US6022268A - Polishing pads and methods relating thereto - Google Patents

Polishing pads and methods relating thereto Download PDF

Info

Publication number
US6022268A
US6022268A US09/054,948 US5494898A US6022268A US 6022268 A US6022268 A US 6022268A US 5494898 A US5494898 A US 5494898A US 6022268 A US6022268 A US 6022268A
Authority
US
United States
Prior art keywords
polishing
pad
accordance
texture
macro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US09/054,948
Inventor
John V. H. Roberts
David B. James
Lee Melbourne Cook
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm and Haas Electronic Materials CMP Holdings Inc
Original Assignee
Rodel Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US09/054,948 priority Critical patent/US6022268A/en
Application filed by Rodel Holdings Inc filed Critical Rodel Holdings Inc
Assigned to RODEL HOLDINGS, INC. reassignment RODEL HOLDINGS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: COOK, LEE MELBOURNE, JAMES, DAVID B., ROBERTS, JOHN V. H.
Priority to US09/465,566 priority patent/US6217434B1/en
Publication of US6022268A publication Critical patent/US6022268A/en
Application granted granted Critical
Priority to US09/514,717 priority patent/US6287185B1/en
Priority to US09/711,008 priority patent/US6682402B1/en
Priority to US09/717,470 priority patent/US6293852B1/en
Priority to US09/848,894 priority patent/US6648733B2/en
Priority to US09/862,734 priority patent/US6425816B1/en
Priority to US10/137,056 priority patent/US6739962B2/en
Priority to US10/660,250 priority patent/US6843712B2/en
Priority to US10/659,889 priority patent/US6869350B2/en
Assigned to ROHM AND HAAS ELECTRONIC MATERIALS CMP HOLDINGS, INC. reassignment ROHM AND HAAS ELECTRONIC MATERIALS CMP HOLDINGS, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: RODEL HOLDINGS, INC.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/26Lapping pads for working plane surfaces characterised by the shape of the lapping pad surface, e.g. grooved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B41/00Component parts such as frames, beds, carriages, headstocks
    • B24B41/04Headstocks; Working-spindles; Features relating thereto
    • B24B41/047Grinding heads for working on plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D13/00Wheels having flexibly-acting working parts, e.g. buffing wheels; Mountings therefor
    • B24D13/14Wheels having flexibly-acting working parts, e.g. buffing wheels; Mountings therefor acting by the front face
    • B24D13/142Wheels of special form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/20Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially organic
    • B24D3/22Rubbers synthetic or natural
    • B24D3/26Rubbers synthetic or natural for porous or cellular structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/20Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially organic
    • B24D3/28Resins or natural or synthetic macromolecular compounds

Definitions

  • the present invention relates generally to polishing pads useful in the manufacture of semiconductor devices or the like. More particularly, the polishing pads of the present invention comprise an advantageous hydrophilic material having an innovative surface topography and texture which generally improves polishing performance (as well as the predictability of polishing performance).
  • Integrated circuit fabrication generally requires polishing of one or more substrates, such as silicon, silicon dioxide, tungsten, copper or aluminum. Such polishing is generally accomplished, using a polishing pad in combination with a polishing fluid.
  • U.S. Pat. No. 5,569,062 describes a cutting means for abrading the surface of a polishing pad.
  • U.S. Pat. No. 5,081,051 describes an elongated blade having a serrated edge pressing against a pad surface, thereby cutting circumferential grooves into the pad surface.
  • U.S. Pat. No. 5,489,233 is directed to a polishing pad having large and small flow channels produced solely by external means upon the surface of a solid uniform polymer sheet.
  • the present invention is directed to polishing pads having an innovative hydrophilic polishing layer and also an innovative polishing surface topography and texture.
  • Topicography is intended to mean surface characteristics on a scale of less than 10 microns
  • surface texture is intended to mean surface characteristics of 10 microns or more.
  • the polishing pads of the present invention comprise a random surface topography.
  • the random surface topography is preferably achieved by solidifying or otherwise forming (without cutting) the polishing surface, rather than cutting or skiving the pad from a larger material.
  • Cutting or skiving causes a blade or other cutting implement to cut substantially parallel to the polishing surface being formed; such cutting tends to create a non-random surface topography, because as the blade cuts the polishing surface, it scores the surface or otherwise causes a pattern on the surface; this pattern generally indicates the direction of cutting.
  • Micro-defects are intended to mean burrs or other protrusions from the polishing surface of the pad which have a dimension (either width, height or length) of greater than 25 microns. Such macro-defects are detrimental to polishing and can cause performance variations between pads, because although the cutting process may be substantially the same for each pad, as the cutting instrument dulls, the amount of macro-defects created by the cutting instrument generally increases. Other factors which can cause variability in macro-defects during cutting include ambient temperature, and line speed variations.
  • Micro-asperities are intended to mean burrs or other protrusions from the polishing surface of the pad which have a dimension (either width, height or length) of less than 10 microns. It has been surprisingly discovered that micro-asperities are generally advantageous in precision polishing, particularly in the manufacture of semi-conductor devices.
  • the polishing materials of the present invention have no intrinsic ability to absorb or transport slurry particles, and therefore the present invention does not include felt-based polishing pads created by coalescing a polymer onto a fiber substrate, as described in U.S. Pat. No. 4,927,432 to Budinger, et al.
  • the polishing materials of the present invention comprise a hydrophilic material having: i. a density greater than 0.5g/cm 3 ; ii. a critical surface tension greater than or equal to 34 milliNewtons per meter; iii. a tensile modulus of 0.02 to 5 GigaPascals; iv. a ratio of tensile modulus at 30° C. to tensile modulus at 60° C.
  • the polishing layer further comprises a plurality of soft domains and hard domains.
  • the present invention is innovative, because: 1. it recognizes the detrimental effects of macro-defects for precision polishing, while also recognizing the benefits of micro-asperities; 2. the present invention also recognizes how macro-defects generally occur in polishing pads; and 3. the present invention teaches how to manufacture polishing pads having advantageously low levels of macro-defects but advantageously high levels of micro-asperities. None of these aspects of the present invention were heretofore appreciated in the art and are truly a significant contribution to the art of precision polishing.
  • the pads of the present invention have a relatively low level of macro-defects, because the polishing surfaces are not created by cutting or skiving, but rather, are created by solidifying or otherwise forming the polishing surface without cutting.
  • the polishing surface of the pads of this invention has, on average, less than 2 observable macro-defects per square millimeter of polishing surface when viewed at a magnification of 1000 ⁇ .
  • the polishing layers of the present invention are manufactured by: 1. molding, embossing, printing, casting, sintering, photo-imaging, chemical etching, solidifying or otherwise creating pads without cutting the pad from a larger material; and 2. applying at least a portion of a macro-texture onto (or into) the polishing surface without cutting (or similar-type fracturing of) the polishing surface.
  • the method(s) of the present invention are directed to causing a flowable material to form (without cutting) a macro-textured into or onto a surface (and optionally also forming a micro-texture) or alternatively (or in addition) thereafter inducing a macro-texture upon the polishing surface without cutting or similar type fracturing of the polishing surface, such as, by embossing.
  • additional macro-texture and/or micro-texture
  • the present invention is directed to an improved polishing pad useful in the polishing or planarizing of substrates, particularly substrates for the manufacture of semiconductor devices or the like.
  • the compositions and methods of the present invention may also be useful in other industries and can be applied to any one of a number of materials, including but not limited to silicon, silicon dioxide, metal, dielectrics (including polymeric dielectrics), ceramics and glass.
  • Macro defects large surface defects of 25 microns or more due to fractures, abrasions and/or similar-type surface irregularities, generally arising from the cutting of a macro-texture into a pad
  • micro asperities small surface protrusions of 10 microns or less due to surface fractures, abrasion and/or similar-type surface irregularities, generally arising from the cutting of a micro-texture into a pad.
  • Macro-texture and micro-texture provide very different functions for a polishing pad.
  • the macro-texture provides a passageway (or a series of passageways) for distributing polishing fluid along the pad surface.
  • the micro-texture can be very similar to the macro-texture, but on a much smaller scale.
  • the micro-texture is on a scale similar to that of the surface protrusions being polished away.
  • the micro-texture provides an environment which enhances interaction between: 1. the polishing fluid and/or polishing particles; and 2. the protrusions to be polished away.
  • the present invention is innovative in its recognition that: 1. micro-asperities are generally beneficial to the polishing performance of a pad; and 2. macro-defects are generally detrimental to polishing performance of a pad.
  • the present invention is also innovative in addressing the adverse affects of macro-defects--by solidifying or otherwise forming or molding at least a portion of the macro-texture into or onto the polishing surface, macro-defects are dramatically reduced and pad performance is improved, relative to conventional pads produced by cutting a macro-texture into a pad.
  • the number of macro-defects can be dependent upon the sharpness of the cutting tool, line speed, ambient temperature/humidity and the like. This will tend to cause pad-to-pad variation in macro-defects which in turn will cause pad-to-pad variation in polishing performance.
  • the pads of the present invention comprise a polishing layer having an outer surface.
  • Preferred processes in accordance with the present invention include: 1. thermoplastic injection molding, 2. thermoset injection molding (often referred to as “reaction injection molding” or “RIM”), 3. thermoplastic or thermoset injection blow molding, 4. compression molding, or 5. any similar-type process in which a flowable material is positioned and solidified, thereby creating at least a portion of a pad's macro-texture.
  • RIM reaction injection molding
  • thermoplastic or thermoset injection blow molding 4. compression molding, or 5. any similar-type process in which a flowable material is positioned and solidified, thereby creating at least a portion of a pad's macro-texture.
  • the flowable material is forced into or onto a structure or substrate; 2. the structure or substrate imparts a surface texture into the material as it solidifies; and 3. the structure or substrate is thereafter separated from the solidified material.
  • a solid or semi-solid insert is first placed in an enclosure, and the flowable material is then forced into the enclosure, thereby causing the insert to be bonded to or within the material after it has solidified.
  • the insert can provide reinforcement to the pad so that the solidified material around the insert need not be self-supporting or otherwise of a consistency necessary to support the polishing layer.
  • the insert can provide structural integrity to the pad, thereby providing improved performance, longevity and/or greater flexibility in manufacturing.
  • the polishing layer surface is far less disturbed or damaged (relative to machining); therefore the pads of the present invention will exhibit fewer macro-defects, and pad polishing performance and predictability of pad performance, are generally improved.
  • the molding of the present invention involves an average mold aspect ratio of at least 400, more preferably at least 500 and yet more preferably greater than 700.
  • the "aspect ratio" is intended to mean a selected length divided by the average thickness of the pad.
  • polishing pads have been manufactured by other manufacturing operations, such as by coagulating polymer onto felt substrates or by casting a polymeric material into cakes (which are then skived to produce a polishing pad), because the advantages of the present invention have not been appreciated by those of ordinary skill in the art.
  • compositions of the present invention can be molded in accordance with the present invention to provide polishing pads which are able to satisfy needs which are not otherwise obtainable with common prior art pad manufacturing processes.
  • the pads of the present invention are generally more precise and reproducible, relative to many conventional pad manufacturing processes.
  • Pads are generally conditioned prior to use.
  • the conditioning creates or augments the micro-texture of the pad.
  • the micro-texture can experience unwanted plastic flow and can be fouled by debris.
  • pads are generally re-conditioned periodically during their useful life to regenerate an optimal micro-texture.
  • the polishing pads of the present invention require less re-conditioning during use, relative to conventional polishing pads.
  • the pad's macro-structure is incorporated into the surface of the polishing layer, due to the presence of mold protrusions around which pad material initially flows and solidifies.
  • the macro-texture can be simultaneously created along the polishing layer's outer surface as the pad material solidifies.
  • the macro-texture preferably comprises one or more indentations having an average depth and/or width of greater than 0.01, more preferably 0.05 and yet more preferably 0.1 millimeters. This macro-texture facilitates the flow of polishing fluid and thereby enhances polishing performance.
  • a preferred process of the present invention is directed to injection molding, particularly "reaction injection molding” or “RIM”.
  • RIM generally involves mixing reactive liquid (or semi-liquid) precursors which are then rapidly injected into the mold. Once the mold is filled, the reactive precursors proceed with a chemical reaction, causing solidification of a final molded product.
  • This type of injection molding is most preferred, because the pad's physical properties can be fine tuned by adjusting the reactive chemistry.
  • reaction injection molding generally uses lower viscosity precursors than thermoplastic injection molding, thereby allowing for easier filling of high aspect ratio molds.
  • Urethane prepolymers are a preferred reactive chemistry for reaction injection molding in accordance with the present invention.
  • Prepolymers are intended to mean any precursor to the final polymerized product, including oligomers or monomers. Many such prepolymers are well known and commercially available.
  • Urethane prepolymers generally comprise reactive moieties at the ends of the prepolymer chains.
  • a common reactive moiety for a urethane prepolymer is isocyanate.
  • Commercially available isocyanate prepolymers include di-isocyanate prepolymers and tri-isocyanate prepolymers. Examples of di-isocyanate polymers include toluene diisocyanate and methylene diisocyanate.
  • the isocyanate prepolymer preferably comprises an average isocyanate functionality of at least two. An average isocyanate functionality greater than 4 is generally not preferred, since processing can become difficult, depending upon the molding equipment and process being used.
  • the isocyanate prepolymer is generally reacted to a second prepolymer having an isocyanate reactive moiety.
  • the second prepolymer comprises, on average, at least two (2) isocyanate reactive moieties.
  • Isocyanate reactive moieties include amines, particularly primary and secondary amines, and polyols; preferred prepolymers include diamines, diols and hydroxy functionalized amines.
  • abrasive particles may be incorporated into the pad material.
  • De-watered polishing fluid or any precursor to a polishing fluid may be incorporated into the pad, whereby during polishing, as water is placed within the polishing interface and the pad wears, the pad provides constituents to create or improve the polishing fluid.
  • any prepolymer chemistry however could be used in accordance with the present invention, including polymer systems other than urethanes, provided the final product exhibits the following properties: a density of greater than 0.5 g/cm 3 , more preferably greater than 0.7 g/cm 3 and yet more preferably greater than about 0.9 g/cm 3 ; a critical surface tension greater than or equal to 34 milliNewtons per meter; a tensile modulus of 0.02 to 5 GigaPascals; a ratio of the tensile modulus at 30° C. to the modulus at 60° C.
  • a catalyst is often necessary to decrease the polymerization reaction time, particularly the gel time and the de-mold time. However, if the reaction is too fast, the material may solidify or gel prior to complete filling of the mold. Gel time is preferably in the range of a half second and one hour, more preferably in the range of about 1 second and about 5 minutes, more preferably 10 seconds to 5 minutes, and yet more preferably 30 seconds to 5 minutes.
  • Preferred catalysts are devoid of transition metals, particularly zinc, copper, nickel, cobalt, tungsten, chromium, manganese, iron, tin, or lead.
  • the most preferred catalyst for use with a urethane prepolymer system comprises a tertiary amine, such as, diazo-bicyclo-octane.
  • Other useful catalysts include, organic acids, primary amines and secondary amines, depending upon the particular reactive chemistry chosen.
  • the pad material is sufficiently hydrophilic to provide a critical surface tension greater than or equal to 34 milliNewtons per meter, more preferably greater than or equal to 37 and most preferably greater than or equal to 40 milliNewtons per meter.
  • Critical surface tension defines the wettability of a solid surface by noting the lowest surface tension a liquid can have and still exhibit a contact angle greater than zero degrees on that solid. Thus, polymers with higher critical surface tensions are more readily wet and are therefore more hydrophilic.
  • Critical Surface Tension of common polymers are provided below:
  • the pad matrix is derived from at least:
  • Preferred pad materials comprise urethane, carbonate, amide, sulfone, vinyl chloride, acrylate, methacrylate, vinyl alcohol, ester or acrylamide moieties.
  • the pad material can be porous or non-porous.
  • the matrix is non-porous; in another embodiment, the matrix is non-porous and free of fiber reinforcement.
  • the polishing layer material comprises: 1. a plurality of rigid domains which resists plastic flow during polishing; and 2. a plurality of less rigid domains which are less resistant to plastic flow during polishing.
  • the rigid phase size in any dimension is preferably less than 100 microns, more preferably less than 50 microns, yet more preferably less than 25 microns and most preferably less than 10 microns.
  • the non-rigid phase is also preferably less than 100 microns, more preferably less than 50 microns, more preferably less than 25 microns and most preferably less than 10 microns.
  • Preferred dual phase materials include polyurethane polymers having a soft segment (which provides the non-rigid phase) and a hard segment (which provides the rigid phase). The domains are produced during the forming of the polishing layer by a phase separation, due to incompatibility between the two (hard and soft) polymer segments.
  • Hard and soft domains within the pad material can also be created: 1. by hard and soft segments along a polymer backbone; 2. by crystalline regions and non-crystalline regions within the pad material; 3. by alloying a hard polymer with a soft polymer; or 4. by combining a polymer with an organic or inorganic filler.
  • Useful such compositions include copolymers, polymer blends interpenetrating polymer networks and the like.
  • the pads of the present invention are preferably side-filled by injecting the pad material into the mold at a point along the periphery of the mold. Pads may also be center filled by injecting flowable material into the mold at or near the geometric center of a mold face.
  • a preferred method of creating the macro-channels or macro-indentations is by molding, particularly injection molding, whereby the macro-texture is formed in situ by one or more thin-walled protrusions extending into the mold.
  • the mold protrusions preferably provide an inverted image which is complementary to the intended macro-texture design or configuration.
  • Injection molding is a well known technology and need not be described further here.
  • the macro-indentation(s) is(are) useful in providing large flow channels for the polishing fluid, during the polishing operation.
  • An agent comprising a wax, hydrocarbon or other solid, semi-solid or liquid organic material can be applied to the mold to enhance release of the molded part after molding.
  • a preferred mold release agent comprises a solid organic material and a solvent or liquid carrier.
  • a particularly preferred mold release agent is a fluorocarbon dispersion, available from E. I. du Pont de Nemours and Company, Wilmington, Del., USA.
  • Preferred solvents or liquid carrier materials have a vapor pressure in the range of 0.1 to 14.7 pounds per square inch (“psi"), more preferably 1-12 psi and yet more preferably in the range of 4.5 to 5.5 psi.
  • a wax, hydrocarbon or other non-polar solid organic material is dissolved or suspended in an organic solvent, preferably a non-polar organic solvent, such as mineral spirits, and applied as a mold release agent prior to the injection operation.
  • an organic solvent preferably a non-polar organic solvent, such as mineral spirits
  • an internal mold release agent can be used, which is incorporated directly into the pad material and aids in de-molding the pad after pad manufacture.
  • Pad surface topography is relatively consistent for pads of the present invention, because the mold surface remains generally the same for each pad produced by it. Pads produced by many conventional methods are generally more prone to variations and inconsistencies. Predictability of performance is an important aspect of a precision polishing pad. Pad consistency allows for more exacting standard operating procedures and therefore more productive (and reproducible) polishing operations.
  • the outer surface can be further modified by adding a micro-texture.
  • the micro-texture is preferably created by moving the polishing layer surface against the surface of an abrasive material.
  • the abrasive material is a rotating structure (the abrasive material can be round, square, rectangular, oblong or of any geometric configuration) having a plurality of rigid particles embedded (and preferably, permanently affixed) upon the surface. The movement of the rigid particles against the pad surface causes the pad surface to undergo plastic flow, fragmentation or a combination thereof (at the point of contact with the particles).
  • the abrasive surface need not rotate against the pad surface; the abrasive surface can move against the pad in any one of a number of ways, including vibration, linear movement, random orbitals, rolling or the like.
  • the resulting plastic flow, fragmentation or combination thereof creates a micro-texture upon the pad's outer surface.
  • the micro-texture can comprise a micro-indentation with a micro-protrusion adjacent to at least one side.
  • the micro-protrusions provide at least 0.1 percent of the surface area of the pad's polishing surface, and the micro-indentations have an average depth of less than 50 microns, more preferably less than 10 microns, and the micro-protrusions have an average height of less than 50 microns and more preferably less than 10 microns.
  • such surface modification with an abrasive surface will cause minimal abrasion removal of the polishing layer, but rather merely plows furrows into the pad without causing a substantial amount, if any, of pad material to separate from the polishing layer.
  • abrasion removal of pad material is acceptable, so long as a micro-texture is produced.
  • micro-indentations or micro-protrusions may also be created during the molding process by incorporation of appropriate features into the mold. Formation of micro-texture and macro-texture during the fabrication of the pad can diminish or even negate the necessity of preconditioning break-in. Such formation also provides more controlled and faithful replication of the micro-texture as compared to surface modification subsequent to pad creation.
  • the pads of the present invention are preferably used in combination with a polishing fluid, such as a polishing slurry, for such processes as chemical mechanical polishing of a metal, silicon or silicon dioxide substrate.
  • a polishing fluid such as a polishing slurry
  • the polishing fluid is placed between the pad's polishing surface and the substrate to be polished.
  • the micro-indentations allow for improved polishing fluid flow along the interface (between the pad and the substrate to be polished).
  • the improved flow of polishing fluid generally allows for more efficient and effective polishing performance.
  • the substrate and the polishing layer are pressed against each other, most usually using a pressure between the substrate and the polishing layer of greater than 0.1 kilograms per square meter.
  • Polishing fluids which may be used with the pads of the present invention include, but are not limited to, slurries comprising submicron abrasives for use in the chemical-mechanical polishing of semiconductor wafers.
  • abrasives which may be used in these slurries are silica, alumina, titania, ceria, and other metal oxides and nitrides.
  • Examples of commercial slurries for use in the polishing of semiconductor wafers are MSW1500, ILD1200, ILD1300, and MSW2000 available from Rodel, Inc., Newark, Del. Silica slurries for the polishing of silicon are also available from Rodel, Inc.
  • silica slurries such as Klebasol® 30N50 pHN, 30N50, 30N25, 30N12, 1501, 1508, and 1498, are available from Solution Technology, Inc., Monroe, N.C. All of these slurries may be useful in combination with the pads of the present invention.
  • the macro-texture is less prone to macro-defects, such as burrs or protrusions. This has been found to improve polishing pad performance by providing a polishing surface having very low levels of macro-defects and by substantially diminishing debris trapped in the macro-indentations that would otherwise inhibit the flow of polishing fluid.
  • the pads of the present invention are preferably attached to a platen and then brought sufficiently proximate with a workpiece to be polished or planarized. Surface irregularities are removed at a rate which is dependent upon a number of parameters, including: pad pressure on the workpiece surface (or vice versa); the speed at which the pad and workpiece move in relation to one another; and the components of the polishing fluid.
  • the micro-texture can experience abrasion removal or plastic flow (the micro-protrusions are flattened or are otherwise less pronounced), which can diminish polishing performance.
  • the micro-protrusions are then preferably re-formed with further conditioning, such as by moving the pad against an abrasive surface again and causing the material to once again form furrows.
  • Such reconditioning is generally not as rigorous and/or not required as often for pads of the present invention, relative to may common prior art pads.
  • the preferred abrasive surface for conditioning is a disk which is preferably metal and which is preferably embedded with diamonds of a size in the range of 1 micron to 0.5 millimeters.
  • the pressure between the conditioning disk and the polishing pad is preferably between 0.1 to about 25 pounds per square inch.
  • the disk's speed of rotation is preferably in the range of 1 to 1000 revolutions per minute.
  • a preferred conditioning disk is a four inch diameter, 100 grit diamond disk, such as the RESITM Disk manufactured by R. E. Science, Inc. Optimum conditioning was attained when the downforce was 10 lbs per square inch, platen speed was 75 rpm, the sweep profile was bell-shaped, the number of preconditioning break-in sweeps was 15 and the number of replenishing conditioning sweeps between wafers was 15.
  • conditioning can be conducted in the presence of a conditioning fluid, preferably a water based fluid containing abrasive particles.
  • the polishing fluid is preferably water based and may or may not require the presence of abrasive particles, depending upon the composition of the polishing layer.
  • a polishing layer comprising abrasive particles may not require abrasive particles in the polishing fluid.
  • Examples 1 and 2 are comparative examples.
  • Example 3 illustrates the present invention.
  • a polymeric matrix was prepared by mixing 2997 grams of polyether-based liquid urethane with 768 grams of 4,4-methylene-bis-chloroaniline at about 150° F. At this temperature, the urethane/polyfunctional amine mixture has a pot life of about 2.5 minutes; during this time, about 69 grams of hollow elastic polymeric microspheres were blended at 3450 rpm using a high shear mixer to evenly distribute the microspheres in the mixture. The final mixture was transferred to a conventional mold and permitted to gel for about 15 minutes.
  • the mold was then placed in a curing oven and cured for about 5 hours at about 200° F.
  • the mixture was then cooled for about 4-6 hours, until the mold temperature was about 70° F.
  • the molded article was then "skived” into thin sheets and macro-channels mechanically machined into the surface. The machining process produced jagged, irregular grooves with surface burrs.
  • a four inch diameter, 100 grit diamond disk was used to produce micro-channels and micro-protrusions on the surface of the pad.
  • the disk was a RESITM Disk manufactured by R. E. Science, Inc. Conditioning was accomplished with a downward force of about 10 lbs., a platen speed of 75 rpm, a bell-shaped sweep profile, and about 15 sweeps.
  • Example 2 used the same manufacturing process as Example 1 but the polyurethane was unfilled. By eliminating the filler, the pad properties are generally more reproducible; however, since the pads are now harder, machining problems are found to be greater.
  • polyurethane formulations similar to those used in Examples 1 and 2 were formed into a pad by injection molding into a mold having the complementary final dimensions and groove design of the desired pad. This is a net-shape process, eliminating the need for separate skiving and grooving operations.
  • the resultant pads of this example had less part-to-part variability in thickness and groove dimensions, and the grooves were substantially free of macro-defects (e.g., burrs).
  • macro-defects e.g., burrs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

This invention describes improved polishing pads useful in the manufacture of semiconductor devices or the like. The pads of the present invention have an advantageous hydrophilic polishing material and have an innovative surface topography and texture which generally improves predictability and polishing performance.

Description

This application claims the benefit of U.S. Provisional Application No. 60/043,404 filed on Apr. 4, 1997 and No. 60/049440 filed on Jun. 12, 1997.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to polishing pads useful in the manufacture of semiconductor devices or the like. More particularly, the polishing pads of the present invention comprise an advantageous hydrophilic material having an innovative surface topography and texture which generally improves polishing performance (as well as the predictability of polishing performance).
2. Discussion of the Related Art
Integrated circuit fabrication generally requires polishing of one or more substrates, such as silicon, silicon dioxide, tungsten, copper or aluminum. Such polishing is generally accomplished, using a polishing pad in combination with a polishing fluid.
The semiconductor industry has a need for precision polishing to narrow tolerances, but unwanted "pad to pad" variations in polishing performance are quite common. A need therefore exists in the semiconductor industry for polishing pads which exhibit more predicable performance during high precision polishing operations.
U.S. Pat. No. 5,569,062 describes a cutting means for abrading the surface of a polishing pad. U.S. Pat. No. 5,081,051 describes an elongated blade having a serrated edge pressing against a pad surface, thereby cutting circumferential grooves into the pad surface. U.S. Pat. No. 5,489,233 is directed to a polishing pad having large and small flow channels produced solely by external means upon the surface of a solid uniform polymer sheet.
SUMMARY OF INVENTION
The present invention is directed to polishing pads having an innovative hydrophilic polishing layer and also an innovative polishing surface topography and texture. "Topography" is intended to mean surface characteristics on a scale of less than 10 microns, and "surface texture" is intended to mean surface characteristics of 10 microns or more.
The polishing pads of the present invention comprise a random surface topography. The random surface topography is preferably achieved by solidifying or otherwise forming (without cutting) the polishing surface, rather than cutting or skiving the pad from a larger material. Cutting or skiving causes a blade or other cutting implement to cut substantially parallel to the polishing surface being formed; such cutting tends to create a non-random surface topography, because as the blade cuts the polishing surface, it scores the surface or otherwise causes a pattern on the surface; this pattern generally indicates the direction of cutting.
It has been surprisingly discovered that for certain high precision polishing applications, a non-random surface pattern, due to cutting or skiving, tend to create a relatively high (and unpredictable) number of undesirable macro-defects. "Macro-defects" are intended to mean burrs or other protrusions from the polishing surface of the pad which have a dimension (either width, height or length) of greater than 25 microns. Such macro-defects are detrimental to polishing and can cause performance variations between pads, because although the cutting process may be substantially the same for each pad, as the cutting instrument dulls, the amount of macro-defects created by the cutting instrument generally increases. Other factors which can cause variability in macro-defects during cutting include ambient temperature, and line speed variations.
Macro-defects should not be confused with "micro-asperities." Micro-asperities are intended to mean burrs or other protrusions from the polishing surface of the pad which have a dimension (either width, height or length) of less than 10 microns. It has been surprisingly discovered that micro-asperities are generally advantageous in precision polishing, particularly in the manufacture of semi-conductor devices.
The polishing materials of the present invention have no intrinsic ability to absorb or transport slurry particles, and therefore the present invention does not include felt-based polishing pads created by coalescing a polymer onto a fiber substrate, as described in U.S. Pat. No. 4,927,432 to Budinger, et al. Furthermore, the polishing materials of the present invention comprise a hydrophilic material having: i. a density greater than 0.5g/cm3 ; ii. a critical surface tension greater than or equal to 34 milliNewtons per meter; iii. a tensile modulus of 0.02 to 5 GigaPascals; iv. a ratio of tensile modulus at 30° C. to tensile modulus at 60° C. of 1.0 to 2.5; v. a hardness of 25 to 80 Shore D; vi. a yield stress of 300-6000 psi (2.1-41.4 MegaPascal); vii. a tensile strength of 1000 to 15,000 psi (7-105 MegaPascal); and viii. an elongation to break up to 500%. In a preferred embodiment, the polishing layer further comprises a plurality of soft domains and hard domains.
The present invention is innovative, because: 1. it recognizes the detrimental effects of macro-defects for precision polishing, while also recognizing the benefits of micro-asperities; 2. the present invention also recognizes how macro-defects generally occur in polishing pads; and 3. the present invention teaches how to manufacture polishing pads having advantageously low levels of macro-defects but advantageously high levels of micro-asperities. None of these aspects of the present invention were heretofore appreciated in the art and are truly a significant contribution to the art of precision polishing. The pads of the present invention have a relatively low level of macro-defects, because the polishing surfaces are not created by cutting or skiving, but rather, are created by solidifying or otherwise forming the polishing surface without cutting. Preferably, the polishing surface of the pads of this invention has, on average, less than 2 observable macro-defects per square millimeter of polishing surface when viewed at a magnification of 1000×.
The polishing layers of the present invention are manufactured by: 1. molding, embossing, printing, casting, sintering, photo-imaging, chemical etching, solidifying or otherwise creating pads without cutting the pad from a larger material; and 2. applying at least a portion of a macro-texture onto (or into) the polishing surface without cutting (or similar-type fracturing of) the polishing surface. The method(s) of the present invention are directed to causing a flowable material to form (without cutting) a macro-textured into or onto a surface (and optionally also forming a micro-texture) or alternatively (or in addition) thereafter inducing a macro-texture upon the polishing surface without cutting or similar type fracturing of the polishing surface, such as, by embossing. Optionally, additional macro-texture (and/or micro-texture) can thereafter be machined or otherwise cut into the polishing surface.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The present invention is directed to an improved polishing pad useful in the polishing or planarizing of substrates, particularly substrates for the manufacture of semiconductor devices or the like. The compositions and methods of the present invention may also be useful in other industries and can be applied to any one of a number of materials, including but not limited to silicon, silicon dioxide, metal, dielectrics (including polymeric dielectrics), ceramics and glass.
Macro defects (large surface defects of 25 microns or more due to fractures, abrasions and/or similar-type surface irregularities, generally arising from the cutting of a macro-texture into a pad) must be distinguished from micro asperities (small surface protrusions of 10 microns or less due to surface fractures, abrasion and/or similar-type surface irregularities, generally arising from the cutting of a micro-texture into a pad). Macro-texture and micro-texture provide very different functions for a polishing pad. The macro-texture provides a passageway (or a series of passageways) for distributing polishing fluid along the pad surface. The micro-texture can be very similar to the macro-texture, but on a much smaller scale.
Unlike the (much larger) macro-texture, the micro-texture is on a scale similar to that of the surface protrusions being polished away. The micro-texture provides an environment which enhances interaction between: 1. the polishing fluid and/or polishing particles; and 2. the protrusions to be polished away.
The present invention is innovative in its recognition that: 1. micro-asperities are generally beneficial to the polishing performance of a pad; and 2. macro-defects are generally detrimental to polishing performance of a pad. The present invention is also innovative in addressing the adverse affects of macro-defects--by solidifying or otherwise forming or molding at least a portion of the macro-texture into or onto the polishing surface, macro-defects are dramatically reduced and pad performance is improved, relative to conventional pads produced by cutting a macro-texture into a pad.
In conventional pad manufacturing processes, mechanical cutting operations are used:
1. to cut pads from a polymer cake; or
2. to cut or otherwise machine a macro-texture into a pad.
The number of macro-defects can be dependent upon the sharpness of the cutting tool, line speed, ambient temperature/humidity and the like. This will tend to cause pad-to-pad variation in macro-defects which in turn will cause pad-to-pad variation in polishing performance.
The pads of the present invention comprise a polishing layer having an outer surface. Preferred processes in accordance with the present invention include: 1. thermoplastic injection molding, 2. thermoset injection molding (often referred to as "reaction injection molding" or "RIM"), 3. thermoplastic or thermoset injection blow molding, 4. compression molding, or 5. any similar-type process in which a flowable material is positioned and solidified, thereby creating at least a portion of a pad's macro-texture. In a preferred molding embodiment of the present invention: 1. the flowable material is forced into or onto a structure or substrate; 2. the structure or substrate imparts a surface texture into the material as it solidifies; and 3. the structure or substrate is thereafter separated from the solidified material.
In one embodiment, a solid or semi-solid insert is first placed in an enclosure, and the flowable material is then forced into the enclosure, thereby causing the insert to be bonded to or within the material after it has solidified. The insert can provide reinforcement to the pad so that the solidified material around the insert need not be self-supporting or otherwise of a consistency necessary to support the polishing layer. Alternatively or in addition, the insert can provide structural integrity to the pad, thereby providing improved performance, longevity and/or greater flexibility in manufacturing.
Machining a groove or indentation into a pad disrupts the pad's surface, causing fracturing, abrasion, irregularities or otherwise macro-defects to the pad surface; in the precision polishing required in the semiconductor industry, such macro-defects (due to machining a macro-texture into a polishing pad) can be detrimental to pad performance (particularly predictability). By flowing and solidifying (e.g., molding) at least a portion of the macro-texture into (or onto) the pad polishing layer (without cutting) in accordance with the present invention, the polishing layer surface is far less disturbed or damaged (relative to machining); therefore the pads of the present invention will exhibit fewer macro-defects, and pad polishing performance and predictability of pad performance, are generally improved.
Although molding technology useful in accordance with the present invention is quite common in many industries, the molding of the present invention involves an average mold aspect ratio of at least 400, more preferably at least 500 and yet more preferably greater than 700. The "aspect ratio" is intended to mean a selected length divided by the average thickness of the pad.
Molding a precision polishing pad with such a high aspect ratio is contrary to prevailing views in the industry and can be difficult, if not impossible, depending upon the pad material selected. As a result, polishing pads have been manufactured by other manufacturing operations, such as by coagulating polymer onto felt substrates or by casting a polymeric material into cakes (which are then skived to produce a polishing pad), because the advantages of the present invention have not been appreciated by those of ordinary skill in the art.
Surprisingly, the preferred compositions of the present invention can be molded in accordance with the present invention to provide polishing pads which are able to satisfy needs which are not otherwise obtainable with common prior art pad manufacturing processes. For example, the pads of the present invention are generally more precise and reproducible, relative to many conventional pad manufacturing processes.
Pads are generally conditioned prior to use. The conditioning creates or augments the micro-texture of the pad. During use, the micro-texture can experience unwanted plastic flow and can be fouled by debris. As a result, pads are generally re-conditioned periodically during their useful life to regenerate an optimal micro-texture. In some embodiments, the polishing pads of the present invention require less re-conditioning during use, relative to conventional polishing pads.
In a preferred embodiment, the pad's macro-structure is incorporated into the surface of the polishing layer, due to the presence of mold protrusions around which pad material initially flows and solidifies. In this way, the macro-texture can be simultaneously created along the polishing layer's outer surface as the pad material solidifies. The macro-texture preferably comprises one or more indentations having an average depth and/or width of greater than 0.01, more preferably 0.05 and yet more preferably 0.1 millimeters. This macro-texture facilitates the flow of polishing fluid and thereby enhances polishing performance.
A preferred process of the present invention is directed to injection molding, particularly "reaction injection molding" or "RIM". RIM generally involves mixing reactive liquid (or semi-liquid) precursors which are then rapidly injected into the mold. Once the mold is filled, the reactive precursors proceed with a chemical reaction, causing solidification of a final molded product. This type of injection molding is most preferred, because the pad's physical properties can be fine tuned by adjusting the reactive chemistry. In addition, reaction injection molding generally uses lower viscosity precursors than thermoplastic injection molding, thereby allowing for easier filling of high aspect ratio molds.
Urethane prepolymers are a preferred reactive chemistry for reaction injection molding in accordance with the present invention. "Prepolymers" are intended to mean any precursor to the final polymerized product, including oligomers or monomers. Many such prepolymers are well known and commercially available. Urethane prepolymers generally comprise reactive moieties at the ends of the prepolymer chains.
A common reactive moiety for a urethane prepolymer is isocyanate. Commercially available isocyanate prepolymers include di-isocyanate prepolymers and tri-isocyanate prepolymers. Examples of di-isocyanate polymers include toluene diisocyanate and methylene diisocyanate. The isocyanate prepolymer preferably comprises an average isocyanate functionality of at least two. An average isocyanate functionality greater than 4 is generally not preferred, since processing can become difficult, depending upon the molding equipment and process being used.
The isocyanate prepolymer is generally reacted to a second prepolymer having an isocyanate reactive moiety. Preferably, the second prepolymer comprises, on average, at least two (2) isocyanate reactive moieties. Isocyanate reactive moieties include amines, particularly primary and secondary amines, and polyols; preferred prepolymers include diamines, diols and hydroxy functionalized amines. In addition, abrasive particles may be incorporated into the pad material. De-watered polishing fluid or any precursor to a polishing fluid may be incorporated into the pad, whereby during polishing, as water is placed within the polishing interface and the pad wears, the pad provides constituents to create or improve the polishing fluid.
Any prepolymer chemistry however could be used in accordance with the present invention, including polymer systems other than urethanes, provided the final product exhibits the following properties: a density of greater than 0.5 g/cm3, more preferably greater than 0.7 g/cm3 and yet more preferably greater than about 0.9 g/cm3 ; a critical surface tension greater than or equal to 34 milliNewtons per meter; a tensile modulus of 0.02 to 5 GigaPascals; a ratio of the tensile modulus at 30° C. to the modulus at 60° C. in the range of 1.0 to 2.5; hardness of 25 to 80 Shore D; a yield stress of 300 to 6000 psi; a tensile strength of 500 to 15,000 psi, and an elongation to break up to 500%. These properties are possible for a number of materials useful in injection molding and similar-type processes, such as: polycarbonate, polysulphone, nylon, ethylene copolymers, polyethers, polyesters, polyether-polyester copolymers, acrylic polymers, polymethyl methacrylate, polyvinyl chloride, polycarbonate, polyethylene copolymers, polyethylene imine, polyurethanes, polyether sulfone, polyether imide, polyketones, and the like, including photochemical reactive derivatives thereof.
A catalyst is often necessary to decrease the polymerization reaction time, particularly the gel time and the de-mold time. However, if the reaction is too fast, the material may solidify or gel prior to complete filling of the mold. Gel time is preferably in the range of a half second and one hour, more preferably in the range of about 1 second and about 5 minutes, more preferably 10 seconds to 5 minutes, and yet more preferably 30 seconds to 5 minutes.
Preferred catalysts are devoid of transition metals, particularly zinc, copper, nickel, cobalt, tungsten, chromium, manganese, iron, tin, or lead. The most preferred catalyst for use with a urethane prepolymer system comprises a tertiary amine, such as, diazo-bicyclo-octane. Other useful catalysts include, organic acids, primary amines and secondary amines, depending upon the particular reactive chemistry chosen.
In a preferred embodiment, the pad material is sufficiently hydrophilic to provide a critical surface tension greater than or equal to 34 milliNewtons per meter, more preferably greater than or equal to 37 and most preferably greater than or equal to 40 milliNewtons per meter. Critical surface tension defines the wettability of a solid surface by noting the lowest surface tension a liquid can have and still exhibit a contact angle greater than zero degrees on that solid. Thus, polymers with higher critical surface tensions are more readily wet and are therefore more hydrophilic. Critical Surface Tension of common polymers are provided below:
______________________________________                                    
                  Critical Surface                                        
Polymer           Tension (mN/m)                                          
______________________________________                                    
Polytetrafluoroethylene                                                   
                  19                                                      
Polydimethylsiloxane                                                      
                  24                                                      
Silicone Rubber   24                                                      
Polybutadiene     31                                                      
Polyethylene      31                                                      
Polystyrene       33                                                      
Polypropylene     34                                                      
Polyester         39-42                                                   
Polyacrylamide    35-40                                                   
Polyvinyl alcohol 37                                                      
Polymethyl methacrylate                                                   
                  39                                                      
Polyvinyl chloride                                                        
                  39                                                      
Polysulfone       41                                                      
Nylon 6           42                                                      
Polyurethane      45                                                      
Polycarbonate     45                                                      
______________________________________                                    
In one embodiment, the pad matrix is derived from at least:
1. an acrylated urethane;
2. an acrylated epoxy;
3. an ethylenically unsaturated organic compound having a carboxyl, benzyl, or amide functionality;
4. an aminoplast derivative having a pendant unsaturated carbonyl group;
5. an isocyanurate derivative having at least one pendant acrylate group;
6. a vinyl ether,
7. a urethane
8. a polyacrylamide
9. an ethylene/ester copolymer or an acid derivative thereof;
10. a polyvinyl alcohol;
11. a polymethyl methacrylate;
12. a polysulfone;
13. an polyamide;
14. a polycarbonate;
15. a polyvinyl chloride;
16. an epoxy;
17. a copolymer of the above; or
18. a combination thereof.
Preferred pad materials comprise urethane, carbonate, amide, sulfone, vinyl chloride, acrylate, methacrylate, vinyl alcohol, ester or acrylamide moieties. The pad material can be porous or non-porous. In one embodiment, the matrix is non-porous; in another embodiment, the matrix is non-porous and free of fiber reinforcement.
In a preferred embodiment, the polishing layer material comprises: 1. a plurality of rigid domains which resists plastic flow during polishing; and 2. a plurality of less rigid domains which are less resistant to plastic flow during polishing. This combination of properties provides a dual mechanism which has been found to be particularly advantageous in the polishing of silicon dioxide and metal. The hard domains tend to cause the protrusion to rigorously engage the polishing interface, whereas the soft domains tend to enhance polishing interaction between the protrusion and the substrate surface being polished.
The rigid phase size in any dimension (height, width or length) is preferably less than 100 microns, more preferably less than 50 microns, yet more preferably less than 25 microns and most preferably less than 10 microns. Similarly the non-rigid phase is also preferably less than 100 microns, more preferably less than 50 microns, more preferably less than 25 microns and most preferably less than 10 microns. Preferred dual phase materials include polyurethane polymers having a soft segment (which provides the non-rigid phase) and a hard segment (which provides the rigid phase). The domains are produced during the forming of the polishing layer by a phase separation, due to incompatibility between the two (hard and soft) polymer segments.
Other polymers having hard and soft segments could also be appropriate, including ethylene copolymers, copolyester, block copolymers, polysulfones copolymers and acrylic copolymers. Hard and soft domains within the pad material can also be created: 1. by hard and soft segments along a polymer backbone; 2. by crystalline regions and non-crystalline regions within the pad material; 3. by alloying a hard polymer with a soft polymer; or 4. by combining a polymer with an organic or inorganic filler. Useful such compositions include copolymers, polymer blends interpenetrating polymer networks and the like.
The pads of the present invention are preferably side-filled by injecting the pad material into the mold at a point along the periphery of the mold. Pads may also be center filled by injecting flowable material into the mold at or near the geometric center of a mold face.
A preferred method of creating the macro-channels or macro-indentations is by molding, particularly injection molding, whereby the macro-texture is formed in situ by one or more thin-walled protrusions extending into the mold. The mold protrusions preferably provide an inverted image which is complementary to the intended macro-texture design or configuration. Injection molding is a well known technology and need not be described further here. The macro-indentation(s) is(are) useful in providing large flow channels for the polishing fluid, during the polishing operation.
An agent comprising a wax, hydrocarbon or other solid, semi-solid or liquid organic material can be applied to the mold to enhance release of the molded part after molding. A preferred mold release agent comprises a solid organic material and a solvent or liquid carrier. A particularly preferred mold release agent is a fluorocarbon dispersion, available from E. I. du Pont de Nemours and Company, Wilmington, Del., USA. Preferred solvents or liquid carrier materials have a vapor pressure in the range of 0.1 to 14.7 pounds per square inch ("psi"), more preferably 1-12 psi and yet more preferably in the range of 4.5 to 5.5 psi. In a preferred embodiment, a wax, hydrocarbon or other non-polar solid organic material is dissolved or suspended in an organic solvent, preferably a non-polar organic solvent, such as mineral spirits, and applied as a mold release agent prior to the injection operation. Alternatively, an internal mold release agent can be used, which is incorporated directly into the pad material and aids in de-molding the pad after pad manufacture.
Pad surface topography is relatively consistent for pads of the present invention, because the mold surface remains generally the same for each pad produced by it. Pads produced by many conventional methods are generally more prone to variations and inconsistencies. Predictability of performance is an important aspect of a precision polishing pad. Pad consistency allows for more exacting standard operating procedures and therefore more productive (and reproducible) polishing operations.
After forming the pad's polishing layer, including at least a part of the macro-texture, the outer surface can be further modified by adding a micro-texture. The micro-texture is preferably created by moving the polishing layer surface against the surface of an abrasive material. In one embodiment, the abrasive material is a rotating structure (the abrasive material can be round, square, rectangular, oblong or of any geometric configuration) having a plurality of rigid particles embedded (and preferably, permanently affixed) upon the surface. The movement of the rigid particles against the pad surface causes the pad surface to undergo plastic flow, fragmentation or a combination thereof (at the point of contact with the particles). The abrasive surface need not rotate against the pad surface; the abrasive surface can move against the pad in any one of a number of ways, including vibration, linear movement, random orbitals, rolling or the like.
The resulting plastic flow, fragmentation or combination thereof (due to the abrasive surface), creates a micro-texture upon the pad's outer surface. The micro-texture can comprise a micro-indentation with a micro-protrusion adjacent to at least one side. In one embodiment, the micro-protrusions provide at least 0.1 percent of the surface area of the pad's polishing surface, and the micro-indentations have an average depth of less than 50 microns, more preferably less than 10 microns, and the micro-protrusions have an average height of less than 50 microns and more preferably less than 10 microns. Preferably, such surface modification with an abrasive surface will cause minimal abrasion removal of the polishing layer, but rather merely plows furrows into the pad without causing a substantial amount, if any, of pad material to separate from the polishing layer. However, although less preferred, abrasion removal of pad material is acceptable, so long as a micro-texture is produced.
In an alternative embodiment, at least a portion of the micro-indentations or micro-protrusions may also be created during the molding process by incorporation of appropriate features into the mold. Formation of micro-texture and macro-texture during the fabrication of the pad can diminish or even negate the necessity of preconditioning break-in. Such formation also provides more controlled and faithful replication of the micro-texture as compared to surface modification subsequent to pad creation.
The pads of the present invention are preferably used in combination with a polishing fluid, such as a polishing slurry, for such processes as chemical mechanical polishing of a metal, silicon or silicon dioxide substrate. During polishing, the polishing fluid is placed between the pad's polishing surface and the substrate to be polished. As the pad is moved relative to the substrate being polished, the micro-indentations allow for improved polishing fluid flow along the interface (between the pad and the substrate to be polished). The improved flow of polishing fluid generally allows for more efficient and effective polishing performance. Also, during polishing, the substrate and the polishing layer are pressed against each other, most usually using a pressure between the substrate and the polishing layer of greater than 0.1 kilograms per square meter.
Polishing fluids which may be used with the pads of the present invention include, but are not limited to, slurries comprising submicron abrasives for use in the chemical-mechanical polishing of semiconductor wafers. Examples of abrasives which may be used in these slurries are silica, alumina, titania, ceria, and other metal oxides and nitrides. Examples of commercial slurries for use in the polishing of semiconductor wafers are MSW1500, ILD1200, ILD1300, and MSW2000 available from Rodel, Inc., Newark, Del. Silica slurries for the polishing of silicon are also available from Rodel, Inc. as Advansil® 2000, Rodel 1520, and Rodel 1540. Other silica slurries such as Klebasol® 30N50 pHN, 30N50, 30N25, 30N12, 1501, 1508, and 1498, are available from Solution Technology, Inc., Monroe, N.C. All of these slurries may be useful in combination with the pads of the present invention.
Since at least some of the macro-texture is not created by an external means (such as by machining), the macro-texture is less prone to macro-defects, such as burrs or protrusions. This has been found to improve polishing pad performance by providing a polishing surface having very low levels of macro-defects and by substantially diminishing debris trapped in the macro-indentations that would otherwise inhibit the flow of polishing fluid.
In use, the pads of the present invention are preferably attached to a platen and then brought sufficiently proximate with a workpiece to be polished or planarized. Surface irregularities are removed at a rate which is dependent upon a number of parameters, including: pad pressure on the workpiece surface (or vice versa); the speed at which the pad and workpiece move in relation to one another; and the components of the polishing fluid.
As the pad polishes, the micro-texture can experience abrasion removal or plastic flow (the micro-protrusions are flattened or are otherwise less pronounced), which can diminish polishing performance. The micro-protrusions are then preferably re-formed with further conditioning, such as by moving the pad against an abrasive surface again and causing the material to once again form furrows. Such reconditioning is generally not as rigorous and/or not required as often for pads of the present invention, relative to may common prior art pads.
The preferred abrasive surface for conditioning is a disk which is preferably metal and which is preferably embedded with diamonds of a size in the range of 1 micron to 0.5 millimeters. During conditioning, the pressure between the conditioning disk and the polishing pad is preferably between 0.1 to about 25 pounds per square inch. The disk's speed of rotation is preferably in the range of 1 to 1000 revolutions per minute.
A preferred conditioning disk is a four inch diameter, 100 grit diamond disk, such as the RESI™ Disk manufactured by R. E. Science, Inc. Optimum conditioning was attained when the downforce was 10 lbs per square inch, platen speed was 75 rpm, the sweep profile was bell-shaped, the number of preconditioning break-in sweeps was 15 and the number of replenishing conditioning sweeps between wafers was 15.
Optionally, conditioning can be conducted in the presence of a conditioning fluid, preferably a water based fluid containing abrasive particles.
The polishing fluid is preferably water based and may or may not require the presence of abrasive particles, depending upon the composition of the polishing layer. For example, a polishing layer comprising abrasive particles may not require abrasive particles in the polishing fluid.
EXAMPLES
Examples 1 and 2 are comparative examples. Example 3 illustrates the present invention.
(Comparative) Example 1
A polymeric matrix was prepared by mixing 2997 grams of polyether-based liquid urethane with 768 grams of 4,4-methylene-bis-chloroaniline at about 150° F. At this temperature, the urethane/polyfunctional amine mixture has a pot life of about 2.5 minutes; during this time, about 69 grams of hollow elastic polymeric microspheres were blended at 3450 rpm using a high shear mixer to evenly distribute the microspheres in the mixture. The final mixture was transferred to a conventional mold and permitted to gel for about 15 minutes.
The mold was then placed in a curing oven and cured for about 5 hours at about 200° F. The mixture was then cooled for about 4-6 hours, until the mold temperature was about 70° F. The molded article was then "skived" into thin sheets and macro-channels mechanically machined into the surface. The machining process produced jagged, irregular grooves with surface burrs.
A four inch diameter, 100 grit diamond disk was used to produce micro-channels and micro-protrusions on the surface of the pad. The disk was a RESI™ Disk manufactured by R. E. Science, Inc. Conditioning was accomplished with a downward force of about 10 lbs., a platen speed of 75 rpm, a bell-shaped sweep profile, and about 15 sweeps.
(Comparative) Example 2
This example used the same manufacturing process as Example 1 but the polyurethane was unfilled. By eliminating the filler, the pad properties are generally more reproducible; however, since the pads are now harder, machining problems are found to be greater.
Example 3
Instead of separate skiving and machining steps, polyurethane formulations similar to those used in Examples 1 and 2 were formed into a pad by injection molding into a mold having the complementary final dimensions and groove design of the desired pad. This is a net-shape process, eliminating the need for separate skiving and grooving operations.
The resultant pads of this example (Example 3) had less part-to-part variability in thickness and groove dimensions, and the grooves were substantially free of macro-defects (e.g., burrs). During oxide CMP polishing, fewer defects upon the substrate were induced. The pad's useful life was increased, because there was less need for pad conditioning between wafers.
______________________________________                                    
                                 Modulus Ratio                            
                                 E (30° C.):                       
Pad Type/Parameter                                                        
           Pad Lifetime                                                   
                      Defectivity                                         
                                 F (60° C.)                        
______________________________________                                    
Example 1:  300 wafers       baseline                                     
                                   2.0-2.5                                
Example 2:  400 wafers                                                    
                      5x     baseline                                     
                                   2.0-2.5                                
Example 3: Present                                                        
           1200 wafers                                                    
                      0.1x   baseline                                     
                                   1.3-2.0                                
Invention                                                                 
______________________________________                                    
Nothing from the above discussion is intended to be a limitation of any kind with respect to the present invention. All limitations to the present invention are intended to be found only in the claims, as provided below.

Claims (21)

What is claimed is:
1. A polishing pad comprising:
a hydrophilic polishing layer having no intrinsic ability to absorb or transport a plurality of slurry particles, said polishing layer having a polishing surface consisting essentially of a polishing material having:
i. a density greater than 0.5 g/cm3 ;
ii. a critical surface tension greater than or equal to 34 milliNewtons per meter;
iii. a tensile modulus of 0.02 to 5 GigaPascals;
iv. a ratio of tensile modulus at 30° C. to tensile modulus at 60° C. of 1.0 to 2.5;
v. a hardness of 25 to 80 Shore D;
vi. a yield stress of 300-6000 psi;
vii. a tensile strength of 1000 to 15,000 psi; and
viii. an elongation to break less than or equal to 500%,
said polishing material comprising at least one moiety from the group consisting of: 1. a urethane produced by a catalyst which accelerates an isocyanate reaction, said catalyst being devoid of copper, tungsten, iron or chromium; 2. a carbonate; 3. an amide; 4. an ester; 5. an ether; 6. an acrylate; 7. a methacrylate; 8. an acrylic acid; 9. a methacrylic acid; 10. a sulphone; 11. an acrylamide; 12. a halide; and 13. a hydroxide, and
said polishing surface having a random surface topography and having a macro-texture produced by solidifying a flowable material.
2. A polishing pad in accordance with claim 1 wherein said macro-texture is incorporated into the polishing surface due to: i. embossing; ii. molding; iii. printing; iv. casting; v. sintering; vi. photo-imaging; or vii. chemical etching.
3. A polishing pad in accordance with claim 2, whereby said polishing surface is formed by molding.
4. A pad in accordance with claim 3, wherein the polishing layer consists essentially of a two phase polyurethane.
5. A pad in accordance with claim 1, wherein said polishing surface has, on average, less than 2 observable macro-defects per square millimeter of polishing surface when viewed at a magnification of 1000×.
6. A pad in accordance with claim 1, wherein the polishing material further comprises a plurality of soft domains and a plurality of hard domains, the hard domains and soft domains having an average size of less than 100 microns.
7. A pad in accordance with claim 6, wherein the hard domains and the soft domains are produced by a phase separation as the polishing layer is formed, the polishing layer comprising a polymer having a plurality of hard segments and a plurality of soft segments.
8. A pad in accordance with claim 1, wherein the polishing layer is formed in a mold by a reaction injection molding process.
9. A pad in accordance with claim 8, wherein said mold comprises a surface texture complimentary to creating a plurality of micro-asperities upon the polishing surface as it solidifies in the mold.
10. A pad in accordance with claim 9, wherein the mold is side-filled.
11. A pad in accordance with claim 9, wherein the mold is center-filled.
12. A pad in accordance with claim 8, wherein a solid organic material is applied to a mold surface prior to reaction injection molding of the polishing layer.
13. A pad in accordance with claim 12, wherein the solid organic material is carried by a liquid.
14. A pad in accordance with claim 13, wherein the solid organic material is a wax and the liquid is a non-polar organic solvent.
15. A pad in accordance with claim 12, wherein the solid organic material is a fluorocarbon which is carried to the mold surface by a spray propellant which is free of volatile organic solvent.
16. A pad in accordance with claim 8, wherein the pad has an average aspect ratio of at least 400.
17. A pad in accordance with claim 1 further comprising an insert around which a flowable material is solidified.
18. A pad in accordance with claim 1 further comprising a non-metallic catalyst.
19. A pad in accordance with claim 1, wherein the polishing layer further comprises abrasive particles.
20. A pad in accordance with claim 1, wherein the polishing layer consists essentially of a material selected from the group consisting of: polymethyl methacrylate, polyvinyl chloride, polysulfone, nylon, polycarbonate, polyurethane, ethylene copolymer, polyether sulfone polyether imide, polyethylene imine, polyketone and combinations thereof.
21. A polishing pad for use in chemical mechanical polishing, comprising:
a polishing layer consisting essentially of a hydrophilic polishing layer having no intrinsic ability to absorb a plurality of slurry particles, said polishing layer having a continuous or discontinuous polishing surface consisting essentially of a polishing material having:
i. a density greater than 0.5 g/cm3 ;
ii. a critical surface tension greater than or equal to 34 milliNewtons per meter;
iii. a tensile modulus of 0.02 to 5 GigaPascals;
iv. a ratio of tensile modulus at 30° C. to tensile modulus at 60° C. of 1.0 to 2.5;
v. a hardness of 25 to 80 Shore D;
vi. a yield stress of 300-6000 psi;
vii. a tensile strength of 1000 to 15,000 psi; and
viii. an elongation to break less than or equal to 500%,
said polishing layer comprising a surface texture having at least one groove and a polishing surface adjacent to said groove, said groove defining a width of at least 0.01 millimeters, a depth of at least 0.01 millimeters and a length of at least 0.1 millimeters, said surface texture having a transition region, said transition region being a portion of the surface texture which transitions from the polishing surface to a boundary surface of said groove, said boundary surface of said groove lying on a first plane which is different from a second plane upon which the polishing surface lies, said transition region being defined by a portion of the polishing surface which bridges between the first and second plane, the transition region of the entire polishing surface having less than 10 macro-defects of greater than 25 microns per millimeter of groove length.
US09/054,948 1997-04-04 1998-04-03 Polishing pads and methods relating thereto Expired - Lifetime US6022268A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US09/054,948 US6022268A (en) 1998-04-03 1998-04-03 Polishing pads and methods relating thereto
US09/465,566 US6217434B1 (en) 1997-04-04 1999-12-17 Polishing pads and methods relating thereto
US09/514,717 US6287185B1 (en) 1997-04-04 2000-02-28 Polishing pads and methods relating thereto
US09/711,008 US6682402B1 (en) 1997-04-04 2000-11-10 Polishing pads and methods relating thereto
US09/717,470 US6293852B1 (en) 1997-04-04 2000-11-21 Polishing pads and methods relating thereto
US09/848,894 US6648733B2 (en) 1997-04-04 2001-05-04 Polishing pads and methods relating thereto
US09/862,734 US6425816B1 (en) 1997-04-04 2001-05-22 Polishing pads and methods relating thereto
US10/137,056 US6739962B2 (en) 1997-04-04 2002-05-01 Polishing pads and methods relating thereto
US10/660,250 US6843712B2 (en) 1997-04-04 2003-09-11 Polishing pads and methods relating thereto
US10/659,889 US6869350B2 (en) 1997-04-04 2003-09-11 Polishing pads and methods relating thereto

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/054,948 US6022268A (en) 1998-04-03 1998-04-03 Polishing pads and methods relating thereto

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12930198A Continuation 1997-04-04 1998-08-05
US09/465,566 Continuation US6217434B1 (en) 1997-04-04 1999-12-17 Polishing pads and methods relating thereto

Publications (1)

Publication Number Publication Date
US6022268A true US6022268A (en) 2000-02-08

Family

ID=21994565

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/054,948 Expired - Lifetime US6022268A (en) 1997-04-04 1998-04-03 Polishing pads and methods relating thereto
US09/465,566 Expired - Lifetime US6217434B1 (en) 1997-04-04 1999-12-17 Polishing pads and methods relating thereto
US09/717,470 Expired - Lifetime US6293852B1 (en) 1997-04-04 2000-11-21 Polishing pads and methods relating thereto

Family Applications After (2)

Application Number Title Priority Date Filing Date
US09/465,566 Expired - Lifetime US6217434B1 (en) 1997-04-04 1999-12-17 Polishing pads and methods relating thereto
US09/717,470 Expired - Lifetime US6293852B1 (en) 1997-04-04 2000-11-21 Polishing pads and methods relating thereto

Country Status (1)

Country Link
US (3) US6022268A (en)

Cited By (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6234875B1 (en) 1999-06-09 2001-05-22 3M Innovative Properties Company Method of modifying a surface
US6287185B1 (en) 1997-04-04 2001-09-11 Rodel Holdings Inc. Polishing pads and methods relating thereto
US6293852B1 (en) * 1997-04-04 2001-09-25 Rodel Holdings Inc. Polishing pads and methods relating thereto
US6296717B1 (en) * 1999-06-11 2001-10-02 International Business Machines Corporation Regeneration of chemical mechanical polishing pads in-situ
US20010039173A1 (en) * 1999-08-03 2001-11-08 Brown Nathan R. Method and apparatus for chemical-mechanical planarization of microelectronic substrates with a carrier and membrane
US6328634B1 (en) * 1999-05-11 2001-12-11 Rodel Holdings Inc. Method of polishing
EP1175965A2 (en) * 2000-07-25 2002-01-30 Ebara Corporation Polishing tool, manufacturing method therefor, polishing apparatus for polishing a semiconductor wafer and method of polishing a substrate
US6354915B1 (en) * 1999-01-21 2002-03-12 Rodel Holdings Inc. Polishing pads and methods relating thereto
WO2002024415A1 (en) * 2000-09-19 2002-03-28 Rodel Holdings, Inc. Polishing pad having an advantageous micro-texture
WO2002030617A1 (en) * 2000-10-06 2002-04-18 Cabot Microelectronics Corporation Polishing pad comprising a filled translucent region
US6390890B1 (en) 1999-02-06 2002-05-21 Charles J Molnar Finishing semiconductor wafers with a fixed abrasive finishing element
US6435947B2 (en) * 1998-05-26 2002-08-20 Cabot Microelectronics Corporation CMP polishing pad including a solid catalyst
US20020127862A1 (en) * 2001-03-08 2002-09-12 Cooper Richard D. Polishing pad for use in chemical - mechanical palanarization of semiconductor wafers and method of making same
US6454634B1 (en) 2000-05-27 2002-09-24 Rodel Holdings Inc. Polishing pads for chemical mechanical planarization
US6477926B1 (en) 2000-09-15 2002-11-12 Ppg Industries Ohio, Inc. Polishing pad
US6514130B2 (en) * 1997-12-30 2003-02-04 Micron Technology, Inc. Method and apparatus for mechanical and chemical-mechanical planarization of microelectronic substrates
US6533645B2 (en) 2000-01-18 2003-03-18 Applied Materials, Inc. Substrate polishing article
US6561891B2 (en) 2000-05-23 2003-05-13 Rodel Holdings, Inc. Eliminating air pockets under a polished pad
US6561889B1 (en) 2000-12-27 2003-05-13 Lam Research Corporation Methods for making reinforced wafer polishing pads and apparatuses implementing the same
US20030100250A1 (en) * 2001-10-29 2003-05-29 West Thomas E. Pads for CMP and polishing substrates
US6572463B1 (en) * 2000-12-27 2003-06-03 Lam Research Corp. Methods for making reinforced wafer polishing pads utilizing direct casting and apparatuses implementing the same
US6602436B2 (en) 2000-08-11 2003-08-05 Rodel Holdings, Inc Chemical mechanical planarization of metal substrates
US6607428B2 (en) 2000-01-18 2003-08-19 Applied Materials, Inc. Material for use in carrier and polishing pads
US6623337B2 (en) 2000-06-30 2003-09-23 Rodel Holdings, Inc. Base-pad for a polishing pad
US6623341B2 (en) 2000-01-18 2003-09-23 Applied Materials, Inc. Substrate polishing apparatus
US6626740B2 (en) * 1999-12-23 2003-09-30 Rodel Holdings, Inc. Self-leveling pads and methods relating thereto
US20030194959A1 (en) * 2002-04-15 2003-10-16 Cabot Microelectronics Corporation Sintered polishing pad with regions of contrasting density
US6635574B2 (en) * 1998-06-10 2003-10-21 Micron Technology, Inc. Method of removing material from a semiconductor substrate
US6638143B2 (en) 1999-12-22 2003-10-28 Applied Materials, Inc. Ion exchange materials for chemical mechanical polishing
US6641463B1 (en) 1999-02-06 2003-11-04 Beaver Creek Concepts Inc Finishing components and elements
US20030220061A1 (en) * 2002-05-23 2003-11-27 Cabot Microelectronics Corporation Microporous polishing pads
EP1369204A1 (en) * 2002-06-03 2003-12-10 JSR Corporation Polishing pad and multi-layer polishing pad
US20040021243A1 (en) * 2002-08-02 2004-02-05 Wen-Chang Shih Method for manufacturing auxiliary gas-adding polyurethae/polyurethane-urea polishing pad
US6699920B1 (en) 2002-02-13 2004-03-02 Nicholas Andros Methods of manufacturing polishing substrates
US20040048564A1 (en) * 1997-04-04 2004-03-11 Roberts John V.H. Polishing pads and methods relating thereto
US6736709B1 (en) 2000-05-27 2004-05-18 Rodel Holdings, Inc. Grooved polishing pads for chemical mechanical planarization
US20040096529A1 (en) * 2002-11-19 2004-05-20 Wen-Chang Shih Method of manufacturing polishing pad
US6749485B1 (en) 2000-05-27 2004-06-15 Rodel Holdings, Inc. Hydrolytically stable grooved polishing pads for chemical mechanical planarization
US20040142637A1 (en) * 2003-01-22 2004-07-22 Angela Petroski Polishing pad for use in chemical-mechanical planarization of semiconductor wafers and method of making same
US20040142638A1 (en) * 2003-01-22 2004-07-22 Angela Petroski Polishing pad for use in chemical - mechanical planarization of semiconductor wafers and method of making same
US20040159558A1 (en) * 2003-02-18 2004-08-19 Bunyan Michael H. Polishing article for electro-chemical mechanical polishing
US6780095B1 (en) 1997-12-30 2004-08-24 Micron Technology, Inc. Method and apparatus for mechanical and chemical-mechanical planarization of microelectronic substrates
US20040171339A1 (en) * 2002-10-28 2004-09-02 Cabot Microelectronics Corporation Microporous polishing pads
US20040209066A1 (en) * 2003-04-17 2004-10-21 Swisher Robert G. Polishing pad with window for planarization
US6840843B2 (en) 2001-03-01 2005-01-11 Cabot Microelectronics Corporation Method for manufacturing a polishing pad having a compressed translucent region
US20050020082A1 (en) * 2000-05-27 2005-01-27 Arun Vishwanathan Polishing pads for chemical mechanical planarization
US20050171225A1 (en) * 2004-02-03 2005-08-04 Kulp Mary J. Polyurethane polishing pad
US20050215179A1 (en) * 2004-03-23 2005-09-29 Cabot Microelectronics Corporation Low surface energy CMP pad
US20050276967A1 (en) * 2002-05-23 2005-12-15 Cabot Microelectronics Corporation Surface textured microporous polishing pads
US20050277371A1 (en) * 2002-10-28 2005-12-15 Cabot Microelectronics Corporation Transparent microporous materials for CMP
US20060046064A1 (en) * 2004-08-25 2006-03-02 Dwaine Halberg Method of improving removal rate of pads
US20060046622A1 (en) * 2004-09-01 2006-03-02 Cabot Microelectronics Corporation Polishing pad with microporous regions
US20060052040A1 (en) * 2002-10-28 2006-03-09 Cabot Microelectronics Corporation Method for manufacturing microporous CMP materials having controlled pore size
US20060067160A1 (en) * 2004-09-30 2006-03-30 Koetas Joseph P Apparatus for forming a polishing pad having a reduced striations
US20060066001A1 (en) * 2004-09-30 2006-03-30 Koetas Joseph P Method of forming a polishing pad having reduced striations
US20060089093A1 (en) * 2004-10-27 2006-04-27 Swisher Robert G Polyurethane urea polishing pad
US20060099891A1 (en) * 2004-11-09 2006-05-11 Peter Renteln Method of chemical mechanical polishing, and a pad provided therefore
US20060110488A1 (en) * 2004-11-23 2006-05-25 Saikin Alan H Apparatus for forming a striation reduced chemical mechanical polishing pad
US20060108701A1 (en) * 2004-11-23 2006-05-25 Saikin Allan H Method for forming a striation reduced chemical mechanical polishing pad
US20060199473A1 (en) * 2003-04-03 2006-09-07 Masao Suzuki Polishing pad, process for producing the same and method of polishing therewith
US20060254706A1 (en) * 2004-10-27 2006-11-16 Swisher Robert G Polyurethane urea polishing pad
US20070021045A1 (en) * 2004-10-27 2007-01-25 Ppg Industries Ohio, Inc. Polyurethane Urea Polishing Pad with Window
US7169030B1 (en) 2006-05-25 2007-01-30 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Chemical mechanical polishing pad
US20070049169A1 (en) * 2005-08-02 2007-03-01 Vaidya Neha P Nonwoven polishing pads for chemical mechanical polishing
US20070093191A1 (en) * 2005-10-20 2007-04-26 Iv Technologies Co., Ltd. Polishing pad and method of fabrication
US7241206B1 (en) 2006-02-17 2007-07-10 Chien-Min Sung Tools for polishing and associated methods
US20070243694A1 (en) * 2006-04-14 2007-10-18 Etsurou Morita Bonded wafer and method of producing the same
US20070275226A1 (en) * 2006-05-25 2007-11-29 Mary Jo Kulp Chemical mechanical polishing pad
US20070289223A1 (en) * 2006-02-17 2007-12-20 Chien-Min Sung Tools for polishing and associated methods
US7371160B1 (en) 2006-12-21 2008-05-13 Rohm And Haas Electronic Materials Cmp Holdings Inc. Elastomer-modified chemical mechanical polishing pad
US20080153395A1 (en) * 2006-12-21 2008-06-26 Mary Jo Kulp Chemical mechanical polishing pad
US7435165B2 (en) 2002-10-28 2008-10-14 Cabot Microelectronics Corporation Transparent microporous materials for CMP
US20090032075A1 (en) * 2004-05-11 2009-02-05 Applied Materials, Inc. Methods and apparatus for liquid chemical delivery
JP2009033193A (en) * 2000-05-27 2009-02-12 Rohm & Haas Electronic Materials Cmp Holdings Inc Polishing pads for chemical mechanical planarization
US20090053976A1 (en) * 2005-02-18 2009-02-26 Roy Pradip K Customized Polishing Pads for CMP and Methods of Fabrication and Use Thereof
US7704125B2 (en) 2003-03-24 2010-04-27 Nexplanar Corporation Customized polishing pads for CMP and methods of fabrication and use thereof
WO2010138724A1 (en) 2009-05-27 2010-12-02 Rogers Corporation Polishing pad, polyurethane layer therefor, and method of polishing a silicon wafer
JP2011151373A (en) * 2009-12-24 2011-08-04 Jsr Corp Chemical mechanical polishing pad and chemical mechanical polishing method using the same
US8380339B2 (en) 2003-03-25 2013-02-19 Nexplanar Corporation Customized polish pads for chemical mechanical planarization
US8864859B2 (en) 2003-03-25 2014-10-21 Nexplanar Corporation Customized polishing pads for CMP and methods of fabrication and use thereof
US8939818B2 (en) 2010-02-25 2015-01-27 Toyo Tire & Rubber Co. Ltd. Polishing pad
US9278424B2 (en) 2003-03-25 2016-03-08 Nexplanar Corporation Customized polishing pads for CMP and methods of fabrication and use thereof
JP2016068250A (en) * 2014-09-29 2016-05-09 富士紡ホールディングス株式会社 Polishing pad
US10562149B2 (en) 2015-09-25 2020-02-18 Cabot Microelectronics Corporation Polyurethane CMP pads having a high modulus ratio
US10786885B2 (en) 2017-01-20 2020-09-29 Applied Materials, Inc. Thin plastic polishing article for CMP applications
US11717936B2 (en) 2018-09-14 2023-08-08 Applied Materials, Inc. Methods for a web-based CMP system

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6585574B1 (en) * 1998-06-02 2003-07-01 Brian Lombardo Polishing pad with reduced moisture absorption
WO2000012262A1 (en) * 1998-08-28 2000-03-09 Toray Industries, Inc. Polishing pad
WO2000027589A1 (en) * 1998-11-09 2000-05-18 Toray Industries, Inc. Polishing pad and polishing device
JP2001259978A (en) * 2000-03-07 2001-09-25 Three M Innovative Properties Co Chamfering method for end part of glass plate
US6964604B2 (en) * 2000-06-23 2005-11-15 International Business Machines Corporation Fiber embedded polishing pad
US6712681B1 (en) * 2000-06-23 2004-03-30 International Business Machines Corporation Polishing pads with polymer filled fibrous web, and methods for fabricating and using same
JP2003062748A (en) * 2001-08-24 2003-03-05 Inoac Corp Abrasive pad
AU2003225999A1 (en) * 2002-03-25 2003-10-13 Thomas West, Inc Smooth pads for cmp and polishing substrates
US7025668B2 (en) * 2002-06-18 2006-04-11 Raytech Innovative Solutions, Llc Gradient polishing pad made from paper-making fibers for use in chemical/mechanical planarization of wafers
US7166247B2 (en) 2002-06-24 2007-01-23 Micron Technology, Inc. Foamed mechanical planarization pads made with supercritical fluid
US6761625B1 (en) * 2003-05-20 2004-07-13 Intel Corporation Reclaiming virgin test wafers
JP4475404B2 (en) * 2004-10-14 2010-06-09 Jsr株式会社 Polishing pad
US20070010175A1 (en) 2005-07-07 2007-01-11 San Fang Chemical Industry Co., Ltd. Polishing pad and method of producing same
US7316605B1 (en) * 2006-07-03 2008-01-08 San Fang Chemical Industry Co., Ltd. Sheet for mounting polishing workpiece and method for making the same
US7789738B2 (en) * 2006-07-03 2010-09-07 San Fang Chemical Industry Co., Ltd. Sheet for mounting polishing workpiece and method for making the same
US20080064310A1 (en) * 2006-09-08 2008-03-13 Chung-Chih Feng Polishing pad having hollow fibers and the method for making the same
US20090252876A1 (en) * 2007-05-07 2009-10-08 San Fang Chemical Industry Co., Ltd. Sheet for mounting polishing workpiece and method for making the same
US20090094900A1 (en) * 2007-10-15 2009-04-16 Ppg Industries Ohio, Inc. Method of forming a polyurea polyurethane elastomer containing chemical mechanical polishing pad
WO2009134775A1 (en) * 2008-04-29 2009-11-05 Semiquest, Inc. Polishing pad composition and method of manufacture and use
US12006442B2 (en) 2019-09-11 2024-06-11 Applied Materials, Inc. Additive manufacturing of polishing pads

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3889430A (en) * 1972-05-17 1975-06-17 S P A M Abrasive tools
US4927432A (en) * 1986-03-25 1990-05-22 Rodel, Inc. Pad material for grinding, lapping and polishing
US5007207A (en) * 1987-12-22 1991-04-16 Cornelius Phaal Abrasive product
US5081051A (en) * 1990-09-12 1992-01-14 Intel Corporation Method for conditioning the surface of a polishing pad
US5177908A (en) * 1990-01-22 1993-01-12 Micron Technology, Inc. Polishing pad
US5247765A (en) * 1991-07-23 1993-09-28 Abrasive Technology Europe, S.A. Abrasive product comprising a plurality of discrete composite abrasive pellets in a resilient resin matrix
US5394655A (en) * 1993-08-31 1995-03-07 Texas Instruments Incorporated Semiconductor polishing pad
US5489233A (en) * 1994-04-08 1996-02-06 Rodel, Inc. Polishing pads and methods for their use
US5569062A (en) * 1995-07-03 1996-10-29 Speedfam Corporation Polishing pad conditioning

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6069080A (en) * 1992-08-19 2000-05-30 Rodel Holdings, Inc. Fixed abrasive polishing system for the manufacture of semiconductor devices, memory disks and the like
US6022268A (en) * 1998-04-03 2000-02-08 Rodel Holdings Inc. Polishing pads and methods relating thereto

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3889430A (en) * 1972-05-17 1975-06-17 S P A M Abrasive tools
US4927432A (en) * 1986-03-25 1990-05-22 Rodel, Inc. Pad material for grinding, lapping and polishing
US5007207A (en) * 1987-12-22 1991-04-16 Cornelius Phaal Abrasive product
US5177908A (en) * 1990-01-22 1993-01-12 Micron Technology, Inc. Polishing pad
US5081051A (en) * 1990-09-12 1992-01-14 Intel Corporation Method for conditioning the surface of a polishing pad
US5247765A (en) * 1991-07-23 1993-09-28 Abrasive Technology Europe, S.A. Abrasive product comprising a plurality of discrete composite abrasive pellets in a resilient resin matrix
US5394655A (en) * 1993-08-31 1995-03-07 Texas Instruments Incorporated Semiconductor polishing pad
US5489233A (en) * 1994-04-08 1996-02-06 Rodel, Inc. Polishing pads and methods for their use
US5569062A (en) * 1995-07-03 1996-10-29 Speedfam Corporation Polishing pad conditioning

Cited By (157)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6739962B2 (en) * 1997-04-04 2004-05-25 Rodel Holdings, Inc. Polishing pads and methods relating thereto
US6287185B1 (en) 1997-04-04 2001-09-11 Rodel Holdings Inc. Polishing pads and methods relating thereto
US6293852B1 (en) * 1997-04-04 2001-09-25 Rodel Holdings Inc. Polishing pads and methods relating thereto
US20020155801A1 (en) * 1997-04-04 2002-10-24 Roberts John V.H. Polishing pads and methods relating thereto
US6425816B1 (en) 1997-04-04 2002-07-30 Rodel Holdings Inc. Polishing pads and methods relating thereto
US20040048564A1 (en) * 1997-04-04 2004-03-11 Roberts John V.H. Polishing pads and methods relating thereto
US6843712B2 (en) * 1997-04-04 2005-01-18 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Polishing pads and methods relating thereto
US6913519B2 (en) 1997-12-30 2005-07-05 Micron Technology, Inc. Method and apparatus for mechanical and chemical-mechanical planarization of microelectronic substrates
US20040097175A1 (en) * 1997-12-30 2004-05-20 Moore Scott E. Method and apparatus for mechanical and chemical-mechanical planarization of microelectronic substrates
US6537190B2 (en) 1997-12-30 2003-03-25 Micron Technology, Inc. Method and apparatus for mechanical and chemical-mechanical planarization of microelectronic substrates
US6780095B1 (en) 1997-12-30 2004-08-24 Micron Technology, Inc. Method and apparatus for mechanical and chemical-mechanical planarization of microelectronic substrates
US6652370B2 (en) 1997-12-30 2003-11-25 Micron Technology, Inc. Method and apparatus for mechanical and chemical-mechanical planarization of microelectronic substrates
US6514130B2 (en) * 1997-12-30 2003-02-04 Micron Technology, Inc. Method and apparatus for mechanical and chemical-mechanical planarization of microelectronic substrates
US6435947B2 (en) * 1998-05-26 2002-08-20 Cabot Microelectronics Corporation CMP polishing pad including a solid catalyst
US6803316B2 (en) 1998-06-10 2004-10-12 Micron Technology, Inc. Method of planarizing by removing all or part of an oxidizable material layer from a semiconductor substrate
US6635574B2 (en) * 1998-06-10 2003-10-21 Micron Technology, Inc. Method of removing material from a semiconductor substrate
US6500053B2 (en) * 1999-01-21 2002-12-31 Rodel Holdings, Inc. Polishing pads and methods relating thereto
US6354915B1 (en) * 1999-01-21 2002-03-12 Rodel Holdings Inc. Polishing pads and methods relating thereto
US6390890B1 (en) 1999-02-06 2002-05-21 Charles J Molnar Finishing semiconductor wafers with a fixed abrasive finishing element
US6641463B1 (en) 1999-02-06 2003-11-04 Beaver Creek Concepts Inc Finishing components and elements
US6328634B1 (en) * 1999-05-11 2001-12-11 Rodel Holdings Inc. Method of polishing
US6234875B1 (en) 1999-06-09 2001-05-22 3M Innovative Properties Company Method of modifying a surface
US6296717B1 (en) * 1999-06-11 2001-10-02 International Business Machines Corporation Regeneration of chemical mechanical polishing pads in-situ
US6872131B2 (en) 1999-08-03 2005-03-29 Micron Technology, Inc. Method and apparatus for chemical-mechanical planarization of microelectronic substrates with a carrier and membrane
US6722963B1 (en) 1999-08-03 2004-04-20 Micron Technology, Inc. Apparatus for chemical-mechanical planarization of microelectronic substrates with a carrier and membrane
US20010039173A1 (en) * 1999-08-03 2001-11-08 Brown Nathan R. Method and apparatus for chemical-mechanical planarization of microelectronic substrates with a carrier and membrane
US20020006773A1 (en) * 1999-08-03 2002-01-17 Brown Nathan R. Method and apparatus for chemical-mechanical planarization of microelectronic substrates with a carrier and membrane
US6852017B2 (en) 1999-08-03 2005-02-08 Micron Technology, Inc. Method and apparatus for chemical-mechanical planarization of microelectronic substrates with a carrier and membrane
US20040116050A1 (en) * 1999-08-03 2004-06-17 Brown Nathan R. Method and apparatus for chemical-mechanical planarization of microelectronic substrates with a carrier and membrane
US7066791B2 (en) * 1999-08-03 2006-06-27 Micron Technology, Inc. Method and apparatus for chemical-mechanical planarization of microelectronic substrates with a carrier and membrane
US6881134B2 (en) * 1999-08-03 2005-04-19 Micron Technology, Inc. Method and apparatus for chemical-mechanical planarization of microelectronic substrates with a carrier and membrane
US6869345B2 (en) 1999-08-03 2005-03-22 Micron Technology, Inc. Method and apparatus for chemical-mechanical planarization of microelectronic substrates with a carrier and membrane
US6638143B2 (en) 1999-12-22 2003-10-28 Applied Materials, Inc. Ion exchange materials for chemical mechanical polishing
US6626740B2 (en) * 1999-12-23 2003-09-30 Rodel Holdings, Inc. Self-leveling pads and methods relating thereto
US6623341B2 (en) 2000-01-18 2003-09-23 Applied Materials, Inc. Substrate polishing apparatus
US6688957B2 (en) 2000-01-18 2004-02-10 Applied Materials Inc. Substrate polishing article
US6607428B2 (en) 2000-01-18 2003-08-19 Applied Materials, Inc. Material for use in carrier and polishing pads
US6533645B2 (en) 2000-01-18 2003-03-18 Applied Materials, Inc. Substrate polishing article
US6561891B2 (en) 2000-05-23 2003-05-13 Rodel Holdings, Inc. Eliminating air pockets under a polished pad
US6454634B1 (en) 2000-05-27 2002-09-24 Rodel Holdings Inc. Polishing pads for chemical mechanical planarization
US6749485B1 (en) 2000-05-27 2004-06-15 Rodel Holdings, Inc. Hydrolytically stable grooved polishing pads for chemical mechanical planarization
JP2012114454A (en) * 2000-05-27 2012-06-14 Rohm & Haas Electronic Materials Cmp Holdings Inc Abrasive pad for chemical mechanical planarization
JP2013239737A (en) * 2000-05-27 2013-11-28 Rohm & Haas Electronic Materials Cmp Holdings Inc Grooved polishing pad for chemical and mechanical planarization
US20050020082A1 (en) * 2000-05-27 2005-01-27 Arun Vishwanathan Polishing pads for chemical mechanical planarization
US6582283B2 (en) 2000-05-27 2003-06-24 Rodel Holdings, Inc. Polishing pads for chemical mechanical planarization
JP2015188108A (en) * 2000-05-27 2015-10-29 ローム アンド ハース エレクトロニック マテリアルズ シーエムピー ホウルディングス インコーポレイテッド polishing pads for chemical mechanical planarization
JP2009033193A (en) * 2000-05-27 2009-02-12 Rohm & Haas Electronic Materials Cmp Holdings Inc Polishing pads for chemical mechanical planarization
US6860802B1 (en) 2000-05-27 2005-03-01 Rohm And Haas Electric Materials Cmp Holdings, Inc. Polishing pads for chemical mechanical planarization
US6736709B1 (en) 2000-05-27 2004-05-18 Rodel Holdings, Inc. Grooved polishing pads for chemical mechanical planarization
US6623337B2 (en) 2000-06-30 2003-09-23 Rodel Holdings, Inc. Base-pad for a polishing pad
EP1175965A2 (en) * 2000-07-25 2002-01-30 Ebara Corporation Polishing tool, manufacturing method therefor, polishing apparatus for polishing a semiconductor wafer and method of polishing a substrate
EP1175965A3 (en) * 2000-07-25 2003-12-17 Ebara Corporation Polishing tool, manufacturing method therefor, polishing apparatus for polishing a semiconductor wafer and method of polishing a substrate
US6602436B2 (en) 2000-08-11 2003-08-05 Rodel Holdings, Inc Chemical mechanical planarization of metal substrates
US6477926B1 (en) 2000-09-15 2002-11-12 Ppg Industries Ohio, Inc. Polishing pad
WO2002024415A1 (en) * 2000-09-19 2002-03-28 Rodel Holdings, Inc. Polishing pad having an advantageous micro-texture
US6641471B1 (en) * 2000-09-19 2003-11-04 Rodel Holdings, Inc Polishing pad having an advantageous micro-texture and methods relating thereto
WO2002030617A1 (en) * 2000-10-06 2002-04-18 Cabot Microelectronics Corporation Polishing pad comprising a filled translucent region
US6537134B2 (en) 2000-10-06 2003-03-25 Cabot Microelectronics Corporation Polishing pad comprising a filled translucent region
US6572463B1 (en) * 2000-12-27 2003-06-03 Lam Research Corp. Methods for making reinforced wafer polishing pads utilizing direct casting and apparatuses implementing the same
US6561889B1 (en) 2000-12-27 2003-05-13 Lam Research Corporation Methods for making reinforced wafer polishing pads and apparatuses implementing the same
US6840843B2 (en) 2001-03-01 2005-01-11 Cabot Microelectronics Corporation Method for manufacturing a polishing pad having a compressed translucent region
US6863774B2 (en) 2001-03-08 2005-03-08 Raytech Innovative Solutions, Inc. Polishing pad for use in chemical-mechanical planarization of semiconductor wafers and method of making same
US20020127862A1 (en) * 2001-03-08 2002-09-12 Cooper Richard D. Polishing pad for use in chemical - mechanical palanarization of semiconductor wafers and method of making same
US20030100250A1 (en) * 2001-10-29 2003-05-29 West Thomas E. Pads for CMP and polishing substrates
US6699920B1 (en) 2002-02-13 2004-03-02 Nicholas Andros Methods of manufacturing polishing substrates
US20030194959A1 (en) * 2002-04-15 2003-10-16 Cabot Microelectronics Corporation Sintered polishing pad with regions of contrasting density
US6899598B2 (en) 2002-05-23 2005-05-31 Cabot Microelectronics Corporation Microporous polishing pads
US20050276967A1 (en) * 2002-05-23 2005-12-15 Cabot Microelectronics Corporation Surface textured microporous polishing pads
US6935931B2 (en) 2002-05-23 2005-08-30 Cabot Microelectronics Corporation Microporous polishing pads
US20040171340A1 (en) * 2002-05-23 2004-09-02 Cabot Microelectronics Corporation Microporous polishing pads
US20040177563A1 (en) * 2002-05-23 2004-09-16 Cabot Microelectronics Corporation Microporous polishing pads
US6896593B2 (en) 2002-05-23 2005-05-24 Cabot Microelectronic Corporation Microporous polishing pads
US20040171338A1 (en) * 2002-05-23 2004-09-02 Cabot Microelectronics Corporation Microporous polishing pads
US6913517B2 (en) 2002-05-23 2005-07-05 Cabot Microelectronics Corporation Microporous polishing pads
US20030220061A1 (en) * 2002-05-23 2003-11-27 Cabot Microelectronics Corporation Microporous polishing pads
CN100492597C (en) * 2002-06-03 2009-05-27 Jsr株式会社 Polishing mattress and its manufacture and usage method
US20040014413A1 (en) * 2002-06-03 2004-01-22 Jsr Corporation Polishing pad and multi-layer polishing pad
EP1369204A1 (en) * 2002-06-03 2003-12-10 JSR Corporation Polishing pad and multi-layer polishing pad
US20040021243A1 (en) * 2002-08-02 2004-02-05 Wen-Chang Shih Method for manufacturing auxiliary gas-adding polyurethae/polyurethane-urea polishing pad
US20060052040A1 (en) * 2002-10-28 2006-03-09 Cabot Microelectronics Corporation Method for manufacturing microporous CMP materials having controlled pore size
US7311862B2 (en) 2002-10-28 2007-12-25 Cabot Microelectronics Corporation Method for manufacturing microporous CMP materials having controlled pore size
US7435165B2 (en) 2002-10-28 2008-10-14 Cabot Microelectronics Corporation Transparent microporous materials for CMP
US20040171339A1 (en) * 2002-10-28 2004-09-02 Cabot Microelectronics Corporation Microporous polishing pads
US20050277371A1 (en) * 2002-10-28 2005-12-15 Cabot Microelectronics Corporation Transparent microporous materials for CMP
US7267607B2 (en) 2002-10-28 2007-09-11 Cabot Microelectronics Corporation Transparent microporous materials for CMP
US7132070B2 (en) 2002-11-19 2006-11-07 Iv Technologies, Co., Ltd. Method of manufacturing polishing pad
US7285233B2 (en) 2002-11-19 2007-10-23 Iv Technologies Co., Ltd. Method of manufacturing polishing pad
US20040096529A1 (en) * 2002-11-19 2004-05-20 Wen-Chang Shih Method of manufacturing polishing pad
US20060113705A1 (en) * 2002-11-19 2006-06-01 Wen-Chang Shih Method of manufacturing polishing pad
US20040142637A1 (en) * 2003-01-22 2004-07-22 Angela Petroski Polishing pad for use in chemical-mechanical planarization of semiconductor wafers and method of making same
US20040142638A1 (en) * 2003-01-22 2004-07-22 Angela Petroski Polishing pad for use in chemical - mechanical planarization of semiconductor wafers and method of making same
US7037184B2 (en) 2003-01-22 2006-05-02 Raytech Innovation Solutions, Llc Polishing pad for use in chemical-mechanical planarization of semiconductor wafers and method of making same
US6852020B2 (en) 2003-01-22 2005-02-08 Raytech Innovative Solutions, Inc. Polishing pad for use in chemical—mechanical planarization of semiconductor wafers and method of making same
US20040159558A1 (en) * 2003-02-18 2004-08-19 Bunyan Michael H. Polishing article for electro-chemical mechanical polishing
US7141155B2 (en) 2003-02-18 2006-11-28 Parker-Hannifin Corporation Polishing article for electro-chemical mechanical polishing
US7704125B2 (en) 2003-03-24 2010-04-27 Nexplanar Corporation Customized polishing pads for CMP and methods of fabrication and use thereof
US8380339B2 (en) 2003-03-25 2013-02-19 Nexplanar Corporation Customized polish pads for chemical mechanical planarization
US8864859B2 (en) 2003-03-25 2014-10-21 Nexplanar Corporation Customized polishing pads for CMP and methods of fabrication and use thereof
US9278424B2 (en) 2003-03-25 2016-03-08 Nexplanar Corporation Customized polishing pads for CMP and methods of fabrication and use thereof
US20060199473A1 (en) * 2003-04-03 2006-09-07 Masao Suzuki Polishing pad, process for producing the same and method of polishing therewith
US20040209066A1 (en) * 2003-04-17 2004-10-21 Swisher Robert G. Polishing pad with window for planarization
US20050171225A1 (en) * 2004-02-03 2005-08-04 Kulp Mary J. Polyurethane polishing pad
US20080242755A1 (en) * 2004-02-03 2008-10-02 Mary Jo Kulp Polyurethane polishing pad
US7414080B2 (en) * 2004-02-03 2008-08-19 Materials Cmp Holdings, Inc. Polyurethane polishing pad
US20050171224A1 (en) * 2004-02-03 2005-08-04 Kulp Mary J. Polyurethane polishing pad
US20110054057A9 (en) * 2004-02-03 2011-03-03 Mary Jo Kulp Polyurethane polishing pad
US8288448B2 (en) * 2004-02-03 2012-10-16 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Polyurethane polishing pad
US20050215179A1 (en) * 2004-03-23 2005-09-29 Cabot Microelectronics Corporation Low surface energy CMP pad
US7059936B2 (en) 2004-03-23 2006-06-13 Cabot Microelectronics Corporation Low surface energy CMP pad
US20090032075A1 (en) * 2004-05-11 2009-02-05 Applied Materials, Inc. Methods and apparatus for liquid chemical delivery
US20060046064A1 (en) * 2004-08-25 2006-03-02 Dwaine Halberg Method of improving removal rate of pads
US20060046622A1 (en) * 2004-09-01 2006-03-02 Cabot Microelectronics Corporation Polishing pad with microporous regions
US8075372B2 (en) 2004-09-01 2011-12-13 Cabot Microelectronics Corporation Polishing pad with microporous regions
US7396497B2 (en) 2004-09-30 2008-07-08 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Method of forming a polishing pad having reduced striations
US20060067160A1 (en) * 2004-09-30 2006-03-30 Koetas Joseph P Apparatus for forming a polishing pad having a reduced striations
US20060066001A1 (en) * 2004-09-30 2006-03-30 Koetas Joseph P Method of forming a polishing pad having reduced striations
US7275856B2 (en) 2004-09-30 2007-10-02 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Apparatus for forming a polishing pad having a reduced striations
US20060254706A1 (en) * 2004-10-27 2006-11-16 Swisher Robert G Polyurethane urea polishing pad
US7291063B2 (en) 2004-10-27 2007-11-06 Ppg Industries Ohio, Inc. Polyurethane urea polishing pad
US20060089093A1 (en) * 2004-10-27 2006-04-27 Swisher Robert G Polyurethane urea polishing pad
US20070021045A1 (en) * 2004-10-27 2007-01-25 Ppg Industries Ohio, Inc. Polyurethane Urea Polishing Pad with Window
US20060099891A1 (en) * 2004-11-09 2006-05-11 Peter Renteln Method of chemical mechanical polishing, and a pad provided therefore
US20060110488A1 (en) * 2004-11-23 2006-05-25 Saikin Alan H Apparatus for forming a striation reduced chemical mechanical polishing pad
US7275928B2 (en) 2004-11-23 2007-10-02 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Apparatus for forming a striation reduced chemical mechanical polishing pad
US20060108701A1 (en) * 2004-11-23 2006-05-25 Saikin Allan H Method for forming a striation reduced chemical mechanical polishing pad
US8715035B2 (en) 2005-02-18 2014-05-06 Nexplanar Corporation Customized polishing pads for CMP and methods of fabrication and use thereof
US20090053976A1 (en) * 2005-02-18 2009-02-26 Roy Pradip K Customized Polishing Pads for CMP and Methods of Fabrication and Use Thereof
US20070049169A1 (en) * 2005-08-02 2007-03-01 Vaidya Neha P Nonwoven polishing pads for chemical mechanical polishing
US20070093191A1 (en) * 2005-10-20 2007-04-26 Iv Technologies Co., Ltd. Polishing pad and method of fabrication
US8303382B2 (en) 2005-10-20 2012-11-06 Iv Technologies Co., Ltd. Polishing pad and method of fabrication
US20070289223A1 (en) * 2006-02-17 2007-12-20 Chien-Min Sung Tools for polishing and associated methods
US20070215486A1 (en) * 2006-02-17 2007-09-20 Chien-Ming Sung Tools for polishing and associated methods
US7241206B1 (en) 2006-02-17 2007-07-10 Chien-Min Sung Tools for polishing and associated methods
US7494404B2 (en) 2006-02-17 2009-02-24 Chien-Min Sung Tools for polishing and associated methods
US20070197142A1 (en) * 2006-02-17 2007-08-23 Chien-Min Sung Tools for polishing and associated methods
US20080209816A1 (en) * 2006-02-17 2008-09-04 Chien-Min Sung Tools for polishing and associated methods
US7544117B2 (en) * 2006-02-17 2009-06-09 Chien-Min Sung Tools for polishing and associated methods
US7393264B1 (en) 2006-02-17 2008-07-01 Chien-Min Sung Tools for polishing and associated methods
US7285039B1 (en) 2006-02-17 2007-10-23 Chien-Min Sung Tools for polishing and associated methods
US20080014846A1 (en) * 2006-02-17 2008-01-17 Chien-Min Sung Tools for polishing and associated methods
US7718507B2 (en) * 2006-04-14 2010-05-18 Sumco Corporation Bonded wafer and method of producing the same
US20070243694A1 (en) * 2006-04-14 2007-10-18 Etsurou Morita Bonded wafer and method of producing the same
US7445847B2 (en) 2006-05-25 2008-11-04 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Chemical mechanical polishing pad
US7169030B1 (en) 2006-05-25 2007-01-30 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Chemical mechanical polishing pad
US20070275226A1 (en) * 2006-05-25 2007-11-29 Mary Jo Kulp Chemical mechanical polishing pad
WO2008045149A3 (en) * 2006-10-04 2008-11-27 Chien-Min Sung Tools for polishing and associated methods
WO2008045149A2 (en) * 2006-10-04 2008-04-17 Chien-Min Sung Tools for polishing and associated methods
US7371160B1 (en) 2006-12-21 2008-05-13 Rohm And Haas Electronic Materials Cmp Holdings Inc. Elastomer-modified chemical mechanical polishing pad
US7438636B2 (en) 2006-12-21 2008-10-21 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Chemical mechanical polishing pad
US20080153395A1 (en) * 2006-12-21 2008-06-26 Mary Jo Kulp Chemical mechanical polishing pad
WO2010138724A1 (en) 2009-05-27 2010-12-02 Rogers Corporation Polishing pad, polyurethane layer therefor, and method of polishing a silicon wafer
JP2011151373A (en) * 2009-12-24 2011-08-04 Jsr Corp Chemical mechanical polishing pad and chemical mechanical polishing method using the same
US8939818B2 (en) 2010-02-25 2015-01-27 Toyo Tire & Rubber Co. Ltd. Polishing pad
JP2016068250A (en) * 2014-09-29 2016-05-09 富士紡ホールディングス株式会社 Polishing pad
US10562149B2 (en) 2015-09-25 2020-02-18 Cabot Microelectronics Corporation Polyurethane CMP pads having a high modulus ratio
US10786885B2 (en) 2017-01-20 2020-09-29 Applied Materials, Inc. Thin plastic polishing article for CMP applications
US11717936B2 (en) 2018-09-14 2023-08-08 Applied Materials, Inc. Methods for a web-based CMP system

Also Published As

Publication number Publication date
US6217434B1 (en) 2001-04-17
US6293852B1 (en) 2001-09-25

Similar Documents

Publication Publication Date Title
US6022268A (en) Polishing pads and methods relating thereto
US6682402B1 (en) Polishing pads and methods relating thereto
EP1015176B1 (en) Improved polishing pads and methods relating thereto
US6328634B1 (en) Method of polishing
US6739962B2 (en) Polishing pads and methods relating thereto
KR100499601B1 (en) Improved Polishing Pads And Methods Relating Thereto
KR100571448B1 (en) Polishing pads with advantageous microstructure
US6500053B2 (en) Polishing pads and methods relating thereto
US6648733B2 (en) Polishing pads and methods relating thereto
US20020042200A1 (en) Method for conditioning polishing pads
TWI758470B (en) Methods of making chemical mechanical polishing layers having improved uniformity
US9034063B2 (en) Method of manufacturing grooved chemical mechanical polishing layers

Legal Events

Date Code Title Description
AS Assignment

Owner name: RODEL HOLDINGS, INC., DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ROBERTS, JOHN V. H.;JAMES, DAVID B.;COOK, LEE MELBOURNE;REEL/FRAME:009129/0106

Effective date: 19980403

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: ROHM AND HAAS ELECTRONIC MATERIALS CMP HOLDINGS, I

Free format text: CHANGE OF NAME;ASSIGNOR:RODEL HOLDINGS, INC.;REEL/FRAME:014725/0685

Effective date: 20040127

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12