USRE46978E1 - Cannula and sizing insertion method - Google Patents
Cannula and sizing insertion method Download PDFInfo
- Publication number
- USRE46978E1 USRE46978E1 US14/715,285 US201514715285A USRE46978E US RE46978 E1 USRE46978 E1 US RE46978E1 US 201514715285 A US201514715285 A US 201514715285A US RE46978 E USRE46978 E US RE46978E
- Authority
- US
- United States
- Prior art keywords
- dilator
- cannulated
- retractor
- access hole
- cannula
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/46—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests having means for controlling depth of insertion
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/02—Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors
- A61B17/0218—Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors for minimally invasive surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
- A61B17/3417—Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
- A61B17/3421—Cannulas
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/00234—Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
- A61B2017/00238—Type of minimally invasive operation
- A61B2017/00261—Discectomy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/0046—Surgical instruments, devices or methods, e.g. tourniquets with a releasable handle; with handle and operating part separable
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00831—Material properties
- A61B2017/00902—Material properties transparent or translucent
- A61B2017/00907—Material properties transparent or translucent for light
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
- A61B2017/348—Means for supporting the trocar against the body or retaining the trocar inside the body
- A61B2017/3492—Means for supporting the trocar against the body or retaining the trocar inside the body against the outside of the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/06—Measuring instruments not otherwise provided for
- A61B2090/062—Measuring instruments not otherwise provided for penetration depth
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/178—Syringes
- A61M5/31—Details
- A61M5/32—Needles; Details of needles pertaining to their connection with syringe or hub; Accessories for bringing the needle into, or holding the needle on, the body; Devices for protection of needles
Definitions
- This invention relates to a cannula and cannulated dilator and more particularly to a cannula intended to be utilized in surgery on a patient which cannula is sized by the measurement obtained from the cannulated dilator for obtaining a desired length of the cannula inserted into the body cavity of the patient for ease of the surgical procedure being preformed by the surgeon and the apparatus for insertion of the cannulated dilator and the dilator retractor into the body cavity.
- the cannula is utilized for creating a passage extending from the exterior into a cavity in the patient to a particular location where the surgical procedure is to be performed.
- endoscopic and micro endoscopic techniques are often used. These techniques are becoming popular inasmuch as the patient benefits from the small incision, limited tissue disruption, better visualization and illumination all of which shortens the hospital stay and hastens recovery.
- tubular retractor a specific cannula which allows for laminotomy, deical facetectomy, foraminotomy, nerve root retraction and disectomy.
- a typical procedure is to advance a guidewire through a small incision which is advanced to the inferior edge of the superior lamina. A small incision is then made that extends either cranially or caudally. A calnulated dilator is then inserted over the guidewire. Larger diameter cannulated dilators are sequentially inserted over each other to increase the opening into the body cavity. Typically the guide wire is removed after the first cannulated dilators installed and eventually the cannulated dilators are all removed after the, tubular retractor has been inserted over the largest of the cannulated dilators.
- the tubular retractor is locked into position by a retractor clamp that is clamped to a retractor clamping arm which is fixed to a rigid member such as the operating table. This provides an unencumbered zone where the surgeon can perform the medical procedure that was intended to be performed.
- the cannulated dilators and tubular retractors are made from surgical metal material and are sized for the largest depth that is anticipated in the surgical procedure. Hence, whether the depth is 10 millimeters (mm), 20 mm, 30 mm, etc. Measured from the exterior of the cavity to the most interior position in the cavity (inferior edge of the superior lamina) the tubular retractor that may be available for use ii the surgical procedure could be 100 mm or larger. The additional or excess length of the dilator retractor is not only cumbersome to use, it is unnecessary and undesirable.
- the last cannulated dilator in the procedure in accordance with this invention includes indicia of a graduated vertical scale on the tubular wall, preferably in millimeters that is viewed by the user.
- a cannula or dilator retractor which basically is a cylindrical tube made from a plastic or synthetic material in one preferred embodiment or surgical metal in another embodiment which is easy to cut and which is transparent in one embodiment and opaque in another is provided in the largest length contemplated in this particular procedure or alternatively is pre-sized in a series of sized cannulas.
- the dilator retractor may also include on the wall indicia corresponding to the indicia on the cannulated dilator.
- the surgeon or user merely has to count the annular grooves or the indicia on the wall of the dilator retractor to match the depth of the cavity and with a cutter, cut through the delator retractor which will provide a cannula that is acceptable to the surgeon without the unnecessary length that has heretofore presented a problem.
- An annular retractor clamp is provided to fit over the top of the dilator retractor which obviously is sized to accommodate the width of the retractor clamp which, in turn, is utilized to mate with a rigid holder that is clamped to a rigid member such as the operating table or other convenient member to secure the cannula in place.
- This invention also contemplates a tool for insertion of the cannulated dilator and a tool for the insertion of the dilator retractor into the body cavity.
- the tool for insertion of the cannulated dilator is a rectangular shaped planar member that removably fits the cannulated dilator and serves to provide leverage for the surgeon to turn the dilator retractor while it is being inserted into the body cavity to reach its ultimate destination.
- a tool for insertion of the dilator retractor is generally a pusher which may be made integral with the template includes an inner bore that is slightly larger than the outer diameter of the cannulated dilator and includes a flat bottom surface that overlies the top end wall surface of the dilator retractor so that the pusher provides leverage for the surgeon to slide the dilator retractor over the scaled cannulated dilator until it reaches the final destination in the body cavity.
- a series of different length dilator retractors will be made available so that the surgeon after making the measurement of the depth of body cavity with the cannulated dilator will select the dilator retractor that most closely matches the size desired.
- An object of this invention is to provide a dilator retractor that is sized to fit the patient for use in a surgical procedure.
- a feature of this invention is to provide indicia of a vertical scale on the cannulated dilator to ascertain the depth of the cavity in the body in which a medical procedure is to be performed.
- a template made from a relatively soft plastic material fits into the dilator retractor having a scale commensurate with the scale on the cannulated dilator for supporting the dilator retractor as it is cut to the desired length.
- the dilator retractor includes indicia on the outer surface that correlates to the indicia on the cannulated dilator.
- the dilator retractor is transparent, in another embodiment it is opaque, and it can be made from either plastic or metallic material when in the opaque embodiments.
- Another feature of this invention is the provision of a tool that is adapted to fit the cannulated dilator to allow the surgeon to turn the cannulated dilator as the surgeon pushes the cannulated dilator into the body cavity against the resistance of the body tissue.
- the tool includes concentric bores that define a shoulder that engages the end of the cannulated dilator and recesses that engage tabs axially extending from the proximate end of the cannulated dilator.
- An alternative to the cutting procedure is the provision of predetermined different length dilator retractors that permit the surgeon to select the desire length commensurate with the depth of the body cavity.
- annular retractor clamp that is slidable over the outer surface of the dilator retractor that is locked into place and adaptable to fit onto a flexible arm that is rigidly connected to a static structure such as the operating table.
- FIG. 1 is a perspective view in elevation showing the details of the cannulated dilator of this invention
- FIG. 2 is a perspective view in elevation and section of the cannulated dilator inserted into the cavity of a body and extending to the inferior edge of the superior lamina and a turning tool adapted to retractor clamp onto the tabs extending from the proximate end of the cannulated dilator;
- FIG. 2A is a partial view in cross section taken along the lines 2 A- 2 A of FIG. 2 ;
- FIG. 3 is an exploded view in perspective illustrating the dilator retractor being fitted onto the graduated template and pusher prior to being cut to the desired length;
- FIG. 4 is a view in perspective illustrating the dilator retractor fitted onto the template
- FIG. 5 is a view in perspective illustrating the dilator retractor being cut by a commercially available cutting tool
- FIG. 6 is a view in perspective illustrating the pusher for pushing the dilator retractor into the body cavity
- FIG. 7 is a view in perspective illustrating the pusher and dilator retractor of FIG. 6 when pushed to the destination;
- FIG. 8 is a view in perspective of the dilator retractor and the retractor clamp and the cannulated dilator of this invention.
- FIG. 9 is a view in perspective of a series of pre-sized dilator retractors made from an inexpensive material that as an alternative embodiment to the cut in situ dilator retractor.
- FIG. 10 is a perspective exploded view similar to FIG. 3 showing another embodiment with the grooves in the template removed and the dilator retractor having indicia on the outer surface.
- the term “cannulated dilator” means a surgical instrument that is utilized to widen the body cavity and the term “dilator retractor” is a cannula intended to fit into the body cavity.
- body cavity unless indicated otherwise refers to an access hole formed in the body of the patient in order to reach the target where the medical procedure is being performed and the term cannula or dilator retractor serves to define a working cavity or chamber that the surgeon uses to perform a medical procedure. While in the preferred embodiment, it is preferred that the dilator retractor is made from a plastic material and is transparent as will be appreciated and as will be described herein below this invention contemplates a dilator retractor made from metallic material and in certain embodiments the material is opaque.
- FIGS. 1 through 8 shows the cannulated dilator generally illustrated by reference numeral 10 ( FIGS. 1, 2, 6, 8 ), the template and pusher tool instrument combination generally illustrated by reference numeral 12 ( FIGS. 3-6 ), the dilator retractor generally illustrated by reference numeral 14 ( FIGS. 3, 6, 7, 8 ) and the retractor clamp generally illustrated by reference numeral 16 ( FIG. 8 ).
- reference numeral 10 FIGS. 1, 2, 6, 8
- the template and pusher tool instrument combination generally illustrated by reference numeral 12
- FIGS. 3-6 the dilator retractor generally illustrated by reference numeral 14
- the retractor clamp generally illustrated by reference numeral 16
- the cannulated dilator 10 comprises a hollow tubular body 18 typically made from surgical metal such as surgical stainless steel, having a beveled end 20 at the distal end of the tubular body 18 and a pair of circumferentially spaced tabs 22 extending from the proximate end surface 24 of the tubular body 18 .
- the beveled at the distal end 20 serves to help the insertion of the cannulated retractor 10 entering the body of the patient and the tabs 22 serve to fit into a tool that the surgeon utilizes to insert the cannulated dilator 10 as it progresses into the body until it reaches the inferior edge of the superior lamina as will be described in more detail hereinbelow.
- indica 26 is placed on the exterior of the body 18 and is a graduated scale in millimeters (although any other unit of measurement can be utilized) that serves to indicate the depth of the body cavity and is used to determine the length of the dilator retractor 14 as will be described in more detail herein below.
- the dilator retractor 14 in one embodiment is made from a plastic material that is transparent and is sufficiently strong that exhibits hoop integrity that is capable of withstanding the forces of the tissue tending to exert a lateral force. This provides a relatively inexpensive member that is capable of being cut while the patient is in the operating room.
- the dilator retractor is fitted onto the fixture—and the fixture includes spaced grooves that are correlated to the measurement of the depth of the body cavity that is determined by the indicia of the cannulated dilator 10 .
- the dilator retractor 14 is fitted on the scaled end of the template portion 30 which includes a series of annular grooves that are axially spaced a predetermined distance, say at 10 mm, so that the dilator retractor 14 being transparent in this instance, once fitted onto the template can be sized.
- the user merely counts the number of grooves that is commensurate with the measurement taken from the indicia of the cannulated dilator and the desired length is then cut to the desired length.
- the dilator retractor 14 is initially oversized so that the length will be longer than any of the depths of the body cavity contemplated. Hence, in this manner the cannula is made to fit each individual patient.
- the technique for making the measurement and cutting to size is described as follows. If the depth of the body cavity measurement taken from the cannulated dilator was 30 mm the user would count 3 annular grooves which are spaced 10 mm apart to determine the length of the dilator retractor desired and would add an addition amount to compensate for the attachment dimension of the annular retractor clamp 18 . Hence, if the width of the clamp 18 is 10 mm and the depth of cavity is 30 mm, the user would select 40 mm as the juncture where the dilator retractor is cut to size.
- the dilator retractor 14 is mounted on the fixture portion 30 , and after the user determines the number of annular grooves on the fixture portion that will match the depth of the body cavity as measured by the indicia on the cannulated dilator and the amount necessary to hold the retractor clamp 18 , the user with the use of the commercially available cutters 34 snips off the end of the retractor dilator 14 .
- the fixture will also be cut and this system for cutting assures that the dilator retractor 14 will have a clean, smooth cut.
- a suitable cutter 34 is one that is available in many hardware stores such as Home Depot and is under the name “Orbit”. This cutter was tested and has proven to work satisfactory. However, any type of cutter is contemplated for use with this invention, such as commercially available knives and pipe cutters, being other examples.
- Pusher tool portion 36 which in this instance is integral with the member 12 is formed on one end and includes the enlarged diameter portion 38 having a central axial bore that complements the outer diameter of the cannulated dilator 10 .
- the bottom annular face 40 is formed with a flat surface that bears against the end 42 of the dilator retractor 14 . This serves to provide leverage for the surgeon to push the dilator retractor 14 into the body cavity.
- the end clamp 16 comprises an annular body 46 being split at 47 and including a threaded lateral bore that accommodates the tightening screw 50 .
- the central opening is dimensioned to fit over the end of the dilator retractor 14 and slide thereon. Once in position the screw is tightened to secure the clamp to the dilator retractor 14 .
- a bracket 56 having a bifurcated slot 58 serves to engage a flexible arm that is clamped to a rigid member. This serves to support the dilator retractor 14 while the surgeon is performing the surgical procedure.
- FIG. 9 exemplifies another embodiment of this invention where the dilator retractors 14 come in a series of different sizes so that the surgeon after determining the size of the depth of the body cavity as ascertained by the graduated scale on the cannulated dilator 10 , the surgeon merely selects the size to match the body cavity depth taking into consideration the extra length needed to accommodate the clamp 16 .
- the cannulated retractor tool 39 is a relatively rectangular flat member 41 having a central bore 43 that is made from two spaced diameters.
- the most inner diameter on the bottom face of the tool 39 is slightly larger than the outer diameter of the cannula dilator 10 and the outer diameter on the top face of the tool 39 is equivalent to the inner diameter of the cannulated dilator 10 to provide a shoulder for bearing on the annular top surface 45 of the cannulated dilator 10 .
- a pair of concentrically spaced recesses 49 are formed in the top surface extending through the upper portion of tool 40 to accommodate and complement the tabs 22 .
- tool 39 serves to provide a leverage tool that helps the surgeon for forcing the cannulated dilator 10 into the body cavity and against the resistance created by the body tissue adjacent thereto.
- FIG. 10 exemplifies another embodiment of this invention where the fixture 12 a which is identical to fixture 12 does not include the spaced annular grooves and the cannula 14 a which is identical to the cannula 14 includes indicia on the outer wall that corresponds to the indicia on the cannulated dilator 10 .
- the user merely has to size the cannula 14 a by making a measurement of the body cavity with the cannulated dilator 10 and select the measurement corresponding thereto from the indicia on the cannula 14 a, and after the cannula is inserted onto the fixture 12 a, the user cuts the cannula 14 a and fixture 12 a so that the cannula 14 a is sized to fit the body cavity.
- the cannula 14 a in this instance need not be transparent and can be opaque.
- a cannulated dilator includes indicia of a scale for measuring the depth of the individual patient.
- the cannula in one embodiment may be made from a plastic, transparent material fits onto a fixture that is cuttable and contains a visible predetermined scale to cut the cannula to the particular length.
- the cannula includes indicia of a scale corresponding to the scale on the cannulated dilator and is similarly cut.
- the invention teaches a tool is provided to insert the cannulated dilator into the cavity and another tool to insert the cannula into the body cavity.
- a series of pre-sized cannulas are provided so that the user can select from this series the size that corresponds to the measurement obtained with the cannulated dilator.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Heart & Thoracic Surgery (AREA)
- Biomedical Technology (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Medical Informatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Molecular Biology (AREA)
- Pathology (AREA)
- Anesthesiology (AREA)
- Vascular Medicine (AREA)
- Hematology (AREA)
- Surgical Instruments (AREA)
Abstract
A relatively inexpensive cannula is sized by including indica on a cannulated dilator that is used to measure the depth of a body cavity, and in one embodiment with the use of a cuttable fixture inserted into an initially enlarged dilator retractor made from a cuttable material the excess of the dilator retractor is snipped by a commercial cutter. A tool engaging the end of the cannulated dilator provides leverage on the cannulated dilator for rotation as it is forced into the body cavity, a pusher tool provides leverage on the dilator retractor for inserting the dilator retractor into the body cavity. A clamp that fits the top of the dilator retractor serves to support the dilator retractor through an arm to a rigid structure. In an alternate embodiment one of a series of sized dilator retractors are selected commensurate with the measurement attained by the scaled cannulated dilator.
Description
More than one reissue application has been filed for the reissue of U.S. Pat. No. 6,159,179. The reissue applications are application Ser. Nos. 14/715,285 (the present application), 12/971,929, and 10/165,991, which are related as follows. The present application is a continuation reissue of U.S. patent application Ser. No. 12/971,929, filed Dec. 17, 2010 (now U.S. Reissue Pat. No. RE45,571, reissued Jun. 23, 2015) which is an application for reissue of U.S. Pat. No. 6,159,179 and which is a continuation reissue of U.S. patent application Ser. No. 10/165,991, filed Jun. 10, 2002 (now U.S. Reissue Pat. No. RE42,525, reissued Jul. 5, 2011) which is an application for reissue of U.S. Pat. No. 6,159,179.
This invention relates to a cannula and cannulated dilator and more particularly to a cannula intended to be utilized in surgery on a patient which cannula is sized by the measurement obtained from the cannulated dilator for obtaining a desired length of the cannula inserted into the body cavity of the patient for ease of the surgical procedure being preformed by the surgeon and the apparatus for insertion of the cannulated dilator and the dilator retractor into the body cavity.
As is known in the medical field, the cannula is utilized for creating a passage extending from the exterior into a cavity in the patient to a particular location where the surgical procedure is to be performed. For example, in current day practices lumbar discectomy whose objective is to decompress the affected nerve root, endoscopic and micro endoscopic techniques are often used. These techniques are becoming popular inasmuch as the patient benefits from the small incision, limited tissue disruption, better visualization and illumination all of which shortens the hospital stay and hastens recovery. One of the techniques for performing the lumbar discectomy is the use of tubular retractor (a specific cannula) which allows for laminotomy, deical facetectomy, foraminotomy, nerve root retraction and disectomy. A typical procedure is to advance a guidewire through a small incision which is advanced to the inferior edge of the superior lamina. A small incision is then made that extends either cranially or caudally. A calnulated dilator is then inserted over the guidewire. Larger diameter cannulated dilators are sequentially inserted over each other to increase the opening into the body cavity. Typically the guide wire is removed after the first cannulated dilators installed and eventually the cannulated dilators are all removed after the, tubular retractor has been inserted over the largest of the cannulated dilators. Once these procedures are accomplished, the tubular retractor is locked into position by a retractor clamp that is clamped to a retractor clamping arm which is fixed to a rigid member such as the operating table. This provides an unencumbered zone where the surgeon can perform the medical procedure that was intended to be performed.
As is well known in this field of technology, the cannulated dilators and tubular retractors are made from surgical metal material and are sized for the largest depth that is anticipated in the surgical procedure. Hence, whether the depth is 10 millimeters (mm), 20 mm, 30 mm, etc. Measured from the exterior of the cavity to the most interior position in the cavity (inferior edge of the superior lamina) the tubular retractor that may be available for use ii the surgical procedure could be 100 mm or larger. The additional or excess length of the dilator retractor is not only cumbersome to use, it is unnecessary and undesirable.
This invention obviates this problem by providing the necessary elements that allow the dilator retractor (cannula) to be cut to size once the incision and diameter of the cavity has been established. Hence, in the surgical procedure described above the last cannulated dilator in the procedure in accordance with this invention includes indicia of a graduated vertical scale on the tubular wall, preferably in millimeters that is viewed by the user. A cannula or dilator retractor, which basically is a cylindrical tube made from a plastic or synthetic material in one preferred embodiment or surgical metal in another embodiment which is easy to cut and which is transparent in one embodiment and opaque in another is provided in the largest length contemplated in this particular procedure or alternatively is pre-sized in a series of sized cannulas. A template that has a diameter that is slightly smaller than the diameter of the dilator retractor made from a soft plastic material such as Teflon material that may include graduated annular grooves that are graduated vertically in scale that is commensurate with the indicia scale on the cannulated dilator. Or alternatively, the dilator retractor may also include on the wall indicia corresponding to the indicia on the cannulated dilator. Hence, the surgeon or user merely has to count the annular grooves or the indicia on the wall of the dilator retractor to match the depth of the cavity and with a cutter, cut through the delator retractor which will provide a cannula that is acceptable to the surgeon without the unnecessary length that has heretofore presented a problem.
An annular retractor clamp is provided to fit over the top of the dilator retractor which obviously is sized to accommodate the width of the retractor clamp which, in turn, is utilized to mate with a rigid holder that is clamped to a rigid member such as the operating table or other convenient member to secure the cannula in place.
This invention also contemplates a tool for insertion of the cannulated dilator and a tool for the insertion of the dilator retractor into the body cavity. The tool for insertion of the cannulated dilator is a rectangular shaped planar member that removably fits the cannulated dilator and serves to provide leverage for the surgeon to turn the dilator retractor while it is being inserted into the body cavity to reach its ultimate destination. A tool for insertion of the dilator retractor is generally a pusher which may be made integral with the template includes an inner bore that is slightly larger than the outer diameter of the cannulated dilator and includes a flat bottom surface that overlies the top end wall surface of the dilator retractor so that the pusher provides leverage for the surgeon to slide the dilator retractor over the scaled cannulated dilator until it reaches the final destination in the body cavity.
As an alternate to the use of the cutter and template, it is contemplated within the scope of this invention, that a series of different length dilator retractors will be made available so that the surgeon after making the measurement of the depth of body cavity with the cannulated dilator will select the dilator retractor that most closely matches the size desired.
An object of this invention is to provide a dilator retractor that is sized to fit the patient for use in a surgical procedure.
A feature of this invention is to provide indicia of a vertical scale on the cannulated dilator to ascertain the depth of the cavity in the body in which a medical procedure is to be performed. In one embodiment a template made from a relatively soft plastic material fits into the dilator retractor having a scale commensurate with the scale on the cannulated dilator for supporting the dilator retractor as it is cut to the desired length. In another embodiment the dilator retractor includes indicia on the outer surface that correlates to the indicia on the cannulated dilator. In one embodiment the dilator retractor is transparent, in another embodiment it is opaque, and it can be made from either plastic or metallic material when in the opaque embodiments.
Another feature of this invention is the provision of a tool that is adapted to fit the cannulated dilator to allow the surgeon to turn the cannulated dilator as the surgeon pushes the cannulated dilator into the body cavity against the resistance of the body tissue. In one embodiment the tool includes concentric bores that define a shoulder that engages the end of the cannulated dilator and recesses that engage tabs axially extending from the proximate end of the cannulated dilator.
An alternative to the cutting procedure is the provision of predetermined different length dilator retractors that permit the surgeon to select the desire length commensurate with the depth of the body cavity.
Another feature of this invention is an annular retractor clamp that is slidable over the outer surface of the dilator retractor that is locked into place and adaptable to fit onto a flexible arm that is rigidly connected to a static structure such as the operating table.
The foregoing and other features of the present invention will become more apparent from the following description and accompanying drawings.
While in the preferred embodiment this invention is being described in connection with a particular surgical procedure, namely, a lumbar disectomy, it is to be understood that this invention has utility in other types of procedures and as one skilled in this art can appreciate, the invention has particular utility where it is desirable to provide a length of the cannula that is commensurate with the depth of the body cavity. As used in this patent application the term “cannulated dilator” means a surgical instrument that is utilized to widen the body cavity and the term “dilator retractor” is a cannula intended to fit into the body cavity. As used throughout this disclosure the term “body cavity” unless indicated otherwise refers to an access hole formed in the body of the patient in order to reach the target where the medical procedure is being performed and the term cannula or dilator retractor serves to define a working cavity or chamber that the surgeon uses to perform a medical procedure. While in the preferred embodiment, it is preferred that the dilator retractor is made from a plastic material and is transparent as will be appreciated and as will be described herein below this invention contemplates a dilator retractor made from metallic material and in certain embodiments the material is opaque.
To best understand this invention reference is being made to FIGS. 1 through 8 which shows the cannulated dilator generally illustrated by reference numeral 10 (FIGS. 1, 2, 6, 8 ), the template and pusher tool instrument combination generally illustrated by reference numeral 12 (FIGS. 3-6 ), the dilator retractor generally illustrated by reference numeral 14 (FIGS. 3, 6, 7, 8 ) and the retractor clamp generally illustrated by reference numeral 16 (FIG. 8 ). As best seen in FIG. 1 the cannulated dilator 10 comprises a hollow tubular body 18 typically made from surgical metal such as surgical stainless steel, having a beveled end 20 at the distal end of the tubular body 18 and a pair of circumferentially spaced tabs 22 extending from the proximate end surface 24 of the tubular body 18. The beveled at the distal end 20 serves to help the insertion of the cannulated retractor 10 entering the body of the patient and the tabs 22 serve to fit into a tool that the surgeon utilizes to insert the cannulated dilator 10 as it progresses into the body until it reaches the inferior edge of the superior lamina as will be described in more detail hereinbelow. It is contemplated within the scope of this invention that other techniques for attaching the tool to the cannulated dilator 10 could be utilized, as for example a poly-sided recesses or reversal of the tabs by affixing them to the tool rather than the cannulated dilator and affixing complementary recesses in the cannulated dilator and other such techniques could be employed. What is contemplated by the tool is that it provides leverage to the user so that it allows the cannulated dilator to be turned while it is being pushed into the body cavity against the resistance of the body's tissues.
In accordance with this invention, indica 26 is placed on the exterior of the body 18 and is a graduated scale in millimeters (although any other unit of measurement can be utilized) that serves to indicate the depth of the body cavity and is used to determine the length of the dilator retractor 14 as will be described in more detail herein below. The dilator retractor 14 in one embodiment is made from a plastic material that is transparent and is sufficiently strong that exhibits hoop integrity that is capable of withstanding the forces of the tissue tending to exert a lateral force. This provides a relatively inexpensive member that is capable of being cut while the patient is in the operating room. In one embodiment the dilator retractor is fitted onto the fixture—and the fixture includes spaced grooves that are correlated to the measurement of the depth of the body cavity that is determined by the indicia of the cannulated dilator 10.
As mentioned above, once the depth of the body cavity as measured by the indicia on the cannulated dilator 10, the dilator retractor 14 is fitted on the scaled end of the template portion 30 which includes a series of annular grooves that are axially spaced a predetermined distance, say at 10 mm, so that the dilator retractor 14 being transparent in this instance, once fitted onto the template can be sized. Hence, the user merely counts the number of grooves that is commensurate with the measurement taken from the indicia of the cannulated dilator and the desired length is then cut to the desired length. Obviously, it is important that the dilator retractor 14 is initially oversized so that the length will be longer than any of the depths of the body cavity contemplated. Hence, in this manner the cannula is made to fit each individual patient. The technique for making the measurement and cutting to size is described as follows. If the depth of the body cavity measurement taken from the cannulated dilator was 30 mm the user would count 3 annular grooves which are spaced 10 mm apart to determine the length of the dilator retractor desired and would add an addition amount to compensate for the attachment dimension of the annular retractor clamp 18. Hence, if the width of the clamp 18 is 10 mm and the depth of cavity is 30 mm, the user would select 40 mm as the juncture where the dilator retractor is cut to size.
Once the length of the depth of the body cavity as calculated by the cannulated dilator 10 is determined and while the dilator retractor 14 is mounted on the fixture portion 30, and after the user determines the number of annular grooves on the fixture portion that will match the depth of the body cavity as measured by the indicia on the cannulated dilator and the amount necessary to hold the retractor clamp 18, the user with the use of the commercially available cutters 34 snips off the end of the retractor dilator 14. The fixture will also be cut and this system for cutting assures that the dilator retractor 14 will have a clean, smooth cut. A suitable cutter 34 is one that is available in many hardware stores such as Home Depot and is under the name “Orbit”. This cutter was tested and has proven to work satisfactory. However, any type of cutter is contemplated for use with this invention, such as commercially available knives and pipe cutters, being other examples.
Once the dilator retractor 14 has been cut to size the dilator retractor 14 is then fitted over the cannula dilator 10 and is forced into the body cavity with a suitable pusher tool of the type shown in FIG. 4 . Pusher tool portion 36 which in this instance is integral with the member 12 is formed on one end and includes the enlarged diameter portion 38 having a central axial bore that complements the outer diameter of the cannulated dilator 10. The bottom annular face 40 is formed with a flat surface that bears against the end 42 of the dilator retractor 14. This serves to provide leverage for the surgeon to push the dilator retractor 14 into the body cavity.
Also in accordance with this invention the end clamp 16 comprises an annular body 46 being split at 47 and including a threaded lateral bore that accommodates the tightening screw 50. The central opening is dimensioned to fit over the end of the dilator retractor 14 and slide thereon. Once in position the screw is tightened to secure the clamp to the dilator retractor 14. A bracket 56 having a bifurcated slot 58 serves to engage a flexible arm that is clamped to a rigid member. This serves to support the dilator retractor 14 while the surgeon is performing the surgical procedure.
The cannulated retractor tool 39 is a relatively rectangular flat member 41 having a central bore 43 that is made from two spaced diameters. The most inner diameter on the bottom face of the tool 39 is slightly larger than the outer diameter of the cannula dilator 10 and the outer diameter on the top face of the tool 39 is equivalent to the inner diameter of the cannulated dilator 10 to provide a shoulder for bearing on the annular top surface 45 of the cannulated dilator 10. A pair of concentrically spaced recesses 49 are formed in the top surface extending through the upper portion of tool 40 to accommodate and complement the tabs 22. Thus tool 39 serves to provide a leverage tool that helps the surgeon for forcing the cannulated dilator 10 into the body cavity and against the resistance created by the body tissue adjacent thereto.
What has been described by this invention is a cannula that is sized to fit the individual patient. A cannulated dilator includes indicia of a scale for measuring the depth of the individual patient. With that measurement, the cannula in one embodiment may be made from a plastic, transparent material fits onto a fixture that is cuttable and contains a visible predetermined scale to cut the cannula to the particular length. In another embodiment the cannula includes indicia of a scale corresponding to the scale on the cannulated dilator and is similarly cut. The invention teaches a tool is provided to insert the cannulated dilator into the cavity and another tool to insert the cannula into the body cavity. In another embodiment a series of pre-sized cannulas are provided so that the user can select from this series the size that corresponds to the measurement obtained with the cannulated dilator.
Although this invention has been shown and described with respect to detailed embodiments thereof, it will be appreciated and understood by those skilled in the art that various changes in form and detail thereof may be made without departing from the spirit and scope of the claimed invention.
Claims (33)
1. A cannulated dilator having an outer surface, said cannulated dilator for insertion into an access hole formed in a patient for stretching the tissue adjacent to the access hole so as to enlarge the same, said cannulated dilator having an elongated tubular body, a beveled portion at the distal end thereof, the improvement comprising indicia on the side outer surface of the cannulated dilator for measuring the depth of the access hole, said cannulated dilator having a proximal end and a tool engagement portion formed thereon, in combination with a tool having an engagement portion complementing the tool engagement portion of the cannulated dilator adapted to fit thereon for rotation and applying leverage on said cannulated dilator for insertion thereof into the access hole and a cannula for fitting into said access hole for permitting the performance of a medical procedure after the cannulated dilator has been removed.
2. A cannulated dilator having an outer surface, said cannulated dilator for insertion into an access hole formed in the body of a patient for stretching the tissue adjacent the access hole and for enlarging the same, said cannulated dilator having an elongated tubular body, a beveled portion at the distal end thereof, the improvement comprising indicia on the side outer surface of the cannulated dilator for measuring the depth of the access hole, said cannulated dilator having a pair of circumferentially spaced tabs extending radially from the proximal end, in combination with a tool having a rectangularly shaped planar body, a central bore formed intermediate the ends thereof, an enlarged diameter recess extending from one face into said planar body and being concentric with said central bore but spaced from the opposite face thereof to define a shoulder, said tabs complementing recesses formed in said planar body adjacent to said enlarged diameter recess, whereby the cannulated dilator fits into said tool and said cannulated dilator engages said shoulder to permit the user to insert said cannulated dilator into said access hole and rotate same as it progresses into said access hole and a cannula for insertion into said access hole to permit a surgical procedure after the cannulated dilator has been removed.
3. The combination of a cannulated dilator and a dilator retractor wherein said cannulated dilator includes indicia for measuring the depth of an access hole formed in a patient for medical procedure and said dilator retractor being made from a cuttable material and being dimensioned larger in length than is anticipated of any depth of said access hole of the body of any patient that is anticipated in the medical procedure, the dilator retractor being cuttable commensurate with the depth of said access hole as measured by said cannulated dilator for sizing said dilator retractor to a length that is shorter than the original length of the dilator retractor prior to being inserted into the access hole so as to be utilized for performing the medical procedure whereby said dilator retractor is sized for the anatomy of the patient.
4. The combination of a cannulated dilator and a dilator retractor as claimed in claim 3 wherein said dilator retractor is made from a plastic material.
5. The combination of a cannulated dilator and a dilator retractor as claimed in claim 4 wherein said dilator retractor is made from a transparent material.
6. The combination of a cannulated dilator and dilator retractor as claimed in claim 3 including an annular clamp, said clamp being dimensioned to fit said dilator retractor and means including a bracket extending from said annular clamp adapted to support the dilator retractor to a rigid member.
7. The combination of a cannulated dilator and dilator retractor as claimed in claim 6 wherein said clamp is split through a portion thereof to define a gap between the ends adjacent the split, an adjustment for enlarging or decreasing said gap and the inner diameter portion surrounding the dilator retractor for securing said annular clamp to the dilator retractor and including means adapted to support the dilator retractor to a rigid member.
8. The combination of a cannulated dilator and dilator retractor as claimed in claim 6 including an elongated fixture having a circular cross section and made from a cuttable plastic material, and means to cut said dilator retractor an amount commensurate with the measurement attained by said cannulated retractor and the width of said annular clamp.
9. The combination of a cannulated dilator and dilator retractor as claimed in claim 8 wherein said elongated fixture includes a series of axially spaced grooves spaced a predetermined amount, said dilator retractor being transparent and fitting over said elongated fixture for the spaced grooves to be visible wherein the selection of said annular grooves determines the length of the dilator retractor to be cut.
10. The combination of a cannulated dilator and dilator retractor as claimed in claim 3 including a pusher tool having an elongated circular body, a central bore having a dimension to complement the outer diameter of said cannulated dilator, and a bottom surface overlying the end of said dilator retractor so that when said pusher tool is pushed into the body cavity the dilator retractor is forced into the body cavity and the central bore slides over said cannulated dilator.
11. The combination of a cannulated dilator and dilator retractor as claimed in claim 10 wherein said pusher tool is integral with said elongated fixture.
12. The combination of a cannulated dilator and dilator retractor, said cannulated dilator being in the series of the last cannulated dilator for enlarging the access hole in the body of a patient, at least one of said cannulated dilators having an elongated body, indicia on said elongated body indicative of a measurement of depth for measuring the depth of the access hole, said dilator retractor including a series of dilator retractors each having different lengths, whereby the dilator retractor for use in the access hole is selected from said series of dilator retractors that is commensurate with the measurement of said cannula(d dilator as obtained from said indicia when inserted into said access hole for defining a working space for performing a medical procedure when the cannulated dilator has been removed.
13. The method of sizing the length of a cannula to fit the depth of an access hole formed in the body of a patient including the steps of:
i. providing a cannula that is oversized in length;
ii. providing a cannulated dilator that is in the last of a series of cannulated dilators used for enlarging the access hole with indicia of a scale for measuring a length;
iii. measuring the depth of the access hole by inserting the cannulated dilator obtained in the step of providing a cannulated dilator into the access hole to ascertain the depth;
iv. cutting the cannula to the size obtained in the step of measuring before being inserted into the access hole; and
v. inserting the cannula obtained in the step of cutting into the access hole over the cannulated dilator and removing the cannulated dilator to define a working space to perform a medical procedure.
14. The method as claimed in claim 13 including the step of providing a template made from a cuttable material that is dimensioned to fit into the cannula;
i. inserting the template into the cannula;
ii. cutting the cannula and template at the length commensurate with the access hole.
15. The method as claimed in claim 14 including the provision of including markings on said template graduated to a scale commensurate with the scale of the indicia on the cannulated dilator; and the cannula being transparent so that the scale on the fixture is visible.
16. The method as claimed in claim 14 including a clamp to fit the end of the cannula; cutting in the step of cutting the cannula to a length that includes the width of the clamp.
17. The method as claimed in claim 14 including the step of providing a tool for engaging the proximal end of the cannulated dilator and inserting the cannulated dilator by pushing and turning the tool.
18. The method as claimed in claim 14 including the step of providing a tool for engaging said cannula for pushing said cannula into the access hole.
19. The method of sizing the length of a cannula to fit the depth of an access hole formed in the body of a patient including the steps of:
i. providing a series of different length cannulas;
ii. providing a cannulated dilator with indicia of a scale for measuring a length;
iii. measuring the depth of the access hole by inserting the cannulated dilator into the access hole to ascertain the depth;
iv. selecting from said different length cannulas obtained in the step of providing a series of different length cannulas the length correlating to the length obtained in the step of measuring before inserting said selected cannula; and
v. inserting said the cannula obtained in the step of selecting from said different length cannulas into said access hole for defining a working chamber for performing the medical procedure.
20. The combination of a cannulated dilator and dilator retractor as claimed in claim 12 including an annular clamp, said clamp being dimensioned to fit any of said dilator retractor from said series of said dilator retractors and a bracket extending from said annular clamp adapted to support the dilator retractor to a rigid member.
21. The combination of a cannulated dilator and dilator retractor as claimed in claim 12 wherein each of said cannulated dilator has a proximal end and a tool engagement portion formed thereon, a tool having an engagement portion complementing the tool engagement portion of the cannulated dilator adapted to fit thereon for rotation and applying leverage on said cannulated dilator for insertion thereof into the body cavity.
22. The combination of a cannulated dilator and dilator retractor, said cannulated dilator having an elongated body, said cannulated dilator for obtaining the measurement of depth of an access hole formed in a body, said dilator retractor including a series of dilator retractors having different lengths, whereby the dilator retractor for use in the access hole is selected from said series of dilator retractors that is commensurate with the measurement obtained from said cannulated dilator when extended into said access hole.
23. The combination of a cannulated dilator and dilator retractor as claimed in claim 12 wherein said dilator retractor is made form a plastic material.
24. The combination of a cannulated dilator and dilator retractor as claimed in claim 23 wherein said dilator retractr is made form a transparent material.
25. A method of surgically creating a working channel in a patient through which to conduct a surgical procedure, comprising:
sequentially inserting a series of dilators into a patient to form an access hole, at least one of the dilators having indicia formed thereon for measuring a depth of the access hole;
inserting an access instrument over the dilators to position the access instrument into the access hole, the access instrument having a length that is equal to the sum of (i) the measured depth of the access hole and (ii) a length of a body disposed at a proximal end of the access instrument, the body having a width greater than a width of the access hole; and
removing the dilators from the access instrument to provide a working channel through the access instrument.
26. The method of claim 25, wherein, prior to the step of inserting the access instrument over the dilators, a length of the access instrument is adjusted to have a length that is equal to the sum of (i) the measured depth of the access hole and (ii) the length of the body.
27. The method of claim 25, wherein the access instrument is selected from a series of access instruments having different lengths.
28. The method of claim 25, wherein the body extends from a proximal-most end to a distal-most end that abuts the access hole, the proximal-most and distal-most ends having a width greater than the width of the access hole.
29. The method of claim 25, wherein the access hole extends to a vertebral disc space.
30. The method of claim 25, wherein the dilators are cannulated and are inserted over a guidewire.
31. The method of claim 25, wherein the body extends along a skin surface of the patient.
32. The method of claim 25, wherein the step of forming the access hole in the patient comprises inserting a guide wire into the patient and sequentially inserting the series of dilators over the guidewire to create the access hole.
33. The method of claim 25, further comprising selecting one of a plurality of possible lengths of the access instrument based on the measured depth of the access hole.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/715,285 USRE46978E1 (en) | 1999-03-12 | 2015-05-18 | Cannula and sizing insertion method |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/266,984 US6159179A (en) | 1999-03-12 | 1999-03-12 | Cannula and sizing and insertion method |
US10/165,991 USRE42525E1 (en) | 1999-03-12 | 2002-06-10 | Cannula and sizing insertion method |
US12/971,929 USRE45571E1 (en) | 1999-03-12 | 2010-12-17 | Cannula and sizing insertion method |
US14/715,285 USRE46978E1 (en) | 1999-03-12 | 2015-05-18 | Cannula and sizing insertion method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/266,984 Reissue US6159179A (en) | 1999-03-12 | 1999-03-12 | Cannula and sizing and insertion method |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE46978E1 true USRE46978E1 (en) | 2018-08-07 |
Family
ID=23016824
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/266,984 Ceased US6159179A (en) | 1999-03-12 | 1999-03-12 | Cannula and sizing and insertion method |
US10/165,991 Expired - Lifetime USRE42525E1 (en) | 1999-03-12 | 2002-06-10 | Cannula and sizing insertion method |
US12/971,929 Expired - Lifetime USRE45571E1 (en) | 1999-03-12 | 2010-12-17 | Cannula and sizing insertion method |
US14/715,285 Expired - Lifetime USRE46978E1 (en) | 1999-03-12 | 2015-05-18 | Cannula and sizing insertion method |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/266,984 Ceased US6159179A (en) | 1999-03-12 | 1999-03-12 | Cannula and sizing and insertion method |
US10/165,991 Expired - Lifetime USRE42525E1 (en) | 1999-03-12 | 2002-06-10 | Cannula and sizing insertion method |
US12/971,929 Expired - Lifetime USRE45571E1 (en) | 1999-03-12 | 2010-12-17 | Cannula and sizing insertion method |
Country Status (1)
Country | Link |
---|---|
US (4) | US6159179A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USD956224S1 (en) | 2020-05-12 | 2022-06-28 | Innovasis, Inc. | Surgical retractor |
USD956223S1 (en) | 2020-05-12 | 2022-06-28 | Innovasis, Inc. | Surgical retractor |
USD956225S1 (en) | 2020-05-12 | 2022-06-28 | Innovasis, Inc. | Surgical retractor |
US11432810B2 (en) | 2020-05-12 | 2022-09-06 | Innovasis, Inc. | Systems and methods for surgical retraction |
Families Citing this family (200)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5792044A (en) | 1996-03-22 | 1998-08-11 | Danek Medical, Inc. | Devices and methods for percutaneous surgery |
US6175758B1 (en) | 1997-07-15 | 2001-01-16 | Parviz Kambin | Method for percutaneous arthroscopic disc removal, bone biopsy and fixation of the vertebrae |
US6159179A (en) | 1999-03-12 | 2000-12-12 | Simonson; Robert E. | Cannula and sizing and insertion method |
US7470236B1 (en) | 1999-11-24 | 2008-12-30 | Nuvasive, Inc. | Electromyography system |
US7632274B2 (en) * | 2000-02-16 | 2009-12-15 | Trans1 Inc. | Thin cutter blades with retaining film for preparing intervertebral disc spaces |
US20030191474A1 (en) * | 2000-02-16 | 2003-10-09 | Cragg Andrew H. | Apparatus for performing a discectomy through a trans-sacral axial bore within the vertebrae of the spine |
US20070260270A1 (en) * | 2000-02-16 | 2007-11-08 | Trans1 Inc. | Cutter for preparing intervertebral disc space |
JP2004516040A (en) | 2000-06-30 | 2004-06-03 | リトラン、スティーブン | Multi-shaft coupling device and method |
US7166073B2 (en) | 2000-09-29 | 2007-01-23 | Stephen Ritland | Method and device for microsurgical intermuscular spinal surgery |
US6929606B2 (en) | 2001-01-29 | 2005-08-16 | Depuy Spine, Inc. | Retractor and method for spinal pedicle screw placement |
US6951538B2 (en) * | 2001-01-29 | 2005-10-04 | Depuy Spine, Inc. | Retractor and method for spinal pedicle screw placement |
US10849681B2 (en) | 2001-04-06 | 2020-12-01 | Covidien Ag | Vessel sealer and divider |
US7101371B2 (en) | 2001-04-06 | 2006-09-05 | Dycus Sean T | Vessel sealer and divider |
JP4295086B2 (en) | 2001-07-11 | 2009-07-15 | ヌバシブ, インコーポレイテッド | System and method for determining nerve proximity, nerve orientation, and pathology during surgery |
EP1435828A4 (en) | 2001-09-25 | 2009-11-11 | Nuvasive Inc | System and methods for performing surgical procedures and assessments |
US6991632B2 (en) | 2001-09-28 | 2006-01-31 | Stephen Ritland | Adjustable rod and connector device and method of use |
AU2002327801B2 (en) | 2001-09-28 | 2008-03-06 | Stephen Ritland | Connection rod for screw or hook polyaxial system and method of use |
US7824410B2 (en) | 2001-10-30 | 2010-11-02 | Depuy Spine, Inc. | Instruments and methods for minimally invasive spine surgery |
US6916330B2 (en) | 2001-10-30 | 2005-07-12 | Depuy Spine, Inc. | Non cannulated dilators |
US7008431B2 (en) | 2001-10-30 | 2006-03-07 | Depuy Spine, Inc. | Configured and sized cannula |
EP2248549A3 (en) * | 2001-12-26 | 2010-12-08 | Yale University | Vascular access device |
CA2475200C (en) | 2002-02-20 | 2011-02-15 | Stephen Ritland | Pedicle screw connector apparatus and method |
US20030187431A1 (en) * | 2002-03-29 | 2003-10-02 | Simonson Robert E. | Apparatus and method for targeting for surgical procedures |
ES1053560Y (en) * | 2002-12-23 | 2003-08-01 | Advent Global S L | BAG FOR THE TRANSPORTATION OF PREPARED FOOD CARRIER OF MANTELES IN ITS STRUCTURE. |
US6966910B2 (en) | 2002-04-05 | 2005-11-22 | Stephen Ritland | Dynamic fixation device and method of use |
AU2003228960B2 (en) | 2002-05-08 | 2009-06-11 | Stephen Ritland | Dynamic fixation device and method of use |
US7582058B1 (en) | 2002-06-26 | 2009-09-01 | Nuvasive, Inc. | Surgical access system and related methods |
US6793678B2 (en) | 2002-06-27 | 2004-09-21 | Depuy Acromed, Inc. | Prosthetic intervertebral motion disc having dampening |
US8137284B2 (en) | 2002-10-08 | 2012-03-20 | Nuvasive, Inc. | Surgical access system and related methods |
US7776042B2 (en) | 2002-12-03 | 2010-08-17 | Trans1 Inc. | Methods and apparatus for provision of therapy to adjacent motion segments |
US7691057B2 (en) | 2003-01-16 | 2010-04-06 | Nuvasive, Inc. | Surgical access system and related methods |
US7819801B2 (en) | 2003-02-27 | 2010-10-26 | Nuvasive, Inc. | Surgical access system and related methods |
US7641659B2 (en) * | 2003-03-13 | 2010-01-05 | Zimmer Spine, Inc. | Spinal access instrument |
US8262571B2 (en) | 2003-05-22 | 2012-09-11 | Stephen Ritland | Intermuscular guide for retractor insertion and method of use |
US6945975B2 (en) * | 2003-07-07 | 2005-09-20 | Aesculap, Inc. | Bone fixation assembly and method of securement |
US6945974B2 (en) | 2003-07-07 | 2005-09-20 | Aesculap Inc. | Spinal stabilization implant and method of application |
US7811303B2 (en) * | 2003-08-26 | 2010-10-12 | Medicine Lodge Inc | Bodily tissue dilation systems and methods |
US8002798B2 (en) | 2003-09-24 | 2011-08-23 | Stryker Spine | System and method for spinal implant placement |
US7955355B2 (en) * | 2003-09-24 | 2011-06-07 | Stryker Spine | Methods and devices for improving percutaneous access in minimally invasive surgeries |
EP1680177B1 (en) | 2003-09-25 | 2017-04-12 | NuVasive, Inc. | Surgical access system |
US7905840B2 (en) | 2003-10-17 | 2011-03-15 | Nuvasive, Inc. | Surgical access system and related methods |
AU2004220757B2 (en) * | 2003-10-17 | 2010-06-17 | Covidien Lp | Surgical access device and manufacture thereof |
CA2543295A1 (en) | 2003-10-23 | 2005-05-06 | Trans1 Inc. | Tools and tool kits for performing minimally invasive procedures on the spine |
US7699852B2 (en) * | 2003-11-19 | 2010-04-20 | Zimmer Spine, Inc. | Fenestrated bone tap and method |
US7527638B2 (en) | 2003-12-16 | 2009-05-05 | Depuy Spine, Inc. | Methods and devices for minimally invasive spinal fixation element placement |
US7666188B2 (en) | 2003-12-16 | 2010-02-23 | Depuy Spine, Inc. | Methods and devices for spinal fixation element placement |
CA2550605C (en) | 2003-12-18 | 2012-05-08 | Depuy Spine, Inc. | Surgical retractor systems, illuminated cannulae, and methods of use |
US7195592B2 (en) | 2004-01-27 | 2007-03-27 | Sundaram Ravikumar | Surgical retractor apparatus for use with a surgical port |
US7344495B2 (en) * | 2004-01-27 | 2008-03-18 | Arvik Enterprises, Llc | Surgical retractor apparatus for use with a surgical port |
US7311712B2 (en) | 2004-02-26 | 2007-12-25 | Aesculap Implant Systems, Inc. | Polyaxial locking screw plate assembly |
US7547318B2 (en) | 2004-03-19 | 2009-06-16 | Depuy Spine, Inc. | Spinal fixation element and methods |
GB2414185A (en) * | 2004-05-20 | 2005-11-23 | Gyrus Medical Ltd | Morcellating device using cutting electrodes on end-face of tube |
US7909843B2 (en) | 2004-06-30 | 2011-03-22 | Thompson Surgical Instruments, Inc. | Elongateable surgical port and dilator |
US20060004398A1 (en) * | 2004-07-02 | 2006-01-05 | Binder Lawrence J Jr | Sequential dilator system |
US7434325B2 (en) | 2004-07-26 | 2008-10-14 | Warsaw Orthopedic, Inc. | Systems and methods for determining optimal retractor length in minimally invasive procedures |
US9387313B2 (en) | 2004-08-03 | 2016-07-12 | Interventional Spine, Inc. | Telescopic percutaneous tissue dilation systems and related methods |
US8182491B2 (en) | 2004-08-06 | 2012-05-22 | Depuy Spine, Inc. | Rigidly guided implant placement |
US8016835B2 (en) * | 2004-08-06 | 2011-09-13 | Depuy Spine, Inc. | Rigidly guided implant placement with control assist |
US20060047296A1 (en) * | 2004-08-31 | 2006-03-02 | Sdg Holdings, Inc. | Annulus replacement system and technique |
US20060052812A1 (en) * | 2004-09-07 | 2006-03-09 | Michael Winer | Tool for preparing a surgical site for an access device |
US9622732B2 (en) | 2004-10-08 | 2017-04-18 | Nuvasive, Inc. | Surgical access system and related methods |
US7651499B2 (en) | 2004-10-26 | 2010-01-26 | Concept Matrix, Llc | Working channel for minimally invasive spine surgery |
EP1807007A4 (en) * | 2004-10-29 | 2014-03-19 | Depuy Products Inc | Coordinate instrument set |
WO2006049917A2 (en) * | 2004-10-29 | 2006-05-11 | Depuy Spine, Inc | Expandable ports and methods for minimally invasive surgery |
US8075591B2 (en) * | 2004-11-09 | 2011-12-13 | Depuy Spine, Inc. | Minimally invasive spinal fixation guide systems and methods |
EP1827244A2 (en) * | 2004-11-22 | 2007-09-05 | Endius Incorporated | Expandable device for providing access to the spine |
US20060173374A1 (en) * | 2005-01-31 | 2006-08-03 | Neubardt Seth L | Electrically insulated surgical probing tool |
US7643884B2 (en) | 2005-01-31 | 2010-01-05 | Warsaw Orthopedic, Inc. | Electrically insulated surgical needle assembly |
US8092455B2 (en) | 2005-02-07 | 2012-01-10 | Warsaw Orthopedic, Inc. | Device and method for operating a tool relative to bone tissue and detecting neural elements |
US20060200023A1 (en) * | 2005-03-04 | 2006-09-07 | Sdgi Holdings, Inc. | Instruments and methods for nerve monitoring in spinal surgical procedures |
WO2007046850A2 (en) * | 2005-03-30 | 2007-04-26 | Access Scientific, Inc. | Vascular access |
US8454644B2 (en) * | 2005-04-06 | 2013-06-04 | Stryker Spine | Switching stick dilation method and apparatus |
US8177817B2 (en) * | 2005-05-18 | 2012-05-15 | Stryker Spine | System and method for orthopedic implant configuration |
US20060287584A1 (en) * | 2005-06-16 | 2006-12-21 | Javier Garcia-Bengochia | Surgical retractor extensions |
AU2006264300B2 (en) | 2005-07-06 | 2012-03-08 | Vascular Pathways Inc. | Intravenous catheter insertion device and method of use |
AU2006269900A1 (en) | 2005-07-19 | 2007-01-25 | Stephen Ritland | Rod extension for extending fusion construct |
JP2009508596A (en) | 2005-09-19 | 2009-03-05 | ヒストジェニックス コーポレイション | Cell support substrate and preparation method thereof |
US7981031B2 (en) | 2006-01-04 | 2011-07-19 | Depuy Spine, Inc. | Surgical access devices and methods of minimally invasive surgery |
US7918792B2 (en) | 2006-01-04 | 2011-04-05 | Depuy Spine, Inc. | Surgical retractor for use with minimally invasive spinal stabilization systems and methods of minimally invasive surgery |
US7758501B2 (en) | 2006-01-04 | 2010-07-20 | Depuy Spine, Inc. | Surgical reactors and methods of minimally invasive surgery |
US7955257B2 (en) | 2006-01-05 | 2011-06-07 | Depuy Spine, Inc. | Non-rigid surgical retractor |
EP1981422B1 (en) | 2006-02-06 | 2018-10-24 | Stryker European Holdings I, LLC | Rod contouring apparatus for percutaneous pedicle screw extension |
US20080033466A1 (en) * | 2006-02-28 | 2008-02-07 | Trans1 Inc. | Surgical cutter with exchangeable cutter blades |
US8834527B2 (en) * | 2006-06-16 | 2014-09-16 | Alphatec Spine, Inc. | Systems and methods for manipulating and/or installing a pedicle screw |
US7959564B2 (en) | 2006-07-08 | 2011-06-14 | Stephen Ritland | Pedicle seeker and retractor, and methods of use |
GB2441502A (en) * | 2006-09-07 | 2008-03-12 | Gyrus Medical Ltd | A morcellating device including a stop mechanism |
GB2441501A (en) * | 2006-09-07 | 2008-03-12 | Gyrus Medical Ltd | Surgical instrument with sealing mechanism to retain pressurised gas |
GB2441504A (en) * | 2006-09-11 | 2008-03-12 | Sapna Parag Desai | Intravenous cannula |
WO2008039441A1 (en) * | 2006-09-25 | 2008-04-03 | Stryker Spine | Force limiting persuader-reducer |
US8038699B2 (en) | 2006-09-26 | 2011-10-18 | Ebi, Llc | Percutaneous instrument assembly |
US7918857B2 (en) | 2006-09-26 | 2011-04-05 | Depuy Spine, Inc. | Minimally invasive bone anchor extensions |
US8162952B2 (en) | 2006-09-26 | 2012-04-24 | Ebi, Llc | Percutaneous instrument assembly |
WO2008070863A2 (en) | 2006-12-07 | 2008-06-12 | Interventional Spine, Inc. | Intervertebral implant |
EP1929945A3 (en) * | 2006-12-07 | 2009-01-14 | Arthrex, Inc. | Measuring device |
US7922696B2 (en) | 2007-01-24 | 2011-04-12 | Access Scientific, Inc. | Access device |
EP2486880A3 (en) | 2007-04-18 | 2013-01-16 | Access Scientific, Inc. | Access device |
CN101784300A (en) | 2007-04-18 | 2010-07-21 | 埃克赛斯科技有限公司 | Access device |
WO2008137956A2 (en) | 2007-05-07 | 2008-11-13 | Vascular Pathways, Inc. | Intravenous catheter insertion and blood sample devices and method of use |
US8900307B2 (en) | 2007-06-26 | 2014-12-02 | DePuy Synthes Products, LLC | Highly lordosed fusion cage |
US8512343B2 (en) * | 2007-08-31 | 2013-08-20 | DePuy Synthes Products, LLC | Methods and instruments for approximating misaligned vertebra |
CA2701504A1 (en) | 2007-10-05 | 2009-04-09 | Synthes Usa, Llc | Dilation system and method of using the same |
US8382810B2 (en) * | 2007-12-05 | 2013-02-26 | Arthrex, Inc. | Torsion cutter and cannulated cutter for cutting orthopedic fasteners |
AU2009205896A1 (en) | 2008-01-17 | 2009-07-23 | Synthes Gmbh | An expandable intervertebral implant and associated method of manufacturing the same |
USD601242S1 (en) | 2008-03-14 | 2009-09-29 | Access Scientific, Inc. | Access device |
WO2009114833A1 (en) | 2008-03-14 | 2009-09-17 | Access Scientific, Inc. | Access device |
EP2265313A2 (en) * | 2008-03-14 | 2010-12-29 | Access Scientific, Inc. | Access device |
WO2009124269A1 (en) | 2008-04-05 | 2009-10-08 | Synthes Usa, Llc | Expandable intervertebral implant |
US8636740B2 (en) * | 2008-05-08 | 2014-01-28 | Aesculap Implant Systems, Llc | Minimally invasive spinal stabilization system |
USD600793S1 (en) | 2008-09-10 | 2009-09-22 | Access Scientific, Inc. | Access device |
WO2010031064A1 (en) | 2008-09-15 | 2010-03-18 | Clearview Patient Safety Technologies, Llc | Lumbar puncture detection device |
EP2381871A4 (en) | 2008-12-26 | 2013-03-20 | Scott Spann | Minimally-invasive retroperitoneal lateral approach for spinal surgery |
US9526620B2 (en) | 2009-03-30 | 2016-12-27 | DePuy Synthes Products, Inc. | Zero profile spinal fusion cage |
US9655658B2 (en) * | 2009-10-14 | 2017-05-23 | Ebi, Llc | Deformable device for minimally invasive fixation |
US20110112436A1 (en) * | 2009-11-06 | 2011-05-12 | SpineSmith Partners, LP | Distraction pins for fluid aspiration |
US9393129B2 (en) | 2009-12-10 | 2016-07-19 | DePuy Synthes Products, Inc. | Bellows-like expandable interbody fusion cage |
US8696672B2 (en) * | 2010-01-22 | 2014-04-15 | Baxano Surgical, Inc. | Abrading tool for preparing intervertebral disc spaces |
WO2011097639A2 (en) | 2010-02-08 | 2011-08-11 | Access Scientific, Inc. | Access device |
US8932258B2 (en) | 2010-05-14 | 2015-01-13 | C. R. Bard, Inc. | Catheter placement device and method |
US10384039B2 (en) | 2010-05-14 | 2019-08-20 | C. R. Bard, Inc. | Catheter insertion device including top-mounted advancement components |
US9950139B2 (en) | 2010-05-14 | 2018-04-24 | C. R. Bard, Inc. | Catheter placement device including guidewire and catheter control elements |
US11925779B2 (en) | 2010-05-14 | 2024-03-12 | C. R. Bard, Inc. | Catheter insertion device including top-mounted advancement components |
US9872971B2 (en) | 2010-05-14 | 2018-01-23 | C. R. Bard, Inc. | Guidewire extension system for a catheter placement device |
US8979860B2 (en) | 2010-06-24 | 2015-03-17 | DePuy Synthes Products. LLC | Enhanced cage insertion device |
US9907560B2 (en) | 2010-06-24 | 2018-03-06 | DePuy Synthes Products, Inc. | Flexible vertebral body shavers |
US8623091B2 (en) | 2010-06-29 | 2014-01-07 | DePuy Synthes Products, LLC | Distractible intervertebral implant |
US8617062B2 (en) | 2010-07-08 | 2013-12-31 | Warsaw Orthopedic, Inc. | Over dilation |
PT105255A (en) * | 2010-08-18 | 2012-02-20 | Jose Dinis Carmo | SURGICAL CUTTING INSTRUMENT FOR PRECISION CUTTING |
EP2615974A4 (en) * | 2010-09-17 | 2017-10-04 | Histogenics Corporation | Method and apparatus for restoring articular cartilage |
US9402732B2 (en) | 2010-10-11 | 2016-08-02 | DePuy Synthes Products, Inc. | Expandable interspinous process spacer implant |
US8690833B2 (en) | 2011-01-31 | 2014-04-08 | Vascular Pathways, Inc. | Intravenous catheter and insertion device with reduced blood spatter |
ES2835652T3 (en) | 2011-02-25 | 2021-06-22 | Bard Inc C R | Medical component insertion device including a retractable needle |
US8790406B1 (en) | 2011-04-01 | 2014-07-29 | William D. Smith | Systems and methods for performing spine surgery |
USD903101S1 (en) | 2011-05-13 | 2020-11-24 | C. R. Bard, Inc. | Catheter |
US8834507B2 (en) | 2011-05-17 | 2014-09-16 | Warsaw Orthopedic, Inc. | Dilation instruments and methods |
US9101507B2 (en) * | 2011-05-18 | 2015-08-11 | Ralph F. Caselnova | Apparatus and method for proximal-to-distal endoluminal stent deployment |
EP2744421B1 (en) | 2011-08-19 | 2016-12-07 | NuVasive, Inc. | Surgical retractor system |
US9198765B1 (en) | 2011-10-31 | 2015-12-01 | Nuvasive, Inc. | Expandable spinal fusion implants and related methods |
US9808232B2 (en) | 2011-11-01 | 2017-11-07 | DePuy Synthes Products, Inc. | Dilation system |
CN104080411A (en) * | 2011-12-15 | 2014-10-01 | 新加坡保健服务集团有限公司 | Device and method for in-office unsedated tracheoesophageal puncture (TEP) |
ES2656974T3 (en) * | 2012-01-19 | 2018-03-01 | Stryker European Holdings I, Llc | Cuff for suprarrotulian surgery |
US20140074170A1 (en) * | 2012-02-10 | 2014-03-13 | Herbert H. Mertens | Delivery Device With Interior Dilation Element Channel |
US9060815B1 (en) | 2012-03-08 | 2015-06-23 | Nuvasive, Inc. | Systems and methods for performing spine surgery |
US9888859B1 (en) | 2013-03-14 | 2018-02-13 | Nuvasive, Inc. | Directional dilator for intraoperative monitoring |
US8696697B2 (en) * | 2012-04-13 | 2014-04-15 | Helix Medical, Llc | Trocar and device for measuring a tracheoesophageal puncture |
US9265490B2 (en) * | 2012-04-16 | 2016-02-23 | DePuy Synthes Products, Inc. | Detachable dilator blade |
US8940052B2 (en) | 2012-07-26 | 2015-01-27 | DePuy Synthes Products, LLC | Expandable implant |
US20140067069A1 (en) | 2012-08-30 | 2014-03-06 | Interventional Spine, Inc. | Artificial disc |
US9084591B2 (en) | 2012-10-23 | 2015-07-21 | Neurostructures, Inc. | Retractor |
US10646690B2 (en) * | 2012-11-20 | 2020-05-12 | University Of Massachusetts | Flexible surgical sheath and multi-part insertion cannula |
CN108607150B (en) | 2013-01-30 | 2021-01-12 | 血管通路股份有限公司 | Systems and methods for venipuncture and catheter placement |
US9717601B2 (en) | 2013-02-28 | 2017-08-01 | DePuy Synthes Products, Inc. | Expandable intervertebral implant, system, kit and method |
US9522070B2 (en) | 2013-03-07 | 2016-12-20 | Interventional Spine, Inc. | Intervertebral implant |
WO2014159225A2 (en) | 2013-03-14 | 2014-10-02 | Baxano Surgical, Inc. | Spinal implants and implantation system |
US9510875B2 (en) | 2013-03-14 | 2016-12-06 | Stryker European Holdings I, Llc | Systems and methods for percutaneous spinal fusion |
US9827020B2 (en) | 2013-03-14 | 2017-11-28 | Stryker European Holdings I, Llc | Percutaneous spinal cross link system and method |
US9566087B2 (en) | 2013-03-15 | 2017-02-14 | Access Scientific, Llc | Vascular access device |
JP6364078B2 (en) | 2013-08-05 | 2018-07-25 | クック・メディカル・テクノロジーズ・リミテッド・ライアビリティ・カンパニーCook Medical Technologies Llc | Medical device having releasable tubular member and method of using the same |
US9717538B2 (en) | 2013-09-16 | 2017-08-01 | Spinefrontier, Inc | System and method for bone fusing implants and implant insertion tools |
US9408716B1 (en) | 2013-12-06 | 2016-08-09 | Stryker European Holdings I, Llc | Percutaneous posterior spinal fusion implant construction and method |
US10159579B1 (en) | 2013-12-06 | 2018-12-25 | Stryker European Holdings I, Llc | Tubular instruments for percutaneous posterior spinal fusion systems and methods |
US9744050B1 (en) | 2013-12-06 | 2017-08-29 | Stryker European Holdings I, Llc | Compression and distraction system for percutaneous posterior spinal fusion |
CN104906682A (en) | 2014-01-24 | 2015-09-16 | 史蒂文·沙勒布瓦 | Articulating balloon catheter and method for using the same |
USD753290S1 (en) | 2014-03-03 | 2016-04-05 | The Spectranetics Corporation | Sheath set |
US9675371B2 (en) | 2014-03-03 | 2017-06-13 | The Spectranetics Corporation | Dilator sheath set |
USD753289S1 (en) | 2014-03-03 | 2016-04-05 | The Spectranetics Corporation | Sheath |
US9974563B2 (en) | 2014-05-28 | 2018-05-22 | Cook Medical Technologies Llc | Medical devices having a releasable member and methods of using the same |
EP3177219B1 (en) | 2014-08-04 | 2018-09-26 | Cook Medical Technologies LLC | Medical devices having a releasable tubular member |
US10258228B2 (en) * | 2014-08-08 | 2019-04-16 | K2M, Inc. | Retraction devices, systems, and methods for minimally invasive spinal surgery |
US10232146B2 (en) | 2014-09-05 | 2019-03-19 | C. R. Bard, Inc. | Catheter insertion device including retractable needle |
US10077420B2 (en) | 2014-12-02 | 2018-09-18 | Histogenics Corporation | Cell and tissue culture container |
CA3008161C (en) | 2014-12-09 | 2023-09-26 | John A. Heflin | Spine alignment system |
US11426290B2 (en) | 2015-03-06 | 2022-08-30 | DePuy Synthes Products, Inc. | Expandable intervertebral implant, system, kit and method |
EP3888731A1 (en) | 2015-04-30 | 2021-10-06 | Smiths Medical ASD, Inc. | Vascular access device |
USD903100S1 (en) | 2015-05-01 | 2020-11-24 | C. R. Bard, Inc. | Catheter placement device |
SG10202006540RA (en) | 2015-05-15 | 2020-08-28 | Bard Inc C R | Catheter placement device including an extensible needle safety component |
US9913727B2 (en) | 2015-07-02 | 2018-03-13 | Medos International Sarl | Expandable implant |
US11510788B2 (en) | 2016-06-28 | 2022-11-29 | Eit Emerging Implant Technologies Gmbh | Expandable, angularly adjustable intervertebral cages |
JP7019616B2 (en) | 2016-06-28 | 2022-02-15 | イーアイティー・エマージング・インプラント・テクノロジーズ・ゲーエムベーハー | Expandable and angle adjustable intervertebral cage with range of motion joints |
AU2017322745B2 (en) | 2016-09-12 | 2021-09-23 | C. R. Bard, Inc. | Blood control for a catheter insertion device |
US10898175B2 (en) | 2016-10-04 | 2021-01-26 | Jgmg Bengochea, Llc | Retractor extension clip systems |
US10537436B2 (en) | 2016-11-01 | 2020-01-21 | DePuy Synthes Products, Inc. | Curved expandable cage |
US10918407B2 (en) | 2016-11-08 | 2021-02-16 | Covidien Lp | Surgical instrument for grasping, treating, and/or dividing tissue |
US10888433B2 (en) | 2016-12-14 | 2021-01-12 | DePuy Synthes Products, Inc. | Intervertebral implant inserter and related methods |
AU2017401073B2 (en) | 2017-03-01 | 2022-06-02 | C. R. Bard, Inc. | Catheter insertion device |
US10398563B2 (en) | 2017-05-08 | 2019-09-03 | Medos International Sarl | Expandable cage |
US11344424B2 (en) | 2017-06-14 | 2022-05-31 | Medos International Sarl | Expandable intervertebral implant and related methods |
US10940016B2 (en) | 2017-07-05 | 2021-03-09 | Medos International Sarl | Expandable intervertebral fusion cage |
US10569059B2 (en) | 2018-03-01 | 2020-02-25 | Asspv, Llc | Guidewire retention device |
US11389626B2 (en) | 2018-03-07 | 2022-07-19 | Bard Access Systems, Inc. | Guidewire advancement and blood flashback systems for a medical device insertion system |
USD921884S1 (en) | 2018-07-27 | 2021-06-08 | Bard Access Systems, Inc. | Catheter insertion device |
US11446156B2 (en) | 2018-10-25 | 2022-09-20 | Medos International Sarl | Expandable intervertebral implant, inserter instrument, and related methods |
BR112022003173A2 (en) | 2019-08-19 | 2022-05-17 | Becton Dickinson Co | Midline catheter placement device |
US11678906B2 (en) * | 2019-09-09 | 2023-06-20 | Amplify Surgical, Inc. | Multi-portal surgical systems, cannulas, and related technologies |
US11426286B2 (en) | 2020-03-06 | 2022-08-30 | Eit Emerging Implant Technologies Gmbh | Expandable intervertebral implant |
US20210401450A1 (en) * | 2020-06-30 | 2021-12-30 | Medos International Sarl | Access port cutters and related methods |
US11850160B2 (en) | 2021-03-26 | 2023-12-26 | Medos International Sarl | Expandable lordotic intervertebral fusion cage |
US11752009B2 (en) | 2021-04-06 | 2023-09-12 | Medos International Sarl | Expandable intervertebral fusion cage |
US12090064B2 (en) | 2022-03-01 | 2024-09-17 | Medos International Sarl | Stabilization members for expandable intervertebral implants, and related systems and methods |
CN115816019B (en) * | 2022-11-29 | 2023-10-13 | 江苏龙英管道新材料有限公司 | Pipe penetrating device and pipe penetrating method for prefabricated overhead heat-insulating pipe |
US11950770B1 (en) | 2022-12-01 | 2024-04-09 | Amplify Surgical, Inc. | Multi-portal split cannulas, endoscopic hemostatic dispensers and surgical tools |
Citations (164)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US569839A (en) | 1896-10-20 | John t | ||
US1633703A (en) | 1924-10-18 | 1927-06-28 | Kaji Jiro | Sign-making device |
US2922420A (en) | 1957-11-29 | 1960-01-26 | Sierra Eng Co | Epidural needle |
US3470872A (en) | 1966-11-25 | 1969-10-07 | Herman R Grieshaber | Pivoted retractor with shielded spacer teeth |
US3875595A (en) | 1974-04-15 | 1975-04-08 | Edward C Froning | Intervertebral disc prosthesis and instruments for locating same |
US4232660A (en) | 1979-03-26 | 1980-11-11 | Coles Robert L | Winged irrigating surgical retractor |
US4440168A (en) | 1981-08-31 | 1984-04-03 | Warren Mark G | Surgical device |
US4449532A (en) | 1980-07-08 | 1984-05-22 | Karl Storz | Dilator to facilitate endoscope insertion into the body |
US4481947A (en) | 1980-02-14 | 1984-11-13 | Chester Martin H | Endotracheal tube retractor |
US4545374A (en) | 1982-09-03 | 1985-10-08 | Jacobson Robert E | Method and instruments for performing a percutaneous lumbar diskectomy |
US4573448A (en) | 1983-10-05 | 1986-03-04 | Pilling Co. | Method for decompressing herniated intervertebral discs |
US4617922A (en) | 1982-01-18 | 1986-10-21 | Richards Medical Company | Compression screw assembly |
US4620460A (en) | 1985-07-01 | 1986-11-04 | Gonzales Jr Frank | Socket set |
US4686972A (en) | 1986-04-30 | 1987-08-18 | Kurland Kenneth Z | Surgical deflector and drilling guide |
US4736738A (en) | 1984-07-09 | 1988-04-12 | Matej Lipovsek | Instrument kit and procedure for performing posterior lumbar interbody fusion |
US4747394A (en) | 1986-10-08 | 1988-05-31 | Watanabe Orthopedic Systems, Inc. | Spinal retractor |
US4798111A (en) | 1987-08-03 | 1989-01-17 | Cheeseman Charles D | Socket-wrench hand tool |
US4803976A (en) | 1985-10-03 | 1989-02-14 | Synthes | Sighting instrument |
US4808157A (en) | 1987-07-13 | 1989-02-28 | Neuro Delivery Technology, Inc. | Multi-lumen epidural-spinal needle |
US4817587A (en) | 1987-08-31 | 1989-04-04 | Janese Woodrow W | Ring para-spinal retractor |
US4862891A (en) | 1988-03-14 | 1989-09-05 | Canyon Medical Products | Device for sequential percutaneous dilation |
US4863423A (en) | 1987-09-15 | 1989-09-05 | H. G. Wallace Ltd. | Catheter and cannula assembly |
US4872451A (en) | 1987-02-02 | 1989-10-10 | Moore Robert R | Glenohumeral ligament repair |
US4882958A (en) | 1988-12-05 | 1989-11-28 | Mcneeley Richard L | Stacking socket wrench set |
US4952214A (en) | 1981-08-20 | 1990-08-28 | Ohio Medical Instrument Co., Inc. | Arcuate osteotomy blade, blade guide, and cutting method |
US4969888A (en) | 1989-02-09 | 1990-11-13 | Arie Scholten | Surgical protocol for fixation of osteoporotic bone using inflatable device |
US4994027A (en) * | 1988-06-08 | 1991-02-19 | Farrell Edward M | Percutaneous femoral bypass system |
US5035232A (en) | 1987-10-24 | 1991-07-30 | Aesculap Ag | Retractor |
US5048379A (en) | 1989-06-16 | 1991-09-17 | Gramera Robert E | Multi-functional double-ended socket wrenches |
US5052373A (en) | 1988-07-29 | 1991-10-01 | Michelson Gary K | Spinal retractor |
US5084043A (en) | 1990-01-12 | 1992-01-28 | Laserscope | Method for performing a percutaneous diskectomy using a laser |
US5098435A (en) | 1990-11-21 | 1992-03-24 | Alphatec Manufacturing Inc. | Cannula |
US5106376A (en) | 1989-07-07 | 1992-04-21 | B. Braun Melsungen Ag | Anaesthesia set |
US5133720A (en) | 1990-07-13 | 1992-07-28 | Greenberg Alex M | Surgical drill guide and retractor |
US5135525A (en) | 1989-06-06 | 1992-08-04 | B. Braun Melsungen Ag | Catheter set for continuous spinal anaesthesia |
US5148724A (en) | 1991-06-13 | 1992-09-22 | Rexford Gary R | Ratchet wrench and socket apparatus |
US5158543A (en) | 1990-10-30 | 1992-10-27 | Lazarus Harrison M | Laparoscopic surgical system and method |
US5171279A (en) | 1992-03-17 | 1992-12-15 | Danek Medical | Method for subcutaneous suprafascial pedicular internal fixation |
US5195541A (en) | 1991-10-18 | 1993-03-23 | Obenchain Theodore G | Method of performing laparoscopic lumbar discectomy |
US5242443A (en) | 1991-08-15 | 1993-09-07 | Smith & Nephew Dyonics, Inc. | Percutaneous fixation of vertebrae |
US5242439A (en) | 1990-01-12 | 1993-09-07 | Laserscope | Means for inserting instrumentation for a percutaneous diskectomy using a laser |
US5275611A (en) | 1990-11-20 | 1994-01-04 | Innerdyne Medical, Inc. | Tension guide and dilator |
US5279567A (en) | 1992-07-02 | 1994-01-18 | Conmed Corporation | Trocar and tube with pressure signal |
US5292309A (en) | 1993-01-22 | 1994-03-08 | Schneider (Usa) Inc. | Surgical depth measuring instrument and method |
US5303694A (en) | 1993-02-09 | 1994-04-19 | Mikhail Michael W E | Method for performing hip surgery and retractor for use therein |
US5342384A (en) | 1992-08-13 | 1994-08-30 | Brigham & Women's Hospital | Surgical dilator |
US5356382A (en) * | 1992-10-23 | 1994-10-18 | Applied Medical Research, Inc. | Percutaneous tract measuring and forming device |
US5356413A (en) | 1993-03-12 | 1994-10-18 | Mitek Surgical Products, Inc. | Surgical anchor and method for deploying the same |
US5363841A (en) | 1993-07-02 | 1994-11-15 | Coker Wesley L | Retractor for spinal surgery |
US5403264A (en) | 1992-09-04 | 1995-04-04 | Ethicon, Inc. | Endoscopic closure inspection device |
US5431639A (en) | 1993-08-12 | 1995-07-11 | Boston Scientific Corporation | Treating wounds caused by medical procedures |
US5431651A (en) | 1993-02-08 | 1995-07-11 | Goble; E. Marlowe | Cross pin and set screw femoral and tibial fixation method |
US5439464A (en) | 1993-03-09 | 1995-08-08 | Shapiro Partners Limited | Method and instruments for performing arthroscopic spinal surgery |
USD361381S (en) | 1994-03-17 | 1995-08-15 | Tibor Koros | Combined spine and sternum retractor frame |
US5472426A (en) | 1991-09-12 | 1995-12-05 | B.E.I. Medical | Cervical discectomy instruments |
US5489274A (en) | 1992-10-09 | 1996-02-06 | Boston Scientific Corporation | Rotatable medical valve closure |
US5512038A (en) | 1993-11-15 | 1996-04-30 | O'neal; Darrell D. | Spinal retractor apparatus having a curved blade |
US5562677A (en) | 1992-06-30 | 1996-10-08 | Ethicon, Inc. | Obturator for justing a flexible trocar tube |
US5601550A (en) | 1994-10-25 | 1997-02-11 | Esser; Rene D. | Pelvic pin guide system for insertion of pins into iliac bone |
US5611778A (en) | 1992-05-14 | 1997-03-18 | Vygon | Surgical instrument for performing epidural anesthesia |
US5687739A (en) | 1995-12-06 | 1997-11-18 | Interventional Concepts, Inc. | Biopsy specimen cutter |
US5716415A (en) | 1993-10-01 | 1998-02-10 | Acromed Corporation | Spinal implant |
US5743853A (en) | 1996-09-09 | 1998-04-28 | Lauderdale; Robert A. | Serrated S-retractor |
US5746720A (en) | 1995-10-18 | 1998-05-05 | Stouder, Jr.; Albert E. | Method and apparatus for insertion of a cannula and trocar |
US5766221A (en) | 1991-12-03 | 1998-06-16 | Boston Scientific Technology, Inc. | Bone anchor implantation device |
US5792044A (en) | 1996-03-22 | 1998-08-11 | Danek Medical, Inc. | Devices and methods for percutaneous surgery |
US5816257A (en) | 1995-12-20 | 1998-10-06 | Origin Medsystems, Inc. | Gasless retroperitoneal surgical procedure |
USD399955S (en) | 1997-11-14 | 1998-10-20 | Koros Tibor B | Combined spine/sternum retractor frame and blades |
US5851207A (en) | 1997-07-01 | 1998-12-22 | Synthes (U.S.A.) | Freely separable surgical drill guide and plate |
USRE36020E (en) | 1992-06-08 | 1998-12-29 | Orthopedic Systems, Inc. | Method and apparatus for tying suture to bone |
US5882344A (en) | 1995-10-18 | 1999-03-16 | Stouder, Jr.; Albert E. | Adjustable length cannula and trocar |
US5885299A (en) | 1994-09-15 | 1999-03-23 | Surgical Dynamics, Inc. | Apparatus and method for implant insertion |
US5885300A (en) | 1996-04-01 | 1999-03-23 | Asahi Kogaku Kogyo Kabushiki Kaisha | Guide apparatus of intervertebral implant |
US5891147A (en) | 1996-06-25 | 1999-04-06 | Sdgi Holdings, Inc. | Minimally invasive spinal surgical methods & instruments |
US5895352A (en) | 1998-03-17 | 1999-04-20 | Kleiner; Jeffrey B. | Surgical retractor |
US5895390A (en) | 1996-09-19 | 1999-04-20 | Biomet, Inc. | Pin placement guide used in making a bone entry hole for implantation of an intramedullary nail |
US5897593A (en) | 1997-03-06 | 1999-04-27 | Sulzer Spine-Tech Inc. | Lordotic spinal implant |
US5899901A (en) | 1991-05-18 | 1999-05-04 | Middleton; Jeffrey Keith | Spinal fixation system |
US5913818A (en) | 1997-06-02 | 1999-06-22 | General Surgical Innovations, Inc. | Vascular retractor |
US5928139A (en) | 1998-04-24 | 1999-07-27 | Koros; Tibor B. | Retractor with adjustable length blades and light pipe guides |
US5944658A (en) | 1997-09-23 | 1999-08-31 | Koros; Tibor B. | Lumbar spinal fusion retractor and distractor system |
US5954671A (en) | 1998-04-20 | 1999-09-21 | O'neill; Michael J. | Bone harvesting method and apparatus |
US5967970A (en) | 1997-09-26 | 1999-10-19 | Cowan; Michael A. | System and method for balloon-assisted retraction tube |
US5971920A (en) | 1997-06-18 | 1999-10-26 | Nagel; Gunther Peter | Surgical retractor |
US5976146A (en) | 1997-07-11 | 1999-11-02 | Olympus Optical Co., Ltd. | Surgical operation system and method of securing working space for surgical operation in body |
US5996447A (en) | 1997-12-08 | 1999-12-07 | Bayouth; David | Sink wrench |
US6004322A (en) | 1994-10-25 | 1999-12-21 | Sdgi Holdings, Inc. | Modular pedicle screw system |
US6010520A (en) | 1998-05-01 | 2000-01-04 | Pattison; C. Phillip | Double tapered esophageal dilator |
WO2000018306A1 (en) | 1998-09-25 | 2000-04-06 | Sdgi Holdings, Inc. | Devices and methods for percutaneous surgery |
US6063088A (en) | 1997-03-24 | 2000-05-16 | United States Surgical Corporation | Method and instrumentation for implant insertion |
US6080155A (en) | 1988-06-13 | 2000-06-27 | Michelson; Gary Karlin | Method of inserting and preloading spinal implants |
US6081741A (en) | 1998-06-05 | 2000-06-27 | Vector Medical, Inc. | Infrared surgical site locating device and method |
US6083225A (en) | 1996-03-14 | 2000-07-04 | Surgical Dynamics, Inc. | Method and instrumentation for implant insertion |
US6113602A (en) | 1999-03-26 | 2000-09-05 | Sulzer Spine-Tech Inc. | Posterior spinal instrument guide and method |
US6120434A (en) | 1994-08-29 | 2000-09-19 | Olympus Optical Co., Ltd. | Method of securing a cavity using a rigid sheath with transparent cap |
USD433296S (en) | 1999-01-11 | 2000-11-07 | Sangadensetsukogyo Co., Ltd. | Socket for manual tool |
US6156006A (en) | 1997-10-17 | 2000-12-05 | Circon Corporation | Medical instrument system for piercing through tissue |
US6159179A (en) | 1999-03-12 | 2000-12-12 | Simonson; Robert E. | Cannula and sizing and insertion method |
US6162170A (en) | 1996-03-22 | 2000-12-19 | Sdgi Holdings, Inc. | Devices and methods for percutaneous surgery |
US6162236A (en) | 1994-07-11 | 2000-12-19 | Terumo Kabushiki Kaisha | Trocar needle and expandable trocar tube |
USD436513S1 (en) | 1999-01-11 | 2001-01-23 | Sangadensetsukogyo Co., Ltd. | Socket for screwdriver |
USD438074S1 (en) | 1999-09-24 | 2001-02-27 | Donald E Marr | Tap socket |
US6197002B1 (en) | 1997-12-10 | 2001-03-06 | Phillips Plastics Corporation | Laparoscopic tool and method |
US6206826B1 (en) | 1997-12-18 | 2001-03-27 | Sdgi Holdings, Inc. | Devices and methods for percutaneous surgery |
US6206885B1 (en) | 1998-04-14 | 2001-03-27 | Fathali Ghahremani | Catheter guide and drill guide apparatus and method for perpendicular insertion into a cranium orifice |
US6214004B1 (en) | 1998-06-09 | 2001-04-10 | Wesley L. Coker | Vertebral triplaner alignment facilitator |
US6224608B1 (en) | 1990-08-10 | 2001-05-01 | United States Surgical Corporation | Tissue holding device and method |
US6241734B1 (en) | 1998-08-14 | 2001-06-05 | Kyphon, Inc. | Systems and methods for placing materials into bone |
US6245072B1 (en) | 1995-03-27 | 2001-06-12 | Sdgi Holdings, Inc. | Methods and instruments for interbody fusion |
US6258097B1 (en) | 2000-06-02 | 2001-07-10 | Bristol-Myers Squibb Co | Head center instrument and method of using the same |
US6267763B1 (en) | 1999-03-31 | 2001-07-31 | Surgical Dynamics, Inc. | Method and apparatus for spinal implant insertion |
US20010012942A1 (en) | 1998-04-09 | 2001-08-09 | Estes Bradley T. | Method and instrumentation for posterior interbody fusion |
US6273896B1 (en) | 1998-04-21 | 2001-08-14 | Neutar, Llc | Removable frames for stereotactic localization |
US6283966B1 (en) | 1999-07-07 | 2001-09-04 | Sulzer Spine-Tech Inc. | Spinal surgery tools and positioning method |
US6287313B1 (en) | 1999-11-23 | 2001-09-11 | Sdgi Holdings, Inc. | Screw delivery system and method |
US6296609B1 (en) | 2000-04-14 | 2001-10-02 | Salvador A. Brau | Surgical retractor and related surgical approach to access the anterior lumbar region |
US6312432B1 (en) | 2000-03-02 | 2001-11-06 | Nemco Medical, Inc. | Bone drill |
US6342057B1 (en) | 2000-04-28 | 2002-01-29 | Synthes (Usa) | Remotely aligned surgical drill guide |
US20020011135A1 (en) | 2000-06-19 | 2002-01-31 | Wayne Hall | Reversible socket wrench set |
US20020016592A1 (en) | 1998-08-27 | 2002-02-07 | Branch Charles L. | Interbody fusion grafts and instrumentation |
US6348058B1 (en) | 1997-12-12 | 2002-02-19 | Surgical Navigation Technologies, Inc. | Image guided spinal surgery guide, system, and method for use thereof |
US20020022764A1 (en) | 1996-03-22 | 2002-02-21 | Smith Maurice M. | Devices and methods for percutaneous surgery |
US6354176B1 (en) | 2000-11-10 | 2002-03-12 | Greenlee Textron, Inc. | Universal deep socket and adapter |
US6371959B1 (en) | 2000-04-05 | 2002-04-16 | Michael E. Trice | Radiolucent position locating device and drill guide |
US6371968B1 (en) | 1996-05-09 | 2002-04-16 | Olympus Optical Co., Ltd. | Cavity retaining tool for bone surgery, a cavity retaining tool for general surgery, an endoscopic surgery system involving the use of a cavity retaining tool, and a procedure for surgery |
US20020045904A1 (en) | 1999-01-30 | 2002-04-18 | Aesculap Ag & Co. Kg | Surgical instrument for introducing intervertebral implants |
US20020049368A1 (en) | 2000-09-29 | 2002-04-25 | Stephen Ritland | Method and device for retractor for microsurgical intermuscular lumbar arthrodesis |
US20020058948A1 (en) | 2000-10-12 | 2002-05-16 | Yvan Arlettaz | Targeting system and method for distal locking of intramedullary nails |
US6395007B1 (en) | 1999-03-16 | 2002-05-28 | American Osteomedix, Inc. | Apparatus and method for fixation of osteoporotic bone |
US20020077632A1 (en) | 2000-05-01 | 2002-06-20 | Tsou Paul M. | Method and apparatus for endoscopic spinal surgery |
US20020082695A1 (en) | 2000-12-27 | 2002-06-27 | Ulrich Gmbh & Co. Kg | Vertebral implant and setting tool therefor |
US20020088695A1 (en) | 2000-11-09 | 2002-07-11 | Yuji Migimatsu | Power supply switch of motor vechicle |
US6418821B1 (en) | 1997-11-28 | 2002-07-16 | Sangadensetsukogyo Co., Ltd. | Working tool |
US6428472B1 (en) | 2000-08-08 | 2002-08-06 | Kent Haas | Surgical retractor having a malleable support |
WO2002060330A1 (en) | 2001-01-29 | 2002-08-08 | Stephen Ritland | Retractor and method for spinal pedicle screw placement |
US20020143235A1 (en) | 2001-03-29 | 2002-10-03 | Endius Incorporated | Apparatus for supporting an endoscope |
US6461330B1 (en) | 1999-04-08 | 2002-10-08 | Machida Endoscope Co., Ltd. | Surgical operation guiding apparatus |
US20020161368A1 (en) | 1999-10-20 | 2002-10-31 | Foley Kevin T. | Instruments and methods for stabilization of bony structures |
USD466766S1 (en) | 2001-08-08 | 2002-12-10 | Masco Corporation Of Indiana | Wrench |
US6524238B2 (en) | 2000-12-20 | 2003-02-25 | Synthes Usa | Universal handle and method for use |
US6530926B1 (en) | 2000-08-01 | 2003-03-11 | Endius Incorporated | Method of securing vertebrae |
US6540756B1 (en) | 1998-08-20 | 2003-04-01 | Thomas F. Vaughan | Portal acquisition tool |
US20030083689A1 (en) | 2001-10-30 | 2003-05-01 | Simonson Robert E. | Non cannulated dilators |
US20030083688A1 (en) | 2001-10-30 | 2003-05-01 | Simonson Robert E. | Configured and sized cannula |
US6558386B1 (en) | 2000-02-16 | 2003-05-06 | Trans1 Inc. | Axial spinal implant and method and apparatus for implanting an axial spinal implant within the vertebrae of the spine |
US6607530B1 (en) | 1999-05-10 | 2003-08-19 | Highgate Orthopedics, Inc. | Systems and methods for spinal fixation |
US20030187431A1 (en) | 2002-03-29 | 2003-10-02 | Simonson Robert E. | Apparatus and method for targeting for surgical procedures |
US20030220689A1 (en) | 2002-03-21 | 2003-11-27 | Stephen Ritland | Device and method for assisting in positioning implants |
US20030236447A1 (en) | 2001-01-29 | 2003-12-25 | Stephen Ritland | Retractor and method for spinal pedicle screw placement |
US20040106997A1 (en) | 2002-11-01 | 2004-06-03 | Lieberson Robert E. | Apparatus and method for creating a surgical channel |
US20050080418A1 (en) | 2001-10-30 | 2005-04-14 | Simonson Robert E. | Instruments and methods for minimally invasive spine surgery |
US20050085813A1 (en) | 2003-10-21 | 2005-04-21 | Innovative Spinal Technologies | System and method for stabilizing of internal structures |
US20050131421A1 (en) | 2003-12-16 | 2005-06-16 | Anderson David G. | Methods and devices for minimally invasive spinal fixation element placement |
US20050137461A1 (en) | 2003-12-18 | 2005-06-23 | Depuy Spine, Inc. | Telescoping blade assembly and instruments for adjusting an adjustable blade |
US20050136085A1 (en) | 2003-12-19 | 2005-06-23 | David Bellamy | Panthenol and natural organic extracts for reducing skin irritation |
US6921403B2 (en) | 2000-02-16 | 2005-07-26 | Trans1 Inc. | Method and apparatus for spinal distraction and fusion |
US7008424B2 (en) | 2000-06-23 | 2006-03-07 | University Of Southern California | Percutaneous vertebral fusion system |
US7435219B2 (en) | 2004-03-25 | 2008-10-14 | Depuy Spine, Inc. | Surgical retractor positioning device |
US7476240B2 (en) | 2004-02-06 | 2009-01-13 | Depuy Spine, Inc. | Devices and methods for inserting a spinal fixation element |
US7491218B2 (en) | 2002-10-30 | 2009-02-17 | Abbott Spine, Inc. | Spinal stabilization systems and methods using minimally invasive surgical procedures |
US7547318B2 (en) | 2004-03-19 | 2009-06-16 | Depuy Spine, Inc. | Spinal fixation element and methods |
US7648507B2 (en) | 2003-12-16 | 2010-01-19 | Depuy Acromed, Inc. | Pivoting implant holder |
US7648506B2 (en) | 2003-12-16 | 2010-01-19 | Depuy Acromed, Inc. | Pivoting implant holder |
US7666188B2 (en) | 2003-12-16 | 2010-02-23 | Depuy Spine, Inc. | Methods and devices for spinal fixation element placement |
-
1999
- 1999-03-12 US US09/266,984 patent/US6159179A/en not_active Ceased
-
2002
- 2002-06-10 US US10/165,991 patent/USRE42525E1/en not_active Expired - Lifetime
-
2010
- 2010-12-17 US US12/971,929 patent/USRE45571E1/en not_active Expired - Lifetime
-
2015
- 2015-05-18 US US14/715,285 patent/USRE46978E1/en not_active Expired - Lifetime
Patent Citations (207)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US569839A (en) | 1896-10-20 | John t | ||
US1633703A (en) | 1924-10-18 | 1927-06-28 | Kaji Jiro | Sign-making device |
US2922420A (en) | 1957-11-29 | 1960-01-26 | Sierra Eng Co | Epidural needle |
US3470872A (en) | 1966-11-25 | 1969-10-07 | Herman R Grieshaber | Pivoted retractor with shielded spacer teeth |
US3875595A (en) | 1974-04-15 | 1975-04-08 | Edward C Froning | Intervertebral disc prosthesis and instruments for locating same |
US4232660A (en) | 1979-03-26 | 1980-11-11 | Coles Robert L | Winged irrigating surgical retractor |
US4481947A (en) | 1980-02-14 | 1984-11-13 | Chester Martin H | Endotracheal tube retractor |
US4449532A (en) | 1980-07-08 | 1984-05-22 | Karl Storz | Dilator to facilitate endoscope insertion into the body |
US4952214A (en) | 1981-08-20 | 1990-08-28 | Ohio Medical Instrument Co., Inc. | Arcuate osteotomy blade, blade guide, and cutting method |
US4440168A (en) | 1981-08-31 | 1984-04-03 | Warren Mark G | Surgical device |
US4617922A (en) | 1982-01-18 | 1986-10-21 | Richards Medical Company | Compression screw assembly |
US4545374A (en) | 1982-09-03 | 1985-10-08 | Jacobson Robert E | Method and instruments for performing a percutaneous lumbar diskectomy |
US4573448A (en) | 1983-10-05 | 1986-03-04 | Pilling Co. | Method for decompressing herniated intervertebral discs |
US4736738A (en) | 1984-07-09 | 1988-04-12 | Matej Lipovsek | Instrument kit and procedure for performing posterior lumbar interbody fusion |
US4620460A (en) | 1985-07-01 | 1986-11-04 | Gonzales Jr Frank | Socket set |
US4803976A (en) | 1985-10-03 | 1989-02-14 | Synthes | Sighting instrument |
US4686972A (en) | 1986-04-30 | 1987-08-18 | Kurland Kenneth Z | Surgical deflector and drilling guide |
US4747394A (en) | 1986-10-08 | 1988-05-31 | Watanabe Orthopedic Systems, Inc. | Spinal retractor |
US4872451A (en) | 1987-02-02 | 1989-10-10 | Moore Robert R | Glenohumeral ligament repair |
US4808157A (en) | 1987-07-13 | 1989-02-28 | Neuro Delivery Technology, Inc. | Multi-lumen epidural-spinal needle |
US4798111A (en) | 1987-08-03 | 1989-01-17 | Cheeseman Charles D | Socket-wrench hand tool |
US4817587A (en) | 1987-08-31 | 1989-04-04 | Janese Woodrow W | Ring para-spinal retractor |
US4863423A (en) | 1987-09-15 | 1989-09-05 | H. G. Wallace Ltd. | Catheter and cannula assembly |
US5035232A (en) | 1987-10-24 | 1991-07-30 | Aesculap Ag | Retractor |
US4862891A (en) | 1988-03-14 | 1989-09-05 | Canyon Medical Products | Device for sequential percutaneous dilation |
US4994027A (en) * | 1988-06-08 | 1991-02-19 | Farrell Edward M | Percutaneous femoral bypass system |
US6080155A (en) | 1988-06-13 | 2000-06-27 | Michelson; Gary Karlin | Method of inserting and preloading spinal implants |
US6270498B1 (en) | 1988-06-13 | 2001-08-07 | Gary Karlin Michelson | Apparatus for inserting spinal implants |
US5052373A (en) | 1988-07-29 | 1991-10-01 | Michelson Gary K | Spinal retractor |
US4882958A (en) | 1988-12-05 | 1989-11-28 | Mcneeley Richard L | Stacking socket wrench set |
US4969888A (en) | 1989-02-09 | 1990-11-13 | Arie Scholten | Surgical protocol for fixation of osteoporotic bone using inflatable device |
US5135525A (en) | 1989-06-06 | 1992-08-04 | B. Braun Melsungen Ag | Catheter set for continuous spinal anaesthesia |
US5048379A (en) | 1989-06-16 | 1991-09-17 | Gramera Robert E | Multi-functional double-ended socket wrenches |
US5106376A (en) | 1989-07-07 | 1992-04-21 | B. Braun Melsungen Ag | Anaesthesia set |
US5242439A (en) | 1990-01-12 | 1993-09-07 | Laserscope | Means for inserting instrumentation for a percutaneous diskectomy using a laser |
US5084043A (en) | 1990-01-12 | 1992-01-28 | Laserscope | Method for performing a percutaneous diskectomy using a laser |
US5133720A (en) | 1990-07-13 | 1992-07-28 | Greenberg Alex M | Surgical drill guide and retractor |
US6224608B1 (en) | 1990-08-10 | 2001-05-01 | United States Surgical Corporation | Tissue holding device and method |
US5158543A (en) | 1990-10-30 | 1992-10-27 | Lazarus Harrison M | Laparoscopic surgical system and method |
US5275611A (en) | 1990-11-20 | 1994-01-04 | Innerdyne Medical, Inc. | Tension guide and dilator |
US5312360A (en) | 1990-11-20 | 1994-05-17 | Innerdyne Medical, Inc. | Tension guide and dilator |
US5098435A (en) | 1990-11-21 | 1992-03-24 | Alphatec Manufacturing Inc. | Cannula |
US5899901A (en) | 1991-05-18 | 1999-05-04 | Middleton; Jeffrey Keith | Spinal fixation system |
US5148724A (en) | 1991-06-13 | 1992-09-22 | Rexford Gary R | Ratchet wrench and socket apparatus |
US5242443A (en) | 1991-08-15 | 1993-09-07 | Smith & Nephew Dyonics, Inc. | Percutaneous fixation of vertebrae |
US5472426A (en) | 1991-09-12 | 1995-12-05 | B.E.I. Medical | Cervical discectomy instruments |
US5195541A (en) | 1991-10-18 | 1993-03-23 | Obenchain Theodore G | Method of performing laparoscopic lumbar discectomy |
US5766221A (en) | 1991-12-03 | 1998-06-16 | Boston Scientific Technology, Inc. | Bone anchor implantation device |
US6033406A (en) | 1992-03-17 | 2000-03-07 | Sdgi Holdings, Inc. | Method for subcutaneous suprafascial pedicular internal fixation |
US6793656B1 (en) | 1992-03-17 | 2004-09-21 | Sdgi Holdings, Inc. | Systems and methods for fixation of adjacent vertebrae |
US5171279A (en) | 1992-03-17 | 1992-12-15 | Danek Medical | Method for subcutaneous suprafascial pedicular internal fixation |
US5569248A (en) | 1992-03-17 | 1996-10-29 | Danek Medical, Inc. | Apparatus for subcutaneous suprafascial pedicular internal fixation |
US5728097A (en) | 1992-03-17 | 1998-03-17 | Sdgi Holding, Inc. | Method for subcutaneous suprafascial internal fixation |
US5611778A (en) | 1992-05-14 | 1997-03-18 | Vygon | Surgical instrument for performing epidural anesthesia |
USRE36020E (en) | 1992-06-08 | 1998-12-29 | Orthopedic Systems, Inc. | Method and apparatus for tying suture to bone |
US5562677A (en) | 1992-06-30 | 1996-10-08 | Ethicon, Inc. | Obturator for justing a flexible trocar tube |
US5279567A (en) | 1992-07-02 | 1994-01-18 | Conmed Corporation | Trocar and tube with pressure signal |
US5342384A (en) | 1992-08-13 | 1994-08-30 | Brigham & Women's Hospital | Surgical dilator |
US5403264A (en) | 1992-09-04 | 1995-04-04 | Ethicon, Inc. | Endoscopic closure inspection device |
US5489274A (en) | 1992-10-09 | 1996-02-06 | Boston Scientific Corporation | Rotatable medical valve closure |
US5356382A (en) * | 1992-10-23 | 1994-10-18 | Applied Medical Research, Inc. | Percutaneous tract measuring and forming device |
US5292309A (en) | 1993-01-22 | 1994-03-08 | Schneider (Usa) Inc. | Surgical depth measuring instrument and method |
US5431651A (en) | 1993-02-08 | 1995-07-11 | Goble; E. Marlowe | Cross pin and set screw femoral and tibial fixation method |
US5303694A (en) | 1993-02-09 | 1994-04-19 | Mikhail Michael W E | Method for performing hip surgery and retractor for use therein |
US5439464A (en) | 1993-03-09 | 1995-08-08 | Shapiro Partners Limited | Method and instruments for performing arthroscopic spinal surgery |
US5356413A (en) | 1993-03-12 | 1994-10-18 | Mitek Surgical Products, Inc. | Surgical anchor and method for deploying the same |
US5363841A (en) | 1993-07-02 | 1994-11-15 | Coker Wesley L | Retractor for spinal surgery |
US5431639A (en) | 1993-08-12 | 1995-07-11 | Boston Scientific Corporation | Treating wounds caused by medical procedures |
US5716415A (en) | 1993-10-01 | 1998-02-10 | Acromed Corporation | Spinal implant |
US5512038A (en) | 1993-11-15 | 1996-04-30 | O'neal; Darrell D. | Spinal retractor apparatus having a curved blade |
USD361381S (en) | 1994-03-17 | 1995-08-15 | Tibor Koros | Combined spine and sternum retractor frame |
US6162236A (en) | 1994-07-11 | 2000-12-19 | Terumo Kabushiki Kaisha | Trocar needle and expandable trocar tube |
US6120434A (en) | 1994-08-29 | 2000-09-19 | Olympus Optical Co., Ltd. | Method of securing a cavity using a rigid sheath with transparent cap |
US5885299A (en) | 1994-09-15 | 1999-03-23 | Surgical Dynamics, Inc. | Apparatus and method for implant insertion |
US6004322A (en) | 1994-10-25 | 1999-12-21 | Sdgi Holdings, Inc. | Modular pedicle screw system |
US5601550A (en) | 1994-10-25 | 1997-02-11 | Esser; Rene D. | Pelvic pin guide system for insertion of pins into iliac bone |
US6245072B1 (en) | 1995-03-27 | 2001-06-12 | Sdgi Holdings, Inc. | Methods and instruments for interbody fusion |
US5882344A (en) | 1995-10-18 | 1999-03-16 | Stouder, Jr.; Albert E. | Adjustable length cannula and trocar |
US5746720A (en) | 1995-10-18 | 1998-05-05 | Stouder, Jr.; Albert E. | Method and apparatus for insertion of a cannula and trocar |
US5687739A (en) | 1995-12-06 | 1997-11-18 | Interventional Concepts, Inc. | Biopsy specimen cutter |
US5816257A (en) | 1995-12-20 | 1998-10-06 | Origin Medsystems, Inc. | Gasless retroperitoneal surgical procedure |
US6083225A (en) | 1996-03-14 | 2000-07-04 | Surgical Dynamics, Inc. | Method and instrumentation for implant insertion |
US5954635A (en) | 1996-03-22 | 1999-09-21 | Sdgi Holdings Inc. | Devices and methods for percutaneous surgery |
US6007487A (en) | 1996-03-22 | 1999-12-28 | Sdgi Holdings, Inc. | Tissue retractor for use through a cannula |
US20020022764A1 (en) | 1996-03-22 | 2002-02-21 | Smith Maurice M. | Devices and methods for percutaneous surgery |
US6217509B1 (en) | 1996-03-22 | 2001-04-17 | Sdgi Holdings, Inc. | Devices and methods for percutaneous surgery |
US5792044A (en) | 1996-03-22 | 1998-08-11 | Danek Medical, Inc. | Devices and methods for percutaneous surgery |
US6206822B1 (en) | 1996-03-22 | 2001-03-27 | Sdgi Holdings, Inc. | Devices and methods for percutaneous surgery |
US6176823B1 (en) | 1996-03-22 | 2001-01-23 | Sdgi Holdings, Inc. | Fixture for supporting a viewing element within a cannula |
US6520907B1 (en) | 1996-03-22 | 2003-02-18 | Sdgi Holdings, Inc. | Methods for accessing the spinal column |
US6162170A (en) | 1996-03-22 | 2000-12-19 | Sdgi Holdings, Inc. | Devices and methods for percutaneous surgery |
US6152871A (en) | 1996-03-22 | 2000-11-28 | Sdgi Holdings, Inc. | Apparatus for percutaneous surgery |
US5902231A (en) | 1996-03-22 | 1999-05-11 | Sdgi Holdings, Inc. | Devices and methods for percutaneous surgery |
US5885300A (en) | 1996-04-01 | 1999-03-23 | Asahi Kogaku Kogyo Kabushiki Kaisha | Guide apparatus of intervertebral implant |
US6371968B1 (en) | 1996-05-09 | 2002-04-16 | Olympus Optical Co., Ltd. | Cavity retaining tool for bone surgery, a cavity retaining tool for general surgery, an endoscopic surgery system involving the use of a cavity retaining tool, and a procedure for surgery |
US5891147A (en) | 1996-06-25 | 1999-04-06 | Sdgi Holdings, Inc. | Minimally invasive spinal surgical methods & instruments |
US5743853A (en) | 1996-09-09 | 1998-04-28 | Lauderdale; Robert A. | Serrated S-retractor |
US5895390A (en) | 1996-09-19 | 1999-04-20 | Biomet, Inc. | Pin placement guide used in making a bone entry hole for implantation of an intramedullary nail |
US6120506A (en) | 1997-03-06 | 2000-09-19 | Sulzer Spine-Tech Inc. | Lordotic spinal implant |
US5897593A (en) | 1997-03-06 | 1999-04-27 | Sulzer Spine-Tech Inc. | Lordotic spinal implant |
US6063088A (en) | 1997-03-24 | 2000-05-16 | United States Surgical Corporation | Method and instrumentation for implant insertion |
US5913818A (en) | 1997-06-02 | 1999-06-22 | General Surgical Innovations, Inc. | Vascular retractor |
US5971920A (en) | 1997-06-18 | 1999-10-26 | Nagel; Gunther Peter | Surgical retractor |
US5851207A (en) | 1997-07-01 | 1998-12-22 | Synthes (U.S.A.) | Freely separable surgical drill guide and plate |
US5976146A (en) | 1997-07-11 | 1999-11-02 | Olympus Optical Co., Ltd. | Surgical operation system and method of securing working space for surgical operation in body |
US5944658A (en) | 1997-09-23 | 1999-08-31 | Koros; Tibor B. | Lumbar spinal fusion retractor and distractor system |
US5967970A (en) | 1997-09-26 | 1999-10-19 | Cowan; Michael A. | System and method for balloon-assisted retraction tube |
US6156006A (en) | 1997-10-17 | 2000-12-05 | Circon Corporation | Medical instrument system for piercing through tissue |
USD399955S (en) | 1997-11-14 | 1998-10-20 | Koros Tibor B | Combined spine/sternum retractor frame and blades |
US6418821B1 (en) | 1997-11-28 | 2002-07-16 | Sangadensetsukogyo Co., Ltd. | Working tool |
US5996447A (en) | 1997-12-08 | 1999-12-07 | Bayouth; David | Sink wrench |
US6197002B1 (en) | 1997-12-10 | 2001-03-06 | Phillips Plastics Corporation | Laparoscopic tool and method |
US6348058B1 (en) | 1997-12-12 | 2002-02-19 | Surgical Navigation Technologies, Inc. | Image guided spinal surgery guide, system, and method for use thereof |
US6206826B1 (en) | 1997-12-18 | 2001-03-27 | Sdgi Holdings, Inc. | Devices and methods for percutaneous surgery |
US5895352A (en) | 1998-03-17 | 1999-04-20 | Kleiner; Jeffrey B. | Surgical retractor |
US20010012942A1 (en) | 1998-04-09 | 2001-08-09 | Estes Bradley T. | Method and instrumentation for posterior interbody fusion |
US6206885B1 (en) | 1998-04-14 | 2001-03-27 | Fathali Ghahremani | Catheter guide and drill guide apparatus and method for perpendicular insertion into a cranium orifice |
US5954671A (en) | 1998-04-20 | 1999-09-21 | O'neill; Michael J. | Bone harvesting method and apparatus |
US6273896B1 (en) | 1998-04-21 | 2001-08-14 | Neutar, Llc | Removable frames for stereotactic localization |
US5928139A (en) | 1998-04-24 | 1999-07-27 | Koros; Tibor B. | Retractor with adjustable length blades and light pipe guides |
US6010520A (en) | 1998-05-01 | 2000-01-04 | Pattison; C. Phillip | Double tapered esophageal dilator |
US6081741A (en) | 1998-06-05 | 2000-06-27 | Vector Medical, Inc. | Infrared surgical site locating device and method |
US6224597B1 (en) | 1998-06-09 | 2001-05-01 | Wesley L. Coker | Vertebral triplaner alignment method |
US6214004B1 (en) | 1998-06-09 | 2001-04-10 | Wesley L. Coker | Vertebral triplaner alignment facilitator |
US6241734B1 (en) | 1998-08-14 | 2001-06-05 | Kyphon, Inc. | Systems and methods for placing materials into bone |
US6540756B1 (en) | 1998-08-20 | 2003-04-01 | Thomas F. Vaughan | Portal acquisition tool |
US20020016592A1 (en) | 1998-08-27 | 2002-02-07 | Branch Charles L. | Interbody fusion grafts and instrumentation |
WO2000018306A1 (en) | 1998-09-25 | 2000-04-06 | Sdgi Holdings, Inc. | Devices and methods for percutaneous surgery |
USD433296S (en) | 1999-01-11 | 2000-11-07 | Sangadensetsukogyo Co., Ltd. | Socket for manual tool |
USD436513S1 (en) | 1999-01-11 | 2001-01-23 | Sangadensetsukogyo Co., Ltd. | Socket for screwdriver |
US20020045904A1 (en) | 1999-01-30 | 2002-04-18 | Aesculap Ag & Co. Kg | Surgical instrument for introducing intervertebral implants |
USRE45571E1 (en) | 1999-03-12 | 2015-06-23 | DePuy Synthes Products, Inc. | Cannula and sizing insertion method |
USRE42525E1 (en) | 1999-03-12 | 2011-07-05 | Depuy Spine, Inc. | Cannula and sizing insertion method |
US6159179A (en) | 1999-03-12 | 2000-12-12 | Simonson; Robert E. | Cannula and sizing and insertion method |
US6395007B1 (en) | 1999-03-16 | 2002-05-28 | American Osteomedix, Inc. | Apparatus and method for fixation of osteoporotic bone |
US6113602A (en) | 1999-03-26 | 2000-09-05 | Sulzer Spine-Tech Inc. | Posterior spinal instrument guide and method |
US6267763B1 (en) | 1999-03-31 | 2001-07-31 | Surgical Dynamics, Inc. | Method and apparatus for spinal implant insertion |
US6461330B1 (en) | 1999-04-08 | 2002-10-08 | Machida Endoscope Co., Ltd. | Surgical operation guiding apparatus |
US6607530B1 (en) | 1999-05-10 | 2003-08-19 | Highgate Orthopedics, Inc. | Systems and methods for spinal fixation |
US6283966B1 (en) | 1999-07-07 | 2001-09-04 | Sulzer Spine-Tech Inc. | Spinal surgery tools and positioning method |
USD438074S1 (en) | 1999-09-24 | 2001-02-27 | Donald E Marr | Tap socket |
US20020161368A1 (en) | 1999-10-20 | 2002-10-31 | Foley Kevin T. | Instruments and methods for stabilization of bony structures |
US6530929B1 (en) | 1999-10-20 | 2003-03-11 | Sdgi Holdings, Inc. | Instruments for stabilization of bony structures |
US6287313B1 (en) | 1999-11-23 | 2001-09-11 | Sdgi Holdings, Inc. | Screw delivery system and method |
US20010027320A1 (en) | 1999-11-23 | 2001-10-04 | Rick Sasso | Screw delivery system and method |
US6558386B1 (en) | 2000-02-16 | 2003-05-06 | Trans1 Inc. | Axial spinal implant and method and apparatus for implanting an axial spinal implant within the vertebrae of the spine |
US6921403B2 (en) | 2000-02-16 | 2005-07-26 | Trans1 Inc. | Method and apparatus for spinal distraction and fusion |
US6312432B1 (en) | 2000-03-02 | 2001-11-06 | Nemco Medical, Inc. | Bone drill |
US6371959B1 (en) | 2000-04-05 | 2002-04-16 | Michael E. Trice | Radiolucent position locating device and drill guide |
US6296609B1 (en) | 2000-04-14 | 2001-10-02 | Salvador A. Brau | Surgical retractor and related surgical approach to access the anterior lumbar region |
US6342057B1 (en) | 2000-04-28 | 2002-01-29 | Synthes (Usa) | Remotely aligned surgical drill guide |
US20020077632A1 (en) | 2000-05-01 | 2002-06-20 | Tsou Paul M. | Method and apparatus for endoscopic spinal surgery |
US6258097B1 (en) | 2000-06-02 | 2001-07-10 | Bristol-Myers Squibb Co | Head center instrument and method of using the same |
US20020011135A1 (en) | 2000-06-19 | 2002-01-31 | Wayne Hall | Reversible socket wrench set |
US7008424B2 (en) | 2000-06-23 | 2006-03-07 | University Of Southern California | Percutaneous vertebral fusion system |
US6530926B1 (en) | 2000-08-01 | 2003-03-11 | Endius Incorporated | Method of securing vertebrae |
US6428472B1 (en) | 2000-08-08 | 2002-08-06 | Kent Haas | Surgical retractor having a malleable support |
US6692434B2 (en) | 2000-09-29 | 2004-02-17 | Stephen Ritland | Method and device for retractor for microsurgical intermuscular lumbar arthrodesis |
US20020049368A1 (en) | 2000-09-29 | 2002-04-25 | Stephen Ritland | Method and device for retractor for microsurgical intermuscular lumbar arthrodesis |
US20020058948A1 (en) | 2000-10-12 | 2002-05-16 | Yvan Arlettaz | Targeting system and method for distal locking of intramedullary nails |
US20020088695A1 (en) | 2000-11-09 | 2002-07-11 | Yuji Migimatsu | Power supply switch of motor vechicle |
US6354176B1 (en) | 2000-11-10 | 2002-03-12 | Greenlee Textron, Inc. | Universal deep socket and adapter |
US6524238B2 (en) | 2000-12-20 | 2003-02-25 | Synthes Usa | Universal handle and method for use |
US20020082695A1 (en) | 2000-12-27 | 2002-06-27 | Ulrich Gmbh & Co. Kg | Vertebral implant and setting tool therefor |
WO2002060330A1 (en) | 2001-01-29 | 2002-08-08 | Stephen Ritland | Retractor and method for spinal pedicle screw placement |
US20030236447A1 (en) | 2001-01-29 | 2003-12-25 | Stephen Ritland | Retractor and method for spinal pedicle screw placement |
US20020123668A1 (en) | 2001-01-29 | 2002-09-05 | Stephen Ritland | Retractor and method for spinal pedicle screw placement |
US6929606B2 (en) | 2001-01-29 | 2005-08-16 | Depuy Spine, Inc. | Retractor and method for spinal pedicle screw placement |
US20020143235A1 (en) | 2001-03-29 | 2002-10-03 | Endius Incorporated | Apparatus for supporting an endoscope |
USD466766S1 (en) | 2001-08-08 | 2002-12-10 | Masco Corporation Of Indiana | Wrench |
US20130184533A1 (en) | 2001-10-30 | 2013-07-18 | Depuy Spine, Inc. | Configured and sized cannula |
US8852244B2 (en) | 2001-10-30 | 2014-10-07 | DePuy Synthes Products, LLC | Configured and sized cannula |
US8192437B2 (en) | 2001-10-30 | 2012-06-05 | Depuy Spine, Inc. | Configured and sized cannula |
US20050004593A1 (en) | 2001-10-30 | 2005-01-06 | Depuy Spine, Inc. | Non cannulated dilators |
US9028551B2 (en) | 2001-10-30 | 2015-05-12 | DePuy Synthes Products, Inc. | Configured and sized cannula |
US20140371538A1 (en) | 2001-10-30 | 2014-12-18 | DePuy Synthes Products, LLC | Configured and sized cannula |
US6916330B2 (en) | 2001-10-30 | 2005-07-12 | Depuy Spine, Inc. | Non cannulated dilators |
US8235999B2 (en) | 2001-10-30 | 2012-08-07 | Depuy Spine, Inc. | Configured and sized cannula |
US20110040333A1 (en) | 2001-10-30 | 2011-02-17 | Simonson Robert E | Instruments and Methods for Minimally Invasive Spine Surgery |
US7824410B2 (en) | 2001-10-30 | 2010-11-02 | Depuy Spine, Inc. | Instruments and methods for minimally invasive spine surgery |
US20050216002A1 (en) | 2001-10-30 | 2005-09-29 | Depuy Spine, Inc. | Configured and sized cannula |
US20030083689A1 (en) | 2001-10-30 | 2003-05-01 | Simonson Robert E. | Non cannulated dilators |
US7008431B2 (en) | 2001-10-30 | 2006-03-07 | Depuy Spine, Inc. | Configured and sized cannula |
US20050080418A1 (en) | 2001-10-30 | 2005-04-14 | Simonson Robert E. | Instruments and methods for minimally invasive spine surgery |
US20140051931A1 (en) | 2001-10-30 | 2014-02-20 | Depuy Synthes Products Llc | Configured and sized cannula |
US8556905B2 (en) | 2001-10-30 | 2013-10-15 | Depuy Spine, Inc. | Configured and sized cannula |
US20100222824A1 (en) | 2001-10-30 | 2010-09-02 | Depuy Spine, Inc. | Configured and sized cannula |
US20030083688A1 (en) | 2001-10-30 | 2003-05-01 | Simonson Robert E. | Configured and sized cannula |
US8361151B2 (en) | 2001-10-30 | 2013-01-29 | Depuy Spine, Inc. | Configured and sized cannula |
US8444678B2 (en) | 2001-10-30 | 2013-05-21 | Depuy Spine, Inc. | Instruments and methods for minimally invasive spine surgery |
US20030220689A1 (en) | 2002-03-21 | 2003-11-27 | Stephen Ritland | Device and method for assisting in positioning implants |
US20050203490A1 (en) | 2002-03-29 | 2005-09-15 | Depuy Spine, Inc. | Apparatus and method for targeting for surgical procedures |
US20030187431A1 (en) | 2002-03-29 | 2003-10-02 | Simonson Robert E. | Apparatus and method for targeting for surgical procedures |
US7491218B2 (en) | 2002-10-30 | 2009-02-17 | Abbott Spine, Inc. | Spinal stabilization systems and methods using minimally invasive surgical procedures |
US20040106997A1 (en) | 2002-11-01 | 2004-06-03 | Lieberson Robert E. | Apparatus and method for creating a surgical channel |
US7588588B2 (en) | 2003-10-21 | 2009-09-15 | Innovative Spinal Technologies | System and method for stabilizing of internal structures |
US20050085813A1 (en) | 2003-10-21 | 2005-04-21 | Innovative Spinal Technologies | System and method for stabilizing of internal structures |
US7648506B2 (en) | 2003-12-16 | 2010-01-19 | Depuy Acromed, Inc. | Pivoting implant holder |
US7666188B2 (en) | 2003-12-16 | 2010-02-23 | Depuy Spine, Inc. | Methods and devices for spinal fixation element placement |
US7648507B2 (en) | 2003-12-16 | 2010-01-19 | Depuy Acromed, Inc. | Pivoting implant holder |
US20050131421A1 (en) | 2003-12-16 | 2005-06-16 | Anderson David G. | Methods and devices for minimally invasive spinal fixation element placement |
US20050137461A1 (en) | 2003-12-18 | 2005-06-23 | Depuy Spine, Inc. | Telescoping blade assembly and instruments for adjusting an adjustable blade |
US20070134175A1 (en) | 2003-12-19 | 2007-06-14 | David Bellamy | Panthenol and natural organic extracts for reducing skin irritation |
US20050136085A1 (en) | 2003-12-19 | 2005-06-23 | David Bellamy | Panthenol and natural organic extracts for reducing skin irritation |
US7476240B2 (en) | 2004-02-06 | 2009-01-13 | Depuy Spine, Inc. | Devices and methods for inserting a spinal fixation element |
US7547318B2 (en) | 2004-03-19 | 2009-06-16 | Depuy Spine, Inc. | Spinal fixation element and methods |
US7435219B2 (en) | 2004-03-25 | 2008-10-14 | Depuy Spine, Inc. | Surgical retractor positioning device |
Non-Patent Citations (72)
Title |
---|
Advisory Action in U.S. Appl. No. 10/899,707 dated Mar. 29, 2006. |
Amendment filed in U.S. Appl. No. 12/971,929 dated Aug. 7, 2013 (14 pages). |
Amendment filed in U.S. Appl. No. 12/971,929 dated Feb. 23, 2012 (12 pages). |
Amendment filed in U.S. Appl. No. 12/971,929 dated Jun. 29, 2012 (11 pages). |
Amendment in U.S. Appl. No. 10/899,707 dated Dec. 2, 2011. |
Amendment in U.S. Appl. No. 10/899,707 dated Feb. 1, 2011. |
Amendment in U.S. Appl. No. 10/899,707 dated Feb. 5, 2005. |
Amendment in U.S. Appl. No. 10/899,707 dated Jul. 5, 2005. |
Amendment in U.S. Appl. No. 10/899,707 dated Mar. 13, 2006. |
Amendment in U.S. Appl. No. 10/899,707 dated May 19, 2011. |
Amendment in U.S. Appl. No. 10/899,707 dated Nov. 16, 2005. |
Appeal Brief in U.S. Appl. No. 10/899,707 dated May 31, 2006. |
Barone, "An Improved Retractor for the Anterior Apporach in the Surgical Management of Vertebral Fractures," Am J Orthop, 1998, pp. 703-704, vol. 27(10). |
Board of Patent Appeals and Interferences Decision in U.S. Appl. No. 10/899,707 dated Dec. 2, 2010. |
Examiner's Answer in U.S. Appl. No. 10/899,707 dated Dec. 13, 2006. |
Examiner's Answer in U.S. Appl. No. 10/899,707 dated May 10, 2012. |
Frank, "Endoscopic Dural Retractor for Spinal Stenosis Surgery," Minim Invasive Neurosurg, 2002, pp. 136-138, vol. 45(3). |
Hilton, Donald et al, "Medtronic Sofamor Danek METRX Microdiscectomy Surgical Technique Brochure", 2001. |
Hsu, Ken et al., "Internal Fixation With Pedicle Screws," Lumbar Spine Surgery, Techniques and Complications, The C.V. Mosby Company pp. 322-338 (1987). |
Kambin, Parvis and Schaffer, Jonathan, "Arthroscopic Fusion of the Lumbosacral Spine," Lumbosacral and Spinopelvic Fixation, ch. 44, pp. 565-577 (1996). |
Kambin, Parvis, "Arthroscopic Lumbar Intervertebral Fusion," The Adult Spine: Principles and Practice, ch. 95, pp. 2037-2046 (1997). |
Kambin, Parvis, "Arthroscopic Techniques for Spinal Surgery," Operative Arthroscopy, ch 89, pp. 1215-1225 (1996). |
Kambin, Parviz, "Arthroscopic Microdiscectomy: Minimal Intervention in Spinal Surgery", National Library of Medicine, 1991, p. 67-100, Urban & Schwarzenberg. |
Kambin, Parviz, "Percutaneous Posterolateral Discectomy", Clinical Orthopaedics and Related Research, Section II, pp. 145-154 (1986). |
Kambin, Parviz, "Posterolaterial Percutaneous Lumbar Interbody Fusion," Arthroscopic Microdiscectomy: Minimal Intervention in Spinal Surgery, pp. 117-121 (1991). |
Leu, Hansjoerg Franz, et al., "Lumbar Percutaneous Endoscopic Interbody Fusion," Clinical Orthopaedics and Related Research, No. 337, pp. 58-63 (1997). |
Leu, Hans-Jorg and Schreiber, Adam, "La Nucleotomie Percutanee Avec Discoscopie: Experiences Depuis 1979 Et Possibilities Actuelles," Revue Medicale De La Suisse Romande, vol. 109, pp. 477-482 (1989). |
Leu, Hans-Jorg and Schreiber, Adam, "Percutaneous Lumbar Restabilization," Arthroscopic Microdiscectomy: Minimal Intervention in Spinal Surgery, pp. 123-125 (1990). |
Office Action in U.S. Appl. No. 10/899,707 dated Aug. 16, 2005. |
Office Action in U.S. Appl. No. 10/899,707 dated Dec. 14, 2011. |
Office Action in U.S. Appl. No. 10/899,707 dated Dec. 8, 2004. |
Office Action in U.S. Appl. No. 10/899,707 dated Feb. 7, 2006. |
Office Action in U.S. Appl. No. 10/899,707 dated Jun. 20, 2011. |
Office Action in U.S. Appl. No. 10/899,707 dated Mar. 14, 2013. (11 pages). |
Office Action in U.S. Appl. No. 10/899,707 dated Mar. 15, 2011. |
Office Action in U.S. Appl. No. 10/899,707 dated Mar. 20, 2014 (14 pages). |
Office Action in U.S. Appl. No. 10/899,707 dated Mar. 31, 2005. |
Office Action in U.S. Appl. No. 10/899,707 dated Oct. 7, 2013. |
Office Action in U.S. Appl. No. 12/971,929 dated Apr. 26, 2012. |
Office Action in U.S. Appl. No. 12/971,929 dated Feb. 8, 2013 (8 pages). |
Office Action in U.S. Appl. No. 12/971,929 dated Nov. 23, 2011. |
Office Action in U.S. Appl. No. 12/971,929 dated Oct. 10, 2013 (10 pages). |
Office Action in U.S. Appl. No. 14/026,536 dated Jan. 15, 2014 (6 pages). |
Ozer, "A New Retractor for the Anterior Cervical Approach," Br J Neurosurg, 1994, pp. 469-470, vol. 8(4). |
Patent Trial and Appeal Board Decision in U.S. Appl. No. 10/899,707 dated Dec. 4, 2012. |
Reply Brief in U.S. Appl. No. 10/899,707 dated Feb. 7, 2007. |
Savitz, Martin, "Same-Day Microsurgical Arthroscopic Latera-Approach Laser-Assisted (SMALL) Fluoroscopic Discectomy", Journal of Neurosurgery, Jun. 1994, pp. 1039-1045. |
Schaffer, Johnathan et al, "Percutaneous Posterolateral Lumbar Discectomy and decompression with a 6.9 Millimeter Cannula", The Journal of Bone and Joint Surgery, 1991, pp. 822-831. |
Schetrumpf, Jr., "Combined Retractor and Sucker with Built-in Clearing Device for Spinal Surgery," Injury, 1973, pp. 352-353, vol. 4(4). |
Schreiber, et al., "Does Percutaneous Nucleotomy with Discoscopy Replace Conventional Discectomy?", Clinical Orthopaedics and Related Research, No. 238, Jan. 1989. |
Sofamor Danek Video Systems Brochure, 10 pages (1994). |
Sofamor Danek, "MED MicroEndoscopic Discectomy System" (1997). |
Styf, "The Effects of External Compression by Three Different Retractors on Pressure in the Erector Spine Muscles During and After Posterior Lumbar Spine Surgery in Humans," Spine, 1998, pp. 354-358, vol. 23(3), Lippincott-Raven Publishers. |
U.S. Appl. No. 09/266,984, filed Mar. 12, 1999, Cannula and Sizing Insertion Method. |
U.S. Appl. No. 10/021,809, filed Oct. 30, 2001, Configured and Sized Cannula. |
U.S. Appl. No. 10/024,221, filed Oct. 30, 2001, Non Cannulated Dilators. |
U.S. Appl. No. 10/165,991, filed Jun. 10, 2002, Cannula and Sizing Insertion Method. |
U.S. Appl. No. 10/899,707, filed Jul. 26, 2004, Non Cannulated Dilators. |
U.S. Appl. No. 10/899,707, filed Jul. 26, 2004, Robert E. Simonson. |
U.S. Appl. No. 10/914,983, filed Aug. 10, 2004, Non Cannulated Dilators. |
U.S. Appl. No. 11/030,218, filed Jan. 6, 2005, Configured and Sized Cannula. |
U.S. Appl. No. 12/776,857, filed May 10, 2010, Configured and Sized Cannula. |
U.S. Appl. No. 12/909,158, filed Oct. 21, 2010, Instruments and Methods for Minimally Invasive Spine Surgery. |
U.S. Appl. No. 12/971,929, filed Dec. 17, 2010, Cannula and Sizing Insertion Method. |
U.S. Appl. No. 13/523,033, filed Jun. 14, 2012, Configured and Sized Cannula. |
U.S. Appl. No. 13/728,172, filed Dec. 27, 2012, Configured and Sized Cannula. |
U.S. Appl. No. 14/026,536, filed Sep. 13, 2013, Configured and Sized Cannula. |
U.S. Appl. No. 14/475,161, filed Sep. 2, 2014, Configured and Sized Cannula. |
U.S. Appl. No. 14/685,341, filed Apr. 13, 2015, Configured and Sized Cannula. |
Web page, https://brainlab.com, Apr. 2, 2002. |
Wiltse, "New Uses and Refinements of the Paraspinal Approach to the Lumbar Spine", Spine, vol. 13 No. 6 1988, pp. 696-706. |
Wolfhard Caspar, Technique of Microsurgery, in Microsugery of the Lumbar Spine: Principles and Techniques in Spine Surgery 105-122 (Aspen Publications, 1990). |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USD956224S1 (en) | 2020-05-12 | 2022-06-28 | Innovasis, Inc. | Surgical retractor |
USD956223S1 (en) | 2020-05-12 | 2022-06-28 | Innovasis, Inc. | Surgical retractor |
USD956225S1 (en) | 2020-05-12 | 2022-06-28 | Innovasis, Inc. | Surgical retractor |
US11432810B2 (en) | 2020-05-12 | 2022-09-06 | Innovasis, Inc. | Systems and methods for surgical retraction |
Also Published As
Publication number | Publication date |
---|---|
USRE42525E1 (en) | 2011-07-05 |
USRE45571E1 (en) | 2015-06-23 |
US6159179A (en) | 2000-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE46978E1 (en) | Cannula and sizing insertion method | |
US7008431B2 (en) | Configured and sized cannula | |
US6524318B1 (en) | Spinal surgery instruments and methods | |
AU607374B2 (en) | Introduction set with flexible trocar with curved cannula | |
JP4397812B2 (en) | Oval dilator and retractor set and method | |
AU2002247350B2 (en) | Devices and methods for percutaneous surgery | |
US6368330B1 (en) | Apparatus for frameless stereotactic surgery | |
US20040102721A1 (en) | System, method and apparatus for locating, measuring and evaluating the enlargement of a foramen | |
US20050004593A1 (en) | Non cannulated dilators | |
US20110144687A1 (en) | Lateral Based Retractor System | |
EP2111809A3 (en) | Device for percutaneous placement of lumbar pedicle screws and connecting rods | |
KR20080004443A (en) | Systems and methods for determining optimal retractor length in minimally invasive procedures | |
US20100217090A1 (en) | Retractor and mounting pad | |
US20070142855A1 (en) | Surgical port system with marker ring | |
CN219323462U (en) | Reamer suitable for backbone wicresoft fuses operation | |
CN219461324U (en) | Yellow ligament incision knife for minimally invasive spine surgery | |
CN220917459U (en) | Endoscopic osteotome for unilateral double-channel operation | |
CN215503306U (en) | Spinal cord minimally invasive surgery sleeve | |
CN208838085U (en) | A kind of drilling director for operations on cranium and brain | |
CA2138473C (en) | Medullary cavity template | |
AU2013263733A1 (en) | Minimally invasive retractor and methods of use |