US3567450A - Photoconductive elements containing substituted triarylamine photoconductors - Google Patents
Photoconductive elements containing substituted triarylamine photoconductors Download PDFInfo
- Publication number
- US3567450A US3567450A US706800A US3567450DA US3567450A US 3567450 A US3567450 A US 3567450A US 706800 A US706800 A US 706800A US 3567450D A US3567450D A US 3567450DA US 3567450 A US3567450 A US 3567450A
- Authority
- US
- United States
- Prior art keywords
- photoconductive
- radical
- photoconductor
- composition
- electrophotographic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/04—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
- G03G5/06—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
- G03G5/0664—Dyes
- G03G5/0666—Dyes containing a methine or polymethine group
- G03G5/0668—Dyes containing a methine or polymethine group containing only one methine or polymethine group
Definitions
- This invention relates to electrophotography, and in particular to photoconductive compositions and elements.
- the process of xerography employs an electrophotographic element comprising a support material bearing a coating of a normally insulating material whose electrical resistance Varies with the amount of incident actinic radiation it receives during an imagewise exposure.
- the element commonly termed a photoconductive element, is first given a uniform surface charge, generally in the dark after a suitable period of dark adaptation. It is then exposed to a pattern of actinic radiation which has the effect of differentially reducing the potential of the surface charge in accordance with the relative energy contained in various parts of the radiation pattern. The differential surface charge or electrostatic latent image remaining on the electrophotographic element is then made visible by contacting the surface with a suitable electroscopic marking material.
- marking material or toner whether contained in an insulating liquid or on a dry carrier, can be deposited on the exposed surface in accordance with either the charge pattern or the discharge pattern as desired.
- the deposited marking material can then be either permanently fixed to the surface of the sensitve element by known means such as heat, pressure, solvent vapor, or the like, or transferred to a second element to which it can similarly be fixed.
- the electrostatic latent image can be transferred to a second element and developed there.
- electrophotographic elements having coated thereon organic photoconductive compositions containing a triarylamine photoconductor wherein at least one of the aryl radicals is substituted by either a vinyl radical or a vinylene radical having at least one active hydrogencontaining group.
- Groups which contain active hydrogen are well known in the art, the definition of this term being set forth in several textbooks such as Advanced Organic Chemistry, R. C. Fuson, pp.
- active hydrogen-containing group as used herein includes those compounds encompassed by the discussion in the textbook cited above and in addition includes those compounds which contain groups which are hydrolyzable to active hydrogen-containing groups.
- Typical active hydrogen-containing groups substituted on the vinylene radical of the triarylamine according to this invention include:
- ethynyl radicals including substituted ethynyl radicals such as hydroxy ethynyl radicals, aryl ethynyl radicals and alkyl ethynyl radicals,
- ester radicals e.g., 1,3-(2-aminoethyl)-2-aminoethyl radicals
- R is alkyl or aryl
- R including cyclic ester radicals 0 ll -COR wherein R is a cyclic alkylene radical connected to a vinylene combination such as is found in coumarin de rivatives, (e) carboxylic acid anhydride radicals, (f) semicarbazono radicals, (g) cyano radicals, (h) acyl halide radicals (e.g.,
- amido radicals e.g., N-(2-aminoethyl)-2-amino radicals
- R is a hydrogen atom, an alkyl group or an aryl group
- active hydrogen-containing groups include substituted and unsubstited al kylidyne oximido radicals.
- the preferred photoconductors of this invention are represented by the following structure:
- Ar and Ar are each a phenyl radical including a substituted phenyl radical such as a halophenyl radical, an al kyl phenyl radical or an aminophenyl radical;
- Ar is an arylene radical including a substituted arylene radical such as a phenylene radical or a naphthylene radical,
- R and R are each hydrogen, a phenyl radical including a substituted phenyl radical or a lower alkyl radical preferably having 1-8 carbon atoms;
- X is either (1) an active hydrogen-containing group such as a carboxy radical, an acyl halide radical, an amido radical, a carboxylic acid anhydride radical, an ester radical, a cyano radical, a hydroxy radical, a semicarbazone radical, an ethynyl radical, or a methylidyne oximido radical or (2) hydrogen, provided that when X is hydrogen R and R are also hydrogen; and
- n is an integer of one to three.
- the vinyl or vinylene radical can be substituted in any position on the arylene nucleus.
- Ar is phenylene, particularly good results are obtained if the substitution occurs in the para position.
- the organic photoconductors of this invention exhibit substantial improvements in speed over comparable photoconductors which do not have both an active hydrogencontaining group (including groups hydrolyzable to active hydrogen-containing groups) and a vinyl or vinylene group. Also, those compounds having an unsubstituted vinyl radical show improvements in electrical speed as organic photoconductors when compared to similar compounds which lack such a group. Thus, a compound according to the above formula when n is zero and X is an active hydrogen-containing group would not exhibit the higher speeds attainable when compared to a compound where n is 1, 2, or 3.
- Those compounds in which Ar; and Ar in the above formula are phenyl radicals generally have improved photo-conducting properties over those which are substituted by one or two alkyl or benzyl radicals.
- pdiphenyl amino-cinnamic acid and methyl p-diphenylaminocinnamate display improved electrical speeds over p-(N-methyl, N-phenylamino)cinnamic acid, methyl p- (N-imethyl, N-phenylamino)cinnamate or methyl p-dibenzylaminocinnamate.
- ethyl p-diphenylaminophenylvinylacrylate has enhanced electrical speed properties compared to ethyl p-dimethylaminophenylvinylacrylate.
- Some typical photoconductors of this invention are:
- Electrodes of the invention can be prepared with these photoconducting compounds in the usual manner, i.e., by blending a dispersion or solution of a photoconductive compound together with a binder, when necessary or desirable, and coating or forming a self-supporting layer with the photoconductor-containing materials. Mixtures of the photoconductors described herein can be employed. Likewise, other photoconductors known in the art can be combined with the present photoconductors. In addition, supplemental materials useful for changing the spectral sensitivity or electrophotosensitivity of the element can be added to the composition of the element when it is desirable to produce the characteristic effect of such materials.
- Sensitizing compounds useful with the photoconductive compounds of the present invention can include a wide variety of substances such as pyrylium, thiapyrylium, and selenapyrylium salts of US. Patent 3,250,615, issued May 10, 1966; fluorenes, such as 7,12-dioxo-l3-dibenzo(a,h) fluorene, 5,10 dioxo-4a,11-diazabenzo(b)fluorene, 3,13- dioxo-7-oxadibenzo-('b,g)fluorene, trinitrofluorenone, tetranitrofiuorenone and the like; aromatic nitro compounds of US. Patent 2,610,120; anthro-nes of US.
- Patent 2,670,- 285 quinones of US. Patent 2,670,286; benzophenones of US. Patent 2,670,287; thiazoles of US. Patent 2,732, 301; mineral acids; carboxylic acids, such as maleic acid, dichloroacetic acid, and salicylic acid; sulfonic and phosphoric acids; and various dyes such as triphenylmethane, diarylmethane, thiazine, azine, oxazine, Xanthene, phthalein, acridine, azo, anthraquinone dyes and many other suitable sensitizing dyes.
- the preferred sensitizers for use with the compounds of this invention are pyrylium and thiapyrylium salts, fluorenes, carboxylic acids, and triphenylmethane dyes.
- sensitizing compound is to be used within a photoconductive layer as disclosed herein it is conventional practice to mix a suitable amount of the sensitizing compounds with the coating composition so that, after thorough mixing, the sensitizing compound is uniformly distributed throughout the desired layer of the coated element.
- no sensitizing compound is needed for the layer to exhibit photoconductivity.
- the lower limit of sensitizer required in a particular photoconductive layer is, therefore, zero.
- relatively minor amounts of sensitizing compound give substantial improvement in the electrophotographic speed of such layers, the use of some sensitizer is preferred.
- the amount of sensitizer that can be added to a photoconductor-incorporating layer to give effective increases in speed can vary widely.
- any given case will vary with the specific photoconductor and sensitizing compound used. In general, substantial speed gains can be obtained where an appropriate sensitizer is added in a concentration range from about 0.0001 to about percent by weight based on the weight of the film-forming coating composition.
- a sensitizer is added to the coating composi-' tion in an amount by weight from about 0.005 to about 5.0 percent by Weight of the total coating composition.
- Preferred binders for use in preparing the present photoconductive layers are film-forming polymeric binders having fairly high dielectric strength which are good electrically insulating film-forming vehicles.
- Materials of this type comprise styrene-butadiene copolymers; silicone resins; styrene-alkyd resins; silicone-alkyd resins; soya-alkyd resins; poly(vinyl chloride); poly(vinylidene chloride); vinylidene chloride-acrylonitrile copolymers; poly(vinyl acetate); vinyl acetate-vinyl chloride copolymers; poly(vinyl acetals), such as poly(vinyl butyral); polyacrylic and methacrylic esters, such as poly(methylmethacrylate), poly(n-butylmethacrylate) poly (isobutyl methacrylate), etc.; polystyrene; nitrated polystyrene; polymethylstyrene;
- styrene-alkyd resins can be prepared according to the method described in U.S. Patents 2,361,019 and 2,258,423.
- Suitable resins of the type contemplated for use in the photoconductive layers of the invention are sold under such trade names as Vitel PE101, Cymac, Piccopale 100, Saran F220 and Lexan 105.
- Other types of binders which can be used in the photoconductive layers of the invention include such materials as paraffin, mineral waxes, etc.
- Solvents of choice for preparing coating compositions of the present invention can include a number of solvents such as benzene, toluene, acetone, Z-butanone, chlorinated hydrocarbons, e.g., methylene chloride, ethylene chloride, etc., ethers, e.g., tetrahydrofuran, or mixtures of these solvents etc.
- solvents such as benzene, toluene, acetone, Z-butanone, chlorinated hydrocarbons, e.g., methylene chloride, ethylene chloride, etc., ethers, e.g., tetrahydrofuran, or mixtures of these solvents etc.
- the photoconductor substance is present in an amount equal to at least about 1 weight percent of the coating composition.
- the upper limit in the amount of photoconductor substance present can be widely varied in accordance with usual practice. In those cases where a binder is employed, it is normally required that the photoconductor substance be present in an amount from about 1 weight percent of the coating composition to about 99 weight percent of the coating composition.
- a preferred Weight range for the photoconductor substance in the coating composition is from about 10 weight percent to about 60 weight percent.
- Coating thicknesses of the photoconductive composition on a support can vary widely. Normally, a coating in the range of about 0.001 inch to about 0.01 inch before drying is useful for the practice of this invention. The preferred range of coating thickness was found to be in the range from about 0.002 inch to about 0.006 inch before drying although useful results can be obtained outside of this range.
- Suitable supporting materials for coating the photoconductive layers of the present invention can include any of a wide variety of electrically conducting supports, for example, paper (at a relative humidity above 20 percent); aluminum-paper laminates; metal foils such as aluminum foil, zinc foil, etc.; metal plates, such as aluminum, copper, zinc, brass, and galvanized plates; vapor deposited metal layers such as silver, nickel, or aluminum and the like.
- Metal (e.g., nickel, etc.) conducting layers deposited by high vacuum deposition techniques can be coated at low coverages so as to be substantially transparent to facilitate image exposure through the support.
- An especially useful conducting support can be prepared by coating a support material such as poly(ethylene terephthalate) with a layer containing a semiconductor dispersed in a resin.
- Suitable conducting layers both with and without insulating barrier layers are described in US. Patent 3,245,833.
- Other suitable conducting layers are described in U.S. Patent 3,120,- 028.
- a suitable conducting coating can be prepared from the sodium salt of a carboxyester lactone of maleic anhydride and a vinyl acetate polymer.
- Such kinds of conducting layers and methods for their optimum preparation and use are disclosed in US. 3,007,901 and 3,267,807.
- the elements of the present invention can be employed in any of the well-known electrophotographic processes which require photoconductive layers.
- One such process is the aforementioned xerographic process.
- the electrophotographic element is given a blank electrostatic charge by placing the same under a corona discharge which serves to give a uniform charge to the surface of the photoconductive layer. This charge is retained by the layer owing to the substantial insulating property of the layer, i.e., the low conductivity of the layer in the dark.
- the electrostatic charge formed on the surface of the photoconducting layer is then selectively dissipated from the surface of the layer by exposure to light through an image-bearing transparency by a conventional exposure operation such as, for example, by contact-printing techniques, or by lens projection of an image, etc., to form a latent image in the photoconducting layer.
- a charge pattern is created by virtue of the fact that light causes the charge to be conducted away in pro portion to the intensity of the illumination in a particular area.
- the charge pattern remaining after exposure is then developed, i.e., rendered visible, by treatment with a medium comprising electrostatically attractable particles having optical density.
- the developing electrostatically attractable particles can be in the form of a dust, e.g., powder, pigment in a resinous carrier, i.e., toner, or a liquid developer may be used in which the developing particles are carried in an electrically insulating liquid carrier.
- a dust e.g., powder
- a resinous carrier i.e., toner
- a liquid developer may be used in which the developing particles are carried in an electrically insulating liquid carrier.
- the present invention is not limited to any particular mode of use of the new electrophotographic materials, and the exposure technique, the charging method, the transfer (if any), the developing method, and the fixing method as Well as the materials used in these methods can be selected and adapted to the requirements of any particular technique.
- Electrophotographic materials according to the present invention can be applied to reproduction techniques wherein different kinds of radiations, i.e., electromagnetic radiations as well as nuclear radiations, can be used. For this reason, it is pointed out herein that although materials according to the invention are mainly intended for use in connection with methods comprising an exposure, the term electrophotography wherever appearing in the description and the claims, is to be interpreted broadly and understood to comprise both xerography and xeroradiography.
- Organic photoconductor 0.5 g. Polymeric binder: 1.05 g. Sensitizer: 0.02 g.
- compositions are coated at a wet thickness of 0.004 inch on a conducting layer comprising the sodium salt of a carboxyester lactone, such as described in US 3,120,028, which in turn is coated on a cellulose acetate film base.
- the coating blocks are maintained at a temperature of 90 F.
- These electrophotographic elements are charged under a positive or negative corona source until the surface potentials, as measured by an electrometer probe, reach between about 500 and 600 volts. They are then subjected to exposure from behind a stepped density gray scale to a 3000 K. tungsten source.
- the exposure causes reduction of the surface potentials of the elements under each step of the gray scale from their initial potential, V0, to some lower potential, V Whose exact value depends on the actual amount of exposure in meter-candleseconds received by the areas.
- the results of the measure ments are plotted on a graph of surface potential V vs. log exposure for each step.
- the speed is the numerical expression of 10 multiplied by the reciprocal of the exposure in meter-candle-seconds required to reduce the 500 to 600 volt charged surface potentials to 100 volts above volt.
- the reduction of the surface potential to 100* volts or below is significant in that it represents a requirement for suitable broad area development of a latent image.
- This speed at 100 volts is a measure of the ability to produce and hence forth to develop or otherwise utilize the latent image, higher speeds requiring less illumination to produce a latent image.
- the surface potential does not drop to, or below, 100 volts and no speed value can be assigned. This is also the case when a compound is present in the composition but is ineffective as a photoconductcr.
- the speeds of the various photoconductive compositions are shown in Table 11 below.
- the sensitizers used are referred to below as follows:
- Example 1 is repeated except that the binder employed is a film-forming polycarbonate resin sold commercially as Lexan by General Electric Co.
- the photoconductor employed in the photoconductive composition is p-diphenylaminocinnamoyl chloride (Compound V).
- the positive speed at 100 volts for compositions containing sensitizer F is 260 and for sensitizer G the speed is 220.
- EXAMPLE 3 In order to show the efiicacy of the vinylene moiety in the photoconductors of this invention, two closely related compounds are tested for their electrophotographic speeds at 100 volts positive.
- the first compound, p-diphenylaminocinnamic acid (Compound XII) has a vinylene moiety While the second, 4-carboxytriphenylamine, is the same as compound XII but lacks a vinylene moiety.
- Two photoconductive compositions are prepared and tested according to Example 1 except the following composition is used:
- the speed of 4-carboxytriphenylamine is 50.
- the speed of Compound XII is 160.
- EXAMPLE 4 This example demonstrates the increases in speed attainable with a photoconducting compound having both a vinylene moiety and an active hydrogen-containing group such as compound XII as opposed to a photoconducting compound having neither moiety present such as triphenylamine.
- photoconducting compositions containing the above photo-conductors are prepared and tested according to Example 1 except the following composition is used:
- Sensitizer G 0.02 g.
- the positive 100 volt speed of the composition containing triphenylamine is 130.
- the positive 100 volt speed of the composition containing compound XI-I is 630.
- EXAMPLE 6 The 100 volt positive speed of p-diphenplaminocinnamonitrile is determined according to Example 1 using the following composition:
- Photoconductor 0.15 g. Vitel 101: 0.50 g. Sensitizer G: 0.002 g. Dichloromethane: 5.0 ml.
- the resultant speed is 110.
- EXAMPLE 8 Coating dopes prepared in the manner set forth in Example 1 containing the compounds in Table I are coated in the manner described in Example 1.
- the surface of each of the photoconductive layers so prepared is charged to a potential of about +600 volts under a corona charger.
- the layer is then covered with a transparent sheet bearing a pattern of opaque and light transmitting areas and exposed to the radiation from an incandescent lamp with an illumination intensity of about 75 meter-candles for 12 seconds.
- the resulting electrostatic latent image is developed in the usual manner by cascading over the surface of the layer a mixture of negatively charged black thermoplastic toner particles and glass beads. A good reproduction of the pattern results in each instance.
- An electrophotographic element comprising a conductive support having coated thereon a photoconductive composition comprising a photoconductor having the structure:
- an ethynyl radical an acyl halide radical, a cyano radical, a carboxylic acid anhydride radical, a hydroxy radical, a semicarbazono radical, an oximido radical and an amido radical;
- n is an integer of 1 to 3.
- An electrophotographic element comprising an electrically conductive support having coated thereon a photoconductive composition comprising a polymeric binder and a photoconductor selected from the group consisting of: I
- a photoconductive element for use in electrophotography comprising a conductive support having coated thereon a photoconductive composition comprising:
- a photoconductive element for use in electrophotography comprising a conductive support having coated thereon a photoconductive composition comprising:
- a photoconductive element for use in electrophotography comprising a conductive support having coated thereon a photoconductive composition comprising:
- a photoconductive element for use in electrophotography comprising a conductive support having coated thereon a photoconductive composition comprising:
- a photoconductive element for use in electrophotography comprising a conductive support having coated thereon a photoconductive composition compris- (a) about 10 to 60% by weight based on said photoconductive composition of ethyl p-diphenylamino cinamate as a photoconductor, and
- a photoconductive element for use in electrophotography comprising a conductive support having coated thereon a photoconductive composition comprismg:
- a photoconductive element for use in electrophotography comprising a conductive support having coated thereon a photoconductive composition comprismg:
- a photoconductive element for use in electrophotography comprising a conductive support having coated thereon a photoconductive composition comprismg:
- a coated thereon a photoconductive composition compris- (a) about 10 to 60% by weight based on said photoconductive composition of ethyl p-diphenylaminocinnamate as a photoconductor,
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Photoreceptors In Electrophotography (AREA)
Abstract
TRIARYLAMINES HAVING AT LEAST ONE OF THE ARYL RADICALS SUBSTITUTED BY EITHER A VINYL RADICAL OR A VINYLENE RADICAL HAVING AT LEAST ONE ACTIVE HYDROGEN-CONTAINING GROUP ARE GOOD ORGANIC PHOTOCONDUCTORS IN ELECTROPHOTOGRAPHIC SYSTEMS.
Description
United States Patent 3,567,450 PHOTOCONDUCTIVE ELEMENTS CON- TAINING SUBSTITUTED TRllARYL- AMINE PHOTOCONDUCTORS Thomas B. Brantly, Lawrence E. Contois, and Charles J. Fox, Rochester, N.Y., assignors to Eastman Kodak Company, Rochester, N.Y. No Drawing. Filed Feb. 20, 1968, Ser. No. 706,800 Int. Cl. 603g 5/06, 13/22 US. Cl. 96--1.5 17 Claims ABSTRACT OF THE DISCLOSURE Triarylamines having at least one of the aryl radicals substituted by either a vinyl radical or a vinylene radical having at least one active hydrogen-containing group are good organic photoconductors in electrophotographic systems.
This invention relates to electrophotography, and in particular to photoconductive compositions and elements.
The process of xerography, as disclosed by Carlson in US. 2,297,691, employs an electrophotographic element comprising a support material bearing a coating of a normally insulating material whose electrical resistance Varies with the amount of incident actinic radiation it receives during an imagewise exposure. The element, commonly termed a photoconductive element, is first given a uniform surface charge, generally in the dark after a suitable period of dark adaptation. It is then exposed to a pattern of actinic radiation which has the effect of differentially reducing the potential of the surface charge in accordance with the relative energy contained in various parts of the radiation pattern. The differential surface charge or electrostatic latent image remaining on the electrophotographic element is then made visible by contacting the surface with a suitable electroscopic marking material. Such marking material or toner, whether contained in an insulating liquid or on a dry carrier, can be deposited on the exposed surface in accordance with either the charge pattern or the discharge pattern as desired. The deposited marking material can then be either permanently fixed to the surface of the sensitve element by known means such as heat, pressure, solvent vapor, or the like, or transferred to a second element to which it can similarly be fixed. Likewise, the electrostatic latent image can be transferred to a second element and developed there.
Various photoconductive insulating materials have been employed in the manufacture of electrophotographic elements. For example, vapors of selenium and vapors of selenium alloys deposited on a suitable support and particles of photoconductive zinc oxide held in a resinous, film-forming binder have found wide application in present-day document copying applications.
Since the introduction of electrophotography, a great many organic compounds have also been screened for their photoconductive properties. As a result, a very large number of organic compounds are known to possess some degree of photoconductivity. Many organic compounds have revealed a useful level of photoconduction and have been incorporated into photoconductive compositions. Optically clear organic photoconductor-containing elements having desirable electrophotographic properties can be especially useful in electrophotography. Such electrophotographic elements can be exposed through a transparent base if desired, thereby providing unusual flexibility in equipment design. Such compositions, when coated as a film or layer on a suitable support also yield an element which is reusable; that is, it can be used to form subsequent images after residual toner from prior images 3,567,450 Patented Mar. 2, 1971 has been removed by transfer and/or cleaning. Thus far, the selection of organic compounds for incorporation into photoconductive compositions to form electrophotographic layers has proceeded on a compound by compound basis. Nothing has yet been discovered from the large number of different photoconductive substances tested which permits effective prediction and therefore selection of particular compounds exhibiting the desired electrophotographic properties.
It is, therefore, an object of this invention to provide photoconductive elements for use in electrophotography containing a novel class of organic photoconductors having enhanced photosensitivity when electrically charged.
It is also an object to provide electrophotographic elements having a layer of a novel photoconductive composition which can be positively or negatively charged.
It is another object to provide novel transparent electro photographic elements having high speed characteristics.
It is a further object of this invention to provide novel electrophotographic elements useful for producing images electrophotographically by reflex or birefiex processes.
These and other objects of this invention are accomplished with electrophotographic elements having coated thereon organic photoconductive compositions containing a triarylamine photoconductor wherein at least one of the aryl radicals is substituted by either a vinyl radical or a vinylene radical having at least one active hydrogencontaining group. The phrase vinylene radical includes substituted as well as unsubstituted vinylene radicals and also includes those radicals having at least one and as many as three repeating units of vinylene groups such as tCH=CH+ wherein n is an integer of from one to three. Groups which contain active hydrogen are well known in the art, the definition of this term being set forth in several textbooks such as Advanced Organic Chemistry, R. C. Fuson, pp. 154157, John Wiley & Sons, 1950'. The term active hydrogen-containing group as used herein includes those compounds encompassed by the discussion in the textbook cited above and in addition includes those compounds which contain groups which are hydrolyzable to active hydrogen-containing groups. Typical active hydrogen-containing groups substituted on the vinylene radical of the triarylamine according to this invention include:
(a) carboxy radicals,
(b) hydroxy radicals,
(c) ethynyl radicals including substituted ethynyl radicals such as hydroxy ethynyl radicals, aryl ethynyl radicals and alkyl ethynyl radicals,
(d) ester radicals (e.g.,
0 ll -ooR wherein R is alkyl or aryl) including cyclic ester radicals 0 ll -COR wherein R is a cyclic alkylene radical connected to a vinylene combination such as is found in coumarin de rivatives, (e) carboxylic acid anhydride radicals, (f) semicarbazono radicals, (g) cyano radicals, (h) acyl halide radicals (e.g.,
etc.), and
(i) amido radicals (e.g.,
o R H -C-N wherein R is a hydrogen atom, an alkyl group or an aryl group).
Other active hydrogen-containing groups include substituted and unsubstited al kylidyne oximido radicals.
The preferred photoconductors of this invention are represented by the following structure:
Ar;- :0 X 1.4 (I. i.
wherein:
(a) Ar and Ar are each a phenyl radical including a substituted phenyl radical such as a halophenyl radical, an al kyl phenyl radical or an aminophenyl radical;
(b) Ar is an arylene radical including a substituted arylene radical such as a phenylene radical or a naphthylene radical,
(c) R and R are each hydrogen, a phenyl radical including a substituted phenyl radical or a lower alkyl radical preferably having 1-8 carbon atoms;
(d) X is either (1) an active hydrogen-containing group such as a carboxy radical, an acyl halide radical, an amido radical, a carboxylic acid anhydride radical, an ester radical, a cyano radical, a hydroxy radical, a semicarbazone radical, an ethynyl radical, or a methylidyne oximido radical or (2) hydrogen, provided that when X is hydrogen R and R are also hydrogen; and
(e) n is an integer of one to three.
The vinyl or vinylene radical can be substituted in any position on the arylene nucleus. However, when Ar is phenylene, particularly good results are obtained if the substitution occurs in the para position.
The organic photoconductors of this invention exhibit substantial improvements in speed over comparable photoconductors which do not have both an active hydrogencontaining group (including groups hydrolyzable to active hydrogen-containing groups) and a vinyl or vinylene group. Also, those compounds having an unsubstituted vinyl radical show improvements in electrical speed as organic photoconductors when compared to similar compounds which lack such a group. Thus, a compound according to the above formula when n is zero and X is an active hydrogen-containing group would not exhibit the higher speeds attainable when compared to a compound where n is 1, 2, or 3. Furthermore, if X is a group other than an active hydrogen-containing group or hydrogen (and n is 1, 2 or 3), the photoconductivity of the resulting compound is generally lower than that attainable if such groups are present. Finally, if X is a group other than an active hydrogen-containing group or hydrogen and n in the above formula is zero, the resultant speeds attainable from such compounds when used as organic photoconductors are somewhat lower than those attainable from comparable compounds according to this invention.
Those compounds in which Ar; and Ar in the above formula are phenyl radicals generally have improved photo-conducting properties over those which are substituted by one or two alkyl or benzyl radicals. Thus, pdiphenyl amino-cinnamic acid and methyl p-diphenylaminocinnamate display improved electrical speeds over p-(N-methyl, N-phenylamino)cinnamic acid, methyl p- (N-imethyl, N-phenylamino)cinnamate or methyl p-dibenzylaminocinnamate. Also, ethyl p-diphenylaminophenylvinylacrylate has enhanced electrical speed properties compared to ethyl p-dimethylaminophenylvinylacrylate.
Some typical photoconductors of this invention are:
Table I (I) 4- (p-diphenylaminophenyl) -3-buten1-yne (II) p-diphenylaminostyrene (III) ethyl p-diphenylaminocinnamate (IV) methyl p-diphenylaminocinnamate (V) p-diphenylaminocinnamoyl chloride (VI) p-diphenylaminocinnamic acid N,N-diphenylamide (VII) p-diphenylaminocinnamic acid anhydride (VIII) 3-(p-diphenylaminophenyl)-2-butenoic acid (IX) bis (p-diphenylaminobenzal)succinic acid (X) 4-N,N-bis(p-bromophenyl)aminocinnaimic acid (XI) 1-(4-diphenylamino)naphthacrylic acid (XII) p-diphenylaminocinnamic acid (XIII) p-diphenylaminocinnamonitrile (XIV) 7-diphenylamino coumarin (XV) p-diphenylaminophenylvinylacrylic acid (XVI) p-diphenylaminobenzyl p-diphenylaminocin namate (XVII) 7- (p-diphenylaminostyryl) coumarin (XVIII) p-diphenylaminocinnamyl alcohol (XIX) 4-diphenylaminocinnamaldehyde semicarbazone (XX) O-p-diphenylaminocinnamoyl p'-diphenylaminobenzaldehyde oxime (XXI) p-diphenylaminocinnamaldehyde oxime, and
(XXII) 1,3-bis (p-diphenylaminophenyl)-2-propen-1-ol These compounds can be prepared by the methods set forth in a copending application filed concurrently herewith entitled Novel Substituted Triarylamines, Serial Number 706,799, filed Feb. 20, 1968.
:Electrophotographic elements of the invention can be prepared with these photoconducting compounds in the usual manner, i.e., by blending a dispersion or solution of a photoconductive compound together with a binder, when necessary or desirable, and coating or forming a self-supporting layer with the photoconductor-containing materials. Mixtures of the photoconductors described herein can be employed. Likewise, other photoconductors known in the art can be combined with the present photoconductors. In addition, supplemental materials useful for changing the spectral sensitivity or electrophotosensitivity of the element can be added to the composition of the element when it is desirable to produce the characteristic effect of such materials.
Sensitizing compounds useful with the photoconductive compounds of the present invention can include a wide variety of substances such as pyrylium, thiapyrylium, and selenapyrylium salts of US. Patent 3,250,615, issued May 10, 1966; fluorenes, such as 7,12-dioxo-l3-dibenzo(a,h) fluorene, 5,10 dioxo-4a,11-diazabenzo(b)fluorene, 3,13- dioxo-7-oxadibenzo-('b,g)fluorene, trinitrofluorenone, tetranitrofiuorenone and the like; aromatic nitro compounds of US. Patent 2,610,120; anthro-nes of US. Patent 2,670,- 285; quinones of US. Patent 2,670,286; benzophenones of US. Patent 2,670,287; thiazoles of US. Patent 2,732, 301; mineral acids; carboxylic acids, such as maleic acid, dichloroacetic acid, and salicylic acid; sulfonic and phosphoric acids; and various dyes such as triphenylmethane, diarylmethane, thiazine, azine, oxazine, Xanthene, phthalein, acridine, azo, anthraquinone dyes and many other suitable sensitizing dyes. The preferred sensitizers for use with the compounds of this invention are pyrylium and thiapyrylium salts, fluorenes, carboxylic acids, and triphenylmethane dyes.
Where a sensitizing compound is to be used within a photoconductive layer as disclosed herein it is conventional practice to mix a suitable amount of the sensitizing compounds with the coating composition so that, after thorough mixing, the sensitizing compound is uniformly distributed throughout the desired layer of the coated element. In preparing the photoconducting layers, no sensitizing compound is needed for the layer to exhibit photoconductivity. The lower limit of sensitizer required in a particular photoconductive layer is, therefore, zero. However, since relatively minor amounts of sensitizing compound give substantial improvement in the electrophotographic speed of such layers, the use of some sensitizer is preferred. The amount of sensitizer that can be added to a photoconductor-incorporating layer to give effective increases in speed can vary widely. The optimum concentration in any given case will vary with the specific photoconductor and sensitizing compound used. In general, substantial speed gains can be obtained where an appropriate sensitizer is added in a concentration range from about 0.0001 to about percent by weight based on the weight of the film-forming coating composition.
Generally, a sensitizer is added to the coating composi-' tion in an amount by weight from about 0.005 to about 5.0 percent by Weight of the total coating composition.
Preferred binders for use in preparing the present photoconductive layers are film-forming polymeric binders having fairly high dielectric strength which are good electrically insulating film-forming vehicles. Materials of this type comprise styrene-butadiene copolymers; silicone resins; styrene-alkyd resins; silicone-alkyd resins; soya-alkyd resins; poly(vinyl chloride); poly(vinylidene chloride); vinylidene chloride-acrylonitrile copolymers; poly(vinyl acetate); vinyl acetate-vinyl chloride copolymers; poly(vinyl acetals), such as poly(vinyl butyral); polyacrylic and methacrylic esters, such as poly(methylmethacrylate), poly(n-butylmethacrylate) poly (isobutyl methacrylate), etc.; polystyrene; nitrated polystyrene; polymethylstyrene; isobutylene polymers; polyesters, such as poly(ethylenealkaryloxyalkylene terephthalate); phenol-formaldehyde resins; ketone resins; polyamides; polycarbo-nates; polythiocarbonates; poly(ethylene-glycol-cobishydroxyethoxy-phenyl propane terephthalate); nuclear substituted vinyl haloarylates such as poly(vinyl metabromobenzoate-co-vinyl acetate); etc. Methods of making resins of this type have been described in the prior art, for example, styrene-alkyd resins can be prepared according to the method described in U.S. Patents 2,361,019 and 2,258,423. Suitable resins of the type contemplated for use in the photoconductive layers of the invention are sold under such trade names as Vitel PE101, Cymac, Piccopale 100, Saran F220 and Lexan 105. Other types of binders which can be used in the photoconductive layers of the invention include such materials as paraffin, mineral waxes, etc.
Solvents of choice for preparing coating compositions of the present invention can include a number of solvents such as benzene, toluene, acetone, Z-butanone, chlorinated hydrocarbons, e.g., methylene chloride, ethylene chloride, etc., ethers, e.g., tetrahydrofuran, or mixtures of these solvents etc.
In preparing the coating composition useful results are obtained where the photoconductor substance is present in an amount equal to at least about 1 weight percent of the coating composition. The upper limit in the amount of photoconductor substance present can be widely varied in accordance with usual practice. In those cases where a binder is employed, it is normally required that the photoconductor substance be present in an amount from about 1 weight percent of the coating composition to about 99 weight percent of the coating composition. A preferred Weight range for the photoconductor substance in the coating composition is from about 10 weight percent to about 60 weight percent.
Coating thicknesses of the photoconductive composition on a support can vary widely. Normally, a coating in the range of about 0.001 inch to about 0.01 inch before drying is useful for the practice of this invention. The preferred range of coating thickness was found to be in the range from about 0.002 inch to about 0.006 inch before drying although useful results can be obtained outside of this range.
Suitable supporting materials for coating the photoconductive layers of the present invention can include any of a wide variety of electrically conducting supports, for example, paper (at a relative humidity above 20 percent); aluminum-paper laminates; metal foils such as aluminum foil, zinc foil, etc.; metal plates, such as aluminum, copper, zinc, brass, and galvanized plates; vapor deposited metal layers such as silver, nickel, or aluminum and the like. Metal (e.g., nickel, etc.) conducting layers deposited by high vacuum deposition techniques can be coated at low coverages so as to be substantially transparent to facilitate image exposure through the support. An especially useful conducting support can be prepared by coating a support material such as poly(ethylene terephthalate) with a layer containing a semiconductor dispersed in a resin. Suitable conducting layers both with and without insulating barrier layers are described in US. Patent 3,245,833. Other suitable conducting layers are described in U.S. Patent 3,120,- 028. Likewise, a suitable conducting coating can be prepared from the sodium salt of a carboxyester lactone of maleic anhydride and a vinyl acetate polymer. Such kinds of conducting layers and methods for their optimum preparation and use are disclosed in US. 3,007,901 and 3,267,807.
The elements of the present invention can be employed in any of the well-known electrophotographic processes which require photoconductive layers. One such process is the aforementioned xerographic process. As previously explained, in a process of this type the electrophotographic element is given a blank electrostatic charge by placing the same under a corona discharge which serves to give a uniform charge to the surface of the photoconductive layer. This charge is retained by the layer owing to the substantial insulating property of the layer, i.e., the low conductivity of the layer in the dark. The electrostatic charge formed on the surface of the photoconducting layer is then selectively dissipated from the surface of the layer by exposure to light through an image-bearing transparency by a conventional exposure operation such as, for example, by contact-printing techniques, or by lens projection of an image, etc., to form a latent image in the photoconducting layer. By exposure of the surface in this manner, a charge pattern is created by virtue of the fact that light causes the charge to be conducted away in pro portion to the intensity of the illumination in a particular area. The charge pattern remaining after exposure is then developed, i.e., rendered visible, by treatment with a medium comprising electrostatically attractable particles having optical density. The developing electrostatically attractable particles can be in the form of a dust, e.g., powder, pigment in a resinous carrier, i.e., toner, or a liquid developer may be used in which the developing particles are carried in an electrically insulating liquid carrier. Methods of development of this type are widely known and have been described in the patent literature in such patents, for example, as US. Patent 2,297,691 and in Australian Patent 212,315. In processes of electrophotographic reproduction such as in xerography, by selecting a developing particle which has as one of its components, a low-melting resin, it is possible to treat the developed photoconductive material with heat to cause the powder to adhere permanently to the surface of the photoconductive layer. In other cases, a transfer of the image formed on the photoconductive layer can be made to a second support, which would then become the final print. Techniques of the type indicated are well known in the art and have been described in a number of US. and foreign patents, such as US. Patents 2,297,691 and 2,551,582, and in RCA Review, vol. 15, (1954) pages 469484.
The present invention is not limited to any particular mode of use of the new electrophotographic materials, and the exposure technique, the charging method, the transfer (if any), the developing method, and the fixing method as Well as the materials used in these methods can be selected and adapted to the requirements of any particular technique.
Electrophotographic materials according to the present invention can be applied to reproduction techniques wherein different kinds of radiations, i.e., electromagnetic radiations as well as nuclear radiations, can be used. For this reason, it is pointed out herein that although materials according to the invention are mainly intended for use in connection with methods comprising an exposure, the term electrophotography wherever appearing in the description and the claims, is to be interpreted broadly and understood to comprise both xerography and xeroradiography.
The following examples are included for a further understanding of the invention.
EXAMPLE 1 Organic photoconductors of the type described herein are separately incorporated into a coating dope having the following composition:
Organic photoconductor: 0.5 g. Polymeric binder: 1.05 g. Sensitizer: 0.02 g.
Methylene chloride: 11.7 mi.
The resulting compositions are coated at a wet thickness of 0.004 inch on a conducting layer comprising the sodium salt of a carboxyester lactone, such as described in US 3,120,028, which in turn is coated on a cellulose acetate film base. The coating blocks are maintained at a temperature of 90 F. These electrophotographic elements are charged under a positive or negative corona source until the surface potentials, as measured by an electrometer probe, reach between about 500 and 600 volts. They are then subjected to exposure from behind a stepped density gray scale to a 3000 K. tungsten source. The exposure causes reduction of the surface potentials of the elements under each step of the gray scale from their initial potential, V0, to some lower potential, V Whose exact value depends on the actual amount of exposure in meter-candleseconds received by the areas. The results of the measure ments are plotted on a graph of surface potential V vs. log exposure for each step. The speed is the numerical expression of 10 multiplied by the reciprocal of the exposure in meter-candle-seconds required to reduce the 500 to 600 volt charged surface potentials to 100 volts above volt. The reduction of the surface potential to 100* volts or below is significant in that it represents a requirement for suitable broad area development of a latent image. This speed at 100 volts is a measure of the ability to produce and hence forth to develop or otherwise utilize the latent image, higher speeds requiring less illumination to produce a latent image. When the photoconductor is absent from the coating, the surface potential does not drop to, or below, 100 volts and no speed value can be assigned. This is also the case when a compound is present in the composition but is ineffective as a photoconductcr. The speeds of the various photoconductive compositions are shown in Table 11 below. The sensitizers used are referred to below as follows:
(E) 2,6-'( 4-e-thylphenyl -4- (4-amyloxyphenyl thiapyrylium perchlorate (F) 2,4-bis 4-ethoxyphenyl) -6- (4-n-amyloxystyryl)pyrylium fluoborate (G) 2,4-bis 4-ethylphenyl -6- (4-styryistyryl) pyryliurn perchlorate (H) .2,6-bis (4-ethoxyphenyl) -4- (4-n-amyloxy-phenyl) thiapyrylium perchlorate The data in the following Table II represents the positive speeds at 100 volts of various compositions prepared as described above containing severai of the organic photoconductors set forth in Table I. The binder employed is poly(vinyl meta-bromobenzoate-co-vinyl acetate).
TABLE II Speed at volts sensitizer Photoconduetor F G H The latent electrostatic images in each instance developed with conventional electrophotographic liquid developers (e.g., U.S. Patent 2,907,674) to form sharp dense images.
EXAMPLE 2 Example 1 is repeated except that the binder employed is a film-forming polycarbonate resin sold commercially as Lexan by General Electric Co. The photoconductor employed in the photoconductive composition is p-diphenylaminocinnamoyl chloride (Compound V). The positive speed at 100 volts for compositions containing sensitizer F is 260 and for sensitizer G the speed is 220.
EXAMPLE 3 In order to show the efiicacy of the vinylene moiety in the photoconductors of this invention, two closely related compounds are tested for their electrophotographic speeds at 100 volts positive. The first compound, p-diphenylaminocinnamic acid (Compound XII) has a vinylene moiety While the second, 4-carboxytriphenylamine, is the same as compound XII but lacks a vinylene moiety. Two photoconductive compositions are prepared and tested according to Example 1 except the following composition is used:
Photoconductor: 0.15 g. Binder Vitel 101 0.50 g. Sensitizer F: 0002 g. Dichlorornethane: 5.0 ml.
1 A polyester of te'rephthalie acid and a mixture of ethylene glycol (1 part by weight) and 2, 2-bis[ l-(B-hyrlroxyethoxy) phenyl1propane (9 parts by weight).
The speed of 4-carboxytriphenylamine is 50. The speed of Compound XII is 160.
EXAMPLE 4 This example demonstrates the increases in speed attainable with a photoconducting compound having both a vinylene moiety and an active hydrogen-containing group such as compound XII as opposed to a photoconducting compound having neither moiety present such as triphenylamine. Thus, photoconducting compositions containing the above photo-conductors are prepared and tested according to Example 1 except the following composition is used:
Photoconductor: 1.0 g.
Binder, poly(vinyl meta-bromo-henzoate-co-vinyl acetate): 1.0 g.
Sensitizer G: 0.02 g.
Dichloromethane: 11.7 ml.
The positive 100 volt speed of the composition containing triphenylamine is 130. The positive 100 volt speed of the composition containing compound XI-I is 630.
EXAMPLE 6 EXAMPLE 7 The 100 volt positive speed of p-diphenplaminocinnamonitrile is determined according to Example 1 using the following composition:
Photoconductor: 0.15 g. Vitel 101: 0.50 g. Sensitizer G: 0.002 g. Dichloromethane: 5.0 ml.
The resultant speed is 110.
EXAMPLE 8 Coating dopes prepared in the manner set forth in Example 1 containing the compounds in Table I are coated in the manner described in Example 1. In a darkened room, the surface of each of the photoconductive layers so prepared is charged to a potential of about +600 volts under a corona charger. The layer is then covered with a transparent sheet bearing a pattern of opaque and light transmitting areas and exposed to the radiation from an incandescent lamp with an illumination intensity of about 75 meter-candles for 12 seconds. The resulting electrostatic latent image is developed in the usual manner by cascading over the surface of the layer a mixture of negatively charged black thermoplastic toner particles and glass beads. A good reproduction of the pattern results in each instance.
The invention has been described in detail with particular reference to preferred embodiments thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention as described hereinbefore and as defined in the appended claims.
We claim:
1. An electrophotographic element comprising a conductive support having coated thereon a photoconductive composition comprising a photoconductor having the structure:
an ethynyl radical, an acyl halide radical, a cyano radical, a carboxylic acid anhydride radical, a hydroxy radical, a semicarbazono radical, an oximido radical and an amido radical; and
(e) n is an integer of 1 to 3.
2. A photoconductive element as defined by claim 1 wherein the photoconductive composition contains a sensitizer for said photoconductor.
3. An electrophotographic element as defined in claim 1 wherein the photoconductive composition is sensitized with a compound selected from the group consisting of:
(a) a pyrylium salt,
(b) a thiapyrylium salt,
(0) a selenapyrylium salt,
(d) a fiuorenone, and
(e) a triphenylmethane dye.
4. An electrophotographic element as defined in claim 4 wherein a binder is utilized for the photoconductor, said binder being a polymer of a nuclear substituted vinyl haloarylate.
5. An electrophotographic element as defined in claim 4 wherein a poly(ethylenealkaryloxykylene terephthalate) binder is utilized for the photoconductor.
6. An electrophotographic element comprising an electrically conductive support having coated thereon a photoconductive composition comprising a polymeric binder and a photoconductor selected from the group consisting of: I
(a) ethyl p-diphenylaminocinnamate,
(b) methyl p-diphenplaminocinnamate,
(c) p-diphenylaminocinnamoyl chloride,
((1) p-diphenylaminocinnamic acid N,N diphenylamide,
(e) p-diphenylaminocinnamic acid,
(f) p-diphenylaminocinnamic acid anhydride,
(g) 3-(p-diphenylaminophenyl)-2-butenoic acid,
(h) 4-N,N-bis (p-bromophenyl)aminocinnamic acid,
(i) bis (p-diphenylaminobenzal)succinic acid,
(j) l-(4-diphenylamino)naphthacrylic acid,
(k) p-diphenylaminocinnamonitrile,
(l) p-diphenylaminostyr-ene,
(m) p-diphenylaminophenylvinylacrylic acid, and
(n) 7-diphenylamino coumarin.
7. A photoconductive element for use in electrophotography comprising a conductive support having coated thereon a photoconductive composition comprising:
(a) about 10 to 60% by weight based on said photoconductive composition of methyl p-diphenylaminocinnamate as a photoconductor, and
(b) a film-forming polymeric binder for said photoconductor.
8. A photoconductive element for use in electrophotography comprising a conductive support having coated thereon a photoconductive composition comprising:
(a) about 10 to 60% by weight based on said photoconductive composition of p-diphenylaminocinnamic acid anhydride as a photoconductor, and
(b) a film-forming polymeric binder for said photoconductor.
9. A photoconductive element for use in electrophotography comprising a conductive support having coated thereon a photoconductive composition comprising:
(a) about 10' to 60% by weight based on said photoconductive composition of 3-(p-diphenylarninophenyl)-2-butenoic acid as a photoconductor, and
(b) a film-forming polymeric binder for said photoconductor.
10. A photoconductive element for use in electrophotography comprising a conductive support having coated thereon a photoconductive composition comprising:
(a) about 10 to 60% by weight based on said photoconductive composition of p-diphenylaminocinnamic acid as a photoconductor, and
(b) a film-forming polymeric binder for said photoconductor.
11. A photoconductive element for use in electrophotography comprising a conductive support having coated thereon a photoconductive composition compris- (a) about 10 to 60% by weight based on said photoconductive composition of ethyl p-diphenylamino cinamate as a photoconductor, and
(b) a film-forming polymeric binder for said photoconductor.
12. A photoconductive element for use in electrophotography comprising a conductive support having coated thereon a photoconductive composition comprismg:
(a) about 10 to 60% by Weight based on said photoconductive composition of methyl p-diphenylaminocinnamate as a photoconductor,
(b) about 0.005 to 5.0% by weight based on said photoconductive composition of a pyrylium salt as a sensitizer, and
(c) poly(vinyl meta-bromobenzoate-co-vinyl acetate) as a binder for said photoconductor.
13. A photoconductive element for use in electrophotography comprising a conductive support having coated thereon a photoconductive composition comprismg:
(a) about 10 to 60% by weight based on said photoconductive composition of p-diphenylarninocinnamic acid anhydride as a photoconductor,
(b) about 0.005 to 5.0% by weight based on said photoconductive composition of a pyrylium salt as a sensitizer, and
(c) poly(viny1 metabromobenzoate-co-vinyl acetate) as a binder for said photoconductor.
14. A photoconductive element for use in electrophotography comprising a conductive support having coated thereon a photoconductive composition comprismg:
(a) about 10 to 60% by weight based on said photoconductive composition of 3-(p-diphenylaminopheny1)-2-butenoic acid as a photoconductor,
(b) about 0.005 to 5.0% by weight based on said photoconductive composition of a pyrylium salt as a sensitizer, and
(c) poly(vinyl meta-bromobenzoate-co-vinyl acetate) as a binder for said photoconductor.
a coated thereon a photoconductive composition compris- (a) about 10 to 60% by weight based on said photoconductive composition of ethyl p-diphenylaminocinnamate as a photoconductor,
(b) about 0.005 to 5.0% by weight based on said photoconductive composition of a pyrylium salt as a sensitizer, and
(c) poly(vinyl meta-bromobenzoate-co-vinyl acetate) as a binder for said photoconductor.
17. In an electrophotographic process wherein an electrostatic charge pattern is formed on an electrophotographic element, the improvement characterized in that the charge pattern is formed on the electrophotographic element of claim 4.
References Cited UNITED STATES PATENTS 2,766,233 10/ 1956 Kartinos 260-240 3,180,730 4/1965 Klupfel 961 3,221,041 11/1965 Roland 260-465 3,265,496 8/1966 FOX 96-1 3,387,973 6/1968 FOX et al. 96-1.5
GEORGE F. LESMES, Primary Examiner J. C. COOPER, III, Assistant Examiner US. Cl. X.R.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US70680068A | 1968-02-20 | 1968-02-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3567450A true US3567450A (en) | 1971-03-02 |
Family
ID=24839090
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US706800A Expired - Lifetime US3567450A (en) | 1968-02-20 | 1968-02-20 | Photoconductive elements containing substituted triarylamine photoconductors |
Country Status (2)
Country | Link |
---|---|
US (1) | US3567450A (en) |
DE (1) | DE1908343B2 (en) |
Cited By (250)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4105447A (en) * | 1975-07-14 | 1978-08-08 | Eastman Kodak Company | Photoconductive insulating compositions including polyaryl hydrocarbon photoconductors |
US4222902A (en) * | 1975-03-07 | 1980-09-16 | Minnesota Mining And Manufacturing Company | Semiconductive and sensitized photoconductive compositions |
US4299897A (en) * | 1978-12-15 | 1981-11-10 | Xerox Corporation | Aromatic amino charge transport layer in electrophotography |
JPS5865440A (en) * | 1981-09-18 | 1983-04-19 | Konishiroku Photo Ind Co Ltd | Electrophotographic receptor |
US4402573A (en) * | 1981-06-18 | 1983-09-06 | International Business Machines Corporation | Materials for electrochromic display devices |
DE3331592A1 (en) | 1982-09-01 | 1984-03-01 | Fuji Photo Film Co., Ltd., Minamiashigara, Kanagawa | DISAZO CONNECTIONS AND PHOTO-CONDUCTIVE COMPOSITIONS CONTAINING THEM AND ELECTROPHOTOGRAPHIC LIGHT-SENSITIVE RECORDING MATERIALS |
US4581311A (en) * | 1981-08-06 | 1986-04-08 | Fuji Photo Film Co., Ltd. | Photoconductive composition with vinylidene chloride-acrylonitrile copolymer additive |
EP0373582A1 (en) * | 1988-12-14 | 1990-06-20 | Idemitsu Kosan Company Limited | Electroluminescence device |
US4937165A (en) * | 1989-04-03 | 1990-06-26 | Xerox Corporation | Photoconductive imaging members with N,N-bis(biarylyl)aniline charge transport polymers |
US4959288A (en) * | 1989-04-03 | 1990-09-25 | Xerox Corporation | Photoconductive imaging members with diaryl biarylylamine copolymer charge transport layers |
US5061569A (en) * | 1990-07-26 | 1991-10-29 | Eastman Kodak Company | Electroluminescent device with organic electroluminescent medium |
US5121029A (en) * | 1987-12-11 | 1992-06-09 | Idemitsu Kosan Co., Ltd. | Electroluminescence device having an organic electroluminescent element |
EP0534510A1 (en) | 1991-08-01 | 1993-03-31 | Eastman Kodak Company | Improved blue emitting internal junction organic electroluminescent device |
US5294869A (en) * | 1991-12-30 | 1994-03-15 | Eastman Kodak Company | Organic electroluminescent multicolor image display device |
EP0616020A1 (en) | 1989-03-20 | 1994-09-21 | Idemitsu Kosan Company Limited | Aromatic dimethylidyne compounds and process for preparation thereof |
US5409783A (en) * | 1994-02-24 | 1995-04-25 | Eastman Kodak Company | Red-emitting organic electroluminescent device |
US5443922A (en) * | 1991-11-07 | 1995-08-22 | Konica Corporation | Organic thin film electroluminescence element |
US5468583A (en) * | 1994-12-28 | 1995-11-21 | Eastman Kodak Company | Cyclic bis-dicarboximide electron transport compounds for electrophotography |
US5484922A (en) * | 1992-07-13 | 1996-01-16 | Eastman Kodak Company | Internal junction organic electroluminescent device with a novel composition |
US5488137A (en) * | 1991-07-12 | 1996-01-30 | Ricoh Company, Ltd. | Acrylic acid ester derivative having a triphenyl amine skeleton |
US5500568A (en) * | 1992-07-23 | 1996-03-19 | Idemitsu Kosan Co., Ltd. | Organic El device |
US5552678A (en) * | 1994-09-23 | 1996-09-03 | Eastman Kodak Company | AC drive scheme for organic led |
US5554450A (en) * | 1995-03-08 | 1996-09-10 | Eastman Kodak Company | Organic electroluminescent devices with high thermal stability |
US5585483A (en) * | 1994-01-11 | 1996-12-17 | Fuji Electric., Ltd. | Metal-free phythalocyanine, process for preparing the same, and electrophotographic photoconductor using the same |
EP0786925A2 (en) | 1996-01-26 | 1997-07-30 | Eastman Kodak Company | White light-emitting electroluminescent devices |
US5834100A (en) * | 1996-06-25 | 1998-11-10 | Northwestern University | Organic light-emitting dioddes and methods for assembly and emission control |
EP0903964A1 (en) | 1997-09-18 | 1999-03-24 | Eastman Kodak Company | Organic electroluminescent device with inorganic electron transporting layer |
US5935721A (en) * | 1998-03-20 | 1999-08-10 | Eastman Kodak Company | Organic electroluminescent elements for stable electroluminescent |
US5972247A (en) * | 1998-03-20 | 1999-10-26 | Eastman Kodak Company | Organic electroluminescent elements for stable blue electroluminescent devices |
US6020078A (en) * | 1998-12-18 | 2000-02-01 | Eastman Kodak Company | Green organic electroluminescent devices |
WO2000041443A1 (en) | 1998-12-28 | 2000-07-13 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device |
US6127004A (en) * | 1999-01-29 | 2000-10-03 | Eastman Kodak Company | Forming an amorphous fluorocarbon layer in electroluminescent devices |
US6208077B1 (en) | 1998-11-05 | 2001-03-27 | Eastman Kodak Company | Organic electroluminescent device with a non-conductive fluorocarbon polymer layer |
US20010016643A1 (en) * | 1995-03-17 | 2001-08-23 | Ib Jonassen | Peptide derivatives |
US6399221B1 (en) | 1996-06-25 | 2002-06-04 | Northwestern University | Organic light-emitting diodes and methods for assembly and emission control |
US6428912B1 (en) | 1998-09-30 | 2002-08-06 | Agere Systems Guardian Corp. | Electron transport material and light emitting diode that contains the electron transport material |
US6444333B1 (en) * | 1998-10-12 | 2002-09-03 | Fuji Photo Film Co., Ltd. | Organic luminescent device material, organic luminescent device using the same, and tetraarylmethane compound |
US6610455B1 (en) | 2002-01-30 | 2003-08-26 | Eastman Kodak Company | Making electroluminscent display devices |
US20030162053A1 (en) * | 1996-06-25 | 2003-08-28 | Marks Tobin J. | Organic light - emitting diodes and methods for assembly and enhanced charge injection |
US20030203551A1 (en) * | 2002-04-04 | 2003-10-30 | Cok Ronald S. | Desiccant structures for OLED displays |
EP1367677A2 (en) | 2002-05-28 | 2003-12-03 | Eastman Kodak Company | Lighting apparatus with flexible oled area illumination light source and fixture |
US20040029039A1 (en) * | 2002-08-02 | 2004-02-12 | Eastman Kodak Company | Laser thermal transfer donor including a separate dopant layer |
US20040043138A1 (en) * | 2002-08-21 | 2004-03-04 | Ramesh Jagannathan | Solid state lighting using compressed fluid coatings |
US20040043140A1 (en) * | 2002-08-21 | 2004-03-04 | Ramesh Jagannathan | Solid state lighting using compressed fluid coatings |
US20040061435A1 (en) * | 2002-09-30 | 2004-04-01 | Eastman Kodak Company | High work function metal alloy cathode used in organic electroluminescent devices |
US20040092195A1 (en) * | 1996-06-25 | 2004-05-13 | Marks Tobin J. | Organic light-emitting diodes and methods for assembly and emission control |
US20040108806A1 (en) * | 2002-07-23 | 2004-06-10 | Eastman Kodak Company | OLED displays with fiber-optic faceplates |
US20050029933A1 (en) * | 2002-02-15 | 2005-02-10 | Eastman Kodak Compamy | Cascaded organic electroluminescent devices with color filters |
US6890627B2 (en) | 2002-08-02 | 2005-05-10 | Eastman Kodak Company | Laser thermal transfer from a donor element containing a hole-transporting layer |
WO2006034028A2 (en) | 2004-09-21 | 2006-03-30 | Eastman Kodak Company | Delivering particulate material to a vaporization source |
WO2006073054A1 (en) | 2005-01-05 | 2006-07-13 | Idemitsu Kosan Co., Ltd. | Aromatic amine derivative and organic electroluminescent device using same |
US20060240278A1 (en) * | 2005-04-20 | 2006-10-26 | Eastman Kodak Company | OLED device with improved performance |
US20060269855A1 (en) * | 2005-05-27 | 2006-11-30 | Xerox Corporation | Polymers of napthalene tetracarboxylic diimide dimers |
US20060286470A1 (en) * | 2005-06-16 | 2006-12-21 | Xerox Corporation | Imaging member |
WO2007007553A1 (en) | 2005-07-14 | 2007-01-18 | Idemitsu Kosan Co., Ltd. | Biphenyl derivatives, organic electroluminescent materials, and organic electroluminescent devices made by using the same |
WO2007017995A1 (en) | 2005-08-08 | 2007-02-15 | Idemitsu Kosan Co., Ltd. | Aromatic amine derivative and organic electroluminescence device making use of the same |
US20070048545A1 (en) * | 2005-08-31 | 2007-03-01 | Eastman Kodak Company | Electron-transporting layer for white OLED device |
WO2007029410A1 (en) | 2005-09-08 | 2007-03-15 | Idemitsu Kosan Co., Ltd. | Organic electroluminescent element using polyarylamine |
WO2007032162A1 (en) | 2005-09-16 | 2007-03-22 | Idemitsu Kosan Co., Ltd. | Pyrene derivative and organic electroluminescence device making use of the same |
WO2007032161A1 (en) | 2005-09-15 | 2007-03-22 | Idemitsu Kosan Co., Ltd. | Asymmetric fluorene derivative and organic electroluminescent element containing the same |
WO2007052759A1 (en) | 2005-11-07 | 2007-05-10 | Idemitsu Kosan Co., Ltd. | Organic electroluminescent element |
US20070102698A1 (en) * | 1999-12-31 | 2007-05-10 | Kang Min S | Organic electronic device |
US7221332B2 (en) | 2003-12-19 | 2007-05-22 | Eastman Kodak Company | 3D stereo OLED display |
WO2007058127A1 (en) | 2005-11-16 | 2007-05-24 | Idemitsu Kosan Co., Ltd. | Aromatic amine derivative and organic electroluminescent element using the same |
WO2007058172A1 (en) | 2005-11-17 | 2007-05-24 | Idemitsu Kosan Co., Ltd. | Organic electroluminescent device |
WO2007058044A1 (en) | 2005-11-15 | 2007-05-24 | Idemitsu Kosan Co., Ltd. | Aromatic amine derivative and organic electroluminescent element employing the same |
WO2007061063A1 (en) | 2005-11-28 | 2007-05-31 | Idemitsu Kosan Co., Ltd. | Organic electroluminescent device |
US20070122655A1 (en) * | 2004-09-20 | 2007-05-31 | Eastman Kodak Company | Electroluminescent device with quinazoline complex emitter |
WO2007060795A1 (en) | 2005-11-28 | 2007-05-31 | Idemitsu Kosan Co., Ltd. | Amine compound and organic electroluminescent element employing the same |
US20070122657A1 (en) * | 2005-11-30 | 2007-05-31 | Eastman Kodak Company | Electroluminescent device containing a phenanthroline derivative |
WO2007063993A1 (en) | 2005-12-02 | 2007-06-07 | Idemitsu Kosan Co., Ltd. | Nitrogenous heterocyclic derivative and organic electroluminescence device making use of the same |
WO2007077766A1 (en) | 2005-12-27 | 2007-07-12 | Idemitsu Kosan Co., Ltd. | Material for organic electroluminescent device and organic electroluminescent device |
WO2007080704A1 (en) | 2006-01-13 | 2007-07-19 | Idemitsu Kosan Co., Ltd. | Aromatic amine derivatives and organic electroluminescent devices made by using the same |
WO2007097178A1 (en) | 2006-02-23 | 2007-08-30 | Idemitsu Kosan Co., Ltd. | Material for organic electroluminescent device, method for producing same and organic electroluminescent device |
US20070207345A1 (en) * | 2006-03-01 | 2007-09-06 | Eastman Kodak Company | Electroluminescent device including gallium complexes |
WO2007099983A1 (en) | 2006-02-28 | 2007-09-07 | Idemitsu Kosan Co., Ltd. | Organic electroluminescent device using fluoranthene derivative and indenoperylene derivative |
WO2007100010A1 (en) | 2006-02-28 | 2007-09-07 | Idemitsu Kosan Co., Ltd. | Organic electroluminescent device |
WO2007102361A1 (en) | 2006-03-07 | 2007-09-13 | Idemitsu Kosan Co., Ltd. | Aromatic amine derivative and organic electroluminescent device using same |
WO2007105448A1 (en) | 2006-02-28 | 2007-09-20 | Idemitsu Kosan Co., Ltd. | Naphthacene derivative and organic electroluminescent device using same |
WO2007111263A1 (en) | 2006-03-27 | 2007-10-04 | Idemitsu Kosan Co., Ltd. | Nitrogen-containing heterocyclic derivative and organic electroluminescent device using same |
WO2007111262A1 (en) | 2006-03-27 | 2007-10-04 | Idemitsu Kosan Co., Ltd. | Nitrogen-containing heterocyclic derivative and organic electroluminescent device using same |
US20070232830A1 (en) * | 2006-03-28 | 2007-10-04 | Xerox Corporation | Arylamine process |
WO2007114358A1 (en) | 2006-04-03 | 2007-10-11 | Idemitsu Kosan Co., Ltd. | Benzanthracene derivative and organic electroluminescent device using the same |
WO2007116750A1 (en) | 2006-03-30 | 2007-10-18 | Idemitsu Kosan Co., Ltd. | Material for organic electroluminescent device and organic electroluminescent device using the same |
WO2007116828A1 (en) | 2006-04-03 | 2007-10-18 | Idemitsu Kosan Co., Ltd. | Bisanthracene derivative and organic electroluminescent device using the same |
US20070247066A1 (en) * | 2004-04-06 | 2007-10-25 | Idemitsu Kosan Co., Ltd. | Electrode Substrate and Its Manufacturing Method |
US20070252522A1 (en) * | 2005-11-30 | 2007-11-01 | Eastman Kodak Company | Electroluminescent device including an anthracene derivative |
WO2007125714A1 (en) | 2006-04-26 | 2007-11-08 | Idemitsu Kosan Co., Ltd. | Aromatic amine derivative, and organic electroluminescence element using the same |
WO2007132704A1 (en) | 2006-05-11 | 2007-11-22 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence element |
WO2007132678A1 (en) | 2006-05-11 | 2007-11-22 | Idemitsu Kosan Co., Ltd. | Organic electroluminescent device |
WO2007138906A1 (en) | 2006-05-25 | 2007-12-06 | Idemitsu Kosan Co., Ltd. | Organic electroluminescent device and full color light-emitting device |
WO2007148660A1 (en) | 2006-06-22 | 2007-12-27 | Idemitsu Kosan Co., Ltd. | Organic electroluminescent device employing heterocycle-containing arylamine derivative |
WO2008001551A1 (en) | 2006-06-27 | 2008-01-03 | Idemitsu Kosan Co., Ltd. | Aromatic amine derivative, and organic electroluminescence device using the same |
WO2008015949A1 (en) | 2006-08-04 | 2008-02-07 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device |
WO2008023549A1 (en) | 2006-08-23 | 2008-02-28 | Idemitsu Kosan Co., Ltd. | Aromatic amine derivatives and organic electroluminescent devices made by using the same |
WO2008023623A1 (en) | 2006-08-22 | 2008-02-28 | Idemitsu Kosan Co., Ltd. | Organic electroluminescent device |
WO2008056652A1 (en) | 2006-11-09 | 2008-05-15 | Idemitsu Kosan Co., Ltd. | Organic el material-containing solution, method for synthesizing organic el material, compound synthesized by the synthesizing method, method for forming thin film of organic el material, thin film of organic el material, and organic el device |
WO2008056722A1 (en) | 2006-11-09 | 2008-05-15 | Idemitsu Kosan Co., Ltd. | Organic el material-containing solution, method for forming thin film of organic el material, thin film of organic el material, and organic el device |
WO2008056723A1 (en) | 2006-11-09 | 2008-05-15 | Idemitsu Kosan Co., Ltd. | Organic el material-containing solution, method for forming thin film of organic el material, thin film of organic el material, and organic el device |
WO2008059713A1 (en) | 2006-11-15 | 2008-05-22 | Idemitsu Kosan Co., Ltd. | Fluoranthene compound, organic electroluminescent device using the fluoranthene compound, and organic electroluminescent material-containing solution |
WO2008062636A1 (en) | 2006-11-24 | 2008-05-29 | Idemitsu Kosan Co., Ltd. | Aromatic amine derivative and organic electroluminescent element using the same |
WO2008081823A1 (en) | 2006-12-29 | 2008-07-10 | Idemitsu Kosan Co., Ltd. | Solution containing organic el material, method for synthesis of organic el material, compound synthesized by the synthesis method, method for formation of thin film of organic el material, thin film of organic el material, organic el element |
US20080176099A1 (en) * | 2007-01-18 | 2008-07-24 | Hatwar Tukaram K | White oled device with improved functions |
US20080182129A1 (en) * | 2007-01-30 | 2008-07-31 | Klubek Kevin P | Oleds having high efficiency and excellent lifetime |
WO2008102740A1 (en) | 2007-02-19 | 2008-08-28 | Idemitsu Kosan Co., Ltd. | Organic electroluminescent device |
WO2008111554A1 (en) | 2007-03-09 | 2008-09-18 | Idemitsu Kosan Co., Ltd. | Organic el device and display |
WO2008123178A1 (en) | 2007-03-23 | 2008-10-16 | Idemitsu Kosan Co., Ltd. | Organic el device |
WO2008126802A1 (en) | 2007-04-06 | 2008-10-23 | Idemitsu Kosan Co., Ltd. | Organic electroluminescent element |
US20080278067A1 (en) * | 2007-05-10 | 2008-11-13 | Yuan-Sheng Tyan | Electroluminescent device having improved light output |
US20080284317A1 (en) * | 2007-05-17 | 2008-11-20 | Liang-Sheng Liao | Hybrid oled having improved efficiency |
US20080284318A1 (en) * | 2007-05-17 | 2008-11-20 | Deaton Joseph C | Hybrid fluorescent/phosphorescent oleds |
US20080315753A1 (en) * | 2007-06-20 | 2008-12-25 | Liang-Sheng Liao | Phosphorescent oled having double exciton-blocking layers |
US20090004365A1 (en) * | 2005-04-21 | 2009-01-01 | Liang-Sheng Liao | Contaminant-scavenging layer on oled anodes |
US20090004485A1 (en) * | 2007-06-27 | 2009-01-01 | Shiying Zheng | 6-member ring structure used in electroluminescent devices |
US20090009101A1 (en) * | 2006-01-18 | 2009-01-08 | Kang Min-Soo | Oled Having Stacked Organic Light-Emitting Units |
WO2009011327A1 (en) | 2007-07-18 | 2009-01-22 | Idemitsu Kosan Co., Ltd. | Organic electroluminescent device material and organic electroluminescent device |
WO2009020095A1 (en) | 2007-08-06 | 2009-02-12 | Idemitsu Kosan Co., Ltd. | Aromatic amine derivative and organic electroluminescent device using the same |
US20090053557A1 (en) * | 2007-08-23 | 2009-02-26 | Spindler Jeffrey P | Stabilized white-emitting oled device |
US20090053559A1 (en) * | 2007-08-20 | 2009-02-26 | Spindler Jeffrey P | High-performance broadband oled device |
US20090091242A1 (en) * | 2007-10-05 | 2009-04-09 | Liang-Sheng Liao | Hole-injecting layer in oleds |
US20090108735A1 (en) * | 2007-10-26 | 2009-04-30 | Begley William J | Oled device with fluoranthene electron transport materials |
US20090108734A1 (en) * | 2007-10-26 | 2009-04-30 | Begley William J | Oled device with certain fluoranthene light-emitting dopants |
US20090108736A1 (en) * | 2007-10-26 | 2009-04-30 | Begley William J | Phosphorescent oled device with certain fluoranthene host |
US20090110957A1 (en) * | 2007-10-26 | 2009-04-30 | Begley William J | Oled device with certain fluoranthene host |
US20090130941A1 (en) * | 2007-11-16 | 2009-05-21 | Boroson Michael L | Desiccant sealing arrangement for oled devices |
WO2009066778A1 (en) | 2007-11-22 | 2009-05-28 | Idemitsu Kosan Co., Ltd. | Organic el element and solution containing organic el material |
WO2009069717A1 (en) | 2007-11-30 | 2009-06-04 | Idemitsu Kosan Co., Ltd. | Azaindenofluorenedione derivative, organic electroluminescent device material, and organic electroluminescent device |
US20090146552A1 (en) * | 2007-12-11 | 2009-06-11 | Spindler Jeffrey P | White oled with two blue light-emitting layers |
US20090162612A1 (en) * | 2007-12-19 | 2009-06-25 | Hatwar Tukaram K | Oled device having two electron-transport layers |
WO2009081857A1 (en) | 2007-12-21 | 2009-07-02 | Idemitsu Kosan Co., Ltd. | Organic electroluminescent device |
US20090167167A1 (en) * | 2006-06-05 | 2009-07-02 | Idemitsu Kosan Co., Ltd. | Organic electroluminescent device and material for organic electroluminescent device |
US20090191427A1 (en) * | 2008-01-30 | 2009-07-30 | Liang-Sheng Liao | Phosphorescent oled having double hole-blocking layers |
US20090242877A1 (en) * | 2008-03-25 | 2009-10-01 | Eastman Kodak Company | Oled device with hole-transport and electron-transport materials |
WO2009145016A1 (en) | 2008-05-29 | 2009-12-03 | 出光興産株式会社 | Aromatic amine derivative and organic electroluminescent device using the same |
US20090309487A1 (en) * | 2008-06-12 | 2009-12-17 | Royster Jr Tommie L | Phosphorescent oled device with mixed hosts |
US20100019671A1 (en) * | 2005-10-26 | 2010-01-28 | Eastman Kodak Company | Organic element for low voltage electroluminescent devices |
US20100052516A1 (en) * | 2008-08-28 | 2010-03-04 | Xiaofan Ren | Emitting complex for electroluminescent devices |
EP2161272A1 (en) | 2008-09-05 | 2010-03-10 | Basf Se | Phenanthrolines |
US20100084647A1 (en) * | 2006-04-27 | 2010-04-08 | Kondakova Marina E | Electroluminescent devices including organic eil layer |
US20100117520A1 (en) * | 2008-11-12 | 2010-05-13 | Begley William J | Oled device with fluoranthene electron injection materials |
US20100117519A1 (en) * | 2008-11-07 | 2010-05-13 | Begley William J | Electroluminescent device containing a flouranthene compound |
US20100141122A1 (en) * | 2008-12-09 | 2010-06-10 | Begley William J | Oled device with cyclobutene electron injection materials |
WO2010074087A1 (en) | 2008-12-26 | 2010-07-01 | 出光興産株式会社 | Material for organic electroluminescent element, and organic electroluminescent element |
WO2010074181A1 (en) | 2008-12-26 | 2010-07-01 | 出光興産株式会社 | Organic electroluminescence element and compound |
WO2010076878A1 (en) | 2009-01-05 | 2010-07-08 | 出光興産株式会社 | Organic electroluminescent element material and organic electroluminescent element comprising same |
US20100207513A1 (en) * | 2009-02-13 | 2010-08-19 | Begley William J | Oled with fluoranthene-macrocyclic materials |
US20100219748A1 (en) * | 2009-02-27 | 2010-09-02 | Kondakova Marina E | Oled device with stabilized green light-emitting layer |
US20100219747A1 (en) * | 2009-02-27 | 2010-09-02 | Tutt Lee W | Inverted bottom-emitting oled device |
US20100219429A1 (en) * | 2006-02-24 | 2010-09-02 | Cok Ronald S | Top-emitting oled device with light-scattering layer and color-conversion |
EP2229039A1 (en) | 2003-07-02 | 2010-09-15 | Idemitsu Kosan Co., Ltd. | Organic electroluminescent device and display using same |
US20100244677A1 (en) * | 2009-03-31 | 2010-09-30 | Begley William J | Oled device containing a silyl-fluoranthene derivative |
WO2010114749A1 (en) | 2009-04-03 | 2010-10-07 | Global Oled Technology Llc | Tandem white oled with efficient electron transfer |
EP2239352A2 (en) | 2004-09-21 | 2010-10-13 | Global OLED Technology LLC | Delivering particulate material to a vaporization zone |
WO2010116970A1 (en) | 2009-04-06 | 2010-10-14 | 出光興産株式会社 | Organic electroluminescent element and material for organic electroluminescent element |
US20100277060A1 (en) * | 2007-09-20 | 2010-11-04 | Basf Se | Electroluminescent device |
CN101891642A (en) * | 2010-07-07 | 2010-11-24 | 中国科学院上海微系统与信息技术研究所 | Fluorescent compound and application thereof to detection of trace nitrobenzene substances |
US20100307791A1 (en) * | 2009-06-09 | 2010-12-09 | The Government Of The United States Of America, As Represented By The Secretary Of The Navy | Electrically Conductive Polymers |
EP2262032A2 (en) | 1999-04-05 | 2010-12-15 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device and its manufacturing method |
EP2276089A2 (en) | 2004-07-27 | 2011-01-19 | Global OLED Technology LLC | Method for reducing moisture contamination in a top-emitting oled using a dessicant |
WO2011015265A2 (en) | 2009-08-04 | 2011-02-10 | Merck Patent Gmbh | Electronic devices comprising multi cyclic hydrocarbons |
WO2011032686A1 (en) | 2009-09-16 | 2011-03-24 | Merck Patent Gmbh | Formulas for producing electronic devices |
WO2011046182A1 (en) | 2009-10-16 | 2011-04-21 | 出光興産株式会社 | Fluorene-containing aromatic compound, material for organic electroluminescent element, and organic electroluminescent element using same |
WO2011076323A1 (en) | 2009-12-22 | 2011-06-30 | Merck Patent Gmbh | Formulations comprising phase-separated functional materials |
WO2011076326A1 (en) | 2009-12-22 | 2011-06-30 | Merck Patent Gmbh | Electroluminescent functional surfactants |
WO2011076314A1 (en) | 2009-12-22 | 2011-06-30 | Merck Patent Gmbh | Electroluminescent formulations |
WO2011091946A1 (en) | 2010-01-30 | 2011-08-04 | Merck Patent Gmbh | Organic electroluminescent device comprising an integrated layer for colour conversion |
EP2355198A1 (en) | 2006-05-08 | 2011-08-10 | Global OLED Technology LLC | OLED electron-injecting layer |
WO2011110277A1 (en) | 2010-03-11 | 2011-09-15 | Merck Patent Gmbh | Fibers in therapy and cosmetics |
WO2011110275A2 (en) | 2010-03-11 | 2011-09-15 | Merck Patent Gmbh | Radiative fibers |
WO2011137922A1 (en) | 2010-05-03 | 2011-11-10 | Merck Patent Gmbh | Formulations and electronic devices |
WO2011147522A1 (en) | 2010-05-27 | 2011-12-01 | Merck Patent Gmbh | Compositions comprising quantum dots |
WO2012013270A1 (en) | 2010-07-26 | 2012-02-02 | Merck Patent Gmbh | Nanocrystals in devices |
WO2012014841A1 (en) | 2010-07-26 | 2012-02-02 | 出光興産株式会社 | Organic electroluminescence element |
WO2012013272A1 (en) | 2010-07-26 | 2012-02-02 | Merck Patent Gmbh | Quantum dots and hosts |
EP2448374A2 (en) | 2003-12-01 | 2012-05-02 | Idemitsu Kosan Co., Ltd. | Asymmetric monoanthracene derivative, material for organic electroluminescent device and organic electroluminescent device utilizing the same |
US8206842B2 (en) | 2009-04-06 | 2012-06-26 | Global Oled Technology Llc | Organic element for electroluminescent devices |
WO2012084114A1 (en) | 2010-12-23 | 2012-06-28 | Merck Patent Gmbh | Organic electroluminescent device |
WO2012110178A1 (en) | 2011-02-14 | 2012-08-23 | Merck Patent Gmbh | Device and method for treatment of cells and cell tissue |
EP2498317A2 (en) | 2007-07-25 | 2012-09-12 | Global OLED Technology LLC | Preventing stress transfer in OLED display components |
WO2012126566A1 (en) | 2011-03-24 | 2012-09-27 | Merck Patent Gmbh | Organic ionic functional materials |
WO2012152366A1 (en) | 2011-05-12 | 2012-11-15 | Merck Patent Gmbh | Organic ionic compounds, compositions and electronic devices |
WO2012157211A1 (en) | 2011-05-13 | 2012-11-22 | ソニー株式会社 | Organic el multi-color light-emitting device |
WO2012163464A1 (en) | 2011-06-01 | 2012-12-06 | Merck Patent Gmbh | Hybrid ambipolar tfts |
WO2013013754A1 (en) | 2011-07-25 | 2013-01-31 | Merck Patent Gmbh | Copolymers with functionalized side chains |
WO2013035275A1 (en) | 2011-09-09 | 2013-03-14 | 出光興産株式会社 | Nitrogen-containing heteroaromatic ring compound |
WO2013046635A1 (en) | 2011-09-28 | 2013-04-04 | 出光興産株式会社 | Material for organic electroluminescent element, and organic electroluminescent element produced using same |
DE102011117422A1 (en) | 2011-10-28 | 2013-05-02 | Merck Patent Gmbh | Hyperbranched polymers, process for their preparation and their use in electronic devices |
WO2013069242A1 (en) | 2011-11-07 | 2013-05-16 | 出光興産株式会社 | Material for organic electroluminescent elements, and organic electroluminescent element using same |
EP2752866A1 (en) | 2002-08-20 | 2014-07-09 | Global OLED Technology LLC | Color organic light emitting diode display with improved lifetime |
US8900722B2 (en) | 2007-11-29 | 2014-12-02 | Global Oled Technology Llc | OLED device employing alkali metal cluster compounds |
WO2015014429A1 (en) | 2013-07-29 | 2015-02-05 | Merck Patent Gmbh | Electroluminescence device |
WO2015014427A1 (en) | 2013-07-29 | 2015-02-05 | Merck Patent Gmbh | Electro-optical device and the use thereof |
EP2910619A1 (en) | 2003-12-19 | 2015-08-26 | Idemitsu Kosan Co., Ltd | Light-emitting material for organic electroluminescent device, organic electroluminescent device using same, and material for organic electroluminescent device |
WO2016034262A1 (en) | 2014-09-05 | 2016-03-10 | Merck Patent Gmbh | Formulations and electronic devices |
WO2016107663A1 (en) | 2014-12-30 | 2016-07-07 | Merck Patent Gmbh | Formulations and electronic devices |
WO2016155866A1 (en) | 2015-03-30 | 2016-10-06 | Merck Patent Gmbh | Formulation of an organic functional material comprising a siloxane solvent |
EP3101691A1 (en) | 2002-12-16 | 2016-12-07 | Global OLED Technology LLC | A color oled display with improved power efficiency |
WO2016198141A1 (en) | 2015-06-12 | 2016-12-15 | Merck Patent Gmbh | Esters containing non-aromatic cycles as solvents for oled formulations |
WO2017036572A1 (en) | 2015-08-28 | 2017-03-09 | Merck Patent Gmbh | Formulation of an organic functional material comprising an epoxy group containing solvent |
WO2017097391A1 (en) | 2015-12-10 | 2017-06-15 | Merck Patent Gmbh | Formulations containing ketones comprising non-aromatic cycles |
WO2017102048A1 (en) | 2015-12-15 | 2017-06-22 | Merck Patent Gmbh | Esters containing aromatic groups as solvents for organic electronic formulations |
WO2017102049A1 (en) | 2015-12-16 | 2017-06-22 | Merck Patent Gmbh | Formulations containing a mixture of at least two different solvents |
WO2017102052A1 (en) | 2015-12-16 | 2017-06-22 | Merck Patent Gmbh | Formulations containing a solid solvent |
WO2017140404A1 (en) | 2016-02-17 | 2017-08-24 | Merck Patent Gmbh | Formulation of an organic functional material |
DE102016003104A1 (en) | 2016-03-15 | 2017-09-21 | Merck Patent Gmbh | Container comprising a formulation containing at least one organic semiconductor |
WO2017216129A1 (en) | 2016-06-16 | 2017-12-21 | Merck Patent Gmbh | Formulation of an organic functional material |
WO2017216128A1 (en) | 2016-06-17 | 2017-12-21 | Merck Patent Gmbh | Formulation of an organic functional material |
WO2018001928A1 (en) | 2016-06-28 | 2018-01-04 | Merck Patent Gmbh | Formulation of an organic functional material |
WO2018024719A1 (en) | 2016-08-04 | 2018-02-08 | Merck Patent Gmbh | Formulation of an organic functional material |
WO2018077660A1 (en) | 2016-10-31 | 2018-05-03 | Merck Patent Gmbh | Formulation of an organic functional material |
WO2018077662A1 (en) | 2016-10-31 | 2018-05-03 | Merck Patent Gmbh | Formulation of an organic functional material |
WO2018095395A1 (en) | 2016-11-23 | 2018-05-31 | 广州华睿光电材料有限公司 | High polymer, mixture containing same, composition, organic electronic component, and monomer for polymerization |
WO2018095381A1 (en) | 2016-11-23 | 2018-05-31 | 广州华睿光电材料有限公司 | Printing ink composition, preparation method therefor, and uses thereof |
WO2018103744A1 (en) | 2016-12-08 | 2018-06-14 | 广州华睿光电材料有限公司 | Mixture, composition and organic electronic device |
WO2018104202A1 (en) | 2016-12-06 | 2018-06-14 | Merck Patent Gmbh | Preparation process for an electronic device |
WO2018108760A1 (en) | 2016-12-13 | 2018-06-21 | Merck Patent Gmbh | Formulation of an organic functional material |
WO2018114883A1 (en) | 2016-12-22 | 2018-06-28 | Merck Patent Gmbh | Mixtures comprising at least two organofunctional compounds |
WO2018113785A1 (en) | 2016-12-22 | 2018-06-28 | 广州华睿光电材料有限公司 | Polymer containing furan crosslinking group and use thereof |
WO2018138318A1 (en) | 2017-01-30 | 2018-08-02 | Merck Patent Gmbh | Method for forming an organic element of an electronic device |
WO2018138319A1 (en) | 2017-01-30 | 2018-08-02 | Merck Patent Gmbh | Method for forming an organic electroluminescence (el) element |
WO2018178136A1 (en) | 2017-03-31 | 2018-10-04 | Merck Patent Gmbh | Printing method for an organic light emitting diode (oled) |
WO2018189050A1 (en) | 2017-04-10 | 2018-10-18 | Merck Patent Gmbh | Formulation of an organic functional material |
WO2018202603A1 (en) | 2017-05-03 | 2018-11-08 | Merck Patent Gmbh | Formulation of an organic functional material |
WO2019016184A1 (en) | 2017-07-18 | 2019-01-24 | Merck Patent Gmbh | Formulation of an organic functional material |
US10323180B2 (en) | 2014-12-04 | 2019-06-18 | Guangzhou Chinaray Optoelectronic Materials Ltd. | Deuterated organic compound, mixture and composition containing said compound, and organic electronic device |
WO2019115573A1 (en) | 2017-12-15 | 2019-06-20 | Merck Patent Gmbh | Formulation of an organic functional material |
US10364316B2 (en) | 2015-01-13 | 2019-07-30 | Guangzhou Chinaray Optoelectronics Materials Ltd. | Conjugated polymer containing ethynyl crosslinking group, mixture, formulation, organic electronic device containing the same and application therof |
WO2019162483A1 (en) | 2018-02-26 | 2019-08-29 | Merck Patent Gmbh | Formulation of an organic functional material |
US10510967B2 (en) | 2014-12-11 | 2019-12-17 | Guangzhou Chinaray Optoelectronic Materials Ltd. | Organic compound, and mixture, formulation and organic device comprising the same |
WO2019238782A1 (en) | 2018-06-15 | 2019-12-19 | Merck Patent Gmbh | Formulation of an organic functional material |
US10573827B2 (en) | 2014-12-11 | 2020-02-25 | Guangzhou Chinaray Optoelectronics Materials Ltd. | Organic metal complex, and polymer, mixture, composition and organic electronic device containing same and use thereof |
US10593886B2 (en) | 2013-08-25 | 2020-03-17 | Molecular Glasses, Inc. | OLED devices with improved lifetime using non-crystallizable molecular glass mixture hosts |
WO2020064582A1 (en) | 2018-09-24 | 2020-04-02 | Merck Patent Gmbh | Method for the production of a granular material |
WO2020094538A1 (en) | 2018-11-06 | 2020-05-14 | Merck Patent Gmbh | Method for forming an organic element of an electronic device |
US10840450B2 (en) | 2014-12-04 | 2020-11-17 | Guangzhou Chinaray Optoelectronic Materials Ltd. | Polymer, and mixture or formulation, and organic electronic device containing same, and monomer thereof |
WO2021213917A1 (en) | 2020-04-21 | 2021-10-28 | Merck Patent Gmbh | Emulsions comprising organic functional materials |
US11161933B2 (en) | 2016-12-13 | 2021-11-02 | Guangzhou Chinaray Optoelectronic Materials Ltd. | Conjugated polymer and use thereof in organic electronic device |
WO2021259824A1 (en) | 2020-06-23 | 2021-12-30 | Merck Patent Gmbh | Method for producing a mixture |
US11292875B2 (en) | 2016-12-22 | 2022-04-05 | Guangzhou Chinaray Optoelectronic Materials Ltd. | Cross-linkable polymer based on Diels-Alder reaction and use thereof in organic electronic device |
WO2022122607A1 (en) | 2020-12-08 | 2022-06-16 | Merck Patent Gmbh | An ink system and a method for inkjet printing |
US11404644B2 (en) | 2016-12-22 | 2022-08-02 | Guangzhou Chinaray Optoelectronic Materials Ltd. | Organic functional compounds, mixtures, formulations, organic functional thin films and preparation methods therefor and organic electronic devices |
WO2022243403A1 (en) | 2021-05-21 | 2022-11-24 | Merck Patent Gmbh | Method for the continuous purification of at least one functional material and device for the continuous purification of at least one functional material |
US11512039B2 (en) | 2016-11-23 | 2022-11-29 | Guangzhou Chinaray Optoelectronic Materials Ltd. | Aromatic amine derivatives, preparation methods therefor, and uses thereof |
US11518723B2 (en) | 2016-11-23 | 2022-12-06 | Guangzhou Chinaray Optoelectronic Materials Ltd. | Fused ring compound, high polymer, mixture, composition and organic electronic component |
US11555128B2 (en) | 2015-11-12 | 2023-01-17 | Guangzhou Chinaray Optoelectronic Materials Ltd. | Printing composition, electronic device comprising same and preparation method for functional material thin film |
WO2023012084A1 (en) | 2021-08-02 | 2023-02-09 | Merck Patent Gmbh | A printing method by combining inks |
WO2023031073A1 (en) | 2021-08-31 | 2023-03-09 | Merck Patent Gmbh | Composition |
WO2023057327A1 (en) | 2021-10-05 | 2023-04-13 | Merck Patent Gmbh | Method for forming an organic element of an electronic device |
WO2023237458A1 (en) | 2022-06-07 | 2023-12-14 | Merck Patent Gmbh | Method of printing a functional layer of an electronic device by combining inks |
WO2024126635A1 (en) | 2022-12-16 | 2024-06-20 | Merck Patent Gmbh | Formulation of an organic functional material |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH027061A (en) * | 1988-06-27 | 1990-01-11 | Fuji Electric Co Ltd | Electrophotographic sensitive body |
US5275898A (en) * | 1989-06-06 | 1994-01-04 | Fuji Electric Co., Ltd. | Bisazo photoconductor for electrophotography |
US5132189A (en) * | 1989-09-07 | 1992-07-21 | Fuji Electric Co., Ltd. | Photoconductor for electrophotography |
US5316881A (en) * | 1991-12-27 | 1994-05-31 | Fuji Electric Co., Ltd. | Photoconductor for electrophotgraphy containing benzidine derivative |
JPH05224439A (en) * | 1992-02-12 | 1993-09-03 | Fuji Electric Co Ltd | Electrophotographic sensitive body |
JP2817822B2 (en) * | 1992-05-14 | 1998-10-30 | 富士電機株式会社 | Electrophotographic photoreceptor |
-
1968
- 1968-02-20 US US706800A patent/US3567450A/en not_active Expired - Lifetime
-
1969
- 1969-02-19 DE DE19691908343 patent/DE1908343B2/en not_active Withdrawn
Cited By (329)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4222902A (en) * | 1975-03-07 | 1980-09-16 | Minnesota Mining And Manufacturing Company | Semiconductive and sensitized photoconductive compositions |
US4105447A (en) * | 1975-07-14 | 1978-08-08 | Eastman Kodak Company | Photoconductive insulating compositions including polyaryl hydrocarbon photoconductors |
US4299897A (en) * | 1978-12-15 | 1981-11-10 | Xerox Corporation | Aromatic amino charge transport layer in electrophotography |
US4402573A (en) * | 1981-06-18 | 1983-09-06 | International Business Machines Corporation | Materials for electrochromic display devices |
US4581311A (en) * | 1981-08-06 | 1986-04-08 | Fuji Photo Film Co., Ltd. | Photoconductive composition with vinylidene chloride-acrylonitrile copolymer additive |
JPS5865440A (en) * | 1981-09-18 | 1983-04-19 | Konishiroku Photo Ind Co Ltd | Electrophotographic receptor |
JPS6319867B2 (en) * | 1981-09-18 | 1988-04-25 | Konika Kk | |
DE3331592A1 (en) | 1982-09-01 | 1984-03-01 | Fuji Photo Film Co., Ltd., Minamiashigara, Kanagawa | DISAZO CONNECTIONS AND PHOTO-CONDUCTIVE COMPOSITIONS CONTAINING THEM AND ELECTROPHOTOGRAPHIC LIGHT-SENSITIVE RECORDING MATERIALS |
US5121029A (en) * | 1987-12-11 | 1992-06-09 | Idemitsu Kosan Co., Ltd. | Electroluminescence device having an organic electroluminescent element |
EP0373582A1 (en) * | 1988-12-14 | 1990-06-20 | Idemitsu Kosan Company Limited | Electroluminescence device |
EP0616020A1 (en) | 1989-03-20 | 1994-09-21 | Idemitsu Kosan Company Limited | Aromatic dimethylidyne compounds and process for preparation thereof |
US4937165A (en) * | 1989-04-03 | 1990-06-26 | Xerox Corporation | Photoconductive imaging members with N,N-bis(biarylyl)aniline charge transport polymers |
US4959288A (en) * | 1989-04-03 | 1990-09-25 | Xerox Corporation | Photoconductive imaging members with diaryl biarylylamine copolymer charge transport layers |
US5061569A (en) * | 1990-07-26 | 1991-10-29 | Eastman Kodak Company | Electroluminescent device with organic electroluminescent medium |
US5488137A (en) * | 1991-07-12 | 1996-01-30 | Ricoh Company, Ltd. | Acrylic acid ester derivative having a triphenyl amine skeleton |
EP0534510A1 (en) | 1991-08-01 | 1993-03-31 | Eastman Kodak Company | Improved blue emitting internal junction organic electroluminescent device |
US5443922A (en) * | 1991-11-07 | 1995-08-22 | Konica Corporation | Organic thin film electroluminescence element |
US5294869A (en) * | 1991-12-30 | 1994-03-15 | Eastman Kodak Company | Organic electroluminescent multicolor image display device |
US5484922A (en) * | 1992-07-13 | 1996-01-16 | Eastman Kodak Company | Internal junction organic electroluminescent device with a novel composition |
US5500568A (en) * | 1992-07-23 | 1996-03-19 | Idemitsu Kosan Co., Ltd. | Organic El device |
US5585483A (en) * | 1994-01-11 | 1996-12-17 | Fuji Electric., Ltd. | Metal-free phythalocyanine, process for preparing the same, and electrophotographic photoconductor using the same |
US5591555A (en) * | 1994-01-11 | 1997-01-07 | Fuji Electric Co., Ltd. | Electrophotographic photoconductor including a metal-free phthalocyanine |
US5824800A (en) * | 1994-01-11 | 1998-10-20 | Fuji Electric Co., Ltd. | Process for preparing a metal-free phthalocyanine |
US5409783A (en) * | 1994-02-24 | 1995-04-25 | Eastman Kodak Company | Red-emitting organic electroluminescent device |
US5552678A (en) * | 1994-09-23 | 1996-09-03 | Eastman Kodak Company | AC drive scheme for organic led |
US5468583A (en) * | 1994-12-28 | 1995-11-21 | Eastman Kodak Company | Cyclic bis-dicarboximide electron transport compounds for electrophotography |
US5554450A (en) * | 1995-03-08 | 1996-09-10 | Eastman Kodak Company | Organic electroluminescent devices with high thermal stability |
US7576059B2 (en) * | 1995-03-17 | 2009-08-18 | Novo Nordisk A/S | Peptide derivatives |
US20010016643A1 (en) * | 1995-03-17 | 2001-08-23 | Ib Jonassen | Peptide derivatives |
EP0786925A2 (en) | 1996-01-26 | 1997-07-30 | Eastman Kodak Company | White light-emitting electroluminescent devices |
US6399221B1 (en) | 1996-06-25 | 2002-06-04 | Northwestern University | Organic light-emitting diodes and methods for assembly and emission control |
US6939625B2 (en) | 1996-06-25 | 2005-09-06 | Nôrthwestern University | Organic light-emitting diodes and methods for assembly and enhanced charge injection |
US20040092195A1 (en) * | 1996-06-25 | 2004-05-13 | Marks Tobin J. | Organic light-emitting diodes and methods for assembly and emission control |
US20090284137A1 (en) * | 1996-06-25 | 2009-11-19 | Northwestern University | Organic light-emitting diodes and methods for assembly and emission control |
US8053094B2 (en) | 1996-06-25 | 2011-11-08 | Northwestern University | Organic light-emitting diodes and methods for assembly and enhanced charge injection |
US7969088B2 (en) | 1996-06-25 | 2011-06-28 | Northwestern University | Method of using silicon molecular components for controlling charge migration and light emission of organic light-emitting diodes |
US20090284145A1 (en) * | 1996-06-25 | 2009-11-19 | Marks Tobin J | Organic Light-Emitting Diodes and Methods for Assembly and Enhanced Charge Injection |
US5834100A (en) * | 1996-06-25 | 1998-11-10 | Northwestern University | Organic light-emitting dioddes and methods for assembly and emission control |
US20030162053A1 (en) * | 1996-06-25 | 2003-08-28 | Marks Tobin J. | Organic light - emitting diodes and methods for assembly and enhanced charge injection |
US7094121B2 (en) | 1996-06-25 | 2006-08-22 | Northwestern University | Organic light-emitting diodes and methods for assembly and emission control |
EP0903964A1 (en) | 1997-09-18 | 1999-03-24 | Eastman Kodak Company | Organic electroluminescent device with inorganic electron transporting layer |
US5972247A (en) * | 1998-03-20 | 1999-10-26 | Eastman Kodak Company | Organic electroluminescent elements for stable blue electroluminescent devices |
US5935721A (en) * | 1998-03-20 | 1999-08-10 | Eastman Kodak Company | Organic electroluminescent elements for stable electroluminescent |
US6428912B1 (en) | 1998-09-30 | 2002-08-06 | Agere Systems Guardian Corp. | Electron transport material and light emitting diode that contains the electron transport material |
US6444333B1 (en) * | 1998-10-12 | 2002-09-03 | Fuji Photo Film Co., Ltd. | Organic luminescent device material, organic luminescent device using the same, and tetraarylmethane compound |
US6208077B1 (en) | 1998-11-05 | 2001-03-27 | Eastman Kodak Company | Organic electroluminescent device with a non-conductive fluorocarbon polymer layer |
US6020078A (en) * | 1998-12-18 | 2000-02-01 | Eastman Kodak Company | Green organic electroluminescent devices |
EP2270117A2 (en) | 1998-12-28 | 2011-01-05 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device |
WO2000041443A1 (en) | 1998-12-28 | 2000-07-13 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device |
US6127004A (en) * | 1999-01-29 | 2000-10-03 | Eastman Kodak Company | Forming an amorphous fluorocarbon layer in electroluminescent devices |
EP2262032A2 (en) | 1999-04-05 | 2010-12-15 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device and its manufacturing method |
US20100117063A9 (en) * | 1999-12-31 | 2010-05-13 | Kang Min Soo | Organic electronic device |
US8253126B2 (en) | 1999-12-31 | 2012-08-28 | Lg Chem. Ltd. | Organic electronic device |
US20070102698A1 (en) * | 1999-12-31 | 2007-05-10 | Kang Min S | Organic electronic device |
US6610455B1 (en) | 2002-01-30 | 2003-08-26 | Eastman Kodak Company | Making electroluminscent display devices |
US20050029933A1 (en) * | 2002-02-15 | 2005-02-10 | Eastman Kodak Compamy | Cascaded organic electroluminescent devices with color filters |
US6872472B2 (en) | 2002-02-15 | 2005-03-29 | Eastman Kodak Company | Providing an organic electroluminescent device having stacked electroluminescent units |
US6770502B2 (en) * | 2002-04-04 | 2004-08-03 | Eastman Kodak Company | Method of manufacturing a top-emitting OLED display device with desiccant structures |
US6835953B2 (en) | 2002-04-04 | 2004-12-28 | Eastman Kodak Company | Desiccant structures for OLED displays |
US20030203551A1 (en) * | 2002-04-04 | 2003-10-30 | Cok Ronald S. | Desiccant structures for OLED displays |
EP1367677A2 (en) | 2002-05-28 | 2003-12-03 | Eastman Kodak Company | Lighting apparatus with flexible oled area illumination light source and fixture |
US20040108806A1 (en) * | 2002-07-23 | 2004-06-10 | Eastman Kodak Company | OLED displays with fiber-optic faceplates |
US6890627B2 (en) | 2002-08-02 | 2005-05-10 | Eastman Kodak Company | Laser thermal transfer from a donor element containing a hole-transporting layer |
US20040029039A1 (en) * | 2002-08-02 | 2004-02-12 | Eastman Kodak Company | Laser thermal transfer donor including a separate dopant layer |
US6939660B2 (en) | 2002-08-02 | 2005-09-06 | Eastman Kodak Company | Laser thermal transfer donor including a separate dopant layer |
EP2752866A1 (en) | 2002-08-20 | 2014-07-09 | Global OLED Technology LLC | Color organic light emitting diode display with improved lifetime |
US20040043138A1 (en) * | 2002-08-21 | 2004-03-04 | Ramesh Jagannathan | Solid state lighting using compressed fluid coatings |
US20040043140A1 (en) * | 2002-08-21 | 2004-03-04 | Ramesh Jagannathan | Solid state lighting using compressed fluid coatings |
US6765349B2 (en) * | 2002-09-30 | 2004-07-20 | Eastman Kodak Company | High work function metal alloy cathode used in organic electroluminescent devices |
US20040061435A1 (en) * | 2002-09-30 | 2004-04-01 | Eastman Kodak Company | High work function metal alloy cathode used in organic electroluminescent devices |
EP3101647A1 (en) | 2002-12-16 | 2016-12-07 | Global OLED Technology LLC | A color oled display with improved power efficiency |
EP3101691A1 (en) | 2002-12-16 | 2016-12-07 | Global OLED Technology LLC | A color oled display with improved power efficiency |
EP2229039A1 (en) | 2003-07-02 | 2010-09-15 | Idemitsu Kosan Co., Ltd. | Organic electroluminescent device and display using same |
EP2448374A2 (en) | 2003-12-01 | 2012-05-02 | Idemitsu Kosan Co., Ltd. | Asymmetric monoanthracene derivative, material for organic electroluminescent device and organic electroluminescent device utilizing the same |
US20140008640A1 (en) * | 2003-12-01 | 2014-01-09 | Idemitsu Kosan, Co. | Asymmetric monoanthracene derivative, material for organic electroluminescent device and organic electroluminescent device utilizing the same |
EP2910619A1 (en) | 2003-12-19 | 2015-08-26 | Idemitsu Kosan Co., Ltd | Light-emitting material for organic electroluminescent device, organic electroluminescent device using same, and material for organic electroluminescent device |
US7221332B2 (en) | 2003-12-19 | 2007-05-22 | Eastman Kodak Company | 3D stereo OLED display |
US20070171525A1 (en) * | 2003-12-19 | 2007-07-26 | Miller Michael E | 3d stereo oled display |
US20070247066A1 (en) * | 2004-04-06 | 2007-10-25 | Idemitsu Kosan Co., Ltd. | Electrode Substrate and Its Manufacturing Method |
EP2276089A2 (en) | 2004-07-27 | 2011-01-19 | Global OLED Technology LLC | Method for reducing moisture contamination in a top-emitting oled using a dessicant |
US20070122655A1 (en) * | 2004-09-20 | 2007-05-31 | Eastman Kodak Company | Electroluminescent device with quinazoline complex emitter |
US9040170B2 (en) | 2004-09-20 | 2015-05-26 | Global Oled Technology Llc | Electroluminescent device with quinazoline complex emitter |
WO2006034028A2 (en) | 2004-09-21 | 2006-03-30 | Eastman Kodak Company | Delivering particulate material to a vaporization source |
EP2239352A2 (en) | 2004-09-21 | 2010-10-13 | Global OLED Technology LLC | Delivering particulate material to a vaporization zone |
WO2006073054A1 (en) | 2005-01-05 | 2006-07-13 | Idemitsu Kosan Co., Ltd. | Aromatic amine derivative and organic electroluminescent device using same |
EP2371810A1 (en) | 2005-01-05 | 2011-10-05 | Idemitsu Kosan Co., Ltd. | Aromatic amine derivative and organic electroluminescent device using same |
US8057916B2 (en) | 2005-04-20 | 2011-11-15 | Global Oled Technology, Llc. | OLED device with improved performance |
US20060240278A1 (en) * | 2005-04-20 | 2006-10-26 | Eastman Kodak Company | OLED device with improved performance |
US20090004365A1 (en) * | 2005-04-21 | 2009-01-01 | Liang-Sheng Liao | Contaminant-scavenging layer on oled anodes |
US20110028724A1 (en) * | 2005-05-27 | 2011-02-03 | Xerox Corporation | Polymers of napthalene tetracarboxylic diimide dimers |
US7820780B2 (en) | 2005-05-27 | 2010-10-26 | Xerox Corporation | Polymers of napthalene tetracarboxylic diimide dimers |
US8202674B2 (en) | 2005-05-27 | 2012-06-19 | Xerox Corporation | Polymers of napthalene tetracarboxylic diimide dimers |
US20080171275A1 (en) * | 2005-05-27 | 2008-07-17 | Xerox Corporation | Polymers of napthalene tetracarboxylic diimide dimers |
US7544450B2 (en) | 2005-05-27 | 2009-06-09 | Xerox Corporation | Polymers of napthalene tetracarboxylic diimide dimers |
US7449268B2 (en) | 2005-05-27 | 2008-11-11 | Xerox Corporation | Polymers of napthalene tetracarboxylic diimide dimers |
US20090234092A1 (en) * | 2005-05-27 | 2009-09-17 | Xerox Corporation | Polymers of napthalene tetracarboxylic diimide dimers |
US20060269855A1 (en) * | 2005-05-27 | 2006-11-30 | Xerox Corporation | Polymers of napthalene tetracarboxylic diimide dimers |
US7390601B2 (en) | 2005-06-16 | 2008-06-24 | Xerox Corporation | Imaging member comprising modified binder |
US20060286470A1 (en) * | 2005-06-16 | 2006-12-21 | Xerox Corporation | Imaging member |
WO2007007553A1 (en) | 2005-07-14 | 2007-01-18 | Idemitsu Kosan Co., Ltd. | Biphenyl derivatives, organic electroluminescent materials, and organic electroluminescent devices made by using the same |
WO2007017995A1 (en) | 2005-08-08 | 2007-02-15 | Idemitsu Kosan Co., Ltd. | Aromatic amine derivative and organic electroluminescence device making use of the same |
US20070048545A1 (en) * | 2005-08-31 | 2007-03-01 | Eastman Kodak Company | Electron-transporting layer for white OLED device |
WO2007029410A1 (en) | 2005-09-08 | 2007-03-15 | Idemitsu Kosan Co., Ltd. | Organic electroluminescent element using polyarylamine |
WO2007032161A1 (en) | 2005-09-15 | 2007-03-22 | Idemitsu Kosan Co., Ltd. | Asymmetric fluorene derivative and organic electroluminescent element containing the same |
WO2007032162A1 (en) | 2005-09-16 | 2007-03-22 | Idemitsu Kosan Co., Ltd. | Pyrene derivative and organic electroluminescence device making use of the same |
US8956738B2 (en) | 2005-10-26 | 2015-02-17 | Global Oled Technology Llc | Organic element for low voltage electroluminescent devices |
US20100019671A1 (en) * | 2005-10-26 | 2010-01-28 | Eastman Kodak Company | Organic element for low voltage electroluminescent devices |
WO2007052759A1 (en) | 2005-11-07 | 2007-05-10 | Idemitsu Kosan Co., Ltd. | Organic electroluminescent element |
WO2007058044A1 (en) | 2005-11-15 | 2007-05-24 | Idemitsu Kosan Co., Ltd. | Aromatic amine derivative and organic electroluminescent element employing the same |
WO2007058127A1 (en) | 2005-11-16 | 2007-05-24 | Idemitsu Kosan Co., Ltd. | Aromatic amine derivative and organic electroluminescent element using the same |
WO2007058172A1 (en) | 2005-11-17 | 2007-05-24 | Idemitsu Kosan Co., Ltd. | Organic electroluminescent device |
WO2007061063A1 (en) | 2005-11-28 | 2007-05-31 | Idemitsu Kosan Co., Ltd. | Organic electroluminescent device |
WO2007060795A1 (en) | 2005-11-28 | 2007-05-31 | Idemitsu Kosan Co., Ltd. | Amine compound and organic electroluminescent element employing the same |
US9666826B2 (en) | 2005-11-30 | 2017-05-30 | Global Oled Technology Llc | Electroluminescent device including an anthracene derivative |
US20070122657A1 (en) * | 2005-11-30 | 2007-05-31 | Eastman Kodak Company | Electroluminescent device containing a phenanthroline derivative |
US20070252522A1 (en) * | 2005-11-30 | 2007-11-01 | Eastman Kodak Company | Electroluminescent device including an anthracene derivative |
WO2007063993A1 (en) | 2005-12-02 | 2007-06-07 | Idemitsu Kosan Co., Ltd. | Nitrogenous heterocyclic derivative and organic electroluminescence device making use of the same |
WO2007077766A1 (en) | 2005-12-27 | 2007-07-12 | Idemitsu Kosan Co., Ltd. | Material for organic electroluminescent device and organic electroluminescent device |
WO2007080704A1 (en) | 2006-01-13 | 2007-07-19 | Idemitsu Kosan Co., Ltd. | Aromatic amine derivatives and organic electroluminescent devices made by using the same |
US8680693B2 (en) | 2006-01-18 | 2014-03-25 | Lg Chem. Ltd. | OLED having stacked organic light-emitting units |
US20090009101A1 (en) * | 2006-01-18 | 2009-01-08 | Kang Min-Soo | Oled Having Stacked Organic Light-Emitting Units |
WO2007097178A1 (en) | 2006-02-23 | 2007-08-30 | Idemitsu Kosan Co., Ltd. | Material for organic electroluminescent device, method for producing same and organic electroluminescent device |
US7990058B2 (en) | 2006-02-24 | 2011-08-02 | Global Oled Technology Llc | Top-emitting OLED device with light-scattering layer and color-conversion |
US8258693B2 (en) | 2006-02-24 | 2012-09-04 | Global Oled Technology Llc | Top-emitting OLED device with integrated light-scattering and color-conversion layer |
US20100219429A1 (en) * | 2006-02-24 | 2010-09-02 | Cok Ronald S | Top-emitting oled device with light-scattering layer and color-conversion |
WO2007099983A1 (en) | 2006-02-28 | 2007-09-07 | Idemitsu Kosan Co., Ltd. | Organic electroluminescent device using fluoranthene derivative and indenoperylene derivative |
WO2007105448A1 (en) | 2006-02-28 | 2007-09-20 | Idemitsu Kosan Co., Ltd. | Naphthacene derivative and organic electroluminescent device using same |
WO2007100010A1 (en) | 2006-02-28 | 2007-09-07 | Idemitsu Kosan Co., Ltd. | Organic electroluminescent device |
US20070207345A1 (en) * | 2006-03-01 | 2007-09-06 | Eastman Kodak Company | Electroluminescent device including gallium complexes |
WO2007102361A1 (en) | 2006-03-07 | 2007-09-13 | Idemitsu Kosan Co., Ltd. | Aromatic amine derivative and organic electroluminescent device using same |
WO2007111263A1 (en) | 2006-03-27 | 2007-10-04 | Idemitsu Kosan Co., Ltd. | Nitrogen-containing heterocyclic derivative and organic electroluminescent device using same |
WO2007111262A1 (en) | 2006-03-27 | 2007-10-04 | Idemitsu Kosan Co., Ltd. | Nitrogen-containing heterocyclic derivative and organic electroluminescent device using same |
US7718825B2 (en) * | 2006-03-28 | 2010-05-18 | Xerox Corporation | Arylamine process |
US20070232830A1 (en) * | 2006-03-28 | 2007-10-04 | Xerox Corporation | Arylamine process |
WO2007116750A1 (en) | 2006-03-30 | 2007-10-18 | Idemitsu Kosan Co., Ltd. | Material for organic electroluminescent device and organic electroluminescent device using the same |
WO2007114358A1 (en) | 2006-04-03 | 2007-10-11 | Idemitsu Kosan Co., Ltd. | Benzanthracene derivative and organic electroluminescent device using the same |
WO2007116828A1 (en) | 2006-04-03 | 2007-10-18 | Idemitsu Kosan Co., Ltd. | Bisanthracene derivative and organic electroluminescent device using the same |
WO2007125714A1 (en) | 2006-04-26 | 2007-11-08 | Idemitsu Kosan Co., Ltd. | Aromatic amine derivative, and organic electroluminescence element using the same |
US20100084647A1 (en) * | 2006-04-27 | 2010-04-08 | Kondakova Marina E | Electroluminescent devices including organic eil layer |
US9118020B2 (en) | 2006-04-27 | 2015-08-25 | Global Oled Technology Llc | Electroluminescent devices including organic eil layer |
EP2355198A1 (en) | 2006-05-08 | 2011-08-10 | Global OLED Technology LLC | OLED electron-injecting layer |
WO2007132704A1 (en) | 2006-05-11 | 2007-11-22 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence element |
WO2007132678A1 (en) | 2006-05-11 | 2007-11-22 | Idemitsu Kosan Co., Ltd. | Organic electroluminescent device |
WO2007138906A1 (en) | 2006-05-25 | 2007-12-06 | Idemitsu Kosan Co., Ltd. | Organic electroluminescent device and full color light-emitting device |
US8268457B2 (en) | 2006-06-05 | 2012-09-18 | Idemitsu Kosan Co., Ltd. | Organic electroluminescent device and material for organic electroluminescent device |
US20090167167A1 (en) * | 2006-06-05 | 2009-07-02 | Idemitsu Kosan Co., Ltd. | Organic electroluminescent device and material for organic electroluminescent device |
WO2007148660A1 (en) | 2006-06-22 | 2007-12-27 | Idemitsu Kosan Co., Ltd. | Organic electroluminescent device employing heterocycle-containing arylamine derivative |
WO2008001551A1 (en) | 2006-06-27 | 2008-01-03 | Idemitsu Kosan Co., Ltd. | Aromatic amine derivative, and organic electroluminescence device using the same |
WO2008015949A1 (en) | 2006-08-04 | 2008-02-07 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device |
WO2008023623A1 (en) | 2006-08-22 | 2008-02-28 | Idemitsu Kosan Co., Ltd. | Organic electroluminescent device |
WO2008023549A1 (en) | 2006-08-23 | 2008-02-28 | Idemitsu Kosan Co., Ltd. | Aromatic amine derivatives and organic electroluminescent devices made by using the same |
WO2008023759A1 (en) | 2006-08-23 | 2008-02-28 | Idemitsu Kosan Co., Ltd. | Aromatic amine derivatives and organic electroluminescence devices using the same |
WO2008056722A1 (en) | 2006-11-09 | 2008-05-15 | Idemitsu Kosan Co., Ltd. | Organic el material-containing solution, method for forming thin film of organic el material, thin film of organic el material, and organic el device |
WO2008056652A1 (en) | 2006-11-09 | 2008-05-15 | Idemitsu Kosan Co., Ltd. | Organic el material-containing solution, method for synthesizing organic el material, compound synthesized by the synthesizing method, method for forming thin film of organic el material, thin film of organic el material, and organic el device |
WO2008056723A1 (en) | 2006-11-09 | 2008-05-15 | Idemitsu Kosan Co., Ltd. | Organic el material-containing solution, method for forming thin film of organic el material, thin film of organic el material, and organic el device |
WO2008059713A1 (en) | 2006-11-15 | 2008-05-22 | Idemitsu Kosan Co., Ltd. | Fluoranthene compound, organic electroluminescent device using the fluoranthene compound, and organic electroluminescent material-containing solution |
EP2518045A1 (en) | 2006-11-24 | 2012-10-31 | Idemitsu Kosan Co., Ltd. | Aromatic amine derivative and organic electroluminescent element using the same |
WO2008062636A1 (en) | 2006-11-24 | 2008-05-29 | Idemitsu Kosan Co., Ltd. | Aromatic amine derivative and organic electroluminescent element using the same |
WO2008081823A1 (en) | 2006-12-29 | 2008-07-10 | Idemitsu Kosan Co., Ltd. | Solution containing organic el material, method for synthesis of organic el material, compound synthesized by the synthesis method, method for formation of thin film of organic el material, thin film of organic el material, organic el element |
US20080176099A1 (en) * | 2007-01-18 | 2008-07-24 | Hatwar Tukaram K | White oled device with improved functions |
US8795855B2 (en) | 2007-01-30 | 2014-08-05 | Global Oled Technology Llc | OLEDs having high efficiency and excellent lifetime |
US20080182129A1 (en) * | 2007-01-30 | 2008-07-31 | Klubek Kevin P | Oleds having high efficiency and excellent lifetime |
US9620721B2 (en) | 2007-01-30 | 2017-04-11 | Global Oled Technology Llc | OLEDs having high efficiency and excellent lifetime |
WO2008102740A1 (en) | 2007-02-19 | 2008-08-28 | Idemitsu Kosan Co., Ltd. | Organic electroluminescent device |
WO2008111554A1 (en) | 2007-03-09 | 2008-09-18 | Idemitsu Kosan Co., Ltd. | Organic el device and display |
WO2008123178A1 (en) | 2007-03-23 | 2008-10-16 | Idemitsu Kosan Co., Ltd. | Organic el device |
WO2008126802A1 (en) | 2007-04-06 | 2008-10-23 | Idemitsu Kosan Co., Ltd. | Organic electroluminescent element |
KR101233361B1 (en) | 2007-05-10 | 2013-02-14 | 글로벌 오엘이디 테크놀러지 엘엘씨 | Electroluminescent device having improved light output |
US20080278067A1 (en) * | 2007-05-10 | 2008-11-13 | Yuan-Sheng Tyan | Electroluminescent device having improved light output |
US7911133B2 (en) | 2007-05-10 | 2011-03-22 | Global Oled Technology Llc | Electroluminescent device having improved light output |
US20080284318A1 (en) * | 2007-05-17 | 2008-11-20 | Deaton Joseph C | Hybrid fluorescent/phosphorescent oleds |
US20080284317A1 (en) * | 2007-05-17 | 2008-11-20 | Liang-Sheng Liao | Hybrid oled having improved efficiency |
US8034465B2 (en) | 2007-06-20 | 2011-10-11 | Global Oled Technology Llc | Phosphorescent oled having double exciton-blocking layers |
US20080315753A1 (en) * | 2007-06-20 | 2008-12-25 | Liang-Sheng Liao | Phosphorescent oled having double exciton-blocking layers |
US20090004485A1 (en) * | 2007-06-27 | 2009-01-01 | Shiying Zheng | 6-member ring structure used in electroluminescent devices |
WO2009011327A1 (en) | 2007-07-18 | 2009-01-22 | Idemitsu Kosan Co., Ltd. | Organic electroluminescent device material and organic electroluminescent device |
EP2498317A2 (en) | 2007-07-25 | 2012-09-12 | Global OLED Technology LLC | Preventing stress transfer in OLED display components |
WO2009020095A1 (en) | 2007-08-06 | 2009-02-12 | Idemitsu Kosan Co., Ltd. | Aromatic amine derivative and organic electroluminescent device using the same |
US20090053559A1 (en) * | 2007-08-20 | 2009-02-26 | Spindler Jeffrey P | High-performance broadband oled device |
US20090053557A1 (en) * | 2007-08-23 | 2009-02-26 | Spindler Jeffrey P | Stabilized white-emitting oled device |
US8628862B2 (en) | 2007-09-20 | 2014-01-14 | Basf Se | Electroluminescent device |
US20100277060A1 (en) * | 2007-09-20 | 2010-11-04 | Basf Se | Electroluminescent device |
US20090091242A1 (en) * | 2007-10-05 | 2009-04-09 | Liang-Sheng Liao | Hole-injecting layer in oleds |
US8420229B2 (en) | 2007-10-26 | 2013-04-16 | Global OLED Technologies LLC | OLED device with certain fluoranthene light-emitting dopants |
US20090108735A1 (en) * | 2007-10-26 | 2009-04-30 | Begley William J | Oled device with fluoranthene electron transport materials |
US8129039B2 (en) | 2007-10-26 | 2012-03-06 | Global Oled Technology, Llc | Phosphorescent OLED device with certain fluoranthene host |
US20090108734A1 (en) * | 2007-10-26 | 2009-04-30 | Begley William J | Oled device with certain fluoranthene light-emitting dopants |
US8076009B2 (en) | 2007-10-26 | 2011-12-13 | Global Oled Technology, Llc. | OLED device with fluoranthene electron transport materials |
US8431242B2 (en) | 2007-10-26 | 2013-04-30 | Global Oled Technology, Llc. | OLED device with certain fluoranthene host |
US20090108736A1 (en) * | 2007-10-26 | 2009-04-30 | Begley William J | Phosphorescent oled device with certain fluoranthene host |
US20090110957A1 (en) * | 2007-10-26 | 2009-04-30 | Begley William J | Oled device with certain fluoranthene host |
EP2568515A1 (en) | 2007-10-26 | 2013-03-13 | Global OLED Technology LLC | OLED device with fluoranthene electron transport materials |
US20090130941A1 (en) * | 2007-11-16 | 2009-05-21 | Boroson Michael L | Desiccant sealing arrangement for oled devices |
US8016631B2 (en) | 2007-11-16 | 2011-09-13 | Global Oled Technology Llc | Desiccant sealing arrangement for OLED devices |
KR101245745B1 (en) | 2007-11-16 | 2013-03-26 | 글로벌 오엘이디 테크놀러지 엘엘씨 | Desiccant sealing arrangement for OLED devices |
WO2009066778A1 (en) | 2007-11-22 | 2009-05-28 | Idemitsu Kosan Co., Ltd. | Organic el element and solution containing organic el material |
US8900722B2 (en) | 2007-11-29 | 2014-12-02 | Global Oled Technology Llc | OLED device employing alkali metal cluster compounds |
WO2009069717A1 (en) | 2007-11-30 | 2009-06-04 | Idemitsu Kosan Co., Ltd. | Azaindenofluorenedione derivative, organic electroluminescent device material, and organic electroluminescent device |
US20090146552A1 (en) * | 2007-12-11 | 2009-06-11 | Spindler Jeffrey P | White oled with two blue light-emitting layers |
US8877350B2 (en) | 2007-12-11 | 2014-11-04 | Global Oled Technology Llc | White OLED with two blue light-emitting layers |
US20090162612A1 (en) * | 2007-12-19 | 2009-06-25 | Hatwar Tukaram K | Oled device having two electron-transport layers |
WO2009081857A1 (en) | 2007-12-21 | 2009-07-02 | Idemitsu Kosan Co., Ltd. | Organic electroluminescent device |
US20090191427A1 (en) * | 2008-01-30 | 2009-07-30 | Liang-Sheng Liao | Phosphorescent oled having double hole-blocking layers |
US7947974B2 (en) | 2008-03-25 | 2011-05-24 | Global Oled Technology Llc | OLED device with hole-transport and electron-transport materials |
US20090242877A1 (en) * | 2008-03-25 | 2009-10-01 | Eastman Kodak Company | Oled device with hole-transport and electron-transport materials |
WO2009145016A1 (en) | 2008-05-29 | 2009-12-03 | 出光興産株式会社 | Aromatic amine derivative and organic electroluminescent device using the same |
US8324800B2 (en) | 2008-06-12 | 2012-12-04 | Global Oled Technology Llc | Phosphorescent OLED device with mixed hosts |
US20090309487A1 (en) * | 2008-06-12 | 2009-12-17 | Royster Jr Tommie L | Phosphorescent oled device with mixed hosts |
US20100052516A1 (en) * | 2008-08-28 | 2010-03-04 | Xiaofan Ren | Emitting complex for electroluminescent devices |
US8247088B2 (en) | 2008-08-28 | 2012-08-21 | Global Oled Technology Llc | Emitting complex for electroluminescent devices |
EP2161272A1 (en) | 2008-09-05 | 2010-03-10 | Basf Se | Phenanthrolines |
US20100117519A1 (en) * | 2008-11-07 | 2010-05-13 | Begley William J | Electroluminescent device containing a flouranthene compound |
US7931975B2 (en) | 2008-11-07 | 2011-04-26 | Global Oled Technology Llc | Electroluminescent device containing a flouranthene compound |
US8088500B2 (en) | 2008-11-12 | 2012-01-03 | Global Oled Technology Llc | OLED device with fluoranthene electron injection materials |
US20100117520A1 (en) * | 2008-11-12 | 2010-05-13 | Begley William J | Oled device with fluoranthene electron injection materials |
US20100141122A1 (en) * | 2008-12-09 | 2010-06-10 | Begley William J | Oled device with cyclobutene electron injection materials |
US7968215B2 (en) | 2008-12-09 | 2011-06-28 | Global Oled Technology Llc | OLED device with cyclobutene electron injection materials |
EP2713415A1 (en) | 2008-12-26 | 2014-04-02 | Idemitsu Kosan Co., Ltd | Material for organic electroluminescent element, and organic electroluminescent element |
WO2010074181A1 (en) | 2008-12-26 | 2010-07-01 | 出光興産株式会社 | Organic electroluminescence element and compound |
WO2010074087A1 (en) | 2008-12-26 | 2010-07-01 | 出光興産株式会社 | Material for organic electroluminescent element, and organic electroluminescent element |
WO2010076878A1 (en) | 2009-01-05 | 2010-07-08 | 出光興産株式会社 | Organic electroluminescent element material and organic electroluminescent element comprising same |
US20100207513A1 (en) * | 2009-02-13 | 2010-08-19 | Begley William J | Oled with fluoranthene-macrocyclic materials |
US8216697B2 (en) | 2009-02-13 | 2012-07-10 | Global Oled Technology Llc | OLED with fluoranthene-macrocyclic materials |
US8147989B2 (en) | 2009-02-27 | 2012-04-03 | Global Oled Technology Llc | OLED device with stabilized green light-emitting layer |
US20100219748A1 (en) * | 2009-02-27 | 2010-09-02 | Kondakova Marina E | Oled device with stabilized green light-emitting layer |
US20100219747A1 (en) * | 2009-02-27 | 2010-09-02 | Tutt Lee W | Inverted bottom-emitting oled device |
US20110024770A1 (en) * | 2009-02-27 | 2011-02-03 | Tutt Lee W | Inverted Bottom-Emitting OLED Device |
US8102114B2 (en) | 2009-02-27 | 2012-01-24 | Global Oled Technology, Llc. | Method of manufacturing an inverted bottom-emitting OLED device |
US20100244677A1 (en) * | 2009-03-31 | 2010-09-30 | Begley William J | Oled device containing a silyl-fluoranthene derivative |
WO2010114749A1 (en) | 2009-04-03 | 2010-10-07 | Global Oled Technology Llc | Tandem white oled with efficient electron transfer |
WO2010116970A1 (en) | 2009-04-06 | 2010-10-14 | 出光興産株式会社 | Organic electroluminescent element and material for organic electroluminescent element |
US8206842B2 (en) | 2009-04-06 | 2012-06-26 | Global Oled Technology Llc | Organic element for electroluminescent devices |
US20100307791A1 (en) * | 2009-06-09 | 2010-12-09 | The Government Of The United States Of America, As Represented By The Secretary Of The Navy | Electrically Conductive Polymers |
WO2011015265A2 (en) | 2009-08-04 | 2011-02-10 | Merck Patent Gmbh | Electronic devices comprising multi cyclic hydrocarbons |
WO2011032686A1 (en) | 2009-09-16 | 2011-03-24 | Merck Patent Gmbh | Formulas for producing electronic devices |
WO2011046182A1 (en) | 2009-10-16 | 2011-04-21 | 出光興産株式会社 | Fluorene-containing aromatic compound, material for organic electroluminescent element, and organic electroluminescent element using same |
WO2011076323A1 (en) | 2009-12-22 | 2011-06-30 | Merck Patent Gmbh | Formulations comprising phase-separated functional materials |
WO2011076326A1 (en) | 2009-12-22 | 2011-06-30 | Merck Patent Gmbh | Electroluminescent functional surfactants |
WO2011076314A1 (en) | 2009-12-22 | 2011-06-30 | Merck Patent Gmbh | Electroluminescent formulations |
WO2011091946A1 (en) | 2010-01-30 | 2011-08-04 | Merck Patent Gmbh | Organic electroluminescent device comprising an integrated layer for colour conversion |
DE102010006280A1 (en) | 2010-01-30 | 2011-08-04 | Merck Patent GmbH, 64293 | color conversion |
WO2011110277A1 (en) | 2010-03-11 | 2011-09-15 | Merck Patent Gmbh | Fibers in therapy and cosmetics |
WO2011110275A2 (en) | 2010-03-11 | 2011-09-15 | Merck Patent Gmbh | Radiative fibers |
WO2011137922A1 (en) | 2010-05-03 | 2011-11-10 | Merck Patent Gmbh | Formulations and electronic devices |
WO2011147522A1 (en) | 2010-05-27 | 2011-12-01 | Merck Patent Gmbh | Compositions comprising quantum dots |
EP3309236A1 (en) | 2010-05-27 | 2018-04-18 | Merck Patent GmbH | Compositions comprising quantum dots |
CN101891642B (en) * | 2010-07-07 | 2014-09-17 | 中国科学院上海微系统与信息技术研究所 | Fluorescent compound and application thereof to detection of trace nitrobenzene substances |
CN101891642A (en) * | 2010-07-07 | 2010-11-24 | 中国科学院上海微系统与信息技术研究所 | Fluorescent compound and application thereof to detection of trace nitrobenzene substances |
WO2012013272A1 (en) | 2010-07-26 | 2012-02-02 | Merck Patent Gmbh | Quantum dots and hosts |
WO2012014841A1 (en) | 2010-07-26 | 2012-02-02 | 出光興産株式会社 | Organic electroluminescence element |
WO2012013270A1 (en) | 2010-07-26 | 2012-02-02 | Merck Patent Gmbh | Nanocrystals in devices |
WO2012084114A1 (en) | 2010-12-23 | 2012-06-28 | Merck Patent Gmbh | Organic electroluminescent device |
DE102010055901A1 (en) | 2010-12-23 | 2012-06-28 | Merck Patent Gmbh | Organic electroluminescent device |
WO2012110178A1 (en) | 2011-02-14 | 2012-08-23 | Merck Patent Gmbh | Device and method for treatment of cells and cell tissue |
WO2012126566A1 (en) | 2011-03-24 | 2012-09-27 | Merck Patent Gmbh | Organic ionic functional materials |
WO2012152366A1 (en) | 2011-05-12 | 2012-11-15 | Merck Patent Gmbh | Organic ionic compounds, compositions and electronic devices |
WO2012157211A1 (en) | 2011-05-13 | 2012-11-22 | ソニー株式会社 | Organic el multi-color light-emitting device |
WO2012163464A1 (en) | 2011-06-01 | 2012-12-06 | Merck Patent Gmbh | Hybrid ambipolar tfts |
WO2013013754A1 (en) | 2011-07-25 | 2013-01-31 | Merck Patent Gmbh | Copolymers with functionalized side chains |
WO2013035275A1 (en) | 2011-09-09 | 2013-03-14 | 出光興産株式会社 | Nitrogen-containing heteroaromatic ring compound |
WO2013046635A1 (en) | 2011-09-28 | 2013-04-04 | 出光興産株式会社 | Material for organic electroluminescent element, and organic electroluminescent element produced using same |
WO2013060411A1 (en) | 2011-10-28 | 2013-05-02 | Merck Patent Gmbh | Hyperbranched polymers, methods for producing same, and use of same in electronic devices |
DE102011117422A1 (en) | 2011-10-28 | 2013-05-02 | Merck Patent Gmbh | Hyperbranched polymers, process for their preparation and their use in electronic devices |
WO2013069242A1 (en) | 2011-11-07 | 2013-05-16 | 出光興産株式会社 | Material for organic electroluminescent elements, and organic electroluminescent element using same |
WO2015014429A1 (en) | 2013-07-29 | 2015-02-05 | Merck Patent Gmbh | Electroluminescence device |
WO2015014427A1 (en) | 2013-07-29 | 2015-02-05 | Merck Patent Gmbh | Electro-optical device and the use thereof |
US10593886B2 (en) | 2013-08-25 | 2020-03-17 | Molecular Glasses, Inc. | OLED devices with improved lifetime using non-crystallizable molecular glass mixture hosts |
WO2016034262A1 (en) | 2014-09-05 | 2016-03-10 | Merck Patent Gmbh | Formulations and electronic devices |
US10323180B2 (en) | 2014-12-04 | 2019-06-18 | Guangzhou Chinaray Optoelectronic Materials Ltd. | Deuterated organic compound, mixture and composition containing said compound, and organic electronic device |
US10840450B2 (en) | 2014-12-04 | 2020-11-17 | Guangzhou Chinaray Optoelectronic Materials Ltd. | Polymer, and mixture or formulation, and organic electronic device containing same, and monomer thereof |
US10510967B2 (en) | 2014-12-11 | 2019-12-17 | Guangzhou Chinaray Optoelectronic Materials Ltd. | Organic compound, and mixture, formulation and organic device comprising the same |
US10573827B2 (en) | 2014-12-11 | 2020-02-25 | Guangzhou Chinaray Optoelectronics Materials Ltd. | Organic metal complex, and polymer, mixture, composition and organic electronic device containing same and use thereof |
WO2016107663A1 (en) | 2014-12-30 | 2016-07-07 | Merck Patent Gmbh | Formulations and electronic devices |
US10364316B2 (en) | 2015-01-13 | 2019-07-30 | Guangzhou Chinaray Optoelectronics Materials Ltd. | Conjugated polymer containing ethynyl crosslinking group, mixture, formulation, organic electronic device containing the same and application therof |
WO2016155866A1 (en) | 2015-03-30 | 2016-10-06 | Merck Patent Gmbh | Formulation of an organic functional material comprising a siloxane solvent |
WO2016198141A1 (en) | 2015-06-12 | 2016-12-15 | Merck Patent Gmbh | Esters containing non-aromatic cycles as solvents for oled formulations |
EP3581633A1 (en) | 2015-06-12 | 2019-12-18 | Merck Patent GmbH | Esters containing non-aromatic cycles as solvents for oled formulations |
WO2017036572A1 (en) | 2015-08-28 | 2017-03-09 | Merck Patent Gmbh | Formulation of an organic functional material comprising an epoxy group containing solvent |
US11555128B2 (en) | 2015-11-12 | 2023-01-17 | Guangzhou Chinaray Optoelectronic Materials Ltd. | Printing composition, electronic device comprising same and preparation method for functional material thin film |
WO2017097391A1 (en) | 2015-12-10 | 2017-06-15 | Merck Patent Gmbh | Formulations containing ketones comprising non-aromatic cycles |
WO2017102048A1 (en) | 2015-12-15 | 2017-06-22 | Merck Patent Gmbh | Esters containing aromatic groups as solvents for organic electronic formulations |
EP4084109A1 (en) | 2015-12-15 | 2022-11-02 | Merck Patent GmbH | Esters containing aromatic groups as solvents for organic electronic formulations |
WO2017102052A1 (en) | 2015-12-16 | 2017-06-22 | Merck Patent Gmbh | Formulations containing a solid solvent |
WO2017102049A1 (en) | 2015-12-16 | 2017-06-22 | Merck Patent Gmbh | Formulations containing a mixture of at least two different solvents |
WO2017140404A1 (en) | 2016-02-17 | 2017-08-24 | Merck Patent Gmbh | Formulation of an organic functional material |
DE102016003104A1 (en) | 2016-03-15 | 2017-09-21 | Merck Patent Gmbh | Container comprising a formulation containing at least one organic semiconductor |
WO2017157783A1 (en) | 2016-03-15 | 2017-09-21 | Merck Patent Gmbh | Receptacle comprising a formulation containing at least one organic semiconductor |
WO2017216129A1 (en) | 2016-06-16 | 2017-12-21 | Merck Patent Gmbh | Formulation of an organic functional material |
WO2017216128A1 (en) | 2016-06-17 | 2017-12-21 | Merck Patent Gmbh | Formulation of an organic functional material |
WO2018001928A1 (en) | 2016-06-28 | 2018-01-04 | Merck Patent Gmbh | Formulation of an organic functional material |
WO2018024719A1 (en) | 2016-08-04 | 2018-02-08 | Merck Patent Gmbh | Formulation of an organic functional material |
WO2018077660A1 (en) | 2016-10-31 | 2018-05-03 | Merck Patent Gmbh | Formulation of an organic functional material |
WO2018077662A1 (en) | 2016-10-31 | 2018-05-03 | Merck Patent Gmbh | Formulation of an organic functional material |
WO2018095395A1 (en) | 2016-11-23 | 2018-05-31 | 广州华睿光电材料有限公司 | High polymer, mixture containing same, composition, organic electronic component, and monomer for polymerization |
US11453745B2 (en) | 2016-11-23 | 2022-09-27 | Guangzhou Chinaray Optoelectronic Materials Ltd. | High polymer, mixture containing same, composition, organic electronic component, and monomer for polymerization |
US11248138B2 (en) | 2016-11-23 | 2022-02-15 | Guangzhou Chinaray Optoelectronic Materials Ltd. | Printing ink formulations, preparation methods and uses thereof |
US11512039B2 (en) | 2016-11-23 | 2022-11-29 | Guangzhou Chinaray Optoelectronic Materials Ltd. | Aromatic amine derivatives, preparation methods therefor, and uses thereof |
US11518723B2 (en) | 2016-11-23 | 2022-12-06 | Guangzhou Chinaray Optoelectronic Materials Ltd. | Fused ring compound, high polymer, mixture, composition and organic electronic component |
WO2018095381A1 (en) | 2016-11-23 | 2018-05-31 | 广州华睿光电材料有限公司 | Printing ink composition, preparation method therefor, and uses thereof |
WO2018104202A1 (en) | 2016-12-06 | 2018-06-14 | Merck Patent Gmbh | Preparation process for an electronic device |
US10978642B2 (en) | 2016-12-08 | 2021-04-13 | Guangzhou Chinaray Optoelectronic Materials Ltd. | Mixture, composition and organic electronic device |
WO2018103744A1 (en) | 2016-12-08 | 2018-06-14 | 广州华睿光电材料有限公司 | Mixture, composition and organic electronic device |
US11161933B2 (en) | 2016-12-13 | 2021-11-02 | Guangzhou Chinaray Optoelectronic Materials Ltd. | Conjugated polymer and use thereof in organic electronic device |
WO2018108760A1 (en) | 2016-12-13 | 2018-06-21 | Merck Patent Gmbh | Formulation of an organic functional material |
US11289654B2 (en) | 2016-12-22 | 2022-03-29 | Guangzhou Chinaray Optoelectronic Materials Ltd. | Polymers containing furanyl crosslinkable groups and uses thereof |
WO2018114883A1 (en) | 2016-12-22 | 2018-06-28 | Merck Patent Gmbh | Mixtures comprising at least two organofunctional compounds |
WO2018113785A1 (en) | 2016-12-22 | 2018-06-28 | 广州华睿光电材料有限公司 | Polymer containing furan crosslinking group and use thereof |
US11404644B2 (en) | 2016-12-22 | 2022-08-02 | Guangzhou Chinaray Optoelectronic Materials Ltd. | Organic functional compounds, mixtures, formulations, organic functional thin films and preparation methods therefor and organic electronic devices |
US11292875B2 (en) | 2016-12-22 | 2022-04-05 | Guangzhou Chinaray Optoelectronic Materials Ltd. | Cross-linkable polymer based on Diels-Alder reaction and use thereof in organic electronic device |
WO2018138318A1 (en) | 2017-01-30 | 2018-08-02 | Merck Patent Gmbh | Method for forming an organic element of an electronic device |
WO2018138319A1 (en) | 2017-01-30 | 2018-08-02 | Merck Patent Gmbh | Method for forming an organic electroluminescence (el) element |
WO2018178136A1 (en) | 2017-03-31 | 2018-10-04 | Merck Patent Gmbh | Printing method for an organic light emitting diode (oled) |
WO2018189050A1 (en) | 2017-04-10 | 2018-10-18 | Merck Patent Gmbh | Formulation of an organic functional material |
WO2018202603A1 (en) | 2017-05-03 | 2018-11-08 | Merck Patent Gmbh | Formulation of an organic functional material |
WO2019016184A1 (en) | 2017-07-18 | 2019-01-24 | Merck Patent Gmbh | Formulation of an organic functional material |
WO2019115573A1 (en) | 2017-12-15 | 2019-06-20 | Merck Patent Gmbh | Formulation of an organic functional material |
WO2019162483A1 (en) | 2018-02-26 | 2019-08-29 | Merck Patent Gmbh | Formulation of an organic functional material |
WO2019238782A1 (en) | 2018-06-15 | 2019-12-19 | Merck Patent Gmbh | Formulation of an organic functional material |
WO2020064582A1 (en) | 2018-09-24 | 2020-04-02 | Merck Patent Gmbh | Method for the production of a granular material |
WO2020094538A1 (en) | 2018-11-06 | 2020-05-14 | Merck Patent Gmbh | Method for forming an organic element of an electronic device |
WO2021213917A1 (en) | 2020-04-21 | 2021-10-28 | Merck Patent Gmbh | Emulsions comprising organic functional materials |
WO2021259824A1 (en) | 2020-06-23 | 2021-12-30 | Merck Patent Gmbh | Method for producing a mixture |
WO2022122607A1 (en) | 2020-12-08 | 2022-06-16 | Merck Patent Gmbh | An ink system and a method for inkjet printing |
WO2022243403A1 (en) | 2021-05-21 | 2022-11-24 | Merck Patent Gmbh | Method for the continuous purification of at least one functional material and device for the continuous purification of at least one functional material |
WO2023012084A1 (en) | 2021-08-02 | 2023-02-09 | Merck Patent Gmbh | A printing method by combining inks |
WO2023031073A1 (en) | 2021-08-31 | 2023-03-09 | Merck Patent Gmbh | Composition |
WO2023057327A1 (en) | 2021-10-05 | 2023-04-13 | Merck Patent Gmbh | Method for forming an organic element of an electronic device |
WO2023237458A1 (en) | 2022-06-07 | 2023-12-14 | Merck Patent Gmbh | Method of printing a functional layer of an electronic device by combining inks |
WO2024126635A1 (en) | 2022-12-16 | 2024-06-20 | Merck Patent Gmbh | Formulation of an organic functional material |
Also Published As
Publication number | Publication date |
---|---|
DE1908343B2 (en) | 1971-06-16 |
DE1908343A1 (en) | 1969-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3567450A (en) | Photoconductive elements containing substituted triarylamine photoconductors | |
US3658520A (en) | Photoconductive elements containing as photoconductors triarylamines substituted by active hydrogen-containing groups | |
US3526501A (en) | 4-diarylamino-substituted chalcone containing photoconductive compositions for use in electrophotography | |
US3542544A (en) | Photoconductive elements containing organic photoconductors of the triarylalkane and tetraarylmethane types | |
US3820989A (en) | Tri-substituted methanes as organic photoconductors | |
CA1046330A (en) | Photoconductive composition and elements with a styryl amino group containing photoconductor | |
US3615402A (en) | Tetra-substituted methanes as organic photoconductors | |
US3141770A (en) | Electrophotographic layers and sensitizers for same | |
US3265496A (en) | Photoconductive substances for electrophotography | |
US3488705A (en) | Thermally unstable organic acid salts of triarylmethane dyes as sensitizers for organic photoconductors | |
CA1045879A (en) | Aggregate photoconductive compositions and elements with a styryl amino group containing photoconductor | |
US3677752A (en) | Bis(dialkylaminoaryl)ethylene photoconductors | |
US4018607A (en) | Crystalline organic pigment sensitizers for photoconductive layers | |
US3655378A (en) | Charge-transfer complexes of dibenzofuran-formaldehyde or dibenzothiophene-formaldehyde resins as photoconductive materials | |
US3765884A (en) | 1-substituted-2-indoline hydrazone photoconductors | |
US3533783A (en) | Light adapted photoconductive elements | |
US3554745A (en) | Electrophotographic composition and element | |
US3740218A (en) | Photoconductive elements containing complexes of lewis acids and formaldehyde resins | |
US3586500A (en) | Electrophotographic composition and element | |
US3719486A (en) | Photoconductive elements containing organo-metallic photoconductors | |
US3705913A (en) | Electrophotographic sensitizers | |
US3652269A (en) | Photoconductive elements containing halogenated polyethylene binders | |
US3591374A (en) | Pyrylium dye overcoating of pyrylium dye sensitized photoconductive elements | |
US3527602A (en) | Organic photoconductors | |
US3585026A (en) | Treatment of background areas of developed electrophotographic elements with carboxy substituted triarylamine photoconductors with an alkaline medium to reduce opacity |