US3860521A - Soap based chain conveyor lubricant - Google Patents

Soap based chain conveyor lubricant Download PDF

Info

Publication number
US3860521A
US3860521A US236349A US23634972A US3860521A US 3860521 A US3860521 A US 3860521A US 236349 A US236349 A US 236349A US 23634972 A US23634972 A US 23634972A US 3860521 A US3860521 A US 3860521A
Authority
US
United States
Prior art keywords
fatty acid
concentrate
percent
soap
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US236349A
Inventor
Otto T Aepli
Malachy E Sorgenfrei
Harold L Conaway
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diversey Wyandotte Corp
BASF Corp
Original Assignee
BASF Wyandotte Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF Wyandotte Corp filed Critical BASF Wyandotte Corp
Priority to US236349A priority Critical patent/US3860521A/en
Priority to BE128897A priority patent/BE796896A/en
Priority to DE2313330A priority patent/DE2313330A1/en
Priority to GB1321673A priority patent/GB1413227A/en
Application granted granted Critical
Publication of US3860521A publication Critical patent/US3860521A/en
Assigned to DIVERSEY WYANDOTTE CORPORATION, A CORP. OF DE. reassignment DIVERSEY WYANDOTTE CORPORATION, A CORP. OF DE. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: DIVERSEY CORPORATION THE
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • C02F9/20Portable or detachable small-scale multistage treatment devices, e.g. point of use or laboratory water purification systems
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M173/00Lubricating compositions containing more than 10% water
    • C10M173/02Lubricating compositions containing more than 10% water not containing mineral or fatty oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/02Water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/021Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/021Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/022Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms containing at least two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/04Ethers; Acetals; Ortho-esters; Ortho-carbonates
    • C10M2207/046Hydroxy ethers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/129Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of thirty or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/18Tall oil acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/287Partial esters
    • C10M2207/289Partial esters containing free hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/104Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing two carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/105Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing three carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/106Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing four carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/107Polyethers, i.e. containing di- or higher polyoxyalkylene groups of two or more specified different alkylene oxides covered by groups C10M2209/104 - C10M2209/106
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/108Polyethers, i.e. containing di- or higher polyoxyalkylene groups etherified
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/109Polyethers, i.e. containing di- or higher polyoxyalkylene groups esterified
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2215/042Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Alkoxylated derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2215/044Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms having cycloaliphatic groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/16Nitriles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/26Amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/046Polyamines, i.e. macromoleculars obtained by condensation of more than eleven amine monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/06Macromolecular compounds obtained by functionalisation op polymers with a nitrogen containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/042Sulfate esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/044Sulfonic acids, Derivatives thereof, e.g. neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2221/00Organic macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2221/04Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2221/043Polyoxyalkylene ethers with a thioether group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/042Metal salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/02Groups 1 or 11
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/30Refrigerators lubricants or compressors lubricants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/32Wires, ropes or cables lubricants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/34Lubricating-sealants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/36Release agents or mold release agents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/38Conveyors or chain belts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/40Generators or electric motors in oil or gas winning field
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/42Flashing oils or marking oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/44Super vacuum or supercritical use
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/50Medical uses
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/01Emulsions, colloids, or micelles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2070/00Specific manufacturing methods for lubricant compositions
    • C10N2070/02Concentrating of additives

Definitions

  • an aqueous lubricating concentrate for lubricating continuously moving conveyor systems wherein said concentrate contains a fatty acid soap and a surfactant, the improvement comprising the addition to said composition of monostearyl acid phosphate in an amount from about 0.15 to about 1.75 weight percent of the concentrate.
  • the concentrate when diluted with water is then ready for use as a lubricating composition.
  • the typical chain conveyor lubricant for convenience and economy in transporting and storing is manufactured and sold as a concentrate which is then diluted with water in proportions by volume of from about 1:50 parts concentrate to water to about 1:500 parts concentrate to water for usage.
  • the lubricant concentrate typically consists of from about 20 to about 80 percent water, about 0 to percent sequestering agent, about 0 to 30 percent anionic surface active agent, about 2 to 40 percent fatty acid soap, about 0 to 40 percent coupling agent, about 0 to 15 percent nonionic surface active agent.
  • the concentrate contain about 30 to about 70 percent water, about 2 to 15 percent sequestering agent, about 2 'to 30 percent anionic surface active agent, about 4 to percent fatty acid soap, about 0 to 20 percent coupling agent and about 2 to 10 percent nonionic surface active agent.
  • monostearyl acid phosphate is added to the foregoing composition to obtain the objects of the present invention.
  • the monostearyl acid phosphate is added in an amount from 0.15 to 1.75 percent of the concentrate exclusive of the water present. More preferably the amount of monostearyl acid phosphate will be from about onehalf to about 1.5 weight percent.
  • sequestering agent salts of ethylene diamine tetracetic acid may be added to the composition in the form of the salts or the acid may be added along with a sufficient amount of metallic hydroxide or alkanolamine to neutralize the acid.
  • sequestering agent which will complex calcium and magnesium ions from water may be employed in this invention.
  • Additional suitable sequestering agents are trans-1,Z-diaminocyclohexane tetracetic acid monohydrate, diethylene triamine pentacetic acid, sodium salt of nitrilotriacetic acid, pentasodium salt of N- hydroxyethylene diamine triacetic acid, trisodium salt of N,N-di(beta-hyroxyethyl) glycine, and sodium salt of sodium glucoheptonate.
  • Anionic surface active agents which may be employed include linear alkyl benzene sulfonic acids, alpha-olefin sulfonates, alkyl diphenyl oxide disulfonates, sodium N-methyl-N-alkyl-taurate, alkyl sulfonated amides, di(2-ethylhexyl) sulfosuccinate, dioctyl sodium sulfosuccinate, sodium sulfonate of oleic acid, anionic phosphate esters, alkyl ether sulfates, alkyl polyethyleneoxy esters, alcohol sulfates such as sodium lauryl sulfate, the product of chlorosulfonation of paraffin hydrocarbons, e.g., octadecenyl sulfonate and the condensate of a fatty acid chloride with an amine.
  • fatty acid soap instead of adding fatty acid soap as such it is preferred to simply add fatty acid in amount from about 2 to 30 weight percent for the broad composition or 4 to 15 percent by weight in the preferred composition and then add a sufficient amount of an alkali metal (from the first column of the periodic table) hydroxide, ammonium hydroxide or an alkanolamine to neutralize the fatty acid to produce the fatty acid soap.
  • an alkali metal from the first column of the periodic table
  • ammonium hydroxide or an alkanolamine to neutralize the fatty acid to produce the fatty acid soap.
  • the sequestering agent is also added in the acid form, the foregoing hydroxide or alkanolamine is added in sufficient amount to neutralize both the sequestering agent acid and the fatty acid.
  • Preferred fatty acids for this purpose are tall oil fatty acids with low rosin content of about 0.5 to 0.9 percent by weight and which generally comprise approximately 52 percent by weight oleic acid, percent by weight-linoleic acid, 1 percent by weight linolenic acid, and 2.3 percent by weight saturated acid.
  • Coconut oil fatty acids generally comprised of percent lauric, 20 percent myristic, 10 percent oleic, 10 percent palmitic, 8 percent of other saturated fatty acids, and about 2 percent unsaturated fatty acids are also desirable for this purpose.
  • Additional useful fatty acids include those derived from tallow, soya beans, corn, cottonseed, palm, and blends or hydrogenated forms of the basic type of fatty acid to give desired characteristics such as low solubilization temperature, viscosity, and reduced corrosion tendency.
  • Sodium, ammonium or potassium hydroxide and mono, di, and triethanolamine or isopropanolamine are the preferred source used for neutralizing and converting fatty acids and sulfonic acid derivatives to soap or amides.
  • Potassium hydroxide and monoethanolamine are preferred for their ability to produce compounds with a pH and foam generating capacity suitable for conveyor lubricants.
  • the nonionic surface active agents which are advantageously employed in the compositions of the invention are generally the polyoxyalkylene adducts of hydrophobic bases wherein the oxygen/carbon atom ratio in the oxyalkylene portion of the molecule is greater than 0.40.
  • Those compositions which are condensed with hydrophobic bases to provide a polyoxyalkylene portion having 'an oxygen/carbon atom ratio greater than 0.40 include ethylene oxide, butadiene dioxide and glycidol, mixtures of these alkylene oxides with each other and with minor amounts of propylene oxide, butylene oxide, amylene oxide, styrene oxide, and other higher molecular weight alkylene oxides.
  • Ethylene oxide for example, is condensed with the hydrophobic base in an amount sufficient to impart water dispersibility or solubility and surface active properties to the molecule being prepared.
  • the exact amount of ethylene oxide condensed with the hydrophobic base will depend upon the chemical characteristics of the base employed and is readily apparent to those of ordinary skill in the art relating to the synthesis of oxyalkylene surfactant condensates.
  • Typical hydrophobic bases which can be condensed with ethylene oxide in order to prepare nonionic surface active agents include monoand polyalkyl phenols, polyoxypropylene condensed with a base having from about 1 to 6 carbon atoms and at least one reactive hydrogen atom, fatty acids, fatty amines, fatty amides and fatty alcohols.
  • the hydrocarbon ethers such as the benzyl or lower alkyl ether of the polyoxyethylene surfactant condensates are also advantageously employed in the compositions of the invention.
  • nonionic surface active agents are the polyoxyethylene condensates of alkyl phenols having from about 6 to carbon atoms in the alkyl portion and from about 5 to 30 ethenoxy groups in the polyoxyethylene radical.
  • the alkyl substituent on the aromatic nucleus may be octyl, diamyl, n-dodecyl, polymerized propylene such as propylene tetramer and trimer, isoctyl, nonyl, etc.
  • the benzyl ethers of the polyoxyethylene condensates of monoalkyl phenols impart good properties to the compositions of the invention and a typical product corresponds to the formula:
  • fiowazcazo H R wherein R is hydrogen or an alkyl radical having from about 1 to 12 carbon atoms, R and R are alkyl radicals having from about 6 to 16 carbon atoms and n has a value from about 10 to 40, are also suitable as nonionic surface active agents.
  • R is hydrogen or an alkyl radical having from about 1 to 12 carbon atoms, R and R are alkyl radicals having from about 6 to 16 carbon atoms and n has a value from about 10 to 40, are also suitable as nonionic surface active agents.
  • a typical oxyethylated polyalkyl phenol is dinonyl phenol condensed with 14' moles of ethylene oxide.
  • Suitable nonionic surface active agents are cogeneric mixtures of conjugated polyoxyalkylene compounds containing in their structure at least one hydrophobic oxyalkylene chain in which the oxygen/carbon atom ratio does not exceed 0.40 and at least one hydrophilic oxyalkylene chain in which the oxygen/carbon atom ratio is greater than 0.40.
  • Polymers of oxyalkylene groups obtained from propylene oxide, butylene oxide, amylene oxide, styrene oxide, mixtures of such oxyalkylene groups with each other and with minor amounts of polyoxyalkylene groups obtained from ethylene oxide, butadiene dioxide, and glycidol are illustrative of hydrophobic oxyalkylene chains having an oxygen/carbon atom ratio not exceeding 0.40.
  • Polymers of oxyalkylene groups obtained from ethylene oxide, butadiene dioxide, glycidol, mixtures of such oxyalkylene groups with each other and with minor amounts of oxyalkylene groups obtained from propylene oxide, butylene oxide, amylene oxide and styrene oxide are illustrative of hydrophilic oxyalkylene chains having an oxygen/carbon atom ratio greater than 0.40.
  • nonionic surface active agents are the polyoxyethylene esters of higher fatty acids having from about 8 to 22 carbon atoms in the acyl group and from about 8 to 30 ethenoxy units in the oxyethylene portion.
  • Typical products are the polyoxyethylene adducts of tall oil, rosin acids, lauric, stearic and oleic acids and the like.
  • Additional nonionic surface active agents are the polyoxyethylene condensates of higher fatty acid amines and amides having from about 8 to 22 carbon atoms in the fatty alkyl or acyl group and about 10 to 30 ethenoxy units in the oxyethylene portion.
  • lllustrative products are coconut oil fatty acid amines and amides condensed with about 10 to 30 moles of ethylene oxide.
  • polyoxyalkylene nonionic surface active agents are the alkylene oxide adducts of higher aliphatic alcohols and thioalcohols having from about 8 to 22 carbon atoms in the aliphatic portion and about 3 to 50 oxyalkylene portion.
  • Typical products are synthetic fatty alcohols, such as n-decyl, n-undecyl, n-
  • couplers or hydrotropes which may be employed in this invention, or perhaps they could be equally described as homogenizers or phase control agents, the following are typical examples of useful agents for this purpose: propylene glycol, isopropyl alcohol and ethylene glycol.
  • compositions of this invention are prepared by standard well-known open kettle mixing techniques known in the industry.
  • a 12 foot section of continuous bottle conveyor driven by a one-third horse power motor is loaded with 50 water-filled 6.5 fluid ounce bottles.
  • the test lubricating composition is diluted in a proportion by weight of 1:100. This dilute solution is then applied at a single application point at the end of the conveyor distal to the drive, thus simulating operating conditions of the section of the actual bottle conveyor.
  • the relative efficiency of the lubricant is determined by the force in pounds of gate pressure exerted by the stationary bottles on a spring balance at the end of the conveyor as the chain moves under the load.
  • compositions with poor lubricity will result in a higher gate pressure due to the force transmitted to the bottle column by the friction of the chain passing under the bottle load.
  • a lubricant yielding a gate pressure of greater than 12 pounds on the balance with the standard load will exhibit poor lubricity under actual use conditions.
  • the current load in watts of the drive motor is also proportional to the lubricity of the lubricant as related to the friction between the bottle load and the conveyor chain.
  • the foam generating capacity of the test formula is determined by the height of the suds that build up between adjacent bottles. Lubricants giving a gate pressure of less than 12 pounds and an electricalload ofless than 105 watts have been shown to perform satisfactorily in actual conveyor systems. The results of lubricity and foam generating capacity of the below listed compositions are indicated in Table l below.
  • EXAMPLE I A quantity of phosphate-free aqueous commercial conveyor chain lubricant containing a non-ionic surfacrant and a fatty acid soap was divided into two parts. One portion was marked sample A and used as a control. To the other portion, marked sample B, was added and uniformly dispersed therein one percent by weight of monostearyl acid phosphate (hereinafter for convenience called MSAP in this and the'following examples). Each sample was tested in the bottle conveyor test described above.
  • MSAP monostearyl acid phosphate
  • a conveyor chain lubricant was prepared without MSAP (sample A) and with 1 percent by weight MSAP (sample B) by adjusting the amount of water. On a percent by weight basis the lubricant contained:
  • Monophosphate ester of nonionic surfactant A 10.0 10.0
  • Nonionic surfactant 8 3.0 3.0
  • Nonionic surfactant A is an oxyalkylated alcohol wherein the alcohol is a mixture comprising 85% by weight of a C alcohol, 8.5% by weight of a C alcohol and 6.5% by weight of a C alcohol; the oxyalkyl is a mixture of 68 parts of ethylene oxide and 12 parts of ethylene oxide, total oxyalkyl weight content weight ratio of ethylene oxide to propylene oxide 5.67 to l.
  • Nonionic surfactant B is an ethylenediamine initiated oxypropylene oxyethylene polymer wherein the molecular weight of the. po1y(oxypropy1ene) hydrophobe ent.
  • an aqueous lubricating composition concentrate for lubricating continuously moving conveyor systems wherein said concentrate consists essentially of by weight of about 30 to about percent water, about 2 to 15 percent sequestering agent, about 2 to 30 percent anionic surface active agent, about 4 to 20 percent fatty acid soap selected from the group consisting of fatty acid alkali metal soap, fatty acid alkanol amine soap and fatty acid ammonia soap, zero to 20 percent coupling agent selected from the group consisting of propylene glycol, isopropyl alcohol and ethylene glyco], and about 2 to 10 percent nonionic surface active agent, the improvement comprising adding monostearyl acid phosphate to said concentrate in an amount from about 0.15 to about 1.75 weight percent of said concentrate whereby improved defoaming properties are obtained.
  • fatty acid soap is obtained by incorporating in said concentrate a fatty acid in an amount from about 2 to 30 weight percent along with an agent selected from the group consisting of alkali metal hydroxide, ammonium hydroxide and alkanolamines in amount sufficient to react with the fatty acid to produce the fatty acid soap.
  • a lubricating composition consisting essentially of the concentrate according to claim 1 and water in a volumetric proportion of concentrate to water of about 1:50 to about 1:500.
  • composition according to claim 4 wherein said concentrate fatty acid soap is obtained by incorporating in said concentrate a fatty acid in an amount from about 2 to about 30 weight percent along with an agent selected from the group consisting of alkali metal metal hydroxide, ammonium hydroxide and alkanolamines in an amount sufficient to react with the fatty acid to produce the fatty acid soap.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Lubricants (AREA)

Abstract

Chain Conveyor Lubricant: A. WATER BASE B. FATTY ACID SOAP C. SEQUESTERING AGENT D. ALCOHOLIC COUPLING AGENT E. ANIONIC SURFACTANT F. NONIONIC SURFACTANT G. MONOSTEARYL ACID PHOSPHATE.

Description

United States Patent Aepli et al.
[451 Jan. 14, 1975 SOAP BASED CHAIN CONVEYOR LUBRICANT Inventors: Otto T. Aepli, Southgate; Malachy E. Sorgenfrei, Trenton; Harold L. Conaway, Wyandotte, all of Mich.
Assignee: BASF Wyandotte Corporation,
Wyandotte, Mich.
Filed: Mar. 20, 1972 Appl. No.: 236,349
US. Cl 252/34.7, 252/33.3, 252/33.6, 252/42.l, 252/49.3, 252/49.5, 252/49.8
Int. Cl.....C10m 3/40, ClOm 3/18, ClOm 3/04 Field of Search 252/347, 42.1, 49.3, 49.5, 252/33.6, 49.8, 41, 33.3
References Cited UNITED STATES PATENTS 7/1942 Waugh 252/34.7
3,277,001 10/1966 Fischer et al. 252/347 3,336,225 8/1967 Sayad et al. 252/34.7 3,399,144 8/1968 Hathaway et al.... 252/49.8
3,583,914 6/1971 Garvin et al. 252/34.7 3,657,123, 4/1972 Stram 252/34.7
Primary ExaminerDelbert E. Gantz Assistant Examiner1. Vaughn Attorney, Agent, or Firm-Bernhard R. Swick; Joseph D. Michaels; Robert E. Dunn [57] ABSTRACT '6 Claims, No Drawings SOAP BASED CHAIN CONVEYOR LUBRICANT BACKGROUND 1. Field of the Invention This invention relates to the improved soap based chain conveyor lubricants and more particularly to lubricants which are aqueous compositions containing fatty acid soaps and surfactants.
2. Description of the Prior Art In breweries, soft drink bottling operations and food processing plants, conveyor belts are used to move the bottles, jars, cans and the like along the bottling line. In order to keep the conveyor chains clean and provide lubrication, it is customary to use a lubricant such as a soap based lubricant. However, these lubricants have often tended to foam to such an extent that the labels affixed to the bottles are wetted by the foam thereby giving them a poor appearance and/or are partially removed. Additionally, the use of these lubricants have resulted in the accumulation of unsightly amounts of 20 foam on the floors and other areas.
In view of the prior art, it is an object of this invention to provide a soap based chain conveyor-lubricant having improved defoaming properties. It isstill another object of this invention to provide a soap based chain conveyor lubricant having improved lubricating properties.
These and other objects will become apparent from the following detailed description.
SUMMARY OF THE INVENTION In accordance with this invention, there is provided an aqueous lubricating concentrate for lubricating continuously moving conveyor systems wherein said concentrate contains a fatty acid soap and a surfactant, the improvement comprising the addition to said composition of monostearyl acid phosphate in an amount from about 0.15 to about 1.75 weight percent of the concentrate. The concentrate when diluted with water is then ready for use as a lubricating composition.
DESCRIPTION OF THE PREFERRED EMBODIMENT The typical chain conveyor lubricant for convenience and economy in transporting and storing is manufactured and sold as a concentrate which is then diluted with water in proportions by volume of from about 1:50 parts concentrate to water to about 1:500 parts concentrate to water for usage. The lubricant concentrate typically consists of from about 20 to about 80 percent water, about 0 to percent sequestering agent, about 0 to 30 percent anionic surface active agent, about 2 to 40 percent fatty acid soap, about 0 to 40 percent coupling agent, about 0 to 15 percent nonionic surface active agent. Usually it is more preferred that the concentrate contain about 30 to about 70 percent water, about 2 to 15 percent sequestering agent, about 2 'to 30 percent anionic surface active agent, about 4 to percent fatty acid soap, about 0 to 20 percent coupling agent and about 2 to 10 percent nonionic surface active agent.
According to this invention monostearyl acid phosphate is added to the foregoing composition to obtain the objects of the present invention. Typically the monostearyl acid phosphate is added in an amount from 0.15 to 1.75 percent of the concentrate exclusive of the water present. More preferably the amount of monostearyl acid phosphate will be from about onehalf to about 1.5 weight percent.
It is preferred to employ as the sequestering agent salts of ethylene diamine tetracetic acid. These sequestering agents'may be added to the composition in the form of the salts or the acid may be added along with a sufficient amount of metallic hydroxide or alkanolamine to neutralize the acid.
Any sequestering agent which will complex calcium and magnesium ions from water may be employed in this invention. Additional suitable sequestering agents are trans-1,Z-diaminocyclohexane tetracetic acid monohydrate, diethylene triamine pentacetic acid, sodium salt of nitrilotriacetic acid, pentasodium salt of N- hydroxyethylene diamine triacetic acid, trisodium salt of N,N-di(beta-hyroxyethyl) glycine, and sodium salt of sodium glucoheptonate.
Where the-formula is diluted in tap water, conventional metallic soap dispersants may be necessary or desirable in addition to the sequestering agents.
Anionic surface active agents which may be employed include linear alkyl benzene sulfonic acids, alpha-olefin sulfonates, alkyl diphenyl oxide disulfonates, sodium N-methyl-N-alkyl-taurate, alkyl sulfonated amides, di(2-ethylhexyl) sulfosuccinate, dioctyl sodium sulfosuccinate, sodium sulfonate of oleic acid, anionic phosphate esters, alkyl ether sulfates, alkyl polyethyleneoxy esters, alcohol sulfates such as sodium lauryl sulfate, the product of chlorosulfonation of paraffin hydrocarbons, e.g., octadecenyl sulfonate and the condensate of a fatty acid chloride with an amine.
For the sake of simplicity in formulating the composition, instead of adding fatty acid soap as such it is preferred to simply add fatty acid in amount from about 2 to 30 weight percent for the broad composition or 4 to 15 percent by weight in the preferred composition and then add a sufficient amount of an alkali metal (from the first column of the periodic table) hydroxide, ammonium hydroxide or an alkanolamine to neutralize the fatty acid to produce the fatty acid soap. Where the sequestering agent is also added in the acid form, the foregoing hydroxide or alkanolamine is added in sufficient amount to neutralize both the sequestering agent acid and the fatty acid. Preferred fatty acids for this purpose are tall oil fatty acids with low rosin content of about 0.5 to 0.9 percent by weight and which generally comprise approximately 52 percent by weight oleic acid, percent by weight-linoleic acid, 1 percent by weight linolenic acid, and 2.3 percent by weight saturated acid. Coconut oil fatty acids, generally comprised of percent lauric, 20 percent myristic, 10 percent oleic, 10 percent palmitic, 8 percent of other saturated fatty acids, and about 2 percent unsaturated fatty acids are also desirable for this purpose. Additional useful fatty acids include those derived from tallow, soya beans, corn, cottonseed, palm, and blends or hydrogenated forms of the basic type of fatty acid to give desired characteristics such as low solubilization temperature, viscosity, and reduced corrosion tendency.
Sodium, ammonium or potassium hydroxide and mono, di, and triethanolamine or isopropanolamine are the preferred source used for neutralizing and converting fatty acids and sulfonic acid derivatives to soap or amides. Potassium hydroxide and monoethanolamine are preferred for their ability to produce compounds with a pH and foam generating capacity suitable for conveyor lubricants.
The nonionic surface active agents which are advantageously employed in the compositions of the invention are generally the polyoxyalkylene adducts of hydrophobic bases wherein the oxygen/carbon atom ratio in the oxyalkylene portion of the molecule is greater than 0.40. Those compositions which are condensed with hydrophobic bases to provide a polyoxyalkylene portion having 'an oxygen/carbon atom ratio greater than 0.40 include ethylene oxide, butadiene dioxide and glycidol, mixtures of these alkylene oxides with each other and with minor amounts of propylene oxide, butylene oxide, amylene oxide, styrene oxide, and other higher molecular weight alkylene oxides. Ethylene oxide, for example, is condensed with the hydrophobic base in an amount sufficient to impart water dispersibility or solubility and surface active properties to the molecule being prepared. The exact amount of ethylene oxide condensed with the hydrophobic base will depend upon the chemical characteristics of the base employed and is readily apparent to those of ordinary skill in the art relating to the synthesis of oxyalkylene surfactant condensates.
Typical hydrophobic bases which can be condensed with ethylene oxide in order to prepare nonionic surface active agents include monoand polyalkyl phenols, polyoxypropylene condensed with a base having from about 1 to 6 carbon atoms and at least one reactive hydrogen atom, fatty acids, fatty amines, fatty amides and fatty alcohols. The hydrocarbon ethers such as the benzyl or lower alkyl ether of the polyoxyethylene surfactant condensates are also advantageously employed in the compositions of the invention.
Among the suitable nonionic surface active agents are the polyoxyethylene condensates of alkyl phenols having from about 6 to carbon atoms in the alkyl portion and from about 5 to 30 ethenoxy groups in the polyoxyethylene radical. The alkyl substituent on the aromatic nucleus may be octyl, diamyl, n-dodecyl, polymerized propylene such as propylene tetramer and trimer, isoctyl, nonyl, etc. The benzyl ethers of the polyoxyethylene condensates of monoalkyl phenols impart good properties to the compositions of the invention and a typical product corresponds to the formula:
c8ril7- 0011 011 1 50011 0 1 15 Higher polyalkyl oxyethylated phenols corresponding to the formula:
fiowazcazo) H R wherein R is hydrogen or an alkyl radical having from about 1 to 12 carbon atoms, R and R are alkyl radicals having from about 6 to 16 carbon atoms and n has a value from about 10 to 40, are also suitable as nonionic surface active agents. A typical oxyethylated polyalkyl phenol is dinonyl phenol condensed with 14' moles of ethylene oxide.
Other suitable nonionic surface active agents are cogeneric mixtures of conjugated polyoxyalkylene compounds containing in their structure at least one hydrophobic oxyalkylene chain in which the oxygen/carbon atom ratio does not exceed 0.40 and at least one hydrophilic oxyalkylene chain in which the oxygen/carbon atom ratio is greater than 0.40.
Polymers of oxyalkylene groups obtained from propylene oxide, butylene oxide, amylene oxide, styrene oxide, mixtures of such oxyalkylene groups with each other and with minor amounts of polyoxyalkylene groups obtained from ethylene oxide, butadiene dioxide, and glycidol are illustrative of hydrophobic oxyalkylene chains having an oxygen/carbon atom ratio not exceeding 0.40. Polymers of oxyalkylene groups obtained from ethylene oxide, butadiene dioxide, glycidol, mixtures of such oxyalkylene groups with each other and with minor amounts of oxyalkylene groups obtained from propylene oxide, butylene oxide, amylene oxide and styrene oxide are illustrative of hydrophilic oxyalkylene chains having an oxygen/carbon atom ratio greater than 0.40.
Further suitable nonionic surface active agents are the polyoxyethylene esters of higher fatty acids having from about 8 to 22 carbon atoms in the acyl group and from about 8 to 30 ethenoxy units in the oxyethylene portion. Typical products are the polyoxyethylene adducts of tall oil, rosin acids, lauric, stearic and oleic acids and the like. Additional nonionic surface active agents are the polyoxyethylene condensates of higher fatty acid amines and amides having from about 8 to 22 carbon atoms in the fatty alkyl or acyl group and about 10 to 30 ethenoxy units in the oxyethylene portion. lllustrative products are coconut oil fatty acid amines and amides condensed with about 10 to 30 moles of ethylene oxide.
Other suitable polyoxyalkylene nonionic surface active agents are the alkylene oxide adducts of higher aliphatic alcohols and thioalcohols having from about 8 to 22 carbon atoms in the aliphatic portion and about 3 to 50 oxyalkylene portion. Typical products are synthetic fatty alcohols, such as n-decyl, n-undecyl, n-
dodecyl n-tridecyl, n-tetradecyl, n-hexadecyl, noxtadecyl and mixtures thereof condensed with 3 to 50 moles of ethylene oxide, a mixture of normal fatty alcohols condensed with 8 to 20 moles of ethylene oxide and capped with benzyl halide or an alkyl halide, a mixture of normal fatty alcohols condensed with 10 to 30 moles of a mixture of ethylene and propylene oxides, a mixture of several fatty alcohols condensed sequentially with 2 to 20 moles of ethylene oxide and 3 to 10 moles of propylene oxide, in either order; or a mixture of normal fatty alcohols condensed with a mixture of propylene and ethylene oxides, in which the oxygen/- carbon atom ratio is less than 0.40 followed by a mixture of propylene and ethylene oxides in which the oxygen/carbon atom ratio is greater than 040 or a linear secondary alcohol condensed with 3 to 30 moles of ethylene oxide, or a linear secondary alcohol condensed with a mixture of propylene and ethylene oxides, or a linear secondary alcohol condensed with a mixture of ethylene, propylene, and higher alkylene oxides. As couplers or hydrotropes which may be employed in this invention, or perhaps they could be equally described as homogenizers or phase control agents, the following are typical examples of useful agents for this purpose: propylene glycol, isopropyl alcohol and ethylene glycol.
The compositions of this invention are prepared by standard well-known open kettle mixing techniques known in the industry.
The practice of this invention is illustrated by, but not limited by, the examples given below. Unless otherwise noted, temperature is expressed in degrees Centigrade and parts are parts by weight.
In determining foam characteristics and lubricity (pounds gate pressure) a 12 foot section of continuous bottle conveyor, driven by a one-third horse power motor is loaded with 50 water-filled 6.5 fluid ounce bottles. The test lubricating composition is diluted in a proportion by weight of 1:100. This dilute solution is then applied at a single application point at the end of the conveyor distal to the drive, thus simulating operating conditions of the section of the actual bottle conveyor. The relative efficiency of the lubricant is determined by the force in pounds of gate pressure exerted by the stationary bottles on a spring balance at the end of the conveyor as the chain moves under the load. Compositions with poor lubricity will result in a higher gate pressure due to the force transmitted to the bottle column by the friction of the chain passing under the bottle load. Generally, a lubricant yielding a gate pressure of greater than 12 pounds on the balance with the standard load will exhibit poor lubricity under actual use conditions.
The current load in watts of the drive motor is also proportional to the lubricity of the lubricant as related to the friction between the bottle load and the conveyor chain. The foam generating capacity of the test formula is determined by the height of the suds that build up between adjacent bottles. Lubricants giving a gate pressure of less than 12 pounds and an electricalload ofless than 105 watts have been shown to perform satisfactorily in actual conveyor systems. The results of lubricity and foam generating capacity of the below listed compositions are indicated in Table l below.
EXAMPLE I A quantity of phosphate-free aqueous commercial conveyor chain lubricant containing a non-ionic surfacrant and a fatty acid soap was divided into two parts. One portion was marked sample A and used as a control. To the other portion, marked sample B, was added and uniformly dispersed therein one percent by weight of monostearyl acid phosphate (hereinafter for convenience called MSAP in this and the'following examples). Each sample was tested in the bottle conveyor test described above.
EXAMPLE II A conveyor chain lubricant was prepared without MSAP (sample A) and with 1 percent by weight MSAP (sample B) by adjusting the amount of water. The lubricants contained on a percent by weight basis:
-Continued Sample A Sample B Nonionic surfactant A 5.0 5.0
EXAMPLE III A conveyor chain lubricant was prepared without MSAP (sample A) and with 1 percent by weight MSAP (sample B) by adjusting the amount of water. On a percent by weight basis the lubricant contained:
A conveyor chain lubricant was prepared without MSAP (sample A) and with 1 percent by weight MSAP (sample B) by adjusting the amount of water. On a percent by weight basis the lubricant contained:
Sample A Sample 8 Water 57.5 56.5
Tall oil fatty acid 10.0 10.0
MSAP 1.0
lsopropyl alcohol 7.0 7.0
Monophosphate ester of nonionic surfactant A 10.0 10.0
Nonionic surfactant 8 3.0 3.0
Potassium hydroxide 2.0 2.0
lsopropylamine 4.0 4.0
Trisodium salt of nitrilotriacetate 6.5 6.5
Nonionic surfactant A is an oxyalkylated alcohol wherein the alcohol is a mixture comprising 85% by weight of a C alcohol, 8.5% by weight of a C alcohol and 6.5% by weight of a C alcohol; the oxyalkyl is a mixture of 68 parts of ethylene oxide and 12 parts of ethylene oxide, total oxyalkyl weight content weight ratio of ethylene oxide to propylene oxide 5.67 to l.
Nonionic surfactant B is an ethylenediamine initiated oxypropylene oxyethylene polymer wherein the molecular weight of the. po1y(oxypropy1ene) hydrophobe ent.
TABLE I CONVEYOR LUBRICANT TEST RESULTS (Dilution ratio lzl) l. Dilution water hardness zero p.p.m. (CaCO 2. Dilution water hardness l20 p.p.m. (CaCO I A 4.5-5.0 moderate-high foam l B 3.5-4.0 low-moderate foam II A 3.5-4.0 high foam ll B 3.0-3.5 moderate foam lll A 3.5-4.0 moderate foam III B 3.5-4.0 very low foam lV A 4.5-5.0 low-moderate IV 8 3.0-3.5 low In the foregoing tests the use of MSAP substantially reduced foam build-up on the bottles on the conveyor regardless of which lubricant was used. Additionally the lubricity of the lubricant was usually improved by the use of MSAP.
The foregoing examples and methods have been described in the foregoing specification for the purpose of illustration and not limitation. Many other modifications and ramifications will naturally suggest themselves to those skilled in the art based on this disclosure. These are intended to be comprehended as within the scope of this invention.
Having thus described the invention, what it is desired to claim and secure by Letters Patent is:
1. In an aqueous lubricating composition concentrate for lubricating continuously moving conveyor systems wherein said concentrate consists essentially of by weight of about 30 to about percent water, about 2 to 15 percent sequestering agent, about 2 to 30 percent anionic surface active agent, about 4 to 20 percent fatty acid soap selected from the group consisting of fatty acid alkali metal soap, fatty acid alkanol amine soap and fatty acid ammonia soap, zero to 20 percent coupling agent selected from the group consisting of propylene glycol, isopropyl alcohol and ethylene glyco], and about 2 to 10 percent nonionic surface active agent, the improvement comprising adding monostearyl acid phosphate to said concentrate in an amount from about 0.15 to about 1.75 weight percent of said concentrate whereby improved defoaming properties are obtained.
2. The concentrate according to claim 1 wherein the amount of monostearyl acid phosphate is from about k to about 1.5 weight percent.
3. The concentrate according to claim 1 wherein said fatty acid soap is obtained by incorporating in said concentrate a fatty acid in an amount from about 2 to 30 weight percent along with an agent selected from the group consisting of alkali metal hydroxide, ammonium hydroxide and alkanolamines in amount sufficient to react with the fatty acid to produce the fatty acid soap.
4. A lubricating composition consisting essentially of the concentrate according to claim 1 and water in a volumetric proportion of concentrate to water of about 1:50 to about 1:500.
5. The lubricating composition according to claim 4 wherein said concentrate contains from about 2% to about 1.5 weight percent of monostearyl acid phosphate.
6. The lubricating composition according to claim 4 wherein said concentrate fatty acid soap is obtained by incorporating in said concentrate a fatty acid in an amount from about 2 to about 30 weight percent along with an agent selected from the group consisting of alkali metal metal hydroxide, ammonium hydroxide and alkanolamines in an amount sufficient to react with the fatty acid to produce the fatty acid soap.
UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION PATENTNO.: 5,860,521 DATED January l t, 1975 INVENTOR(S) Otto T. Ae 1i, Malachy E. Sorgenfrei and Harold L. onaway It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Signcd and Scalcd this second Day of Beulah-r1975 [SEAL] Arrest:
RUTH C. MASON C. IAISIIALL DANN Arresting Officer Commissioner ofParems and Tmdenwrks

Claims (5)

  1. 2. The concentrate according to claim 1 wherein the amount of monostearyl acid phosphate is from about 1/2 to about 1.5 weight percent.
  2. 3. The concentrate according to claim 1 wherein said fatty acid soap is obtained by incorporating in said concentrate a fatty acid in an amount from about 2 to 30 weight percent along with an agent selected from the group consisting of alkali metal hydroxide, ammonium hydroxide and alkanolamines in amount sufficient to react with the fatty acid to produce the fatty acid soap.
  3. 4. A lubricating composition consisting essentially of the concentrate according to claim 1 and water in a volumetric proportion of concentrate to water of about 1:50 to about 1:500.
  4. 5. The lubricating composition according to claim 4 wherein said concentrate contains from about 1/2 to about 1.5 weight percent of monostearyl acid phosphate.
  5. 6. The lubricating composition according to claim 4 wherein said concentrate fatty acid soap is obtained by incorporating in said concentrate a fatty acid in an amount from about 2 to about 30 weight percent along with an agent selected from the group consisting of alkali metal metal hydroxide, ammonium hydroxide and alkanolamines in an amount sufficient to react with the fatty acid to produce the fatty acid soap.
US236349A 1972-03-20 1972-03-20 Soap based chain conveyor lubricant Expired - Lifetime US3860521A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US236349A US3860521A (en) 1972-03-20 1972-03-20 Soap based chain conveyor lubricant
BE128897A BE796896A (en) 1972-03-20 1973-03-16 IMPROVED SOAP BASED LUBRICANT FOR CHAIN CONVEYORS
DE2313330A DE2313330A1 (en) 1972-03-20 1973-03-17 IMPROVED SOAP BASED CONVEYOR LUBRICANT
GB1321673A GB1413227A (en) 1972-03-20 1973-03-20 Lubricating compositions based on soaps

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US236349A US3860521A (en) 1972-03-20 1972-03-20 Soap based chain conveyor lubricant

Publications (1)

Publication Number Publication Date
US3860521A true US3860521A (en) 1975-01-14

Family

ID=22889135

Family Applications (1)

Application Number Title Priority Date Filing Date
US236349A Expired - Lifetime US3860521A (en) 1972-03-20 1972-03-20 Soap based chain conveyor lubricant

Country Status (4)

Country Link
US (1) US3860521A (en)
BE (1) BE796896A (en)
DE (1) DE2313330A1 (en)
GB (1) GB1413227A (en)

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4178260A (en) * 1974-10-31 1979-12-11 Exxon Research & Engineering Co. Ester based metal working lubricants
WO1981000014A1 (en) * 1979-06-22 1981-01-08 Diversey Corp Improved aqueous soap-based lubricant composition
US4257902A (en) * 1976-08-04 1981-03-24 Singer & Hersch Industrial Development (Pty.) Ltd. Water-based industrial fluids
US4359393A (en) * 1981-03-09 1982-11-16 The Cincinnati Vulcan Company Water active metalworking lubricant compositions
US4384965A (en) * 1980-02-11 1983-05-24 Berol Kemi Ab Method for the mechanical working of metals and lubricant concentrate
US4392865A (en) * 1977-02-23 1983-07-12 Lanko, Inc. Hydrocarbon-water fuels, emulsions, slurries and other particulate mixtures
WO1984004275A1 (en) * 1983-04-25 1984-11-08 Frekote Inc Two-component mold release system and method
US4491607A (en) * 1981-11-23 1985-01-01 Park Chemical Company Mold release agents and means of application
US4769162A (en) * 1987-06-12 1988-09-06 Diversey Wyandotte Corporation Conveyor lubricant comprising an anionic surfactant and a water-soluble aluminum salt
US4784795A (en) * 1984-12-24 1988-11-15 Dow Corning Gmbh Lubricant composition for water fittings
US4929375A (en) * 1988-07-14 1990-05-29 Diversey Corporation Conveyor lubricant containing alkyl amine coupling agents
US5002675A (en) * 1989-07-13 1991-03-26 Randisi Sal A Cable pulling compounds
US5009801A (en) * 1988-07-14 1991-04-23 Diversey Corporation Compositions for preventing stress cracks in poly(alkylene terephthalate) articles and methods of use therefor
US5062979A (en) * 1988-09-16 1991-11-05 Ecolab Inc. Soap free conveyor lubricant that gives clear solutions in water comprising alkoxyphosphate ester, alkyl benzene sulfonate and carboxylic acid
US5062978A (en) * 1988-12-05 1991-11-05 Unilever Patent Holdings Bv Aqueous lubricant solutions based on fatty alkyl amines
US5073280A (en) * 1988-07-14 1991-12-17 Diversey Corporation Composition for inhibiting stress cracks in plastic articles and methods of use therefor
US5080814A (en) * 1987-06-01 1992-01-14 Henkel Corporation Aqueous lubricant and surface conditioner for formed metal surfaces
US5174914A (en) * 1991-01-16 1992-12-29 Ecolab Inc. Conveyor lubricant composition having superior compatibility with synthetic plastic containers
US5182035A (en) * 1991-01-16 1993-01-26 Ecolab Inc. Antimicrobial lubricant composition containing a diamine acetate
US5202037A (en) * 1989-10-02 1993-04-13 Diversey Corporation High solids lubricant
US5244589A (en) * 1991-01-16 1993-09-14 Ecolab Inc. Antimicrobial lubricant compositions including a fatty acid and a quaternary
US5279677A (en) * 1991-06-17 1994-01-18 Coral International, Inc. Rinse aid for metal surfaces
US5352376A (en) * 1993-02-19 1994-10-04 Ecolab Inc. Thermoplastic compatible conveyor lubricant
AU653717B2 (en) * 1991-04-23 1994-10-13 Diversey Ip International Bv Composition for preventing stress cracks in poly(alkelyne terephthalate) articles and methods of use therefor
US5441654A (en) * 1988-07-14 1995-08-15 Diversey Corp., A Corp. Of Canada Composition for inhibiting stress cracks in plastic articles and methods of use therefor
US5462681A (en) * 1993-11-12 1995-10-31 Ecolab, Inc. Particulate suspending antimicrobial additives
US5559087A (en) * 1994-06-28 1996-09-24 Ecolab Inc. Thermoplastic compatible lubricant for plastic conveyor systems
US5641734A (en) * 1991-10-31 1997-06-24 The Lubrizol Corporation Biodegradable chain bar lubricant composition for chain saws
US5723418A (en) * 1996-05-31 1998-03-03 Ecolab Inc. Alkyl ether amine conveyor lubricants containing corrosion inhibitors
US5863874A (en) * 1996-05-31 1999-01-26 Ecolab Inc. Alkyl ether amine conveyor lubricant
WO1999035221A1 (en) * 1998-01-05 1999-07-15 Ecolab Inc. Antimicrobial, beverage compatible conveyor lubricant
US5925601A (en) * 1998-10-13 1999-07-20 Ecolab Inc. Fatty amide ethoxylate phosphate ester conveyor lubricant
US5932526A (en) * 1997-06-20 1999-08-03 Ecolab, Inc. Alkaline ether amine conveyor lubricant
WO2001042097A2 (en) * 1999-12-09 2001-06-14 Henkel Ecolab Gmbh & Co. Ohg Transport of drums on transport installations
US6247478B1 (en) 1996-11-15 2001-06-19 Ecolab Inc. Cleaning method for polyethylene terephthalate containers
US6372698B1 (en) * 1992-03-02 2002-04-16 Henkel-Ecolab Gmbh & Co. Ohg Lubricant for chain conveyor belts and its use
US6525005B1 (en) 1999-01-15 2003-02-25 Ecolab Inc. Antimicrobial conveyor lubricant composition and method for using
US6554005B1 (en) 1996-11-15 2003-04-29 Ecolab Inc. Cleaning method for polyethylene terephthalate containers
US20030139305A1 (en) * 1999-09-07 2003-07-24 Ecolab Inc. Fluorine-containing lubricants
US20040053793A1 (en) * 2002-02-11 2004-03-18 Minyu Li Lubricant composition with reduced sensitivity to low pH for conveyor system
US20040102334A1 (en) * 2002-11-27 2004-05-27 Ecolab Inc. Buffered lubricant for conveyor system
US6809068B1 (en) 1999-09-07 2004-10-26 Ecolab Inc. Use of lubricants based on polysiloxanes
US20050059564A1 (en) * 2002-02-11 2005-03-17 Ecolab Inc. Lubricant for conveyor system
US20060046940A1 (en) * 2004-08-27 2006-03-02 Mohannad Almalki Aqueous conveyor and cutting lubricant
EP1842898A1 (en) * 1999-07-22 2007-10-10 JohnsonDiversey, Inc., Renee J. Rymarz Lubricant composition for lubricating a conveyor belt
US20070256973A1 (en) * 2006-04-04 2007-11-08 Canaleo Frank J Method and apparatus for separation of chemical materials from feces
WO2011008131A2 (en) * 2009-07-16 2011-01-20 Naumov Vladimir Nikolaevich Water-soluble conveyor lubricant
US20140371125A1 (en) * 2012-01-27 2014-12-18 Daicel Polymer Ltd. Thermoplastic resin composition for cleaning molding processing machine
US20170029736A1 (en) * 2015-07-27 2017-02-02 Ecolab Usa Inc. Dry lubricator for plastic and stainless steel surfaces

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1205793A (en) * 1983-08-12 1986-06-10 Diversey Wyandotte Incorporated Conveyor track lubricant composition employing phosphate esters and method of using same
US4859351A (en) * 1987-06-01 1989-08-22 Henkel Corporation Lubricant and surface conditioner for formed metal surfaces
US5064500A (en) * 1987-06-01 1991-11-12 Henkel Corporation Surface conditioner for formed metal surfaces
DE4206506A1 (en) * 1992-03-02 1993-09-09 Henkel Kgaa TENSID BASIS FOR SOAP-FREE LUBRICANTS
EP0652927B1 (en) * 1992-08-03 1996-12-18 HENKEL-ECOLAB GmbH & CO. OHG Concentrated lubricant and aqueous lubricant solution based on fatty amines, process for producing them and their use
DE19751744A1 (en) * 1997-11-21 1999-05-27 Basf Ag Additives for chain lubricants
DE10146264A1 (en) 2001-09-20 2003-04-17 Ecolab Gmbh & Co Ohg Use of O / W emulsions for chain lubrication
DE102008009937A1 (en) 2008-02-20 2009-09-03 Calvatis Gmbh Cleaning process for conveyor belts

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2291066A (en) * 1941-01-10 1942-07-28 Tide Water Associated Oil Comp Lubricant
US3277001A (en) * 1965-07-06 1966-10-04 Union Oil Co Aqueous lubricant
US3336225A (en) * 1966-01-17 1967-08-15 Dow Chemical Co Method and composition for reducing friction on conveyors
US3399144A (en) * 1966-01-04 1968-08-27 Procter & Gamble Defoaming agent
US3583914A (en) * 1968-07-18 1971-06-08 Basf Wyandotte Corp Microbe control in food processing and related industries
US3657123A (en) * 1970-03-23 1972-04-18 Atlantic Richfield Co Lubricant compositions

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2291066A (en) * 1941-01-10 1942-07-28 Tide Water Associated Oil Comp Lubricant
US3277001A (en) * 1965-07-06 1966-10-04 Union Oil Co Aqueous lubricant
US3399144A (en) * 1966-01-04 1968-08-27 Procter & Gamble Defoaming agent
US3336225A (en) * 1966-01-17 1967-08-15 Dow Chemical Co Method and composition for reducing friction on conveyors
US3583914A (en) * 1968-07-18 1971-06-08 Basf Wyandotte Corp Microbe control in food processing and related industries
US3657123A (en) * 1970-03-23 1972-04-18 Atlantic Richfield Co Lubricant compositions

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4178260A (en) * 1974-10-31 1979-12-11 Exxon Research & Engineering Co. Ester based metal working lubricants
USRE33124E (en) * 1976-08-04 1989-12-05 Singer and Hersch Industrial Development (PTY) Ltd. Water-based industrial fluids
US4257902A (en) * 1976-08-04 1981-03-24 Singer & Hersch Industrial Development (Pty.) Ltd. Water-based industrial fluids
US4392865A (en) * 1977-02-23 1983-07-12 Lanko, Inc. Hydrocarbon-water fuels, emulsions, slurries and other particulate mixtures
WO1981000014A1 (en) * 1979-06-22 1981-01-08 Diversey Corp Improved aqueous soap-based lubricant composition
US4274973A (en) * 1979-06-22 1981-06-23 The Diversey Corporation Aqueous water-soluble soap lubricant concentrates and aqueous lubricants containing same
US4384965A (en) * 1980-02-11 1983-05-24 Berol Kemi Ab Method for the mechanical working of metals and lubricant concentrate
US4359393A (en) * 1981-03-09 1982-11-16 The Cincinnati Vulcan Company Water active metalworking lubricant compositions
US4491607A (en) * 1981-11-23 1985-01-01 Park Chemical Company Mold release agents and means of application
US4602060A (en) * 1983-04-25 1986-07-22 Frekote, Inc. Two-component mold release system and method
WO1984004275A1 (en) * 1983-04-25 1984-11-08 Frekote Inc Two-component mold release system and method
US4784795A (en) * 1984-12-24 1988-11-15 Dow Corning Gmbh Lubricant composition for water fittings
US5080814A (en) * 1987-06-01 1992-01-14 Henkel Corporation Aqueous lubricant and surface conditioner for formed metal surfaces
US4769162A (en) * 1987-06-12 1988-09-06 Diversey Wyandotte Corporation Conveyor lubricant comprising an anionic surfactant and a water-soluble aluminum salt
US4929375A (en) * 1988-07-14 1990-05-29 Diversey Corporation Conveyor lubricant containing alkyl amine coupling agents
US5073280A (en) * 1988-07-14 1991-12-17 Diversey Corporation Composition for inhibiting stress cracks in plastic articles and methods of use therefor
US5009801A (en) * 1988-07-14 1991-04-23 Diversey Corporation Compositions for preventing stress cracks in poly(alkylene terephthalate) articles and methods of use therefor
US5441654A (en) * 1988-07-14 1995-08-15 Diversey Corp., A Corp. Of Canada Composition for inhibiting stress cracks in plastic articles and methods of use therefor
US5062979A (en) * 1988-09-16 1991-11-05 Ecolab Inc. Soap free conveyor lubricant that gives clear solutions in water comprising alkoxyphosphate ester, alkyl benzene sulfonate and carboxylic acid
US5062978A (en) * 1988-12-05 1991-11-05 Unilever Patent Holdings Bv Aqueous lubricant solutions based on fatty alkyl amines
US5002675A (en) * 1989-07-13 1991-03-26 Randisi Sal A Cable pulling compounds
US5202037A (en) * 1989-10-02 1993-04-13 Diversey Corporation High solids lubricant
EP0486656B1 (en) * 1990-06-08 1996-08-14 Diversey Corporation Composition for inhibiting stress cracks in plastic articles and methods of use therefor
US5174914A (en) * 1991-01-16 1992-12-29 Ecolab Inc. Conveyor lubricant composition having superior compatibility with synthetic plastic containers
US5182035A (en) * 1991-01-16 1993-01-26 Ecolab Inc. Antimicrobial lubricant composition containing a diamine acetate
US5244589A (en) * 1991-01-16 1993-09-14 Ecolab Inc. Antimicrobial lubricant compositions including a fatty acid and a quaternary
AU653717B2 (en) * 1991-04-23 1994-10-13 Diversey Ip International Bv Composition for preventing stress cracks in poly(alkelyne terephthalate) articles and methods of use therefor
US5279677A (en) * 1991-06-17 1994-01-18 Coral International, Inc. Rinse aid for metal surfaces
US5641734A (en) * 1991-10-31 1997-06-24 The Lubrizol Corporation Biodegradable chain bar lubricant composition for chain saws
US6372698B1 (en) * 1992-03-02 2002-04-16 Henkel-Ecolab Gmbh & Co. Ohg Lubricant for chain conveyor belts and its use
US5352376A (en) * 1993-02-19 1994-10-04 Ecolab Inc. Thermoplastic compatible conveyor lubricant
US5462681A (en) * 1993-11-12 1995-10-31 Ecolab, Inc. Particulate suspending antimicrobial additives
US5559087A (en) * 1994-06-28 1996-09-24 Ecolab Inc. Thermoplastic compatible lubricant for plastic conveyor systems
US5723418A (en) * 1996-05-31 1998-03-03 Ecolab Inc. Alkyl ether amine conveyor lubricants containing corrosion inhibitors
US5863874A (en) * 1996-05-31 1999-01-26 Ecolab Inc. Alkyl ether amine conveyor lubricant
US6247478B1 (en) 1996-11-15 2001-06-19 Ecolab Inc. Cleaning method for polyethylene terephthalate containers
US6554005B1 (en) 1996-11-15 2003-04-29 Ecolab Inc. Cleaning method for polyethylene terephthalate containers
US5932526A (en) * 1997-06-20 1999-08-03 Ecolab, Inc. Alkaline ether amine conveyor lubricant
US6756347B1 (en) 1998-01-05 2004-06-29 Ecolab Inc. Antimicrobial, beverage compatible conveyor lubricant
WO1999035221A1 (en) * 1998-01-05 1999-07-15 Ecolab Inc. Antimicrobial, beverage compatible conveyor lubricant
US5925601A (en) * 1998-10-13 1999-07-20 Ecolab Inc. Fatty amide ethoxylate phosphate ester conveyor lubricant
US6667283B2 (en) 1999-01-15 2003-12-23 Ecolab Inc. Antimicrobial, high load bearing conveyor lubricant
US6525005B1 (en) 1999-01-15 2003-02-25 Ecolab Inc. Antimicrobial conveyor lubricant composition and method for using
EP1842898A1 (en) * 1999-07-22 2007-10-10 JohnsonDiversey, Inc., Renee J. Rymarz Lubricant composition for lubricating a conveyor belt
US6653263B1 (en) 1999-09-07 2003-11-25 Ecolab Inc. Fluorine-containing lubricants
US20030139305A1 (en) * 1999-09-07 2003-07-24 Ecolab Inc. Fluorine-containing lubricants
US6809068B1 (en) 1999-09-07 2004-10-26 Ecolab Inc. Use of lubricants based on polysiloxanes
US6962897B2 (en) 1999-09-07 2005-11-08 Ecolab Inc. Fluorine-containing lubricants
US6677280B2 (en) 1999-12-09 2004-01-13 Ecolab Gmbh & Co. Ohg Transport of containers on conveyors
WO2001042097A3 (en) * 1999-12-09 2002-02-28 Henkel Ecolab Gmbh & Co Ohg Transport of drums on transport installations
WO2001042097A2 (en) * 1999-12-09 2001-06-14 Henkel Ecolab Gmbh & Co. Ohg Transport of drums on transport installations
US7125827B2 (en) 2002-02-11 2006-10-24 Ecolab Inc. Lubricant composition having a fatty acid, a polyalkylene glycol polymer, and an anionic surfactant, wherein the lubricant is for a conveyor system
US20040053793A1 (en) * 2002-02-11 2004-03-18 Minyu Li Lubricant composition with reduced sensitivity to low pH for conveyor system
US6855676B2 (en) 2002-02-11 2005-02-15 Ecolab., Inc. Lubricant for conveyor system
US20050059564A1 (en) * 2002-02-11 2005-03-17 Ecolab Inc. Lubricant for conveyor system
US20040102334A1 (en) * 2002-11-27 2004-05-27 Ecolab Inc. Buffered lubricant for conveyor system
US6967189B2 (en) 2002-11-27 2005-11-22 Ecolab Inc. Buffered lubricant for conveyor system
US20060046940A1 (en) * 2004-08-27 2006-03-02 Mohannad Almalki Aqueous conveyor and cutting lubricant
US20070256973A1 (en) * 2006-04-04 2007-11-08 Canaleo Frank J Method and apparatus for separation of chemical materials from feces
WO2011008131A2 (en) * 2009-07-16 2011-01-20 Naumov Vladimir Nikolaevich Water-soluble conveyor lubricant
WO2011008131A3 (en) * 2009-07-16 2011-03-10 Naumov, Vladimir Nikolaevich Water-soluble conveyor lubricant
US20140371125A1 (en) * 2012-01-27 2014-12-18 Daicel Polymer Ltd. Thermoplastic resin composition for cleaning molding processing machine
US9144924B2 (en) * 2012-01-27 2015-09-29 Daicel Polymer Ltd. Thermoplastic resin composition for cleaning molding processing machine
US20170029736A1 (en) * 2015-07-27 2017-02-02 Ecolab Usa Inc. Dry lubricator for plastic and stainless steel surfaces
US10696915B2 (en) * 2015-07-27 2020-06-30 Ecolab Usa Inc. Dry lubricator for plastic and stainless steel surfaces

Also Published As

Publication number Publication date
DE2313330A1 (en) 1973-10-04
GB1413227A (en) 1975-11-12
BE796896A (en) 1973-09-17

Similar Documents

Publication Publication Date Title
US3860521A (en) Soap based chain conveyor lubricant
EP0030559B1 (en) Improved aqueous soap-based lubricant composition
US4604220A (en) Alpha olefin sulfonates as conveyor lubricants
US3583914A (en) Microbe control in food processing and related industries
US5352376A (en) Thermoplastic compatible conveyor lubricant
US5174914A (en) Conveyor lubricant composition having superior compatibility with synthetic plastic containers
US5559087A (en) Thermoplastic compatible lubricant for plastic conveyor systems
US6855676B2 (en) Lubricant for conveyor system
US5391308A (en) Lubricant for transport of P.E.T. containers
US4769162A (en) Conveyor lubricant comprising an anionic surfactant and a water-soluble aluminum salt
AU2007234025B2 (en) Lubricant composition
JP2507331B2 (en) Metalworking fluid
US20020006881A1 (en) Antimicrobial, high load bearing conveyor lubricant
EP0990018B1 (en) Alkaline ether amine conveyor lubricant
CA2164695C (en) Composition for inhibiting stress cracks in plastic articles and methods of use therefor
EP0044458B1 (en) Lubricant composition
US20050059564A1 (en) Lubricant for conveyor system
US20040102334A1 (en) Buffered lubricant for conveyor system
AU740450B2 (en) Antimicrobial, beverage compatible conveyor lubricant
AU535697B2 (en) Improved aqueous soap-based lubricant composition
CA1173821A (en) Lubricant composition
MXPA01003733A (en) Method of lubricating a conveyor system with a lubricant containing a phosphate ester of an ethoxylated fatty acid amide

Legal Events

Date Code Title Description
AS Assignment

Owner name: DIVERSEY WYANDOTTE CORPORATION, 1532 BIDDLE AVE.,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:DIVERSEY CORPORATION THE;REEL/FRAME:003954/0125

Effective date: 19820107

Owner name: DIVERSEY WYANDOTTE CORPORATION, A CORP. OF DE., MI

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DIVERSEY CORPORATION THE;REEL/FRAME:003954/0125

Effective date: 19820107