US3567763A - Ester polyisocyanates - Google Patents

Ester polyisocyanates Download PDF

Info

Publication number
US3567763A
US3567763A US518977A US3567763DA US3567763A US 3567763 A US3567763 A US 3567763A US 518977 A US518977 A US 518977A US 3567763D A US3567763D A US 3567763DA US 3567763 A US3567763 A US 3567763A
Authority
US
United States
Prior art keywords
mole
reaction
acid
mixture
hydrogen chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US518977A
Inventor
William D Emmons
Jerome F Levy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm and Haas Co
Original Assignee
Rohm and Haas Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm and Haas Co filed Critical Rohm and Haas Co
Application granted granted Critical
Publication of US3567763A publication Critical patent/US3567763A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C265/00Derivatives of isocyanic acid
    • C07C265/02Derivatives of isocyanic acid having isocyanate groups bound to acyclic carbon atoms
    • C07C265/04Derivatives of isocyanic acid having isocyanate groups bound to acyclic carbon atoms of a saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C227/00Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C227/14Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton from compounds containing already amino and carboxyl groups or derivatives thereof
    • C07C227/18Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton from compounds containing already amino and carboxyl groups or derivatives thereof by reactions involving amino or carboxyl groups, e.g. hydrolysis of esters or amides, by formation of halides, salts or esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/02Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C229/04Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C229/06Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton
    • C07C229/08Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton the nitrogen atom of the amino group being further bound to hydrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/02Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C229/04Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C229/24Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having more than one carboxyl group bound to the carbon skeleton, e.g. aspartic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/52Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
    • C07C229/54Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton with amino and carboxyl groups bound to carbon atoms of the same non-condensed six-membered aromatic ring
    • C07C229/60Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton with amino and carboxyl groups bound to carbon atoms of the same non-condensed six-membered aromatic ring with amino and carboxyl groups bound in meta- or para- positions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C263/00Preparation of derivatives of isocyanic acid
    • C07C263/04Preparation of derivatives of isocyanic acid from or via carbamates or carbamoyl halides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C265/00Derivatives of isocyanic acid
    • C07C265/12Derivatives of isocyanic acid having isocyanate groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/771Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur oxygen

Definitions

  • R is the diester residue of an alkane or cycloalkane diol having two primary hydroxyl groups, from 2 to 18 carbon atoms, and up to one hetero oxygen or sulfur atom
  • R and R are alkylene or cycloalkylene
  • R is an alkylene radical having 2 to 8 carbon atoms and up to one hetero oxygen or sulfur atom
  • R is alkylene or cycloalkylene.
  • This invention relates to the production of a novel group of aliphatic acyl-containing amine hydrochlorides and the corresponding isocyanates thereof.
  • aliphatic isocyanates impart premium properties to urethanes derived therefrom in terms of light stabiilty and similar properties.
  • conventional aliphatic isocyanates such as hexamethylene diisocyanate are characterized by extreme toxicity which renders their handling and use extremely hazardous. Accordingly, they have been produced only in limited amounts at a corresponding high unit cost.
  • Aliphatic isocyanates derived from the phosgenation of the amine hydrochlorides produced from ester amines are also known.
  • the ester amines themselves have heretofore been produced by the reaction of an alkanolamine hydrochloride with either an acid chloride or acid anhydride. The necessity of using the acid chloride or acid anhydride in the production of the ester amine has rendered these intermediates expensive to produce and thus has limited, if not prevented, the commercial use of the isocyanates produced therefrom.
  • novel amine hydrochlorides are useful not only as intermediates in producing the described novel isocyanates, but are further useful in themselves for curing epoxy resins as intermediates in the production of other compounds and for condensation with formaldehyde and formaldehyde-containing materials such as urea-formaldehyde resins.
  • the amino groups of the novel aliphatic amines are provided in whole or in part by an amino acid.
  • the amino acids which are useful in the invention are the monoamino-monocarboxylic acids, the monoamino-dicarboxylic acids, the diamino-monocarboxylic acids, diamino-dicarboxylic acids and lactams having 3 to 12 carbon atoms in the ring.
  • the novel amine hydrochlorides wherein the amino groups are provided in part by an amino acid are produced by reacting one or more of the designated class of amino acids as its acid salt with an alkanolamine hydrochloride.
  • novel amine hydrochlorides wherein the amino groups are provided wholly by an amino acid are produced by reacting a monoamino-monocarboxylic acid or a lactam with a monohydroxy or dihydroxy alcohol (hereinafter referred to as alcohols and diols, respectively), the amino groups being converted to an acid salt before the esterification reaction.
  • novel compounds containing four amine hydrochloride groups are produced by reacting a diamino-monocarboxylic acid with a diol.
  • these esterification reactions are carried out While passing a stream of hydrogen chloride gas through the reaction mixture while the esterification proceeds.
  • the amino group or groups of the amino acid are first converted to an acid salt by reaction with a strong acid, preferably hydrochloric acid, and the resulting product is then reacted with an alkanolamine (also converted to a strong acid salt as the hydrochloride), an alcohol or a diol in an inert liquid reaction medium.
  • a strong acid preferably hydrochloric acid
  • an alkanolamine also converted to a strong acid salt as the hydrochloride
  • an alcohol or a diol in an inert liquid reaction medium.
  • the amino acid and the alcohol, diol or alkanolamine must have a significant solubility in each other under the reaction conditions or else the inert liquid used as the reaction medium must be a mutual solvent for these materials.
  • the reaction temperature may be from about 40 C. to the temperature at which the amine acid salts present in the reaction mixture dissociate into the free amine.
  • the reaction is carried out at from about 50 C. to C.
  • an esterification catalyst is used to promote the reaction.
  • Suitable catalysts include, for example, chlorosulfonic acid, etc.
  • a stream of hydrogen chloride gas is passed through the reaction mixture while the reaction proceeds, in which case no separate catalysts for the esterification is needed.
  • Means should be provided to distill off or otherwise remove the water formed during the esterification.
  • the reaction may be carried out at sub-atmospheric or super-atmospheric pressures but preferably is carried out at atmospheric pressure.
  • Liquid reaction media which may be used for the esterification include aromatic hydrocarbons, chlorinated aromatic hydrocarbons, chlorinated aliphatic hydrocarbons, chlorinated alicyclic hydrocarbons, tetramethylenesulfone, etc. Where one of the reactants is a liquid or is molten under the reaction conditions, an excess of such reactant may be used as the reaction medium so long as such excess does not cause polymerization or promote other undesirable side-reactions, i.e., such excess must act as an inert liquid.
  • reaction product itself is a liquid under the reaction conditions, it apparently acts as the inert liquid, the initial esterification forming the first quantities of such product occurring in the presence of water (which is later distilled off as esterification proceeds) which is a solvent for the amine hydrochlorides.
  • a lactam When a lactam is used as the amino acid, desirably water (preferably about one mole per mole of lactam) is added along with a strong acid (preferably hydrochloric acid) to facilitate opening the ring. An undue excess of water is to be avoided since it must be removed during the esterification and such removal is a significant item of cost.
  • the lactam may be first heated in contact with the water-acid mixture to open the ring, and then the alcohol, diol or alkanolamine added along with an inert organic liquid and an azeotropic agent and the ester prepared as described above preferably using a stream of hydrogen chloride gas.
  • all the reagents may be charged initially, the mixture heated without removal of water for a sufiicient time to open the ring, and then the water is removed causing esterification to proceed. In this latter case, it is sometimes desirable to conduct the ring opening in a sealed pressure vessel under autogenous pressure.
  • Other variations may also be used, as initially charging all the materials except the azeotropic agent 3 which is added after ring opening. The use of water in this manner is not essential and good results have been obtained without its use.
  • the amine hydrochlorides produced in this manner may be converted to the corresponding isocyanates by reaction with phosgene or other carbonyl dihalide.
  • Phosgene may be employed in either liquid or gaseous form.
  • the amine hydrochloride is dispersed in an inert liquid reaction medium, phosgene added, preferably in excess of that needed to react quantitatively with the amino groups present, and the temperature of the reaction medium maintained at from about 100 C. to 225 C.
  • the molar ratio of phosgene to amine hydrochloride group may be from about 1.1:1 to :1 and preferably is at least 2: 1.
  • Suitable liquid reaction media include aromatic hydrocarbons, chlorinated aromatic hydrocarbons, chlorinated aliphatic hydrocarbons, chlornated alicyclic hydrocarbons, etc.
  • the phosgenation may also be carried out in steps.
  • a purified amine hydrochloride may be used for the phosgenation or, if desired, the crude reaction product of the reaction between the amino acid and the alkanolamine hydrochloride, alcohol or diol may be used.
  • the alkanolamines which may be used in the instant invention contain from 2 to 8 carbon atoms, have one primary or secondary hydroxyl group and one primary amino group and may include one hetero oxygen or sulfur atom in the alkyl chain.
  • the alkyl group of the alkanolamine may be substituted with inert substituent groups as alkyl, nitro, halogen, etc.
  • Particularly preferred alkanolamines are ethanolamine, 2-(2-aminoethoxy)-ethanol, l-arnino-2- propanol, 2-amino-1-propanol, Z-methyl 2 amino-lpropanol, 3-amino-1-propanol and 2-amino-1-butanol. Mixtures of alkanolamines may be used.
  • the diols which may be used are those having two primary hydroxyl groups, from 218 carbon atoms, and may be aliphatic, for example alkane, alicyclic, for example, cycloalkane, or arenedialkyl.
  • the diols may have a hetero oxygen or sulfur atom and may be substituted with inert substituent groups as alkyl, nitro, halogen, etc.
  • the diols which can be used are the a,w-aliphatic diols, pbis(hydroxymethyl cyclohexane, p phenylenedimethylene diol, diethylene glycol, etc. Mixtures of diols may be used.
  • the alcohol may be aliphatic, alicyclic or aralkyl.
  • Preferred alcohols are the aliphatic alcohols such as alkanols having from six to twenty-four carbon atoms.
  • the alcohol may contain inert substituent groups.
  • the alcohol may contain one hetero oxygen or sulfur atom.
  • Suitable alcohols include arachidyl, behenyl, benzyl, tetrahydrofurfuryl, phenylpropyl, tridecyl, trimethylnonyl, stearyl, cyclopentyl, hexyl, isooctyl, etc.
  • amino acids which may be used in the instant invention may be either optically active or inactive and include monoamino-monocarboxylic acids such as alanine, isoleucine, 3-aminobutyric acid, 3-aminopropionic acid, 3- amino-Z-methyl propionic acid, phenyl alanine, p-aminobenzoic acid, methionine, w-amino acids generally, etc.; monoamino-dicarboxylic acids such as aspartic acid and glutamic acid; diamino-monocarboxylic acids such as lysine and ornithine; diamino-dicarboxylic acids such as lanthionine; and lactams such as ,B-methyl-fi-butyrolactam, oz,/3 dimethylbutyrolactam, o,a,,B-trimethylbutyrolactam, 8 carbomethoxy-butyrolactam, B-phenyl-fi-propiolac
  • the amino acids may be substituted with inert substituent groups as alkyl, nitro, halogens, etc. and may contain one or more hetero atoms which do not interfere with the esterification reaction, and, where applicable, the subsequent phosgenation. Mixtures of amino acids may be used.
  • the diaminomonocarboxylic acids disclosed in French Pat. No. 1,351,368 may be used. Amino acids occur widely in nature and a number of synthesis methods are available for their production from inexpensive raw materials. Thus the addition of ammonia to an unsaturated acid may be used to produce inexpensive amino acids for use in the instant invention.
  • the isocyanates produced by the phosgenation of the acyl-containing amine hydrochlorides have several unusual properties. With respect to the aliphatic isocyanates, these isocyanates possess the advantages of the aliphatic isocyanates of the prior art in respect to light stability. However, they differ significantly from the aliphatic isocyanates of the prior art such as hexamethylene diisocyanate in possessing substantially reduced toxicity.
  • aminoacid-aminoalcohol route to diisocyanates or polyisocyanates is that by using an aminoacid with the amino group on one kind of carbon atom (i.e., primary, secondary or tertiary) and an aminoalcohol with the amino group on another kind of carbon atom, the chemist can build in differential reactivity and, to some extent, even the degree of differential reactivity. Similarly, if no differential reactivity is desired, this too can be built into the molecule.
  • novel isocyanates of the invention may be used as cross-linking agents for polymers containing active hydrogen groups, may be reacted with low molecular weight polymers containing active hydrogen groups such as hydroxyl-terminated polyesters or polyethers to produce polyurethanes, and may be added to polymeric compositions to improve the adhesion thereof to a variety of substrates, particularly metallic substrates. They are also useful as intermediates in producing other novel compounds useful as insecticides, herbicides, etc.
  • the monoisocyanates produced by phosgenating the reaction product of an alcohol-monoamino-monocarboxylic acid are useful as modifying agents for cellulose, starch, polyvinyl alcohol, algin, copolymers of hydroxyalkyl esters of unsaturated acids, etc.
  • they may be used as chemical sizing agents on paper, as water-proofing materials for textiles, etc.
  • EXAMPLE 1 A four-necked, round-bottomed fiask fitted with a mechanical stirrer, a thermometer, a gas inlet tube, and a Dean-Stark water separator trap was charged with 91.5 g. (150 moles) of ethanolamine, 540 ml. of o-dichlorobenzene and 240 ml. of benzene. Hydrogen chloride was passed in through the gas inlet tube to convert all of the ethanolamine to its hydrochloride salt, following which 188.3 g. (1.50 mole) of S-aminopropionic acid hydrochloride was added.
  • EXAMPLE 3 Using the process described in Example 1, fi-aminoethyl-6-aminocaproate dihydrochloride was produced from ethanolamine and 6-aminocaproic acid. After recrystallization from isopropanol, the product had a melting point of 198l99 C.
  • Example 4 The apparatus of Example 1 was charged with 61 g. (1.00 mole) of ethanolamine and 500 ml. of tetramethylene sulfone. Hydrogen chloride (1.0 mole) was passed in, following which 173.5 g. (1.00 mole) of p-arninobenzoic acid hydrochloride was added. With hydrogen chloride being passed in at the rate of 1.5 moles/hr., the temperature, was raised to 150 C. and suflicient benzene was added to obtain good refluxing at that temperature. After a total of 10 hours of refluxing, 24.5 ml. of 10' N hydrochloric acid had been collected in the azeotrope trap. The reaction mixture was cooled, diluted with 750 ml.
  • Example 2 The apparatus of Example 1 was charged with 15.0 g. (0.15 mole) of 4,4-dimethyl azetidinone-Z, 14.7 g. (0.15 mole) of ethanolamine hydrochloride and 50 ml. of 1,2,3- trichloropropane. The mixture was cooled to 0 C. and 0.25 mole of hydrogen chloride was passed in. Cooling was stopped, and after about minutes an exotherm carried the temperature to 50 C. The mixture was heated to 110 C. to insure completion of the reaction. The solvent was decanted and the crude ,8-aminoethyl-3-amino- 3-methylbutyrate dihydrochloride, a viscous oil, was digested with 100 ml. of isopropanol, cooled and filtered to give 22.8 g. of material melting 203205 C.; and after recrystallization from ethanol, M.P. 206-206.5 C.
  • Example 6 The apparatus of Example 1 was charged with 30.6 g. (0.500 mole) of ethanolamine and 360 ml. of o-cresol. Hydrogen chloride (1 mole) was passed in following which 56.6 g. (0.500 mole) of e-caprolactam was added. The reaction mixture was heated at 150 for a total of 14 hours while still passing in hydrogen chloride. Then most of the solvent was distilled off under reduced pressure, heating with a steam bath. The residue was treated with approx. 0.5 1. of acetone and the crude B-aminOethyl 6-aminocaproate dihydrochloride, 65 g., was removed by filtration. Recrystallization from isopropanol gave pure material melting 185-l89 C., mixed M.P. with authentic material undepressed.
  • Example 7 The apparatus of Example 1 was charged with 19.7 g. (0.10 mole) of 2-azacyclotridecanone, 6.2 g. (0.10 mole) of ethanolamine and 100 ml. of o-cresol. Hydrogen chloride (0.20 mole) was passed in while the mixture was held at 80 C. then, adjusting the hydrogen chloride flow to 0.5 mole/hr., the temperature was raised to 140150 C. and maintained there for 25 hours. The reaction mixture was then cooled to cause precipitation of the crude B-aminoethyl-12-aminolaurate dihydrochloride, 7.5 g. Recrystallization from isopropanol gave an analytical sample, M.P. 240 C.
  • EXAMPLE 8 The apparatus of Example 1 was charged with 51.3 g. (0.25 mole) of ,B-aminoethyl-3-aminopropionate dihydrochloride and 360 ml. of chlorobenzene. The reaction mixture was heated at reflux While gaseous phosgene was passed in through the gas inlet tube at the rate of mL/min. for a total of 6.3 hours. Then 270 ml. of o-dichlorobenzene was added and the reaction mixture was phosgenated at reflux (137l42 C.) for an additional 6.8 hours. Unreacted fi-aminoethyl 3-arninopropionate dihydrochloride, 23 g., M.P.
  • Example 9 The apparatus of Example 1 was charged with 1.00 mole of fl-aminoethyl-6-aminocaproate dihydrochloride and 575 ml. of o-dichlorobenzene. The mixture was phosgenated for 5.3 hours at 147 C. using a phosgene flow of approximately 0.75 mole/hr. The solvent was distilled off under reduced pressure and the product was distilled through a molecular still at 160 at 1-2 mm. pressure to give a 77% yield of ⁇ 3-is0cyanat0ethyl-6is0cy anatocaproate. Analysis for isocyanate functionality indicated a purity of 94%. An analytical sample was prepared by ordinary distillation, B.P. 128 C. (0.25 mm).
  • EXAMPLE 10 Using the process described in Example 9, the crude fi-aminoethyl-p-aminobenzoate dihydrochloride produced in Example 4 was phosgenated at 150 C. for 15 hours and at 180 C. for 4 hours. The product boiled at 150 C. (0.4 mm. Hg). Analysis showed that the product contained 86% ,B-isocyanatoethyl-p-isocyanatobenzoate and 12% tetramethylene sulfone.
  • EXAMPLE 1 1 The apparatus of Example 1 was charged with 59 g. (0.50 mole) of 1,6-hexanediol, 75.1 g. (1.00 mole) of glycine and 250 ml. of 1,2,3-trichloropropane. The reaction mixture was heated to C. and sufiicient benzene was added to maintain a good reflux rate at that temperature, then kept at 145 C. for a total of 3.5 hours while hydrogen chloride was being passed in at the rate of 1.3 moles/hr. At the end of the heating period, a total of 21.4 ml. of ca. 10 N hydrochloric acid had collected in the azeotrope trap.
  • Example 12 The apparatus of Example 1 was charged with 15.5 g. (0.25 mole) of ethylene glycol, 83.7 g. (0.50 mole) of 6- aminocaproic acid hydrochloride and ml. of toluene. The mixture was heated at reflux for 7 hours with hydrogen chloride being passed in at the rate of ca. 80 ml. per minute. At the end of this period the aqueous phase in the trap amounted to 11.4 g. and, as approximately 10 N hydrochloric acid, contained 0.43 mole of water.
  • the crude 1,2-di(6-aminocaproyloxy)-ethane dihydrochloride was removed by filtration and recrystallized first from a mixture of isopropanol and toluene and then from a mixture of isopropanol and hexane to give a crude product, M.P. ca. 100 C., in 80% yield. Several more crystallizations gave an analytical sample.
  • Example 13 The apparatus of Example 1 was charged with 56.6 g. (0.50 mole) of e-caprolactam and 400 ml. of 1,2,3-trichloropropane. Hydrogen chloride (0.9 mole) was passed in, then 22.5 g. (0.25 mole) of 1,4-butanediol was added and the mixture was heated for about hours at 145 148 C., adding a little benzene to get a good reflux rate. A total of 6 ml. of water had azeotroped over. The reaction mixture was cooled, diluted with 400 ml. of acetone and filtered. The solid was heated with an additional 200 m1. of acetone, cooled and filtered to give 18.8 g.
  • Example 14 The apparatus of Example 1 was charged with 8.9 g. (0.070 mole) of 1,6-hexanediol, 14.9 g. (0.150 mole) of 4,4-dimethyl azetidinone-2 and 50 ml. of 1,2,3-trichloropropane. This was cooled to -5 C. and over a period of one hour, hydrogen chloride (0.25 mole) was passed in, keeping the temperature between and +5 C. Then, with the hydrogen chloride flow still at 0.25 mole/ hr., the mixture was heated to 135 C. which took /3 hour. The reaction was complete at this point.
  • Recrystallization from a mixture of isopropanol and ethanol raised the melting point to 219220 C.
  • Example 16 The apparatus of Example 1 was charged with 81.0 g. (0.268 mole) of 1,6-di-(2-aminoacetoxy)-hexane dihydrochloride, M.P. 162167 C., and 240 m1. of o-dichlorobenzene. This mixture was phosgenated for 2 hours at 125-133 C. using a phosgene flow rate of 0.75 mole/hr. The solvent was distilled under reduced pressure to leave the crude 1,6-di-(2-isocyanatoacetoxy)-hexane as a dark oil.
  • EXAMPLE 17 Using the method of Example 16, g. of di-(6-aminocaproyloxy)-hexane dihydrochloride was phosgenated in 1,2,3-trichloropropane to yield 29.1 g. of crude 1,6-di- (6-isocyanatocaproyloxy)-hexane.
  • EXAMPLE 18 The apparatus of Example 1 (with a condenser in place of the separator trap) was charged with 56.5 g. (1.0 mole) of e-caprolactam and 42 ml. of 37% aqueous hydrochloric acid (1.0 mole). This was heated under reflux for two hours to hydrolyze the lactam, then cooled to 5060 C. 3-aminopropanol (37.5 g., 0.5 mole) was added slowly, following which 0.5 mole of hydrogen chloride was passed in, keeping the temperature below C. Then 200 m1. of o-dichlorobenzene and 100 ml. of benzene were added.
  • the condenser was replaced by a Dean-Stark trap and the mixture was heated under reflux at 115 C. while a slow stream of hydrogen chloride was passed in. Benzene had to be added from time to time to maintain a good reflux rate at 115 C. When no more water was being collected the azeotrope trap and the esterification was thus complete, the benzene was distilled off under reduced pressure and replaced with another 100 ml. of o-dichlorobenzene.
  • Example 19 The apparatus of Example 18 was charged with 113.2 g. (1.0 mole) of e-caprolactam and 1.0 mole of concentrated aqueous hydrochloric acid. This solution was refluxed for one hour with hydrogen chloride gas being passed in at the rate of 0.5 mole/hr. Then 89.0 g. (1.0 mole) of Z-aminobutanol dissolved in ml. of benzene and 300 ml. of o-dichlorobenzene was added over a halfhour period, raising the fiow of gaseous hydrogen chloride to 1 mole/hr. during this addition. The mixture was then heated under reflux while a slow stream of hydrogen chloride was passed in. The reflux temperature was kept at C. by periodically adding benzene to the mixture as needed. After a total of 16.5 hours of reflux, no more water was being collected and the esterification was complete.
  • the mixture was phosgenated at 140 C. for 4 hours then at C. for 2 more hours, using a phosgene flow of 2 moles/hr. Benzene, which distilled into the Dean- Stark trap, had to be drawn off in order to heat to the desired temperature.
  • the reaction mixture was decanted from a small amount of a tarry material and stripped of solvent.
  • the product was distilled on a wiping film still at 250 C. (0.5 mm.), then redistilled conventionally, B.P. 138 C. (0.1.5 mm.). Analysis for isocyanate content by reaction with butylamine indicated a purity of 99%.
  • the diisocyanate was tested for diflerential reactivity by adding one mole of 2-ethoxyethanol (1 equivalent) to 1 mole of the diisocyanate dissolved in o-xylene (2 equivalents), heating the mixture to 75 C. and following the reaction using vapor phase chromatography. If both isocyanate groups have the same reactivity, the product will contain 25% of the molecules wherein neither isocyanato group has reacted (there would also be 25 with both groups reacted and 50% with only one group reacted). With 92:2% of the alcohol reacted, the product contained only 11:2% of the diisocyanate indicating a high degree of difierential reactivity.
  • Example 20 The apparatus of Example 18 (set for total reflux) was charged with 113 g. (1.0 mole) of s-caprolactam and 89 g. (1.0 mole) of 2-amino-2-methylpropanol followed by the gradual addition of 2.2 moles of concentrated hydrochloric acid. After refluxing for 3 hours, most of the water was stripped off under reduced pressure, keeping the temperature of the reaction mixture below 85 C. during the stripping. Then the still-head was replaced by a Dean- Stark trap, 450 ml. of o-dichlorobenzene was added and the mixture was heated to 115 C. while a slow stream of hydrogen chloride was passed into the mixture.
  • the mixture was phosgenated for 4 hours at 130 C., then for 2 hours at 140 C., using a phosgene flow of approximately 2-2.5 moles/hr. After cooling and decanting the solution, the solvent was distilled off under reduced pressure and the isocyanate was distilled on a wiping film still to give a sample of the isocyanate contaminated with a chlorine containing by-prod'uct.
  • the analytical sample was obtained by preparative vapor phase chromatography.
  • a derivative prepared by reacting the diisocyanate with two equivalents of cyclohexylamine melted l35150 C. after several recrystallizations from isopropanol-water.
  • the diisocyanate was tested for differential reactivity using dry ethanol with dibutyltin-dilaurate catalyst. A strong exotherm occurred upon addition of the ethanolcatalyst solution and subsided in about minutes indicating substantially complete reaction of the primary isocyanate group. About 2.3 hours later, approximately 49% of the isocyanate groups had reacted. The half-life of the remaining isocyanate groups was found to be about 8 hours.
  • EXAMPLE 21 A four-necked, round-bottomed flask fitted with a mechanical stirrer, a distillation head, a thermometer and a dropping funnel was charged with 147 g. (1.00 mole) of L(--) glutamic acid and 336 g. (5.51 moles) of ethanolamine. Then 730 g. (ca. 7.2 moles) of 3638% aqueous hydrochloric acid was added slowly, cooling the reaction mixture to keep the temperature below 60 C. Most of the water was distilled off under reduced pressure not heating above 90 C. at mm. Hg pressure. Following the stripping, the distillation head and the dropping funnel were replaced by a Dean-Stark trap and a gas inlet tube.
  • amino esters may also be reacted with thiophosgene to produce the corresponding isothiocyanates.
  • isothiocyanates are useful in coatings and are of interest as biologically active materials for use as fungicides, herbicides, insecticides, slimicides, etc. as appropriate.
  • An ester isocyanate having the formula wherein m and n are either one or two, R is the diester residue of an alkane or cycloalkane diol having two primary hydroxyl groups, from 2 to 18 carbon atoms, and up to one hetero oxygen or sulfur atom, and R and R are divalent organic radicals selected from the group consisting of alkylene and cycloalkylene.
  • An ester isocyanate having the formula wherein m and n are either one or two, R is an alkylene radical having 2 to 8 carbon atoms and up to one hetero oxygen or sulfur atom, and R is a divalent organic radical selected from the group consisting of alkylene and cycloalkylene.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Emergency Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

THESE ARE PROVIDED ESTER ISOCATNES HAVING THE FORMULAE

(O=C=N)M-R2-COO-R1-OOC-R3-(N=C=O)N AND

(O=C=N-R6-OOC)M-R7-(N=C=O)N

WHEREIN M AND N ARE EITHER ONE OR TWO, R1 THE DIESTER RESIDUE OF AN ALKANE OR CYCLOALKANE DIOL HAVING TWO PRIMARY HYDROXYL GROUPS, FROM 2 TO 18 CARBON ATOMS, AND UP TO ONE HETERO OXYGEN OR SULFUR ATOM, R2 AND R3 ARE ALKYLENE OR CYCLOALKYLENE, R6 IS AN ALKYLENE RADICAL HAVING 2 TO 8 CARBON ATOMS AND UP TO ONE HETERO OXYGEN OR SULFUR ATOM, AND R7 IS ALKYLENE OR CYCLOALKYLENE.

Description

United States Patent 3,567,763 ESTER POLYISOCYANATES William D. Emmons, Huntingdon Valley, and Jerome F.
Levy, Bethayres, Pa., assignors to Rohm & Haas Company, Philadelphia, Pa. No Drawing. Filed Jan. 6, 1966, Ser. No. 518,977 Int. Cl. C07c 69/00 US. Cl. 260-478 6 Claims ABSTRACT OF THE DISCLOSURE There are provided ester isooctanes having the formulae 0 0 ON) .rm- -o-onlo oaFmo 0)n and O (O CN-Ro-O (UJ) m-R-1(NC 0),;
wherein m and n are either one or two, R is the diester residue of an alkane or cycloalkane diol having two primary hydroxyl groups, from 2 to 18 carbon atoms, and up to one hetero oxygen or sulfur atom, R and R are alkylene or cycloalkylene, R is an alkylene radical having 2 to 8 carbon atoms and up to one hetero oxygen or sulfur atom, and R is alkylene or cycloalkylene.
This invention relates to the production of a novel group of aliphatic acyl-containing amine hydrochlorides and the corresponding isocyanates thereof.
It has long been known that aliphatic isocyanates impart premium properties to urethanes derived therefrom in terms of light stabiilty and similar properties. However, conventional aliphatic isocyanates such as hexamethylene diisocyanate are characterized by extreme toxicity which renders their handling and use extremely hazardous. Accordingly, they have been produced only in limited amounts at a corresponding high unit cost. Aliphatic isocyanates derived from the phosgenation of the amine hydrochlorides produced from ester amines are also known. However, the ester amines themselves have heretofore been produced by the reaction of an alkanolamine hydrochloride with either an acid chloride or acid anhydride. The necessity of using the acid chloride or acid anhydride in the production of the ester amine has rendered these intermediates expensive to produce and thus has limited, if not prevented, the commercial use of the isocyanates produced therefrom.
We have now discovered an entirely new class of aliphatic, alicyclic and aromatic amine hydrochlorides and the isocyanates corresponding thereto which may be produced from readily available raw materials in good yield under simple process conditions. The novel amine hydrochlorides are useful not only as intermediates in producing the described novel isocyanates, but are further useful in themselves for curing epoxy resins as intermediates in the production of other compounds and for condensation with formaldehyde and formaldehyde-containing materials such as urea-formaldehyde resins.
In the instant invention, the amino groups of the novel aliphatic amines are provided in whole or in part by an amino acid. The amino acids which are useful in the invention are the monoamino-monocarboxylic acids, the monoamino-dicarboxylic acids, the diamino-monocarboxylic acids, diamino-dicarboxylic acids and lactams having 3 to 12 carbon atoms in the ring. The novel amine hydrochlorides wherein the amino groups are provided in part by an amino acid are produced by reacting one or more of the designated class of amino acids as its acid salt with an alkanolamine hydrochloride. The novel amine hydrochlorides wherein the amino groups are provided wholly by an amino acid are produced by reacting a monoamino-monocarboxylic acid or a lactam with a monohydroxy or dihydroxy alcohol (hereinafter referred to as alcohols and diols, respectively), the amino groups being converted to an acid salt before the esterification reaction. In addition, novel compounds containing four amine hydrochloride groups are produced by reacting a diamino-monocarboxylic acid with a diol. Preferably, these esterification reactions are carried out While passing a stream of hydrogen chloride gas through the reaction mixture while the esterification proceeds.
To produce the acyl-containing amine hydrochlorides of the invention, the amino group or groups of the amino acid are first converted to an acid salt by reaction with a strong acid, preferably hydrochloric acid, and the resulting product is then reacted with an alkanolamine (also converted to a strong acid salt as the hydrochloride), an alcohol or a diol in an inert liquid reaction medium. The amino acid and the alcohol, diol or alkanolamine must have a significant solubility in each other under the reaction conditions or else the inert liquid used as the reaction medium must be a mutual solvent for these materials. The reaction temperature may be from about 40 C. to the temperature at which the amine acid salts present in the reaction mixture dissociate into the free amine. Preferably the reaction is carried out at from about 50 C. to C. Desirably an esterification catalyst is used to promote the reaction. Suitable catalysts include, for example, chlorosulfonic acid, etc. In a preferred embodiment of the invention, a stream of hydrogen chloride gas is passed through the reaction mixture while the reaction proceeds, in which case no separate catalysts for the esterification is needed. Means should be provided to distill off or otherwise remove the water formed during the esterification. The reaction may be carried out at sub-atmospheric or super-atmospheric pressures but preferably is carried out at atmospheric pressure. Liquid reaction media which may be used for the esterification include aromatic hydrocarbons, chlorinated aromatic hydrocarbons, chlorinated aliphatic hydrocarbons, chlorinated alicyclic hydrocarbons, tetramethylenesulfone, etc. Where one of the reactants is a liquid or is molten under the reaction conditions, an excess of such reactant may be used as the reaction medium so long as such excess does not cause polymerization or promote other undesirable side-reactions, i.e., such excess must act as an inert liquid. In certain instances where the reaction product itself is a liquid under the reaction conditions, it apparently acts as the inert liquid, the initial esterification forming the first quantities of such product occurring in the presence of water (which is later distilled off as esterification proceeds) which is a solvent for the amine hydrochlorides.
When a lactam is used as the amino acid, desirably water (preferably about one mole per mole of lactam) is added along with a strong acid (preferably hydrochloric acid) to facilitate opening the ring. An undue excess of water is to be avoided since it must be removed during the esterification and such removal is a significant item of cost. The lactam may be first heated in contact with the water-acid mixture to open the ring, and then the alcohol, diol or alkanolamine added along with an inert organic liquid and an azeotropic agent and the ester prepared as described above preferably using a stream of hydrogen chloride gas. Alternatively, all the reagents may be charged initially, the mixture heated without removal of water for a sufiicient time to open the ring, and then the water is removed causing esterification to proceed. In this latter case, it is sometimes desirable to conduct the ring opening in a sealed pressure vessel under autogenous pressure. Other variations may also be used, as initially charging all the materials except the azeotropic agent 3 which is added after ring opening. The use of water in this manner is not essential and good results have been obtained without its use.
The amine hydrochlorides produced in this manner may be converted to the corresponding isocyanates by reaction with phosgene or other carbonyl dihalide. Phosgene may be employed in either liquid or gaseous form. The amine hydrochloride is dispersed in an inert liquid reaction medium, phosgene added, preferably in excess of that needed to react quantitatively with the amino groups present, and the temperature of the reaction medium maintained at from about 100 C. to 225 C. The molar ratio of phosgene to amine hydrochloride group may be from about 1.1:1 to :1 and preferably is at least 2: 1. Suitable liquid reaction media include aromatic hydrocarbons, chlorinated aromatic hydrocarbons, chlorinated aliphatic hydrocarbons, chlornated alicyclic hydrocarbons, etc. The phosgenation may also be carried out in steps. A purified amine hydrochloride may be used for the phosgenation or, if desired, the crude reaction product of the reaction between the amino acid and the alkanolamine hydrochloride, alcohol or diol may be used.
The alkanolamines which may be used in the instant invention contain from 2 to 8 carbon atoms, have one primary or secondary hydroxyl group and one primary amino group and may include one hetero oxygen or sulfur atom in the alkyl chain. The alkyl group of the alkanolamine may be substituted with inert substituent groups as alkyl, nitro, halogen, etc. Particularly preferred alkanolamines are ethanolamine, 2-(2-aminoethoxy)-ethanol, l-arnino-2- propanol, 2-amino-1-propanol, Z-methyl 2 amino-lpropanol, 3-amino-1-propanol and 2-amino-1-butanol. Mixtures of alkanolamines may be used.
The diols which may be used are those having two primary hydroxyl groups, from 218 carbon atoms, and may be aliphatic, for example alkane, alicyclic, for example, cycloalkane, or arenedialkyl. The diols may have a hetero oxygen or sulfur atom and may be substituted with inert substituent groups as alkyl, nitro, halogen, etc. Among the diols which can be used are the a,w-aliphatic diols, pbis(hydroxymethyl cyclohexane, p phenylenedimethylene diol, diethylene glycol, etc. Mixtures of diols may be used.
Any alcohol may be used which has either a primary or secondary hydroxyl group. The alcohol may be aliphatic, alicyclic or aralkyl. Preferred alcohols are the aliphatic alcohols such as alkanols having from six to twenty-four carbon atoms. Like the other reactants, the alcohol may contain inert substituent groups. Further, the alcohol may contain one hetero oxygen or sulfur atom. Suitable alcohols include arachidyl, behenyl, benzyl, tetrahydrofurfuryl, phenylpropyl, tridecyl, trimethylnonyl, stearyl, cyclopentyl, hexyl, isooctyl, etc.
The amino acids which may be used in the instant invention may be either optically active or inactive and include monoamino-monocarboxylic acids such as alanine, isoleucine, 3-aminobutyric acid, 3-aminopropionic acid, 3- amino-Z-methyl propionic acid, phenyl alanine, p-aminobenzoic acid, methionine, w-amino acids generally, etc.; monoamino-dicarboxylic acids such as aspartic acid and glutamic acid; diamino-monocarboxylic acids such as lysine and ornithine; diamino-dicarboxylic acids such as lanthionine; and lactams such as ,B-methyl-fi-butyrolactam, oz,/3 dimethylbutyrolactam, o,a,,B-trimethylbutyrolactam, 8 carbomethoxy-butyrolactam, B-phenyl-fi-propiolactam, {3 methyl-fi-caprolactam, B methyl-fl-valerolactam, ,8- ethyl [i valerolactam, 2 pyrrolidone, 6 methyl- 2 piperidone, 3 methyl caprolactam and 7 methylcaprolactam. The amino acids may be substituted with inert substituent groups as alkyl, nitro, halogens, etc. and may contain one or more hetero atoms which do not interfere with the esterification reaction, and, where applicable, the subsequent phosgenation. Mixtures of amino acids may be used. The diaminomonocarboxylic acids disclosed in French Pat. No. 1,351,368 may be used. Amino acids occur widely in nature and a number of synthesis methods are available for their production from inexpensive raw materials. Thus the addition of ammonia to an unsaturated acid may be used to produce inexpensive amino acids for use in the instant invention.
The isocyanates produced by the phosgenation of the acyl-containing amine hydrochlorides have several unusual properties. With respect to the aliphatic isocyanates, these isocyanates possess the advantages of the aliphatic isocyanates of the prior art in respect to light stability. However, they differ significantly from the aliphatic isocyanates of the prior art such as hexamethylene diisocyanate in possessing substantially reduced toxicity. Another advantage of the aminoacid-aminoalcohol route to diisocyanates or polyisocyanates is that by using an aminoacid with the amino group on one kind of carbon atom (i.e., primary, secondary or tertiary) and an aminoalcohol with the amino group on another kind of carbon atom, the chemist can build in differential reactivity and, to some extent, even the degree of differential reactivity. Similarly, if no differential reactivity is desired, this too can be built into the molecule.
The novel isocyanates of the invention may be used as cross-linking agents for polymers containing active hydrogen groups, may be reacted with low molecular weight polymers containing active hydrogen groups such as hydroxyl-terminated polyesters or polyethers to produce polyurethanes, and may be added to polymeric compositions to improve the adhesion thereof to a variety of substrates, particularly metallic substrates. They are also useful as intermediates in producing other novel compounds useful as insecticides, herbicides, etc. The monoisocyanates produced by phosgenating the reaction product of an alcohol-monoamino-monocarboxylic acid (particularly of an alcohol having six or more carbon atoms with a lower alkyl amino acid) are useful as modifying agents for cellulose, starch, polyvinyl alcohol, algin, copolymers of hydroxyalkyl esters of unsaturated acids, etc. Thus, they may be used as chemical sizing agents on paper, as water-proofing materials for textiles, etc.
EXAMPLE 1 A four-necked, round-bottomed fiask fitted with a mechanical stirrer, a thermometer, a gas inlet tube, and a Dean-Stark water separator trap was charged with 91.5 g. (150 moles) of ethanolamine, 540 ml. of o-dichlorobenzene and 240 ml. of benzene. Hydrogen chloride was passed in through the gas inlet tube to convert all of the ethanolamine to its hydrochloride salt, following which 188.3 g. (1.50 mole) of S-aminopropionic acid hydrochloride was added. With hydrogen chloride being passed in at the rate of 150 ml./min., the reaction mixture was heated to reflux (112-120") and kept at that temperature until the theoretical amount of water had azeotroped over and no more water was being evolved. This required a total of approximately 20 hours. The solvent was then decanted and the solid product was dried in a vacuum oven to give 292.0 g. of theoretical) of fi-aminoethyl-3-aminopropionate dihydrochloride, M.P. 186-192" C. Recrystallization from ethanol raised the melting point to 196-198" C.
Analysis.Calcd for C H Cl N O (percent): C, 29.28; H, 6.88; CI, 34.58; N, 13.66. Found (percent): C, 29.28; H, 6.82; Cl, 34.61; N, 13.64.
EXAMPLE 2 Using the process described in Example 1, [i-aminoethyl-2-aminoacetate dihydrochloride was produced. After recrystallization from ethanol, the product had a melting point of 166l68 C.
EXAMPLE 3 Using the process described in Example 1, fi-aminoethyl-6-aminocaproate dihydrochloride was produced from ethanolamine and 6-aminocaproic acid. After recrystallization from isopropanol, the product had a melting point of 198l99 C.
EXAMPLE 4 The apparatus of Example 1 was charged with 61 g. (1.00 mole) of ethanolamine and 500 ml. of tetramethylene sulfone. Hydrogen chloride (1.0 mole) was passed in, following which 173.5 g. (1.00 mole) of p-arninobenzoic acid hydrochloride was added. With hydrogen chloride being passed in at the rate of 1.5 moles/hr., the temperature, was raised to 150 C. and suflicient benzene was added to obtain good refluxing at that temperature. After a total of 10 hours of refluxing, 24.5 ml. of 10' N hydrochloric acid had been collected in the azeotrope trap. The reaction mixture was cooled, diluted with 750 ml. of benzene and filtered. The solid was triturated with a warm mixture of approximately equal parts of acetone and isopropanol, cooled and filtered; yield of crude fi-aminoethyl-p-aminobenzoate dihydrochloride 141 g., M.P. 225-230 C. Recrystallization from isopropanol raised the M.P. to 235 C.
Analysis.Calcd for C9H14Cl2N202: Found: N, 10.85%.
EXAMPLE The apparatus of Example 1 was charged with 15.0 g. (0.15 mole) of 4,4-dimethyl azetidinone-Z, 14.7 g. (0.15 mole) of ethanolamine hydrochloride and 50 ml. of 1,2,3- trichloropropane. The mixture was cooled to 0 C. and 0.25 mole of hydrogen chloride was passed in. Cooling was stopped, and after about minutes an exotherm carried the temperature to 50 C. The mixture was heated to 110 C. to insure completion of the reaction. The solvent was decanted and the crude ,8-aminoethyl-3-amino- 3-methylbutyrate dihydrochloride, a viscous oil, was digested with 100 ml. of isopropanol, cooled and filtered to give 22.8 g. of material melting 203205 C.; and after recrystallization from ethanol, M.P. 206-206.5 C.
Analysis.Calcd for C H Cl N O (percent): C, 36.06; H, 7.78; Cl, 30.41; N, 12.02. Found (percent): C, 35.88; H, 7.75; Cl, 30.27; N, 11.83.
EXAMPLE 6 The apparatus of Example 1 was charged with 30.6 g. (0.500 mole) of ethanolamine and 360 ml. of o-cresol. Hydrogen chloride (1 mole) was passed in following which 56.6 g. (0.500 mole) of e-caprolactam was added. The reaction mixture was heated at 150 for a total of 14 hours while still passing in hydrogen chloride. Then most of the solvent was distilled off under reduced pressure, heating with a steam bath. The residue was treated with approx. 0.5 1. of acetone and the crude B-aminOethyl 6-aminocaproate dihydrochloride, 65 g., was removed by filtration. Recrystallization from isopropanol gave pure material melting 185-l89 C., mixed M.P. with authentic material undepressed.
EXAMPLE 7 The apparatus of Example 1 was charged with 19.7 g. (0.10 mole) of 2-azacyclotridecanone, 6.2 g. (0.10 mole) of ethanolamine and 100 ml. of o-cresol. Hydrogen chloride (0.20 mole) was passed in while the mixture was held at 80 C. then, adjusting the hydrogen chloride flow to 0.5 mole/hr., the temperature was raised to 140150 C. and maintained there for 25 hours. The reaction mixture was then cooled to cause precipitation of the crude B-aminoethyl-12-aminolaurate dihydrochloride, 7.5 g. Recrystallization from isopropanol gave an analytical sample, M.P. 240 C.
Analysis.-Calcd for C H CI N O (percent): Cl, 21.40; N, 8.46. Found (percent): Cl, 20.97; N, 8.46.
EXAMPLE 8 The apparatus of Example 1 was charged with 51.3 g. (0.25 mole) of ,B-aminoethyl-3-aminopropionate dihydrochloride and 360 ml. of chlorobenzene. The reaction mixture was heated at reflux While gaseous phosgene was passed in through the gas inlet tube at the rate of mL/min. for a total of 6.3 hours. Then 270 ml. of o-dichlorobenzene was added and the reaction mixture was phosgenated at reflux (137l42 C.) for an additional 6.8 hours. Unreacted fi-aminoethyl 3-arninopropionate dihydrochloride, 23 g., M.P. 190196 was removed by filtration. Solvent was distilled from the filtrate under reduced pressure and the product was distilled, B.P. C. under 1.0 mm. Hg pressure, weight 13.0 g., corresponding to 51% of the theoretical yield of B-isocyanatoethyl-3-isocyanatopropionate when corrected for the recovered starting material.
Analysis.-Calcd for C H N O (percent): C, 45.65; H, 4.38; Cl, 0.00; N, 15.21. Found (percent): C, 45.49; H, 4.25; Cl, 0.00; N, 15.42.
EXAMPLE 9 The apparatus of Example 1 was charged with 1.00 mole of fl-aminoethyl-6-aminocaproate dihydrochloride and 575 ml. of o-dichlorobenzene. The mixture was phosgenated for 5.3 hours at 147 C. using a phosgene flow of approximately 0.75 mole/hr. The solvent was distilled off under reduced pressure and the product was distilled through a molecular still at 160 at 1-2 mm. pressure to give a 77% yield of {3-is0cyanat0ethyl-6is0cy anatocaproate. Analysis for isocyanate functionality indicated a purity of 94%. An analytical sample was prepared by ordinary distillation, B.P. 128 C. (0.25 mm).
AnaIysis.Calcd for C H N O (percent): C, 53.09; H, 6.24; N, 12.38 (eq. wt. 113.1 g./eq.). Found (percent: C, 53.11; H, 6.17; N, 12.50 (eq. wt. 113.5 g./eq.).
EXAMPLE 10 Using the process described in Example 9, the crude fi-aminoethyl-p-aminobenzoate dihydrochloride produced in Example 4 was phosgenated at 150 C. for 15 hours and at 180 C. for 4 hours. The product boiled at 150 C. (0.4 mm. Hg). Analysis showed that the product contained 86% ,B-isocyanatoethyl-p-isocyanatobenzoate and 12% tetramethylene sulfone.
EXAMPLE 1 1 The apparatus of Example 1 was charged with 59 g. (0.50 mole) of 1,6-hexanediol, 75.1 g. (1.00 mole) of glycine and 250 ml. of 1,2,3-trichloropropane. The reaction mixture was heated to C. and sufiicient benzene was added to maintain a good reflux rate at that temperature, then kept at 145 C. for a total of 3.5 hours while hydrogen chloride was being passed in at the rate of 1.3 moles/hr. At the end of the heating period, a total of 21.4 ml. of ca. 10 N hydrochloric acid had collected in the azeotrope trap. On cooling the reaction mixture, the 1,6-di-(2-aminoacetoxy)-hexane dihydrochloride separated as a thick oil which on digestion with 450 ml. of isopropanol crystallized to give 81 g. of crude product, melting 167200 C., after beginning to soften at 152 C.
Analysis.Calcd for C H Cl N O Cl, 23.23%. Found: Cl, 22.73%.
EXAMPLE 12 The apparatus of Example 1 was charged with 15.5 g. (0.25 mole) of ethylene glycol, 83.7 g. (0.50 mole) of 6- aminocaproic acid hydrochloride and ml. of toluene. The mixture was heated at reflux for 7 hours with hydrogen chloride being passed in at the rate of ca. 80 ml. per minute. At the end of this period the aqueous phase in the trap amounted to 11.4 g. and, as approximately 10 N hydrochloric acid, contained 0.43 mole of water. The crude 1,2-di(6-aminocaproyloxy)-ethane dihydrochloride was removed by filtration and recrystallized first from a mixture of isopropanol and toluene and then from a mixture of isopropanol and hexane to give a crude product, M.P. ca. 100 C., in 80% yield. Several more crystallizations gave an analytical sample.
7 Analysis.Calcd for C14H30C12N204 (PI'Cent) Cl, 19.63; N, 7.75. Found (percent): Cl (ionizable), 19.5; N, 8.02.
EXAMPLE 13 The apparatus of Example 1 was charged with 56.6 g. (0.50 mole) of e-caprolactam and 400 ml. of 1,2,3-trichloropropane. Hydrogen chloride (0.9 mole) was passed in, then 22.5 g. (0.25 mole) of 1,4-butanediol was added and the mixture was heated for about hours at 145 148 C., adding a little benzene to get a good reflux rate. A total of 6 ml. of water had azeotroped over. The reaction mixture was cooled, diluted with 400 ml. of acetone and filtered. The solid was heated with an additional 200 m1. of acetone, cooled and filtered to give 18.8 g. of crude 1,4-di- 6-aminocaproyloxy) -butane dihydrochloride, M.P. 180-185 C. An analytical sample was prepared by recrystallization from a mixture of isopropanol and acetone, M.P. 192197 C.
Analysis.-Calcd for C H Cl N O (percent): C, 49.35; H, 8.80; Cl, 18.21; N, 7.20. Found (percent): C, 49.26; H, 8.99; Cl, 18.24; N, 7.27.
EXAMPLE 14 The apparatus of Example 1 was charged with 8.9 g. (0.070 mole) of 1,6-hexanediol, 14.9 g. (0.150 mole) of 4,4-dimethyl azetidinone-2 and 50 ml. of 1,2,3-trichloropropane. This was cooled to -5 C. and over a period of one hour, hydrogen chloride (0.25 mole) was passed in, keeping the temperature between and +5 C. Then, with the hydrogen chloride flow still at 0.25 mole/ hr., the mixture was heated to 135 C. which took /3 hour. The reaction was complete at this point. The 1,6-di- (3 amino-3-methylbutyryloxy)-hexane dihydrochloride was removed by filtration, washed well with benzene and dried in a vacuum oven at 75 C. overnight; yield 27.2 g. (100% of the theoretical amount), M.P. 210213 C.
Aualysis.Calcd for C H Cl N O Cl, 18.21%. Found: Cl (ionizable), 18.21%.
Recrystallization from a mixture of isopropanol and ethanol raised the melting point to 219220 C.
Analysis.Calcd for C H Cl N O (percent): C, 49.35; H, 8.80; Cl, 18.21; N, 7.20. Found (percent): C, 49.47; H, 880; C1, 18.22; N, 7.23.
EXAMPLE Using the method described in Example 12, 1,4-di-(6- aminocaproyloxy)-butane dihydrochloride was produced by reacting 1,4-butanediol with 6-aminocaproic acid hydrochloride. The reaction took about 2.5 hours at 110 120 C.
EXAMPLE 16 The apparatus of Example 1 was charged with 81.0 g. (0.268 mole) of 1,6-di-(2-aminoacetoxy)-hexane dihydrochloride, M.P. 162167 C., and 240 m1. of o-dichlorobenzene. This mixture was phosgenated for 2 hours at 125-133 C. using a phosgene flow rate of 0.75 mole/hr. The solvent was distilled under reduced pressure to leave the crude 1,6-di-(2-isocyanatoacetoxy)-hexane as a dark oil. The crude 1,6-di-(2-isocyanatoacetoxy)-hexane is reacted with aniline to form 1,6-bis-[2-(N'-phenylureido)- acetoxy]-hexane, M.P. 131-140 C.
Analysis.Cald for C H N O (the aniline derivative): N, 11.91%. Found N, 11.23%,
EXAMPLE 17 Using the method of Example 16, g. of di-(6-aminocaproyloxy)-hexane dihydrochloride was phosgenated in 1,2,3-trichloropropane to yield 29.1 g. of crude 1,6-di- (6-isocyanatocaproyloxy)-hexane.
EXAMPLE 18 The apparatus of Example 1 (with a condenser in place of the separator trap) was charged with 56.5 g. (1.0 mole) of e-caprolactam and 42 ml. of 37% aqueous hydrochloric acid (1.0 mole). This was heated under reflux for two hours to hydrolyze the lactam, then cooled to 5060 C. 3-aminopropanol (37.5 g., 0.5 mole) was added slowly, following which 0.5 mole of hydrogen chloride was passed in, keeping the temperature below C. Then 200 m1. of o-dichlorobenzene and 100 ml. of benzene were added. The condenser was replaced by a Dean-Stark trap and the mixture was heated under reflux at 115 C. while a slow stream of hydrogen chloride was passed in. Benzene had to be added from time to time to maintain a good reflux rate at 115 C. When no more water was being collected the azeotrope trap and the esterification was thus complete, the benzene was distilled off under reduced pressure and replaced with another 100 ml. of o-dichlorobenzene.
This mixture was then phosgenated for 4 hours at 150 C. using a phosgene flow rate of 1.5 moles/hr. After cooling, the liquid portion of the reaction mixture was decanted from some solid which formed in the flask and was then stripped of solvent and distilled on a Wiping film still (100150 C. at 1 mm. pressure). Analysis for isocyanate content by reaction with butylamine indicated a purity of A derivative was obtained by reaction of the isocyanate with two equivalents of aniline, M.P.
Analysis.Calcd for C H N O (percent): C, 64.77; H, 7.09; N, 13.14; 0, 15.00. Found (percent): C, 64.04; H, 7.09; N, 12.71; 0, 15.19.
EXAMPLE 19 The apparatus of Example 18 was charged with 113.2 g. (1.0 mole) of e-caprolactam and 1.0 mole of concentrated aqueous hydrochloric acid. This solution was refluxed for one hour with hydrogen chloride gas being passed in at the rate of 0.5 mole/hr. Then 89.0 g. (1.0 mole) of Z-aminobutanol dissolved in ml. of benzene and 300 ml. of o-dichlorobenzene was added over a halfhour period, raising the fiow of gaseous hydrogen chloride to 1 mole/hr. during this addition. The mixture was then heated under reflux while a slow stream of hydrogen chloride was passed in. The reflux temperature was kept at C. by periodically adding benzene to the mixture as needed. After a total of 16.5 hours of reflux, no more water was being collected and the esterification was complete.
The mixture was phosgenated at 140 C. for 4 hours then at C. for 2 more hours, using a phosgene flow of 2 moles/hr. Benzene, which distilled into the Dean- Stark trap, had to be drawn off in order to heat to the desired temperature. The reaction mixture was decanted from a small amount of a tarry material and stripped of solvent. The product was distilled on a wiping film still at 250 C. (0.5 mm.), then redistilled conventionally, B.P. 138 C. (0.1.5 mm.). Analysis for isocyanate content by reaction with butylamine indicated a purity of 99%.
The diisocyanate was tested for diflerential reactivity by adding one mole of 2-ethoxyethanol (1 equivalent) to 1 mole of the diisocyanate dissolved in o-xylene (2 equivalents), heating the mixture to 75 C. and following the reaction using vapor phase chromatography. If both isocyanate groups have the same reactivity, the product will contain 25% of the molecules wherein neither isocyanato group has reacted (there would also be 25 with both groups reacted and 50% with only one group reacted). With 92:2% of the alcohol reacted, the product contained only 11:2% of the diisocyanate indicating a high degree of difierential reactivity.
EXAMPLE 20 The apparatus of Example 18 (set for total reflux) was charged with 113 g. (1.0 mole) of s-caprolactam and 89 g. (1.0 mole) of 2-amino-2-methylpropanol followed by the gradual addition of 2.2 moles of concentrated hydrochloric acid. After refluxing for 3 hours, most of the water was stripped off under reduced pressure, keeping the temperature of the reaction mixture below 85 C. during the stripping. Then the still-head was replaced by a Dean- Stark trap, 450 ml. of o-dichlorobenzene was added and the mixture was heated to 115 C. while a slow stream of hydrogen chloride was passed into the mixture. Enough benzene was added at this point, and as required later to maintain a good rate of reflux at 115 C. Refiuxing was continued in this way until no more water was being collected, then the benzene was distilled off under reduced pressure and replaced by 100 ml. of o-dichlorobenzene.
The mixture was phosgenated for 4 hours at 130 C., then for 2 hours at 140 C., using a phosgene flow of approximately 2-2.5 moles/hr. After cooling and decanting the solution, the solvent was distilled off under reduced pressure and the isocyanate was distilled on a wiping film still to give a sample of the isocyanate contaminated with a chlorine containing by-prod'uct. The analytical sample was obtained by preparative vapor phase chromatography.
Analysis.Calcd for C H N O (percent): C, 56.68; H, 7.14; N, 13.14; 0, 25.17. Found (percent): C, 57.24; H, 7.24; N, 12.71; 0, 24.49.
A derivative prepared by reacting the diisocyanate with two equivalents of cyclohexylamine melted l35150 C. after several recrystallizations from isopropanol-water.
Analysis.Ca1cd for C H N O (percent): C, 63.68; H, 9.80; N, 12.38; 0, 14.14. Found (percent): C, 63.73; H, 10.16; N, 12.20; 0, 14.30.
The diisocyanate was tested for differential reactivity using dry ethanol with dibutyltin-dilaurate catalyst. A strong exotherm occurred upon addition of the ethanolcatalyst solution and subsided in about minutes indicating substantially complete reaction of the primary isocyanate group. About 2.3 hours later, approximately 49% of the isocyanate groups had reacted. The half-life of the remaining isocyanate groups was found to be about 8 hours.
By comparison, the isocyanate groups in B-isocyanatoethyl-6 isocyanatocaproate were found to have about equal reactivity.
EXAMPLE 21 A four-necked, round-bottomed flask fitted with a mechanical stirrer, a distillation head, a thermometer and a dropping funnel was charged with 147 g. (1.00 mole) of L(--) glutamic acid and 336 g. (5.51 moles) of ethanolamine. Then 730 g. (ca. 7.2 moles) of 3638% aqueous hydrochloric acid was added slowly, cooling the reaction mixture to keep the temperature below 60 C. Most of the water was distilled off under reduced pressure not heating above 90 C. at mm. Hg pressure. Following the stripping, the distillation head and the dropping funnel were replaced by a Dean-Stark trap and a gas inlet tube. Toluene (100 ml.) was added and the mixture was heated under reflux (115 C.) for 30 hours while hydrogen chloride was being passed in at the rate of 0.4 mole/hr. The ethanolamine hydrochloride being molten at the reaction temperature, the excess of this material together with the toluene acts as the solvent. At the end of this period, no more water was being azeotroped over, the molten reaction mixture was poured into 1000 ml. of ethanol, cooled to room temperature and filtered. This crude product was recrystallized once from a smaller volume of ethanol to give 127 g. of di-fl-aminoethyl glutamate dihydrochloride, M.P. 168-172C.
One hundred twenty-three grams of the above salt was suspended in 700 ml. of o-dichlorobenzene and, with phosgene being passed in at the rate of 0.75 mole/hr., the mixture was heated at 135 C. for six hours, then the temperature was raised to 178 gradually over another sixhour period. The reaction mixture was cooled, filtered and the solvent was distilled olf under reduced pressure. The product was distilled on a wiping film still using a wall temperature of 250 C. (0.4 mm. Hg), yield 70.3 g.
10 AnaIysis.-Calcd for C H N O (percent): C, 46.31; H, 4.21; N, 13.50. Found (percent): C, 46.41; H, 4.37; N, 13.67.
EXAMPLE 22 Using the method of Example 13, 1,6 di-(6-aminocaproyloxy)-hexane dihydrochloride was produced from e-caprolactam and 1,6-hexanediol. After recrystallization from a mixture of isopropanol and acetone, the product had a melting point of ll85 C.
In both the specification and claims, reference is made to passing the hydrogen chloride gas through the reaction mixture.- As is obvious to those skilled in the art, this result may be achieved either by bubbling a stream of hyr drogen chloride through the reaction mixture or by initially treating the reaction mixture with hydrogen chloride and then maintaining a How of hydrogen chloride gas over the surface of the reaction mixture so that the gas passes from the atmosphere within the reaction vessel into the reaction mass itself. By this means, removal of hydrogen chloride by the azeotroping of the water is compensated for and the reaction medium is kept relatively saturated with hydrogen chloride throughout the esterification reaction.
In addition to phosgenating the amino esters to produce isocyanates as described herein, the amino esters may also be reacted with thiophosgene to produce the corresponding isothiocyanates. Such isothiocyanates are useful in coatings and are of interest as biologically active materials for use as fungicides, herbicides, insecticides, slimicides, etc. as appropriate.
What is claimed is:
1. An ester isocyanate having the formula wherein m and n are either one or two, R is the diester residue of an alkane or cycloalkane diol having two primary hydroxyl groups, from 2 to 18 carbon atoms, and up to one hetero oxygen or sulfur atom, and R and R are divalent organic radicals selected from the group consisting of alkylene and cycloalkylene.
2. An ester isocyanate having the formula wherein m and n are either one or two, R is an alkylene radical having 2 to 8 carbon atoms and up to one hetero oxygen or sulfur atom, and R is a divalent organic radical selected from the group consisting of alkylene and cycloalkylene.
3. An ester isocyanate according to claim 2 wherein n is one and m is two.
4. An ester isocyanate according to claim 2 wherein m and n are both one.
5. B-Isocyanatoethyl-6-isocyanatocaproate.
6. ,B-Isocyanatoethyl-3-isocyanatopropionate.
References Cited UNITED STATES PATENTS 2,729,666 1/1956 Stallmann 260-453A 2,768,154 10/1956 Unruh et al. 260-453A 3,427,346 2/1969 Brotherton et al. 26-0485 FOREIGN PATENTS 673,757 11/1963 Canada 260453A DANIEL D. HORWITZ, Primary Examiner US. Cl. X.R.
US518977A 1966-01-06 1966-01-06 Ester polyisocyanates Expired - Lifetime US3567763A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US51897766A 1966-01-06 1966-01-06

Publications (1)

Publication Number Publication Date
US3567763A true US3567763A (en) 1971-03-02

Family

ID=24066274

Family Applications (1)

Application Number Title Priority Date Filing Date
US518977A Expired - Lifetime US3567763A (en) 1966-01-06 1966-01-06 Ester polyisocyanates

Country Status (7)

Country Link
US (1) US3567763A (en)
JP (1) JPS507584B1 (en)
BE (1) BE691995A (en)
DE (2) DE1593963A1 (en)
FR (1) FR1507036A (en)
GB (2) GB1176328A (en)
NL (1) NL6700146A (en)

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4201847A (en) * 1973-02-16 1980-05-06 Bayer Aktiengesellschaft Process of preparing foams with internal mold-release agents
US4247675A (en) * 1979-08-14 1981-01-27 Toray Industries, Inc. Polyurethane resins and polyurethane resin coating compositions
US4254228A (en) * 1973-02-16 1981-03-03 Bayer Aktiengesellschaft Method of making foamed resins with internal mold-release agents
US4689353A (en) * 1986-02-21 1987-08-25 The Dow Chemical Company Hydroxy and amino-functional polyahls containing carbonate, urethane and/or urea moieties
US4795810A (en) * 1985-11-18 1989-01-03 The Dow Chemical Company Modified poly(alkylene carbonate) polyahls
US4816529A (en) * 1985-11-18 1989-03-28 The Dow Chemical Company Novel ester-modified poly(alkylene carbonate) polyahls and polyurethanes therefrom
US4861909A (en) * 1986-04-11 1989-08-29 The Dow Chemical Company Isocyanate-modified poly(alkylene carbonate) polyahls
US4948862A (en) * 1985-12-16 1990-08-14 The Dow Chemical Company Modified poly(alkylene carbonate) polyahls
US4959499A (en) * 1986-11-04 1990-09-25 The Dow Chemical Company Liquid polymers containing urethane and urea moieties and hydroxyl and/or amino end groups and a process for the preparation thereof
US5084528A (en) * 1985-12-16 1992-01-28 The Dow Chemical Company Novel ester-modified poly(alkylene carbonate) polyahls
US5130466A (en) * 1986-10-03 1992-07-14 Bayer Aktiengesellschaft Diisocyanate, a process for its production and its use
US5552507A (en) * 1994-05-17 1996-09-03 Bayer Aktiengesellschaft Diisocyanates and processes for their production and use
US5965256A (en) * 1997-10-14 1999-10-12 Minnesota Mining And Manufacturing Company Protective films and coatings
US6001936A (en) * 1997-10-24 1999-12-14 3M Innovative Properties Company Dye enhanced durability through controlled dye environment
WO2002053526A1 (en) * 2000-12-29 2002-07-11 Artimplant Ab New compounds for use as intermediates in linear block polymer and new linear block polymer
US6582771B1 (en) 2002-05-03 2003-06-24 Bayer Corporation Method for producing a polyurethane/geofabric composite
US20040220357A1 (en) * 2002-08-27 2004-11-04 Shenshen Wu Compositions for golf equipment
US20040220373A1 (en) * 2002-08-27 2004-11-04 Shenshen Wu Compositions for golf equipment
US20040220377A1 (en) * 2002-08-27 2004-11-04 Manjari Kuntimaddi Compositions for golf equipment
US20040220371A1 (en) * 2002-08-27 2004-11-04 Shenshen Wu Compositions for golf equipment
US20040220376A1 (en) * 2002-08-27 2004-11-04 Manjari Kuntimaddi Compositions for golf equipment
US20040220378A1 (en) * 2002-08-27 2004-11-04 Manjari Kuntimaddi Compositions for golf equipment
US20040220356A1 (en) * 2002-08-27 2004-11-04 Shenshen Wu Compositions for golf equipment
US20040220375A1 (en) * 2002-08-27 2004-11-04 Shenshen Wu Compositions for golf equipment
US20050004325A1 (en) * 2002-08-27 2005-01-06 Shenshen Wu Compositions for golf equipment
US20050085658A1 (en) * 1999-10-25 2005-04-21 Geiger Eric J. Phthalic anhydride based polyester-ether polyols and double metal cyanide catalyst system for preparing same
US20050272529A1 (en) * 2004-06-02 2005-12-08 Shenshen Wu Compositions for golf equipment
US20050272909A1 (en) * 2004-06-02 2005-12-08 Manjari Kuntimaddi Compositions for golf equipment
US20050272899A1 (en) * 2004-06-02 2005-12-08 Shenshen Wu Compositions for golf equipment
US20050272900A1 (en) * 2004-06-02 2005-12-08 Manjari Kuntimaddi Compositions for golf equipment
US20050272530A1 (en) * 2004-06-02 2005-12-08 Shenshen Wu Compositions for golf equipment
US20060035994A1 (en) * 2004-05-17 2006-02-16 Kaplan Warren A Method for preparing phthalate polyester polyol-based dimensionally stable spray polyurethane foam
US20060205909A1 (en) * 2003-03-13 2006-09-14 O'brien Michael E Polyester polyols for polyurethane adhesives
US20070093317A1 (en) * 2002-08-27 2007-04-26 Shenshen Wu Compositions for Golf Equipment
US20080103265A1 (en) * 2004-11-05 2008-05-01 Basf Aktiengesellschaft Microcapsule Dispersions
US20080108719A1 (en) * 1999-10-25 2008-05-08 Geiger Eric J Phthalic Anhydride Based Polyester-Ether Polyols and Double Metal Cyanide Catalyst System for Preparing Same
US20080125247A1 (en) * 2004-06-02 2008-05-29 Murali Rajagopalan Compositions for Golf Equipment
US20080273240A1 (en) * 2004-12-03 2008-11-06 Air Products And Chemicals, Inc. Infrared Radiation Absorbing Sun Protection Film
DE102007046187A1 (en) 2007-09-26 2009-04-09 Bayer Materialscience Ag roof module
WO2009142899A1 (en) 2008-05-22 2009-11-26 Dow Global Technologies Inc. Thermoset polyurethanes comprising cis, trans-1, 3- and 1, 4-cyclohexanedimethylether groups
EP2177555A2 (en) 2008-10-16 2010-04-21 Bayer MaterialScience AG Method for manufacturing polyether ester polyols
EP2202256A1 (en) 2008-12-23 2010-06-30 Bayer MaterialScience LLC Polymer polyols comprising a natural oil base polyol, polyurethane foams comprising these polymer polyols and processes for their preparation
US20110136587A1 (en) * 2003-05-09 2011-06-09 Shawn Ricci Golf balls comprising thermoplastic or thermoset composition having controlled gel time
WO2012080185A1 (en) 2010-12-15 2012-06-21 Bayer Materialscience Ag Foams of high thermal stability
WO2012150201A2 (en) 2011-05-02 2012-11-08 Bayer Intellectual Property Gmbh High-temperature-resistant foams having low thermal conductivity
WO2013127850A1 (en) 2012-02-29 2013-09-06 Bayer Intellectual Property Gmbh 2-k pultrusion formulation and process
WO2013182568A2 (en) 2012-06-06 2013-12-12 Cht R. Beitlich Gmbh Textile auxiliary agent and textile product finished therewith
DE102012222045A1 (en) 2012-12-03 2014-06-05 Cht R. Beitlich Gmbh Coating of luminophores
EP2762508A1 (en) 2007-07-23 2014-08-06 Dow Global Technologies LLC Two part polyurethane curable composition having substantially consistent G-modulus across the range of use temperatures
WO2015100128A1 (en) 2013-12-23 2015-07-02 Dow Global Technologies Llc Adhesive containing high solid copolymer polyol polyurethane prepolymer
EP2894180A1 (en) 2014-01-08 2015-07-15 Bayer MaterialScience AG Polymer Polyols comprising a Polyether Carbonate Polyol as the Base Polyol
WO2017112012A2 (en) 2015-09-17 2017-06-29 Jerez Roberto Velozzi Load-bearing composite panels, materials, products, and processes to make and use same
WO2019149672A2 (en) 2018-02-02 2019-08-08 Basf Se Simultaneous optimization of fiber sizing in-line with the pultrusion process
US10526463B2 (en) 2015-02-20 2020-01-07 Covestro Deutschland Ag Foam materials resistant to high temperatures
EP3741788A1 (en) 2019-05-24 2020-11-25 Covestro Deutschland AG Method for the preparation of polyoxyalkylenpolyol mixtures
EP3838963A1 (en) 2019-12-17 2021-06-23 Covestro Deutschland AG Method for producing polyoxyalkylene polyesterpolyols
WO2022060685A1 (en) 2020-09-15 2022-03-24 Dow Global Technologies Llc Low odor polyurethane adhesives
WO2022096390A1 (en) 2020-11-06 2022-05-12 Covestro Deutschland Ag Method for producing a polyol mixture
WO2023057328A1 (en) 2021-10-07 2023-04-13 Covestro Deutschland Ag Process for preparing polyoxyalkylene polyester polyols
US11629117B2 (en) * 2018-07-03 2023-04-18 Nouryon Chemicals International B.V. Esters of amino carboxylic acids and a process to prepare them

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4395569A (en) 1968-06-27 1983-07-26 Rohm And Haas Company Method of preparing sulfonic acid salts of acyloxyalkylamines and polymers and compounds therefrom
DE3067941D1 (en) * 1980-07-22 1984-06-28 Toray Industries Method for preparing aminoalkyl esters of aminoacids
JPS5864902U (en) * 1981-10-23 1983-05-02 株式会社日立ホームテック oil stove
JPS59166850U (en) * 1983-04-20 1984-11-08 ブラザー工業株式会社 electric dust collector

Cited By (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4201847A (en) * 1973-02-16 1980-05-06 Bayer Aktiengesellschaft Process of preparing foams with internal mold-release agents
US4254228A (en) * 1973-02-16 1981-03-03 Bayer Aktiengesellschaft Method of making foamed resins with internal mold-release agents
US4247675A (en) * 1979-08-14 1981-01-27 Toray Industries, Inc. Polyurethane resins and polyurethane resin coating compositions
US4795810A (en) * 1985-11-18 1989-01-03 The Dow Chemical Company Modified poly(alkylene carbonate) polyahls
US4816529A (en) * 1985-11-18 1989-03-28 The Dow Chemical Company Novel ester-modified poly(alkylene carbonate) polyahls and polyurethanes therefrom
US4948862A (en) * 1985-12-16 1990-08-14 The Dow Chemical Company Modified poly(alkylene carbonate) polyahls
US5084528A (en) * 1985-12-16 1992-01-28 The Dow Chemical Company Novel ester-modified poly(alkylene carbonate) polyahls
US4689353A (en) * 1986-02-21 1987-08-25 The Dow Chemical Company Hydroxy and amino-functional polyahls containing carbonate, urethane and/or urea moieties
US4861909A (en) * 1986-04-11 1989-08-29 The Dow Chemical Company Isocyanate-modified poly(alkylene carbonate) polyahls
US5130466A (en) * 1986-10-03 1992-07-14 Bayer Aktiengesellschaft Diisocyanate, a process for its production and its use
US4959499A (en) * 1986-11-04 1990-09-25 The Dow Chemical Company Liquid polymers containing urethane and urea moieties and hydroxyl and/or amino end groups and a process for the preparation thereof
US5552507A (en) * 1994-05-17 1996-09-03 Bayer Aktiengesellschaft Diisocyanates and processes for their production and use
US5965256A (en) * 1997-10-14 1999-10-12 Minnesota Mining And Manufacturing Company Protective films and coatings
US6001936A (en) * 1997-10-24 1999-12-14 3M Innovative Properties Company Dye enhanced durability through controlled dye environment
US6395844B1 (en) 1997-10-24 2002-05-28 3M Innovative Properties Company Enhanced dye durability through controlled dye environment
US6498218B2 (en) 1997-10-24 2002-12-24 3M Innovative Properties Co Enhanced dye durability through controlled dye environment
US20080108719A1 (en) * 1999-10-25 2008-05-08 Geiger Eric J Phthalic Anhydride Based Polyester-Ether Polyols and Double Metal Cyanide Catalyst System for Preparing Same
US20050085658A1 (en) * 1999-10-25 2005-04-21 Geiger Eric J. Phthalic anhydride based polyester-ether polyols and double metal cyanide catalyst system for preparing same
US20060135637A1 (en) * 1999-10-25 2006-06-22 Hillshafer Douglas K Phthalic anhydride based polyester-ether polyols and double metal cyanide catalyst system for preparing same
WO2002053526A1 (en) * 2000-12-29 2002-07-11 Artimplant Ab New compounds for use as intermediates in linear block polymer and new linear block polymer
US6582771B1 (en) 2002-05-03 2003-06-24 Bayer Corporation Method for producing a polyurethane/geofabric composite
US20040220356A1 (en) * 2002-08-27 2004-11-04 Shenshen Wu Compositions for golf equipment
US7115703B2 (en) 2002-08-27 2006-10-03 Acushnet Company Compositions for golf equipment
US20040220378A1 (en) * 2002-08-27 2004-11-04 Manjari Kuntimaddi Compositions for golf equipment
US20080064527A1 (en) * 2002-08-27 2008-03-13 Shenshen Wu Compositions for golf equipment
US20040220375A1 (en) * 2002-08-27 2004-11-04 Shenshen Wu Compositions for golf equipment
US20050004325A1 (en) * 2002-08-27 2005-01-06 Shenshen Wu Compositions for golf equipment
US20040220371A1 (en) * 2002-08-27 2004-11-04 Shenshen Wu Compositions for golf equipment
US20040220357A1 (en) * 2002-08-27 2004-11-04 Shenshen Wu Compositions for golf equipment
US7709590B2 (en) 2002-08-27 2010-05-04 Acushnet Company Compositions for golf equipment
US7550549B2 (en) 2002-08-27 2009-06-23 Acushnet Company Compositions for golf equipment
US20080188326A1 (en) * 2002-08-27 2008-08-07 Acushnet Company Compositions for Golf Equipment
US7378483B2 (en) 2002-08-27 2008-05-27 Acushnet Company Compositions for golf equipment
US20040220373A1 (en) * 2002-08-27 2004-11-04 Shenshen Wu Compositions for golf equipment
US20040220377A1 (en) * 2002-08-27 2004-11-04 Manjari Kuntimaddi Compositions for golf equipment
US7098274B2 (en) 2002-08-27 2006-08-29 Acushnet Company Compositions for golf equipment
US7101951B2 (en) 2002-08-27 2006-09-05 Acushnet Company Compositions for golf equipment
US7105623B2 (en) 2002-08-27 2006-09-12 Acushnet Company Compositions for golf equipment
US7105628B2 (en) 2002-08-27 2006-09-12 Acushnet Company Compositions for golf equipment
US20070093317A1 (en) * 2002-08-27 2007-04-26 Shenshen Wu Compositions for Golf Equipment
US20040220376A1 (en) * 2002-08-27 2004-11-04 Manjari Kuntimaddi Compositions for golf equipment
US7138476B2 (en) 2002-08-27 2006-11-21 Acushnet Company Compositions for golf equipment
US7138477B2 (en) 2002-08-27 2006-11-21 Acushnet Company Compositions for golf equipment
US7138475B2 (en) 2002-08-27 2006-11-21 Acushnet Company Compositions for golf equipment
US7157545B2 (en) 2002-08-27 2007-01-02 Acushnet Company Compositions for golf equipment
US20060205909A1 (en) * 2003-03-13 2006-09-14 O'brien Michael E Polyester polyols for polyurethane adhesives
US20110136587A1 (en) * 2003-05-09 2011-06-09 Shawn Ricci Golf balls comprising thermoplastic or thermoset composition having controlled gel time
US20060035994A1 (en) * 2004-05-17 2006-02-16 Kaplan Warren A Method for preparing phthalate polyester polyol-based dimensionally stable spray polyurethane foam
US7253242B2 (en) 2004-06-02 2007-08-07 Acushnet Company Compositions for golf equipment
US20050272909A1 (en) * 2004-06-02 2005-12-08 Manjari Kuntimaddi Compositions for golf equipment
US7276570B2 (en) 2004-06-02 2007-10-02 Acushnet Company Compositions for golf equipment
US7256249B2 (en) 2004-06-02 2007-08-14 Acushnet Company Compositions for golf equipment
US7265195B2 (en) 2004-06-02 2007-09-04 Acushnet Company Compositions for golf equipment
US7253245B2 (en) 2004-06-02 2007-08-07 Acushnet Company Compositions for golf equipment
US20050272530A1 (en) * 2004-06-02 2005-12-08 Shenshen Wu Compositions for golf equipment
US20080125247A1 (en) * 2004-06-02 2008-05-29 Murali Rajagopalan Compositions for Golf Equipment
US20050272900A1 (en) * 2004-06-02 2005-12-08 Manjari Kuntimaddi Compositions for golf equipment
US20050272529A1 (en) * 2004-06-02 2005-12-08 Shenshen Wu Compositions for golf equipment
US20050272899A1 (en) * 2004-06-02 2005-12-08 Shenshen Wu Compositions for golf equipment
US20080103265A1 (en) * 2004-11-05 2008-05-01 Basf Aktiengesellschaft Microcapsule Dispersions
US20080273240A1 (en) * 2004-12-03 2008-11-06 Air Products And Chemicals, Inc. Infrared Radiation Absorbing Sun Protection Film
EP2762508A1 (en) 2007-07-23 2014-08-06 Dow Global Technologies LLC Two part polyurethane curable composition having substantially consistent G-modulus across the range of use temperatures
US20090146463A1 (en) * 2007-09-26 2009-06-11 Bayer Materialscience Ag Roof module for a motor vehicle
DE102007046187A1 (en) 2007-09-26 2009-04-09 Bayer Materialscience Ag roof module
US8042864B2 (en) 2007-09-26 2011-10-25 Bayer Materialscience Ag Roof module for a motor vehicle
WO2009142899A1 (en) 2008-05-22 2009-11-26 Dow Global Technologies Inc. Thermoset polyurethanes comprising cis, trans-1, 3- and 1, 4-cyclohexanedimethylether groups
EP2177555A2 (en) 2008-10-16 2010-04-21 Bayer MaterialScience AG Method for manufacturing polyether ester polyols
DE102008051882A1 (en) 2008-10-16 2010-04-29 Bayer Materialscience Ag Process for the preparation of polyetherester polyols
EP2202256A1 (en) 2008-12-23 2010-06-30 Bayer MaterialScience LLC Polymer polyols comprising a natural oil base polyol, polyurethane foams comprising these polymer polyols and processes for their preparation
WO2012080185A1 (en) 2010-12-15 2012-06-21 Bayer Materialscience Ag Foams of high thermal stability
US9481776B2 (en) 2010-12-15 2016-11-01 Covestro Deutschland Ag Foams of high thermal stability
WO2012150201A2 (en) 2011-05-02 2012-11-08 Bayer Intellectual Property Gmbh High-temperature-resistant foams having low thermal conductivity
WO2013127850A1 (en) 2012-02-29 2013-09-06 Bayer Intellectual Property Gmbh 2-k pultrusion formulation and process
WO2013182568A2 (en) 2012-06-06 2013-12-12 Cht R. Beitlich Gmbh Textile auxiliary agent and textile product finished therewith
DE102012209598A1 (en) 2012-06-06 2013-12-12 Cht R. Beitlich Gmbh Textile auxiliaries and thus refined textile product
DE102012222045A1 (en) 2012-12-03 2014-06-05 Cht R. Beitlich Gmbh Coating of luminophores
WO2014086579A1 (en) 2012-12-03 2014-06-12 Cht R. Beitlich Gmbh Luminophore coating
WO2015100128A1 (en) 2013-12-23 2015-07-02 Dow Global Technologies Llc Adhesive containing high solid copolymer polyol polyurethane prepolymer
EP2894180A1 (en) 2014-01-08 2015-07-15 Bayer MaterialScience AG Polymer Polyols comprising a Polyether Carbonate Polyol as the Base Polyol
US10526463B2 (en) 2015-02-20 2020-01-07 Covestro Deutschland Ag Foam materials resistant to high temperatures
EP3766686A1 (en) 2015-09-17 2021-01-20 Roberto Velozzi Jerez Load-bearing composite panels, materials, products, and processes to make and use same
WO2017112012A2 (en) 2015-09-17 2017-06-29 Jerez Roberto Velozzi Load-bearing composite panels, materials, products, and processes to make and use same
WO2019149672A2 (en) 2018-02-02 2019-08-08 Basf Se Simultaneous optimization of fiber sizing in-line with the pultrusion process
US11629117B2 (en) * 2018-07-03 2023-04-18 Nouryon Chemicals International B.V. Esters of amino carboxylic acids and a process to prepare them
EP3741788A1 (en) 2019-05-24 2020-11-25 Covestro Deutschland AG Method for the preparation of polyoxyalkylenpolyol mixtures
WO2020239525A1 (en) 2019-05-24 2020-12-03 Covestro Intellectual Property Gmbh & Co. Kg Process for producing polyoxyalkylene-polyol mixtures
US12091543B2 (en) 2019-05-24 2024-09-17 Covestro Intellectual Property Gmbh & Co. Kg Process for producing polyoxyalkylene-polyol mixtures
EP3838963A1 (en) 2019-12-17 2021-06-23 Covestro Deutschland AG Method for producing polyoxyalkylene polyesterpolyols
WO2021122401A1 (en) 2019-12-17 2021-06-24 Covestro Intellectual Property Gmbh & Co. Kg Process for preparing polyoxyalkylene polyester polyols
WO2022060685A1 (en) 2020-09-15 2022-03-24 Dow Global Technologies Llc Low odor polyurethane adhesives
WO2022096390A1 (en) 2020-11-06 2022-05-12 Covestro Deutschland Ag Method for producing a polyol mixture
WO2023057328A1 (en) 2021-10-07 2023-04-13 Covestro Deutschland Ag Process for preparing polyoxyalkylene polyester polyols

Also Published As

Publication number Publication date
DE1618798A1 (en) 1971-02-18
DE1593963A1 (en) 1970-08-20
FR1507036A (en) 1967-12-22
BE691995A (en) 1967-06-30
JPS507584B1 (en) 1975-03-27
GB1176329A (en) 1970-01-01
NL6700146A (en) 1967-07-07
GB1176328A (en) 1970-01-01

Similar Documents

Publication Publication Date Title
US3567763A (en) Ester polyisocyanates
US2853473A (en) Production of carbodiimides
CA1166649A (en) Process for the production of n,o-disubstituted urethanes
US3681290A (en) Aromatic diamines containing ester groups and the production of polyurethane elastomers therefrom
FI84054B (en) SUBSTITUERADE P, P'-METHYLENE-BIS ANANILINE.
US3484466A (en) Preparation of aromatic sulfonyl isocyanates
US3235553A (en) N-(beta-substituted ethyl)-isocyanurates
DE69222972T2 (en) Manufacture of urethane and carbonate products
US3573259A (en) Process for the preparation of isocyanurate-containing polyisocyanate salts
US2835652A (en) Organic phosphorus containing isocyanates and polymers
US4176232A (en) Sulfonic acid salts of acyloxyalkylamines
US3367920A (en) Polyurea and method of preparing same
US3371114A (en) Hydrocarbyl isocyanate catalyst for the phosgenation of aryl sulfonamides
US3939200A (en) Aliphatic acyl-containing amine hydrochlorides
US3322812A (en) Alkyl isocyanatoalkyl carbonates
US3278492A (en) Polymerization of organic isocyanates using an organometallic catalyst
US3139449A (en) Process for preparing organic isothiocyanate using phosphorus-containing catalysts
US3468934A (en) Acyloxyalkylamine hydrochlorides
US3968104A (en) Extremely low viscosity adducts of lactams with alcohols
Dyer et al. The synthesis of polythiolcarbamates
US3100790A (en) Isocyanoaryl esters of phosphonic, phosphinic, thiophosphonic, and thiophosphinic acids
US3275618A (en) Processes for preparing alkylene diisocyanates and intermediates therefor
US2884435A (en) Aminoaryl isocyanates and their manufacture
US3652599A (en) Novel azidosulfonylcarbanilates
US3162673A (en) Bis (aminoaliphatic) carbonates and process for preparation