USRE31628E - Osteosynthetic pressure plate construction - Google Patents

Osteosynthetic pressure plate construction Download PDF

Info

Publication number
USRE31628E
USRE31628E US06/027,921 US2792179A USRE31628E US RE31628 E USRE31628 E US RE31628E US 2792179 A US2792179 A US 2792179A US RE31628 E USRE31628 E US RE31628E
Authority
US
United States
Prior art keywords
plate
screw
bone
slot
head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US06/027,921
Inventor
Martin Allgower
Stefan Perren
Max E. Russenberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Synthes USA LLC
Original Assignee
Synthes AG Chur
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CH906866A external-priority patent/CH462375A/en
Application filed by Synthes AG Chur filed Critical Synthes AG Chur
Priority to US06/027,921 priority Critical patent/USRE31628E/en
Assigned to SYNTHES LTD. reassignment SYNTHES LTD. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: SYNTHES AG
Application granted granted Critical
Publication of USRE31628E publication Critical patent/USRE31628E/en
Assigned to SYNTHES (U.S.A.) reassignment SYNTHES (U.S.A.) ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: SYNTHES, LTD., (U.S.A.) (A PA. CORP.)
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/80Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
    • A61B17/8004Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates with means for distracting or compressing the bone or bones
    • A61B17/8014Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates with means for distracting or compressing the bone or bones the extension or compression force being caused by interaction of the plate hole and the screws
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00526Methods of manufacturing

Definitions

  • This invention relates, in general, to devices for joining broken bones and, in particular, to a new and useful pressure plate which is adapted to be fixed to two bone parts in order to hold these parts together, the plate being displaceable by a bone-fixing screw in order to hold the bone parts together under pressure.
  • the invention provides an osteosynthetic pressure plate which may be applied to bone parts which have been broken for the purpose of holding the parts together under pressure.
  • pressure plates In the practice of compression osteosynthesis, the use of pressure plates has been known for a long time as is evident from the relevant literature, for example, the textbook “Technik der operativen Frakturen opposition” by Muller, Allgower and Willenegger (1963) page 53 et seq.
  • auxiliary means must be employed to produce the desired pressure between the two parts of the fractured surfaces.
  • Such means usually constitute a clamp which must be secured to one of the bone fragments such as by threaded screws.
  • the plate screwed to other fragment can be drawn in toward the clamp in order to press the two fragments together. Thereafter the plate is then secured to the second bone fragment using threaded screws and the clamp device is removed.
  • a disadvantage of such a device in addition to its complicated arrangement is that it requires an operational wound which is substantially longer than the plate itself and it necessitates an additional damage to the bone fragment for the purpose of fixing the clamp.
  • the pressure plate after it is fully secured by the threaded screws can exert only a fraction of the pressure which was exerted upon the fractured surface by means of the clamp.
  • an osteosynthetic pressure plate which includes slots through which countersunk bore screws are directed which is formed by walls which cause a displacement of the plate when the securing screw head contacts a portion of the surrounding walls so that the securing of the plate by the threaded screws will also effect a tight pressure displacement of the affected broken parts to hold those parts under engaged pressure contact.
  • a pressure plate of this nature includes at least one screw hole which is formed with a slot which is elongated in the direction of the longitudinal axis of the plate so that the plate will be shifted relatively along this axis when the threaded securing screw is inserted there through and into the bone part.
  • the slot is formed with a wall defining a ramp or inclined plane which engages beneath the head of the securing screw and which causes a relative movement between the screw and the plate when the screw is turned downwardly thereon in order to secure the plate to the bone.
  • the slot may advantageously provide a limiting abutment stop at the end of the slot which is designed so that the screw head has been sunk but still does not rigidly clamp the plate, the plate can be pushed back and forth with respective to the screw head.
  • the inclination of the ramp portion is such that the plate will be shifted when used with screw heads of ordinary spherical form or conical form for example.
  • the total amount of longitudinal clearance or elongation of such slots will depend upon the number provided on each pressure plate to give the desired plate displacement for the compression of the fracture. For example, only two such slots may be provided, one of each is to accommodate a threaded screw element for securing the plate to one bone element which is to be held together. The other bone element will then receive a securing screw which is directed through the slot having the ramp-deflecting edge so that when the screw is driven home the plate will be displaced in a direction to cause the plate to move with the other secured bone fragment toward the one which is being secured in order to tightly compress these two fragments together. Additional slot openings may be provided of sufficient elongation to permit, and of a construction to cause a displacement on the bone elements toward each other in incremental steps. In this manner, each additional screw which is secured will cause a displacement of its associated bone element toward the other by a fixed amount which in total will provide the necessary pressure force on the affected bone ends joined together by the plate.
  • a pressure plate for mending broken or fractured bones which is adapted to be secured to the fragments by threaded screws wherein the slot opening for at least one threaded screw is shaped so that the plate is displaced by engagement of the head of the screw with the walls bounding the opening in order that the associated bone parts may be moved together in pressure contact.
  • a further object of the invention is to provide an osteosynthetic pressure plate which is displaceable upon attachment of the plate to a bone part for the purposes of holding the bone parts in pressure contact.
  • a further object of the invention is to provide a pressure plate for fixing bone parts which is simple in design, rugged in construction and economical to manufacture.
  • FIG. 1 is an enlarged partial section of a pressure plate indicating a tool in position for forming a slot therein in accordance with the invention
  • FIG. 2 is a top plan view of the plate of FIG. 1 after it is formed by the tool shown in FIG. 1;
  • FIG. 3 is a view similar to FIG. 1 showing the tool for finishing the slot
  • FIG. 4 is a view similar to FIG. 2 showing the completed slot of the plate constructed in accordance with the invention
  • FIGS. 5a, 5b and 5c are partial enlarged sectional views of a bone part showing the steps of displacement of the pressure plate as the threaded screw is driven into the part;
  • FIG. 6 is a partial elevational view on a reduced scale showing two bone parts held together by a pressure plate constructed in accordance with the invention
  • FIG. 7 is an enlarged sectional view similar to FIG. 1 indicating initial formation of the walls of a pressure plate for a securing screw having a conical head;
  • FIG. 8 is a view similar to FIG. 3 showing the complete formation of the slot in the pressure plate
  • FIG. 9 is an enlarged sectional view of a pressure plate formed by a tool for effecting the complete slot formation for a conically tapered screw head.
  • FIG. 10 is an enlarged partial sectional view of a pressure plate for a conically headed secured screw with the screw in a secured position.
  • FIGS. 1 and 2 there is indicated a tool 2 in position for initially forming the walls 3 in an osteosynthetic pressure plate 1 prior to the complete breaking through of a slot 5 which is accomplished as indicated in FIGS. 3 and 4.
  • one end of the slot is provided with an inclined surface or ramp 3a which is adapted to cooperate with the head of a securing screw for the purpose of displacing the plate 1 when it is being installed.
  • a round headed miller 2 is employed as indicated in FIG. 1 which is arranged during the cutting so that its axis 2a makes an angle ⁇ of, for example, 30° to 40° with respect to the normal n to the plate surface.
  • the miller 2 is first fed perpendicularly to the plate surface, that is, in the direction n and the movement is continued until the miller reaches the position indicated in FIG. 1 adjacent the lower side of the plate. This produces the formation of the ramp portion or inclined planar surface 3a which functions to cause a displacement of the plate 1 when it is contacted by the underside of a head of a securing screw for attaching the plate to a broken or fractured bone part.
  • the miller 2 is displaced horizontally through the path as indicated in FIG. 1 to form the rear portion of the slot and the surface 3b and 3c and 3d and then it is removed in the direction n. This completes the formation of the cavity 3 indicated in FIG. 2.
  • the longitudinal slot 5 is then formed as indicated in FIG. 3 using a cylindrical miller 4.
  • the wall is broken through and of the surface 3 which was produced by the round headed .[.mile.].
  • miller 2 there remains only a marginal surrounding strip which comprises the cylindrical inclined surfaces 3a, 3b, 3c, and 3d.
  • the inclined surface 3a forms the ramp or moving surface and the surface 3b provides an end abutment surface.
  • the slot 5 is elongated in a longitudinal direction of the plate 1.
  • the plate 1 is secured to fractured bone parts 6 and 7 in order to hold these two parts, together along a fracture line 21 using securing bolts 8, 9, 10 and 11 and additional bolts 30 and 32 if desired necessary.
  • the pressure plate 1 is placed over the fragment 6 and is secured to the fragment by means of the threaded securing screw 10 which are directed through respective ones of a plurality of receiving slots 5,5' and 5", etc.
  • the boring and the tapping of the bone 6 for the purposes of installing the screw 10 through the slot 5' and into the bone is effected in a known manner.
  • a threaded securing screw 8 is directed through its slot 5 and threaded into the bone fragment 7 following the steps indicated in FIGS. 5a, 5b and 5c which show an enlargement of the area indicated in FIG. 6.
  • the securing screw 8 is provided with a hemispherical seating surface 8b on the underside of the head 8a.
  • the hemispherical surface 8b contacts the ramp or inclined 3a of the slot 5 as shown in FIG. 5a. Since the inclined surface 3a has a cylindrical shape with an axis 2a disposed at an angle ⁇ in respect to the normal n, the plate 1 will be pushed to the left upon the further driving in of the screw 8. This will proceed until the plate 1 is shifted to the left to the position indicated in FIG. 5b. In this manner, the two bone fragments 6 and 7 are pressed together, but the securing screw 8 is still not finally driven home.
  • a screw 9 is inserted into its associated slot 5" in the manner similar to the securing screw 8, it being positioned so that it contacts the inclined surface 3a of the slot, which is located on the end remote from the fracture line 21.
  • the driving in of the screw 9 has a similar effect on the plate 1 displacing it relative to the bone fragment 7 so that the fragment 7 is urged toward the fracture line 21 with increased pressure. Because the screw 8 was situated before the driving of the screw 9 approximately in the center of its associated slot 5, the screw 8 will not obstruct the displacement of the plate 1 relative to the fragment 7 in the direction to the left as shown in the drawing of FIG. 6.
  • the screw 8 After the driving in of the screw 9, the screw 8 will be situated in a position at which its end contacts the abutment 8b formed at the end of the slot 5 as shown in FIG. 5c. If the pressure at the fractured joint 21 is still not great enough, it is possible by adding an additional securing screw 11 through slot 5'" to the fragment 6 to cause a displacement of the plate 1 relative to this fragment in a direction to cause an increase in the pressure to the fractured joint 21.
  • the slot 5'" for the securing bolt 11, is, of course, shaped in an opposite manner to the slots 5 and 5" to cause the desirable displacement of the bone fragment 6 to the left as indicated in FIG. 6.
  • the length of the individual slots 5, 5', 5", 5'", etc. are such that due consideration is taken in the .[.m.]. amount of displacement of a plate 1 relative to the bone fragments which is desired during each screw installation.
  • amount of displacement of a plate 1 relative to the bone fragments which is desired during each screw installation.
  • FIGS. 5a, 5b and 5c it is possible to achieve by only two screws on each side of the fracture line 21 a satisfactory displacement of the plate relative to the bone fragments 6 and 7 in order to produce the necessary compression force. If a larger compression of forces are required, and a longer displacement path than the distance a of FIG. 1 must be chosen correspondingly larger when making the slot. This is also true if it is still necessary to displace the bone fragments after the fitting screws have been installed in order to make possible a shortening of the fracture.
  • FIGS. 7 and 8 there is indicated the formation of slot 15 using a round head .[.mile.]. miller 12 and a cylindrical miller 17 in a manner comparable to that used in FIGS. 1 and 3 for the formation of a slot for a .[..[.conically.]..]. .Badd.hemispherically .Baddend.headed screw.
  • the round headed miller 12 is oriented with its axis 13 normal to the surface of the workpiece 14.
  • the tool is fed not vertically but obliquely and in the direction of the arrow 16. As soon as the tool has assumed the position indicated in FIG.
  • the tool is displaced through the path a' parallel to the surface of the workpiece and is then removed from the workpiece in a vertical direction.
  • the same shape of cavity as obtained by the method of FIG. 1 is achieved.
  • the slot is milled by the cylindrical miller 17 as done in the previous embodiment.
  • a miller 18 with two cylindrical parts 18a and 18c as well as an interconnecting conical part 18b is provided.
  • the miller is fed during the machining of the workpiece in a vertical direction to such an extent that the upper edge of the conical part 18b lies in one plane with the surface of the workpiece.
  • the tool is fed further in an oblique direction and in such a manner that the angle ⁇ which its direction of feed makes with the normal 19 is equal to the cone angle.
  • the displacement of the tool in this direction should be carried out only until the lower edge of the conical part 18b of the tool 18 lies in one plane with the lower surface of the workpiece.
  • the workpiece 14 is displaced through the path d parallel to the surface of the workpiece.
  • the length of the path d corresponds to the length of the path a in the first two examples described. This length also determines the length of the displacement path by which the plate can be pushed back and forth when the screw head 20, indicated in FIG. 10, has been sunk to the position shown in which it still does not rigidly clamp the plate.
  • the operation of the device with a conically headed screw 20 is the same as that as with the hemispherical headed screw.

Landscapes

  • Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)

Abstract

An osteosynthetic pressure plate includes a slot formation for receiving a bone-fixing screw which is adapted to be secured to a bone part which is to be mended. The slot is formed with an edge which includes an oblique portion or ramp having an inclination such that when it is engaged by the underside of a head portion of a bone-fixing screw there will be a displacement of the pressure plate in a direction to move the ramp portion away from the fixing screw and to cause the plate to apply a pressure to hold the bone parts in tight engagement. The plate is advantageously useable with screws having heads of spherical form or conical form, for example. The inclination of the ramp and the configuration of the walls bounding the slot of the pressure plate are such that there will be a uniform and even shifting of the plate having the slot when the ramp of the walls bounding the slot is engaged by the screw head to cause the desired displacement of the pressure plate in order to displace the bone fragment toward tighter engagement with the adjacent bone fragment and into pressure engagement therewith.

Description

SUMMARY OF THE INVENTION
This invention relates, in general, to devices for joining broken bones and, in particular, to a new and useful pressure plate which is adapted to be fixed to two bone parts in order to hold these parts together, the plate being displaceable by a bone-fixing screw in order to hold the bone parts together under pressure.
The invention provides an osteosynthetic pressure plate which may be applied to bone parts which have been broken for the purpose of holding the parts together under pressure. In the practice of compression osteosynthesis, the use of pressure plates has been known for a long time as is evident from the relevant literature, for example, the textbook "Technik der operativen Frakturenbehandlung" by Muller, Allgower and Willenegger (1963) page 53 et seq. Various types of plates are described therein and it is also explained why a considerable pressure effect must be exerted upon the two fractured surfaces. With the known devices, some type of auxiliary means must be employed to produce the desired pressure between the two parts of the fractured surfaces. Such means usually constitute a clamp which must be secured to one of the bone fragments such as by threaded screws. In this manner, the plate screwed to other fragment can be drawn in toward the clamp in order to press the two fragments together. Thereafter the plate is then secured to the second bone fragment using threaded screws and the clamp device is removed. A disadvantage of such a device in addition to its complicated arrangement is that it requires an operational wound which is substantially longer than the plate itself and it necessitates an additional damage to the bone fragment for the purpose of fixing the clamp. In addition, because of the clearance necessary for securing the plate to the second bone fragment, the pressure plate after it is fully secured by the threaded screws can exert only a fraction of the pressure which was exerted upon the fractured surface by means of the clamp.
In accordance with the present invention, there is provided an osteosynthetic pressure plate which includes slots through which countersunk bore screws are directed which is formed by walls which cause a displacement of the plate when the securing screw head contacts a portion of the surrounding walls so that the securing of the plate by the threaded screws will also effect a tight pressure displacement of the affected broken parts to hold those parts under engaged pressure contact. A pressure plate of this nature, includes at least one screw hole which is formed with a slot which is elongated in the direction of the longitudinal axis of the plate so that the plate will be shifted relatively along this axis when the threaded securing screw is inserted there through and into the bone part. The slot is formed with a wall defining a ramp or inclined plane which engages beneath the head of the securing screw and which causes a relative movement between the screw and the plate when the screw is turned downwardly thereon in order to secure the plate to the bone. The slot may advantageously provide a limiting abutment stop at the end of the slot which is designed so that the screw head has been sunk but still does not rigidly clamp the plate, the plate can be pushed back and forth with respective to the screw head. The inclination of the ramp portion is such that the plate will be shifted when used with screw heads of ordinary spherical form or conical form for example. The total amount of longitudinal clearance or elongation of such slots will depend upon the number provided on each pressure plate to give the desired plate displacement for the compression of the fracture. For example, only two such slots may be provided, one of each is to accommodate a threaded screw element for securing the plate to one bone element which is to be held together. The other bone element will then receive a securing screw which is directed through the slot having the ramp-deflecting edge so that when the screw is driven home the plate will be displaced in a direction to cause the plate to move with the other secured bone fragment toward the one which is being secured in order to tightly compress these two fragments together. Additional slot openings may be provided of sufficient elongation to permit, and of a construction to cause a displacement on the bone elements toward each other in incremental steps. In this manner, each additional screw which is secured will cause a displacement of its associated bone element toward the other by a fixed amount which in total will provide the necessary pressure force on the affected bone ends joined together by the plate.
Accordingly, it is an object of the invention to provide a pressure plate for mending broken or fractured bones which is adapted to be secured to the fragments by threaded screws wherein the slot opening for at least one threaded screw is shaped so that the plate is displaced by engagement of the head of the screw with the walls bounding the opening in order that the associated bone parts may be moved together in pressure contact.
A further object of the invention is to provide an osteosynthetic pressure plate which is displaceable upon attachment of the plate to a bone part for the purposes of holding the bone parts in pressure contact.
A further object of the invention is to provide a pressure plate for fixing bone parts which is simple in design, rugged in construction and economical to manufacture.
The various features which characterize the invention are pointed out with particularity in the claims annexed to and forming a part of this specification. For a better understanding of the invention, its operating advantages and specific objects attained by its use, reference should be had to the accompanying drawings and descriptive matter in which there are illustrated and described preferred embodiments of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS
In the drawings:
FIG. 1 is an enlarged partial section of a pressure plate indicating a tool in position for forming a slot therein in accordance with the invention;
FIG. 2 is a top plan view of the plate of FIG. 1 after it is formed by the tool shown in FIG. 1;
FIG. 3 is a view similar to FIG. 1 showing the tool for finishing the slot;
FIG. 4 is a view similar to FIG. 2 showing the completed slot of the plate constructed in accordance with the invention;
FIGS. 5a, 5b and 5c are partial enlarged sectional views of a bone part showing the steps of displacement of the pressure plate as the threaded screw is driven into the part;
FIG. 6 is a partial elevational view on a reduced scale showing two bone parts held together by a pressure plate constructed in accordance with the invention;
FIG. 7 is an enlarged sectional view similar to FIG. 1 indicating initial formation of the walls of a pressure plate for a securing screw having a conical head;
FIG. 8 is a view similar to FIG. 3 showing the complete formation of the slot in the pressure plate;
FIG. 9 is an enlarged sectional view of a pressure plate formed by a tool for effecting the complete slot formation for a conically tapered screw head; and
FIG. 10 is an enlarged partial sectional view of a pressure plate for a conically headed secured screw with the screw in a secured position.
DETAILED DESCRIPTION
Referring to the drawings, in particular, in FIGS. 1 and 2, there is indicated a tool 2 in position for initially forming the walls 3 in an osteosynthetic pressure plate 1 prior to the complete breaking through of a slot 5 which is accomplished as indicated in FIGS. 3 and 4. In accordance with the invention, one end of the slot is provided with an inclined surface or ramp 3a which is adapted to cooperate with the head of a securing screw for the purpose of displacing the plate 1 when it is being installed. For this purpose, a round headed miller 2 is employed as indicated in FIG. 1 which is arranged during the cutting so that its axis 2a makes an angle α of, for example, 30° to 40° with respect to the normal n to the plate surface. The miller 2 is first fed perpendicularly to the plate surface, that is, in the direction n and the movement is continued until the miller reaches the position indicated in FIG. 1 adjacent the lower side of the plate. This produces the formation of the ramp portion or inclined planar surface 3a which functions to cause a displacement of the plate 1 when it is contacted by the underside of a head of a securing screw for attaching the plate to a broken or fractured bone part.
Thereafter the miller 2 is displaced horizontally through the path as indicated in FIG. 1 to form the rear portion of the slot and the surface 3b and 3c and 3d and then it is removed in the direction n. This completes the formation of the cavity 3 indicated in FIG. 2. The longitudinal slot 5 is then formed as indicated in FIG. 3 using a cylindrical miller 4. When the work of the miller 4 is completed, the wall is broken through and of the surface 3 which was produced by the round headed .[.mile.]. miller 2 there remains only a marginal surrounding strip which comprises the cylindrical inclined surfaces 3a, 3b, 3c, and 3d. The inclined surface 3a forms the ramp or moving surface and the surface 3b provides an end abutment surface. The slot 5 is elongated in a longitudinal direction of the plate 1.
As indicated in FIG. 6, the plate 1 is secured to fractured bone parts 6 and 7 in order to hold these two parts, together along a fracture line 21 using securing bolts 8, 9, 10 and 11 and additional bolts 30 and 32 if desired necessary.
In order to secure the fragments 6 and 7 together, the pressure plate 1 is placed over the fragment 6 and is secured to the fragment by means of the threaded securing screw 10 which are directed through respective ones of a plurality of receiving slots 5,5' and 5", etc. The boring and the tapping of the bone 6 for the purposes of installing the screw 10 through the slot 5' and into the bone is effected in a known manner. Thereafter, the fractured portions of the bone fragment 6 and 7 are correctly assembled to each other and then a threaded securing screw 8 is directed through its slot 5 and threaded into the bone fragment 7 following the steps indicated in FIGS. 5a, 5b and 5c which show an enlargement of the area indicated in FIG. 6.
In this embodiment, the securing screw 8 is provided with a hemispherical seating surface 8b on the underside of the head 8a. At the beginning of the driving in of the screw 8, the hemispherical surface 8b contacts the ramp or inclined 3a of the slot 5 as shown in FIG. 5a. Since the inclined surface 3a has a cylindrical shape with an axis 2a disposed at an angle α in respect to the normal n, the plate 1 will be pushed to the left upon the further driving in of the screw 8. This will proceed until the plate 1 is shifted to the left to the position indicated in FIG. 5b. In this manner, the two bone fragments 6 and 7 are pressed together, but the securing screw 8 is still not finally driven home.
In the next step, a screw 9 is inserted into its associated slot 5" in the manner similar to the securing screw 8, it being positioned so that it contacts the inclined surface 3a of the slot, which is located on the end remote from the fracture line 21. The driving in of the screw 9 has a similar effect on the plate 1 displacing it relative to the bone fragment 7 so that the fragment 7 is urged toward the fracture line 21 with increased pressure. Because the screw 8 was situated before the driving of the screw 9 approximately in the center of its associated slot 5, the screw 8 will not obstruct the displacement of the plate 1 relative to the fragment 7 in the direction to the left as shown in the drawing of FIG. 6.
After the driving in of the screw 9, the screw 8 will be situated in a position at which its end contacts the abutment 8b formed at the end of the slot 5 as shown in FIG. 5c. If the pressure at the fractured joint 21 is still not great enough, it is possible by adding an additional securing screw 11 through slot 5'" to the fragment 6 to cause a displacement of the plate 1 relative to this fragment in a direction to cause an increase in the pressure to the fractured joint 21. The slot 5'" for the securing bolt 11, is, of course, shaped in an opposite manner to the slots 5 and 5" to cause the desirable displacement of the bone fragment 6 to the left as indicated in FIG. 6.
The length of the individual slots 5, 5', 5", 5'", etc. are such that due consideration is taken in the .[.m.]. amount of displacement of a plate 1 relative to the bone fragments which is desired during each screw installation. In the example indicated in FIGS. 5a, 5b and 5c, it is possible to achieve by only two screws on each side of the fracture line 21 a satisfactory displacement of the plate relative to the bone fragments 6 and 7 in order to produce the necessary compression force. If a larger compression of forces are required, and a longer displacement path than the distance a of FIG. 1 must be chosen correspondingly larger when making the slot. This is also true if it is still necessary to displace the bone fragments after the fitting screws have been installed in order to make possible a shortening of the fracture.
In FIGS. 7 and 8, there is indicated the formation of slot 15 using a round head .[.mile.]. miller 12 and a cylindrical miller 17 in a manner comparable to that used in FIGS. 1 and 3 for the formation of a slot for a .[..[.conically.]..]. .Badd.hemispherically .Baddend.headed screw. In this arrangement, the round headed miller 12 is oriented with its axis 13 normal to the surface of the workpiece 14. In order to produce the ramp portion 15a, the tool is fed not vertically but obliquely and in the direction of the arrow 16. As soon as the tool has assumed the position indicated in FIG. 7, and when the apex has penetrated the entire thickness of the workpiece, the tool is displaced through the path a' parallel to the surface of the workpiece and is then removed from the workpiece in a vertical direction. By this operation, the same shape of cavity as obtained by the method of FIG. 1 is achieved. In a second working operation, the slot is milled by the cylindrical miller 17 as done in the previous embodiment.
While the above operations are described in respect to countersunk screws with hemispherical seating surfaces, it is also possible to design the screw seating for screws having a conical seating surface as may be seen by reference to FIGS. 9 and 10. In this latter instance, a miller 18 with two cylindrical parts 18a and 18c as well as an interconnecting conical part 18b is provided. The miller is fed during the machining of the workpiece in a vertical direction to such an extent that the upper edge of the conical part 18b lies in one plane with the surface of the workpiece. Then the tool is fed further in an oblique direction and in such a manner that the angle α which its direction of feed makes with the normal 19 is equal to the cone angle. The displacement of the tool in this direction should be carried out only until the lower edge of the conical part 18b of the tool 18 lies in one plane with the lower surface of the workpiece. Thereupon, the workpiece 14 is displaced through the path d parallel to the surface of the workpiece. The length of the path d corresponds to the length of the path a in the first two examples described. This length also determines the length of the displacement path by which the plate can be pushed back and forth when the screw head 20, indicated in FIG. 10, has been sunk to the position shown in which it still does not rigidly clamp the plate. The operation of the device with a conically headed screw 20 is the same as that as with the hemispherical headed screw.
While specific embodiments of the invention have been shown and described in detail to illustrate the application of the inventive principles, it will be understood that the invention may be embodied otherwise without departing from such principles.

Claims (1)

  1. We claim: 1. An apparatus for securing bone fragments together in pressure contact using screws at least one of which has a head with an inwardly tapered undersurface, comprising a plate having a top side and a bottom side and at least two spaced .[.longitudinally elongated.]. slot openings extending therethrough for receiving the screws which are adapted to pass through the slot openings to engage into respective bone fragments, .Iadd.at least one of said openings being longitudinally elongated, and .Iaddend.said plate having a wall bounding at least one of said openings which is inclined at an angle .Iadd.to .Iaddend.said top side toward said bottom side to cause shifting of the plate in a direction to move the bone fragments together when engaged by the tapered undersurface of the head of the screw as said plate is being secured to its respective bone fragment, said inclined wall of said slot extending from said top surface inwardly and downwardly towards said bottom surface and defining an inclined planar surface from one end of the slot to the other which is displaceable by the tapered undersurface of the screw head when it is advanced into its respective bone fragment. 2. An apparatus, according to claim 1, including a threaded screw engaged through each slot opening adapted for insertion into a respective bone fragment. 3. An apparatus according to claim 1, wherein the wall of said plate bounding said slot opening which is inclined includes a portion opposite the inclined portion forming an abutment stop shaped to the configuration of the screw head. 4. An apparatus according to claim 1, including a threaded securing screw engaged through each slot opening adapted for insertion into a respective bone fragment and havng a hemispherical countersunk head, said inclined wall portion comprising a surface complementary to said screw head and having an axis inclined to the plane of said plate. 5. An apparatus, according to claim 1, including a securing screw adapted to extend through each of said slot openings and to be threaded into the respective bone fragments and having a conically-shaped countersunk head, the inclined wall portion of said plate being formed as a conical surface. 6. An apparatus, according to claim 1, including at least one slot adapted to be located on each side of the fracture line of said bone fragments, and a threaded securing screw engaged through at least one of the slots adapted to be located on each side of the fracture line and adapted to be threaded into the respective bone fragment. 7. An apparatus, according to claim 6, wherein at least one of said slots is elongated sufficiently to permit an initial shifting of the plate upon contact of the inclined surface by the securing screw and an additional movement, and wherein at least one other slot is provided with an inclined wall portion engageable by a threaded securing screw for effecting additional movement of said plate. 8. An apparatus, according to claim 1, wherein said pressure plate includes at least two slot openings adjacent each end adapted to be oriented over the respective bone fragments adjacent each end, the slots having walls at the ends adjacent the respective ends of said plate inclined at an angle to cause shifting of the plate in the direction to move the bone fragments together when contacted by a securing screw and having at their opposite ends formed with an abutment complementary to the configuration of the bone-securing screw which is to be employed. 9. An apparatus, according to claim 1, including at least one slot adjacent one end of said plate and at least two additional slots adjacent the opposite end of said plate which are each elongated in a direction parallel to the longitudinal axis of said plate end which form an inclined portion arranged at an angle to cause relative shifting of the plate in directions toward the associated adjacent end, at least one of said slots adjacent one of said plate ends being elongated sufficiently to permit a shifting of said plate after it is threadedly secured by the associated screw after the tightening of the threaded securing screw in the other of said slots. 10. An apparatus, according to claim 1, wherein said inclined wall begins at one end of said slot which is inclined from said top surface inwardly and downwardly towards said bottom by a lesser distance than the remaining portions of said inclined wall bounding said slot. .Iadd. 11. In a bone compression plate .Iaddend..Badd.assembly .Baddend.for moving adjacent bone sections relative to each other; (a) an elongated plate of a length to span adjacent bone sections, (b) there being at least one elongated opening through said plate extending longitudinally thereof and disposed to overlie one bone section and there being another opening through said plate disposed to overlie the other bone section, (c) a first screw of a length to extend through said elongated opening and penetrate said one bone section, (d) a head adjacent one end of said first screw with the under surface of said screw head tapering inwardly toward the other end of said screw, (e) a second screw of a length to extend through said another opening and penetrate said other bone section, and (f) an inclined cam surface on said plate adjacent said elongated opening extending in a direction of the longitudinal axis of said plate and engaging said inwardly tapered under surface of the head of said first screw to move said first screw relative to said elongated opening upon tightening said screw so that said one bone section is moved relative to said plate and said other bone section. .Iadd. 12. A bone compression plate .Iaddend..Badd.assembly .Baddend.as defined in claim 11 in which said another opening is also an elongated opening and an inclined cam surface is provided on said plate adjacent said another opening extending in a direction of the longitudinal axis of said plate and engaging an inwardly tapered under surface of a head of a screw which is adapted to penetrate said other bone section and move the screw longitudinally of said another opening upon tightening the screw so that said other bone section is moved relative to said plate and said one bone section. .Iadd. 13. A bone compression plate .Iaddend..Badd.assembly .Baddend.as defined in claim 12 in which said inclined cam surfaces adjacent said elongated openings slope downwardly and inwardly toward each other so that upon tightening said screws the screws and the bone sections connected thereto move toward each other. .Iadd. 14. A device for securing broken bone fragments together in pressure contact using screws, at least one screw having a head with an inwardly tapered undersurface, comprising a plate adapted to engage over the bone fragments and bridge the break, said plate having a top side and a bottom side and having at least two sets of longitudinally spaced slot openings, said sets being spaced apart longitudinally and defining a central area therebetween which is adapted to overlie the break, said slot openings extending through said plate for receiving the screws which are adapted to pass through the slot openings to engage into respective bone fragments, a slot of at least one of said sets which is nearest to said central area comprising a control slot which is longitudinally elongated, said plate having a wall bounding the longitudinally elongated control slot which is inclined at an angle from said top side toward said bottom side to cause shifting of the plate in the direction to move the bone fragments together when engaged by the tapered undersurface of the head of the screw as said plate is being secured to its respective bone fragment, said inclined wall of said slot extending from said top surface inwardly and downwardly toward said bottom surface and defining an inclined planar surface from one end of the slot to the other which is displaceable by the tapered undersurface of the screw head when it is advanced into its respective bone fragment. .Iaddend..Iadd. 15. A device according to claim 14, wherein all of said slots of each of said sets are longitudinally elongated. .Iaddend.
US06/027,921 1966-06-22 1979-04-06 Osteosynthetic pressure plate construction Expired - Lifetime USRE31628E (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US06/027,921 USRE31628E (en) 1966-06-22 1979-04-06 Osteosynthetic pressure plate construction

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH906866A CH462375A (en) 1966-06-22 1966-06-22 Osteosynthetic pressure plate
CH9068 1966-06-22
US06/027,921 USRE31628E (en) 1966-06-22 1979-04-06 Osteosynthetic pressure plate construction

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US05/277,816 Reissue USRE28841E (en) 1966-06-22 1972-08-03 Osteosynthetic pressure plate construction

Publications (1)

Publication Number Publication Date
USRE31628E true USRE31628E (en) 1984-07-10

Family

ID=25704224

Family Applications (1)

Application Number Title Priority Date Filing Date
US06/027,921 Expired - Lifetime USRE31628E (en) 1966-06-22 1979-04-06 Osteosynthetic pressure plate construction

Country Status (1)

Country Link
US (1) USRE31628E (en)

Cited By (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5002544A (en) * 1987-12-02 1991-03-26 Synthes (U.S.A.) Osteosynthetic pressure plate osteosynthetic compression plate
US5601553A (en) * 1994-10-03 1997-02-11 Synthes (U.S.A.) Locking plate and bone screw
US5885299A (en) * 1994-09-15 1999-03-23 Surgical Dynamics, Inc. Apparatus and method for implant insertion
US6193721B1 (en) 1997-02-11 2001-02-27 Gary K. Michelson Multi-lock anterior cervical plating system
US6315780B1 (en) 1999-04-12 2001-11-13 Accurate Surgical & Scientific Instruments Corporation Bone clamp for dynamic and non-dynamic compression of transverse fractures and method of use thereof
US6355042B2 (en) 1998-03-31 2002-03-12 Bristol-Myers Squibb Company Orthopaedic bone plate
US6383186B1 (en) 1997-02-11 2002-05-07 Gary K. Michelson Single-lock skeletal plating system
US20020183754A1 (en) * 2001-06-04 2002-12-05 Michelson Gary K. Anterior cervical plate system having vertebral body engaging anchors, connecting plate, and method for installation thereof
US20030060828A1 (en) * 2001-06-06 2003-03-27 Michelson Gary K. Dynamic multilock anterior cervical plate system having non-detachably fastened and moveable segments, instrumentation, and method for installation thereof
US20030114854A1 (en) * 1994-09-15 2003-06-19 Howmedica Osteonics Corp. Conically shaped anterior fusion cage and method of implantation
US20030153919A1 (en) * 2002-02-12 2003-08-14 Harris Peter M. Self-locking bone screw and implant
US6635086B2 (en) 2000-05-30 2003-10-21 Blacksheep Technologies Incorporated Implant for placement between cervical vertebrae
US6669701B2 (en) 2000-01-27 2003-12-30 Synthes (Usa) Bone plate
US6679883B2 (en) 2001-10-31 2004-01-20 Ortho Development Corporation Cervical plate for stabilizing the human spine
US20040059335A1 (en) * 1999-09-13 2004-03-25 Synthes (U.S.A.) Bone plating system
US6719759B2 (en) 1999-03-09 2004-04-13 Synthes Ag Chur Bone plate
US20040097942A1 (en) * 2002-08-28 2004-05-20 Allen C. Wayne System, methods, and apparatuses for clamping and reclamping an orthopedic surgical cable
US20040186476A1 (en) * 2001-06-06 2004-09-23 Michelson Gary K. Method for installing dynamic, modular, multilock anterior cervical plate system having detachably fastened assembleable and moveable segments
US20040204712A1 (en) * 2003-04-09 2004-10-14 Eric Kolb Bone fixation plates
US6821278B2 (en) 2000-06-26 2004-11-23 Synthes Ag Chur Bone plate
US20040267274A1 (en) * 2003-06-27 2004-12-30 Tushar Patel Tissue retractor and drill guide
US20050027297A1 (en) * 2001-06-04 2005-02-03 Michelson Gary K. Dynamic, modular, single-lock anterior cervical plate system having assembleable and moveable segments and instrumentation for installation thereof
US20050107796A1 (en) * 2003-09-29 2005-05-19 Darin Gerlach Bone plates and methods for provisional fixation using same
US20050216010A1 (en) * 2001-06-04 2005-09-29 Michelson Gary K Method for installation of dynamic, single-lock anterior cervical plate system having non-detachably fastened and moveable segments
US20050261688A1 (en) * 2004-05-11 2005-11-24 Grady Mark P Jr Bone plate
US20060025772A1 (en) * 2004-07-30 2006-02-02 Leibel David A Bone fusion plate
US20060036249A1 (en) * 2004-08-12 2006-02-16 Baynham Bret O Bone plate with screw lock
US20060129151A1 (en) * 2002-08-28 2006-06-15 Allen C W Systems and methods for securing fractures using plates and cable clamps
US20060149255A1 (en) * 2005-01-06 2006-07-06 Doubler Robert L Spinal implant kit
US20060149253A1 (en) * 2005-01-06 2006-07-06 Doubler Robert L Spinal plate with internal screw locks
US20060149265A1 (en) * 2004-09-07 2006-07-06 Anthony James Minimal thickness bone plate locking mechanism
US20060173462A1 (en) * 2005-01-28 2006-08-03 Kay David B Orthopedic screw for use in repairing small bones
US20060173458A1 (en) * 2004-10-07 2006-08-03 Micah Forstein Bone fracture fixation system
US7090676B2 (en) 2002-11-19 2006-08-15 Acumed Llc Adjustable bone plates
US20060189996A1 (en) * 2005-01-28 2006-08-24 Orbay Jorge L Nail plate and implantation jig therefor
US20060189987A1 (en) * 2002-05-30 2006-08-24 Orbay Jorge L Nail plate
US20060217722A1 (en) * 2003-09-08 2006-09-28 Christof Dutoit Bone-fixation device
US7118573B2 (en) 2001-06-04 2006-10-10 Sdgi Holdings, Inc. Dynamic anterior cervical plate system having moveable segments, instrumentation, and method for installation thereof
US20060235400A1 (en) * 2003-08-26 2006-10-19 Rolf Schneider Bone plate
US7153309B2 (en) 2002-11-19 2006-12-26 Acumed Llc Guide system for bone-repair devices
US20070005070A1 (en) * 2005-06-16 2007-01-04 Kay David B Self-centering screw and retaining screw driver for use in surgery
US20070016205A1 (en) * 2003-10-30 2007-01-18 Florian Beutter Bone plate
US7189237B2 (en) 2002-11-19 2007-03-13 Acumed Llc Deformable bone plates
US7204837B2 (en) 2001-12-14 2007-04-17 Paul Kamaljit S Spinal plate assembly
US7229445B2 (en) 2004-06-21 2007-06-12 Synthes (Usa) Bone plate with bladed portion
US7255699B2 (en) 2001-12-14 2007-08-14 Paul Kamaljit S Spinal plate assembly
US20070233106A1 (en) * 2006-02-24 2007-10-04 Synthes (Usa) Tibal plateau leveling osteotomy plate
US7278997B1 (en) 2003-03-07 2007-10-09 Theken Spine, Llc Instrument guide and implant holder
US20080039851A1 (en) * 2004-03-25 2008-02-14 Schulz Kurt S Device and template for canine humeral slide osteotomy
US20080140130A1 (en) * 2004-01-26 2008-06-12 Chan Jason S Highly-versatile variable-angle bone plate system
US7416553B2 (en) 2003-04-09 2008-08-26 Depuy Acromed, Inc. Drill guide and plate inserter
US7468069B2 (en) 2004-02-10 2008-12-23 Atlas Spine, Inc. Static anterior cervical plate
US7537604B2 (en) 2002-11-19 2009-05-26 Acumed Llc Bone plates with slots
US7537596B2 (en) 2003-06-20 2009-05-26 Acumed Llc Bone plates with intraoperatively tapped apertures
US7537603B2 (en) 2002-07-22 2009-05-26 Acumed Llc Bone fusion system
US7578825B2 (en) 2004-04-19 2009-08-25 Acumed Llc Placement of fasteners into bone
US7635365B2 (en) 2003-08-28 2009-12-22 Ellis Thomas J Bone plates
US7655029B2 (en) 2001-05-28 2010-02-02 Synthes Usa, Llc Bone plate
US7666185B2 (en) 2003-09-03 2010-02-23 Synthes Usa, Llc Translatable carriage fixation system
US20100076496A1 (en) * 2004-01-26 2010-03-25 Alberto Angel Fernandez Variable Angle Locked Bone Fixation System
US7704257B2 (en) * 2005-11-23 2010-04-27 Stryker Trauma S.A. Compression instrument
US7717945B2 (en) 2002-07-22 2010-05-18 Acumed Llc Orthopedic systems
US7736380B2 (en) 2004-12-21 2010-06-15 Rhausler, Inc. Cervical plate system
US7740649B2 (en) 2004-02-26 2010-06-22 Pioneer Surgical Technology, Inc. Bone plate system and methods
US7744638B2 (en) 2004-01-23 2010-06-29 Depuy Products, Inc. System for stabilization of fractures of convex articular bone surfaces including subchondral support structure
US7766947B2 (en) 2001-10-31 2010-08-03 Ortho Development Corporation Cervical plate for stabilizing the human spine
US7766911B1 (en) 2002-07-05 2010-08-03 Theken Spine, Llc Fixed and variable locking fixation assembly
US7776047B2 (en) 2003-04-09 2010-08-17 Depuy Spine, Inc. Guide for spinal tools, implants, and devices
US7780710B2 (en) 2004-01-23 2010-08-24 Depuy Products, Inc. System for stabilization of fractures of convex articular bone surfaces including subchondral support structure
US7857839B2 (en) 2003-09-03 2010-12-28 Synthes Usa, Llc Bone plate with captive clips
US20110046681A1 (en) * 2008-10-02 2011-02-24 Bernard Prandi Orthopedic implant in the form of a plate to be fixed between two bone parts
US7909860B2 (en) 2003-09-03 2011-03-22 Synthes Usa, Llc Bone plate with captive clips
US7909848B2 (en) 2003-06-27 2011-03-22 Depuy Spine, Inc. Tissue retractor and guide device
US7935123B2 (en) 2003-04-09 2011-05-03 Depuy Acromed, Inc. Drill guide with alignment feature
US7951176B2 (en) 2003-05-30 2011-05-31 Synthes Usa, Llc Bone plate
US20110152867A1 (en) * 2009-12-18 2011-06-23 Joseph Petrzelka Articulating Tool and Methods of Using
US20110224671A1 (en) * 2009-09-14 2011-09-15 Kenny Koay Variable angle compression plate
US8105367B2 (en) 2003-09-29 2012-01-31 Smith & Nephew, Inc. Bone plate and bone plate assemblies including polyaxial fasteners
US8172885B2 (en) 2003-02-05 2012-05-08 Pioneer Surgical Technology, Inc. Bone plate system
US8177819B2 (en) 2004-04-22 2012-05-15 Acumed Llc Expanded fixation of bones
US8361126B2 (en) 2007-07-03 2013-01-29 Pioneer Surgical Technology, Inc. Bone plate system
US8382807B2 (en) 2005-07-25 2013-02-26 Smith & Nephew, Inc. Systems and methods for using polyaxial plates
US8394132B2 (en) 2008-09-16 2013-03-12 Orthohelix Surgical Designs, Inc. Orthopedic compression screw
US8469966B2 (en) 2004-09-23 2013-06-25 Smith & Nephew, Inc. Systems, methods, and apparatuses for tensioning an orthopedic surgical cable
US8623019B2 (en) 2007-07-03 2014-01-07 Pioneer Surgical Technology, Inc. Bone plate system
US20140012328A1 (en) * 2009-10-15 2014-01-09 Biomet Manufacturing, Llc Midfoot bone plate system
US8900277B2 (en) 2004-02-26 2014-12-02 Pioneer Surgical Technology, Inc. Bone plate system
US8940028B2 (en) 2005-07-25 2015-01-27 Smith & Nephew, Inc. Systems and methods for using polyaxial plates
US9237910B2 (en) 2012-01-26 2016-01-19 Acute Innovations Llc Clip for rib stabilization
US9370387B2 (en) 2009-10-15 2016-06-21 Biomet C.V. Bending tool and method for reshaping a bone plate
US9775657B2 (en) 2011-09-30 2017-10-03 Acute Innovations Llc Bone fixation system with opposed mounting portions
US9956015B2 (en) 2014-07-03 2018-05-01 Acumed Llc Bone plate with movable joint
US10314626B2 (en) * 2015-01-16 2019-06-11 DePuy Synthes Procucts, Inc. Washer plate
US10390866B2 (en) 2011-06-15 2019-08-27 Smith & Nephew, Inc. Variable angle locking implant
US10624686B2 (en) 2016-09-08 2020-04-21 DePuy Synthes Products, Inc. Variable angel bone plate
US10772665B2 (en) 2018-03-29 2020-09-15 DePuy Synthes Products, Inc. Locking structures for affixing bone anchors to a bone plate, and related systems and methods
US10820930B2 (en) 2016-09-08 2020-11-03 DePuy Synthes Products, Inc. Variable angle bone plate
US10905476B2 (en) 2016-09-08 2021-02-02 DePuy Synthes Products, Inc. Variable angle bone plate
US10925651B2 (en) 2018-12-21 2021-02-23 DePuy Synthes Products, Inc. Implant having locking holes with collection cavity for shavings
US10993750B2 (en) 2015-09-18 2021-05-04 Smith & Nephew, Inc. Bone plate
US11013541B2 (en) 2018-04-30 2021-05-25 DePuy Synthes Products, Inc. Threaded locking structures for affixing bone anchors to a bone plate, and related systems and methods
US11026727B2 (en) 2018-03-20 2021-06-08 DePuy Synthes Products, Inc. Bone plate with form-fitting variable-angle locking hole
US11259851B2 (en) 2003-08-26 2022-03-01 DePuy Synthes Products, Inc. Bone plate
US11291484B2 (en) 2004-01-26 2022-04-05 DePuy Synthes Products, Inc. Highly-versatile variable-angle bone plate system
US11877779B2 (en) 2020-03-26 2024-01-23 Xtant Medical Holdings, Inc. Bone plate system
US11963847B2 (en) 2021-11-03 2024-04-23 DePuy Synthes Products, Inc. TPLO plate compression system and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH373516A (en) * 1959-09-01 1963-11-30 Maurice E Dr Med Mueller Device for the surgical fixation of bone fragments in limbs
FR1505513A (en) * 1966-11-02 1967-12-15 Benoist & Girard Reunis Osteosynthesis plate
US3528085A (en) * 1968-03-22 1970-09-08 Walker Reynolds Jr Bone compression plate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH373516A (en) * 1959-09-01 1963-11-30 Maurice E Dr Med Mueller Device for the surgical fixation of bone fragments in limbs
FR1505513A (en) * 1966-11-02 1967-12-15 Benoist & Girard Reunis Osteosynthesis plate
US3528085A (en) * 1968-03-22 1970-09-08 Walker Reynolds Jr Bone compression plate

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
"A Probe-Pointed Tap," The Lancet, Feb. 13, 1954, pp. 346-347.
"An Impacting Bone Plate" by George W. Bagby et al., Staff Meetings of the Mayo Clinic, vol. 32, No. 3, Feb. 6, 1957, pp. 55-57.
"Factors in the Choice of Material for Bone Plates & Screws" by C. S. Venable, Surgery, Gynecology & Obstetrics, vol. 74, 1942, pp. 541-545.
"L'impiego Della Mia Placca A Compressione per la Osteosintesi dei Vari Tipi di Osteotomie Intertrocanteriche di femore" by A. Bertolin, La Clinica Ortopedica, vol. XVIII, Fasc. 3, May-Jun., 1966, pp. 221-231.
"Slotted Pattern SMO Plates," Zimmer Orthopedic & Equipment Catalog, Zimmer Mfg. Co., Warsaw, Ind. 1950, p. 123.
"The Effects of Compression on the Rate of Fracture Healing Using a Special Plate" by George W. Bagby et al., Reprint from the May Issue of The American Journal of Surgery, vol. 95, No. 5, 1958, pp. 761-771.
"Zimmer Bone Plates & Screws for Bone Surgery", The Journal of Bone & Joint Surgery, Jul. 1949, Advertisement p. 5.
A Probe Pointed Tap, The Lancet, Feb. 13, 1954, pp. 346 347. *
An Impacting Bone Plate by George W. Bagby et al., Staff Meetings of the Mayo Clinic, vol. 32, No. 3, Feb. 6, 1957, pp. 55 57. *
Factors in the Choice of Material for Bone Plates & Screws by C. S. Venable, Surgery, Gynecology & Obstetrics, vol. 74, 1942, pp. 541 545. *
L impiego Della Mia Placca A Compressione per la Osteosintesi dei Vari Tipi di Osteotomie Intertrocanteriche di femore by A. Bertolin, La Clinica Ortopedica, vol. XVIII, Fasc. 3, May Jun., 1966, pp. 221 231. *
Slotted Pattern SMO Plates, Zimmer Orthopedic & Equipment Catalog, Zimmer Mfg. Co., Warsaw, Ind. 1950, p. 123. *
The Effects of Compression on the Rate of Fracture Healing Using a Special Plate by George W. Bagby et al., Reprint from the May Issue of The American Journal of Surgery, vol. 95, No. 5, 1958, pp. 761 771. *
Zimmer Bone Plates & Screws for Bone Surgery , The Journal of Bone & Joint Surgery, Jul. 1949, Advertisement p. 5. *

Cited By (272)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5002544A (en) * 1987-12-02 1991-03-26 Synthes (U.S.A.) Osteosynthetic pressure plate osteosynthetic compression plate
US7608105B2 (en) 1994-09-15 2009-10-27 Howmedica Osteonics Corp. Methods of inserting conically-shaped fusion cages
US5885299A (en) * 1994-09-15 1999-03-23 Surgical Dynamics, Inc. Apparatus and method for implant insertion
US20030114854A1 (en) * 1994-09-15 2003-06-19 Howmedica Osteonics Corp. Conically shaped anterior fusion cage and method of implantation
US5601553A (en) * 1994-10-03 1997-02-11 Synthes (U.S.A.) Locking plate and bone screw
US6620163B1 (en) 1997-02-11 2003-09-16 Gary K. Michelson Anterior cervical plating system and bone screw
US20030191472A1 (en) * 1997-02-11 2003-10-09 Michelson Gary K. Multilock anterior cervical plating system
US6398783B1 (en) 1997-02-11 2002-06-04 Sulzer Spine-Tech Inc. Multi-lock anterior cervical plate
US6416528B1 (en) 1997-02-11 2002-07-09 Gary K. Michelson Anterior cervical plating system, instrumentation, and method of installation
US6428542B1 (en) 1997-02-11 2002-08-06 Gary K. Michelson Single-lock anterior cervical plate
US20020128655A1 (en) * 1997-02-11 2002-09-12 Michelson Gary K. Segmentable skeletal plating system
US6454771B1 (en) 1997-02-11 2002-09-24 Gary K. Michelson Anterior cervical plating system
US7625381B2 (en) 1997-02-11 2009-12-01 Warsaw Orthopedic, Inc. System and method for stabilizing a portion of the spine
US20030018335A1 (en) * 1997-02-11 2003-01-23 Michelson Gary K. Anterior cervical plate system
US6527776B1 (en) 1997-02-11 2003-03-04 Gary K. Michelson Locking element for locking at least two bone screws to an orthopedic device
US8123788B2 (en) 1997-02-11 2012-02-28 Warsaw Orthopedic, Inc. Plating system having retaining member that permits movement of at least one bone fastener
US8480717B2 (en) 1997-02-11 2013-07-09 Warsaw Orthopedic, Inc. Orthopedic implant with locking element
US6592586B1 (en) 1997-02-11 2003-07-15 Gary K. Michelson Single-lock anterior cervical plating system
US7704255B2 (en) 1997-02-11 2010-04-27 Warsaw Orthopedic, Inc. Threadless multi-lock anterior cervical plating system
US6616666B1 (en) 1997-02-11 2003-09-09 Gary K. Michelson Apparatus for compressing a spinal disc space disposed between two adjacent vertebral bodies of a cervical spine
US6916320B2 (en) 1997-02-11 2005-07-12 Gary K. Michelson Anterior cervical plate system
US20030181912A1 (en) * 1997-02-11 2003-09-25 Michelson Gary K. Anterior cervical plating system and bone screw
US6383186B1 (en) 1997-02-11 2002-05-07 Gary K. Michelson Single-lock skeletal plating system
US20030191471A1 (en) * 1997-02-11 2003-10-09 Michelson Gary K. Multilock anterior cervical plating system
US8641743B2 (en) 1997-02-11 2014-02-04 Warsaw Orthopedic, Inc. Orthopedic implant with locking element
US8262708B2 (en) 1997-02-11 2012-09-11 Warsaw Orthopedic, Inc. Single-lock plating system
US6926718B1 (en) 1997-02-11 2005-08-09 Gary K. Michelson Multilock anterior cervical plating system
US6193721B1 (en) 1997-02-11 2001-02-27 Gary K. Michelson Multi-lock anterior cervical plating system
US6712818B1 (en) 1997-02-11 2004-03-30 Gary K. Michelson Method for connecting adjacent vertebral bodies of a human spine with a plating system
US7651497B2 (en) 1997-02-11 2010-01-26 Warsaw Orthopedic, Inc. Segmentable plate with locking element
US7137984B2 (en) 1997-02-11 2006-11-21 Warsaw Orthopedic, Inc. Single-lock anterior cervical plate and method
US20050038436A1 (en) * 1997-02-11 2005-02-17 Michelson Gary K. System and method for stabilizing a portion of the spine
US7077844B2 (en) 1997-02-11 2006-07-18 Sdgi Holdings, Inc. Segmentable skeletal plating system
US7074221B2 (en) 1997-02-11 2006-07-11 Sdgi Holdings, Inc. Anterior cervical plate system
US6969390B2 (en) 1997-02-11 2005-11-29 Michelson Gary K Anterior cervical plating system and bone screw
US8048075B2 (en) 1997-02-11 2011-11-01 Warsaw Orthopedic, Inc. Orthopedic implant with locking element
US6936051B2 (en) 1997-02-11 2005-08-30 Gary K. Michelson Multilock anterior cervical plating system
US6936050B2 (en) 1997-02-11 2005-08-30 Gary K. Michelson Multilock anterior cervical plating system
US7846189B2 (en) 1998-03-31 2010-12-07 Zimmer, Inc. Orthopaedic bone plate
US20070162015A1 (en) * 1998-03-31 2007-07-12 Zimmer Technology, Inc. Orthopaedic bone plate
US6355042B2 (en) 1998-03-31 2002-03-12 Bristol-Myers Squibb Company Orthopaedic bone plate
US6719759B2 (en) 1999-03-09 2004-04-13 Synthes Ag Chur Bone plate
US20040181228A1 (en) * 1999-03-09 2004-09-16 Synthes Ag Chur And Synthes (Usa) Bone plante
US7976570B2 (en) 1999-03-09 2011-07-12 Synthes Usa, Llc Bone plate
US6315780B1 (en) 1999-04-12 2001-11-13 Accurate Surgical & Scientific Instruments Corporation Bone clamp for dynamic and non-dynamic compression of transverse fractures and method of use thereof
US8641744B2 (en) 1999-09-13 2014-02-04 DePuy Synthes Products, LLC Bone plating system
US9211151B2 (en) 1999-09-13 2015-12-15 DePuy Synthes Products, Inc. Bone plating system
US20040059335A1 (en) * 1999-09-13 2004-03-25 Synthes (U.S.A.) Bone plating system
US7128744B2 (en) 1999-09-13 2006-10-31 Synthes (Usa) Bone plating system
US20080132960A1 (en) * 1999-09-13 2008-06-05 Weaver Paul C Bone Plating System
US20050080421A1 (en) * 1999-09-13 2005-04-14 Synthes (Usa) Bone plating system
US6669701B2 (en) 2000-01-27 2003-12-30 Synthes (Usa) Bone plate
US7354441B2 (en) 2000-01-27 2008-04-08 Synthes (U.S.A.) Bone plate
US9161791B2 (en) 2000-01-27 2015-10-20 DePuy Synthes Products, Inc. Bone Plate
US6635086B2 (en) 2000-05-30 2003-10-21 Blacksheep Technologies Incorporated Implant for placement between cervical vertebrae
US6821278B2 (en) 2000-06-26 2004-11-23 Synthes Ag Chur Bone plate
US7655029B2 (en) 2001-05-28 2010-02-02 Synthes Usa, Llc Bone plate
US8834533B2 (en) 2001-06-04 2014-09-16 Warsaw Orthopedic, Inc. Dynamic plate system having moveable segments
US20020183754A1 (en) * 2001-06-04 2002-12-05 Michelson Gary K. Anterior cervical plate system having vertebral body engaging anchors, connecting plate, and method for installation thereof
US20050187554A1 (en) * 2001-06-04 2005-08-25 Michelson Gary K. Method for installation of anterior cervical plate system having vertebral body engaging anchors and connecting plate
US20110054528A1 (en) * 2001-06-04 2011-03-03 Michelson Gary K Dynamic plate system having moveable segments
US8323283B2 (en) 2001-06-04 2012-12-04 Warsaw Orthopedic, Inc. Plate system having bone portion engaging anchors and connecting plate
US20090259226A1 (en) * 2001-06-04 2009-10-15 Michelson Gary K Method for installation of dynamic, single-lock anterior cervical plate system having non-detachably fastened and moveable segments
US7740630B2 (en) 2001-06-04 2010-06-22 Warsaw Orthopedic, Inc. Anterior cervical plate system having vertebral body engaging anchors and connecting plate
US7547306B2 (en) 2001-06-04 2009-06-16 Warsaw Orthopedic, Inc. Method for installation of dynamic, single-lock anterior cervical plate system having non-detachably fastened and moveable segments
US7097645B2 (en) 2001-06-04 2006-08-29 Sdgi Holdings, Inc. Dynamic single-lock anterior cervical plate system having non-detachably fastened and moveable segments
US7824432B2 (en) 2001-06-04 2010-11-02 Warsaw Orthopedic, Inc. Method for installation of dynamic anterior cervical plate system having moveable segments
US7112202B2 (en) 2001-06-04 2006-09-26 Warsaw Orthopedic, Inc. Method for installing dynamic, modular, single-lock anterior cervical plate system having assembleable and moveable segments
US7811285B2 (en) 2001-06-04 2010-10-12 Warsaw Orthopedic, Inc. Dynamic, modular, single-lock anterior cervical plate system having assembleable and moveable segments and instrumentation for installation thereof
US20050027297A1 (en) * 2001-06-04 2005-02-03 Michelson Gary K. Dynamic, modular, single-lock anterior cervical plate system having assembleable and moveable segments and instrumentation for installation thereof
US7118573B2 (en) 2001-06-04 2006-10-10 Sdgi Holdings, Inc. Dynamic anterior cervical plate system having moveable segments, instrumentation, and method for installation thereof
US20050216010A1 (en) * 2001-06-04 2005-09-29 Michelson Gary K Method for installation of dynamic, single-lock anterior cervical plate system having non-detachably fastened and moveable segments
US8048076B2 (en) 2001-06-04 2011-11-01 Warsaw Orthopedic, Inc. Method for installation of anterior cervical plate system having vertebral body engaging anchors and connecting plate
US7186256B2 (en) 2001-06-04 2007-03-06 Warsaw Orthopedic, Inc. Dynamic, modular, single-lock anterior cervical plate system having assembleable and movable segments
US7399301B2 (en) 2001-06-04 2008-07-15 Warsaw Orthopedic, Inc. Instrumentation for use with dynamic single-lock anterior cervical plate system having non-detachably fastened and moveable segments
US7985224B2 (en) 2001-06-04 2011-07-26 Warsaw Orthopedic, Inc. Method for installation of dynamic, single-lock anterior cervical plate system having non-detachably fastened and moveable segments
US7041105B2 (en) 2001-06-06 2006-05-09 Sdgi Holdings, Inc. Dynamic, modular, multilock anterior cervical plate system having detachably fastened assembleable and moveable segments
US7704250B2 (en) 2001-06-06 2010-04-27 Warsaw Orthopedic, Inc. Instrumentation for use with dynamic multilock anterior cervical plate system having non-detachably fastened and moveable segments
US7044952B2 (en) 2001-06-06 2006-05-16 Sdgi Holdings, Inc. Dynamic multilock anterior cervical plate system having non-detachably fastened and moveable segments
US7803157B2 (en) 2001-06-06 2010-09-28 Warsaw Orthopedic, Inc. Dynamic, modular, multilock anterior cervical plate system having detachably fastened assembleable and moveable segments and instrumentation for installation thereof
US20050192576A1 (en) * 2001-06-06 2005-09-01 Michelson Gary K. Method for installing dynamic multilock anterior cervical plate system having detachably fastened and moveable segments
US7115130B2 (en) 2001-06-06 2006-10-03 Warsaw Orthopedic, Inc. Method for installing dynamic, modular, multilock anterior cervical plate system having detachably fastened assembleable and moveable segments
US7621943B2 (en) 2001-06-06 2009-11-24 Warsaw Orthopedic, Inc. Method for installing dynamic multilock anterior cervical plate system having detachably fastened and moveable segments
US20030060828A1 (en) * 2001-06-06 2003-03-27 Michelson Gary K. Dynamic multilock anterior cervical plate system having non-detachably fastened and moveable segments, instrumentation, and method for installation thereof
US20050027298A1 (en) * 2001-06-06 2005-02-03 Michelson Gary K. Dynamic, modular, multilock anterior cervical plate system having detachably fastened assembleable and moveable segments and instrumentation for installation thereof
US20040186476A1 (en) * 2001-06-06 2004-09-23 Michelson Gary K. Method for installing dynamic, modular, multilock anterior cervical plate system having detachably fastened assembleable and moveable segments
US6679883B2 (en) 2001-10-31 2004-01-20 Ortho Development Corporation Cervical plate for stabilizing the human spine
US7766947B2 (en) 2001-10-31 2010-08-03 Ortho Development Corporation Cervical plate for stabilizing the human spine
US8236033B2 (en) 2001-12-14 2012-08-07 Paul Kamaljit S Spinal plate assembly
US20080033439A1 (en) * 2001-12-14 2008-02-07 Paul Kamaljit S Spinal plate assembly
US20070288015A1 (en) * 2001-12-14 2007-12-13 Paul Kamaljit S Spinal plate assembly
US8221476B2 (en) 2001-12-14 2012-07-17 Paul Kamaljit S Spinal plate assembly
US7255699B2 (en) 2001-12-14 2007-08-14 Paul Kamaljit S Spinal plate assembly
US7204837B2 (en) 2001-12-14 2007-04-17 Paul Kamaljit S Spinal plate assembly
US7322983B2 (en) 2002-02-12 2008-01-29 Ebi, L.P. Self-locking bone screw and implant
US20030153919A1 (en) * 2002-02-12 2003-08-14 Harris Peter M. Self-locking bone screw and implant
US20060189987A1 (en) * 2002-05-30 2006-08-24 Orbay Jorge L Nail plate
US7938850B2 (en) 2002-05-30 2011-05-10 Depuy Products, Inc. Nail plate
US7766911B1 (en) 2002-07-05 2010-08-03 Theken Spine, Llc Fixed and variable locking fixation assembly
US7780666B1 (en) 2002-07-05 2010-08-24 Theken Spine, Llc Fixed and variable locking fixation assembly
US7785327B1 (en) 2002-07-05 2010-08-31 Theken Spine, Llc Fixed and variable locking fixation assembly
US7717945B2 (en) 2002-07-22 2010-05-18 Acumed Llc Orthopedic systems
US8425574B2 (en) 2002-07-22 2013-04-23 Acumed, Llc Bone fixation with a bone plate attached to a fastener assembly
US10456180B2 (en) 2002-07-22 2019-10-29 Acumed Llc Adjustable bone plates
US9308033B2 (en) 2002-07-22 2016-04-12 Acumed Llc Adjustable bone plates
US7537603B2 (en) 2002-07-22 2009-05-26 Acumed Llc Bone fusion system
US20060129151A1 (en) * 2002-08-28 2006-06-15 Allen C W Systems and methods for securing fractures using plates and cable clamps
US20040097942A1 (en) * 2002-08-28 2004-05-20 Allen C. Wayne System, methods, and apparatuses for clamping and reclamping an orthopedic surgical cable
US7250054B2 (en) 2002-08-28 2007-07-31 Smith & Nephew, Inc. Systems, methods, and apparatuses for clamping and reclamping an orthopedic surgical cable
US7255701B2 (en) 2002-08-28 2007-08-14 Smith & Nephew, Inc. System, methods, and apparatuses for clamping and reclamping an orthopedic surgical cable
US7537604B2 (en) 2002-11-19 2009-05-26 Acumed Llc Bone plates with slots
US7090676B2 (en) 2002-11-19 2006-08-15 Acumed Llc Adjustable bone plates
US7153309B2 (en) 2002-11-19 2006-12-26 Acumed Llc Guide system for bone-repair devices
US7704251B2 (en) 2002-11-19 2010-04-27 Acumed Llc Adjustable bone plates
US7189237B2 (en) 2002-11-19 2007-03-13 Acumed Llc Deformable bone plates
US7326212B2 (en) 2002-11-19 2008-02-05 Acumed Llc Bone plates with reference marks
US8172885B2 (en) 2003-02-05 2012-05-08 Pioneer Surgical Technology, Inc. Bone plate system
US7278997B1 (en) 2003-03-07 2007-10-09 Theken Spine, Llc Instrument guide and implant holder
US8394107B2 (en) 2003-04-09 2013-03-12 Depuy Spine, Inc. Guide for spinal tools, implants, and devices
US7416553B2 (en) 2003-04-09 2008-08-26 Depuy Acromed, Inc. Drill guide and plate inserter
US20040204712A1 (en) * 2003-04-09 2004-10-14 Eric Kolb Bone fixation plates
US7935123B2 (en) 2003-04-09 2011-05-03 Depuy Acromed, Inc. Drill guide with alignment feature
US7776047B2 (en) 2003-04-09 2010-08-17 Depuy Spine, Inc. Guide for spinal tools, implants, and devices
US11419647B2 (en) 2003-05-30 2022-08-23 DePuy Synthes Products, Inc. Bone plate
US7951176B2 (en) 2003-05-30 2011-05-31 Synthes Usa, Llc Bone plate
US10653466B2 (en) 2003-05-30 2020-05-19 DePuy Synthes Products, Inc. Bone plate
US10231768B2 (en) 2003-05-30 2019-03-19 DePuy Synthes Products, Inc. Methods for implanting bone plates
US9931148B2 (en) 2003-05-30 2018-04-03 DePuy Synthes Products, Inc. Bone plate
US9308034B2 (en) 2003-05-30 2016-04-12 DePuy Synthes Products, Inc. Bone plate
US7537596B2 (en) 2003-06-20 2009-05-26 Acumed Llc Bone plates with intraoperatively tapped apertures
US20040267274A1 (en) * 2003-06-27 2004-12-30 Tushar Patel Tissue retractor and drill guide
US7909848B2 (en) 2003-06-27 2011-03-22 Depuy Spine, Inc. Tissue retractor and guide device
US7909829B2 (en) 2003-06-27 2011-03-22 Depuy Spine, Inc. Tissue retractor and drill guide
US8876873B2 (en) 2003-08-26 2014-11-04 DePuy Synthes Products, LLC Bone plate
US11259851B2 (en) 2003-08-26 2022-03-01 DePuy Synthes Products, Inc. Bone plate
US8852245B2 (en) 2003-08-26 2014-10-07 DePuy Synthes Products, LLC Bone plate
US9295505B2 (en) 2003-08-26 2016-03-29 DePuy Synthes Products, Inc. Bone plate
US8343196B2 (en) 2003-08-26 2013-01-01 Synthes Usa, Llc Bone plate
US10342586B2 (en) 2003-08-26 2019-07-09 DePuy Synthes Products, Inc. Bone plate
US20060235400A1 (en) * 2003-08-26 2006-10-19 Rolf Schneider Bone plate
US8845698B2 (en) 2003-08-26 2014-09-30 DePuy Synthes Products, LLC Bone plate
US8632573B2 (en) 2003-08-28 2014-01-21 Thomas J. Ellis Bone fixation system
US7695501B2 (en) 2003-08-28 2010-04-13 Ellis Thomas J Bone fixation system
US7635365B2 (en) 2003-08-28 2009-12-22 Ellis Thomas J Bone plates
US7666185B2 (en) 2003-09-03 2010-02-23 Synthes Usa, Llc Translatable carriage fixation system
US7857839B2 (en) 2003-09-03 2010-12-28 Synthes Usa, Llc Bone plate with captive clips
US9414870B2 (en) 2003-09-03 2016-08-16 DePuy Synthes Products, Inc. Translatable carriage fixation system
US9408646B2 (en) 2003-09-03 2016-08-09 DePuy Synthes Products, Inc. Bone plate with captive clips
US20100121329A1 (en) * 2003-09-03 2010-05-13 Ryan Christopher J Translatable carriage fixation system
US7909860B2 (en) 2003-09-03 2011-03-22 Synthes Usa, Llc Bone plate with captive clips
US10368927B2 (en) 2003-09-03 2019-08-06 DePuy Synthes Products, Inc. Bone plate with captive clips
US9220548B2 (en) 2003-09-03 2015-12-29 DePuy Synthes Products, Inc. Bone plate with captive clips
US8262659B2 (en) 2003-09-03 2012-09-11 Synthes Usa, Llc Translatable carriage fixation system
US20060217722A1 (en) * 2003-09-08 2006-09-28 Christof Dutoit Bone-fixation device
US8147493B2 (en) 2003-09-08 2012-04-03 Synthes Usa, Llc Bone-fixation device
US7909858B2 (en) 2003-09-29 2011-03-22 Smith & Nephew, Inc. Bone plate systems using provisional fixation
US7905910B2 (en) 2003-09-29 2011-03-15 Smith & Nephew, Inc. Bone plates and bone plate assemblies
US8992581B2 (en) 2003-09-29 2015-03-31 Smith & Nephew, Inc. Bone plate and bone plate assemblies including polyaxial fasteners
US8105367B2 (en) 2003-09-29 2012-01-31 Smith & Nephew, Inc. Bone plate and bone plate assemblies including polyaxial fasteners
US20070162020A1 (en) * 2003-09-29 2007-07-12 Darin Gerlach Bone plates and bone plate assemblies
US20050107796A1 (en) * 2003-09-29 2005-05-19 Darin Gerlach Bone plates and methods for provisional fixation using same
US7179260B2 (en) 2003-09-29 2007-02-20 Smith & Nephew, Inc. Bone plates and bone plate assemblies
US8246661B2 (en) 2003-10-30 2012-08-21 Synthes Usa, Llc Bone plate
US20070016205A1 (en) * 2003-10-30 2007-01-18 Florian Beutter Bone plate
US7780710B2 (en) 2004-01-23 2010-08-24 Depuy Products, Inc. System for stabilization of fractures of convex articular bone surfaces including subchondral support structure
US7744638B2 (en) 2004-01-23 2010-06-29 Depuy Products, Inc. System for stabilization of fractures of convex articular bone surfaces including subchondral support structure
US9314284B2 (en) 2004-01-26 2016-04-19 DePuy Synthes Products, Inc. Highly-versatile variable-angle bone plate system
US11291484B2 (en) 2004-01-26 2022-04-05 DePuy Synthes Products, Inc. Highly-versatile variable-angle bone plate system
US20100076496A1 (en) * 2004-01-26 2010-03-25 Alberto Angel Fernandez Variable Angle Locked Bone Fixation System
US20080140130A1 (en) * 2004-01-26 2008-06-12 Chan Jason S Highly-versatile variable-angle bone plate system
US9168075B2 (en) 2004-01-26 2015-10-27 DePuy Synthes Products, Inc. Variable angle locked bone fixation system
US8574268B2 (en) 2004-01-26 2013-11-05 DePuy Synthes Product, LLC Highly-versatile variable-angle bone plate system
US10335211B2 (en) 2004-01-26 2019-07-02 DePuy Synthes Products, Inc. Highly-versatile variable-angle bone plate system
US7468069B2 (en) 2004-02-10 2008-12-23 Atlas Spine, Inc. Static anterior cervical plate
US8900277B2 (en) 2004-02-26 2014-12-02 Pioneer Surgical Technology, Inc. Bone plate system
US7909859B2 (en) 2004-02-26 2011-03-22 Pioneer Surgical Technology, Inc. Bone plate system and methods
US10166051B2 (en) 2004-02-26 2019-01-01 Pioneer Surgical Technology, Inc. Bone plate system
US7740649B2 (en) 2004-02-26 2010-06-22 Pioneer Surgical Technology, Inc. Bone plate system and methods
US11129653B2 (en) 2004-02-26 2021-09-28 Pioneer Surgical Technology, Inc. Bone plate system
US20080039851A1 (en) * 2004-03-25 2008-02-14 Schulz Kurt S Device and template for canine humeral slide osteotomy
US8080010B2 (en) 2004-03-25 2011-12-20 Greatbatch Medical S.A. Device and template for canine humeral slide osteotomy
US7578825B2 (en) 2004-04-19 2009-08-25 Acumed Llc Placement of fasteners into bone
US8177819B2 (en) 2004-04-22 2012-05-15 Acumed Llc Expanded fixation of bones
US7776076B2 (en) 2004-05-11 2010-08-17 Synthes Usa, Llc Bone plate
US20050261688A1 (en) * 2004-05-11 2005-11-24 Grady Mark P Jr Bone plate
JP2008500143A (en) * 2004-05-21 2008-01-10 ジンテス ゲゼルシャフト ミット ベシュレンクテル ハフツング Bone plate
US7229445B2 (en) 2004-06-21 2007-06-12 Synthes (Usa) Bone plate with bladed portion
US20060025772A1 (en) * 2004-07-30 2006-02-02 Leibel David A Bone fusion plate
US20080091198A1 (en) * 2004-07-30 2008-04-17 Mayo Foundation For Medical Research And Education Bone Fusion Plate
US7288095B2 (en) 2004-08-12 2007-10-30 Atlas Spine, Inc. Bone plate with screw lock
US20060036249A1 (en) * 2004-08-12 2006-02-16 Baynham Bret O Bone plate with screw lock
US20060149265A1 (en) * 2004-09-07 2006-07-06 Anthony James Minimal thickness bone plate locking mechanism
US20090118773A1 (en) * 2004-09-07 2009-05-07 Anthony James Minimal thickness bone plate locking mechanism
US8469966B2 (en) 2004-09-23 2013-06-25 Smith & Nephew, Inc. Systems, methods, and apparatuses for tensioning an orthopedic surgical cable
US20090312760A1 (en) * 2004-10-07 2009-12-17 Zimmer, Inc. Bone fracture fixation system
US8740905B2 (en) 2004-10-07 2014-06-03 Zimmer, Inc. Bone fracture fixation system
US20060173458A1 (en) * 2004-10-07 2006-08-03 Micah Forstein Bone fracture fixation system
US7736380B2 (en) 2004-12-21 2010-06-15 Rhausler, Inc. Cervical plate system
US7438715B2 (en) 2005-01-06 2008-10-21 Spinal Llc Spinal implant kit
US7322984B2 (en) 2005-01-06 2008-01-29 Spinal, Llc Spinal plate with internal screw locks
US20060149255A1 (en) * 2005-01-06 2006-07-06 Doubler Robert L Spinal implant kit
US20060149253A1 (en) * 2005-01-06 2006-07-06 Doubler Robert L Spinal plate with internal screw locks
US7896886B2 (en) 2005-01-28 2011-03-01 Depuy Products, Inc. Nail plate and implantation jig therefor
US20060189996A1 (en) * 2005-01-28 2006-08-24 Orbay Jorge L Nail plate and implantation jig therefor
US20060200157A1 (en) * 2005-01-28 2006-09-07 Orbay Jorge L Nail Plate and Jig Therefor
US7927341B2 (en) 2005-01-28 2011-04-19 Depuy Products, Inc. Nail plate and jig therefor
US20060173462A1 (en) * 2005-01-28 2006-08-03 Kay David B Orthopedic screw for use in repairing small bones
US7325470B2 (en) 2005-06-16 2008-02-05 Orthohelix Surgical Designs, Inc. Self-centering screw and retaining screw driver for use in surgery
US20070005070A1 (en) * 2005-06-16 2007-01-04 Kay David B Self-centering screw and retaining screw driver for use in surgery
US10736680B2 (en) 2005-07-25 2020-08-11 Smith & Nephew, Inc. Systems and methods for using polyaxial plates
US9795424B2 (en) 2005-07-25 2017-10-24 Smith & Nephew, Inc. Systems and methods for using polyaxial plates
US10080598B2 (en) 2005-07-25 2018-09-25 Smith & Nephew, Inc. Systems and methods for using polyaxial plates
US11896270B2 (en) 2005-07-25 2024-02-13 Smith & Nephew, Inc. Systems and methods for using polyaxial plates
US10292741B2 (en) 2005-07-25 2019-05-21 Smith & Nephew, Inc. Systems and methods for using polyaxial plates
US10327822B2 (en) 2005-07-25 2019-06-25 Smith & Nephew, Inc. Systems and methods for using polyaxial plates
US8940028B2 (en) 2005-07-25 2015-01-27 Smith & Nephew, Inc. Systems and methods for using polyaxial plates
US8888824B2 (en) 2005-07-25 2014-11-18 Smith & Nephew, Inc. Systems and methods for using polyaxial plates
US8382807B2 (en) 2005-07-25 2013-02-26 Smith & Nephew, Inc. Systems and methods for using polyaxial plates
US10092337B2 (en) 2005-07-25 2018-10-09 Smith & Nephew, Inc. Systems and methods for using polyaxial plates
US7704257B2 (en) * 2005-11-23 2010-04-27 Stryker Trauma S.A. Compression instrument
US20070233106A1 (en) * 2006-02-24 2007-10-04 Synthes (Usa) Tibal plateau leveling osteotomy plate
US8523921B2 (en) 2006-02-24 2013-09-03 DePuy Synthes Products, LLC Tibial plateau leveling osteotomy plate
US10786290B2 (en) 2006-02-24 2020-09-29 DePuy Synthes Products, Inc. Tibial plateau leveling osteotomy plate
US10905479B2 (en) 2006-02-24 2021-02-02 DePuy Synthes Products, Inc. Tibial plateau leveling osteotomy plate
US11026728B2 (en) 2006-02-24 2021-06-08 DePuy Synthes Products, Inc. Tibial plateau leveling osteotomy plate
US11992250B2 (en) 2006-02-24 2024-05-28 DePuy Synthes Products, Inc. Tibial plateau leveling osteotomy plate
US8623019B2 (en) 2007-07-03 2014-01-07 Pioneer Surgical Technology, Inc. Bone plate system
US10226291B2 (en) 2007-07-03 2019-03-12 Pioneer Surgical Technology, Inc. Bone plate system
US10898247B2 (en) 2007-07-03 2021-01-26 Pioneer Surgical Technology, Inc. Bone plate system
US9655665B2 (en) 2007-07-03 2017-05-23 Pioneer Surgical Technology, Inc. Bone plate systems
US8361126B2 (en) 2007-07-03 2013-01-29 Pioneer Surgical Technology, Inc. Bone plate system
US8394132B2 (en) 2008-09-16 2013-03-12 Orthohelix Surgical Designs, Inc. Orthopedic compression screw
US20110046681A1 (en) * 2008-10-02 2011-02-24 Bernard Prandi Orthopedic implant in the form of a plate to be fixed between two bone parts
US9078713B2 (en) 2008-10-02 2015-07-14 Memometal Technologies Orthopedic implant in the form of a plate to be fixed between two bone parts
US10993751B1 (en) 2008-10-02 2021-05-04 Stryker European Operations Holdings Llc Orthopedic implant in the form of a plate to be fixed between two bone parts
US9333013B2 (en) 2008-10-02 2016-05-10 Stryker European Holdings I, Llc Orthopedic implant in the form of a plate to be fixed between two bone parts
US11534212B2 (en) 2008-10-02 2022-12-27 Stryker European Operations Holdings Llc Orthopedic implant in the form of a plate to be fixed between two bone parts
US8556946B2 (en) 2008-10-02 2013-10-15 Memometal Technologies Orthopedic implant in the form of a plate to be fixed between two bone parts
US10349988B2 (en) 2008-10-02 2019-07-16 Stryker European Holdings I, Llc Orthopedic implant in the form of a plate to be fixed between two bone parts
US11083504B2 (en) 2008-10-10 2021-08-10 Acumed Llc Bone fixation system with opposed mounting portions
US11911083B2 (en) 2008-10-10 2024-02-27 Acumed Llc Bone fixation system with opposed mounting portions
US9808297B2 (en) 2008-10-10 2017-11-07 Acute Innovations Llc Bone fixation system with opposed mounting portions
US20110224671A1 (en) * 2009-09-14 2011-09-15 Kenny Koay Variable angle compression plate
US8758346B2 (en) 2009-09-14 2014-06-24 DePuy Synthes Products, LLC Variable angle compression plate
US9585706B2 (en) * 2009-10-15 2017-03-07 Biomet C.V. Midfoot bone plate system
US9370387B2 (en) 2009-10-15 2016-06-21 Biomet C.V. Bending tool and method for reshaping a bone plate
US20140012328A1 (en) * 2009-10-15 2014-01-09 Biomet Manufacturing, Llc Midfoot bone plate system
US20110152867A1 (en) * 2009-12-18 2011-06-23 Joseph Petrzelka Articulating Tool and Methods of Using
US8568417B2 (en) 2009-12-18 2013-10-29 Charles River Engineering Solutions And Technologies, Llc Articulating tool and methods of using
US9924986B2 (en) 2009-12-18 2018-03-27 Charles River Engineering Solutions And Technologies, Llc Articulating tool and methods of using
US11033306B2 (en) 2009-12-18 2021-06-15 Charles River Engineering Solutions And Technologies, Llc Articulating tool and methods of using
US10405901B2 (en) 2011-06-15 2019-09-10 Smith & Nephew, Inc. Variable angle locking implant
US10448980B2 (en) 2011-06-15 2019-10-22 Smith & Nephew, Inc. Variable angle locking implant
US10390866B2 (en) 2011-06-15 2019-08-27 Smith & Nephew, Inc. Variable angle locking implant
US9775657B2 (en) 2011-09-30 2017-10-03 Acute Innovations Llc Bone fixation system with opposed mounting portions
US9237910B2 (en) 2012-01-26 2016-01-19 Acute Innovations Llc Clip for rib stabilization
US9956015B2 (en) 2014-07-03 2018-05-01 Acumed Llc Bone plate with movable joint
US10159515B2 (en) 2014-07-03 2018-12-25 Acumed Llc Bone plate with movable joint
US10314626B2 (en) * 2015-01-16 2019-06-11 DePuy Synthes Procucts, Inc. Washer plate
US10993750B2 (en) 2015-09-18 2021-05-04 Smith & Nephew, Inc. Bone plate
US11974787B2 (en) 2015-09-18 2024-05-07 Smith & Nephew, Inc. Bone plate
US11534213B2 (en) 2015-09-18 2022-12-27 Smith & Nephew, Inc. Bone plate
US10905476B2 (en) 2016-09-08 2021-02-02 DePuy Synthes Products, Inc. Variable angle bone plate
US11529176B2 (en) 2016-09-08 2022-12-20 DePuy Synthes Products, Inc. Variable angle bone plate
US10820930B2 (en) 2016-09-08 2020-11-03 DePuy Synthes Products, Inc. Variable angle bone plate
US10624686B2 (en) 2016-09-08 2020-04-21 DePuy Synthes Products, Inc. Variable angel bone plate
US11026727B2 (en) 2018-03-20 2021-06-08 DePuy Synthes Products, Inc. Bone plate with form-fitting variable-angle locking hole
US10772665B2 (en) 2018-03-29 2020-09-15 DePuy Synthes Products, Inc. Locking structures for affixing bone anchors to a bone plate, and related systems and methods
US11013541B2 (en) 2018-04-30 2021-05-25 DePuy Synthes Products, Inc. Threaded locking structures for affixing bone anchors to a bone plate, and related systems and methods
US10925651B2 (en) 2018-12-21 2021-02-23 DePuy Synthes Products, Inc. Implant having locking holes with collection cavity for shavings
US11877779B2 (en) 2020-03-26 2024-01-23 Xtant Medical Holdings, Inc. Bone plate system
US11963847B2 (en) 2021-11-03 2024-04-23 DePuy Synthes Products, Inc. TPLO plate compression system and method

Similar Documents

Publication Publication Date Title
USRE31628E (en) Osteosynthetic pressure plate construction
USRE28841E (en) Osteosynthetic pressure plate construction
US3668972A (en) Osteosynthetic pressure plate construction
US4263833A (en) Removable one-piece drive rivet
US5976141A (en) Threaded insert for bone plate screw hole
US4690597A (en) Positive arrangement for fastening a dowel
US3498174A (en) Inherently torque-limited bolt having removal means
JP4920585B2 (en) Bone plate system with bone screws fixed by auxiliary tightening
EP0510560B1 (en) Element for connecting two parts
US3938239A (en) Method of forming a self-flanging nut joint
US2402342A (en) Screw
GB1575194A (en) Screw
CN110418866B (en) Connector for transversely tightening two workpieces together
US4313697A (en) Mine roof support plate bolt
DE58909557D1 (en) Gliding hole plate for osteosynthesis
US12064151B2 (en) Bone compression plate
CH373516A (en) Device for the surgical fixation of bone fragments in limbs
US6450415B1 (en) Arresting device for support
US4757596A (en) Rivet
US11407072B2 (en) Clamp for retaining a block of material on a machining table, clamping device comprising said clamp and method of clamping a block of material, onto a machining table
US4182218A (en) Expansion core anchor
US20040238558A1 (en) Device for Connecting Ends of Bars
JPH0247401A (en) Apparatus for tying railroad rail
US2063128A (en) Bit and tool holder
US6254326B1 (en) Screw having a tapered thread

Legal Events

Date Code Title Description
AS Assignment

Owner name: SYNTHES LTD., 983 OLD EAGLE SCHOOL ROAD, WAYNE, PA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST. RECORDING OF ASSIGNMENT RECORDED ON REEL 4278 FR. 176 TO CORRECT 2 INCORRECT NUMBERS;ASSIGNOR:SYNTHES AG;REEL/FRAME:004278/0176

Effective date: 19840612

AS Assignment

Owner name: SYNTHES (U.S.A.), 1690 RUSSELL ROAD, PAOLI, PA. 19

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:SYNTHES, LTD., (U.S.A.) (A PA. CORP.);REEL/FRAME:004757/0722

Effective date: 19870422