USRE49410E1 - Rod reducer, compressor, distractor system - Google Patents
Rod reducer, compressor, distractor system Download PDFInfo
- Publication number
- USRE49410E1 USRE49410E1 US17/067,010 US202017067010A USRE49410E US RE49410 E1 USRE49410 E1 US RE49410E1 US 202017067010 A US202017067010 A US 202017067010A US RE49410 E USRE49410 E US RE49410E
- Authority
- US
- United States
- Prior art keywords
- members
- engagement
- force applying
- applying device
- hook
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/88—Osteosynthesis instruments; Methods or means for implanting or extracting internal or external fixation devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
- A61B17/7074—Tools specially adapted for spinal fixation operations other than for bone removal or filler handling
- A61B17/7076—Tools specially adapted for spinal fixation operations other than for bone removal or filler handling for driving, positioning or assembling spinal clamps or bone anchors specially adapted for spinal fixation
- A61B17/7077—Tools specially adapted for spinal fixation operations other than for bone removal or filler handling for driving, positioning or assembling spinal clamps or bone anchors specially adapted for spinal fixation for moving bone anchors attached to vertebrae, thereby displacing the vertebrae
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
- A61B17/7074—Tools specially adapted for spinal fixation operations other than for bone removal or filler handling
- A61B17/7076—Tools specially adapted for spinal fixation operations other than for bone removal or filler handling for driving, positioning or assembling spinal clamps or bone anchors specially adapted for spinal fixation
- A61B17/7077—Tools specially adapted for spinal fixation operations other than for bone removal or filler handling for driving, positioning or assembling spinal clamps or bone anchors specially adapted for spinal fixation for moving bone anchors attached to vertebrae, thereby displacing the vertebrae
- A61B17/7079—Tools requiring anchors to be already mounted on an implanted longitudinal or transverse element, e.g. where said element guides the anchor motion
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
- A61B17/7074—Tools specially adapted for spinal fixation operations other than for bone removal or filler handling
- A61B17/7076—Tools specially adapted for spinal fixation operations other than for bone removal or filler handling for driving, positioning or assembling spinal clamps or bone anchors specially adapted for spinal fixation
- A61B17/7077—Tools specially adapted for spinal fixation operations other than for bone removal or filler handling for driving, positioning or assembling spinal clamps or bone anchors specially adapted for spinal fixation for moving bone anchors attached to vertebrae, thereby displacing the vertebrae
- A61B17/708—Tools specially adapted for spinal fixation operations other than for bone removal or filler handling for driving, positioning or assembling spinal clamps or bone anchors specially adapted for spinal fixation for moving bone anchors attached to vertebrae, thereby displacing the vertebrae with tubular extensions coaxially mounted on the bone anchors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
- A61B17/7074—Tools specially adapted for spinal fixation operations other than for bone removal or filler handling
- A61B17/7083—Tools for guidance or insertion of tethers, rod-to-anchor connectors, rod-to-rod connectors, or longitudinal elements
- A61B17/7085—Tools for guidance or insertion of tethers, rod-to-anchor connectors, rod-to-rod connectors, or longitudinal elements for insertion of a longitudinal element down one or more hollow screw or hook extensions, i.e. at least a part of the element within an extension has a component of movement parallel to the extension's axis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
- A61B17/7074—Tools specially adapted for spinal fixation operations other than for bone removal or filler handling
- A61B17/7083—Tools for guidance or insertion of tethers, rod-to-anchor connectors, rod-to-rod connectors, or longitudinal elements
- A61B17/7086—Rod reducers, i.e. devices providing a mechanical advantage to allow a user to force a rod into or onto an anchor head other than by means of a rod-to-bone anchor locking element; rod removers
Definitions
- the present disclosure relates to a system and method for operating on the spine. More particularly, the present disclosure relates to a minimally invasive rod reducer, compressor/distractor system, and a method for using the compressor/distractor system to deliver a spinal rod to the head of a pedicle screw.
- the spinal column is a complex system of bones and connective tissues that provide support for the human body and protection for the spinal cord and nerves.
- the adult spine is comprised of an upper and lower portion.
- the upper portion contains 24 discrete bones, which are subdivided into three areas including 7 cervical vertebrae, 12 thoracic vertebrae and 5 lumbar vertebrae.
- the lower portion is comprised of the sacral and coccygeal bones.
- the cylindrical shaped bones, called vertebral bodies, progressively increase in size from the upper portion downwards to the lower portion.
- the intervertebral disc along with two posterior facet joints cushion and dampen the various translational and rotational forces exerted upon the spinal column.
- the intervertebral disc is a spacer located between two vertebral bodies.
- the facets provide stability to the posterior portion of adjacent vertebrae.
- the spinal cord is housed in the canal of the vertebral bodies. It is protected posteriorly by the lamina.
- the lamina is a curved surface with three main protrusions. Two transverse processes extend laterally from the lamina, while the spinous process extends caudally and posteriorly.
- the vertebral bodies and lamina are connected by a bone bridge called the pedicle.
- the spine is a flexible structure capable of a large range of motion.
- disorders, diseases, and types of injury which restrict the range of motion of the spine or interfere with important elements of the nervous system.
- the problems include, but are not limited to scoliosis, kyphosis, excessive lordosis, spondylolisthesis, slipped or ruptured discs, degenerative disc disease, vertebral body fracture, and tumors.
- Persons suffering from any of the above conditions typically experience extreme or debilitating pain and often times diminished nerve function.
- These conditions and their treatments can be further complicated if the patient is suffering from osteoporosis, or bone tissue thinning and loss of bone density.
- Spinal fixation apparatuses are widely employed in surgical processes for correcting spinal injuries and diseases.
- interbody implants include polyetheretherketone (“PEEK”) interbody spacers, metal cages, and cadaver and human bone implants.
- PEEK polyetheretherketone
- other implants are commonly employed, including longitudinally linked rods secured to coupling elements, which in turn are secured to the bone by spinal bone fixation fasteners such as pedicle screws, hooks, and others.
- spinal bone fixation fasteners such as pedicle screws, hooks, and others.
- the opposing pair of longitudinally linked rods is commonly disposed along the long axis of the spine via a posterior approach.
- Pedicle screws are utilized to capture these rods and can be manufactured from any biocompatible material, including cobalt chrome, stainless steel, titanium, and PEEK. It is desired to perform these procedures in a minimally invasive manner to minimize pain and reduce recovery time for the patient. Therefore, a need exists for a minimally invasive rod reducer, compressor, distractor system that can deliver the rod into the head of the pedicle screw or bone anchor while maintaining the proper screw and rod construct alignment.
- a rod reducer that is small enough in diameter to work with a minimally invasive retractor such as the rod reducer disclosed in U.S. Patent Publication No. 2013/0046345, the contents of which are hereby incorporated by reference in their entirety and a minimally invasive retractor, such as the minimally invasive retractor disclosed in U.S. Pat. No. 7,846,093, the contents of which are hereby incorporated by reference in their entirety, are also disclosed.
- the present disclosure is directed towards a system for operating on the spine.
- the system includes pedicle screws, rod reducers, and a force applying device.
- the rod reducers include a proximal end and a distal end and define a longitudinal axis between the proximal and distal ends.
- the rod reducer includes an outer member and an inner member.
- the inner member is selectively attachable to the housing of the pedicle screw.
- the outer member is axially movable relative to the inner member when the inner member is secured to the housing of the pedicle screw to secure the spinal rod within the saddle of the housing of the pedicle screw.
- the outer member includes a proximal segment and a distal segment.
- the proximal segment is rotatable for axially translating the distal segment.
- the distal segment is engageable with the spinal rod to secure the spinal rod within the saddle upon the axial translation of the distal segment.
- the proximal segment independently rotates relative to the distal segment.
- the rod reducer includes a pair of gripping members configured to engage the housing of the pedicle screw. The pair of gripping members is positioned between the inner
- the handle assembly is selectively engageable with the rod reducer to move the outer member of the rod reducer axially relative to the inner member of the rod reducer.
- the handle assembly is configured to rotate the outer member so that the rotational movement of the outer member axially moves the outer member relative to the inner member.
- the handle assembly includes a turning handle and an anti-torque handle.
- the anti-torque handle is selectively engageable with the proximal end of the rod reducer and the turning handle is selectively engageable with a proximal end of the anti-torque handle.
- an embodiment of the system in another aspect, includes two rod reducers, a force applying device, and a fulcrum.
- the force applying device is configured for selectively engaging each rod reducer.
- the system may also include at least one minimally invasive retraction device.
- the force applying device is a compressor/distractor device including a first hook member, a second hook member, and a body portion.
- the body portion has a first end and a track extending from the first end.
- the first end includes the first hook member in a fixed position.
- the first end may slidably receive the first hook member in a fixed position.
- the track includes a set of teeth and is configured for slidably receiving the second hook member.
- the second hook member includes a switch assembly and a gear assembly.
- the second hook member traverses the track when the gear assembly is rotated.
- the gear assembly may also retain the second hook member within the track.
- the switch assembly permits the second hook member to traverse the track in a desired direction, towards the first hook member or away from the first hook member.
- the switch assembly may also restrain the second hook member from traversing the track in an undesired direction.
- the first and second hook members may be configured in a compressing configuration to engage the two rod reducers such that rod reducers are between the hook members.
- the first and second hook members may also be configured in a distracting configuration to engage the rod reducers such that the hook members are between the rod reducers.
- the fulcrum is configured to receive the proximal segment of the outer member of each rod reducer and remain in a fixed position on the longitudinal axis of each rod reducer.
- a method for compressing or distracting vertebrae including two minimally invasive rod reducers, a compressor/distractor system, a spinal rod, and two pedicle screws.
- the method includes the steps of accessing the spinal area of a patient having at least two pedicle screws secured to respective vertebrae, engaging each pedicle screw with a rod reducer, advancing the spinal rod into the head of each pedicle screw, attaching a compressor/distractor device to each rod reducer, inserting a set screw through each rod reducer, manipulating the compressor/distractor device, and securing the spinal rod to each pedicle screw.
- the method may also include the step of attaching a fulcrum to the proximal segment of each outer member before rotating the gear assembly.
- FIG. 1 A is a perspective view of a minimally invasive rod reducer in accordance with the principles of the present disclosure before engagement with a rod and a pedicle screw;
- FIG. 1 B is a perspective view of the rod reducer of FIG. 1 A after initial engagement of the rod and pedicle screw;
- FIG. 1 C is a perspective view of the rod reducer of FIG. 1 B after the rod has been received by the shoulder portion of the pedicle screw
- FIG. 2 is a perspective view of the outer member of FIG. 1 A ;
- FIG. 3 is a exploded view of the outer member of FIG. 2 ;
- FIG. 4 is a bottom cross-sectional view of the outer member of FIG. 2 taken along the section line 4 - 4 ;
- FIG. 5 is an exploded view of the rod reducer of FIG. 1 A ;
- FIG. 6 is a side cross-sectional view of the of the rod reducer of FIG. 1 A ;
- FIG. 6 A is an enlarged view of the detail area 6 A of FIG. 6 ;
- FIG. 7 A is a perspective view of the outer member of FIG. 2 engaged with a turning handle and an anti-torque handle;
- FIG. 7 B is an exploded view of FIG. 7 A ;
- FIG. 8 is a perspective view of an embodiment of a compressor/distractor system in accordance with the principles of the present disclosure in a compressing configuration
- FIG. 9 is a perspective view of the compressor/distractor system of FIG. 8 in a distracting configuration
- FIG. 10 A is a perspective view of another embodiment of a compressor/distractor system in accordance with the principles of the present disclosure in a compressing configuration
- FIG. 10 B is a perspective view of the compressor/distractor system of FIG. 10 A in a distracting configuration
- FIG. 11 is a perspective view of the fulcrum of FIG. 9 ;
- FIG. 11 A is an exploded view of the fulcrum of FIG. 11 ;
- FIG. 11 B is a top view of the fulcrum of FIG. 11 ;
- FIG. 11 C is a side cross-sectional view of the fulcrum taken along the section line 11 C- 11 C in FIG. 11 B ;
- FIG. 12 is an enlarged view of the compressor/distractor device of FIG. 9 ;
- FIG. 13 is a top view of the compressor/distractor device of FIG. 12 ;
- FIG. 14 is an exploded view of the compressor/distractor device of FIG. 12 .
- proximal and distal may be employed interchangeably, and should be understood as referring to the portion of a structure that is closer to a clinician during proper use.
- distal and “leading” may also be employed interchangeably, and should be understood as referring to the portion of a structure that is farther from the clinician during proper use.
- cephalad or “cranial” is used in this application to indicate a direction toward a patient's head, whereas the term “caudad” indicates a direction toward the patient's feet.
- the term “medial” indicates a direction toward the middle of the body of the patient
- the term “lateral” indicates a direction toward a side of the body of the patient (i.e., away from the middle of the body of the patient).
- the term “posterior” indicates a direction toward the patient's back
- the term “anterior” indicates a direction toward the patient's front.
- a rod reducer 10 includes an outer member 20 , an inner member 30 , and a pair of gripping members 40 , such as the rod reducer disclosed in U.S. patent application Ser. No. 13/595,533 which is incorporated by reference.
- Outer member 20 includes a proximal segment 21 , a distal segment 22 , and a ring member 27 that is disposed between proximal and distal segments 21 , 22 .
- Proximal segment 21 includes an engaging portion 21 a at a distal end of proximal segment 21 and a gripping portion 21 b at a proximal end of proximal segment 21 .
- An inner surface 28 of proximal segment 21 is threaded.
- Distal segment 22 defines a slot 26 therethrough and includes a reducing portion 22 a at a distal end of distal segment 22 and a receiving portion 22 b at a proximal end of distal segment 22 .
- Receiving portion 22 b includes a plurality of gripping features 22 c on an outer surface of receiving portion 22 b.
- a pair of rod engaging slots 25 and a pair of gripping member receiving slots 24 are defined through reducing portion 22 a.
- Receiving portion 22 b of distal segment 22 is configured to receive engaging portion 21 a of proximal segment 21 so that ring member 27 is disposed between proximal and distal segments 21 , 22 .
- the components of outer member 20 may be integrally formed or assembled.
- Inner member 30 includes an elongate body member 39 that defines an annular recess 33 configured to receive the pair of gripping members 40 so that the gripping members 40 are disposed in opposition on the elongate body member 39 .
- Inner member 30 includes a pair of arms 32 supported on a distal end of elongate body member 39 .
- a proximal end of elongate body member 39 has a threaded arrangement 38 that mates with threaded inner surface 28 of proximal segment 21 of outer member 20 to axially advance outer member 20 relative to inner member 30 as will be described in greater detail below.
- Each gripping member 40 includes a body 47 having a supporting member 43 , a proximal finger 46 , and a distal finger 45 .
- Supporting member 43 is configured to engage annular recess 33 of inner member 30 to support body 47 of each gripping member 40 on inner member 30 .
- Proximal finger 46 extends proximally from supporting member 43 and is slidably positionable within slot 26 of outer member 20 .
- Distal finger 45 extends distally from supporting member 43 and is positionable between an arm 32 of inner member 30 and reducing portion 22 a of outer member 20 so that distal finger 45 is substantially aligned with a gripping member receiving slot 24 of reducing portion 22 a.
- outer member 20 of rod reducer 10 is disposed in a proximal position relative to inner member 30 of rod reducer 10 , distal fingers 45 of gripping member 40 of rod reducer 10 are secured to an outer surface of pedicle screw head 910 .
- Proximal segment 21 of outer member 20 may then be rotated by virtue of the threaded arrangement between outer member 20 and inner member 30 for axially advancing distal segment 22 of outer member 20 relative to inner member 30 and proximal segment 21 .
- Proximal segment 21 remains axially fixed when rotated.
- proximal segment 21 rotates
- distal segment 22 remains radially fixed as distal segment 22 axially translates relative to inner member 30 and proximal segment 21 .
- Outer member 20 approximates a spinal rod 800 positioned between rod reducer 10 and pedicle screw 900 as outer member 20 is advanced toward pedicle screw 900 to secure spinal rod 800 within a saddle 912 of pedicle screw 900 .
- a proximal end of slot 26 of outer member 20 approximates a proximal end of proximal fingers 46 of gripping member 40 .
- a rod reducer and handle assembly 650 includes the rod reducer 10 and a handle assembly 652 .
- Handle assembly 652 includes a turning handle 600 and an anti-torque handle 700 that are selectively connectable to gripping portion 21 b and gripping features 22 c respectively on rod reducer 10 .
- Turning handle 600 includes a shaft 610 , a handle 620 , and a socket 630 that defines an opening 632 . Opening 632 is configured to receive a proximal end of gripping portion 21 b of rod reducer 10 .
- Handle 620 is secured to a proximal end of shaft 610 and a socket 630 that may be integrally formed is secured to a distal end of shaft 610 .
- Anti-torque handle 700 includes a shaft 720 and a handle 710 that may be integrally formed.
- Shaft 720 includes a socket 722 that defines an opening 722 a at a distal end of socket 722 .
- Opening 722 a is disposed in communication with a lumen 725 defined within shaft 720 and another opening 724 disposed at a proximal end of shaft 720 so that anti-torque handle 700 may slide over gripping portion 21 b of rod reducer 10 and engage with gripping feature 22 c of rod reducer 10 to prevent rotational movement of distal segment 22 of outer member 20 of rod reducer 10 .
- either or both the turning handle 600 and the anti-torque handle 700 may be used to facilitate the rotational movement of outer member 20 relative to inner member 30 .
- rotation of turning handle 600 imparts rotational movement to proximal segment 21 of outer member 20
- anti-torque handle 700 imparts counter rotational movement to distal segment 22 of outer member 20 so that proximal segment 21 rotates and distal segment 22 axially translates without rotating.
- anti-torque handle 700 is configured to limit the amount of torque imparted from the rotational movement imparted by turning handle 600 to prevent undesirable torquing of the outer member 20 .
- anti-torque handle 700 slides down over the outer surface of outer member 20 of rod reducer 10 so that a distal end of anti-torque handle 700 engages distal segment 22 of outer member 20 and a proximal end of proximal segment 21 of outer member 20 is exposed for engagement with turning handle 600 .
- gripping member 40 is secured within annular recess 33 of inner member 30 such that proximal finger 46 of gripping member 40 is supported in slot 26 of distal segment 22 of outer member 20
- the engagement of anti-torque handle 700 with gripping feature 22 c of distal segment 22 of outer member 20 prevents rotation of both distal segment 22 of outer member 20 and inner member 30 as proximal segment 21 of outer member 20 is rotated with turning handle 600 .
- turning handle 600 and anti-torque handle 700 may be removed and a set screw (not shown) may be inserted down an inner diameter of rod reducer 10 to lock spinal rod 800 into place.
- anti-torque handle 700 may also be used to prevent rotation when tightening the set screw after spinal rod 800 has been fully reduced. Rod reducer 10 may then be removed.
- a compressor/distractor system 200 includes rod reducers 10 , a compressor/distractor device 210 , and a fulcrum 300 .
- System 200 may further include one or more minimally invasive retraction devices 950 , such as the retractor disclosed in U.S. Pat. No. 7,846,093, the entire contents of which is incorporated by reference.
- Each of the two rod reducers 10 engages a respective pedicle screw 900 .
- Each pedicle screw 900 is inserted into a respective vertebra and is configured to receive spinal rod 800 in saddle portion 912 as shown in FIG. 1 C .
- Compressor/distractor device 210 is configured for selective engagement with each rod reducer 10 when each rod reducer 10 is attached to pedicle screw 900 .
- FIGS. 10 A and 10 B illustrate other embodiments of compressor/distractor system 200 a using compressor 400 and distractor 500 respectively as the force applying device.
- the compressor 400 has a handle assembly 410 with handles 402 , 404 that are pivotably coupled together by pivot pin 406 .
- Distal portions of handles 402 , 404 have respective grippers 402 a, 404 a for engaging rod reducers 10 .
- Each gripper 402 a, 404 a includes an arcuate recess configured for engaging an outer surface of rod reducer 10 .
- Compressor 400 also includes an arm 420 having teeth 422 disposed thereon.
- Teeth 422 releasably engage a distal portion of handle 404 for maintaining a predetermined distance or spacing between handles 402 , 404 during a compression stroke that moves rod reducers 10 towards each other.
- the arm 420 is pivotably coupled to a distal end of arm 402 such that it can be repositioned and allow handles 402 , 404 to be moved away from each other once the desired amount of compression is achieved.
- the distractor 500 has a handle assembly 510 with handles 502 , 504 that are pivotably coupled together by pivot pin 506 .
- Distal portions of handles 502 , 504 have respective grippers 502 a, 504 a for engaging rod reducers 10 .
- Each gripper 502 a, 504 a includes an arcuate recess configured for engaging an outer surface of rod reducer 10 .
- Distractor 500 also includes an arm 520 having teeth 522 disposed thereon. Teeth 522 releasably engage a distal portion of handle 502 for maintaining a predetermined distance or spacing between handles 502 , 504 during a distraction stroke that moves rod reducers 10 away from each other.
- the arm 520 is pivotably coupled to a distal end of arm 504 such that it can be repositioned and allow handles 502 , 504 to be moved away from each other once the desired amount of distraction is achieved.
- FIGS. 11 - 11 C illustrating fulcrum 300 including through holes 315 which receive inner bearing rings 320 which house retaining rings 330 that are prevented from falling out of fulcrum 300 by caps 340 .
- Fulcrum 300 is an elongate structure and each through hole 315 includes an annular groove for retaining inner bearing rings 320 and their respective retaining rings 330 .
- compressor/distractor device 210 has a first hook member 220 , a second hook member 230 , and a body portion 260 .
- Body portion 260 includes first end 261 and track 262 extending from first end 261 along a length of body portion 260 .
- Track 262 includes a set of teeth 263 and sidewall 264 .
- First end 261 is insertable into a recess of the first hook member 220 and is fixed in position at first end 261 of body portion 260 by the cooperation of retaining pin 221 and first end retaining ring 222 .
- First and second hook members 220 , 230 may each include hook portions 224 , 234 for engaging rod reducers 10 .
- Hook portions 224 , 234 have respective distracting hooks 225 , 235 and compressing hooks 226 , 236 .
- each compressing hook 226 , 236 engages a rod reducer 10 in a compressing configuration of compressor/distractor device 210 ( FIG. 8 ).
- each distracting hook 225 , 235 engages a rod reducer 10 in a distracting configuration of compressor/distractor device 210 ( FIG. 9 ).
- Compressor/distractor device 210 may also have a neutral configuration.
- Each hook member 220 , 230 may engage gripping features 22 c of each rod reducer 10 .
- Second hook member 230 may include a switch assembly 250 and a gear assembly 240 .
- Switch assembly 250 may include a pawl 251 , a pawl switch pin 252 , a switch cap 253 , a spring 254 , a ball 255 , ball detents 258 , a switch 256 , and a switch shaft 257 .
- Switch assembly 250 is selectable amongst a first condition, a second condition, and a third condition. Each condition may correspond to a configuration of the compressor/distractor device 210 .
- switch assembly 250 restrains second hook member 230 from traversing track 262 towards the first hook member 220 , while permitting second hook member 230 to traverse track 262 away from the first hook member 220 (i.e., a distracting configuration).
- switch assembly 250 restrains second hook member 230 from traversing track 262 away from the first hook member 220 , while permitting second hook member 230 to traverse track 262 towards the first hook member 220 (i.e., a compressing configuration).
- switch assembly 250 allows the second hook member 230 to freely move along track 262 in either direction (i.e., a neutral configuration), which allows for quick adjustment of compressor/distractor device 210 .
- Switch 256 rotates about switch shaft 257 causing pawl pivot pin 252 to rotate pawl 251 about switch shaft 257 .
- Pawl pivot pin 252 acts on pawl 251 causing pawl 251 to engage set of teeth 263 which restrains second hook member from traversing in the undesired direction.
- Second hook member 230 may include ball detents 258 .
- Each ball detent 258 corresponds to a position of switch 256 .
- Switch 256 may be retained in each position by spring 254 pressing ball 255 into a corresponding ball detent 258 .
- Ball 255 selectively engages each ball detent 258 when the switch is in one of the positions corresponding to the compressing, distracting, and neutral configurations of the compressor/distractor device 210 .
- Gear assembly 240 engages set of teeth 263 causing second hook member 230 to traverse track 262 .
- Rotation of traversing screw 244 rotates pinion 242 .
- the cooperation of pinion 242 with set of teeth 263 induces the second hook member 230 to traverse track 262 .
- a drive tool (not shown) may engage and rotate traversing screw 244 .
- a method for using system 200 to manipulate a vertebra into a desired position with respect to a second vertebra is discussed below.
- a surgeon accesses the spinal area of a patient having at least two pedicle screws 900 secured to adjacent vertebrae (not shown). Each pedicle screw 900 may be engaged by a minimally invasive retraction device 950 . The surgeon then engages each pedicle screw 900 with a rod reducer 10 by attaching inner member 30 to pedicle screw head 910 as shown in FIG. 1 B . Each inner member 30 receives a respective pedicle screw head 910 between arms 32 .
- the surgeon advances an outer member 20 along each inner member 30 by rotating the distal segment 21 of the outer member 20 .
- the surgeon may use handle assembly 650 to rotate distal segment 21 .
- Rod engaging slots 25 of proximal segment 22 of each outer member 20 receives a portion of rod 800 and advances rod 800 into saddle portion 912 of each pedicle screw 900 as shown in FIGS. 1 B and 1 C .
- the force applying device may include gear assembly 240 .
- the surgeon inserts a set screw (not shown) through each rod reducer 10 for securing the rod 800 to each pedicle screw 900 .
- the surgeon may rotate at least one of the set screws to either partially or fully secure rod 800 to at least one of the pedicle screws 900 .
- gear assembly 240 manipulates gear assembly 240 until each pedicle screw 900 is in a desired position on rod 800 .
- Manipulation of gear assembly 240 may include rotating traversing screw 244 .
- the surgeon may use a drive tool to manipulate gear assembly 240 .
- each set screw to fully secure rod 800 to each pedicle screw 900 in the desired position. Then the surgeon may remove compressor/distractor device 210 and each rod reducer 10 .
- fulcrum 300 may also attach to gripping portion 21 b of proximal segment 21 of each outer member 20 before manipulating gear assembly 240 . Fulcrum 300 may then be removed with the compressor/distractor device 210 and each of the rod reducers 10 .
Landscapes
- Health & Medical Sciences (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Neurology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Heart & Thoracic Surgery (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgical Instruments (AREA)
Abstract
A compressor/distractor system for operating on a spine is disclosed. The system includes two rod reducers which each advance a spinal rod into the shoulder portion of a pedicle screw. Each rod reducer includes an inner member, an outer member, and a pair of gripping members. Each outer member receives and advances the spinal rod into the pedicle screw. The outer member also includes a through slot which receives the proximal end of each of the pair of gripping members which may limit the longitudinal translation of the outer member with respect to the inner member. The compressor/distractor system may include a compressor/distractor device which has a compressing, a distracting, and a neutral configuration. A method for using the minimally invasive rod reducers with the compressor/distractor system to secure at least two pedicle screws in desired positions on a spinal rod is also disclosed.
Description
NOTICE: More than one reissue application has been filed for the reissue of U.S. Pat. No. 9,737,351 B2. The reissue applications are U.S. Reissue patent application Ser. No. 16/545,644 and the present application. The present application is a continuation reissue application of U.S. Reissue patent application Ser. No. 16/545,644, filed on Aug. 20, 2019, which is an application for the reissue of U.S. Pat. No. 9,737,351, which is a divisional of U.S. patent application Ser. No. 13/741,934, filed Jun. 15, 2013, which claims the benefit of, and priority to, U.S. Provisional Application Ser. No. 61/586,928, filed on Jan. 16, 2012. The entire contents of each of the above applications are incorporated herein by reference.
Technical Field
The present disclosure relates to a system and method for operating on the spine. More particularly, the present disclosure relates to a minimally invasive rod reducer, compressor/distractor system, and a method for using the compressor/distractor system to deliver a spinal rod to the head of a pedicle screw.
Background of Related Art
The spinal column is a complex system of bones and connective tissues that provide support for the human body and protection for the spinal cord and nerves. The adult spine is comprised of an upper and lower portion. The upper portion contains 24 discrete bones, which are subdivided into three areas including 7 cervical vertebrae, 12 thoracic vertebrae and 5 lumbar vertebrae. The lower portion is comprised of the sacral and coccygeal bones. The cylindrical shaped bones, called vertebral bodies, progressively increase in size from the upper portion downwards to the lower portion.
An intervertebral disc along with two posterior facet joints cushion and dampen the various translational and rotational forces exerted upon the spinal column. The intervertebral disc is a spacer located between two vertebral bodies. The facets provide stability to the posterior portion of adjacent vertebrae. The spinal cord is housed in the canal of the vertebral bodies. It is protected posteriorly by the lamina. The lamina is a curved surface with three main protrusions. Two transverse processes extend laterally from the lamina, while the spinous process extends caudally and posteriorly. The vertebral bodies and lamina are connected by a bone bridge called the pedicle.
The spine is a flexible structure capable of a large range of motion. There are various disorders, diseases, and types of injury which restrict the range of motion of the spine or interfere with important elements of the nervous system. The problems include, but are not limited to scoliosis, kyphosis, excessive lordosis, spondylolisthesis, slipped or ruptured discs, degenerative disc disease, vertebral body fracture, and tumors. Persons suffering from any of the above conditions typically experience extreme or debilitating pain and often times diminished nerve function. These conditions and their treatments can be further complicated if the patient is suffering from osteoporosis, or bone tissue thinning and loss of bone density.
Spinal fixation apparatuses are widely employed in surgical processes for correcting spinal injuries and diseases. When the disc has degenerated to the point of requiring removal, there are a variety of interbody implants that are utilized to take the place of the disc. These include polyetheretherketone (“PEEK”) interbody spacers, metal cages, and cadaver and human bone implants. In order to facilitate stabilizing the spine and keeping the interbody in position, other implants are commonly employed, including longitudinally linked rods secured to coupling elements, which in turn are secured to the bone by spinal bone fixation fasteners such as pedicle screws, hooks, and others. The opposing pair of longitudinally linked rods is commonly disposed along the long axis of the spine via a posterior approach. Pedicle screws are utilized to capture these rods and can be manufactured from any biocompatible material, including cobalt chrome, stainless steel, titanium, and PEEK. It is desired to perform these procedures in a minimally invasive manner to minimize pain and reduce recovery time for the patient. Therefore, a need exists for a minimally invasive rod reducer, compressor, distractor system that can deliver the rod into the head of the pedicle screw or bone anchor while maintaining the proper screw and rod construct alignment.
A rod reducer that is small enough in diameter to work with a minimally invasive retractor, such as the rod reducer disclosed in U.S. Patent Publication No. 2013/0046345, the contents of which are hereby incorporated by reference in their entirety and a minimally invasive retractor, such as the minimally invasive retractor disclosed in U.S. Pat. No. 7,846,093, the contents of which are hereby incorporated by reference in their entirety, are also disclosed.
The present disclosure is directed towards a system for operating on the spine. The system includes pedicle screws, rod reducers, and a force applying device.
According to one aspect, the rod reducers include a proximal end and a distal end and define a longitudinal axis between the proximal and distal ends. The rod reducer includes an outer member and an inner member. The inner member is selectively attachable to the housing of the pedicle screw. The outer member is axially movable relative to the inner member when the inner member is secured to the housing of the pedicle screw to secure the spinal rod within the saddle of the housing of the pedicle screw. The outer member includes a proximal segment and a distal segment. The proximal segment is rotatable for axially translating the distal segment. The distal segment is engageable with the spinal rod to secure the spinal rod within the saddle upon the axial translation of the distal segment. The proximal segment independently rotates relative to the distal segment. The rod reducer includes a pair of gripping members configured to engage the housing of the pedicle screw. The pair of gripping members is positioned between the inner and outer members of the rod reducer.
The handle assembly is selectively engageable with the rod reducer to move the outer member of the rod reducer axially relative to the inner member of the rod reducer. The handle assembly is configured to rotate the outer member so that the rotational movement of the outer member axially moves the outer member relative to the inner member. The handle assembly includes a turning handle and an anti-torque handle. The anti-torque handle is selectively engageable with the proximal end of the rod reducer and the turning handle is selectively engageable with a proximal end of the anti-torque handle.
In another aspect, an embodiment of the system includes two rod reducers, a force applying device, and a fulcrum. The force applying device is configured for selectively engaging each rod reducer. The system may also include at least one minimally invasive retraction device.
In yet another aspect, the force applying device is a compressor/distractor device including a first hook member, a second hook member, and a body portion. The body portion has a first end and a track extending from the first end. The first end includes the first hook member in a fixed position. The first end may slidably receive the first hook member in a fixed position. The track includes a set of teeth and is configured for slidably receiving the second hook member.
The second hook member includes a switch assembly and a gear assembly. The second hook member traverses the track when the gear assembly is rotated. The gear assembly may also retain the second hook member within the track. The switch assembly permits the second hook member to traverse the track in a desired direction, towards the first hook member or away from the first hook member. The switch assembly may also restrain the second hook member from traversing the track in an undesired direction.
The first and second hook members may be configured in a compressing configuration to engage the two rod reducers such that rod reducers are between the hook members. The first and second hook members may also be configured in a distracting configuration to engage the rod reducers such that the hook members are between the rod reducers.
The fulcrum is configured to receive the proximal segment of the outer member of each rod reducer and remain in a fixed position on the longitudinal axis of each rod reducer.
According to still another aspect, a method for compressing or distracting vertebrae including two minimally invasive rod reducers, a compressor/distractor system, a spinal rod, and two pedicle screws. The method includes the steps of accessing the spinal area of a patient having at least two pedicle screws secured to respective vertebrae, engaging each pedicle screw with a rod reducer, advancing the spinal rod into the head of each pedicle screw, attaching a compressor/distractor device to each rod reducer, inserting a set screw through each rod reducer, manipulating the compressor/distractor device, and securing the spinal rod to each pedicle screw.
The method may also include the step of attaching a fulcrum to the proximal segment of each outer member before rotating the gear assembly.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the disclosure and, together with a general description of the disclosure given above, and the detailed description of the embodiments given below, serve to explain the principles of the disclosure, wherein:
Particular embodiments of the present disclosure will be described herein with reference to the accompanying drawings. As shown in the drawings and as described throughout the following description, and as is traditional when referring to relative positioning on an object, the terms “proximal” and “trailing” may be employed interchangeably, and should be understood as referring to the portion of a structure that is closer to a clinician during proper use. The terms “distal” and “leading” may also be employed interchangeably, and should be understood as referring to the portion of a structure that is farther from the clinician during proper use. In addition, the term “cephalad” or “cranial” is used in this application to indicate a direction toward a patient's head, whereas the term “caudad” indicates a direction toward the patient's feet. Further still, the term “medial” indicates a direction toward the middle of the body of the patient, whilst the term “lateral” indicates a direction toward a side of the body of the patient (i.e., away from the middle of the body of the patient). The term “posterior” indicates a direction toward the patient's back, and the term “anterior” indicates a direction toward the patient's front. In the following description, well-known functions or constructions are not described in detail to avoid obscuring the present disclosure in unnecessary detail.
Turning now to FIGS. 2-6A , a rod reducer 10 includes an outer member 20, an inner member 30, and a pair of gripping members 40, such as the rod reducer disclosed in U.S. patent application Ser. No. 13/595,533 which is incorporated by reference. Outer member 20 includes a proximal segment 21, a distal segment 22, and a ring member 27 that is disposed between proximal and distal segments 21, 22. Proximal segment 21 includes an engaging portion 21a at a distal end of proximal segment 21 and a gripping portion 21b at a proximal end of proximal segment 21. An inner surface 28 of proximal segment 21 is threaded. Distal segment 22 defines a slot 26 therethrough and includes a reducing portion 22a at a distal end of distal segment 22 and a receiving portion 22b at a proximal end of distal segment 22. Receiving portion 22b includes a plurality of gripping features 22c on an outer surface of receiving portion 22b. A pair of rod engaging slots 25 and a pair of gripping member receiving slots 24 are defined through reducing portion 22a. Receiving portion 22b of distal segment 22 is configured to receive engaging portion 21a of proximal segment 21 so that ring member 27 is disposed between proximal and distal segments 21, 22. The components of outer member 20 may be integrally formed or assembled.
Each gripping member 40 includes a body 47 having a supporting member 43, a proximal finger 46, and a distal finger 45. Supporting member 43 is configured to engage annular recess 33 of inner member 30 to support body 47 of each gripping member 40 on inner member 30. Proximal finger 46 extends proximally from supporting member 43 and is slidably positionable within slot 26 of outer member 20. Distal finger 45 extends distally from supporting member 43 and is positionable between an arm 32 of inner member 30 and reducing portion 22a of outer member 20 so that distal finger 45 is substantially aligned with a gripping member receiving slot 24 of reducing portion 22a.
As illustrated in FIGS. 1A-1C , outer member 20 of rod reducer 10 is disposed in a proximal position relative to inner member 30 of rod reducer 10, distal fingers 45 of gripping member 40 of rod reducer 10 are secured to an outer surface of pedicle screw head 910. Proximal segment 21 of outer member 20 may then be rotated by virtue of the threaded arrangement between outer member 20 and inner member 30 for axially advancing distal segment 22 of outer member 20 relative to inner member 30 and proximal segment 21. Proximal segment 21 remains axially fixed when rotated. Notably, as proximal segment 21 rotates, distal segment 22 remains radially fixed as distal segment 22 axially translates relative to inner member 30 and proximal segment 21. Outer member 20 approximates a spinal rod 800 positioned between rod reducer 10 and pedicle screw 900 as outer member 20 is advanced toward pedicle screw 900 to secure spinal rod 800 within a saddle 912 of pedicle screw 900. As outer member 20 advances distally, a proximal end of slot 26 of outer member 20 approximates a proximal end of proximal fingers 46 of gripping member 40.
Turning now to FIGS. 7A and 7B , a rod reducer and handle assembly 650 includes the rod reducer 10 and a handle assembly 652. Handle assembly 652 includes a turning handle 600 and an anti-torque handle 700 that are selectively connectable to gripping portion 21b and gripping features 22c respectively on rod reducer 10. Turning handle 600 includes a shaft 610, a handle 620, and a socket 630 that defines an opening 632. Opening 632 is configured to receive a proximal end of gripping portion 21b of rod reducer 10. Handle 620 is secured to a proximal end of shaft 610 and a socket 630 that may be integrally formed is secured to a distal end of shaft 610. Anti-torque handle 700 includes a shaft 720 and a handle 710 that may be integrally formed. Shaft 720 includes a socket 722 that defines an opening 722a at a distal end of socket 722. Opening 722a is disposed in communication with a lumen 725 defined within shaft 720 and another opening 724 disposed at a proximal end of shaft 720 so that anti-torque handle 700 may slide over gripping portion 21b of rod reducer 10 and engage with gripping feature 22c of rod reducer 10 to prevent rotational movement of distal segment 22 of outer member 20 of rod reducer 10.
Thus, if needed, either or both the turning handle 600 and the anti-torque handle 700 may be used to facilitate the rotational movement of outer member 20 relative to inner member 30. In particular, rotation of turning handle 600 imparts rotational movement to proximal segment 21 of outer member 20 and anti-torque handle 700 imparts counter rotational movement to distal segment 22 of outer member 20 so that proximal segment 21 rotates and distal segment 22 axially translates without rotating. As appreciated, anti-torque handle 700 is configured to limit the amount of torque imparted from the rotational movement imparted by turning handle 600 to prevent undesirable torquing of the outer member 20. More particularly, anti-torque handle 700 slides down over the outer surface of outer member 20 of rod reducer 10 so that a distal end of anti-torque handle 700 engages distal segment 22 of outer member 20 and a proximal end of proximal segment 21 of outer member 20 is exposed for engagement with turning handle 600. Meanwhile, since gripping member 40 is secured within annular recess 33 of inner member 30 such that proximal finger 46 of gripping member 40 is supported in slot 26 of distal segment 22 of outer member 20, the engagement of anti-torque handle 700 with gripping feature 22c of distal segment 22 of outer member 20 prevents rotation of both distal segment 22 of outer member 20 and inner member 30 as proximal segment 21 of outer member 20 is rotated with turning handle 600. After spinal rod 800 is fully reduced into the saddle 910 of pedicle screw 900, turning handle 600 and anti-torque handle 700 may be removed and a set screw (not shown) may be inserted down an inner diameter of rod reducer 10 to lock spinal rod 800 into place. Alternatively, anti-torque handle 700 may also be used to prevent rotation when tightening the set screw after spinal rod 800 has been fully reduced. Rod reducer 10 may then be removed.
Referring now to FIGS. 8 and 9 , a compressor/distractor system 200 includes rod reducers 10, a compressor/distractor device 210, and a fulcrum 300. System 200 may further include one or more minimally invasive retraction devices 950, such as the retractor disclosed in U.S. Pat. No. 7,846,093, the entire contents of which is incorporated by reference. Each of the two rod reducers 10 engages a respective pedicle screw 900. Each pedicle screw 900 is inserted into a respective vertebra and is configured to receive spinal rod 800 in saddle portion 912 as shown in FIG. 1C . Compressor/distractor device 210 is configured for selective engagement with each rod reducer 10 when each rod reducer 10 is attached to pedicle screw 900.
Now referring to FIGS. 11- 11 C illustrating fulcrum 300 including through holes 315 which receive inner bearing rings 320 which house retaining rings 330 that are prevented from falling out of fulcrum 300 by caps 340. Fulcrum 300 is an elongate structure and each through hole 315 includes an annular groove for retaining inner bearing rings 320 and their respective retaining rings 330.
Referring now to FIGS. 12-14 , compressor/distractor device 210 has a first hook member 220, a second hook member 230, and a body portion 260. Body portion 260 includes first end 261 and track 262 extending from first end 261 along a length of body portion 260. Track 262 includes a set of teeth 263 and sidewall 264. First end 261 is insertable into a recess of the first hook member 220 and is fixed in position at first end 261 of body portion 260 by the cooperation of retaining pin 221 and first end retaining ring 222.
First and second hook members 220, 230 may each include hook portions 224, 234 for engaging rod reducers 10. Hook portions 224, 234 have respective distracting hooks 225, 235 and compressing hooks 226, 236. When rod reducers 10 are between first and second hook members 220, 230, each compressing hook 226, 236 engages a rod reducer 10 in a compressing configuration of compressor/distractor device 210 (FIG. 8 ). When first and second hook members 220, 230 are between rod reducers 10, each distracting hook 225, 235 engages a rod reducer 10 in a distracting configuration of compressor/distractor device 210 (FIG. 9 ). Compressor/distractor device 210 may also have a neutral configuration. Each hook member 220, 230 may engage gripping features 22c of each rod reducer 10.
A method for using system 200 to manipulate a vertebra into a desired position with respect to a second vertebra is discussed below. First, a surgeon accesses the spinal area of a patient having at least two pedicle screws 900 secured to adjacent vertebrae (not shown). Each pedicle screw 900 may be engaged by a minimally invasive retraction device 950. The surgeon then engages each pedicle screw 900 with a rod reducer 10 by attaching inner member 30 to pedicle screw head 910 as shown in FIG. 1B . Each inner member 30 receives a respective pedicle screw head 910 between arms 32. Next, the surgeon advances an outer member 20 along each inner member 30 by rotating the distal segment 21 of the outer member 20. The surgeon may use handle assembly 650 to rotate distal segment 21.
Then the surgeon manipulates gear assembly 240 until each pedicle screw 900 is in a desired position on rod 800. Manipulation of gear assembly 240 may include rotating traversing screw 244. The surgeon may use a drive tool to manipulate gear assembly 240.
Then the surgeon rotates each set screw to fully secure rod 800 to each pedicle screw 900 in the desired position. Then the surgeon may remove compressor/distractor device 210 and each rod reducer 10.
The surgeon may also attach fulcrum 300 to gripping portion 21b of proximal segment 21 of each outer member 20 before manipulating gear assembly 240. Fulcrum 300 may then be removed with the compressor/distractor device 210 and each of the rod reducers 10.
While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.
Claims (34)
1. A method for manipulating vertebrae comprising:
accessing the spinal area of a patient having a pedicle screw secured to each of at least two vertebrae;
engaging each pedicle screw with an inner member having distal and proximal ends defining a longitudinal axis therebetween, the distal end of each inner member receiving a head of the pedicle screw;
advancing an outer member having distal and proximal ends distally along each of the inner members by rotating the proximal end of each of the outer members relative to each inner member, a pair of receiving slots on the distal end of each outer member receiving a portion of a spinal rod, each pair of receiving slots advancing the spinal rod into a saddle portion of the head of each pedicle screw;
attaching a force applying device and a fulcrum to an outer surface of each outer member, the force applying device including first and second hook members and having a compressing configuration when the first and second hook members are attached to each outer member with each of the outer members between the first and second hook members and a distracting configuration when the first and second hook members are attached to each outer member with the first and second hook members between each of the outer members;
manipulating each outer member with the force applying device until each of the pedicle screws is in a desired position with respect to the spinal rod; and
securing each pedicle screw to the spinal rod with a set screw.
2. The method of claim 1 , wherein the force applying device further includes a neutral configuration and the second hook member includes a switch assembly having a first, a second, and a third position, each position corresponding to a configuration of the force applying device.
3. The method of claim 1 , wherein the first and second hook members each include a hook portion, each hook portion having a compressing hook and a distracting hook.
4. The method of claim 1 , wherein the fulcrum is attached to a gripping portion of each outer member.
5. The method of claim 1 , wherein the step of advancing further includes attaching an anti-torque handle to a distal segment of each outer member and attaching a turning handle to a proximal segment of each outer member.
6. The method of claim 1 , wherein the method further includes the step of inserting at least one set screw through an inner member and at least partially locking the rod to at least one of the pedicle screws before the step of manipulating the each outer member.
7. A method for manipulating vertebrae comprising:
securing a first elongate member to a first pedicle screw that is secured in a first vertebra;
securing a second elongate member to a second pedicle screw that is secured in a second vertebra; and
manipulating the first and second elongate members with a force applying device until the first and second pedicle screws are in a desired position, the force applying device having first and second hook members, each hook member having a distracting hook and a compressing hook.
8. The method according of claim 7 , wherein manipulating the first and second elongate members with the force applying device includes positioning the first and second elongate members between the first and second hook members of the force applying device to compress the first and second elongate members towards one another.
9. The method according of claim 7 , wherein manipulating the first and second elongate members with the force applying device includes positioning the first and second hook members of the force applying device between the first and second elongate members to distract the first and second elongate members away from one another.
10. The method according of claim 7 , further comprising positioning a fulcrum over a distal end of each of the first and second elongate members before manipulating the first and second elongate members with the force applying device.
11. The method according to claim 10 , wherein manipulating the elongate members with the force applying device includes engaging the first elongate member with the first hook member between the fulcrum and the pedicle screw and engaging the second elongate member with the second hook member between the fulcrum and the pedicle screw.
12. The method according of claim 7 , further comprising:
reducing a spinal rod into a head of the first pedicle screw with the first elongate member; and
reducing the spinal rod into a head of the second pedicle screw with the second elongate member.
13. A method for manipulating vertebrae comprising:
securing a first elongate member to a first pedicle screw that is secured in a first vertebra;
securing a second elongate member to a second pedicle screw that is secured in a second vertebra; and
manipulating the first and second elongate members with a force applying device until the first and second pedicle screws are in a desired position, the force applying device having a compressing configuration, a distracting configuration, and a neutral configuration and including two hook members, at least one of the two hook members including switch assembly for selecting a respective one of the compressing, distracting, and neutral configurations, the switch assembly defining detents which each correspond to a respective one of the compressing, distracting, and neutral configurations of the force applying device.
14. A compression/distraction system, comprising:
a pair of elongate members, including:
a first elongate member having a distal end removably securable to a first bone anchor such that the first elongate member extends away from the first bone anchor along a first longitudinal axis, the first elongate member having a lateral outer surface extending along the first longitudinal axis;
a second elongate member having a distal end removably securable to a second bone anchor such that the second elongate member extends away from the second bone anchor along a second longitudinal axis, the second elongate member having a lateral outer surface extending along the second longitudinal axis; and
a force applying device, including:
a body portion defining a compression/distraction dimension;
a first engagement member having a longitudinal dimension projecting outwardly from the body portion transverse to the compression/distraction dimension, the first engagement member having an inner side and an outer side extending along the longitudinal dimension of the first engagement member on opposing sides of the first engagement member in the compression/distraction dimension; and
a second engagement member having a longitudinal dimension projecting outwardly from the body portion transverse to the compression/distraction dimension, the second engagement member having an inner side and an outer side extending along the longitudinal dimension of the second engagement member on opposing sides of the second engagement member in the compression/distraction dimension, the inner sides of the first and second engagement members facing towards one another, and the outer sides of the first and second engagement members facing away from one another;
wherein the first and second engagement members are movable relative to one another along the compression/distraction dimension to change a distance defined between the first and second engagement members;
wherein the first and second engagement members of the force applying device are selectively engageable to the pair of elongate members such that the force applying device can apply compression and distraction forces to the first and second bone anchors via the respective first and second elongate members, the force applying device being engageable to the pair of elongate members in a compressing configuration for applying the compression forces and in a distracting configuration for applying the distraction forces; wherein the inner sides of the first and second engagement members are configured to engage the lateral outer surfaces of the respective first and second elongate members with the pair of elongate members positioned between the first and second engagement members in the compressing configuration; and wherein the outer sides of the first and second engagement members are configured to engage the lateral outer surfaces of the respective first and second elongate members with the first and second engagement members positioned between the pair of elongate members in the distracting configuration.
15. The compression/distraction system of claim 14, wherein each of the first and second engagement members includes a first receiver and a second receiver, the first receiver of each of the first and second engagement members being configured to receive a respective one of the pair of elongate members in the compressing configuration, and the second receiver of each of the first and second engagement members being configured to receive a respective one of the pair of elongate members in the distracting configuration.
16. The compression/distraction system of claim 15, wherein the first receiver of each one of the first and second engagement members is a respective first concave portion facing towards the other of the first and second engagement members, and wherein the second receiver of each one of the first and second engagement members is a respective second concave portion facing away from the other of the first and second engagement members.
17. The compression/distraction system of claim 14, wherein the body portion includes a track along which the second engagement member is movable along the longitudinal dimension.
18. The compression/distraction system of claim 17, wherein the second engagement member is movable along the longitudinal dimension by rotation of a toothed pinion to advance the pinion along a set of teeth positioned along at least a portion of the track.
19. The compression/distraction system of claim 14, wherein the force applying device is transitionable between the compressing configuration and the distracting configuration by moving a switch assembly between a first position and a second position, respectively.
20. The compression/distraction system of claim 19, wherein the switch assembly is movable to a third position corresponding to a neutral configuration of the force applying device, the neutral configuration permitting the second engagement member to freely move along the longitudinal dimension both towards and away from the first engagement member.
21. The compression/distraction system of claim 20, wherein the first and second engagement members are respective first and second hook members, the second hook member including ball detents each corresponding to a respective one of the first, second, and third positions of the switch assembly.
22. The compression/distraction system of claim 19, wherein moving the switch assembly between the first position and the second position causes a pawl to rotate between a first angular position and a second angular position, respectively, the pawl engaging a set of teeth of the force applying device in both the first and second angular positions, such that the engagement between the pawl and the set of teeth in the first angular position prevents relative movement of the first and second engagement members away from one another along the longitudinal dimension, and such that the engagement between the pawl and the set of teeth in the second angular position prevents relative movement of the first and second engagement members towards one another along the longitudinal dimension.
23. A force applying device for a compression/distraction system, comprising:
a first engagement member;
a second engagement member;
a body portion coupling the first and second engagement members together along a longitudinal dimension; and
a switch assembly;
wherein the first and second engagement members are movable relative to one another along the longitudinal dimension to change a distance defined between the first and second engagement members;
wherein the first and second engagement members of the force applying device are selectively engageable to a pair of elongate members each securable to a respective bone anchor such that the force applying device can apply compression and distraction forces to the bone anchors via the elongate members; wherein the force applying device has a compressing configuration and a distracting configuration, the compressing configuration restraining relative movement of the first and second engagement members away from one another along the longitudinal dimension while permitting relative movement of the first and second engagement members towards one another along the longitudinal dimension, and the distracting configuration restraining relative movement of the first and second engagement members towards one another along the longitudinal dimension while permitting relative movement of the first and second engagement members away from one another along the longitudinal dimension; and wherein the force applying device is transitionable between the compressing and distracting configurations by moving the switch assembly between a first position and a second position, respectively.
24. The force applying device of claim 23, wherein each of the first and second engagement members includes a first receiver and a second receiver, the first receiver of each of the first and second engagement members being configured to receive a respective one of the pair of elongate members in the compressing configuration, and the second receiver of each of the first and second engagement members being configured to receive a respective one of the pair of elongate members in the distracting configuration.
25. The force applying device of claim 24, wherein the first receiver of each one of the first and second engagement members is a respective first concave portion facing towards the other of the first and second engagement members, and wherein the second receiver of each one of the first and second engagement members is a respective second concave portion facing away from the other of the first and second engagement members.
26. The force applying device of claim 23, wherein the body portion includes a track along which the second engagement member is movable along the longitudinal dimension.
27. The force applying device of claim 26, wherein the second engagement member is movable along the longitudinal dimension by rotation of a toothed pinion to advance the pinion along a set of teeth positioned along at least a portion of the track.
28. The force applying device of claim 23, wherein the switch assembly is movable to a third position corresponding to a neutral configuration of the force applying device, the neutral configuration permitting the second engagement member to freely move along the longitudinal dimension both towards and away from the first engagement member.
29. The force applying device of claim 28, wherein the first and second engagement members are respective first and second hook members, the second hook member including ball detents each corresponding to a respective one of the first, second, and third positions of the switch assembly.
30. The force applying device of claim 23, wherein moving the switch assembly between the first position and the second position causes a pawl to rotate between a first angular position and a second angular position, respectively, the pawl engaging a set of teeth of the force applying device in both the first and second angular positions, such that the engagement between the pawl and the set of teeth in the first angular position prevents relative movement of the first and second engagement members away from one another along the longitudinal dimension, and such that the engagement between the pawl and the set of teeth in the second angular position prevents relative movement of the first and second engagement members towards one another along the longitudinal dimension.
31. The force applying device of claim 23, wherein the first and second engagement members are configured to engage the pair of elongate members with the elongate members positioned between the first and second engagement members in the compressing configuration; and wherein the first and second engagement members are configured to engage the pair of elongate members with the first and second engagement members positioned between the elongate members in the distracting configuration.
32. A force applying device for a compression/distraction system, comprising:
a first engagement member having a portion including a distracting hook and a compressing hook;
a second engagement member having a portion including a distracting hook and a compressing hook; and
a body portion coupling the first and second engagement members together along a longitudinal dimension;
wherein the first and second engagement members are movable relative to one another along the longitudinal dimension to change a distance defined between the first and second engagement members; and
wherein the first and second engagement members of the force applying device are selectively engageable to a pair of elongate members each securable to a respective bone anchor such that the force applying device can apply compression and distraction forces to the bone anchors via the elongate members, the force applying device being engageable to the pair of elongate members in a compressing configuration for applying the compression forces and in a distracting configuration for applying the distraction forces.
33. The force applying device of claim 32, wherein the compressing hook of each of the first and second engagement members is configured to receive a respective one of the pair of elongate members in the compressing configuration, and wherein the distracting hook of each of the first and second engagement members is configured to receive a respective one of the pair of elongate members in the distracting configuration.
34. The force applying device of claim 32, wherein the compressing hook of each one of the first and second engagement members includes a respective first concave portion facing towards the other of the first and second engagement members, and wherein the distracting hook of each one of the first and second engagement members includes a respective second concave portion facing away from the other of the first and second engagement members.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/067,010 USRE49410E1 (en) | 2012-01-16 | 2020-10-09 | Rod reducer, compressor, distractor system |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261586928P | 2012-01-16 | 2012-01-16 | |
US13/741,934 US9125703B2 (en) | 2012-01-16 | 2013-01-15 | Rod reducer, compressor, distractor system |
US14/828,909 US9737351B2 (en) | 2012-01-16 | 2015-08-18 | Rod reducer, compressor, distractor system |
US16/545,644 USRE48250E1 (en) | 2012-01-16 | 2019-08-20 | Rod reducer, compressor, distractor system |
US17/067,010 USRE49410E1 (en) | 2012-01-16 | 2020-10-09 | Rod reducer, compressor, distractor system |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/828,909 Reissue US9737351B2 (en) | 2012-01-16 | 2015-08-18 | Rod reducer, compressor, distractor system |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE49410E1 true USRE49410E1 (en) | 2023-02-07 |
Family
ID=48780504
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/741,934 Active 2033-08-03 US9125703B2 (en) | 2012-01-16 | 2013-01-15 | Rod reducer, compressor, distractor system |
US14/828,909 Ceased US9737351B2 (en) | 2012-01-16 | 2015-08-18 | Rod reducer, compressor, distractor system |
US16/545,644 Active 2033-01-29 USRE48250E1 (en) | 2012-01-16 | 2019-08-20 | Rod reducer, compressor, distractor system |
US17/067,010 Active 2033-01-29 USRE49410E1 (en) | 2012-01-16 | 2020-10-09 | Rod reducer, compressor, distractor system |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/741,934 Active 2033-08-03 US9125703B2 (en) | 2012-01-16 | 2013-01-15 | Rod reducer, compressor, distractor system |
US14/828,909 Ceased US9737351B2 (en) | 2012-01-16 | 2015-08-18 | Rod reducer, compressor, distractor system |
US16/545,644 Active 2033-01-29 USRE48250E1 (en) | 2012-01-16 | 2019-08-20 | Rod reducer, compressor, distractor system |
Country Status (1)
Country | Link |
---|---|
US (4) | US9125703B2 (en) |
Families Citing this family (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8439922B1 (en) | 2008-02-06 | 2013-05-14 | NiVasive, Inc. | Systems and methods for holding and implanting bone anchors |
AU2009298554B2 (en) | 2008-10-01 | 2016-03-31 | Sherwin Hua | System and method for wire-guided pedicle screw stabilization of spinal vertebrae |
US20140107707A1 (en) * | 2011-02-10 | 2014-04-17 | Robert A. Rovner | Table anchored scoliosis de-rotation system and method |
US9198698B1 (en) | 2011-02-10 | 2015-12-01 | Nuvasive, Inc. | Minimally invasive spinal fixation system and related methods |
US9907582B1 (en) | 2011-04-25 | 2018-03-06 | Nuvasive, Inc. | Minimally invasive spinal fixation system and related methods |
US9125703B2 (en) * | 2012-01-16 | 2015-09-08 | K2M, Inc. | Rod reducer, compressor, distractor system |
US8951257B2 (en) * | 2012-02-15 | 2015-02-10 | Warsaw Orthopedic, Inc. | Spinal correction system and method |
US9675386B2 (en) | 2013-03-11 | 2017-06-13 | K2M, Inc. | Flexible fastening system |
US10136927B1 (en) | 2013-03-15 | 2018-11-27 | Nuvasive, Inc. | Rod reduction assemblies and related methods |
US9668789B2 (en) * | 2013-03-15 | 2017-06-06 | Ebi, Llc | Reduction instrument, surgical assembly including a reduction instrument and related method |
US9173687B2 (en) * | 2013-03-15 | 2015-11-03 | DePuy Synthes Products, Inc. | Fulcrum cap for spinal constructs |
US9486256B1 (en) | 2013-03-15 | 2016-11-08 | Nuvasive, Inc. | Rod reduction assemblies and related methods |
US9480504B1 (en) | 2013-03-15 | 2016-11-01 | Nuvasive, Inc. | Spinal alignment frame |
AU2014259592B2 (en) | 2013-11-15 | 2019-05-16 | K2M, Inc. | System for corrective spinal surgery and method of use |
US10159579B1 (en) | 2013-12-06 | 2018-12-25 | Stryker European Holdings I, Llc | Tubular instruments for percutaneous posterior spinal fusion systems and methods |
US9408716B1 (en) | 2013-12-06 | 2016-08-09 | Stryker European Holdings I, Llc | Percutaneous posterior spinal fusion implant construction and method |
US9744050B1 (en) * | 2013-12-06 | 2017-08-29 | Stryker European Holdings I, Llc | Compression and distraction system for percutaneous posterior spinal fusion |
US9622795B2 (en) | 2013-12-13 | 2017-04-18 | Stryker European Holdings I, Llc | Tissue retraction and vertebral displacement devices, systems, and methods for posterior spinal fusion |
US9271768B2 (en) * | 2013-12-20 | 2016-03-01 | Globus Medical, Inc. | Orthopedic fixation devices and instruments for installation thereof |
US9681899B2 (en) * | 2015-03-23 | 2017-06-20 | Globus Medical, Inc. | Orthopedic derotation devices and methods of installation thereof |
US10405896B2 (en) * | 2015-04-30 | 2019-09-10 | K2M, Inc. | Rod reducer |
CN104905872B (en) * | 2015-05-12 | 2017-05-31 | 山东威高骨科材料股份有限公司 | A kind of breast-stroke clamps binding clip |
US9974577B1 (en) | 2015-05-21 | 2018-05-22 | Nuvasive, Inc. | Methods and instruments for performing leveraged reduction during single position spine surgery |
US10117678B2 (en) | 2015-05-28 | 2018-11-06 | K2M, Inc. | Surgical system for bone screw insertion and rod reduction |
US10123829B1 (en) | 2015-06-15 | 2018-11-13 | Nuvasive, Inc. | Reduction instruments and methods |
US10194960B1 (en) | 2015-12-03 | 2019-02-05 | Nuvasive, Inc. | Spinal compression instrument and related methods |
CN109788975A (en) * | 2016-07-01 | 2019-05-21 | 纽文思公司 | Spinal injury is corrected and is fixed |
US10420593B2 (en) * | 2016-07-21 | 2019-09-24 | Warsaw Orthopedic, Inc. | Spinal correction system and method |
US10398481B2 (en) | 2016-10-03 | 2019-09-03 | Nuvasive, Inc. | Spinal fixation system |
US11033301B2 (en) | 2016-10-11 | 2021-06-15 | K2M, Inc. | Spinal implant and methods of use thereof |
DE102016121054B3 (en) * | 2016-11-04 | 2018-04-05 | Silony Medical International AG | Apparatus for performing distraction or compression of vertebral bodies in a spinal surgery |
US10779866B2 (en) * | 2016-12-29 | 2020-09-22 | K2M, Inc. | Rod reducer assembly |
US10499897B2 (en) | 2017-03-06 | 2019-12-10 | Thompson Surgical Instruments, Inc. | Distractor with bidirectional ratchet |
ES2871543T3 (en) * | 2018-01-26 | 2021-10-29 | Aesculap Ag | Spinal Repositioning Instrument and Spinal Repositioning System |
US11051861B2 (en) | 2018-06-13 | 2021-07-06 | Nuvasive, Inc. | Rod reduction assemblies and related methods |
USD919087S1 (en) * | 2018-06-19 | 2021-05-11 | Orthocision Inc. | Surgical tool |
US11759239B2 (en) | 2018-09-24 | 2023-09-19 | Astura Medical Inc | MIS multi-level compressor / distractor |
WO2020068882A1 (en) * | 2018-09-24 | 2020-04-02 | Astura Medical Inc. | Minimally invasive compressor / distractor |
US11160580B2 (en) | 2019-04-24 | 2021-11-02 | Spine23 Inc. | Systems and methods for pedicle screw stabilization of spinal vertebrae |
US11678912B2 (en) * | 2019-09-24 | 2023-06-20 | Astura Medical Inc | Minimally invasive compressor / distractor |
CN115551426A (en) * | 2019-11-27 | 2022-12-30 | 斯拜因23公司 | Systems, devices and methods for treating scoliosis |
US11439442B2 (en) * | 2020-04-16 | 2022-09-13 | Warsaw Orthopedic, Inc. | Modular screw system with head locker and derotator |
US11617602B2 (en) * | 2020-04-16 | 2023-04-04 | Medtronic, Inc. | Systems, methods of use and surgical instruments employing a secure slide lock to fasten a head |
JP2024518177A (en) | 2021-05-12 | 2024-04-25 | スピン23 インコーポレイテッド | Systems and methods for pedicle screw stabilization of spinal vertebrae - Patents.com |
US20230032049A1 (en) * | 2021-07-29 | 2023-02-02 | David Skaggs | Systems and methods for treatment of spinal deformities |
US11529173B1 (en) | 2021-11-12 | 2022-12-20 | Spinal Simplicity, Llc | Reduction system for spondylolisthesis |
WO2024184364A1 (en) * | 2023-03-06 | 2024-09-12 | Moving Spine Ag | Ligament tensioning device |
Citations (163)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1920821A (en) * | 1931-09-22 | 1933-08-01 | Wassenaar Jan Jacob Stephanus | Distraction bone forceps |
US3244170A (en) * | 1962-11-23 | 1966-04-05 | Robert T Mcelvenny | Compression type bone splint |
US3997138A (en) | 1974-06-18 | 1976-12-14 | Henry Vernon Crock | Securing devices and structures |
US4263899A (en) | 1978-05-01 | 1981-04-28 | Burgin Kermit H | Locking adjustable speculum |
SU839513A1 (en) | 1979-09-14 | 1981-06-23 | Центральный Ордена Трудовогокрасного Знамени Научно-Исследова-Тельский Институт Травматологии Иортопедии Им. H.H.Приорова | Device for guiding wires |
US4382438A (en) | 1979-09-11 | 1983-05-10 | Synthes Ag | Instrument for treatment of spinal fractures, scoliosis and the like |
US4409968A (en) | 1980-02-04 | 1983-10-18 | Drummond Denis S | Method and apparatus for engaging a hook assembly to a spinal column |
US4411259A (en) | 1980-02-04 | 1983-10-25 | Drummond Denis S | Apparatus for engaging a hook assembly to a spinal column |
US4957495A (en) | 1987-04-01 | 1990-09-18 | Patrick Kluger | Device for setting the spinal column |
US5010879A (en) | 1989-03-31 | 1991-04-30 | Tanaka Medical Instrument Manufacturing Co. | Device for correcting spinal deformities |
US5059194A (en) | 1990-02-12 | 1991-10-22 | Michelson Gary K | Cervical distractor |
US5167662A (en) * | 1992-01-24 | 1992-12-01 | Zimmer, Inc. | Temporary clamp and inserter for a posterior midline spinal clamp |
EP0528177A2 (en) | 1991-08-17 | 1993-02-24 | Aesculap Ag | Internal fixator for the correction of a lumbar spondyldisthesis |
US5242443A (en) | 1991-08-15 | 1993-09-07 | Smith & Nephew Dyonics, Inc. | Percutaneous fixation of vertebrae |
US5281223A (en) | 1992-09-21 | 1994-01-25 | Ray R Charles | Tool and method for derotating scoliotic spine |
WO1994009726A1 (en) | 1992-10-23 | 1994-05-11 | Smith & Nephew Richards Inc. | Internal fixators |
EP0611116A1 (en) | 1993-02-11 | 1994-08-17 | SMITH & NEPHEW RICHARDS, INC. | Spinal column retaining apparatus |
US5478340A (en) | 1992-01-31 | 1995-12-26 | Kluger; Patrick | Vertebral column implant and repositioning instrument |
US5487743A (en) | 1994-02-15 | 1996-01-30 | Sofamore, S.N.C. | Anterior dorso-lumbar spinal osteosynthesis instrumentation for the correction of kyphosis |
US5529571A (en) | 1995-01-17 | 1996-06-25 | Daniel; Elie C. | Surgical retractor/compressor |
DE29710979U1 (en) | 1997-06-24 | 1997-08-21 | Aesculap AG & Co. KG, 78532 Tuttlingen | Implant for fixing bone parts and tool for this implant |
US5672175A (en) * | 1993-08-27 | 1997-09-30 | Martin; Jean Raymond | Dynamic implanted spinal orthosis and operative procedure for fitting |
US5685826A (en) | 1990-11-05 | 1997-11-11 | General Surgical Innovations, Inc. | Mechanically expandable arthroscopic retractors and method of using the same |
US5704937A (en) * | 1993-08-27 | 1998-01-06 | Paulette Fairant | Operative equipment for fixing spinal instrumentation |
USRE36221E (en) | 1989-02-03 | 1999-06-01 | Breard; Francis Henri | Flexible inter-vertebral stabilizer as well as process and apparatus for determining or verifying its tension before installation on the spinal column |
US5944658A (en) | 1997-09-23 | 1999-08-31 | Koros; Tibor B. | Lumbar spinal fusion retractor and distractor system |
US6090113A (en) | 1996-12-27 | 2000-07-18 | Stryker France S.A. | Adjustable osteosynthesis system of the rachis |
US6123707A (en) | 1999-01-13 | 2000-09-26 | Spinal Concepts, Inc. | Reduction instrument |
US6146386A (en) | 1999-02-04 | 2000-11-14 | Sdgi Holdings, Inc. | Cable operated bone anchor compressor |
US6200322B1 (en) | 1999-08-13 | 2001-03-13 | Sdgi Holdings, Inc. | Minimal exposure posterior spinal interbody instrumentation and technique |
WO2001041681A1 (en) | 1999-12-10 | 2001-06-14 | Nuvasive, Inc. | Facet screw and bone allograft intervertebral support and fusion system |
DE10027988A1 (en) | 2000-06-06 | 2002-01-10 | Arkadiusz Kosmala | Appliance for percutaneous insertion of connection of pedicle screws has two arms of equal length with transverse connection, circular arm and circular support, |
US20020052603A1 (en) | 1999-03-30 | 2002-05-02 | Surgical Dynamics, Inc. | Apparatus for spinal stabilization |
US6506151B2 (en) | 1998-04-09 | 2003-01-14 | Sdgi Holdings, Inc. | Method and instrumentation for posterior interbody fusion |
US6530929B1 (en) | 1999-10-20 | 2003-03-11 | Sdgi Holdings, Inc. | Instruments for stabilization of bony structures |
US20030055430A1 (en) | 2001-09-14 | 2003-03-20 | Kim Kee D. | System and method for fusing spinal vertebrae |
US20030073998A1 (en) | 2000-08-01 | 2003-04-17 | Endius Incorporated | Method of securing vertebrae |
US20030167059A1 (en) * | 2002-03-04 | 2003-09-04 | Young John Stewart | Devices and methods for spinal compression and distraction |
US6616667B1 (en) | 1999-11-25 | 2003-09-09 | Sulzer Orthopedics, Ltd. | Surgical instrument for tensioning a cable-like tensioning element |
US6616666B1 (en) | 1997-02-11 | 2003-09-09 | Gary K. Michelson | Apparatus for compressing a spinal disc space disposed between two adjacent vertebral bodies of a cervical spine |
US6616605B2 (en) | 2001-02-15 | 2003-09-09 | Genesee Biomedical, Inc. | Quadretractor and method of use |
US20030187436A1 (en) | 1999-07-01 | 2003-10-02 | Ciaran Bolger | Interbody spinal stabilization cage and spinal stabilization method |
US20040034351A1 (en) | 2002-08-14 | 2004-02-19 | Sherman Michael C. | Techniques for spinal surgery and attaching constructs to vertebral elements |
WO2004021899A1 (en) | 2002-09-05 | 2004-03-18 | Endius Incorporated | System and methods for performing minimally-invasive surgical procedures |
WO2004041100A1 (en) | 2002-10-30 | 2004-05-21 | Spinal Concepts, Inc. | Spinal stabilization system insertion and methods |
US20040147928A1 (en) | 2002-10-30 | 2004-07-29 | Landry Michael E. | Spinal stabilization system using flexible members |
WO2004080318A1 (en) | 2003-03-10 | 2004-09-23 | Sdgi Holdings Inc. | Posterior pedicle screw and plate system and methods |
US20040215190A1 (en) | 2003-04-25 | 2004-10-28 | Nguyen Thanh V. | System and method for minimally invasive posterior fixation |
US20040230191A1 (en) | 2002-11-23 | 2004-11-18 | George Frey | Distraction and retraction system for spinal surgery |
US20040260287A1 (en) | 2001-03-26 | 2004-12-23 | Nuvasive, Inc. | Spinal alignment system and related methods |
US20040267275A1 (en) | 2003-06-26 | 2004-12-30 | Cournoyer John R. | Spinal implant holder and rod reduction systems and methods |
US20050010220A1 (en) | 2003-04-24 | 2005-01-13 | Simon Casutt | Instrument system for pedicle screws |
US20050010221A1 (en) | 2003-07-07 | 2005-01-13 | Dalton Brian E. | Spinal stabilization implant and method of application |
US6849064B2 (en) | 2002-10-25 | 2005-02-01 | James S. Hamada | Minimal access lumbar diskectomy instrumentation and method |
WO2005018466A2 (en) | 2003-08-26 | 2005-03-03 | Endius, Inc. | Access systems and methods for minimally invasive surgery |
WO2005023123A1 (en) | 2003-09-09 | 2005-03-17 | Endius, Inc. | Apparatuses and methods for treating the spine through an access device |
US20050070917A1 (en) | 2003-09-29 | 2005-03-31 | Justis Jeff R. | Instruments and methods for securing a connecting element along a bony segment |
WO2005032358A2 (en) | 2003-10-02 | 2005-04-14 | Endius, Inc. | Methods, systems and apparatuses for performing minimally invasive spinal procedures |
US20050090822A1 (en) | 2003-10-24 | 2005-04-28 | Dipoto Gene | Methods and apparatus for stabilizing the spine through an access device |
US20050090833A1 (en) | 2003-10-24 | 2005-04-28 | Dipoto Gene | Methods and apparatuses for fixation of the spine through an access device |
US20050131422A1 (en) * | 2003-12-16 | 2005-06-16 | Anderson David G. | Methods and devices for spinal fixation element placement |
US20050131421A1 (en) | 2003-12-16 | 2005-06-16 | Anderson David G. | Methods and devices for minimally invasive spinal fixation element placement |
WO2005060534A2 (en) | 2003-12-16 | 2005-07-07 | Depuy Spine, Inc. | Methods and devices for minimally invasive spinal fixation element placement |
US6929606B2 (en) | 2001-01-29 | 2005-08-16 | Depuy Spine, Inc. | Retractor and method for spinal pedicle screw placement |
US20050245928A1 (en) * | 2004-05-03 | 2005-11-03 | Innovative Spinal Technologies | System and method for displacement of bony structures |
US20060004380A1 (en) * | 2004-07-02 | 2006-01-05 | Didomenico Scott R | Compressor-distractor |
WO2006060430A1 (en) | 2004-12-02 | 2006-06-08 | Abbott Laboratories | Instruments and methods for adjusting separation distance of vertebral bodies with a minimally invasive spinal stabilization procedure |
US20060200132A1 (en) * | 2005-03-04 | 2006-09-07 | Chao Nam T | Instruments and methods for manipulating a vertebra |
US20060247649A1 (en) * | 2005-04-29 | 2006-11-02 | Alan Rezach | Instrument for compression or distraction |
US20060247645A1 (en) * | 2005-04-29 | 2006-11-02 | Wilcox Bryan S | Orthopedic instrument |
US20060264934A1 (en) * | 2005-05-18 | 2006-11-23 | Medicinelodge, Inc. | System and method for orthopedic implant configuration |
US7160300B2 (en) | 2004-02-27 | 2007-01-09 | Jackson Roger P | Orthopedic implant rod reduction tool set and method |
US7179261B2 (en) | 2003-12-16 | 2007-02-20 | Depuy Spine, Inc. | Percutaneous access devices and bone anchor assemblies |
US20070055247A1 (en) | 2003-09-24 | 2007-03-08 | N Spine, Inc. | Marking and guidance method and system for flexible fixation of a spine |
US20070213715A1 (en) * | 2006-02-09 | 2007-09-13 | Sdgi Holdings, Inc. | Spinal derotation instruments and methods |
US20070233079A1 (en) * | 2006-02-06 | 2007-10-04 | Stryker Spine | Rod contouring apparatus and method for percutaneous pedicle screw extension |
US20080015601A1 (en) | 2006-06-14 | 2008-01-17 | Michael Castro | Reduction device and method of use |
US20080077155A1 (en) * | 2006-09-25 | 2008-03-27 | Jennifer Diederich | System and method for displacement of bony structures |
US20080119862A1 (en) * | 2006-11-21 | 2008-05-22 | Wicker Meleah Ann | Surgical Instrument for Supplying a Counter-Torque When Securing a Spinal Prosthesis |
US20080125789A1 (en) * | 2006-09-25 | 2008-05-29 | Stryker Spine | Percutaneous compression and distraction system |
US20080172062A1 (en) * | 2007-01-12 | 2008-07-17 | Depuy Spine, Inc. | Bone anchor manipulation device |
US7462182B2 (en) | 2004-08-10 | 2008-12-09 | Warsaw Orthopedic, Inc. | Reducing instrument for spinal surgery |
US20090018593A1 (en) | 2007-07-13 | 2009-01-15 | Michael Barrus | Rod reduction device and method of use |
US7491208B2 (en) | 2005-04-28 | 2009-02-17 | Warsaw Orthopedic, Inc. | Instrument and method for guiding surgical implants and instruments during surgery |
US20090062857A1 (en) * | 2007-08-31 | 2009-03-05 | Ramsay Christopher L | Minimally invasive guide system |
US20090082775A1 (en) * | 2006-10-25 | 2009-03-26 | Moti Altarac | Spondylolisthesis reduction system and method |
US20090143828A1 (en) * | 2007-10-04 | 2009-06-04 | Shawn Stad | Methods and Devices For Minimally Invasive Spinal Connection Element Delivery |
US20090149892A1 (en) * | 2007-12-05 | 2009-06-11 | Depuy Spine, Inc. | System and method of manipulating spinal constructs |
US20090157125A1 (en) * | 2007-02-14 | 2009-06-18 | Jeffrey Hoffman | Spinal Rod Reducer and Cap Insertion Apparatus |
US20090171391A1 (en) * | 2007-10-23 | 2009-07-02 | Alphatec Spine, Inc. | Systems and methods for spinal fixation |
US20090228053A1 (en) * | 2008-03-10 | 2009-09-10 | Eric Kolb | Derotation instrument with reduction functionality |
US7591836B2 (en) | 2004-07-30 | 2009-09-22 | Zimmer Spine, Inc. | Surgical devices and methods for vertebral shifting utilizing spinal fixation systems |
US20090259262A1 (en) * | 2008-04-15 | 2009-10-15 | Warsaw Orthopedic, Inc. | Surgical tool |
US7625379B2 (en) | 2004-01-26 | 2009-12-01 | Warsaw Orthopedic, Inc. | Methods and instrumentation for inserting intervertebral grafts and devices |
US20090326586A1 (en) * | 2008-06-30 | 2009-12-31 | Duarte Luis E | Percutaneous spinal rod insertion system and related methods |
US7651502B2 (en) | 2004-09-24 | 2010-01-26 | Jackson Roger P | Spinal fixation tool set and method for rod reduction and fastener insertion |
US7655008B2 (en) | 2006-02-09 | 2010-02-02 | Warsaw Orthopedic, Inc. | Methods and instruments for spinal derotation |
US20100030283A1 (en) * | 2008-07-31 | 2010-02-04 | Zimmer Spine Austin, Inc. | Surgical instrument with integrated compression and distraction mechanisms |
US20100024487A1 (en) * | 2008-07-31 | 2010-02-04 | Abbott Spine Inc. | Surgical Instrument With Integrated Reduction And Distraction Mechanisms |
US20100036443A1 (en) * | 2007-10-23 | 2010-02-11 | Alphatec Spine, Inc. | Systems and methods for spinal fixation |
US7666189B2 (en) | 2004-09-29 | 2010-02-23 | Synthes Usa, Llc | Less invasive surgical system and methods |
US7846093B2 (en) | 2005-09-26 | 2010-12-07 | K2M, Inc. | Minimally invasive retractor and methods of use |
US20100331849A1 (en) * | 2009-06-30 | 2010-12-30 | Paradigm Spine Llc | Spine distraction and compression instrument |
US20110077690A1 (en) * | 2009-09-30 | 2011-03-31 | Gs Medical Co., Ltd. | Rod holder and minimally invasive spine surgery system using the same |
US7922749B2 (en) | 2006-04-14 | 2011-04-12 | Warsaw Orthopedic, Inc. | Reducing device |
US7927334B2 (en) | 2006-04-11 | 2011-04-19 | Warsaw Orthopedic, Inc. | Multi-directional rod reducer instrument and method |
US20110106082A1 (en) * | 2009-10-30 | 2011-05-05 | Warsaw Orthopedic, Inc. | Instruments and systems for vertebral column manipulation |
US7946982B2 (en) | 2002-10-25 | 2011-05-24 | K2M, Inc. | Minimal incision maximal access MIS spine instrumentation and method |
US20110130793A1 (en) * | 2009-11-10 | 2011-06-02 | Nuvasive Inc. | Method and apparatus for performing spinal surgery |
US7955355B2 (en) | 2003-09-24 | 2011-06-07 | Stryker Spine | Methods and devices for improving percutaneous access in minimally invasive surgeries |
US20110137358A1 (en) * | 2009-12-07 | 2011-06-09 | Katherine Manninen | Derotation Apparatus For Treating Spinal Irregularities |
US20110152940A1 (en) * | 2005-08-25 | 2011-06-23 | Robert Frigg | Methods of spinal fixation and instrumentation |
US20110172714A1 (en) | 2008-06-27 | 2011-07-14 | K2M, Inc. | System and method for performing spinal surgery |
US7981115B2 (en) * | 2007-04-11 | 2011-07-19 | Warsaw Orthopedic, Inc. | Instruments and methods for sizing a connecting element for positioning along a bony segment |
US7988694B2 (en) | 2005-09-29 | 2011-08-02 | K2M, Inc. | Spinal fixation system having locking and unlocking devices for use with a multi-planar, taper lock screw |
US20110196426A1 (en) * | 2010-02-09 | 2011-08-11 | Andrea Peukert | Percutaneous rod insertion system and method |
US8002798B2 (en) | 2003-09-24 | 2011-08-23 | Stryker Spine | System and method for spinal implant placement |
US20110257692A1 (en) * | 2010-01-15 | 2011-10-20 | Sandstrom Jason P | Low Friction Rod Persuader |
US20110313477A1 (en) * | 2010-06-18 | 2011-12-22 | Spine Wave, Inc. | Surgical Instrument and Method for the Distraction or Compression of Bones |
US20110319938A1 (en) * | 2010-06-24 | 2011-12-29 | Warsaw Orthopedic, Inc. | Coplanar deformity correction system |
US20120031792A1 (en) * | 2009-12-28 | 2012-02-09 | Safe Orthopaedics Sas | Instrument kit for performing spinal stabilization |
US20120078308A1 (en) * | 2010-09-27 | 2012-03-29 | Sara Dziedzic | Rod reduction instrument and methods of rod reduction |
US8147524B2 (en) | 2005-03-30 | 2012-04-03 | Warsaw Orthopedic, Inc. | Instrumentation and methods for reducing spinal deformities |
US20120083853A1 (en) * | 2010-10-01 | 2012-04-05 | K2M, Inc. | Devices, systems, and methods for performing spinal surgery |
US8192438B2 (en) | 2006-05-18 | 2012-06-05 | Phygen, LLC. | Rod reducer |
US8221426B2 (en) * | 2008-02-12 | 2012-07-17 | Warsaw Orthopedic, Inc. | Methods and devices for deformity correction |
US20120191143A1 (en) * | 2011-01-26 | 2012-07-26 | Warsaw Orthopedic, Inc. | Instruments and techniques for adjusting relative positioning of bones or bony tissues |
US8230863B2 (en) | 2006-05-30 | 2012-07-31 | Mini-Lap Technologies, Inc. | Platform for fixing surgical instruments during surgery |
US20120197297A1 (en) * | 2010-09-09 | 2012-08-02 | Zoher Bootwala | Vertebral adjustment systems for spine alignment |
US20120239096A1 (en) * | 2007-10-23 | 2012-09-20 | Alphatec Spine, Inc. | Instrument and method for spinal compression and distraction |
US20120271365A1 (en) * | 2008-12-17 | 2012-10-25 | Synthese USA, LLC | Rod reducer apparatus for spinal corrective surgery |
US8303595B2 (en) | 2008-06-11 | 2012-11-06 | K2M, Inc. | Rod reduction device |
US8308729B2 (en) | 2008-06-11 | 2012-11-13 | K2M, Inc. | Rod reduction device |
US20120323279A1 (en) * | 2011-06-16 | 2012-12-20 | Industrial Technology Research Institute | Minimally invasive spinal stabilization method |
US20130012999A1 (en) * | 2009-12-28 | 2013-01-10 | Safe Orthopaedics | Device and method for spinal surgery |
US20130046345A1 (en) * | 2010-08-20 | 2013-02-21 | K2M, Inc. | Spinal fixation system |
US20130096637A1 (en) * | 2011-10-18 | 2013-04-18 | Intelligent Implant Systems, Llc | Percutaneous Instrumentation and Surgical Procedure |
US20130096635A1 (en) * | 2011-10-17 | 2013-04-18 | Warsaw Orthopedic, Inc. | Extender collar system |
US20130110184A1 (en) * | 2011-10-26 | 2013-05-02 | Alphatec Spine, Inc. | Systems for vertebral adjustments and rod reduction |
US20130172947A1 (en) * | 2011-12-30 | 2013-07-04 | Blackstone Medical, Inc. | Direct vertebral rotation tool and method of using same |
US20130184763A1 (en) * | 2012-01-16 | 2013-07-18 | K2M, Inc. | Rod reducer, compressor, distractor system |
US20130238037A1 (en) * | 2008-07-07 | 2013-09-12 | Depuy Spine, Inc. | System and Method for Manipulating a Spinal Construct |
US20130245692A1 (en) * | 2012-03-19 | 2013-09-19 | Kyle Hayes | Spondylolisthesis reduction system |
US20130245694A1 (en) * | 2007-05-18 | 2013-09-19 | Stryker Spine | Apparatus and method for direct vertebral rotation |
US20130289633A1 (en) * | 2012-04-17 | 2013-10-31 | Garrett Gleeson | Instrument and method for spinal compression and distraction |
US20140031828A1 (en) * | 2012-07-30 | 2014-01-30 | Wright Medical Technology, Inc. | Surgical tool |
US20140039567A1 (en) * | 2012-08-01 | 2014-02-06 | Aesculap Ag | Surgical apparatus |
US20140046372A1 (en) * | 2012-08-09 | 2014-02-13 | Kamal Ibrahim | Systems, Assemblies and Methods for Spinal Derotation |
US20140074106A1 (en) * | 2012-09-12 | 2014-03-13 | Gs Medical Co., Ltd. | Working tower, rod inserter, rod reducer, and compression-distraction tool for minimally invasive surgery system |
US20140107707A1 (en) * | 2011-02-10 | 2014-04-17 | Robert A. Rovner | Table anchored scoliosis de-rotation system and method |
US20140114354A1 (en) * | 2012-10-24 | 2014-04-24 | Warsaw Orthopedic, Inc. | Spinal correction system |
US20140163575A1 (en) * | 2012-12-12 | 2014-06-12 | Wright Medical Technology, Inc. | Orthopedic compression/distraction device |
US8764757B1 (en) * | 2012-01-31 | 2014-07-01 | Luis M. Tumialan | MIS TLIF systems and related methods |
US8784424B2 (en) * | 2011-06-16 | 2014-07-22 | Industrial Technology Research Institute | Minimally invasive spinal stabilization system |
US20140249591A1 (en) * | 2013-03-01 | 2014-09-04 | Warsaw Orthopedic, Inc. | Spinal correction system and method |
US20140257312A1 (en) * | 2013-03-11 | 2014-09-11 | Ralph C. Solitario, Jr. | Vertebral manipulation assembly |
US20140277198A1 (en) * | 2013-03-14 | 2014-09-18 | DePuy Synthes Products, LLC | Methods and devices for polyaxial screw alignment |
US20140277151A1 (en) * | 2013-03-15 | 2014-09-18 | DePuy Synthes Products, LLC | Fulcrum Cap for Spinal Constructs |
US20140316475A1 (en) * | 2013-02-28 | 2014-10-23 | Alphatec Spine, Inc. | Spinal deformity correction instruments and methods |
US20150238235A1 (en) * | 2014-02-24 | 2015-08-27 | Hans Robert Tuten | Polyaxial pedicle screw locking and derotation instrument |
US9179947B2 (en) * | 2012-07-03 | 2015-11-10 | Tedan Surgical Innovations, Llc | Locking distractor with two-start distraction screw |
US20160106408A1 (en) * | 2014-10-21 | 2016-04-21 | Globus Medical, Inc. | Orthopedic Tools for Implantation |
US20160262807A1 (en) * | 2015-03-11 | 2016-09-15 | Warsaw Orthopedic, Inc. | Surgical instrument and method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5235037A (en) | 1991-08-15 | 1993-08-10 | American Cyanamid Company | Vancomycin precipitation process |
-
2013
- 2013-01-15 US US13/741,934 patent/US9125703B2/en active Active
-
2015
- 2015-08-18 US US14/828,909 patent/US9737351B2/en not_active Ceased
-
2019
- 2019-08-20 US US16/545,644 patent/USRE48250E1/en active Active
-
2020
- 2020-10-09 US US17/067,010 patent/USRE49410E1/en active Active
Patent Citations (223)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1920821A (en) * | 1931-09-22 | 1933-08-01 | Wassenaar Jan Jacob Stephanus | Distraction bone forceps |
US3244170A (en) * | 1962-11-23 | 1966-04-05 | Robert T Mcelvenny | Compression type bone splint |
US3997138A (en) | 1974-06-18 | 1976-12-14 | Henry Vernon Crock | Securing devices and structures |
US4263899A (en) | 1978-05-01 | 1981-04-28 | Burgin Kermit H | Locking adjustable speculum |
US4382438A (en) | 1979-09-11 | 1983-05-10 | Synthes Ag | Instrument for treatment of spinal fractures, scoliosis and the like |
SU839513A1 (en) | 1979-09-14 | 1981-06-23 | Центральный Ордена Трудовогокрасного Знамени Научно-Исследова-Тельский Институт Травматологии Иортопедии Им. H.H.Приорова | Device for guiding wires |
US4409968A (en) | 1980-02-04 | 1983-10-18 | Drummond Denis S | Method and apparatus for engaging a hook assembly to a spinal column |
US4411259A (en) | 1980-02-04 | 1983-10-25 | Drummond Denis S | Apparatus for engaging a hook assembly to a spinal column |
US4957495A (en) | 1987-04-01 | 1990-09-18 | Patrick Kluger | Device for setting the spinal column |
USRE36221E (en) | 1989-02-03 | 1999-06-01 | Breard; Francis Henri | Flexible inter-vertebral stabilizer as well as process and apparatus for determining or verifying its tension before installation on the spinal column |
US5010879A (en) | 1989-03-31 | 1991-04-30 | Tanaka Medical Instrument Manufacturing Co. | Device for correcting spinal deformities |
US5059194A (en) | 1990-02-12 | 1991-10-22 | Michelson Gary K | Cervical distractor |
US5685826A (en) | 1990-11-05 | 1997-11-11 | General Surgical Innovations, Inc. | Mechanically expandable arthroscopic retractors and method of using the same |
US5242443A (en) | 1991-08-15 | 1993-09-07 | Smith & Nephew Dyonics, Inc. | Percutaneous fixation of vertebrae |
EP0528177A2 (en) | 1991-08-17 | 1993-02-24 | Aesculap Ag | Internal fixator for the correction of a lumbar spondyldisthesis |
US5167662A (en) * | 1992-01-24 | 1992-12-01 | Zimmer, Inc. | Temporary clamp and inserter for a posterior midline spinal clamp |
US5478340A (en) | 1992-01-31 | 1995-12-26 | Kluger; Patrick | Vertebral column implant and repositioning instrument |
US5281223A (en) | 1992-09-21 | 1994-01-25 | Ray R Charles | Tool and method for derotating scoliotic spine |
US5385565A (en) | 1992-09-21 | 1995-01-31 | Danek Medical, Inc. | Tool and method for derotating scoliotic spine |
WO1994009726A1 (en) | 1992-10-23 | 1994-05-11 | Smith & Nephew Richards Inc. | Internal fixators |
EP0665731A1 (en) | 1992-10-23 | 1995-08-09 | Smith & Nephew, Inc. | Internal fixators |
EP0611116A1 (en) | 1993-02-11 | 1994-08-17 | SMITH & NEPHEW RICHARDS, INC. | Spinal column retaining apparatus |
US5672175A (en) * | 1993-08-27 | 1997-09-30 | Martin; Jean Raymond | Dynamic implanted spinal orthosis and operative procedure for fitting |
US5704937A (en) * | 1993-08-27 | 1998-01-06 | Paulette Fairant | Operative equipment for fixing spinal instrumentation |
US5591167A (en) | 1994-02-15 | 1997-01-07 | Sofamor, S.N.C. | Anterior dorso-lumbar spinal osteosynthesis instrumentation for the correction of kyphosis |
US5487743A (en) | 1994-02-15 | 1996-01-30 | Sofamore, S.N.C. | Anterior dorso-lumbar spinal osteosynthesis instrumentation for the correction of kyphosis |
US5529571A (en) | 1995-01-17 | 1996-06-25 | Daniel; Elie C. | Surgical retractor/compressor |
US6090113A (en) | 1996-12-27 | 2000-07-18 | Stryker France S.A. | Adjustable osteosynthesis system of the rachis |
US20050038436A1 (en) | 1997-02-11 | 2005-02-17 | Michelson Gary K. | System and method for stabilizing a portion of the spine |
US6616666B1 (en) | 1997-02-11 | 2003-09-09 | Gary K. Michelson | Apparatus for compressing a spinal disc space disposed between two adjacent vertebral bodies of a cervical spine |
US6712818B1 (en) | 1997-02-11 | 2004-03-30 | Gary K. Michelson | Method for connecting adjacent vertebral bodies of a human spine with a plating system |
DE29710979U1 (en) | 1997-06-24 | 1997-08-21 | Aesculap AG & Co. KG, 78532 Tuttlingen | Implant for fixing bone parts and tool for this implant |
DE19726754A1 (en) | 1997-06-24 | 1999-02-04 | Aesculap Ag & Co Kg | Implant for fixing parts of bones in particular at spine |
US5944658A (en) | 1997-09-23 | 1999-08-31 | Koros; Tibor B. | Lumbar spinal fusion retractor and distractor system |
US6506151B2 (en) | 1998-04-09 | 2003-01-14 | Sdgi Holdings, Inc. | Method and instrumentation for posterior interbody fusion |
US6123707A (en) | 1999-01-13 | 2000-09-26 | Spinal Concepts, Inc. | Reduction instrument |
US6146386A (en) | 1999-02-04 | 2000-11-14 | Sdgi Holdings, Inc. | Cable operated bone anchor compressor |
US20020052603A1 (en) | 1999-03-30 | 2002-05-02 | Surgical Dynamics, Inc. | Apparatus for spinal stabilization |
US20030187436A1 (en) | 1999-07-01 | 2003-10-02 | Ciaran Bolger | Interbody spinal stabilization cage and spinal stabilization method |
US6200322B1 (en) | 1999-08-13 | 2001-03-13 | Sdgi Holdings, Inc. | Minimal exposure posterior spinal interbody instrumentation and technique |
US20060200135A1 (en) | 1999-10-20 | 2006-09-07 | Sherman Michael C | Instruments and methods for stabilization of bony structures |
US7188626B2 (en) | 1999-10-20 | 2007-03-13 | Warsaw Orthopedic, Inc. | Instruments and methods for stabilization of bony structures |
US20050021031A1 (en) | 1999-10-20 | 2005-01-27 | Foley Kevin T. | Instruments and methods for stabilization of bony structures |
US7008422B2 (en) | 1999-10-20 | 2006-03-07 | Sdgi Holdings, Inc. | Instruments and methods for stabilization of bony structures |
US7011660B2 (en) | 1999-10-20 | 2006-03-14 | Sdgi Holdings, Inc. | Instruments and methods for stabilization of bony structures |
US6530929B1 (en) | 1999-10-20 | 2003-03-11 | Sdgi Holdings, Inc. | Instruments for stabilization of bony structures |
US20060111714A1 (en) | 1999-10-20 | 2006-05-25 | Foley Kevin T | Instruments and methods for stabilization of bony structures |
US6616667B1 (en) | 1999-11-25 | 2003-09-09 | Sulzer Orthopedics, Ltd. | Surgical instrument for tensioning a cable-like tensioning element |
US6485518B1 (en) | 1999-12-10 | 2002-11-26 | Nuvasive | Facet screw and bone allograft intervertebral support and fusion system |
WO2001041681A1 (en) | 1999-12-10 | 2001-06-14 | Nuvasive, Inc. | Facet screw and bone allograft intervertebral support and fusion system |
DE10027988A1 (en) | 2000-06-06 | 2002-01-10 | Arkadiusz Kosmala | Appliance for percutaneous insertion of connection of pedicle screws has two arms of equal length with transverse connection, circular arm and circular support, |
US20030073998A1 (en) | 2000-08-01 | 2003-04-17 | Endius Incorporated | Method of securing vertebrae |
US20050021030A1 (en) | 2000-08-01 | 2005-01-27 | Endius Incorporated | Method of securing vertebrae |
US6929606B2 (en) | 2001-01-29 | 2005-08-16 | Depuy Spine, Inc. | Retractor and method for spinal pedicle screw placement |
US6616605B2 (en) | 2001-02-15 | 2003-09-09 | Genesee Biomedical, Inc. | Quadretractor and method of use |
US20040260287A1 (en) | 2001-03-26 | 2004-12-23 | Nuvasive, Inc. | Spinal alignment system and related methods |
US20030055430A1 (en) | 2001-09-14 | 2003-03-20 | Kim Kee D. | System and method for fusing spinal vertebrae |
US20030167059A1 (en) * | 2002-03-04 | 2003-09-04 | Young John Stewart | Devices and methods for spinal compression and distraction |
US20040034351A1 (en) | 2002-08-14 | 2004-02-19 | Sherman Michael C. | Techniques for spinal surgery and attaching constructs to vertebral elements |
WO2004021899A1 (en) | 2002-09-05 | 2004-03-18 | Endius Incorporated | System and methods for performing minimally-invasive surgical procedures |
US6849064B2 (en) | 2002-10-25 | 2005-02-01 | James S. Hamada | Minimal access lumbar diskectomy instrumentation and method |
WO2004037074A2 (en) | 2002-10-25 | 2004-05-06 | Endius Incorporated | Method of securing vertebrae |
US7946982B2 (en) | 2002-10-25 | 2011-05-24 | K2M, Inc. | Minimal incision maximal access MIS spine instrumentation and method |
US7250052B2 (en) | 2002-10-30 | 2007-07-31 | Abbott Spine Inc. | Spinal stabilization systems and methods |
WO2004041100A1 (en) | 2002-10-30 | 2004-05-21 | Spinal Concepts, Inc. | Spinal stabilization system insertion and methods |
US20040138662A1 (en) | 2002-10-30 | 2004-07-15 | Landry Michael E. | Spinal stabilization systems and methods |
US20040143265A1 (en) | 2002-10-30 | 2004-07-22 | Landry Michael E. | Spinal stabilization systems and methods using minimally invasive surgical procedures |
US20040147928A1 (en) | 2002-10-30 | 2004-07-29 | Landry Michael E. | Spinal stabilization system using flexible members |
US20040172022A1 (en) | 2002-10-30 | 2004-09-02 | Landry Michael E. | Bone fastener assembly for a spinal stabilization system |
US20040230191A1 (en) | 2002-11-23 | 2004-11-18 | George Frey | Distraction and retraction system for spinal surgery |
WO2004080318A1 (en) | 2003-03-10 | 2004-09-23 | Sdgi Holdings Inc. | Posterior pedicle screw and plate system and methods |
US20050010220A1 (en) | 2003-04-24 | 2005-01-13 | Simon Casutt | Instrument system for pedicle screws |
US20040215190A1 (en) | 2003-04-25 | 2004-10-28 | Nguyen Thanh V. | System and method for minimally invasive posterior fixation |
US7083621B2 (en) | 2003-04-25 | 2006-08-01 | Sdgi Holdings, Inc. | Articulating spinal fixation rod and system |
US20040267275A1 (en) | 2003-06-26 | 2004-12-30 | Cournoyer John R. | Spinal implant holder and rod reduction systems and methods |
US20050010221A1 (en) | 2003-07-07 | 2005-01-13 | Dalton Brian E. | Spinal stabilization implant and method of application |
WO2005018466A2 (en) | 2003-08-26 | 2005-03-03 | Endius, Inc. | Access systems and methods for minimally invasive surgery |
WO2005023123A1 (en) | 2003-09-09 | 2005-03-17 | Endius, Inc. | Apparatuses and methods for treating the spine through an access device |
US20070055247A1 (en) | 2003-09-24 | 2007-03-08 | N Spine, Inc. | Marking and guidance method and system for flexible fixation of a spine |
US8002798B2 (en) | 2003-09-24 | 2011-08-23 | Stryker Spine | System and method for spinal implant placement |
US7955355B2 (en) | 2003-09-24 | 2011-06-07 | Stryker Spine | Methods and devices for improving percutaneous access in minimally invasive surgeries |
US20050070917A1 (en) | 2003-09-29 | 2005-03-31 | Justis Jeff R. | Instruments and methods for securing a connecting element along a bony segment |
WO2005032358A2 (en) | 2003-10-02 | 2005-04-14 | Endius, Inc. | Methods, systems and apparatuses for performing minimally invasive spinal procedures |
US20050090822A1 (en) | 2003-10-24 | 2005-04-28 | Dipoto Gene | Methods and apparatus for stabilizing the spine through an access device |
US20050090833A1 (en) | 2003-10-24 | 2005-04-28 | Dipoto Gene | Methods and apparatuses for fixation of the spine through an access device |
WO2005060534A2 (en) | 2003-12-16 | 2005-07-07 | Depuy Spine, Inc. | Methods and devices for minimally invasive spinal fixation element placement |
US20050154389A1 (en) | 2003-12-16 | 2005-07-14 | Depuy Spine, Inc. | Methods and devices for minimally invasive spinal fixation element placement |
US7854751B2 (en) | 2003-12-16 | 2010-12-21 | Dupuy Spine, Inc. | Percutaneous access devices and bone anchor assemblies |
US7179261B2 (en) | 2003-12-16 | 2007-02-20 | Depuy Spine, Inc. | Percutaneous access devices and bone anchor assemblies |
US20050131421A1 (en) | 2003-12-16 | 2005-06-16 | Anderson David G. | Methods and devices for minimally invasive spinal fixation element placement |
US20050131422A1 (en) * | 2003-12-16 | 2005-06-16 | Anderson David G. | Methods and devices for spinal fixation element placement |
US20090138056A1 (en) * | 2003-12-16 | 2009-05-28 | Depuy Spine, Inc. | Methods and devices for minimally invasive spinal fixation element placement |
US7625379B2 (en) | 2004-01-26 | 2009-12-01 | Warsaw Orthopedic, Inc. | Methods and instrumentation for inserting intervertebral grafts and devices |
US7160300B2 (en) | 2004-02-27 | 2007-01-09 | Jackson Roger P | Orthopedic implant rod reduction tool set and method |
US20050245928A1 (en) * | 2004-05-03 | 2005-11-03 | Innovative Spinal Technologies | System and method for displacement of bony structures |
US20060004380A1 (en) * | 2004-07-02 | 2006-01-05 | Didomenico Scott R | Compressor-distractor |
US7591836B2 (en) | 2004-07-30 | 2009-09-22 | Zimmer Spine, Inc. | Surgical devices and methods for vertebral shifting utilizing spinal fixation systems |
US7462182B2 (en) | 2004-08-10 | 2008-12-09 | Warsaw Orthopedic, Inc. | Reducing instrument for spinal surgery |
US7651502B2 (en) | 2004-09-24 | 2010-01-26 | Jackson Roger P | Spinal fixation tool set and method for rod reduction and fastener insertion |
US7666189B2 (en) | 2004-09-29 | 2010-02-23 | Synthes Usa, Llc | Less invasive surgical system and methods |
WO2006060430A1 (en) | 2004-12-02 | 2006-06-08 | Abbott Laboratories | Instruments and methods for adjusting separation distance of vertebral bodies with a minimally invasive spinal stabilization procedure |
US20140135855A1 (en) * | 2004-12-02 | 2014-05-15 | Zimmer Spine, Inc. | Instruments and methods for adjusting separation distance of vertebral bodies with a minimally invasive spinal stabilization procedure |
US20140188182A1 (en) | 2005-03-04 | 2014-07-03 | DePuy Synthes Products, LLC | Instruments and methods for manipulating vertebra |
US7951175B2 (en) | 2005-03-04 | 2011-05-31 | Depuy Spine, Inc. | Instruments and methods for manipulating a vertebra |
US20060200132A1 (en) * | 2005-03-04 | 2006-09-07 | Chao Nam T | Instruments and methods for manipulating a vertebra |
US7951168B2 (en) | 2005-03-04 | 2011-05-31 | Depuy Spine, Inc. | Instruments and methods for manipulating vertebra |
US8007516B2 (en) | 2005-03-04 | 2011-08-30 | Depuy Spine, Inc. | Instruments and methods for manipulating vertebra |
US20070162010A1 (en) | 2005-03-04 | 2007-07-12 | Chao Nam T | Instruments and methods for manipulating vertebra |
US20070162009A1 (en) | 2005-03-04 | 2007-07-12 | Chao Nam T | Instruments and methods for manipulating vertebra |
US20110282402A1 (en) | 2005-03-04 | 2011-11-17 | Depuy Spine, Inc. | Instruments and methods for manipulating vertebra |
US8147524B2 (en) | 2005-03-30 | 2012-04-03 | Warsaw Orthopedic, Inc. | Instrumentation and methods for reducing spinal deformities |
US7491208B2 (en) | 2005-04-28 | 2009-02-17 | Warsaw Orthopedic, Inc. | Instrument and method for guiding surgical implants and instruments during surgery |
US20060247649A1 (en) * | 2005-04-29 | 2006-11-02 | Alan Rezach | Instrument for compression or distraction |
US20060247645A1 (en) * | 2005-04-29 | 2006-11-02 | Wilcox Bryan S | Orthopedic instrument |
US20060264934A1 (en) * | 2005-05-18 | 2006-11-23 | Medicinelodge, Inc. | System and method for orthopedic implant configuration |
US20110152940A1 (en) * | 2005-08-25 | 2011-06-23 | Robert Frigg | Methods of spinal fixation and instrumentation |
US8298138B2 (en) | 2005-09-26 | 2012-10-30 | K2M, Inc. | Minimally invasive retractor and methods of use |
US7846093B2 (en) | 2005-09-26 | 2010-12-07 | K2M, Inc. | Minimally invasive retractor and methods of use |
US7988694B2 (en) | 2005-09-29 | 2011-08-02 | K2M, Inc. | Spinal fixation system having locking and unlocking devices for use with a multi-planar, taper lock screw |
US20070233079A1 (en) * | 2006-02-06 | 2007-10-04 | Stryker Spine | Rod contouring apparatus and method for percutaneous pedicle screw extension |
US8894655B2 (en) | 2006-02-06 | 2014-11-25 | Stryker Spine | Rod contouring apparatus and method for percutaneous pedicle screw extension |
US7655008B2 (en) | 2006-02-09 | 2010-02-02 | Warsaw Orthopedic, Inc. | Methods and instruments for spinal derotation |
US7794464B2 (en) | 2006-02-09 | 2010-09-14 | Warsaw Orthopedic, Inc. | Spinal derotation instruments and methods |
US20070213715A1 (en) * | 2006-02-09 | 2007-09-13 | Sdgi Holdings, Inc. | Spinal derotation instruments and methods |
US20100324610A1 (en) | 2006-02-09 | 2010-12-23 | Warsaw Orthopedic, Inc. | Spinal Derotation Instruments and Methods |
US8221474B2 (en) | 2006-02-09 | 2012-07-17 | Warsaw Orthopedic, Inc. | Spinal derotation instruments and methods |
US20110172723A1 (en) * | 2006-04-11 | 2011-07-14 | Warsaw Orthopedic, Inc. | Multi-directional rod reducer instrument and method |
US7927334B2 (en) | 2006-04-11 | 2011-04-19 | Warsaw Orthopedic, Inc. | Multi-directional rod reducer instrument and method |
US7922749B2 (en) | 2006-04-14 | 2011-04-12 | Warsaw Orthopedic, Inc. | Reducing device |
US8192438B2 (en) | 2006-05-18 | 2012-06-05 | Phygen, LLC. | Rod reducer |
US20120239097A1 (en) * | 2006-05-18 | 2012-09-20 | Laszlo Garamszegi | Rod reducer |
US8230863B2 (en) | 2006-05-30 | 2012-07-31 | Mini-Lap Technologies, Inc. | Platform for fixing surgical instruments during surgery |
US20080015601A1 (en) | 2006-06-14 | 2008-01-17 | Michael Castro | Reduction device and method of use |
US20120191137A1 (en) | 2006-09-25 | 2012-07-26 | Stryker Spine | Percutaneous compression and distraction system |
US20140018860A1 (en) | 2006-09-25 | 2014-01-16 | Stryker Spine | Percutaneous compression and distraction system |
US8157809B2 (en) | 2006-09-25 | 2012-04-17 | Stryker Spine | Percutaneous compression and distraction system |
US9345463B2 (en) | 2006-09-25 | 2016-05-24 | Stryker European Holdings I, Llc | Percutaneous compression and distraction system |
US20080077155A1 (en) * | 2006-09-25 | 2008-03-27 | Jennifer Diederich | System and method for displacement of bony structures |
US8506574B2 (en) | 2006-09-25 | 2013-08-13 | Stryker Spine | Percutaneous compression and distraction system |
US20160338683A1 (en) | 2006-09-25 | 2016-11-24 | Stryker European Holdings I, Llc | Percutaneous compression and distraction system |
US20080125789A1 (en) * | 2006-09-25 | 2008-05-29 | Stryker Spine | Percutaneous compression and distraction system |
US8915925B2 (en) | 2006-09-25 | 2014-12-23 | Stryker Spine | Percutaneous compression and distraction system |
US20090082775A1 (en) * | 2006-10-25 | 2009-03-26 | Moti Altarac | Spondylolisthesis reduction system and method |
US20080119862A1 (en) * | 2006-11-21 | 2008-05-22 | Wicker Meleah Ann | Surgical Instrument for Supplying a Counter-Torque When Securing a Spinal Prosthesis |
US20080172062A1 (en) * | 2007-01-12 | 2008-07-17 | Depuy Spine, Inc. | Bone anchor manipulation device |
US8308774B2 (en) | 2007-02-14 | 2012-11-13 | Pioneer Surgical Technology, Inc. | Spinal rod reducer and cap insertion apparatus |
US20090157125A1 (en) * | 2007-02-14 | 2009-06-18 | Jeffrey Hoffman | Spinal Rod Reducer and Cap Insertion Apparatus |
US7981115B2 (en) * | 2007-04-11 | 2011-07-19 | Warsaw Orthopedic, Inc. | Instruments and methods for sizing a connecting element for positioning along a bony segment |
US20130245694A1 (en) * | 2007-05-18 | 2013-09-19 | Stryker Spine | Apparatus and method for direct vertebral rotation |
US20090018593A1 (en) | 2007-07-13 | 2009-01-15 | Michael Barrus | Rod reduction device and method of use |
US20090062857A1 (en) * | 2007-08-31 | 2009-03-05 | Ramsay Christopher L | Minimally invasive guide system |
US20090143828A1 (en) * | 2007-10-04 | 2009-06-04 | Shawn Stad | Methods and Devices For Minimally Invasive Spinal Connection Element Delivery |
US20140074171A1 (en) | 2007-10-23 | 2014-03-13 | Clark Hutton | Methods for spinal fixation |
US20090171391A1 (en) * | 2007-10-23 | 2009-07-02 | Alphatec Spine, Inc. | Systems and methods for spinal fixation |
US20120239096A1 (en) * | 2007-10-23 | 2012-09-20 | Alphatec Spine, Inc. | Instrument and method for spinal compression and distraction |
US20100036443A1 (en) * | 2007-10-23 | 2010-02-11 | Alphatec Spine, Inc. | Systems and methods for spinal fixation |
US20130274804A1 (en) | 2007-10-23 | 2013-10-17 | Clark Hutton | Instrument for insertion of a spinal rod |
US20090149892A1 (en) * | 2007-12-05 | 2009-06-11 | Depuy Spine, Inc. | System and method of manipulating spinal constructs |
US20140039557A1 (en) | 2007-12-05 | 2014-02-06 | DePuy Synthes Products, LLC | System and method of manipulating spinal constructs |
US8221426B2 (en) * | 2008-02-12 | 2012-07-17 | Warsaw Orthopedic, Inc. | Methods and devices for deformity correction |
US20090228053A1 (en) * | 2008-03-10 | 2009-09-10 | Eric Kolb | Derotation instrument with reduction functionality |
US20140100618A1 (en) | 2008-03-10 | 2014-04-10 | Depuy Spine, Inc. | Derotation instrument with reduction functionality |
US20090259262A1 (en) * | 2008-04-15 | 2009-10-15 | Warsaw Orthopedic, Inc. | Surgical tool |
US8308729B2 (en) | 2008-06-11 | 2012-11-13 | K2M, Inc. | Rod reduction device |
US8303595B2 (en) | 2008-06-11 | 2012-11-06 | K2M, Inc. | Rod reduction device |
US20110172714A1 (en) | 2008-06-27 | 2011-07-14 | K2M, Inc. | System and method for performing spinal surgery |
US20090326586A1 (en) * | 2008-06-30 | 2009-12-31 | Duarte Luis E | Percutaneous spinal rod insertion system and related methods |
US20130238037A1 (en) * | 2008-07-07 | 2013-09-12 | Depuy Spine, Inc. | System and Method for Manipulating a Spinal Construct |
US20100024487A1 (en) * | 2008-07-31 | 2010-02-04 | Abbott Spine Inc. | Surgical Instrument With Integrated Reduction And Distraction Mechanisms |
US20100030283A1 (en) * | 2008-07-31 | 2010-02-04 | Zimmer Spine Austin, Inc. | Surgical instrument with integrated compression and distraction mechanisms |
US20120116467A1 (en) | 2008-07-31 | 2012-05-10 | Zimmer Spine, Inc. | Surgical instrument with integrated compression and distraction mechanisms |
US20120271365A1 (en) * | 2008-12-17 | 2012-10-25 | Synthese USA, LLC | Rod reducer apparatus for spinal corrective surgery |
US20100331849A1 (en) * | 2009-06-30 | 2010-12-30 | Paradigm Spine Llc | Spine distraction and compression instrument |
US20110077690A1 (en) * | 2009-09-30 | 2011-03-31 | Gs Medical Co., Ltd. | Rod holder and minimally invasive spine surgery system using the same |
US8277453B2 (en) | 2009-10-30 | 2012-10-02 | Warsaw Orthopedic, Inc. | Instruments and systems for vertebral column manipulation |
US20110106082A1 (en) * | 2009-10-30 | 2011-05-05 | Warsaw Orthopedic, Inc. | Instruments and systems for vertebral column manipulation |
US20110295328A1 (en) | 2009-11-10 | 2011-12-01 | Troy Woolley | Method and Apparatus for Performing Spinal Surgery |
US20110130793A1 (en) * | 2009-11-10 | 2011-06-02 | Nuvasive Inc. | Method and apparatus for performing spinal surgery |
US20140052139A1 (en) | 2009-12-07 | 2014-02-20 | Katherine Manninen | Derotation Apparatus for Treating Spinal Irregularities |
US20120035668A1 (en) * | 2009-12-07 | 2012-02-09 | Katherine Manninen | Derotation Apparatus For Treating Spinal Irregularities |
US20110137358A1 (en) * | 2009-12-07 | 2011-06-09 | Katherine Manninen | Derotation Apparatus For Treating Spinal Irregularities |
US20130012999A1 (en) * | 2009-12-28 | 2013-01-10 | Safe Orthopaedics | Device and method for spinal surgery |
US20120031792A1 (en) * | 2009-12-28 | 2012-02-09 | Safe Orthopaedics Sas | Instrument kit for performing spinal stabilization |
US20140100617A1 (en) | 2010-01-15 | 2014-04-10 | Jason Sandstrom | Low Friction Rod Persuader |
US20110257692A1 (en) * | 2010-01-15 | 2011-10-20 | Sandstrom Jason P | Low Friction Rod Persuader |
US8545505B2 (en) | 2010-01-15 | 2013-10-01 | Pioneer Surgical Technology, Inc. | Low friction rod persuader |
US20110196426A1 (en) * | 2010-02-09 | 2011-08-11 | Andrea Peukert | Percutaneous rod insertion system and method |
US8206395B2 (en) | 2010-06-18 | 2012-06-26 | Spine Wave, Inc. | Surgical instrument and method for the distraction or compression of bones |
US20110313477A1 (en) * | 2010-06-18 | 2011-12-22 | Spine Wave, Inc. | Surgical Instrument and Method for the Distraction or Compression of Bones |
US20110319938A1 (en) * | 2010-06-24 | 2011-12-29 | Warsaw Orthopedic, Inc. | Coplanar deformity correction system |
US20130046345A1 (en) * | 2010-08-20 | 2013-02-21 | K2M, Inc. | Spinal fixation system |
US20120197297A1 (en) * | 2010-09-09 | 2012-08-02 | Zoher Bootwala | Vertebral adjustment systems for spine alignment |
US20120078308A1 (en) * | 2010-09-27 | 2012-03-29 | Sara Dziedzic | Rod reduction instrument and methods of rod reduction |
US20120083853A1 (en) * | 2010-10-01 | 2012-04-05 | K2M, Inc. | Devices, systems, and methods for performing spinal surgery |
US20120191143A1 (en) * | 2011-01-26 | 2012-07-26 | Warsaw Orthopedic, Inc. | Instruments and techniques for adjusting relative positioning of bones or bony tissues |
US8702713B2 (en) | 2011-01-26 | 2014-04-22 | Warsaw Orthopedic, Inc. | Instruments and techniques for adjusting relative positioning of bones or bony tissues |
US20140107707A1 (en) * | 2011-02-10 | 2014-04-17 | Robert A. Rovner | Table anchored scoliosis de-rotation system and method |
US20120323279A1 (en) * | 2011-06-16 | 2012-12-20 | Industrial Technology Research Institute | Minimally invasive spinal stabilization method |
US8784424B2 (en) * | 2011-06-16 | 2014-07-22 | Industrial Technology Research Institute | Minimally invasive spinal stabilization system |
US20130096635A1 (en) * | 2011-10-17 | 2013-04-18 | Warsaw Orthopedic, Inc. | Extender collar system |
US20130096637A1 (en) * | 2011-10-18 | 2013-04-18 | Intelligent Implant Systems, Llc | Percutaneous Instrumentation and Surgical Procedure |
US20130110184A1 (en) * | 2011-10-26 | 2013-05-02 | Alphatec Spine, Inc. | Systems for vertebral adjustments and rod reduction |
US20130172947A1 (en) * | 2011-12-30 | 2013-07-04 | Blackstone Medical, Inc. | Direct vertebral rotation tool and method of using same |
US20130184763A1 (en) * | 2012-01-16 | 2013-07-18 | K2M, Inc. | Rod reducer, compressor, distractor system |
US9125703B2 (en) | 2012-01-16 | 2015-09-08 | K2M, Inc. | Rod reducer, compressor, distractor system |
US8764757B1 (en) * | 2012-01-31 | 2014-07-01 | Luis M. Tumialan | MIS TLIF systems and related methods |
US20130245692A1 (en) * | 2012-03-19 | 2013-09-19 | Kyle Hayes | Spondylolisthesis reduction system |
US20130289633A1 (en) * | 2012-04-17 | 2013-10-31 | Garrett Gleeson | Instrument and method for spinal compression and distraction |
US9179947B2 (en) * | 2012-07-03 | 2015-11-10 | Tedan Surgical Innovations, Llc | Locking distractor with two-start distraction screw |
US20140031828A1 (en) * | 2012-07-30 | 2014-01-30 | Wright Medical Technology, Inc. | Surgical tool |
US20140039567A1 (en) * | 2012-08-01 | 2014-02-06 | Aesculap Ag | Surgical apparatus |
US20140046372A1 (en) * | 2012-08-09 | 2014-02-13 | Kamal Ibrahim | Systems, Assemblies and Methods for Spinal Derotation |
US20140074106A1 (en) * | 2012-09-12 | 2014-03-13 | Gs Medical Co., Ltd. | Working tower, rod inserter, rod reducer, and compression-distraction tool for minimally invasive surgery system |
US20140114354A1 (en) * | 2012-10-24 | 2014-04-24 | Warsaw Orthopedic, Inc. | Spinal correction system |
US20140163575A1 (en) * | 2012-12-12 | 2014-06-12 | Wright Medical Technology, Inc. | Orthopedic compression/distraction device |
US20140316475A1 (en) * | 2013-02-28 | 2014-10-23 | Alphatec Spine, Inc. | Spinal deformity correction instruments and methods |
US20140249591A1 (en) * | 2013-03-01 | 2014-09-04 | Warsaw Orthopedic, Inc. | Spinal correction system and method |
US20140257312A1 (en) * | 2013-03-11 | 2014-09-11 | Ralph C. Solitario, Jr. | Vertebral manipulation assembly |
US20140277198A1 (en) * | 2013-03-14 | 2014-09-18 | DePuy Synthes Products, LLC | Methods and devices for polyaxial screw alignment |
US20140277151A1 (en) * | 2013-03-15 | 2014-09-18 | DePuy Synthes Products, LLC | Fulcrum Cap for Spinal Constructs |
US20150238235A1 (en) * | 2014-02-24 | 2015-08-27 | Hans Robert Tuten | Polyaxial pedicle screw locking and derotation instrument |
US20160106408A1 (en) * | 2014-10-21 | 2016-04-21 | Globus Medical, Inc. | Orthopedic Tools for Implantation |
US20160262807A1 (en) * | 2015-03-11 | 2016-09-15 | Warsaw Orthopedic, Inc. | Surgical instrument and method |
Non-Patent Citations (6)
Title |
---|
Charles Hartjen; The Atavi System, Surgical Technique Brochure. Endius, p. 1-17, undated. |
Diapason, Surgical Texchnique Catalog, Diapasan Spinal System, Jan. 2002. |
Kambin et al., "Percutaneous Posterolateral Lumbar Discectomy and Decompression with a 6.9-millimeter cannula", The Journal of Bone and Joint Surgery, pp. 822-831, Jul. 1991. |
Kambin, Minimally Invasive Techniques in Spinal Surgery Current Practice, Neurosurgical Focus, wwwspineuniversecom, 16 pages, printed Aug. 24, 2005. |
Leu et al., Percutaneous Fusion of the Lumbar Spine, State of the Art Reviews, vol. 6, No. 3, pp. 593-604, Sep. 1992. |
Pathfinder; Minimally Invasive Pedicie Fixation System. Spinal Concepts Product Brochure p. 1-4, May 2003. |
Also Published As
Publication number | Publication date |
---|---|
USRE48250E1 (en) | 2020-10-13 |
US20130184763A1 (en) | 2013-07-18 |
US9125703B2 (en) | 2015-09-08 |
US9737351B2 (en) | 2017-08-22 |
US20150351814A1 (en) | 2015-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE49410E1 (en) | Rod reducer, compressor, distractor system | |
US10603026B2 (en) | Devices and systems for surgical retraction | |
EP2878276B1 (en) | System for corrective spinal surgery | |
US9820779B2 (en) | Spinal stabilization system | |
EP1567064B1 (en) | Distraction and retraction system for spinal surgery | |
US7947066B2 (en) | Universal transverse connector device | |
US10973552B2 (en) | Surgical system for bone screw insertion and rod reduction | |
US10117683B2 (en) | Spinal rod locking holder | |
US20170143385A1 (en) | Spinal rod reduction system | |
US12121269B2 (en) | Spinal implant and methods of use thereof | |
AU2016203448B2 (en) | Surgical system for bone screw insertion and rod reduction | |
AU2015203073A1 (en) | Spinal stabilization system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: K2M, INC., VIRGINIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MCCLINTOCK, LARRY E.;BOYD, CLINT;REEL/FRAME:054314/0411 Effective date: 20130116 |