USRE32180E - Composite sheets constituting electromechanical transducers and transducers equipped with such sheets - Google Patents
Composite sheets constituting electromechanical transducers and transducers equipped with such sheets Download PDFInfo
- Publication number
- USRE32180E USRE32180E US06/672,139 US67213984A USRE32180E US RE32180 E USRE32180 E US RE32180E US 67213984 A US67213984 A US 67213984A US RE32180 E USRE32180 E US RE32180E
- Authority
- US
- United States
- Prior art keywords
- foil
- monitor
- electrodes
- piezoelectric
- iaddend
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 34
- 239000011888 foil Substances 0.000 claims abstract description 127
- 230000001681 protective effect Effects 0.000 claims abstract description 21
- 208000008784 apnea Diseases 0.000 claims abstract description 7
- 230000026683 transduction Effects 0.000 claims abstract description 4
- 238000010361 transduction Methods 0.000 claims abstract description 4
- 238000012544 monitoring process Methods 0.000 claims description 13
- 238000004026 adhesive bonding Methods 0.000 claims description 8
- 230000008827 biological function Effects 0.000 claims description 5
- 230000002441 reversible effect Effects 0.000 claims description 4
- 239000000853 adhesive Substances 0.000 claims description 3
- 230000008021 deposition Effects 0.000 claims description 3
- 230000005684 electric field Effects 0.000 claims description 3
- 238000000034 method Methods 0.000 claims description 2
- 239000012780 transparent material Substances 0.000 claims description 2
- 230000000994 depressogenic effect Effects 0.000 claims 2
- 230000001020 rhythmical effect Effects 0.000 claims 2
- 238000010276 construction Methods 0.000 claims 1
- 230000002708 enhancing effect Effects 0.000 claims 1
- 239000000126 substance Substances 0.000 claims 1
- 239000000463 material Substances 0.000 description 8
- 239000010410 layer Substances 0.000 description 6
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 125000004122 cyclic group Chemical group 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 238000001465 metallisation Methods 0.000 description 2
- -1 polypropylene Polymers 0.000 description 2
- 230000029058 respiratory gaseous exchange Effects 0.000 description 2
- 239000004812 Fluorinated ethylene propylene Substances 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 229920009441 perflouroethylene propylene Polymers 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 230000033764 rhythmic process Effects 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6887—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient mounted on external non-worn devices, e.g. non-medical devices
- A61B5/6892—Mats
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/1036—Measuring load distribution, e.g. podologic studies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
- A61B5/113—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb occurring during breathing
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/30—Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
- H10N30/302—Sensors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/02—Details of sensors specially adapted for in-vivo measurements
- A61B2562/0247—Pressure sensors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S310/00—Electrical generator or motor structure
- Y10S310/80—Piezoelectric polymers, e.g. PVDF
Definitions
- the invention relates to composite sheets constituting electromechanical transducers and more particularly those, of these sheets, which have a certain flexibility and extend over a relatively large area, this area being preferably of the order of several square decimeters.
- the invention is also directed to transducers equipped with such composite sheets.
- transducers permit the transformation into variations of an electrical voltage, of the pressure variations which are exerted locally on the sheet and/or the local deformations of this sheet.
- the composite sheets concerned comprise essentially for this purpose a dielectric foil "sensitive" to pressure in the sense of electromechanical transduction, which foil is permanently electrically charged or carries a permanent electrical polarisation, interposed between two electrodes or electrically conducting films themselves covered externally with two protective foils, and the transducers equipped with these composite sheets include, in addition to the latter, electrical exploitation means and possibly warning means connected to the two electrodes of said composite sheets.
- transducers to which the invention relates preferably, but not exclusively, is the detection of apnea, the monitoring of the biologic functions (respiration, cardiac rhythm, . . . ), particularly in nurslings.
- Draw-sheets or undersheets are constituted for this purpose, by means of the composite sheets concerned, which are interposed between a mattress and the subject to be watched, lying down, sitting or supported on the mattress: the respiratory movements of this subject cause cyclic local variations in the pressure exterted on this draw-sheet, which variations are manifested by similar cyclic variations of an electrical voltage, and the exploitation means are arranged so as to activate the alarm when said cyclic variations of voltage cease for a time which exceeds a threshold estimated as dangerous or having a form differing excessively from a form considered as normal.
- composite sheets of the above type are essentially characterized in that they comprise, between the sensitive foil and one of the protective foils, separating shims of which the two opposite surfaces are glued respectively to the two adjacent facing areas.
- the shims are directly interposed between this sensitive foil and one of the two electrodes, which forms chambers bounded by this electrode, this sensitive foil and these shims,
- the sensitive foil is a permanently electrically polarized piezo-electrical foil and interposed contiguously between the two electrodes
- the shims are directly interposed between one of these electrodes and the corresponding external protective foil, which forms chambers bounded by this electrode, this protective foil and these shims,
- the shims are made self-adhesive on their two surfaces
- the areas to which the shims are glued are previously treated so as to facilitate this adhesion, notably by electronic or ionic bombardment, or again by the deposition of a thin layer of a material, such as chromium, offering a good grip to the glues,
- the shims are constituted by a grid
- the shims are constituted by a perforated continuous foil
- the shims are constituted by parallel strips
- the shims are constituted by spaced studs
- the shims have a thickness comprised between 0.1 and 1 mm, a width comprised between 1 and 10 mm and a mutual spacing comprised between 5 and 100 mm,
- the composite sheet constitutes a rectangular undersheet for nurslings of which one of the sides is comprised between 10 and 30 cm and the other side between 20 and 50 cm.
- the invention comprises, apart from these main features, certain other features which are preferably used at the same time and which will be more explicitly considered below.
- FIG. 1 of these drawings shows in perspective view, with portions broken away, one embodiment of a draw-sheet constructed according to the invention.
- FIG. 2 shows on a larger scale, in cross-section, a portion of this draw-sheet.
- FIG. 3 shows on a still larger scale, in cross-section, a detail of said portion.
- FIG. 4 shows similarly to FIG. 2 a modification of a portion of a draw-sheet also according to the invention.
- Electrodes Included in the pad or draw-sheet A is a dielectric foil 1 interposed between two foils, films or elecrically conducting layers 2 and 3, denoted below by the word "electrodes”.
- the foil 1 is selected so that it is "sensitive” in the sense of electromechanical transduction, that is to say that it is capable of converting the pressure variations applied locally to it into variations of the electrical voltage collected at the terminals of the two electrodes 2 and 3.
- foil 1 is advantageously constituted of a plastics material such as polypropylene, P.T.F.E., poly(fluorinated ethylene-propylene) or again a polymer or copolymer based on polyvinylidene fluoride, its thickness being preferably comprised between 5 and 50 microns.
- a plastics material such as polypropylene, P.T.F.E., poly(fluorinated ethylene-propylene) or again a polymer or copolymer based on polyvinylidene fluoride, its thickness being preferably comprised between 5 and 50 microns.
- This foil 1 is permanently electrically polarized or is permanently electrically charged at least in the vicinity of 1 1 of its surfaces, by positive and/or negative charges which are shown diagrammatically by the sign--in FIG. 2.
- the foil 1 creates an external electrical field and it is kept separated, at least in part, from one of the electrodes 3 by insulating gaps, as is visible in FIG. 2.
- the foil 1 In the other case (permanent electrical polarization), shown diagrammatically in FIG. 4, the foil 1 possesses piezo-electrical properties and it is contiguously enveloped by the two electrodes 2 and 3.
- Each of the electrodes 2 and 3 is advantageously constituted by surface metallization of a foil of plastics material.
- the two electrodes 2 and 3 are attached respectively to the two surfaces of this foil 1.
- the assembly of the three foils 1, 2 and 3 is itself positioned between two external protective foils 5 and 6, whose thickness is advantageously comprised between 0.1 and 0.5 mm, constituted of an electrically insulating flexible material.
- protective foils 5 and 6 extend beyond the assembly of the three foils 1, 2 and 3 and their projecting margins 7 and 8 (FIG. 1) are assembled against one another so as to provide a seal with respect to impurities, notably by gluing or heat welding.
- the draw-sheet A formed by the flexible sheet composed of the superposed foils 1, 2, 3, 5 and 6, has the general shape of a rectangle whose sides measure repectively between 10 and 30 cm and between 20 and 50 cm when used as a draw-sheet for nurslings.
- Each of the electrodes 2 and 3 is connected by means of leads 9 and 10 to a suitable exploitation or output unit 11--advantageously of an electronic type with C-MOS circuits--adapted to activate a sound, visual or the like alarm device 12.
- the activation of the warning system 12 is automatically ensured when the oscillations, of the voltage between the electrodes 2 and 3, due to the normal respiration of said subject, are interruped for a period longer than a predetemined threshold, which can be adjusted at will and can be equal, for example, to 10 or 30 seconds or have a form departing to an excessive extent from a form considered as normal.
- the shims 13 concerned may be formed of any desirable shapes and materials.
- They can be in the form of grids or trellises formed from flat crossed elements united preferably at their crossing points so as not to create local overthicknesses, or again in the form of a perforated continuous foil, or in that of parallel flat strips, or of spaced flat studs, of square, rectangular, circular of the like cross-section.
- Their constituent material may be insulating or electrically conducting: it is then selected so that the shims do not run the risk of tearing the flexible foils against which they are glued.
- Such a layer is advantageously applied in advance on each shim 13 surface, for example by spraying, so that the positioning of these shims may be very easily effected by self-adhesion.
- the electrodes 2, 3 and adhesive layers 14 have been represented by thick lines in FIG. 2 and 4: FIG. 3 on a larger scale enables them to be seen best.
- the shims 13 are directly inserted between the charged surface 1 1 of this foil and the facing electrode 3: it is these shims which hold surface 1 1 spaced from the electrode 3 and bound between them well defined chambers or compartments 15.
- the shims 13 are interposed directly between one, 3, of the electrodes attached against this foil 1 and the corresponding protective foil 6, again defining between these elements well defined chambers or compartments 16.
- the variations of the distance between the charged surface 1 1 and the facing electrode 3 are due exclusively to the deformations, of this electret and/or of this electrode, which develope at the level of the different compartments 15 defined between successive shims: in other words, there is no question here that the individual distortions exploited for monitoring purposes involve surface portions, of the composite sheet, covering pluralities of neighbouring shims, even variable numbers of such shims, as would be the case if there were a possiblity of ungluing between these shims and the areas of the foil against which they are juxtaposed;
- the pressure variations exerted locally on the foil 1 are manifested by elastically reversible depressions of the portions, of this foil, positioned opposite the compartments 16, within these compartments, which lengthens, and hence thins these portions: it is especially these reversible thinnings which are converted into electrical variations exploited for monitoring purposes; due to the gluing concerned, said thinnings correspond only the depressions indicated whereas an absence of gluing of the shims would make possible slippages of the foil along these shims, able to denature the characteristics of these depressions.
- the spacing shims could be formed by molding with one of the foils against which they are intended to be glued, constituting, for example, projecting ribs on the inner surface in FIG. 4.
- the spacing shims could be arranged so as to permit a flow of air on the outside of the composite sheet to the cavities 15 and in the reverse direction.
- any one of the two composite structures described above could be double:
- the two outer electrodes of the "doubled" structure obtained may be connected together and constitute an electrostatic shielding for the composite sheet.
- the various layers of the composite sheet may be constituted of transparent materials, so that the composite sheet is itself transparent.
- the electrodes 2 and 3 are divided into several electrically disjointed areas, so as to permit localisation on the composite sheet of the region which is deformed and where the pressure is exerted.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Physics & Mathematics (AREA)
- Veterinary Medicine (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Dentistry (AREA)
- Physiology (AREA)
- Laminated Bodies (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
.[.The invention relates to a flexible composite sheet designed to constitute an undersheet behaving as an electromechanical transducer in order to detect the apnea of subjects lying on it. This sheet comprises, in addition to a foil sensitive to pressure in the sense of electromechanical transduction (an electret or polarized piezoelectric foil), two film electrodes and two protective foils. Spacing shims are glued to the two foils against which they are juxtaposed. When the sensitive foil is an electret, the shims are directly interposed between the sensitive foil and one of the two electrodes. When the sensitive foil is a polarized piezo-electric foil, the shims are directly interposed between one of the electrodes and the corresponding external protective foil..]. .Iadd.An apnea monitor/alarm consists of an electronic monitor circuit to actuate an alarm responsive to the output of a sheet-like electromechanical transducer. The transducer consists of an electret or polarized piezoelectric foil responsive to pressure to generate corresponding electrical signals, two film electrodes, and two protective foils. Shims are glued to two of the foils for spacing. If an electret sensor foil is used, the shims are directly interposed between the sensitive foil and one of the electrodes. If the sensitive foil is a polarized piezoelectric foil, the shims are directly interposed between one of the electrodes and the corresponding external protective foil. .Iaddend.
Description
The invention relates to composite sheets constituting electromechanical transducers and more particularly those, of these sheets, which have a certain flexibility and extend over a relatively large area, this area being preferably of the order of several square decimeters.
The invention is also directed to transducers equipped with such composite sheets.
It is known that these transducers permit the transformation into variations of an electrical voltage, of the pressure variations which are exerted locally on the sheet and/or the local deformations of this sheet.
The composite sheets concerned comprise essentially for this purpose a dielectric foil "sensitive" to pressure in the sense of electromechanical transduction, which foil is permanently electrically charged or carries a permanent electrical polarisation, interposed between two electrodes or electrically conducting films themselves covered externally with two protective foils, and the transducers equipped with these composite sheets include, in addition to the latter, electrical exploitation means and possibly warning means connected to the two electrodes of said composite sheets.
An interesting application of these transducers, to which the invention relates preferably, but not exclusively, is the detection of apnea, the monitoring of the biologic functions (respiration, cardiac rhythm, . . . ), particularly in nurslings.
Draw-sheets or undersheets are constituted for this purpose, by means of the composite sheets concerned, which are interposed between a mattress and the subject to be watched, lying down, sitting or supported on the mattress: the respiratory movements of this subject cause cyclic local variations in the pressure exterted on this draw-sheet, which variations are manifested by similar cyclic variations of an electrical voltage, and the exploitation means are arranged so as to activate the alarm when said cyclic variations of voltage cease for a time which exceeds a threshold estimated as dangerous or having a form differing excessively from a form considered as normal.
It is a particular object of the invention to improve the fidelity and reliability of transducers of the type concerned.
To this end, composite sheets of the above type are essentially characterized in that they comprise, between the sensitive foil and one of the protective foils, separating shims of which the two opposite surfaces are glued respectively to the two adjacent facing areas.
In preferred embodiments, recourse is had in addition to one and/or the other of the following features:
in the case where the sensitive foil is permanently electrically charged and creates an external electrical field, the shims are directly interposed between this sensitive foil and one of the two electrodes, which forms chambers bounded by this electrode, this sensitive foil and these shims,
in the case where the sensitive foil is a permanently electrically polarized piezo-electrical foil and interposed contiguously between the two electrodes, the shims are directly interposed between one of these electrodes and the corresponding external protective foil, which forms chambers bounded by this electrode, this protective foil and these shims,
the shims are made self-adhesive on their two surfaces,
the areas to which the shims are glued are previously treated so as to facilitate this adhesion, notably by electronic or ionic bombardment, or again by the deposition of a thin layer of a material, such as chromium, offering a good grip to the glues,
the shims are constituted by a grid,
the shims are constituted by a perforated continuous foil,
the shims are constituted by parallel strips,
the shims are constituted by spaced studs,
the shims have a thickness comprised between 0.1 and 1 mm, a width comprised between 1 and 10 mm and a mutual spacing comprised between 5 and 100 mm,
the composite sheet constitutes a rectangular undersheet for nurslings of which one of the sides is comprised between 10 and 30 cm and the other side between 20 and 50 cm.
The invention comprises, apart from these main features, certain other features which are preferably used at the same time and which will be more explicitly considered below.
In the following, two preferred embodiments of the invention will be described with reference to the accompanying drawings, given, of course, as non-limiting Examples.
FIG. 1 of these drawings, shows in perspective view, with portions broken away, one embodiment of a draw-sheet constructed according to the invention.
FIG. 2 shows on a larger scale, in cross-section, a portion of this draw-sheet.
FIG. 3 shows on a still larger scale, in cross-section, a detail of said portion.
FIG. 4 shows similarly to FIG. 2 a modification of a portion of a draw-sheet also according to the invention.
Included in the pad or draw-sheet A is a dielectric foil 1 interposed between two foils, films or elecrically conducting layers 2 and 3, denoted below by the word "electrodes".
The foil 1 is selected so that it is "sensitive" in the sense of electromechanical transduction, that is to say that it is capable of converting the pressure variations applied locally to it into variations of the electrical voltage collected at the terminals of the two electrodes 2 and 3.
To this end, foil 1 is advantageously constituted of a plastics material such as polypropylene, P.T.F.E., poly(fluorinated ethylene-propylene) or again a polymer or copolymer based on polyvinylidene fluoride, its thickness being preferably comprised between 5 and 50 microns.
This foil 1 is permanently electrically polarized or is permanently electrically charged at least in the vicinity of 11 of its surfaces, by positive and/or negative charges which are shown diagrammatically by the sign--in FIG. 2.
In the latter case (permanent electrical charge), the foil 1 creates an external electrical field and it is kept separated, at least in part, from one of the electrodes 3 by insulating gaps, as is visible in FIG. 2.
In the other case (permanent electrical polarization), shown diagrammatically in FIG. 4, the foil 1 possesses piezo-electrical properties and it is contiguously enveloped by the two electrodes 2 and 3.
Each of the electrodes 2 and 3 is advantageously constituted by surface metallization of a foil of plastics material.
In the case of the charged sensitive foil (FIG. 2), one 2 of these electrodes is attached to this foil 1 whilst the other electrode 3, held slightly separated from said foil 1 by any desirable means, is attached to an additional plastics foil 4.
In the case of the polarized sensitive foil 1 (FIG. 4), the two electrodes 2 and 3 are attached respectively to the two surfaces of this foil 1.
The assembly of the three foils 1, 2 and 3 is itself positioned between two external protective foils 5 and 6, whose thickness is advantageously comprised between 0.1 and 0.5 mm, constituted of an electrically insulating flexible material.
These protective foils 5 and 6 extend beyond the assembly of the three foils 1, 2 and 3 and their projecting margins 7 and 8 (FIG. 1) are assembled against one another so as to provide a seal with respect to impurities, notably by gluing or heat welding.
The draw-sheet A, formed by the flexible sheet composed of the superposed foils 1, 2, 3, 5 and 6, has the general shape of a rectangle whose sides measure repectively between 10 and 30 cm and between 20 and 50 cm when used as a draw-sheet for nurslings.
Each of the electrodes 2 and 3 is connected by means of leads 9 and 10 to a suitable exploitation or output unit 11--advantageously of an electronic type with C-MOS circuits--adapted to activate a sound, visual or the like alarm device 12.
For the application of the pad or draw-sheet A concerned with the detection of apnea of a subject resting of this draw-sheet, the activation of the warning system 12 is automatically ensured when the oscillations, of the voltage between the electrodes 2 and 3, due to the normal respiration of said subject, are interruped for a period longer than a predetemined threshold, which can be adjusted at will and can be equal, for example, to 10 or 30 seconds or have a form departing to an excessive extent from a form considered as normal.
There is provided, in addition, according to the invention, a plurality of separating shims 13 interposed between the sensitive foil 1 and one, 6, of the outer protective foils, the two opposite surfaces of the shims being glued respectively to the areas of foil against which they are juxtaposed.
The shims 13 concerned may be formed of any desirable shapes and materials.
They can be in the form of grids or trellises formed from flat crossed elements united preferably at their crossing points so as not to create local overthicknesses, or again in the form of a perforated continuous foil, or in that of parallel flat strips, or of spaced flat studs, of square, rectangular, circular of the like cross-section.
Their constituent material may be insulating or electrically conducting: it is then selected so that the shims do not run the risk of tearing the flexible foils against which they are glued.
With this same aim of avoiding such tears, it will be advantageous in certain cases to avoid too sharp edges or points on the shims.
The dimensions of these shims 13, considered in a plane perpendicular to that of the composite sheet such as that in which FIG. 3 is traced, are preferably comprised
between 0.1 and 1 mm for the thickness,
between 1 and 10 mm for the width,
and between 5 and 100 mm for the mutual spacing.
The gluing of the shims 13 against the facing foil areas is ensured by means of a thin layer of adhesive material 14.
Such a layer is advantageously applied in advance on each shim 13 surface, for example by spraying, so that the positioning of these shims may be very easily effected by self-adhesion.
In view of their very slight thicknesses, for example of the order of some tenths of microns, the electrodes 2, 3 and adhesive layers 14 have been represented by thick lines in FIG. 2 and 4: FIG. 3 on a larger scale enables them to be seen best.
To facilitate the gluing of the shims 13 to the facing foil areas, it may be advantageous to treat these areas previously, notably by electronic or ionic (electrical discharge) bombardment, or again by local deposition (under vacuum or otherwise) of a thin layer of a material, such as chromium, offering good compatibility with the glues.
In the first embodiment relating to the use of a charged sensitive foil 1, which has been illustrated in FIGS. 2 and 3, the shims 13 are directly inserted between the charged surface 11 of this foil and the facing electrode 3: it is these shims which hold surface 11 spaced from the electrode 3 and bound between them well defined chambers or compartments 15.
In the second embodiment relating to the use of a polarised piezoelectric foil 1, which has been illustrated in FIG. 4, the shims 13 are interposed directly between one, 3, of the electrodes attached against this foil 1 and the corresponding protective foil 6, again defining between these elements well defined chambers or compartments 16.
In each case, the double gluing of the shims according to the invention ensures a particularly accurate operation of the transducer:
in the first case, it is certain that the variations of the distance between the charged surface 11 and the facing electrode 3 are due exclusively to the deformations, of this electret and/or of this electrode, which develope at the level of the different compartments 15 defined between successive shims: in other words, there is no question here that the individual distortions exploited for monitoring purposes involve surface portions, of the composite sheet, covering pluralities of neighbouring shims, even variable numbers of such shims, as would be the case if there were a possiblity of ungluing between these shims and the areas of the foil against which they are juxtaposed;
in the second case, the pressure variations exerted locally on the foil 1 are manifested by elastically reversible depressions of the portions, of this foil, positioned opposite the compartments 16, within these compartments, which lengthens, and hence thins these portions: it is especially these reversible thinnings which are converted into electrical variations exploited for monitoring purposes; due to the gluing concerned, said thinnings correspond only the depressions indicated whereas an absence of gluing of the shims would make possible slippages of the foil along these shims, able to denature the characteristics of these depressions.
As is itself evident, and as emerges besides from the foregoing, the invention is in no way limited to those of its methods of application and embodiments which have been more especially contemplated; it encompasses, on the contrary, all modifications.
In particular, the spacing shims could be formed by molding with one of the foils against which they are intended to be glued, constituting, for example, projecting ribs on the inner surface in FIG. 4.
In the same way, the spacing shims could be arranged so as to permit a flow of air on the outside of the composite sheet to the cavities 15 and in the reverse direction.
Similarly, any one of the two composite structures described above could be double:
it would be possible for this purpose to let comprise in common the electrode 3 of FIG. 2 by two structures of the type illustrated in said FIG. 2 and to apply symetrically two shim-electret-other electrode-protective foil assemblies to respectively the two surfaces of this electrode 3, the latter then being itself splitable and constituted by metallisation of the two surfaces of the additional foil 4,
it would also be possible to apply to each of the surfaces of the shims 13 of FIG. 4 the assembly of a foil 1 metallised on its two surfaces and coated externally with a protective sheet.
In each of these two latter modifications, the two outer electrodes of the "doubled" structure obtained may be connected together and constitute an electrostatic shielding for the composite sheet.
In another modification, the various layers of the composite sheet may be constituted of transparent materials, so that the composite sheet is itself transparent.
In another modification, the electrodes 2 and 3 are divided into several electrically disjointed areas, so as to permit localisation on the composite sheet of the region which is deformed and where the pressure is exerted.
Claims (17)
1. Relatively flexible and extended composite sheet, constituting an electromechanical transducer and comprising a foil sensitive to pressure in the sense of electromechanical transduction, said pressure sensitive foil being interposed between two conductive foils or electrodes themselves covered exeternally with protective foils, said composite sheet also comprising, between the pressure sensitive foil and one of the protective foils, spacing shims of which the two opposite surfaces are glued respectively to the two opposite adjacent areas.
2. Sheet according to claim 1, wherein the sensitive foil is permanently electrically charged and creates an external electrical field, and the shims are directly interposed between said sensitive foil and one of the two electrodes.
3. Sheet according to claim 1, wherein the sensitive foil comprises a piezo-electric foil permanently electrically polarized and interposed contiguously between the two electrodes, the shims are directly interposed between one of these electrodes and the corresponding external protective foil.
4. Sheet according to claim 1, wherein the shims re self-adhesive on the said surfaces.
5. Sheet according to claim 1, wherein the areas on which the shims are glued are treated previously so as to facilitate this gluing.
6. Sheet according to claim 5, wherein said previous treatment is by electrical discharge.
7. Sheet according to claim 5, wherein said previous treatment comprises deposition of a thin layer of a suitable substance for enhancing said gluing.
8. Sheet according to claim 1, wherein the shims have a thickness comprised between 0.1 and 1 mm, a width comprised between 1 and 10 mm and a mutual spacing comprised between 5 and 100 mm.
9. Rectangular mattress construction incorporating a composite sheet according to claim 1, whose sides are comprised respectively between 10 and 30 cm and between 20 and 50 cm.
10. Sheet according to claim 1, wherein the various layers are constituted of transparent materials.
11. Electromechanical transducer comprising a composite sheet according to claim 1, and output means connected electrically to the two electrodes of said sheet.
12. Electrochemical transducer according to claim 11, including alarm means connected to said output means so as to activated thereby. .Iadd.
13. An Apnea monitor comprising:
a composite sheet of sufficient area to underlie a baby comprising:
a piezoelectric foil;
electrodes covering opposite surfaces of said piezoelectric foil;
cover layers overlying each of said electrodes; and
spacing means, located between one of said cover layers and the corresponding electrode and affixed to said one cover layer and said corresponding electrode at a plurality of locations, for providing a plurality of compartments between said one cover layer and said corresponding electrode such that portions of the piezoelectric foil which lie adjacent these compartments will be reversibly lengthened when a pressure force is applied to the composite sheet at the corresponding compartments, said compartments being distributed substantially uniformly over the area of said piezoelectric foil; and
a monitor means, connected to said electrodes, for monitoring electrical signals produced in response to changes in the piezoelectric foil, whereby rhythmic movements of a baby will rhythmically lengthen and relax said portions of said piezoelectric foil so as to produce an electrical signal in response to said rhythmic movements which is monitored by said monitor means. .Iaddend. .Iadd.14. An Apnea monitor as claimed in claim 13, wherein said monitor means includes alarm means for producing an alarm output when the electrical signal monitored by said monitor means is interrupted for a period longer than a predetermined threshold period.
.Iaddend. .Iadd.15. An Apnea monitor comprising:
a sheet of piezoelectric foil of sufficient area to underlie a baby;
electrodes covering opposite surfaces of said foil;
means providing a spaced shim support for portions of said foil while leaving other portions unsupported, and shim support being adhesively secured to one of the electrodes;
the unsupported portions being distributed substantially uniformly over the area of said foil;
a monitor;
and leads connecting said electrodes to said monitor;
whereby the biological functions of a baby will rhythmically lengthen and relax said unsupported portions of said foil to produce a signal, corresponding to said biological functions, on said electrodes which is transmitted to said monitor. .Iaddend. .Iadd.16. A monitor for monitoring biological movements of a living being, said monitor comprising:
(a) a composite sheet comprising:
a relatively flexible piezoelectric foil:
a pair of electrode members located on opposite sides of said piezoelectric foil;
a cover member overlying at least one of said electrode members; and
spacing means, located between the piezoelectric foil and one of said members, for providing a plurality of spaces between said piezoelectric foil and said one member such that a portion of the piezoelectric foil which lies adjacent a said space will be reversibly lengthened and thinned when a pressure force is applied to said composite sheet at the corresponding space; and
(b) a monitor means, connected to said electrodes, for monitoring electrical signals produced in response to changes in the piezoelectric foil whereby biological movements of the living being will lengthen and relax at least some of said portions of said piezoelectric foil so as to produce an electrical signal in response to said movements which is monitored by said monitor means. .Iaddend. .Iadd.17. A monitor as claimed in claim 16 wherein at least one surface of said spacing means is secured to the surface adjacent thereto. .Iaddend. .Iadd.18. A monitor as claimed in claim 16 wherein said electrode members comprise metallic foils secured to opposite surfaces of said piezoelectric foil and said cover member comprises a protective foil, said spacing means being secured to one of said electrode foils and to said protective foil. .Iaddend. .Iadd.19. A monitor as claimed in claim 16 wherein said spaces comprises chambers distributed substantially uniformly over the area of said piezoelectric foil. .Iaddend. .Iadd.20. A monitor as claimed in claim 16, wherein said monitor means includes alarm means for producing an alarm output when the electrical signal monitored by said monitor means is interrupted for a
period longer than a predetermined threshold period. .Iaddend. .Iadd.21. A monitor for monitoring the movements of a living being, said monitor comprising:
(a) an electromechanical transducer comprising:
a relatively flexible piezoelectric foil;
a pair of electrode members located on opposite sides of said piezoelectric foil; and
space defining means for defining a plurality of spaces adjacent portions of said piezoelectric foil such that a said portion of the piezoelectric foil will be reversibly depressed and lengthened when a pressure force is applied to the transducer at the corresponding space; and
(b) a monitor means, connected to said electrodes, for monitoring electrical signals produced in response to changes in the piezoelectric foil whereby movements of the living being will reversibly lengthen said portions of said piezoelectric sheet so as to produce an electrical signal in response to said movements for monitoring by said monitor means. .Iaddend. .Iadd.22. A monitor as claimed in claim 21 wherein said transducer comprises a composite sheet and said space defining means comprise spacing shim means for spacing said piezoelectric foil from one component of said composite sheet so as to define said spaces therebetween. .Iaddend. .Iadd.23. A monitor as claimed in claim 22, wherein said one component comprises a cover sheet which overlies one of said electrodes. .Iaddend. .Iadd.24. In a monitor for monitoring the biological movements of a living being, a transducer comprising:
a piezoelectric foil;
an electrode on each side of said foil, and
means for creating reversible depressions in said foil at selected positions distributed around the area of said foil in response to biological stimuli produced by a living being in contact with said film.
.Iaddend. .Iadd.25. A transducer according to claim 24 in which said depression creating means comprises:
shim means underlying said piezoelectric foil, said shim means creating a chamber at each of said selected locations under the piezoelectric foil into which a portion of said foil can be depressed in response to stimuli produced by a living being in contact with said transducer on the side of said transducer remote from said shim means. .Iaddend. .Iadd.26. A transducer according to claim 25 further comprising:
a protective sheet surrounding a composite formed by said foil, said electrodes and said shim means;
and means for affixing said shim means to at least one of said elements of said composite and to said protective sheet. .Iaddend. .Iadd.27. A method of monitoring biological functions of a living body comprising the steps of:
placing against a portion of the living body a transducer comprising a piezoelectric foil having electrodes on each surface thereof and having shim means distributed over the surface of said foil for creating a plurality of locations at which portions of said foil can be reversibly lengthened and thinned;
and utilizing the voltage generated between said electrodes responsive to the reversibly thinning of said foil at least one of said locations so as
to monitor biological functions of the living body. .Iaddend. .Iadd.28. A monitor for monitoring the movements of a living being, said monitor comprising:
(a) a relatively flexible transducer composite comprising:
an electret foil;
electrodes located on opposite sides of said electret foil;
a protective cover overlying at least one said electrodes; and
spacing means, affixed to the components of said composite lying adjacent thereto at a plurality of locations, for providing a plurality of compartments within said composite such that when a pressure force is applied to the composite at the corresponding compartments, the portions of the electret foil which lie adjacent these compartments produce an electrical output; and
(b) monitor means, connected to said electrodes, for monitoring electrical signals produced by said electret foil, whereby movements of a living being will cause pressure forces to be applied to said portions of said electret foil so as to produce a resultant electrical output signal in response to said movements which is monitored by said monitor means. .Iaddend.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8003093 | 1980-02-12 | ||
FR8003093A FR2475804A1 (en) | 1980-02-12 | 1980-02-12 | IMPROVEMENTS ON COMPOSITE SHEETS CONSTITUTING ELECTROMECHANICAL TRANSDUCERS AND TRANSDUCERS EQUIPPED WITH SUCH SHEETS |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US06/228,716 Reissue US4359726A (en) | 1980-02-12 | 1981-01-27 | Composite sheets constituting electromechanical transducers and transducers equipped with such sheets |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE32180E true USRE32180E (en) | 1986-06-10 |
Family
ID=9238512
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US06/228,716 Ceased US4359726A (en) | 1980-02-12 | 1981-01-27 | Composite sheets constituting electromechanical transducers and transducers equipped with such sheets |
US06/672,139 Expired - Lifetime USRE32180E (en) | 1980-02-12 | 1984-11-15 | Composite sheets constituting electromechanical transducers and transducers equipped with such sheets |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US06/228,716 Ceased US4359726A (en) | 1980-02-12 | 1981-01-27 | Composite sheets constituting electromechanical transducers and transducers equipped with such sheets |
Country Status (4)
Country | Link |
---|---|
US (2) | US4359726A (en) |
EP (1) | EP0034077B2 (en) |
DE (1) | DE3161056D1 (en) |
FR (1) | FR2475804A1 (en) |
Cited By (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4757825A (en) | 1985-10-31 | 1988-07-19 | Diamond Research Group, Inc. | Cardio-pulmonary activity monitor |
WO1988005606A1 (en) * | 1987-01-14 | 1988-07-28 | Advanced Medical Technologies, Inc. | Non-elastic piezoelectric transducer |
US5083110A (en) * | 1991-02-04 | 1992-01-21 | Richard Ahrens | Window alarm system |
US5099702A (en) * | 1988-12-30 | 1992-03-31 | French Sportech Corp. | Perimeter mounted polymeric piezoelectric transducer pad |
US5160870A (en) * | 1990-06-25 | 1992-11-03 | Carson Paul L | Ultrasonic image sensing array and method |
US5365937A (en) * | 1992-09-09 | 1994-11-22 | Mcg International, Inc. | Disposable sensing device with contaneous conformance |
US5447076A (en) * | 1990-09-01 | 1995-09-05 | Ziegler; Karlheinz | Capacitive force sensor |
US5448996A (en) * | 1990-02-02 | 1995-09-12 | Lifesigns, Inc. | Patient monitor sheets |
US5494043A (en) * | 1993-05-04 | 1996-02-27 | Vital Insite, Inc. | Arterial sensor |
US5515865A (en) * | 1994-04-22 | 1996-05-14 | The United States Of America As Represented By The Secretary Of The Army | Sudden Infant Death Syndrome (SIDS) monitor and stimulator |
US5611349A (en) * | 1993-04-26 | 1997-03-18 | I Am Fine, Inc. | Respiration monitor with simplified breath detector |
US5684460A (en) * | 1994-04-22 | 1997-11-04 | The United States Of America As Represented By The Secretary Of The Army | Motion and sound monitor and stimulator |
US5770914A (en) * | 1995-03-10 | 1998-06-23 | International Game Technology | Illuminated piezoelectric switch |
US5853005A (en) * | 1996-05-02 | 1998-12-29 | The United States Of America As Represented By The Secretary Of The Army | Acoustic monitoring system |
US5904654A (en) * | 1995-10-20 | 1999-05-18 | Vital Insite, Inc. | Exciter-detector unit for measuring physiological parameters |
US6171264B1 (en) * | 1998-05-15 | 2001-01-09 | Biosys Ab | Medical measuring system |
US6193668B1 (en) | 1997-11-10 | 2001-02-27 | Medacoustics, Inc. | Acoustic sensor array for non-invasive detection of coronary artery disease |
US6243599B1 (en) | 1997-11-10 | 2001-06-05 | Medacoustics, Inc. | Methods, systems and computer program products for photogrammetric sensor position estimation |
US6371921B1 (en) | 1994-04-15 | 2002-04-16 | Masimo Corporation | System and method of determining whether to recalibrate a blood pressure monitor |
US6375621B1 (en) | 1987-03-06 | 2002-04-23 | Ocean Laboratories, Inc. | Passive apnea monitor |
US6383143B1 (en) | 1999-10-13 | 2002-05-07 | Gerald A. Rost | Respiratory monitor |
US6478744B2 (en) | 1996-12-18 | 2002-11-12 | Sonomedica, Llc | Method of using an acoustic coupling for determining a physiologic signal |
US6632181B2 (en) | 1996-06-26 | 2003-10-14 | Masimo Corporation | Rapid non-invasive blood pressure measuring device |
US20040097823A1 (en) * | 2000-09-15 | 2004-05-20 | Arnd Friedrichs | Device and method for producing respiration-related data |
US20050148904A1 (en) * | 2002-03-25 | 2005-07-07 | Molten Corporation | Bedsore main-factor measuring device |
US20050181827A1 (en) * | 2004-02-13 | 2005-08-18 | Nokia Corporation | Touch for feel device for communicating with mobile wireless phone or terminal |
US6984207B1 (en) | 1999-09-14 | 2006-01-10 | Hoana Medical, Inc. | Passive physiological monitoring (P2M) system |
US20060141192A1 (en) * | 2004-12-23 | 2006-06-29 | Ranjith Divigalpitiya | Adhesive membrane for force switches and sensors |
US20060137462A1 (en) * | 2004-12-23 | 2006-06-29 | Ranjith Divigalpitiya | Force sensing membrane |
US20060226135A1 (en) * | 2005-04-08 | 2006-10-12 | Lincoln Global, Inc. | Ergonomic handle attachment for welding torch |
US7509881B2 (en) | 2005-07-29 | 2009-03-31 | 3M Innovative Properties Company | Interdigital force switches and sensors |
US20090099480A1 (en) * | 2007-05-24 | 2009-04-16 | Peter Salgo | System and method for patient monitoring |
US7666151B2 (en) | 2002-11-20 | 2010-02-23 | Hoana Medical, Inc. | Devices and methods for passive patient monitoring |
US7689271B1 (en) | 2003-06-26 | 2010-03-30 | Hoana Medical, Inc. | Non-invasive heart rate and respiration measurements from extremities |
US20110004073A1 (en) * | 2008-02-28 | 2011-01-06 | Koninklijke Philips Electronics N.V. | Wireless patient monitoring using streaming of medical data with body-coupled communication |
US20110203390A1 (en) * | 2010-02-24 | 2011-08-25 | The Hong Kong Research Institute Of Textiles And Apparel Limited | Soft pressure sensing device |
US20110214905A1 (en) * | 2008-06-13 | 2011-09-08 | Epcos Ag | Circuit Board with Flexible Region and Method for Production Thereof |
US8161826B1 (en) | 2009-03-05 | 2012-04-24 | Stryker Corporation | Elastically stretchable fabric force sensor arrays and methods of making |
US20120126663A1 (en) * | 2009-08-07 | 2012-05-24 | Bayer Materialscience Ag | Method for producing an electromechanical converter |
US8533879B1 (en) | 2008-03-15 | 2013-09-17 | Stryker Corporation | Adaptive cushion method and apparatus for minimizing force concentrations on a human body |
US8904876B2 (en) | 2012-09-29 | 2014-12-09 | Stryker Corporation | Flexible piezocapacitive and piezoresistive force and pressure sensors |
US8997588B2 (en) | 2012-09-29 | 2015-04-07 | Stryker Corporation | Force detecting mat with multiple sensor types |
US20170148973A1 (en) * | 2015-11-20 | 2017-05-25 | Takahiro Imai | Power generating device |
US11191486B2 (en) | 2017-09-19 | 2021-12-07 | Ausculsciences, Inc. | System and method for detecting decoupling of an auscultatory sound sensor from a test-subject |
US11844605B2 (en) | 2016-11-10 | 2023-12-19 | The Research Foundation For Suny | System, method and biomarkers for airway obstruction |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4700180A (en) * | 1983-05-04 | 1987-10-13 | Vance Dwight A | Apparatus to indicate when a patient has evacuated a bed |
GB8325861D0 (en) * | 1983-09-28 | 1983-11-02 | Syrinx Presicion Instr Ltd | Force transducer |
FR2555008B1 (en) * | 1983-11-10 | 1986-03-28 | Lewiner Jacques | IMPROVEMENTS ON COMPOSITE SHEETS CONSTITUTING ELECTROMECHANICAL TRANSDUCERS AND TRANSDUCERS EQUIPPED WITH SUCH SHEETS |
EP0189464A1 (en) * | 1984-07-18 | 1986-08-06 | BENKENDORF, Rudiger | Movement detection apparatus |
DE3512095A1 (en) * | 1985-03-30 | 1986-10-02 | Frhr. von Herwig Dr.-Ing. 1000 Berlin Nettelhorst | Method and device for transforming mechanical pulses generated by the body into electrical signals |
EP0205931B1 (en) * | 1985-05-23 | 1990-11-22 | Heinrich Prof. Dr. Ing. Reents | Device for measuring vital functions of a human, in particular of an infant |
GB8613881D0 (en) * | 1986-06-07 | 1986-07-09 | Syrinx Innovations | Piezoelectric transducers |
US4780706A (en) * | 1987-03-05 | 1988-10-25 | Naomi Bollag | Pet or infant training device and method |
US4862144A (en) * | 1987-04-21 | 1989-08-29 | Tao Billy S K | Movement monitor |
US4802485A (en) * | 1987-09-02 | 1989-02-07 | Sentel Technologies, Inc. | Sleep apnea monitor |
IL93587A (en) * | 1990-03-01 | 2001-01-11 | Shirit Yarkony | Analysis of swallowing dysfunction |
US5264824A (en) * | 1992-04-21 | 1993-11-23 | Hour Jin Rong | Audio emitting tread mat system |
GB9225898D0 (en) * | 1992-12-11 | 1993-02-03 | Univ Strathclyde | Ultrasonic transducer |
US5400012A (en) * | 1993-04-12 | 1995-03-21 | Lifetek, Inc. | Breathing monitor |
US5479932A (en) * | 1993-08-16 | 1996-01-02 | Higgins; Joseph | Infant health monitoring system |
GB9408668D0 (en) * | 1994-04-30 | 1994-06-22 | Orthosonics Ltd | Untrasonic therapeutic system |
FR2742648B1 (en) * | 1995-12-26 | 1998-05-07 | Babidor | DEVICE FOR MONITORING RESPIRATORY ARRANGEMENTS, PARTICULARLY FOR NEWBORNS |
US5796340A (en) * | 1996-08-12 | 1998-08-18 | Miller; William | Motion monitor useful for sleeping humans |
EP0887044A1 (en) * | 1997-06-26 | 1998-12-30 | Babidor (S.à.r.l.) | Device for monitoring respiratory arrest, in particular of newborn children |
CA2338254A1 (en) * | 1998-07-24 | 2000-02-03 | Med-Dev Limited | A transducer, a method of shaping a transducer, and a method of monitoring a subject |
KR100792304B1 (en) * | 1999-11-25 | 2008-01-07 | 내츄럴 컬러 카리 키르자바이넨 오와이 | Electromechanic film and acoustic element |
FI108204B (en) * | 1999-11-25 | 2001-11-30 | Kari Johannes Kirjavainen | A film for converting energies |
US20020080684A1 (en) * | 2000-11-16 | 2002-06-27 | Dimitri Donskoy | Large aperture vibration and acoustic sensor |
JP2007525266A (en) * | 2004-02-18 | 2007-09-06 | ホアナ メディカル、インコーポレイテッド | Method and system for incorporating a passive sensor array in a mattress to monitor a patient |
US20050256463A1 (en) * | 2004-04-21 | 2005-11-17 | Masatoshi Masuda | Cosmetic apparatus |
JP4899117B2 (en) * | 2004-11-02 | 2012-03-21 | 株式会社ユニークメディカル | Heart rate / respiration sensor and biological monitoring apparatus using the same |
WO2010110292A1 (en) | 2009-03-25 | 2010-09-30 | 住友電気工業株式会社 | Optical fiber sheet and body motion sensor |
US9026190B2 (en) * | 2010-11-17 | 2015-05-05 | Rhythm Check, Inc. | Portable physiological parameter detection and monitoring device with integratable computer memory and communication disk, systems and methods of use thereof |
US9271665B2 (en) * | 2011-05-20 | 2016-03-01 | The Regents Of The University Of California | Fabric-based pressure sensor arrays and methods for data analysis |
GB2515286B (en) * | 2013-06-17 | 2020-06-17 | Roli Ltd | Pressure-sensitive interface |
CN103674225B (en) * | 2013-11-25 | 2016-03-02 | 北京航空航天大学 | A kind of local polarisation piezoelectric film sensor |
CN108231996B (en) * | 2018-02-07 | 2019-05-17 | 广东微应变传感科技有限公司 | Foil resistance force-sensing sensor and preparation method thereof |
CN110265544A (en) * | 2019-06-24 | 2019-09-20 | 京东方科技集团股份有限公司 | Piezoelectric transducer and preparation method, the method and electronic equipment that carry out fingerprint recognition |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3794790A (en) * | 1972-02-04 | 1974-02-26 | Rists Wires & Cables Ltd | Electrical switches |
US3798474A (en) * | 1971-07-08 | 1974-03-19 | Inst Francais Du Petrole | Pressure wave piezoelectric sensor of continuous structure |
US3809828A (en) * | 1972-01-17 | 1974-05-07 | Gte Laboratories Inc | Electret transducing device |
US3836900A (en) * | 1973-01-26 | 1974-09-17 | Fleet Electronics Ltd | Recording or alarm devices |
US3926177A (en) * | 1972-09-11 | 1975-12-16 | Cavitron Corp | Activity and respiration monitor |
US3944763A (en) * | 1974-11-01 | 1976-03-16 | Beierwaltes Richard R | Swimming pool touch pad |
US3991746A (en) * | 1975-03-31 | 1976-11-16 | Medical R & D, Limited | Patient monitoring system and method |
US3996922A (en) * | 1973-08-17 | 1976-12-14 | Electronic Monitors, Inc. | Flexible force responsive transducer |
US4110741A (en) * | 1976-01-20 | 1978-08-29 | Societe Chimique Des Charbonnages | Device for monitoring physical activity of persons |
US4156800A (en) * | 1974-05-30 | 1979-05-29 | Plessey Handel Und Investments Ag | Piezoelectric transducer |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2729223C3 (en) * | 1977-06-29 | 1981-01-15 | Eberhard Prof. Dr.Rer.Nat. 6600 Saarbruecken Haeusler | Arrangement for converting physiologically generated mechanical energy into electrical energy |
-
1980
- 1980-02-12 FR FR8003093A patent/FR2475804A1/en active Granted
-
1981
- 1981-01-23 EP EP81400100A patent/EP0034077B2/en not_active Expired
- 1981-01-23 DE DE8181400100T patent/DE3161056D1/en not_active Expired
- 1981-01-27 US US06/228,716 patent/US4359726A/en not_active Ceased
-
1984
- 1984-11-15 US US06/672,139 patent/USRE32180E/en not_active Expired - Lifetime
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3798474A (en) * | 1971-07-08 | 1974-03-19 | Inst Francais Du Petrole | Pressure wave piezoelectric sensor of continuous structure |
US3809828A (en) * | 1972-01-17 | 1974-05-07 | Gte Laboratories Inc | Electret transducing device |
US3794790A (en) * | 1972-02-04 | 1974-02-26 | Rists Wires & Cables Ltd | Electrical switches |
US3926177A (en) * | 1972-09-11 | 1975-12-16 | Cavitron Corp | Activity and respiration monitor |
US3836900A (en) * | 1973-01-26 | 1974-09-17 | Fleet Electronics Ltd | Recording or alarm devices |
US3996922A (en) * | 1973-08-17 | 1976-12-14 | Electronic Monitors, Inc. | Flexible force responsive transducer |
US4156800A (en) * | 1974-05-30 | 1979-05-29 | Plessey Handel Und Investments Ag | Piezoelectric transducer |
US3944763A (en) * | 1974-11-01 | 1976-03-16 | Beierwaltes Richard R | Swimming pool touch pad |
US3991746A (en) * | 1975-03-31 | 1976-11-16 | Medical R & D, Limited | Patient monitoring system and method |
US4110741A (en) * | 1976-01-20 | 1978-08-29 | Societe Chimique Des Charbonnages | Device for monitoring physical activity of persons |
Cited By (69)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4757825A (en) | 1985-10-31 | 1988-07-19 | Diamond Research Group, Inc. | Cardio-pulmonary activity monitor |
WO1988005606A1 (en) * | 1987-01-14 | 1988-07-28 | Advanced Medical Technologies, Inc. | Non-elastic piezoelectric transducer |
US6375621B1 (en) | 1987-03-06 | 2002-04-23 | Ocean Laboratories, Inc. | Passive apnea monitor |
US5099702A (en) * | 1988-12-30 | 1992-03-31 | French Sportech Corp. | Perimeter mounted polymeric piezoelectric transducer pad |
US5448996A (en) * | 1990-02-02 | 1995-09-12 | Lifesigns, Inc. | Patient monitor sheets |
US5406163A (en) * | 1990-06-25 | 1995-04-11 | Carson; Paul L. | Ultrasonic image sensing array with acoustical backing |
US5160870A (en) * | 1990-06-25 | 1992-11-03 | Carson Paul L | Ultrasonic image sensing array and method |
US5447076A (en) * | 1990-09-01 | 1995-09-05 | Ziegler; Karlheinz | Capacitive force sensor |
US5083110A (en) * | 1991-02-04 | 1992-01-21 | Richard Ahrens | Window alarm system |
US5365937A (en) * | 1992-09-09 | 1994-11-22 | Mcg International, Inc. | Disposable sensing device with contaneous conformance |
US5611349A (en) * | 1993-04-26 | 1997-03-18 | I Am Fine, Inc. | Respiration monitor with simplified breath detector |
US5494043A (en) * | 1993-05-04 | 1996-02-27 | Vital Insite, Inc. | Arterial sensor |
US6371921B1 (en) | 1994-04-15 | 2002-04-16 | Masimo Corporation | System and method of determining whether to recalibrate a blood pressure monitor |
US6852083B2 (en) | 1994-04-15 | 2005-02-08 | Masimo Corporation | System and method of determining whether to recalibrate a blood pressure monitor |
US5515865A (en) * | 1994-04-22 | 1996-05-14 | The United States Of America As Represented By The Secretary Of The Army | Sudden Infant Death Syndrome (SIDS) monitor and stimulator |
US5684460A (en) * | 1994-04-22 | 1997-11-04 | The United States Of America As Represented By The Secretary Of The Army | Motion and sound monitor and stimulator |
US5770914A (en) * | 1995-03-10 | 1998-06-23 | International Game Technology | Illuminated piezoelectric switch |
US5904654A (en) * | 1995-10-20 | 1999-05-18 | Vital Insite, Inc. | Exciter-detector unit for measuring physiological parameters |
US5853005A (en) * | 1996-05-02 | 1998-12-29 | The United States Of America As Represented By The Secretary Of The Army | Acoustic monitoring system |
US7618375B2 (en) | 1996-06-26 | 2009-11-17 | Masimo Corporation | Rapid non-invasive blood pressure measuring device |
US6632181B2 (en) | 1996-06-26 | 2003-10-14 | Masimo Corporation | Rapid non-invasive blood pressure measuring device |
US6939305B2 (en) | 1996-06-26 | 2005-09-06 | Masimo Corporation | Rapid non-invasive blood pressure measuring device |
US7951086B2 (en) | 1996-06-26 | 2011-05-31 | Masimo Corporation | Rapid non-invasive blood pressure measuring device |
US6478744B2 (en) | 1996-12-18 | 2002-11-12 | Sonomedica, Llc | Method of using an acoustic coupling for determining a physiologic signal |
US7416531B2 (en) | 1996-12-18 | 2008-08-26 | Mohler Sailor H | System and method of detecting and processing physiological sounds |
US6574494B2 (en) | 1997-11-10 | 2003-06-03 | Medacoustics, Inc. | Methods, systems and computer program products for photogrammetric sensor position estimation |
US6243599B1 (en) | 1997-11-10 | 2001-06-05 | Medacoustics, Inc. | Methods, systems and computer program products for photogrammetric sensor position estimation |
US6193668B1 (en) | 1997-11-10 | 2001-02-27 | Medacoustics, Inc. | Acoustic sensor array for non-invasive detection of coronary artery disease |
US6171264B1 (en) * | 1998-05-15 | 2001-01-09 | Biosys Ab | Medical measuring system |
US6478746B2 (en) | 1998-11-09 | 2002-11-12 | Medacoustics, Inc. | Acoustic sensor array for non-invasive detection of coronary artery disease |
US6278890B1 (en) | 1998-11-09 | 2001-08-21 | Medacoustics, Inc. | Non-invasive turbulent blood flow imaging system |
US6939308B2 (en) | 1998-11-09 | 2005-09-06 | Medacoustics, Inc. | Acoustic sensor array for non-invasive detection of coronary artery disease |
US20060063982A1 (en) * | 1999-09-14 | 2006-03-23 | Hoana Medical, Inc. | Passive physiological monitoring (P2M) system |
US6984207B1 (en) | 1999-09-14 | 2006-01-10 | Hoana Medical, Inc. | Passive physiological monitoring (P2M) system |
US6383143B1 (en) | 1999-10-13 | 2002-05-07 | Gerald A. Rost | Respiratory monitor |
US20040097823A1 (en) * | 2000-09-15 | 2004-05-20 | Arnd Friedrichs | Device and method for producing respiration-related data |
US7041062B2 (en) * | 2000-09-15 | 2006-05-09 | Friendly Sensors Ag | Device and method for producing respiration-related data |
US20050148904A1 (en) * | 2002-03-25 | 2005-07-07 | Molten Corporation | Bedsore main-factor measuring device |
US7090647B2 (en) * | 2002-03-25 | 2006-08-15 | Molten Corporation | Bedsore main-factor measuring device |
US7666151B2 (en) | 2002-11-20 | 2010-02-23 | Hoana Medical, Inc. | Devices and methods for passive patient monitoring |
US7689271B1 (en) | 2003-06-26 | 2010-03-30 | Hoana Medical, Inc. | Non-invasive heart rate and respiration measurements from extremities |
US20050181827A1 (en) * | 2004-02-13 | 2005-08-18 | Nokia Corporation | Touch for feel device for communicating with mobile wireless phone or terminal |
US20060141192A1 (en) * | 2004-12-23 | 2006-06-29 | Ranjith Divigalpitiya | Adhesive membrane for force switches and sensors |
US7260999B2 (en) * | 2004-12-23 | 2007-08-28 | 3M Innovative Properties Company | Force sensing membrane |
US7468199B2 (en) | 2004-12-23 | 2008-12-23 | 3M Innovative Properties Company | Adhesive membrane for force switches and sensors |
US20060137462A1 (en) * | 2004-12-23 | 2006-06-29 | Ranjith Divigalpitiya | Force sensing membrane |
US20060226135A1 (en) * | 2005-04-08 | 2006-10-12 | Lincoln Global, Inc. | Ergonomic handle attachment for welding torch |
US7509881B2 (en) | 2005-07-29 | 2009-03-31 | 3M Innovative Properties Company | Interdigital force switches and sensors |
US20090099480A1 (en) * | 2007-05-24 | 2009-04-16 | Peter Salgo | System and method for patient monitoring |
US20110004073A1 (en) * | 2008-02-28 | 2011-01-06 | Koninklijke Philips Electronics N.V. | Wireless patient monitoring using streaming of medical data with body-coupled communication |
US8535223B2 (en) * | 2008-02-28 | 2013-09-17 | Koninklijke Philips N.V. | Wireless patient monitoring using streaming of medical data with body-coupled communication |
US20140331412A1 (en) * | 2008-03-15 | 2014-11-13 | Stryker Corporation | Force sensing sheet |
US8800386B2 (en) | 2008-03-15 | 2014-08-12 | Stryker Corporation | Force sensing sheet |
US9642470B2 (en) * | 2008-03-15 | 2017-05-09 | Stryker Corporation | Force sensing sheet |
US8875331B2 (en) * | 2008-03-15 | 2014-11-04 | Stryker Corporation | Adaptive cushion method and apparatus for minimizing force concentrations on a human body |
US8533879B1 (en) | 2008-03-15 | 2013-09-17 | Stryker Corporation | Adaptive cushion method and apparatus for minimizing force concentrations on a human body |
US20110214905A1 (en) * | 2008-06-13 | 2011-09-08 | Epcos Ag | Circuit Board with Flexible Region and Method for Production Thereof |
US9035189B2 (en) * | 2008-06-13 | 2015-05-19 | Epcos Ac | Circuit board with flexible region and method for production thereof |
US8661915B2 (en) | 2009-03-05 | 2014-03-04 | Stryker Corporation | Elastically stretchable fabric force sensor arrays and methods of making |
US8161826B1 (en) | 2009-03-05 | 2012-04-24 | Stryker Corporation | Elastically stretchable fabric force sensor arrays and methods of making |
US20120126663A1 (en) * | 2009-08-07 | 2012-05-24 | Bayer Materialscience Ag | Method for producing an electromechanical converter |
US8393229B2 (en) * | 2010-02-24 | 2013-03-12 | The Hong Kong Research Institute Of Textiles And Apparel Limited | Soft pressure sensing device |
US20110203390A1 (en) * | 2010-02-24 | 2011-08-25 | The Hong Kong Research Institute Of Textiles And Apparel Limited | Soft pressure sensing device |
US8904876B2 (en) | 2012-09-29 | 2014-12-09 | Stryker Corporation | Flexible piezocapacitive and piezoresistive force and pressure sensors |
US8997588B2 (en) | 2012-09-29 | 2015-04-07 | Stryker Corporation | Force detecting mat with multiple sensor types |
US20170148973A1 (en) * | 2015-11-20 | 2017-05-25 | Takahiro Imai | Power generating device |
US10651363B2 (en) * | 2015-11-20 | 2020-05-12 | Ricoh Company, Ltd. | Power generating device |
US11844605B2 (en) | 2016-11-10 | 2023-12-19 | The Research Foundation For Suny | System, method and biomarkers for airway obstruction |
US11191486B2 (en) | 2017-09-19 | 2021-12-07 | Ausculsciences, Inc. | System and method for detecting decoupling of an auscultatory sound sensor from a test-subject |
Also Published As
Publication number | Publication date |
---|---|
EP0034077B1 (en) | 1983-10-05 |
EP0034077A2 (en) | 1981-08-19 |
EP0034077A3 (en) | 1981-08-26 |
EP0034077B2 (en) | 1986-10-22 |
FR2475804A1 (en) | 1981-08-14 |
US4359726A (en) | 1982-11-16 |
FR2475804B1 (en) | 1985-05-24 |
DE3161056D1 (en) | 1983-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE32180E (en) | Composite sheets constituting electromechanical transducers and transducers equipped with such sheets | |
US6829942B2 (en) | Pressure sensor | |
US4509527A (en) | Cardio-respiration transducer | |
EP1745742B1 (en) | Reuseable snore/air flow sensor | |
US6491642B1 (en) | Pyro/piezo sensor | |
US6254545B1 (en) | Pyro/piezo sensor | |
US20200141794A1 (en) | Vibration sensor | |
JP3694740B2 (en) | Thin pressure sensor and human body information measuring apparatus using the same | |
ES8100591A1 (en) | Transducer | |
US4037069A (en) | Mat switch | |
GB2168488A (en) | A relaxometric sensor | |
CA2338254A1 (en) | A transducer, a method of shaping a transducer, and a method of monitoring a subject | |
US5604718A (en) | Timepiece Comprising an electro-acoustic transducer | |
EP0143046A2 (en) | Composite electromechanic transducer mats and transducers provided with such mats | |
WO2018168143A1 (en) | Living-body vibration sensor, living-body vibration detection system, living-body vibration detection method, and vibration detection element | |
JPH03186247A (en) | Pulse wave detecting device | |
WO2020203771A1 (en) | Piezoelectric sensor | |
KR20240035950A (en) | A device that measures periodic biosignals emitted by individuals that are associated with vehicle safety devices | |
CN117881342A (en) | Device associated with a vehicle safety device for measuring a periodic vital sign signal emitted by an individual | |
JPS5841468Y2 (en) | Planar mechanical-electrical conversion device | |
KR101673334B1 (en) | Detachable diagnostic sensor and method of manufacturing the same | |
JPH0167508U (en) | ||
JPH0274732U (en) | ||
JPH0327352U (en) | ||
JPS623192U (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FEPP | Fee payment procedure |
Free format text: PAT HOLDER CLAIMS SMALL ENTITY STATUS - SMALL BUSINESS (ORIGINAL EVENT CODE: SM02); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
FEPP | Fee payment procedure |
Free format text: PAT HOLDER CLAIMS SMALL ENTITY STATUS - INDIV INVENTOR (ORIGINAL EVENT CODE: SM01); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
REMI | Maintenance fee reminder mailed | ||
FPAY | Fee payment |
Year of fee payment: 12 |
|
SULP | Surcharge for late payment |