US8887920B2 - Photovoltaic module carrier - Google Patents
Photovoltaic module carrier Download PDFInfo
- Publication number
- US8887920B2 US8887920B2 US13/317,141 US201113317141A US8887920B2 US 8887920 B2 US8887920 B2 US 8887920B2 US 201113317141 A US201113317141 A US 201113317141A US 8887920 B2 US8887920 B2 US 8887920B2
- Authority
- US
- United States
- Prior art keywords
- carrier base
- carrier
- alignment
- strap
- module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 230000000712 assembly Effects 0.000 claims description 7
- 238000000429 assembly Methods 0.000 claims description 7
- 230000000295 complement effect Effects 0.000 claims description 7
- 238000009434 installation Methods 0.000 abstract description 23
- 238000000034 method Methods 0.000 abstract description 8
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 239000000969 carrier Substances 0.000 description 19
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000011120 plywood Substances 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 238000001175 rotational moulding Methods 0.000 description 1
- 239000004616 structural foam Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/043—Mechanically stacked PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B10/00—Integration of renewable energy sources in buildings
- Y02B10/10—Photovoltaic [PV]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/4935—Heat exchanger or boiler making
- Y10T29/49355—Solar energy device making
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49764—Method of mechanical manufacture with testing or indicating
- Y10T29/49778—Method of mechanical manufacture with testing or indicating with aligning, guiding, or instruction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49764—Method of mechanical manufacture with testing or indicating
- Y10T29/49778—Method of mechanical manufacture with testing or indicating with aligning, guiding, or instruction
- Y10T29/4978—Assisting assembly or disassembly
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49815—Disassembling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
- Y10T29/49947—Assembling or joining by applying separate fastener
- Y10T29/49948—Multipart cooperating fastener [e.g., bolt and nut]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
- Y10T29/49947—Assembling or joining by applying separate fastener
- Y10T29/49963—Threaded fastener
Definitions
- the present invention relates generally to a photovoltaic laminate module carrier, and more particularly to a photovoltaic module carrier that is optimized for shipping a plurality of modules as a set, and for facilitating quick and easy assembly of the modules to a mounting rack system.
- PV laminate modules comprise layers of glass, modular solar cells with their supporting electrical and mechanical connections, and an aluminum frame.
- the aluminum frame provides protection during transportation and installation for the glass surrounding the solar cells, protects them against the elements for the duration of their working life, and is part of the traditional method of attaching the module to the mounting structure or racking.
- aluminum is a conductor, a grounding element is required for each module.
- the cost for the PV module frame is roughly 10% of the entire PV module cost. There are additional costs for the labor and materials to ground the frames to the racking.
- the PV modules are manufactured with the aluminum frame at a factory, and are then shipped either directly to an installation site or to a warehouse. Regardless, the modules must be transported to an installation site, where they must be individually handled and installed on the mounting structure at the installation site.
- BOS Balance of System
- the present invention is a novel PV module carrier and methods of use that provide protection for PV modules during transportation, field handling, and assembly with racking systems.
- the carrier contains elements of a racking system itself, to allow for quicker installation in the field.
- the PV module carriers reduce manufacturing costs by eliminating the need for frame elements, while reducing field installation time and labor cost for system installation.
- an apparatus for transporting at least one photovoltaic module comprises a carrier base, a plurality of nesting guides formed on a first and second edge of the carrier base, and a plurality of location guides formed on the carrier base and aligned generally parallel to an edge of the carrier base, wherein the nesting guides and location guides form at least one opening on the carrier base for receiving a photovoltaic module.
- the apparatus may further comprise handlings slots to facilitate handling of the carrier.
- the apparatus may further comprise two alignment guide openings at the first end of the carrier base, and a two alignment guide openings formed at a second end of the carrier base.
- the carrier base may include strap alignment slots to allow shipping straps to tie down a stack of carriers for shipping.
- the carrier base may include mounting holes for attaching the PV modules to the carrier.
- a plurality of mounting clips may be used to attach the PV modules to the carrier.
- Various alignment features may be included to facilitate alignment of the PV modules with the mounting system.
- a photovoltaic module carrier assembly comprises a carrier base, a plurality of nesting guides formed on a first and second edge of the carrier base, a plurality of location guides formed on the carrier base and aligned generally parallel to an edge of the carrier base; wherein the nesting guides and location guides form at least two openings on the carrier base for receiving photovoltaic modules, a photovoltaic module positioned in each opening on the carrier base, a plurality of mounting structure elements attached to the photovoltaic modules, and a plurality of fasteners attaching the modules to the carrier base.
- the PV module carrier assembly may further comprise handlings slots to facilitate handling of the carrier.
- the apparatus may further comprise two alignment guide openings at the first end of the carrier base, and a two alignment guide openings formed at a second end of the carrier base.
- the carrier base may include strap alignment slots to allow shipping straps to tie down a stack of carriers for shipping.
- the carrier base may include mounting holes for attaching the PV modules to the carrier.
- a plurality of mounting clips may be used to attach the PV modules to the carrier.
- Various alignment features may be included to facilitate alignment of the PV modules with the mounting system.
- a method for transporting photovoltaic modules comprises: placing a plurality of modules on a carrier, the carrier including alignment guides, attaching a plurality of photovoltaic modules to the carrier, and attaching a plurality of mounting structure elements to the plurality of modules.
- the method may further comprise stacking and/or strapping multiple carriers together to form a stack of photovoltaic module carriers.
- a method of installing photovoltaic modules includes placing a photovoltaic module carrier on a mounting structure, detaching the carrier from at least one module, removing the module carrier, and attaching the at least one module to the mounting structure.
- the step of placing may comprise aligning alignment elements on the carrier and the mounting structure, in order to align the at least one module to mounting elements on the mounting structure.
- FIG. 1 is an isometric view of a stack of PV laminate module carriers, according to one embodiment of the present invention
- FIG. 1A is an isometric view of single PV laminate module carrier, according to an embodiment of the present invention.
- FIG. 2A is a side section view of a PV laminate module carrier installed on top of a PV module racking structure
- FIG. 2B is an isometric elevation view of a module clip according to one embodiment of the present invention.
- FIG. 2C is an exploded view of the clip of FIG. 2B ;
- FIG. 3 is an isometric exploded view of a PV laminate module carrier
- FIG. 4A is an isometric elevation view of a PV laminate module carrier assembled to a racking structure
- FIG. 4B is an isometric elevation view of an embodiment of a gross alignment plug according to one embodiment of the present invention.
- FIG. 5A is an isometric view of a flat or horizontal stack of a PV laminate module carriers with shipping straps
- FIG. 5B is a isometric view of a vertical stack of PV laminate module carriers with shipping straps
- FIG. 6 is an isometric view of a PV module having an adhered racking mount feature, according to one embodiment of the present invention.
- FIG. 7 is a side elevation sectioned view of a PV laminate module carrier assembled to a racking structure, according to an embodiment of the present invention.
- a novel PV module carrier is used to provide protection during transportation, field handling, and assembly with racking systems.
- the carrier further contains elements of a racking system itself, to allow for quicker installation in the field.
- the PV module manufacturers have an incentive to utilize the carriers to reduce costs without a significant burden to current production processes.
- the PV module installers will benefit from reduced installation time and labor cost for system installation, as well as a reduction in cost for the modules themselves.
- the novel PV carrier enables PV modules to be assembled on to certain racking components in an indoors factory setting. Typically this assembly yields a panel having three or four PV modules assembled to mounting beams and the associated fastening hardware. This has the advantage of increasing production quality and decreasing costs compared to rooftop or ground work in the field.
- FIG. 1 is an isometric view of a stack of PV laminate carriers, according to one embodiment of the present invention.
- a plurality of PV module carrier bases 1 are stacked on top of each other.
- Each carrier 1 contains a plurality of PV module laminates 2 a - 2 d , which are assembled to a PV carrier base 1 , using various nesting guides 3 a - 3 h and location guides 6 a - 6 e to align the modules into place on the carrier 1 .
- PV module clips 4 a - 4 j fasten the modules together and can be used to mount the panel assembly directly to a PV mounting structure. The specific clips used can vary depending on the requirements of the intended mounting structure.
- the nesting guides 3 a - 3 h and location guides 6 a - 6 e allow for easy placement of the PV module laminates in the PV module carrier, while aligning the PV modules such that they are in the proper location to be assembled quickly and efficiently to a PV racking system at an installation site.
- the nesting guides 3 a - 3 h and location guides 6 a - 6 e in combination with the PV module clips 4 a - 4 j , further reduce PV module movement during transport, as well as providing protection from damage. Since it is desirable to be able to easily and quickly align carriers to one another, cut outs 7 a - 7 h , 8 a - 8 d may be used as guides while stacking the carriers.
- these features may interact with pins, bars, jigs or brackets (not shown) that could be temporarily assembled to the carriers, in order to keep the carriers aligned while stacking.
- the PV modules 2 a - 2 d are assembled in the carrier with the photovoltaic surface facing down, which has the advantage that it eliminates steps from the installation procedure when mounting the PV modules to the PV racking system.
- Handling slots 5 a - 5 d are designed so that installers may easily handle and manipulate the PV carriers 1 during the installation of the PV modules to the PV racking system
- the PV carrier base may be made of plywood, or may be a thermal plastic formed from pressure or heat, that could contain the module and nesting features within its geometry (formed in).
- the PV carrier base may also be molded from a thermal plastic using rotational molding, or reaction molding, or could be injected molded as structural foam. Additionally, the PV carrier base could comprise a composite that is formed from a mold such as fiberglass.
- the PV racking components that secure the laminates to the PV carrier base could be comprise a strip (or strips) of structural material (not shown), that is adhered or fastened to the non PV generating side of the PV modules that contain the necessary locating and securing features that enable the PV modules to be quickly assembled to the PV Racking system, either by snap, hook, fastener, adhesive, or combinations thereof.
- FIG. 1A illustrates a single carrier base 1 , without any PV modules installed.
- the carrier base is reusable, and after installation of the PV modules, the carrier base is returned to the manufacturer.
- the carrier base 1 includes mounting holes 9 a - 9 j for securing the PV modules to the carrier.
- FIG. 2A illustrates a side section view of a PV carrier assembly 1 on top of a PV racking structural rail 16 .
- the two PV modules 13 , 14 are connected by a mounting clip 10 .
- a carrier clip fastener bolt 11 secures the panel assembly to the carrier base 1 via a carrier retention nut plate 12 .
- PV modules 13 , 14 are secured to the PV module carrier base 1 with a PV module clip 10 that securely clamps the PV module between the clip 10 and the base using fastener bolt 11 and nut plate 12 .
- the PV carrier assembly 1 containing the secured PV modules 13 , 14 is shown resting on a PV racking structural component 16 . This position is the preferred final location for the PV modules relative to the PV racking system such that the PV modules are optimally secured. For example, once the carrier base 1 is properly positioned, the fastener bolt 11 (and others not shown), can be removed, and the carrier base 1 separated from the PV modules. The fastener bolt 11 , or any other suitable attachment hardware for the specific mounting structure 16 , can then be used to securely attach the module clip 10 to the mounting rail 16 .
- FIG. 2B illustrates an embodiment of a PV module clip 10 suitable for use with the present invention.
- the PV module clip 10 comprises an upper clip 10 a and a lower clip 10 b .
- the upper clip 10 a is separate from the lower clip 10 b for quick and versatile assembly of the PV modules to the racking components.
- the upper clip 10 a and lower clip 10 b each have an elastomeric pad 10 e , 10 f adhered to them such that a PV module laminate may be safely secured between a lower elastomeric pad 10 e and an upper elastomeric pad 10 f.
- the upper clip 10 a may have a tongue feature 10 c that locates to the lower clip 10 b in between a cut out 10 g .
- a tongue 10 h may be used to locate to a cut out slot located in the racking component (not pictured).
- FIG. 2C illustrates an exploded view of the clip of FIG. 2B . Note that there are two elastomeric pads 10 e , 10 i on the lower clip 10 b . Also, a fastening element 100 is used to second the upper and lower clips elements 10 a , 10 b together.
- PV module carrier is decoupled from the modules, allowing the PV module carrier to be removed.
- the modules can then be quickly attached to the racking system.
- the present invention reduces the amount of time necessary to align and install the PV modules.
- FIG. 3 is an isometric exploded view of a PV laminate carrier base 15 , a PV racking structural rail 16 , a PV racking structural rail location feature 13 , and a PV racking system module clip location feature 10 h , according to an embodiment of the present invention.
- FIG. 3 depicts additional details for locating a PV module carrier assembly 15 to a PV racking structural component 16 (rail).
- the PV module carrier assembly 15 includes a plurality of PV module clips (described above) that act to secure the PV modules to the PV carrier base for transport as well as for locating and securing the PV module clips to the PV racking structural components.
- the PV module clips may include a location feature 10 h (such as a metal tongue) to align the carrier assembly 15 to a PV module mounting system structural component 16 .
- the structural component may include a complementary location feature 13 (such as a slot or groove in the rail).
- the module clip location feature 10 h is tab or tongue that locates to a slot feature 13 in the PV racking system structural component 16 .
- connection between module clip and racking structural feature allows enough freedom of movement in horizontal and vertical axis such that every PV module clip can adequately locate to a corresponding location feature on the PV racking structural components. It is desired to be able to locate and place a plurality of PV modules within one installation operation.
- the location features on both PV module clips and PV racking structural components are equally spaced relative to one another. Additional embodiments of this location feature (not pictured) could include some combination of hook, bayonet, hole, rib, boss, fastener, dowel, pin, slot, lip, edge.
- FIG. 4A is an isometric elevation of a PV carrier base assembled to a PV racking system.
- the carrier base includes a carrier gross alignment feature 18
- the racking system includes a racking system gross alignment feature 19 .
- the racking gross alignment feature includes a cut-out 17 through a wall that is able to accept the gross alignment feature 18 .
- the cut-out 17 corresponds to the cut-outs 8 a - 8 d on the end of the carriers shown in FIGS. 1 and 1A .
- FIG. 4B depicts an embodiment of the gross alignment feature containing a round surface 18 a and a bottom lip 18 b , which act in concert to temporarily secure the gross alignment feature 18 to the carrier during installation. It is desirable to have a tapered surface 18 c for a gradual interface between the gross alignment feature 18 and the racking system gross alignment feature 19 .
- the carrier gross alignment feature 18 may be formed as a tapered plug or pin, which may be made from metal using a deep drawn process, or formed from a sheet, machined, extruded, and/or bent.
- Other embodiments of the carrier gross alignment feature 18 may comprise a thermal plastic that is pressure formed, injection molded, cast, or extruded.
- Further geometrical embodiments of the gross alignment feature 18 can be a cruciform, rib, edge, return, bar, lip, or taper.
- the racking system gross alignment feature 19 may be formed as a cut-out 19 in a racking system structural rail, for example.
- the carrier gross alignment feature 18 may attach to a cutout 17 formed in the carrier base specifically to temporarily secure the gross alignment feature 18 to the PV carrier base.
- the carrier gross alignment feature 18 has a returned flange that engages with the top of the PV carrier base 17 . This allows for gross alignment feature installation from either the top or side.
- the sides of the cutout 17 secure the gross alignment feature 18 to the PV carrier base using friction. Additional embodiments (not pictured) of securing the gross alignment feature 18 to the PV carrier base may be temporary or permanent and use friction, adhesive, fasteners, rivets, or complimentary geometry between components.
- FIGS. 5A and 5B illustrate two possible shipping orientations for a plurality of PV module carrier assemblies nested in either a horizontal or flat orientation, or a vertical or side orientation.
- FIG. 5A is an isometric view depicting a flat or horizontal stack of PV carrier assemblies 20 , having horizontal straps 21 a - 21 d to secure the stack of PV carriers for transport and shipping.
- the carrier assemblies 20 may include strap alignment features 7 a - 7 h on each PV carrier assembly, as previously illustrated in FIG. 1 .
- FIG. 5B is an isometric view depicting a vertical stack of PV carrier assemblies 23 , having vertical straps 25 a - 25 d to secure vertical stack for transport and shipping.
- the carrier assemblies 23 may include strap alignment features 7 e - 7 h on each PV carrier assembly.
- Alternative embodiments of securing PV module carrier assembly stacks for shipping may include: shrink wrapping, metal bands, tape, brackets, or staples.
- FIG. 6 illustrates an isometric view of a PV module 26 that has adhered racking mount features 27 a , 27 b .
- the mounting elements 27 a , 27 b comprise a piece of metal that communicates directly with the mounting system.
- FIG. 7 is a side elevation sectioned view of a carrier 28 , which is assembled to racking component 31 , with an adhered racking mounting feature 30 and a PV module 29 .
- a PV module 29 is simultaneously assembled to the carrier 28 and the racking structural member 31 using the adhered element 30 .
- the connection between the adhered element and the racking structural support could be a hook, bracket, latch, fastener, or clamp such that it is easy to assemble and secured to the racking system.
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Packaging Frangible Articles (AREA)
Abstract
Description
Claims (16)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/317,141 US8887920B2 (en) | 2011-10-11 | 2011-10-11 | Photovoltaic module carrier |
US14/487,656 US9831365B2 (en) | 2011-10-11 | 2014-09-16 | Photovoltaic module carrier and methods of use |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/317,141 US8887920B2 (en) | 2011-10-11 | 2011-10-11 | Photovoltaic module carrier |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/487,656 Division US9831365B2 (en) | 2011-10-11 | 2014-09-16 | Photovoltaic module carrier and methods of use |
Publications (2)
Publication Number | Publication Date |
---|---|
US20130087186A1 US20130087186A1 (en) | 2013-04-11 |
US8887920B2 true US8887920B2 (en) | 2014-11-18 |
Family
ID=48041274
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/317,141 Active 2032-07-14 US8887920B2 (en) | 2011-10-11 | 2011-10-11 | Photovoltaic module carrier |
US14/487,656 Expired - Fee Related US9831365B2 (en) | 2011-10-11 | 2014-09-16 | Photovoltaic module carrier and methods of use |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/487,656 Expired - Fee Related US9831365B2 (en) | 2011-10-11 | 2014-09-16 | Photovoltaic module carrier and methods of use |
Country Status (1)
Country | Link |
---|---|
US (2) | US8887920B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150064978A1 (en) * | 2013-08-28 | 2015-03-05 | Bellwether Electronic Corp. | Connector tape and connector module thereof |
US10027273B2 (en) | 2015-04-30 | 2018-07-17 | Solarcity Corporation | Plunger and puck mounting system for photovoltaic panels |
US10469024B2 (en) | 2016-04-08 | 2019-11-05 | Solarcity Corporation | Pre-assembled nesting photovoltaic module bracket for solar tracker |
US10587216B2 (en) | 2016-04-20 | 2020-03-10 | Solarcity Corporation | Over-center under photovoltaic module clamp |
US10622937B2 (en) | 2016-04-06 | 2020-04-14 | Solarcity Corporation | Spring latch saddle connector for solar tracker |
US11050383B2 (en) | 2019-05-21 | 2021-06-29 | Nextracker Inc | Radial cam helix with 0 degree stow for solar tracker |
US11159120B2 (en) | 2018-03-23 | 2021-10-26 | Nextracker Inc. | Multiple actuator system for solar tracker |
US11190129B2 (en) | 2016-04-06 | 2021-11-30 | Tesla, Inc. | Photovoltaic module connector for solar tracker |
US11387771B2 (en) | 2018-06-07 | 2022-07-12 | Nextracker Llc | Helical actuator system for solar tracker |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140360552A1 (en) * | 2012-07-19 | 2014-12-11 | Brittmore Group LLC | Solar Panel Field Array Support System and Apparatus and Method for Construction Use |
US9874021B2 (en) * | 2015-08-28 | 2018-01-23 | Solarcity Corporation | Tile and slate roof flashing systems |
US10125506B2 (en) | 2015-12-08 | 2018-11-13 | Northern States Metals Company | Concrete form system for ballast foundations |
WO2017165874A2 (en) * | 2016-03-25 | 2017-09-28 | Tecsi Solar, Inc. | Array including frameless solar modules |
US11336221B2 (en) | 2016-03-25 | 2022-05-17 | Tecsi Solar, Inc. | Wire receiver for securing wires of solar array |
CN106493544A (en) * | 2016-12-10 | 2017-03-15 | 钱理 | A kind of photovoltaic module is framed up equipment automatically |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4549651A (en) * | 1984-12-21 | 1985-10-29 | Alemanni James C | Carrier for pin grid array |
US5400904A (en) * | 1993-10-15 | 1995-03-28 | R. H. Murphy Co., Inc. | Tray for ball terminal integrated circuits |
US5551572A (en) * | 1994-09-07 | 1996-09-03 | Shinon Denkisangyo Kabushiki-Kaisha | Tray for semiconductor devices |
US5848703A (en) * | 1997-10-20 | 1998-12-15 | R. H. Murphy Co., Inc. | Tray for integrated circuits |
US6116427A (en) * | 2000-01-31 | 2000-09-12 | Silicon Integrated Systems Corp. | Tray for ball grid array devices |
US6239352B1 (en) * | 1999-03-30 | 2001-05-29 | Daniel Luch | Substrate and collector grid structures for electrically interconnecting photovoltaic arrays and process of manufacture of such arrays |
US6612442B2 (en) * | 2000-12-01 | 2003-09-02 | Texchem-Pack (M) Bhd | Tray for storing semiconductor chips |
US6868970B2 (en) * | 2003-04-16 | 2005-03-22 | Illinois Tool Works Inc. | Stackable tray for integrated circuits with corner support elements and lateral support elements forming matrix tray capture system |
US20070163920A1 (en) * | 2006-01-05 | 2007-07-19 | Yamaha Corporation | Housing for electronic components |
US20070256958A1 (en) * | 2007-04-30 | 2007-11-08 | Peak Plastic And Metal Products (Int'l) Ltd. | Reinforced tray for delicate devices |
US20080173569A1 (en) * | 2007-01-23 | 2008-07-24 | Illinois Tool Works Inc. | Pedestal pocket tray containment system for integrated circuit chips |
US7410060B2 (en) * | 2004-06-02 | 2008-08-12 | Illinois Tool Works Inc. | Stackable tray for integrated circuit chips |
US20110067747A1 (en) * | 2009-09-23 | 2011-03-24 | Everphoton Energy Corp | Photovoltaic device and power module |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090230265A1 (en) * | 2008-03-17 | 2009-09-17 | Michael Newman | Mounting System for Photovoltaic Panels |
US8220210B2 (en) * | 2008-06-27 | 2012-07-17 | Sunpower Corporation | Photovoltaic module and module arrays |
-
2011
- 2011-10-11 US US13/317,141 patent/US8887920B2/en active Active
-
2014
- 2014-09-16 US US14/487,656 patent/US9831365B2/en not_active Expired - Fee Related
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4549651A (en) * | 1984-12-21 | 1985-10-29 | Alemanni James C | Carrier for pin grid array |
US5400904C1 (en) * | 1993-10-15 | 2001-01-16 | Murphy R H Co Inc | Tray for ball terminal integrated circuits |
US5400904A (en) * | 1993-10-15 | 1995-03-28 | R. H. Murphy Co., Inc. | Tray for ball terminal integrated circuits |
US5551572A (en) * | 1994-09-07 | 1996-09-03 | Shinon Denkisangyo Kabushiki-Kaisha | Tray for semiconductor devices |
US5848703A (en) * | 1997-10-20 | 1998-12-15 | R. H. Murphy Co., Inc. | Tray for integrated circuits |
US6239352B1 (en) * | 1999-03-30 | 2001-05-29 | Daniel Luch | Substrate and collector grid structures for electrically interconnecting photovoltaic arrays and process of manufacture of such arrays |
US6116427A (en) * | 2000-01-31 | 2000-09-12 | Silicon Integrated Systems Corp. | Tray for ball grid array devices |
US6612442B2 (en) * | 2000-12-01 | 2003-09-02 | Texchem-Pack (M) Bhd | Tray for storing semiconductor chips |
US6868970B2 (en) * | 2003-04-16 | 2005-03-22 | Illinois Tool Works Inc. | Stackable tray for integrated circuits with corner support elements and lateral support elements forming matrix tray capture system |
US7410060B2 (en) * | 2004-06-02 | 2008-08-12 | Illinois Tool Works Inc. | Stackable tray for integrated circuit chips |
US20070163920A1 (en) * | 2006-01-05 | 2007-07-19 | Yamaha Corporation | Housing for electronic components |
US20080173569A1 (en) * | 2007-01-23 | 2008-07-24 | Illinois Tool Works Inc. | Pedestal pocket tray containment system for integrated circuit chips |
US20070256958A1 (en) * | 2007-04-30 | 2007-11-08 | Peak Plastic And Metal Products (Int'l) Ltd. | Reinforced tray for delicate devices |
US20110067747A1 (en) * | 2009-09-23 | 2011-03-24 | Everphoton Energy Corp | Photovoltaic device and power module |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150064978A1 (en) * | 2013-08-28 | 2015-03-05 | Bellwether Electronic Corp. | Connector tape and connector module thereof |
US10027273B2 (en) | 2015-04-30 | 2018-07-17 | Solarcity Corporation | Plunger and puck mounting system for photovoltaic panels |
US10622937B2 (en) | 2016-04-06 | 2020-04-14 | Solarcity Corporation | Spring latch saddle connector for solar tracker |
US11190129B2 (en) | 2016-04-06 | 2021-11-30 | Tesla, Inc. | Photovoltaic module connector for solar tracker |
US10469024B2 (en) | 2016-04-08 | 2019-11-05 | Solarcity Corporation | Pre-assembled nesting photovoltaic module bracket for solar tracker |
US10587216B2 (en) | 2016-04-20 | 2020-03-10 | Solarcity Corporation | Over-center under photovoltaic module clamp |
US11159120B2 (en) | 2018-03-23 | 2021-10-26 | Nextracker Inc. | Multiple actuator system for solar tracker |
US11283395B2 (en) | 2018-03-23 | 2022-03-22 | Nextracker Inc. | Multiple actuator system for solar tracker |
US11711051B2 (en) | 2018-03-23 | 2023-07-25 | Nextracker Llc | Multiple actuator system for solar tracker |
US11387771B2 (en) | 2018-06-07 | 2022-07-12 | Nextracker Llc | Helical actuator system for solar tracker |
US11050383B2 (en) | 2019-05-21 | 2021-06-29 | Nextracker Inc | Radial cam helix with 0 degree stow for solar tracker |
US11705859B2 (en) | 2019-05-21 | 2023-07-18 | Nextracker Llc | Radial cam helix with 0 degree stow for solar tracker |
Also Published As
Publication number | Publication date |
---|---|
US20150000099A1 (en) | 2015-01-01 |
US20130087186A1 (en) | 2013-04-11 |
US9831365B2 (en) | 2017-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9831365B2 (en) | Photovoltaic module carrier and methods of use | |
US9130088B2 (en) | Solar panel with integrated mounting clip/shipping support | |
US20120233940A1 (en) | Mechanical photovoltaic module cartridge and method of construction | |
US9301408B2 (en) | Equipment cabinet | |
US7926213B1 (en) | Electronic sign having slotted frame cabinets | |
US20120023726A1 (en) | Method and apparatus providing simplified installation of a plurality of solar panels | |
US20050058891A1 (en) | Front access battery tray apparatus and system | |
US9923511B2 (en) | Connecting solar modules | |
JP2006032978A (en) | Plug-in system in module method certainly storing photoelectromotive-force module horizontally accumulated in transportation | |
US20160065121A1 (en) | Universal cassette | |
US6368036B1 (en) | Device and method for loading nursery items on a truck | |
US7976094B2 (en) | Folding locator pin for glass panels | |
US11482965B2 (en) | Stacking spacer, photovoltaic module frame and tracking device assembly | |
KR101800385B1 (en) | Container fixing structure for solar modules | |
KR20160028929A (en) | A fixing clamp for support | |
US20120198696A1 (en) | Solar string assembly process | |
KR20160020263A (en) | supporting member for loading solar cell module | |
CN216660692U (en) | Packing box with combined hasp connecting structure | |
US9839154B2 (en) | Flat roof inverter rack | |
US11594998B1 (en) | Systems and methods for mounting solar panels | |
SE530942C2 (en) | Stackable frame for a panel, panel module and method of manufacturing and stacking panel modules | |
JP6124682B2 (en) | Solar panel mounting jig | |
CN217706737U (en) | Safe split type package wooden bracket that can assemble | |
CN113316548A (en) | Transportation fixing method and system for fuel assembly transportation container | |
CN220743725U (en) | Assembled plastic turnover tray |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SUNLINK CORPORATION, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PELMAN, TODD;SEERY, MARTIN N.;HARTNETT, JEFF;REEL/FRAME:027472/0987 Effective date: 20111014 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: UNION BAY CAPITAL PARTNERS I, LLC, WASHINGTON Free format text: SECURITY INTEREST;ASSIGNOR:SUNLINK CORPORATION;REEL/FRAME:034229/0303 Effective date: 20141114 |
|
AS | Assignment |
Owner name: SILICON VALLEY BANK, CALIFORNIA Free format text: SECURITY INTEREST;ASSIGNOR:SUNLINK CORPORATION;REEL/FRAME:035973/0791 Effective date: 20150604 |
|
AS | Assignment |
Owner name: SUNLINK CORPORATION, CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:SILICON VALLEY BANK;REEL/FRAME:041664/0352 Effective date: 20170208 |
|
AS | Assignment |
Owner name: HERITAGE BANK OF COMMERCE, CALIFORNIA Free format text: SECURITY INTEREST;ASSIGNOR:SUNLINK CORPORATION;REEL/FRAME:041208/0133 Effective date: 20170207 |
|
AS | Assignment |
Owner name: MULTIPLIER CAPITAL II, LP, MARYLAND Free format text: SECURITY INTEREST;ASSIGNOR:SUNLINK CORPORATION;REEL/FRAME:044438/0374 Effective date: 20170929 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.) |
|
FEPP | Fee payment procedure |
Free format text: SURCHARGE FOR LATE PAYMENT, SMALL ENTITY (ORIGINAL EVENT CODE: M2554); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 4 |
|
AS | Assignment |
Owner name: MULTIPLIER CAPITAL II ACQUISITION, LLC, DISTRICT OF COLUMBIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SUNLINK CORPORATION;REEL/FRAME:052000/0846 Effective date: 20200227 |
|
AS | Assignment |
Owner name: COROSOLAR LLC, ARIZONA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MULTIPLIER CAPITAL II ACQUISITION LLC;REEL/FRAME:052033/0179 Effective date: 20200304 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
FEPP | Fee payment procedure |
Free format text: 7.5 YR SURCHARGE - LATE PMT W/IN 6 MO, SMALL ENTITY (ORIGINAL EVENT CODE: M2555); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2552); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 8 |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE UNDER 1.28(C) (ORIGINAL EVENT CODE: M1559); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |