US4668566A - Multilayer nonwoven fabric made with poly-propylene and polyethylene - Google Patents
Multilayer nonwoven fabric made with poly-propylene and polyethylene Download PDFInfo
- Publication number
- US4668566A US4668566A US06/785,368 US78536885A US4668566A US 4668566 A US4668566 A US 4668566A US 78536885 A US78536885 A US 78536885A US 4668566 A US4668566 A US 4668566A
- Authority
- US
- United States
- Prior art keywords
- web
- polyethylene
- nonwoven
- monofilaments
- nonwoven web
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/15—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
- A61F13/51—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the outer layers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/15—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
- A61F13/15577—Apparatus or processes for manufacturing
- A61F13/15617—Making absorbent pads from fibres or pulverulent material with or without treatment of the fibres
- A61F13/15658—Forming continuous, e.g. composite, fibrous webs, e.g. involving the application of pulverulent material on parts thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/15—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
- A61F13/51—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the outer layers
- A61F13/511—Topsheet, i.e. the permeable cover or layer facing the skin
- A61F13/5116—Topsheet, i.e. the permeable cover or layer facing the skin being formed of multiple layers
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H3/00—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
- D04H3/08—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
- D04H3/16—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/15—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
- A61F13/15577—Apparatus or processes for manufacturing
- A61F2013/15821—Apparatus or processes for manufacturing characterized by the apparatus for manufacturing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/15—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
- A61F13/51—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the outer layers
- A61F2013/51002—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the outer layers with special fibres
- A61F2013/51009—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the outer layers with special fibres characterized by the shape of the fibres
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/15—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
- A61F13/51—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the outer layers
- A61F2013/51002—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the outer layers with special fibres
- A61F2013/51038—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the outer layers with special fibres being a mixture of fibres
- A61F2013/5104—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the outer layers with special fibres being a mixture of fibres with pulp and polymeric fibres
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/15—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
- A61F13/51—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the outer layers
- A61F2013/51002—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the outer layers with special fibres
- A61F2013/51038—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the outer layers with special fibres being a mixture of fibres
- A61F2013/51042—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the outer layers with special fibres being a mixture of fibres with hydrophobic and hydrophilic fibres
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/15—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
- A61F13/51—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the outer layers
- A61F13/511—Topsheet, i.e. the permeable cover or layer facing the skin
- A61F13/5116—Topsheet, i.e. the permeable cover or layer facing the skin being formed of multiple layers
- A61F2013/51178—Topsheet, i.e. the permeable cover or layer facing the skin being formed of multiple layers with the combination of nonwoven webs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/15—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
- A61F13/51—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the outer layers
- A61F13/511—Topsheet, i.e. the permeable cover or layer facing the skin
- A61F13/5116—Topsheet, i.e. the permeable cover or layer facing the skin being formed of multiple layers
- A61F2013/51182—Topsheet, i.e. the permeable cover or layer facing the skin being formed of multiple layers with non-continuous bonding
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/15—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
- A61F13/53—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
- A61F2013/530131—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium being made in fibre but being not pulp
- A61F2013/530138—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium being made in fibre but being not pulp characterized by the fibre length
- A61F2013/530153—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium being made in fibre but being not pulp characterized by the fibre length being long
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/15—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
- A61F13/53—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
- A61F2013/530131—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium being made in fibre but being not pulp
- A61F2013/53016—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium being made in fibre but being not pulp having special shape
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S428/00—Stock material or miscellaneous articles
- Y10S428/913—Material designed to be responsive to temperature, light, moisture
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T156/00—Adhesive bonding and miscellaneous chemical manufacture
- Y10T156/10—Methods of surface bonding and/or assembly therefor
- Y10T156/1002—Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina
- Y10T156/1039—Surface deformation only of sandwich or lamina [e.g., embossed panels]
- Y10T156/1041—Subsequent to lamination
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24479—Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
- Y10T428/24595—Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness and varying density
- Y10T428/24603—Fiber containing component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24479—Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
- Y10T428/24612—Composite web or sheet
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24802—Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
- Y10T428/24826—Spot bonds connect components
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/20—Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
- Y10T442/2484—Coating or impregnation is water absorbency-increasing or hydrophilicity-increasing or hydrophilicity-imparting
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/20—Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
- Y10T442/2861—Coated or impregnated synthetic organic fiber fabric
- Y10T442/291—Coated or impregnated polyolefin fiber fabric
Definitions
- the present invention relates to a nonwoven fabric having at least two layers of nonwoven web. More particularly, the present invention relates to a nonwoven fabric wherein one of the layers comprises a web having monofilaments or fibers made from polypropylene and another layer comprises a nonwoven web having monofilaments or fibers made from polyethylene.
- Nonwoven materials are, of course, well known in the art. Such materials were developed primarily in the 1950's and 1960's, although at least one reference dates back to 1943 (see, e.g., U.S. Pat. No. 2,336,743 to Manning).
- nonwoven fabrics One of the most significant commercial applications of nonwoven fabrics is in the fabrication of disposable products intended for a single use. Typical of such products are disposable diapers, feminine care products, surgical gowns, industrial wipes, and the like. Because the nonwoven fabric is intended as a cloth substitute in these applications, extensive effort has been expended to improve the properties of nonwoven fabric to more nearly approximate that of cloth. Of particular interest has been the softness of the nonwoven web, that is, improving the feel or "hand" of the fabric together with lowering the resistance of the fabric to folding or bending. Another important area has been the improvement of the nonwoven web's tensile strength or tear resistance. Yet another area has been the development of nonwoven fabrics with specific wettability characteristics.
- a nonwoven fabric comprising at least two layers of nonwoven web adjacent and bonded to each other.
- Each nonwoven web comprises a plurality of monofilaments of fibers of a thermoplastic material.
- the monofilaments or fibers are made from polypropylene.
- the monofilaments or fibers are made from polyethylene. It has been found by the present inventor that a nonwoven fabric made with these two layers provides remarkably increased softness and tensile strength as well as other desirable properties.
- the nonwoven fabric consists of two layers of a nonwoven web.
- the nonwoven web of the first layer comprises a plurality of substantially identically prepared continuous and substantially randomly deposited polypropylene monofilaments.
- the nonwoven web of the second layer comprises a plurality of substantially identically prepared continuous and substantially randomly deposited polyethylene monofilaments.
- nonwoven fabric of this preferred embodiment is stabilized by discrete compacted areas of thermally induced filament bonds extending through a major portion of both webs, with these compacted areas distributed in an intermittent regular pattern and constituting from about 10 to about 30 percent of the area of the fabric.
- the nonwoven liner for a disposable diaper is constituted similarly to the preferred embodiment mentioned immediately above, with the stipulation that the layer with the polypropylene monofilaments is intended to fit next to the wearer.
- the polyethylene layer is used as a transfer layer to enhance the transfer of moisture through the nonwoven fabric and into the underlying absorbent material. This is accomplished by adding a wetting agent to the polyethylene monofilaments to thereby make the second layer which would otherwise be hydrophobic, somewhat hydrophillic or wettable. This addition can be done by mixing a wetting agent with the polyethylene before it is extruded or, more preferably, it can be done by applying a solution of the wetting agent to the polyethylene nonwoven web after it is formed.
- a nonwoven wrap for a catamenial device is likewise oriented with the polypropylene layer next to the wearer. Also, the polyethylene transfer layer is made wettable in the same manner as the preferred embodiment of the nonwoven liner for a disposable diaper.
- the method of forming the nonwoven web of each layer includes the following steps.
- the polymer either the polypropylene or polyethylene, is preferably extruded while in a melted state through a spinneret plate with a multiplicity of holes with the desired cross-section, thereby producing a plurality of monofilaments with approximately the same cross-section.
- These monofilaments are then drawn, preferably pneumatically. After drawing, the monofilaments are laid down on a moving belt in an essentially random orientation with respect to each other.
- the web of each layer can be joined in one of the following three ways.
- the first and most preferable involves the use of parallel web formers, i.e. spinnerets together with drawing apparatus.
- the first former lays down a nonwoven web on a laydown belt just ahead of the point where the second former lays down its web.
- the second web is laid down on top of the first and the two continue on the belt and through the remaining processing together.
- the two webs are then slightly compacted by passing through a pair of compaction rolls.
- the two webs are bonded together and stabilized by passing through a pair of oppositely rotating heated rolls, the first of which has a smooth surface, and the second of which has a raised pattern.
- the two webs become thermally bonded in discrete areas arranged in a pattern which corresponds with the raised pattern of the one heated roller.
- the pattern of thermally bonded areas is formed so as to constitute about 10 to about 30 percent of the surface of the nonwoven fabric.
- the second also involves the use of two parallel formers as in the first, with the exception that the first laid down web passes through thermal bonding rolls as described above before the second web is laid on top of it.
- the two webs i.e. one bonded and one not, are then slightly compacted and pass through a second pair of thermal bonding rolls.
- this second pair of thermal bonding rolls creates a bonded pattern in the two webs which occupies a lower percentage of multilayer fabric than the bonded pattern of the first laid down web.
- the third process involves the step of forming the first laid down web in a prior step and then winding it up.
- the fabric is then made by unrolling the first laid down web onto the belt on which the second laid down web is deposited.
- the two webs are then process as described above.
- FIG. 1 is a schematic diagram of the preferred apparatus for producing the multilayer nonwoven fabric of the present invention.
- FIG. 2 is a schematic diagram of an alternative apparatus for producing the multilayer nonwoven fabric of the present invention.
- FIG. 3 is a schematic diagram of another alternative apparatus for producing the nonwoven fabric of the present invention.
- FIG. 4 shows a bottom perspective view of a spinneret plate with bilobal shaped orifices to thereby extrude monofilaments of bilobal cross-section.
- FIG. 5 is a bottom and enlarged view of two of the bilobal shaped orifices of the spinneret plate of FIG. 4.
- FIG. 6 is a bottom view of a trilobal shaped orifice in a spinneret plate.
- FIG. 7 is an illustration in partial cross-section of a nonwoven web with monofilaments of bilobal cross-section.
- FIG. 8 is an illustration in partial cross-section of a nonwoven web with monofilaments of trilobal cross-section.
- FIG. 9 is a cross-section of a disposable diaper made with the nonwoven liner of the present invention.
- FIG. 10 is a cross section of a catamenial device made with the nonwoven wrap of the present invention.
- FIGS. 11a-1c represent various patterns of intermittent heat bonding which can be applied to the nonwoven fabric of the present invention.
- the present invention comprehends a multilayer nonwoven fabric at least two layers of nonwoven web, one of which comprises a plurality of polypropylene monofilaments or fibers, and another of which comprises a plurality of polyethylene monofilaments or fibers.
- each web can be prepared from noncontinuous fibers, continuous monofilaments, or a combination thereof.
- the preferred method of producing each web is by spunbonding techniques, although meltblown techniques which produce noncontinuous fibers are also considered to be within the scope of this invention.
- the continuous monofilaments produced by spunbonding techniques are preferred.
- polypropylene includes copolymers of propylene and ethylene which are predominantly comprised of propylene units.
- a preferred copolymer includes 97% propylene and 3% ethylene.
- polyethylene the inventor intends to also refer to copolymers of ethylene and propylene which are predominantly comprised of ethylene units.
- nonwoven web made from polyethylene can be used if it is bonded to a stronger nonwoven web, such as one made from polypropylene.
- the nonwoven fabric with this particular pairing of polymers shows increases in both softness and tensile strength.
- FIG. 1 is a schematic diagram showing the preferred apparatus for forming the polymers into nonwoven webs.
- this apparatus is made in accordance with the teachings of U.S. Pat. No. 4,405,297 and operated in accordance the teachings of U.S. Pat. No. 4,340,563, both to Appel and Morman, the entire disclosures of which are incorporated herein by reference.
- the exception is that instead of just one web former, i.e. spinneret and quenching/drawing apparatus, there are two such formers 11 and 12 in the fabrication line.
- the first former 11 lays down a first web 13 on the moving belt 15, while the second former 12 lays down a second web 14 on top of the first web 13.
- each of the nonwoven web formers 11 and 12 shown in FIG. 1 include a spinneret box 21 which receives a polymer in a melted state.
- the polymer going into one web is polypropylene while the polymer going into the other web is polyethylene.
- the temperature of each polymer melt is selected so as to make it sufficiently fluid for spinning. For example, when the polypropylene is being spun, the preferred temperature is about 460° F. When polyethylene is being spun, the preferred temperature is about 375° F. Pressure is applied to each polymer melt to thereby push it through the holes or orifices in the spinneret plates 22 and 23 to thereby form the curtains of monofilaments 24 and 25 respectively.
- Each curtain 24 and 25 falls through a quench chamber 26 and 27 wherein it is contacted by quench air.
- the quench air in each former is supplied at a relatively low pressure, but such that is sufficient pressure to also cause a degree of drawing of the monofilaments when they pass through the drawing nozzles 28 and 29.
- the first curtain of monofilaments 24 are laid down on a moving foraminous surface 15, such as an endless screen or belt, to form a first nonwoven web 13.
- the second curtain of monofilaments 25 is laid down on top of the first nonwoven web 13 to form a second nonwoven web 14.
- the polypropylene web is laid down first, or whether the polyethylene web is laid down first is not considered critical. That is, the polypropylene can be made into a nonwoven web through either the first former 11 or the second former 12. For reasons to be discussed below, it is preferred for the polypropylene to be laid down first, i.e. formed in the first former 11.
- the two webs 13 and 14 next pass through the two heated bonding rolls 21 and 22.
- These rolls are preferably made and operated in accordance with the teachings of U.S. Pat. No. 3,855,046, to Hansen and Pennings, the entire disclosure of which is incorporated herein by reference.
- the apparatus and process described therein includes the use of two rolls 21 and 22, at least one of which and preferably both of which are heated.
- the lower roll has a smooth surface while the upper roll 21 includes a raised intermittent pattern on its surface.
- the heated roll with the pattern i.e. the "embossing" roll is put underneath the webs to thereby contact the first laid web.
- each web becomes stabilized by the formation of discrete compacted areas of thermally induced filament bonds which extend through a major portion of the thickness of the web. These compacted areas are distributed in an intermittent pattern corresponding to the raised pattern of the roll 21 and provide unbonded filament spans therebetween. In addition, the two webs 13 and 14 become bonded together into the bilayered nonwoven fabric 18.
- FIGS. 11a-11c illustrate three patterns which can be used on the roll 21 and result in the same patterns on the nonwoven fabric 18.
- FIG. 11a includes circular areas arranged in hexagons and triangles.
- FIG. 11b includes circular areas arranged in a repeating hourglass configuration.
- Figure 11c which is the presently preferred pattern, includes equilateral diamond shaped areas which are arranged in staggered rows.
- Two parameters of concern in regard to the specific pattern that is used are the size of the compacted areas formed and the distance between the areas. These two parameters together affect the percentage of area on the web which becomes bonded. It is important that the percentage of bonded area be great enough to insure sufficient integrity of the web for its intended use. In addition, it is important that the percentage of bonded area not be too great, as a higher bonded area usually produces a web with reduced softness. At present, it is preferred to have a bonded area between about 10 and about 30 percent of the surface area of the fabric. A range of about 12 to about 20 percent bonded area is more preferred, while about 17 percent is most preferred.
- the temperature at which the rolls 21 and 22 are maintained is the temperature at which the rolls 21 and 22 are maintained. Naturally temperatures below a certain point for each polymer will not effect any bonding, while temperatures above another point will melt too much of the web. Also, it has been observed the temperature of the rolls can affect both the tensile strength as well as the softness of the web produced. In particular, within a certain range, higher temperatures will produce a web with higher tensile strength. However, these same higher temperatures can produce a web with decreased softness. This is likely due to a higher and lower degree of bonding which occurs within this range of temperatures. That is, the higher temperatures likely result in a more and stronger interfilament bonding which is beneficial to tensile strength and somewhat detrimental to softness.
- the preferred bonding temperature for polypropylene monofilaments is between about 220 and about 320° F. A temperature of about 275° F. is most preferred.
- the preferred range of bonding temperatures is between about 230 and about 240° F., while about 235 is most preferred. Because the melting point of the polyethylene is lower than that of polypropylene, it is important to operate the bonding rolls close to the range for polyethylene. It has been observed that when bonding the two webs together that it is possible to bond them at a temperature well below which the polypropylene melts as long as the temperature is close to the melting point of the polyethylene. It is believed that this may be possible by virtue of the polyethylene melting into the polypropylene layer. In other words, it is thought that the melted polyethylene may be sufficient to bond both webs.
- the fabric 18 After the fabric 18 is bonded by rolls 21 and 22, it is wound on the take up roll 23. Alternatively, it may be desirable to design this apparatus to connect with a fabrication line for the end product.
- the basis weight of the nonwoven fabric produced can be readily varied depending on the intended use of the web.
- the nonwoven fabric can be made from about 0.3 to about 3 oz./square yard.
- the basis weight of the polyethylene web may be made greater than that of the polypropylene web, or vice versa
- the preferred embodiment includes a polypropylene and polyethylene nonwoven web of equal basis weight.
- a preferred basis weight for a disposable diaper liner, (i.e. both layers), is about 0.8 oz./square yard and a preferred basis weight for a nonwoven wrap for a catamenial device is about 0.4 oz./square yard.
- FIG. 2 is a schematic diagram showing an alternative apparatus for producing the bilayered nonwoven fabric of the preferred embodiment.
- This apparatus is identical to the apparatus depicted in FIG. 1 with one exception.
- the exception is that between the first former 111 and the second former 112, there is included an additional pair of compaction rolls 219 and 220 together with an additional pair of bonding rolls 221 and 222 which stabilize the first web 113 in the manner discussed above.
- These compaction and bonding rolls 219-222 are configured and operate the same as those described above with the exception that they are set for compacting and bonding a single nonwoven web.
- the first nonwoven web 113 is picked up by the collection belt 115 after which the second nonwoven web 114 is laid down on top of it.
- the two nonwoven webs i.e. the bonded web 113 and the unbonded web 114, pass through the compaction rollers 119 and 120.
- they pass through the bonding rollers 121 and 122 where the second web 114 is stabilized and the two webs 113 and 114 become bonded together into a bilayered nonwoven fabric 118.
- the fabric 118 is then rolled up on the take up roll 123.
- FIG. 3 shows another alternative apparatus for producing the multilayer nonwoven fabric.
- a first nonwoven web 313 is supplied from roll 301.
- the nonwoven web 313 can be either bonded or unbonded. Bonded is preferable.
- the web 313 passes along the collection belt 315 whereupon the second web 314 is laid on top of it.
- the two webs then pass through the compaction rolls 319 and 320 and then pass through the bonding rolls 321 and 322 where either both or just the second web becomes stabilized and the two webs 313 and 314 become bonded together as described above to form the bilayered nonwoven fabric 318.
- the bond pattern used when the two webs are put together should be selected in consideration of the bond pattern already used on the first laid down web. It is desirable to have the second bond pattern not overlap the first. Therefore, if the second bonding pattern is the same as the first, it should be offset. However, in the interest of web softness, it is preferred to have the second bond pattern different from the first and particularly to occupy a lower percentage of the web than the first. Naturally, the final bond pattern through the first laid down web will be a sum of the first and second bonding. Accordingly, this also favors a lower percentage for the second bonding pattern.
- first laid down web refers to the web which has been formed earlier in the processing line or alternatively to the web which has been made and rolled up in a previous step.
- first web and second web are arbitrary designations which do not necessarily refer to their order of forming.
- the first laid down web can have a higher percentage area bonding pattern than the second laid down web.
- the first laid down web can possess sufficient tensile strength while the second laid down web can possess more softness.
- This is beneficial, for example, in a nonwoven web for a disposable diaper wherein the second laid down web can be used for increased softness on the "bodyside" of the diaper while the first laid down web can provide increased tensile strength for the liner.
- the order of laying down the two webs can be selected so as to provide each web on the side best suited for bonding and addition of wetting agent.
- FIG. 4 is a bottom perspective view of the spinneret plate 41 with bilobal shaped orifices 42. It is through these orifices 42 that the polymer is extruded.
- the monofilaments produced consequently have a cross-section with a bilobal, "dogbone” or “dumbell” shape.
- a multilayer nonwoven fabric produced with one of its layers being a nonwoven web with bilobal shaped monofilaments exhibits certain advantages.
- nonwoven webs produced with monofilaments with a bilobal cross-section have increased softness, tensile strength, and capacity when compared to webs produced with cylindrical monofilaments.
- the most preferred embodiment of the present invention includes one web which has such bilobal shaped monofilaments.
- the nonwoven fabric of this invention can be made with the bilobal monofilaments in either the first or the second laid down web.
- This bilobal spinneret plate can be in either of the formers shown in FIGS. 1-3.
- the spinneret plate of the other former can have orifices of any desired shape. It is believed that having the bilobal monofilaments in one layer of the fabric provides at least some degree of improvement regardless of the shape of the monofilaments in the other layer. Circular orifices are, of course, most common and it is clearly contemplated to use circular monofilaments in one of the layers of the fabric. In addition, in certain embodiments it is desirable to have both layers of the fabric with bilobal monofilaments. At present, the most preferred shape of the cross-section of the monofilaments of the other, i.e. nonbilobal, web is referred to as Y-shaped. FIG. 6 shows a Y-shaped orifice to make such filaments.
- the spinneret plate 12 is made with a width greater than the width to be produced.
- the preferred width of the web will vary depending on the end use to made of it. In many applications it is desirable to lay down a web which is wide enough to make more than one end product.
- a nonwoven web made to be used as a liner for disposable diapers is preferably about 12.5 inches wide.
- the number of orifices is selected and the orifices are arranged in the plate at the prescribed spacing in such a way so as to provide the desired density of filaments in the web.
- spinneret plate i.e. one that will form a 12 inch wide nonwoven web, there are most preferably 1020 orifices.
- FIG. 5 is an enlarged view showing the preferred configuration of two of the orifices 42 of the spinneret plate 41.
- the dimensions and proportions of the bilobal orifices are not known to be critical, provided that they produce monofilaments which have the bilobal shaped cross-section according to the present invention.
- the preferred configuration of the orifice is as follows.
- the shortest dimension is the thickness of the elongate portion a.
- the diameter b of the substantially circular portions 25 and 26 is approximately twice that of the thickness a.
- the length c of the orifice 24 is approximately ten times that of the thickness a.
- these proportions can be varied in alternative embodiments depending on factors such as specific polypropylene or polyethylene which is extruded and the desired properties of the nonwoven web.
- the preferred spacing between orifices will depend on the density of the nonwoven web to be produced. In the most preferred embodiment, the space d between orifices is 7.25 mm. Also, the preferred orientation of the orifices is such that all of the orifices are arranged parallel to each other and that their length c is aligned in the direction in which the belt 17 moves (i.e. machine direction).
- FIG. 6 is bottom enlarged view of an Y-shaped orifice for a spinneret plate.
- the inventor has observed that monofilaments produced by this orifice retain a Y-shaped cross-section even after drawing.
- nonwoven webs made with such Y-shaped monofilaments have increased stiffness, i.e. less softness than those made with circular or bilobal monofilaments.
- FIG. 7 is an illustration of a section of nonwoven web 71 made with bilobal monofilaments.
- This nonwoven web could be either the first or second laid down web in the processes described above, and would become part of the multilayer nonwoven fabric of the present invention. It is most preferable for the polypropylene web to have such bilobal monofilaments.
- the web comprises a number of continuous monofilaments 72 which are randomly oriented with respect to each other. It is desirable for the monofilaments to undergo a high degree of looping and overlapping in the web. These properties are influenced by factors such as the density of the monofilaments that are laid down, the speed at which the monofilaments are laid down, etc.
- the monofilaments of this web 71 each have a bilobal cross-section.
- the dimensions of the bilobal cross-section are not known to be critical, provided that the basic features of such cross-section are present. That is, the cross-section of the monofilaments includes a substantially rectangular portion which has at each of its furthest separated ends an enlarged portion which typically is substantially circular.
- the monofilaments are drawn after being extruded through the spinneret plate 41. As a result, they typically have dimensions less than that of the orifices 42. The amount of this reduction will depend on factors such as the specific polymer extruded, the rate of quenching the monofilaments, the drawing force applied to the monofilaments, etc.
- the monofilaments typically end up with a cross-section length of between about 30 and about 60 microns. Most preferably, the cross-section length is about 40 microns, although this will vary depending on the desired properties of the nonwoven web.
- FIG. 8 is an illustration similar to that of FIG. 7 with the exception that the monofilaments shown have the Y-shaped cross-section. As mentioned, in the most preferred embodiment, the polyethylene nonwoven web would have this type of monofilaments.
- FIG. 9 is a cross-section through a disposable diaper 91.
- the nonwoven liner 92 is positioned on the side of the diaper 91 which will be placed next to the infant's body.
- the liner 92 consists of two layers 93 and 94.
- the bodyside layer 93 comprises polypropylene monofilaments with the bilobal cross-section
- the other layer 94 comprises polyethylene monofilaments with the Y-shaped cross-section.
- the layer 94 can comprise bilobal or cylindrical monofilaments.
- the major portion of the diaper consists of a layer 95 of an absorbent material such as fluffed cellulose pulp. Naturally, this layer 95 is intended to absorb moisture.
- a moisture impermeable layer 96 is included.
- the liner 92 An important property of the liner 92 is its softness. In particular, it is important for the liner 92 to be both extremely pliable as well as soft to the touch in consideration of the infant's comfort. The present inventor was somewhat surprised to observe that a nonwoven liner made with nonwoven webs of polypropylene and polyethylene exhibited remarkably improved softness over the prior art nonwoven liners.
- Smeltnik Stiffness Test One test which the inventor has used to evaluate the softness of nonwoven fabrics is called the "Smeltnik Stiffness Test".
- a piece of nonwoven fabric is placed on top of an open cylinder.
- a hemispherical probe with a diameter slightly less than the inside diameter of the cylinder is then dropped from a standard height to thereby push the nonwoven fabric down into the cylinder.
- the distance that the probe travels into the cylinder is then measured and recorded as an indication of the softness, i.e. pliability or drapability of the fabric.
- Another aspect of softness which is important particularly in diaper liners is the "hand" or softness to the touch. While a specific test for this property is not presently available to the inventor, he as well as others have observed an increased softness to the touch of the nonwoven fabric with layered polyethylene and polypropylene webs.
- tensile strength i.e. the resistance to tearing.
- This property has been measured by the present inventor on a device which grips a piece of a nonwoven fabric in a pair of jaws, and the pulls it apart. The force needed to break the fabric is recorded as the grab tensile strength. This test is performed either with the fabric oriented in the jaws so that the force is applied parallel to the direction in which the fabric was laid down (machine direction, MD), or with the fabric oriented so that the force is applied perpendicular to the direction in which the web was laid down (cross direction, CD). All of the values for tensile strength reported herein refer to machine direction (MD) strengths.
- the inventor was pleased to observe that the nonwoven fabrics which had one layer with polypropylene monofilaments and another layer with polyethylene monofilaments showed good tensile strength. While not wishing to be bound by any particular theory, it is currently believed that this good tensile strength results from the combination of the polyethylene web with the polypropylene web. Also, as mentioned above, the tensile strength of the multilayer fabric is increased when the first laid down web has a higher bonding area percentage. It is also believed that the tensile strength is improved when a bilobal web and Y-shaped web are used in a multilayer fabric, possibly due to the increased contact area for thermal bonding.
- Yet another property which is particularly important when the web is used as a liner for a disposable diaper is the wettability of the liner.
- the liner be at least partially wettable in order to facilitate passage of the moisture through to the absorbent layer.
- bodyside which is less wettable than the "transfer" layer, i.e. the layer next to the absorbent material. In this way, moisture flows more easily through to the absorbent material than it flows back to the wearer.
- Both polypropylene and polyethylene are completely hydrophobic. As a result, it is desirable to take steps to increase the wettability of nonwoven webs made with these polymers.
- wettability can be increased by the addition of wetting agents such as surfactants.
- wetting agents such as surfactants.
- cationic, anionic, and nonionic surfactants may be added to materials to thereby make the material wettable.
- the polypropylene monofilaments are made wettable by adding a nonionic surfactant to the monofilaments. This can be done by mixing the surfactant with the polymer before it is extruded, i.e. "internal addition” .
- the wetting agent can be mixed with the polymer in an amount of up to about 5 percent by weight of the polymer.
- An advantage of the present invention is that it is possible to produce the described wettability gradient by adding the desired amount of wetting agent to the polymer which will go into the nonwoven web of the transfer layer.
- the web of the bodyside layer can either have no wetting agent, less wetting agent, or a less effective wetting agent added.
- Another advantage of the present invention is the fact that when adding the wetting agent internally to the polyethylene monofilaments, there is no need to subsequently heat the filaments to effect migration of the surfactant to the surface. This is advantageous when the polyethylene web is used as the transfer layer because the heating step can be eliminated.
- the wetting agent can be applied in a solution to the nonwoven web after it is formed, i.e. "exterior application”.
- This application can be carried out by dipping either each nonwoven web or both nonwoven webs together into a solution of the wetting agent, after which the solvent is evaporated to thereby leave an amount of the surfactant on the surface of the web or webs. It may also be desirable to heat the web to more quickly evaporate the solvent.
- the solution of surfactant may be applied to the web by spraying, or by rotogravure printing. In both cases, the evaporation of the solvent may be hastened by heating the web. Naturally, it is desirable for the evaporation to be complete before the web is wrapped on the wind up roll.
- the surfactant is applied so as to end up with up to about 5 percent by weight of the web.
- the wetting agent it is preferable to selectively apply the wetting agent to produce a wettability gradient. This can be done by applying the wetting agent to either one or both of the webs before they are joined. Alternatively, it can be done by use of different materials in the webs so that the wetting agent is more effective when applied to the transfer layer than it is when applied to the bodyside layer.
- Still another property which is important in a nonwoven fabric for a liner is its opacity or hiding power. It is a known practice in the art to add minor amounts of titanium dioxide to the polymer melt in order to increase the opacity of nonwoven fabrics. The inventor has found that the nonwoven fabric produced according to the present invention has an increased opacity, probably due to the increased surface area of the bilobal and/or Y-shaped monofilaments which could reflect more light.
- FIG. 10 shows a cross-section through a typical catamenial device such as a feminine napkin 101.
- the pad consists of a nonwoven wrap 102 which surrounds an absorbent portion 105.
- the wrap consists of two nonwoven webs 103 and 104.
- Most of the properties which are desirable for the nonwoven liner for a disposable diaper are likewise desirable to have in the nonwoven wrap for a catamenial device.
- the present invention provides a nonwoven web with increased softness, i.e. both drapability and smoothness to the touch.
- EXAMPLE 1 was run on an apparatus such as that described above in connection with FIG. 1.
- the web width was 12 inches and the first spinneret plate had 50 orifices per inch of width and the second spinneret plate had 50 orifices per inch of width.
- Polypropylene was extruded through the first spinneret at a melt temperature of about 460° F. through bilobal shaped orifices.
- Polyethylene was extruded through the second spinneret at a melt temperature of about 375° F. through Y-shaped orifices.
- the basis weight of the first laid down web was 0.4 oz./square yard.
- the basis weight of the second laid down web was 0.6 oz./square yard.
- the two webs weres bonded together with the pattern shown in FIG. 11c having a bonding area about 24% of the web area.
- the temperature of the bonding rolls was approximately 225° F.
- the resultant fabric had a Smeltnik Stiffness Test (SST) value of 325 mm.
- SST Smeltnik Stiffness Test
- the fabric of this example was measured for grab tensile strength by placing a piece of the web between oppositely pulling grippers. The force needed to tear the web was in the direction at which it was laid down (machine direction or MD) was 9.5 lbs.
- EXAMPLE 2 was run similarly to Example 1 except that the bonding temperature was 235° F.
- the resultant fabric had an SST valve of 80 mm, and an MD tensile strength of 10.5 lbs.
- EXAMPLE 3 was run similarly to Example 1 except that the polypropylene and polyethylene webs each had a basis weight of 0.5 oz/square yard. The two webs were bonded together with a bond area of about 9%.
- the embossing roll was maintained at a temperature of 230° F. and the anvil or smooth roll was kept at a temperature of about 265° F.
- the resultant fabric had SST value of 390 mm, and an MD tensile strength of 4 lbs.
- EXAMPLE 4 was run similarly to Example 3 except that the layers and bonding temperatures were switched, i.e. the polyethylene was laid down first and the polypropylene was laid down second. Also, the embossing roll was at 265° F. and the anvil roll was at 230° F. The resultant fabric had a SST value of 550 mm (likely due to the fact that the polyethylene web which is more slippery was on the bottom and next to the cylinder), and an MD tensile strength of 5 lbs.
- EXAMPLE 5 was run similarly to Example 3 except that the webs were bonded together with a bond area of about 6%.
- the resultant fabric had a SST value of 550 mm, and an MD tensile strength of 3 lbs.
- EXAMPLE 6 was run similarly to Example 4 except that the polypropylene web had monofilaments with a Y-shaped cross-section, and the webs were bonded with a bond area of about 22.5%.
- the resultant fabric had a SST value of 145 mm, and an MD tensile strength of 7 lbs.
- EXAMPLE 7 was run similarly to Example 1 except that the polypropylene layer was bonded at about 270° F. before the polyethylene was laid on top of it with a bond pattern of about 22.5%.
- the resultant fabric had a SST value of 185 mm, and an MD tensile strength of 7 lbs.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Vascular Medicine (AREA)
- Epidemiology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Textile Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Nonwoven Fabrics (AREA)
- Laminated Bodies (AREA)
Abstract
Description
Claims (24)
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/785,368 US4668566A (en) | 1985-10-07 | 1985-10-07 | Multilayer nonwoven fabric made with poly-propylene and polyethylene |
AU63499/86A AU588057B2 (en) | 1985-10-07 | 1986-10-03 | Multilayer nonwoven fabric |
FR868613891A FR2588285B1 (en) | 1985-10-07 | 1986-10-06 | MULTI-LAYERED NON-WOVEN TEXTILE |
CA 519897 CA1281537C (en) | 1985-10-07 | 1986-10-06 | Multilayer nonwoven fabric made with polypropylene and polyethylene |
SE8604228A SE8604228L (en) | 1985-10-07 | 1986-10-06 | MULTI-LIGHT FIBER DOUBLE, FOR EXAMPLE FOR MANUFACTURING BLOWS AND FABRICS, AND PROCEDURE FOR MANUFACTURING THEM |
KR1019860008340A KR930010351B1 (en) | 1985-10-07 | 1986-10-06 | Multilayer nonwoven fabric |
JP61238982A JP2541524B2 (en) | 1985-10-07 | 1986-10-07 | Multilayer nonwoven |
DE3634139A DE3634139C2 (en) | 1985-10-07 | 1986-10-07 | Multi-layer nonwoven |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/785,368 US4668566A (en) | 1985-10-07 | 1985-10-07 | Multilayer nonwoven fabric made with poly-propylene and polyethylene |
Publications (1)
Publication Number | Publication Date |
---|---|
US4668566A true US4668566A (en) | 1987-05-26 |
Family
ID=25135278
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US06/785,368 Expired - Lifetime US4668566A (en) | 1985-10-07 | 1985-10-07 | Multilayer nonwoven fabric made with poly-propylene and polyethylene |
Country Status (2)
Country | Link |
---|---|
US (1) | US4668566A (en) |
CA (1) | CA1281537C (en) |
Cited By (164)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4810571A (en) * | 1987-08-20 | 1989-03-07 | Kimberly-Clark Corporation | Synthetic sheet composite |
US4828556A (en) * | 1986-10-31 | 1989-05-09 | Kimberly-Clark Corporation | Breathable, multilayered, clothlike barrier |
US4981747A (en) * | 1988-09-23 | 1991-01-01 | Kimberly-Clark Corporation | Composite elastic material including a reversibly necked material |
US5080951A (en) * | 1989-08-03 | 1992-01-14 | Guthrie David W | Nonwoven fabric |
US5114781A (en) * | 1989-12-15 | 1992-05-19 | Kimberly-Clark Corporation | Multi-direction stretch composite elastic material including a reversibly necked material |
US5116662A (en) * | 1989-12-15 | 1992-05-26 | Kimberly-Clark Corporation | Multi-direction stretch composite elastic material |
US5145727A (en) * | 1990-11-26 | 1992-09-08 | Kimberly-Clark Corporation | Multilayer nonwoven composite structure |
US5149576A (en) * | 1990-11-26 | 1992-09-22 | Kimberly-Clark Corporation | Multilayer nonwoven laminiferous structure |
US5200248A (en) * | 1990-02-20 | 1993-04-06 | The Procter & Gamble Company | Open capillary channel structures, improved process for making capillary channel structures, and extrusion die for use therein |
US5226992A (en) * | 1988-09-23 | 1993-07-13 | Kimberly-Clark Corporation | Process for forming a composite elastic necked-bonded material |
WO1993013940A1 (en) * | 1992-01-21 | 1993-07-22 | International Paper Company | Recyclable polymeric synthetic paper and method for its manufacture |
US5242644A (en) * | 1990-02-20 | 1993-09-07 | The Procter & Gamble Company | Process for making capillary channel structures and extrusion die for use therein |
US5273596A (en) * | 1990-03-21 | 1993-12-28 | Fiberweb North America, Inc. | Nonwoven fabric for diaper top sheet and method of making the same |
US5277976A (en) * | 1991-10-07 | 1994-01-11 | Minnesota Mining And Manufacturing Company | Oriented profile fibers |
US5298097A (en) * | 1992-03-31 | 1994-03-29 | Neuberger S.P.A. | Apparatus and method for thermally bonding a textile web |
US5302446A (en) * | 1992-03-30 | 1994-04-12 | International Paper Company | Two-sided skin care wipe material and method for its manufacture |
US5314743A (en) * | 1990-12-17 | 1994-05-24 | Kimberly-Clark Corporation | Nonwoven web containing shaped fibers |
AU651589B2 (en) * | 1990-05-07 | 1994-07-28 | Peaudouce | Method for continuously producing sanitary items such as nappies, and sanitary article thereby produced |
US5336562A (en) * | 1992-02-28 | 1994-08-09 | Pavco S.A. | Polyolefin yarns with good performance for rugs and carpets and method of producing the same |
US5342336A (en) * | 1991-12-19 | 1994-08-30 | Kimberly-Clark Corporation | Absorbent structure for masking and distributing a liquid |
US5368926A (en) * | 1992-09-10 | 1994-11-29 | The Procter & Gamble Company | Fluid accepting, transporting, and retaining structure |
US5399422A (en) * | 1989-12-23 | 1995-03-21 | Akzo N.V. | Laminate |
US5514470A (en) * | 1988-09-23 | 1996-05-07 | Kimberly-Clark Corporation | Composite elastic necked-bonded material |
US5536555A (en) * | 1993-12-17 | 1996-07-16 | Kimberly-Clark Corporation | Liquid permeable, quilted film laminates |
US5540979A (en) * | 1994-05-16 | 1996-07-30 | Yahiaoui; Ali | Porous non-woven bovine blood-oxalate absorbent structure |
US5616384A (en) * | 1990-03-05 | 1997-04-01 | International Paper Company | Recyclable polymeric label paper |
US5628736A (en) * | 1994-04-29 | 1997-05-13 | The Procter & Gamble Company | Resilient fluid transporting network for use in absorbent articles |
DE29706968U1 (en) * | 1996-12-23 | 1997-06-19 | Asota Ges. M.B.H, Linz | Two-layer needle punch |
US5643240A (en) * | 1993-12-30 | 1997-07-01 | Kimberly-Clark Corporation | Apertured film/nonwoven composite for personal care absorbent articles and the like |
EP0783006A2 (en) | 1991-10-15 | 1997-07-09 | The Dow Chemical Company | Process for the preparation of ethylene polymers |
US5652051A (en) * | 1995-02-27 | 1997-07-29 | Kimberly-Clark Worldwide, Inc. | Nonwoven fabric from polymers containing particular types of copolymers and having an aesthetically pleasing hand |
EP0820108A1 (en) * | 1996-07-18 | 1998-01-21 | Saft | Separator for accumulator with spirally wounded electrodes and alcaline electrolyte |
US5723159A (en) * | 1989-04-04 | 1998-03-03 | Eastman Chemical Company | Spinnerets for making fibers capable of spontaneously transporting fluids |
WO1998058110A1 (en) * | 1997-06-18 | 1998-12-23 | Kimberly-Clark Worldwide, Inc. | Method of making heteroconstituent and layered nonwoven materials |
GB2329191A (en) * | 1996-09-16 | 1999-03-17 | Patrick Yeh | Fabric for moisture management |
US5910136A (en) * | 1996-12-30 | 1999-06-08 | Kimberly-Clark Worldwide, Inc. | Oriented polymeric microporous films with flexible polyolefins |
US5928770A (en) * | 1998-01-08 | 1999-07-27 | Quinones; Victor Manuel | Tear/puncture resistant material |
US5947944A (en) * | 1996-12-30 | 1999-09-07 | Kimberly-Clark Worldwide, Inc. | Stretched-thinned films comprising low crystallinity polymers and laminates thereof |
US5958805A (en) * | 1998-04-17 | 1999-09-28 | Quinones; Victor Manuel | Tear/puncture resistant semi-laminate material |
US6015617A (en) * | 1997-06-20 | 2000-01-18 | The Dow Chemical Company | Ethylene polymer having improving sealing performance and articles fabricated from the same |
US6015764A (en) * | 1996-12-27 | 2000-01-18 | Kimberly-Clark Worldwide, Inc. | Microporous elastomeric film/nonwoven breathable laminate and method for making the same |
US6028018A (en) * | 1996-07-24 | 2000-02-22 | Kimberly-Clark Worldwide, Inc. | Wet wipes with improved softness |
US6037281A (en) * | 1996-12-27 | 2000-03-14 | Kimberly-Clark Worldwide, Inc. | Cloth-like, liquid-impervious, breathable composite barrier fabric |
US6111163A (en) * | 1996-12-27 | 2000-08-29 | Kimberly-Clark Worldwide, Inc. | Elastomeric film and method for making the same |
US6136937A (en) * | 1991-10-15 | 2000-10-24 | The Dow Chemical Company | Elastic substantially linear ethylene polymers |
US6139941A (en) * | 1996-12-06 | 2000-10-31 | Bba Nonwovens Simpsonville, Inc. | Nonwoven web laminate having relatively hydrophilic zone and related method for its manufacture |
US6140442A (en) * | 1991-10-15 | 2000-10-31 | The Dow Chemical Company | Elastic fibers, fabrics and articles fabricated therefrom |
US6171443B1 (en) | 1990-03-05 | 2001-01-09 | Polyweave International, Llc | Recyclable polymeric synthetic paper and method for its manufacture |
US6194532B1 (en) | 1991-10-15 | 2001-02-27 | The Dow Chemical Company | Elastic fibers |
EP1078621A2 (en) * | 1999-08-27 | 2001-02-28 | Uni-Charm Corporation | Absorptive article |
US6242371B1 (en) | 1998-04-17 | 2001-06-05 | Victor Manuel Quinones | Tear/puncture resistant semi-laminate material |
US20020094741A1 (en) * | 2000-03-03 | 2002-07-18 | Thomas Scott Carlyle | Method of making continuous filament web with statistical filament distribution |
US20020132923A1 (en) * | 1998-05-18 | 2002-09-19 | The Dow Chemical Company | Articles having elevated temperature elasticity made from irradiated and crosslinked ethylene polymers and method for making the same |
US6482896B2 (en) | 1998-12-08 | 2002-11-19 | Dow Global Technologies Inc. | Polypropylene/ethylene polymer fiber having improved bond performance and composition for making the same |
US20030018310A1 (en) * | 1999-12-22 | 2003-01-23 | Nordson Corporation | Absorbent composite product and process and apparatus for manufacture thereof |
US6545088B1 (en) | 1991-12-30 | 2003-04-08 | Dow Global Technologies Inc. | Metallocene-catalyzed process for the manufacture of EP and EPDM polymers |
US20030087086A1 (en) * | 1997-03-07 | 2003-05-08 | Koslow Evan E. | Composite for removing moisture, liquid and odors with anti-microbial capability |
US20030104748A1 (en) * | 2001-12-03 | 2003-06-05 | Brown Kurtis Lee | Helically crimped, shaped, single polymer fibers and articles made therefrom |
US20030124303A1 (en) * | 2001-07-05 | 2003-07-03 | Price Cindy L. | Refastenable absorbent garment |
US20030149180A1 (en) * | 2001-08-17 | 2003-08-07 | Dow Global Technologies Inc. | Bimodal polyethylene composition and articles made therefrom |
US20030176611A1 (en) * | 2001-11-06 | 2003-09-18 | Stevens James C. | Isotactic propylene copolymer fibers, their preparation and use |
US6627789B1 (en) | 1999-10-14 | 2003-09-30 | Kimberly-Clark Worldwide, Inc. | Personal care product with fluid partitioning |
US20030204017A1 (en) * | 2001-11-06 | 2003-10-30 | Stevens James C. | Isotactic propylene copolymers, their preparation and use |
US20040018795A1 (en) * | 2000-06-12 | 2004-01-29 | Helen Viazmensky | Spunbonded heat seal material |
US6692541B2 (en) | 2000-05-16 | 2004-02-17 | Polymer Group, Inc. | Method of making nonwoven fabric comprising splittable fibers |
US20040038022A1 (en) * | 2000-03-27 | 2004-02-26 | Maugans Rexford A. | Method of making a polypropylene fabric having high strain rate elongation and method of using the same |
US6709742B2 (en) | 1998-05-18 | 2004-03-23 | Dow Global Technologies Inc. | Crosslinked elastic fibers |
US20040063871A1 (en) * | 2002-09-27 | 2004-04-01 | Parrish John R. | Control of resin properties |
US6723892B1 (en) | 1999-10-14 | 2004-04-20 | Kimberly-Clark Worldwide, Inc. | Personal care products having reduced leakage |
US6723398B1 (en) | 1999-11-01 | 2004-04-20 | Dow Global Technologies Inc. | Polymer blend and fabricated article made from diverse ethylene interpolymers |
US20040217514A1 (en) * | 2001-08-22 | 2004-11-04 | Charles Kannankeril | Integrated process for making inflatable article |
US20040236026A1 (en) * | 1998-07-01 | 2004-11-25 | Exxonmobil Chemical Patents Inc. | Elastic blends comprising crystalline polymer and crystallizable polymers of propylene |
US20040236042A1 (en) * | 1997-08-12 | 2004-11-25 | Sudhin Datta | Propylene ethylene polymers and production process |
US20050039846A1 (en) * | 1999-05-05 | 2005-02-24 | Schmidt Bradley G. | Method for embossing air-laid webs using laser engraved heated hard rubber embossing rolls |
US20050113540A1 (en) * | 2002-03-12 | 2005-05-26 | Weaver John D. | Linear ethylene/vinyl alcohol and ethylene/vinyl acetate polymers and process for making same |
US6903034B1 (en) | 1999-04-07 | 2005-06-07 | Polymer Group, Inc. | Hydroentanglement of continuous polymer filaments |
US20050137343A1 (en) * | 1997-08-12 | 2005-06-23 | Sudhin Datta | Thermoplastic polymer blends of isotactic polypropylene and alpha-olefin/propylene copolymers |
US20050215155A1 (en) * | 2004-03-23 | 2005-09-29 | The Procter & Gamble Company | Absorbent article with improved opacity |
US20050221709A1 (en) * | 2004-03-19 | 2005-10-06 | Jordan Joy F | Extensible and elastic conjugate fibers and webs having a nontacky feel |
US20050244638A1 (en) * | 2004-03-19 | 2005-11-03 | Chang Andy C | Propylene-based copolymers, a method of making the fibers and articles made from the fibers |
US20060046048A1 (en) * | 2003-02-04 | 2006-03-02 | Mridula Kapur | Film layers made from polymer blends |
US7025914B2 (en) | 2000-12-22 | 2006-04-11 | Kimberly-Clark Worldwide, Inc. | Multilayer approach to producing homofilament crimp spunbond |
US20060104857A1 (en) * | 2004-11-15 | 2006-05-18 | Pigott James M | Sterilization wrap with indicia for placement of medical instrumentation or trays |
US20060122334A1 (en) * | 1997-08-12 | 2006-06-08 | Cozewith Charles C | Blends made from propylene ethylene polymers |
US20060131777A1 (en) * | 2004-12-17 | 2006-06-22 | Pascal Debyser | Patterning on SMS product |
WO2006102149A2 (en) | 2005-03-17 | 2006-09-28 | Dow Global Technologies Inc. | Fibers made from copolymers of ethylene/alpha-olefins |
WO2006101927A2 (en) | 2005-03-17 | 2006-09-28 | Dow Global Technologies Inc. | Fibers made from copolymers of propylene/alpha-olefins |
US20060234049A1 (en) * | 2003-01-30 | 2006-10-19 | Van Dun Jozef J I | Fibers formed from immiscible polymer blends |
US20070093603A1 (en) * | 2003-06-10 | 2007-04-26 | Wooster Jeffrey J | Film layers made from ethylene polymer blends |
US20070126141A1 (en) * | 1999-04-27 | 2007-06-07 | Georgia-Pacific Consumer Products Lp | Air-Laid Absorbent Sheet With Sinuate Emboss |
US20070172685A1 (en) * | 2004-03-19 | 2007-07-26 | Mridula Kapur | Film layers made from polymer formulations |
US20070181242A1 (en) * | 2003-03-10 | 2007-08-09 | Polymer Group, Inc. | Nonwoven fabric having improved performance |
US20070244276A1 (en) * | 2001-04-12 | 2007-10-18 | Sudhin Datta | Propylene ethylene polymers and production process |
US20070287798A1 (en) * | 2004-11-18 | 2007-12-13 | Ineos Manufacturing Belgium Nv | Use Of Anti-Oxidant Compounds For Muscle Recovery |
US20080081854A1 (en) * | 2006-09-06 | 2008-04-03 | Dow Global Technologies Inc. | Fibers and Knit Fabrics Comprising Olefin Block Interpolymers |
US20080119621A1 (en) * | 2004-10-28 | 2008-05-22 | Dow Global Technologies Inc. | Method Of Controlling A Polymerization Reactor |
US20080138599A1 (en) * | 2006-11-30 | 2008-06-12 | Dow Global Technologies Inc. | Olefin block compositions for stretch fabrics with wrinkle resistance |
US20080171167A1 (en) * | 2007-01-16 | 2008-07-17 | Dow Global Technologies Inc. | Cone dyed yarns of olefin block compositions |
US20080177000A1 (en) * | 2004-01-22 | 2008-07-24 | Dongchan Ahn | Composition Having Improved Adherence With an Addition-Curable Material and Composite Article Incorporating the Composition |
US20080176473A1 (en) * | 2006-11-30 | 2008-07-24 | Dow Global Technologies Inc. | Molded fabric articles of olefin block interpolymers |
WO2008089220A2 (en) | 2007-01-16 | 2008-07-24 | Dow Global Technologies Inc. | Colorfast fabrics and garments of olefin block compositions |
US20080182473A1 (en) * | 2007-01-16 | 2008-07-31 | Dow Global Technologies Inc. | Stretch fabrics and garments of olefin block polymers |
US7425517B2 (en) | 2003-07-25 | 2008-09-16 | Kimberly-Clark Worldwide, Inc. | Nonwoven fabric with abrasion resistance and reduced surface fuzziness |
US20080262175A1 (en) * | 2005-03-17 | 2008-10-23 | Arriola Daniel J | Catalyst Composition Comprising Shuttling Agent for Regio-Irregular Multi-Block Copolymer Formation |
US20080275189A1 (en) * | 2005-09-15 | 2008-11-06 | Dow Global Technologies Inc. | Control of Polymer Architecture and Molecular Weight Distribution Via Multi-Centered Shuttling Agent |
US20080299857A1 (en) * | 2006-11-30 | 2008-12-04 | Dow Global Technologies Inc. | Olefin block compositions for heavy weight stretch fabrics |
US20090053460A1 (en) * | 2007-05-02 | 2009-02-26 | Carl Freudenberg Kg | Method for producing a ductile tufted product, a ductile tufted product, particularly a ductile tufted top carpet layer, particularly for the automobile interior area |
US20090068427A1 (en) * | 2005-10-26 | 2009-03-12 | Dow Global Technologies Inc. | Multi-layer, elastic articles |
US20090068436A1 (en) * | 2007-07-09 | 2009-03-12 | Dow Global Technologies Inc. | Olefin block interpolymer composition suitable for fibers |
US20090299116A1 (en) * | 2006-05-17 | 2009-12-03 | Konze Wayde V | Polyolefin solution polymerization process and polymer |
US20100112273A1 (en) * | 2006-10-30 | 2010-05-06 | Roberto Pedoja | Method for manufacturing soft, resistant and bulky nonwoven and nonwoven thus obtained |
EP2218751A1 (en) | 2004-12-17 | 2010-08-18 | Dow Global Technologies Inc. | Rheology modified polyethylene compositions |
EP2221329A1 (en) | 2004-03-17 | 2010-08-25 | Dow Global Technologies Inc. | Catalyst composition comprising shuttling agent for ethylene multi-block copolymer formation |
EP2223961A1 (en) | 2006-10-23 | 2010-09-01 | Dow Global Technologies Inc. | Methods of making polyethylene compositions |
WO2010117792A2 (en) | 2009-03-31 | 2010-10-14 | Dow Global Technologies Inc. | Heterogeneous ethylene alpha0olefin interpolymer |
US20100285253A1 (en) * | 2007-11-19 | 2010-11-11 | Hughes Morgan M | Long Chain Branched Propylene-Alpha-Olefin Copolymers |
EP2256160A2 (en) | 2003-05-12 | 2010-12-01 | Dow Global Technologies Inc. | Polymer composition and process to manufacture high molecular weight-high density polyethylene and film thereform |
WO2010141557A1 (en) | 2009-06-05 | 2010-12-09 | Dow Global Technologies Inc. | Process to make long chain branched (lcb), block, or interconnected copolymers of ethylene |
US7858707B2 (en) | 2005-09-15 | 2010-12-28 | Dow Global Technologies Inc. | Catalytic olefin block copolymers via polymerizable shuttling agent |
WO2011002998A1 (en) | 2009-07-01 | 2011-01-06 | Dow Global Technologies Inc. | Ethylenic polymer and its use |
WO2011002986A1 (en) | 2009-07-01 | 2011-01-06 | Dow Global Technologies Inc. | Ethylenic polymer and its use |
WO2011002868A2 (en) | 2009-07-01 | 2011-01-06 | Dow Global Technologies Inc. | Ethylene-based polymer compositions |
WO2011016991A2 (en) | 2009-07-29 | 2011-02-10 | Dow Global Technologies Inc. | Dual- or multi-headed chain shuttling agents and their use for the preparation of block copolymers |
WO2011032174A1 (en) | 2009-09-14 | 2011-03-17 | Dow Global Technologies Inc. | Polymers comprising units derived from ethylene and poly(alkoxide) |
WO2011032172A1 (en) | 2009-09-14 | 2011-03-17 | Dow Global Technologies Inc. | Polymers comprising units derived from ethylene and siloxane |
EP2327727A1 (en) | 2004-03-17 | 2011-06-01 | Dow Global Technologies LLC | Catalyst composition comprising shuttling agent for ethylene copolymer formation |
US20110130271A1 (en) * | 2008-08-06 | 2011-06-02 | Union Carbide Chemicals & Plastics Technology Llc | Ziegler-natta catalyst compositions for producing polyethylenes with a high molecular weight tail and methods of making the same |
US7955539B2 (en) | 2002-03-11 | 2011-06-07 | Dow Global Technologies Llc | Reversible, heat-set, elastic fibers, and method of making and article made from same |
WO2011075465A1 (en) | 2009-12-18 | 2011-06-23 | Dow Global Technology Llc | Polymerization process to make low density polyethylene |
EP2357203A2 (en) | 2004-03-17 | 2011-08-17 | Dow Global Technologies LLC | Catalyst composition comprising shuttling agent for higher olefin multi-block copolymer formation |
EP2357206A2 (en) | 2005-03-17 | 2011-08-17 | Dow Global Technologies LLC | Catalyst composition comprising shuttling agent for tactic/atactic multi-block copolymer formation |
WO2012005974A1 (en) | 2010-07-06 | 2012-01-12 | Dow Global Technologies Llc | Ethylene polymer blends and oriented articles with improved shrink resistance |
WO2012024005A2 (en) | 2010-07-09 | 2012-02-23 | Luna Innovations Incorporated | Coating systems capable of forming ambiently cured highly durable hydrophobic coatings on substrates |
WO2012044504A1 (en) | 2010-09-30 | 2012-04-05 | Dow Global Technologies Llc | Polymerization process to make low density polyethylene |
EP2471856A1 (en) | 2010-12-30 | 2012-07-04 | Dow Global Technologies LLC | Polyolefin compositions |
EP2495268A1 (en) | 2007-07-16 | 2012-09-05 | Dow Global Technologies LLC | Compositions and articles |
US8629214B2 (en) | 2009-07-01 | 2014-01-14 | Dow Global Technologies Llc. | Ethylene-based polymer compositions for use as a blend component in shrinkage film applications |
US8729186B2 (en) | 2009-12-18 | 2014-05-20 | Dow Global Technologies Llc | Polymerization process to make low density polyethylene |
WO2014092623A1 (en) * | 2012-12-13 | 2014-06-19 | Sca Hygiene Products Ab | Hygiene product |
US8829115B2 (en) | 2009-07-01 | 2014-09-09 | Dow Global Technologies Llc | Ethylene-based polymer composition |
US8871876B2 (en) | 2010-09-30 | 2014-10-28 | Dow Global Technologies Llc | Ethylene-based interpolymers and processes to make the same |
US8987385B2 (en) | 2009-09-14 | 2015-03-24 | Dow Global Technologies Llc | Interconnected copolymers of ethylene in combination with one other polyalkene |
US9410009B2 (en) | 2005-03-17 | 2016-08-09 | Dow Global Technologies Llc | Catalyst composition comprising shuttling agent for tactic/ atactic multi-block copolymer formation |
CN107073162A (en) * | 2014-11-18 | 2017-08-18 | 金伯利-克拉克环球有限公司 | Soft and durable nonwoven web |
EP3232279A1 (en) | 2006-09-21 | 2017-10-18 | Union Carbide Chemicals & Plastics Technology LLC | Method of controlling properties in multimodal systems |
WO2017186935A1 (en) | 2016-04-29 | 2017-11-02 | Beaulieu International Group Nv | Bi-component staple or short-cut trilobal fibres and their uses |
EP3473673A1 (en) | 2010-06-14 | 2019-04-24 | Dow Global Technologies, LLC | Fiber comprising ethylene-based polymer compositions |
US10349799B2 (en) | 2016-09-30 | 2019-07-16 | Kimberly-Clark Worldwide, Inc. | Cleansing article having printed texture |
CN110191982A (en) * | 2017-01-31 | 2019-08-30 | 宝洁公司 | Form non-woven cloth |
USD871082S1 (en) * | 2017-06-15 | 2019-12-31 | Kimberly-Clark Worldwide, Inc. | Wiping article |
WO2020140067A1 (en) | 2018-12-28 | 2020-07-02 | Dow Global Technologies Llc | Curable compositions comprising unsaturated polyolefins |
WO2020140058A1 (en) | 2018-12-28 | 2020-07-02 | Dow Global Technologies Llc | Telechelic polyolefins and processes for preparing the same |
WO2020140061A1 (en) | 2018-12-28 | 2020-07-02 | Dow Global Technologies Llc | Curable compositions comprising telechelic polyolefins |
US10773239B2 (en) | 2016-12-16 | 2020-09-15 | Flow Dry Technology, Inc. | Solid form adsorbent |
USD906692S1 (en) * | 2018-09-13 | 2021-01-05 | Fitesa Germany Gmbh | Sheet material |
US11110013B2 (en) * | 2014-09-10 | 2021-09-07 | The Procter & Gamble Company | Nonwoven webs with hydrophobic and hydrophilic layers |
CN113827402A (en) * | 2021-09-06 | 2021-12-24 | 安徽舒源妇幼用品有限公司 | Antibacterial breathable paper diaper for old people and preparation method thereof |
US11324641B2 (en) | 2017-01-31 | 2022-05-10 | The Procter & Gamble Company | Shaped nonwoven |
CN115337148A (en) * | 2022-08-19 | 2022-11-15 | 露乐健康科技股份有限公司 | Absorption core body and sanitary product |
US11560658B2 (en) | 2017-08-16 | 2023-01-24 | Kimberly-Clark Worldwide, Inc. | Method of making a nonwoven web |
US11668033B2 (en) * | 2016-06-13 | 2023-06-06 | Borealis Ag | High quality melt-blown webs with improved barrier properties |
EP4234594A1 (en) | 2018-12-28 | 2023-08-30 | Dow Global Technologies LLC | Curable compositions comprising unsaturated polyolefins |
USD998350S1 (en) * | 2022-04-04 | 2023-09-12 | Kimberly-Clark Worldwide, Inc. | Paper sheet |
USD1005696S1 (en) * | 2020-04-27 | 2023-11-28 | Kimberly-Clark Worldwide, Inc. | Absorbent wipe |
Citations (85)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US31599A (en) * | 1861-03-05 | Apparatus foe vulcanizing caoutchouc | ||
US1786669A (en) * | 1928-04-23 | 1930-12-30 | Filter Fabrics Inc | Process of and apparatus for the dry disintegration and deposition of fibers |
US2121802A (en) * | 1935-08-30 | 1938-06-28 | Owens Illinois Glass Co | Method and apparatus for strengthening fibers |
US2188332A (en) * | 1937-02-15 | 1940-01-30 | Du Pont | Flexible coated article |
US2331945A (en) * | 1938-02-04 | 1943-10-19 | Pazsiczky Gedeon Von | Production of curled mineral fibers |
US2336743A (en) * | 1941-10-13 | 1943-12-14 | Fred W Manning | Method and apparatus for spinning unwoven fabrics |
US2336745A (en) * | 1941-12-20 | 1943-12-14 | Fred W Manning | Method and apparatus for making unwoven and composite fabrics |
US2411660A (en) * | 1943-05-22 | 1946-11-26 | Fred W Manning | Method of making filter cartridges, abrasive sheets, scouring pads, and the like |
US2437263A (en) * | 1948-03-09 | Fred w | ||
US2456922A (en) * | 1946-03-21 | 1948-12-21 | Mohawk Carpet Mills Inc | Fabric |
US2508462A (en) * | 1945-03-17 | 1950-05-23 | Union Carbide & Carbon Corp | Method and apparatus for the manufacture of synthetic staple fibers |
US2522527A (en) * | 1946-10-09 | 1950-09-19 | Fred W Manning | Spinning gun for the production of filaments and method of making nonwoven fabrics |
US2604667A (en) * | 1950-08-23 | 1952-07-29 | Du Pont | Yarn process |
US2620853A (en) * | 1946-10-18 | 1952-12-09 | Minnesota Mining & Mfg | Method of making decorative tissues |
US2644779A (en) * | 1948-02-03 | 1953-07-07 | Fred W Manning | Method for the continuous molding of brassieres and other threedimensional articles |
US2688380A (en) * | 1951-07-13 | 1954-09-07 | American Viscose Corp | Filter cartridge |
US2810426A (en) * | 1953-12-24 | 1957-10-22 | American Viscose Corp | Reticulated webs and method and apparatus for their production |
US2825120A (en) * | 1954-05-11 | 1958-03-04 | Eastman Kodak Co | Synthetic filament |
US2861319A (en) * | 1956-12-21 | 1958-11-25 | Du Pont | Intermittent core filaments |
US2945739A (en) * | 1955-06-23 | 1960-07-19 | Du Pont | Process of melt spinning |
US3028623A (en) * | 1958-06-06 | 1962-04-10 | Johns Manville Fiber Glass Inc | Apparatus for producing a low density mat of glass fibers |
US3063454A (en) * | 1959-02-26 | 1962-11-13 | Cleanese Corp Of America | Non-woven products |
US3109220A (en) * | 1960-08-19 | 1963-11-05 | Du Pont | Tetralobal cross-sectioned filaments |
US3109278A (en) * | 1960-08-19 | 1963-11-05 | Du Pont | Multilobal textile filaments having controlled uniform twist and fabrics prepared therefrom |
US3117906A (en) * | 1961-06-20 | 1964-01-14 | Du Pont | Composite filament |
US3154836A (en) * | 1960-10-31 | 1964-11-03 | Owens Corning Fiberglass Corp | Method and apparatus for handling continuous filamentary material |
US3164949A (en) * | 1963-03-22 | 1965-01-12 | Du Pont | Trilobal filamentary yarns |
US3219739A (en) * | 1963-05-27 | 1965-11-23 | Du Pont | Process for preparing convoluted fibers |
US3266969A (en) * | 1962-09-10 | 1966-08-16 | Du Pont | Tufting process and products having tufted structures |
US3297807A (en) * | 1964-08-05 | 1967-01-10 | Schweizerische Viscose | Process for the manufacture of spontaneously crimping composite filaments |
US3303169A (en) * | 1962-01-18 | 1967-02-07 | Du Pont | High-modulus, high-tenacity, lowshrinkage polyamide yarn |
US3314840A (en) * | 1961-08-01 | 1967-04-18 | Celanese Corp | Process and apparatus for producing a non-woven fabric |
US3322607A (en) * | 1964-08-17 | 1967-05-30 | Du Pont | Lubricated polypropylene polyethylene self-bonded nonwoven carpet backing |
US3360421A (en) * | 1963-05-10 | 1967-12-26 | Du Pont | Bonded nonwoven backing material having perforate selvage and carpet made therefrom |
US3366722A (en) * | 1964-07-24 | 1968-01-30 | Chemcell Ltd | Yarn manufacture |
US3379811A (en) * | 1964-02-22 | 1968-04-23 | Freudenberg Carl | Apparatus and process for production of filaments |
US3396071A (en) * | 1963-03-25 | 1968-08-06 | Ici Ltd | Non-woven polypropylene fabrics |
US3402548A (en) * | 1963-02-11 | 1968-09-24 | Eastman Kodak Co | Process for fracturing flat ribbons and the product thereof |
US3420235A (en) * | 1966-07-13 | 1969-01-07 | Johnson & Johnson | Interlabial pad |
US3441468A (en) * | 1964-12-24 | 1969-04-29 | Glanzstoff Ag | Process for the production of non-woven webs |
US3492389A (en) * | 1968-04-26 | 1970-01-27 | Avisun Corp | Technique for producing synthetic bulk yarns |
US3502763A (en) * | 1962-02-03 | 1970-03-24 | Freudenberg Carl Kg | Process of producing non-woven fabric fleece |
US3509009A (en) * | 1966-02-10 | 1970-04-28 | Freudenberg Carl Kg | Non-woven fabric |
US3508390A (en) * | 1968-09-30 | 1970-04-28 | Allied Chem | Modified filament and fabrics produced therefrom |
US3528129A (en) * | 1964-10-24 | 1970-09-15 | Freudenberg Carl Kg | Apparatus for producing nonwoven fleeces |
US3533904A (en) * | 1966-10-19 | 1970-10-13 | Hercules Inc | Composite polypropylene filaments having a high degree of crimp |
US3547763A (en) * | 1967-06-05 | 1970-12-15 | Du Pont | Bicomponent acrylic fiber having modified helical crimp |
US3554854A (en) * | 1962-02-03 | 1971-01-12 | Freudenberg Carl Kg | Non-woven fabric |
US3630816A (en) * | 1969-07-25 | 1971-12-28 | Chevron Res | Nonwoven sheets made from rectangular cross section monofilaments |
US3692618A (en) * | 1969-10-08 | 1972-09-19 | Metallgesellschaft Ag | Continuous filament nonwoven web |
US3758373A (en) * | 1971-04-12 | 1973-09-11 | Celanese Corp | Spray-spun continuous tubular structure |
US3837995A (en) * | 1972-04-24 | 1974-09-24 | Kimberly Clark Co | Autogenously bonded composite web |
US3841953A (en) * | 1970-12-31 | 1974-10-15 | Exxon Research Engineering Co | Nonwoven mats of thermoplastic blends by melt blowing |
US3855046A (en) * | 1970-02-27 | 1974-12-17 | Kimberly Clark Co | Pattern bonded continuous filament web |
US3855045A (en) * | 1972-01-21 | 1974-12-17 | Kimberly Clark Co | Self-sized patterned bonded continuous filament web |
US3949127A (en) * | 1973-05-14 | 1976-04-06 | Kimberly-Clark Corporation | Apertured nonwoven webs |
US3966519A (en) * | 1974-12-27 | 1976-06-29 | Kimberly-Clark Corporation | Method of bonding fibrous webs and resulting products |
US3968307A (en) * | 1968-02-29 | 1976-07-06 | Kanegafuchi Boseki Kabushiki Kaisha | Mixed filaments |
US4013816A (en) * | 1975-11-20 | 1977-03-22 | Draper Products, Inc. | Stretchable spun-bonded polyolefin web |
US4039711A (en) * | 1971-06-07 | 1977-08-02 | The Kendall Company | Non-woven fabrics |
US4041203A (en) * | 1972-09-06 | 1977-08-09 | Kimberly-Clark Corporation | Nonwoven thermoplastic fabric |
US4041689A (en) * | 1975-11-11 | 1977-08-16 | E. I. Du Pont De Nemours And Company | Multilobal polyester yarn |
US4054709A (en) * | 1975-07-17 | 1977-10-18 | Mikhail Nikolaevich Belitsin | Man-made fibre, yarn and textile produced therefrom |
US4078124A (en) * | 1969-10-09 | 1978-03-07 | Exxon Research & Engineering Co. | Laminated non-woven sheet |
US4085175A (en) * | 1974-08-23 | 1978-04-18 | Pnc Corporation | Process for producing a balanced nonwoven fibrous network by radial extrusion and fibrillation |
US4091140A (en) * | 1976-05-10 | 1978-05-23 | Johnson & Johnson | Continuous filament nonwoven fabric and method of manufacturing the same |
US4100319A (en) * | 1975-07-14 | 1978-07-11 | Kimberly-Clark Corporation | Stabilized nonwoven web |
US4107364A (en) * | 1975-06-06 | 1978-08-15 | The Procter & Gamble Company | Random laid bonded continuous filament cloth |
US4211816A (en) * | 1977-03-11 | 1980-07-08 | Fiber Industries, Inc. | Selfbonded nonwoven fabrics |
US4287251A (en) * | 1978-06-16 | 1981-09-01 | King Mary K | Disposable absorbent nonwoven structure |
US4304234A (en) * | 1979-06-19 | 1981-12-08 | Carl Freudenberg | Non-woven fabrics of polyolefin filament and processes of production thereof |
US4315965A (en) * | 1980-06-20 | 1982-02-16 | Scott Paper Company | Method of making nonwoven fabric and product made thereby having both stick bonds and molten bonds |
US4333979A (en) * | 1980-08-18 | 1982-06-08 | Kimberly-Clark Corporation | Soft, bulky, lightweight nonwoven web and method of producing; the web has both fused spot bonds and patterned embossments |
US4340563A (en) * | 1980-05-05 | 1982-07-20 | Kimberly-Clark Corporation | Method for forming nonwoven webs |
US4350006A (en) * | 1966-01-07 | 1982-09-21 | Toray Industries, Inc. | Synthetic filaments and the like |
US4363845A (en) * | 1979-06-01 | 1982-12-14 | Firma Carl Freudenberg | Spun non-woven fabrics with high dimensional stability, and processes for their production |
US4379192A (en) * | 1982-06-23 | 1983-04-05 | Kimberly-Clark Corporation | Impervious absorbent barrier fabric embodying films and fibrous webs |
US4405297A (en) * | 1980-05-05 | 1983-09-20 | Kimberly-Clark Corporation | Apparatus for forming nonwoven webs |
US4434204A (en) * | 1981-12-24 | 1984-02-28 | Firma Carl Freudenberg | Spun-bonded fabric of partially drawn polypropylene with a low draping coefficient |
US4436780A (en) * | 1982-09-02 | 1984-03-13 | Kimberly-Clark Corporation | Nonwoven wiper laminate |
US4469734A (en) * | 1981-11-24 | 1984-09-04 | Kimberly-Clark Limited | Microfibre web products |
US4519798A (en) * | 1982-08-25 | 1985-05-28 | Ethyl Corporation | Absorptive structure |
US4537822A (en) * | 1983-02-08 | 1985-08-27 | Toyo Boseki Kabushiki Kaisha | Three-layered fabric material |
US4598000A (en) * | 1985-05-29 | 1986-07-01 | Monsanto Company | Spray-suppression device |
US4605454A (en) * | 1982-09-01 | 1986-08-12 | Kimberly-Clark Corporation | Method of ultrasonically bonding nonwoven webs |
-
1985
- 1985-10-07 US US06/785,368 patent/US4668566A/en not_active Expired - Lifetime
-
1986
- 1986-10-06 CA CA 519897 patent/CA1281537C/en not_active Expired - Lifetime
Patent Citations (85)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US31599A (en) * | 1861-03-05 | Apparatus foe vulcanizing caoutchouc | ||
US2437263A (en) * | 1948-03-09 | Fred w | ||
US1786669A (en) * | 1928-04-23 | 1930-12-30 | Filter Fabrics Inc | Process of and apparatus for the dry disintegration and deposition of fibers |
US2121802A (en) * | 1935-08-30 | 1938-06-28 | Owens Illinois Glass Co | Method and apparatus for strengthening fibers |
US2188332A (en) * | 1937-02-15 | 1940-01-30 | Du Pont | Flexible coated article |
US2331945A (en) * | 1938-02-04 | 1943-10-19 | Pazsiczky Gedeon Von | Production of curled mineral fibers |
US2336743A (en) * | 1941-10-13 | 1943-12-14 | Fred W Manning | Method and apparatus for spinning unwoven fabrics |
US2336745A (en) * | 1941-12-20 | 1943-12-14 | Fred W Manning | Method and apparatus for making unwoven and composite fabrics |
US2411660A (en) * | 1943-05-22 | 1946-11-26 | Fred W Manning | Method of making filter cartridges, abrasive sheets, scouring pads, and the like |
US2508462A (en) * | 1945-03-17 | 1950-05-23 | Union Carbide & Carbon Corp | Method and apparatus for the manufacture of synthetic staple fibers |
US2456922A (en) * | 1946-03-21 | 1948-12-21 | Mohawk Carpet Mills Inc | Fabric |
US2522527A (en) * | 1946-10-09 | 1950-09-19 | Fred W Manning | Spinning gun for the production of filaments and method of making nonwoven fabrics |
US2620853A (en) * | 1946-10-18 | 1952-12-09 | Minnesota Mining & Mfg | Method of making decorative tissues |
US2644779A (en) * | 1948-02-03 | 1953-07-07 | Fred W Manning | Method for the continuous molding of brassieres and other threedimensional articles |
US2604667A (en) * | 1950-08-23 | 1952-07-29 | Du Pont | Yarn process |
US2688380A (en) * | 1951-07-13 | 1954-09-07 | American Viscose Corp | Filter cartridge |
US2810426A (en) * | 1953-12-24 | 1957-10-22 | American Viscose Corp | Reticulated webs and method and apparatus for their production |
US2825120A (en) * | 1954-05-11 | 1958-03-04 | Eastman Kodak Co | Synthetic filament |
US2945739A (en) * | 1955-06-23 | 1960-07-19 | Du Pont | Process of melt spinning |
US2861319A (en) * | 1956-12-21 | 1958-11-25 | Du Pont | Intermittent core filaments |
US3028623A (en) * | 1958-06-06 | 1962-04-10 | Johns Manville Fiber Glass Inc | Apparatus for producing a low density mat of glass fibers |
US3063454A (en) * | 1959-02-26 | 1962-11-13 | Cleanese Corp Of America | Non-woven products |
US3109220A (en) * | 1960-08-19 | 1963-11-05 | Du Pont | Tetralobal cross-sectioned filaments |
US3109278A (en) * | 1960-08-19 | 1963-11-05 | Du Pont | Multilobal textile filaments having controlled uniform twist and fabrics prepared therefrom |
US3154836A (en) * | 1960-10-31 | 1964-11-03 | Owens Corning Fiberglass Corp | Method and apparatus for handling continuous filamentary material |
US3117906A (en) * | 1961-06-20 | 1964-01-14 | Du Pont | Composite filament |
US3314840A (en) * | 1961-08-01 | 1967-04-18 | Celanese Corp | Process and apparatus for producing a non-woven fabric |
US3303169A (en) * | 1962-01-18 | 1967-02-07 | Du Pont | High-modulus, high-tenacity, lowshrinkage polyamide yarn |
US3502763A (en) * | 1962-02-03 | 1970-03-24 | Freudenberg Carl Kg | Process of producing non-woven fabric fleece |
US3554854A (en) * | 1962-02-03 | 1971-01-12 | Freudenberg Carl Kg | Non-woven fabric |
US3266969A (en) * | 1962-09-10 | 1966-08-16 | Du Pont | Tufting process and products having tufted structures |
US3402548A (en) * | 1963-02-11 | 1968-09-24 | Eastman Kodak Co | Process for fracturing flat ribbons and the product thereof |
US3164949A (en) * | 1963-03-22 | 1965-01-12 | Du Pont | Trilobal filamentary yarns |
US3396071A (en) * | 1963-03-25 | 1968-08-06 | Ici Ltd | Non-woven polypropylene fabrics |
US3360421A (en) * | 1963-05-10 | 1967-12-26 | Du Pont | Bonded nonwoven backing material having perforate selvage and carpet made therefrom |
US3219739A (en) * | 1963-05-27 | 1965-11-23 | Du Pont | Process for preparing convoluted fibers |
US3379811A (en) * | 1964-02-22 | 1968-04-23 | Freudenberg Carl | Apparatus and process for production of filaments |
US3366722A (en) * | 1964-07-24 | 1968-01-30 | Chemcell Ltd | Yarn manufacture |
US3297807A (en) * | 1964-08-05 | 1967-01-10 | Schweizerische Viscose | Process for the manufacture of spontaneously crimping composite filaments |
US3322607A (en) * | 1964-08-17 | 1967-05-30 | Du Pont | Lubricated polypropylene polyethylene self-bonded nonwoven carpet backing |
US3528129A (en) * | 1964-10-24 | 1970-09-15 | Freudenberg Carl Kg | Apparatus for producing nonwoven fleeces |
US3441468A (en) * | 1964-12-24 | 1969-04-29 | Glanzstoff Ag | Process for the production of non-woven webs |
US4350006A (en) * | 1966-01-07 | 1982-09-21 | Toray Industries, Inc. | Synthetic filaments and the like |
US3509009A (en) * | 1966-02-10 | 1970-04-28 | Freudenberg Carl Kg | Non-woven fabric |
US3420235A (en) * | 1966-07-13 | 1969-01-07 | Johnson & Johnson | Interlabial pad |
US3533904A (en) * | 1966-10-19 | 1970-10-13 | Hercules Inc | Composite polypropylene filaments having a high degree of crimp |
US3547763A (en) * | 1967-06-05 | 1970-12-15 | Du Pont | Bicomponent acrylic fiber having modified helical crimp |
US3968307A (en) * | 1968-02-29 | 1976-07-06 | Kanegafuchi Boseki Kabushiki Kaisha | Mixed filaments |
US3492389A (en) * | 1968-04-26 | 1970-01-27 | Avisun Corp | Technique for producing synthetic bulk yarns |
US3508390A (en) * | 1968-09-30 | 1970-04-28 | Allied Chem | Modified filament and fabrics produced therefrom |
US3630816A (en) * | 1969-07-25 | 1971-12-28 | Chevron Res | Nonwoven sheets made from rectangular cross section monofilaments |
US3692618A (en) * | 1969-10-08 | 1972-09-19 | Metallgesellschaft Ag | Continuous filament nonwoven web |
US4078124A (en) * | 1969-10-09 | 1978-03-07 | Exxon Research & Engineering Co. | Laminated non-woven sheet |
US3855046A (en) * | 1970-02-27 | 1974-12-17 | Kimberly Clark Co | Pattern bonded continuous filament web |
US3841953A (en) * | 1970-12-31 | 1974-10-15 | Exxon Research Engineering Co | Nonwoven mats of thermoplastic blends by melt blowing |
US3758373A (en) * | 1971-04-12 | 1973-09-11 | Celanese Corp | Spray-spun continuous tubular structure |
US4039711A (en) * | 1971-06-07 | 1977-08-02 | The Kendall Company | Non-woven fabrics |
US3855045A (en) * | 1972-01-21 | 1974-12-17 | Kimberly Clark Co | Self-sized patterned bonded continuous filament web |
US3837995A (en) * | 1972-04-24 | 1974-09-24 | Kimberly Clark Co | Autogenously bonded composite web |
US4041203A (en) * | 1972-09-06 | 1977-08-09 | Kimberly-Clark Corporation | Nonwoven thermoplastic fabric |
US3949127A (en) * | 1973-05-14 | 1976-04-06 | Kimberly-Clark Corporation | Apertured nonwoven webs |
US4085175A (en) * | 1974-08-23 | 1978-04-18 | Pnc Corporation | Process for producing a balanced nonwoven fibrous network by radial extrusion and fibrillation |
US3966519A (en) * | 1974-12-27 | 1976-06-29 | Kimberly-Clark Corporation | Method of bonding fibrous webs and resulting products |
US4107364A (en) * | 1975-06-06 | 1978-08-15 | The Procter & Gamble Company | Random laid bonded continuous filament cloth |
US4100319A (en) * | 1975-07-14 | 1978-07-11 | Kimberly-Clark Corporation | Stabilized nonwoven web |
US4054709A (en) * | 1975-07-17 | 1977-10-18 | Mikhail Nikolaevich Belitsin | Man-made fibre, yarn and textile produced therefrom |
US4041689A (en) * | 1975-11-11 | 1977-08-16 | E. I. Du Pont De Nemours And Company | Multilobal polyester yarn |
US4013816A (en) * | 1975-11-20 | 1977-03-22 | Draper Products, Inc. | Stretchable spun-bonded polyolefin web |
US4091140A (en) * | 1976-05-10 | 1978-05-23 | Johnson & Johnson | Continuous filament nonwoven fabric and method of manufacturing the same |
US4211816A (en) * | 1977-03-11 | 1980-07-08 | Fiber Industries, Inc. | Selfbonded nonwoven fabrics |
US4287251A (en) * | 1978-06-16 | 1981-09-01 | King Mary K | Disposable absorbent nonwoven structure |
US4363845A (en) * | 1979-06-01 | 1982-12-14 | Firma Carl Freudenberg | Spun non-woven fabrics with high dimensional stability, and processes for their production |
US4304234A (en) * | 1979-06-19 | 1981-12-08 | Carl Freudenberg | Non-woven fabrics of polyolefin filament and processes of production thereof |
US4340563A (en) * | 1980-05-05 | 1982-07-20 | Kimberly-Clark Corporation | Method for forming nonwoven webs |
US4405297A (en) * | 1980-05-05 | 1983-09-20 | Kimberly-Clark Corporation | Apparatus for forming nonwoven webs |
US4315965A (en) * | 1980-06-20 | 1982-02-16 | Scott Paper Company | Method of making nonwoven fabric and product made thereby having both stick bonds and molten bonds |
US4333979A (en) * | 1980-08-18 | 1982-06-08 | Kimberly-Clark Corporation | Soft, bulky, lightweight nonwoven web and method of producing; the web has both fused spot bonds and patterned embossments |
US4469734A (en) * | 1981-11-24 | 1984-09-04 | Kimberly-Clark Limited | Microfibre web products |
US4434204A (en) * | 1981-12-24 | 1984-02-28 | Firma Carl Freudenberg | Spun-bonded fabric of partially drawn polypropylene with a low draping coefficient |
US4379192A (en) * | 1982-06-23 | 1983-04-05 | Kimberly-Clark Corporation | Impervious absorbent barrier fabric embodying films and fibrous webs |
US4519798A (en) * | 1982-08-25 | 1985-05-28 | Ethyl Corporation | Absorptive structure |
US4605454A (en) * | 1982-09-01 | 1986-08-12 | Kimberly-Clark Corporation | Method of ultrasonically bonding nonwoven webs |
US4436780A (en) * | 1982-09-02 | 1984-03-13 | Kimberly-Clark Corporation | Nonwoven wiper laminate |
US4537822A (en) * | 1983-02-08 | 1985-08-27 | Toyo Boseki Kabushiki Kaisha | Three-layered fabric material |
US4598000A (en) * | 1985-05-29 | 1986-07-01 | Monsanto Company | Spray-suppression device |
Non-Patent Citations (2)
Title |
---|
Scardino, Frank and Frank Ko, "Engineering Properties of Fibers for Nonwoven Fabrics", Nonwovens Industry, Apr. 83, pp. 18-22. |
Scardino, Frank and Frank Ko, Engineering Properties of Fibers for Nonwoven Fabrics , Nonwovens Industry, Apr. 83, pp. 18 22. * |
Cited By (319)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4828556A (en) * | 1986-10-31 | 1989-05-09 | Kimberly-Clark Corporation | Breathable, multilayered, clothlike barrier |
US4810571A (en) * | 1987-08-20 | 1989-03-07 | Kimberly-Clark Corporation | Synthetic sheet composite |
US5336545A (en) * | 1988-09-23 | 1994-08-09 | Kimberly-Clark Corporation | Composite elastic necked-bonded material |
US4981747A (en) * | 1988-09-23 | 1991-01-01 | Kimberly-Clark Corporation | Composite elastic material including a reversibly necked material |
US5514470A (en) * | 1988-09-23 | 1996-05-07 | Kimberly-Clark Corporation | Composite elastic necked-bonded material |
US5226992A (en) * | 1988-09-23 | 1993-07-13 | Kimberly-Clark Corporation | Process for forming a composite elastic necked-bonded material |
US5723159A (en) * | 1989-04-04 | 1998-03-03 | Eastman Chemical Company | Spinnerets for making fibers capable of spontaneously transporting fluids |
US5855798A (en) * | 1989-04-04 | 1999-01-05 | Eastman Chemical Company | Process for spontaneouly transporting a fluid |
US5733490A (en) * | 1989-04-04 | 1998-03-31 | Eastman Chemical Company | Process for helically crimping a fiber |
US5972505A (en) * | 1989-04-04 | 1999-10-26 | Eastman Chemical Company | Fibers capable of spontaneously transporting fluids |
US5080951A (en) * | 1989-08-03 | 1992-01-14 | Guthrie David W | Nonwoven fabric |
US5116662A (en) * | 1989-12-15 | 1992-05-26 | Kimberly-Clark Corporation | Multi-direction stretch composite elastic material |
US5114781A (en) * | 1989-12-15 | 1992-05-19 | Kimberly-Clark Corporation | Multi-direction stretch composite elastic material including a reversibly necked material |
US5399422A (en) * | 1989-12-23 | 1995-03-21 | Akzo N.V. | Laminate |
US5200248A (en) * | 1990-02-20 | 1993-04-06 | The Procter & Gamble Company | Open capillary channel structures, improved process for making capillary channel structures, and extrusion die for use therein |
US5242644A (en) * | 1990-02-20 | 1993-09-07 | The Procter & Gamble Company | Process for making capillary channel structures and extrusion die for use therein |
US6171443B1 (en) | 1990-03-05 | 2001-01-09 | Polyweave International, Llc | Recyclable polymeric synthetic paper and method for its manufacture |
US5616384A (en) * | 1990-03-05 | 1997-04-01 | International Paper Company | Recyclable polymeric label paper |
US5273596A (en) * | 1990-03-21 | 1993-12-28 | Fiberweb North America, Inc. | Nonwoven fabric for diaper top sheet and method of making the same |
AU651589B2 (en) * | 1990-05-07 | 1994-07-28 | Peaudouce | Method for continuously producing sanitary items such as nappies, and sanitary article thereby produced |
US5178931A (en) * | 1990-11-26 | 1993-01-12 | Kimberly-Clark Corporation | Three-layer nonwoven laminiferous structure |
US5145727A (en) * | 1990-11-26 | 1992-09-08 | Kimberly-Clark Corporation | Multilayer nonwoven composite structure |
US5149576A (en) * | 1990-11-26 | 1992-09-22 | Kimberly-Clark Corporation | Multilayer nonwoven laminiferous structure |
US5178932A (en) * | 1990-11-26 | 1993-01-12 | Kimberly-Clark Corporation | Three-layer nonwoven composite structure |
US5314743A (en) * | 1990-12-17 | 1994-05-24 | Kimberly-Clark Corporation | Nonwoven web containing shaped fibers |
US5458963A (en) * | 1990-12-17 | 1995-10-17 | Kimberly-Clark Corporation | Nonwoven web containing shaped fibers |
US5277976A (en) * | 1991-10-07 | 1994-01-11 | Minnesota Mining And Manufacturing Company | Oriented profile fibers |
US6248851B1 (en) | 1991-10-15 | 2001-06-19 | The Dow Chemical Company | Fabrics fabricated from elastic fibers |
US6436534B1 (en) | 1991-10-15 | 2002-08-20 | The Dow Chemical Company | Elastic fibers, fabrics and articles fabricated therefrom |
US6506867B1 (en) | 1991-10-15 | 2003-01-14 | The Dow Chemical Company | Elastic substantially linear ethylene polymers |
US6136937A (en) * | 1991-10-15 | 2000-10-24 | The Dow Chemical Company | Elastic substantially linear ethylene polymers |
US6448355B1 (en) | 1991-10-15 | 2002-09-10 | The Dow Chemical Company | Elastic fibers, fabrics and articles fabricated therefrom |
EP0783006A2 (en) | 1991-10-15 | 1997-07-09 | The Dow Chemical Company | Process for the preparation of ethylene polymers |
US6194532B1 (en) | 1991-10-15 | 2001-02-27 | The Dow Chemical Company | Elastic fibers |
US6140442A (en) * | 1991-10-15 | 2000-10-31 | The Dow Chemical Company | Elastic fibers, fabrics and articles fabricated therefrom |
US5342336A (en) * | 1991-12-19 | 1994-08-30 | Kimberly-Clark Corporation | Absorbent structure for masking and distributing a liquid |
US6545088B1 (en) | 1991-12-30 | 2003-04-08 | Dow Global Technologies Inc. | Metallocene-catalyzed process for the manufacture of EP and EPDM polymers |
WO1993013940A1 (en) * | 1992-01-21 | 1993-07-22 | International Paper Company | Recyclable polymeric synthetic paper and method for its manufacture |
US5336562A (en) * | 1992-02-28 | 1994-08-09 | Pavco S.A. | Polyolefin yarns with good performance for rugs and carpets and method of producing the same |
US5302446A (en) * | 1992-03-30 | 1994-04-12 | International Paper Company | Two-sided skin care wipe material and method for its manufacture |
US5298097A (en) * | 1992-03-31 | 1994-03-29 | Neuberger S.P.A. | Apparatus and method for thermally bonding a textile web |
US5368926A (en) * | 1992-09-10 | 1994-11-29 | The Procter & Gamble Company | Fluid accepting, transporting, and retaining structure |
US5536555A (en) * | 1993-12-17 | 1996-07-16 | Kimberly-Clark Corporation | Liquid permeable, quilted film laminates |
US5643240A (en) * | 1993-12-30 | 1997-07-01 | Kimberly-Clark Corporation | Apertured film/nonwoven composite for personal care absorbent articles and the like |
US5628736A (en) * | 1994-04-29 | 1997-05-13 | The Procter & Gamble Company | Resilient fluid transporting network for use in absorbent articles |
AU697718B2 (en) * | 1994-05-16 | 1998-10-15 | Kimberly-Clark Worldwide, Inc. | Nonwoven absorbent polymeric fabric exhibiting improved fluid management and methods for making the same |
US5540979A (en) * | 1994-05-16 | 1996-07-30 | Yahiaoui; Ali | Porous non-woven bovine blood-oxalate absorbent structure |
US5652051A (en) * | 1995-02-27 | 1997-07-29 | Kimberly-Clark Worldwide, Inc. | Nonwoven fabric from polymers containing particular types of copolymers and having an aesthetically pleasing hand |
EP0820108A1 (en) * | 1996-07-18 | 1998-01-21 | Saft | Separator for accumulator with spirally wounded electrodes and alcaline electrolyte |
CN1097117C (en) * | 1996-07-24 | 2002-12-25 | 金伯利-克拉克环球有限公司 | Wet wipes with improved softness |
US6028018A (en) * | 1996-07-24 | 2000-02-22 | Kimberly-Clark Worldwide, Inc. | Wet wipes with improved softness |
AU722685B2 (en) * | 1996-07-24 | 2000-08-10 | Kimberly-Clark Worldwide, Inc. | Wet wipes with improved softness |
GB2329191B (en) * | 1996-09-16 | 2002-02-20 | Patrick Yeh | Fabric for moisture management |
GB2329191A (en) * | 1996-09-16 | 1999-03-17 | Patrick Yeh | Fabric for moisture management |
US6139941A (en) * | 1996-12-06 | 2000-10-31 | Bba Nonwovens Simpsonville, Inc. | Nonwoven web laminate having relatively hydrophilic zone and related method for its manufacture |
DE29706968U1 (en) * | 1996-12-23 | 1997-06-19 | Asota Ges. M.B.H, Linz | Two-layer needle punch |
US6015764A (en) * | 1996-12-27 | 2000-01-18 | Kimberly-Clark Worldwide, Inc. | Microporous elastomeric film/nonwoven breathable laminate and method for making the same |
US6111163A (en) * | 1996-12-27 | 2000-08-29 | Kimberly-Clark Worldwide, Inc. | Elastomeric film and method for making the same |
US6037281A (en) * | 1996-12-27 | 2000-03-14 | Kimberly-Clark Worldwide, Inc. | Cloth-like, liquid-impervious, breathable composite barrier fabric |
US5947944A (en) * | 1996-12-30 | 1999-09-07 | Kimberly-Clark Worldwide, Inc. | Stretched-thinned films comprising low crystallinity polymers and laminates thereof |
US6002064A (en) * | 1996-12-30 | 1999-12-14 | Kimberly-Clark Worldwide, Inc. | Stretch-thinned breathable films resistant to blood and virus penetration |
US5910136A (en) * | 1996-12-30 | 1999-06-08 | Kimberly-Clark Worldwide, Inc. | Oriented polymeric microporous films with flexible polyolefins |
US20030087086A1 (en) * | 1997-03-07 | 2003-05-08 | Koslow Evan E. | Composite for removing moisture, liquid and odors with anti-microbial capability |
US7238403B2 (en) * | 1997-03-07 | 2007-07-03 | Kx Industries, Lp | Composite for removing moisture, liquid and odors with anti-microbial capability |
WO1998058110A1 (en) * | 1997-06-18 | 1998-12-23 | Kimberly-Clark Worldwide, Inc. | Method of making heteroconstituent and layered nonwoven materials |
US6015617A (en) * | 1997-06-20 | 2000-01-18 | The Dow Chemical Company | Ethylene polymer having improving sealing performance and articles fabricated from the same |
US6992158B2 (en) | 1997-08-12 | 2006-01-31 | Exxonmobil Chemical Patents Inc. | Alpha-olefin/propylene copolymers and their use |
US20040236042A1 (en) * | 1997-08-12 | 2004-11-25 | Sudhin Datta | Propylene ethylene polymers and production process |
US20050209405A1 (en) * | 1997-08-12 | 2005-09-22 | Sudhin Datta | Thermoplastic polymer blends of isotactic polypropylene and alpha-olefin/propylene copolymers |
US7205371B2 (en) | 1997-08-12 | 2007-04-17 | Exxonmobil Chemical Patents Inc. | Blends made from propylene ethylene polymers |
US7157522B2 (en) | 1997-08-12 | 2007-01-02 | Exxonmobil Chemical Patents Inc. | Alpha-olefin/propylene copolymers and their use |
US7135528B2 (en) | 1997-08-12 | 2006-11-14 | Exxonmobil Chemical Patents Inc. | Thermoplastic polymer blends of isotactic polypropylene and alpha-olefin/propylene copolymers |
US7122603B2 (en) | 1997-08-12 | 2006-10-17 | Exxonmobil Chemical Patents Inc. | Alpha-Olefin/propylene copolymers and their use |
US20050282964A1 (en) * | 1997-08-12 | 2005-12-22 | Sudhin Datta | Thermoplastic polymer blends of isotactic polypropylene and alpha-olefin/propylene copolymers |
US7105609B2 (en) | 1997-08-12 | 2006-09-12 | Exxonmobil Chemical Patents Inc. | Alpha-olefin/propylene copolymers and their use |
US20060189762A1 (en) * | 1997-08-12 | 2006-08-24 | Sudhin Datta | Thermoplastic polymer blends of isotactic polypropylene and alpha-olefin/propylene copolymers |
US7084218B2 (en) | 1997-08-12 | 2006-08-01 | Exxonmobil Chemical Patents Inc. | Thermoplastic polymer blends of isotactic polypropylene and alpha-olefin/propylene copolymers |
US20060160966A9 (en) * | 1997-08-12 | 2006-07-20 | Sudhin Datta | Propylene ethylene polymers and production process |
US6982310B2 (en) | 1997-08-12 | 2006-01-03 | Exxonmobil Chemical Patents Inc. | Alpha-olefin/propylene copolymers and their use |
US20060128897A1 (en) * | 1997-08-12 | 2006-06-15 | Sudhin Datta | Alpha-Olefin/Propylene Copolymers and Their Use |
US20060128898A1 (en) * | 1997-08-12 | 2006-06-15 | Sudhin Datta | Alpha-olefin/propylene copolymers and their use |
US20060004145A1 (en) * | 1997-08-12 | 2006-01-05 | Sudhin Datta | Thermoplastic polymer blends of isotactic polypropylene and alpha-olefin/propylene copolymers |
US20060122334A1 (en) * | 1997-08-12 | 2006-06-08 | Cozewith Charles C | Blends made from propylene ethylene polymers |
US7056982B2 (en) | 1997-08-12 | 2006-06-06 | Exxonmobil Chemical Patents Inc. | Thermoplastic polymer blends of isotactic polypropylene and alpha-olefin/propylene copolymers |
US7056993B2 (en) | 1997-08-12 | 2006-06-06 | Exxonmobil Chemical Patents Inc. | Process for producing propylene alpha-olefin polymers |
US20060004146A1 (en) * | 1997-08-12 | 2006-01-05 | Sudhin Datta | Thermoplastic polymer blends of isotactic polypropylene and alpha-olefin/propylene copolymers |
US7056992B2 (en) | 1997-08-12 | 2006-06-06 | Exxonmobil Chemical Patents Inc. | Propylene alpha-olefin polymers |
US7053164B2 (en) | 1997-08-12 | 2006-05-30 | Exxonmobil Chemical Patents Inc. | Thermoplastic polymer blends of isotactic polypropropylene and alpha-olefin/propylene copolymers |
US20060094826A1 (en) * | 1997-08-12 | 2006-05-04 | Sudhin Datta | Propylene alpha-olefin polymers |
US20060089471A1 (en) * | 1997-08-12 | 2006-04-27 | Sudhin Datta | Process for producing propylene alpha-olefin polymers |
US20060089460A1 (en) * | 1997-08-12 | 2006-04-27 | Sudhin Datta | Propylene alpha-olefin polymer blends |
US7019081B2 (en) | 1997-08-12 | 2006-03-28 | Exxonmobil Chemical Patents Inc. | Thermoplastic polymer blends of isotactic polypropylene and alpha-olefin/propylene copolymers |
US6992160B2 (en) | 1997-08-12 | 2006-01-31 | Exxonmobil Chemical Patents Inc. | Polymerization processes for alpha-olefin/propylene copolymers |
US6992159B2 (en) | 1997-08-12 | 2006-01-31 | Exxonmobil Chemical Patents Inc. | Alpha-olefin/propylene copolymers and their use |
US20050137343A1 (en) * | 1997-08-12 | 2005-06-23 | Sudhin Datta | Thermoplastic polymer blends of isotactic polypropylene and alpha-olefin/propylene copolymers |
US7232871B2 (en) | 1997-08-12 | 2007-06-19 | Exxonmobil Chemical Patents Inc. | Propylene ethylene polymers and production process |
US5928770A (en) * | 1998-01-08 | 1999-07-27 | Quinones; Victor Manuel | Tear/puncture resistant material |
US5958805A (en) * | 1998-04-17 | 1999-09-28 | Quinones; Victor Manuel | Tear/puncture resistant semi-laminate material |
US6242371B1 (en) | 1998-04-17 | 2001-06-05 | Victor Manuel Quinones | Tear/puncture resistant semi-laminate material |
USRE38852E1 (en) * | 1998-04-17 | 2005-10-25 | Victor Manuel Quinones | Tear/puncture resistant semi-laminate material |
US6709742B2 (en) | 1998-05-18 | 2004-03-23 | Dow Global Technologies Inc. | Crosslinked elastic fibers |
US6667351B2 (en) | 1998-05-18 | 2003-12-23 | Dow Global Technologies Inc. | Articles having elevated temperature elasticity made from irradiated and crosslinked ethylene polymers and method for making the same |
US20020132923A1 (en) * | 1998-05-18 | 2002-09-19 | The Dow Chemical Company | Articles having elevated temperature elasticity made from irradiated and crosslinked ethylene polymers and method for making the same |
US7855258B2 (en) | 1998-07-01 | 2010-12-21 | Exxonmobil Chemical Patents Inc. | Propylene olefin copolymers |
US6867260B2 (en) | 1998-07-01 | 2005-03-15 | Exxonmobil Chemical Patents, Inc. | Elastic blends comprising crystalline polymer and crystallizable polymers of propylene |
US20050131157A1 (en) * | 1998-07-01 | 2005-06-16 | Sudhin Datta | Elastic blends comprising crystalline polymer and crystallizabe polymers of propylene |
US20050131150A1 (en) * | 1998-07-01 | 2005-06-16 | Exxonmobil Chemical Patents Inc. | Elastic blends comprising crystalline polymer and crystallizable polymers of propylene |
US7482418B2 (en) | 1998-07-01 | 2009-01-27 | Exxonmobil Chemical Patents Inc. | Crystalline propylene-hexene and propylene-octene copolymers |
US20050197461A1 (en) * | 1998-07-01 | 2005-09-08 | Sudhin Datta | Elastic blends comprising crystalline polymer and crystallizable polymers of propylene |
US20060100383A1 (en) * | 1998-07-01 | 2006-05-11 | Sudhin Datta | Propylene olefin copolymers |
US7166674B2 (en) | 1998-07-01 | 2007-01-23 | Exxonmobil Chemical Patents Inc. | Elastic blends comprising crystalline polymer and crystallizable polymers of propylene |
US7202305B2 (en) | 1998-07-01 | 2007-04-10 | Exxonmobil Chemical Patents Inc. | Elastic blends comprising crystalline polymer and crystallizable polymers of propylene |
US20050113522A1 (en) * | 1998-07-01 | 2005-05-26 | Exxonmobil Chemical Patents Inc. | Elastic blends comprising crystalline polymer and crystallizable polymers of propylene |
US20040236026A1 (en) * | 1998-07-01 | 2004-11-25 | Exxonmobil Chemical Patents Inc. | Elastic blends comprising crystalline polymer and crystallizable polymers of propylene |
US20050043489A1 (en) * | 1998-07-01 | 2005-02-24 | Exxonmobil Chemical Patents Inc. | Elastic blends comprising crystalline polymer and crystallizable polymers of propylene |
US6482895B2 (en) | 1998-12-08 | 2002-11-19 | Dow Global Technologies Inc. | Polypropylene/ethylene polymer fiber having improved bond performance and composition for marking the same |
US6482896B2 (en) | 1998-12-08 | 2002-11-19 | Dow Global Technologies Inc. | Polypropylene/ethylene polymer fiber having improved bond performance and composition for making the same |
US7091140B1 (en) | 1999-04-07 | 2006-08-15 | Polymer Group, Inc. | Hydroentanglement of continuous polymer filaments |
US6903034B1 (en) | 1999-04-07 | 2005-06-07 | Polymer Group, Inc. | Hydroentanglement of continuous polymer filaments |
US7699955B2 (en) | 1999-04-27 | 2010-04-20 | Georgia-Pacific Consumer Products Lp | Air-laid absorbent sheet with sinuate emboss |
US20070126141A1 (en) * | 1999-04-27 | 2007-06-07 | Georgia-Pacific Consumer Products Lp | Air-Laid Absorbent Sheet With Sinuate Emboss |
US20070181243A1 (en) * | 1999-05-05 | 2007-08-09 | Georgia-Pacific Consumer Products Lp | Method for Embossing Air-Laid Webs Using Laser Engraved Heated Embossing Rolls |
US20050039846A1 (en) * | 1999-05-05 | 2005-02-24 | Schmidt Bradley G. | Method for embossing air-laid webs using laser engraved heated hard rubber embossing rolls |
US7208064B2 (en) | 1999-05-05 | 2007-04-24 | Georgia-Pacific Consumer Products Lp | Method for embossing air-laid webs using laser engraved heated hard rubber embossing rolls |
US7655105B2 (en) | 1999-05-05 | 2010-02-02 | Georgia-Pacific Consumer Products Lp | Method for embossing air-laid webs using laser engraved heated embossing rolls |
US6893525B1 (en) * | 1999-05-05 | 2005-05-17 | Fort James Corporation | Method for embossing air-laid webs using laser engraved heated embossing rolls |
EP1078621B2 (en) † | 1999-08-27 | 2011-11-30 | Uni-Charm Corporation | Absorptive article |
EP1078621A3 (en) * | 1999-08-27 | 2001-09-05 | Uni-Charm Corporation | Absorptive article |
EP1078621A2 (en) * | 1999-08-27 | 2001-02-28 | Uni-Charm Corporation | Absorptive article |
US6723892B1 (en) | 1999-10-14 | 2004-04-20 | Kimberly-Clark Worldwide, Inc. | Personal care products having reduced leakage |
US6627789B1 (en) | 1999-10-14 | 2003-09-30 | Kimberly-Clark Worldwide, Inc. | Personal care product with fluid partitioning |
US20040167286A1 (en) * | 1999-11-01 | 2004-08-26 | Chum Pak-Wing S. | Polymer blend and fabricated article made from diverse ethylene interpolymers |
US6723398B1 (en) | 1999-11-01 | 2004-04-20 | Dow Global Technologies Inc. | Polymer blend and fabricated article made from diverse ethylene interpolymers |
US6906141B2 (en) | 1999-11-01 | 2005-06-14 | Dow Global Technologies Inc. | Polymer blend and fabricated article made from diverse ethylene interpolymers |
US7252725B2 (en) * | 1999-12-22 | 2007-08-07 | Nordson Corporation | Absorbent composite product and process and apparatus for manufacture thereof |
US20030018310A1 (en) * | 1999-12-22 | 2003-01-23 | Nordson Corporation | Absorbent composite product and process and apparatus for manufacture thereof |
US20020094741A1 (en) * | 2000-03-03 | 2002-07-18 | Thomas Scott Carlyle | Method of making continuous filament web with statistical filament distribution |
US6964931B2 (en) | 2000-03-03 | 2005-11-15 | Polymer Group, Inc. | Method of making continuous filament web with statistical filament distribution |
US20040038022A1 (en) * | 2000-03-27 | 2004-02-26 | Maugans Rexford A. | Method of making a polypropylene fabric having high strain rate elongation and method of using the same |
US6692541B2 (en) | 2000-05-16 | 2004-02-17 | Polymer Group, Inc. | Method of making nonwoven fabric comprising splittable fibers |
US20110226411A1 (en) * | 2000-06-12 | 2011-09-22 | Helen Viazmensky | Spunbonded Heat Seal Material |
US20040018795A1 (en) * | 2000-06-12 | 2004-01-29 | Helen Viazmensky | Spunbonded heat seal material |
US7935646B2 (en) | 2000-06-12 | 2011-05-03 | Ahlstrom Nonwovens Llc | Spunbonded heat seal material |
US8216411B2 (en) | 2000-06-12 | 2012-07-10 | Ahlstrom Nonwovens Llc | Spunbonded heat seal material |
US7025914B2 (en) | 2000-12-22 | 2006-04-11 | Kimberly-Clark Worldwide, Inc. | Multilayer approach to producing homofilament crimp spunbond |
US8501892B2 (en) | 2001-04-12 | 2013-08-06 | Exxonmobil Chemical Patents Inc. | Propylene ethylene polymers and production process |
US8026323B2 (en) | 2001-04-12 | 2011-09-27 | Exxonmobil Chemical Patents Inc. | Propylene ethylene polymers and production process |
US20070244276A1 (en) * | 2001-04-12 | 2007-10-18 | Sudhin Datta | Propylene ethylene polymers and production process |
US20030124303A1 (en) * | 2001-07-05 | 2003-07-03 | Price Cindy L. | Refastenable absorbent garment |
US7297139B2 (en) * | 2001-07-05 | 2007-11-20 | Kimberly-Clark Worldwide, Inc. | Refastenable absorbent garment |
US20080161497A1 (en) * | 2001-08-17 | 2008-07-03 | Dow Global Technologies Inc. | Bimodal polyethylene composition and articles made therefrom |
US8338538B2 (en) | 2001-08-17 | 2012-12-25 | Dow Global Technologies Llc | Bimodal polyethylene composition and articles made therefrom |
US6787608B2 (en) | 2001-08-17 | 2004-09-07 | Dow Global Technologies, Inc. | Bimodal polyethylene composition and articles made therefrom |
US7129296B2 (en) | 2001-08-17 | 2006-10-31 | Dow Global Technologies Inc. | Bimodal polyethylene pipe composition and article made therefrom |
US20040198911A1 (en) * | 2001-08-17 | 2004-10-07 | Van Dun Jozef J. | Bimodal polyethylene pipe composition and article made therefrom |
US20070021567A1 (en) * | 2001-08-17 | 2007-01-25 | Dow Global Technologies Inc. | Bimodal polyethylene composition and articles made therefrom |
US7825190B2 (en) | 2001-08-17 | 2010-11-02 | Dow Global Technologies | Bimodal polyethylene composition and articles made therefrom |
US7345113B2 (en) | 2001-08-17 | 2008-03-18 | Dow Global Technologies Inc. | Bimodal polyethylene composition and articles made therefrom |
US20100317798A1 (en) * | 2001-08-17 | 2010-12-16 | Dow Global Technologies Inc. | Bimodal polyethylene composition and articles made thererom |
US20030149180A1 (en) * | 2001-08-17 | 2003-08-07 | Dow Global Technologies Inc. | Bimodal polyethylene composition and articles made therefrom |
US9006342B2 (en) | 2001-08-17 | 2015-04-14 | Dow Global Technologies Llc | Bimodal polyethylene composition and articles made therefrom |
US20040217514A1 (en) * | 2001-08-22 | 2004-11-04 | Charles Kannankeril | Integrated process for making inflatable article |
US20030176611A1 (en) * | 2001-11-06 | 2003-09-18 | Stevens James C. | Isotactic propylene copolymer fibers, their preparation and use |
US6960635B2 (en) | 2001-11-06 | 2005-11-01 | Dow Global Technologies Inc. | Isotactic propylene copolymers, their preparation and use |
US7199203B2 (en) | 2001-11-06 | 2007-04-03 | Dow Global Technologies, Inc. | Isotactic propylene copolymer fibers, their preparation and use |
US6906160B2 (en) | 2001-11-06 | 2005-06-14 | Dow Global Technologies Inc. | Isotactic propylene copolymer fibers, their preparation and use |
US20030204017A1 (en) * | 2001-11-06 | 2003-10-30 | Stevens James C. | Isotactic propylene copolymers, their preparation and use |
US7344775B2 (en) | 2001-11-06 | 2008-03-18 | Dow Global Technologies Inc. | Isotactic propylene copolymer fibers, their preparation and use |
US20030104748A1 (en) * | 2001-12-03 | 2003-06-05 | Brown Kurtis Lee | Helically crimped, shaped, single polymer fibers and articles made therefrom |
US7955539B2 (en) | 2002-03-11 | 2011-06-07 | Dow Global Technologies Llc | Reversible, heat-set, elastic fibers, and method of making and article made from same |
US20050113540A1 (en) * | 2002-03-12 | 2005-05-26 | Weaver John D. | Linear ethylene/vinyl alcohol and ethylene/vinyl acetate polymers and process for making same |
US6846884B2 (en) | 2002-09-27 | 2005-01-25 | Union Carbide Chemicals & Plastics Technology Corporation | Control of resin properties |
US20040063871A1 (en) * | 2002-09-27 | 2004-04-01 | Parrish John R. | Control of resin properties |
US20060234049A1 (en) * | 2003-01-30 | 2006-10-19 | Van Dun Jozef J I | Fibers formed from immiscible polymer blends |
US7736737B2 (en) | 2003-01-30 | 2010-06-15 | Dow Global Technologies Inc. | Fibers formed from immiscible polymer blends |
US20060046048A1 (en) * | 2003-02-04 | 2006-03-02 | Mridula Kapur | Film layers made from polymer blends |
US20070181242A1 (en) * | 2003-03-10 | 2007-08-09 | Polymer Group, Inc. | Nonwoven fabric having improved performance |
EP2256160A2 (en) | 2003-05-12 | 2010-12-01 | Dow Global Technologies Inc. | Polymer composition and process to manufacture high molecular weight-high density polyethylene and film thereform |
US20070093603A1 (en) * | 2003-06-10 | 2007-04-26 | Wooster Jeffrey J | Film layers made from ethylene polymer blends |
US7659343B2 (en) | 2003-06-10 | 2010-02-09 | Dow Global Technologies, Inc. | Film layers made from ethylene polymer blends |
US7425517B2 (en) | 2003-07-25 | 2008-09-16 | Kimberly-Clark Worldwide, Inc. | Nonwoven fabric with abrasion resistance and reduced surface fuzziness |
US8013058B2 (en) | 2004-01-22 | 2011-09-06 | Dow Corning Corporation | Composition having improved adherence with an addition-curable material and composite article incorporating the composition |
US20110060099A1 (en) * | 2004-01-22 | 2011-03-10 | Dow Corning Corporation | Composition having improved adherence with an addition-curable material and composite article incorporating the composition |
US20110060092A1 (en) * | 2004-01-22 | 2011-03-10 | Dow Corning Corporation | Composition having improved adherence with an addition-curable material and composite article incorporating the composition |
US7858197B2 (en) | 2004-01-22 | 2010-12-28 | Dow Corning Corporation | Composition having improved adherence with an addition-curable material and composite article incorporating the composition |
US20080177000A1 (en) * | 2004-01-22 | 2008-07-24 | Dongchan Ahn | Composition Having Improved Adherence With an Addition-Curable Material and Composite Article Incorporating the Composition |
US8084135B2 (en) | 2004-01-22 | 2011-12-27 | Dow Corning Corporation | Composition having improved adherence with an addition-curable material and composite article incorporating the composition |
EP2327727A1 (en) | 2004-03-17 | 2011-06-01 | Dow Global Technologies LLC | Catalyst composition comprising shuttling agent for ethylene copolymer formation |
EP2357203A2 (en) | 2004-03-17 | 2011-08-17 | Dow Global Technologies LLC | Catalyst composition comprising shuttling agent for higher olefin multi-block copolymer formation |
EP2221328A2 (en) | 2004-03-17 | 2010-08-25 | Dow Global Technologies Inc. | Catalyst composition comprising shuttling agent for ethylene multi-block copolymer formation |
EP2221329A1 (en) | 2004-03-17 | 2010-08-25 | Dow Global Technologies Inc. | Catalyst composition comprising shuttling agent for ethylene multi-block copolymer formation |
EP2792690A1 (en) | 2004-03-17 | 2014-10-22 | Dow Global Technologies LLC | Catalyst composition comprising shuttling agent for ethylene multi-block copolymer formation |
US8076421B2 (en) | 2004-03-19 | 2011-12-13 | Dow Global Technologies Llc | Film layers made from polymer formulations |
US20060269748A1 (en) * | 2004-03-19 | 2006-11-30 | Jordan Joy F | Extensible and elastic conjugate fibers and webs having a nontacky feel |
US20050221709A1 (en) * | 2004-03-19 | 2005-10-06 | Jordan Joy F | Extensible and elastic conjugate fibers and webs having a nontacky feel |
US7101623B2 (en) | 2004-03-19 | 2006-09-05 | Dow Global Technologies Inc. | Extensible and elastic conjugate fibers and webs having a nontacky feel |
US7413803B2 (en) | 2004-03-19 | 2008-08-19 | Dow Global Technologies Inc. | Extensible and elastic conjugate fibers and webs having a nontacky feel |
US20050244638A1 (en) * | 2004-03-19 | 2005-11-03 | Chang Andy C | Propylene-based copolymers, a method of making the fibers and articles made from the fibers |
US7101622B2 (en) | 2004-03-19 | 2006-09-05 | Dow Global Technologies Inc. | Propylene-based copolymers, a method of making the fibers and articles made from the fibers |
US20070172685A1 (en) * | 2004-03-19 | 2007-07-26 | Mridula Kapur | Film layers made from polymer formulations |
US20050215155A1 (en) * | 2004-03-23 | 2005-09-29 | The Procter & Gamble Company | Absorbent article with improved opacity |
US20080119621A1 (en) * | 2004-10-28 | 2008-05-22 | Dow Global Technologies Inc. | Method Of Controlling A Polymerization Reactor |
US8093341B2 (en) | 2004-10-28 | 2012-01-10 | Dow Global Technologies Llc | Method of controlling a polymerization reactor |
US8742035B2 (en) | 2004-10-28 | 2014-06-03 | Dow Global Technologies Llc | Method of controlling a polymerization reactor |
US20060104857A1 (en) * | 2004-11-15 | 2006-05-18 | Pigott James M | Sterilization wrap with indicia for placement of medical instrumentation or trays |
US20070287798A1 (en) * | 2004-11-18 | 2007-12-13 | Ineos Manufacturing Belgium Nv | Use Of Anti-Oxidant Compounds For Muscle Recovery |
US7807770B2 (en) * | 2004-11-18 | 2010-10-05 | Ineos Manufacturing Belgium Nv | Drawn tapes, fibre and filaments comprising a multimodal polyethylene resin |
US7255759B2 (en) * | 2004-12-17 | 2007-08-14 | Albany International Corp. | Patterning on SMS product |
US20060131777A1 (en) * | 2004-12-17 | 2006-06-22 | Pascal Debyser | Patterning on SMS product |
EP2218751A1 (en) | 2004-12-17 | 2010-08-18 | Dow Global Technologies Inc. | Rheology modified polyethylene compositions |
WO2006101927A2 (en) | 2005-03-17 | 2006-09-28 | Dow Global Technologies Inc. | Fibers made from copolymers of propylene/alpha-olefins |
EP2357206A2 (en) | 2005-03-17 | 2011-08-17 | Dow Global Technologies LLC | Catalyst composition comprising shuttling agent for tactic/atactic multi-block copolymer formation |
EP2894176A1 (en) | 2005-03-17 | 2015-07-15 | Dow Global Technologies LLC | Catalyst composition comprising shuttling agent for regio-irregular multi-block copolymer formation |
US9410009B2 (en) | 2005-03-17 | 2016-08-09 | Dow Global Technologies Llc | Catalyst composition comprising shuttling agent for tactic/ atactic multi-block copolymer formation |
US7981992B2 (en) | 2005-03-17 | 2011-07-19 | Dow Global Technologies Llc | Catalyst composition comprising shuttling agent for regio-irregular multi-block copolymer formation |
US20080262175A1 (en) * | 2005-03-17 | 2008-10-23 | Arriola Daniel J | Catalyst Composition Comprising Shuttling Agent for Regio-Irregular Multi-Block Copolymer Formation |
US8981028B2 (en) | 2005-03-17 | 2015-03-17 | Dow Global Technologies Llc | Catalyst composition comprising shuttling agent for tactic/ atactic multi-block copolymer formation |
EP3424966A1 (en) | 2005-03-17 | 2019-01-09 | Dow Global Technologies Llc | Catalyst composition comprising shuttling agent for tactic/ atactic multi-block copolymer formation |
WO2006102149A2 (en) | 2005-03-17 | 2006-09-28 | Dow Global Technologies Inc. | Fibers made from copolymers of ethylene/alpha-olefins |
US20110092651A1 (en) * | 2005-09-15 | 2011-04-21 | Arriola Daniel J | Catalytic Olefin Block Copolymers Via Polymerizable Shuttling Agent |
US20080275189A1 (en) * | 2005-09-15 | 2008-11-06 | Dow Global Technologies Inc. | Control of Polymer Architecture and Molecular Weight Distribution Via Multi-Centered Shuttling Agent |
US7858707B2 (en) | 2005-09-15 | 2010-12-28 | Dow Global Technologies Inc. | Catalytic olefin block copolymers via polymerizable shuttling agent |
US8415434B2 (en) | 2005-09-15 | 2013-04-09 | Dow Global Technologies Llc | Catalytic olefin block copolymers via polymerizable shuttling agent |
US7947787B2 (en) | 2005-09-15 | 2011-05-24 | Dow Global Technologies Llc | Control of polymer architecture and molecular weight distribution via multi-centered shuttling agent |
EP3216899A1 (en) | 2005-10-26 | 2017-09-13 | Dow Global Technologies Llc | A fiber comprising a low crystallinity polymer and a high crystallinity polymer |
US20090068427A1 (en) * | 2005-10-26 | 2009-03-12 | Dow Global Technologies Inc. | Multi-layer, elastic articles |
EP3428329A1 (en) | 2005-10-26 | 2019-01-16 | Dow Global Technologies Llc | A fiber comprising a low crystallinity polymer and a high crystallinity polymer |
US8299189B2 (en) | 2006-05-17 | 2012-10-30 | Dow Global Technologies, Llc | Ethylene/α-olefin/diene solution polymerization process and polymer |
US8101696B2 (en) | 2006-05-17 | 2012-01-24 | Dow Global Technologies Llc | Polyolefin solution polymerization process and polymer |
US20090299116A1 (en) * | 2006-05-17 | 2009-12-03 | Konze Wayde V | Polyolefin solution polymerization process and polymer |
US20080081854A1 (en) * | 2006-09-06 | 2008-04-03 | Dow Global Technologies Inc. | Fibers and Knit Fabrics Comprising Olefin Block Interpolymers |
EP3232279A1 (en) | 2006-09-21 | 2017-10-18 | Union Carbide Chemicals & Plastics Technology LLC | Method of controlling properties in multimodal systems |
EP2267070A1 (en) | 2006-10-23 | 2010-12-29 | Dow Global Technologies Inc. | Method of making polyethylene compositions |
EP2223961A1 (en) | 2006-10-23 | 2010-09-01 | Dow Global Technologies Inc. | Methods of making polyethylene compositions |
US20100112273A1 (en) * | 2006-10-30 | 2010-05-06 | Roberto Pedoja | Method for manufacturing soft, resistant and bulky nonwoven and nonwoven thus obtained |
US8597555B2 (en) * | 2006-10-30 | 2013-12-03 | Ahlstrom Corporation | Method for manufacturing soft, resistant and bulky nonwoven and nonwoven thus obtained |
US7842627B2 (en) | 2006-11-30 | 2010-11-30 | Dow Global Technologies Inc. | Olefin block compositions for stretch fabrics with wrinkle resistance |
US7776770B2 (en) | 2006-11-30 | 2010-08-17 | Dow Global Technologies Inc. | Molded fabric articles of olefin block interpolymers |
US20080138599A1 (en) * | 2006-11-30 | 2008-06-12 | Dow Global Technologies Inc. | Olefin block compositions for stretch fabrics with wrinkle resistance |
US20080299857A1 (en) * | 2006-11-30 | 2008-12-04 | Dow Global Technologies Inc. | Olefin block compositions for heavy weight stretch fabrics |
US7928022B2 (en) | 2006-11-30 | 2011-04-19 | Dow Global Technologies Llc | Olefin block compositions for heavy weight stretch fabrics |
US20080176473A1 (en) * | 2006-11-30 | 2008-07-24 | Dow Global Technologies Inc. | Molded fabric articles of olefin block interpolymers |
WO2008089224A1 (en) | 2007-01-16 | 2008-07-24 | Dow Global Technologies Inc. | Cone dyed yarns of olefin block compositions |
WO2008089220A2 (en) | 2007-01-16 | 2008-07-24 | Dow Global Technologies Inc. | Colorfast fabrics and garments of olefin block compositions |
US20080171167A1 (en) * | 2007-01-16 | 2008-07-17 | Dow Global Technologies Inc. | Cone dyed yarns of olefin block compositions |
US20080182473A1 (en) * | 2007-01-16 | 2008-07-31 | Dow Global Technologies Inc. | Stretch fabrics and garments of olefin block polymers |
US20080184498A1 (en) * | 2007-01-16 | 2008-08-07 | Dow Global Technologies Inc. | Colorfast fabrics and garments of olefin block compositions |
US20090053460A1 (en) * | 2007-05-02 | 2009-02-26 | Carl Freudenberg Kg | Method for producing a ductile tufted product, a ductile tufted product, particularly a ductile tufted top carpet layer, particularly for the automobile interior area |
US20090068436A1 (en) * | 2007-07-09 | 2009-03-12 | Dow Global Technologies Inc. | Olefin block interpolymer composition suitable for fibers |
EP2495268A1 (en) | 2007-07-16 | 2012-09-05 | Dow Global Technologies LLC | Compositions and articles |
US8420760B2 (en) | 2007-11-19 | 2013-04-16 | Dow Global Technologies Llc | Long chain branched propylene-alpha-olefin copolymers |
US20100285253A1 (en) * | 2007-11-19 | 2010-11-11 | Hughes Morgan M | Long Chain Branched Propylene-Alpha-Olefin Copolymers |
US20110130271A1 (en) * | 2008-08-06 | 2011-06-02 | Union Carbide Chemicals & Plastics Technology Llc | Ziegler-natta catalyst compositions for producing polyethylenes with a high molecular weight tail and methods of making the same |
US10793654B2 (en) | 2008-08-06 | 2020-10-06 | Union Carbide Corporation | Ziegler-natta catalyst compositions for producing polyethylenes with a high molecular weight tail and methods of making the same |
US8901260B2 (en) | 2009-03-31 | 2014-12-02 | Dow Global Technologies Llc | Heterogeneous ethylene alpha-olefin interpolymers |
WO2010117792A2 (en) | 2009-03-31 | 2010-10-14 | Dow Global Technologies Inc. | Heterogeneous ethylene alpha0olefin interpolymer |
US9206303B2 (en) | 2009-03-31 | 2015-12-08 | Dow Global Technologies Llc | Film made from heterogenous ethylene/alpha-olefin interpolymer |
WO2010141557A1 (en) | 2009-06-05 | 2010-12-09 | Dow Global Technologies Inc. | Process to make long chain branched (lcb), block, or interconnected copolymers of ethylene |
US20110015346A1 (en) * | 2009-07-01 | 2011-01-20 | Dow Global Technologies Inc. | Ethylene-based polymer compositions |
WO2011002998A1 (en) | 2009-07-01 | 2011-01-06 | Dow Global Technologies Inc. | Ethylenic polymer and its use |
US10875947B2 (en) | 2009-07-01 | 2020-12-29 | Dow Global Technologies Llc | Ethylenic polymer and its use |
US8829115B2 (en) | 2009-07-01 | 2014-09-09 | Dow Global Technologies Llc | Ethylene-based polymer composition |
US8629214B2 (en) | 2009-07-01 | 2014-01-14 | Dow Global Technologies Llc. | Ethylene-based polymer compositions for use as a blend component in shrinkage film applications |
WO2011159376A1 (en) | 2009-07-01 | 2011-12-22 | Dow Global Technologies Llc | Ethylene-based polymer compositions for use as a blend component in shrinkage film applications |
US8729200B2 (en) | 2009-07-01 | 2014-05-20 | Dow Global Technologies Llc | Ethylene-based polymer compositions |
US8372931B2 (en) | 2009-07-01 | 2013-02-12 | Dow Global Technologies Llc | Ethylene-based polymer compositions |
WO2011002868A2 (en) | 2009-07-01 | 2011-01-06 | Dow Global Technologies Inc. | Ethylene-based polymer compositions |
WO2011002986A1 (en) | 2009-07-01 | 2011-01-06 | Dow Global Technologies Inc. | Ethylenic polymer and its use |
WO2011016991A2 (en) | 2009-07-29 | 2011-02-10 | Dow Global Technologies Inc. | Dual- or multi-headed chain shuttling agents and their use for the preparation of block copolymers |
EP3489264A1 (en) | 2009-07-29 | 2019-05-29 | Dow Global Technologies Llc | Chain shuttling agents and their use for the preparation of block copolymers |
EP3243846A2 (en) | 2009-07-29 | 2017-11-15 | Dow Global Technologies Llc | Multi-headed chain shuttling agents and their use for the preparation of block copolymers |
US8987385B2 (en) | 2009-09-14 | 2015-03-24 | Dow Global Technologies Llc | Interconnected copolymers of ethylene in combination with one other polyalkene |
WO2011032174A1 (en) | 2009-09-14 | 2011-03-17 | Dow Global Technologies Inc. | Polymers comprising units derived from ethylene and poly(alkoxide) |
WO2011032172A1 (en) | 2009-09-14 | 2011-03-17 | Dow Global Technologies Inc. | Polymers comprising units derived from ethylene and siloxane |
US8691923B2 (en) | 2009-09-14 | 2014-04-08 | Dow Global Technologies Llc | Interconnected copolymers of ethylene in combination with at least one polysiloxane |
US8598276B2 (en) | 2009-09-14 | 2013-12-03 | Dow Global Technologies Llc | Polymers comprising units derived from ethylene and poly(alkoxide) |
US9403928B2 (en) | 2009-12-18 | 2016-08-02 | Dow Global Technologies Llc | Polymerization process to make low density polyethylene |
US8729186B2 (en) | 2009-12-18 | 2014-05-20 | Dow Global Technologies Llc | Polymerization process to make low density polyethylene |
WO2011075465A1 (en) | 2009-12-18 | 2011-06-23 | Dow Global Technology Llc | Polymerization process to make low density polyethylene |
EP3473673A1 (en) | 2010-06-14 | 2019-04-24 | Dow Global Technologies, LLC | Fiber comprising ethylene-based polymer compositions |
WO2012004422A1 (en) | 2010-07-06 | 2012-01-12 | Dow Global Technologies Llc | Ethylene polymer blends and oriented articles with improved shrink resistance |
WO2012005974A1 (en) | 2010-07-06 | 2012-01-12 | Dow Global Technologies Llc | Ethylene polymer blends and oriented articles with improved shrink resistance |
WO2012024005A2 (en) | 2010-07-09 | 2012-02-23 | Luna Innovations Incorporated | Coating systems capable of forming ambiently cured highly durable hydrophobic coatings on substrates |
US9234055B2 (en) | 2010-09-30 | 2016-01-12 | Dow Global Technologies Llc | Polymerization process to make low density polyethylene |
WO2012044504A1 (en) | 2010-09-30 | 2012-04-05 | Dow Global Technologies Llc | Polymerization process to make low density polyethylene |
US9534064B2 (en) | 2010-09-30 | 2017-01-03 | Dow Global Technologies Llc | Polymerization process to make low density polyethylene |
US8871876B2 (en) | 2010-09-30 | 2014-10-28 | Dow Global Technologies Llc | Ethylene-based interpolymers and processes to make the same |
EP2471856A1 (en) | 2010-12-30 | 2012-07-04 | Dow Global Technologies LLC | Polyolefin compositions |
WO2012092052A1 (en) | 2010-12-30 | 2012-07-05 | Dow Global Tecnologies LLC | Polyolefin compositions |
WO2014092623A1 (en) * | 2012-12-13 | 2014-06-19 | Sca Hygiene Products Ab | Hygiene product |
US11839531B2 (en) | 2014-09-10 | 2023-12-12 | The Procter And Gamble Company | Nonwoven webs with hydrophobic and hydrophilic layers |
US11110013B2 (en) * | 2014-09-10 | 2021-09-07 | The Procter & Gamble Company | Nonwoven webs with hydrophobic and hydrophilic layers |
CN107073162A (en) * | 2014-11-18 | 2017-08-18 | 金伯利-克拉克环球有限公司 | Soft and durable nonwoven web |
US11083816B2 (en) | 2014-11-18 | 2021-08-10 | Kimberly-Clark Worldwide, Inc. | Soft and durable nonwoven web |
WO2017186935A1 (en) | 2016-04-29 | 2017-11-02 | Beaulieu International Group Nv | Bi-component staple or short-cut trilobal fibres and their uses |
US11668033B2 (en) * | 2016-06-13 | 2023-06-06 | Borealis Ag | High quality melt-blown webs with improved barrier properties |
US10349799B2 (en) | 2016-09-30 | 2019-07-16 | Kimberly-Clark Worldwide, Inc. | Cleansing article having printed texture |
US11203006B2 (en) | 2016-12-16 | 2021-12-21 | Flow Dry Technology, Inc. | Method of use for a solid form adsorbent |
US10773239B2 (en) | 2016-12-16 | 2020-09-15 | Flow Dry Technology, Inc. | Solid form adsorbent |
US11773521B2 (en) | 2017-01-31 | 2023-10-03 | The Procter & Gamble Company | Shaped nonwoven |
US11872112B2 (en) | 2017-01-31 | 2024-01-16 | The Procter & Gamble Company | Shaped nonwoven |
US11987917B2 (en) | 2017-01-31 | 2024-05-21 | The Procter & Gamble Company | Shaped nonwoven |
US11661689B2 (en) | 2017-01-31 | 2023-05-30 | The Procter & Gamble Company | Shaped nonwoven |
CN110191982A (en) * | 2017-01-31 | 2019-08-30 | 宝洁公司 | Form non-woven cloth |
US11324641B2 (en) | 2017-01-31 | 2022-05-10 | The Procter & Gamble Company | Shaped nonwoven |
US11427943B2 (en) | 2017-01-31 | 2022-08-30 | The Procter & Gamble Company | Shaped nonwoven |
US11666488B2 (en) | 2017-01-31 | 2023-06-06 | The Procter & Gamble Company | Shaped nonwoven |
US11992393B2 (en) | 2017-01-31 | 2024-05-28 | The Procter & Gamble Company | Shaped nonwoven |
USD871082S1 (en) * | 2017-06-15 | 2019-12-31 | Kimberly-Clark Worldwide, Inc. | Wiping article |
US11560658B2 (en) | 2017-08-16 | 2023-01-24 | Kimberly-Clark Worldwide, Inc. | Method of making a nonwoven web |
USD906692S1 (en) * | 2018-09-13 | 2021-01-05 | Fitesa Germany Gmbh | Sheet material |
WO2020140061A1 (en) | 2018-12-28 | 2020-07-02 | Dow Global Technologies Llc | Curable compositions comprising telechelic polyolefins |
EP4234594A1 (en) | 2018-12-28 | 2023-08-30 | Dow Global Technologies LLC | Curable compositions comprising unsaturated polyolefins |
WO2020140067A1 (en) | 2018-12-28 | 2020-07-02 | Dow Global Technologies Llc | Curable compositions comprising unsaturated polyolefins |
WO2020140058A1 (en) | 2018-12-28 | 2020-07-02 | Dow Global Technologies Llc | Telechelic polyolefins and processes for preparing the same |
USD1005696S1 (en) * | 2020-04-27 | 2023-11-28 | Kimberly-Clark Worldwide, Inc. | Absorbent wipe |
CN113827402A (en) * | 2021-09-06 | 2021-12-24 | 安徽舒源妇幼用品有限公司 | Antibacterial breathable paper diaper for old people and preparation method thereof |
USD998350S1 (en) * | 2022-04-04 | 2023-09-12 | Kimberly-Clark Worldwide, Inc. | Paper sheet |
CN115337148A (en) * | 2022-08-19 | 2022-11-15 | 露乐健康科技股份有限公司 | Absorption core body and sanitary product |
Also Published As
Publication number | Publication date |
---|---|
CA1281537C (en) | 1991-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4668566A (en) | Multilayer nonwoven fabric made with poly-propylene and polyethylene | |
US4778460A (en) | Multilayer nonwoven fabric | |
US4753834A (en) | Nonwoven web with improved softness | |
KR930010350B1 (en) | Nonwoven web with improved softness | |
AU668973B2 (en) | Nonwoven fabric made with multicomponent polymeric strands including a blend of polyolefin and ethylene alkyl acrylate copolymer | |
EP0586937B1 (en) | Nonwoven fabric made with multicomponent polymeric strands including a blend of polyolefin and elastomeric thermoplastic material | |
US5080951A (en) | Nonwoven fabric | |
KR930010351B1 (en) | Multilayer nonwoven fabric | |
AU700143B2 (en) | Low density microfiber nonwoven fabric | |
EP0941379B1 (en) | Entangled nonwoven fabrics and methods for forming the same | |
US5545464A (en) | Conjugate fiber nonwoven fabric | |
AU743574B2 (en) | Crimped multicomponent filaments and spunbond webs made therefrom | |
KR100309231B1 (en) | Multicomponent polymeric strands and but nonwovens and articles, including butene polymers | |
EP0693585B1 (en) | Knit like nonwoven fabric composite | |
EP1348051B1 (en) | In-line heat treatment of homofilament crimp fibers | |
EP0534863A1 (en) | Bonded composite nonwoven web and process | |
EP0418493A1 (en) | A nonwoven composite fabric combined by hydroentangling and a method of manufacturing the same | |
MXPA05005755A (en) | Tufted fibrous web. | |
EP0171807B1 (en) | An entangled nonwoven fabric with thermoplastic fibers on its surface and the method of making same | |
CA1281864C (en) | Nonwoven web with improved softness | |
US7025914B2 (en) | Multilayer approach to producing homofilament crimp spunbond | |
JPH01201503A (en) | Improved disposable sanitary material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: KIMBERLY-CLARK CORPORATION, 401 NORTH LAKE STREET, Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:BRAUN, RALPH V.;REEL/FRAME:004619/0340 Effective date: 19851203 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: KIMBERLY-CLARK WORLDWIDE, INC., WISCONSIN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KIMBERLY-CLARK CORPORATION;REEL/FRAME:008519/0919 Effective date: 19961130 |
|
FPAY | Fee payment |
Year of fee payment: 12 |