US3847604A - Electrostatic imaging process using nodular carriers - Google Patents
Electrostatic imaging process using nodular carriers Download PDFInfo
- Publication number
- US3847604A US3847604A US00357988A US35798873A US3847604A US 3847604 A US3847604 A US 3847604A US 00357988 A US00357988 A US 00357988A US 35798873 A US35798873 A US 35798873A US 3847604 A US3847604 A US 3847604A
- Authority
- US
- United States
- Prior art keywords
- electrostatographic
- nodular
- particles
- beads
- carrier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/10—Developers with toner particles characterised by carrier particles
- G03G9/113—Developers with toner particles characterised by carrier particles having coatings applied thereto
- G03G9/1139—Inorganic components of coatings
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/10—Developers with toner particles characterised by carrier particles
- G03G9/107—Developers with toner particles characterised by carrier particles having magnetic components
- G03G9/1075—Structural characteristics of the carrier particles, e.g. shape or crystallographic structure
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/10—Developers with toner particles characterised by carrier particles
- G03G9/107—Developers with toner particles characterised by carrier particles having magnetic components
- G03G9/1087—Specified elemental magnetic metal or alloy, e.g. alnico comprising iron, nickel, cobalt, and aluminum, or permalloy comprising iron and nickel
Definitions
- This invention relates in general to imaging systems and, more particularly, to improved imaging materials.
- developer material comprising relatively large carrier particles having finely divided toner particles electrostatically clinging to the surface of the carrier particles, is conveyed to, and rolled, or cascaded across the latent surface bearing the latent electrostatic image.
- the charged portions of the surface have a charge of the same polarity as, but stronger than the carrier particles.
- Toner and carrier particles having opposite polarities are selected so that the toner particles cling to the carrier particles.
- a toner and carrier combination should be selected in which the toner is triboelectrically positive in relation to the carrier.
- a toner and carrier combination in which the toner is triboelectrically negative in relation to the carrier is used.
- This triboelectric relationship between the toner and carrier depends on the relative positions of the materials in the triboelectric series. In this series materials are arranged in ascending order of ability to take on a positive charge. Each material is positive with respect to any material classified below it in the series; and negative with respect to any material above it in the series.
- the toner particles are electrostatically attracted from the carrier partially to the charged portions of the image bearing surface, whereas they are not electrostatically attracted to the uncharged or background portions of the image which they contact.
- the cascade. development process has the distinct advantage that most of toner particles accidentally deposited on the background portion are removed by the rolling carrier, due apparently, to the greater electrostatic attraction betweenthe toner and the carrier than between the toner and the discharged background.
- Another technique for developing electrostatic images is the magnetic brush process as disclosed, for example, in U.S. Pat. No. 2,874,063.
- a developer material containing toner and magnetic carrier particles is attracted to and is carried by a magnet.
- the magnetic field causes alignment of the magnetic carrier particles in a brush-like configuration.
- the toner particles are attracted from the carrier particles of the brush" to the charged areas of the image-bearing surface, but not to the uncharged areas. Since the charged areas have an imagewise configuration, the toner material clings to the surface in imagewise configuration, thus developing the latent image.
- a photoconduc tor on a conductive substrate in the form of a cylindrical drum or a flexible belt which is continuously rotated through a cycle of sequential operations including charging, exposing, developing, transferring and cleanmg.
- the plate is usually given a uniform positive charge by means of a corona generating device of the type disclosed by L. E. Walkup in US. Pat. No. 2,777,957 which is Connected to a suitable source of high potential.
- the resultant latent image is then developed with toner, and the developed image is transferred to a proximate copy receiving surface such as paper, by electrostatically charging the paper to cause it to electrostatically attract the developed image.
- a proximate copy receiving surface such as paper
- electrostatically charging the paper to cause it to electrostatically attract the developed image.
- the residual powder and carrier particles are removed before the plate is reused in subsequent cycles. This is generally accomplished by imparting an opposite charge to the photoconductive surface thereby nullifying any electrostatic attraction between the surface and the particles then rubbing the surface to physically remove all the remaining particles and exposing it to light to fully discharge the surface.
- Typical electrostatographic cleaning devices include the web type cleaning apparatus as disclosed, for example, by W. P. Graff, Jr., et al. in US. Pat. No. 3,186,838.
- removal of the residual toner and carrier particles from the plate is effected by rubbing a web of fibrous material against the imaging surface.
- These inexpensive and disposable webs of fibrous material are gradually advanced in pressure and rubbing or wiping contact with the imaging surface to present a clean surface to the plate whereby substantially complete removal of the residual powder and carrier particles from the plate is effected.
- the size, shape, physical characteristics and chemical composition of the carrier particles influence the quality of the developed image and the ability of the carrier to retain its original properties for long periods 'of use.
- the present invention is based upon the discovery that nodular carrier beads characterized by a pebbled surface with recurring recesses and protrusions giving the particles a relatively large external surface area provide excellent developer compositions for electrostatographic use.
- Such nodular carrier beads have high surface-to-mass ratio as compared with substantially smooth-surfaced carrier beads of the same mass.
- Nodular carrier particles present a plurality of small spherical surfaces with recesses defining pockets for toner particles.
- nodular carrier of this invention Carriers with wide ranges of density and triboelectric values can be obtained because the nodular beads can be prepared by agglomeration of widely differing and customized formulations of particulate mixtures.
- Nodular beads used in accordance with this invention not only have greater surface-to-mass ratio to hold more toner beads (as compared to spherical carrier particles), but also tend less to grind the toner particles and each other to fines during development use.
- the impact is mostly absorbed on the outer surface of the beads and the toner material, most of which is in the pockets defined by the recesses between the surface protrusions essentially escapes impaction.
- This capacity of the nodular beads to reduce impactive damage to either the beads themselves or the toner material results in much greater developer life than has heretofore been achieved.
- the nodular carrier beads are three-dimensional solids approximately 50l ,00( microns in size, of roughly cuboidal, rounded, irregular or spheroidal shape, and with surface irregularities formed by numerous nodules and recesses. Though the beads may have randomly spaced voids or a slight degree of porosity,
- Preferred carrier beads have generally rounded nodules and are generally spheroidal in shape thus giving an appearance reminiscent of a raspberry or cluster of grapes.
- the carrier beads of the present invention can be prepared by any of several processes.
- small particles can be agglomerated by known granulating or pelletizing procedures, preferably in the presence of a binder, and, if desired, depending on the binder, the agglomerates can then be heated to give them hardness and strength.
- One generally useful method involves mixing'a particulate carrier material with a binder and charging the mixture to an inclined rotary mixing plate over which is sprayed a liquid which has the effect of wetting the particles. As the mixing plate rotates, the agglomerates continue to grow. The largest agglomerates come to the surface and roll off at the ascending side of the lower edge of the mixing plate. The smaller agglomerates remain on the rotary plate until they are big enough.
- the angle of inclination of the rotary plate the peripheral velocity, the location of the charging area where the material is introduced to the rotary plate, and the height of the peripheral edge of the rotary plate, the
- the green agglomerated particles can then be subjected to firing, fusing or sintering treatment to produce a hard compacted nodularbead of the aforementioned description.
- the particles which are agglomerated to form the nodular carrier beads of this invention may be spherical or non-spherical particulate materials. In the event that they are non-spherical, after the agglomeration. step, it may be desired to spheroidize the particles, as by heating, to cause surface forces to draw the particles into a spherical shape.
- the constitution of the carrier is not a critical part of this invention, the criteria for-selectionbeing the same as are applicable in the case of conventional carrier materials.
- the carrier must be capable of inducing a triboelectric charge on the toner particles, in order to attract and carry the toner particles to the latent image.
- the triboelectric relationship of the toner and carrier must be such that an acceptable development of the latent electrostatic image is produced, i.e., a dense image with low background development. A material patterns should be avoided. In use, the average triboelectric relationship decreases with time because of cumulative physical damage to the carrier.
- the carrier material must be one which is capable of forming beads which do not tend to cake, bridge or agglomerate during handling and storage. Adherence of carrier particles to reusable electrostatic imaging surfaces causes the formation -of undesirable I scratches on these surfaces during image transfer andj' surface cleaning steps.
- the carrier composition must be such that it is capable of resisting the deteriorating forces normally attendant continuous development processes which require the recycling of carrier particles by bucket conveyors partially submerged in the developer supply such as disclosed in U.S. Pat. No. 3,099,943. Finally if the carrier is to be used in a magnetic brush development process, it must also be magnetic.
- the ideal carrier material for this invention is one which exhibits a proper triboelectric relationship with the toner, is capable of being formed into nodular particles of uniform size within close tolerances, and has a high degree of resistance to physical image and impaction which can impair this critical relationship.
- any material which satisfies the foregoing requirements can be used to prepare the carrier beads of this invention.
- metals such as steel, copper, nickel, aluminum, brass and the like, and refractory materials such as carbides, nitrides, ceramics or glasses can be advantageously employed.
- the ceramic or glass material can be prepared from a wide variety of magnetic or non-magnetic refractory oxides as is well known in the art, including silica, alumina, lithium oxide, berylium oxide, magnesium oxide, calcium oxide, zinc oxide, strontium oxide, cadmium oxide, barium oxide, lead oxide, magnesium ozide, iron oxide, cobalt oxide, nickel oxide, iron oxide, and the like.
- Representative compositions which are useful in accordance with the present invention are disclosed in U.S. Pat.
- the selected material is particulated or comminuted by conventional grinding, milling, spray-drying or spray-cooling techniques to the desired size-distribution range which is generally between 1 and microns, but is preferably in the more restricted range of 5 to 40 microns.
- the resultant particles if they are irregularly shaped, can be spheroidized before being agglomerated by introducing them into a high velocity stream of a hot gas such as can be produced by a plasma generator. The melted particles are spheroidized due to internal forcesand then quenched in a cold liquid such as water to solidify them.
- the particulate carrier material can be agglomerated to produce the aforementioned nodular carrier beads.
- a convenient method for accomplishing this result involves using conventional granulating equipment to roll particulate material with a liquid and a binder on an inclined rotary mixing plate.
- Other types of granulating devices e.g., drum and pan granulators, which impart a tumbling action to the particles, such as those disclosed in U.S. Pat. No. 3,192,290 may also be used.
- the rotating mixing plate method of forming the nod ular'beads by feeding the finely-divided carrier material on to a disc at a constant rate while selectively wetting the incoming feed, causes the rolling particles to come into intimate contact with each other.
- the size and quality of the agglomerates are functions of many variables in the operation of the rotary mixing plate, several of which are set forth below:
- Rotating plate speed 2. Rotating plate slope It is important that the rate of feed and wetting be maintained, once the correct settings are obtained, to insure that the product has a uniform size distribution within a narrow range.
- the agglomeration effect is dependent upon the presence of liquid which gives the particulate carrier material balling properties.
- the agglomerated particles do not have a sufficiently high level of strength to be used in electrostatographic development processes without either a binder material being added during agglomeration or a hardening treatment after agglomeration.
- the agglomerates are very frangible and certainly not suitable for electrostatographic development purposes.
- Binders which can be used to impart a great strength to the agglomerates are well known in the art.
- a suitable binder is sodium silicate.
- Other materials which canbe used for this purpose include synthetic resins such as epoxy or acrylic resins, waxes, polyvinyl alcohol, dextrin, esters of saturated fatty acids, natural and synthetic adhesives and the like.
- Other materials which act as lubricants or plasticizers for the binders may be additionally incorporated into the feed material to aid in the agglomeration process.
- the binder which is used to form the green agglomerates, it may or may not be necessary to subject the green agglomerates to a hardening treatment.
- the binder is a material such as epoxy resin which is self hardening-,.it is not absolutely essential that the agglomerates be subjected to a hardening aftertreatment.
- binders such as sodium silicate and waxes, which in themselves do not provide the necessary strength to the carrier particles for direct use in clectrostat-ographic development processes.
- the aftertreatment generally involves subjecting the green carrier agglomerates to high temperature conditions, generally in a temperature range which effects the fusing or sintering of the carrier material and a chemical change in the binder used therefor. Heating is conveniently accomplished by admixing the green carrier agglomerates with a flowing hot gas such as can be produced in a combustion furnace, a plasma generator or an electric furnace.
- the temperature of the hardening treatment will in the first instance depend upon the nature of the carrier material. Since refractory materials are generally employed and the heat treatment is most effective when the carrier material softens to some extent during the treatment, the temperature will be at least 1,000F. Most usually it will be in the range of 2,000 to 2,'700F., but the temperature can be varied to take into account the residence time of the green carrier agglomerates in the hot flowing gases.
- nodular carrier beads are by precipitation of a salt, a metal, or a metal oxide from solution. Under controlled conditions the individual particles of the resultant precipitate'are in the form of a cluster of smaller particles of generally botryoidal structure.
- One method of forming nodular particles in this manner is disclosed in Proceedings Thirteenth Annual Meeting, Metal Powder Association, Apr. 30 to . May 1, 1957, in an article entitled Production and Characteristics of Chemically Precipitated Nickel Powder by K. O. Cockburn, R. J. Loree and J. B. Haworth.
- the authors produce-nickel powder by reacting an ammoniacal nickel ammonium sulfate solution with hydrogen at elevated temperature and pressure to effect direct reduction of the nickel sulfate to elemental nickel powder.
- the individual-particles of the powder are in the form of grape-like clusters formed of numerous sub-particles agglomerated together.
- Such nodular particles are generally spheroidal in shape, with an average size in the range of 30 to 200 microns, have greater than 99 percent purity, and are eminently suitable for use in the present invention, especially for developers to be used in magnetic brush development processes. 1
- the nodular carrier beads used in the present invention can be over-coated, if desired, by conventional rolling, spraying or dipping techniques to impart triboelectric properties, strength and/or lubricity thereto.
- Coating materials are generally film forming polymeric materials such as homopolymers'and copolymers of vinyl monomers such as styrene, acrylic acid esters, methacrylic acid esters, vinyl chloride, vinylidene chloride, fluoroethylene, vinyl acetate, polyamides, polyesters, and the like.
- the thickness of the coating is not critical so long as it is not so thick as to completely fill in the recesses of the nodular carrier thereby rendering the carrier surface substantially smooth. Coatings less than about 10 [L thick are generally useful, although thicker coatings can be applied to large carrier beads, e.g., those having at least one measurement greater than about 250 IL.
- the carrier agglomerates produced by the present invention are'surprisingly useful when combined with conventional toner materials as electrostatographic developer compositions. They are capable of giving images of high resolution with low background noise as compared with the standard smooth-surfaced carrier particles. They are much less sensitive to lower toner concentrations and much less subject to impaction with toner than the smooth-surfaced carrier particles heretofore conventionally used in standard electrostatographic development processes.
- any toner material of any color can be used with the carrier agglomerates of the present invention.
- Such toner materials are well known and fully disclosed in the literature. See for example U.S. Pat. Nos. 3,502,582; 3,345,294; 3,391,082; 2,753,308; 3,079,342; 2,659,670; 3,326,848; 3,338,991 and 3,272,644.
- the proportion of carrier and toner materials in the developer compositions of the present invention is not as critical as with previously known carrier materials in view of the reduced sensitivity of the instant carrier materials to toner composition.
- the developer composition should contain 0.5 to 2 percent of toner.
- the toner concentration decreases from its original level.
- the density of the reproduced image shows only a slight decrease even after as much as 30 percent of the toner has been depleted.
- EXAMPLE 1 A 14 inch Dravo pelletizer equipped with a onequarter horsepower variable drive motor and three square blades measuring 3 X 3 X l/ 16 inch arranged in the oclock, 12 oclock and 3 oclock positions was used to pelletize various powdered materials.
- the pelletizing procedure was as follows. The pelletizing disc was set at an angle of 52 and driven at the rate of 53 rpm. The metal powders were fed to the disc at the rate of 15 to pounds per hour. A binder solution was introduced at a specified rate over the disc so that the powder became wetted thereby. After sufficient binder had been introduced, the wetted powder was retained on the moving disc until the desired pelletization had occurred.
- iron and nickel powders were pelletized with sodium silicate; a terpolymer of styrene, n-butyl acrylate and poly(vinyl butyral); and poly(vinyl chloride).
- the sodium silicate was in the form of a 40 Baume solution.
- the terpolymer binder was prepared by diluting 'a 30. percent solids solution of the terpolymer intoluene with methyl ethyl ketone to a 10 percent solids content.
- the PVC solution consisted of 10 percent solids (3 parts .of polyvinyl chloride and 1 part of Luxol fast blue dye) in 9 parts of methyl ethyl ketone and 1 part of methanol.
- the pellets were dried, and in the case of those formed with sodium silicate binder the pellets were further sintered at high temperature. After drying and sintering the pellets were then classified and their density dtermined. The properties of the resultant pellets are shown in the following table.
- Example 2 Each of the nodular carrier materials produced in Example l was used to develop latent electrostatic images on a flat plate xerographic apparatus.
- the nodular carrier material was mixed with a carbon black pigmented toner consisting of a styrene-n-butylmethacrylate copolymer blended with poly(vinyl butyral) in a ratio of 200 parts of carrier to 1 part of toner.
- the resultant developed images were of good quality.
- EXAMPLE 3 Nodular nickel particles, produced 'in accordance with the teachings of the aforementioned article by Cockburn et al and commercially available from Cherritt Gordon Mines Ltd. of Canada under the trade designation Grade C nickel powder and having a number average size of about 125 u, were admixed with 2.2 percent of a toner composition containing 10 percent black and percent of a blend of a styrene-n-butyl methacrylate copolymer and poly(vinyl butyral). The resultant developer was used in a magnetic brush developing unit to developean imaged selenium photoconductor. Copies were made with two passes through the magnetic brush at- 22 ips brush speed and 20 ips photoreceptor speed.
- An electrostatographic imaging process comprisingv the steps of forming an electrostatographic latent image 'on a photoconductive surface and developing said electrostatographic latent image by contacting said photoconductive surface with an electrostatographic developer mixture comprising nodular carrier beads each having a generally spherical shape and a surface characterized by a plurality of small generally rounded nodular particles separated by recesses, said beads having an average size distribution in the range of 50 to 1,000 microns, and between about 95 and at least about 99.5 weight percent, based on the weight of the developer mixture, of said carrier beads relative to said finely divided toner particles electrostatically clinging to said surface of said carrier beads, whereby at least a portion of said finely divided toner particles are attracted to and held on said surface in conformance to said electrostatographic latent image.
- An electrostatographic imaging process comprising the steps of forming an electrostatographic latent image on a photoconductive surface and developing said electrostatographic latent image by contacting said photoconductive surface with a electrostatographic developer mixture comprising carrier beads and finely divided toner particles electrostatically clinging to the surface of said beads, each of said beads comprising an irregular surfaced generally spherical three dimensional solid, the irregular surface characterized by a plurality of raised generally spheroidally shaped nodular particles separated by recesses forming the junctions between adjacent ones of said nodular particles,
- said recesses providing traps for accummulations of said toner particles therebyincreasing the toner carrying capacity of said bead, whereby at least a portion of said finely divided toner particles are attracted to and held on said photoconductive surface in conformance to said electrostatographic latent image.
- An electrostatographic imaging process comprising the steps of forming an electrostatographic latent image on a photoconductive surface and developing said electrostatographic latent image by contacting said photoconductive surface with an electrostatographic developer mixture comprising nodular carrier beads each having a generally spherical shape and a surface characterized by a plurality of small generally rounded nodular particles, said beads having an average size distribution in the range of 50 to 1,000 microns and between about 0.5 and at least about 2.2 weight percent, based on the weight of the developer mixture, of finely divided toner particles electrostatcally clinging to the surface of the carrier beads, whereby at least a portion of said finely divided toner particles are attracted to and held on said photoconductive surface in conformance to said electrostatographic latent image.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Metallurgy (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Developing Agents For Electrophotography (AREA)
Abstract
An electrostatographic developer mixture comprising nodular carrier beads, the nodular beads having a number average size distribution in the range of 50 to 1,000 microns, and between about 95 to 99.5 weight percent, based upon the developer mixture, of finely divided toner particles electrostatically clinging to the surface of the nodular carrier beads. Such developer mixtures are useful in the development of latent electrostatographic images by cascade and magnetic brush development techniques.
Description
United States Patent 1 1 Hagenbach et a1.
[ 1 Nov. 12, 1974 ELECTROSTATIC IMAGING PROCESS USING NODULAR CARRIERS [75] Inventors: Robert J. Hagenbach, Rochester;
Myron J. Lenhard, Penfield, both of [73] Assignee: Xerox Corporation, Rochester, NY.
[22] Filed: May 7, 1973 21 Appl. No.: 357,988
Related US. Application Data [62] Division of Ser. No. 151,995, June 10, 1971, Pat. No,
[52] US. Cl. 96/1 SD, 96/1 R, 117/17.5, 252/621 [51] Int. Cl. G03g 9/02, 003g 13/08 [58] Field of Search 252/621; 96/1 R, 1 SD; 117/17.5
[56] References Cited UNITED STATES PATENTS 3,093,039 6/1963 Rheinhart ll7/17.5
3,079,342 2/1963 lnsalace 252/611 3,124,457 3/1964 Schwertz 3,278,439 11/1966 Blanchette et a1 252/611 Primary E.\'aminei-Ronald H. Smith Assistant E.\'anziner-J. P. Brammer [57] ABSTRACT 12 Claims, No Drawings ELECTROSTATIC IMAGING PROCESS USING NODULAR CARRIERS This is a division of application Ser. No. 151,995, filed June 10, 1971, and now US. Pat. No. 3,767,598.
This invention relates in general to imaging systems and, more particularly, to improved imaging materials.
The formation and development of images on the surface of photoconductive materials by electrostatic means is well known. The basic xerographic process as taught by C. F. Carlson in U.S. Pat. No. 2,297,691, in-
' volves placing a uniform electrostatic charge on a photoconductive insulating layer, exposing the layer to a light and shadow image to dissipate the charge on the areas of the layer exposed. to the light, and developing the resulting latent electrostatic image by depositing on the image, a finely divided electroscopic material referred to in the art as toner. The toner is attracted to those areas of the layer which retain a charge, thereby E. N. Wise in US. Pat. No. 2,618,582 is known as cascade development. In this method, developer material, comprising relatively large carrier particles having finely divided toner particles electrostatically clinging to the surface of the carrier particles, is conveyed to, and rolled, or cascaded across the latent surface bearing the latent electrostatic image. The charged portions of the surface have a charge of the same polarity as, but stronger than the carrier particles. Toner and carrier particles having opposite polarities are selected so that the toner particles cling to the carrier particles. In order to develop a negatively charged latent electrostatic image, a toner and carrier combination should be selected in which the toner is triboelectrically positive in relation to the carrier. Conversely, to develop a positively charged latent electrostatic image, a toner and carrier combination in which the toner is triboelectrically negative in relation to the carrier is used. This triboelectric relationship between the toner and carrier depends on the relative positions of the materials in the triboelectric series. In this series materials are arranged in ascending order of ability to take on a positive charge. Each material is positive with respect to any material classified below it in the series; and negative with respect to any material above it in the series. As the mixture cascades or rolls across the imagebearing surface, the toner particles are electrostatically attracted from the carrier partially to the charged portions of the image bearing surface, whereas they are not electrostatically attracted to the uncharged or background portions of the image which they contact. The cascade. development process has the distinct advantage that most of toner particles accidentally deposited on the background portion are removed by the rolling carrier, due apparently, to the greater electrostatic attraction betweenthe toner and the carrier than between the toner and the discharged background. The
carrier particles and unused toner particles are then recycled. The cascade development process is extremely good for the development of line'copy images, and is the most widely used commercial xerographic development technique. A general purpose office copying machine incorporating this technique is described in US. Pat. No. 3,099,943.
Another technique for developing electrostatic images is the magnetic brush process as disclosed, for example, in U.S. Pat. No. 2,874,063. In this process, a developer material containing toner and magnetic carrier particles is attracted to and is carried by a magnet. The magnetic field causes alignment of the magnetic carrier particles in a brush-like configuration. When this magnetic brush is brought into contact with an electrostatic image-bearing surface, the toner particles are attracted from the carrier particles of the brush" to the charged areas of the image-bearing surface, but not to the uncharged areas. Since the charged areas have an imagewise configuration, the toner material clings to the surface in imagewise configuration, thus developing the latent image.
Many other methods, such as the touchdown development disclosed by C. R. Mayo in U.S. Pat. No. 2,895,847, are known for applying electroscopic particles to the latent electrostatic image to be developed. The development processes as described above, together with numerous modifications are well known to the art through various patents and publications and through the widespread availability and utilization of electrostatographic imaging equipment.
In automatic reproduction equipment, it is conventional to employ as the imaging plate, a photoconduc tor on a conductive substrate in the form of a cylindrical drum or a flexible belt which is continuously rotated through a cycle of sequential operations including charging, exposing, developing, transferring and cleanmg.
The plate is usually given a uniform positive charge by means of a corona generating device of the type disclosed by L. E. Walkup in US. Pat. No. 2,777,957 which is Connected to a suitable source of high potential.
It is then discharged in imagewise configuration by exposure to a light image corresponding to the original to be copied. The resultant latent image is then developed with toner, and the developed image is transferred to a proximate copy receiving surface such as paper, by electrostatically charging the paper to cause it to electrostatically attract the developed image. After image transfer, the residual powder and carrier particles are removed before the plate is reused in subsequent cycles. This is generally accomplished by imparting an opposite charge to the photoconductive surface thereby nullifying any electrostatic attraction between the surface and the particles then rubbing the surface to physically remove all the remaining particles and exposing it to light to fully discharge the surface.
Typical electrostatographic cleaning devices include the web type cleaning apparatus as disclosed, for example, by W. P. Graff, Jr., et al. in US. Pat. No. 3,186,838. In the Graff, Jr., et al. patent, removal of the residual toner and carrier particles from the plate is effected by rubbing a web of fibrous material against the imaging surface. These inexpensive and disposable webs of fibrous material are gradually advanced in pressure and rubbing or wiping contact with the imaging surface to present a clean surface to the plate whereby substantially complete removal of the residual powder and carrier particles from the plate is effected.
While ordinarily capable of producing good quality images, conventional developing compositions suffer deficiencies in certain areas. In the reproduction of high contrast copies such as letters, tracings and the like, it is desirable to select toner and carrier materials so that their mutual electrification is relatively large, the degree of such electrification being governed in most cases by the distance between their relative positions in the triboelectric series. However, when otherwise compatible electroscopic powder and carrier materials are separated from each other by too great a distance in the triboelectric series, the resultant images are very faint because the attractive forces between the carrier and toner particles compete with the attractive forces between the latent electrostatic image and the toner particles. Although image density may be improved by increasing the toner concentration in the developer mixture, undesirably high background toner deposition, as well as increased toner impaction and agglomeration are encountered when the toner concentration in the developer mixture is excessive.
It has been considered highly desirable and preferable to employ smooth-surfaced carrier'beads which are spherical in shape. Spherical particles accept relatively uniform surface charge and are relatively uniform in their attraction of toner particles. This results in more uniform toner deposition and consequently more uniform final copies. In addition, the spherical carrier beads are more frictionless and are less likely to cause scratching of the imaging surface. However, when it is desired to produce spherical carrier beads from metals, costly procedures are required.
'The size, shape, physical characteristics and chemical composition of the carrier particles influence the quality of the developed image and the ability of the carrier to retain its original properties for long periods 'of use.
Generally, within the average size range of about 50 to 1,000 microns, all other variables being held constant, smaller particles carry a greater amount of toner material because they have a high surface-to-mass ration, but developed images tend to be grainly in appearance. Also the smaller the carrier particles, the greater their tendency to adhere to the photoconductive plate, an effect called blocking. Blocking interferes with the transfer process and may damage the photoconductive surfaces.
Larger carrier particles bring toner particles into closer contact with the imaged surface, thus giving less grainy developed images. However, they tend to rake the toner in'the image and because of the small surfaceto-mass ration, attract less toner, thus producing an inefficient developer.
Thus, keeping all other variables constant, there are disadvantages in using either small or large size carrier particles, but smooth-surfaced spherical particles are considered more advantageous than carrier particles of other known shapes. However, in view of the shortcomings of such carrier materials, there'is a need for new carrier'materials with superior properties as compared to carriers which are presently available.
noted deficiencies of known carrier materials.
It is a further object of the present invention to provide carrier materials which are capable of giving developed images of high density, produce images with low background development, do not damage the photoconductive surface, have low sensitivity to variations in toner concentration, and can be flexibly prepared to meet varying carrier density and electrostatic requirements.
It is a further object of the present invention to provide novel electrostatographic developer compositions containing the improved carrier materials of this invention.
It is still a further object of the present invention to provide a new and improved electrostatographic imaging process employing-the novel developer compositions of this invention.
Other objects of this invention will become evident from the following detailed description thereof.
The present invention is based upon the discovery that nodular carrier beads characterized by a pebbled surface with recurring recesses and protrusions giving the particles a relatively large external surface area provide excellent developer compositions for electrostatographic use. Such nodular carrier beads have high surface-to-mass ratio as compared with substantially smooth-surfaced carrier beads of the same mass. Using the carrier materials of the present invention, one can obtain the benefits of both large and small carrier beads while avoiding their shortcomings. Nodular carrier particles present a plurality of small spherical surfaces with recesses defining pockets for toner particles. When admixed with toner material in suitable proportions, a superior developer composition for electrostatographic development processes employing carrier-toner combinations (e.g., the aforedescribed magnetic brush development and cascade development techniques), is provided.
Many noteworthy advantages follow from use of the nodular carrier of this invention. Carriers with wide ranges of density and triboelectric values can be obtained because the nodular beads can be prepared by agglomeration of widely differing and customized formulations of particulate mixtures.
Nodular beads used in accordance with this invention, not only have greater surface-to-mass ratio to hold more toner beads (as compared to spherical carrier particles), but also tend less to grind the toner particles and each other to fines during development use. Thus, in cascade development, for example, when the nodular beads impinge upon each other, the impact is mostly absorbed on the outer surface of the beads and the toner material, most of which is in the pockets defined by the recesses between the surface protrusions essentially escapes impaction. This capacity of the nodular beads to reduce impactive damage to either the beads themselves or the toner material, results in much greater developer life than has heretofore been achieved.
The nodular carrier beads are three-dimensional solids approximately 50l ,00( microns in size, of roughly cuboidal, rounded, irregular or spheroidal shape, and with surface irregularities formed by numerous nodules and recesses. Though the beads may have randomly spaced voids or a slight degree of porosity,
they should have predominantly solid cores. Preferred carrier beads have generally rounded nodules and are generally spheroidal in shape thus giving an appearance reminiscent of a raspberry or cluster of grapes.
The carrier beads of the present invention can be prepared by any of several processes. For example, small particles can be agglomerated by known granulating or pelletizing procedures, preferably in the presence of a binder, and, if desired, depending on the binder, the agglomerates can then be heated to give them hardness and strength. One generally useful method involves mixing'a particulate carrier material with a binder and charging the mixture to an inclined rotary mixing plate over which is sprayed a liquid which has the effect of wetting the particles. As the mixing plate rotates, the agglomerates continue to grow. The largest agglomerates come to the surface and roll off at the ascending side of the lower edge of the mixing plate. The smaller agglomerates remain on the rotary plate until they are big enough. By variation of the angle of inclination of the rotary plate, the peripheral velocity, the location of the charging area where the material is introduced to the rotary plate, and the height of the peripheral edge of the rotary plate, the
' size range of the resultant agglomerates can be adjusted to within close tolerances.
The green agglomerated particles can then be subjected to firing, fusing or sintering treatment to produce a hard compacted nodularbead of the aforementioned description.
The particles which are agglomerated to form the nodular carrier beads of this invention may be spherical or non-spherical particulate materials. In the event that they are non-spherical, after the agglomeration. step, it may be desired to spheroidize the particles, as by heating, to cause surface forces to draw the particles into a spherical shape.
The constitution of the carrier is not a critical part of this invention, the criteria for-selectionbeing the same as are applicable in the case of conventional carrier materials. The carrier must be capable of inducing a triboelectric charge on the toner particles, in order to attract and carry the toner particles to the latent image.
Thus, the triboelectric relationship of the toner and carrier must be such that an acceptable development of the latent electrostatic image is produced, i.e., a dense image with low background development. A material patterns should be avoided. In use, the average triboelectric relationship decreases with time because of cumulative physical damage to the carrier.
Additionally, the carrier material must be one which is capable of forming beads which do not tend to cake, bridge or agglomerate during handling and storage. Adherence of carrier particles to reusable electrostatic imaging surfaces causes the formation -of undesirable I scratches on these surfaces during image transfer andj' surface cleaning steps. In addition, the carrier composition must be such that it is capable of resisting the deteriorating forces normally attendant continuous development processes which require the recycling of carrier particles by bucket conveyors partially submerged in the developer supply such as disclosed in U.S. Pat. No. 3,099,943. Finally if the carrier is to be used in a magnetic brush development process, it must also be magnetic.
Therefore, the ideal carrier material for this invention is one which exhibits a proper triboelectric relationship with the toner, is capable of being formed into nodular particles of uniform size within close tolerances, and has a high degree of resistance to physical image and impaction which can impair this critical relationship.
Any material which satisfies the foregoing requirements can be used to prepare the carrier beads of this invention. For example, metals such as steel, copper, nickel, aluminum, brass and the like, and refractory materials such as carbides, nitrides, ceramics or glasses can be advantageously employed. The ceramic or glass material can be prepared from a wide variety of magnetic or non-magnetic refractory oxides as is well known in the art, including silica, alumina, lithium oxide, berylium oxide, magnesium oxide, calcium oxide, zinc oxide, strontium oxide, cadmium oxide, barium oxide, lead oxide, magnesium ozide, iron oxide, cobalt oxide, nickel oxide, iron oxide, and the like. Representative compositions which are useful in accordance with the present invention are disclosed in U.S. Pat.
Nos. 2,565,111, 2,715,109, 2,962,444 and 3,193,503.
The selected material, whether it be glass, ceramic or metal, is particulated or comminuted by conventional grinding, milling, spray-drying or spray-cooling techniques to the desired size-distribution range which is generally between 1 and microns, but is preferably in the more restricted range of 5 to 40 microns. If desired, the resultant particles, if they are irregularly shaped, can be spheroidized before being agglomerated by introducing them into a high velocity stream of a hot gas such as can be produced by a plasma generator. The melted particles are spheroidized due to internal forcesand then quenched in a cold liquid such as water to solidify them.
The particulate carrier material, however produced, can be agglomerated to produce the aforementioned nodular carrier beads. A convenient method for accomplishing this result involves using conventional granulating equipment to roll particulate material with a liquid and a binder on an inclined rotary mixing plate. Other types of granulating devices, e.g., drum and pan granulators, which impart a tumbling action to the particles, such as those disclosed in U.S. Pat. No. 3,192,290 may also be used.
The rotating mixing plate method of forming the nod ular'beads by feeding the finely-divided carrier material on to a disc at a constant rate while selectively wetting the incoming feed, causes the rolling particles to come into intimate contact with each other. The capillary attraction of the particle surfaces, as well as short range contact forces, hold the particles together in the form of a green or moist agglomerate. The size and quality of the agglomerates are functions of many variables in the operation of the rotary mixing plate, several of which are set forth below:
1. Rotating plate speed 2. Rotating plate slope It is important that the rate of feed and wetting be maintained, once the correct settings are obtained, to insure that the product has a uniform size distribution within a narrow range.
It is apparent from the foregoing, that the agglomeration effect is dependent upon the presence of liquid which gives the particulate carrier material balling properties. Generally, the agglomerated particles do not have a sufficiently high level of strength to be used in electrostatographic development processes without either a binder material being added during agglomeration or a hardening treatment after agglomeration. Thus, when particles are agglomerated with plain water as the wetting liquid and then dried, the agglomerates are very frangible and certainly not suitable for electrostatographic development purposes. To overcome this weakness, it is possible to add a binder during agglomeration and/or subject the agglomerates to an aftertreatment which has the effect of hardening them.
Binders which can be used to impart a great strength to the agglomerates are well known in the art. A suitable binder is sodium silicate. Other materials which canbe used for this purpose include synthetic resins such as epoxy or acrylic resins, waxes, polyvinyl alcohol, dextrin, esters of saturated fatty acids, natural and synthetic adhesives and the like. Other materials which act as lubricants or plasticizers for the binders may be additionally incorporated into the feed material to aid in the agglomeration process.
Depending upon the binder which is used to form the green agglomerates, it may or may not be necessary to subject the green agglomerates to a hardening treatment. If the binder is a material such as epoxy resin which is self hardening-,.it is not absolutely essential that the agglomerates be subjected to a hardening aftertreatment. However, it is generally more convenient and practical to use binders such as sodium silicate and waxes, which in themselves do not provide the necessary strength to the carrier particles for direct use in clectrostat-ographic development processes. The aftertreatment generally involves subjecting the green carrier agglomerates to high temperature conditions, generally in a temperature range which effects the fusing or sintering of the carrier material and a chemical change in the binder used therefor. Heating is conveniently accomplished by admixing the green carrier agglomerates with a flowing hot gas such as can be produced in a combustion furnace, a plasma generator or an electric furnace. The temperature of the hardening treatment will in the first instance depend upon the nature of the carrier material. Since refractory materials are generally employed and the heat treatment is most effective when the carrier material softens to some extent during the treatment, the temperature will be at least 1,000F. Most usually it will be in the range of 2,000 to 2,'700F., but the temperature can be varied to take into account the residence time of the green carrier agglomerates in the hot flowing gases.
but also smoothes out large irregularities in the surfaces 7 of the agglomerated carrier particles.
The hardening'post-treatment is of importance in an- Another way of producing nodular carrier beads is by precipitation of a salt, a metal, or a metal oxide from solution. Under controlled conditions the individual particles of the resultant precipitate'are in the form of a cluster of smaller particles of generally botryoidal structure. One method of forming nodular particles in this manner is disclosed in Proceedings Thirteenth Annual Meeting, Metal Powder Association, Apr. 30 to .May 1, 1957, in an article entitled Production and Characteristics of Chemically Precipitated Nickel Powder by K. O. Cockburn, R. J. Loree and J. B. Haworth. The authors produce-nickel powder by reacting an ammoniacal nickel ammonium sulfate solution with hydrogen at elevated temperature and pressure to effect direct reduction of the nickel sulfate to elemental nickel powder. The individual-particles of the powder are in the form of grape-like clusters formed of numerous sub-particles agglomerated together. Such nodular particles are generally spheroidal in shape, with an average size in the range of 30 to 200 microns, have greater than 99 percent purity, and are eminently suitable for use in the present invention, especially for developers to be used in magnetic brush development processes. 1
The nodular carrier beads used in the present invention can be over-coated, if desired, by conventional rolling, spraying or dipping techniques to impart triboelectric properties, strength and/or lubricity thereto. Coating materials are generally film forming polymeric materials such as homopolymers'and copolymers of vinyl monomers such as styrene, acrylic acid esters, methacrylic acid esters, vinyl chloride, vinylidene chloride, fluoroethylene, vinyl acetate, polyamides, polyesters, and the like. The thickness of the coating is not critical so long as it is not so thick as to completely fill in the recesses of the nodular carrier thereby rendering the carrier surface substantially smooth. Coatings less than about 10 [L thick are generally useful, although thicker coatings can be applied to large carrier beads, e.g., those having at least one measurement greater than about 250 IL.
The carrier agglomerates produced by the present invention are'surprisingly useful when combined with conventional toner materials as electrostatographic developer compositions. They are capable of giving images of high resolution with low background noise as compared with the standard smooth-surfaced carrier particles. They are much less sensitive to lower toner concentrations and much less subject to impaction with toner than the smooth-surfaced carrier particles heretofore conventionally used in standard electrostatographic development processes.
Any toner material of any color can be used with the carrier agglomerates of the present invention. Such toner materials are well known and fully disclosed in the literature. See for example U.S. Pat. Nos. 3,502,582; 3,345,294; 3,391,082; 2,753,308; 3,079,342; 2,659,670; 3,326,848; 3,338,991 and 3,272,644.
The proportion of carrier and toner materials in the developer compositions of the present invention is not as critical as with previously known carrier materials in view of the reduced sensitivity of the instant carrier materials to toner composition. Generally the developer composition should contain 0.5 to 2 percent of toner.
As the developer composition is used, the toner concentration decreases from its original level. However, surprisingly the density of the reproduced image shows only a slight decrease even after as much as 30 percent of the toner has been depleted.
The following examples further define and describe methods of preparing the carrier compositions and'developed compositions of the present invention and of utilizing them to develop electrostatographic latent images. Parts and percentages are by weight unless otherwise-indicated. The examples below should be considered to illustrate various preferred embodiments of this invention.
EXAMPLE 1 A 14 inch Dravo pelletizer equipped with a onequarter horsepower variable drive motor and three square blades measuring 3 X 3 X l/ 16 inch arranged in the oclock, 12 oclock and 3 oclock positions was used to pelletize various powdered materials. The pelletizing procedure was as follows. The pelletizing disc was set at an angle of 52 and driven at the rate of 53 rpm. The metal powders were fed to the disc at the rate of 15 to pounds per hour. A binder solution was introduced at a specified rate over the disc so that the powder became wetted thereby. After sufficient binder had been introduced, the wetted powder was retained on the moving disc until the desired pelletization had occurred. As noted below, iron and nickel powders were pelletized with sodium silicate; a terpolymer of styrene, n-butyl acrylate and poly(vinyl butyral); and poly(vinyl chloride). The sodium silicate was in the form of a 40 Baume solution. The terpolymer binder was prepared by diluting 'a 30. percent solids solution of the terpolymer intoluene with methyl ethyl ketone to a 10 percent solids content. The PVC solution consisted of 10 percent solids (3 parts .of polyvinyl chloride and 1 part of Luxol fast blue dye) in 9 parts of methyl ethyl ketone and 1 part of methanol. After the pellet ization had been completed, in each case the pellets were dried, and in the case of those formed with sodium silicate binder the pellets were further sintered at high temperature. After drying and sintering the pellets were then classified and their density dtermined. The properties of the resultant pellets are shown in the following table.
EXAMPLE 2 Each of the nodular carrier materials produced in Example l was used to develop latent electrostatic images on a flat plate xerographic apparatus. The nodular carrier material was mixed with a carbon black pigmented toner consisting of a styrene-n-butylmethacrylate copolymer blended with poly(vinyl butyral) in a ratio of 200 parts of carrier to 1 part of toner. The resultant developed images were of good quality.
EXAMPLE 3 Nodular nickel particles, produced 'in accordance with the teachings of the aforementioned article by Cockburn et al and commercially available from Cherritt Gordon Mines Ltd. of Canada under the trade designation Grade C nickel powder and having a number average size of about 125 u, were admixed with 2.2 percent of a toner composition containing 10 percent black and percent of a blend of a styrene-n-butyl methacrylate copolymer and poly(vinyl butyral). The resultant developer was used in a magnetic brush developing unit to developean imaged selenium photoconductor. Copies were made with two passes through the magnetic brush at- 22 ips brush speed and 20 ips photoreceptor speed.
The copies thus produced were of superior quality.
When the same test was conducted with smooth surfaced nickel carrier beads of the same size, excellent copies were obtained, but the carrier was considered unacceptable for commercial use because of its high impaction rate.
Other modifications of the present invention will occur to those skilled in the art upon a reading of the present disclosure. These are intended to be included within the scope of this invention.
TABLE I (1) IRON (2) NICKEL (3) IRON (4) IRON SODIUM SlLlCATE SODIUM SlLlCATE TERPOLYMER PVC Nickel (feed rate) l5-20 lbs/hr Iron (feed rate) 15-20 lhs/hr 15-20 lbs/hr Sodium Silicate (feed rate) 28 g/min. l8-25 g/min.
Terpolyrner (feed rate) 22 g/min. PVC
(feed rate) 30 g/min. Drying (C) l25 60 40 Sintering (C) f l250-l300 l250l300 Density 4.43 g/cc 6.30 g/cc 6.4] g/cc Size Dust ('72) +84l 55.65 62.02 53.82 16.35 84lp.+500p. l2.2l 3.26 6.43 7.26 500,t+354 6.0l 2.02 4.43 4.22 -354;1.+2l0p. 6.04 4.27 4.99 5.28 -2|0;t+i77,t L68 L32 1.245 r11 -177u+63p 8.64 16.47 10.28 17.34 63p. 9.77 lUAi-l l8.2() 48.44
What is claimed is:
l. An electrostatographic imaging process comprisingv the steps of forming an electrostatographic latent image 'on a photoconductive surface and developing said electrostatographic latent image by contacting said photoconductive surface with an electrostatographic developer mixture comprising nodular carrier beads each having a generally spherical shape and a surface characterized by a plurality of small generally rounded nodular particles separated by recesses, said beads having an average size distribution in the range of 50 to 1,000 microns, and between about 95 and at least about 99.5 weight percent, based on the weight of the developer mixture, of said carrier beads relative to said finely divided toner particles electrostatically clinging to said surface of said carrier beads, whereby at least a portion of said finely divided toner particles are attracted to and held on said surface in conformance to said electrostatographic latent image.
2. An electrostatographic imaging process according to claim 1 wherein said nodular carrier beads are metal.
3. An electrostatographic imaging process according to claim 2, wherein the nodular carrier beads are nickel.
4. An electrostatographic imaging process according to claim 2 wherein the nodular carrier beads are iron.
5. An electrostatographic imaging process according to claim 1 wherein said nodular particles form into agglomerates and have an average size distribution in the range of l to 44 microns.
6. An electrostatographic imaging process comprising the steps of forming an electrostatographic latent image on a photoconductive surface and developing said electrostatographic latent image by contacting said photoconductive surface with a electrostatographic developer mixture comprising carrier beads and finely divided toner particles electrostatically clinging to the surface of said beads, each of said beads comprising an irregular surfaced generally spherical three dimensional solid, the irregular surface characterized by a plurality of raised generally spheroidally shaped nodular particles separated by recesses forming the junctions between adjacent ones of said nodular particles,
said recesses providing traps for accummulations of said toner particles therebyincreasing the toner carrying capacity of said bead, whereby at least a portion of said finely divided toner particles are attracted to and held on said photoconductive surface in conformance to said electrostatographic latent image.
7. An electrostatographic imaging process according to claim 6 wherein the nodular carrier beads are metal.
8. An electrostatographic imaging process according to claim 7 wherein the nodular carrier beads are nickel.
9. An electrostatographic imaging process according to claim 7 wherein the nodular carrier beads are ironf 10. An electrostatographic imaging process according to claim 6 wherein said nodular particles form as agglomerates and have an average size distribution in the range of 1 to 44 microns.
ing an average size distribution in the range of 50 to 1,000 microns, and at least about 0.5 weight percent, based on the weight of the developer mixture, of finely divided toner particles electrostatically clinging to the surface of the carrier beads, whereby at least a portion of said finely divided toner particles are attractedto and held on said photoconductive surface in conformance to said electrostatographic latent image.
12. An electrostatographic imaging process comprising the steps of forming an electrostatographic latent image on a photoconductive surface and developing said electrostatographic latent image by contacting said photoconductive surface with an electrostatographic developer mixture comprising nodular carrier beads each having a generally spherical shape and a surface characterized by a plurality of small generally rounded nodular particles, said beads having an average size distribution in the range of 50 to 1,000 microns and between about 0.5 and at least about 2.2 weight percent, based on the weight of the developer mixture, of finely divided toner particles electrostatcally clinging to the surface of the carrier beads, whereby at least a portion of said finely divided toner particles are attracted to and held on said photoconductive surface in conformance to said electrostatographic latent image.
Claims (12)
1. AN ELECTROSTATOGRAPHIC IMAGING PROCESS COMPRISING THE STEPS OF FORMING AN ELECTROSTATOGRAPHIC LETENT IMAGE ON A PHOTOCONDUCTIVE SURFACE AND DEVELOPING SAID ELECTROSTATOGRAPHIC LATENT IMAGE BY CONTACTING SAID PHOTOCONDUCTIVE SURFACE WITH AN ELECTROSTATOGRAPHIC DEVELOPER MIXTURE COMPRISING NODULAR CARRIER BEADS HAVING A GENERALLY SPHERICAL SHAPE AND A SURFACE CHARACTERIZED BY A PLURALITY OF SMALL GENERALLY ROUNDED NODULAR PARTICLES SEPARATED BY RECESSES, SAID BEADS HAVING AN AVERAGE SIZE DISTRIBUTION IN THE RANGE OF 50 TO 1,000 MICRONS, AND BETWEEN ABOUT 95 AND AT LEAST ABUT 99.5 WEIGHT PERCENT, BASED ON THE WEIGHT OF THE DEVELOPER MIXTURE, OF SAID CARRIER BEADS RELATIVE TO SAID FINELY DIVIDED TONER PARTICLES ELECTROSTATICALLY CLINGING TO SAID SURFACE OF SAID CARRIER BEADS, WHEREBY AT LEAST A PORTION OF SAID FINELY DIVIDED TONER PARTICLES ARE ATTRACTED TO AND HELD ON SAID SURFACE IN CONFORMANCE TO SAID ELECTROSTATOGRAPHIC LATENT IMAGE.
2. An electrostatographic imaging process according to claim 1 wherein said nodular carrier beads are metal.
3. An electrostatographic imaging process according to claim 2, wherein the nodular carrier beads are nickel.
4. An electrostatographic imaging process according to claim 2 wherein the nodular carrier beads are iron.
5. An electrostatographic imaging process according to claim 1 wherein said nodular particles form into aGglomerates and have an average size distribution in the range of 1 to 44 microns.
6. An electrostatographic imaging process comprising the steps of forming an electrostatographic latent image on a photoconductive surface and developing said electrostatographic latent image by contacting said photoconductive surface with a electrostatographic developer mixture comprising carrier beads and finely divided toner particles electrostatically clinging to the surface of said beads, each of said beads comprising an irregular surfaced generally spherical three dimensional solid, the irregular surface characterized by a plurality of raised generally spheroidally shaped nodular particles separated by recesses forming the junctions between adjacent ones of said nodular particles, said recesses providing traps for accummulations of said toner particles thereby increasing the toner carrying capacity of said bead, whereby at least a portion of said finely divided toner particles are attracted to and held on said photoconductive surface in conformance to said electrostatographic latent image.
7. An electrostatographic imaging process according to claim 6 wherein the nodular carrier beads are metal.
8. An electrostatographic imaging process according to claim 7 wherein the nodular carrier beads are nickel.
9. An electrostatographic imaging process according to claim 7 wherein the nodular carrier beads are iron.
10. An electrostatographic imaging process according to claim 6 wherein said nodular particles form as agglomerates and have an average size distribution in the range of 1 to 44 microns.
11. An electrostatographic imaging process comprising the steps of forming an electrostatographic latent image on a photoconducitve surface and developing said electrostatographic latent image by contacting said photoconductive surface with an electrostatographic developer mixture comprising nodular carrier beads each having a generally spherical shape and a surface characterized by a plurality of small generally rounded nodular particles separated by recesses, said beads having an average size distribution in the range of 50 to 1,000 microns, and at least about 0.5 weight percent, based on the weight of the developer mixture, of finely divided toner particles electrostatically clinging to the surface of the carrier beads, whereby at least a portion of said finely divided toner particles are attracted to and held on said photoconductive surface in conformance to said electrostatographic latent image.
12. An electrostatographic imaging process comprising the steps of forming an electrostatographic latent image on a photoconductive surface and developing said electrostatographic latent image by contacting said photoconductive surface with an electrostatographic developer mixture comprising nodular carrier beads each having a generally spherical shape and a surface characterized by a plurality of small generally rounded nodular particles, said beads having an average size distribution in the range of 50 to 1,000 microns and between about 0.5 and at least about 2.2 weight percent, based on the weight of the developer mixture, of finely divided toner particles electrostatcally clinging to the surface of the carrier beads, whereby at least a portion of said finely divided toner particles are attracted to and held on said photoconductive surface in conformance to said electrostatographic latent image.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US00357988A US3847604A (en) | 1971-06-10 | 1973-05-07 | Electrostatic imaging process using nodular carriers |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15199571A | 1971-06-10 | 1971-06-10 | |
US00357988A US3847604A (en) | 1971-06-10 | 1973-05-07 | Electrostatic imaging process using nodular carriers |
Publications (1)
Publication Number | Publication Date |
---|---|
US3847604A true US3847604A (en) | 1974-11-12 |
Family
ID=26849153
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00357988A Expired - Lifetime US3847604A (en) | 1971-06-10 | 1973-05-07 | Electrostatic imaging process using nodular carriers |
Country Status (1)
Country | Link |
---|---|
US (1) | US3847604A (en) |
Cited By (180)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4065305A (en) * | 1976-03-01 | 1977-12-27 | Xerox Corporation | Xerographic developer |
US4125667A (en) * | 1974-05-30 | 1978-11-14 | Xerox Corporation | High surface area ferromagnetic carrier materials |
US4395471A (en) * | 1979-10-01 | 1983-07-26 | Xerox Corporation | Blended toners of functional color |
EP0168224A2 (en) * | 1984-07-13 | 1986-01-15 | Xerox Corporation | Positively charged colored toner compositions |
US5227460A (en) * | 1991-12-30 | 1993-07-13 | Xerox Corporation | Cross-linked toner resins |
US5304449A (en) * | 1992-11-30 | 1994-04-19 | Xerox Corporation | Toner and developer compositions with pyridinium compounds and tetrasubstituted ammonium salts as charge enhancing additives |
US5376494A (en) * | 1991-12-30 | 1994-12-27 | Xerox Corporation | Reactive melt mixing process for preparing cross-linked toner resin |
EP0650098A1 (en) * | 1993-08-24 | 1995-04-26 | Hitachi Metals Co. Ltd. | Magnetic carrier for developing latent electrostatic images and method of forming using it |
US5518850A (en) * | 1994-09-30 | 1996-05-21 | Xerox Corporation | Unsaturated polyesters with vinyl side chains |
US5534379A (en) * | 1994-06-20 | 1996-07-09 | Xerox Corporation | Environmentally friendly toner composition |
US5717983A (en) * | 1994-02-09 | 1998-02-10 | Hitachi Metals, Ltd. | Simultaneous developing/cleaning method using magnetic support member |
WO2000043814A1 (en) * | 1999-01-21 | 2000-07-27 | Asahi Glass Company, Limited | Dye combinations for image enhancement filters for color video displays |
US6177221B1 (en) | 2000-03-07 | 2001-01-23 | Xerox Corporation | Carrier and developer providing offset lithography print quality |
US6177222B1 (en) | 1998-03-12 | 2001-01-23 | Xerox Corporation | Coated photographic papers |
US6242145B1 (en) | 2000-03-07 | 2001-06-05 | Xerox Corporation | Toner and developer providing offset lithography print quality |
US6248496B1 (en) | 2000-03-07 | 2001-06-19 | Xerox Corporation | Method of replenishing developer in a hybrid scavengeless development system |
US6326119B1 (en) | 2000-03-07 | 2001-12-04 | Xerox Corporation | Toner and developer providing offset lithography print quality |
US6359105B1 (en) | 2000-10-26 | 2002-03-19 | Xerox Corporation | Cross-linked polyester toners and process of making such toners |
US6358657B1 (en) | 2000-09-29 | 2002-03-19 | Xerox Corporation | Toner binder of polyester having a high melt flow index and toners therefrom |
US6365316B1 (en) | 2000-03-07 | 2002-04-02 | Xerox Corporation | Toner and developer providing offset lithography print quality |
US6399701B1 (en) | 2000-05-15 | 2002-06-04 | Xerox Corporation | Surfactant-free semi-continuous emulsion polymerization process for making submicron sized particles for carrier coatings |
US20020160292A1 (en) * | 2001-04-18 | 2002-10-31 | Takuya Goto | Toner, toner cartridge that holds the toner therein, and image forming apparatus into which the toner cartridge is attached |
US6542708B1 (en) | 2001-09-28 | 2003-04-01 | Xerox Corporation | Method of replenishing developer with zinc stearate |
US20050287461A1 (en) * | 2004-06-28 | 2005-12-29 | Xerox Corporation | Emulsion aggregation toner having gloss enhancement and toner release |
US20050287458A1 (en) * | 2004-06-28 | 2005-12-29 | Xerox Corporation | Emulsion aggregation toner having gloss enhancement and toner release with stable xerographic charging |
US20050287460A1 (en) * | 2004-06-28 | 2005-12-29 | Xerox Corporation | Emulsion aggregation toner having gloss enhancement and toner release |
US20060154167A1 (en) * | 2005-01-13 | 2006-07-13 | Xerox Corporation | Emulsion aggregation toner compositions |
EP1701219A2 (en) | 2005-03-07 | 2006-09-13 | Xerox Corporation | Carrier and Developer Compositions |
US20060216632A1 (en) * | 2005-03-23 | 2006-09-28 | Xerox Corporation | Process for producing toner |
US20060222986A1 (en) * | 2005-03-31 | 2006-10-05 | Xerox Corporation | Particle external surface additive compositions |
US20060257775A1 (en) * | 2005-05-13 | 2006-11-16 | Xerox Corporation | Toner compositions with amino-containing polymers as surface additives |
US20060269858A1 (en) * | 2005-05-31 | 2006-11-30 | Xerox Corporation | Toner compositions including styrene containing external additives |
US20060278126A1 (en) * | 2002-12-26 | 2006-12-14 | Terrance Fenelon | Pigment agglomerates, their manufacture, and use |
EP1739496A1 (en) | 2005-07-01 | 2007-01-03 | Xerox Corporation | Toner containing silicate clay particles and developer and production-process |
US20070003856A1 (en) * | 2005-06-30 | 2007-01-04 | Xerox Corporation | Ultra low melt toners having surface crosslinking |
US20070020553A1 (en) * | 2005-07-22 | 2007-01-25 | Xerox Corporation | Toner preparation processes |
US20070020542A1 (en) * | 2005-07-22 | 2007-01-25 | Xerox Corporation | Emulsion aggregation, developer, and method of making the same |
US20070065745A1 (en) * | 2005-09-19 | 2007-03-22 | Xerox Corporation | Toner having bumpy surface morphology |
US20070077510A1 (en) * | 2005-09-30 | 2007-04-05 | Xerox Corporation | Sulfonated polyester toner |
US20070087280A1 (en) * | 2005-10-17 | 2007-04-19 | Xerox Corporation | Emulsion aggregation toner incorporating aluminized silica as a coagulating agent |
US20070087281A1 (en) * | 2005-10-17 | 2007-04-19 | Xerox Corporation | High gloss emulsion aggregation toner incorporating aluminized silica as a coagulating agent |
US20070088117A1 (en) * | 2005-10-13 | 2007-04-19 | Xerox Corporation | Emulsion containing epoxy resin |
US20070111130A1 (en) * | 2005-11-15 | 2007-05-17 | Xerox Corporation | Toner compositions |
US20070111129A1 (en) * | 2005-11-15 | 2007-05-17 | Xerox Corporation | Toner compositions |
US20070141496A1 (en) * | 2005-12-20 | 2007-06-21 | Xerox Corporation | Toner compositions |
US20070224532A1 (en) * | 2006-03-22 | 2007-09-27 | Xerox Corporation | Toner compositions |
US20070238040A1 (en) * | 2006-04-05 | 2007-10-11 | Xerox Corporation | Developer |
US20070254230A1 (en) * | 2006-04-28 | 2007-11-01 | Xerox Corporation | External additive composition and process |
US20070254229A1 (en) * | 2006-04-28 | 2007-11-01 | Xerox Corporation | Toner compositions |
US20070254228A1 (en) * | 2006-04-26 | 2007-11-01 | Xerox Corporation | Toner compositions and processes |
US20080063965A1 (en) * | 2006-09-08 | 2008-03-13 | Xerox Corporation | Emulsion/aggregation processes using coalescent aid agents |
US20080090163A1 (en) * | 2006-10-13 | 2008-04-17 | Xerox Corporation | Emulsion aggregation processes |
US20080107989A1 (en) * | 2006-11-06 | 2008-05-08 | Xerox Corporation | Emulsion aggregation polyester toners |
US20080166646A1 (en) * | 2006-10-31 | 2008-07-10 | Xerox Corporation | Toner for reduced photoreceptor wear rate |
US20080171279A1 (en) * | 2007-01-17 | 2008-07-17 | Xerox Corporation | Predicting relative humididty sensitivity of developer materials |
US20080182193A1 (en) * | 2007-01-25 | 2008-07-31 | Xerox Corporation | Polyester emulsion containing crosslinked polyester resin, process, and toner |
EP1959305A2 (en) | 2007-02-16 | 2008-08-20 | Xerox Corporation | Emulsion aggregation toner compositions and developers |
EP1959304A2 (en) | 2007-02-16 | 2008-08-20 | Xerox Corporation | Curable Toner Compositions and Processes |
EP1980914A1 (en) | 2007-04-10 | 2008-10-15 | Xerox Corporation | Chemical toner with covalently bonded release agent |
EP1995628A2 (en) | 2007-05-25 | 2008-11-26 | Xerox Corporation | Method for Forming an Electronic Paper Display |
EP2071405A1 (en) | 2007-12-14 | 2009-06-17 | Xerox Corporation | Toner Compositions And Processes |
EP2090611A2 (en) | 2008-02-15 | 2009-08-19 | Xerox Corporation | Solvent-free phase inversion process for producing resin emulsions |
EP2096500A1 (en) | 2008-02-29 | 2009-09-02 | Xerox Corporation | Toner Compositions |
US20090246679A1 (en) * | 2008-03-27 | 2009-10-01 | Xerox Corporation | Toner process |
EP2131246A1 (en) | 2008-06-06 | 2009-12-09 | Xerox Corporation | Toner Compositions |
US20100015544A1 (en) * | 2008-07-21 | 2010-01-21 | Xerox Corporation | Toner process |
US20100021839A1 (en) * | 2008-07-22 | 2010-01-28 | Xerox Corporation | Toner compositions |
EP2159644A1 (en) | 2008-08-27 | 2010-03-03 | Xerox Corporation | Toner compositions |
EP2159642A2 (en) | 2008-08-27 | 2010-03-03 | Xerox Corporation | Toner and process for producing said toner |
EP2159643A1 (en) | 2008-08-27 | 2010-03-03 | Xerox Corporation | Toner composition and method of preparation |
US20100055750A1 (en) * | 2008-09-03 | 2010-03-04 | Xerox Corporation | Polyester synthesis |
EP2172812A1 (en) | 2008-10-06 | 2010-04-07 | Xerox Corporation | Toner containing fluorescent nanoparticles |
US20100099037A1 (en) * | 2008-10-21 | 2010-04-22 | Xerox Corporation | Toner compositions and processes |
EP2187266A1 (en) | 2008-11-17 | 2010-05-19 | Xerox Corporation | Toners including carbon nanotubes dispersed in a polymer matrix |
US20100122642A1 (en) * | 2008-11-17 | 2010-05-20 | Xerox Corporation | Inks including carbon nanotubes dispersed in a polymer matrix |
US20100143839A1 (en) * | 2008-12-09 | 2010-06-10 | Xerox Corporation | Toner process |
US20100203439A1 (en) * | 2009-02-06 | 2010-08-12 | Xerox Corporation | Toner compositions and processes |
US20100248118A1 (en) * | 2009-03-26 | 2010-09-30 | Xerox Corporation | Toner processes |
US20100266948A1 (en) * | 2009-04-20 | 2010-10-21 | Xerox Corporation | Solvent-free emulsion process |
US20100266949A1 (en) * | 2009-04-20 | 2010-10-21 | Xerox Corporation | Solvent-free emulsion process using acoustic mixing |
EP2249210A1 (en) | 2009-05-08 | 2010-11-10 | Xerox Corporation | Curable toner compositions and processes |
EP2249211A1 (en) | 2009-05-08 | 2010-11-10 | Xerox Corporation | Curable toner compositions and processes |
EP2253999A2 (en) | 2009-05-20 | 2010-11-24 | Xerox Corporation | Toner compositions |
US20100304287A1 (en) * | 2009-05-26 | 2010-12-02 | Xerox Corporation | Polyester synthesis |
EP2259145A2 (en) | 2009-06-05 | 2010-12-08 | Xerox Corporation | Toner process including modifying rheology |
EP2267545A1 (en) | 2009-06-24 | 2010-12-29 | Xerox Corporation | Toner compositions |
EP2267547A1 (en) | 2009-06-24 | 2010-12-29 | Xerox Corporation | Toner comprising purified polyester resins and production method thereof |
US20100330487A1 (en) * | 2009-06-29 | 2010-12-30 | Xerox Corporation | Toner compositions |
US20110003243A1 (en) * | 2009-02-06 | 2011-01-06 | Xerox Corporation | Toner compositions and processes |
EP2275873A1 (en) | 2009-07-14 | 2011-01-19 | Xerox Corporation | Polyester synthesis |
US20110014559A1 (en) * | 2009-07-20 | 2011-01-20 | Xerox Corporation | Colored toners |
EP2280311A1 (en) | 2009-07-29 | 2011-02-02 | Xerox Corporation | Toner compositions |
US20110027712A1 (en) * | 2009-07-28 | 2011-02-03 | Xerox Corporation | Toner compositions |
EP2282236A1 (en) | 2009-08-04 | 2011-02-09 | Xerox Corporation | Electrophotographic toner |
EP2290454A1 (en) | 2009-08-25 | 2011-03-02 | Xerox Corporation | Toner having titania and processes thereof |
EP2289968A1 (en) | 2009-08-27 | 2011-03-02 | Xerox Corporation | Polyester process |
US20110053078A1 (en) * | 2009-09-03 | 2011-03-03 | Xerox Corporation | Curable toner compositions and processes |
EP2296046A1 (en) | 2009-09-15 | 2011-03-16 | Xerox Corporation | Curable toner compositions and processes |
US20110086303A1 (en) * | 2009-10-09 | 2011-04-14 | Xerox Corporation | Toner compositions and processes |
US20110086302A1 (en) * | 2009-10-09 | 2011-04-14 | Xerox Corporation | Toner compositions and processes |
US20110086301A1 (en) * | 2009-10-08 | 2011-04-14 | Xerox Corporation | Emulsion aggregation toner composition |
US20110091803A1 (en) * | 2009-10-15 | 2011-04-21 | Xerox Corporation | Curable toner compositions and processes |
US20110091805A1 (en) * | 2009-10-21 | 2011-04-21 | Xerox Corporation | Toner compositions |
US20110104609A1 (en) * | 2009-11-02 | 2011-05-05 | Xerox Corporation | Synthesis and emulsification of resins |
US20110104607A1 (en) * | 2009-11-03 | 2011-05-05 | Xerox Corporation | Chemical toner containing sublimation colorant for secondary transfer process |
US20110123924A1 (en) * | 2009-11-25 | 2011-05-26 | Xerox Corporation | Toner compositions |
US20110136056A1 (en) * | 2009-12-09 | 2011-06-09 | Xerox Corporation | Toner compositions |
US20110143274A1 (en) * | 2009-12-10 | 2011-06-16 | Xerox Corporation | Toner processes |
US20110151375A1 (en) * | 2009-12-18 | 2011-06-23 | Xerox Corporation | Method and apparatus of rapid continuous process to produce chemical toner and nano-composite particles |
US20110151374A1 (en) * | 2009-12-18 | 2011-06-23 | Xerox Corporation | Method and apparatus of rapid continuous drop formation process to produce chemical toner and nano-composite particles |
DE102010062796A1 (en) | 2009-12-10 | 2011-07-14 | XEROX CORPORATION, Conn. | Process for the production of toner |
US7981582B2 (en) | 2005-06-23 | 2011-07-19 | Xerox Corporation | Toner and developer compositions with a specific resistivity |
US20110177256A1 (en) * | 2010-01-19 | 2011-07-21 | Xerox Corporation | Curing process |
US20110177443A1 (en) * | 2010-01-20 | 2011-07-21 | Xerox Corporation | Colored toners |
US20110177444A1 (en) * | 2010-01-19 | 2011-07-21 | Xerox Corporation | Additive package for toner |
US20110196066A1 (en) * | 2010-02-05 | 2011-08-11 | Xerox Corporation | Processes for producing polyester latexes via solvent-free emulsification |
DE102011003521A1 (en) | 2010-02-22 | 2011-08-25 | Xerox Corp., N.Y. | Electrophotographic device |
US20110207044A1 (en) * | 2010-02-22 | 2011-08-25 | Xerox Corporation | Tunable gloss toners |
US20110207046A1 (en) * | 2010-02-24 | 2011-08-25 | Xerox Corporation | Toner compositions and processes |
DE102011004567A1 (en) | 2010-03-04 | 2011-09-08 | Xerox Corporation | Tonner compositions and methods |
DE102011004189A1 (en) | 2010-03-05 | 2011-09-08 | Xerox Corporation | Toner composition and method |
DE102011006206A1 (en) | 2010-04-09 | 2011-11-03 | Xerox Corporation | Preparing toner particle, useful in digital system, comprises contacting polyester resin with e.g. colorant to form emulsion comprising small particles, aggregating particles, adding metal compound e.g. iron to particles and coalescing |
DE102011007288A1 (en) | 2010-04-27 | 2011-11-03 | Xerox Corporation | toner composition |
DE102011004720A1 (en) | 2010-03-09 | 2011-12-22 | Xerox Corporation | Toner with polyester resin |
US8133649B2 (en) | 2008-12-01 | 2012-03-13 | Xerox Corporation | Toner compositions |
US8147714B2 (en) | 2008-10-06 | 2012-04-03 | Xerox Corporation | Fluorescent organic nanoparticles and a process for producing fluorescent organic nanoparticles |
US8222313B2 (en) | 2008-10-06 | 2012-07-17 | Xerox Corporation | Radiation curable ink containing fluorescent nanoparticles |
US8227159B1 (en) | 2011-02-24 | 2012-07-24 | Xerox Corporation | Toner compositions and processes |
US8236198B2 (en) | 2008-10-06 | 2012-08-07 | Xerox Corporation | Fluorescent nanoscale particles |
US8338069B2 (en) | 2010-07-19 | 2012-12-25 | Xerox Corporation | Toner compositions |
US8367294B2 (en) | 2008-03-27 | 2013-02-05 | Xerox Corporation | Toner process |
US8492066B2 (en) | 2011-03-21 | 2013-07-23 | Xerox Corporation | Toner compositions and processes |
US8492064B2 (en) | 2010-10-28 | 2013-07-23 | Xerox Corporation | Magnetic toner compositions |
US8518627B2 (en) | 2011-01-24 | 2013-08-27 | Xerox Corporation | Emulsion aggregation toners |
US8557493B2 (en) | 2010-12-21 | 2013-10-15 | Xerox Corporation | Toner compositions and processes |
US8574804B2 (en) | 2010-08-26 | 2013-11-05 | Xerox Corporation | Toner compositions and processes |
US8574802B2 (en) | 2011-02-24 | 2013-11-05 | Xerox Corporation | Toner compositions and processes |
US8586141B2 (en) | 2008-10-06 | 2013-11-19 | Xerox Corporation | Fluorescent solid ink made with fluorescent nanoparticles |
US8592119B2 (en) | 2012-03-06 | 2013-11-26 | Xerox Corporation | Super low melt toner with core-shell toner particles |
US8652720B2 (en) | 2011-05-11 | 2014-02-18 | Xerox Corporation | Super low melt toners |
US8663886B2 (en) | 2010-12-21 | 2014-03-04 | Xerox Corporation | Toner compositions and processes |
US8663565B2 (en) | 2011-02-11 | 2014-03-04 | Xerox Corporation | Continuous emulsification—aggregation process for the production of particles |
US8673527B2 (en) | 2010-08-23 | 2014-03-18 | Xerox Corporation | Toner processes |
US8685607B2 (en) | 2012-08-29 | 2014-04-01 | Xerox Corporation | Continuous process for manufacturing toners |
US8697324B2 (en) | 2011-04-26 | 2014-04-15 | Xerox Corporation | Toner compositions and processes |
US8703374B2 (en) | 2012-03-09 | 2014-04-22 | Xerox Corporation | Toner composition with charge control agent-treated spacer particles |
US8802345B2 (en) | 2012-10-17 | 2014-08-12 | Xerox Corporation | Dispensing toner additives via carrier dispense |
US8852843B2 (en) | 2012-11-06 | 2014-10-07 | Xerox Corporation | Dispensing toner additives via carrier dispense and clear toner |
US8916098B2 (en) | 2011-02-11 | 2014-12-23 | Xerox Corporation | Continuous emulsification-aggregation process for the production of particles |
US8980520B2 (en) | 2011-04-11 | 2015-03-17 | Xerox Corporation | Toner compositions and processes |
US9023567B2 (en) | 2012-11-02 | 2015-05-05 | Xerox Corporation | Polymerized charge enhanced spacer particle |
US9181389B2 (en) | 2013-05-20 | 2015-11-10 | Xerox Corporation | Alizarin-based polymer colorants |
US9188890B1 (en) | 2014-09-17 | 2015-11-17 | Xerox Corporation | Method for managing triboelectric charge in two-component developer |
US9239529B2 (en) | 2010-12-20 | 2016-01-19 | Xerox Corporation | Toner compositions and processes |
US9329508B2 (en) | 2013-03-26 | 2016-05-03 | Xerox Corporation | Emulsion aggregation process |
DE102015222997A1 (en) | 2014-12-05 | 2016-06-09 | Xerox Corporation | Styrene / acrylate-polyester hybrid Toner |
US9372422B2 (en) | 2014-01-22 | 2016-06-21 | Xerox Corporation | Optimized latex particle size for improved hot offset temperature for sustainable toners |
US9383666B1 (en) | 2015-04-01 | 2016-07-05 | Xerox Corporation | Toner particles comprising both polyester and styrene acrylate polymers having a polyester shell |
DE102016204628A1 (en) | 2015-04-01 | 2016-10-06 | Xerox Corporation | A toner particle comprising both polyester and acrylate polymers with a polyester shell |
DE102016206972A1 (en) | 2015-05-07 | 2016-11-10 | Xerox Corporation | Antimicrobial sulfonated polyester resin |
DE102016206977A1 (en) | 2015-05-07 | 2016-11-10 | Xerox Corporation | Antimicrobial toner |
DE102016209454A1 (en) | 2015-06-01 | 2016-12-01 | Xerox Corporation | Sustainable toner with low fixing temperature |
US9581923B2 (en) | 2011-12-12 | 2017-02-28 | Xerox Corporation | Carboxylic acid or acid salt functionalized polyester polymers |
US9581926B2 (en) | 2010-04-13 | 2017-02-28 | Xerox Corporation | Imaging processes |
DE102016221244A1 (en) | 2015-11-10 | 2017-05-11 | Xerox Corp. | STYRENE / ACRYLATE AND POLYESTER RESIN PARTICLES |
US9857708B2 (en) | 2011-04-26 | 2018-01-02 | Xerox Corporation | Toner compositions and processes |
US10067434B2 (en) | 2013-10-11 | 2018-09-04 | Xerox Corporation | Emulsion aggregation toners |
US10358557B1 (en) | 2018-03-07 | 2019-07-23 | Xerox Corporation | Toner compositions and surface polymeric additives |
US10725394B1 (en) | 2019-03-29 | 2020-07-28 | Xerox Corporation | Cross-linked polymeric latex prepared with a low surface tension surfactant |
US11001662B2 (en) | 2019-03-29 | 2021-05-11 | Xerox Corporation | Surface additive for three-dimensional polymeric printing powders |
US11048184B2 (en) | 2019-01-14 | 2021-06-29 | Xerox Corporation | Toner process employing dual chelating agents |
US11086244B1 (en) | 2020-02-25 | 2021-08-10 | Xerox Corporation | Titania-free toner additive formulation with cross-linked organic polymeric additive |
US11092906B1 (en) | 2020-02-25 | 2021-08-17 | Xerox Corporation | Toner including toner additive formulation |
US11150568B2 (en) | 2019-03-29 | 2021-10-19 | Xerox Corporation | Toner compositions and processes having reduced or no titania surface additives |
EP4152098A1 (en) | 2021-09-16 | 2023-03-22 | Xerox Corporation | Toner compositions and additives |
US11628494B2 (en) | 2019-03-29 | 2023-04-18 | Xerox Corporation | Surface additive for three-dimensional metal printing compositions |
US11639053B2 (en) | 2019-03-29 | 2023-05-02 | Xerox Corporation | Process for preparing a three-dimensional printing composition |
EP4246238A1 (en) | 2022-03-17 | 2023-09-20 | Xerox Corporation | Toner comprising reactive charge control agent |
EP4246234A1 (en) | 2022-03-17 | 2023-09-20 | Xerox Corporation | Toner comprising charge control agent |
EP4246233A1 (en) | 2022-03-17 | 2023-09-20 | Xerox Corporation | Toner comprising charge control agent |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3079342A (en) * | 1960-02-12 | 1963-02-26 | Xerox Corp | Electrostatic developer composition and method therefor |
US3093039A (en) * | 1958-05-12 | 1963-06-11 | Xerox Corp | Apparatus for transferring powder images and method therefor |
US3124457A (en) * | 1962-04-02 | 1964-03-10 | Charge | |
US3278439A (en) * | 1963-09-10 | 1966-10-11 | Addressograph Multigraph | Developer mix |
-
1973
- 1973-05-07 US US00357988A patent/US3847604A/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3093039A (en) * | 1958-05-12 | 1963-06-11 | Xerox Corp | Apparatus for transferring powder images and method therefor |
US3079342A (en) * | 1960-02-12 | 1963-02-26 | Xerox Corp | Electrostatic developer composition and method therefor |
US3124457A (en) * | 1962-04-02 | 1964-03-10 | Charge | |
US3278439A (en) * | 1963-09-10 | 1966-10-11 | Addressograph Multigraph | Developer mix |
Cited By (324)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4125667A (en) * | 1974-05-30 | 1978-11-14 | Xerox Corporation | High surface area ferromagnetic carrier materials |
US4065305A (en) * | 1976-03-01 | 1977-12-27 | Xerox Corporation | Xerographic developer |
US4395471A (en) * | 1979-10-01 | 1983-07-26 | Xerox Corporation | Blended toners of functional color |
EP0168224A2 (en) * | 1984-07-13 | 1986-01-15 | Xerox Corporation | Positively charged colored toner compositions |
EP0168224A3 (en) * | 1984-07-13 | 1987-05-13 | Xerox Corporation | Positively charged colored toner compositions |
US5227460A (en) * | 1991-12-30 | 1993-07-13 | Xerox Corporation | Cross-linked toner resins |
US5352556A (en) * | 1991-12-30 | 1994-10-04 | Xerox Corporation | Toners having cross-linked toner resins |
US5376494A (en) * | 1991-12-30 | 1994-12-27 | Xerox Corporation | Reactive melt mixing process for preparing cross-linked toner resin |
US5401602A (en) * | 1991-12-30 | 1995-03-28 | Xerox Corporation | Reactive melt mixing process for preparing cross-linked toner resins and toners therefrom |
US5304449A (en) * | 1992-11-30 | 1994-04-19 | Xerox Corporation | Toner and developer compositions with pyridinium compounds and tetrasubstituted ammonium salts as charge enhancing additives |
EP0650098A1 (en) * | 1993-08-24 | 1995-04-26 | Hitachi Metals Co. Ltd. | Magnetic carrier for developing latent electrostatic images and method of forming using it |
US5483329A (en) * | 1993-08-24 | 1996-01-09 | Hitachi Metals, Ltd. | Carrier for developer and method of electrophotographically forming visual image using same |
US5717983A (en) * | 1994-02-09 | 1998-02-10 | Hitachi Metals, Ltd. | Simultaneous developing/cleaning method using magnetic support member |
US5926677A (en) * | 1994-02-09 | 1999-07-20 | Hitachi Metals, Inc. | Image forming developing method |
US6072974A (en) * | 1994-02-09 | 2000-06-06 | Hitachi Metals, Ltd. | Image forming developing method |
US6075964A (en) * | 1994-02-09 | 2000-06-13 | Hitachi Metals, Ltd. | Image forming developing method |
US5534379A (en) * | 1994-06-20 | 1996-07-09 | Xerox Corporation | Environmentally friendly toner composition |
US5518850A (en) * | 1994-09-30 | 1996-05-21 | Xerox Corporation | Unsaturated polyesters with vinyl side chains |
US6326085B1 (en) | 1998-03-12 | 2001-12-04 | Xerox Corporation | Coated photographic papers |
US6416874B1 (en) | 1998-03-12 | 2002-07-09 | Xerox Corporation | Coated photographic papers |
US6177222B1 (en) | 1998-03-12 | 2001-01-23 | Xerox Corporation | Coated photographic papers |
WO2000043814A1 (en) * | 1999-01-21 | 2000-07-27 | Asahi Glass Company, Limited | Dye combinations for image enhancement filters for color video displays |
US20060001342A1 (en) * | 1999-01-21 | 2006-01-05 | Asahi Glass Company, Ltd. | Dye combinations for image enhancement filters for color video displays |
US6989112B2 (en) | 1999-01-21 | 2006-01-24 | Asahi Glass Company Ltd. | Dye combinations for image enhancement filters for color video displays |
US6177221B1 (en) | 2000-03-07 | 2001-01-23 | Xerox Corporation | Carrier and developer providing offset lithography print quality |
US6242145B1 (en) | 2000-03-07 | 2001-06-05 | Xerox Corporation | Toner and developer providing offset lithography print quality |
US6326119B1 (en) | 2000-03-07 | 2001-12-04 | Xerox Corporation | Toner and developer providing offset lithography print quality |
US6248496B1 (en) | 2000-03-07 | 2001-06-19 | Xerox Corporation | Method of replenishing developer in a hybrid scavengeless development system |
US6365316B1 (en) | 2000-03-07 | 2002-04-02 | Xerox Corporation | Toner and developer providing offset lithography print quality |
US6399701B1 (en) | 2000-05-15 | 2002-06-04 | Xerox Corporation | Surfactant-free semi-continuous emulsion polymerization process for making submicron sized particles for carrier coatings |
US6358657B1 (en) | 2000-09-29 | 2002-03-19 | Xerox Corporation | Toner binder of polyester having a high melt flow index and toners therefrom |
US6406822B1 (en) | 2000-09-29 | 2002-06-18 | Xerox Corporation | Color-blind melt flow index properties for toners |
US6359105B1 (en) | 2000-10-26 | 2002-03-19 | Xerox Corporation | Cross-linked polyester toners and process of making such toners |
US20020160292A1 (en) * | 2001-04-18 | 2002-10-31 | Takuya Goto | Toner, toner cartridge that holds the toner therein, and image forming apparatus into which the toner cartridge is attached |
US20070037082A1 (en) * | 2001-04-18 | 2007-02-15 | Takuya Goto | Toner, toner cartridge that holds the toner therein, and image forming apparatus into which the toner cartridge is attached |
US7142804B2 (en) * | 2001-04-18 | 2006-11-28 | Oki Data Corporation | Toner, toner cartridge that holds the toner therein, and image forming apparatus into which the toner cartridge is attached |
US6542708B1 (en) | 2001-09-28 | 2003-04-01 | Xerox Corporation | Method of replenishing developer with zinc stearate |
US20060278126A1 (en) * | 2002-12-26 | 2006-12-14 | Terrance Fenelon | Pigment agglomerates, their manufacture, and use |
US20050287458A1 (en) * | 2004-06-28 | 2005-12-29 | Xerox Corporation | Emulsion aggregation toner having gloss enhancement and toner release with stable xerographic charging |
US7160661B2 (en) | 2004-06-28 | 2007-01-09 | Xerox Corporation | Emulsion aggregation toner having gloss enhancement and toner release |
US20050287461A1 (en) * | 2004-06-28 | 2005-12-29 | Xerox Corporation | Emulsion aggregation toner having gloss enhancement and toner release |
US7179575B2 (en) | 2004-06-28 | 2007-02-20 | Xerox Corporation | Emulsion aggregation toner having gloss enhancement and toner release |
US7344813B2 (en) | 2004-06-28 | 2008-03-18 | Xerox Corporation | Emulsion aggregation toner having gloss enhancement and toner release |
US7166402B2 (en) | 2004-06-28 | 2007-01-23 | Xerox Corporation | Emulsion aggregation toner having gloss enhancement and toner release with stable xerographic charging |
US20050287459A1 (en) * | 2004-06-28 | 2005-12-29 | Xerox Corporation | Emulsion aggregation toner having gloss enhancement and toner release |
US20050287460A1 (en) * | 2004-06-28 | 2005-12-29 | Xerox Corporation | Emulsion aggregation toner having gloss enhancement and toner release |
US20060154167A1 (en) * | 2005-01-13 | 2006-07-13 | Xerox Corporation | Emulsion aggregation toner compositions |
US7279261B2 (en) | 2005-01-13 | 2007-10-09 | Xerox Corporation | Emulsion aggregation toner compositions |
EP1701219A2 (en) | 2005-03-07 | 2006-09-13 | Xerox Corporation | Carrier and Developer Compositions |
US20060216632A1 (en) * | 2005-03-23 | 2006-09-28 | Xerox Corporation | Process for producing toner |
US7354689B2 (en) | 2005-03-23 | 2008-04-08 | Xerox Corporation | Process for producing toner |
US7312010B2 (en) | 2005-03-31 | 2007-12-25 | Xerox Corporation | Particle external surface additive compositions |
US20060222986A1 (en) * | 2005-03-31 | 2006-10-05 | Xerox Corporation | Particle external surface additive compositions |
US20060257775A1 (en) * | 2005-05-13 | 2006-11-16 | Xerox Corporation | Toner compositions with amino-containing polymers as surface additives |
US7862970B2 (en) | 2005-05-13 | 2011-01-04 | Xerox Corporation | Toner compositions with amino-containing polymers as surface additives |
US20060269858A1 (en) * | 2005-05-31 | 2006-11-30 | Xerox Corporation | Toner compositions including styrene containing external additives |
US7579128B2 (en) | 2005-05-31 | 2009-08-25 | Xerox Corporation | Toner compositions including styrene containing external additives |
US20080241724A1 (en) * | 2005-05-31 | 2008-10-02 | Xerox Corporation | Toner compositions including styrene containing external additives |
US7981582B2 (en) | 2005-06-23 | 2011-07-19 | Xerox Corporation | Toner and developer compositions with a specific resistivity |
US7416827B2 (en) | 2005-06-30 | 2008-08-26 | Xerox Corporation | Ultra low melt toners having surface crosslinking |
US20070003856A1 (en) * | 2005-06-30 | 2007-01-04 | Xerox Corporation | Ultra low melt toners having surface crosslinking |
EP1739496A1 (en) | 2005-07-01 | 2007-01-03 | Xerox Corporation | Toner containing silicate clay particles and developer and production-process |
EP1752830A1 (en) | 2005-07-22 | 2007-02-14 | Xerox Corporation | Toner preparation processes |
US7429443B2 (en) | 2005-07-22 | 2008-09-30 | Xerox Corporation | Method of making emulsion aggregation toner |
US20080113291A1 (en) * | 2005-07-22 | 2008-05-15 | Xerox Corporation | Emulsion aggregation toner, developer, and method of making the same |
US8080360B2 (en) | 2005-07-22 | 2011-12-20 | Xerox Corporation | Toner preparation processes |
US20070020542A1 (en) * | 2005-07-22 | 2007-01-25 | Xerox Corporation | Emulsion aggregation, developer, and method of making the same |
US20070020553A1 (en) * | 2005-07-22 | 2007-01-25 | Xerox Corporation | Toner preparation processes |
US20070065745A1 (en) * | 2005-09-19 | 2007-03-22 | Xerox Corporation | Toner having bumpy surface morphology |
US7662531B2 (en) | 2005-09-19 | 2010-02-16 | Xerox Corporation | Toner having bumpy surface morphology |
US7425398B2 (en) | 2005-09-30 | 2008-09-16 | Xerox Corporation | Sulfonated polyester toner |
US20070077510A1 (en) * | 2005-09-30 | 2007-04-05 | Xerox Corporation | Sulfonated polyester toner |
US20070088117A1 (en) * | 2005-10-13 | 2007-04-19 | Xerox Corporation | Emulsion containing epoxy resin |
US7759432B2 (en) | 2005-10-13 | 2010-07-20 | Xerox Corporation | Emulsion containing epoxy resin |
US20070087280A1 (en) * | 2005-10-17 | 2007-04-19 | Xerox Corporation | Emulsion aggregation toner incorporating aluminized silica as a coagulating agent |
US7455943B2 (en) | 2005-10-17 | 2008-11-25 | Xerox Corporation | High gloss emulsion aggregation toner incorporating aluminized silica as a coagulating agent |
US7390606B2 (en) | 2005-10-17 | 2008-06-24 | Xerox Corporation | Emulsion aggregation toner incorporating aluminized silica as a coagulating agent |
US20070087281A1 (en) * | 2005-10-17 | 2007-04-19 | Xerox Corporation | High gloss emulsion aggregation toner incorporating aluminized silica as a coagulating agent |
US20070111130A1 (en) * | 2005-11-15 | 2007-05-17 | Xerox Corporation | Toner compositions |
US20070111129A1 (en) * | 2005-11-15 | 2007-05-17 | Xerox Corporation | Toner compositions |
US7419753B2 (en) | 2005-12-20 | 2008-09-02 | Xerox Corporation | Toner compositions having resin substantially free of crosslinking, crosslinked resin, polyester resin, and wax |
US20070141496A1 (en) * | 2005-12-20 | 2007-06-21 | Xerox Corporation | Toner compositions |
US20070224532A1 (en) * | 2006-03-22 | 2007-09-27 | Xerox Corporation | Toner compositions |
US7524599B2 (en) | 2006-03-22 | 2009-04-28 | Xerox Corporation | Toner compositions |
US7485400B2 (en) | 2006-04-05 | 2009-02-03 | Xerox Corporation | Developer |
US20070238040A1 (en) * | 2006-04-05 | 2007-10-11 | Xerox Corporation | Developer |
US7553595B2 (en) | 2006-04-26 | 2009-06-30 | Xerox Corporation | Toner compositions and processes |
US20070254228A1 (en) * | 2006-04-26 | 2007-11-01 | Xerox Corporation | Toner compositions and processes |
US20070254230A1 (en) * | 2006-04-28 | 2007-11-01 | Xerox Corporation | External additive composition and process |
US20070254229A1 (en) * | 2006-04-28 | 2007-11-01 | Xerox Corporation | Toner compositions |
US7622233B2 (en) | 2006-04-28 | 2009-11-24 | Xerox Corporation | Styrene-based toner compositions with multiple waxes |
US7736831B2 (en) | 2006-09-08 | 2010-06-15 | Xerox Corporation | Emulsion/aggregation process using coalescent aid agents |
US20080063965A1 (en) * | 2006-09-08 | 2008-03-13 | Xerox Corporation | Emulsion/aggregation processes using coalescent aid agents |
US20080090163A1 (en) * | 2006-10-13 | 2008-04-17 | Xerox Corporation | Emulsion aggregation processes |
US7785763B2 (en) | 2006-10-13 | 2010-08-31 | Xerox Corporation | Emulsion aggregation processes |
US20080166646A1 (en) * | 2006-10-31 | 2008-07-10 | Xerox Corporation | Toner for reduced photoreceptor wear rate |
US7858285B2 (en) | 2006-11-06 | 2010-12-28 | Xerox Corporation | Emulsion aggregation polyester toners |
US20080107989A1 (en) * | 2006-11-06 | 2008-05-08 | Xerox Corporation | Emulsion aggregation polyester toners |
EP1947517A2 (en) | 2007-01-17 | 2008-07-23 | Xerox Corporation | Predicting Relative Humidity Sensitivity of Developer Materials |
US20080171279A1 (en) * | 2007-01-17 | 2008-07-17 | Xerox Corporation | Predicting relative humididty sensitivity of developer materials |
US7910277B2 (en) | 2007-01-17 | 2011-03-22 | Xerox Corporation | Predicting relative humidity sensitivity of developer materials |
US20080182193A1 (en) * | 2007-01-25 | 2008-07-31 | Xerox Corporation | Polyester emulsion containing crosslinked polyester resin, process, and toner |
US7851519B2 (en) | 2007-01-25 | 2010-12-14 | Xerox Corporation | Polyester emulsion containing crosslinked polyester resin, process, and toner |
US8039187B2 (en) | 2007-02-16 | 2011-10-18 | Xerox Corporation | Curable toner compositions and processes |
EP1959305A2 (en) | 2007-02-16 | 2008-08-20 | Xerox Corporation | Emulsion aggregation toner compositions and developers |
EP1959304A2 (en) | 2007-02-16 | 2008-08-20 | Xerox Corporation | Curable Toner Compositions and Processes |
EP1980914A1 (en) | 2007-04-10 | 2008-10-15 | Xerox Corporation | Chemical toner with covalently bonded release agent |
EP1995628A2 (en) | 2007-05-25 | 2008-11-26 | Xerox Corporation | Method for Forming an Electronic Paper Display |
US7875307B2 (en) | 2007-05-25 | 2011-01-25 | Xerox Corporation | Method for forming an electronic paper display |
US20080292978A1 (en) * | 2007-05-25 | 2008-11-27 | Xerox Corporation | Method for forming an electronic paper display |
US8137884B2 (en) | 2007-12-14 | 2012-03-20 | Xerox Corporation | Toner compositions and processes |
EP2071405A1 (en) | 2007-12-14 | 2009-06-17 | Xerox Corporation | Toner Compositions And Processes |
US20090155703A1 (en) * | 2007-12-14 | 2009-06-18 | Xerox Corporation | Toner compositions and processes |
US20090208864A1 (en) * | 2008-02-15 | 2009-08-20 | Xerox Corporation | Solvent-free phase inversion process for producing resin emulsions |
EP2090611A2 (en) | 2008-02-15 | 2009-08-19 | Xerox Corporation | Solvent-free phase inversion process for producing resin emulsions |
US7989135B2 (en) | 2008-02-15 | 2011-08-02 | Xerox Corporation | Solvent-free phase inversion process for producing resin emulsions |
US20090220882A1 (en) * | 2008-02-29 | 2009-09-03 | Xerox Corporation | Toner compositions |
US7981584B2 (en) | 2008-02-29 | 2011-07-19 | Xerox Corporation | Toner compositions |
EP2096500A1 (en) | 2008-02-29 | 2009-09-02 | Xerox Corporation | Toner Compositions |
US20090246679A1 (en) * | 2008-03-27 | 2009-10-01 | Xerox Corporation | Toner process |
US8367294B2 (en) | 2008-03-27 | 2013-02-05 | Xerox Corporation | Toner process |
US8420286B2 (en) | 2008-03-27 | 2013-04-16 | Xerox Corporation | Toner process |
EP2131246A1 (en) | 2008-06-06 | 2009-12-09 | Xerox Corporation | Toner Compositions |
US8084180B2 (en) | 2008-06-06 | 2011-12-27 | Xerox Corporation | Toner compositions |
US20090305159A1 (en) * | 2008-06-06 | 2009-12-10 | Xerox Corporation | Toner compositions |
US8178274B2 (en) | 2008-07-21 | 2012-05-15 | Xerox Corporation | Toner process |
US20100015544A1 (en) * | 2008-07-21 | 2010-01-21 | Xerox Corporation | Toner process |
US20100021839A1 (en) * | 2008-07-22 | 2010-01-28 | Xerox Corporation | Toner compositions |
US20100055592A1 (en) * | 2008-08-27 | 2010-03-04 | Xerox Corporation | Toner compositions |
US8431309B2 (en) | 2008-08-27 | 2013-04-30 | Xerox Corporation | Toner compositions |
US8092972B2 (en) | 2008-08-27 | 2012-01-10 | Xerox Corporation | Toner compositions |
US8530131B2 (en) | 2008-08-27 | 2013-09-10 | Xerox Corporation | Toner compositions |
EP2159643A1 (en) | 2008-08-27 | 2010-03-03 | Xerox Corporation | Toner composition and method of preparation |
EP2159642A2 (en) | 2008-08-27 | 2010-03-03 | Xerox Corporation | Toner and process for producing said toner |
US8211607B2 (en) | 2008-08-27 | 2012-07-03 | Xerox Corporation | Toner compositions |
EP2159644A1 (en) | 2008-08-27 | 2010-03-03 | Xerox Corporation | Toner compositions |
US20100055598A1 (en) * | 2008-08-27 | 2010-03-04 | Xerox Corporation | Toner compositions |
US20100055750A1 (en) * | 2008-09-03 | 2010-03-04 | Xerox Corporation | Polyester synthesis |
US8541154B2 (en) | 2008-10-06 | 2013-09-24 | Xerox Corporation | Toner containing fluorescent nanoparticles |
US8222313B2 (en) | 2008-10-06 | 2012-07-17 | Xerox Corporation | Radiation curable ink containing fluorescent nanoparticles |
EP2172812A1 (en) | 2008-10-06 | 2010-04-07 | Xerox Corporation | Toner containing fluorescent nanoparticles |
US8236198B2 (en) | 2008-10-06 | 2012-08-07 | Xerox Corporation | Fluorescent nanoscale particles |
US8586141B2 (en) | 2008-10-06 | 2013-11-19 | Xerox Corporation | Fluorescent solid ink made with fluorescent nanoparticles |
US8147714B2 (en) | 2008-10-06 | 2012-04-03 | Xerox Corporation | Fluorescent organic nanoparticles and a process for producing fluorescent organic nanoparticles |
EP2180374A1 (en) | 2008-10-21 | 2010-04-28 | Xerox Corporation | Toner compositions and processes |
US8187780B2 (en) | 2008-10-21 | 2012-05-29 | Xerox Corporation | Toner compositions and processes |
US20100099037A1 (en) * | 2008-10-21 | 2010-04-22 | Xerox Corporation | Toner compositions and processes |
US20100122642A1 (en) * | 2008-11-17 | 2010-05-20 | Xerox Corporation | Inks including carbon nanotubes dispersed in a polymer matrix |
EP2187266A1 (en) | 2008-11-17 | 2010-05-19 | Xerox Corporation | Toners including carbon nanotubes dispersed in a polymer matrix |
US8133649B2 (en) | 2008-12-01 | 2012-03-13 | Xerox Corporation | Toner compositions |
US8247157B2 (en) | 2008-12-09 | 2012-08-21 | Xerox Corporation | Toner process |
US20100143839A1 (en) * | 2008-12-09 | 2010-06-10 | Xerox Corporation | Toner process |
US20110003243A1 (en) * | 2009-02-06 | 2011-01-06 | Xerox Corporation | Toner compositions and processes |
US20100203439A1 (en) * | 2009-02-06 | 2010-08-12 | Xerox Corporation | Toner compositions and processes |
US8318398B2 (en) | 2009-02-06 | 2012-11-27 | Xerox Corporation | Toner compositions and processes |
US8221948B2 (en) | 2009-02-06 | 2012-07-17 | Xerox Corporation | Toner compositions and processes |
US8288067B2 (en) | 2009-03-26 | 2012-10-16 | Xerox Corporation | Toner processes |
US20100248118A1 (en) * | 2009-03-26 | 2010-09-30 | Xerox Corporation | Toner processes |
US20100266949A1 (en) * | 2009-04-20 | 2010-10-21 | Xerox Corporation | Solvent-free emulsion process using acoustic mixing |
US20100266948A1 (en) * | 2009-04-20 | 2010-10-21 | Xerox Corporation | Solvent-free emulsion process |
US8124309B2 (en) | 2009-04-20 | 2012-02-28 | Xerox Corporation | Solvent-free emulsion process |
EP2243800A2 (en) | 2009-04-20 | 2010-10-27 | Xerox Corporation | Solvent-free emulsion process |
US8435714B2 (en) | 2009-04-20 | 2013-05-07 | Xerox Corporation | Solvent-free emulsion process using acoustic mixing |
EP2249211A1 (en) | 2009-05-08 | 2010-11-10 | Xerox Corporation | Curable toner compositions and processes |
US8192912B2 (en) | 2009-05-08 | 2012-06-05 | Xerox Corporation | Curable toner compositions and processes |
US8073376B2 (en) | 2009-05-08 | 2011-12-06 | Xerox Corporation | Curable toner compositions and processes |
EP2249210A1 (en) | 2009-05-08 | 2010-11-10 | Xerox Corporation | Curable toner compositions and processes |
US20100285401A1 (en) * | 2009-05-08 | 2010-11-11 | Xerox Corporation | Curable toner compositions and processes |
US20100297546A1 (en) * | 2009-05-20 | 2010-11-25 | Xerox Corporation | Toner compositions |
EP2253999A2 (en) | 2009-05-20 | 2010-11-24 | Xerox Corporation | Toner compositions |
US8197998B2 (en) | 2009-05-20 | 2012-06-12 | Xerox Corporation | Toner compositions |
US20100304287A1 (en) * | 2009-05-26 | 2010-12-02 | Xerox Corporation | Polyester synthesis |
EP2267054A1 (en) | 2009-05-26 | 2010-12-29 | Xerox Corporation | Polyester synthesis |
EP2259145A2 (en) | 2009-06-05 | 2010-12-08 | Xerox Corporation | Toner process including modifying rheology |
US8211611B2 (en) | 2009-06-05 | 2012-07-03 | Xerox Corporation | Toner process including modifying rheology |
US20100310983A1 (en) * | 2009-06-05 | 2010-12-09 | Xerox Corporation | Toner process including modifying rheology |
EP2267547A1 (en) | 2009-06-24 | 2010-12-29 | Xerox Corporation | Toner comprising purified polyester resins and production method thereof |
EP2267545A1 (en) | 2009-06-24 | 2010-12-29 | Xerox Corporation | Toner compositions |
US8293444B2 (en) | 2009-06-24 | 2012-10-23 | Xerox Corporation | Purified polyester resins for toner performance improvement |
US20100330486A1 (en) * | 2009-06-24 | 2010-12-30 | Xerox Corporation | Toner Compositions |
US20100330487A1 (en) * | 2009-06-29 | 2010-12-30 | Xerox Corporation | Toner compositions |
EP2270602A1 (en) | 2009-06-29 | 2011-01-05 | Xerox Corporation | Toner compositions |
US8394562B2 (en) | 2009-06-29 | 2013-03-12 | Xerox Corporation | Toner compositions |
EP2275873A1 (en) | 2009-07-14 | 2011-01-19 | Xerox Corporation | Polyester synthesis |
US20110014564A1 (en) * | 2009-07-14 | 2011-01-20 | Xerox Corporation | Polyester synthesis |
US8227168B2 (en) | 2009-07-14 | 2012-07-24 | Xerox Corporation | Polyester synthesis |
EP2278408A1 (en) | 2009-07-20 | 2011-01-26 | Xerox Corporation | Colored toners |
US20110014559A1 (en) * | 2009-07-20 | 2011-01-20 | Xerox Corporation | Colored toners |
US8394561B2 (en) | 2009-07-20 | 2013-03-12 | Xerox Corporation | Colored toners |
US8586272B2 (en) | 2009-07-28 | 2013-11-19 | Xerox Corporation | Toner compositions |
US20110027712A1 (en) * | 2009-07-28 | 2011-02-03 | Xerox Corporation | Toner compositions |
US20110027714A1 (en) * | 2009-07-29 | 2011-02-03 | Xerox Corporation | Toner compositions |
EP2280311A1 (en) | 2009-07-29 | 2011-02-02 | Xerox Corporation | Toner compositions |
EP2282236A1 (en) | 2009-08-04 | 2011-02-09 | Xerox Corporation | Electrophotographic toner |
US20110033793A1 (en) * | 2009-08-04 | 2011-02-10 | Xerox Corporation | Toner processes |
US8323865B2 (en) | 2009-08-04 | 2012-12-04 | Xerox Corporation | Toner processes |
EP2290454A1 (en) | 2009-08-25 | 2011-03-02 | Xerox Corporation | Toner having titania and processes thereof |
US20110052882A1 (en) * | 2009-08-25 | 2011-03-03 | Xerox Corporation | Toner having titania and processes thereof |
US8617780B2 (en) | 2009-08-25 | 2013-12-31 | Xerox Corporation | Toner having titania and processes thereof |
EP2289968A1 (en) | 2009-08-27 | 2011-03-02 | Xerox Corporation | Polyester process |
US20110053079A1 (en) * | 2009-08-27 | 2011-03-03 | Xerox Corporation | Polyester process |
US8257899B2 (en) | 2009-08-27 | 2012-09-04 | Xerox Corporation | Polyester process |
US8466254B2 (en) | 2009-08-27 | 2013-06-18 | Xerox Corporation | Polyester process |
US20110053078A1 (en) * | 2009-09-03 | 2011-03-03 | Xerox Corporation | Curable toner compositions and processes |
US9594319B2 (en) | 2009-09-03 | 2017-03-14 | Xerox Corporation | Curable toner compositions and processes |
EP2296046A1 (en) | 2009-09-15 | 2011-03-16 | Xerox Corporation | Curable toner compositions and processes |
US8722299B2 (en) | 2009-09-15 | 2014-05-13 | Xerox Corporation | Curable toner compositions and processes |
US20110065038A1 (en) * | 2009-09-15 | 2011-03-17 | Xerox Corporation | Curable toner compositions and processes |
US20110086301A1 (en) * | 2009-10-08 | 2011-04-14 | Xerox Corporation | Emulsion aggregation toner composition |
US8383311B2 (en) | 2009-10-08 | 2013-02-26 | Xerox Corporation | Emulsion aggregation toner composition |
US20110086302A1 (en) * | 2009-10-09 | 2011-04-14 | Xerox Corporation | Toner compositions and processes |
US20110086303A1 (en) * | 2009-10-09 | 2011-04-14 | Xerox Corporation | Toner compositions and processes |
US8257895B2 (en) | 2009-10-09 | 2012-09-04 | Xerox Corporation | Toner compositions and processes |
US8168361B2 (en) | 2009-10-15 | 2012-05-01 | Xerox Corporation | Curable toner compositions and processes |
US20110091803A1 (en) * | 2009-10-15 | 2011-04-21 | Xerox Corporation | Curable toner compositions and processes |
US20110091805A1 (en) * | 2009-10-21 | 2011-04-21 | Xerox Corporation | Toner compositions |
US8394568B2 (en) | 2009-11-02 | 2013-03-12 | Xerox Corporation | Synthesis and emulsification of resins |
US20110104609A1 (en) * | 2009-11-02 | 2011-05-05 | Xerox Corporation | Synthesis and emulsification of resins |
US8383309B2 (en) | 2009-11-03 | 2013-02-26 | Xerox Corporation | Preparation of sublimation colorant dispersion |
US20110104607A1 (en) * | 2009-11-03 | 2011-05-05 | Xerox Corporation | Chemical toner containing sublimation colorant for secondary transfer process |
US20110123924A1 (en) * | 2009-11-25 | 2011-05-26 | Xerox Corporation | Toner compositions |
US20110136056A1 (en) * | 2009-12-09 | 2011-06-09 | Xerox Corporation | Toner compositions |
US8916317B2 (en) | 2009-12-10 | 2014-12-23 | Xerox Corporation | Toner processes |
DE102010062796A1 (en) | 2009-12-10 | 2011-07-14 | XEROX CORPORATION, Conn. | Process for the production of toner |
US20110143274A1 (en) * | 2009-12-10 | 2011-06-16 | Xerox Corporation | Toner processes |
US20110151374A1 (en) * | 2009-12-18 | 2011-06-23 | Xerox Corporation | Method and apparatus of rapid continuous drop formation process to produce chemical toner and nano-composite particles |
US20110151375A1 (en) * | 2009-12-18 | 2011-06-23 | Xerox Corporation | Method and apparatus of rapid continuous process to produce chemical toner and nano-composite particles |
US8101331B2 (en) | 2009-12-18 | 2012-01-24 | Xerox Corporation | Method and apparatus of rapid continuous process to produce chemical toner and nano-composite particles |
US20110177256A1 (en) * | 2010-01-19 | 2011-07-21 | Xerox Corporation | Curing process |
US20110177444A1 (en) * | 2010-01-19 | 2011-07-21 | Xerox Corporation | Additive package for toner |
DE102011002515A1 (en) | 2010-01-19 | 2012-03-08 | Xerox Corp. | Additive package for toner |
US20110177443A1 (en) * | 2010-01-20 | 2011-07-21 | Xerox Corporation | Colored toners |
DE102011002508B4 (en) | 2010-01-20 | 2022-09-22 | Xerox Corp. | Blue toner |
DE102011002508A1 (en) | 2010-01-20 | 2011-07-21 | Xerox Corp., N.Y. | Colored toners |
US8137880B2 (en) | 2010-01-20 | 2012-03-20 | Xerox Corporation | Colored toners |
US20110196066A1 (en) * | 2010-02-05 | 2011-08-11 | Xerox Corporation | Processes for producing polyester latexes via solvent-free emulsification |
US8618192B2 (en) | 2010-02-05 | 2013-12-31 | Xerox Corporation | Processes for producing polyester latexes via solvent-free emulsification |
DE102011003521A1 (en) | 2010-02-22 | 2011-08-25 | Xerox Corp., N.Y. | Electrophotographic device |
US8652732B2 (en) | 2010-02-22 | 2014-02-18 | Xerox Corporation | Tunable gloss toners |
US8588634B2 (en) | 2010-02-22 | 2013-11-19 | Xerox Corporation | Electrophotographic apparatus |
US8431302B2 (en) | 2010-02-22 | 2013-04-30 | Xerox Corporation | Tunable gloss toners |
US20110206400A1 (en) * | 2010-02-22 | 2011-08-25 | Xerox Corporation | Electrophotographic apparatus |
DE102011004166A1 (en) | 2010-02-22 | 2011-08-25 | Xerox Corporation, New York | Adjustable glossy toner |
DE102011003521B4 (en) | 2010-02-22 | 2022-12-01 | Xerox Corp. | Electrophotographic apparatus and method for toner blending |
US20110207044A1 (en) * | 2010-02-22 | 2011-08-25 | Xerox Corporation | Tunable gloss toners |
DE102011004368B4 (en) | 2010-02-24 | 2022-09-29 | Xerox Corp. | METHOD OF MAKING TONER |
US8603720B2 (en) | 2010-02-24 | 2013-12-10 | Xerox Corporation | Toner compositions and processes |
DE102011004368A1 (en) | 2010-02-24 | 2011-08-25 | Xerox Corp., N.Y. | Toner compositions and methods |
US20110207046A1 (en) * | 2010-02-24 | 2011-08-25 | Xerox Corporation | Toner compositions and processes |
DE102011004567A1 (en) | 2010-03-04 | 2011-09-08 | Xerox Corporation | Tonner compositions and methods |
US9012118B2 (en) | 2010-03-04 | 2015-04-21 | Xerox Corporation | Toner compositions and processes |
US20110217647A1 (en) * | 2010-03-04 | 2011-09-08 | Xerox Corporation | Toner compositions and processes |
US8221951B2 (en) | 2010-03-05 | 2012-07-17 | Xerox Corporation | Toner compositions and methods |
DE102011004189B4 (en) | 2010-03-05 | 2022-11-24 | Xerox Corporation | Toner Particles and Process |
DE102011004189A1 (en) | 2010-03-05 | 2011-09-08 | Xerox Corporation | Toner composition and method |
US8431306B2 (en) | 2010-03-09 | 2013-04-30 | Xerox Corporation | Polyester resin containing toner |
DE102011004720A1 (en) | 2010-03-09 | 2011-12-22 | Xerox Corporation | Toner with polyester resin |
US8431318B2 (en) | 2010-04-09 | 2013-04-30 | Xerox Corporation | Toner compositions and processes |
DE102011006206B4 (en) | 2010-04-09 | 2022-09-29 | Xerox Corporation | PROCESSES FOR MAKING TONER COMPOSITIONS |
DE102011006206A1 (en) | 2010-04-09 | 2011-11-03 | Xerox Corporation | Preparing toner particle, useful in digital system, comprises contacting polyester resin with e.g. colorant to form emulsion comprising small particles, aggregating particles, adding metal compound e.g. iron to particles and coalescing |
USRE49572E1 (en) | 2010-04-13 | 2023-07-04 | Xerox Corporation | Imaging processes |
US10126671B2 (en) | 2010-04-13 | 2018-11-13 | Xerox Corporation | Imaging processes |
US9581926B2 (en) | 2010-04-13 | 2017-02-28 | Xerox Corporation | Imaging processes |
DE102011007288A1 (en) | 2010-04-27 | 2011-11-03 | Xerox Corporation | toner composition |
DE102011007288B4 (en) | 2010-04-27 | 2022-06-09 | Xerox Corporation | Toner composition and process |
US8383310B2 (en) | 2010-04-27 | 2013-02-26 | Xerox Corporation | Toner compositions |
US8338069B2 (en) | 2010-07-19 | 2012-12-25 | Xerox Corporation | Toner compositions |
US8673527B2 (en) | 2010-08-23 | 2014-03-18 | Xerox Corporation | Toner processes |
US8574804B2 (en) | 2010-08-26 | 2013-11-05 | Xerox Corporation | Toner compositions and processes |
US8492064B2 (en) | 2010-10-28 | 2013-07-23 | Xerox Corporation | Magnetic toner compositions |
US9239529B2 (en) | 2010-12-20 | 2016-01-19 | Xerox Corporation | Toner compositions and processes |
US8663886B2 (en) | 2010-12-21 | 2014-03-04 | Xerox Corporation | Toner compositions and processes |
US8557493B2 (en) | 2010-12-21 | 2013-10-15 | Xerox Corporation | Toner compositions and processes |
US8518627B2 (en) | 2011-01-24 | 2013-08-27 | Xerox Corporation | Emulsion aggregation toners |
US8663565B2 (en) | 2011-02-11 | 2014-03-04 | Xerox Corporation | Continuous emulsification—aggregation process for the production of particles |
US8916098B2 (en) | 2011-02-11 | 2014-12-23 | Xerox Corporation | Continuous emulsification-aggregation process for the production of particles |
US8227159B1 (en) | 2011-02-24 | 2012-07-24 | Xerox Corporation | Toner compositions and processes |
US8574802B2 (en) | 2011-02-24 | 2013-11-05 | Xerox Corporation | Toner compositions and processes |
US8492066B2 (en) | 2011-03-21 | 2013-07-23 | Xerox Corporation | Toner compositions and processes |
US8980520B2 (en) | 2011-04-11 | 2015-03-17 | Xerox Corporation | Toner compositions and processes |
US8697324B2 (en) | 2011-04-26 | 2014-04-15 | Xerox Corporation | Toner compositions and processes |
US9857708B2 (en) | 2011-04-26 | 2018-01-02 | Xerox Corporation | Toner compositions and processes |
US8652720B2 (en) | 2011-05-11 | 2014-02-18 | Xerox Corporation | Super low melt toners |
US9581923B2 (en) | 2011-12-12 | 2017-02-28 | Xerox Corporation | Carboxylic acid or acid salt functionalized polyester polymers |
US9982088B2 (en) | 2011-12-12 | 2018-05-29 | Xerox Corporation | Carboxylic acid or acid salt functionalized polyester polymers |
US8592119B2 (en) | 2012-03-06 | 2013-11-26 | Xerox Corporation | Super low melt toner with core-shell toner particles |
US8703374B2 (en) | 2012-03-09 | 2014-04-22 | Xerox Corporation | Toner composition with charge control agent-treated spacer particles |
US8685607B2 (en) | 2012-08-29 | 2014-04-01 | Xerox Corporation | Continuous process for manufacturing toners |
US8802345B2 (en) | 2012-10-17 | 2014-08-12 | Xerox Corporation | Dispensing toner additives via carrier dispense |
US9023567B2 (en) | 2012-11-02 | 2015-05-05 | Xerox Corporation | Polymerized charge enhanced spacer particle |
US8852843B2 (en) | 2012-11-06 | 2014-10-07 | Xerox Corporation | Dispensing toner additives via carrier dispense and clear toner |
US9329508B2 (en) | 2013-03-26 | 2016-05-03 | Xerox Corporation | Emulsion aggregation process |
US9181389B2 (en) | 2013-05-20 | 2015-11-10 | Xerox Corporation | Alizarin-based polymer colorants |
US10067434B2 (en) | 2013-10-11 | 2018-09-04 | Xerox Corporation | Emulsion aggregation toners |
US9372422B2 (en) | 2014-01-22 | 2016-06-21 | Xerox Corporation | Optimized latex particle size for improved hot offset temperature for sustainable toners |
US9188890B1 (en) | 2014-09-17 | 2015-11-17 | Xerox Corporation | Method for managing triboelectric charge in two-component developer |
DE102015222997B4 (en) | 2014-12-05 | 2022-05-12 | Xerox Corporation | hybrid toner |
DE102015222997A1 (en) | 2014-12-05 | 2016-06-09 | Xerox Corporation | Styrene / acrylate-polyester hybrid Toner |
DE102016204628A1 (en) | 2015-04-01 | 2016-10-06 | Xerox Corporation | A toner particle comprising both polyester and acrylate polymers with a polyester shell |
DE102016204638A1 (en) | 2015-04-01 | 2016-10-06 | Xerox Corporation | TONER PARTICLES, WHICH HAVE BOTH POLYESTER AND STYRENE ACRYLATE POLYMERS AND HAVE A POLYESTER COAT |
US9383666B1 (en) | 2015-04-01 | 2016-07-05 | Xerox Corporation | Toner particles comprising both polyester and styrene acrylate polymers having a polyester shell |
DE102016206977B4 (en) | 2015-05-07 | 2023-08-03 | Xerox Corporation | TONER PARTICLES AND SUBSTRATE |
DE102016206972A1 (en) | 2015-05-07 | 2016-11-10 | Xerox Corporation | Antimicrobial sulfonated polyester resin |
DE102016206972B4 (en) | 2015-05-07 | 2023-08-03 | Xerox Corporation | CORE-SHELL RESIN PARTICLES, CORE-SHELL TONER PARTICLES, AND SUBSTRATE OR SURFACE CONTAINING THESE |
DE102016206977A1 (en) | 2015-05-07 | 2016-11-10 | Xerox Corporation | Antimicrobial toner |
DE102016209454A1 (en) | 2015-06-01 | 2016-12-01 | Xerox Corporation | Sustainable toner with low fixing temperature |
DE102016209454B4 (en) | 2015-06-01 | 2023-10-05 | Xerox Corporation | Sustainable toner with low fusing temperature |
DE102016221244B4 (en) | 2015-11-10 | 2023-12-07 | Xerox Corp. | Poly(styrene/acrylate)-polyester hybrid particles, process for its production and toner particles |
DE102016221244A1 (en) | 2015-11-10 | 2017-05-11 | Xerox Corp. | STYRENE / ACRYLATE AND POLYESTER RESIN PARTICLES |
US10358557B1 (en) | 2018-03-07 | 2019-07-23 | Xerox Corporation | Toner compositions and surface polymeric additives |
US11048184B2 (en) | 2019-01-14 | 2021-06-29 | Xerox Corporation | Toner process employing dual chelating agents |
US10725394B1 (en) | 2019-03-29 | 2020-07-28 | Xerox Corporation | Cross-linked polymeric latex prepared with a low surface tension surfactant |
US11628494B2 (en) | 2019-03-29 | 2023-04-18 | Xerox Corporation | Surface additive for three-dimensional metal printing compositions |
US11639053B2 (en) | 2019-03-29 | 2023-05-02 | Xerox Corporation | Process for preparing a three-dimensional printing composition |
US11001662B2 (en) | 2019-03-29 | 2021-05-11 | Xerox Corporation | Surface additive for three-dimensional polymeric printing powders |
US11150568B2 (en) | 2019-03-29 | 2021-10-19 | Xerox Corporation | Toner compositions and processes having reduced or no titania surface additives |
US11092906B1 (en) | 2020-02-25 | 2021-08-17 | Xerox Corporation | Toner including toner additive formulation |
EP3872572A1 (en) | 2020-02-25 | 2021-09-01 | Xerox Corporation | Toner including toner additive formulation |
EP3872573A1 (en) | 2020-02-25 | 2021-09-01 | Xerox Corporation | Toner additive formulation with cross-linked organic polymeric additive |
US11086244B1 (en) | 2020-02-25 | 2021-08-10 | Xerox Corporation | Titania-free toner additive formulation with cross-linked organic polymeric additive |
EP4152098A1 (en) | 2021-09-16 | 2023-03-22 | Xerox Corporation | Toner compositions and additives |
EP4246238A1 (en) | 2022-03-17 | 2023-09-20 | Xerox Corporation | Toner comprising reactive charge control agent |
EP4246234A1 (en) | 2022-03-17 | 2023-09-20 | Xerox Corporation | Toner comprising charge control agent |
EP4246233A1 (en) | 2022-03-17 | 2023-09-20 | Xerox Corporation | Toner comprising charge control agent |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3847604A (en) | Electrostatic imaging process using nodular carriers | |
US4345015A (en) | Dispersion-heat process employing hydrophobic silica for producing spherical electrophotographic toner powder | |
US3752666A (en) | Electrostatic imaging process using carrier beads containing conductive particles | |
US3929657A (en) | Stoichiometric ferrite carriers | |
US4040969A (en) | High surface area carrier | |
US3767578A (en) | Carrier material for electrostatographic developer | |
JPH0140976B2 (en) | ||
CA1041344A (en) | High surface area carrier | |
US3723114A (en) | Thermosetting electrostatographic developer of a carrier and preploymer of diallyl phthalate, isophthalate and mixtures | |
JPH0251505B2 (en) | ||
US5306592A (en) | Method of preparing electrographic magnetic carrier particles | |
US4039463A (en) | Electrostatographic developers comprising a carrier bead coated with a copolymer of N-vinylcarbazole and trialkoxyvinylsilane and/or triacetoxyvinylsilane | |
JPH0260186B2 (en) | ||
US4223085A (en) | Semi-conductive nickel carrier particles | |
US4126566A (en) | Electrostatic developer material | |
US4070186A (en) | Tribo modified toner materials via silylation and electrostatographic imaging process | |
US4043929A (en) | Electrostatographic carrier composition | |
US5087545A (en) | Carrier and developer compositions generated from fly ash particles | |
US4126454A (en) | Imaging process utilizing classified high surface area carrier materials | |
US5200287A (en) | Carrier for developing electrostatic image | |
US4175962A (en) | Electrostatographic toner material | |
JP3610540B2 (en) | Electrostatic charge image developing carrier, method for producing the same, developer and image forming method using the carrier | |
US4894305A (en) | Carrier and developer compositions generated from fly ash particles | |
JP3060128B2 (en) | Magnetic toner | |
CA1299005C (en) | Process for magnetic carrier particles |