US8887920B2 - Photovoltaic module carrier - Google Patents

Photovoltaic module carrier Download PDF

Info

Publication number
US8887920B2
US8887920B2 US13/317,141 US201113317141A US8887920B2 US 8887920 B2 US8887920 B2 US 8887920B2 US 201113317141 A US201113317141 A US 201113317141A US 8887920 B2 US8887920 B2 US 8887920B2
Authority
US
United States
Prior art keywords
carrier base
carrier
alignment
strap
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US13/317,141
Other versions
US20130087186A1 (en
Inventor
Todd Pelman
Martin N. Seery
Jeff Hartnett
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corosolar LLC
Original Assignee
Sunlink Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sunlink Corp filed Critical Sunlink Corp
Priority to US13/317,141 priority Critical patent/US8887920B2/en
Assigned to SUNLINK CORPORATION reassignment SUNLINK CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HARTNETT, JEFF, PELMAN, TODD, SEERY, MARTIN N.
Publication of US20130087186A1 publication Critical patent/US20130087186A1/en
Priority to US14/487,656 priority patent/US9831365B2/en
Application granted granted Critical
Publication of US8887920B2 publication Critical patent/US8887920B2/en
Assigned to UNION BAY CAPITAL PARTNERS I, LLC reassignment UNION BAY CAPITAL PARTNERS I, LLC SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SUNLINK CORPORATION
Assigned to SILICON VALLEY BANK reassignment SILICON VALLEY BANK SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SUNLINK CORPORATION
Assigned to SUNLINK CORPORATION reassignment SUNLINK CORPORATION RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: SILICON VALLEY BANK
Assigned to HERITAGE BANK OF COMMERCE reassignment HERITAGE BANK OF COMMERCE SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SUNLINK CORPORATION
Assigned to MULTIPLIER CAPITAL II, LP reassignment MULTIPLIER CAPITAL II, LP SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SUNLINK CORPORATION
Assigned to MULTIPLIER CAPITAL II ACQUISITION, LLC reassignment MULTIPLIER CAPITAL II ACQUISITION, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SUNLINK CORPORATION
Assigned to COROSOLAR LLC reassignment COROSOLAR LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MULTIPLIER CAPITAL II ACQUISITION LLC
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/043Mechanically stacked PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • Y10T29/49355Solar energy device making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49764Method of mechanical manufacture with testing or indicating
    • Y10T29/49778Method of mechanical manufacture with testing or indicating with aligning, guiding, or instruction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49764Method of mechanical manufacture with testing or indicating
    • Y10T29/49778Method of mechanical manufacture with testing or indicating with aligning, guiding, or instruction
    • Y10T29/4978Assisting assembly or disassembly
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49815Disassembling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49947Assembling or joining by applying separate fastener
    • Y10T29/49948Multipart cooperating fastener [e.g., bolt and nut]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49947Assembling or joining by applying separate fastener
    • Y10T29/49963Threaded fastener

Definitions

  • the present invention relates generally to a photovoltaic laminate module carrier, and more particularly to a photovoltaic module carrier that is optimized for shipping a plurality of modules as a set, and for facilitating quick and easy assembly of the modules to a mounting rack system.
  • PV laminate modules comprise layers of glass, modular solar cells with their supporting electrical and mechanical connections, and an aluminum frame.
  • the aluminum frame provides protection during transportation and installation for the glass surrounding the solar cells, protects them against the elements for the duration of their working life, and is part of the traditional method of attaching the module to the mounting structure or racking.
  • aluminum is a conductor, a grounding element is required for each module.
  • the cost for the PV module frame is roughly 10% of the entire PV module cost. There are additional costs for the labor and materials to ground the frames to the racking.
  • the PV modules are manufactured with the aluminum frame at a factory, and are then shipped either directly to an installation site or to a warehouse. Regardless, the modules must be transported to an installation site, where they must be individually handled and installed on the mounting structure at the installation site.
  • BOS Balance of System
  • the present invention is a novel PV module carrier and methods of use that provide protection for PV modules during transportation, field handling, and assembly with racking systems.
  • the carrier contains elements of a racking system itself, to allow for quicker installation in the field.
  • the PV module carriers reduce manufacturing costs by eliminating the need for frame elements, while reducing field installation time and labor cost for system installation.
  • an apparatus for transporting at least one photovoltaic module comprises a carrier base, a plurality of nesting guides formed on a first and second edge of the carrier base, and a plurality of location guides formed on the carrier base and aligned generally parallel to an edge of the carrier base, wherein the nesting guides and location guides form at least one opening on the carrier base for receiving a photovoltaic module.
  • the apparatus may further comprise handlings slots to facilitate handling of the carrier.
  • the apparatus may further comprise two alignment guide openings at the first end of the carrier base, and a two alignment guide openings formed at a second end of the carrier base.
  • the carrier base may include strap alignment slots to allow shipping straps to tie down a stack of carriers for shipping.
  • the carrier base may include mounting holes for attaching the PV modules to the carrier.
  • a plurality of mounting clips may be used to attach the PV modules to the carrier.
  • Various alignment features may be included to facilitate alignment of the PV modules with the mounting system.
  • a photovoltaic module carrier assembly comprises a carrier base, a plurality of nesting guides formed on a first and second edge of the carrier base, a plurality of location guides formed on the carrier base and aligned generally parallel to an edge of the carrier base; wherein the nesting guides and location guides form at least two openings on the carrier base for receiving photovoltaic modules, a photovoltaic module positioned in each opening on the carrier base, a plurality of mounting structure elements attached to the photovoltaic modules, and a plurality of fasteners attaching the modules to the carrier base.
  • the PV module carrier assembly may further comprise handlings slots to facilitate handling of the carrier.
  • the apparatus may further comprise two alignment guide openings at the first end of the carrier base, and a two alignment guide openings formed at a second end of the carrier base.
  • the carrier base may include strap alignment slots to allow shipping straps to tie down a stack of carriers for shipping.
  • the carrier base may include mounting holes for attaching the PV modules to the carrier.
  • a plurality of mounting clips may be used to attach the PV modules to the carrier.
  • Various alignment features may be included to facilitate alignment of the PV modules with the mounting system.
  • a method for transporting photovoltaic modules comprises: placing a plurality of modules on a carrier, the carrier including alignment guides, attaching a plurality of photovoltaic modules to the carrier, and attaching a plurality of mounting structure elements to the plurality of modules.
  • the method may further comprise stacking and/or strapping multiple carriers together to form a stack of photovoltaic module carriers.
  • a method of installing photovoltaic modules includes placing a photovoltaic module carrier on a mounting structure, detaching the carrier from at least one module, removing the module carrier, and attaching the at least one module to the mounting structure.
  • the step of placing may comprise aligning alignment elements on the carrier and the mounting structure, in order to align the at least one module to mounting elements on the mounting structure.
  • FIG. 1 is an isometric view of a stack of PV laminate module carriers, according to one embodiment of the present invention
  • FIG. 1A is an isometric view of single PV laminate module carrier, according to an embodiment of the present invention.
  • FIG. 2A is a side section view of a PV laminate module carrier installed on top of a PV module racking structure
  • FIG. 2B is an isometric elevation view of a module clip according to one embodiment of the present invention.
  • FIG. 2C is an exploded view of the clip of FIG. 2B ;
  • FIG. 3 is an isometric exploded view of a PV laminate module carrier
  • FIG. 4A is an isometric elevation view of a PV laminate module carrier assembled to a racking structure
  • FIG. 4B is an isometric elevation view of an embodiment of a gross alignment plug according to one embodiment of the present invention.
  • FIG. 5A is an isometric view of a flat or horizontal stack of a PV laminate module carriers with shipping straps
  • FIG. 5B is a isometric view of a vertical stack of PV laminate module carriers with shipping straps
  • FIG. 6 is an isometric view of a PV module having an adhered racking mount feature, according to one embodiment of the present invention.
  • FIG. 7 is a side elevation sectioned view of a PV laminate module carrier assembled to a racking structure, according to an embodiment of the present invention.
  • a novel PV module carrier is used to provide protection during transportation, field handling, and assembly with racking systems.
  • the carrier further contains elements of a racking system itself, to allow for quicker installation in the field.
  • the PV module manufacturers have an incentive to utilize the carriers to reduce costs without a significant burden to current production processes.
  • the PV module installers will benefit from reduced installation time and labor cost for system installation, as well as a reduction in cost for the modules themselves.
  • the novel PV carrier enables PV modules to be assembled on to certain racking components in an indoors factory setting. Typically this assembly yields a panel having three or four PV modules assembled to mounting beams and the associated fastening hardware. This has the advantage of increasing production quality and decreasing costs compared to rooftop or ground work in the field.
  • FIG. 1 is an isometric view of a stack of PV laminate carriers, according to one embodiment of the present invention.
  • a plurality of PV module carrier bases 1 are stacked on top of each other.
  • Each carrier 1 contains a plurality of PV module laminates 2 a - 2 d , which are assembled to a PV carrier base 1 , using various nesting guides 3 a - 3 h and location guides 6 a - 6 e to align the modules into place on the carrier 1 .
  • PV module clips 4 a - 4 j fasten the modules together and can be used to mount the panel assembly directly to a PV mounting structure. The specific clips used can vary depending on the requirements of the intended mounting structure.
  • the nesting guides 3 a - 3 h and location guides 6 a - 6 e allow for easy placement of the PV module laminates in the PV module carrier, while aligning the PV modules such that they are in the proper location to be assembled quickly and efficiently to a PV racking system at an installation site.
  • the nesting guides 3 a - 3 h and location guides 6 a - 6 e in combination with the PV module clips 4 a - 4 j , further reduce PV module movement during transport, as well as providing protection from damage. Since it is desirable to be able to easily and quickly align carriers to one another, cut outs 7 a - 7 h , 8 a - 8 d may be used as guides while stacking the carriers.
  • these features may interact with pins, bars, jigs or brackets (not shown) that could be temporarily assembled to the carriers, in order to keep the carriers aligned while stacking.
  • the PV modules 2 a - 2 d are assembled in the carrier with the photovoltaic surface facing down, which has the advantage that it eliminates steps from the installation procedure when mounting the PV modules to the PV racking system.
  • Handling slots 5 a - 5 d are designed so that installers may easily handle and manipulate the PV carriers 1 during the installation of the PV modules to the PV racking system
  • the PV carrier base may be made of plywood, or may be a thermal plastic formed from pressure or heat, that could contain the module and nesting features within its geometry (formed in).
  • the PV carrier base may also be molded from a thermal plastic using rotational molding, or reaction molding, or could be injected molded as structural foam. Additionally, the PV carrier base could comprise a composite that is formed from a mold such as fiberglass.
  • the PV racking components that secure the laminates to the PV carrier base could be comprise a strip (or strips) of structural material (not shown), that is adhered or fastened to the non PV generating side of the PV modules that contain the necessary locating and securing features that enable the PV modules to be quickly assembled to the PV Racking system, either by snap, hook, fastener, adhesive, or combinations thereof.
  • FIG. 1A illustrates a single carrier base 1 , without any PV modules installed.
  • the carrier base is reusable, and after installation of the PV modules, the carrier base is returned to the manufacturer.
  • the carrier base 1 includes mounting holes 9 a - 9 j for securing the PV modules to the carrier.
  • FIG. 2A illustrates a side section view of a PV carrier assembly 1 on top of a PV racking structural rail 16 .
  • the two PV modules 13 , 14 are connected by a mounting clip 10 .
  • a carrier clip fastener bolt 11 secures the panel assembly to the carrier base 1 via a carrier retention nut plate 12 .
  • PV modules 13 , 14 are secured to the PV module carrier base 1 with a PV module clip 10 that securely clamps the PV module between the clip 10 and the base using fastener bolt 11 and nut plate 12 .
  • the PV carrier assembly 1 containing the secured PV modules 13 , 14 is shown resting on a PV racking structural component 16 . This position is the preferred final location for the PV modules relative to the PV racking system such that the PV modules are optimally secured. For example, once the carrier base 1 is properly positioned, the fastener bolt 11 (and others not shown), can be removed, and the carrier base 1 separated from the PV modules. The fastener bolt 11 , or any other suitable attachment hardware for the specific mounting structure 16 , can then be used to securely attach the module clip 10 to the mounting rail 16 .
  • FIG. 2B illustrates an embodiment of a PV module clip 10 suitable for use with the present invention.
  • the PV module clip 10 comprises an upper clip 10 a and a lower clip 10 b .
  • the upper clip 10 a is separate from the lower clip 10 b for quick and versatile assembly of the PV modules to the racking components.
  • the upper clip 10 a and lower clip 10 b each have an elastomeric pad 10 e , 10 f adhered to them such that a PV module laminate may be safely secured between a lower elastomeric pad 10 e and an upper elastomeric pad 10 f.
  • the upper clip 10 a may have a tongue feature 10 c that locates to the lower clip 10 b in between a cut out 10 g .
  • a tongue 10 h may be used to locate to a cut out slot located in the racking component (not pictured).
  • FIG. 2C illustrates an exploded view of the clip of FIG. 2B . Note that there are two elastomeric pads 10 e , 10 i on the lower clip 10 b . Also, a fastening element 100 is used to second the upper and lower clips elements 10 a , 10 b together.
  • PV module carrier is decoupled from the modules, allowing the PV module carrier to be removed.
  • the modules can then be quickly attached to the racking system.
  • the present invention reduces the amount of time necessary to align and install the PV modules.
  • FIG. 3 is an isometric exploded view of a PV laminate carrier base 15 , a PV racking structural rail 16 , a PV racking structural rail location feature 13 , and a PV racking system module clip location feature 10 h , according to an embodiment of the present invention.
  • FIG. 3 depicts additional details for locating a PV module carrier assembly 15 to a PV racking structural component 16 (rail).
  • the PV module carrier assembly 15 includes a plurality of PV module clips (described above) that act to secure the PV modules to the PV carrier base for transport as well as for locating and securing the PV module clips to the PV racking structural components.
  • the PV module clips may include a location feature 10 h (such as a metal tongue) to align the carrier assembly 15 to a PV module mounting system structural component 16 .
  • the structural component may include a complementary location feature 13 (such as a slot or groove in the rail).
  • the module clip location feature 10 h is tab or tongue that locates to a slot feature 13 in the PV racking system structural component 16 .
  • connection between module clip and racking structural feature allows enough freedom of movement in horizontal and vertical axis such that every PV module clip can adequately locate to a corresponding location feature on the PV racking structural components. It is desired to be able to locate and place a plurality of PV modules within one installation operation.
  • the location features on both PV module clips and PV racking structural components are equally spaced relative to one another. Additional embodiments of this location feature (not pictured) could include some combination of hook, bayonet, hole, rib, boss, fastener, dowel, pin, slot, lip, edge.
  • FIG. 4A is an isometric elevation of a PV carrier base assembled to a PV racking system.
  • the carrier base includes a carrier gross alignment feature 18
  • the racking system includes a racking system gross alignment feature 19 .
  • the racking gross alignment feature includes a cut-out 17 through a wall that is able to accept the gross alignment feature 18 .
  • the cut-out 17 corresponds to the cut-outs 8 a - 8 d on the end of the carriers shown in FIGS. 1 and 1A .
  • FIG. 4B depicts an embodiment of the gross alignment feature containing a round surface 18 a and a bottom lip 18 b , which act in concert to temporarily secure the gross alignment feature 18 to the carrier during installation. It is desirable to have a tapered surface 18 c for a gradual interface between the gross alignment feature 18 and the racking system gross alignment feature 19 .
  • the carrier gross alignment feature 18 may be formed as a tapered plug or pin, which may be made from metal using a deep drawn process, or formed from a sheet, machined, extruded, and/or bent.
  • Other embodiments of the carrier gross alignment feature 18 may comprise a thermal plastic that is pressure formed, injection molded, cast, or extruded.
  • Further geometrical embodiments of the gross alignment feature 18 can be a cruciform, rib, edge, return, bar, lip, or taper.
  • the racking system gross alignment feature 19 may be formed as a cut-out 19 in a racking system structural rail, for example.
  • the carrier gross alignment feature 18 may attach to a cutout 17 formed in the carrier base specifically to temporarily secure the gross alignment feature 18 to the PV carrier base.
  • the carrier gross alignment feature 18 has a returned flange that engages with the top of the PV carrier base 17 . This allows for gross alignment feature installation from either the top or side.
  • the sides of the cutout 17 secure the gross alignment feature 18 to the PV carrier base using friction. Additional embodiments (not pictured) of securing the gross alignment feature 18 to the PV carrier base may be temporary or permanent and use friction, adhesive, fasteners, rivets, or complimentary geometry between components.
  • FIGS. 5A and 5B illustrate two possible shipping orientations for a plurality of PV module carrier assemblies nested in either a horizontal or flat orientation, or a vertical or side orientation.
  • FIG. 5A is an isometric view depicting a flat or horizontal stack of PV carrier assemblies 20 , having horizontal straps 21 a - 21 d to secure the stack of PV carriers for transport and shipping.
  • the carrier assemblies 20 may include strap alignment features 7 a - 7 h on each PV carrier assembly, as previously illustrated in FIG. 1 .
  • FIG. 5B is an isometric view depicting a vertical stack of PV carrier assemblies 23 , having vertical straps 25 a - 25 d to secure vertical stack for transport and shipping.
  • the carrier assemblies 23 may include strap alignment features 7 e - 7 h on each PV carrier assembly.
  • Alternative embodiments of securing PV module carrier assembly stacks for shipping may include: shrink wrapping, metal bands, tape, brackets, or staples.
  • FIG. 6 illustrates an isometric view of a PV module 26 that has adhered racking mount features 27 a , 27 b .
  • the mounting elements 27 a , 27 b comprise a piece of metal that communicates directly with the mounting system.
  • FIG. 7 is a side elevation sectioned view of a carrier 28 , which is assembled to racking component 31 , with an adhered racking mounting feature 30 and a PV module 29 .
  • a PV module 29 is simultaneously assembled to the carrier 28 and the racking structural member 31 using the adhered element 30 .
  • the connection between the adhered element and the racking structural support could be a hook, bracket, latch, fastener, or clamp such that it is easy to assemble and secured to the racking system.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Packaging Frangible Articles (AREA)

Abstract

A novel PV module carrier and methods of use provide protection for PV modules during transportation, field handling, and assembly with racking systems. The carrier contains elements of a racking system to allow for quicker installation in the field. The PV module carrier reduces manufacturing costs by eliminating the need for frame elements, while reducing field installation time and labor cost for system installation.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to a photovoltaic laminate module carrier, and more particularly to a photovoltaic module carrier that is optimized for shipping a plurality of modules as a set, and for facilitating quick and easy assembly of the modules to a mounting rack system.
2. Description of the Related Art
Currently, crystalline photovoltaic (PV) laminate modules comprise layers of glass, modular solar cells with their supporting electrical and mechanical connections, and an aluminum frame. The aluminum frame provides protection during transportation and installation for the glass surrounding the solar cells, protects them against the elements for the duration of their working life, and is part of the traditional method of attaching the module to the mounting structure or racking. Because aluminum is a conductor, a grounding element is required for each module. The cost for the PV module frame is roughly 10% of the entire PV module cost. There are additional costs for the labor and materials to ground the frames to the racking.
Currently, the PV modules are manufactured with the aluminum frame at a factory, and are then shipped either directly to an installation site or to a warehouse. Regardless, the modules must be transported to an installation site, where they must be individually handled and installed on the mounting structure at the installation site. As the PV solar industry continues to mature, different aspects of the sector are getting further scrutiny. Particularly, the total costs, including materials and labor costs for installing and deploying PV systems, often referred to as Balance of System (BOS), has become a focus for cost reduction.
One way to reduce the overall system costs would be to eliminate the aluminum frame from each module. However, this raises issues for safe shipping and assembly at the installation site. Thus, there is a need for an improved technique to safely ship PV modules and to reduce the installation and labor costs at the installation site.
SUMMARY OF THE INVENTION
In general, the present invention is a novel PV module carrier and methods of use that provide protection for PV modules during transportation, field handling, and assembly with racking systems. The carrier contains elements of a racking system itself, to allow for quicker installation in the field. The PV module carriers reduce manufacturing costs by eliminating the need for frame elements, while reducing field installation time and labor cost for system installation.
More particularly, according to one embodiment, an apparatus for transporting at least one photovoltaic module comprises a carrier base, a plurality of nesting guides formed on a first and second edge of the carrier base, and a plurality of location guides formed on the carrier base and aligned generally parallel to an edge of the carrier base, wherein the nesting guides and location guides form at least one opening on the carrier base for receiving a photovoltaic module.
The apparatus may further comprise handlings slots to facilitate handling of the carrier. In addition, the apparatus may further comprise two alignment guide openings at the first end of the carrier base, and a two alignment guide openings formed at a second end of the carrier base. The carrier base may include strap alignment slots to allow shipping straps to tie down a stack of carriers for shipping. The carrier base may include mounting holes for attaching the PV modules to the carrier. A plurality of mounting clips may be used to attach the PV modules to the carrier. Various alignment features may be included to facilitate alignment of the PV modules with the mounting system.
According to another embodiment, a photovoltaic module carrier assembly comprises a carrier base, a plurality of nesting guides formed on a first and second edge of the carrier base, a plurality of location guides formed on the carrier base and aligned generally parallel to an edge of the carrier base; wherein the nesting guides and location guides form at least two openings on the carrier base for receiving photovoltaic modules, a photovoltaic module positioned in each opening on the carrier base, a plurality of mounting structure elements attached to the photovoltaic modules, and a plurality of fasteners attaching the modules to the carrier base.
The PV module carrier assembly may further comprise handlings slots to facilitate handling of the carrier. In addition, the apparatus may further comprise two alignment guide openings at the first end of the carrier base, and a two alignment guide openings formed at a second end of the carrier base. The carrier base may include strap alignment slots to allow shipping straps to tie down a stack of carriers for shipping. The carrier base may include mounting holes for attaching the PV modules to the carrier. A plurality of mounting clips may be used to attach the PV modules to the carrier. Various alignment features may be included to facilitate alignment of the PV modules with the mounting system.
A method for transporting photovoltaic modules according to one aspect of the present invention comprises: placing a plurality of modules on a carrier, the carrier including alignment guides, attaching a plurality of photovoltaic modules to the carrier, and attaching a plurality of mounting structure elements to the plurality of modules. The method may further comprise stacking and/or strapping multiple carriers together to form a stack of photovoltaic module carriers.
A method of installing photovoltaic modules according to another aspect of the present invention includes placing a photovoltaic module carrier on a mounting structure, detaching the carrier from at least one module, removing the module carrier, and attaching the at least one module to the mounting structure. The step of placing may comprise aligning alignment elements on the carrier and the mounting structure, in order to align the at least one module to mounting elements on the mounting structure.
BRIEF DESCRIPTION OF THE DRAWINGS
The present invention will be readily understood by the following detailed description in conjunction with the accompanying drawings, wherein like reference numerals designate like structural elements, and in which:
FIG. 1 is an isometric view of a stack of PV laminate module carriers, according to one embodiment of the present invention;
FIG. 1A is an isometric view of single PV laminate module carrier, according to an embodiment of the present invention;
FIG. 2A is a side section view of a PV laminate module carrier installed on top of a PV module racking structure;
FIG. 2B is an isometric elevation view of a module clip according to one embodiment of the present invention;
FIG. 2C is an exploded view of the clip of FIG. 2B;
FIG. 3 is an isometric exploded view of a PV laminate module carrier;
FIG. 4A is an isometric elevation view of a PV laminate module carrier assembled to a racking structure;
FIG. 4B is an isometric elevation view of an embodiment of a gross alignment plug according to one embodiment of the present invention;
FIG. 5A is an isometric view of a flat or horizontal stack of a PV laminate module carriers with shipping straps;
FIG. 5B is a isometric view of a vertical stack of PV laminate module carriers with shipping straps;
FIG. 6 is an isometric view of a PV module having an adhered racking mount feature, according to one embodiment of the present invention; and
FIG. 7 is a side elevation sectioned view of a PV laminate module carrier assembled to a racking structure, according to an embodiment of the present invention.
DETAILED DESCRIPTION OF THE INVENTION
The following description is provided to enable any person skilled in the art to make and use the invention and sets forth the best modes contemplated by the inventor for carrying out the invention. Various modifications, however, will remain readily apparent to those skilled in the art. Any and all such modifications, equivalents and alternatives are intended to fall within the spirit and scope of the present invention.
As described above, there is a desire to remove the PV module frames from the modules in order to reduce over-all system costs. According to the present invention, a novel PV module carrier is used to provide protection during transportation, field handling, and assembly with racking systems. The carrier further contains elements of a racking system itself, to allow for quicker installation in the field. The PV module manufacturers have an incentive to utilize the carriers to reduce costs without a significant burden to current production processes. Furthermore, the PV module installers will benefit from reduced installation time and labor cost for system installation, as well as a reduction in cost for the modules themselves.
More particularly, the novel PV carrier enables PV modules to be assembled on to certain racking components in an indoors factory setting. Typically this assembly yields a panel having three or four PV modules assembled to mounting beams and the associated fastening hardware. This has the advantage of increasing production quality and decreasing costs compared to rooftop or ground work in the field.
FIG. 1 is an isometric view of a stack of PV laminate carriers, according to one embodiment of the present invention. As illustrated, a plurality of PV module carrier bases 1 are stacked on top of each other. Each carrier 1 contains a plurality of PV module laminates 2 a-2 d, which are assembled to a PV carrier base 1, using various nesting guides 3 a-3 h and location guides 6 a-6 e to align the modules into place on the carrier 1. PV module clips 4 a-4 j fasten the modules together and can be used to mount the panel assembly directly to a PV mounting structure. The specific clips used can vary depending on the requirements of the intended mounting structure.
The nesting guides 3 a-3 h and location guides 6 a-6 e allow for easy placement of the PV module laminates in the PV module carrier, while aligning the PV modules such that they are in the proper location to be assembled quickly and efficiently to a PV racking system at an installation site. The nesting guides 3 a-3 h and location guides 6 a-6 e, in combination with the PV module clips 4 a-4 j, further reduce PV module movement during transport, as well as providing protection from damage. Since it is desirable to be able to easily and quickly align carriers to one another, cut outs 7 a-7 h, 8 a-8 d may be used as guides while stacking the carriers. In addition, these features may interact with pins, bars, jigs or brackets (not shown) that could be temporarily assembled to the carriers, in order to keep the carriers aligned while stacking.
As illustrated in FIG. 1, the PV modules 2 a-2 d are assembled in the carrier with the photovoltaic surface facing down, which has the advantage that it eliminates steps from the installation procedure when mounting the PV modules to the PV racking system. Handling slots 5 a-5 d are designed so that installers may easily handle and manipulate the PV carriers 1 during the installation of the PV modules to the PV racking system
The PV carrier base may be made of plywood, or may be a thermal plastic formed from pressure or heat, that could contain the module and nesting features within its geometry (formed in). The PV carrier base may also be molded from a thermal plastic using rotational molding, or reaction molding, or could be injected molded as structural foam. Additionally, the PV carrier base could comprise a composite that is formed from a mold such as fiberglass.
The PV racking components that secure the laminates to the PV carrier base could be comprise a strip (or strips) of structural material (not shown), that is adhered or fastened to the non PV generating side of the PV modules that contain the necessary locating and securing features that enable the PV modules to be quickly assembled to the PV Racking system, either by snap, hook, fastener, adhesive, or combinations thereof.
FIG. 1A illustrates a single carrier base 1, without any PV modules installed. In a preferred embodiment, the carrier base is reusable, and after installation of the PV modules, the carrier base is returned to the manufacturer. Note that the carrier base 1 includes mounting holes 9 a-9 j for securing the PV modules to the carrier.
FIG. 2A illustrates a side section view of a PV carrier assembly 1 on top of a PV racking structural rail 16. The two PV modules 13, 14 are connected by a mounting clip 10. A carrier clip fastener bolt 11 secures the panel assembly to the carrier base 1 via a carrier retention nut plate 12.
In further detail, PV modules 13, 14, shown as laminates in this embodiment, are secured to the PV module carrier base 1 with a PV module clip 10 that securely clamps the PV module between the clip 10 and the base using fastener bolt 11 and nut plate 12. The PV carrier assembly 1 containing the secured PV modules 13, 14 is shown resting on a PV racking structural component 16. This position is the preferred final location for the PV modules relative to the PV racking system such that the PV modules are optimally secured. For example, once the carrier base 1 is properly positioned, the fastener bolt 11 (and others not shown), can be removed, and the carrier base 1 separated from the PV modules. The fastener bolt 11, or any other suitable attachment hardware for the specific mounting structure 16, can then be used to securely attach the module clip 10 to the mounting rail 16.
FIG. 2B illustrates an embodiment of a PV module clip 10 suitable for use with the present invention. The PV module clip 10 comprises an upper clip 10 a and a lower clip 10 b. Preferably, the upper clip 10 a is separate from the lower clip 10 b for quick and versatile assembly of the PV modules to the racking components. The upper clip 10 a and lower clip 10 b each have an elastomeric pad 10 e, 10 f adhered to them such that a PV module laminate may be safely secured between a lower elastomeric pad 10 e and an upper elastomeric pad 10 f.
It is also preferred to be able to quickly distinguish between an upper clip and a lower clip, while preventing the clip assembly from rotating when securing it to the racking component with a fastener. For arresting rotation between the upper and lower clips, the upper clip 10 a may have a tongue feature 10 c that locates to the lower clip 10 b in between a cut out 10 g. For both ease of assembly and preventing rotation between the racking components and the lower clip, a tongue 10 h may be used to locate to a cut out slot located in the racking component (not pictured).
FIG. 2C illustrates an exploded view of the clip of FIG. 2B. Note that there are two elastomeric pads 10 e, 10 i on the lower clip 10 b. Also, a fastening element 100 is used to second the upper and lower clips elements 10 a, 10 b together.
As can be appreciate by those skilled in the art, it is preferable to be able to efficiently install PV modules to a PV racking system in a quick and efficient manner. As described herein, once the PV carrier assembly is located correctly on the PV racking system, the PV module carrier is decoupled from the modules, allowing the PV module carrier to be removed. The modules can then be quickly attached to the racking system. Thus, the present invention reduces the amount of time necessary to align and install the PV modules.
FIG. 3 is an isometric exploded view of a PV laminate carrier base 15, a PV racking structural rail 16, a PV racking structural rail location feature 13, and a PV racking system module clip location feature 10 h, according to an embodiment of the present invention.
As illustrated, FIG. 3 depicts additional details for locating a PV module carrier assembly 15 to a PV racking structural component 16 (rail). The PV module carrier assembly 15 includes a plurality of PV module clips (described above) that act to secure the PV modules to the PV carrier base for transport as well as for locating and securing the PV module clips to the PV racking structural components. The PV module clips may include a location feature 10 h (such as a metal tongue) to align the carrier assembly 15 to a PV module mounting system structural component 16. The structural component may include a complementary location feature 13 (such as a slot or groove in the rail). In the illustrated embodiment, the module clip location feature 10 h is tab or tongue that locates to a slot feature 13 in the PV racking system structural component 16.
The connection between module clip and racking structural feature allows enough freedom of movement in horizontal and vertical axis such that every PV module clip can adequately locate to a corresponding location feature on the PV racking structural components. It is desired to be able to locate and place a plurality of PV modules within one installation operation. The location features on both PV module clips and PV racking structural components are equally spaced relative to one another. Additional embodiments of this location feature (not pictured) could include some combination of hook, bayonet, hole, rib, boss, fastener, dowel, pin, slot, lip, edge.
It may also be desirable to have a more gross alignment scheme that allows for alignment between the PV carrier assembly and PV racking system. FIG. 4A is an isometric elevation of a PV carrier base assembled to a PV racking system. The carrier base includes a carrier gross alignment feature 18, and the racking system includes a racking system gross alignment feature 19. In this embodiment, the racking gross alignment feature includes a cut-out 17 through a wall that is able to accept the gross alignment feature 18. The cut-out 17, for example, corresponds to the cut-outs 8 a-8 d on the end of the carriers shown in FIGS. 1 and 1A.
FIG. 4B depicts an embodiment of the gross alignment feature containing a round surface 18 a and a bottom lip 18 b, which act in concert to temporarily secure the gross alignment feature 18 to the carrier during installation. It is desirable to have a tapered surface 18 c for a gradual interface between the gross alignment feature 18 and the racking system gross alignment feature 19.
In further detail, the carrier gross alignment feature 18 may be formed as a tapered plug or pin, which may be made from metal using a deep drawn process, or formed from a sheet, machined, extruded, and/or bent. Other embodiments of the carrier gross alignment feature 18 may comprise a thermal plastic that is pressure formed, injection molded, cast, or extruded. Further geometrical embodiments of the gross alignment feature 18 can be a cruciform, rib, edge, return, bar, lip, or taper. The racking system gross alignment feature 19 may be formed as a cut-out 19 in a racking system structural rail, for example.
It may be desirable to be able to easily remove and install the carrier gross alignment feature 18 in order to maximize transport density. In this embodiment, the carrier gross alignment feature 18 may attach to a cutout 17 formed in the carrier base specifically to temporarily secure the gross alignment feature 18 to the PV carrier base. For example, the carrier gross alignment feature 18 has a returned flange that engages with the top of the PV carrier base 17. This allows for gross alignment feature installation from either the top or side. The sides of the cutout 17 secure the gross alignment feature 18 to the PV carrier base using friction. Additional embodiments (not pictured) of securing the gross alignment feature 18 to the PV carrier base may be temporary or permanent and use friction, adhesive, fasteners, rivets, or complimentary geometry between components.
FIGS. 5A and 5B illustrate two possible shipping orientations for a plurality of PV module carrier assemblies nested in either a horizontal or flat orientation, or a vertical or side orientation. FIG. 5A is an isometric view depicting a flat or horizontal stack of PV carrier assemblies 20, having horizontal straps 21 a-21 d to secure the stack of PV carriers for transport and shipping. The carrier assemblies 20 may include strap alignment features 7 a-7 h on each PV carrier assembly, as previously illustrated in FIG. 1.
Similarly, FIG. 5B is an isometric view depicting a vertical stack of PV carrier assemblies 23, having vertical straps 25 a-25 d to secure vertical stack for transport and shipping. The carrier assemblies 23 may include strap alignment features 7 e-7 h on each PV carrier assembly. For certain types of modules and/or transport systems it may be desirable to pack the carriers in a vertical manner, in order to maintain PV module safety or for space maximization. Alternative embodiments of securing PV module carrier assembly stacks for shipping (not pictured) may include: shrink wrapping, metal bands, tape, brackets, or staples.
In alternative embodiments, it may be desirable to include additional and/or different elements on the modules and/or carriers to further facilitate alignment or mounting on to a mounting structure. For example, FIG. 6 illustrates an isometric view of a PV module 26 that has adhered racking mount features 27 a, 27 b. In this specific embodiment, the mounting elements 27 a, 27 b comprise a piece of metal that communicates directly with the mounting system.
FIG. 7 is a side elevation sectioned view of a carrier 28, which is assembled to racking component 31, with an adhered racking mounting feature 30 and a PV module 29. In further detail, a PV module 29 is simultaneously assembled to the carrier 28 and the racking structural member 31 using the adhered element 30. The connection between the adhered element and the racking structural support could be a hook, bracket, latch, fastener, or clamp such that it is easy to assemble and secured to the racking system.
Those skilled in the art will appreciate that various adaptations and modifications of the just described preferred embodiments can be configured without departing from the scope and spirit of the invention. Therefore, it is to be understood that, within the scope of the appended claims, the invention may be practiced other than as specifically described herein.

Claims (16)

What is claimed is:
1. An apparatus for transporting at least one photovoltaic module comprising:
a carrier base;
a plurality of nesting guides formed on a first and second edge of the carrier base;
a plurality of location guides formed on the carrier base and aligned generally parallel to an edge of the carrier base;
wherein the nesting guides and location guides form at least one opening on the carrier base for receiving a photovoltaic module, and wherein at least one photovoltaic module is positioned in the at least one opening;
a plurality of module mounting clips attached to the at least one photovoltaic module;
at least one strap alignment slot on a first edge of the carrier base, and at least one complementary strap alignment slot on a second edge of the carrier base; and
at least one strap located through the at least one strap alignment slot and the at least one complementary strap alignment slot, wherein the at least one strap secures the at least one photovoltaic module to the carrier base.
2. The apparatus of claim 1, further comprising two handling slots formed at a first end of the carrier base, and a two handlings slots formed at a second end of the carrier base.
3. The apparatus of claim 2, further comprising two alignment guide openings at the first end of the carrier base, and a two alignment guide openings formed at a second end of the carrier base.
4. The apparatus of claim 3, further comprising a plurality of mounting holes formed in the carrier base.
5. The apparatus of claim 4, wherein each module mounting clip further comprises at least one alignment tab.
6. The apparatus of claim 3, further comprising an alignment plug in each alignment guide opening.
7. The apparatus of claim 4, further comprising at least one additional structural mounting element attached to the at least one photovoltaic module.
8. A photovoltaic module carrier assembly comprising:
a carrier base;
a plurality of nesting guides formed on a first and second edge of the carrier base;
a plurality of location guides formed on the carrier base and aligned generally parallel to an edge of the carrier base; wherein the nesting guides and location guides form at least two openings on the carrier base for receiving photovoltaic modules;
a photovoltaic module positioned in each opening on the carrier base;
a plurality of mounting structure elements attached to the photovoltaic modules;
a plurality of fasteners attaching the modules to the carrier base;
a plurality of strap alignment slots on a first edge of the carrier base, and a plurality of complementary strap alignment slots on a second edge of the carrier base; and
a plurality of straps, each strap located through one strap alignment slot and one complementary strap alignment slot, wherein each strap secures a photovoltaic module to the carrier base.
9. The assembly of claim 8, wherein the mounting structure elements comprise module mounting clips.
10. The assembly of claim 8, further comprising two handling slots formed at a first end of the carrier base, and a two handlings slots formed at a second end of the carrier base.
11. The assembly of claim 9, further comprising two alignment guide openings at the first end of the carrier base, and a two alignment guide openings formed at a second end of the carrier base.
12. The assembly of claim 8, further comprising a plurality of mounting holes formed in the carrier base.
13. The assembly of claim 12, wherein each module mounting clip further comprises at least one alignment tab.
14. The assembly of claim 13, further comprising an alignment plug in each alignment guide opening.
15. The assembly of claim 14, further comprising at least one additional structural mounting element attached to each photovoltaic module.
16. A photovoltaic module carrier assembly comprising:
a plurality of carrier base assemblies, each carrier base assembly comprising:
a carrier base;
a plurality of nesting guides formed on a first and second edge of the carrier base;
a plurality of location guides formed on the carrier base and aligned generally parallel to an edge of the carrier base; wherein the nesting guides and location guides form at least two openings on the carrier base for receiving photovoltaic modules;
a photovoltaic module positioned in each opening on the carrier base;
a plurality of racking mount elements adhered to the photovoltaic modules;
a plurality of fasteners attaching the modules to the carrier base; and
a plurality of strap alignment slots on a first edge of the carrier base, and a plurality of complementary strap alignment slots on a second edge of the carrier base;
wherein a plurality of carrier base assemblies are stacked together, and a plurality of straps secures the carrier bases together in a stack, wherein an individual strap is located through one strap alignment slot and one complementary strap alignment slot on each carrier base assembly.
US13/317,141 2011-10-11 2011-10-11 Photovoltaic module carrier Active 2032-07-14 US8887920B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/317,141 US8887920B2 (en) 2011-10-11 2011-10-11 Photovoltaic module carrier
US14/487,656 US9831365B2 (en) 2011-10-11 2014-09-16 Photovoltaic module carrier and methods of use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/317,141 US8887920B2 (en) 2011-10-11 2011-10-11 Photovoltaic module carrier

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/487,656 Division US9831365B2 (en) 2011-10-11 2014-09-16 Photovoltaic module carrier and methods of use

Publications (2)

Publication Number Publication Date
US20130087186A1 US20130087186A1 (en) 2013-04-11
US8887920B2 true US8887920B2 (en) 2014-11-18

Family

ID=48041274

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/317,141 Active 2032-07-14 US8887920B2 (en) 2011-10-11 2011-10-11 Photovoltaic module carrier
US14/487,656 Expired - Fee Related US9831365B2 (en) 2011-10-11 2014-09-16 Photovoltaic module carrier and methods of use

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/487,656 Expired - Fee Related US9831365B2 (en) 2011-10-11 2014-09-16 Photovoltaic module carrier and methods of use

Country Status (1)

Country Link
US (2) US8887920B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150064978A1 (en) * 2013-08-28 2015-03-05 Bellwether Electronic Corp. Connector tape and connector module thereof
US10027273B2 (en) 2015-04-30 2018-07-17 Solarcity Corporation Plunger and puck mounting system for photovoltaic panels
US10469024B2 (en) 2016-04-08 2019-11-05 Solarcity Corporation Pre-assembled nesting photovoltaic module bracket for solar tracker
US10587216B2 (en) 2016-04-20 2020-03-10 Solarcity Corporation Over-center under photovoltaic module clamp
US10622937B2 (en) 2016-04-06 2020-04-14 Solarcity Corporation Spring latch saddle connector for solar tracker
US11050383B2 (en) 2019-05-21 2021-06-29 Nextracker Inc Radial cam helix with 0 degree stow for solar tracker
US11159120B2 (en) 2018-03-23 2021-10-26 Nextracker Inc. Multiple actuator system for solar tracker
US11190129B2 (en) 2016-04-06 2021-11-30 Tesla, Inc. Photovoltaic module connector for solar tracker
US11387771B2 (en) 2018-06-07 2022-07-12 Nextracker Llc Helical actuator system for solar tracker

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140360552A1 (en) * 2012-07-19 2014-12-11 Brittmore Group LLC Solar Panel Field Array Support System and Apparatus and Method for Construction Use
US9874021B2 (en) * 2015-08-28 2018-01-23 Solarcity Corporation Tile and slate roof flashing systems
US10125506B2 (en) 2015-12-08 2018-11-13 Northern States Metals Company Concrete form system for ballast foundations
WO2017165874A2 (en) * 2016-03-25 2017-09-28 Tecsi Solar, Inc. Array including frameless solar modules
US11336221B2 (en) 2016-03-25 2022-05-17 Tecsi Solar, Inc. Wire receiver for securing wires of solar array
CN106493544A (en) * 2016-12-10 2017-03-15 钱理 A kind of photovoltaic module is framed up equipment automatically

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4549651A (en) * 1984-12-21 1985-10-29 Alemanni James C Carrier for pin grid array
US5400904A (en) * 1993-10-15 1995-03-28 R. H. Murphy Co., Inc. Tray for ball terminal integrated circuits
US5551572A (en) * 1994-09-07 1996-09-03 Shinon Denkisangyo Kabushiki-Kaisha Tray for semiconductor devices
US5848703A (en) * 1997-10-20 1998-12-15 R. H. Murphy Co., Inc. Tray for integrated circuits
US6116427A (en) * 2000-01-31 2000-09-12 Silicon Integrated Systems Corp. Tray for ball grid array devices
US6239352B1 (en) * 1999-03-30 2001-05-29 Daniel Luch Substrate and collector grid structures for electrically interconnecting photovoltaic arrays and process of manufacture of such arrays
US6612442B2 (en) * 2000-12-01 2003-09-02 Texchem-Pack (M) Bhd Tray for storing semiconductor chips
US6868970B2 (en) * 2003-04-16 2005-03-22 Illinois Tool Works Inc. Stackable tray for integrated circuits with corner support elements and lateral support elements forming matrix tray capture system
US20070163920A1 (en) * 2006-01-05 2007-07-19 Yamaha Corporation Housing for electronic components
US20070256958A1 (en) * 2007-04-30 2007-11-08 Peak Plastic And Metal Products (Int'l) Ltd. Reinforced tray for delicate devices
US20080173569A1 (en) * 2007-01-23 2008-07-24 Illinois Tool Works Inc. Pedestal pocket tray containment system for integrated circuit chips
US7410060B2 (en) * 2004-06-02 2008-08-12 Illinois Tool Works Inc. Stackable tray for integrated circuit chips
US20110067747A1 (en) * 2009-09-23 2011-03-24 Everphoton Energy Corp Photovoltaic device and power module

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090230265A1 (en) * 2008-03-17 2009-09-17 Michael Newman Mounting System for Photovoltaic Panels
US8220210B2 (en) * 2008-06-27 2012-07-17 Sunpower Corporation Photovoltaic module and module arrays

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4549651A (en) * 1984-12-21 1985-10-29 Alemanni James C Carrier for pin grid array
US5400904C1 (en) * 1993-10-15 2001-01-16 Murphy R H Co Inc Tray for ball terminal integrated circuits
US5400904A (en) * 1993-10-15 1995-03-28 R. H. Murphy Co., Inc. Tray for ball terminal integrated circuits
US5551572A (en) * 1994-09-07 1996-09-03 Shinon Denkisangyo Kabushiki-Kaisha Tray for semiconductor devices
US5848703A (en) * 1997-10-20 1998-12-15 R. H. Murphy Co., Inc. Tray for integrated circuits
US6239352B1 (en) * 1999-03-30 2001-05-29 Daniel Luch Substrate and collector grid structures for electrically interconnecting photovoltaic arrays and process of manufacture of such arrays
US6116427A (en) * 2000-01-31 2000-09-12 Silicon Integrated Systems Corp. Tray for ball grid array devices
US6612442B2 (en) * 2000-12-01 2003-09-02 Texchem-Pack (M) Bhd Tray for storing semiconductor chips
US6868970B2 (en) * 2003-04-16 2005-03-22 Illinois Tool Works Inc. Stackable tray for integrated circuits with corner support elements and lateral support elements forming matrix tray capture system
US7410060B2 (en) * 2004-06-02 2008-08-12 Illinois Tool Works Inc. Stackable tray for integrated circuit chips
US20070163920A1 (en) * 2006-01-05 2007-07-19 Yamaha Corporation Housing for electronic components
US20080173569A1 (en) * 2007-01-23 2008-07-24 Illinois Tool Works Inc. Pedestal pocket tray containment system for integrated circuit chips
US20070256958A1 (en) * 2007-04-30 2007-11-08 Peak Plastic And Metal Products (Int'l) Ltd. Reinforced tray for delicate devices
US20110067747A1 (en) * 2009-09-23 2011-03-24 Everphoton Energy Corp Photovoltaic device and power module

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150064978A1 (en) * 2013-08-28 2015-03-05 Bellwether Electronic Corp. Connector tape and connector module thereof
US10027273B2 (en) 2015-04-30 2018-07-17 Solarcity Corporation Plunger and puck mounting system for photovoltaic panels
US10622937B2 (en) 2016-04-06 2020-04-14 Solarcity Corporation Spring latch saddle connector for solar tracker
US11190129B2 (en) 2016-04-06 2021-11-30 Tesla, Inc. Photovoltaic module connector for solar tracker
US10469024B2 (en) 2016-04-08 2019-11-05 Solarcity Corporation Pre-assembled nesting photovoltaic module bracket for solar tracker
US10587216B2 (en) 2016-04-20 2020-03-10 Solarcity Corporation Over-center under photovoltaic module clamp
US11159120B2 (en) 2018-03-23 2021-10-26 Nextracker Inc. Multiple actuator system for solar tracker
US11283395B2 (en) 2018-03-23 2022-03-22 Nextracker Inc. Multiple actuator system for solar tracker
US11711051B2 (en) 2018-03-23 2023-07-25 Nextracker Llc Multiple actuator system for solar tracker
US11387771B2 (en) 2018-06-07 2022-07-12 Nextracker Llc Helical actuator system for solar tracker
US11050383B2 (en) 2019-05-21 2021-06-29 Nextracker Inc Radial cam helix with 0 degree stow for solar tracker
US11705859B2 (en) 2019-05-21 2023-07-18 Nextracker Llc Radial cam helix with 0 degree stow for solar tracker

Also Published As

Publication number Publication date
US20150000099A1 (en) 2015-01-01
US20130087186A1 (en) 2013-04-11
US9831365B2 (en) 2017-11-28

Similar Documents

Publication Publication Date Title
US9831365B2 (en) Photovoltaic module carrier and methods of use
US9130088B2 (en) Solar panel with integrated mounting clip/shipping support
US20120233940A1 (en) Mechanical photovoltaic module cartridge and method of construction
US9301408B2 (en) Equipment cabinet
US7926213B1 (en) Electronic sign having slotted frame cabinets
US20120023726A1 (en) Method and apparatus providing simplified installation of a plurality of solar panels
US20050058891A1 (en) Front access battery tray apparatus and system
US9923511B2 (en) Connecting solar modules
JP2006032978A (en) Plug-in system in module method certainly storing photoelectromotive-force module horizontally accumulated in transportation
US20160065121A1 (en) Universal cassette
US6368036B1 (en) Device and method for loading nursery items on a truck
US7976094B2 (en) Folding locator pin for glass panels
US11482965B2 (en) Stacking spacer, photovoltaic module frame and tracking device assembly
KR101800385B1 (en) Container fixing structure for solar modules
KR20160028929A (en) A fixing clamp for support
US20120198696A1 (en) Solar string assembly process
KR20160020263A (en) supporting member for loading solar cell module
CN216660692U (en) Packing box with combined hasp connecting structure
US9839154B2 (en) Flat roof inverter rack
US11594998B1 (en) Systems and methods for mounting solar panels
SE530942C2 (en) Stackable frame for a panel, panel module and method of manufacturing and stacking panel modules
JP6124682B2 (en) Solar panel mounting jig
CN217706737U (en) Safe split type package wooden bracket that can assemble
CN113316548A (en) Transportation fixing method and system for fuel assembly transportation container
CN220743725U (en) Assembled plastic turnover tray

Legal Events

Date Code Title Description
AS Assignment

Owner name: SUNLINK CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PELMAN, TODD;SEERY, MARTIN N.;HARTNETT, JEFF;REEL/FRAME:027472/0987

Effective date: 20111014

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: UNION BAY CAPITAL PARTNERS I, LLC, WASHINGTON

Free format text: SECURITY INTEREST;ASSIGNOR:SUNLINK CORPORATION;REEL/FRAME:034229/0303

Effective date: 20141114

AS Assignment

Owner name: SILICON VALLEY BANK, CALIFORNIA

Free format text: SECURITY INTEREST;ASSIGNOR:SUNLINK CORPORATION;REEL/FRAME:035973/0791

Effective date: 20150604

AS Assignment

Owner name: SUNLINK CORPORATION, CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:SILICON VALLEY BANK;REEL/FRAME:041664/0352

Effective date: 20170208

AS Assignment

Owner name: HERITAGE BANK OF COMMERCE, CALIFORNIA

Free format text: SECURITY INTEREST;ASSIGNOR:SUNLINK CORPORATION;REEL/FRAME:041208/0133

Effective date: 20170207

AS Assignment

Owner name: MULTIPLIER CAPITAL II, LP, MARYLAND

Free format text: SECURITY INTEREST;ASSIGNOR:SUNLINK CORPORATION;REEL/FRAME:044438/0374

Effective date: 20170929

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.)

FEPP Fee payment procedure

Free format text: SURCHARGE FOR LATE PAYMENT, SMALL ENTITY (ORIGINAL EVENT CODE: M2554); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 4

AS Assignment

Owner name: MULTIPLIER CAPITAL II ACQUISITION, LLC, DISTRICT OF COLUMBIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SUNLINK CORPORATION;REEL/FRAME:052000/0846

Effective date: 20200227

AS Assignment

Owner name: COROSOLAR LLC, ARIZONA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MULTIPLIER CAPITAL II ACQUISITION LLC;REEL/FRAME:052033/0179

Effective date: 20200304

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FEPP Fee payment procedure

Free format text: 7.5 YR SURCHARGE - LATE PMT W/IN 6 MO, SMALL ENTITY (ORIGINAL EVENT CODE: M2555); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2552); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE UNDER 1.28(C) (ORIGINAL EVENT CODE: M1559); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY