USRE46720E1 - Acid resistant PBI membrane for pervaporation dehydration of acidic solvents - Google Patents
Acid resistant PBI membrane for pervaporation dehydration of acidic solvents Download PDFInfo
- Publication number
- USRE46720E1 USRE46720E1 US15/212,512 US201615212512A USRE46720E US RE46720 E1 USRE46720 E1 US RE46720E1 US 201615212512 A US201615212512 A US 201615212512A US RE46720 E USRE46720 E US RE46720E
- Authority
- US
- United States
- Prior art keywords
- acid
- membrane
- pbi
- resistant
- pervaporation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 87
- 239000002253 acid Substances 0.000 title claims abstract description 41
- 230000002378 acidificating effect Effects 0.000 title claims abstract description 25
- 230000018044 dehydration Effects 0.000 title claims abstract description 19
- 238000006297 dehydration reaction Methods 0.000 title claims abstract description 19
- 239000002904 solvent Substances 0.000 title claims description 19
- 238000005373 pervaporation Methods 0.000 title abstract description 23
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims abstract description 105
- 239000012466 permeate Substances 0.000 claims abstract description 22
- 238000000034 method Methods 0.000 claims abstract description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 18
- 238000006277 sulfonation reaction Methods 0.000 claims abstract description 13
- 239000007864 aqueous solution Substances 0.000 claims abstract description 10
- 239000012141 concentrate Substances 0.000 claims abstract description 8
- 239000000463 material Substances 0.000 claims abstract description 6
- 238000006467 substitution reaction Methods 0.000 claims abstract description 4
- 229920002480 polybenzimidazole Polymers 0.000 claims description 13
- 239000004693 Polybenzimidazole Substances 0.000 claims description 12
- 150000007524 organic acids Chemical class 0.000 claims 1
- 238000004132 cross linking Methods 0.000 abstract description 3
- 238000000926 separation method Methods 0.000 description 25
- 230000004907 flux Effects 0.000 description 19
- 239000000203 mixture Substances 0.000 description 19
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 18
- -1 e.g. Substances 0.000 description 12
- 239000000243 solution Substances 0.000 description 12
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 10
- 125000003118 aryl group Chemical group 0.000 description 8
- 229920000642 polymer Polymers 0.000 description 8
- 239000012510 hollow fiber Substances 0.000 description 7
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 6
- 238000007669 thermal treatment Methods 0.000 description 6
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical compound C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 description 5
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- OYFRNYNHAZOYNF-UHFFFAOYSA-N 2,5-dihydroxyterephthalic acid Chemical compound OC(=O)C1=CC(O)=C(C(O)=O)C=C1O OYFRNYNHAZOYNF-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 4
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 4
- FHESUNXRPBHDQM-UHFFFAOYSA-N diphenyl benzene-1,3-dicarboxylate Chemical compound C=1C=CC(C(=O)OC=2C=CC=CC=2)=CC=1C(=O)OC1=CC=CC=C1 FHESUNXRPBHDQM-UHFFFAOYSA-N 0.000 description 4
- WJJMNDUMQPNECX-UHFFFAOYSA-N dipicolinic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=N1 WJJMNDUMQPNECX-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 125000000218 acetic acid group Chemical group C(C)(=O)* 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 150000003841 chloride salts Chemical class 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 150000001991 dicarboxylic acids Chemical class 0.000 description 3
- VNGOYPQMJFJDLV-UHFFFAOYSA-N dimethyl benzene-1,3-dicarboxylate Chemical compound COC(=O)C1=CC=CC(C(=O)OC)=C1 VNGOYPQMJFJDLV-UHFFFAOYSA-N 0.000 description 3
- 238000004821 distillation Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 125000001072 heteroaryl group Chemical group 0.000 description 3
- QQVIHTHCMHWDBS-UHFFFAOYSA-L isophthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC(C([O-])=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-L 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-L sulfate group Chemical group S(=O)(=O)([O-])[O-] QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 3
- 125000003837 (C1-C20) alkyl group Chemical group 0.000 description 2
- FOMVFKTYQSZBMJ-UHFFFAOYSA-N 1,5-dihydroxycyclohexa-3,5-diene-1,2-dicarboxylic acid Chemical compound OC(=O)C1C=CC(O)=CC1(O)C(O)=O FOMVFKTYQSZBMJ-UHFFFAOYSA-N 0.000 description 2
- UKGMFBZPIQCNPM-UHFFFAOYSA-N 1,6-dihydroxycyclohexa-3,5-diene-1,2-dicarboxylic acid Chemical compound OC(=O)C1C=CC=C(O)C1(O)C(O)=O UKGMFBZPIQCNPM-UHFFFAOYSA-N 0.000 description 2
- YDMVPJZBYSWOOP-UHFFFAOYSA-N 1h-pyrazole-3,5-dicarboxylic acid Chemical compound OC(=O)C=1C=C(C(O)=O)NN=1 YDMVPJZBYSWOOP-UHFFFAOYSA-N 0.000 description 2
- YWJNJZBDYHRABW-UHFFFAOYSA-N 2,4-dihydroxybenzene-1,3-dicarboxylic acid Chemical compound OC(=O)C1=CC=C(O)C(C(O)=O)=C1O YWJNJZBDYHRABW-UHFFFAOYSA-N 0.000 description 2
- CDOWNLMZVKJRSC-UHFFFAOYSA-N 2-hydroxyterephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(O)=C1 CDOWNLMZVKJRSC-UHFFFAOYSA-N 0.000 description 2
- HSTOKWSFWGCZMH-UHFFFAOYSA-N 3,3'-diaminobenzidine Chemical group C1=C(N)C(N)=CC=C1C1=CC=C(N)C(N)=C1 HSTOKWSFWGCZMH-UHFFFAOYSA-N 0.000 description 2
- QXGJCWSBOZXWOV-UHFFFAOYSA-N 3,4-dihydroxyphthalic acid Chemical compound OC(=O)C1=CC=C(O)C(O)=C1C(O)=O QXGJCWSBOZXWOV-UHFFFAOYSA-N 0.000 description 2
- MZGVIIXFGJCRDR-UHFFFAOYSA-N 4,6-dihydroxybenzene-1,3-dicarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=C(O)C=C1O MZGVIIXFGJCRDR-UHFFFAOYSA-N 0.000 description 2
- LFEWXDOYPCWFHR-UHFFFAOYSA-N 4-(4-carboxybenzoyl)benzoic acid Chemical compound C1=CC(C(=O)O)=CC=C1C(=O)C1=CC=C(C(O)=O)C=C1 LFEWXDOYPCWFHR-UHFFFAOYSA-N 0.000 description 2
- WVDRSXGPQWNUBN-UHFFFAOYSA-N 4-(4-carboxyphenoxy)benzoic acid Chemical compound C1=CC(C(=O)O)=CC=C1OC1=CC=C(C(O)=O)C=C1 WVDRSXGPQWNUBN-UHFFFAOYSA-N 0.000 description 2
- NEQFBGHQPUXOFH-UHFFFAOYSA-N 4-(4-carboxyphenyl)benzoic acid Chemical compound C1=CC(C(=O)O)=CC=C1C1=CC=C(C(O)=O)C=C1 NEQFBGHQPUXOFH-UHFFFAOYSA-N 0.000 description 2
- VNLYHYHJIXGBFX-UHFFFAOYSA-N 4-(trifluoromethyl)phthalic acid Chemical compound OC(=O)C1=CC=C(C(F)(F)F)C=C1C(O)=O VNLYHYHJIXGBFX-UHFFFAOYSA-N 0.000 description 2
- BCEQKAQCUWUNML-UHFFFAOYSA-N 4-hydroxybenzene-1,3-dicarboxylic acid Chemical compound OC(=O)C1=CC=C(O)C(C(O)=O)=C1 BCEQKAQCUWUNML-UHFFFAOYSA-N 0.000 description 2
- XFFZVIRSYFJKEX-UHFFFAOYSA-N 4-phenylpyridine-2,5-dicarboxylic acid Chemical compound C1=NC(C(=O)O)=CC(C=2C=CC=CC=2)=C1C(O)=O XFFZVIRSYFJKEX-UHFFFAOYSA-N 0.000 description 2
- QNVNLUSHGRBCLO-UHFFFAOYSA-N 5-hydroxybenzene-1,3-dicarboxylic acid Chemical compound OC(=O)C1=CC(O)=CC(C(O)=O)=C1 QNVNLUSHGRBCLO-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 150000008065 acid anhydrides Chemical class 0.000 description 2
- 150000008064 anhydrides Chemical class 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 229920003020 cross-linked polyethylene Polymers 0.000 description 2
- 239000004703 cross-linked polyethylene Substances 0.000 description 2
- MPFLRYZEEAQMLQ-UHFFFAOYSA-N dinicotinic acid Chemical compound OC(=O)C1=CN=CC(C(O)=O)=C1 MPFLRYZEEAQMLQ-UHFFFAOYSA-N 0.000 description 2
- GWZCCUDJHOGOSO-UHFFFAOYSA-N diphenic acid Chemical compound OC(=O)C1=CC=CC=C1C1=CC=CC=C1C(O)=O GWZCCUDJHOGOSO-UHFFFAOYSA-N 0.000 description 2
- 239000002355 dual-layer Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 125000000623 heterocyclic group Chemical group 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- LVPMIMZXDYBCDF-UHFFFAOYSA-N isocinchomeronic acid Chemical group OC(=O)C1=CC=C(C(O)=O)N=C1 LVPMIMZXDYBCDF-UHFFFAOYSA-N 0.000 description 2
- MJIVRKPEXXHNJT-UHFFFAOYSA-N lutidinic acid Chemical compound OC(=O)C1=CC=NC(C(O)=O)=C1 MJIVRKPEXXHNJT-UHFFFAOYSA-N 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- ABMFBCRYHDZLRD-UHFFFAOYSA-N naphthalene-1,4-dicarboxylic acid Chemical compound C1=CC=C2C(C(=O)O)=CC=C(C(O)=O)C2=C1 ABMFBCRYHDZLRD-UHFFFAOYSA-N 0.000 description 2
- DFFZOPXDTCDZDP-UHFFFAOYSA-N naphthalene-1,5-dicarboxylic acid Chemical compound C1=CC=C2C(C(=O)O)=CC=CC2=C1C(O)=O DFFZOPXDTCDZDP-UHFFFAOYSA-N 0.000 description 2
- RXOHFPCZGPKIRD-UHFFFAOYSA-N naphthalene-2,6-dicarboxylic acid Chemical compound C1=C(C(O)=O)C=CC2=CC(C(=O)O)=CC=C21 RXOHFPCZGPKIRD-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- GMIOYJQLNFNGPR-UHFFFAOYSA-N pyrazine-2,5-dicarboxylic acid Chemical compound OC(=O)C1=CN=C(C(O)=O)C=N1 GMIOYJQLNFNGPR-UHFFFAOYSA-N 0.000 description 2
- HLRLQGYRJSKVNX-UHFFFAOYSA-N pyrimidine-2,4-dicarboxylic acid Chemical compound OC(=O)C1=CC=NC(C(O)=O)=N1 HLRLQGYRJSKVNX-UHFFFAOYSA-N 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000012465 retentate Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- PIPQOFRJDBZPFR-UHFFFAOYSA-N 1h-benzimidazole-5,6-dicarboxylic acid Chemical compound C1=C(C(O)=O)C(C(=O)O)=CC2=C1NC=N2 PIPQOFRJDBZPFR-UHFFFAOYSA-N 0.000 description 1
- WFNRNCNCXRGUKN-UHFFFAOYSA-N 2,3,5,6-tetrafluoroterephthalic acid Chemical compound OC(=O)C1=C(F)C(F)=C(C(O)=O)C(F)=C1F WFNRNCNCXRGUKN-UHFFFAOYSA-N 0.000 description 1
- KKTUQAYCCLMNOA-UHFFFAOYSA-N 2,3-diaminobenzoic acid Chemical compound NC1=CC=CC(C(O)=O)=C1N KKTUQAYCCLMNOA-UHFFFAOYSA-N 0.000 description 1
- PGRIMKUYGUHAKH-UHFFFAOYSA-N 2,4,5,6-tetrafluorobenzene-1,3-dicarboxylic acid Chemical compound OC(=O)C1=C(F)C(F)=C(F)C(C(O)=O)=C1F PGRIMKUYGUHAKH-UHFFFAOYSA-N 0.000 description 1
- YUWKPDBHJFNMAD-UHFFFAOYSA-N 2-fluoroterephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(F)=C1 YUWKPDBHJFNMAD-UHFFFAOYSA-N 0.000 description 1
- YJLVXRPNNDKMMO-UHFFFAOYSA-N 3,4,5,6-tetrafluorophthalic acid Chemical compound OC(=O)C1=C(F)C(F)=C(F)C(F)=C1C(O)=O YJLVXRPNNDKMMO-UHFFFAOYSA-N 0.000 description 1
- BBCQSMSCEJBIRD-UHFFFAOYSA-N 3-fluorophthalic acid Chemical compound OC(=O)C1=CC=CC(F)=C1C(O)=O BBCQSMSCEJBIRD-UHFFFAOYSA-N 0.000 description 1
- RQBIGPMJQUKYAH-UHFFFAOYSA-N 4-(3,4-diaminophenoxy)benzene-1,2-diamine Chemical compound C1=C(N)C(N)=CC=C1OC1=CC=C(N)C(N)=C1 RQBIGPMJQUKYAH-UHFFFAOYSA-N 0.000 description 1
- JKETWUADWJKEKN-UHFFFAOYSA-N 4-(3,4-diaminophenyl)sulfonylbenzene-1,2-diamine Chemical compound C1=C(N)C(N)=CC=C1S(=O)(=O)C1=CC=C(N)C(N)=C1 JKETWUADWJKEKN-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- ILPWTQGYOZFLBN-UHFFFAOYSA-N 4-[(3,4-diaminophenyl)methyl]benzene-1,2-diamine Chemical compound C1=C(N)C(N)=CC=C1CC1=CC=C(N)C(N)=C1 ILPWTQGYOZFLBN-UHFFFAOYSA-N 0.000 description 1
- SBBQDUFLZGOASY-OWOJBTEDSA-N 4-[(e)-2-(4-carboxyphenyl)ethenyl]benzoic acid Chemical compound C1=CC(C(=O)O)=CC=C1\C=C\C1=CC=C(C(O)=O)C=C1 SBBQDUFLZGOASY-OWOJBTEDSA-N 0.000 description 1
- PHQYMDAUTAXXFZ-UHFFFAOYSA-N 4-[2-(4-carboxyphenyl)-1,1,1,3,3,3-hexafluoropropan-2-yl]benzoic acid Chemical compound C1=CC(C(=O)O)=CC=C1C(C(F)(F)F)(C(F)(F)F)C1=CC=C(C(O)=O)C=C1 PHQYMDAUTAXXFZ-UHFFFAOYSA-N 0.000 description 1
- HAEJSGLKJYIYTB-ZZXKWVIFSA-N 4-carboxycinnamic acid Chemical compound OC(=O)\C=C\C1=CC=C(C(O)=O)C=C1 HAEJSGLKJYIYTB-ZZXKWVIFSA-N 0.000 description 1
- KBZFDRWPMZESDI-UHFFFAOYSA-N 5-aminobenzene-1,3-dicarboxylic acid Chemical compound NC1=CC(C(O)=O)=CC(C(O)=O)=C1 KBZFDRWPMZESDI-UHFFFAOYSA-N 0.000 description 1
- AUIOTTUHAZONIC-UHFFFAOYSA-N 5-fluorobenzene-1,3-dicarboxylic acid Chemical compound OC(=O)C1=CC(F)=CC(C(O)=O)=C1 AUIOTTUHAZONIC-UHFFFAOYSA-N 0.000 description 1
- KSSJBGNOJJETTC-UHFFFAOYSA-N COC1=C(C=CC=C1)N(C1=CC=2C3(C4=CC(=CC=C4C=2C=C1)N(C1=CC=C(C=C1)OC)C1=C(C=CC=C1)OC)C1=CC(=CC=C1C=1C=CC(=CC=13)N(C1=CC=C(C=C1)OC)C1=C(C=CC=C1)OC)N(C1=CC=C(C=C1)OC)C1=C(C=CC=C1)OC)C1=CC=C(C=C1)OC Chemical compound COC1=C(C=CC=C1)N(C1=CC=2C3(C4=CC(=CC=C4C=2C=C1)N(C1=CC=C(C=C1)OC)C1=C(C=CC=C1)OC)C1=CC(=CC=C1C=1C=CC(=CC=13)N(C1=CC=C(C=C1)OC)C1=C(C=CC=C1)OC)N(C1=CC=C(C=C1)OC)C1=C(C=CC=C1)OC)C1=CC=C(C=C1)OC KSSJBGNOJJETTC-UHFFFAOYSA-N 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- IVHKZGYFKJRXBD-UHFFFAOYSA-N amino carbamate Chemical compound NOC(N)=O IVHKZGYFKJRXBD-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- ANUAIBBBDSEVKN-UHFFFAOYSA-N benzene-1,2,4,5-tetramine Chemical compound NC1=CC(N)=C(N)C=C1N ANUAIBBBDSEVKN-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- NLNRQJQXCQVDQJ-UHFFFAOYSA-N bis(3,4-diaminophenyl)methanone Chemical compound C1=C(N)C(N)=CC=C1C(=O)C1=CC=C(N)C(N)=C1 NLNRQJQXCQVDQJ-UHFFFAOYSA-N 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 239000012527 feed solution Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002715 modification method Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- WPUMVKJOWWJPRK-UHFFFAOYSA-N naphthalene-2,7-dicarboxylic acid Chemical compound C1=CC(C(O)=O)=CC2=CC(C(=O)O)=CC=C21 WPUMVKJOWWJPRK-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 125000004437 phosphorous atom Chemical group 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000003586 protic polar solvent Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- IAYUQKZZQKUOFL-UHFFFAOYSA-N pyridine-2,3,5,6-tetramine Chemical compound NC1=CC(N)=C(N)N=C1N IAYUQKZZQKUOFL-UHFFFAOYSA-N 0.000 description 1
- CHGYKYXGIWNSCD-UHFFFAOYSA-N pyridine-2,4,6-tricarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=NC(C(O)=O)=C1 CHGYKYXGIWNSCD-UHFFFAOYSA-N 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 239000013557 residual solvent Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/36—Pervaporation; Membrane distillation; Liquid permeation
- B01D61/366—Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/36—Pervaporation; Membrane distillation; Liquid permeation
- B01D61/362—Pervaporation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/02—Hollow fibre modules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/08—Flat membrane modules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0002—Organic membrane manufacture
- B01D67/0006—Organic membrane manufacture by chemical reactions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0081—After-treatment of organic or inorganic membranes
- B01D67/0083—Thermal after-treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0081—After-treatment of organic or inorganic membranes
- B01D67/0093—Chemical modification
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/06—Flat membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/08—Hollow fibre membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/10—Supported membranes; Membrane supports
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
- B01D69/1213—Laminated layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/58—Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
- B01D71/62—Polycondensates having nitrogen-containing heterocyclic rings in the main chain
- B01D71/64—Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/18—Polybenzimidazoles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/80—Water
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2315/00—Details relating to the membrane module operation
- B01D2315/22—Membrane contactor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/30—Cross-linking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/22—Thermal or heat-resistance properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/30—Chemical resistance
Definitions
- An acid-resistant PBI membrane is used for the dehydration of an acidic solvent, e.g., acetic acid, via membrane-based pervaporation.
- an acidic solvent e.g., acetic acid
- Pervaporation is a process for the separation of liquid mixtures by partial vaporization through a membrane.
- the separation process has two steps: first, one component of the mixture permeates away from the mixture through the membrane (the escaping component is called the permeate, and the remaining mixture is called the retentate or concentrate); and second, the permeate evaporates away from the membrane.
- Pervaporation Wikipedia (Mar. 10, 2010).
- the efficacy of the pervaporation membrane may be determined by the membrane's selectivity (expressed as separation factor) and productivity (expressed as flux).
- Flux refers to the rate of flow or transfer of permeate from the mixture to vapor, and denotes a quantity of permeate that crosses a unit of area of a given surface in a unit of time.
- Separation factor refers to the membrane's ability to selectively remove more of one mixture component than the other component(s) of the mixture.
- Productivity and selectivity are membrane-dependent. Membrane technology, ⁇ 1998-2009 Lenntech Water Treatment & Purification Holding B. V., Delft, the Netherlands (www.lenntech.com).
- US Publication 2011/0266222 discloses a method to dehydrate organic liquid (e.g., ethylene glycol, EG) by pervaporation using a PBI permselective hollow fiber.
- organic liquid e.g., ethylene glycol, EG
- the PBI permselective layer of the hollow fiber is not chemically modified to make it acid resistant.
- a pervaporation membrane may be an acid-resistant polybenzidimazole (PBI) membrane.
- the acid-resistant PBI membrane may be a PBI membrane chemically modified by a process selected from the group consisting of sulfonation, phosphonation, cross-linking, N-substitution, and/or combinations thereof.
- the membrane may be thermally stabilized.
- a method for the dehydration of an acid material may include the steps of: contacting an acidic aqueous solution with a membrane of an acid-resistant polybenzidimazole; taking away a permeate stream rich in water; and taking away a concentrate steam rich in the acid.
- the acidic aqueous solution may be acetic acid.
- FIG. 1 is a schematic illustration of a representative polybenzimidazole (PBI) molecule.
- FIG. 2 is a chart comparing the separation factor and flux at various temperature of known pervaporation membranes used to dehydrate acetic acid to the present invention.
- an influent stream is separated into two effluent streams known as the permeate and the concentrate (or retentate).
- the permeate is the portion of the influent stream passing through the semi-permeable membrane, whereas the concentrate stream contains the constituents that have been rejected by the membrane.
- This separation may be conducted in a membrane contactor where the influent stream is contacted with the membrane and the permeate and the concentrate are taken away from the contactor.
- the membrane may be flat membrane, a multi-layer flat membrane (e.g., a dual layer membrane), a hollow fiber membrane, a multi-layer hollow fiber membrane (e.g., a dual layer membrane), or tubular. In the multi-layer hollow fiber and tubular membranes, one layer is the membrane used in the separation and another membrane may be a support membrane.
- an acid-resistant polybenzimidazole (PBI) membrane may be used to dehydrate an acidic solvent.
- Acidic solvents may include, but are not limited to, methanol, ethanol, n-butanol, isopropanol, n-propanol, acetic acid, formic acid, hydrogen fluoride, and ammonia.
- the acidic solvent may be acetic acid.
- Polybenzimidazole may be any PBI.
- PBI also refers to blends of PBI with other polymers, co-polymers of PBI, and combinations thereof.
- the PBI component is the major (i.e., at least 50 wt %) component.
- a representative (non-limiting) illustration of the PBI molecule is set forth in FIG. 1 .
- PBI also refers to, for example, the product of the melt polymerization of an tetraamine (e.g., aromatic and heteroaromatic tetra-amino compounds) and a second monomer being selected from the group consisting of free dicarboxylic acids, alkyl and/or aromatic esters of dicarboxylic acids, alkyl and/or aromatic esters of aromatic or heterocyclic dicarboxylic acid, and/or alkyl and/or aromatic anhydrides of aromatic or heterocyclic dicarboxylic acid. Further details may be obtained from U.S. Pat. Nos. Re 26,065; 4,506,068; 4,814,530; and US Publication No. 2007/0151926, each of which is incorporated herein by reference. PBI is commercially available from PBI Performance Products, Inc. of Charlotte, N.C.
- aromatic and heteroaromatic tetra-amino compounds used in accordance with the invention, are preferably 3,3′,4,4′-tetra-aminobiphenyl, 2,3,5,6-tetra-aminopyridine, 1,2,4,5-tetra-aminobenzene, 3,3′,4,4′-tetra-aminodiphenylsulfone, 3,3′,4,4′-tetra-aminodiphenyl ether, 3,3′,4,4′-tetra-aminobenzophenone, 3,3′,4,4′-tetra-aminodiphenyl methane, and 3,3′,4,4′-tetra-aminodiphenyldimethylmethane, and their salts, in particular, their mono-, di-, tri-, and tetrahydrochloride derivatives.
- aromatic carboxylic acids used are dicarboxylic acids or its esters, or its anhydrides or its acid chlorides.
- aromatic carboxylic acids equally comprises heteroaromatic carboxylic acids as well.
- the aromatic dicarboxylic acids are isophthalic acid, terephthalic acid, phthalic acid, 5-hydroxyisophthalic acid, 4-hydroxyisophthalic acid, 2-hydroxyterephthalic acid, 5-aminoisophthalic acid, 5-N,N-dimethylaminoisophthalic acid, 5-N,N-diethylaminoisophthalic acid, 2,5-dihydroxyterephthalic acid, 2,6-dihydroxyisophthalic acid, 4,6-dihydroxyisophthalic acid, 2,3-dihydroxyphthalic acid, 2,4-dihydroxyphthalic acid, 3,4-dihydroxyphthalic acid, 3-fluorophthalic acid, 5-fluoroisophthalic acid, 2-fluoroterephthalic acid, tetra
- heteroaromatic carboxylic acids used are heteroaromatic dicarboxylic acids or their esters or their anhydrides.
- the “heteroaromatic dicarboxylic acids” include aromatic systems that contain at least one nitrogen, oxygen, sulfur, or phosphorus atom in the ring.
- it is pyridine-2,5-dicarboxylic acid, pyridine-3,5-dicarboxylic acid, pyridine-2,6-dicarboxylic acid, pyridine-2,4-dicarboxylic acid, 4-phenyl-2,5-pyridine dicarboxylic acid, 3,5-pyrazole dicarboxylic acid, 2,6-pyrimidine dicarboxylic acid, 2,5-pyrazine dicarboxylic acid, 2,4,6-pyridine tricarboxylic acid, and benzimidazole-5,6-dicarboxylic acid, as well as their C1-C20-alkyl esters or C5-C12-aryl esters, or their acid anhydrides or their acid chlorides.
- aromatic and heteroaromatic diaminocarboxylic acid used in accordance with the invention is preferably diaminobenzoic acid and its mono- and dihydrochloride derivatives.
- mixtures of at least 2 different aromatic carboxylic acids are used.
- These mixtures are, in particular, mixtures of N-heteroaromatic dicarboxylic acids and aromatic dicarboxylic acids or their esters.
- Non-limiting examples are isophthalic acid, terephthalic acid, phthalic acid, 2,5-dihydroxyterephthalic acid, 2,6-dihydroxyisophthalic acid, 4,6-dihydroxyisophthalic acid, 2,3-dihydroxyphthalic acid, 2,4-dihydroxyphthalic acid, 3,4-dihydroxyphthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, diphenic acid, 1,8-dihydroxynapthalene-3,6-dicarboxylic acid, diphenyl ether-4,4′-dicarboxylic acid, benzophenone-4,4′
- polybenzimidazoles which may be prepared according to the process as described above include:
- Acid-resistant PBI refers to a chemically modified PBI that is resistant to acids.
- the acid-resistant PBI has greater resistance to adsorbing (or imbibing) the acidic solvent to be dehydrated than the same non-acid-resistant PBI.
- PBI's inherent affinity for acid is decreased so that its separation efficiency is increased.
- the acid-resistant PBI may be obtained by any modification method. Such modifications methods may include, without limitation, cross-linking, N-substitution, sulfonation, phosphonation, and combinations thereof.
- This modification may be at the surface (if, for example, the PBI is in the form of a sheet, fiber, hollow fiber, or tube) or may be throughout the shaped PBI (if, for example, the PBI is made acid-resistant prior to being shaped).
- sulfonate i.e., add a sulfate group to the PBI polymer backbone. They include, without limitation, i) direct sulfonation of the PBI structure, ii) chemical grafting of the monomers with sulfate group, and iii) sulfonation following radiation grafting of monomer groups.
- the invention will be described with reference to a PBI film where the surface of the film is directly sulfonated, it being understood that the invention is not so limited.
- the PBI film may be made in any fashion.
- the PBI film is a solid film without pores or micropores.
- the film may be cast from a PBI solution.
- Solvents for the PBI polymer may include, without limit, DMAc, N-methyl pyrrolidinone (NMP), N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), and combinations thereof.
- the PBI solution in one embodiment, may contain 10-45 wt % PBI, and in others, 12-30 wt % PBI, and 14-28 wt % PBI.
- the casting solution is degassed, cast onto a substrate, then the solvent is driven from the cast film, and the solvent-free cast film is vacuum-dried and cooled.
- the cast PBI film may then be chemically modified to be acid-resistant.
- the film may be sulfonated.
- the film may be immersed in a sulfuric acid (e.g., concentration up to 20 wt % or 1-20 wt %, or 2-15 wt %, or 2-10 wt % or 2-6 wt %) at a given temperature (e.g., from 30-80° C., or 40-70° C., or 45-55° C.) for given time (e.g., 1-4 hours, or 1.5-3.5 hours or 1.75-2.5 hours). Thereafter, excess acid may be removed from the surface of the film.
- a sulfuric acid e.g., concentration up to 20 wt % or 1-20 wt %, or 2-15 wt %, or 2-10 wt % or 2-6 wt
- a given temperature e.g., from 30-80° C., or 40-70° C., or 45-55° C
- the sulfonated film may be thermally stabilized. During this thermal stabilization, the sulfonated film is heated to a given temperature (e.g., 300-500° C., or 350-450° C., or 400-450° C.) for a given time (e.g., up to 5 minutes, or 0.3-4.5 minutes, or 0.5-1.5 minutes).
- a given temperature e.g., 300-500° C., or 350-450° C., or 400-450° C.
- a given time e.g., up to 5 minutes, or 0.3-4.5 minutes, or 0.5-1.5 minutes.
- the sulfonated film may be freed of trace sulfonate groups. This may be accomplished by immersing the sulfonated film in boiling water for a give time (e.g., 1-5 hours, or 2-4 hours, or 2.5-3.5 hours). Then, this film may be dried to remove any adsorbed water molecules by placing the film in a vacuum oven.
- a contactor may be used to house the foregoing membranes.
- Contactors are known and may include: plate-and-frame modules, tubular modules, hollow fiber modules, and spiral wound modules. See for example: “Membrane technology,” Wikipedia, The Free Encyclopedia (2012); Kesting, R. E., Synthetic Polymeric Membranes, 2 nd Edition, John Wiley & Sons, NYC, N.Y. (1985), pages 10-14; Cheryan, M., Ultra-filtration Handbook, Technomic Publishing Co., Lancaster Pa. (1986), pages 127-168; and Chemical Engineering Handbook, 5 th Edition, McGraw-Hill Book Company, NYC, N.Y. (1973), FIG. 17-38, U.S. Pat. Nos. 5,264,171 and 5,352,361, each of which is incorporated herein by reference.
- a dehydration system may comprise one or more of the foregoing contactors or other equipment containing the foregoing membranes that are used to dehydrate the aqueous acidic solvent.
- a plurality of contactors, arranged in series or parallel or a combination of both, and associated equipment e.g., pumps, control/monitoring equipment, and vacuum pumps are assembled for the purpose of dehydrating the aqueous acidic solvent.
- the aqueous acidic solvent may be dehydrated by contacting an acidic aqueous solution with a membrane comprising an acid-resistant polybenzidimazole; taking away a permeate stream rich in water; and taking away a concentrate steam rich in the acid.
- the permeate stream is coupled to a vacuum.
- the feed concentration of the acidic aqueous solution may be, in one embodiment, any concentration. In other embodiments, the feed concentration may range from 50-95 wt %, or 75-95 wt %, or 78-92 wt %.
- the operating temperature during the dehydration may be, in one embodiment, any temperature. In other embodiments, the temperature may range from 20-85° C., or 25-75° C.
- FIG. 2 there is a comparison of separation factor and flux at various temperatures between the acid-resistant PBI disclosed herein and other known membranes for acidic solvents (e.g., acetic acid).
- acidic solvents e.g., acetic acid
- the invention is not so limited.
- the acid-resistant membrane may be used in other pervaporation processes or dehydration processes.
- PBI Polybenzimidazole
- Concentrated sulfuric acid (H 2 SO 4 ) of analytical grade, obtained from Merck was used to mix with de-ionized water to prepare the sulfonation solution with varied concentration.
- a dense flat-sheet PBI membrane with sulfonation modification on the membrane surface was prepared.
- the flat-sheet PBI dense membrane is cast from a 15 wt % PBI polymer solution in DMAc.
- the polymer dope solution of PBUDMAc/LiCl (15/84.1/0.9 wt %) is prepared by diluting the supplied PBI solution.
- the diluted solution is allowed to degas overnight prior to casting onto a glass plate with a casting knife at a thickness of about 70-100 ⁇ m.
- the as-cast membrane is then placed on a hot plate preset at 75° C. for 15 hours, to allow the solvent evaporated slowly.
- the resultant film is carefully peeled off from the glass plate and then dried in a vacuum oven between two wire meshes, with temperature gradually increased to 250° C. at a rate of 0.6° C./min and held there for 24 hours to remove the residual solvents before cooling down naturally.
- the wire meshes not only prevent the membrane from sticking to the glass plate but also help uniformly dry the membrane from both surfaces. With this drying protocol, the LiCl remains in the as-fabricated PBI membrane.
- Modification of the PBI membrane is a combination of sulfonation and thermal treatment.
- PBI membranes were immersed in a sulfuric acid aqueous solution of a fixed concentration at 50° C. for 2 hours. They were subsequently dried using filter paper to remove the excess sulfuric acid on their surface.
- the PBI membranes were then thermally treated by placing them in a furnace pre-set at 450° C. for a fixed time in air (without vacuum). Thereafter, the samples were immersed in boiling water for 3 hours to remove traces of sulfate groups and dried between two wire meshes at 100° C. in the Binder programmable vacuum oven to remove adsorbed water molecules.
- a Mitutoyo micrometer was then employed to measure the final membrane thickness, which was about 15-20 ⁇ m.
- a static pervaporation cell was used to test flat-sheet dense membrane performance at room temperature. Also see: Y. Wang, M. Gruender, T. S. Chung, Pervaporation dehydration of ethylene glycol through polybenzimidazole (PBI)-based membranes. 1. Membrane fabrication, J. Membr. Sci. 363 (2010) 149-159, incorporated herein by reference. A testing membrane was placed in the stainless steel permeation cell with an effective surface area of 15.2 cm 2 . The system was stabilized for 2 hours before the collection of samples. Thereafter, permeate samples were collected by a cold trap immersed in liquid nitrogen. The samples were weighted.
- the sample compositions were analyzed with three parallel injections by a Hewlett-Packard GC 7890 A with a HP-INNOWAX column (packed with cross-linked polyethylene glycol) and a TCD detector. Finally, the data of flux and composition were averaged.
- the feed content varied less than 0.5 wt % during the entire experiment and can be therefore considered as constant during the experiment because of the large quantity of feed solution comparing to the permeate sample.
- the feed flow rate was maintained at 1.38 l/min.
- the operating temperature was room temperature (22 ⁇ 2° C.) unless stated otherwise.
- the permeate pressure was maintained at less than 3 mbar by a vacuum pump, unless it is stated. Flux and separation factors were calculated by the following equations:
- J the flux
- Q the total mass transferred over time t (hour)
- A the membrane area (m 2 )
- subscripts 1 and 2 refer to acetic acid and water, respectively
- y w and x w are the weight fractions of components in the permeate and feed, respectively, and were analyzed through a Hewlett-Packard GC 7890 A with a HP-INNOWAX column (packed with cross-linked polyethylene glycol) and a TCD detector.
- the present examples in pervaporation application are intended to help illustrate the process of the present invention.
- the flux of permeate in all examples for acetic acid (AA) dehydration through the flat-sheet dense membranes is given in unit of g ⁇ m/m 2 ⁇ hr, which is normalized by the membrane thickness.
- Examples 1-4 demonstrate the pervaporation performance of the sulfonated PBI dense membranes with the effect of varying sulfuric acid concentration for the feed composition of AA/H 2 O (50/50 wt %).
- the post thermal treatment is carried at 450° C. for 30 seconds.
- Examples 5-10 demonstrate the pervaporation performance with the effect of varying post thermal treatment duration after sulfonation, for pervaporation dehydration of acetic acid with the feed composition of AA/H 2 O (50/50 wt %). All PBI membranes were sulfonated in 2.5 wt % sulfuric acid solution for 2 hours before thermal treatment. The thermal treatment after the sulfonation stabilizes the sulfonated structure.
- Feed composition Perrneate Flux Separation factor (AA wt %) (AA wt %) (g/m 2 hr) (water/AA) 50 0.015 168 6631 60 0.022 151 6692 70 0.027 142 8825 80 0.030 121 13,000 90 0.036 98 24,000 95 0.040 86 39,000
- the separation factor for feeds with 80 and 90 wt % of acetic acid are assigned an arbitrarily value of greater than 10,000 as the permeate contains less than 0.05 wt % of acetic acid. From the results, the separation factor generally increases with the increase in acetic acid concentration in the feed up to 90 wt % of acetic acid and then decreases slightly. On the other hand, the flux generally decreases for feed containing between 50 and 95 wt % of acetic acid.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Thermal Sciences (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Treatments Of Macromolecular Shaped Articles (AREA)
Abstract
A pervaporation membrane may be an acid-resistant polybenzidimazole (PBI) membrane. The acid-resistant PBI membrane may be a PBI membrane chemically modified by a process selected from the group consisting of sulfonation, phosphonation, cross-linking, N-substitution, and/or combinations thereof. The membrane may be thermally stabilized. A method for the dehydration of an acid material may include the steps of: contacting an acidic aqueous solution with a membrane of an acid-resistant polybenzidimazole; taking away a permeate stream rich in water; and taking away a concentrate steam rich in the acid material. The acidic aqueous solution may be acetic acid.
Description
An acid-resistant PBI membrane is used for the dehydration of an acidic solvent, e.g., acetic acid, via membrane-based pervaporation.
Pervaporation is a process for the separation of liquid mixtures by partial vaporization through a membrane. The separation process has two steps: first, one component of the mixture permeates away from the mixture through the membrane (the escaping component is called the permeate, and the remaining mixture is called the retentate or concentrate); and second, the permeate evaporates away from the membrane. Pervaporation, Wikipedia (Mar. 10, 2010).
The efficacy of the pervaporation membrane may be determined by the membrane's selectivity (expressed as separation factor) and productivity (expressed as flux). Flux refers to the rate of flow or transfer of permeate from the mixture to vapor, and denotes a quantity of permeate that crosses a unit of area of a given surface in a unit of time. Separation factor refers to the membrane's ability to selectively remove more of one mixture component than the other component(s) of the mixture. Productivity and selectivity are membrane-dependent. Membrane technology, © 1998-2009 Lenntech Water Treatment & Purification Holding B. V., Delft, the Netherlands (www.lenntech.com).
US Publication 2011/0266222 discloses a method to dehydrate organic liquid (e.g., ethylene glycol, EG) by pervaporation using a PBI permselective hollow fiber. The PBI permselective layer of the hollow fiber is not chemically modified to make it acid resistant.
The dehydration of acidic solvents is an important commercial operation. One acidic solvent, acetic acid, is among the top 50 chemicals based upon production quantity. Currently, the dehydration of acidic solvents, e.g., acetic acid, is carried out by a binary distillation. This separation method, however, is difficult as acetic acid and water have very close volatilities. As such, more energy is required to achieve acetic acid with purity higher than 95 wt % due to the need for greater reflux and a larger distillation column with many stages. In view of these disadvantages of distillation, research emphasis has been placed on the pervaporation dehydration of acetic acid. More specifically, research has focused on developing a membrane that gives a reasonable flux and has a good separation factor. In pervaporative dehydration, a significant number of pervaporation dehydration membranes are made from cross-linked polyvinyl alcohol (PVA), chitosan, and cellulose acetate.
Accordingly, there is a need for new and better pervaporation membranes, particularly, pervaporation membranes for dehydration, and the dehydration of acidic solvents, such as acetic acid.
A pervaporation membrane may be an acid-resistant polybenzidimazole (PBI) membrane. The acid-resistant PBI membrane may be a PBI membrane chemically modified by a process selected from the group consisting of sulfonation, phosphonation, cross-linking, N-substitution, and/or combinations thereof. The membrane may be thermally stabilized. A method for the dehydration of an acid material may include the steps of: contacting an acidic aqueous solution with a membrane of an acid-resistant polybenzidimazole; taking away a permeate stream rich in water; and taking away a concentrate steam rich in the acid. The acidic aqueous solution may be acetic acid.
For the purpose of illustrating the invention, there is shown in the drawings a form that is presently preferred; it being understood, however, that this invention is not limited to the precise arrangements and instrumentalities shown.
In a membrane separation process, an influent stream is separated into two effluent streams known as the permeate and the concentrate (or retentate). The permeate is the portion of the influent stream passing through the semi-permeable membrane, whereas the concentrate stream contains the constituents that have been rejected by the membrane. This separation may be conducted in a membrane contactor where the influent stream is contacted with the membrane and the permeate and the concentrate are taken away from the contactor. The membrane may be flat membrane, a multi-layer flat membrane (e.g., a dual layer membrane), a hollow fiber membrane, a multi-layer hollow fiber membrane (e.g., a dual layer membrane), or tubular. In the multi-layer hollow fiber and tubular membranes, one layer is the membrane used in the separation and another membrane may be a support membrane.
In the instant membrane separation process, an acid-resistant polybenzimidazole (PBI) membrane may be used to dehydrate an acidic solvent. Acidic solvents (or polar protic solvents) may include, but are not limited to, methanol, ethanol, n-butanol, isopropanol, n-propanol, acetic acid, formic acid, hydrogen fluoride, and ammonia. In one embodiment, the acidic solvent may be acetic acid.
Polybenzimidazole (PBI) may be any PBI. PBI also refers to blends of PBI with other polymers, co-polymers of PBI, and combinations thereof. In one embodiment, the PBI component is the major (i.e., at least 50 wt %) component. A representative (non-limiting) illustration of the PBI molecule is set forth in FIG. 1 . PBI also refers to, for example, the product of the melt polymerization of an tetraamine (e.g., aromatic and heteroaromatic tetra-amino compounds) and a second monomer being selected from the group consisting of free dicarboxylic acids, alkyl and/or aromatic esters of dicarboxylic acids, alkyl and/or aromatic esters of aromatic or heterocyclic dicarboxylic acid, and/or alkyl and/or aromatic anhydrides of aromatic or heterocyclic dicarboxylic acid. Further details may be obtained from U.S. Pat. Nos. Re 26,065; 4,506,068; 4,814,530; and US Publication No. 2007/0151926, each of which is incorporated herein by reference. PBI is commercially available from PBI Performance Products, Inc. of Charlotte, N.C.
The aromatic and heteroaromatic tetra-amino compounds, used in accordance with the invention, are preferably 3,3′,4,4′-tetra-aminobiphenyl, 2,3,5,6-tetra-aminopyridine, 1,2,4,5-tetra-aminobenzene, 3,3′,4,4′-tetra-aminodiphenylsulfone, 3,3′,4,4′-tetra-aminodiphenyl ether, 3,3′,4,4′-tetra-aminobenzophenone, 3,3′,4,4′-tetra-aminodiphenyl methane, and 3,3′,4,4′-tetra-aminodiphenyldimethylmethane, and their salts, in particular, their mono-, di-, tri-, and tetrahydrochloride derivatives.
The aromatic carboxylic acids used, in accordance with the invention, are dicarboxylic acids or its esters, or its anhydrides or its acid chlorides. The term “aromatic carboxylic acids” equally comprises heteroaromatic carboxylic acids as well. Preferably, the aromatic dicarboxylic acids are isophthalic acid, terephthalic acid, phthalic acid, 5-hydroxyisophthalic acid, 4-hydroxyisophthalic acid, 2-hydroxyterephthalic acid, 5-aminoisophthalic acid, 5-N,N-dimethylaminoisophthalic acid, 5-N,N-diethylaminoisophthalic acid, 2,5-dihydroxyterephthalic acid, 2,6-dihydroxyisophthalic acid, 4,6-dihydroxyisophthalic acid, 2,3-dihydroxyphthalic acid, 2,4-dihydroxyphthalic acid, 3,4-dihydroxyphthalic acid, 3-fluorophthalic acid, 5-fluoroisophthalic acid, 2-fluoroterephthalic acid, tetrafluorophthalic acid, tetrafluoroisophthalic acid, tetrafluoroterephthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7-napthalenedicarboxylic acid, diphenic acid, 1,8-dihydroxynaphthalene-3,6-dicarboyxlic acid, diphenyl ether-4,4′-dicarboxylic acid, benzophenone-4,4′-dicarboxylic acid, diphenylsulfone-4,4′-dicarboyxlic acid, biphenyl-4,4′-dicarboxylic acid, 4-trifluoromethylphthalic acid, 2,2-bis(4-carboxyphenyl)hexafluoropropane, 4,4′-stilbenedicarboxylic acid, 4-carboxycinnamic acid, or their C1-C20-alkyl esters or C5-C12-aryl esters, or their acid anhydrides or their acid chlorides.
The heteroaromatic carboxylic acids used, in accordance with the invention, are heteroaromatic dicarboxylic acids or their esters or their anhydrides. The “heteroaromatic dicarboxylic acids” include aromatic systems that contain at least one nitrogen, oxygen, sulfur, or phosphorus atom in the ring. Preferably, it is pyridine-2,5-dicarboxylic acid, pyridine-3,5-dicarboxylic acid, pyridine-2,6-dicarboxylic acid, pyridine-2,4-dicarboxylic acid, 4-phenyl-2,5-pyridine dicarboxylic acid, 3,5-pyrazole dicarboxylic acid, 2,6-pyrimidine dicarboxylic acid, 2,5-pyrazine dicarboxylic acid, 2,4,6-pyridine tricarboxylic acid, and benzimidazole-5,6-dicarboxylic acid, as well as their C1-C20-alkyl esters or C5-C12-aryl esters, or their acid anhydrides or their acid chlorides.
The aromatic and heteroaromatic diaminocarboxylic acid used in accordance with the invention is preferably diaminobenzoic acid and its mono- and dihydrochloride derivatives.
Preferably, mixtures of at least 2 different aromatic carboxylic acids are used. These mixtures are, in particular, mixtures of N-heteroaromatic dicarboxylic acids and aromatic dicarboxylic acids or their esters. Non-limiting examples are isophthalic acid, terephthalic acid, phthalic acid, 2,5-dihydroxyterephthalic acid, 2,6-dihydroxyisophthalic acid, 4,6-dihydroxyisophthalic acid, 2,3-dihydroxyphthalic acid, 2,4-dihydroxyphthalic acid, 3,4-dihydroxyphthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, diphenic acid, 1,8-dihydroxynapthalene-3,6-dicarboxylic acid, diphenyl ether-4,4′-dicarboxylic acid, benzophenone-4,4′-dicarboxylic acid, diphenylsulfone-4,4′-dicarboxylic acid, biphenyl-4,4′-dicarboxylic acid, 4-trifluoromethylphthalic acid, pyridine-2,5-dicarboxylic acid, pyridine-3,5-dicarboxylic acid, pyridine-2,6-dicarboxylic acid, pyridine-2,4-dicarboxylic acid, 4-phenyl-2,5-pyridinedicarboxylic acid, 3,5-pyrazoledicarboxylic acid, 2,6-pyrimidine dicarboxylic acid, and 2,5-pyrazine dicarboxylic acid. Preferably, it is the diphenyl isophthalate (DPIP) and its ester.
Examples of polybenzimidazoles which may be prepared according to the process as described above include:
- poly-2,2′-(m-phenylene)-5,5′-bibenzimidazole;
- poly-2,2′-(biphenylene-2″2′″)-5,5′-bibenzimidazole;
- poly-2,2′-(biphenylene-4″4′″)-5,5′-bibenzimidazole;
- poly-2,2′-(1″,1″,3″trimethylindanylene)-3″5″-p-phenylene-5,5′-bibenzimidazole;
- 2,2′-(m-phenylene)-5,5′-bibenzimidazole/2,2-(1″,1″,3″-trimethylindanylene)-5″,3″-(p-phenylene)-5,5′-bibenzimidazole copolymer;
- 2,2′-(m-phenylene)-5,5-bibenzimidazole-2,2′-biphenylene-2″,2′″-5,5′-bibenzimidazole copolymer;
- poly-2,2′-(furylene-2″,5″)-5,5′-bibenzimidazole;
- poly-2,2′-(naphthalene-1″,6″)-5,5′-bibenzimidazole;
- poly-2,2′-(naphthalene-2″,6″)-5,5′-bibenzimidazole;
- poly-2,2′-amylene-5,5′-bibenzimidazole;
- poly-2,2′-octamethylene-5,5′-bibenzimidazole;
- poly-2,2′-(m-phenylene)-diimidazobenzene;
- poly-2,2′-cyclohexenyl-5,5′-bibenzimidazole;
- poly-2,2′-(m-phenylene)-5,5′-di(benzimidazole)ether;
- poly-2,2′-(m-phenylene)-5,5′-di(benzimidazole)sulfide;
- poly-2,2′-(m-phenylene)-5,5′-di(benzimidazole)sulfone;
- poly-2,2′-(m-phenylene)-5,5′-di(benzimidazole)methane;
- poly-2,2″-(m-phenylene)-5,5″-di(benzimidazole)propane-2,2; and
- poly-ethylene-1,2-2,2″-(m-phenylene)-5,5″-dibenzimidazole)ethylene-1,2
where the double bonds of the ethylene groups are intact in the final polymer. Poly-2,2′-(m-phenylene)-5,5′-bibenzimidazole, a preferred polymer, can be prepared by the reaction of 3,3′,4,4′-tetraaminobiphenyl with a combination of isophthalic acid with diphenyl isophthalate or with a dialkyl isophthalate such as dimethyl isophthalate; a combination of diphenyl isophthalate and a dialkyl isophthalate such as dimethyl isophthalate; or at least one dialkyl isophthalate such as dimethyl isophthalate, as the sole dicarboxylic component.
Acid-resistant PBI refers to a chemically modified PBI that is resistant to acids. The acid-resistant PBI has greater resistance to adsorbing (or imbibing) the acidic solvent to be dehydrated than the same non-acid-resistant PBI. In other words, PBI's inherent affinity for acid is decreased so that its separation efficiency is increased. The acid-resistant PBI may be obtained by any modification method. Such modifications methods may include, without limitation, cross-linking, N-substitution, sulfonation, phosphonation, and combinations thereof. This modification may be at the surface (if, for example, the PBI is in the form of a sheet, fiber, hollow fiber, or tube) or may be throughout the shaped PBI (if, for example, the PBI is made acid-resistant prior to being shaped). There may be several routes for each of the foregoing modifications. For example, there are at least three ways to sulfonate (i.e., add a sulfate group to the PBI polymer backbone). They include, without limitation, i) direct sulfonation of the PBI structure, ii) chemical grafting of the monomers with sulfate group, and iii) sulfonation following radiation grafting of monomer groups. Hereinafter, the invention will be described with reference to a PBI film where the surface of the film is directly sulfonated, it being understood that the invention is not so limited.
In general, the PBI film may be made in any fashion. In one embodiment, the PBI film is a solid film without pores or micropores. For example, the film may be cast from a PBI solution. Solvents for the PBI polymer may include, without limit, DMAc, N-methyl pyrrolidinone (NMP), N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), and combinations thereof. The PBI solution, in one embodiment, may contain 10-45 wt % PBI, and in others, 12-30 wt % PBI, and 14-28 wt % PBI. In one embodiment, the casting solution is degassed, cast onto a substrate, then the solvent is driven from the cast film, and the solvent-free cast film is vacuum-dried and cooled.
The cast PBI film may then be chemically modified to be acid-resistant. In one embodiment, the film may be sulfonated. The film may be immersed in a sulfuric acid (e.g., concentration up to 20 wt % or 1-20 wt %, or 2-15 wt %, or 2-10 wt % or 2-6 wt %) at a given temperature (e.g., from 30-80° C., or 40-70° C., or 45-55° C.) for given time (e.g., 1-4 hours, or 1.5-3.5 hours or 1.75-2.5 hours). Thereafter, excess acid may be removed from the surface of the film.
Optionally, the sulfonated film may be thermally stabilized. During this thermal stabilization, the sulfonated film is heated to a given temperature (e.g., 300-500° C., or 350-450° C., or 400-450° C.) for a given time (e.g., up to 5 minutes, or 0.3-4.5 minutes, or 0.5-1.5 minutes).
Thereafter, the sulfonated film may be freed of trace sulfonate groups. This may be accomplished by immersing the sulfonated film in boiling water for a give time (e.g., 1-5 hours, or 2-4 hours, or 2.5-3.5 hours). Then, this film may be dried to remove any adsorbed water molecules by placing the film in a vacuum oven.
A contactor may be used to house the foregoing membranes. Contactors are known and may include: plate-and-frame modules, tubular modules, hollow fiber modules, and spiral wound modules. See for example: “Membrane technology,” Wikipedia, The Free Encyclopedia (2012); Kesting, R. E., Synthetic Polymeric Membranes, 2nd Edition, John Wiley & Sons, NYC, N.Y. (1985), pages 10-14; Cheryan, M., Ultra-filtration Handbook, Technomic Publishing Co., Lancaster Pa. (1986), pages 127-168; and Chemical Engineering Handbook, 5th Edition, McGraw-Hill Book Company, NYC, N.Y. (1973), FIG. 17-38, U.S. Pat. Nos. 5,264,171 and 5,352,361, each of which is incorporated herein by reference.
A dehydration system may comprise one or more of the foregoing contactors or other equipment containing the foregoing membranes that are used to dehydrate the aqueous acidic solvent. For example, a plurality of contactors, arranged in series or parallel or a combination of both, and associated equipment (e.g., pumps, control/monitoring equipment, and vacuum pumps) are assembled for the purpose of dehydrating the aqueous acidic solvent.
The aqueous acidic solvent may be dehydrated by contacting an acidic aqueous solution with a membrane comprising an acid-resistant polybenzidimazole; taking away a permeate stream rich in water; and taking away a concentrate steam rich in the acid. In one embodiment, the permeate stream is coupled to a vacuum. The feed concentration of the acidic aqueous solution may be, in one embodiment, any concentration. In other embodiments, the feed concentration may range from 50-95 wt %, or 75-95 wt %, or 78-92 wt %. The operating temperature during the dehydration may be, in one embodiment, any temperature. In other embodiments, the temperature may range from 20-85° C., or 25-75° C.
In FIG. 2 , there is a comparison of separation factor and flux at various temperatures between the acid-resistant PBI disclosed herein and other known membranes for acidic solvents (e.g., acetic acid).
While the examples below are directed to the pervaporative dehydration of the acidic solvent, acetic acid, the invention is not so limited. The acid-resistant membrane may be used in other pervaporation processes or dehydration processes.
The invention will be further illustrated in the following non-limiting examples.
Polybenzimidazole (PBI) was used in the fabrication of the membranes. PBI polymer solution was provided by PBI Performance Products, Inc. with the composition of PBI 26.2 wt %, dimethylacetamide (DMAc) 72.3 wt %, and lithium chloride (LiCl) 1.5 wt %.
Concentrated sulfuric acid (H2SO4) of analytical grade, obtained from Merck was used to mix with de-ionized water to prepare the sulfonation solution with varied concentration.
Membrane Preparation Procedures
A dense flat-sheet PBI membrane with sulfonation modification on the membrane surface was prepared. The flat-sheet PBI dense membrane is cast from a 15 wt % PBI polymer solution in DMAc. The polymer dope solution of PBUDMAc/LiCl (15/84.1/0.9 wt %) is prepared by diluting the supplied PBI solution. The diluted solution is allowed to degas overnight prior to casting onto a glass plate with a casting knife at a thickness of about 70-100 μm. The as-cast membrane is then placed on a hot plate preset at 75° C. for 15 hours, to allow the solvent evaporated slowly. The resultant film is carefully peeled off from the glass plate and then dried in a vacuum oven between two wire meshes, with temperature gradually increased to 250° C. at a rate of 0.6° C./min and held there for 24 hours to remove the residual solvents before cooling down naturally. The wire meshes not only prevent the membrane from sticking to the glass plate but also help uniformly dry the membrane from both surfaces. With this drying protocol, the LiCl remains in the as-fabricated PBI membrane.
Modification of the PBI membrane is a combination of sulfonation and thermal treatment. PBI membranes were immersed in a sulfuric acid aqueous solution of a fixed concentration at 50° C. for 2 hours. They were subsequently dried using filter paper to remove the excess sulfuric acid on their surface. The PBI membranes were then thermally treated by placing them in a furnace pre-set at 450° C. for a fixed time in air (without vacuum). Thereafter, the samples were immersed in boiling water for 3 hours to remove traces of sulfate groups and dried between two wire meshes at 100° C. in the Binder programmable vacuum oven to remove adsorbed water molecules. A Mitutoyo micrometer was then employed to measure the final membrane thickness, which was about 15-20 μm.
A static pervaporation cell was used to test flat-sheet dense membrane performance at room temperature. Also see: Y. Wang, M. Gruender, T. S. Chung, Pervaporation dehydration of ethylene glycol through polybenzimidazole (PBI)-based membranes. 1. Membrane fabrication, J. Membr. Sci. 363 (2010) 149-159, incorporated herein by reference. A testing membrane was placed in the stainless steel permeation cell with an effective surface area of 15.2 cm2. The system was stabilized for 2 hours before the collection of samples. Thereafter, permeate samples were collected by a cold trap immersed in liquid nitrogen. The samples were weighted. The sample compositions were analyzed with three parallel injections by a Hewlett-Packard GC 7890 A with a HP-INNOWAX column (packed with cross-linked polyethylene glycol) and a TCD detector. Finally, the data of flux and composition were averaged. The feed content varied less than 0.5 wt % during the entire experiment and can be therefore considered as constant during the experiment because of the large quantity of feed solution comparing to the permeate sample. The feed flow rate was maintained at 1.38 l/min. The operating temperature was room temperature (22±2° C.) unless stated otherwise. The permeate pressure was maintained at less than 3 mbar by a vacuum pump, unless it is stated. Flux and separation factors were calculated by the following equations:
where, J is the flux, Q is the total mass transferred over time t (hour), A the membrane area (m2),
The present examples in pervaporation application are intended to help illustrate the process of the present invention. The flux of permeate in all examples for acetic acid (AA) dehydration through the flat-sheet dense membranes is given in unit of g·μm/m2·hr, which is normalized by the membrane thickness.
Examples 1-4 demonstrate the pervaporation performance of the sulfonated PBI dense membranes with the effect of varying sulfuric acid concentration for the feed composition of AA/H2O (50/50 wt %). The post thermal treatment is carried at 450° C. for 30 seconds.
Sulfuric acid | Permeate | Flux | Separation factor | ||
concentration (wt %) | (AA wt %) | (g/m2hr) | (water/AA) | ||
original | 13.60 | 100 | 7 | ||
0 | 14.91 | 49 | 7 | ||
2.5 | 0.015 | 168 | 6631 | ||
5 | 0.014 | 138 | 7156 | ||
10 | 27.06 | 99 | 27 | ||
The results show the pervaporation performance of the dense PBI membranes in its neat form is quite poor. The separation factor is less than 10 and the total flux is about 100 g/m2hr. With sulfonation of the PBI membrane, both the flux and separation factor are significantly improved.
Examples 5-10 demonstrate the pervaporation performance with the effect of varying post thermal treatment duration after sulfonation, for pervaporation dehydration of acetic acid with the feed composition of AA/H2O (50/50 wt %). All PBI membranes were sulfonated in 2.5 wt % sulfuric acid solution for 2 hours before thermal treatment. The thermal treatment after the sulfonation stabilizes the sulfonated structure.
Thermal treatment | Permeate | Flux | Separation factor | ||
duration (seconds) | (AA wt %) | (g/m2hr) | (water/AA) | ||
0 | 3.247 | 96 | 30 | ||
10 | 6.309 | 110 | 46 | ||
20 | 0.016 | 124 | 6348 | ||
30 | 0.015 | 168 | 6631 | ||
60 | 0.019 | 201 | 5341 | ||
120 | 1.15 | 114 | 86 | ||
In Examples 11-16, the effect of feed composition on the normalized total flux and separation factor of the sulfonated PBI membranes is demonstrated with the pervaporation operation at room temperature. All PBI membranes were sulfonated with 2.5 wt % sulfuric acid solution for 2 hours and thermal treated at 450° C. for 30 seconds.
Feed composition | Perrneate | Flux | Separation factor | ||
(AA wt %) | (AA wt %) | (g/m2hr) | (water/AA) | ||
50 | 0.015 | 168 | 6631 | ||
60 | 0.022 | 151 | 6692 | ||
70 | 0.027 | 142 | 8825 | ||
80 | 0.030 | 121 | 13,000 | ||
90 | 0.036 | 98 | 24,000 | ||
95 | 0.040 | 86 | 39,000 | ||
The separation factor for feeds with 80 and 90 wt % of acetic acid are assigned an arbitrarily value of greater than 10,000 as the permeate contains less than 0.05 wt % of acetic acid. From the results, the separation factor generally increases with the increase in acetic acid concentration in the feed up to 90 wt % of acetic acid and then decreases slightly. On the other hand, the flux generally decreases for feed containing between 50 and 95 wt % of acetic acid.
In Examples 17-20, the effect of operating temperature on the normalized total flux and separation factor of the sulfonated PBI membranes is demonstrated with the feed composition of AA/water (50/50 wt %). All PBI membranes were sulfonated with 2.5 wt % sulfuric acid solution for 2 hours and thermal treated at 450° C. for 30 seconds. The total flux increases while separation factor decreases with the operational temperature.
Operation | Permeate | Flux | Separation factor | ||
temperature (° C.) | (AA wt %) | (g/m2hr) | (water/AA) | ||
25 | 0.0151 | 168 | 6631 | ||
40 | 0.0164 | 203 | 6215 | ||
60 | 0.0183 | 207 | 5461 | ||
80 | 0.0195 | 276 | 5110 | ||
The present invention may be embodied in other forms without departing from the spirit and the essential attributes thereof, and, accordingly, reference should be made to the appended claims, rather than to the foregoing specification, as indicating the scope of the invention.
Claims (6)
1. A method for the dehydration of an acid material comprising the steps of:
contacting an acidic aqueous solution with a membrane comprising an acid-resistant polybenzimidazole (PBI) being a PBI membrane chemically modified by a process selected from the group consisting of sulfonation, phosphonation, N-substitution, and/or combinations thereof, said acid-resistant PBI having a greater resistance to adsorbing an acidic solvent than a same non-acid-resistant PBI;
taking away a permeate stream rich in water; and
taking away a concentrate stream rich in the acid material.
2. The method of claim 1 wherein the membrane being contained in a membrane contactor.
3. The method of claim 1 wherein the acid-resistant PBI membrane further being cross-linked.
4. The method of claim 1 wherein the acidic aqueous solution comprising an organic acid.
5. The method of claim 1 wherein the acidic aqueous solution comprising acetic acid.
6. The method of claim 1 wherein the PBI membrane being chemically modified by a sulfonation process.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/212,512 USRE46720E1 (en) | 2012-05-25 | 2016-07-18 | Acid resistant PBI membrane for pervaporation dehydration of acidic solvents |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/480,522 US9283523B2 (en) | 2012-05-25 | 2012-05-25 | Acid resistant PBI membrane for pervaporation dehydration of acidic solvents |
US15/212,512 USRE46720E1 (en) | 2012-05-25 | 2016-07-18 | Acid resistant PBI membrane for pervaporation dehydration of acidic solvents |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/480,522 Reissue US9283523B2 (en) | 2012-05-25 | 2012-05-25 | Acid resistant PBI membrane for pervaporation dehydration of acidic solvents |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE46720E1 true USRE46720E1 (en) | 2018-02-20 |
Family
ID=49620765
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/480,522 Ceased US9283523B2 (en) | 2012-05-25 | 2012-05-25 | Acid resistant PBI membrane for pervaporation dehydration of acidic solvents |
US14/986,779 Active US9827532B2 (en) | 2012-05-25 | 2016-01-04 | Acid resistant PBI membrane for pervaporation dehydration of acidic solvents |
US15/212,512 Active 2032-10-25 USRE46720E1 (en) | 2012-05-25 | 2016-07-18 | Acid resistant PBI membrane for pervaporation dehydration of acidic solvents |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/480,522 Ceased US9283523B2 (en) | 2012-05-25 | 2012-05-25 | Acid resistant PBI membrane for pervaporation dehydration of acidic solvents |
US14/986,779 Active US9827532B2 (en) | 2012-05-25 | 2016-01-04 | Acid resistant PBI membrane for pervaporation dehydration of acidic solvents |
Country Status (7)
Country | Link |
---|---|
US (3) | US9283523B2 (en) |
EP (2) | EP2855000B1 (en) |
JP (2) | JP2015518781A (en) |
KR (2) | KR101918029B1 (en) |
CN (2) | CN106178997A (en) |
IN (1) | IN2014DN09968A (en) |
WO (1) | WO2013176818A1 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9283523B2 (en) * | 2012-05-25 | 2016-03-15 | Pbi Performance Products, Inc. | Acid resistant PBI membrane for pervaporation dehydration of acidic solvents |
US11959196B2 (en) * | 2015-07-06 | 2024-04-16 | Pbi Performance Products, Inc. | Phosphonated PBI fiber |
US10648107B2 (en) * | 2016-02-08 | 2020-05-12 | Pbi Performance Products, Inc. | Fabric containing PBI-p fiber |
WO2017143124A1 (en) * | 2016-02-19 | 2017-08-24 | Alliance For Sustainable Energy, Llc | Systems and methods for producing nitriles |
GB201609873D0 (en) * | 2016-06-06 | 2016-07-20 | Imp Innovations Ltd | Process |
JP6797632B2 (en) * | 2016-10-20 | 2020-12-09 | オルガノ株式会社 | Fluorine-containing water treatment method and treatment equipment |
CN111108145B (en) * | 2017-09-15 | 2023-09-15 | 大金工业株式会社 | Polybenzimidazole, its precursor polyamide and process for their production |
US11732385B2 (en) | 2018-04-30 | 2023-08-22 | Alliance For Sustainable Energy, Llc | Emulsion polymerization of nitriles and other compounds |
CN114057568B (en) * | 2020-07-29 | 2024-04-19 | 三达膜科技(厦门)有限公司 | Method for recycling dilute acetic acid water discharged from main device in production of refined terephthalic acid |
CN112552512B (en) * | 2020-12-09 | 2022-11-01 | 华南师范大学 | Polybenzimidazole derivative, preparation method thereof and application of polybenzimidazole derivative in cyclic adsorption of metal ions |
Citations (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE26065E (en) | 1966-07-19 | Folybenzimidazoles and their preparation | ||
US4506068A (en) * | 1983-03-21 | 1985-03-19 | Celanese Corporation | Two stage high molecular weight polybenzimidazole production with phosphorus containing catalyst |
JPS60106504A (en) | 1983-11-14 | 1985-06-12 | Daicel Chem Ind Ltd | Separation of aqueous solution of organic substance using membrane |
US4614586A (en) | 1982-08-09 | 1986-09-30 | Director-General Of Agency Of Industrial Science & Technology | Semipermeable polymeric film membrane |
US4634530A (en) | 1980-09-29 | 1987-01-06 | Celanese Corporation | Chemical modification of preformed polybenzimidazole semipermeable membrane |
US4814530A (en) * | 1987-09-03 | 1989-03-21 | Hoechst Celanese Corporation | Sintered polybenzimidazole article |
US4818387A (en) | 1984-06-15 | 1989-04-04 | Nitto Electric Industrial Co., Ltd. | Sulfonated polysulfone composite semipermeable membranes and process for producing the same |
US4933083A (en) * | 1985-04-15 | 1990-06-12 | Hoechst Celanese Corp. | Polybenzimidazole thin film composite membranes |
US5264171A (en) | 1991-12-31 | 1993-11-23 | Hoechst Celanese Corporation | Method of making spiral-wound hollow fiber membrane fabric cartridges and modules having flow-directing baffles |
US6248469B1 (en) * | 1997-08-29 | 2001-06-19 | Foster-Miller, Inc. | Composite solid polymer electrolyte membranes |
US20030159980A1 (en) * | 1999-03-19 | 2003-08-28 | Barss Robert P. | Solvent-resistant microporous polybenzimidazole membranes |
US20040262227A1 (en) * | 2001-06-19 | 2004-12-30 | Joachim Kiefer | Polyazole-based polymer films |
US6946015B2 (en) * | 2003-06-26 | 2005-09-20 | The Regents Of The University Of California | Cross-linked polybenzimidazole membrane for gas separation |
US20050256296A1 (en) * | 2002-08-29 | 2005-11-17 | Joachim Kiefer | Polymer film based on polyazoles, and uses thereof |
US20060021502A1 (en) * | 2004-07-28 | 2006-02-02 | Young Jennifer S | Cross-linked polybenzimidazole membrane for gas separation |
US20070087248A1 (en) * | 2005-10-18 | 2007-04-19 | Samsung Sdi Co., Ltd. | Proton conductive electrolyte membrane, method of preparing the same and fuel cell including the proton conductive electrolyte membrane |
US20070151926A1 (en) * | 2002-12-16 | 2007-07-05 | Gordon Calundann | High-molecular-weight polyazoles used as proton conducting membranes |
US7384552B2 (en) * | 2001-04-09 | 2008-06-10 | Basf Fuel Cell Gmbh | Proton-conducting membrane and the use thereof |
US20080308491A1 (en) * | 2005-09-14 | 2008-12-18 | Thomas Haring | Electrolyte |
US7550216B2 (en) * | 1999-03-03 | 2009-06-23 | Foster-Miller, Inc. | Composite solid polymer electrolyte membranes |
US7950529B2 (en) * | 2008-09-30 | 2011-05-31 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Separation membrane made from blends of polyimides with polyimidazoles |
US20110266222A1 (en) | 2010-04-29 | 2011-11-03 | Yan Wang | Polybenzimidazole-based membranes for the dehydration of organic liquids via pervaporation |
US20110311901A1 (en) * | 2010-05-31 | 2011-12-22 | Basf Se | Mechanically stabilized polyazoles |
US20120085233A1 (en) * | 2009-03-27 | 2012-04-12 | Uop Llc | Blend polymer membranes comprising thermally rearranged polymers derived from aromatic polyimides containing ortho-positioned functional groups |
US8277983B2 (en) * | 2002-09-13 | 2012-10-02 | Basf Fuel Cell Gmbh | Proton-conducting membrane and its use |
US8298450B2 (en) * | 2007-10-11 | 2012-10-30 | Samsung Electronics Co., Ltd. | Polybenzimidazole-base complex, crosslinked material of polybenzoxazines formed thereof, and fuel cell using the same |
US20120289654A1 (en) * | 2011-05-10 | 2012-11-15 | Basf Se | Mechanically stabilized polyazoles comprising at least one polyvinyl alcohol |
US20120305484A1 (en) * | 2011-06-03 | 2012-12-06 | Board Of Regents, The University Of Texas System | Thermally Rearranged (TR) Polymers as Membranes for Ethanol Dehydration |
US20130105383A1 (en) * | 2011-10-27 | 2013-05-02 | Nanyang Technological University | Nanofiltration-type thin film composite forward osmosis membrane and a method of synthesizing the same |
US8459469B2 (en) * | 2009-06-25 | 2013-06-11 | Uop Llc | Polybenzoxazole membranes prepared from aromatic polyamide membranes |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4020142A (en) | 1975-08-21 | 1977-04-26 | Celanese Corporation | Chemical modification of polybenzimidazole semipermeable |
JPS61200817A (en) * | 1985-02-28 | 1986-09-05 | Nitto Electric Ind Co Ltd | Production of sulfonated polysulfone composite semipermeable membrane |
JPS61204009A (en) * | 1985-03-08 | 1986-09-10 | Agency Of Ind Science & Technol | Membrane for separating liquid mixture |
US5143526A (en) | 1985-10-11 | 1992-09-01 | Sepracor, Inc. | Process of treating alcoholic beverages by vapor-arbitrated pervaporation |
JPS637803A (en) * | 1986-06-30 | 1988-01-13 | Agency Of Ind Science & Technol | Separation membrane for water/organic substance |
JPH04110028A (en) * | 1990-08-31 | 1992-04-10 | Daicel Chem Ind Ltd | Polyimide membrane for separating organic substance |
JPH10309449A (en) * | 1997-05-09 | 1998-11-24 | Daicel Chem Ind Ltd | Organic material separating polymer film and its manufacture |
CA2300519C (en) * | 1999-03-19 | 2008-02-12 | Bend Research, Inc. | Solvent-resistant microporous polybenzimidazole membranes |
DE102004005389A1 (en) | 2004-02-04 | 2005-08-25 | Sartorius Ag | Membranes for fuel cells, processes for producing the membranes and fuel cells using such membranes |
KR100684730B1 (en) * | 2004-10-14 | 2007-02-20 | 삼성에스디아이 주식회사 | Polymer electrolyte for direct oxidation fuel cell, method of preparing same and direct oxidation fuel cell comprising same |
JP4435745B2 (en) * | 2005-03-23 | 2010-03-24 | 三洋電機株式会社 | Fuel cell electrolyte, membrane electrode assembly, and method for producing fuel cell electrolyte |
CN101220164B (en) * | 2007-12-06 | 2010-06-02 | 上海交通大学 | Production method for maleic anhydride modified polybenzimidazole crosslinked membrane |
JP2011150789A (en) * | 2008-05-13 | 2011-08-04 | Sharp Corp | Membrane electrode assembly, and method for producing the same |
EP2401066B1 (en) * | 2009-02-25 | 2017-10-25 | Council of Scientific & Industrial Research | A polybenzimidazole based premembrane for deacidification; a process for the preparation of the membrane from the premembrane and a process of deacidification |
US9283523B2 (en) * | 2012-05-25 | 2016-03-15 | Pbi Performance Products, Inc. | Acid resistant PBI membrane for pervaporation dehydration of acidic solvents |
-
2012
- 2012-05-25 US US13/480,522 patent/US9283523B2/en not_active Ceased
-
2013
- 2013-04-24 JP JP2015514025A patent/JP2015518781A/en active Pending
- 2013-04-24 CN CN201610623848.9A patent/CN106178997A/en active Pending
- 2013-04-24 WO PCT/US2013/037901 patent/WO2013176818A1/en active Application Filing
- 2013-04-24 KR KR1020177023199A patent/KR101918029B1/en active IP Right Grant
- 2013-04-24 KR KR20147036055A patent/KR20150020594A/en active Application Filing
- 2013-04-24 EP EP13794187.8A patent/EP2855000B1/en active Active
- 2013-04-24 IN IN9968DEN2014 patent/IN2014DN09968A/en unknown
- 2013-04-24 EP EP19209906.7A patent/EP3653286A1/en active Pending
- 2013-04-24 CN CN201380027431.0A patent/CN104349834B/en active Active
-
2016
- 2016-01-04 US US14/986,779 patent/US9827532B2/en active Active
- 2016-07-18 US US15/212,512 patent/USRE46720E1/en active Active
- 2016-09-30 JP JP2016194075A patent/JP6240286B2/en active Active
Patent Citations (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE26065E (en) | 1966-07-19 | Folybenzimidazoles and their preparation | ||
US4634530A (en) | 1980-09-29 | 1987-01-06 | Celanese Corporation | Chemical modification of preformed polybenzimidazole semipermeable membrane |
US4614586A (en) | 1982-08-09 | 1986-09-30 | Director-General Of Agency Of Industrial Science & Technology | Semipermeable polymeric film membrane |
US4506068A (en) * | 1983-03-21 | 1985-03-19 | Celanese Corporation | Two stage high molecular weight polybenzimidazole production with phosphorus containing catalyst |
JPS60106504A (en) | 1983-11-14 | 1985-06-12 | Daicel Chem Ind Ltd | Separation of aqueous solution of organic substance using membrane |
US4818387A (en) | 1984-06-15 | 1989-04-04 | Nitto Electric Industrial Co., Ltd. | Sulfonated polysulfone composite semipermeable membranes and process for producing the same |
US4933083A (en) * | 1985-04-15 | 1990-06-12 | Hoechst Celanese Corp. | Polybenzimidazole thin film composite membranes |
US4814530A (en) * | 1987-09-03 | 1989-03-21 | Hoechst Celanese Corporation | Sintered polybenzimidazole article |
US5264171A (en) | 1991-12-31 | 1993-11-23 | Hoechst Celanese Corporation | Method of making spiral-wound hollow fiber membrane fabric cartridges and modules having flow-directing baffles |
US5352361A (en) | 1991-12-31 | 1994-10-04 | Hoechst Celanese Corporation | Spiral-wound hollow fiber membrane fabric cartridges and modules having flow-directing baffles |
US6248469B1 (en) * | 1997-08-29 | 2001-06-19 | Foster-Miller, Inc. | Composite solid polymer electrolyte membranes |
US7550216B2 (en) * | 1999-03-03 | 2009-06-23 | Foster-Miller, Inc. | Composite solid polymer electrolyte membranes |
US20040084365A1 (en) * | 1999-03-19 | 2004-05-06 | Barss Robert P. | Solvent-resistant microporous polybenzimidazole membranes and modules |
US6986844B2 (en) * | 1999-03-19 | 2006-01-17 | Bend Research, Inc. | Solvent-resistant microporous polybenzimidazole membranes and modules |
US20030159980A1 (en) * | 1999-03-19 | 2003-08-28 | Barss Robert P. | Solvent-resistant microporous polybenzimidazole membranes |
US7582210B2 (en) * | 2001-04-09 | 2009-09-01 | Basf Fuel Cell Gmbh | Proton-conducting membrane and use thereof |
US7384552B2 (en) * | 2001-04-09 | 2008-06-10 | Basf Fuel Cell Gmbh | Proton-conducting membrane and the use thereof |
US20040262227A1 (en) * | 2001-06-19 | 2004-12-30 | Joachim Kiefer | Polyazole-based polymer films |
US7485227B2 (en) * | 2001-06-19 | 2009-02-03 | Basf Fuel Cell Gmbh | Polyazole-based polymer films |
US20050256296A1 (en) * | 2002-08-29 | 2005-11-17 | Joachim Kiefer | Polymer film based on polyazoles, and uses thereof |
US20130012607A1 (en) * | 2002-09-13 | 2013-01-10 | Basf Fuel Cell Gmbh | Proton-conducting membrane and its use |
US8277983B2 (en) * | 2002-09-13 | 2012-10-02 | Basf Fuel Cell Gmbh | Proton-conducting membrane and its use |
US20070151926A1 (en) * | 2002-12-16 | 2007-07-05 | Gordon Calundann | High-molecular-weight polyazoles used as proton conducting membranes |
US6946015B2 (en) * | 2003-06-26 | 2005-09-20 | The Regents Of The University Of California | Cross-linked polybenzimidazole membrane for gas separation |
US6997971B1 (en) * | 2004-07-28 | 2006-02-14 | The Regents Of The University Of California | Cross-linked polybenzimidazole membrane for gas separation |
US20060021502A1 (en) * | 2004-07-28 | 2006-02-02 | Young Jennifer S | Cross-linked polybenzimidazole membrane for gas separation |
US20080308491A1 (en) * | 2005-09-14 | 2008-12-18 | Thomas Haring | Electrolyte |
US20070087248A1 (en) * | 2005-10-18 | 2007-04-19 | Samsung Sdi Co., Ltd. | Proton conductive electrolyte membrane, method of preparing the same and fuel cell including the proton conductive electrolyte membrane |
US8298450B2 (en) * | 2007-10-11 | 2012-10-30 | Samsung Electronics Co., Ltd. | Polybenzimidazole-base complex, crosslinked material of polybenzoxazines formed thereof, and fuel cell using the same |
US7950529B2 (en) * | 2008-09-30 | 2011-05-31 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Separation membrane made from blends of polyimides with polyimidazoles |
US20120085233A1 (en) * | 2009-03-27 | 2012-04-12 | Uop Llc | Blend polymer membranes comprising thermally rearranged polymers derived from aromatic polyimides containing ortho-positioned functional groups |
US8561812B2 (en) * | 2009-03-27 | 2013-10-22 | Uop Llc | Blend polymer membranes comprising thermally rearranged polymers derived from aromatic polyimides containing ortho-positioned functional groups |
US8459469B2 (en) * | 2009-06-25 | 2013-06-11 | Uop Llc | Polybenzoxazole membranes prepared from aromatic polyamide membranes |
US20110266222A1 (en) | 2010-04-29 | 2011-11-03 | Yan Wang | Polybenzimidazole-based membranes for the dehydration of organic liquids via pervaporation |
US20110311901A1 (en) * | 2010-05-31 | 2011-12-22 | Basf Se | Mechanically stabilized polyazoles |
US20120289654A1 (en) * | 2011-05-10 | 2012-11-15 | Basf Se | Mechanically stabilized polyazoles comprising at least one polyvinyl alcohol |
US20120305484A1 (en) * | 2011-06-03 | 2012-12-06 | Board Of Regents, The University Of Texas System | Thermally Rearranged (TR) Polymers as Membranes for Ethanol Dehydration |
US20130105383A1 (en) * | 2011-10-27 | 2013-05-02 | Nanyang Technological University | Nanofiltration-type thin film composite forward osmosis membrane and a method of synthesizing the same |
Non-Patent Citations (6)
Title |
---|
Chemical Engineering Handbook, 5th ed., McGraw-Hill Book Company, (NYC, NY), (1973), Fig. 17-38. |
M. Cheryan, Ultrafiltration Handbook, Technomic Publishing Co. (Lancaster, PA), (p. 127-168), (1986). |
Membrane Technology, 1998-2009 Lenntech Water Treatment & Purification Holding B.V. Delft, The Netherlands (www.lenntech.com). |
R. E. Kesting, Synthetic Polymeric Membranes, 2nd ed., John Wiley & Sons (NYC, NY), (p. 10-14), (1985). |
T. S. Chung, (slide @plenary discussion), NAMS (North American Membrane Society) Conference, Las Vegas, NV, Jun. 6, 2011. |
Y. Wang et al., "Pervaporation dehydration of ethylene glycol through polybenzimidazole (PBI)-based membranes. 1. Membrane fabrication," J. Membr. Sci., (vol. 363), (p. 149-159), (2010). |
Also Published As
Publication number | Publication date |
---|---|
KR20150020594A (en) | 2015-02-26 |
IN2014DN09968A (en) | 2015-08-14 |
EP2855000A1 (en) | 2015-04-08 |
US20130313192A1 (en) | 2013-11-28 |
JP2015518781A (en) | 2015-07-06 |
US9283523B2 (en) | 2016-03-15 |
JP6240286B2 (en) | 2017-11-29 |
EP2855000A4 (en) | 2016-03-09 |
US9827532B2 (en) | 2017-11-28 |
EP2855000B1 (en) | 2020-04-01 |
KR101918029B1 (en) | 2018-11-13 |
US20160114291A1 (en) | 2016-04-28 |
CN106178997A (en) | 2016-12-07 |
JP2017039129A (en) | 2017-02-23 |
KR20170098982A (en) | 2017-08-30 |
CN104349834A (en) | 2015-02-11 |
CN104349834B (en) | 2016-12-21 |
EP3653286A1 (en) | 2020-05-20 |
WO2013176818A1 (en) | 2013-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE46720E1 (en) | Acid resistant PBI membrane for pervaporation dehydration of acidic solvents | |
US7556677B2 (en) | Solvent resistant asymmetric integrally skinned membranes | |
US10471397B2 (en) | High performance facilitated transport membranes for olefin/paraffin separations | |
US10071345B2 (en) | Polybenzimidazole hollow fiber membranes and method for making an asymmetric hollow fiber membrane | |
US8394176B2 (en) | Polyimide gas separation membrane and gas separation method | |
US20110266222A1 (en) | Polybenzimidazole-based membranes for the dehydration of organic liquids via pervaporation | |
Wang | Pervaporation dehydration of ethyl acetate via PBI/PEI hollow fiber membranes | |
Mansourizadeh et al. | A comparative study on the structure of developed porous PVDF and PEI hollow fiber membrane contactors for CO 2 absorption | |
CA2655899A1 (en) | Separation process using aromatic-selective polymeric membranes | |
US20210370239A1 (en) | Polymer layered hollow fiber membrane based on poly(2,5-benzimidazole), copolymers and substituted polybenzimidazole | |
CN110681266B (en) | Method for separating small molecule solvent in aprotic polar solvent | |
US20170095768A1 (en) | Asymmetric gas separation membrane, and methods for separating and recovering gases | |
JPS63209730A (en) | Process for separating steam | |
JP5077257B2 (en) | Polyimide gas separation membrane and gas separation method | |
JP2010202864A (en) | New polyimide | |
WO2012060229A1 (en) | Method for condensing carbon dioxide | |
JP5120345B2 (en) | Polyimide gas separation membrane and gas separation method | |
CA2532573C (en) | Solvent resistant asymmetric integrally skinned membranes | |
JP5120344B2 (en) | Polyimide gas separation membrane and gas separation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |