US9844435B2 - Transapical mitral valve replacement - Google Patents
Transapical mitral valve replacement Download PDFInfo
- Publication number
- US9844435B2 US9844435B2 US14/190,496 US201414190496A US9844435B2 US 9844435 B2 US9844435 B2 US 9844435B2 US 201414190496 A US201414190496 A US 201414190496A US 9844435 B2 US9844435 B2 US 9844435B2
- Authority
- US
- United States
- Prior art keywords
- wires
- heart valve
- valve
- stent
- legs
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
- A61F2/2412—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
- A61F2/2418—Scaffolds therefor, e.g. support stents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
- A61F2/2427—Devices for manipulating or deploying heart valves during implantation
- A61F2/2439—Expansion controlled by filaments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
- A61F2/2442—Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
- A61F2/2454—Means for preventing inversion of the valve leaflets, e.g. chordae tendineae prostheses
- A61F2/2457—Chordae tendineae prostheses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0008—Fixation appliances for connecting prostheses to the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0025—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2220/0033—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementary-shaped recess, e.g. held by friction fit
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0063—Three-dimensional shapes
- A61F2230/0091—Three-dimensional shapes helically-coiled or spirally-coiled, i.e. having a 2-D spiral cross-section
Definitions
- the present invention relates to heart valve replacement and, in particular, to collapsible prosthetic heart valves. More particularly, the present invention relates to devices and methods for repositioning and anchoring collapsible prosthetic heart valves during the deployment procedure.
- Prosthetic heart valves that are collapsible to a relatively small circumferential size can be delivered into a patient less invasively than valves that are not collapsible.
- a collapsible valve may be delivered into a patient via a tube-like delivery apparatus such as a catheter, a trocar, a laparoscopic instrument, or the like. This collapsibility can avoid the need for a more invasive procedure such as full open-chest, open-heart surgery.
- Collapsible prosthetic heart valves typically take the form of a valve structure mounted on a stent.
- a stent There are two types of stents on which the valve structures are ordinarily mounted: a self-expanding stent and a balloon-expandable stent.
- a self-expanding stent To place such valves into a delivery apparatus and ultimately into a patient, the valve must first be collapsed or crimped to reduce its circumferential size.
- the prosthetic valve When a collapsed prosthetic valve has reached the desired implant site in the patient (e.g., at or near the annulus of the patient's heart valve that is to be replaced by the prosthetic valve), the prosthetic valve can be deployed or released from the delivery apparatus and re-expanded to full operating size.
- this generally involves releasing the entire valve, assuring its proper location, and then expanding a balloon positioned within the valve stent.
- the stent automatically expands as the sheath covering the valve is withdrawn.
- the stent is usually anchored within the native valve annulus via the radial force of the expanding stent against the native valve annulus. If the radial force is too high, damage may occur to heart tissue. If, instead, the radial force is too low, the heart valve may prolapse or migrate, for example, into the left ventricle, requiring emergency surgery to remove the displaced valve.
- this radial anchoring partly depends on the presence of calcification or plaque in the native valve annulus, it may be difficult to properly anchor the valve in locations where plaque is lacking (e.g., the mitral valve annulus). Additionally, in certain locations, such as for mitral valve applications, the heart valve may require a lower profile so as not to interfere with surrounding tissue structures. Such a low profile makes it difficult for the valve to remain in place.
- a fully deployed heart valve may need to be removed from the patient if it appears that the valve is not functioning properly. Removing a fully deployed heart valve increases the length of the procedure and the risk of damage to surrounding tissue.
- a prosthetic heart valve includes a collapsible and expandable stent having an outflow end and an inflow end.
- the outflow end includes a plurality of legs movable between a substantially straight configuration and a relaxed configuration capable of grasping heart tissue.
- a plurality of commissure features may be disposed on the stent and a plurality of anchoring features may be disposed on respective ones of the plurality of legs, the plurality of anchoring features being coupleable to a delivery device.
- a collapsible and expandable valve assembly may be disposed within the stent.
- each of the legs may be biased to move to a curled configuration in a relaxed configuration.
- Each of the legs may be configured to curl about the chordae tendinea in the curled configuration.
- the curled configuration may be a helical configuration, the legs being biased to move to the helical configuration in the relaxed configuration.
- the plurality of anchoring features may include at least one C-shaped barb.
- the outflow end of the stent may have an expanded circumference, and the inflow end of the stent has a flared portion, the flared portion having an expanded circumference that is larger than the expanded circumference of the outflow end of the stent.
- the heart valve may be a mitral valve.
- the valve assembly may include a plurality of leaflets.
- the device may further include sutures connecting the plurality of leaflets to the plurality of commissure features.
- a catheter for delivering a prosthetic heart valve to a deployment site in a patient may include an outer sheath, a plurality of wires disposed within the outer sheath, each of the plurality of wires terminating in a coupler operable to connect to a portion of the prosthetic heart valve, and a plurality of sleeves, each one of the plurality of sleeves being disposed about one of the plurality of wires.
- the plurality of wires may be formed from a shape-memory material.
- the coupler may be a hook.
- the plurality of wires may be formed from a suture material.
- the coupler may be a suture loop.
- Each of the plurality of sleeves may be translatable relative to the plurality of wires.
- the catheter may further include an inner tube for accepting the plurality of wires.
- a method of deploying a prosthetic heart valve at a target site, the prosthetic heart valve including a collapsible and expandable stent having an outflow end and an inflow end, and a collapsible and expandable valve assembly disposed within the stent may include (i) introducing a delivery device to the target site, the delivery device including an outer sheath, the prosthetic heart valve being disposed within the outer sheath, a plurality of wires disposed within the outer sheath, each of the plurality of wires terminating in a coupler connected to the heart valve, and a plurality of sleeves, each one of the plurality of sleeves being disposed about one of the plurality of wires, (ii) withdrawing the sheath a first distance to partially deploy the prosthetic heart valve at the target site such that the valve assembly is partially deployed at the first distance and can function as intended while the outflow end of the stent is coupled to the plurality of wires, and (iii) pulling at least one of the
- the method may further include withdrawing the plurality of sleeves to expose the plurality of wires.
- the method may further include decoupling the couplers from the heart valve.
- the plurality of wires may include a suture material and the decoupling step may include cutting the suture material.
- the coupler may include a hook and the decoupling step may include detaching the hook from the heart valve.
- FIG. 1 is a schematic representation of a human heart showing a transapical delivery approach
- FIG. 2 is a schematic representation of a native mitral valve and associated structures
- FIG. 3 is a schematic representation of a prosthetic mitral valve in accordance with one embodiment of the present invention.
- FIG. 4 is a fragmentary side elevational view of a delivery device for delivering the valve of FIG. 3 ;
- FIG. 5A is a schematic representation of a prosthetic mitral valve having elongated legs in accordance with a second embodiment of the present invention.
- FIG. 5B is a schematic representation of the prosthetic mitral valve of FIG. 5A with the elongated legs in the curled position;
- FIG. 5C is a schematic representation showing the elongated legs of the prosthetic mitral valve of FIG. 5A curled about the chordae tendineae;
- FIG. 6A is a schematic representation of a prosthetic mitral valve having helical struts in accordance with a third embodiment of the present invention.
- FIG. 6B is a schematic representation showing the helical struts of the prosthetic mitral valve of FIG. 6A wrapped about the papillary muscles;
- FIG. 7A is a schematic representation of a prosthetic mitral valve having C-shaped barbs in accordance with a fourth embodiment of the present invention.
- FIG. 7B is a schematic representation of the C-shaped barbs of the prosthetic mitral valve of FIG. 7A cinching the papillary muscles.
- FIG. 8 is a schematic representation of a prosthetic mitral valve having a flared inflow end portion in accordance with a fifth embodiment of the present invention.
- the term “inflow,” when used in connection with a prosthetic mitral heart valve refers to the end of the heart valve closest to the left atrium when the heart valve is implanted in a patient
- the term “outflow,” when used in connection with a prosthetic heart valve refers to the end of the heart valve closest to the left ventricle when the heart valve is implanted in a patient.
- the terms “trailing” and “leading” are to be taken as relative to the user of the delivery devices. “Trailing” is to be understood as relatively close to the operator, and “leading” is to be understood as relatively farther away from the operator.
- FIG. 1 is a schematic representation of a human heart 100 .
- the human heart includes two atria and two ventricles: a right atrium 112 and a left atrium 122 , and a right ventricle 114 and a left ventricle 124 .
- the heart 100 further includes an aorta 110 , and an aortic arch 120 .
- Disposed between the left atrium and the left ventricle is the mitral valve 130 .
- the mitral valve 130 also known as the bicuspid valve or left atrioventricular valve, is a dual-flap that opens as a result of increased pressure from the left atrium as it fills with blood. As atrial pressure increases above that of the left ventricle, the mitral valve opens and blood passes toward the left ventricle. Blood flows through heart 100 in the direction shown by arrows “B”.
- TA transapical delivery
- a small incision is made between the ribs and into the apex of the left ventricle 124 to deliver the prosthetic heart valve to the target site.
- FIG. 2 is a more detailed schematic representation of a native mitral valve 130 and its associated structures.
- mitral valve 130 includes two flaps or leaflets, a posterior leaflet 136 and an anterior leaflet 138 , disposed between left atrium 122 and left ventricle 124 .
- Cord-like tendons known as chordae tendineae 134 connect the two leaflets 136 , 138 to the medial and lateral papillary muscles 132 .
- chordae tendineae 134 connect the two leaflets 136 , 138 to the medial and lateral papillary muscles 132 .
- atrial systole blood flows from the left atrium to the left ventricle down the pressure gradient.
- the left ventricle contracts in ventricular systole, the increased blood pressure in the chamber pushes the mitral valve to close, preventing backflow of blood into the left atrium.
- FIG. 3 is a schematic representation of a prosthetic mitral valve 300 in accordance with one embodiment of the present disclosure.
- the prosthetic heart valve 300 is a collapsible prosthetic heart valve designed to replace the function of the native mitral valve of a patient. Examples of collapsible prosthetic heart valves are described, generally, in International Patent Application Publication No. WO/2009/042196; U.S. Pat. No. 7,018,406; and U.S. Pat. No. 7,329,278, the disclosures of all of which are hereby incorporated herein by reference.
- Prosthetic heart valve 300 includes an expandable stent 302 which may be formed from biocompatible materials that are capable of self-expansion, such as, for example, shape memory alloys such as nitinol. Stent 302 extends from an outflow end 330 to an inflow end 332 .
- Heart valve 300 may be substantially cylindrical, or may slightly taper outwardly from the outflow end 330 to the inflow end 332 .
- mitral valve 300 may have a low profile so as not to interfere with atrial function.
- Stent 302 may include a plurality of struts 310 that form cells 312 connected to one another in one or more annular rows around the stent.
- the cells 312 may all be of substantially the same size around the perimeter and along the length of stent 312 .
- cells 312 near the inflow end 332 may be larger than the cells near the outflow end 330 .
- One or more anchors 318 may be provided at the outflow end 330 of stent 302 , the anchors being sized and shaped to cooperate with complementary structures provided on a deployment device.
- the engagement of anchors 318 with the structures on the deployment device helps maintain prosthetic heart valve 300 in an assembled relationship with the deployment device, minimizes longitudinal movement of the prosthetic heart valve relative to the deployment device during unsheathing or resheathing procedures, and helps prevent rotation of the prosthetic heart valve relative to the deployment device as the deployment device is advanced to the target location and during deployment.
- the anchors 318 may also be useful in repositioning heart valve 300 and affixing the heart valve to tissue after full deployment, as will be discussed in more detail below with reference to FIGS. 5A-8 .
- the stent 302 may also include a plurality of commissure features 316 at which the leaflet commissures are attached to the stent, for example by sutures (not shown).
- the commissure features 316 may lie at the intersection of four cells 312 , two of the cells being adjacent one another in the same annular row, and the other two cells being in different annular rows and lying in end-to-end relationship with one another.
- commissure features 316 are positioned near the inflow end 332 of heart valve 300 .
- Commissure features 316 optionally may include one or more eyelets which facilitate the attachment of the leaflet commissures to the stent.
- the prosthetic heart valve 300 includes a valve assembly 304 disposed within stent 302 .
- Valve assembly 304 may be secured to stent 302 by suturing to struts 310 , which constitute the cells 312 of the stent, by suturing to the commissure features 316 of the stent, or by other attachment mechanisms.
- Valve assembly 304 may include a cuff (not shown) and a plurality of leaflets 308 which collectively function as a one-way valve by coapting with one another.
- heart valve 300 is intended to replace the native mitral valve, which as described above includes two leaflets; heart valve 300 is therefore illustrated with a pair of leaflets 308 .
- both the cuff and the leaflets 308 may be wholly or partly formed of any suitable biological material, such as bovine or porcine pericardium, or polymers, such as PTFE, urethanes and the like.
- the prosthetic heart valve described above may be used to replace a native heart valve, such as the mitral valve, a surgical heart valve or a heart valve that has undergone a surgical procedure.
- the prosthetic heart valve may be delivered to the desired site (e.g., near a native mitral annulus) using any suitable delivery device, including the delivery devices described in detail below.
- the prosthetic heart valve is disposed inside the delivery device in the collapsed condition.
- the delivery device may be introduced into a patient using a transapical or other percutaneous approach. Once the delivery device has reached the target site, the user may deploy the prosthetic heart valve.
- the prosthetic heart valve may be held to the delivery device by anchors, as will be described in more detail below.
- the prosthetic heart valve Upon deployment, the prosthetic heart valve expands into secure engagement within the native anatomic structure, such as the mitral valve annulus. When the prosthetic heart valve is properly positioned inside the patient, it works as a one-way valve, allowing blood to flow in one direction and preventing blood from flowing in the opposite direction.
- the valve assembly 304 may be spaced from the outflow end 330 of the stent 302 by a distance that enables deployment of the heart valve by an amount sufficient for the leaflets of the prosthetic valve to operate as intended, while the outflow end 330 of the stent remains captured by the delivery device.
- the user can determine whether the valve leaflets are properly positioned relative to the native valve annulus, and whether the valve is functioning properly. If the user determines that the positioning and operation of the valve are acceptable, the remainder of the valve may be deployed.
- the user may resheath the valve and either reposition it for redeployment, or remove it entirely from the patient. This can be particularly important in very high risk patients who would typically be recipients of these types of valves because of the nature of their condition and the impact that may have on the shape and/or condition of the native valve and valve annulus.
- FIG. 4A is a fragmentary side elevational view of a delivery device 400 for delivering heart valve 300 .
- Delivery device 400 may include a guidewire 405 , an outer sheath 410 , a plurality of wires 415 and sleeves 420 .
- Sheath 410 may extend from a leading end 432 to a trailing end (not shown) and may be sized to accept heart valve 300 in the collapsed condition for delivery.
- Guidewire 405 may extend through sheath 410 and through heart valve 300 when the heart valve is loaded in delivery device 400 .
- Guidewire 405 may include additional elements (not shown) for accepting or coupling the collapsed heart valve 300 thereto.
- a plurality of wires 415 may also be disposed within sheath 410 . Each wire 415 may extend through sheath 410 from the trailing end of the sheath to a coupler 418 at its leading end.
- Wires 415 may be formed of a biologically compatible metal such as any of the metals used in constructing struts 310 of heart valve 300 .
- the metal may be a shape-memory wire that is biased radially outward from sheath 410 to facilitate a recapture process should one become necessary.
- wires 415 may be formed of a suture or polymeric thread. Wires 415 should be sufficiently flexible to allow for guiding and delivery within the anatomy, yet strong enough to enable repositioning of the heart valve 300 as will be described below.
- the couplers 418 at the ends of wires 415 are adapted to mate with anchors 318 of heart valve 300 .
- Each coupler 418 may be in the form of a metallic hook, clasp or pin that engages with an anchor 318 .
- each coupler 418 may be in the form of a suture or thread loop tied around an anchor 318 .
- each wire 415 may be disposed within a sleeve 420 having an enlarged crown 422 for accepting anchors 318 of heart valve 300 .
- Sleeves 420 may be formed as plastic or polymeric tubes capable of preventing the couplers 418 from becoming disengaged from anchors 318 during delivery and/or repositioning.
- Each sleeve 420 may be disposed over a wire 415 so as to be translatable relative to the wire.
- One of the sleeves 420 has been retracted over wire 415 in FIG. 4A to reveal the structure of a coupler 418 and its connection to an anchor 318 .
- FIG. 4A further illustrates an optional inner tube 450 disposed within outer sheath 410 for accepting wires 415 .
- Inner tube 450 may be useful in bundling the wires 415 and preventing them from becoming entangled during delivery and repositioning of valve 300 .
- Inner tube 450 may be capable of telescoping within outer sheath 410 .
- delivery device 400 for delivering a prosthetic heart valve, such as mitral valve 300
- the operator may advance the delivery catheter into the patient's heart using the transapical approach shown in FIG. 1 .
- the guidewire 405 may be held in place while outer sheath 410 and inner tube 450 are retracted to expose collapsible heart valve 300 and sleeves 420 .
- heart valve 300 may begin to expand, as shown in FIG. 4A .
- heart valve 300 may be partially expanded such that leaflets 308 are fully operational and the valve assembly 304 may be tested for proper functionality with each anchor 318 of the heart valve still mated with a coupler 418 of delivery device 400 .
- the catheter may be decoupled from the heart valve and removed from the patient. This may be accomplished by retracting sleeves 420 to expose wires 415 . If the wires 415 are metal, couplers 418 may be unhooked or otherwise decoupled from anchors 318 and retracted within outer sheath 410 . If the wires 415 are made of a suture material, they may be severed, leaving the fully-functional heart valve 300 within the native valve annulus. Delivery catheter 400 may then be withdrawn from the body.
- any one of the wires 415 may be actuated simultaneously or the wires may be actuated one at a time. If the heart valve 300 is incapable of proper operation despite multiple repositioning attempts using wires 415 , inner tube 450 and outer sheath 410 may be advanced over wires 415 to recapture heart valve 300 and remove it from the patient.
- FIG. 4B illustrates a variation of the delivery device of FIG. 4A and includes many of the same elements.
- delivery device 400 ′ may include a guidewire 405 , an outer sheath 410 , a plurality of wires 415 , an inner tube 450 and sleeves 420 ′.
- delivery device 400 ′ is configured such that each sleeve 420 ′ receives a plurality of terminal legs 313 of stent 300 ′ therein.
- each sleeve 420 ′ includes an enlarged crown portion 422 ′ and may include an enlarged coupler 418 ′ capable of mating with complementary features disposed on each terminal leg 313 of stent 300 ′.
- delivery device 400 ′ may include multiple couplers 418 ′ attached to each wire 415 , one coupler 418 ′ for each terminal leg 313 .
- each sleeve 420 ′ is configured to receive three terminal legs 313 of stent 300 ′.
- delivery device 400 ′ may include three sleeves 420 ′. Utilizing less sleeves 420 ′ and wires 415 may simply the deployment process and result in quicker operation.
- FIGS. 5A-C are schematic representations of a prosthetic mitral valve 300 A in accordance with a second embodiment of the present invention.
- Heart valve 300 A is similar to heart valve 300 described above, and includes a stent 302 and a valve assembly 304 having a pair of leaflets 308 .
- Heart valve 300 A further includes certain features for aiding in properly anchoring the heart valve in the native valve annulus.
- FIG. 5A illustrates elongated legs 510 .
- FIG. 5A illustrates all of the struts at outflow end 330 forming elongated legs 510 , it will be understood that any number of elongated legs 510 may be included in stent 302 , including one, two, three, four or more elongated legs. Any or all of the elongated legs 510 may end with an anchor 318 for mating with the couplers 418 of wires 415 of the delivery device described above.
- FIG. 5A illustrates elongated legs 510 in a relaxed state in which the legs have a curled configuration. This is the shape to which the legs 510 are biased when removed from sleeves 420 . When disposed within sleeves 420 during delivery and repositioning, legs 510 may have a substantially straight configuration, as shown in FIG. 5B .
- elongated legs 510 As mitral valve 300 A is delivered to an appropriate implantation site and deployed, the elongated legs 510 thereof will initially be disposed within sleeves 420 , and will thus have a substantially straight configuration. However, elongated legs 510 may be formed from a shape memory alloy that will return to a relaxed state when removed from sleeves 420 . Therefore, as sleeves 420 are removed from legs 510 , the legs may revert to the curled configuration shown. In addition to the anchoring attributable to the radial force exerted by the stent 302 of valve 300 A, this curled configuration may provide extra anchoring of the valve in the native valve annulus by hooking onto the chordae tendineae. FIG.
- Elongated legs 510 that do not terminate in anchors 318 may include atraumatic tips that curl around the chordae tendineae 134 in addition to portions of the medial or lateral papillary muscles 132 without damaging these structures.
- each elongated leg 510 that does not terminate in an anchor 318 may terminate in a sharp barb that punctures the native valve leaflet or surrounding tissue for additional anchoring.
- FIG. 6A is a schematic representation of a prosthetic mitral valve 300 B in accordance with a third embodiment of the present invention.
- the struts near outflow end 330 of stent 302 may terminate in spiral or helical struts 610 .
- Struts 610 may have a helical configuration when in the relaxed state, much the same as the elongated legs 510 of valve 300 A have a curled configuration in the relaxed state. However, when confined within sleeves 420 , struts 610 may be substantially straight, as shown in FIG. 5A .
- struts 610 may return to their relaxed helical configuration, enabling them to wrap around the chordae tendineae 134 or the papillary muscles 132 , as shown in FIG. 6B .
- the stent 302 of a prosthetic mitral valve 300 C may include C-shaped barbs 710 on selected struts, as shown in FIG. 7A , while the rest of the struts may include the anchors 318 of mitral valve 300 described above.
- Each C-shaped barb 710 may include two or more piercing points 715 for capturing the chordae tendineae 134 or papillary muscles 132 .
- FIG. 7B is a schematic representation of the C-shaped barb of FIG. 7A cinching the papillary muscles 132 .
- FIG. 8 is a schematic representation of a prosthetic mitral valve 300 D having a flared inflow end portion 810 in accordance with another embodiment of the present invention.
- stent 302 includes an outwardly flared portion 810 that extends into the left atrium and is biased radially outwardly.
- flared portion 810 enables stent 302 to sit within the annulus and prevents the stent from slipping into, for example, the left ventricle when blood flows through valve assembly 304 .
- a prosthetic heart valve may include both a flared inflow portion as well as any of the various anchoring features near the outflow end discussed above.
- a prosthetic heart valve may include any number of anchoring features or combinations thereof.
- a prosthetic heart valve may include alternating curling legs and helical legs.
- a prosthetic heart valve may include struts of varying lengths that include these features, some for coupling to the chordae tendineae, others for coupling to the papillary muscles, and still others for coupling to the native valve leaflets. It will be appreciated that any of the features described in connection with individual embodiments may be shared with others of the described embodiments.
Landscapes
- Health & Medical Sciences (AREA)
- Cardiology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Transplantation (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Prostheses (AREA)
Abstract
A prosthetic heart valve includes a collapsible and expandable stent having an outflow end and an inflow end, a plurality of commissure features attached to the stent, a plurality of anchoring features disposed on legs of the stent, the plurality of anchoring features being coupleable to a delivery device for repositioning, and a valve assembly disposed within the stent. The anchoring features may be configured to attach to heart tissue to help secure the prosthetic heart valve in an operating position.
Description
The present application claims the benefit of the filing date of U.S. Provisional Application No. 61/771,439, filed Mar. 1, 2013, the disclosure of which is hereby incorporated herein by reference.
The present invention relates to heart valve replacement and, in particular, to collapsible prosthetic heart valves. More particularly, the present invention relates to devices and methods for repositioning and anchoring collapsible prosthetic heart valves during the deployment procedure.
Prosthetic heart valves that are collapsible to a relatively small circumferential size can be delivered into a patient less invasively than valves that are not collapsible. For example, a collapsible valve may be delivered into a patient via a tube-like delivery apparatus such as a catheter, a trocar, a laparoscopic instrument, or the like. This collapsibility can avoid the need for a more invasive procedure such as full open-chest, open-heart surgery.
Collapsible prosthetic heart valves typically take the form of a valve structure mounted on a stent. There are two types of stents on which the valve structures are ordinarily mounted: a self-expanding stent and a balloon-expandable stent. To place such valves into a delivery apparatus and ultimately into a patient, the valve must first be collapsed or crimped to reduce its circumferential size.
When a collapsed prosthetic valve has reached the desired implant site in the patient (e.g., at or near the annulus of the patient's heart valve that is to be replaced by the prosthetic valve), the prosthetic valve can be deployed or released from the delivery apparatus and re-expanded to full operating size. For balloon-expandable valves, this generally involves releasing the entire valve, assuring its proper location, and then expanding a balloon positioned within the valve stent. For self-expanding valves, on the other hand, the stent automatically expands as the sheath covering the valve is withdrawn.
Despite the various improvements that have been made to the collapsible prosthetic heart valve delivery process, conventional delivery devices, systems, and methods suffer from some shortcomings. In conventional collapsible heart valves, the stent is usually anchored within the native valve annulus via the radial force of the expanding stent against the native valve annulus. If the radial force is too high, damage may occur to heart tissue. If, instead, the radial force is too low, the heart valve may prolapse or migrate, for example, into the left ventricle, requiring emergency surgery to remove the displaced valve. Because this radial anchoring partly depends on the presence of calcification or plaque in the native valve annulus, it may be difficult to properly anchor the valve in locations where plaque is lacking (e.g., the mitral valve annulus). Additionally, in certain locations, such as for mitral valve applications, the heart valve may require a lower profile so as not to interfere with surrounding tissue structures. Such a low profile makes it difficult for the valve to remain in place.
Moreover, it is not possible at this time, using available collapsible heart valves and delivery devices, to determine whether a valve assembly will function as intended without full deployment of the heart valve. However, due to anatomical variations between patients, a fully deployed heart valve may need to be removed from the patient if it appears that the valve is not functioning properly. Removing a fully deployed heart valve increases the length of the procedure and the risk of damage to surrounding tissue.
In view of the foregoing, there is a need for further improvements to the devices, systems, and methods for transcatheter delivery and anchoring of collapsible prosthetic heart valves, and in particular, self-expanding prosthetic heart valves. More particularly, a need exists for an arrangement that will enable the functioning of the valve to be ascertained prior to full deployment. Among other advantages, the present invention may address one or more of these needs.
In some embodiments, a prosthetic heart valve includes a collapsible and expandable stent having an outflow end and an inflow end. The outflow end includes a plurality of legs movable between a substantially straight configuration and a relaxed configuration capable of grasping heart tissue. A plurality of commissure features may be disposed on the stent and a plurality of anchoring features may be disposed on respective ones of the plurality of legs, the plurality of anchoring features being coupleable to a delivery device. A collapsible and expandable valve assembly may be disposed within the stent.
In some examples, each of the legs may be biased to move to a curled configuration in a relaxed configuration. Each of the legs may be configured to curl about the chordae tendinea in the curled configuration. The curled configuration may be a helical configuration, the legs being biased to move to the helical configuration in the relaxed configuration. The plurality of anchoring features may include at least one C-shaped barb. The outflow end of the stent may have an expanded circumference, and the inflow end of the stent has a flared portion, the flared portion having an expanded circumference that is larger than the expanded circumference of the outflow end of the stent. The heart valve may be a mitral valve. The valve assembly may include a plurality of leaflets. The device may further include sutures connecting the plurality of leaflets to the plurality of commissure features.
In some embodiments, a catheter for delivering a prosthetic heart valve to a deployment site in a patient may include an outer sheath, a plurality of wires disposed within the outer sheath, each of the plurality of wires terminating in a coupler operable to connect to a portion of the prosthetic heart valve, and a plurality of sleeves, each one of the plurality of sleeves being disposed about one of the plurality of wires.
In some examples, the plurality of wires may be formed from a shape-memory material. The coupler may be a hook. The plurality of wires may be formed from a suture material. The coupler may be a suture loop. Each of the plurality of sleeves may be translatable relative to the plurality of wires. The catheter may further include an inner tube for accepting the plurality of wires.
In some embodiments, a method of deploying a prosthetic heart valve at a target site, the prosthetic heart valve including a collapsible and expandable stent having an outflow end and an inflow end, and a collapsible and expandable valve assembly disposed within the stent may include (i) introducing a delivery device to the target site, the delivery device including an outer sheath, the prosthetic heart valve being disposed within the outer sheath, a plurality of wires disposed within the outer sheath, each of the plurality of wires terminating in a coupler connected to the heart valve, and a plurality of sleeves, each one of the plurality of sleeves being disposed about one of the plurality of wires, (ii) withdrawing the sheath a first distance to partially deploy the prosthetic heart valve at the target site such that the valve assembly is partially deployed at the first distance and can function as intended while the outflow end of the stent is coupled to the plurality of wires, and (iii) pulling at least one of the plurality of wires to reposition the heart valve.
In some examples, the method may further include withdrawing the plurality of sleeves to expose the plurality of wires. The method may further include decoupling the couplers from the heart valve. The plurality of wires may include a suture material and the decoupling step may include cutting the suture material. The coupler may include a hook and the decoupling step may include detaching the hook from the heart valve.
Various embodiments of the present invention are disclosed herein with reference to the drawings, wherein:
Various embodiments of the present invention will now be described with reference to the appended drawings. It is to be appreciated that these drawings depict only some embodiments of the invention and are therefore not to be considered limiting of its scope.
Blood flows through the mitral valve from the left atrium to the left ventricle. As used herein, the term “inflow,” when used in connection with a prosthetic mitral heart valve, refers to the end of the heart valve closest to the left atrium when the heart valve is implanted in a patient, whereas the term “outflow,” when used in connection with a prosthetic heart valve, refers to the end of the heart valve closest to the left ventricle when the heart valve is implanted in a patient. When used in connection with devices for delivering a prosthetic heart valve into a patient, the terms “trailing” and “leading” are to be taken as relative to the user of the delivery devices. “Trailing” is to be understood as relatively close to the operator, and “leading” is to be understood as relatively farther away from the operator.
A dashed arrow, labeled as “TA”, indicates a transapical approach of implanting a prosthetic heart valve, in this case to replace a mitral valve. In transapical delivery, a small incision is made between the ribs and into the apex of the left ventricle 124 to deliver the prosthetic heart valve to the target site.
One or more anchors 318 may be provided at the outflow end 330 of stent 302, the anchors being sized and shaped to cooperate with complementary structures provided on a deployment device. The engagement of anchors 318 with the structures on the deployment device helps maintain prosthetic heart valve 300 in an assembled relationship with the deployment device, minimizes longitudinal movement of the prosthetic heart valve relative to the deployment device during unsheathing or resheathing procedures, and helps prevent rotation of the prosthetic heart valve relative to the deployment device as the deployment device is advanced to the target location and during deployment. The anchors 318 may also be useful in repositioning heart valve 300 and affixing the heart valve to tissue after full deployment, as will be discussed in more detail below with reference to FIGS. 5A-8 .
The stent 302 may also include a plurality of commissure features 316 at which the leaflet commissures are attached to the stent, for example by sutures (not shown). The commissure features 316 may lie at the intersection of four cells 312, two of the cells being adjacent one another in the same annular row, and the other two cells being in different annular rows and lying in end-to-end relationship with one another. Preferably, commissure features 316 are positioned near the inflow end 332 of heart valve 300. Commissure features 316 optionally may include one or more eyelets which facilitate the attachment of the leaflet commissures to the stent.
The prosthetic heart valve 300 includes a valve assembly 304 disposed within stent 302. Valve assembly 304 may be secured to stent 302 by suturing to struts 310, which constitute the cells 312 of the stent, by suturing to the commissure features 316 of the stent, or by other attachment mechanisms. Valve assembly 304 may include a cuff (not shown) and a plurality of leaflets 308 which collectively function as a one-way valve by coapting with one another. In the example shown, heart valve 300 is intended to replace the native mitral valve, which as described above includes two leaflets; heart valve 300 is therefore illustrated with a pair of leaflets 308. However, it will be appreciated that the prosthetic heart valves according to this aspect of the invention may have a greater number of leaflets and commissure features. Both the cuff and the leaflets 308 may be wholly or partly formed of any suitable biological material, such as bovine or porcine pericardium, or polymers, such as PTFE, urethanes and the like.
The prosthetic heart valve described above may be used to replace a native heart valve, such as the mitral valve, a surgical heart valve or a heart valve that has undergone a surgical procedure. The prosthetic heart valve may be delivered to the desired site (e.g., near a native mitral annulus) using any suitable delivery device, including the delivery devices described in detail below. During delivery, the prosthetic heart valve is disposed inside the delivery device in the collapsed condition. The delivery device may be introduced into a patient using a transapical or other percutaneous approach. Once the delivery device has reached the target site, the user may deploy the prosthetic heart valve. The prosthetic heart valve may be held to the delivery device by anchors, as will be described in more detail below. Upon deployment, the prosthetic heart valve expands into secure engagement within the native anatomic structure, such as the mitral valve annulus. When the prosthetic heart valve is properly positioned inside the patient, it works as a one-way valve, allowing blood to flow in one direction and preventing blood from flowing in the opposite direction.
In a prosthetic heart valve, the valve assembly 304 may be spaced from the outflow end 330 of the stent 302 by a distance that enables deployment of the heart valve by an amount sufficient for the leaflets of the prosthetic valve to operate as intended, while the outflow end 330 of the stent remains captured by the delivery device. By configuring the prosthetic heart valve in this manner, the user can determine whether the valve leaflets are properly positioned relative to the native valve annulus, and whether the valve is functioning properly. If the user determines that the positioning and operation of the valve are acceptable, the remainder of the valve may be deployed. However, if it is determined that the leaflet position is improper or that the valve is not functioning properly, the user may resheath the valve and either reposition it for redeployment, or remove it entirely from the patient. This can be particularly important in very high risk patients who would typically be recipients of these types of valves because of the nature of their condition and the impact that may have on the shape and/or condition of the native valve and valve annulus.
A plurality of wires 415 may also be disposed within sheath 410. Each wire 415 may extend through sheath 410 from the trailing end of the sheath to a coupler 418 at its leading end. Wires 415 may be formed of a biologically compatible metal such as any of the metals used in constructing struts 310 of heart valve 300. The metal may be a shape-memory wire that is biased radially outward from sheath 410 to facilitate a recapture process should one become necessary. Alternatively, wires 415 may be formed of a suture or polymeric thread. Wires 415 should be sufficiently flexible to allow for guiding and delivery within the anatomy, yet strong enough to enable repositioning of the heart valve 300 as will be described below. The couplers 418 at the ends of wires 415 are adapted to mate with anchors 318 of heart valve 300. Each coupler 418 may be in the form of a metallic hook, clasp or pin that engages with an anchor 318. Alternatively, each coupler 418 may be in the form of a suture or thread loop tied around an anchor 318.
As seen in FIG. 4A , each wire 415 may be disposed within a sleeve 420 having an enlarged crown 422 for accepting anchors 318 of heart valve 300. Sleeves 420 may be formed as plastic or polymeric tubes capable of preventing the couplers 418 from becoming disengaged from anchors 318 during delivery and/or repositioning. Each sleeve 420 may be disposed over a wire 415 so as to be translatable relative to the wire. One of the sleeves 420 has been retracted over wire 415 in FIG. 4A to reveal the structure of a coupler 418 and its connection to an anchor 318.
To use delivery device 400 for delivering a prosthetic heart valve, such as mitral valve 300, the operator may advance the delivery catheter into the patient's heart using the transapical approach shown in FIG. 1 . Once in position, the guidewire 405 may be held in place while outer sheath 410 and inner tube 450 are retracted to expose collapsible heart valve 300 and sleeves 420. Once outer sheath 410 has been retracted, heart valve 300 may begin to expand, as shown in FIG. 4A . At this position, heart valve 300 may be partially expanded such that leaflets 308 are fully operational and the valve assembly 304 may be tested for proper functionality with each anchor 318 of the heart valve still mated with a coupler 418 of delivery device 400. If the operator has determined that the heart valve 300 is in a suitable position and functioning properly, the catheter may be decoupled from the heart valve and removed from the patient. This may be accomplished by retracting sleeves 420 to expose wires 415. If the wires 415 are metal, couplers 418 may be unhooked or otherwise decoupled from anchors 318 and retracted within outer sheath 410. If the wires 415 are made of a suture material, they may be severed, leaving the fully-functional heart valve 300 within the native valve annulus. Delivery catheter 400 may then be withdrawn from the body.
If, however, the operator determines that an adjustment is necessary, he may pull on any one of the wires 415 to slightly reposition the heart valve within the native valve annulus. Two or more wires 415 may be actuated simultaneously or the wires may be actuated one at a time. If the heart valve 300 is incapable of proper operation despite multiple repositioning attempts using wires 415, inner tube 450 and outer sheath 410 may be advanced over wires 415 to recapture heart valve 300 and remove it from the patient.
As seen in FIG. 5A , the struts near outflow end 330 of stent 302 form elongated legs 510. Though FIG. 5A illustrates all of the struts at outflow end 330 forming elongated legs 510, it will be understood that any number of elongated legs 510 may be included in stent 302, including one, two, three, four or more elongated legs. Any or all of the elongated legs 510 may end with an anchor 318 for mating with the couplers 418 of wires 415 of the delivery device described above. FIG. 5A illustrates elongated legs 510 in a relaxed state in which the legs have a curled configuration. This is the shape to which the legs 510 are biased when removed from sleeves 420. When disposed within sleeves 420 during delivery and repositioning, legs 510 may have a substantially straight configuration, as shown in FIG. 5B .
As mitral valve 300A is delivered to an appropriate implantation site and deployed, the elongated legs 510 thereof will initially be disposed within sleeves 420, and will thus have a substantially straight configuration. However, elongated legs 510 may be formed from a shape memory alloy that will return to a relaxed state when removed from sleeves 420. Therefore, as sleeves 420 are removed from legs 510, the legs may revert to the curled configuration shown. In addition to the anchoring attributable to the radial force exerted by the stent 302 of valve 300A, this curled configuration may provide extra anchoring of the valve in the native valve annulus by hooking onto the chordae tendineae. FIG. 5C illustrates this coupling of the elongated legs 510 to the chordae tendineae 134. Elongated legs 510 that do not terminate in anchors 318 may include atraumatic tips that curl around the chordae tendineae 134 in addition to portions of the medial or lateral papillary muscles 132 without damaging these structures. Alternatively, each elongated leg 510 that does not terminate in an anchor 318 may terminate in a sharp barb that punctures the native valve leaflet or surrounding tissue for additional anchoring.
Instead of curling elongated legs or helical struts, the stent 302 of a prosthetic mitral valve 300C may include C-shaped barbs 710 on selected struts, as shown in FIG. 7A , while the rest of the struts may include the anchors 318 of mitral valve 300 described above. Each C-shaped barb 710 may include two or more piercing points 715 for capturing the chordae tendineae 134 or papillary muscles 132. FIG. 7B is a schematic representation of the C-shaped barb of FIG. 7A cinching the papillary muscles 132. By cinching papillary muscles or chordae tendineae using C-shaped barbs 710 on opposite lateral sides of heart valve 300C, anchoring within the native valve annulus may be improved.
In addition to adding anchoring features to the outflow end 330 of the prosthetic heart valves described herein, certain anchoring features may be added near the inflow end 332 of the valve. FIG. 8 is a schematic representation of a prosthetic mitral valve 300D having a flared inflow end portion 810 in accordance with another embodiment of the present invention. In this embodiment, stent 302 includes an outwardly flared portion 810 that extends into the left atrium and is biased radially outwardly. When valve 300D is disposed within the native valve annulus, flared portion 810 enables stent 302 to sit within the annulus and prevents the stent from slipping into, for example, the left ventricle when blood flows through valve assembly 304.
It will be appreciated that the various dependent claims and the features set forth therein can be combined in different ways than presented in the initial claims. For example, a prosthetic heart valve may include both a flared inflow portion as well as any of the various anchoring features near the outflow end discussed above. Additionally, a prosthetic heart valve may include any number of anchoring features or combinations thereof. For example, a prosthetic heart valve may include alternating curling legs and helical legs. Alternatively, a prosthetic heart valve may include struts of varying lengths that include these features, some for coupling to the chordae tendineae, others for coupling to the papillary muscles, and still others for coupling to the native valve leaflets. It will be appreciated that any of the features described in connection with individual embodiments may be shared with others of the described embodiments.
Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the appended claims.
Claims (13)
1. A system for heart valve replacement, the system comprising:
a catheter including:
an outer sheath;
a plurality of wires disposed within the outer sheath, each of the plurality of wires terminating in at least one hook-shaped coupler; and
a plurality of sleeves, each one of the plurality of sleeves being disposed about one of the plurality of wires; and
a prosthetic heart valve including:
a collapsible and expandable stent having an outflow end and an inflow end, the outflow end including a plurality of legs, each of the plurality of legs extending between an attached end coupled to the stent, and a free end unattached to the stent, the plurality of legs being movable between a substantially straight configuration and a curled, relaxed configuration extending away from the outflow end such that a first distance between the inflow end and the free end is greater than a second distance between the inflow end and the attached end, the plurality of legs being capable of grasping heart tissue in the relaxed configuration; and
a plurality of closed, circular anchoring features, each anchoring feature being disposed on the free end of respective ones of the plurality of legs, each of the plurality of anchoring features being coupleable to a hook-shaped coupler of the catheter.
2. The system of claim 1 , wherein the plurality of wires are formed from a shape-memory material.
3. The system of claim 1 , wherein the at least one coupler includes a hook.
4. The system of claim 1 , wherein the plurality of wires are formed from a suture material.
5. The system of claim 1 , wherein the at least one coupler includes a suture loop.
6. The system of claim 1 , wherein each of the plurality of sleeves is translatable relative to the plurality of wires.
7. The system of claim 1 , further comprising an inner tube for accepting the plurality of wires.
8. The system of claim 1 , wherein each of the at least one coupler is configured to mate with a plurality of legs of the prosthetic heart valve.
9. A method of deploying a prosthetic heart valve at a target site, the prosthetic heart valve including a collapsible and expandable stent having an outflow end and an inflow end, the outflow end including a plurality of legs, each of the plurality of legs extending between an attached end coupled to the stent, and a free end unattached to the stent, the plurality of legs being movable between a substantially straight configuration and a relaxed configuration extending away from the outflow end such that a first distance between the inflow end and the free end is greater than a second distance between the inflow end and the attached end, and a plurality of anchoring features, each anchoring feature being disposed on the free end of respective ones of the plurality of legs, each of the plurality of anchoring features being coupleable to a coupler of the catheter, and a collapsible and expandable valve assembly disposed within the stent, the method comprising:
introducing a delivery device to the target site, the delivery device including an outer sheath, the prosthetic heart valve being disposed within the outer sheath, a plurality of wires disposed within the outer sheath, each of the plurality of wires terminating in a coupler directly connected to one of the anchoring features of the heart valve, and a plurality of sleeves, each one of the plurality of sleeves being disposed about one of the plurality of wires;
withdrawing the sheath a first distance to partially deploy the prosthetic heart valve at the target site such that the valve assembly is partially deployed at the first distance and can function as intended while the anchoring features are coupled to the plurality of wires; and
pulling at least one of the plurality of wires to reposition the heart valve.
10. The method of claim 9 , further comprising withdrawing the plurality of sleeves to expose the plurality of wires.
11. The method of claim 9 , further comprising decoupling the couplers from the heart valve.
12. The method of claim 11 , wherein the plurality of wires includes a suture material and the decoupling step includes cutting the suture material.
13. The method of claim 11 , wherein the coupler includes a hook and the decoupling step includes detaching the hook from the heart valve.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/190,496 US9844435B2 (en) | 2013-03-01 | 2014-02-26 | Transapical mitral valve replacement |
US15/830,816 US10864076B2 (en) | 2013-03-01 | 2017-12-04 | Transapical mitral valve replacement |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361771439P | 2013-03-01 | 2013-03-01 | |
US14/190,496 US9844435B2 (en) | 2013-03-01 | 2014-02-26 | Transapical mitral valve replacement |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/830,816 Continuation US10864076B2 (en) | 2013-03-01 | 2017-12-04 | Transapical mitral valve replacement |
Publications (2)
Publication Number | Publication Date |
---|---|
US20140249621A1 US20140249621A1 (en) | 2014-09-04 |
US9844435B2 true US9844435B2 (en) | 2017-12-19 |
Family
ID=51421341
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/190,496 Active 2034-09-21 US9844435B2 (en) | 2013-03-01 | 2014-02-26 | Transapical mitral valve replacement |
US15/830,816 Active 2034-11-12 US10864076B2 (en) | 2013-03-01 | 2017-12-04 | Transapical mitral valve replacement |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/830,816 Active 2034-11-12 US10864076B2 (en) | 2013-03-01 | 2017-12-04 | Transapical mitral valve replacement |
Country Status (1)
Country | Link |
---|---|
US (2) | US9844435B2 (en) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170312078A1 (en) * | 2016-04-29 | 2017-11-02 | Medtronic Vascular, Inc. | Prosthetic heart valve devices with tethered anchors and associated systems and methods |
US20180085218A1 (en) * | 2013-03-01 | 2018-03-29 | St. Jude Medical, Cardiology Division, Inc. | Transapical mitral valve replacement |
US10028827B2 (en) | 2011-06-21 | 2018-07-24 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
US10052204B2 (en) | 2011-10-19 | 2018-08-21 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US10111747B2 (en) | 2013-05-20 | 2018-10-30 | Twelve, Inc. | Implantable heart valve devices, mitral valve repair devices and associated systems and methods |
US10238490B2 (en) | 2015-08-21 | 2019-03-26 | Twelve, Inc. | Implant heart valve devices, mitral valve repair devices and associated systems and methods |
US10258468B2 (en) | 2012-03-01 | 2019-04-16 | Twelve, Inc. | Hydraulic delivery systems for prosthetic heart valve devices and associated methods |
US10299917B2 (en) | 2011-10-19 | 2019-05-28 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US10350004B2 (en) | 2004-12-09 | 2019-07-16 | Twelve, Inc. | Intravascular treatment catheters |
US10433961B2 (en) | 2017-04-18 | 2019-10-08 | Twelve, Inc. | Delivery systems with tethers for prosthetic heart valve devices and associated methods |
US10517725B2 (en) | 2010-12-23 | 2019-12-31 | Twelve, Inc. | System for mitral valve repair and replacement |
US10575950B2 (en) | 2017-04-18 | 2020-03-03 | Twelve, Inc. | Hydraulic systems for delivering prosthetic heart valve devices and associated methods |
US10646338B2 (en) | 2017-06-02 | 2020-05-12 | Twelve, Inc. | Delivery systems with telescoping capsules for deploying prosthetic heart valve devices and associated methods |
US10702378B2 (en) | 2017-04-18 | 2020-07-07 | Twelve, Inc. | Prosthetic heart valve device and associated systems and methods |
US10702380B2 (en) | 2011-10-19 | 2020-07-07 | Twelve, Inc. | Devices, systems and methods for heart valve replacement |
US10709591B2 (en) | 2017-06-06 | 2020-07-14 | Twelve, Inc. | Crimping device and method for loading stents and prosthetic heart valves |
US10729541B2 (en) | 2017-07-06 | 2020-08-04 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
US10786352B2 (en) | 2017-07-06 | 2020-09-29 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
US10792151B2 (en) | 2017-05-11 | 2020-10-06 | Twelve, Inc. | Delivery systems for delivering prosthetic heart valve devices and associated methods |
US10945835B2 (en) | 2011-10-19 | 2021-03-16 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US11147673B2 (en) | 2018-05-22 | 2021-10-19 | Boston Scientific Scimed, Inc. | Percutaneous papillary muscle relocation |
US11202704B2 (en) | 2011-10-19 | 2021-12-21 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US11666444B2 (en) | 2017-08-03 | 2023-06-06 | The Regents Of The University Of California | Atrial cage for placement, securing and anchoring of atrioventricular valves |
Families Citing this family (81)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8603160B2 (en) | 2003-12-23 | 2013-12-10 | Sadra Medical, Inc. | Method of using a retrievable heart valve anchor with a sheath |
US7381219B2 (en) | 2003-12-23 | 2008-06-03 | Sadra Medical, Inc. | Low profile heart valve and delivery system |
US20050137687A1 (en) | 2003-12-23 | 2005-06-23 | Sadra Medical | Heart valve anchor and method |
US7959666B2 (en) | 2003-12-23 | 2011-06-14 | Sadra Medical, Inc. | Methods and apparatus for endovascularly replacing a heart valve |
US9526609B2 (en) | 2003-12-23 | 2016-12-27 | Boston Scientific Scimed, Inc. | Methods and apparatus for endovascularly replacing a patient's heart valve |
ES2725721T3 (en) | 2004-02-03 | 2019-09-26 | V Wave Ltd | Device and method to control pressure in vivo |
CA3050938C (en) | 2004-10-02 | 2021-10-19 | Edwards Lifesciences Cardiaq Llc | Methods and devices for repair or replacement of heart valves or adjacent tissue without the need for full cardiopulmonary support |
DE102005003632A1 (en) | 2005-01-20 | 2006-08-17 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Catheter for the transvascular implantation of heart valve prostheses |
US8092520B2 (en) | 2005-11-10 | 2012-01-10 | CardiAQ Technologies, Inc. | Vascular prosthesis connecting stent |
US9681948B2 (en) | 2006-01-23 | 2017-06-20 | V-Wave Ltd. | Heart anchor device |
US20090306768A1 (en) | 2006-07-28 | 2009-12-10 | Cardiaq Valve Technologies, Inc. | Percutaneous valve prosthesis and system and method for implanting same |
US7896915B2 (en) | 2007-04-13 | 2011-03-01 | Jenavalve Technology, Inc. | Medical device for treating a heart valve insufficiency |
US9044318B2 (en) | 2008-02-26 | 2015-06-02 | Jenavalve Technology Gmbh | Stent for the positioning and anchoring of a valvular prosthesis |
BR112012021347A2 (en) | 2008-02-26 | 2019-09-24 | Jenavalve Tecnology Inc | stent for positioning and anchoring a valve prosthesis at an implantation site in a patient's heart |
EP2367505B1 (en) | 2008-09-29 | 2020-08-12 | Edwards Lifesciences CardiAQ LLC | Heart valve |
WO2010121076A2 (en) | 2009-04-15 | 2010-10-21 | Cardiaq Valve Technologies, Inc. | Vascular implant and delivery system |
EP2427143B1 (en) | 2009-05-04 | 2017-08-02 | V-Wave Ltd. | Device for regulating pressure in a heart chamber |
US20210161637A1 (en) | 2009-05-04 | 2021-06-03 | V-Wave Ltd. | Shunt for redistributing atrial blood volume |
US10076403B1 (en) | 2009-05-04 | 2018-09-18 | V-Wave Ltd. | Shunt for redistributing atrial blood volume |
US9034034B2 (en) | 2010-12-22 | 2015-05-19 | V-Wave Ltd. | Devices for reducing left atrial pressure, and methods of making and using same |
AU2011257298B2 (en) | 2010-05-25 | 2014-07-31 | Jenavalve Technology Inc. | Prosthetic heart valve and transcatheter delivered endoprosthesis comprising a prosthetic heart valve and a stent |
EP2582326B2 (en) | 2010-06-21 | 2024-07-03 | Edwards Lifesciences CardiAQ LLC | Replacement heart valve |
US9579193B2 (en) * | 2010-09-23 | 2017-02-28 | Transmural Systems Llc | Methods and systems for delivering prostheses using rail techniques |
EP2618784B1 (en) | 2010-09-23 | 2016-05-25 | Edwards Lifesciences CardiAQ LLC | Replacement heart valves and delivery devices |
US9005279B2 (en) * | 2010-11-12 | 2015-04-14 | Shlomo Gabbay | Beating heart buttress and implantation method to prevent prolapse of a heart valve |
US11135054B2 (en) | 2011-07-28 | 2021-10-05 | V-Wave Ltd. | Interatrial shunts having biodegradable material, and methods of making and using same |
US9629715B2 (en) | 2011-07-28 | 2017-04-25 | V-Wave Ltd. | Devices for reducing left atrial pressure having biodegradable constriction, and methods of making and using same |
US9763780B2 (en) | 2011-10-19 | 2017-09-19 | Twelve, Inc. | Devices, systems and methods for heart valve replacement |
US10070850B2 (en) * | 2012-10-19 | 2018-09-11 | Cook Medical Technologies Llc | Vascular closure with multiple connections |
US20140277427A1 (en) | 2013-03-14 | 2014-09-18 | Cardiaq Valve Technologies, Inc. | Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery |
US9730791B2 (en) | 2013-03-14 | 2017-08-15 | Edwards Lifesciences Cardiaq Llc | Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery |
ES2800029T3 (en) | 2013-05-21 | 2020-12-23 | V Wave Ltd | Apparatus for applying devices to reduce left atrial pressure |
US9867694B2 (en) | 2013-08-30 | 2018-01-16 | Jenavalve Technology Inc. | Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame |
CA2938614C (en) | 2014-02-21 | 2024-01-23 | Edwards Lifesciences Cardiaq Llc | Delivery device for controlled deployement of a replacement valve |
US20150328000A1 (en) | 2014-05-19 | 2015-11-19 | Cardiaq Valve Technologies, Inc. | Replacement mitral valve with annular flap |
US10285809B2 (en) * | 2015-03-06 | 2019-05-14 | Boston Scientific Scimed Inc. | TAVI anchoring assist device |
US12121461B2 (en) | 2015-03-20 | 2024-10-22 | Jenavalve Technology, Inc. | Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath |
CN107157622B (en) * | 2015-03-26 | 2019-12-17 | 杭州启明医疗器械股份有限公司 | Safe-to-use valve stent and valve replacement device with same |
US10376363B2 (en) | 2015-04-30 | 2019-08-13 | Edwards Lifesciences Cardiaq Llc | Replacement mitral valve, delivery system for replacement mitral valve and methods of use |
US10709555B2 (en) | 2015-05-01 | 2020-07-14 | Jenavalve Technology, Inc. | Device and method with reduced pacemaker rate in heart valve replacement |
WO2016178171A1 (en) | 2015-05-07 | 2016-11-10 | The Medical Research Infrastructure And Health Services Fund Of The Tel-Aviv Medical Center | Temporary interatrial shunts |
US10179042B2 (en) | 2015-06-12 | 2019-01-15 | St. Jude Medical, Cardiology Division, Inc. | Heart valve repair and replacement |
WO2016209970A1 (en) | 2015-06-22 | 2016-12-29 | Edwards Lifescience Cardiaq Llc | Actively controllable heart valve implant and methods of controlling same |
US10092400B2 (en) | 2015-06-23 | 2018-10-09 | Edwards Lifesciences Cardiaq Llc | Systems and methods for anchoring and sealing a prosthetic heart valve |
US10117744B2 (en) | 2015-08-26 | 2018-11-06 | Edwards Lifesciences Cardiaq Llc | Replacement heart valves and methods of delivery |
US10575951B2 (en) | 2015-08-26 | 2020-03-03 | Edwards Lifesciences Cardiaq Llc | Delivery device and methods of use for transapical delivery of replacement mitral valve |
US10350066B2 (en) | 2015-08-28 | 2019-07-16 | Edwards Lifesciences Cardiaq Llc | Steerable delivery system for replacement mitral valve and methods of use |
US11833034B2 (en) | 2016-01-13 | 2023-12-05 | Shifamed Holdings, Llc | Prosthetic cardiac valve devices, systems, and methods |
WO2017195125A1 (en) | 2016-05-13 | 2017-11-16 | Jenavalve Technology, Inc. | Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath and loading system |
US20170340460A1 (en) | 2016-05-31 | 2017-11-30 | V-Wave Ltd. | Systems and methods for making encapsulated hourglass shaped stents |
US10835394B2 (en) | 2016-05-31 | 2020-11-17 | V-Wave, Ltd. | Systems and methods for making encapsulated hourglass shaped stents |
CN110099651A (en) | 2016-10-28 | 2019-08-06 | 克拉玛泽技术有限公司 | Cardiac implant |
US10653523B2 (en) | 2017-01-19 | 2020-05-19 | 4C Medical Technologies, Inc. | Systems, methods and devices for delivery systems, methods and devices for implanting prosthetic heart valves |
US10561495B2 (en) | 2017-01-24 | 2020-02-18 | 4C Medical Technologies, Inc. | Systems, methods and devices for two-step delivery and implantation of prosthetic heart valve |
WO2018138658A1 (en) | 2017-01-27 | 2018-08-02 | Jenavalve Technology, Inc. | Heart valve mimicry |
AU2018228451B2 (en) | 2017-03-03 | 2022-12-08 | V-Wave Ltd. | Shunt for redistributing atrial blood volume |
US11291807B2 (en) | 2017-03-03 | 2022-04-05 | V-Wave Ltd. | Asymmetric shunt for redistributing atrial blood volume |
US12029647B2 (en) | 2017-03-07 | 2024-07-09 | 4C Medical Technologies, Inc. | Systems, methods and devices for prosthetic heart valve with single valve leaflet |
US12036113B2 (en) | 2017-06-14 | 2024-07-16 | 4C Medical Technologies, Inc. | Delivery of heart chamber prosthetic valve implant |
US11123186B2 (en) | 2017-07-06 | 2021-09-21 | Edwards Lifesciences Corporation | Steerable delivery system and components |
CN111031967B (en) * | 2017-08-28 | 2022-08-09 | 坦迪尼控股股份有限公司 | Prosthetic heart valve with tether connection features |
US10898698B1 (en) | 2020-05-04 | 2021-01-26 | V-Wave Ltd. | Devices with dimensions that can be reduced and increased in vivo, and methods of making and using the same |
US11458287B2 (en) | 2018-01-20 | 2022-10-04 | V-Wave Ltd. | Devices with dimensions that can be reduced and increased in vivo, and methods of making and using the same |
EP3740163A1 (en) | 2018-01-20 | 2020-11-25 | V-Wave Ltd. | Devices and methods for providing passage between heart chambers |
EP3720390B1 (en) | 2018-01-25 | 2024-05-01 | Edwards Lifesciences Corporation | Delivery system for aided replacement valve recapture and repositioning post- deployment |
US11051934B2 (en) | 2018-02-28 | 2021-07-06 | Edwards Lifesciences Corporation | Prosthetic mitral valve with improved anchors and seal |
CA3109642A1 (en) * | 2018-08-21 | 2020-02-27 | Shifamed Holdings, Llc | Prosthetic cardiac valve devices, systems, and methods |
US11857441B2 (en) | 2018-09-04 | 2024-01-02 | 4C Medical Technologies, Inc. | Stent loading device |
EP3860519A4 (en) | 2018-10-05 | 2022-07-06 | Shifamed Holdings, LLC | Prosthetic cardiac valve devices, systems, and methods |
US11253359B2 (en) * | 2018-12-20 | 2022-02-22 | Vdyne, Inc. | Proximal tab for side-delivered transcatheter heart valves and methods of delivery |
WO2020191216A1 (en) | 2019-03-19 | 2020-09-24 | Shifamed Holdings, Llc | Prosthetic cardiac valve devices, systems, and methods |
US11612385B2 (en) | 2019-04-03 | 2023-03-28 | V-Wave Ltd. | Systems and methods for delivering implantable devices across an atrial septum |
CN111821068B (en) * | 2019-04-16 | 2023-05-16 | 乐普(北京)医疗器械股份有限公司 | Connection release structure and system thereof |
CN113905691A (en) * | 2019-05-20 | 2022-01-07 | 半月医疗有限公司 | Delivery system for heart valve device |
CN114096205B (en) | 2019-05-20 | 2024-05-24 | V-波有限责任公司 | System and method for producing room shunt |
US11931253B2 (en) | 2020-01-31 | 2024-03-19 | 4C Medical Technologies, Inc. | Prosthetic heart valve delivery system: ball-slide attachment |
US12053375B2 (en) | 2020-03-05 | 2024-08-06 | 4C Medical Technologies, Inc. | Prosthetic mitral valve with improved atrial and/or annular apposition and paravalvular leakage mitigation |
US11992403B2 (en) | 2020-03-06 | 2024-05-28 | 4C Medical Technologies, Inc. | Devices, systems and methods for improving recapture of prosthetic heart valve device with stent frame having valve support with inwardly stent cells |
US12053371B2 (en) | 2020-08-31 | 2024-08-06 | Shifamed Holdings, Llc | Prosthetic valve delivery system |
US11234702B1 (en) | 2020-11-13 | 2022-02-01 | V-Wave Ltd. | Interatrial shunt having physiologic sensor |
AU2023252664A1 (en) | 2022-04-14 | 2024-10-17 | V-Wave Ltd. | Interatrial shunt with expanded neck region |
Citations (173)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3657744A (en) | 1970-05-08 | 1972-04-25 | Univ Minnesota | Method for fixing prosthetic implants in a living body |
US4275469A (en) | 1979-12-13 | 1981-06-30 | Shelhigh Inc. | Prosthetic heart valve |
US4423730A (en) | 1982-03-01 | 1984-01-03 | Shelhigh Inc. | Atriotomy button and implantation device |
US4491986A (en) | 1976-05-12 | 1985-01-08 | Shlomo Gabbay | Heart valve |
US4759758A (en) | 1984-12-07 | 1988-07-26 | Shlomo Gabbay | Prosthetic heart valve |
US4878906A (en) | 1986-03-25 | 1989-11-07 | Servetus Partnership | Endoprosthesis for repairing a damaged vessel |
US4922905A (en) | 1985-11-30 | 1990-05-08 | Strecker Ernst P | Dilatation catheter |
US4994077A (en) | 1989-04-21 | 1991-02-19 | Dobben Richard L | Artificial heart valve for implantation in a blood vessel |
WO1991017720A1 (en) | 1990-05-18 | 1991-11-28 | Henning Rud Andersen | A valve prosthesis for implantation in the body and a catheter for implantating such valve prosthesis |
US5411552A (en) | 1990-05-18 | 1995-05-02 | Andersen; Henning R. | Valve prothesis for implantation in the body and a catheter for implanting such valve prothesis |
US5480423A (en) | 1993-05-20 | 1996-01-02 | Boston Scientific Corporation | Prosthesis delivery |
WO1997016133A1 (en) | 1995-11-01 | 1997-05-09 | Biocompatibles Limited | Braided stent |
EP0850607A1 (en) | 1996-12-31 | 1998-07-01 | Cordis Corporation | Valve prosthesis for implantation in body channels |
WO1998032412A2 (en) | 1997-01-24 | 1998-07-30 | Scimed Life Systems Inc | Bistable spring construction for a stent and other medical apparatus |
US5843167A (en) | 1993-04-22 | 1998-12-01 | C. R. Bard, Inc. | Method and apparatus for recapture of hooked endoprosthesis |
US5855601A (en) | 1996-06-21 | 1999-01-05 | The Trustees Of Columbia University In The City Of New York | Artificial heart valve and method and device for implanting the same |
WO1999013801A1 (en) | 1997-09-16 | 1999-03-25 | Zadno Azizi Gholam Reza | Body fluid flow control device |
US5924424A (en) | 1993-02-22 | 1999-07-20 | Heartport, Inc. | Method and apparatus for thoracoscopic intracardiac procedures |
US5935163A (en) | 1998-03-31 | 1999-08-10 | Shelhigh, Inc. | Natural tissue heart valve prosthesis |
US5961549A (en) | 1997-04-03 | 1999-10-05 | Baxter International Inc. | Multi-leaflet bioprosthetic heart valve |
US5968068A (en) | 1996-09-12 | 1999-10-19 | Baxter International Inc. | Endovascular delivery system |
EP1000590A1 (en) | 1998-11-09 | 2000-05-17 | Cordis Corporation | An improved stent which is easly recaptured and repositioned within the body |
US6077297A (en) | 1993-11-04 | 2000-06-20 | C. R. Bard, Inc. | Non-migrating vascular prosthesis and minimally invasive placement system therefor |
DE19857887A1 (en) | 1998-12-15 | 2000-07-06 | Fraunhofer Ges Forschung | Anchoring support for a heart valve prosthesis comprises a single-piece component which is formed of rod shaped elements made of a memory metal, and has at least in part a lattice structure |
US6090140A (en) | 1999-02-17 | 2000-07-18 | Shelhigh, Inc. | Extra-anatomic heart valve apparatus |
WO2001028459A1 (en) | 1999-10-21 | 2001-04-26 | Scimed Life Systems, Inc. | Implantable prosthetic valve |
WO2001049213A2 (en) | 1999-12-31 | 2001-07-12 | Advanced Bio Prosthetic Surfaces, Ltd. | Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof |
US6264691B1 (en) | 1999-04-23 | 2001-07-24 | Shlomo Gabbay | Apparatus and method for supporting a heart valve |
WO2001054625A1 (en) | 2000-01-31 | 2001-08-02 | Cook Biotech Incorporated | Stent valves and uses of same |
WO2001056500A2 (en) | 2000-02-03 | 2001-08-09 | Cook Incorporated | Implantable vascular device |
EP1129744A1 (en) | 1993-12-03 | 2001-09-05 | Heartport, Inc. | Cardiopulmonary bypass system for closed-chest intervention |
WO2001076510A2 (en) | 2000-04-06 | 2001-10-18 | Edwards Lifesciences Corporation | Minimally-invasive heart valves and methods of use |
US6306141B1 (en) | 1983-10-14 | 2001-10-23 | Medtronic, Inc. | Medical devices incorporating SIM alloy elements |
EP1157673A2 (en) | 2000-05-26 | 2001-11-28 | Variomed AG | Stent, position's element and delivery catheter |
US20020036220A1 (en) | 2000-09-26 | 2002-03-28 | Shlomo Gabbay | Curved implantable sheath and method of making same |
US6368348B1 (en) | 2000-05-15 | 2002-04-09 | Shlomo Gabbay | Annuloplasty prosthesis for supporting an annulus of a heart valve |
WO2002036048A1 (en) | 2000-10-31 | 2002-05-10 | Jacques Seguin | Tubular support for setting, by percutaneous route, a substitution cusp |
WO2002047575A2 (en) | 2000-12-15 | 2002-06-20 | Angiomed Gmbh & Co. Medizintechnik Kg | Stent with valve |
US6419695B1 (en) | 2000-05-22 | 2002-07-16 | Shlomo Gabbay | Cardiac prosthesis for helping improve operation of a heart valve |
US6468660B2 (en) | 2000-12-29 | 2002-10-22 | St. Jude Medical, Inc. | Biocompatible adhesives |
DE10121210A1 (en) | 2001-04-30 | 2002-11-14 | Universitaetsklinikum Freiburg | Replacement heart valve, comprises an anchoring element, and has a starting volume which is opened up to the normal volume using a catheter |
US20030023303A1 (en) | 1999-11-19 | 2003-01-30 | Palmaz Julio C. | Valvular prostheses having metal or pseudometallic construction and methods of manufacture |
US6517576B2 (en) | 2000-12-11 | 2003-02-11 | Shlomo Gabbay | Implantable patch prosthesis having one or more cusps for improved competency |
US20030050694A1 (en) | 2001-09-13 | 2003-03-13 | Jibin Yang | Methods and apparatuses for deploying minimally-invasive heart valves |
US6533810B2 (en) | 1995-11-27 | 2003-03-18 | Schneider (Europe) Ag | Conical stent |
US20030065385A1 (en) * | 2001-09-28 | 2003-04-03 | Weadock Kevin Shaun | Prosthesis for the repair of thoracic or abdominal aortic aneurysms and method therefor |
WO2003047468A1 (en) | 2001-10-11 | 2003-06-12 | Percutaneous Valve Technologies | Implantable prosthetic valve |
US6582464B2 (en) | 2000-05-03 | 2003-06-24 | Shlomo Gabbay | Biomechanical heart valve prosthesis and method for making same |
US20030130726A1 (en) | 1999-09-10 | 2003-07-10 | Thorpe Patricia E. | Combination valve and stent for treating vascular reflux |
US6623518B2 (en) | 2001-02-26 | 2003-09-23 | Ev3 Peripheral, Inc. | Implant delivery system with interlock |
EP1360942A1 (en) | 2002-05-11 | 2003-11-12 | Willy Rüsch GmbH | Stent |
US6685625B2 (en) | 2000-09-26 | 2004-02-03 | Shlomo Gabbay | Curved implantable sheath and method of making same |
US6719789B2 (en) | 1993-11-01 | 2004-04-13 | 3F Therapeutics, Inc. | Replacement heart valve |
FR2847800A1 (en) | 2002-11-28 | 2004-06-04 | Perouse Laboratoires | Prosthetic valve, has carrier framework with branches for centripetal compression of framework towards its folded position in contrast to elastic action, valve expanded and contracted in respective obstruction and release positions |
FR2850008A1 (en) | 2003-01-17 | 2004-07-23 | Daniel Roux | Vascular prosthesis has tube and collar for adapting to blood vessel ends of different diameters |
US6783556B1 (en) | 2000-09-26 | 2004-08-31 | Shlomo Gabbay | System and method for making a calotte-shaped implantable sheath |
US20040210304A1 (en) | 1999-11-17 | 2004-10-21 | Corevalve, S.A. | Prosthetic valve for transluminal delivery |
US6814746B2 (en) | 2002-11-01 | 2004-11-09 | Ev3 Peripheral, Inc. | Implant delivery system with marker interlock |
US6830584B1 (en) | 1999-11-17 | 2004-12-14 | Jacques Seguin | Device for replacing a cardiac valve by percutaneous route |
US20050049692A1 (en) * | 2003-09-02 | 2005-03-03 | Numamoto Michael J. | Medical device for reduction of pressure effects of cardiac tricuspid valve regurgitation |
US6869444B2 (en) | 2000-05-22 | 2005-03-22 | Shlomo Gabbay | Low invasive implantable cardiac prosthesis and method for helping improve operation of a heart valve |
US20050096726A1 (en) | 2000-05-30 | 2005-05-05 | Jacques Sequin | Noncylindrical stent deployment system for treating vascular bifurcations |
US20050137697A1 (en) | 2003-12-23 | 2005-06-23 | Amr Salahieh | Leaflet engagement elements and methods for use thereof |
US20050137695A1 (en) | 2003-12-23 | 2005-06-23 | Sadra Medical | Replacement valve and anchor |
EP1584306A1 (en) | 1999-02-02 | 2005-10-12 | Bard Peripheral Vascular, Inc. | Partial encapsulation of stents using bands |
US20050256566A1 (en) | 2004-05-03 | 2005-11-17 | Shlomo Gabbay | Apparatus and method for improving ventricular function |
EP1598031A2 (en) | 1998-03-04 | 2005-11-23 | Boston Scientific Limited | Stent having variable properties |
US20060008497A1 (en) | 2004-07-09 | 2006-01-12 | Shlomo Gabbay | Implantable apparatus having improved biocompatibility and process of making the same |
US7018406B2 (en) | 1999-11-17 | 2006-03-28 | Corevalve Sa | Prosthetic valve for transluminal delivery |
US20060074484A1 (en) | 2004-10-02 | 2006-04-06 | Huber Christoph H | Methods and devices for repair or replacement of heart valves or adjacent tissue without the need for full cardiopulmonary support |
US7025780B2 (en) | 2000-09-12 | 2006-04-11 | Shlomo Gabbay | Valvular prosthesis |
US20060106415A1 (en) | 2004-11-12 | 2006-05-18 | Shlomo Gabbay | Apparatus to facilitate implantation |
US20060122692A1 (en) | 2004-05-10 | 2006-06-08 | Ran Gilad | Stent valve and method of using same |
US20060142848A1 (en) | 2000-09-12 | 2006-06-29 | Shlomo Gabbay | Extra-anatomic aortic valve placement |
US20060149360A1 (en) | 2003-07-08 | 2006-07-06 | Ventor Technologies Ltd. | Fluid flow prosthetic device |
WO2006073626A2 (en) | 2005-01-05 | 2006-07-13 | The Cleveland Clinic Foundation | Method for fixing tissue |
US20060167468A1 (en) | 2004-11-12 | 2006-07-27 | Shlomo Gabbay | Implantation system and method for loading an implanter with a prosthesis |
US20060173532A1 (en) | 2004-12-20 | 2006-08-03 | Jacob Flagle | Intraluminal support frame and medical devices including the support frame |
US20060178740A1 (en) | 2005-02-10 | 2006-08-10 | Sorin Biomedica Cardio S.R.L. | Cardiac-valve prosthesis |
US20060206202A1 (en) | 2004-11-19 | 2006-09-14 | Philippe Bonhoeffer | Apparatus for treatment of cardiac valves and method of its manufacture |
US20060241744A1 (en) | 2003-03-20 | 2006-10-26 | Aortech International Plc | Valve |
US20060241745A1 (en) * | 2005-04-21 | 2006-10-26 | Solem Jan O | Blood flow controlling apparatus |
US20060259120A1 (en) | 2005-05-12 | 2006-11-16 | Ev3, Inc. | Implant delivery system with interlocked RX port orientation |
US20060259137A1 (en) | 2003-10-06 | 2006-11-16 | Jason Artof | Minimally invasive valve replacement system |
US7137184B2 (en) | 2002-09-20 | 2006-11-21 | Edwards Lifesciences Corporation | Continuous heart valve support frame and method of manufacture |
US20060265056A1 (en) | 2005-05-13 | 2006-11-23 | Corevalve, Inc. | Heart valve prosthesis and methods of manufacture and use |
US20060276813A1 (en) | 2005-05-20 | 2006-12-07 | The Cleveland Clinic Foundation | Apparatus and methods for repairing the function of a diseased valve and method for making same |
US7160322B2 (en) | 2003-08-13 | 2007-01-09 | Shlomo Gabbay | Implantable cardiac prosthesis for mitigating prolapse of a heart valve |
US20070010876A1 (en) | 2003-12-23 | 2007-01-11 | Amr Salahieh | Externally Expandable Heart Valve Anchor and Method |
US20070027534A1 (en) | 2005-07-27 | 2007-02-01 | Bjarne Bergheim | Methods and systems for cardiac valve delivery |
US20070043435A1 (en) | 1999-11-17 | 2007-02-22 | Jacques Seguin | Non-cylindrical prosthetic valve system for transluminal delivery |
US20070055358A1 (en) | 2005-08-22 | 2007-03-08 | Krolik Jeffrey A | Axially compressible flared stents and apparatus and methods for delivering them |
US20070067029A1 (en) | 2005-09-16 | 2007-03-22 | Shlomo Gabbay | Support apparatus to facilitate implantation of cardiac prosthesis |
US20070073391A1 (en) | 2005-09-28 | 2007-03-29 | Henry Bourang | System and method for delivering a mitral valve repair device |
US20070088431A1 (en) | 2005-10-18 | 2007-04-19 | Henry Bourang | Heart valve delivery system with valve catheter |
US20070093890A1 (en) | 2005-10-26 | 2007-04-26 | Eliasen Kenneth A | Heart valve implant |
US20070100435A1 (en) | 2003-04-24 | 2007-05-03 | Cook Incorporated | Artificial prostheses with preferred geometries |
US20070112422A1 (en) | 2005-11-16 | 2007-05-17 | Mark Dehdashtian | Transapical heart valve delivery system and method |
US20070118210A1 (en) | 2005-11-18 | 2007-05-24 | Leonard Pinchuk | Trileaflet Heart Valve |
WO2007071436A2 (en) | 2005-12-22 | 2007-06-28 | Symetis Sa | Stent-valves for valve replacement and associated methods and systems for surgery |
US20070162100A1 (en) | 2006-01-10 | 2007-07-12 | Shlomo Gabbay | System and method for loading implanter with prosthesis |
US20070168013A1 (en) | 2006-01-19 | 2007-07-19 | Myles Douglas | Vascular graft and deployment system |
US7247167B2 (en) | 2004-02-19 | 2007-07-24 | Shlomo Gabbay | Low profile heart valve prosthesis |
US20070203575A1 (en) | 2006-02-27 | 2007-08-30 | Cardiacmd, Inc., A California Corporation | Methods and devices for delivery of prosthetic heart valves and other prosthetics |
US20070213813A1 (en) | 2005-12-22 | 2007-09-13 | Symetis Sa | Stent-valves for valve replacement and associated methods and systems for surgery |
US20070233228A1 (en) | 2006-03-28 | 2007-10-04 | Medtronic, Inc. | Prosthetic cardiac valve formed from pericardium material and methods of making same |
US20070239271A1 (en) | 2006-04-10 | 2007-10-11 | Than Nguyen | Systems and methods for loading a prosthesis onto a minimally invasive delivery system |
US20070244545A1 (en) | 2006-04-14 | 2007-10-18 | Medtronic Vascular, Inc. | Prosthetic Conduit With Radiopaque Symmetry Indicators |
US20070244552A1 (en) | 2003-12-23 | 2007-10-18 | Amr Salahieh | Assessing the location and performance of replacement heart valves |
US20070288087A1 (en) | 2006-05-30 | 2007-12-13 | Cook Incorporated | Artificial valve prosthesis |
US7311730B2 (en) | 2004-02-13 | 2007-12-25 | Shlomo Gabbay | Support apparatus and heart valve prosthesis for sutureless implantation |
US20080021552A1 (en) | 2001-10-09 | 2008-01-24 | Shlomo Gabbay | Apparatus To Facilitate Implantation |
US20080039934A1 (en) | 2004-09-07 | 2008-02-14 | Laboratoires Perouse | Interchangeable Prosthetic Valve |
US20080071369A1 (en) | 2006-09-19 | 2008-03-20 | Yosi Tuval | Valve fixation member having engagement arms |
US20080082164A1 (en) | 2006-10-02 | 2008-04-03 | Friedman Robert S | Sutureless heart valve attachment |
US20080097595A1 (en) | 2006-08-22 | 2008-04-24 | Shlomo Gabbay | Intraventricular cardiac prosthesis |
US20080114452A1 (en) | 2007-11-14 | 2008-05-15 | Shlomo Gabbay | Prosthesis exhibiting post-implantation size change |
US7374573B2 (en) | 2004-05-03 | 2008-05-20 | Shlomo Gabbay | System and method for improving ventricular function |
WO2008070797A2 (en) | 2006-12-06 | 2008-06-12 | Medtronic Corevalve, Inc. | System and method for transapical delivery of an annulus anchored self-expanding valve |
US20080147182A1 (en) | 2006-12-19 | 2008-06-19 | Sorin Biomedica Cardio S.R.L. | Instrument and method for in situ deployment of cardiac valve prostheses |
US20080147183A1 (en) | 2006-12-14 | 2008-06-19 | Mikolaj Styrc | Endovalve |
US20080154355A1 (en) | 2006-12-22 | 2008-06-26 | Netanel Benichou | Implantable prosthetic valve assembly and method of making the same |
US20080243245A1 (en) | 2004-03-11 | 2008-10-02 | Percutaneous Cardiovascular Solutions Pty Limited | Percutaneous Heart Valve Prosthesis |
US20080255662A1 (en) | 2004-03-03 | 2008-10-16 | Sorin Biomedica Cardio S.R.L. | Minimally-invasive cardiac-valve prosthesis |
US20080262602A1 (en) | 1998-09-10 | 2008-10-23 | Jenavalve Technology, Inc. | Methods and conduits for flowing blood from a heart chamber to a blood vessel |
US20080269879A1 (en) | 2005-07-27 | 2008-10-30 | Rahul Dilip Sathe | Implantable Prosthetic Vascular Valve |
US7452371B2 (en) | 1999-06-02 | 2008-11-18 | Cook Incorporated | Implantable vascular device |
DE202008009610U1 (en) | 2008-07-17 | 2008-12-11 | Nvt Ag | Prosthetic heart valve system |
US20090054975A1 (en) | 2004-02-06 | 2009-02-26 | Children's Medical Center Corporation | Deployment device for cardiac surgery |
US7510572B2 (en) | 2000-09-12 | 2009-03-31 | Shlomo Gabbay | Implantation system for delivery of a heart valve prosthesis |
US7524331B2 (en) | 2006-04-06 | 2009-04-28 | Medtronic Vascular, Inc. | Catheter delivered valve having a barrier to provide an enhanced seal |
US20090112309A1 (en) | 2005-07-21 | 2009-04-30 | The Florida International University Board Of Trustees | Collapsible Heart Valve with Polymer Leaflets |
US20090138079A1 (en) | 2007-10-10 | 2009-05-28 | Vector Technologies Ltd. | Prosthetic heart valve for transfemoral delivery |
US20100004740A1 (en) | 1999-11-17 | 2010-01-07 | Jacques Seguin | Prosthetic Valve for Transluminal Delivery |
WO2010008549A1 (en) | 2008-07-15 | 2010-01-21 | St. Jude Medical, Inc. | Axially anchoring collapsible and re-expandable prosthetic heart valves for various disease states |
WO2010008548A2 (en) | 2008-07-15 | 2010-01-21 | St. Jude Medical, Inc. | Collapsible and re-expandable prosthetic heart valve cuff designs and complementary technological applications |
US20100036484A1 (en) | 2008-06-06 | 2010-02-11 | Edwards Lifesciences Corporation | Low profile transcatheter heart valve |
US20100049306A1 (en) | 2008-02-25 | 2010-02-25 | Medtronic Vascular, Inc. | Infundibular Reducer Devices |
US20100049313A1 (en) * | 2008-08-22 | 2010-02-25 | Edwards Lifesciences Corporation | Prosthetic heart valve and delivery apparatus |
US7682390B2 (en) | 2001-07-31 | 2010-03-23 | Medtronic, Inc. | Assembly for setting a valve prosthesis in a corporeal duct |
US20100087907A1 (en) | 2007-02-16 | 2010-04-08 | Emory University | Apparatus And Methods For Treating The Aorta |
WO2010051025A1 (en) | 2008-10-30 | 2010-05-06 | St. Jude Medical, Inc. | Collapsible/expandable prosthetic heart valve delivery system and methods |
US20100131055A1 (en) | 2003-04-24 | 2010-05-27 | Cook Incorporated | Artificial valve prosthesis with improved flow dynamics |
US20100168839A1 (en) | 2007-06-04 | 2010-07-01 | Braido Peter N | Prosthetic heart valves |
US20100168778A1 (en) | 2007-06-08 | 2010-07-01 | Braido Peter N | Devices for transcatheter prosthetic heart valve implantation and access closure |
US20100185277A1 (en) | 2007-09-26 | 2010-07-22 | St. Jude Medical, Inc. | Collapsible prosthetic heart valves |
US20100191326A1 (en) | 2007-06-26 | 2010-07-29 | Alkhatib Yousef F | Apparatus and method for implanting collapsible/expandable prosthetic heart valves |
WO2010087975A1 (en) | 2009-01-30 | 2010-08-05 | St. Jude Medical, Inc. | Transapical mini-introducer homeostasis valve and punch |
US20100204781A1 (en) | 2007-08-24 | 2010-08-12 | Alkhatib Yousef F | Prosthetic aortic heart valves |
US20100204785A1 (en) | 2007-09-28 | 2010-08-12 | Alkhatib Yousef F | Two-stage collapsible/expandable prosthetic heart valves and anchoring systems |
WO2010096176A1 (en) | 2009-02-20 | 2010-08-26 | St. Jude Medical, Inc. | Devices and methods for collapsing prosthetic heart valves |
US20100217382A1 (en) | 2009-02-25 | 2010-08-26 | Edwards Lifesciences | Mitral valve replacement with atrial anchoring |
WO2010098857A1 (en) | 2009-02-27 | 2010-09-02 | St. Jude Medical, Inc. | Stent features for collapsible prosthetic heart valves |
US20100249923A1 (en) | 2007-09-28 | 2010-09-30 | St Jude Medical Inc. | Collapsible/expandable prosthetic heart valves with native calcified leaflet retention features |
US20100249911A1 (en) | 2007-11-05 | 2010-09-30 | St Jude Medical Inc. | Collapsible/expandable prosthetic heart valves with non-expanding stent posts and retrieval features |
US20100286768A1 (en) | 2008-01-16 | 2010-11-11 | Alkhatib Yousef F | Delivery and retrieval systems for collapsible/expandable prosthetic heart valves |
US20100298931A1 (en) | 2009-04-15 | 2010-11-25 | Arshad Quadri | Vascular implant and delivery system |
US20110029072A1 (en) | 2009-08-03 | 2011-02-03 | Shlomo Gabbay | Heart valve prosthesis and method of implantation thereof |
US20110224678A1 (en) | 2006-03-23 | 2011-09-15 | Shlomo Gabbay | Method and implantation system for implanting a cardiovascular prosthesis |
USD648854S1 (en) | 2010-09-20 | 2011-11-15 | St. Jude Medical, Inc. | Commissure points |
USD652927S1 (en) | 2010-09-20 | 2012-01-24 | St. Jude Medical, Inc. | Surgical stent |
USD652926S1 (en) | 2010-09-20 | 2012-01-24 | St. Jude Medical, Inc. | Forked end |
USD653342S1 (en) | 2010-09-20 | 2012-01-31 | St. Jude Medical, Inc. | Stent connections |
USD653343S1 (en) | 2010-09-20 | 2012-01-31 | St. Jude Medical, Inc. | Surgical cuff |
USD653341S1 (en) | 2010-09-20 | 2012-01-31 | St. Jude Medical, Inc. | Surgical stent |
USD654169S1 (en) | 2010-09-20 | 2012-02-14 | St. Jude Medical Inc. | Forked ends |
USD654170S1 (en) | 2010-09-20 | 2012-02-14 | St. Jude Medical, Inc. | Stent connections |
USD660433S1 (en) | 2010-09-20 | 2012-05-22 | St. Jude Medical, Inc. | Surgical stent assembly |
USD660432S1 (en) | 2010-09-20 | 2012-05-22 | St. Jude Medical, Inc. | Commissure point |
USD660967S1 (en) | 2010-09-20 | 2012-05-29 | St. Jude Medical, Inc. | Surgical stent |
US20120303116A1 (en) * | 2009-11-05 | 2012-11-29 | The Trustees Of The University Of Pennsylvania | Valve prosthesis |
US20130190861A1 (en) * | 2012-01-23 | 2013-07-25 | Tendyne Holdings, Inc. | Prosthetic Valve for Replacing Mitral Valve |
US20140379074A1 (en) * | 2012-01-31 | 2014-12-25 | Mitral Valve Technologies Sa | Mitral valve docking devices, systems and methods |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040088037A1 (en) * | 2000-12-27 | 2004-05-06 | American Medical Systems, Inc. | Method and apparatus for making a braided stent with spherically ended wires |
US9844435B2 (en) * | 2013-03-01 | 2017-12-19 | St. Jude Medical, Cardiology Division, Inc. | Transapical mitral valve replacement |
-
2014
- 2014-02-26 US US14/190,496 patent/US9844435B2/en active Active
-
2017
- 2017-12-04 US US15/830,816 patent/US10864076B2/en active Active
Patent Citations (196)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3657744A (en) | 1970-05-08 | 1972-04-25 | Univ Minnesota | Method for fixing prosthetic implants in a living body |
US4491986A (en) | 1976-05-12 | 1985-01-08 | Shlomo Gabbay | Heart valve |
US4275469A (en) | 1979-12-13 | 1981-06-30 | Shelhigh Inc. | Prosthetic heart valve |
US4423730A (en) | 1982-03-01 | 1984-01-03 | Shelhigh Inc. | Atriotomy button and implantation device |
US6306141B1 (en) | 1983-10-14 | 2001-10-23 | Medtronic, Inc. | Medical devices incorporating SIM alloy elements |
US4759758A (en) | 1984-12-07 | 1988-07-26 | Shlomo Gabbay | Prosthetic heart valve |
US4922905A (en) | 1985-11-30 | 1990-05-08 | Strecker Ernst P | Dilatation catheter |
US4878906A (en) | 1986-03-25 | 1989-11-07 | Servetus Partnership | Endoprosthesis for repairing a damaged vessel |
US4994077A (en) | 1989-04-21 | 1991-02-19 | Dobben Richard L | Artificial heart valve for implantation in a blood vessel |
WO1991017720A1 (en) | 1990-05-18 | 1991-11-28 | Henning Rud Andersen | A valve prosthesis for implantation in the body and a catheter for implantating such valve prosthesis |
US5411552A (en) | 1990-05-18 | 1995-05-02 | Andersen; Henning R. | Valve prothesis for implantation in the body and a catheter for implanting such valve prothesis |
US5924424A (en) | 1993-02-22 | 1999-07-20 | Heartport, Inc. | Method and apparatus for thoracoscopic intracardiac procedures |
US5843167A (en) | 1993-04-22 | 1998-12-01 | C. R. Bard, Inc. | Method and apparatus for recapture of hooked endoprosthesis |
US5480423A (en) | 1993-05-20 | 1996-01-02 | Boston Scientific Corporation | Prosthesis delivery |
US6719789B2 (en) | 1993-11-01 | 2004-04-13 | 3F Therapeutics, Inc. | Replacement heart valve |
US6077297A (en) | 1993-11-04 | 2000-06-20 | C. R. Bard, Inc. | Non-migrating vascular prosthesis and minimally invasive placement system therefor |
EP1129744A1 (en) | 1993-12-03 | 2001-09-05 | Heartport, Inc. | Cardiopulmonary bypass system for closed-chest intervention |
WO1997016133A1 (en) | 1995-11-01 | 1997-05-09 | Biocompatibles Limited | Braided stent |
USRE40816E1 (en) | 1995-11-01 | 2009-06-30 | Biocompatibles Uk Limited | Biocompatible crosslinked coating and crosslinkable coating polymer composition for forming such a coating |
US6083257A (en) * | 1995-11-01 | 2000-07-04 | Biocompatibles Limited | Braided stent |
US6533810B2 (en) | 1995-11-27 | 2003-03-18 | Schneider (Europe) Ag | Conical stent |
US5855601A (en) | 1996-06-21 | 1999-01-05 | The Trustees Of Columbia University In The City Of New York | Artificial heart valve and method and device for implanting the same |
US5968068A (en) | 1996-09-12 | 1999-10-19 | Baxter International Inc. | Endovascular delivery system |
EP0850607A1 (en) | 1996-12-31 | 1998-07-01 | Cordis Corporation | Valve prosthesis for implantation in body channels |
US6908481B2 (en) | 1996-12-31 | 2005-06-21 | Edwards Lifesciences Pvt, Inc. | Value prosthesis for implantation in body channels |
US7585321B2 (en) | 1996-12-31 | 2009-09-08 | Edwards Lifesciences Pvt, Inc. | Methods of implanting a prosthetic heart valve within a native heart valve |
US7846204B2 (en) | 1996-12-31 | 2010-12-07 | Edwards Lifesciences Pvt, Inc. | Aortic valve prosthesis having natural tissue and an internal cover |
US7846203B2 (en) | 1996-12-31 | 2010-12-07 | Edwards Lifesciences Pvt, Inc. | Implanting a stent valve prosthesis at the native aortic valve |
WO1998032412A2 (en) | 1997-01-24 | 1998-07-30 | Scimed Life Systems Inc | Bistable spring construction for a stent and other medical apparatus |
US6488702B1 (en) | 1997-01-24 | 2002-12-03 | Jomed Gmbh | Bistable spring construction for a stent and other medical apparatus |
US5961549A (en) | 1997-04-03 | 1999-10-05 | Baxter International Inc. | Multi-leaflet bioprosthetic heart valve |
WO1999013801A1 (en) | 1997-09-16 | 1999-03-25 | Zadno Azizi Gholam Reza | Body fluid flow control device |
EP1598031A2 (en) | 1998-03-04 | 2005-11-23 | Boston Scientific Limited | Stent having variable properties |
US5935163A (en) | 1998-03-31 | 1999-08-10 | Shelhigh, Inc. | Natural tissue heart valve prosthesis |
US20080262602A1 (en) | 1998-09-10 | 2008-10-23 | Jenavalve Technology, Inc. | Methods and conduits for flowing blood from a heart chamber to a blood vessel |
US6267783B1 (en) | 1998-11-09 | 2001-07-31 | Cordis Corporation | Stent which is easily recaptured and repositioned within the body |
US6214036B1 (en) | 1998-11-09 | 2001-04-10 | Cordis Corporation | Stent which is easily recaptured and repositioned within the body |
EP1000590A1 (en) | 1998-11-09 | 2000-05-17 | Cordis Corporation | An improved stent which is easly recaptured and repositioned within the body |
DE19857887A1 (en) | 1998-12-15 | 2000-07-06 | Fraunhofer Ges Forschung | Anchoring support for a heart valve prosthesis comprises a single-piece component which is formed of rod shaped elements made of a memory metal, and has at least in part a lattice structure |
EP1584306A1 (en) | 1999-02-02 | 2005-10-12 | Bard Peripheral Vascular, Inc. | Partial encapsulation of stents using bands |
US6090140A (en) | 1999-02-17 | 2000-07-18 | Shelhigh, Inc. | Extra-anatomic heart valve apparatus |
US6264691B1 (en) | 1999-04-23 | 2001-07-24 | Shlomo Gabbay | Apparatus and method for supporting a heart valve |
US7452371B2 (en) | 1999-06-02 | 2008-11-18 | Cook Incorporated | Implantable vascular device |
US20030130726A1 (en) | 1999-09-10 | 2003-07-10 | Thorpe Patricia E. | Combination valve and stent for treating vascular reflux |
WO2001028459A1 (en) | 1999-10-21 | 2001-04-26 | Scimed Life Systems, Inc. | Implantable prosthetic valve |
US7267686B2 (en) | 1999-10-21 | 2007-09-11 | Boston Scientific Scimed, Inc | Implantable prosthetic valve |
US20100004740A1 (en) | 1999-11-17 | 2010-01-07 | Jacques Seguin | Prosthetic Valve for Transluminal Delivery |
US20070043435A1 (en) | 1999-11-17 | 2007-02-22 | Jacques Seguin | Non-cylindrical prosthetic valve system for transluminal delivery |
US20040210304A1 (en) | 1999-11-17 | 2004-10-21 | Corevalve, S.A. | Prosthetic valve for transluminal delivery |
US7018406B2 (en) | 1999-11-17 | 2006-03-28 | Corevalve Sa | Prosthetic valve for transluminal delivery |
US6830584B1 (en) | 1999-11-17 | 2004-12-14 | Jacques Seguin | Device for replacing a cardiac valve by percutaneous route |
US20030023303A1 (en) | 1999-11-19 | 2003-01-30 | Palmaz Julio C. | Valvular prostheses having metal or pseudometallic construction and methods of manufacture |
US20080125853A1 (en) | 1999-12-31 | 2008-05-29 | Abps Venture One, Ltd. | Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof |
WO2001049213A2 (en) | 1999-12-31 | 2001-07-12 | Advanced Bio Prosthetic Surfaces, Ltd. | Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof |
US20040049262A1 (en) | 2000-01-31 | 2004-03-11 | Obermiller Joseph F. | Stent valves and uses of same |
US20080154356A1 (en) | 2000-01-31 | 2008-06-26 | Obermiller Joseph F | Percutaneous heart valve devices |
WO2001054625A1 (en) | 2000-01-31 | 2001-08-02 | Cook Biotech Incorporated | Stent valves and uses of same |
WO2001056500A2 (en) | 2000-02-03 | 2001-08-09 | Cook Incorporated | Implantable vascular device |
US7381218B2 (en) | 2000-04-06 | 2008-06-03 | Edwards Lifesciences Corporation | System and method for implanting a two-part prosthetic heart valve |
WO2001076510A2 (en) | 2000-04-06 | 2001-10-18 | Edwards Lifesciences Corporation | Minimally-invasive heart valves and methods of use |
US6610088B1 (en) | 2000-05-03 | 2003-08-26 | Shlomo Gabbay | Biologically covered heart valve prosthesis |
US6582464B2 (en) | 2000-05-03 | 2003-06-24 | Shlomo Gabbay | Biomechanical heart valve prosthesis and method for making same |
US6368348B1 (en) | 2000-05-15 | 2002-04-09 | Shlomo Gabbay | Annuloplasty prosthesis for supporting an annulus of a heart valve |
US6419695B1 (en) | 2000-05-22 | 2002-07-16 | Shlomo Gabbay | Cardiac prosthesis for helping improve operation of a heart valve |
US6869444B2 (en) | 2000-05-22 | 2005-03-22 | Shlomo Gabbay | Low invasive implantable cardiac prosthesis and method for helping improve operation of a heart valve |
EP1157673A2 (en) | 2000-05-26 | 2001-11-28 | Variomed AG | Stent, position's element and delivery catheter |
US20050096726A1 (en) | 2000-05-30 | 2005-05-05 | Jacques Sequin | Noncylindrical stent deployment system for treating vascular bifurcations |
US20060142848A1 (en) | 2000-09-12 | 2006-06-29 | Shlomo Gabbay | Extra-anatomic aortic valve placement |
US7803185B2 (en) | 2000-09-12 | 2010-09-28 | Shlomo Gabbay | Method of implantation of a heart valve prosthesis through a tubular catheter |
US7510572B2 (en) | 2000-09-12 | 2009-03-31 | Shlomo Gabbay | Implantation system for delivery of a heart valve prosthesis |
US7025780B2 (en) | 2000-09-12 | 2006-04-11 | Shlomo Gabbay | Valvular prosthesis |
US6783556B1 (en) | 2000-09-26 | 2004-08-31 | Shlomo Gabbay | System and method for making a calotte-shaped implantable sheath |
US6685625B2 (en) | 2000-09-26 | 2004-02-03 | Shlomo Gabbay | Curved implantable sheath and method of making same |
US20020036220A1 (en) | 2000-09-26 | 2002-03-28 | Shlomo Gabbay | Curved implantable sheath and method of making same |
WO2002036048A1 (en) | 2000-10-31 | 2002-05-10 | Jacques Seguin | Tubular support for setting, by percutaneous route, a substitution cusp |
US6517576B2 (en) | 2000-12-11 | 2003-02-11 | Shlomo Gabbay | Implantable patch prosthesis having one or more cusps for improved competency |
WO2002047575A2 (en) | 2000-12-15 | 2002-06-20 | Angiomed Gmbh & Co. Medizintechnik Kg | Stent with valve |
US20040093075A1 (en) | 2000-12-15 | 2004-05-13 | Titus Kuehne | Stent with valve and method of use thereof |
US6468660B2 (en) | 2000-12-29 | 2002-10-22 | St. Jude Medical, Inc. | Biocompatible adhesives |
US6623518B2 (en) | 2001-02-26 | 2003-09-23 | Ev3 Peripheral, Inc. | Implant delivery system with interlock |
US6790230B2 (en) | 2001-04-30 | 2004-09-14 | Universitatsklinikum Freiburg | Vascular implant |
DE10121210A1 (en) | 2001-04-30 | 2002-11-14 | Universitaetsklinikum Freiburg | Replacement heart valve, comprises an anchoring element, and has a starting volume which is opened up to the normal volume using a catheter |
US7682390B2 (en) | 2001-07-31 | 2010-03-23 | Medtronic, Inc. | Assembly for setting a valve prosthesis in a corporeal duct |
US20030050694A1 (en) | 2001-09-13 | 2003-03-13 | Jibin Yang | Methods and apparatuses for deploying minimally-invasive heart valves |
US20030065385A1 (en) * | 2001-09-28 | 2003-04-03 | Weadock Kevin Shaun | Prosthesis for the repair of thoracic or abdominal aortic aneurysms and method therefor |
US20080021552A1 (en) | 2001-10-09 | 2008-01-24 | Shlomo Gabbay | Apparatus To Facilitate Implantation |
US6730118B2 (en) | 2001-10-11 | 2004-05-04 | Percutaneous Valve Technologies, Inc. | Implantable prosthetic valve |
US6893460B2 (en) | 2001-10-11 | 2005-05-17 | Percutaneous Valve Technologies Inc. | Implantable prosthetic valve |
WO2003047468A1 (en) | 2001-10-11 | 2003-06-12 | Percutaneous Valve Technologies | Implantable prosthetic valve |
EP1360942A1 (en) | 2002-05-11 | 2003-11-12 | Willy Rüsch GmbH | Stent |
US7731742B2 (en) | 2002-05-11 | 2010-06-08 | Boston Scientific Scimed, Inc. | Stent |
US7137184B2 (en) | 2002-09-20 | 2006-11-21 | Edwards Lifesciences Corporation | Continuous heart valve support frame and method of manufacture |
US6814746B2 (en) | 2002-11-01 | 2004-11-09 | Ev3 Peripheral, Inc. | Implant delivery system with marker interlock |
FR2847800A1 (en) | 2002-11-28 | 2004-06-04 | Perouse Laboratoires | Prosthetic valve, has carrier framework with branches for centripetal compression of framework towards its folded position in contrast to elastic action, valve expanded and contracted in respective obstruction and release positions |
FR2850008A1 (en) | 2003-01-17 | 2004-07-23 | Daniel Roux | Vascular prosthesis has tube and collar for adapting to blood vessel ends of different diameters |
US20060241744A1 (en) | 2003-03-20 | 2006-10-26 | Aortech International Plc | Valve |
US20070100435A1 (en) | 2003-04-24 | 2007-05-03 | Cook Incorporated | Artificial prostheses with preferred geometries |
US20100131055A1 (en) | 2003-04-24 | 2010-05-27 | Cook Incorporated | Artificial valve prosthesis with improved flow dynamics |
US20060149360A1 (en) | 2003-07-08 | 2006-07-06 | Ventor Technologies Ltd. | Fluid flow prosthetic device |
US7160322B2 (en) | 2003-08-13 | 2007-01-09 | Shlomo Gabbay | Implantable cardiac prosthesis for mitigating prolapse of a heart valve |
US20050049692A1 (en) * | 2003-09-02 | 2005-03-03 | Numamoto Michael J. | Medical device for reduction of pressure effects of cardiac tricuspid valve regurgitation |
US20060259137A1 (en) | 2003-10-06 | 2006-11-16 | Jason Artof | Minimally invasive valve replacement system |
US20070010876A1 (en) | 2003-12-23 | 2007-01-11 | Amr Salahieh | Externally Expandable Heart Valve Anchor and Method |
US20050137695A1 (en) | 2003-12-23 | 2005-06-23 | Sadra Medical | Replacement valve and anchor |
US20050137697A1 (en) | 2003-12-23 | 2005-06-23 | Amr Salahieh | Leaflet engagement elements and methods for use thereof |
US20070244552A1 (en) | 2003-12-23 | 2007-10-18 | Amr Salahieh | Assessing the location and performance of replacement heart valves |
US20090054975A1 (en) | 2004-02-06 | 2009-02-26 | Children's Medical Center Corporation | Deployment device for cardiac surgery |
US7311730B2 (en) | 2004-02-13 | 2007-12-25 | Shlomo Gabbay | Support apparatus and heart valve prosthesis for sutureless implantation |
US7247167B2 (en) | 2004-02-19 | 2007-07-24 | Shlomo Gabbay | Low profile heart valve prosthesis |
US20080255662A1 (en) | 2004-03-03 | 2008-10-16 | Sorin Biomedica Cardio S.R.L. | Minimally-invasive cardiac-valve prosthesis |
US20080243245A1 (en) | 2004-03-11 | 2008-10-02 | Percutaneous Cardiovascular Solutions Pty Limited | Percutaneous Heart Valve Prosthesis |
US7374573B2 (en) | 2004-05-03 | 2008-05-20 | Shlomo Gabbay | System and method for improving ventricular function |
US20050256566A1 (en) | 2004-05-03 | 2005-11-17 | Shlomo Gabbay | Apparatus and method for improving ventricular function |
US20060122692A1 (en) | 2004-05-10 | 2006-06-08 | Ran Gilad | Stent valve and method of using same |
US20060008497A1 (en) | 2004-07-09 | 2006-01-12 | Shlomo Gabbay | Implantable apparatus having improved biocompatibility and process of making the same |
US20080039934A1 (en) | 2004-09-07 | 2008-02-14 | Laboratoires Perouse | Interchangeable Prosthetic Valve |
US20060074484A1 (en) | 2004-10-02 | 2006-04-06 | Huber Christoph H | Methods and devices for repair or replacement of heart valves or adjacent tissue without the need for full cardiopulmonary support |
US20060106415A1 (en) | 2004-11-12 | 2006-05-18 | Shlomo Gabbay | Apparatus to facilitate implantation |
US20060167468A1 (en) | 2004-11-12 | 2006-07-27 | Shlomo Gabbay | Implantation system and method for loading an implanter with a prosthesis |
US20060206202A1 (en) | 2004-11-19 | 2006-09-14 | Philippe Bonhoeffer | Apparatus for treatment of cardiac valves and method of its manufacture |
US20060173532A1 (en) | 2004-12-20 | 2006-08-03 | Jacob Flagle | Intraluminal support frame and medical devices including the support frame |
WO2006073626A2 (en) | 2005-01-05 | 2006-07-13 | The Cleveland Clinic Foundation | Method for fixing tissue |
US20060178740A1 (en) | 2005-02-10 | 2006-08-10 | Sorin Biomedica Cardio S.R.L. | Cardiac-valve prosthesis |
US20060241745A1 (en) * | 2005-04-21 | 2006-10-26 | Solem Jan O | Blood flow controlling apparatus |
US20060259120A1 (en) | 2005-05-12 | 2006-11-16 | Ev3, Inc. | Implant delivery system with interlocked RX port orientation |
US7914569B2 (en) | 2005-05-13 | 2011-03-29 | Medtronics Corevalve Llc | Heart valve prosthesis and methods of manufacture and use |
US20060265056A1 (en) | 2005-05-13 | 2006-11-23 | Corevalve, Inc. | Heart valve prosthesis and methods of manufacture and use |
US20060276813A1 (en) | 2005-05-20 | 2006-12-07 | The Cleveland Clinic Foundation | Apparatus and methods for repairing the function of a diseased valve and method for making same |
US20090112309A1 (en) | 2005-07-21 | 2009-04-30 | The Florida International University Board Of Trustees | Collapsible Heart Valve with Polymer Leaflets |
US20070027534A1 (en) | 2005-07-27 | 2007-02-01 | Bjarne Bergheim | Methods and systems for cardiac valve delivery |
US20080269879A1 (en) | 2005-07-27 | 2008-10-30 | Rahul Dilip Sathe | Implantable Prosthetic Vascular Valve |
US20070055358A1 (en) | 2005-08-22 | 2007-03-08 | Krolik Jeffrey A | Axially compressible flared stents and apparatus and methods for delivering them |
US20070067029A1 (en) | 2005-09-16 | 2007-03-22 | Shlomo Gabbay | Support apparatus to facilitate implantation of cardiac prosthesis |
US20070073391A1 (en) | 2005-09-28 | 2007-03-29 | Henry Bourang | System and method for delivering a mitral valve repair device |
US20070088431A1 (en) | 2005-10-18 | 2007-04-19 | Henry Bourang | Heart valve delivery system with valve catheter |
US20070093890A1 (en) | 2005-10-26 | 2007-04-26 | Eliasen Kenneth A | Heart valve implant |
US20070112422A1 (en) | 2005-11-16 | 2007-05-17 | Mark Dehdashtian | Transapical heart valve delivery system and method |
US20070118210A1 (en) | 2005-11-18 | 2007-05-24 | Leonard Pinchuk | Trileaflet Heart Valve |
US20070213813A1 (en) | 2005-12-22 | 2007-09-13 | Symetis Sa | Stent-valves for valve replacement and associated methods and systems for surgery |
WO2007071436A2 (en) | 2005-12-22 | 2007-06-28 | Symetis Sa | Stent-valves for valve replacement and associated methods and systems for surgery |
US20070162100A1 (en) | 2006-01-10 | 2007-07-12 | Shlomo Gabbay | System and method for loading implanter with prosthesis |
US20070168013A1 (en) | 2006-01-19 | 2007-07-19 | Myles Douglas | Vascular graft and deployment system |
US20070203575A1 (en) | 2006-02-27 | 2007-08-30 | Cardiacmd, Inc., A California Corporation | Methods and devices for delivery of prosthetic heart valves and other prosthetics |
US20110224678A1 (en) | 2006-03-23 | 2011-09-15 | Shlomo Gabbay | Method and implantation system for implanting a cardiovascular prosthesis |
US20070233228A1 (en) | 2006-03-28 | 2007-10-04 | Medtronic, Inc. | Prosthetic cardiac valve formed from pericardium material and methods of making same |
US7524331B2 (en) | 2006-04-06 | 2009-04-28 | Medtronic Vascular, Inc. | Catheter delivered valve having a barrier to provide an enhanced seal |
US20070239271A1 (en) | 2006-04-10 | 2007-10-11 | Than Nguyen | Systems and methods for loading a prosthesis onto a minimally invasive delivery system |
US20070244545A1 (en) | 2006-04-14 | 2007-10-18 | Medtronic Vascular, Inc. | Prosthetic Conduit With Radiopaque Symmetry Indicators |
US20070288087A1 (en) | 2006-05-30 | 2007-12-13 | Cook Incorporated | Artificial valve prosthesis |
US20080097595A1 (en) | 2006-08-22 | 2008-04-24 | Shlomo Gabbay | Intraventricular cardiac prosthesis |
US20080071369A1 (en) | 2006-09-19 | 2008-03-20 | Yosi Tuval | Valve fixation member having engagement arms |
US20080082164A1 (en) | 2006-10-02 | 2008-04-03 | Friedman Robert S | Sutureless heart valve attachment |
WO2008070797A2 (en) | 2006-12-06 | 2008-06-12 | Medtronic Corevalve, Inc. | System and method for transapical delivery of an annulus anchored self-expanding valve |
US20080140189A1 (en) | 2006-12-06 | 2008-06-12 | Corevalve, Inc. | System and method for transapical delivery of an annulus anchored self-expanding valve |
US20080147183A1 (en) | 2006-12-14 | 2008-06-19 | Mikolaj Styrc | Endovalve |
US20080147182A1 (en) | 2006-12-19 | 2008-06-19 | Sorin Biomedica Cardio S.R.L. | Instrument and method for in situ deployment of cardiac valve prostheses |
US20080154355A1 (en) | 2006-12-22 | 2008-06-26 | Netanel Benichou | Implantable prosthetic valve assembly and method of making the same |
US20100087907A1 (en) | 2007-02-16 | 2010-04-08 | Emory University | Apparatus And Methods For Treating The Aorta |
US20100168839A1 (en) | 2007-06-04 | 2010-07-01 | Braido Peter N | Prosthetic heart valves |
US20100168778A1 (en) | 2007-06-08 | 2010-07-01 | Braido Peter N | Devices for transcatheter prosthetic heart valve implantation and access closure |
US20100191326A1 (en) | 2007-06-26 | 2010-07-29 | Alkhatib Yousef F | Apparatus and method for implanting collapsible/expandable prosthetic heart valves |
US20100204781A1 (en) | 2007-08-24 | 2010-08-12 | Alkhatib Yousef F | Prosthetic aortic heart valves |
US20100185277A1 (en) | 2007-09-26 | 2010-07-22 | St. Jude Medical, Inc. | Collapsible prosthetic heart valves |
US20100249923A1 (en) | 2007-09-28 | 2010-09-30 | St Jude Medical Inc. | Collapsible/expandable prosthetic heart valves with native calcified leaflet retention features |
US20100204785A1 (en) | 2007-09-28 | 2010-08-12 | Alkhatib Yousef F | Two-stage collapsible/expandable prosthetic heart valves and anchoring systems |
US20090138079A1 (en) | 2007-10-10 | 2009-05-28 | Vector Technologies Ltd. | Prosthetic heart valve for transfemoral delivery |
US20100249911A1 (en) | 2007-11-05 | 2010-09-30 | St Jude Medical Inc. | Collapsible/expandable prosthetic heart valves with non-expanding stent posts and retrieval features |
US20080114452A1 (en) | 2007-11-14 | 2008-05-15 | Shlomo Gabbay | Prosthesis exhibiting post-implantation size change |
US20100286768A1 (en) | 2008-01-16 | 2010-11-11 | Alkhatib Yousef F | Delivery and retrieval systems for collapsible/expandable prosthetic heart valves |
US20100049306A1 (en) | 2008-02-25 | 2010-02-25 | Medtronic Vascular, Inc. | Infundibular Reducer Devices |
US20100036484A1 (en) | 2008-06-06 | 2010-02-11 | Edwards Lifesciences Corporation | Low profile transcatheter heart valve |
WO2010008548A2 (en) | 2008-07-15 | 2010-01-21 | St. Jude Medical, Inc. | Collapsible and re-expandable prosthetic heart valve cuff designs and complementary technological applications |
WO2010008549A1 (en) | 2008-07-15 | 2010-01-21 | St. Jude Medical, Inc. | Axially anchoring collapsible and re-expandable prosthetic heart valves for various disease states |
DE202008009610U1 (en) | 2008-07-17 | 2008-12-11 | Nvt Ag | Prosthetic heart valve system |
US20100049313A1 (en) * | 2008-08-22 | 2010-02-25 | Edwards Lifesciences Corporation | Prosthetic heart valve and delivery apparatus |
WO2010051025A1 (en) | 2008-10-30 | 2010-05-06 | St. Jude Medical, Inc. | Collapsible/expandable prosthetic heart valve delivery system and methods |
WO2010087975A1 (en) | 2009-01-30 | 2010-08-05 | St. Jude Medical, Inc. | Transapical mini-introducer homeostasis valve and punch |
WO2010096176A1 (en) | 2009-02-20 | 2010-08-26 | St. Jude Medical, Inc. | Devices and methods for collapsing prosthetic heart valves |
US20100217382A1 (en) | 2009-02-25 | 2010-08-26 | Edwards Lifesciences | Mitral valve replacement with atrial anchoring |
WO2010098857A1 (en) | 2009-02-27 | 2010-09-02 | St. Jude Medical, Inc. | Stent features for collapsible prosthetic heart valves |
US20100298931A1 (en) | 2009-04-15 | 2010-11-25 | Arshad Quadri | Vascular implant and delivery system |
US20110029072A1 (en) | 2009-08-03 | 2011-02-03 | Shlomo Gabbay | Heart valve prosthesis and method of implantation thereof |
US20120303116A1 (en) * | 2009-11-05 | 2012-11-29 | The Trustees Of The University Of Pennsylvania | Valve prosthesis |
USD648854S1 (en) | 2010-09-20 | 2011-11-15 | St. Jude Medical, Inc. | Commissure points |
USD652926S1 (en) | 2010-09-20 | 2012-01-24 | St. Jude Medical, Inc. | Forked end |
USD653342S1 (en) | 2010-09-20 | 2012-01-31 | St. Jude Medical, Inc. | Stent connections |
USD653343S1 (en) | 2010-09-20 | 2012-01-31 | St. Jude Medical, Inc. | Surgical cuff |
USD653341S1 (en) | 2010-09-20 | 2012-01-31 | St. Jude Medical, Inc. | Surgical stent |
USD654169S1 (en) | 2010-09-20 | 2012-02-14 | St. Jude Medical Inc. | Forked ends |
USD654170S1 (en) | 2010-09-20 | 2012-02-14 | St. Jude Medical, Inc. | Stent connections |
USD660433S1 (en) | 2010-09-20 | 2012-05-22 | St. Jude Medical, Inc. | Surgical stent assembly |
USD660432S1 (en) | 2010-09-20 | 2012-05-22 | St. Jude Medical, Inc. | Commissure point |
USD660967S1 (en) | 2010-09-20 | 2012-05-29 | St. Jude Medical, Inc. | Surgical stent |
USD652927S1 (en) | 2010-09-20 | 2012-01-24 | St. Jude Medical, Inc. | Surgical stent |
US20130190861A1 (en) * | 2012-01-23 | 2013-07-25 | Tendyne Holdings, Inc. | Prosthetic Valve for Replacing Mitral Valve |
US20140379074A1 (en) * | 2012-01-31 | 2014-12-25 | Mitral Valve Technologies Sa | Mitral valve docking devices, systems and methods |
Non-Patent Citations (10)
Title |
---|
Catheter-implanted prosthetic heart valves, Knudsen, L.L., et al., The International Journal of Artificial Organs, vol. 16, No. 5 1993, pp. 253-262. |
Is It Reasonable to Treat All Calcified Stenotic Aortic Valves With a Valved Stent?, 579-584, Zegdi, Rachid, MD, PhD et al., J. of the American College of Cardiology, vol. 51, No. 5, Feb. 5, 2008. |
Percutaneous aortic valve replacement: resection before implantation, 836-840, Quaden, Rene et al., European J. of Cardio-thoracic Surgery, 27 (2005). |
Ruiz, Carlos, Overview of PRE-CE Mark Transcatheter Aortic Valve Technologies, Euro PCR-dated May 25, 2010. |
Ruiz, Carlos, Overview of PRE-CE Mark Transcatheter Aortic Valve Technologies, Euro PCR—dated May 25, 2010. |
Transluminal Aortic Valve Placement, Moazami, Nader, et al., ASAIO Journal, 1996; 42:M381-M385. |
Transluminal Catheter Implanted Prosthetic Heart Valves, Andersen, Henning Rud, International Journal of Angiology 7:102-106 (1998). |
Transluminal implantation of artificial heart valves, Andersen, H. R., et al., European Heart Journal (1992) 13, 704-708. |
U.S. Appl. No. 29/375,243, filed Sep. 20, 2010. |
U.S. Appl. No. 29/375,260, filed Sep. 20, 2010. |
Cited By (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10350004B2 (en) | 2004-12-09 | 2019-07-16 | Twelve, Inc. | Intravascular treatment catheters |
US11272982B2 (en) | 2004-12-09 | 2022-03-15 | Twelve, Inc. | Intravascular treatment catheters |
US10517725B2 (en) | 2010-12-23 | 2019-12-31 | Twelve, Inc. | System for mitral valve repair and replacement |
US11571303B2 (en) | 2010-12-23 | 2023-02-07 | Twelve, Inc. | System for mitral valve repair and replacement |
US11523900B2 (en) | 2011-06-21 | 2022-12-13 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
US11712334B2 (en) | 2011-06-21 | 2023-08-01 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
US10751173B2 (en) | 2011-06-21 | 2020-08-25 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
US10028827B2 (en) | 2011-06-21 | 2018-07-24 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
US10034750B2 (en) | 2011-06-21 | 2018-07-31 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
US10299917B2 (en) | 2011-10-19 | 2019-05-28 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US11497603B2 (en) | 2011-10-19 | 2022-11-15 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US10335278B2 (en) | 2011-10-19 | 2019-07-02 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US10052204B2 (en) | 2011-10-19 | 2018-08-21 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US11617648B2 (en) | 2011-10-19 | 2023-04-04 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US11628063B2 (en) | 2011-10-19 | 2023-04-18 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US10945835B2 (en) | 2011-10-19 | 2021-03-16 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US10299927B2 (en) | 2011-10-19 | 2019-05-28 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US11826249B2 (en) | 2011-10-19 | 2023-11-28 | Twelve, Inc. | Devices, systems and methods for heart valve replacement |
US10702380B2 (en) | 2011-10-19 | 2020-07-07 | Twelve, Inc. | Devices, systems and methods for heart valve replacement |
US11202704B2 (en) | 2011-10-19 | 2021-12-21 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US11197758B2 (en) | 2011-10-19 | 2021-12-14 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US10258468B2 (en) | 2012-03-01 | 2019-04-16 | Twelve, Inc. | Hydraulic delivery systems for prosthetic heart valve devices and associated methods |
US11129714B2 (en) | 2012-03-01 | 2021-09-28 | Twelve, Inc. | Hydraulic delivery systems for prosthetic heart valve devices and associated methods |
US10864076B2 (en) * | 2013-03-01 | 2020-12-15 | St. Jude Medical, Cardiology Division, Inc. | Transapical mitral valve replacement |
US20180085218A1 (en) * | 2013-03-01 | 2018-03-29 | St. Jude Medical, Cardiology Division, Inc. | Transapical mitral valve replacement |
US10111747B2 (en) | 2013-05-20 | 2018-10-30 | Twelve, Inc. | Implantable heart valve devices, mitral valve repair devices and associated systems and methods |
US11234821B2 (en) | 2013-05-20 | 2022-02-01 | Twelve, Inc. | Implantable heart valve devices, mitral valve repair devices and associated systems and methods |
US10238490B2 (en) | 2015-08-21 | 2019-03-26 | Twelve, Inc. | Implant heart valve devices, mitral valve repair devices and associated systems and methods |
US10820996B2 (en) | 2015-08-21 | 2020-11-03 | Twelve, Inc. | Implantable heart valve devices, mitral valve repair devices and associated systems and methods |
US11576782B2 (en) | 2015-08-21 | 2023-02-14 | Twelve, Inc. | Implantable heart valve devices, mitral valve repair devices and associated systems and methods |
US20170312078A1 (en) * | 2016-04-29 | 2017-11-02 | Medtronic Vascular, Inc. | Prosthetic heart valve devices with tethered anchors and associated systems and methods |
US11033390B2 (en) | 2016-04-29 | 2021-06-15 | Medtronic Vascular, Inc. | Prosthetic heart valve devices with tethered anchors and associated systems and methods |
US12109113B2 (en) | 2016-04-29 | 2024-10-08 | Medtronic Vascular, Inc. | Prosthetic heart valve devices with tethered anchors and associated systems and methods |
US10265172B2 (en) * | 2016-04-29 | 2019-04-23 | Medtronic Vascular, Inc. | Prosthetic heart valve devices with tethered anchors and associated systems and methods |
US11389295B2 (en) | 2017-04-18 | 2022-07-19 | Twelve, Inc. | Delivery systems with tethers for prosthetic heart valve devices and associated methods |
US11737873B2 (en) | 2017-04-18 | 2023-08-29 | Twelve, Inc. | Hydraulic systems for delivering prosthetic heart valve devices and associated methods |
US10575950B2 (en) | 2017-04-18 | 2020-03-03 | Twelve, Inc. | Hydraulic systems for delivering prosthetic heart valve devices and associated methods |
US10433961B2 (en) | 2017-04-18 | 2019-10-08 | Twelve, Inc. | Delivery systems with tethers for prosthetic heart valve devices and associated methods |
US10702378B2 (en) | 2017-04-18 | 2020-07-07 | Twelve, Inc. | Prosthetic heart valve device and associated systems and methods |
US11654021B2 (en) | 2017-04-18 | 2023-05-23 | Twelve, Inc. | Prosthetic heart valve device and associated systems and methods |
US11786370B2 (en) | 2017-05-11 | 2023-10-17 | Twelve, Inc. | Delivery systems for delivering prosthetic heart valve devices and associated methods |
US10792151B2 (en) | 2017-05-11 | 2020-10-06 | Twelve, Inc. | Delivery systems for delivering prosthetic heart valve devices and associated methods |
US10646338B2 (en) | 2017-06-02 | 2020-05-12 | Twelve, Inc. | Delivery systems with telescoping capsules for deploying prosthetic heart valve devices and associated methods |
US11559398B2 (en) | 2017-06-02 | 2023-01-24 | Twelve, Inc. | Delivery systems with telescoping capsules for deploying prosthetic heart valve devices and associated methods |
US10709591B2 (en) | 2017-06-06 | 2020-07-14 | Twelve, Inc. | Crimping device and method for loading stents and prosthetic heart valves |
US11464659B2 (en) | 2017-06-06 | 2022-10-11 | Twelve, Inc. | Crimping device for loading stents and prosthetic heart valves |
US10729541B2 (en) | 2017-07-06 | 2020-08-04 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
US11877926B2 (en) | 2017-07-06 | 2024-01-23 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
US12016772B2 (en) | 2017-07-06 | 2024-06-25 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
US10786352B2 (en) | 2017-07-06 | 2020-09-29 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
US11666444B2 (en) | 2017-08-03 | 2023-06-06 | The Regents Of The University Of California | Atrial cage for placement, securing and anchoring of atrioventricular valves |
US11678988B2 (en) | 2018-05-22 | 2023-06-20 | Boston Scientific Scimed, Inc. | Percutaneous papillary muscle relocation |
US11147673B2 (en) | 2018-05-22 | 2021-10-19 | Boston Scientific Scimed, Inc. | Percutaneous papillary muscle relocation |
Also Published As
Publication number | Publication date |
---|---|
US20140249621A1 (en) | 2014-09-04 |
US10864076B2 (en) | 2020-12-15 |
US20180085218A1 (en) | 2018-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10864076B2 (en) | Transapical mitral valve replacement | |
US11801137B2 (en) | Methods for anchoring a heart valve prosthesis in a transcatheter valve implantation procedure | |
US12109112B2 (en) | Systems, devices and methods for transcatheter valve delivery | |
US11246706B2 (en) | Transcatheter mitral valve stent frames | |
US10874510B2 (en) | Paravalvular sealing via extended cuff mechanisms | |
US10449044B2 (en) | Transcatheter valve delivery system with septum hole closure tip assembly | |
EP3389566B1 (en) | Devices for transcatheter valve loading and implantation | |
US9687341B2 (en) | Self-actuating sealing portions for paravalvular leak protection | |
EP3797737B1 (en) | Percutaneous mitral valve replacement device | |
JP6576944B2 (en) | Toggle cell fixation in mitral valve replacement | |
US20180049868A1 (en) | Transcatheter valve replacement | |
US20140107758A1 (en) | Retaining cage to permit resheathing of a tavi aortic-first transapical system | |
US11571297B2 (en) | Apparatus and methods for delivery of a prosthetic valve within an existing implanted prosthetic valve | |
US20230355379A1 (en) | Method and apparatus for treating cardiovascular valve dysfunction | |
US20230025890A1 (en) | Transcatheter Valve To Treat Small Native Mitral Anatomy | |
US20210068956A1 (en) | Multi-Step Deployment to Improve TAVR Implant Stability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ST. JUDE MEDICAL, CARDIOLOGY DIVISION, INC., MINNE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:EIDENSCHINK, TRACEE;REEL/FRAME:032344/0504 Effective date: 20140303 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |