/179264 | 1990-07-06 | ||
JP2/183644 | 1990-07-10 | ||
JP2183644A JPH0717921B2 (ja) | 1990-07-10 | 1990-07-10 | 微細金属球の製造方法 |
JP2/183643 | 1990-07-10 | ||
JP2183643A JPH0471745A (ja) | 1990-07-10 | 1990-07-10 | 微細金属線の切断装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1991008850A1 true WO1991008850A1 (en) | 1991-06-27 |
Family
ID=27576889
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1990/001591 WO1991008850A1 (en) | 1989-12-07 | 1990-12-06 | Method of manufacturing minute metallic balls uniform in size |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0457920B1 (ja) |
KR (1) | KR960000332B1 (ja) |
DE (1) | DE69032249T2 (ja) |
WO (1) | WO1991008850A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110554974A (zh) * | 2019-08-07 | 2019-12-10 | 上海航天控制技术研究所 | 一种提升全数字卫星姿轨控软件运行平台运行倍数的方法 |
CN117086310A (zh) * | 2023-10-19 | 2023-11-21 | 烟台大学 | 一种蜂巢阵列的高温合金材料高通量制备装置及方法 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7353198B2 (en) | 2001-08-16 | 2008-04-01 | Credit Suisse Securities (Usa) Llc | Method and system for managing a mortgage-backed securities index |
JP3891346B2 (ja) * | 2002-01-07 | 2007-03-14 | 千住金属工業株式会社 | 微小銅ボールおよび微小銅ボールの製造方法 |
JP2003342619A (ja) * | 2002-05-30 | 2003-12-03 | Minebea Co Ltd | 金属球の製造方法 |
US9886309B2 (en) | 2002-06-28 | 2018-02-06 | Microsoft Technology Licensing, Llc | Identity-based distributed computing for device resources |
US6911618B1 (en) | 2004-02-03 | 2005-06-28 | Hitachi Metals, Ltd. | Method of producing minute metal balls |
JP7335320B2 (ja) | 2018-04-04 | 2023-08-29 | メタル パウダー ワークス, エルエルシー | 延性材料から粉末を製造するためのシステムおよび方法 |
US11109489B2 (en) * | 2019-08-15 | 2021-08-31 | Raytheon Company | Apparatus for fabricating Z-axis vertical launch within a printed circuit board |
JP7460052B2 (ja) | 2021-10-06 | 2024-04-02 | パック テック-パッケージング テクノロジーズ ゲーエムベーハー | 単一はんだ体を製造するためのプレス成形デバイス、装置、はんだ付着機及び方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5236508B2 (ja) * | 1972-05-31 | 1977-09-16 | ||
JPS5328878A (en) * | 1976-08-05 | 1978-03-17 | Nichidoku Heavy Mach | Apparatus for carrying and shearing leading end of rolled strand blank which has been cut off at separating means |
JPS5665929U (ja) * | 1979-10-19 | 1981-06-02 | ||
JPS605804A (ja) * | 1983-06-23 | 1985-01-12 | Tanaka Kikinzoku Kogyo Kk | 微小金属球の製造方法 |
JPS61111634U (ja) * | 1984-12-27 | 1986-07-15 | ||
JPS6333507A (ja) * | 1986-07-24 | 1988-02-13 | Mitsubishi Metal Corp | 球状微粉体の製造方法と製造装置 |
JPS63111101A (ja) * | 1986-10-30 | 1988-05-16 | Daido Steel Co Ltd | 金属もしくは合金粉末の球状化方法 |
JPS6355378B2 (ja) * | 1983-05-20 | 1988-11-02 | Rohm Kk | |
JPS6449333U (ja) * | 1987-09-21 | 1989-03-27 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1169884B (de) * | 1958-10-01 | 1964-05-14 | Meyer | Vorrichtung zum winkelgerechten Abschneiden kurzer Drahtlaengen, bei der der Draht waehrend des Schnitts im Messersupport gefuehrt ist |
DE1521894A1 (de) * | 1963-10-15 | 1969-10-30 | Philips Nv | Verfahren zur Herstellung kugelfoermiger,vorzugsweise aus Aluminium bestehender Koerper |
DE2261281A1 (de) * | 1972-12-15 | 1974-06-20 | Philips Patentverwaltung | Verfahren und vorrichtung zum gratfreien trennen von teilen, insbesondere von draht- oder stangenmaterial |
US3977069A (en) * | 1974-12-18 | 1976-08-31 | Brunswick Corporation | Process and apparatus for production of precision cut lengths of metal wires and fibers |
JPS58135744A (ja) * | 1982-02-03 | 1983-08-12 | Asahi Okuma Ind Co Ltd | 線材カツテイング機構におけるシヤ−ダイ |
JPS6034211A (ja) * | 1983-08-04 | 1985-02-21 | Ckd Corp | 電線定寸切断装置 |
JPS60121063A (ja) * | 1983-12-02 | 1985-06-28 | Tanaka Kikinzoku Kogyo Kk | 球状ろう材付リ−ドピンの製造方法 |
JPH0776412B2 (ja) * | 1986-07-22 | 1995-08-16 | 松下電器産業株式会社 | 回路基板の電極処理方法 |
CH671726A5 (ja) * | 1987-01-30 | 1989-09-29 | Charmilles Technologies |
-
1990
- 1990-12-06 WO PCT/JP1990/001591 patent/WO1991008850A1/ja active IP Right Grant
- 1990-12-06 KR KR1019910700856A patent/KR960000332B1/ko not_active IP Right Cessation
- 1990-12-06 EP EP91900363A patent/EP0457920B1/en not_active Expired - Lifetime
- 1990-12-06 DE DE69032249T patent/DE69032249T2/de not_active Expired - Fee Related
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5236508B2 (ja) * | 1972-05-31 | 1977-09-16 | ||
JPS5328878A (en) * | 1976-08-05 | 1978-03-17 | Nichidoku Heavy Mach | Apparatus for carrying and shearing leading end of rolled strand blank which has been cut off at separating means |
JPS5665929U (ja) * | 1979-10-19 | 1981-06-02 | ||
JPS6355378B2 (ja) * | 1983-05-20 | 1988-11-02 | Rohm Kk | |
JPS605804A (ja) * | 1983-06-23 | 1985-01-12 | Tanaka Kikinzoku Kogyo Kk | 微小金属球の製造方法 |
JPS61111634U (ja) * | 1984-12-27 | 1986-07-15 | ||
JPS6333507A (ja) * | 1986-07-24 | 1988-02-13 | Mitsubishi Metal Corp | 球状微粉体の製造方法と製造装置 |
JPS63111101A (ja) * | 1986-10-30 | 1988-05-16 | Daido Steel Co Ltd | 金属もしくは合金粉末の球状化方法 |
JPS6449333U (ja) * | 1987-09-21 | 1989-03-27 |
Non-Patent Citations (1)
Title |
---|
See also references of EP0457920A4 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110554974A (zh) * | 2019-08-07 | 2019-12-10 | 上海航天控制技术研究所 | 一种提升全数字卫星姿轨控软件运行平台运行倍数的方法 |
CN117086310A (zh) * | 2023-10-19 | 2023-11-21 | 烟台大学 | 一种蜂巢阵列的高温合金材料高通量制备装置及方法 |
CN117086310B (zh) * | 2023-10-19 | 2024-01-23 | 烟台大学 | 一种蜂巢阵列的高温合金材料高通量制备装置及方法 |
Also Published As
Publication number | Publication date |
---|---|
DE69032249T2 (de) | 1998-10-29 |
KR920702829A (ko) | 1992-10-28 |
EP0457920A4 (en) | 1993-09-15 |
EP0457920B1 (en) | 1998-04-15 |
EP0457920A1 (en) | 1991-11-27 |
DE69032249D1 (de) | 1998-05-20 |
KR960000332B1 (ko) | 1996-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1991008850A1 (en) | Method of manufacturing minute metallic balls uniform in size | |
JP6449982B2 (ja) | チタン系粉およびその溶製品、焼結品 | |
JP3754451B2 (ja) | 半導体粒子の形成方法及び形成装置 | |
CN106216703A (zh) | 一种3d打印用球形铝合金粉末的制备方法 | |
CN106956008A (zh) | 一种3D打印用Hastelloy X合金粉末的制备方法 | |
EP0361396B1 (de) | Verfahren und Vorrichtung zum Herstellen eines Pulvers von amorphen Partikeln einer keramischen oder metallischen Substanz | |
US5761779A (en) | Method of producing fine metal spheres of uniform size | |
CN113909483B (zh) | 一种球形银铜钛活性钎料粉末的制备方法及其制备装置 | |
CN101549268A (zh) | 一种制造球形高温粉体材料的方法 | |
JP2005161338A (ja) | はんだシート | |
JP2508506B2 (ja) | 球状微粉体の製造方法と製造装置 | |
JP2779299B2 (ja) | 微細金属球の製造方法および装置 | |
JPH0625717A (ja) | 高周波プラズマによる球状化粒子の製造方法およびその装置 | |
JP6744730B2 (ja) | 金属微粒子の製造方法 | |
JP4051234B2 (ja) | 粒状シリコンの製造方法 | |
JP2018145467A (ja) | チタン系粉、チタン系粉を溶解して得られたチタン系溶製品及びチタン系粉を焼結して得られたチタン系焼結品 | |
JPH0313510A (ja) | レーザ光線による微粉末の製造方法 | |
JP2010084216A (ja) | 金属粉末製造方法および装置 | |
RU2604743C1 (ru) | Способ изготовления металлических порошков | |
JP5388272B2 (ja) | 金属粒子製造方法 | |
JP3925792B2 (ja) | 導電性スペーサ用金属球の製造方法 | |
JP2510524B2 (ja) | 半田粉末の製造方法 | |
JPH0466603A (ja) | 微細金属球の製造方法 | |
TW544825B (en) | Method for manufacturing ultra-fine solder balls used in ball grid array package | |
KR102294406B1 (ko) | 금속 나노분말 제조장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): KR US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1991900363 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1991900363 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 1991900363 Country of ref document: EP |