US3806931A - Amplitude modulation using phased-array antennas - Google Patents
Amplitude modulation using phased-array antennas Download PDFInfo
- Publication number
- US3806931A US3806931A US00192410A US19241071A US3806931A US 3806931 A US3806931 A US 3806931A US 00192410 A US00192410 A US 00192410A US 19241071 A US19241071 A US 19241071A US 3806931 A US3806931 A US 3806931A
- Authority
- US
- United States
- Prior art keywords
- antenna
- signal
- phase
- antenna elements
- steering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/26—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
Definitions
- ABSTRACT An antenna system for producing an amplitude modulated signal at a receiver by properly varying the spag 343/100 tial amplitude distribution of the antenna beam.
- the I antenna beam variation is accomplished by varying [58] Fleld of Search 343/100 325/160 the relative phase of a phase-array antenna at the desired modulation rate.
- a variable DC A variable DC.
- bias signal is ap- [56] References C'ted plied to each element of the antenna which is used to UMTED STATES PATENTS steer the beam in angle.
- An AC signal is also applied 3,697,995 10/1972 Kafitz 343/100 SA to each element which will qppear as AM modulation 3,460,140 8/1969 Logan 343/100 SA at a distant receiver, 3,238,527 3/1966 Vogt 343/100 SA 3,701,156 10/1972 Killion 343/100 SA 9 Claims, 7 Drawing Figures ll BEAM STEERING PHASE CONTROL I9 DC BIAS RF p 1 DRIVER RF DRlVER ,g Zl RF DRIVER 0 DC BIAS SIGNAL AC A MOII'J LLITAIgEION BIAS CONTROL 2
- the present invention comprises an antenna system for producing an amplitude modulated signal at a receiver by properly varying the spatial amplitude distribution of the antenna beam.
- the antenna beam variation is accomplished by varying the relative phase of a phase-array antenna at the desired modulation rate.
- a variable DC bias signal is applied to each element of the antenna which is used to steer the beam in angle.
- An AC signal is also applied to each element which will appear as AM modulation at a distant receiver.
- the advantage provided by this unique method and device, which is the subject matter of the present invention, is that a carrier wave (CW) drive can be used for the antenna RF source. This greatly simplifies the source and allows the driver to be operated in the more efficient saturated amplified mode. Moreover, no separate AM modulator is required because beam steering capability is already present in most phased-array antennas at the present time. AM modulation is not used in ECM systems because of the difficulties mentioned above; this new and unique system would allow desirable AM modulators to be employed with the present high efficiency components.
- CW carrier wave
- a primary object of the present invention is to produce an amplitude modulated signal at a receiver by varying the spatial amplitude distribution of an antenna beam.
- Another object of the present invention is to provide a device which amplifies the RF source and allows the driver of the system to be operated with a higher average power output.
- Another object of the present invention is to provide a device to produce an amplitude modulated signal at a receiver without a separate AM modulator and provide a continuous amplitude-modulated multiple target coverage without wasting power.
- Another object of the present invention is to provide a device which allows all of the RF hardware in the phased-array antenna to operate on a continuous fullpower basis.
- FIG. 1 is a schematic diagram of the amplitude modulated phased-array antenna system
- FIG. la is the amplitude modulation and phase excitation waveform for a standard antenna array system
- FIG. lb is an example of a phase print function generated from the amplitude modulated phased-array an- 0 tenna system illustrated in FIG. 1;
- FIG. 2 is a schematic diagram of a four element array antenna system
- FIG. 3a is a schematic illustration of the four element phased-array antenna illustrated in FIG. 2, in the beam steering mode;
- FIG. 3b is a schematic illustration of the four element phased-array antenna illustrated in FIG. 2, with a bias signal applied to the third and fourth element;
- FIG. 3c is a schematic diagram of the four element array illustrated in FIG. 2, simulating a large aperture operation function.
- the amplitude modulated antenna system 11 comprises a phased-array antenna system 13, a beam steering control 15 and a modulation phase control device 17.
- the phased array antenna system 13 further comprises a plurality of antenna elements 19 and a plurality of RF drivers 21 operatively connected to each element of the plurality of antenna elements 19.
- the drivers are used to generate the RF signal to each antenna.
- Each RF driver 21 contains its own individual phase-shifting elements, either digital or analog.
- each of the drivers is connected to a single antenna element. This portion of the antenna system is similar to most phased-array antennas as presently configured.
- the unique difference of the present system is the utilization of the spatially selective amplitude modulator (SPASAM) technique, hereinafter referred to as SPASAM, for control of the phase for each of the RF driver elements.
- SPASAM spatially selective amplitude modulator
- a conventional phasedarray antenna is intended to form a sharp beam as illustrated by the solid line in FIG. 1 and is able to steer or point the beam in the direction of target T.
- This aformentioned function is accomplished by driving the ensemble of RF driver elements 21 with a linear phase gradient across the antenna aperture.
- the signal set required to accomplish this, is generated by the beam steering control 15.
- the beam steering control 15 generates a plurality of individual DC bias outputs which are individually applied to each RF driver.
- the beam steering control 15 accepts a single input DC signal and specifies the direction that the beam should be pointed and subsequently generates a DC bias signal for each of the RF driver elements of the plurality of RF driver elements 21 which will shift the phase appropriately to form and point the beam in the desired direction.
- the antenna pattern remains nearly constantas the beam is steered to different points in space, or when modulation is applied to the RF going through the antenna.
- the modulation phase control device 17 has a single modulation input.
- the input is an AC signal which can be generated by an oscillator circuit or any similar device.
- the modulation control device 17 then generates an appropriate modulation phase control signal or AC bias for each of the RF driver elements.
- the aforementioned AC and DC ll w bias signals are generated simultaneously.
- This second set of phase control or bias signals allows the antenna pattern to be changed in both space and time according to the applications of the particular system.
- the modulated beam is illustrated by the shaded portion in FIG. 1 so that the distant target T will, at any point within this shaded beam, receive an amplitude modulated signal.
- the first is the beamsteering mode and the second is the unique SPASAM technique.
- the beam steering control is forming and pointing the beam shown by the solid block line toward a distant target T.
- This function is usually accomplished by a constant phase difference between each of the adjacent RF driver elements 21.
- Modulation is generated on the antenna beam by applying a set of modulation phase-control signals to each of the RF driver elements 21.
- the signal applied to each RF driver element is moderately small compared to the signal being applied to the beamsteering control and thus results in only a small perturbation of the phase of each RF driver element.
- the modulator phase control signals are applied in the same uniform phase difference pattern as the beam steering control signals, then the spatial power pattern for the antenna 19 will remain constant as a function of time. However, the position of the entire pattern will move in space at the modulation rate. This is called the beam-steering mode because the antenna power pattern remains constant in a well formed beam as a function of time.
- the relative amplitude modulation of signals will vary as the position of the receiver varies in space.
- the spatially selective amplitude modulation technique or SPASAM includes all the modes of operation that are possible in which the antenna beam shape is not constant as a function of time.
- the antenna may be made to operate as a linear amplitude modulator in which the waveform is identical to that of the modulation signal input, or it is possible to produce signals which have waveforms different from the modulation signal.
- the antenna of any phased-array system 21 is generally specified by an amplitude and a phase function across the antenna aperture, as illustrated in FIG. la.
- a constant amplitude of unity with no relative phase shift across the aperture is indicated. This relationship would produce the familiar sin x/x distribution from a phased-array antenna with the beam pointed on the broadside. If the phase variation is made linear across the aperture with a constant slope the sin x/x pattern will remain, but the antenna beam will now be pointed in a different direction in space.
- the phase function does not vary linearly across the aperture. This has the effect of producing a different antenna pattern as the phase pattern across the aperture is changed. This additional phase variation across the aperture will be called, for various technical reasons, the phase print function for the SPASAM technique.
- FIG. 1b shows an example of a phase print function consisting of 4% cycles of sinusoidal phase variation across the antenna aperture. It has been found that the phase print exists only for a certain instant in time and will be a complex function of time. The set ofphase print functions over a time T will be called the modulation excitation function. In order to facilitate the description of the many types of operations that are possible in SPASAM, different classes of modulation excitation functions have been generally identified by class of operation. A summary of these classes are illustrated in Table I, and a description of the various classes of modulation excitation functions will follow.
- the identifying characteristic of the first class of modulation signals is that the radiation power pattern shape is kept constant in time.
- the driving signals from the RF drivers 21 may be quasistatic or may be a modulation signal that corresponds to the beam-steering mode of amplitude modulation, or a combination of the two.
- the phase print for this class is the same as the phase pattern used to steer the beam. See FIG. 1a.
- the second class of modulation excitation function is more complex than class one, but is the simplest form of SPASAM because the radiation power pattern changes as a function of time.
- the phase print function is not the same as the steering phase pattern.
- the signal applied to each RF phase shifter has the same time waveform and differs only in magnitude. That is, the signal applied to one phase shifter will be different by a scale factor from the signal applied to another phase shifter.
- the modulation excitation functionflt is a sinusoidal function.
- the frequency of this f(t) is the modulating frequency.
- the f(t) for element 1 of the antenna is lagging, the f(t) for element 2 of the antenna by some number of degrees by some number of degrees, this fact can be expressed as a phase shift by some number of degrees at the modulation frequency between element 1 and element 2.
- This phase shift at the modulation frequency forms the basis for this class.
- the modulation excitation function in which the signal to each RF driver has the same frequency and the same peak amplitude, but a different phase shift at the same modulation frequency is exemplified by this class.
- the fourth class forms a nonsinusoidal, but periodic, time waveform.
- This class has the same restrictions as class two, but now f(t) can be any nonsinusoidal, nonlinear, but periodic function.
- the period for all antenna element modulation signals must be the same. In this instance, it is desirable to decompose the signal waveform into its Fourier components.
- Class five allows a phase shift at the modulation frequency, as explained in class three, to occur for the same conditions as class four.
- a different time waveform is applied to each of the RF phase shifters. Again, however, the time waveform is restricted to having the same fundamental Fourier period from element to element, but the amplitude and phase of any or all of the components are allowed to vary from point to point.
- the waveform applied to each of the RF elements is different and the difference is due to a different fundamental Fourier component of the modulation signal. This set of modulation signals is approaching the maximum decorrelation of the signal from antenna element to antenna element and results in a spatially complex transmitted signal from the antenna. The limit of this example would necessarily be uncorrelated noise applied to each of the RF phase shifters.
- the antenna form and point beams to more than one point in space simultaneously in order to illuminate multiple targets. It has been found that the SPASAM technique allows this, and in addition, will permit each of the beams to produce the desired broadside AM signal at the target.
- the first class, illustrated in Table I can perform the aforementioned function. In this case the signals driving the RF phase shifters all have the same time waveform. It should be noted that this is not beam-steering modulation. The static pattern is not being swept back and forth. The beams at the desired location are made to grow and shrink by means of a time-modulated phase print function; that is, a modulation excitation function. Power taken out of the main beam is put into modulated beams to produce these types of signals.
- the classes two through seven may be used for modulation excitation functions and the multiple target problem.
- This group of modulation excitation functions allows a trade-off between maximum peak power and multiple target efficiency, and it is the simplest of the group of modulating functions compatible with a multiple target environment.
- an amplitude modulated signal is produced at the receiver by properly varying the signal to the relative element phases in a phased-array antenna at the desired modulation rate.
- the antenna system 31 comprises a linear array of four elements 33, 35, 37, and 39 with non-uniform spacing and single large reflecting plane 41.
- each antenna element 33, 35, 37, and 39 are individual dipole elements.
- the antenna beam variation is accomplished by varying the relative phases of the phase-array antenna 31.
- the phase of the 3GHZ constant signal from each element can be individually voltage controlled. However, it should be noted that any method of individually controlling of each element is workable.
- Applied to each antenna element 33, 35, 37, and 39 is a variable DC bias signal which is used to steer the beam in angle and an AC signal which will appear as AM modulation at a distant receiver.
- the array 31 may be driven by a single RF oscillator and power divider, or other similar devices.
- elements 33 and 35 are each paired and spaced by a wavelength and the other two elements 37 and 39 are separated by '25 wavelengths.
- Element 33 isspaced 3% wavelengths from element 37. This spacing is chosen only to illustrate a point and not necessarily for operation.
- This particular configuration simulates a single antenna which is filled in over the entire four wavelength aperture.
- the reflecting plane 41 may be constructed of copper or an equivalent metal with similar electrical characteristics.
- a step recovery diode (SRD), or any similar frequency multiplier, can be used for the generation of S-band signals and the phase-shifter.
- Each element should be adjusted to have a voltage standing wave ratio (VSWR) of less than about 1.05 at an operating frequency of about 3 Ge.
- VSWR voltage standing wave ratio
- Each element is fed by a step recovery diodemodule (srd) that can supply about several milliwatts of power.
- the four step recovery diode (SRD) modules in turn are supplied from a two-watt oscillator or amplifier, as the case may be, and a four-way power divider.
- a bias supply feeds each module to allow for the individual and simultaneous application of DC bias, AC bias and beam-steering to each of the antenna elements 33, 35, 37, 39.
- the antenna 31 may be operated over a relatively narrow phase-shift range or a wide phase-shift range, or as desired.
- the beam can be adjusted manually or automatically, again as desired.
- the second class is much more versatile and more complex; this is called spatially selective amplitude modulation (SPASAM). In this mode the entire static antenna pattern is modulated so that a new antenna pattern will appear at each instant of time as the modulation signal which is varied through its entire range.
- This complex modulation'transfer function of the antenna can be determined in terms of static antenna-pattern measurements and will be described in conjunction with the discussion of the beam-steering mode function.
- phase contribution of the physical spacing of each element of the antenna and is a function of the spatial angle.
- the terms qS also include DC phase shifts introduced to steer the antenna beam in space.
- the deviation 41, through (b represents only those contributions caused by the AC modulating signal applied to the antenna.
- Two cooperating phased-arrays can be simulated by driving (1) and 4 with an identical DC bias signal for steering and allowing 4) and (1);, to be identical and d) and 4: to be zero; this would simulate two cooperating phased-arrays, each operated in the beamsteering mode as illustrated in FIG. 2.
- a single large antenna can be simulated for modulation purposes by driving 11),, through (p with the proper bias and allowing (b and 4);, to be equal and d) and 4: to be zero. This full-size antenna simulation demonstrates the beamsteering mode.
- the large aperture simulation for the general modulation transfer function mode can be simulated by allowing 4 through 111 to assume any desired set of nonzero values and to be whatever phase functions that are necessary to shape the beam and to steer it in the desired direction.
- the unique antenna transfer function device can produce spectra that are similar to an AM suppressed carrier signal.
- SRD phase-shifters used in the four element array, illustrated in FIG. 2 can be used as the phase-shifters in the multiple element array illustrated in FIG. 1.
- Beam position, beam shape and the number of beams all can be changed to produce modulation.
- An amplitude modulated phased-array antenna system comprising:
- said plurality of antenna elements each having phase shifting device connected thereto;
- a means for steering a radio beam operatively connected to each of said phase-shifting device said beam steering means supplying a beam-steering signal to each one of the said plurality of antenna elements;
- said means for generating a space time variable non-linear phase function is a modulator to generate a selected modulated phase control signal to each of said phase shifting devices simultaneously with the application of said beam-steering signal.
- each of said selected modulated phase control signals are AC signals with the same time waveform.
- said plurality of antenna elements of the phased-array antenna system comprises:
- each of said antenna elements being nonuniformally spaced along a reflecting means.
- the system further includes a RF signal generating means operatively connected to each one of said antenna elements to supply an output signal to each of said antenna elements.
- said RF signal generating means further comprises a means for generating beam-steering control and a means for controlling the modulation phase simultaneously to each one of said first, second, third, and fourth antenna elements located on said reflecting means wherein said DC signal provides a beam-steering signal to each one of said antenna elements.
- each of said antenna elements is a dipole element wherein said second antenna element is spaced one-half a wave-length from said first antenna element wherein said first antenna element is spaced three and one-half wavelengths from said third antenna element and four wavelengths from said fourth antenna element.
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
An antenna system for producing an amplitude modulated signal at a receiver by properly varying the spatial amplitude distribution of the antenna beam. The antenna beam variation is accomplished by varying the relative phase of a phase-array antenna at the desired modulation rate. A variable DC bias signal is applied to each element of the antenna which is used to steer the beam in angle. An AC signal is also applied to each element which will qppear as AM modulation at a distant receiver.
Description
United States Patent Wright Apr. 23, 1974 AMPLITUDE MODULATION USING 3,238,528 3/1966 Hines 343/100 3,600,701 8/1971 Gouldthrope....
PHASED ARRAY ANTENNAS 3,643,075 2/1972 Hayes 343/100 SA [75] Inventor: Maynard Lattimer Wright, San
Jose Calif Primary ExaminerMaynard R. Wilbur [73] Assignee: The United States of America as Assistant Examiner-Richard E. Berger represented by the Secretary of the Attorney, Agent, or FirmR. S. Sciascia; Charles-D. B. Navy, Washington, DC. Curry [22] Filed: Oct. 26, 1971 211 Appl. No.: 192,410 [57] ABSTRACT An antenna system for producing an amplitude modulated signal at a receiver by properly varying the spag 343/100 tial amplitude distribution of the antenna beam. The I antenna beam variation is accomplished by varying [58] Fleld of Search 343/100 325/160 the relative phase of a phase-array antenna at the desired modulation rate. A variable DC. bias signal is ap- [56] References C'ted plied to each element of the antenna which is used to UMTED STATES PATENTS steer the beam in angle. An AC signal is also applied 3,697,995 10/1972 Kafitz 343/100 SA to each element which will qppear as AM modulation 3,460,140 8/1969 Logan 343/100 SA at a distant receiver, 3,238,527 3/1966 Vogt 343/100 SA 3,701,156 10/1972 Killion 343/100 SA 9 Claims, 7 Drawing Figures ll BEAM STEERING PHASE CONTROL I9 DC BIAS RF p 1 DRIVER RF DRlVER ,g Zl RF DRIVER 0 DC BIAS SIGNAL AC A MOII'J LLITAIgEION BIAS CONTROL 2| r\ r\.r\, RF
DRIVER BEAM AC STEERING MODULATION INPUT CONTROL VATENH'IUAPRZB MI 3.806931 SHEET 1 BF 2 /H 15 BEAM STEERING PHASE CONTROL '9 A RF 2I DRIVER 2| RF I 3 DRIVER 2| DRIVER A DC BIAS SIGNAL -Ac MODULATION BIAS PHASE CONTROL A 2| r\ r\ r\. RF
DRIVER BEAM AC flR o L I N PQ T ANTENNA APERTURE AMPLITUDE FIG 10 v 80 PHASE +|8O FIG 1b m P A PATENTEDAPR 23 1974 3.806; 931
SHEET 2 [1F 2 SRD 33 o DC 5RD yfis BIAS POWER SUPPLY 5RD \37 e fly BEAM 5 STEERING CONTROL 4O 39 MOD X 1 4| AC BIAS 0 FIG 30 2 3 9 ref (=0) 4 9 mod FIG 0 9 ref (=0) 6 mod FIG... 3C-fi T T T T e 'mod 9 mod 9 mod 9 mod AMPLITUDE MODULATION USING PHASED-ARRAY ANTENNAS BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates generally to an antenna system for producing an amplitude modulated signal at a receiver and more particularly to an antenna system which will produce an amplitude modulated signal at a receiver by varying the spatial amplitude distribution of 1 the antenna beam.
2. Description of the Prior Art.
Prior Antenna systems required separate AM modulations which subsequently required a complicated RF source. This virtually eliminated the use of AM modulation from specialized systems such as ECM systems which use phased array antennas.
SUMMARY OF THE INVENTION Briefly, the present invention comprises an antenna system for producing an amplitude modulated signal at a receiver by properly varying the spatial amplitude distribution of the antenna beam. The antenna beam variation is accomplished by varying the relative phase of a phase-array antenna at the desired modulation rate. A variable DC bias signal is applied to each element of the antenna which is used to steer the beam in angle. An AC signal is also applied to each element which will appear as AM modulation at a distant receiver.
The advantage provided by this unique method and device, which is the subject matter of the present invention, is that a carrier wave (CW) drive can be used for the antenna RF source. This greatly simplifies the source and allows the driver to be operated in the more efficient saturated amplified mode. Moreover, no separate AM modulator is required because beam steering capability is already present in most phased-array antennas at the present time. AM modulation is not used in ECM systems because of the difficulties mentioned above; this new and unique system would allow desirable AM modulators to be employed with the present high efficiency components.
STATEMENTS OF THE OBJECTS OF INVENTION A primary object of the present invention is to produce an amplitude modulated signal at a receiver by varying the spatial amplitude distribution of an antenna beam.
Another object of the present invention is to provide a device which amplifies the RF source and allows the driver of the system to be operated with a higher average power output.
Another object of the present invention is to provide a device to produce an amplitude modulated signal at a receiver without a separate AM modulator and provide a continuous amplitude-modulated multiple target coverage without wasting power.
Another object of the present invention is to provide a device which allows all of the RF hardware in the phased-array antenna to operate on a continuous fullpower basis.
Other objects and features will be apparent from the following descriptions of the invention and from the accompanying drawings wherein:
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of the amplitude modulated phased-array antenna system;
FIG. la is the amplitude modulation and phase excitation waveform for a standard antenna array system;
FIG. lb is an example ofa phase print function generated from the amplitude modulated phased-array an- 0 tenna system illustrated in FIG. 1;
FIG. 2 is a schematic diagram of a four element array antenna system;
FIG. 3a is a schematic illustration of the four element phased-array antenna illustrated in FIG. 2, in the beam steering mode;
FIG. 3b is a schematic illustration of the four element phased-array antenna illustrated in FIG. 2, with a bias signal applied to the third and fourth element; and
FIG. 3c is a schematic diagram of the four element array illustrated in FIG. 2, simulating a large aperture operation function.
Referring to FIG. 1, the amplitude modulated antenna system 11 comprises a phased-array antenna system 13, a beam steering control 15 and a modulation phase control device 17. The phased array antenna system 13 further comprises a plurality of antenna elements 19 and a plurality of RF drivers 21 operatively connected to each element of the plurality of antenna elements 19. The drivers are used to generate the RF signal to each antenna. Each RF driver 21 contains its own individual phase-shifting elements, either digital or analog. Moreover, each of the drivers is connected to a single antenna element. This portion of the antenna system is similar to most phased-array antennas as presently configured. The unique difference of the present system is the utilization of the spatially selective amplitude modulator (SPASAM) technique, hereinafter referred to as SPASAM, for control of the phase for each of the RF driver elements. A conventional phasedarray antenna is intended to form a sharp beam as illustrated by the solid line in FIG. 1 and is able to steer or point the beam in the direction of target T. This aformentioned function is accomplished by driving the ensemble of RF driver elements 21 with a linear phase gradient across the antenna aperture. The signal set, required to accomplish this, is generated by the beam steering control 15. The beam steering control 15 generates a plurality of individual DC bias outputs which are individually applied to each RF driver. The beam steering control 15 accepts a single input DC signal and specifies the direction that the beam should be pointed and subsequently generates a DC bias signal for each of the RF driver elements of the plurality of RF driver elements 21 which will shift the phase appropriately to form and point the beam in the desired direction. In most phased-arrays the antenna pattern remains nearly constantas the beam is steered to different points in space, or when modulation is applied to the RF going through the antenna. However, when spatial modulation circuitry is used, a different function results, which hereinafter will be described. The modulation phase control device 17 has a single modulation input. The input is an AC signal which can be generated by an oscillator circuit or any similar device. The modulation control device 17 then generates an appropriate modulation phase control signal or AC bias for each of the RF driver elements. The aforementioned AC and DC ll w bias signals are generated simultaneously. This second set of phase control or bias signals allows the antenna pattern to be changed in both space and time according to the applications of the particular system. The modulated beam is illustrated by the shaded portion in FIG. 1 so that the distant target T will, at any point within this shaded beam, receive an amplitude modulated signal.
There are two broad categories of amplitude modulation generation which can be used with the amplitude modulated antenna system. The first is the beamsteering mode and the second is the unique SPASAM technique.
Referring again to FIG. I, assume that the beam steering control is forming and pointing the beam shown by the solid block line toward a distant target T. This function is usually accomplished by a constant phase difference between each of the adjacent RF driver elements 21.
Modulation is generated on the antenna beam by applying a set of modulation phase-control signals to each of the RF driver elements 21. In this case, the signal applied to each RF driver element is moderately small compared to the signal being applied to the beamsteering control and thus results in only a small perturbation of the phase of each RF driver element. If, in addition, the modulator phase control signals are applied in the same uniform phase difference pattern as the beam steering control signals, then the spatial power pattern for the antenna 19 will remain constant as a function of time. However, the position of the entire pattern will move in space at the modulation rate. This is called the beam-steering mode because the antenna power pattern remains constant in a well formed beam as a function of time. Moreover, it has been found that the relative amplitude modulation of signals will vary as the position of the receiver varies in space.
The spatially selective amplitude modulation technique or SPASAM includes all the modes of operation that are possible in which the antenna beam shape is not constant as a function of time. Using the SPASAM technique, the antenna may be made to operate as a linear amplitude modulator in which the waveform is identical to that of the modulation signal input, or it is possible to produce signals which have waveforms different from the modulation signal.
To facilitate the understanding of the SPASAM technique, a discussion of the general theory is necessary.
The antenna of any phased-array system 21 is generally specified by an amplitude and a phase function across the antenna aperture, as illustrated in FIG. la. A constant amplitude of unity with no relative phase shift across the aperture is indicated. This relationship would produce the familiar sin x/x distribution from a phased-array antenna with the beam pointed on the broadside. If the phase variation is made linear across the aperture with a constant slope the sin x/x pattern will remain, but the antenna beam will now be pointed in a different direction in space. In the SPASAM function the phase function does not vary linearly across the aperture. This has the effect of producing a different antenna pattern as the phase pattern across the aperture is changed. This additional phase variation across the aperture will be called, for various technical reasons, the phase print function for the SPASAM technique. FIG. 1b shows an example of a phase print function consisting of 4% cycles of sinusoidal phase variation across the antenna aperture. It has been found that the phase print exists only for a certain instant in time and will be a complex function of time. The set ofphase print functions over a time T will be called the modulation excitation function. In order to facilitate the description of the many types of operations that are possible in SPASAM, different classes of modulation excitation functions have been generally identified by class of operation. A summary of these classes are illustrated in Table I, and a description of the various classes of modulation excitation functions will follow.
TABLE I CLASSES OF MODULATION EXCITATION FUNCTIONS Class Power Pattern Zero Phase Shift at Sinusoidal Stays the Same Modulation Excitation Frequency Time-Waveform 1 Yes Yes Yes 2 No Yes Yes 3 No No Yes 4 No Yes No 5 No No No 6 No No No 7 No No No Class Same Timc- Same Fnuricr Waveform at Fundamental Each [Element Frequency 1 Yen You 2 Yes Yes 3 Yes Yes 4 Yes Yes 5 Yes Yes 6 No Yes 7 No No As stated previously, the set of phase print functions over a Time T will define the modulation excitation function. Of the seven classes of modulation excitation functions that will be described, only the first, Class 1, does not generate SPASAM. The description of these seven classes in Table l is as follows:
The identifying characteristic of the first class of modulation signals is that the radiation power pattern shape is kept constant in time. The driving signals from the RF drivers 21 may be quasistatic or may be a modulation signal that corresponds to the beam-steering mode of amplitude modulation, or a combination of the two. The phase print for this class is the same as the phase pattern used to steer the beam. See FIG. 1a.
The second class of modulation excitation function is more complex than class one, but is the simplest form of SPASAM because the radiation power pattern changes as a function of time. The phase print function is not the same as the steering phase pattern. The signal applied to each RF phase shifter has the same time waveform and differs only in magnitude. That is, the signal applied to one phase shifter will be different by a scale factor from the signal applied to another phase shifter.
It has been found by experimentation, in class three, that the modulation excitation functionflt) is a sinusoidal function. The frequency of this f(t) is the modulating frequency. For example, if the f(t) for element 1 of the antenna is lagging, the f(t) for element 2 of the antenna by some number of degrees by some number of degrees, this fact can be expressed as a phase shift by some number of degrees at the modulation frequency between element 1 and element 2. This phase shift at the modulation frequency forms the basis for this class. The modulation excitation function in which the signal to each RF driver has the same frequency and the same peak amplitude, but a different phase shift at the same modulation frequency is exemplified by this class.
The fourth class forms a nonsinusoidal, but periodic, time waveform. This class has the same restrictions as class two, but now f(t) can be any nonsinusoidal, nonlinear, but periodic function. The period for all antenna element modulation signals must be the same. In this instance, it is desirable to decompose the signal waveform into its Fourier components.
Class five allows a phase shift at the modulation frequency, as explained in class three, to occur for the same conditions as class four.
In class six a different time waveform is applied to each of the RF phase shifters. Again, however, the time waveform is restricted to having the same fundamental Fourier period from element to element, but the amplitude and phase of any or all of the components are allowed to vary from point to point. In class seven the waveform applied to each of the RF elements is different and the difference is due to a different fundamental Fourier component of the modulation signal. This set of modulation signals is approaching the maximum decorrelation of the signal from antenna element to antenna element and results in a spatially complex transmitted signal from the antenna. The limit of this example would necessarily be uncorrelated noise applied to each of the RF phase shifters.
Thus, by varying the AC and DC bias signals generated by the beam-steering control and the modulation phase control 17, we can develop the various classes of modulation excitation functions, illustrated in Table l, and respective phase print function signals, illustrated in FIG. 1b.
In many applications it is required that the antenna form and point beams to more than one point in space simultaneously in order to illuminate multiple targets. It has been found that the SPASAM technique allows this, and in addition, will permit each of the beams to produce the desired broadside AM signal at the target. The first class, illustrated in Table I, can perform the aforementioned function. In this case the signals driving the RF phase shifters all have the same time waveform. It should be noted that this is not beam-steering modulation. The static pattern is not being swept back and forth. The beams at the desired location are made to grow and shrink by means of a time-modulated phase print function; that is, a modulation excitation function. Power taken out of the main beam is put into modulated beams to produce these types of signals.
The classes two through seven may be used for modulation excitation functions and the multiple target problem. This group of modulation excitation functions allows a trade-off between maximum peak power and multiple target efficiency, and it is the simplest of the group of modulating functions compatible with a multiple target environment.
An example of an embodiment of the present invention, which has been found to be quite satisfactory, is illustrated in H6. 2.
Referring to FIG. 2, an amplitude modulated signal is produced at the receiver by properly varying the signal to the relative element phases in a phased-array antenna at the desired modulation rate. The antenna system 31 comprises a linear array of four elements 33, 35, 37, and 39 with non-uniform spacing and single large reflecting plane 41. The four elements 33, 35, 37,
and 39 are individual dipole elements. The antenna beam variation is accomplished by varying the relative phases of the phase-array antenna 31. The phase of the 3GHZ constant signal from each element can be individually voltage controlled. However, it should be noted that any method of individually controlling of each element is workable. Applied to each antenna element 33, 35, 37, and 39 is a variable DC bias signal which is used to steer the beam in angle and an AC signal which will appear as AM modulation at a distant receiver. The array 31 may be driven by a single RF oscillator and power divider, or other similar devices.
More specifically, elements 33 and 35 are each paired and spaced by a wavelength and the other two elements 37 and 39 are separated by '25 wavelengths. Element 33 isspaced 3% wavelengths from element 37. This spacing is chosen only to illustrate a point and not necessarily for operation. This particular configuration simulates a single antenna which is filled in over the entire four wavelength aperture. The reflecting plane 41 may be constructed of copper or an equivalent metal with similar electrical characteristics. A step recovery diode (SRD), or any similar frequency multiplier, can be used for the generation of S-band signals and the phase-shifter. Each element should be adjusted to have a voltage standing wave ratio (VSWR) of less than about 1.05 at an operating frequency of about 3 Ge. Each element is fed by a step recovery diodemodule (srd) that can supply about several milliwatts of power. The four step recovery diode (SRD) modules in turn are supplied from a two-watt oscillator or amplifier, as the case may be, and a four-way power divider. A bias supply feeds each module to allow for the individual and simultaneous application of DC bias, AC bias and beam-steering to each of the antenna elements 33, 35, 37, 39. The antenna 31 may be operated over a relatively narrow phase-shift range or a wide phase-shift range, or as desired. The beam can be adjusted manually or automatically, again as desired. It should be noted that the major difference between the unique AM generation technique, which is the subject matter of the present invention, and conventional phasedarray antenna techniques lies not in the hardware but in how the hardware is used.
Two classes of modulated phased-array antenna patterns with relationship to the four element array can be identified: The first involves the generation of a fixed antenna pattern shape which is moved about in space over a relatively small angle by using a suitable modulation input to the phase-shifter of the antenna. This operation is called the beam-steering mode because the general shape of the antenna beam remains fixed as it is moved or steered by the modulator or modulating signal. The second class is much more versatile and more complex; this is called spatially selective amplitude modulation (SPASAM). In this mode the entire static antenna pattern is modulated so that a new antenna pattern will appear at each instant of time as the modulation signal which is varied through its entire range. This complex modulation'transfer function of the antenna can be determined in terms of static antenna-pattern measurements and will be described in conjunction with the discussion of the beam-steering mode function.
Referring to FIGS. 3a, 3b, and 3c, terms 4), through define the phase contribution of the physical spacing of each element of the antenna and is a function of the spatial angle. The terms qS also include DC phase shifts introduced to steer the antenna beam in space. The deviation 41,, through (b represents only those contributions caused by the AC modulating signal applied to the antenna. Two cooperating phased-arrays can be simulated by driving (1) and 4 with an identical DC bias signal for steering and allowing 4) and (1);, to be identical and d) and 4: to be zero; this would simulate two cooperating phased-arrays, each operated in the beamsteering mode as illustrated in FIG. 2. A single large antenna can be simulated for modulation purposes by driving 11),, through (p with the proper bias and allowing (b and 4);, to be equal and d) and 4: to be zero. This full-size antenna simulation demonstrates the beamsteering mode.
The large aperture simulation for the general modulation transfer function mode can be simulated by allowing 4 through 111 to assume any desired set of nonzero values and to be whatever phase functions that are necessary to shape the beam and to steer it in the desired direction. The unique antenna transfer function device can produce spectra that are similar to an AM suppressed carrier signal.
It should be noted that the SRD phase-shifters used in the four element array, illustrated in FIG. 2, can be used as the phase-shifters in the multiple element array illustrated in FIG. 1.
Many different beam modulation techniques are possible. Beam position, beam shape and the number of beams all can be changed to produce modulation.
What is claimed is:
1. An amplitude modulated phased-array antenna system comprising:
a. a plurality of antenna elements forming an aperture;
b. said plurality of antenna elements each having phase shifting device connected thereto;
c. a means for steering a radio beam operatively connected to each of said phase-shifting device said beam steering means supplying a beam-steering signal to each one of the said plurality of antenna elements; and
d. a means for generating a space-time variable nonlinear phase function signal across the aperture of said plurality of antenna elements.
2. The device recited in claim 1 wherein said beamsteering means is a DC bias signal means.
3. The device recited in claim 1 wherein said means for generating a space time variable non-linear phase function is a modulator to generate a selected modulated phase control signal to each of said phase shifting devices simultaneously with the application of said beam-steering signal.
4. The device recited in claim 3 wherein each of said selected modulated phase control signals are AC signals with the same time waveform.
5. The device recited in claim 3 wherein the generated beams of energy from each one of a plurality of antenna elements are varied by varying means for generating a space time variable non-linear phase function signal over a period of time.
6. The device recited in claim 1 wherein said plurality of antenna elements of the phased-array antenna system comprises:
a. a first antenna element;
b. a second antenna element;
0. a third antenna element;
d. a fourth antenna element; and
e. each of said antenna elements being nonuniformally spaced along a reflecting means.
7. The device recited in claim 6 wherein the system further includes a RF signal generating means operatively connected to each one of said antenna elements to supply an output signal to each of said antenna elements.
8. The device recited in claim 7 wherein said RF signal generating means further comprises a means for generating beam-steering control and a means for controlling the modulation phase simultaneously to each one of said first, second, third, and fourth antenna elements located on said reflecting means wherein said DC signal provides a beam-steering signal to each one of said antenna elements.
9. The device recited in claim 8 wherein each of said antenna elements is a dipole element wherein said second antenna element is spaced one-half a wave-length from said first antenna element wherein said first antenna element is spaced three and one-half wavelengths from said third antenna element and four wavelengths from said fourth antenna element.
Claims (9)
1. An amplitude modulated phased-array antenna system comprising: a. a plurality of antenna elements forming an aperture; b. said plurality of antenna elements each having phase shifting device connected thereto; c. a means for steering a radio beam operatively connected to each of said phase-shifting device said beam steering means supplying a beam-steering signal to each one of the said plurality of antenna elements; and d. a means for generating a space-time variable non-linear phase function signal across the aperture of said plurality of antenna elements.
2. The device recited in claim 1 wherein said beam-steering means is a DC bias signal meanS.
3. The device recited in claim 1 wherein said means for generating a space time variable non-linear phase function is a modulator to generate a selected modulated phase control signal to each of said phase shifting devices simultaneously with the application of said beam-steering signal.
4. The device recited in claim 3 wherein each of said selected modulated phase control signals are AC signals with the same time waveform.
5. The device recited in claim 3 wherein the generated beams of energy from each one of a plurality of antenna elements are varied by varying means for generating a space time variable non-linear phase function signal over a period of time.
6. The device recited in claim 1 wherein said plurality of antenna elements of the phased-array antenna system comprises: a. a first antenna element; b. a second antenna element; c. a third antenna element; d. a fourth antenna element; and e. each of said antenna elements being non-uniformally spaced along a reflecting means.
7. The device recited in claim 6 wherein the system further includes a RF signal generating means operatively connected to each one of said antenna elements to supply an output signal to each of said antenna elements.
8. The device recited in claim 7 wherein said RF signal generating means further comprises a means for generating beam-steering control and a means for controlling the modulation phase simultaneously to each one of said first, second, third, and fourth antenna elements located on said reflecting means wherein said DC signal provides a beam-steering signal to each one of said antenna elements.
9. The device recited in claim 8 wherein each of said antenna elements is a dipole element wherein said second antenna element is spaced one-half a wave-length from said first antenna element wherein said first antenna element is spaced three and one-half wavelengths from said third antenna element and four wavelengths from said fourth antenna element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US00192410A US3806931A (en) | 1971-10-26 | 1971-10-26 | Amplitude modulation using phased-array antennas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US00192410A US3806931A (en) | 1971-10-26 | 1971-10-26 | Amplitude modulation using phased-array antennas |
Publications (1)
Publication Number | Publication Date |
---|---|
US3806931A true US3806931A (en) | 1974-04-23 |
Family
ID=22709527
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00192410A Expired - Lifetime US3806931A (en) | 1971-10-26 | 1971-10-26 | Amplitude modulation using phased-array antennas |
Country Status (1)
Country | Link |
---|---|
US (1) | US3806931A (en) |
Cited By (167)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0241380A1 (en) * | 1986-04-11 | 1987-10-14 | Centre National De La Recherche Scientifique (Cnrs) | Method and device for focusing an antenna array at a test point |
GB2253744A (en) * | 1991-03-12 | 1992-09-16 | Siemens Plessey Electronic | Scanning electromagnetic beam systems |
US20120139787A1 (en) * | 2010-12-04 | 2012-06-07 | Chian Chiu Li | Beam Steering And Manipulating Apparatus And Method |
US20130307763A1 (en) * | 2012-05-21 | 2013-11-21 | Amplifier Research Corporation | Field analyzer |
WO2015162569A1 (en) * | 2014-04-25 | 2015-10-29 | Andries Petrus Cronje Fourie | Data transmission system and method utilizing radiation pattern manipulation |
US9312919B1 (en) | 2014-10-21 | 2016-04-12 | At&T Intellectual Property I, Lp | Transmission device with impairment compensation and methods for use therewith |
US9461706B1 (en) | 2015-07-31 | 2016-10-04 | At&T Intellectual Property I, Lp | Method and apparatus for exchanging communication signals |
US9467870B2 (en) | 2013-11-06 | 2016-10-11 | At&T Intellectual Property I, L.P. | Surface-wave communications and methods thereof |
US9479266B2 (en) | 2013-12-10 | 2016-10-25 | At&T Intellectual Property I, L.P. | Quasi-optical coupler |
US9490869B1 (en) | 2015-05-14 | 2016-11-08 | At&T Intellectual Property I, L.P. | Transmission medium having multiple cores and methods for use therewith |
US9503189B2 (en) | 2014-10-10 | 2016-11-22 | At&T Intellectual Property I, L.P. | Method and apparatus for arranging communication sessions in a communication system |
US9509415B1 (en) | 2015-06-25 | 2016-11-29 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing a fundamental wave mode on a transmission medium |
US9520945B2 (en) | 2014-10-21 | 2016-12-13 | At&T Intellectual Property I, L.P. | Apparatus for providing communication services and methods thereof |
US9525210B2 (en) | 2014-10-21 | 2016-12-20 | At&T Intellectual Property I, L.P. | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
US9525524B2 (en) | 2013-05-31 | 2016-12-20 | At&T Intellectual Property I, L.P. | Remote distributed antenna system |
US9531427B2 (en) | 2014-11-20 | 2016-12-27 | At&T Intellectual Property I, L.P. | Transmission device with mode division multiplexing and methods for use therewith |
US9564947B2 (en) | 2014-10-21 | 2017-02-07 | At&T Intellectual Property I, L.P. | Guided-wave transmission device with diversity and methods for use therewith |
US9577307B2 (en) | 2014-10-21 | 2017-02-21 | At&T Intellectual Property I, L.P. | Guided-wave transmission device and methods for use therewith |
US9608740B2 (en) | 2015-07-15 | 2017-03-28 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
US9608692B2 (en) | 2015-06-11 | 2017-03-28 | At&T Intellectual Property I, L.P. | Repeater and methods for use therewith |
US9615269B2 (en) | 2014-10-02 | 2017-04-04 | At&T Intellectual Property I, L.P. | Method and apparatus that provides fault tolerance in a communication network |
US9628854B2 (en) | 2014-09-29 | 2017-04-18 | At&T Intellectual Property I, L.P. | Method and apparatus for distributing content in a communication network |
US9628116B2 (en) | 2015-07-14 | 2017-04-18 | At&T Intellectual Property I, L.P. | Apparatus and methods for transmitting wireless signals |
US9640850B2 (en) | 2015-06-25 | 2017-05-02 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium |
US9653770B2 (en) | 2014-10-21 | 2017-05-16 | At&T Intellectual Property I, L.P. | Guided wave coupler, coupling module and methods for use therewith |
US9654173B2 (en) | 2014-11-20 | 2017-05-16 | At&T Intellectual Property I, L.P. | Apparatus for powering a communication device and methods thereof |
US9667317B2 (en) | 2015-06-15 | 2017-05-30 | At&T Intellectual Property I, L.P. | Method and apparatus for providing security using network traffic adjustments |
US9680670B2 (en) | 2014-11-20 | 2017-06-13 | At&T Intellectual Property I, L.P. | Transmission device with channel equalization and control and methods for use therewith |
US9685992B2 (en) | 2014-10-03 | 2017-06-20 | At&T Intellectual Property I, L.P. | Circuit panel network and methods thereof |
US9692101B2 (en) | 2014-08-26 | 2017-06-27 | At&T Intellectual Property I, L.P. | Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire |
US9699785B2 (en) | 2012-12-05 | 2017-07-04 | At&T Intellectual Property I, L.P. | Backhaul link for distributed antenna system |
US9705561B2 (en) | 2015-04-24 | 2017-07-11 | At&T Intellectual Property I, L.P. | Directional coupling device and methods for use therewith |
US9705571B2 (en) | 2015-09-16 | 2017-07-11 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system |
US20170205683A1 (en) * | 2011-12-02 | 2017-07-20 | Chian Chiu Li | Beam Steering And Manipulating Apparatus And Method |
US9722318B2 (en) | 2015-07-14 | 2017-08-01 | At&T Intellectual Property I, L.P. | Method and apparatus for coupling an antenna to a device |
US9729197B2 (en) | 2015-10-01 | 2017-08-08 | At&T Intellectual Property I, L.P. | Method and apparatus for communicating network management traffic over a network |
US9735833B2 (en) | 2015-07-31 | 2017-08-15 | At&T Intellectual Property I, L.P. | Method and apparatus for communications management in a neighborhood network |
US9742462B2 (en) | 2014-12-04 | 2017-08-22 | At&T Intellectual Property I, L.P. | Transmission medium and communication interfaces and methods for use therewith |
US9748626B2 (en) | 2015-05-14 | 2017-08-29 | At&T Intellectual Property I, L.P. | Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium |
US9749053B2 (en) | 2015-07-23 | 2017-08-29 | At&T Intellectual Property I, L.P. | Node device, repeater and methods for use therewith |
US9749013B2 (en) | 2015-03-17 | 2017-08-29 | At&T Intellectual Property I, L.P. | Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium |
US9755697B2 (en) | 2014-09-15 | 2017-09-05 | At&T Intellectual Property I, L.P. | Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves |
US9762289B2 (en) | 2014-10-14 | 2017-09-12 | At&T Intellectual Property I, L.P. | Method and apparatus for transmitting or receiving signals in a transportation system |
US9769020B2 (en) | 2014-10-21 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for responding to events affecting communications in a communication network |
US9769128B2 (en) | 2015-09-28 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for encryption of communications over a network |
US9780834B2 (en) | 2014-10-21 | 2017-10-03 | At&T Intellectual Property I, L.P. | Method and apparatus for transmitting electromagnetic waves |
US9793954B2 (en) | 2015-04-28 | 2017-10-17 | At&T Intellectual Property I, L.P. | Magnetic coupling device and methods for use therewith |
US9793955B2 (en) | 2015-04-24 | 2017-10-17 | At&T Intellectual Property I, Lp | Passive electrical coupling device and methods for use therewith |
US9793951B2 (en) | 2015-07-15 | 2017-10-17 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
US9800327B2 (en) | 2014-11-20 | 2017-10-24 | At&T Intellectual Property I, L.P. | Apparatus for controlling operations of a communication device and methods thereof |
US9820146B2 (en) | 2015-06-12 | 2017-11-14 | At&T Intellectual Property I, L.P. | Method and apparatus for authentication and identity management of communicating devices |
US9836957B2 (en) | 2015-07-14 | 2017-12-05 | At&T Intellectual Property I, L.P. | Method and apparatus for communicating with premises equipment |
US9838896B1 (en) | 2016-12-09 | 2017-12-05 | At&T Intellectual Property I, L.P. | Method and apparatus for assessing network coverage |
US9847566B2 (en) | 2015-07-14 | 2017-12-19 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting a field of a signal to mitigate interference |
US9847850B2 (en) | 2014-10-14 | 2017-12-19 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting a mode of communication in a communication network |
US9853342B2 (en) | 2015-07-14 | 2017-12-26 | At&T Intellectual Property I, L.P. | Dielectric transmission medium connector and methods for use therewith |
US9860075B1 (en) | 2016-08-26 | 2018-01-02 | At&T Intellectual Property I, L.P. | Method and communication node for broadband distribution |
US9866309B2 (en) | 2015-06-03 | 2018-01-09 | At&T Intellectual Property I, Lp | Host node device and methods for use therewith |
US9865911B2 (en) | 2015-06-25 | 2018-01-09 | At&T Intellectual Property I, L.P. | Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium |
US9871282B2 (en) | 2015-05-14 | 2018-01-16 | At&T Intellectual Property I, L.P. | At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric |
US9871283B2 (en) | 2015-07-23 | 2018-01-16 | At&T Intellectual Property I, Lp | Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration |
US9876571B2 (en) | 2015-02-20 | 2018-01-23 | At&T Intellectual Property I, Lp | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
US9876264B2 (en) | 2015-10-02 | 2018-01-23 | At&T Intellectual Property I, Lp | Communication system, guided wave switch and methods for use therewith |
US9876605B1 (en) | 2016-10-21 | 2018-01-23 | At&T Intellectual Property I, L.P. | Launcher and coupling system to support desired guided wave mode |
US9882277B2 (en) | 2015-10-02 | 2018-01-30 | At&T Intellectual Property I, Lp | Communication device and antenna assembly with actuated gimbal mount |
US9882257B2 (en) | 2015-07-14 | 2018-01-30 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
US9893795B1 (en) | 2016-12-07 | 2018-02-13 | At&T Intellectual Property I, Lp | Method and repeater for broadband distribution |
US9904535B2 (en) | 2015-09-14 | 2018-02-27 | At&T Intellectual Property I, L.P. | Method and apparatus for distributing software |
US9906269B2 (en) | 2014-09-17 | 2018-02-27 | At&T Intellectual Property I, L.P. | Monitoring and mitigating conditions in a communication network |
US9912419B1 (en) | 2016-08-24 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for managing a fault in a distributed antenna system |
US9912027B2 (en) | 2015-07-23 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for exchanging communication signals |
US9912381B2 (en) | 2015-06-03 | 2018-03-06 | At&T Intellectual Property I, Lp | Network termination and methods for use therewith |
US9913139B2 (en) | 2015-06-09 | 2018-03-06 | At&T Intellectual Property I, L.P. | Signal fingerprinting for authentication of communicating devices |
US9911020B1 (en) | 2016-12-08 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for tracking via a radio frequency identification device |
US9917341B2 (en) | 2015-05-27 | 2018-03-13 | At&T Intellectual Property I, L.P. | Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves |
US9927517B1 (en) | 2016-12-06 | 2018-03-27 | At&T Intellectual Property I, L.P. | Apparatus and methods for sensing rainfall |
US9948333B2 (en) | 2015-07-23 | 2018-04-17 | At&T Intellectual Property I, L.P. | Method and apparatus for wireless communications to mitigate interference |
US9948354B2 (en) | 2015-04-28 | 2018-04-17 | At&T Intellectual Property I, L.P. | Magnetic coupling device with reflective plate and methods for use therewith |
US9954287B2 (en) | 2014-11-20 | 2018-04-24 | At&T Intellectual Property I, L.P. | Apparatus for converting wireless signals and electromagnetic waves and methods thereof |
US9967173B2 (en) | 2015-07-31 | 2018-05-08 | At&T Intellectual Property I, L.P. | Method and apparatus for authentication and identity management of communicating devices |
US9973940B1 (en) | 2017-02-27 | 2018-05-15 | At&T Intellectual Property I, L.P. | Apparatus and methods for dynamic impedance matching of a guided wave launcher |
US9991580B2 (en) | 2016-10-21 | 2018-06-05 | At&T Intellectual Property I, L.P. | Launcher and coupling system for guided wave mode cancellation |
US9999038B2 (en) | 2013-05-31 | 2018-06-12 | At&T Intellectual Property I, L.P. | Remote distributed antenna system |
US9998870B1 (en) | 2016-12-08 | 2018-06-12 | At&T Intellectual Property I, L.P. | Method and apparatus for proximity sensing |
US9997819B2 (en) | 2015-06-09 | 2018-06-12 | At&T Intellectual Property I, L.P. | Transmission medium and method for facilitating propagation of electromagnetic waves via a core |
US10009065B2 (en) | 2012-12-05 | 2018-06-26 | At&T Intellectual Property I, L.P. | Backhaul link for distributed antenna system |
US10009063B2 (en) | 2015-09-16 | 2018-06-26 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal |
US10009067B2 (en) | 2014-12-04 | 2018-06-26 | At&T Intellectual Property I, L.P. | Method and apparatus for configuring a communication interface |
US10009901B2 (en) | 2015-09-16 | 2018-06-26 | At&T Intellectual Property I, L.P. | Method, apparatus, and computer-readable storage medium for managing utilization of wireless resources between base stations |
US10020587B2 (en) | 2015-07-31 | 2018-07-10 | At&T Intellectual Property I, L.P. | Radial antenna and methods for use therewith |
US10020844B2 (en) | 2016-12-06 | 2018-07-10 | T&T Intellectual Property I, L.P. | Method and apparatus for broadcast communication via guided waves |
US10027397B2 (en) | 2016-12-07 | 2018-07-17 | At&T Intellectual Property I, L.P. | Distributed antenna system and methods for use therewith |
US10033107B2 (en) | 2015-07-14 | 2018-07-24 | At&T Intellectual Property I, L.P. | Method and apparatus for coupling an antenna to a device |
US10033108B2 (en) | 2015-07-14 | 2018-07-24 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference |
US10044409B2 (en) | 2015-07-14 | 2018-08-07 | At&T Intellectual Property I, L.P. | Transmission medium and methods for use therewith |
US10051483B2 (en) | 2015-10-16 | 2018-08-14 | At&T Intellectual Property I, L.P. | Method and apparatus for directing wireless signals |
US10051629B2 (en) | 2015-09-16 | 2018-08-14 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having an in-band reference signal |
US10069535B2 (en) | 2016-12-08 | 2018-09-04 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching electromagnetic waves having a certain electric field structure |
US10074890B2 (en) | 2015-10-02 | 2018-09-11 | At&T Intellectual Property I, L.P. | Communication device and antenna with integrated light assembly |
US10079661B2 (en) | 2015-09-16 | 2018-09-18 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having a clock reference |
US10090606B2 (en) | 2015-07-15 | 2018-10-02 | At&T Intellectual Property I, L.P. | Antenna system with dielectric array and methods for use therewith |
US10090594B2 (en) | 2016-11-23 | 2018-10-02 | At&T Intellectual Property I, L.P. | Antenna system having structural configurations for assembly |
US10103422B2 (en) | 2016-12-08 | 2018-10-16 | At&T Intellectual Property I, L.P. | Method and apparatus for mounting network devices |
US10103801B2 (en) | 2015-06-03 | 2018-10-16 | At&T Intellectual Property I, L.P. | Host node device and methods for use therewith |
US10136434B2 (en) | 2015-09-16 | 2018-11-20 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel |
US10135146B2 (en) | 2016-10-18 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via circuits |
US10135145B2 (en) | 2016-12-06 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating an electromagnetic wave along a transmission medium |
US10135147B2 (en) | 2016-10-18 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via an antenna |
US10139820B2 (en) | 2016-12-07 | 2018-11-27 | At&T Intellectual Property I, L.P. | Method and apparatus for deploying equipment of a communication system |
US10142086B2 (en) | 2015-06-11 | 2018-11-27 | At&T Intellectual Property I, L.P. | Repeater and methods for use therewith |
US10144036B2 (en) | 2015-01-30 | 2018-12-04 | At&T Intellectual Property I, L.P. | Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium |
US10148016B2 (en) | 2015-07-14 | 2018-12-04 | At&T Intellectual Property I, L.P. | Apparatus and methods for communicating utilizing an antenna array |
US10154493B2 (en) | 2015-06-03 | 2018-12-11 | At&T Intellectual Property I, L.P. | Network termination and methods for use therewith |
US10170840B2 (en) | 2015-07-14 | 2019-01-01 | At&T Intellectual Property I, L.P. | Apparatus and methods for sending or receiving electromagnetic signals |
US10168695B2 (en) | 2016-12-07 | 2019-01-01 | At&T Intellectual Property I, L.P. | Method and apparatus for controlling an unmanned aircraft |
US10178445B2 (en) | 2016-11-23 | 2019-01-08 | At&T Intellectual Property I, L.P. | Methods, devices, and systems for load balancing between a plurality of waveguides |
US10205655B2 (en) | 2015-07-14 | 2019-02-12 | At&T Intellectual Property I, L.P. | Apparatus and methods for communicating utilizing an antenna array and multiple communication paths |
US10224634B2 (en) | 2016-11-03 | 2019-03-05 | At&T Intellectual Property I, L.P. | Methods and apparatus for adjusting an operational characteristic of an antenna |
US10225025B2 (en) | 2016-11-03 | 2019-03-05 | At&T Intellectual Property I, L.P. | Method and apparatus for detecting a fault in a communication system |
US10243784B2 (en) | 2014-11-20 | 2019-03-26 | At&T Intellectual Property I, L.P. | System for generating topology information and methods thereof |
US10243270B2 (en) | 2016-12-07 | 2019-03-26 | At&T Intellectual Property I, L.P. | Beam adaptive multi-feed dielectric antenna system and methods for use therewith |
US10264586B2 (en) | 2016-12-09 | 2019-04-16 | At&T Mobility Ii Llc | Cloud-based packet controller and methods for use therewith |
US10291311B2 (en) | 2016-09-09 | 2019-05-14 | At&T Intellectual Property I, L.P. | Method and apparatus for mitigating a fault in a distributed antenna system |
US10291334B2 (en) | 2016-11-03 | 2019-05-14 | At&T Intellectual Property I, L.P. | System for detecting a fault in a communication system |
US10298293B2 (en) | 2017-03-13 | 2019-05-21 | At&T Intellectual Property I, L.P. | Apparatus of communication utilizing wireless network devices |
US10305190B2 (en) | 2016-12-01 | 2019-05-28 | At&T Intellectual Property I, L.P. | Reflecting dielectric antenna system and methods for use therewith |
US10312567B2 (en) | 2016-10-26 | 2019-06-04 | At&T Intellectual Property I, L.P. | Launcher with planar strip antenna and methods for use therewith |
US10320586B2 (en) | 2015-07-14 | 2019-06-11 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium |
US10326494B2 (en) | 2016-12-06 | 2019-06-18 | At&T Intellectual Property I, L.P. | Apparatus for measurement de-embedding and methods for use therewith |
US10326689B2 (en) | 2016-12-08 | 2019-06-18 | At&T Intellectual Property I, L.P. | Method and system for providing alternative communication paths |
US10340573B2 (en) | 2016-10-26 | 2019-07-02 | At&T Intellectual Property I, L.P. | Launcher with cylindrical coupling device and methods for use therewith |
US10340600B2 (en) | 2016-10-18 | 2019-07-02 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via plural waveguide systems |
US10340601B2 (en) | 2016-11-23 | 2019-07-02 | At&T Intellectual Property I, L.P. | Multi-antenna system and methods for use therewith |
US10340983B2 (en) | 2016-12-09 | 2019-07-02 | At&T Intellectual Property I, L.P. | Method and apparatus for surveying remote sites via guided wave communications |
US10340603B2 (en) | 2016-11-23 | 2019-07-02 | At&T Intellectual Property I, L.P. | Antenna system having shielded structural configurations for assembly |
US10341142B2 (en) | 2015-07-14 | 2019-07-02 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor |
US10348391B2 (en) | 2015-06-03 | 2019-07-09 | At&T Intellectual Property I, L.P. | Client node device with frequency conversion and methods for use therewith |
US10355367B2 (en) | 2015-10-16 | 2019-07-16 | At&T Intellectual Property I, L.P. | Antenna structure for exchanging wireless signals |
US10361489B2 (en) | 2016-12-01 | 2019-07-23 | At&T Intellectual Property I, L.P. | Dielectric dish antenna system and methods for use therewith |
US10359749B2 (en) | 2016-12-07 | 2019-07-23 | At&T Intellectual Property I, L.P. | Method and apparatus for utilities management via guided wave communication |
US10374316B2 (en) | 2016-10-21 | 2019-08-06 | At&T Intellectual Property I, L.P. | System and dielectric antenna with non-uniform dielectric |
US10382976B2 (en) | 2016-12-06 | 2019-08-13 | At&T Intellectual Property I, L.P. | Method and apparatus for managing wireless communications based on communication paths and network device positions |
US10389029B2 (en) | 2016-12-07 | 2019-08-20 | At&T Intellectual Property I, L.P. | Multi-feed dielectric antenna system with core selection and methods for use therewith |
US10389037B2 (en) | 2016-12-08 | 2019-08-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for selecting sections of an antenna array and use therewith |
US10396887B2 (en) | 2015-06-03 | 2019-08-27 | At&T Intellectual Property I, L.P. | Client node device and methods for use therewith |
US10411356B2 (en) | 2016-12-08 | 2019-09-10 | At&T Intellectual Property I, L.P. | Apparatus and methods for selectively targeting communication devices with an antenna array |
US10439675B2 (en) | 2016-12-06 | 2019-10-08 | At&T Intellectual Property I, L.P. | Method and apparatus for repeating guided wave communication signals |
US10446936B2 (en) | 2016-12-07 | 2019-10-15 | At&T Intellectual Property I, L.P. | Multi-feed dielectric antenna system and methods for use therewith |
US10498044B2 (en) | 2016-11-03 | 2019-12-03 | At&T Intellectual Property I, L.P. | Apparatus for configuring a surface of an antenna |
US10530505B2 (en) | 2016-12-08 | 2020-01-07 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching electromagnetic waves along a transmission medium |
US10535928B2 (en) | 2016-11-23 | 2020-01-14 | At&T Intellectual Property I, L.P. | Antenna system and methods for use therewith |
US10547348B2 (en) | 2016-12-07 | 2020-01-28 | At&T Intellectual Property I, L.P. | Method and apparatus for switching transmission mediums in a communication system |
US10601494B2 (en) | 2016-12-08 | 2020-03-24 | At&T Intellectual Property I, L.P. | Dual-band communication device and method for use therewith |
US10637149B2 (en) | 2016-12-06 | 2020-04-28 | At&T Intellectual Property I, L.P. | Injection molded dielectric antenna and methods for use therewith |
US10650940B2 (en) | 2015-05-15 | 2020-05-12 | At&T Intellectual Property I, L.P. | Transmission medium having a conductive material and methods for use therewith |
US10665942B2 (en) | 2015-10-16 | 2020-05-26 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting wireless communications |
US10679767B2 (en) | 2015-05-15 | 2020-06-09 | At&T Intellectual Property I, L.P. | Transmission medium having a conductive material and methods for use therewith |
US10694379B2 (en) | 2016-12-06 | 2020-06-23 | At&T Intellectual Property I, L.P. | Waveguide system with device-based authentication and methods for use therewith |
US10727599B2 (en) | 2016-12-06 | 2020-07-28 | At&T Intellectual Property I, L.P. | Launcher with slot antenna and methods for use therewith |
US10755542B2 (en) | 2016-12-06 | 2020-08-25 | At&T Intellectual Property I, L.P. | Method and apparatus for surveillance via guided wave communication |
US10777873B2 (en) | 2016-12-08 | 2020-09-15 | At&T Intellectual Property I, L.P. | Method and apparatus for mounting network devices |
US10784670B2 (en) | 2015-07-23 | 2020-09-22 | At&T Intellectual Property I, L.P. | Antenna support for aligning an antenna |
US10811767B2 (en) | 2016-10-21 | 2020-10-20 | At&T Intellectual Property I, L.P. | System and dielectric antenna with convex dielectric radome |
US10819035B2 (en) | 2016-12-06 | 2020-10-27 | At&T Intellectual Property I, L.P. | Launcher with helical antenna and methods for use therewith |
US10916969B2 (en) | 2016-12-08 | 2021-02-09 | At&T Intellectual Property I, L.P. | Method and apparatus for providing power using an inductive coupling |
US10938108B2 (en) | 2016-12-08 | 2021-03-02 | At&T Intellectual Property I, L.P. | Frequency selective multi-feed dielectric antenna system and methods for use therewith |
US11032819B2 (en) | 2016-09-15 | 2021-06-08 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having a control channel reference signal |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3238527A (en) * | 1962-11-28 | 1966-03-01 | Gottfried F Vogt | Steerable antenna array |
US3238528A (en) * | 1963-02-19 | 1966-03-01 | Microwave Ass | Electric wave phase control systems |
US3460140A (en) * | 1967-06-29 | 1969-08-05 | Texas Instruments Inc | Conopulse radar |
US3600701A (en) * | 1968-03-14 | 1971-08-17 | Gen Electric | Signal generator for producing a set of signals at baseband frequency and with adjustable phase slope |
US3643075A (en) * | 1970-12-02 | 1972-02-15 | Texas Instruments Inc | Digital simulation |
US3697995A (en) * | 1967-11-20 | 1972-10-10 | Ryan Aeronautical Co | Increased power electronically scanning integrated antenna system |
US3701156A (en) * | 1969-08-18 | 1972-10-24 | Ryan Aeronautical Co | Antenna array beam scanning system |
-
1971
- 1971-10-26 US US00192410A patent/US3806931A/en not_active Expired - Lifetime
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3238527A (en) * | 1962-11-28 | 1966-03-01 | Gottfried F Vogt | Steerable antenna array |
US3238528A (en) * | 1963-02-19 | 1966-03-01 | Microwave Ass | Electric wave phase control systems |
US3460140A (en) * | 1967-06-29 | 1969-08-05 | Texas Instruments Inc | Conopulse radar |
US3697995A (en) * | 1967-11-20 | 1972-10-10 | Ryan Aeronautical Co | Increased power electronically scanning integrated antenna system |
US3600701A (en) * | 1968-03-14 | 1971-08-17 | Gen Electric | Signal generator for producing a set of signals at baseband frequency and with adjustable phase slope |
US3701156A (en) * | 1969-08-18 | 1972-10-24 | Ryan Aeronautical Co | Antenna array beam scanning system |
US3643075A (en) * | 1970-12-02 | 1972-02-15 | Texas Instruments Inc | Digital simulation |
Cited By (227)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2597268A1 (en) * | 1986-04-11 | 1987-10-16 | Centre Nat Rech Scient | METHOD AND DEVICE FOR FOCUSING, ON A POINT TO EXAMINE, ANTENNAS OF A NETWORK |
US4870423A (en) * | 1986-04-11 | 1989-09-26 | Centre National De La Recherche Scientifique French Public Establishment | Method and device for focusing, on one point to be examined, the antennae of an antenna array |
EP0241380A1 (en) * | 1986-04-11 | 1987-10-14 | Centre National De La Recherche Scientifique (Cnrs) | Method and device for focusing an antenna array at a test point |
GB2253744A (en) * | 1991-03-12 | 1992-09-16 | Siemens Plessey Electronic | Scanning electromagnetic beam systems |
GB2253744B (en) * | 1991-03-12 | 1994-11-23 | Siemens Plessey Electronic | Improvements in or relating to scanning electromagnetic beam systems |
US20120139787A1 (en) * | 2010-12-04 | 2012-06-07 | Chian Chiu Li | Beam Steering And Manipulating Apparatus And Method |
US9660339B2 (en) * | 2010-12-04 | 2017-05-23 | Chian Chiu Li | Beam steering and manipulating apparatus and method |
US20170205683A1 (en) * | 2011-12-02 | 2017-07-20 | Chian Chiu Li | Beam Steering And Manipulating Apparatus And Method |
US10601131B2 (en) * | 2011-12-02 | 2020-03-24 | Chian Chiu Li | Beam steering and manipulating apparatus and method |
US20130307763A1 (en) * | 2012-05-21 | 2013-11-21 | Amplifier Research Corporation | Field analyzer |
US9699785B2 (en) | 2012-12-05 | 2017-07-04 | At&T Intellectual Property I, L.P. | Backhaul link for distributed antenna system |
US9788326B2 (en) | 2012-12-05 | 2017-10-10 | At&T Intellectual Property I, L.P. | Backhaul link for distributed antenna system |
US10194437B2 (en) | 2012-12-05 | 2019-01-29 | At&T Intellectual Property I, L.P. | Backhaul link for distributed antenna system |
US10009065B2 (en) | 2012-12-05 | 2018-06-26 | At&T Intellectual Property I, L.P. | Backhaul link for distributed antenna system |
US9999038B2 (en) | 2013-05-31 | 2018-06-12 | At&T Intellectual Property I, L.P. | Remote distributed antenna system |
US10051630B2 (en) | 2013-05-31 | 2018-08-14 | At&T Intellectual Property I, L.P. | Remote distributed antenna system |
US9930668B2 (en) | 2013-05-31 | 2018-03-27 | At&T Intellectual Property I, L.P. | Remote distributed antenna system |
US10091787B2 (en) | 2013-05-31 | 2018-10-02 | At&T Intellectual Property I, L.P. | Remote distributed antenna system |
US9525524B2 (en) | 2013-05-31 | 2016-12-20 | At&T Intellectual Property I, L.P. | Remote distributed antenna system |
US9674711B2 (en) | 2013-11-06 | 2017-06-06 | At&T Intellectual Property I, L.P. | Surface-wave communications and methods thereof |
US9661505B2 (en) | 2013-11-06 | 2017-05-23 | At&T Intellectual Property I, L.P. | Surface-wave communications and methods thereof |
US9467870B2 (en) | 2013-11-06 | 2016-10-11 | At&T Intellectual Property I, L.P. | Surface-wave communications and methods thereof |
US9794003B2 (en) | 2013-12-10 | 2017-10-17 | At&T Intellectual Property I, L.P. | Quasi-optical coupler |
US9876584B2 (en) | 2013-12-10 | 2018-01-23 | At&T Intellectual Property I, L.P. | Quasi-optical coupler |
US9479266B2 (en) | 2013-12-10 | 2016-10-25 | At&T Intellectual Property I, L.P. | Quasi-optical coupler |
WO2015162569A1 (en) * | 2014-04-25 | 2015-10-29 | Andries Petrus Cronje Fourie | Data transmission system and method utilizing radiation pattern manipulation |
US10096881B2 (en) | 2014-08-26 | 2018-10-09 | At&T Intellectual Property I, L.P. | Guided wave couplers for coupling electromagnetic waves to an outer surface of a transmission medium |
US9692101B2 (en) | 2014-08-26 | 2017-06-27 | At&T Intellectual Property I, L.P. | Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire |
US9768833B2 (en) | 2014-09-15 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves |
US9755697B2 (en) | 2014-09-15 | 2017-09-05 | At&T Intellectual Property I, L.P. | Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves |
US9906269B2 (en) | 2014-09-17 | 2018-02-27 | At&T Intellectual Property I, L.P. | Monitoring and mitigating conditions in a communication network |
US10063280B2 (en) | 2014-09-17 | 2018-08-28 | At&T Intellectual Property I, L.P. | Monitoring and mitigating conditions in a communication network |
US9628854B2 (en) | 2014-09-29 | 2017-04-18 | At&T Intellectual Property I, L.P. | Method and apparatus for distributing content in a communication network |
US9973416B2 (en) | 2014-10-02 | 2018-05-15 | At&T Intellectual Property I, L.P. | Method and apparatus that provides fault tolerance in a communication network |
US9998932B2 (en) | 2014-10-02 | 2018-06-12 | At&T Intellectual Property I, L.P. | Method and apparatus that provides fault tolerance in a communication network |
US9615269B2 (en) | 2014-10-02 | 2017-04-04 | At&T Intellectual Property I, L.P. | Method and apparatus that provides fault tolerance in a communication network |
US9685992B2 (en) | 2014-10-03 | 2017-06-20 | At&T Intellectual Property I, L.P. | Circuit panel network and methods thereof |
US9503189B2 (en) | 2014-10-10 | 2016-11-22 | At&T Intellectual Property I, L.P. | Method and apparatus for arranging communication sessions in a communication system |
US9866276B2 (en) | 2014-10-10 | 2018-01-09 | At&T Intellectual Property I, L.P. | Method and apparatus for arranging communication sessions in a communication system |
US9973299B2 (en) | 2014-10-14 | 2018-05-15 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting a mode of communication in a communication network |
US9762289B2 (en) | 2014-10-14 | 2017-09-12 | At&T Intellectual Property I, L.P. | Method and apparatus for transmitting or receiving signals in a transportation system |
US9847850B2 (en) | 2014-10-14 | 2017-12-19 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting a mode of communication in a communication network |
US9571209B2 (en) | 2014-10-21 | 2017-02-14 | At&T Intellectual Property I, L.P. | Transmission device with impairment compensation and methods for use therewith |
US9948355B2 (en) | 2014-10-21 | 2018-04-17 | At&T Intellectual Property I, L.P. | Apparatus for providing communication services and methods thereof |
US9871558B2 (en) | 2014-10-21 | 2018-01-16 | At&T Intellectual Property I, L.P. | Guided-wave transmission device and methods for use therewith |
US9312919B1 (en) | 2014-10-21 | 2016-04-12 | At&T Intellectual Property I, Lp | Transmission device with impairment compensation and methods for use therewith |
US9876587B2 (en) | 2014-10-21 | 2018-01-23 | At&T Intellectual Property I, L.P. | Transmission device with impairment compensation and methods for use therewith |
US9912033B2 (en) | 2014-10-21 | 2018-03-06 | At&T Intellectual Property I, Lp | Guided wave coupler, coupling module and methods for use therewith |
US9520945B2 (en) | 2014-10-21 | 2016-12-13 | At&T Intellectual Property I, L.P. | Apparatus for providing communication services and methods thereof |
US9653770B2 (en) | 2014-10-21 | 2017-05-16 | At&T Intellectual Property I, L.P. | Guided wave coupler, coupling module and methods for use therewith |
US9705610B2 (en) | 2014-10-21 | 2017-07-11 | At&T Intellectual Property I, L.P. | Transmission device with impairment compensation and methods for use therewith |
US9525210B2 (en) | 2014-10-21 | 2016-12-20 | At&T Intellectual Property I, L.P. | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
US9954286B2 (en) | 2014-10-21 | 2018-04-24 | At&T Intellectual Property I, L.P. | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
US9627768B2 (en) | 2014-10-21 | 2017-04-18 | At&T Intellectual Property I, L.P. | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
US9960808B2 (en) | 2014-10-21 | 2018-05-01 | At&T Intellectual Property I, L.P. | Guided-wave transmission device and methods for use therewith |
US9780834B2 (en) | 2014-10-21 | 2017-10-03 | At&T Intellectual Property I, L.P. | Method and apparatus for transmitting electromagnetic waves |
US9596001B2 (en) | 2014-10-21 | 2017-03-14 | At&T Intellectual Property I, L.P. | Apparatus for providing communication services and methods thereof |
US9577306B2 (en) | 2014-10-21 | 2017-02-21 | At&T Intellectual Property I, L.P. | Guided-wave transmission device and methods for use therewith |
US9577307B2 (en) | 2014-10-21 | 2017-02-21 | At&T Intellectual Property I, L.P. | Guided-wave transmission device and methods for use therewith |
US9769020B2 (en) | 2014-10-21 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for responding to events affecting communications in a communication network |
US9564947B2 (en) | 2014-10-21 | 2017-02-07 | At&T Intellectual Property I, L.P. | Guided-wave transmission device with diversity and methods for use therewith |
US9654173B2 (en) | 2014-11-20 | 2017-05-16 | At&T Intellectual Property I, L.P. | Apparatus for powering a communication device and methods thereof |
US10243784B2 (en) | 2014-11-20 | 2019-03-26 | At&T Intellectual Property I, L.P. | System for generating topology information and methods thereof |
US9544006B2 (en) | 2014-11-20 | 2017-01-10 | At&T Intellectual Property I, L.P. | Transmission device with mode division multiplexing and methods for use therewith |
US9531427B2 (en) | 2014-11-20 | 2016-12-27 | At&T Intellectual Property I, L.P. | Transmission device with mode division multiplexing and methods for use therewith |
US9954287B2 (en) | 2014-11-20 | 2018-04-24 | At&T Intellectual Property I, L.P. | Apparatus for converting wireless signals and electromagnetic waves and methods thereof |
US9712350B2 (en) | 2014-11-20 | 2017-07-18 | At&T Intellectual Property I, L.P. | Transmission device with channel equalization and control and methods for use therewith |
US9749083B2 (en) | 2014-11-20 | 2017-08-29 | At&T Intellectual Property I, L.P. | Transmission device with mode division multiplexing and methods for use therewith |
US9800327B2 (en) | 2014-11-20 | 2017-10-24 | At&T Intellectual Property I, L.P. | Apparatus for controlling operations of a communication device and methods thereof |
US9680670B2 (en) | 2014-11-20 | 2017-06-13 | At&T Intellectual Property I, L.P. | Transmission device with channel equalization and control and methods for use therewith |
US9742521B2 (en) | 2014-11-20 | 2017-08-22 | At&T Intellectual Property I, L.P. | Transmission device with mode division multiplexing and methods for use therewith |
US9742462B2 (en) | 2014-12-04 | 2017-08-22 | At&T Intellectual Property I, L.P. | Transmission medium and communication interfaces and methods for use therewith |
US10009067B2 (en) | 2014-12-04 | 2018-06-26 | At&T Intellectual Property I, L.P. | Method and apparatus for configuring a communication interface |
US10144036B2 (en) | 2015-01-30 | 2018-12-04 | At&T Intellectual Property I, L.P. | Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium |
US9876571B2 (en) | 2015-02-20 | 2018-01-23 | At&T Intellectual Property I, Lp | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
US9876570B2 (en) | 2015-02-20 | 2018-01-23 | At&T Intellectual Property I, Lp | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
US9749013B2 (en) | 2015-03-17 | 2017-08-29 | At&T Intellectual Property I, L.P. | Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium |
US9793955B2 (en) | 2015-04-24 | 2017-10-17 | At&T Intellectual Property I, Lp | Passive electrical coupling device and methods for use therewith |
US10224981B2 (en) | 2015-04-24 | 2019-03-05 | At&T Intellectual Property I, Lp | Passive electrical coupling device and methods for use therewith |
US9831912B2 (en) | 2015-04-24 | 2017-11-28 | At&T Intellectual Property I, Lp | Directional coupling device and methods for use therewith |
US9705561B2 (en) | 2015-04-24 | 2017-07-11 | At&T Intellectual Property I, L.P. | Directional coupling device and methods for use therewith |
US9948354B2 (en) | 2015-04-28 | 2018-04-17 | At&T Intellectual Property I, L.P. | Magnetic coupling device with reflective plate and methods for use therewith |
US9793954B2 (en) | 2015-04-28 | 2017-10-17 | At&T Intellectual Property I, L.P. | Magnetic coupling device and methods for use therewith |
US9490869B1 (en) | 2015-05-14 | 2016-11-08 | At&T Intellectual Property I, L.P. | Transmission medium having multiple cores and methods for use therewith |
US9871282B2 (en) | 2015-05-14 | 2018-01-16 | At&T Intellectual Property I, L.P. | At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric |
US9748626B2 (en) | 2015-05-14 | 2017-08-29 | At&T Intellectual Property I, L.P. | Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium |
US9887447B2 (en) | 2015-05-14 | 2018-02-06 | At&T Intellectual Property I, L.P. | Transmission medium having multiple cores and methods for use therewith |
US10679767B2 (en) | 2015-05-15 | 2020-06-09 | At&T Intellectual Property I, L.P. | Transmission medium having a conductive material and methods for use therewith |
US10650940B2 (en) | 2015-05-15 | 2020-05-12 | At&T Intellectual Property I, L.P. | Transmission medium having a conductive material and methods for use therewith |
US9917341B2 (en) | 2015-05-27 | 2018-03-13 | At&T Intellectual Property I, L.P. | Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves |
US10050697B2 (en) | 2015-06-03 | 2018-08-14 | At&T Intellectual Property I, L.P. | Host node device and methods for use therewith |
US10154493B2 (en) | 2015-06-03 | 2018-12-11 | At&T Intellectual Property I, L.P. | Network termination and methods for use therewith |
US9912382B2 (en) | 2015-06-03 | 2018-03-06 | At&T Intellectual Property I, Lp | Network termination and methods for use therewith |
US9935703B2 (en) | 2015-06-03 | 2018-04-03 | At&T Intellectual Property I, L.P. | Host node device and methods for use therewith |
US10103801B2 (en) | 2015-06-03 | 2018-10-16 | At&T Intellectual Property I, L.P. | Host node device and methods for use therewith |
US10797781B2 (en) | 2015-06-03 | 2020-10-06 | At&T Intellectual Property I, L.P. | Client node device and methods for use therewith |
US10812174B2 (en) | 2015-06-03 | 2020-10-20 | At&T Intellectual Property I, L.P. | Client node device and methods for use therewith |
US10348391B2 (en) | 2015-06-03 | 2019-07-09 | At&T Intellectual Property I, L.P. | Client node device with frequency conversion and methods for use therewith |
US9967002B2 (en) | 2015-06-03 | 2018-05-08 | At&T Intellectual I, Lp | Network termination and methods for use therewith |
US10396887B2 (en) | 2015-06-03 | 2019-08-27 | At&T Intellectual Property I, L.P. | Client node device and methods for use therewith |
US9866309B2 (en) | 2015-06-03 | 2018-01-09 | At&T Intellectual Property I, Lp | Host node device and methods for use therewith |
US9912381B2 (en) | 2015-06-03 | 2018-03-06 | At&T Intellectual Property I, Lp | Network termination and methods for use therewith |
US9913139B2 (en) | 2015-06-09 | 2018-03-06 | At&T Intellectual Property I, L.P. | Signal fingerprinting for authentication of communicating devices |
US9997819B2 (en) | 2015-06-09 | 2018-06-12 | At&T Intellectual Property I, L.P. | Transmission medium and method for facilitating propagation of electromagnetic waves via a core |
US9608692B2 (en) | 2015-06-11 | 2017-03-28 | At&T Intellectual Property I, L.P. | Repeater and methods for use therewith |
US10027398B2 (en) | 2015-06-11 | 2018-07-17 | At&T Intellectual Property I, Lp | Repeater and methods for use therewith |
US10142010B2 (en) | 2015-06-11 | 2018-11-27 | At&T Intellectual Property I, L.P. | Repeater and methods for use therewith |
US10142086B2 (en) | 2015-06-11 | 2018-11-27 | At&T Intellectual Property I, L.P. | Repeater and methods for use therewith |
US9820146B2 (en) | 2015-06-12 | 2017-11-14 | At&T Intellectual Property I, L.P. | Method and apparatus for authentication and identity management of communicating devices |
US9667317B2 (en) | 2015-06-15 | 2017-05-30 | At&T Intellectual Property I, L.P. | Method and apparatus for providing security using network traffic adjustments |
US10090601B2 (en) | 2015-06-25 | 2018-10-02 | At&T Intellectual Property I, L.P. | Waveguide system and methods for inducing a non-fundamental wave mode on a transmission medium |
US9882657B2 (en) | 2015-06-25 | 2018-01-30 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing a fundamental wave mode on a transmission medium |
US10069185B2 (en) | 2015-06-25 | 2018-09-04 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium |
US9509415B1 (en) | 2015-06-25 | 2016-11-29 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing a fundamental wave mode on a transmission medium |
US9640850B2 (en) | 2015-06-25 | 2017-05-02 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium |
US9865911B2 (en) | 2015-06-25 | 2018-01-09 | At&T Intellectual Property I, L.P. | Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium |
US9787412B2 (en) | 2015-06-25 | 2017-10-10 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing a fundamental wave mode on a transmission medium |
US9722318B2 (en) | 2015-07-14 | 2017-08-01 | At&T Intellectual Property I, L.P. | Method and apparatus for coupling an antenna to a device |
US10148016B2 (en) | 2015-07-14 | 2018-12-04 | At&T Intellectual Property I, L.P. | Apparatus and methods for communicating utilizing an antenna array |
US10320586B2 (en) | 2015-07-14 | 2019-06-11 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium |
US9628116B2 (en) | 2015-07-14 | 2017-04-18 | At&T Intellectual Property I, L.P. | Apparatus and methods for transmitting wireless signals |
US9853342B2 (en) | 2015-07-14 | 2017-12-26 | At&T Intellectual Property I, L.P. | Dielectric transmission medium connector and methods for use therewith |
US9847566B2 (en) | 2015-07-14 | 2017-12-19 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting a field of a signal to mitigate interference |
US9882257B2 (en) | 2015-07-14 | 2018-01-30 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
US10205655B2 (en) | 2015-07-14 | 2019-02-12 | At&T Intellectual Property I, L.P. | Apparatus and methods for communicating utilizing an antenna array and multiple communication paths |
US9947982B2 (en) | 2015-07-14 | 2018-04-17 | At&T Intellectual Property I, Lp | Dielectric transmission medium connector and methods for use therewith |
US9836957B2 (en) | 2015-07-14 | 2017-12-05 | At&T Intellectual Property I, L.P. | Method and apparatus for communicating with premises equipment |
US10044409B2 (en) | 2015-07-14 | 2018-08-07 | At&T Intellectual Property I, L.P. | Transmission medium and methods for use therewith |
US10170840B2 (en) | 2015-07-14 | 2019-01-01 | At&T Intellectual Property I, L.P. | Apparatus and methods for sending or receiving electromagnetic signals |
US10341142B2 (en) | 2015-07-14 | 2019-07-02 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor |
US9929755B2 (en) | 2015-07-14 | 2018-03-27 | At&T Intellectual Property I, L.P. | Method and apparatus for coupling an antenna to a device |
US10033108B2 (en) | 2015-07-14 | 2018-07-24 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference |
US10033107B2 (en) | 2015-07-14 | 2018-07-24 | At&T Intellectual Property I, L.P. | Method and apparatus for coupling an antenna to a device |
US9608740B2 (en) | 2015-07-15 | 2017-03-28 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
US10090606B2 (en) | 2015-07-15 | 2018-10-02 | At&T Intellectual Property I, L.P. | Antenna system with dielectric array and methods for use therewith |
US9793951B2 (en) | 2015-07-15 | 2017-10-17 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
US9948333B2 (en) | 2015-07-23 | 2018-04-17 | At&T Intellectual Property I, L.P. | Method and apparatus for wireless communications to mitigate interference |
US9806818B2 (en) | 2015-07-23 | 2017-10-31 | At&T Intellectual Property I, Lp | Node device, repeater and methods for use therewith |
US10784670B2 (en) | 2015-07-23 | 2020-09-22 | At&T Intellectual Property I, L.P. | Antenna support for aligning an antenna |
US9749053B2 (en) | 2015-07-23 | 2017-08-29 | At&T Intellectual Property I, L.P. | Node device, repeater and methods for use therewith |
US10074886B2 (en) | 2015-07-23 | 2018-09-11 | At&T Intellectual Property I, L.P. | Dielectric transmission medium comprising a plurality of rigid dielectric members coupled together in a ball and socket configuration |
US9871283B2 (en) | 2015-07-23 | 2018-01-16 | At&T Intellectual Property I, Lp | Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration |
US9912027B2 (en) | 2015-07-23 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for exchanging communication signals |
US10020587B2 (en) | 2015-07-31 | 2018-07-10 | At&T Intellectual Property I, L.P. | Radial antenna and methods for use therewith |
US9735833B2 (en) | 2015-07-31 | 2017-08-15 | At&T Intellectual Property I, L.P. | Method and apparatus for communications management in a neighborhood network |
US9461706B1 (en) | 2015-07-31 | 2016-10-04 | At&T Intellectual Property I, Lp | Method and apparatus for exchanging communication signals |
US9838078B2 (en) | 2015-07-31 | 2017-12-05 | At&T Intellectual Property I, L.P. | Method and apparatus for exchanging communication signals |
US9967173B2 (en) | 2015-07-31 | 2018-05-08 | At&T Intellectual Property I, L.P. | Method and apparatus for authentication and identity management of communicating devices |
US9904535B2 (en) | 2015-09-14 | 2018-02-27 | At&T Intellectual Property I, L.P. | Method and apparatus for distributing software |
US10136434B2 (en) | 2015-09-16 | 2018-11-20 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel |
US9705571B2 (en) | 2015-09-16 | 2017-07-11 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system |
US10079661B2 (en) | 2015-09-16 | 2018-09-18 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having a clock reference |
US10009063B2 (en) | 2015-09-16 | 2018-06-26 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal |
US10349418B2 (en) | 2015-09-16 | 2019-07-09 | At&T Intellectual Property I, L.P. | Method and apparatus for managing utilization of wireless resources via use of a reference signal to reduce distortion |
US10051629B2 (en) | 2015-09-16 | 2018-08-14 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having an in-band reference signal |
US10009901B2 (en) | 2015-09-16 | 2018-06-26 | At&T Intellectual Property I, L.P. | Method, apparatus, and computer-readable storage medium for managing utilization of wireless resources between base stations |
US10225842B2 (en) | 2015-09-16 | 2019-03-05 | At&T Intellectual Property I, L.P. | Method, device and storage medium for communications using a modulated signal and a reference signal |
US9769128B2 (en) | 2015-09-28 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for encryption of communications over a network |
US9729197B2 (en) | 2015-10-01 | 2017-08-08 | At&T Intellectual Property I, L.P. | Method and apparatus for communicating network management traffic over a network |
US9876264B2 (en) | 2015-10-02 | 2018-01-23 | At&T Intellectual Property I, Lp | Communication system, guided wave switch and methods for use therewith |
US9882277B2 (en) | 2015-10-02 | 2018-01-30 | At&T Intellectual Property I, Lp | Communication device and antenna assembly with actuated gimbal mount |
US10074890B2 (en) | 2015-10-02 | 2018-09-11 | At&T Intellectual Property I, L.P. | Communication device and antenna with integrated light assembly |
US10051483B2 (en) | 2015-10-16 | 2018-08-14 | At&T Intellectual Property I, L.P. | Method and apparatus for directing wireless signals |
US10665942B2 (en) | 2015-10-16 | 2020-05-26 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting wireless communications |
US10743196B2 (en) | 2015-10-16 | 2020-08-11 | At&T Intellectual Property I, L.P. | Method and apparatus for directing wireless signals |
US10355367B2 (en) | 2015-10-16 | 2019-07-16 | At&T Intellectual Property I, L.P. | Antenna structure for exchanging wireless signals |
US9912419B1 (en) | 2016-08-24 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for managing a fault in a distributed antenna system |
US9860075B1 (en) | 2016-08-26 | 2018-01-02 | At&T Intellectual Property I, L.P. | Method and communication node for broadband distribution |
US10291311B2 (en) | 2016-09-09 | 2019-05-14 | At&T Intellectual Property I, L.P. | Method and apparatus for mitigating a fault in a distributed antenna system |
US11032819B2 (en) | 2016-09-15 | 2021-06-08 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having a control channel reference signal |
US10135146B2 (en) | 2016-10-18 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via circuits |
US10135147B2 (en) | 2016-10-18 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via an antenna |
US10340600B2 (en) | 2016-10-18 | 2019-07-02 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via plural waveguide systems |
US10811767B2 (en) | 2016-10-21 | 2020-10-20 | At&T Intellectual Property I, L.P. | System and dielectric antenna with convex dielectric radome |
US10374316B2 (en) | 2016-10-21 | 2019-08-06 | At&T Intellectual Property I, L.P. | System and dielectric antenna with non-uniform dielectric |
US9991580B2 (en) | 2016-10-21 | 2018-06-05 | At&T Intellectual Property I, L.P. | Launcher and coupling system for guided wave mode cancellation |
US9876605B1 (en) | 2016-10-21 | 2018-01-23 | At&T Intellectual Property I, L.P. | Launcher and coupling system to support desired guided wave mode |
US10340573B2 (en) | 2016-10-26 | 2019-07-02 | At&T Intellectual Property I, L.P. | Launcher with cylindrical coupling device and methods for use therewith |
US10312567B2 (en) | 2016-10-26 | 2019-06-04 | At&T Intellectual Property I, L.P. | Launcher with planar strip antenna and methods for use therewith |
US10225025B2 (en) | 2016-11-03 | 2019-03-05 | At&T Intellectual Property I, L.P. | Method and apparatus for detecting a fault in a communication system |
US10291334B2 (en) | 2016-11-03 | 2019-05-14 | At&T Intellectual Property I, L.P. | System for detecting a fault in a communication system |
US10224634B2 (en) | 2016-11-03 | 2019-03-05 | At&T Intellectual Property I, L.P. | Methods and apparatus for adjusting an operational characteristic of an antenna |
US10498044B2 (en) | 2016-11-03 | 2019-12-03 | At&T Intellectual Property I, L.P. | Apparatus for configuring a surface of an antenna |
US10340603B2 (en) | 2016-11-23 | 2019-07-02 | At&T Intellectual Property I, L.P. | Antenna system having shielded structural configurations for assembly |
US10178445B2 (en) | 2016-11-23 | 2019-01-08 | At&T Intellectual Property I, L.P. | Methods, devices, and systems for load balancing between a plurality of waveguides |
US10340601B2 (en) | 2016-11-23 | 2019-07-02 | At&T Intellectual Property I, L.P. | Multi-antenna system and methods for use therewith |
US10535928B2 (en) | 2016-11-23 | 2020-01-14 | At&T Intellectual Property I, L.P. | Antenna system and methods for use therewith |
US10090594B2 (en) | 2016-11-23 | 2018-10-02 | At&T Intellectual Property I, L.P. | Antenna system having structural configurations for assembly |
US10361489B2 (en) | 2016-12-01 | 2019-07-23 | At&T Intellectual Property I, L.P. | Dielectric dish antenna system and methods for use therewith |
US10305190B2 (en) | 2016-12-01 | 2019-05-28 | At&T Intellectual Property I, L.P. | Reflecting dielectric antenna system and methods for use therewith |
US10694379B2 (en) | 2016-12-06 | 2020-06-23 | At&T Intellectual Property I, L.P. | Waveguide system with device-based authentication and methods for use therewith |
US10439675B2 (en) | 2016-12-06 | 2019-10-08 | At&T Intellectual Property I, L.P. | Method and apparatus for repeating guided wave communication signals |
US10135145B2 (en) | 2016-12-06 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating an electromagnetic wave along a transmission medium |
US10755542B2 (en) | 2016-12-06 | 2020-08-25 | At&T Intellectual Property I, L.P. | Method and apparatus for surveillance via guided wave communication |
US9927517B1 (en) | 2016-12-06 | 2018-03-27 | At&T Intellectual Property I, L.P. | Apparatus and methods for sensing rainfall |
US10020844B2 (en) | 2016-12-06 | 2018-07-10 | T&T Intellectual Property I, L.P. | Method and apparatus for broadcast communication via guided waves |
US10727599B2 (en) | 2016-12-06 | 2020-07-28 | At&T Intellectual Property I, L.P. | Launcher with slot antenna and methods for use therewith |
US10382976B2 (en) | 2016-12-06 | 2019-08-13 | At&T Intellectual Property I, L.P. | Method and apparatus for managing wireless communications based on communication paths and network device positions |
US10326494B2 (en) | 2016-12-06 | 2019-06-18 | At&T Intellectual Property I, L.P. | Apparatus for measurement de-embedding and methods for use therewith |
US10637149B2 (en) | 2016-12-06 | 2020-04-28 | At&T Intellectual Property I, L.P. | Injection molded dielectric antenna and methods for use therewith |
US10819035B2 (en) | 2016-12-06 | 2020-10-27 | At&T Intellectual Property I, L.P. | Launcher with helical antenna and methods for use therewith |
US10389029B2 (en) | 2016-12-07 | 2019-08-20 | At&T Intellectual Property I, L.P. | Multi-feed dielectric antenna system with core selection and methods for use therewith |
US9893795B1 (en) | 2016-12-07 | 2018-02-13 | At&T Intellectual Property I, Lp | Method and repeater for broadband distribution |
US10446936B2 (en) | 2016-12-07 | 2019-10-15 | At&T Intellectual Property I, L.P. | Multi-feed dielectric antenna system and methods for use therewith |
US10139820B2 (en) | 2016-12-07 | 2018-11-27 | At&T Intellectual Property I, L.P. | Method and apparatus for deploying equipment of a communication system |
US10027397B2 (en) | 2016-12-07 | 2018-07-17 | At&T Intellectual Property I, L.P. | Distributed antenna system and methods for use therewith |
US10359749B2 (en) | 2016-12-07 | 2019-07-23 | At&T Intellectual Property I, L.P. | Method and apparatus for utilities management via guided wave communication |
US10547348B2 (en) | 2016-12-07 | 2020-01-28 | At&T Intellectual Property I, L.P. | Method and apparatus for switching transmission mediums in a communication system |
US10243270B2 (en) | 2016-12-07 | 2019-03-26 | At&T Intellectual Property I, L.P. | Beam adaptive multi-feed dielectric antenna system and methods for use therewith |
US10168695B2 (en) | 2016-12-07 | 2019-01-01 | At&T Intellectual Property I, L.P. | Method and apparatus for controlling an unmanned aircraft |
US10069535B2 (en) | 2016-12-08 | 2018-09-04 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching electromagnetic waves having a certain electric field structure |
US10389037B2 (en) | 2016-12-08 | 2019-08-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for selecting sections of an antenna array and use therewith |
US10411356B2 (en) | 2016-12-08 | 2019-09-10 | At&T Intellectual Property I, L.P. | Apparatus and methods for selectively targeting communication devices with an antenna array |
US10938108B2 (en) | 2016-12-08 | 2021-03-02 | At&T Intellectual Property I, L.P. | Frequency selective multi-feed dielectric antenna system and methods for use therewith |
US10326689B2 (en) | 2016-12-08 | 2019-06-18 | At&T Intellectual Property I, L.P. | Method and system for providing alternative communication paths |
US10601494B2 (en) | 2016-12-08 | 2020-03-24 | At&T Intellectual Property I, L.P. | Dual-band communication device and method for use therewith |
US10916969B2 (en) | 2016-12-08 | 2021-02-09 | At&T Intellectual Property I, L.P. | Method and apparatus for providing power using an inductive coupling |
US10103422B2 (en) | 2016-12-08 | 2018-10-16 | At&T Intellectual Property I, L.P. | Method and apparatus for mounting network devices |
US10777873B2 (en) | 2016-12-08 | 2020-09-15 | At&T Intellectual Property I, L.P. | Method and apparatus for mounting network devices |
US10530505B2 (en) | 2016-12-08 | 2020-01-07 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching electromagnetic waves along a transmission medium |
US9998870B1 (en) | 2016-12-08 | 2018-06-12 | At&T Intellectual Property I, L.P. | Method and apparatus for proximity sensing |
US9911020B1 (en) | 2016-12-08 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for tracking via a radio frequency identification device |
US9838896B1 (en) | 2016-12-09 | 2017-12-05 | At&T Intellectual Property I, L.P. | Method and apparatus for assessing network coverage |
US10340983B2 (en) | 2016-12-09 | 2019-07-02 | At&T Intellectual Property I, L.P. | Method and apparatus for surveying remote sites via guided wave communications |
US10264586B2 (en) | 2016-12-09 | 2019-04-16 | At&T Mobility Ii Llc | Cloud-based packet controller and methods for use therewith |
US9973940B1 (en) | 2017-02-27 | 2018-05-15 | At&T Intellectual Property I, L.P. | Apparatus and methods for dynamic impedance matching of a guided wave launcher |
US10298293B2 (en) | 2017-03-13 | 2019-05-21 | At&T Intellectual Property I, L.P. | Apparatus of communication utilizing wireless network devices |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3806931A (en) | Amplitude modulation using phased-array antennas | |
US7319427B2 (en) | Frequency diverse array with independent modulation of frequency, amplitude, and phase | |
Eker et al. | Exploitation of linear frequency modulated continuous waveform (LFMCW) for frequency diverse arrays | |
US7511665B2 (en) | Method and apparatus for a frequency diverse array | |
Xu et al. | Range-angle-dependent beamforming of pulsed frequency diverse array | |
Mosca et al. | A novel design method for Blass matrix beam-forming networks | |
US4277787A (en) | Charge transfer device phased array beamsteering and multibeam beamformer | |
US3680100A (en) | Randomly phase coded antenna technique for search radar | |
US4028702A (en) | Fiber optic phased array antenna system for RF transmission | |
US3307188A (en) | Steerable antenna array and method of operating the same | |
Luyen et al. | Wideband, beam-steerable reflectarray antennas exploiting electronically reconfigurable polarization-rotating phase shifters | |
Xu et al. | Range–angle-decoupled beampattern synthesis with subarray-based frequency diverse array | |
US5274381A (en) | Optical controller with independent two-dimensional scanning | |
US3460145A (en) | Electronic scanning system for wave energy beam forming and steering with receptor arrays | |
CN107359417A (en) | A kind of new low section electric scanning beams reflected array antenna | |
US9602143B1 (en) | System and method for generating wireless electromagnetic transmissions modulated with software defined complex waveforms | |
US3474446A (en) | Cylindrical array antenna system with electronic scanning | |
Rocca et al. | The role of accurate dynamic analysis for evaluating time-modulated arrays performance | |
US4086597A (en) | Continuous line scanning technique and means for beam port antennas | |
US3487411A (en) | Multiple-beam guidance means for aircraft approach and landing | |
US5706012A (en) | Radar system method using virtual interferometry | |
US3517389A (en) | Method and system for electronically steering an antenna array | |
US3914765A (en) | Simplified doppler antenna system | |
US4190818A (en) | Digital beamsteering for a parametric scanning sonar system | |
Johnson | Phased-array beam steering by multiplex sampling |