US20240027118A1 - Devices for producing clear ice products and related methods - Google Patents
Devices for producing clear ice products and related methods Download PDFInfo
- Publication number
- US20240027118A1 US20240027118A1 US18/253,555 US202118253555A US2024027118A1 US 20240027118 A1 US20240027118 A1 US 20240027118A1 US 202118253555 A US202118253555 A US 202118253555A US 2024027118 A1 US2024027118 A1 US 2024027118A1
- Authority
- US
- United States
- Prior art keywords
- fluid
- elongate
- ice
- elongate trough
- drain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 88
- 235000021581 juice product Nutrition 0.000 title description 2
- 239000012530 fluid Substances 0.000 claims abstract description 283
- 238000001816 cooling Methods 0.000 claims abstract description 98
- 230000008014 freezing Effects 0.000 claims abstract description 77
- 238000007710 freezing Methods 0.000 claims abstract description 77
- 238000004891 communication Methods 0.000 claims abstract description 36
- 238000004519 manufacturing process Methods 0.000 claims description 28
- 238000009825 accumulation Methods 0.000 claims description 13
- 239000011810 insulating material Substances 0.000 claims description 13
- 239000007788 liquid Substances 0.000 abstract description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 108
- 239000002826 coolant Substances 0.000 description 64
- 230000015572 biosynthetic process Effects 0.000 description 30
- 230000007423 decrease Effects 0.000 description 19
- 239000000463 material Substances 0.000 description 18
- 238000005336 cracking Methods 0.000 description 11
- 238000000137 annealing Methods 0.000 description 10
- 239000012535 impurity Substances 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 230000003247 decreasing effect Effects 0.000 description 8
- 239000007789 gas Substances 0.000 description 7
- 239000007943 implant Substances 0.000 description 7
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 229920001903 high density polyethylene Polymers 0.000 description 6
- 239000004700 high-density polyethylene Substances 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 230000007704 transition Effects 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 229930040373 Paraformaldehyde Natural products 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 235000013361 beverage Nutrition 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 229920006324 polyoxymethylene Polymers 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000012267 brine Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 235000013399 edible fruits Nutrition 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000009428 plumbing Methods 0.000 description 2
- -1 polyoxymethylene Polymers 0.000 description 2
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229920004943 Delrin® Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000002730 additional effect Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 108010011222 cyclo(Arg-Pro) Proteins 0.000 description 1
- 239000008232 de-aerated water Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 235000021189 garnishes Nutrition 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000011490 mineral wool Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000004781 supercooling Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25C—PRODUCING, WORKING OR HANDLING ICE
- F25C1/00—Producing ice
- F25C1/18—Producing ice of a particular transparency or translucency, e.g. by injecting air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25C—PRODUCING, WORKING OR HANDLING ICE
- F25C1/00—Producing ice
- F25C1/04—Producing ice by using stationary moulds
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25C—PRODUCING, WORKING OR HANDLING ICE
- F25C1/00—Producing ice
- F25C1/12—Producing ice by freezing water on cooled surfaces, e.g. to form slabs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25C—PRODUCING, WORKING OR HANDLING ICE
- F25C1/00—Producing ice
- F25C1/22—Construction of moulds; Filling devices for moulds
- F25C1/25—Filling devices for moulds
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25C—PRODUCING, WORKING OR HANDLING ICE
- F25C1/00—Producing ice
- F25C1/22—Construction of moulds; Filling devices for moulds
- F25C1/24—Construction of moulds; Filling devices for moulds for refrigerators, e.g. freezing trays
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25C—PRODUCING, WORKING OR HANDLING ICE
- F25C2400/00—Auxiliary features or devices for producing, working or handling ice
- F25C2400/14—Water supply
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25C—PRODUCING, WORKING OR HANDLING ICE
- F25C2500/00—Problems to be solved
- F25C2500/02—Geometry problems
Definitions
- This disclosure relates generally to the field of ice manufacturing, and more specifically to the field of clear ice manufacturing. Described herein are devices and methods for producing clear ice.
- Ice can crack under a variety of circumstances experienced during or after a freezing process.
- a certain threshold e.g., about 1 MPa
- Unclear ice may result from super cooling. Water crystallizes around nucleation sites. The ice then grows from this point forming a near perfect lattice structure, given the proper environment. For example, some ice machines slightly super cool the water before freezing. This causes smaller, faster crystallization, which can lead to uneven pressure and greater cloudiness.
- impurities in the water used for freezing can create unclear ice. While impurities play a role in the imperfections in ice, they often aren't the main culprit. Filtered water has on average 30 ppm impurities
- the disclosure herein includes for a device for making clear ice comprising: at least one housing comprising at least one flume surface wall that defines at least one elongate trough; at least one fluid intake disposed to provide a flow of fluid into the at least one elongate trough; at least one drain disposed to drain fluid from at least one elongate trough; wherein the at least a portion of the at least one flume surface wall is in thermal communication with a cooling source; and wherein the at least one fluid intake and the at least one drain are configured to provide a substantially constant flow of fluid to the at least one elongate trough during a freezing operation of the device.
- the cooling source is at least one internal cooling cavity defined by the housing, and wherein the device further comprises at least one coolant intake connected to the at least one internal cooling cavity and at least one coolant outtake connected to the at least one internal cooling cavity.
- the cooling source is selected from the group consisting of: an evaporator, cold plate, and a condenser.
- three flume surface walls of the housing define one elongate trough such that a cross-section of the elongate trough has a U-shape defined by two parallel side flume surface walls and a semicircular base flume surface wall.
- three flume surface walls of the housing define one elongate trough such that a cross-section of the elongate trough has a tapered U-shape defined by at least one of the two side flume surface walls having an interior angle greater than about 0 degrees and less than or equal to about 15 degrees from upright and a semicircular base flume surface wall.
- three flume surface walls of the housing define one elongate trough such that a cross-section of the elongate trough has a U-shape defined by two parallel side flume surface walls and a semi-elliptical base flume surface wall.
- three flume surface walls of the housing define one elongate trough such that a cross-section of the elongate trough has a tapered U-shape defined by at least one of the two side flume surface walls having an interior angle greater than about 0 degrees and less than or equal to about 15 degrees from upright and a semi-elliptical base flume surface wall.
- three flume surface walls of the housing define one elongate trough such that a cross-section of the elongate trough has a bracket shape defined by two parallel side flume surface walls orthogonal to a flat base flume surface wall.
- three flume surface walls of the housing define one elongate trough such that a cross-section of the elongate trough has a tapered bracket shape defined by at least one of the two side flume surface walls having an interior angle greater than about 0 degrees and less than or equal to about 15 degrees from upright to a flat base flume surface wall.
- the elongate trough has a length of about 45.72 cm to about 3.66 m (about 18 inches to about 12 feet). In other embodiments, the elongate trough has a length of about 2.44 m to about 2.13 m (about 3 feet to about 7 feet). In further embodiments, the elongate trough has a length of about 2.03 m (about 80 inches). In some embodiments, the elongate trough has a depth of about 3.81 cm to about 12.70 cm (about 1.5 to about 5 inches). In other embodiments, the elongate trough has a depth of about 8.89 cm (about 3.5 inches).
- the elongate trough has a total depth divided into an ice-forming zone and a fluid overflow zone. In other embodiments, the elongate trough has a total depth of about 12.70 cm (about 5 inches) divided into an ice-forming zone of about 8.89 cm (about 3.5 inches) and a fluid overflow zone of about 3.81 cm (about 1.5 inches.)
- a surface area of the flume surface wall at least coextensive with the fluid overflow zone comprises a thermally insulating material. In additional embodiments, the thermally insulating material comprises high density polyethylene.
- the elongate trough has a width of about 2.54 cm to about 12.70 cm (about 1 to about 5 inches.) In other embodiments, the elongate trough has a width of about 7.62 cm (about 3 inches.) In some embodiments, the housing defines two or more elongate troughs positioned parallel to one another. In further embodiments, the two or more elongate troughs are positioned anti-parallel to one another.
- the fluid intake comprises a fluid intake manifold that defines a single intake manifold cavity that is fluidly connected to the two or more elongate troughs through a fluid entry portal corresponding to each elongate trough.
- the fluid intake manifold further comprises an intake flow divider insert having a porosity of about 10% open area to about 50% open area within the intake manifold cavity.
- the intake manifold cavity is shaped as a rectangular prism and wherein the intake flow divider insert is coupled to opposite corners of the intake manifold cavity, thereby dividing the intake manifold cavity into a first and second triangular prism, wherein at least one fluid inlet pipe is in fluid communication to the first triangular prism, and wherein the corresponding fluid entry portals are in fluid communication to the second triangular prism.
- at least one of the fluid entry portals comprises a porous flow straightener insert.
- the drain comprises a drain manifold that defines a single drain manifold cavity that is fluidly connected to the two or more elongate throughs through a fluid exit portal corresponding to each elongate trough.
- the drain manifold further comprises a drain flow divider insert having a porosity of about 10% open area to about 50% open area within the drain manifold.
- the drain manifold cavity is shaped as a rectangular prism, and wherein the drain flow divider insert forms an arcuate shape and is coupled to adjacent corners of the drain manifold cavity, thereby dividing the drain manifold cavity into a first and second portion wherein at least one drainage pipe is in fluid communication to the first portion, and wherein the corresponding fluid exit portals are in fluid communication to the second portion.
- at least one of the fluid exit portals comprises a porous flow straightener insert.
- the substantially constant flow of fluid is provided at a velocity of at least about 0.09 m/s (about 0.3 ft/s) through the at least one elongate trough. In other embodiments, the substantially constant flow of fluid is provided at a velocity of at least about 0.21 m/s (about 0.7 ft/s) through the at least one elongate trough.
- the device further comprises at least one lid configured to enclose at least one elongate trough when removably coupled to the housing.
- the device further comprises one or more inclusion holders configured to be disposed within a cavity defined by the at least one elongate trough.
- the one or more inclusion holders are retractable.
- the one or more inclusion holders are coupled to at least one lid configured to enclose at least one elongate trough when removably coupled to the housing.
- the disclosure herein includes for a method for manufacturing clear ice comprising: providing a device for making clear ice comprising: a housing comprising at least one flume surface wall that defines at least one elongate trough; at least one fluid intake disposed to provide a flow of fluid into the at least one elongate trough; at least one drain disposed to drain fluid from at least one elongate trough; wherein the at least a portion of the at least one flume surface wall is in thermal communication with a cooling source; and wherein the at least one fluid intake and the at least one drain are configured to provide a substantially constant flow of fluid to the at least one elongate trough during a freezing operation of the device; providing a substantially constant flow of fluid down the at least one elongate trough via the fluid intake and the drain; and cooling the at least one flume surface wall to a temperature of less than or equal to about 0 degrees Celsius at the at least one flume surface wall.
- the cooling source of the device is at least one internal cooling cavity defined by the housing, and wherein the device further comprises at least one coolant intake valve connected to the at least one internal cooling cavity and at least one coolant outtake valve connected to the at least one internal cooling cavity.
- the cooling source is selected from the group consisting of: an evaporator, cold plate, and a condenser.
- the clear ice machine of the method further comprises: at least one or more retractable inclusion holders configured to be disposed within at least one elongate trough; and the method further comprises: securing an item with at least one inclusion holder such that the item is positioned within a cavity defined by the at least one elongate trough.
- the method further comprises retracting the one or more retractable inclusion holders after a sufficient accumulation of ice within the elongate trough such that the item remains at least partially embedded in the accumulation of ice upon retraction of the one or more inclusion holders.
- the substantially constant flow of fluid down the at least one elongate trough has a velocity of at least about 0.09 m/s (about 0.3 ft/s) through the at least one elongate trough. In other embodiments, the substantially constant flow of fluid has a velocity of at least about 0.21 m/s (about 0.7 ft/s) through the at least one elongate trough.
- the disclosure herein includes for a device for introducing inclusions into clear ice comprising: a rigid substrate; at least one inclusion holder connected to the substrate adapted to secure an item in a predetermined position, wherein the inclusions holder comprises retraction mechanism and at least one of a skewer, hook, or clamp; and wherein the retraction mechanism is configured to disengage the item from an inclusion holder and retract the inclusion holder.
- the disclosure herein provides for a device for making clear ice comprising: at least one housing comprising at least two flume surface walls that define at least two elongate troughs arranged parallel to each other; at least one fluid intake disposed to provide a flow of fluid into the at least two elongate troughs; at least one drain disposed to drain fluid from the at least two elongate troughs; wherein the at least a portion of each of the at least two flume surface walls is in thermal communication with a cooling source; wherein the at least one fluid intake and the at least one drain are configured to provide a substantially constant flow of fluid to the at least two elongate troughs during a freezing operation of the device; wherein the fluid intake comprises a fluid intake manifold that defines a single intake manifold cavity that is fluidly connected to the at least two elongate troughs through a fluid entry portal corresponding to each elongate trough; and wherein the drain comprises a drain manifold that defines
- the disclosure herein includes for a device for making clear ice comprising: at least one housing comprising at least one flume surface wall that defines at least one elongate trough; at least one fluid intake disposed to provide a flow of fluid into the at least one elongate trough; at least one drain disposed to drain fluid from the at least one elongate trough; wherein the at least a portion of the at least one flume surface wall is in thermal communication with a cooling source; and wherein the at least one fluid intake and the at least one drain are configured to provide a substantially constant flow of fluid to the at least one elongate trough during a freezing operation of the device.
- the cooling source is selected from the group consisting of: an internal cooling cavity defined by the housing, an evaporator, a cold plate, and a condenser.
- three flume surface walls of the housing define one elongate trough such that a cross-section of the elongate trough has a tapered U-shape defined by at least one of the two side flume surface walls having an interior angle greater than or equal to about 0 degrees and less than or equal to about 15 degrees from upright and a semicircular base flume surface wall.
- three flume surface walls of the housing define one elongate trough such that a cross-section of the elongate trough has a tapered bracket shape defined by at least one of the two side flume surface walls having an interior angle greater than or equal to about 0 degrees and less than or equal to about 15 degrees from upright to a flat base flume surface wall.
- the elongate trough has a total depth divided into an ice-forming zone and a fluid overflow zone, and wherein a surface area of the flume surface wall at least coextensive with the fluid overflow zone comprises a thermally insulating material.
- the housing comprises at least two flume surface walls that define two or more elongate troughs
- the fluid intake comprises a fluid intake manifold that defines a single intake manifold cavity that is fluidly connected to the two or more elongate troughs through a fluid entry portal corresponding to each elongate trough.
- the fluid intake manifold further comprises an intake flow divider insert having a porosity of about 10% open area to about 50% open area within the intake manifold cavity, the intake manifold cavity is shaped as a rectangular prism, and the intake flow divider insert is coupled to opposite corners of the intake manifold cavity, thereby dividing the intake manifold cavity into a first and second triangular prism, wherein at least one fluid inlet pipe is in fluid communication to the first triangular prism, and wherein the corresponding fluid entry portals are in fluid communication to the second triangular prism.
- at least one of the fluid entry portals comprises a porous flow straightener insert.
- the housing comprises at least two flume surface walls that define two or more elongate troughs
- the drain comprises a drain manifold that defines a single drain manifold cavity that is fluidly connected to the two or more elongate throughs through a fluid exit portal corresponding to each elongate trough.
- the drain manifold further comprises a drain flow divider insert having a porosity of about 10% open area to about 50% open area within the drain manifold cavity, the drain manifold cavity is shaped as a rectangular prism, and the drain flow divider insert forms an arcuate shape and is coupled to adjacent corners of the drain manifold cavity, thereby dividing the drain manifold cavity into a first and second portion wherein at least one drainage pipe is in fluid communication to the first portion, and wherein the corresponding fluid exit portals are in fluid communication to the second portion.
- at least one of the fluid exit portals comprises a porous flow straightener insert.
- the substantially constant flow of fluid is provided at a velocity of at least about 0.09 m/s (about 0.3 ft/s) through the at least one elongate trough.
- the device further comprises at least one lid configured to enclose at least one elongate trough when removably coupled to the housing.
- the device further comprises one or more retractable inclusion holders configured to be disposed within a cavity defined by the at least one elongate trough.
- the disclosure herein provides for a method for manufacturing clear ice comprising: providing a device for making clear ice comprising: a housing comprising at least one flume surface wall that defines at least one elongate trough; at least one fluid intake disposed to provide a flow of fluid into the at least one elongate trough; at least one drain disposed to drain fluid from at least one elongate trough; wherein the at least a portion of the at least one flume surface wall is in thermal communication with a cooling source; and wherein the at least one fluid intake and the at least one drain are configured to provide a substantially constant flow of fluid to the at least one elongate trough during a freezing operation of the device; providing a substantially constant flow of fluid down the at least one elongate trough via the fluid intake and the drain; and cooling the at least one flume surface wall to a temperature of less than or equal to about 0 degrees Celsius at the at least one flume surface wall.
- the cooling source is selected from the group consisting of: an internal cooling cavity defined by the housing, an evaporator, a cold plate, and a condenser.
- the clear ice machine further comprises: at least one or more retractable inclusion holders configured to be disposed within at least one elongate trough; and the method further comprises: securing an item with at least one inclusion holder such that the item is positioned within a cavity defined by the at least one elongate trough; and retracting the one or more retractable inclusion holders after a sufficient accumulation of ice within the elongate trough such that the item remains at least partially embedded in the accumulation of ice upon retraction of the one or more inclusion holders.
- the substantially constant flow of fluid down the at least one elongate trough has a velocity of at least about 0.09 m/s (about 0.3 ft/s) through the at least one elongate trough
- FIG. 1 A illustrates an exploded view of one embodiment of a device for making clear ice with a cutout to depict interior features.
- FIG. 1 B illustrates the general dimensions of an elongate trough for a device for making clear ice.
- FIG. 2 illustrates a cross-section of one embodiment of a device for making clear ice midway through a freezing operation.
- FIG. 3 illustrates a perspective view of one embodiment of a device for making clear ice
- FIG. 4 illustrates a cross-sectional view of an embodiment of a device for making clear ice.
- FIG. 5 illustrates a cross-sectional view of an embodiment of an elongate trough.
- FIG. 6 A illustrates a perspective view of an embodiment of a fluid intake manifold.
- FIG. 6 B illustrates a perspective view of an embodiment of a drain manifold.
- FIG. 7 illustrates a perspective view of an embodiment of a flow straightener insert in position within an elongate trough.
- FIG. 8 illustrates a perspective view of another embodiment of a device for making clear ice having one elongate trough shown in cross-section.
- FIG. 9 illustrates a perspective view of another embodiment of a fluid inlet manifold in cross-section.
- FIG. 10 illustrates a perspective view of one embodiment of an ingot removal structure positioned in an elongate trough before the formation of clear ice.
- FIG. 11 A illustrates a perspective view of another embodiment of a device for making clear ice having the lid attached.
- FIG. 11 B illustrates a profile view of an embodiment for a lid for a clear ice making device.
- FIG. 11 C illustrates a cross-sectional view of an embodiment or a device for making clear ice.
- FIGS. 12 A- 12 C illustrate cross-sections of various embodiments of the elongate trough having different cross-sectional shapes.
- FIGS. 13 A- 13 C illustrate cross-sections of various embodiments of the elongate trough having different cross-sectional shapes.
- FIGS. 14 A- 14 C illustrate cross-sections of various embodiments of the elongate trough having different cross-sectional shapes.
- FIGS. 15 A- 15 D illustrate cross-sections of various embodiments of the elongate trough having different cross-sectional shapes.
- FIG. 16 illustrates a method of making clear ice.
- FIGS. 17 A- 17 B illustrate one embodiment for a method of making clear ice.
- FIGS. 18 A- 18 B illustrate one embodiment for a method of making clear ice.
- FIGS. 19 A- 19 B illustrate one embodiment for a method of making clear ice.
- FIGS. 20 A- 20 B illustrate one embodiment for a method of making clear ice.
- FIGS. 21 A- 21 B illustrate one embodiment for a method of making clear ice.
- FIGS. 22 A- 22 B illustrate one embodiment for a method of making clear ice.
- FIGS. 23 A- 23 B illustrate one embodiment for a method of making clear ice.
- FIGS. 24 A- 24 B illustrate one embodiment for a method of making clear ice.
- FIGS. 25 A- 25 B illustrate one embodiment for a method of making clear ice
- the devices, systems and methods described herein may be configured to produce clear ice in a variety of shapes that are ready for use in beverages.
- the disclosure herein provides for devices and methods allowing for the expedited production of clear ice having an improved quality over preexisting apparatuses and methods.
- the devices and methods disclosed herein are adapted for the freezing of water into clear ice; however, one of skill in the art will appreciate how these devices and methods can be adapted to allow for the freezing of other liquids (e.g., ethanol, etc.) in situations where the removal of air bubbles and dissolved impurities is desired.
- the terms “fluid” and “liquid” will be used interchangeably to refer to the material being flowed through the device and being frozen into comestibles.
- water is the chosen fluid to be frozen in many embodiments
- water will be frequently used also; however, this use of the term “water” should not be considered limiting for the reasons stated herein.
- ice to refer to the chosen liquid when frozen should also not be considered limiting either.
- the ice created by the systems and devices described herein may have one or more of the following characteristics: clear, relatively free of impurities, relatively free of gas bubbles, relatively free of dissolved gasses, and/or cracking, may or may not have inclusions (e.g., flowers, liquor, food, etc.), etc. Such characteristics shall not be viewed as limiting in any way.
- water or liquid used to make the clear ice may be deaerated (e.g., gas sweeps, via vacuum, etc.), degassed, purified (e.g., sediment filtered, activated carbon block filtered, granular activated carbon filtered, reverse osmosis filtered, distilled, passed over an ion exchange column, treated with ultraviolet light, ultrafiltered, activated alumina filtered, ionized, etc.), or otherwise treated before being used to make clear ice.
- the water or liquid may be from a private well, a municipality, groundwater source, reservoir, etc.
- the device functions to produce clear ice.
- the device is used for the production of clear ice in any situations where transparent ice is desired, such as for consumption in cocktails and other beverages but can additionally or alternatively be used for any suitable applications where a liquid material is frozen.
- the device generally provides at least one elongate trough or flume in thermal communication with one or more reservoirs or lines of circulating coolant or one or more cooling apparatuses (e.g., cooling plate, element, etc.).
- a flow of fluid e.g., water
- a flow of fluid is provided down at least a portion of the length of the elongate trough during a freezing operation of the device.
- the speed of water (as either laminar or turbulent flow) through the elongate trough can be critical for the formation of clear ice by driving out air bubbles from the ice forming surface.
- the device provides a flow of water having a velocity of at least about 0.09 m/s (about 0.3 ft/s) throughout the length of the elongate trough 108 . In other embodiments, the velocity of the water is at least about 0.15 m/s (about 0.5 ft/s).
- the velocity of the water is at least about 0.21 m/s (about 0.7 ft/s).
- the devices and methods presented herein allow for the generation of clear ice at a rate superior to existing techniques.
- the devices and methods herein can generate clear ice at a speed of at least about 7 mm/hr measured as linear height of accumulated clear ice on any given point of a surface wall of a trough per unit time.
- the devices and methods herein can generate clear ice on a given point at a speed of at least about 24 mm/hr.
- ice grows in multiple directions, thereby effectively halving the thickness of ice through which heat must flow to generate new ice. This provides a dramatic advantage in speed over preexisting technologies that can only grow ice in a single direction.
- a Clinebell CB3002XD produces ice in one direction at a speed of about 3.0 mm/hr while a CFBI PIM0206 produces ice in one direction at about 6.4 mm/hr.
- the disclosure herein can more than double the rate of clear ice formation over these other devices.
- the device 100 in many embodiments comprises a housing 102 that encloses at least one internal cooling cavity 104 .
- the housing additionally comprises one or more flume surface walls 106 a , 106 b , and 106 c that define an elongate trough 108 (or in some embodiments, a plurality of elongate troughs 108 a , 108 b , and 108 c ), each elongate trough 108 having a first end 110 a and a second end 110 b .
- clear ice is formed within the at least one elongate trough 108 .
- the housing 102 can define any number of elongate troughs 108 greater than or equal to one, and each elongate trough 108 can be shaped by any number of corresponding flume surface walls 106 .
- the device 100 comprises six elongate troughs 108 .
- a plurality of elongate troughs 108 and/or internal cooling cavities 104 can be defined by one housing 102 .
- each elongate trough 108 and/or internal cooling cavity 104 can be defined by a separate housing 102 .
- the plurality of housings 102 can be arranged within the device 100 by various structural supports (not shown).
- various subsections of the housing can be composed of various materials.
- some subsections e.g., flume surface walls 106 a , 106 b , 106 c
- others e.g., structural supports and external support walls (not shown)
- thermally insulating materials e.g., thermally insulating materials.
- the elongate troughs 108 can be arranged parallel to each other.
- the elongate troughs 108 can be arranged anti-parallel to each other (e.g., see FIG. 8 below).
- each elongate trough 108 has a continuous arcuate shape
- the elongate trough can be considered to be defined by a singular flume surface wall 106 .
- an elongate trough 108 can be defined by three flume surface walls 106 : two side flume surface walls 106 b and 106 c and one base flume surface wall 106 a .
- the particular shape and contour of the one or more flume surface walls 106 of each elongate trough 108 define a cross-sectional shape or profile for that elongate trough 108 .
- Various cross-sectional shapes are presented herein.
- each elongate trough 108 can have the same cross-sectional profile or a different cross-sectional profile than another elongate trough of the same device 100 .
- a single elongate trough 108 can be shaped such that its cross-sectional shape changes over the length of the elongate trough 108 .
- having such a variable shape could assist with the removal of the produced ingot of ice from the device 100 .
- the cross-sectional shape of an elongate trough 108 of the device 100 can greatly influence the clarity and therefore the quality of the produced clear ice in many embodiments.
- the flume surface walls 106 of an elongate trough 108 comprise a single, uniform material.
- the flume surface walls 106 comprise aluminum, stainless steel, copper, or another thermally conductive material or thermally conductive metal or alloy.
- the flume surface walls 106 comprise material that is food-safe or otherwise known to be non-toxic when used in the production of comestibles.
- various subsections of the flume surface walls 106 can comprise a material different from other subsections of the flume surface walls 106 of the same elongate trough 108 .
- portions of the flume surface walls 106 outside the intended area of ice formation can comprise a thermally insulating material such as high-density polyethylene (HDPE) while the portions of the flume surface walls 106 comprise a thermally conductive material such as aluminum, stainless steel, or copper.
- a thermally insulating material such as high-density polyethylene (HDPE)
- the portions of the flume surface walls 106 comprise a thermally conductive material such as aluminum, stainless steel, or copper.
- FIG. 1 B depicts the various dimensions for a generic elongate trough 108 .
- An elongate trough can have a length 120 , a depth or height 122 , and a width 124 .
- the terms “depth” and “height” 122 in reference to an elongate trough 108 will be considered synonymous and will be used interchangeably.
- an elongate trough 108 can have a depth 122 measured from its lowest point to the highest point of one of its surface walls 106 ranging from about 2.54 cm to about 25.40 cm (about 1 to about 10 inches).
- an elongate trough 108 can have a depth 122 of about 3.81 cm to about 12.70 cm (about 1.5 inches to about 5 inches). In further embodiments, an elongate trough 108 can have a depth 122 of about 5.08 cm to about 12.70 cm (about 2 inches to about 5 inches). In some embodiments, the at least one elongate trough 108 has a depth of about 8.89 cm (about 3.5 inches). In some embodiments, the depth 122 of an elongate trough 108 can be divided by Line A into an ice-forming zone 122 b and a fluid overflow zone 122 a (also see FIGS. 2 and 5 below).
- a total depth 122 of the elongate trough 108 can be subdivided between these zones in various proportions without deviating from the scope of this disclosure.
- an elongate trough 108 can have a total depth 122 of about 12.70 cm (about 5 inches) divided into an ice-forming zone 122 b of about 8.89 cm (about 3.5 inches) and a fluid overflow zone 122 a of about 3.81 cm (about 1.5 inches).
- an elongate trough 108 can have a minimum width 124 measured from between the two closest points of opposite side surface walls 106 of about 2.54 cm to about 30.48 cm (about 1 inch to about 12 inches). In some embodiments, an elongate trough 108 can have a minimum width 124 of about 2.54 cm to about 25.4 cm (1 inch to about 10 inches). In other embodiments, an elongate trough 108 can have a minimum width 124 of about 2.54 cm to about 12.70 cm (about 1 inch to about 5 inches). In certain embodiments, the at least one elongate trough 108 can have a minimum width 124 of about 7.62 cm (about 3 inches).
- the at least one elongate trough 108 can have a length 120 of at least about 45.72 cm (about 18 inches). In other embodiments, the at least one elongate trough 108 can have a length 120 of at least about 91.44 cm (about 3 feet). In still further embodiments, the at least one elongate trough 108 can have a length 120 of about 1.22 m to about 3.66 m (about 4 to about 12 feet). In other embodiments, the at least one elongate trough 108 can have a length 120 of about 1.22 m to about 2.44 m (about 4 feet to about 8 feet).
- the at least one elongate trough 108 can have a length 120 of about 91.44 cm to about 2.13 m (about 3 feet to about 7 feet). In further embodiments, the at least one elongate trough 108 can have a length 120 of about 1.83 m (about 6 feet). In certain embodiments, the at least one elongate trough 108 can have a length 120 of about 2.03 m (about 80 inches). In some embodiments, the at least one elongate trough 108 can have a length 120 of about 45.72 cm to about 3.66 m (about 18 inches to about 12 feet). In various embodiments wherein the housing 102 defines a plurality of elongate troughs 108 , each trough can have the same or different length than another elongate trough 108 of the device 100 .
- the at least one elongate trough 108 is defined in such a manner by the housing 102 to allow for the flow of water (or another liquid, in various embodiments) down at least a portion of the length of an elongate trough 108 from at least one fluid intake 112 to at least one drain 114 .
- a first end 110 a of an elongate trough 108 can be understood to mean an end nearest a fluid intake 112
- a second end 110 b of an elongate trough 108 can be understood to mean an end nearest a drain 114 .
- fluid e.g., water
- each elongate trough 108 can be fed by a single fluid intake 112 and drained by a single drain 114 ; however, different numbers, arrangements and placements of these valves are possible without deviating from the scope of this disclosure (e.g., FIGS. 11 A- 11 C ).
- the one or more fluid intake 112 and drain 114 can be positioned to allow for the free passage of water over the growing ice ingot (i.e., in the fluid overflow zone 122 a ) regardless of the ingot's height or at least up to a predetermined height of ice (i.e., in the ice-forming zone 122 b ).
- the at least one fluid intake 112 and at least one drain 114 are configured to provide a flow of water such that the entire volume defined within the elongate trough 108 is filled with moving water except for the portion occupied by the growing mass of clear ice during a freezing operation of the device 100 .
- the at least one fluid intake 112 and drain 114 provide fluid (e.g., water) having a velocity of at least about 0.09 m/s (about 0.3 ft/s) throughout the length of the elongate trough 108 . In other embodiments, the velocity of the water is at least about 0.15 m/s (about 0.5 ft/s).
- the velocity of the water is at least about 0.21 m/s (about 0.7 ft/s).
- the at least one fluid intake 112 and at least one drain 114 are adapted to provide a flow of water such that the entire volume defined within the ice-forming zone 112 b and a portion of the fluid overflow zone 112 a is filled with moving water except for the portion occupied by the growing mass of clear ice during a freezing operation of the device 100 .
- the at least one fluid intake 112 and/or drain 114 are fluidly connected to a fluid supply such as a water supply (not shown) and any other additional equipment appreciated by those of skill in the art to allow for a substantially continuous flow of fluid to the at least one elongate trough 108 during a freezing operation of the device 100 .
- a fluid supply such as a water supply (not shown) and any other additional equipment appreciated by those of skill in the art to allow for a substantially continuous flow of fluid to the at least one elongate trough 108 during a freezing operation of the device 100 .
- the fluid supply provides a substantially continuous stream of new fluid to the device throughout the entire freezing operation; in other embodiments, the fluid supply can recirculate at least a portion of a starting volume of fluid throughout the freezing operation.
- de-aerated water can be supplied or recirculated to the device 100 from the fluid supply.
- an appropriate velocity of fluid into the at least one elongate trough 108 can be critical for the formation of clear ice as opposed to cloudy or opaque ice.
- quickly freezing a volume of still or slow-moving water can trap air bubbles and impurities within the ice, resulting in a hazy appearance.
- the device's 100 flow of water can mitigate the trapping of air bubbles within the ice during the freezing process, even at high rates of freezing.
- the flow of water can also be turbulent flow. Therefore, the device 100 as disclosed herein is capable of producing a solid ingot of clear ice of sufficient quality faster than other known methods.
- the flow rate of fluid remains constant over the whole duration of a freezing operation of the device 100 . In other embodiments, the flow rate of the fluid varies over a freezing operation of the device 100 . In some embodiments, periods of flow reversal may occur in which the fluid intake 112 becomes the fluid drain 114 , and the fluid drain 114 becomes the fluid intake 112 .
- At least one internal cooling cavity 104 is in thermal communication with the flume surface walls 106 across many embodiments, thereby establishing the heat transfer necessary for the formation of clear ice in the at least one elongate trough 108 .
- the at least one internal cooling cavity 104 is a singular internal cooling cavity 104 .
- the at least one internal cooling cavity 104 is a plurality of cooling cavities that are in thermal communication with various subsets of flume surface walls 106 and/or portions of flume surface walls 106 .
- each flume surface wall 106 a , 106 b , and 106 c are each in thermal communication with a unique internal cooling cavity 104 defined by the housing 102 .
- the at least one internal cooling cavity 104 can include various structures and architectural features within in order to facilitate an even flow and distribution of coolant within it. In some embodiments, these structures can include but are not limited to mesh grates.
- the at least one internal cooling cavity 104 can be at least partially filled by a circulating coolant sufficient to lower the temperature of at least a portion of one or more flume surface walls 106 to about 0° C. or colder. In another embodiment, the at least one internal cooling cavity 104 can be at least partially filled by a circulating coolant sufficient to lower the temperature of at least a portion of one or more flume surface walls 106 to about ⁇ 45° C. In still other embodiments, the at least one internal cooling cavity 104 can be at least partially filled by a circulating coolant sufficient to lower the temperature of at least a portion of one or more flume surface walls 106 to about 0° C. to about ⁇ 20° C.
- the at least one internal cooling cavity 104 can be at least partially filled by a circulating coolant sufficient to lower the temperature of at least a portion of one or more flume surface walls 106 to about ⁇ 2° C. to about ⁇ 20° C. In still further embodiments, the at least one internal cooling cavity 104 can be at least partially filled by a circulating coolant sufficient to lower the temperature of at least a portion of one or more flume surface walls 106 to about ⁇ 2° C. to about ⁇ 35° C. In some embodiments, the internal cooling cavity 106 and its contained circulating coolant are adapted to hold at least a portion of one or more flume surface walls 106 to a constant temperature during a freezing operation of the device 100 . In other embodiments, the internal cooling cavity 106 and its contained circulating coolant are adapted to provide a variable temperature to at least a portion of one or more flume surface walls 106 during a freezing operation of the device 100 that changes according a predetermined temperature schedule.
- the volume of the at least one internal cooling cavity 104 can be minimized and/or insulated from portions of the housing 102 that are not flume surface walls 106 in order to minimize the amount of coolant needed to sufficiently cool the flume surface walls 106 for the generation of ice.
- the one or more cooling cavities may be replaced with other cooling apparatuses (e.g., cooling plate, cooling elements, etc.), without departing from the scope of the present disclosure.
- the at least one internal coolant cavity 104 is fluidly connected to a coolant circulation system (not shown) via at least one coolant intake 116 and at least one coolant outtake 118 .
- a coolant circulation system not shown
- the singular internal cooling cavity 104 is fed by a singular coolant intake 116 and drained by a singular coolant outtake 118 ; however, different numbers, arrangements and placements of these features are possible without deviating from the scope of this disclosure.
- embodiments wherein the housing encloses a plurality of internal cooling cavities 104 can comprise various numbers, arrangements, placements, and fluid connectivities of internal cooling cavities 104 , coolant intakes 116 , and coolant outtakes valves 118 , without deviating from the scope of this disclosure.
- the coolant circulation system can comprise any number of pumps, compressors, evaporators, etc. that are needed to provide a sufficient circulation of coolant for the features of the disclosure as described herein.
- the embodiment of the device 100 of FIG. 1 A has at least one internal cooling cavity 104 ; however, the at least one internal cooling cavity 104 can be replaced by other cooling sources, such as cold plates, condensers, evaporators, etc. in alternative embodiments.
- evaporator pipes (not shown) could be efficiently snaked in contact with and directly behind the flume surface walls 106 to allow heat transfer between the flume surface walls 106 and the evaporator pipes.
- device 100 is arranged such that at least a portion of the at least one flume surface wall 106 is in thermal communication with a cooling source, and wherein the at least one cooling cavity 104 of FIG. 1 A is one embodiment of such a cooling source.
- the evaporator pipes of the above example can be considered cooling cavities defined by the housing.
- the device 100 optionally, further comprises a lid 120 that comprises a substrate that removably couples or attaches to the housing 102 to enclose and thermally insulate the at least one elongate trough 108 .
- a singular lid 120 can be adapted to enclose all of the elongate troughs 108 a , 108 b , and 108 c .
- a plurality of lids 120 can be adapted to cover each elongate trough individually or in distinct subsets.
- the lid 120 can comprise one or more inclusion holders 122 , such as small skewers, clips, or clamps, positioned on the substrate of the lid such that the holders can secure an item (e.g., a piece of fruit or other edible good, a flower, etc.) within an elongate trough 108 when the lid 120 is fitted to the housing 102 of the device 100 .
- the inclusion holders 122 are retractable such that they can disengage the item and be retracted when sufficient ice has formed within the elongate trough to secure the item within the growing ice ingot in a predetermined position as arranged for by the positioning of the inclusion holder 122 .
- the inclusion holders can be retracted by mechanical means (e.g., automatically or manually actuated) or manually (e.g., by hand). In some embodiments, the inclusion holders can be retracted by mechanical means when a predetermined duration of time has expired during a freezing operation of the device. Alternatively, or additionally, one or more side surface walls 106 , inclusion holders 122 , or other components of device 100 may be sensorized such that a progress of ice formation may be monitored for removal of the inclusion holders. Further, in some embodiments, the inclusion holders can be retracted by mechanical means when the ice formed in the trough 106 reaches a predetermined volume during a freezing operation of the device.
- the lid 120 as described above can be adapted to fit onto other clear ice makers including but not limited to a Clinebell Equipment CB300X2D or a Clinebell Equipment CI-4. Such an adapted lid 120 in these embodiments would provide similar ease of introduction of inclusions to clear ice generated by these alternate devices.
- the inclusion holders 122 can be adapted to position an item within an elongate trough 108 without the use of a lid 120 .
- the inclusion holders 122 can be suspended over uncovered elongate troughs 108 by a scaffold or frame, or they can be integrated in a position on a top edge of the housing 102 itself.
- FIG. 2 depicts a cross-section of an exemplary device 200 for making clear ice midway during a freezing operation.
- the housing 202 of the device 200 defines a single elongate trough 204 with a semicircular base flume surface wall 206 and a first and second side flume surface wall 208 and 210 .
- These surface flume walls 206 , 208 , 210 are in thermal communication with an internal cooling cavity 212 or other cooling apparatus enclosed by the housing 202 .
- FIG. 2 depicts a midway point during a freezing operation in which clear ice 216 (shaded area) has begun to form on the flume surface walls 206 , 208 , 210 but has not yet frozen sufficient water to form a solid ingot of clear ice.
- Arrows 218 illustrate the general direction of ice formation during this process.
- FIG. 3 depicts a perspective view of one embodiment of a device 300 for making clear ice.
- the device 300 comprises a housing 302 enclosing six elongate troughs 304 each in thermal communication with an individual internal cooling cavity (not shown, see FIGS. 4 - 5 ).
- a fluid intake 314 directs a fluid (not shown) to be frozen in the device 300 (e.g., water) into a fluid intake manifold 315 which then distributes the fluid into each of the elongate troughs 304 via a fluid entry portal (not shown) positioned at the first end 310 a of each elongate trough 304 .
- fluid After flowing through the length of an elongate trough 304 , fluid can exit via a fluid exit portal 319 into a singular fluid drain manifold 317 that collects the fluid from all elongate troughs 304 .
- the fluid drain manifold 317 can then direct the fluid out of the device 300 via a fluid outlet 316 .
- a fluid supply (not shown) can be connected to the fluid intake 314 and optionally the fluid outlet 316 as well in order to provide a continuous flow of fluid through the elongate troughs 304 during a freezing operation of the device.
- the fluid supply and/or mechanical components of the fluid intake 314 and/or fluid outlet 316 can regulate at least one of the quantity, flow rate, and temperature of the fluid entering the elongate troughs 304 .
- Coolant outlet and inlet lines 308 connect the internal cooling cavities (not shown) to a coolant supply (not shown) that chills and circulates coolant through the device 300 during a freezing operation.
- various coolants can be employed, including, but not limited to, propylene glycol, ethylene glycol, and brine.
- the coolant supply and/or mechanical components of the coolant outlet and inlet lines 308 can regulate at least one of coolant temperature and flow rate into the plurality of internal cooling cavities either individually or collectively.
- the internal cooling cavities can be replaced by other cooling sources, such as cold plates, condensers, evaporators, etc.
- the device 300 can also comprises a lid 320 , in some embodiments.
- a lid when constructed of thermally insulating materials, can assist in maintaining a uniform and adequately cool temperature within the device 300 that can contribute to the generation of clear ice along all the flume surface walls of all elongate troughs 304 .
- the lid 320 shown in an open configuration, comprises two halves separately hinged at either the first end 310 a or the second end 310 b and of sufficient dimensions as to fully enclose the elongate troughs 304 when both halves of the lid 320 are rotated down to a closed configuration (not shown).
- lid constructions and attachments can be employed without deviating from the scope of this disclosure.
- no lid 320 is present on the device 300 .
- the exterior walls 303 of the housing 302 can comprise thermally insulating materials including, but not limited to, polyoxymethylene (POM), polyurethane, polystyrene, fiberglass, and mineral wool, etc. to further assist in the maintenance of a satisfactorily and uniformly chilled environment within the device 300 to contribute towards efficient generation of clear ice in each of the elongate troughs 304 .
- POM polyoxymethylene
- polyurethane polyurethane
- polystyrene polystyrene
- fiberglass and mineral wool
- the device 300 can rest upon adjustable legs 321 or leveled rails (not shown) that can automatically or manually level the device 300 so that an equal fluid level or a level fluid surface can be more readily attained through the elongate troughs 304 during a freezing operation of the device 300 .
- FIG. 4 depicts a cross-section of an embodiment of a device 400 for making clear ice.
- the device 400 comprises housing 402 defining a plurality of elongate troughs 404 enclosed on five sides (one side not shown) by a plurality of exterior walls 403 .
- the exterior walls 403 can comprise thermally insulating material as described elsewhere herein.
- the elongate troughs 404 are each in thermal communication with a separate internal cooling cavity 408 .
- coolant is circulated by a coolant supply through each of the internal cooling cavities 408 while a fluid (e.g., water) is circulated through each of the elongate troughs 404 .
- a fluid e.g., water
- the elongate troughs have a greater height than the intended height of the ingot of clear ice to be formed. Having such a fluid overflow space (see FIG. 5 below) above an ice-forming zone can allow for the passage of fluid through an elongate trough 404 even after a substantial height of clear ice has developed, and in some embodiments, maintaining this constant flow of fluid can be important for producing aesthetically pleasing clear ice.
- the elongate troughs 404 can comprise a thermally insulating strip 422 along each side flume wall of the elongate trough 404 starting at a height substantially matching that of the intended ingot height and continuing to the top of the trough 404 (i.e., coextensive with the fluid overflow zone).
- the elongate troughs 404 in certain embodiments, can comprise multiple materials as described herein.
- the portions of an elongate trough 404 on which ice formation is desired can be composed of or include aluminum, stainless steel, or another material that easily conducts heat while the insulating strips 422 can comprise high density polyethylene (HDPE), polyoxymethylene (POM) (a.k.a. Delrin @), or another thermally insulating material or polymer.
- HDPE high density polyethylene
- POM polyoxymethylene
- FIG. 4 also depicts one embodiment of an internal architecture of a fluid intake 414 and fluid outlet 416 although other arrangements of plumbing can be employed in alternative embodiments.
- the fluid outlet 416 is attached to a fluid drain manifold 417 positioned at a second end 410 b (the first end not depicted) of the device 400 .
- FIG. 5 shows a cross-sectional profile of the embodiment of an elongate trough of FIG. 4 above.
- the profile 500 of the elongate trough which in some embodiments can be considered as part of housing of the device as described herein, defines an ice-forming zone 504 b and a fluid overflow zone 504 a (divided by Line A for illustrative purposes) with a semi-circular base surface flume wall 502 a and two side surface flume walls 502 b and 502 c .
- FIG. 5 shows a cross-sectional profile of the embodiment of an elongate trough of FIG. 4 above.
- the profile 500 of the elongate trough which in some embodiments can be considered as part of housing of the device as described herein, defines an ice-forming zone 504 b and a fluid overflow zone 504 a (divided by Line A for illustrative purposes) with a semi-circular base surface flume wall 502 a and two
- insulating strips 505 a and 505 b comprising a thermally insulating material line the side surface flume walls 502 b and 502 c for their portions that are coextensive with the fluid overflow zone 504 a in the embodiment of FIG. 5 .
- insulating strips 505 a and 505 b can extend into the ice-forming zone 504 b to slow down the rate of ice formation as it approaches the border of the fluid overflow zone 504 a .
- a surface area of one or more surface flume walls 502 b and 502 c at least coextensive with the fluid overflow zone 504 a can comprise a thermally insulating material.
- the insulating strips 505 a and 505 b comprise HDPE.
- side surface flume walls 502 b and 502 c both form a right angle compared to Line B which is tangent to the lowest point of semicircular base surface flume wall 502 a .
- one or both of side surface flume walls 502 b and 502 c lean outward from the center of the ice-forming zone 504 b , forming a non-right angle with Line B. See the analogous discussion of ⁇ , ⁇ 1 , and ⁇ 2 below in FIGS. 12 A- 12 C, 13 A- 13 C, and 14 A- 14 C .
- the flume surface walls 502 a - c and the coolant cavity wall 507 are monolithic and can be produced by extruding a singular material (e.g., aluminum, etc.) through a mold (not shown) or by roll forming or die stamping (e.g., stainless steel, etc.).
- the insulating strips 505 a and 505 b are subsequently attached in notches 508 a and 508 b that are configured to receive them so that the insulating strips 505 a and 505 b sit substantially flush with the side surface flume walls 502 b and 502 c as depicted.
- a variety of coupling means can be employed to attach the insulating strips 505 a and 505 b to the profile 500 , including, but not limited to, adhesives, mechanical fasteners, etc.
- the profile 500 can be produced in various subassemblies that are subsequently attached to form the complete elongate trough.
- various coupling means can be employed to secure the subassemblies to each other, including, but not limited to, welds, adhesives, and mechanical fasteners.
- FIG. 6 A depicts a perspective view down the width of an embodiment of fluid intake manifold 600 a .
- Fluid e.g., water
- the at least one fluid intake pipe 602 a is coupled to the fluid intake 414 of FIG. 4 .
- the fluid intake manifold 600 a can be considered part of the fluid intake 112 of FIG. 1 or the fluid intake 414 of FIG. 4 .
- there are four fluid inlet pipes 602 a there are four fluid inlet pipes 602 a , but any number greater than or equal to one can be employed in alternative embodiments.
- the dimensions of a fluid entry portal 604 a match that of the profile of the corresponding elongate trough (its ice-forming and fluid overflow zones combined, e.g., see FIG. 5 ).
- the dimensions of a fluid entry portal 604 a differ from that of the profile of the corresponding elongate trough. In certain embodiments, the dimensions of a fluid entry portal 604 a match the width and profile of the corresponding elongate trough but is shorter than the full height of the elongate trough. In many embodiments, however, each fluid entry portal 604 a is fitted with a flow straightener insert (not shown, see FIG. 7 ) that organizes the turbulence of the flow of fluid into the elongate trough.
- a fluid intake manifold 600 a further comprises a cavity divider 606 a .
- the cavity divider 606 a is a rigid or semi-rigid but porous insert that mitigates the formation of a circular current of fluid within the manifold cavity 601 a as fluid makes its way from the fluid inlet pipes 602 a to the fluid entry portals 604 a .
- the cavity divider 606 a has a porosity of 5% to 75% open area. In other embodiments, the cavity divider 606 a has a porosity of 10% to 50% open area. In further embodiments, the cavity divider 606 a has a porosity of 15% to 30% open area. In the embodiment of FIG.
- the cavity divider 606 a reaches across opposite corners, dividing the rectangular prism of the manifold cavity 601 a into two triangular prisms 603 a and 603 b , respectively, such that the fluid inlet pipes 602 a are in fluid communication to a first triangular prism 603 a and the fluid entry portals 604 a are in fluid communication to a second triangular prism 603 b .
- the term “fluid communication” is hereby intended to mean that elements “in fluid communication” can pass fluid (e.g., water) between each other.
- the manifold cavity 601 a and cavity divider 606 a can take other geometries.
- the manifold cavity 601 a may take the shape of a cylinder, triangular prism, or the like.
- the cavity divider 606 a is absent.
- the flow of fluid into and out of the manifold cavity 601 a is sufficient to completely fill or substantially fill (approximately 95% filled or more) the manifold cavity 601 a.
- FIG. 6 B depicts a perspective view down the length of a drain manifold 600 b .
- Fluid e.g., water
- the dimensions of a fluid exit portal 604 b match that of the profile of the corresponding elongate trough (its ice-forming and fluid overflow zones combined, e.g., see FIG.
- each fluid exit portal 604 b is fitted with a flow straightener insert (not shown, see FIG. 7 ) that organizes the turbulence of the flow of fluid out of the elongate trough. Fluid leaves the drain manifold cavity 601 b through at least one drainage pipe 602 b .
- the at least one drainage pipe 602 b is coupled to the fluid outlet 416 of FIG. 4 .
- there are four drainage pipes 602 b in the embodiment of FIG. 6 B , but any number greater than or equal to one can be employed in alternative embodiments.
- a drain manifold 600 b further comprises a cavity divider 606 b .
- the cavity divider 606 b is a rigid or semi-rigid but porous insert that mitigates the formation of a circular current of fluid within the drain manifold cavity 601 b as fluid makes its way from the fluid exit portals 604 b to the drainage pipes 602 b .
- the cavity divider 606 a has a porosity of 5% to 75% open area. In other embodiments, the cavity divider 606 a has a porosity of 10% to 50% open area. In further embodiments, the cavity divider 606 a has a porosity of 15% to 30% open area. In the embodiment of FIG.
- the cavity divider 606 a forms an arcuate shape between adjacent corners of the same side of the rectangular prism of the drain manifold cavity 601 b thereby dividing the drain manifold cavity 601 b into a first 603 a and second portion 603 b wherein at least one drainage pipe 602 b is in fluid communication to the first portion 603 a and wherein the corresponding fluid exit portals 604 b are in fluid communication to the second portion 603 b .
- the drain manifold cavity 601 b and cavity divider 606 b can take other geometries.
- the drain manifold cavity 601 b may take the shape of a cylinder, triangular prism, or the like.
- the cavity divider 606 b is absent. In many embodiments, the flow of fluid into and out of the manifold cavity 601 b is sufficient to completely fill or substantially fill (approximately 95% filled or more) the manifold cavity 601 b.
- FIG. 7 depicts a perspective view of a flow straightener insert 700 positioned within an elongate trough 750 attached to either a fluid entry portal or fluid exit portal of the elongate trough 750 .
- a flow straightener insert 700 comprises a rigid or semi-rigid material defining one or more apertures or openings 702 .
- These openings 702 can have a variety of shapes, number, and arrangement in the flow straightener insert 700 across multiple embodiments, but in many embodiments, the openings are all circular (except for those abutting against the edge of the insert 700 ), have the same diameter, and spaced in series of packed columns as shown in FIG. 7 .
- the highest one or more openings 702 a of the flow straightener insert 700 is no taller than the maximum height of the corresponding fluid inlet portal or fluid exit portal. In some embodiments, the highest one or more openings 702 a are no taller than Line C, a predetermined height that is within the fluid overflow zone of the elongate trough 750 but less than the maximum height of the elongate trough 750 . In some embodiments, each elongate trough 750 has a flow straightener insert 700 positioned at both its corresponding fluid entry portal and fluid exit portal. In other embodiments, each elongate trough 750 has a flow straightener insert 700 positioned at only one of its fluid entry portal or fluid exit portal.
- an elongate trough 750 can lack a flow straightener insert 700 at both its fluid entry portal and fluid exit portal.
- the flow straightener insert 700 can be coupled to the flow entry portal or fluid exit portal by a variety of coupling means, including, but not limited to adhesives, mechanical fasteners, etc.
- the flow straightener insert 700 serves to organize the flow of fluid into or out of an elongate trough 750 .
- the flow straightener insert 700 can prevent or mitigate the formation of swirling vortexes of fluid within the elongate trough 750 .
- Such vortexes can generate areas within the elongate trough 750 where fluid is moving too slowly, thus leading to cloudy sections within the generated ingot of clear ice.
- FIG. 8 depicts a perspective view and partial cross-section of an alternate embodiment of a device 800 for making clear ice.
- the device 800 comprises a housing 802 that defines eight elongate troughs 804 showing one elongate trough 804 a in cross-section. In other embodiments, any number of elongate troughs can be employed.
- Fluid e.g., water
- Adjacent elongate troughs 804 are arranged anti-parallel to each other such that the inlet manifold 806 of one elongate trough is adjacent to one or more drain manifolds 808 on a given terminal end 801 a and 801 b of the device 800 and vice versa. In some embodiments, such an arrangement allows for a more compact arrangement of elongate troughs 804 .
- Each elongate trough 804 is in thermal communication with an internal coolant cavity 805 (only the internal cooling cavity 805 a of elongate trough 804 a is visible) through which coolant (supplied by a coolant supply, coolant inlet and outlet lines, all not shown) flows during a freezing operation of the device 800 .
- Fluid e.g., water
- FIG. 9 shows a perspective cross-sectional view of an embodiment of an inlet manifold 906 of a device 900 for forming clear ice.
- the inlet manifold 906 of FIG. 9 can be the same embodiment of those depicted in FIG. 8 .
- the inlet manifold 906 in this embodiment features an inlet pipe 908 that connects to an internal cavity 910 defined by an outer casing 907 of the inlet manifold 906 .
- a flow guide 912 within the internal cavity 910 redirects incoming fluid around its perimeter through an edge gap 916 to enter a guide cavity 917 .
- fluid can then pass through the one or more channels 920 of a flow straightener plug 918 to enter an elongate trough 904 .
- the flow straightener plug 918 can have any number of channels 920 in various embodiments, and in some embodiments, such as the embodiment of FIG. 9 , some channels 920 can have longer lengths than others and can extend farther into the guide cavity 917 than other channels 920 .
- This arrangement of the flow guide 912 and flow straightener plug 918 organizes the general flow of fluid into the inlet manifold 906 in a manner that avoids inefficient whirlpooling of fluid while maintaining sufficient velocity into the elongate trough 904 for the generation of clear ice.
- fluid exits an elongate trough 804 through a flow straightener plug 918 and into the drain manifold 808 .
- FIG. 10 depicts a detailed perspective view of one embodiment of a device 1000 for producing clear ice with an embodiment of an ingot removal structure 1030 in position over an elongate trough 1004 .
- an ingot removal structure 1030 comprises a support beam 1032 through which an ingot implant 1034 is secured extending down into the ice-forming zone of the elongate trough 1004 .
- An ingot removal structure 1030 can be positioned at one or both terminal ends of an elongate trough (i.e., near a fluid entry or exit portal 1019 of a fluid inlet or drain manifold 1017 ) in various embodiments.
- one or more ingot removal structures 1030 can be positioned at other locations along the length of the elongate trough 1004 .
- clear ice accumulates in the elongate trough 1004 .
- the ingot implant 1034 extends into the ice-forming zone, the ingot implant 1034 becomes embedded in the ingot of ice.
- the ingot can be lifted out of the trough by gripping the support beam 1032 of at least one ingot removal structure 1030 .
- An ingot removal structure 1030 can be removed from an ingot of ice by mechanically cutting off a length of the ingot that contains the ingot implant 1034 . By positioning an ingot removal structure 1030 very near the terminal ends of an elongate trough, very little ice must be cut to remove the ingot removal structure 1030 . Because the ingot implant 1034 is in contact with the fluid that forms a comestible, it can be valuable that the ingot implant 1034 comprises food-safe material. In some embodiments, the ingot implant 1034 is a food-safe zip tie that passes through a hole in the support beam 1032 , although one will appreciate that many alternative shapes, materials, and arrangements can be employed to form an ingot removal structure 1030 without deviating from the scope of this disclosure.
- FIG. 11 A depicts a perspective view of an alternate embodiment of a device 1100 for making clear ice.
- the device 1100 comprises a housing 1102 defining a single elongate trough 1104 as well as at least one internal cooling cavity (not shown).
- a coolant manifold 1106 can control the flow of coolant in and out of the at least one internal cooling cavities via a plurality of coolant inlets and outlets 1108 when connected by various plumbing elements (not shown).
- the coolant manifold 1106 can control the flow of coolant through each internal cooling cavity individually.
- the coolant manifold 1106 can further comprise coolant inlets and outlets 1108 of its own.
- the device 1100 comprises a removable lid 1110 depicted in FIG. 11 A in an attached position with its rigid substrate 1112 secured to the housing 1102 .
- the lid 1110 features a plurality of fluid inlets 1114 and outlets 1116 (analogous to the fluid intake 112 and drain 114 of FIG. 1 A , respectively) along its length in this embodiment.
- this arrangement of fluid inlets 1114 and outlets 1116 can allow for a turbulent flow of water through the whole length of the elongate trough 1104 that is fully filled with water during a freezing operation of the device 1100 .
- positioning the fluid inlets 1114 and outlets 1116 in the lid can keep them above the freezing level, thereby leaving them operation for the full duration of a freezing operation.
- the embodiment of the lid 1110 is used with an embodiment of the device 1100 that comprise at least one internal cooling cavity in FIG. 11 A
- the embodiment of the lid 1110 of FIG. 11 A can be used on a device using an alternate cooling source for the flume surface walls, such as a cold plate, evaporator, or condenser.
- the lid 1110 can further comprise one or more inclusion holders 1118 that extend through the lid 1110 into the ice-making volume defined by the elongate trough 1104 .
- a plurality of inclusion holders 1118 are all attached to a gantry 1120 that allows for a synchronized motion (e.g., a retraction motion) of the inclusion holders 1118 .
- FIG. 11 B illustrates a profile view of a lid 1110 unattached to the housing 1102 of the device 1100 .
- the inclusion holders 1118 indeed traverse the substrate 1112 of the lid 1110 , and each inclusion holder 1118 can be fitted to secure an inclusion 1122 (e.g., a piece of fruit or other edible good, a flower, etc.) such that the inclusion 1122 can be held in position within an elongate trough 1104 during a freezing operation of the device 1100 .
- an inclusion 1122 e.g., a piece of fruit or other edible good, a flower, etc.
- FIG. 11 C depicts a cross-sectional view of an embodiment of the device 1100 of FIG. 11 A .
- the elongate trough 1104 is defined by three flume surface walls 1124 a , 1124 b , and 1124 c that are each in thermal communication with a unique corresponding internal cooling cavity 1126 a , 1126 b , and 1126 c .
- Each internal cooling cavity 1126 a , 1126 b , and 1126 c can be supplied by unique a coolant inlets and outlets 1128 a , 1128 b , and 1128 c .
- the compartmentalized arrangement of the cooling cavities 1126 a , 1126 b , and 1126 c in this embodiment allow for a more specific control of the temperatures experienced at each flume surface wall 1124 a , 1124 b , and 1124 c during a freezing operation of the device 1100 .
- FIGS. 12 A- 12 C, 13 A- 13 C, and 14 A- 14 C depict various embodiments of possible cross-sectional shapes for an elongate trough.
- the elongate trough is defined by a semicircular base surface wall 1202 a , 1202 b , 1202 c , and a first and second side surface walls 1204 a , 1204 b , 1204 c and 1206 a , 1206 b , 1206 c , respectively.
- the side surface walls 1204 a and 1206 a are vertical in comparison to a plane tangent to the lowest point of the base surface wall 1202 a .
- FIG. 12 A the side surface walls 1204 a and 1206 a are vertical in comparison to a plane tangent to the lowest point of the base surface wall 1202 a .
- the first side surface wall 1204 b has an internal angle ⁇ away from a vertical position as defined in FIG. 12 A .
- the angle ⁇ can be any value greater than about 0° but less than or equal to about 15°.
- the angle ⁇ can be about 0.25° to about 10°.
- the angle ⁇ can be about 0.25° to about 8°.
- the angle ⁇ can be about 0.25° to about 5°.
- the angle ⁇ can be about 1° to about 10°.
- both ⁇ 1 and ⁇ 2 can each be any value greater than about 0° but less than or equal to about 15°.
- the angles ⁇ 1 and ⁇ 2 can each be about 0.25° to about 10°. In still other embodiments, the angles ⁇ 1 and ⁇ 2 can each be about 0.25° to about 8°.
- angles ⁇ 1 and ⁇ 2 can each be about 0.25° to about 5°. In still further embodiments, the angles ⁇ 1 and ⁇ 2 can each be about 1° to about 10°. In some embodiments, ⁇ 1 and ⁇ 2 have the same value, creating a symmetric cross-sectional shape for the elongate trough. In alternate embodiments, ⁇ 1 and ⁇ 2 have the different values, creating an asymmetric cross-sectional shape for the elongate trough.
- At least one of the two side flume surface walls 1204 a , 1204 b , 1204 c and 1206 a , 1206 b , 1206 c can have an interior angle greater than or equal to about 0 degrees and less than or equal to about 15 degrees from upright.
- FIGS. 13 A- 13 C depict analogous cross-sectional shapes for an elongate trough wherein the base surface wall 1302 a , 1302 b , 1302 c is semi-elliptical
- FIGS. 14 A- 14 C further depict analogous cross-sectional shapes for an elongate trough wherein the base surface wall 1402 a , 1402 b , 1402 c is flat, creating a square base when both the first and second side surface walls 1404 a and 1406 a are vertical or perpendicular to base surface wall 1402 a (shown in FIG. 14 A ).
- the angles ⁇ , ⁇ 1 , and ⁇ 2 can each be any value greater than about 0° but less than or equal to about 15°. In other embodiments, the angles ⁇ , ⁇ 1 , and ⁇ 2 can each be about 0.25° to about 10°. In still other embodiments, the angles ⁇ , ⁇ 1 , and ⁇ 2 can each be about 0.25° to about 8°. In further embodiments, the angles ⁇ , ⁇ 1 , and ⁇ 2 can each be about 0.25° to about 5°. In still further embodiments, the angles ⁇ , ⁇ 1 , and ⁇ 2 can each be about 1° to about 10°.
- ⁇ 1 and ⁇ 2 have the same value, creating a symmetric cross-sectional shape for the elongate trough. In alternate embodiments, ⁇ 1 and ⁇ 2 have the different values, creating an asymmetric cross-sectional shape for the elongate trough. Therefore, across many embodiments, at least one of the two side flume surface walls 1304 a , 1304 b , 1304 c and 1306 a , 1306 b , 1306 c can have an interior angle greater than or equal to about 0 degrees and less than or equal to about 15 degrees from upright.
- the angles ⁇ , ⁇ 1 , and ⁇ 2 can each be any value greater than about 0° but less than or equal to about 15°. In other embodiments, the angles ⁇ , ⁇ 1 , and ⁇ 2 can each be about 0.25° to about 10°. In still other embodiments, the angles ⁇ , ⁇ 1 , and ⁇ 2 can each be about 0.25° to about 8°. In further embodiments, the angles ⁇ , ⁇ 1 , and ⁇ 2 can each be about 0.25° to about 5°. In still further embodiments, the angles ⁇ , ⁇ 1 , and ⁇ 2 can each be about 1° to about 10°.
- ⁇ 1 and ⁇ 2 have the same value, creating a symmetric cross-sectional shape for the elongate trough. In alternate embodiments, ⁇ 1 and ⁇ 2 have the different values, creating an asymmetric cross-sectional shape for the elongate trough. Therefore, across many embodiments, at least one of the two side flume surface walls 1404 a , 1404 b , 1404 c and 1406 a , 1406 b , 1406 c can have an interior angle greater than or equal to about 0 degrees and less than or equal to about 15 degrees from upright.
- the joints connecting side surface walls 1404 a , 1404 b , 1404 c , 1406 a , 1406 b , 1406 c to the base surface wall 1402 a , 1402 b , 1402 c are sharp angles (i.e., as depicted in FIGS. 14 A- 14 C ).
- the joints connecting side surface walls 1404 a , 1404 b , 1404 c , 1406 a , 1406 b , 1406 c to the base surface wall 1402 a , 1402 b , 1402 c are bent angles having some form of arcuate geometry to smooth the transition between the flat base surface wall 1402 a , 1402 b , 1402 c and the side surface walls 1404 a , 1404 b , 1404 c , 1406 a , 1406 b , 1406 c .
- the arcuate joint transition accounts for about 30% or less of the total length of width the base surface wall 1402 a , 1402 b , 1402 c . In some embodiments, the arcuate joint transition accounts for about 20% or less of the total length of width the base surface wall 1402 a , 1402 b , 1402 c.
- FIGS. 15 A- 15 D depict further illustrative examples of cross-sectional shapes including various irregular shapes.
- an elongate trough can have a base surface wall 1502 a having an arcuate but lopsided shape.
- an elongate trough can have a base surface wall 1502 b having a waveform pattern.
- FIG. 15 A an elongate trough can have a base surface wall 1502 a having an arcuate but lopsided shape.
- FIG. 15 B an elongate trough can have a base surface wall 1502 b having a waveform pattern.
- an elongate trough can have two base surface walls 1502 cl and 1502 c 2 to define a V-shape for a base.
- an elongate trough can comprise any number of flume surface walls.
- FIG. 15 D shows an embodiment having three base surface walls 1502 d 1 , 1502 d 2 , and 1502 d 3 forming a V-shape that forms a shoulder with the side surface wall 1506 d .
- FIGS. 15 A- 15 D are depicted as having vertical sidewalls and sharp joint transitions, one of skill in the art will appreciate that other embodiments can have sloping sidewalls and smoother, bent arcuate joint transitions as described above for FIGS. 12 A- 12 C, 13 A- 13 C, and 14 A- 14 C .
- having a ⁇ , ⁇ 1 , and ⁇ 2 greater than about 0° can be valuable to the production of clear ice during a freezing operation of the device.
- clear ice forms on at least a portion of the base flume wall and the two side surface walls (as shown in FIG. 2 ).
- this arrangement can be considered “multi-directional freezing” in certain embodiments. Multi-directional freezing can greatly expedite clear ice production since ice can accumulate on multiple surfaces simultaneously to form a single piece of clear ice. However, when the portions of clear ice that are forming on opposite side surface walls begin to approach each other, at least two situations can occur that can damage the clarity of the ice.
- the space between the ice of the two side walls can fill in too quickly with new ice, therefore trapping air and other impurities inside a narrow portion of the ingot of ice. This creates a plane of cloudy ice that can run through a portion of the volume of the ingot, thus ruining the desired clear ice properties.
- ice bridges can develop between the two opposing ice sheets accumulating on the side surface walls. These ice bridges disrupt the desired simple crystal lattice for the clear ice and can yield internal cracks, visible to an observer, in the final product once the spaces around the bridges are similarly frozen. This, too, ruins the desired clarity of the final product.
- the device can, in certain embodiments, instead direct a more gradual filling in of ice from the bottom of a “v-shaped” or “u-shaped” valley rather than suddenly abutting two vertical planes of clear ice into each other.
- sloping the side surface walls does slightly lengthen the required time to produce an ingot of clear ice compared to an analogous elongate trough having vertical walls (see Example 1, below).
- the device can generate an ingot of clear ice using elongate troughs having vertical side surface walls by intentional control of flow rate and temperature of the three side walls.
- an ingot of ice has been produced, such as by an embodiment of the device of the above figures, it can be further processed to efficiently generate a plurality of comestibles with aesthetically pleasing shapes and/or additional properties as described herein.
- a method 1600 for producing clear ice of one embodiment includes providing a device for making clear ice in block S 1602 , optionally positioning an item with at least one inclusion holder in block S 1604 , providing a flow of water down at least one elongate trough in block S 1606 , circulating coolant through the at least one internal cooling cavity in block S 1608 , and optionally retracting the one or more inclusion holders in block S 1610 .
- the method functions to produce clear ice, particularly ingots of clear ice.
- the method is used for the production of clear ice for consumption in beverages but can additionally, or alternatively, be used for any suitable applications.
- the method can be configured and/or adapted to function for any suitable rapid freezing of liquids to produce frozen substances.
- the method 1600 includes for providing a device for making clear ice according to block S 1602 .
- the device for making clear ice can be any of the embodiments of devices described elsewhere herein and depicted in the various figures above.
- the method 1600 optionally includes for positioning at least one item in at least one inclusion holder.
- the inclusion holders can secure an item within the space defined by an elongate trough during a freezing operation of the device such that the one or more items will be inside the ingot of clear ice upon completion of the freezing cycle.
- These inclusion holders such as skewers, clips, or clamps, can be affixed to a lid of the device or elsewhere as described above.
- the method 1600 then includes providing a flow of water down at least one elongate trough.
- the flow of water is provided to the elongate trough by at least one fluid intake valve positioned in the housing of the device or in the lid of the device and drained by at least one drain valve as described above.
- the flow of water can be provided by other means appreciated by those of skill in the art.
- a sufficient flow rate of water is required in order to exclude air bubbles and impurities from the growing layer of clear ice on at least one flume surface wall during a freezing operation of the device in many embodiments.
- Step S 1608 the method next includes cooling at least a portion of at least one flume surface wall of the at least one elongate trough to produce a growing layer of clear ice on the at least a portion of at least one flume surface wall.
- this cooling can be performed by the circulation of coolant through at least one internal coolant cavity as described above.
- coolant is provided to the device by a coolant supply system via at least one coolant intake valve and is cycled out by at least one coolant outtake valve in many embodiments.
- Step S 1608 includes for providing and utilizing an alternative cooling apparatus including but not limited to cold plates, compressors, etc. for the generation of the temperatures needed to produce clear ice on the one or more flume surface walls.
- the at least a portion of at least one flume surface wall is cooled to a temperature of about 0° C. or less. In another embodiment, the at least a portion of at least one flume surface wall is cooled to about ⁇ 45° C. In still other embodiments, the at least a portion of at least one flume surface wall is cooled to about 0° C. to about ⁇ 20° C. In further embodiments, the at least a portion of at least one flume surface wall is cooled to about ⁇ 2° C. to about ⁇ 20° C. In further embodiments, the at least a portion of at least one flume surface wall is cooled to about ⁇ 2° C. to about ⁇ 35° C.
- the at least a portion of at least one flume surface wall is adapted to hold a constant temperature during a freezing operation of the device. In other embodiments, the at least a portion of at least one flume surface wall is adapted to provide a variable temperature during a freezing operation of the device that changes according a predetermined temperature schedule.
- the cooling of step S 1608 involves gradually decreasing the temperature of the flume surface walls over time.
- a gradual decrease in temperature allows the device to overcome the inherent insulating properties of the ice as it forms. Because ice freezes directionally outwards from the flume surface walls that relay the chilled temperatures to the flow of water as shown in FIG. 2 , the insulating properties of ice proportionally impede the heat transfer between the flume surface walls and flow of water as the layer of ice grows.
- the temperature of the flume surface walls decreases from about 0° C. to about ⁇ 30° C. over the duration of a freezing operation of the device. In other embodiments, the temperature of the flume surface walls decreases from about ⁇ 2° C.
- a freezing operation of the device lasts about 12 hours or less. In other embodiments, a freezing operation of the device lasts about 30 minutes to about 10 hours. In still further embodiments, a freezing operation of the device lasts about 30 minutes to about 4 hours. In additional embodiments, a freezing operation of the device lasts about 2 hours.
- the method 1600 provides for retracting the at least one inclusion holder.
- the at least one inclusion holder should be retracted before the growing layer of clear ice comes into contact with the inclusion holder.
- the at least one inclusion holder is retracted after a sufficient accumulation of ice has formed within the elongate trough such that the item remains at least partially embedded in the accumulation of ice upon retraction of the at least one inclusion holder.
- the at least one inclusion holder is retracted by mechanical means. In some of these embodiments, the at least one inclusion holder is retracted mechanically after a certain duration of time of a freezing operation has passed or after a predetermined volume of ice has formed.
- the at least one inclusion holder is retracted manually.
- each or a subset can be collectively retracted simultaneously or individually at different times and/or at different volumes of formed ice.
- the method 1600 allows for the flow of water and the circulation of coolant until a desired quantity of clear has formed within the at least one elongate trough.
- the resulting ingot of clear ice will have a length and cross-sectional shape determined by or related to those of the corresponding elongate trough in which it formed.
- the flow of water and circulation of coolant can be ceased, and the ingot of ice can be removed by a variety of means appreciated by those of skill in the art, including but not limited to letting the ingot slightly melt and removing it by mechanical means.
- the slight melting can be provided by a circulation of warmer coolant in the at least one internal cooling cavities.
- one or more side surface walls may further include one or more heating elements or heating means, such that an external surface of the ice ingot may be melted to facilitate ice removal from the device.
- the ingot of ice can be removed vertically by lifting it out of an elongate trough, but in other embodiments, the ingot of ice can be removed horizontally by sliding it out of the elongate trough through an openable or removable end wall.
- the device is adapted such that the ingot of ice adheres to a surface of the lid such that removing the lid additionally removes the ingot of ice with it.
- FIGS. 17 A- 25 B show various exemplary, non-limiting methods for forming clear ice using any ice device described herein or known in the art.
- flow inlet and “flow inlet valve” can be considered synonymous with “fluid intake valve” and will be used interchangeably.
- the term “outlet” and “outlet valve” can be considered synonymous with “drain valve.”
- drain valve any of the parameters, temperature ranges, stages, rates, time periods, circulation, agitation, etc. of any of FIGS. 17 A- 25 B may be exchanged with each other. Various parameters were adjusted in each of the figures.
- temperature of ice forming surface e.g., flume surface walls
- time, end plateau i.e., flow or temperature stays constant for a time period at the end of the method
- mid-cycle plateau i.e., flow or temperature stays constant for a time period during the recipe
- flow paths i.e., flow inlets that are located towards the outside of the elongate trough are being controlled separately from flow inlets towards a center of the elongate trough
- flow direction i.e., flow reversal; pump direction is switched such that the inlets become the outlets and the outlets become the inlets
- circulation e.g., maintain some degree of water flow at the ice formation boundary to prevent dissolved gasses from freezing in the water
- initial cool down i.e., an initial aggressive ramp down in temperature to bring the water in the molds close to freezing more quickly, for example an initial temperature drop to about 0° C.
- each step in each method may include or comprise about 1 to about 20 minutes; about 2 minutes to about 15 minutes; about 5 minutes to about 10 minutes; substantially 5 minutes; substantially 6 minutes; substantially 8 minutes; about less than 10 minutes; etc.
- the initial steps may vary in time from about 5 minutes to about 10 minutes and then the subsequent steps may vary in time from about 2.5 minutes to about 7.5 minutes.
- decreasing or increasing a step by about 1 minute to about 10 minutes will not depart substantially from the scope of this disclosure.
- a method for forming clear ice includes: providing a device, for example, any of the above embodiments; optionally inserting a skewer or clip through the lid, the skewer or clip being coupled to an item or configured to release a fluid into a cavity in the ice (e.g., skewer defines one or more apertures); circulating, using the fluid inlet and outlet valves, a fluid in the elongate trough; optionally varying overtime one or both of: a temperature of the cooling apparatus or source or a fluid flow, through the fluid inlet valve, as a percentage of max flow; and optionally retracting the skewer or clip when the ice formation encases at least a portion of the item.
- temperature of the flume surface walls is varied (e.g., 0° C. and about ⁇ 25° C. or any of the ice making methods described elsewhere herein); in other embodiments, the flow rate of water (hereinafter, “water flow rate”) is varied (e.g., percentage of max water flow between about 5% and about 100% or any of the ice making methods described elsewhere herein).
- water flow rate is varied (e.g., percentage of max water flow between about 5% and about 100% or any of the ice making methods described elsewhere herein).
- both surface temperature and water flow rate are varied.
- neither temperature nor flow rate are varied.
- the temperature of the water flowing through the elongate troughs can be varied solely or in addition to the other parameters named above.
- the device is configured to receive an inclusion holder (e.g., a skewer or clip), such that the method includes inserting the skewer or clip and optionally retracting the skewer or clip at a predetermined time.
- the predetermined time is dependent on a type of item coupled to the skewer, dependent on a volume of the elongate trough, a random predetermined time, or combination thereof.
- ice formation is monitored via a sensorized mold and/or skewer/clip such that the skewer or clip is removed or retracted based on a progress of ice formation.
- the method may optionally include releasing the ice from the elongate trough with the item encased therein, for example via gravity, manual removal, automatic removal (e.g., ejector pin, air, hydraulics, etc.).
- the method optionally includes sealing a lid to the device, for example via a gasket, pressure seal, screw type seal, etc.
- FIGS. 17 A- 17 B show varied surface temperature over time at a constant flow.
- surface temperature is decreased incrementally over time.
- the size of the increments may vary over time; alternatively, the increments may not vary over time (i.e., are fixed), such that increment remains the same over time.
- the increment is 0.1° C., such that the surface temperature decreases by an increment of about 0.1° C. over time.
- the increment may be less than about 0.1° C. or more than about 0.1° C.
- the increment may be from about 0.25° C. to about 5° C.; 0.5° C. to about 5° C.; about 1° C. to about 5° C.; about 0.5° C. to about 3° C.; about 0.5° C. to about 2.5° C.; etc.
- a surface temperature variation may be from about 0° C. to about ⁇ 10° C.; about 0° C. to about ⁇ 25° C.; about 0° C. to about ⁇ 10° C.; about ⁇ 2° C. to about ⁇ 7° C.; about ⁇ 1° C. to about ⁇ 10° C.; etc.
- the surface temperature may decrease gradually over time.
- the percent max water flow remains at 100% through the duration of the ice making method.
- the percent max water flow may vary over time.
- a skewer or clip may be retracted at one or more of: a predetermined time, based on a degree of ice formation, based on a volume of ice formation, based on a type of inclusion or item coupled to the skewer or clip, based on a sensor reading (e.g., temperature, clarity of ice, volume of ice, etc.) or a combination thereof.
- a sensor reading e.g., temperature, clarity of ice, volume of ice, etc.
- a skewer or clip may include a heating means (e.g., heating element, heating coils, etc.) such that the skewer or clip may be heated and retracted at any time during or after the ice making process.
- FIGS. 18 A- 18 B show varied flow water rate over time at a constant surface temperature.
- water flow rate as a percentage of max water flow, is decreased incrementally over time.
- the size of the increments may vary over time; alternatively, the increments may not vary over time, such that increment remains the same over time.
- the increment is about 2%, such that the water flow rate decreases by an increment of about 2% over time. In other embodiments, the increment may be less than about 2% or more than about 2%.
- the increment may be from about 0.5% to about 95%; about 1% to about 95%; about 2% to about 10%; about 1% to about 5%; about 5% to about 10%; about 5% to about 95%; about 10% to about 90%; about 15% to about 85%; about 20% to about 80%; about 25% to about 75%; about 30% to about 70%; about 35% to about 65%; about 40% to about 60%; about 45% to about 55%; about 45% to about 50%; etc.
- the percent max water flow may decrease gradually over time.
- the surface temperature remains constant or fixed during the method.
- the surface temperature may remain close to or at about ⁇ 5° C. to about ⁇ 10° C.
- the surface temperature may remain at about or substantially ⁇ 7° C.
- the surface temperature may vary over time.
- FIGS. 19 A- 19 B show varied water flow rate and surface temperature over time.
- FIGS. 19 A- 19 B show a combination of the methods of FIGS. 17 A- 17 B and FIGS. 18 A- 18 B .
- both the surface temperature and the water flow rate are varied over time.
- the variation may be incremental, at a fixed interval, or variable, in a defined pattern or stochastic within a defined range.
- FIGS. 20 A- 20 B show a method of making clear ice.
- the method includes an initial cool down cycle where the surface temperature remains fixed for a period of time.
- the surface temperature may be set at or below about 0° C.; at or below about ⁇ 2° C.; at or below about ⁇ 4° C.; at or below about ⁇ 6° C.; at or below about ⁇ 8° C.; at or below about ⁇ 10° C.; at or below about ⁇ 12° C.; at or below about ⁇ 14° C.; at or below about ⁇ 16° C.; at or below about ⁇ 18° C.; at or below about ⁇ 20° C.
- the surface temperature may be set between about 0° C.
- the period of time may range from about 1 minute to about 20 minutes about 1 minute to about 15 minutes; about 5 minutes to about 15 minutes; about 5 minutes to about 10 minutes; about 6 minutes to about 8 minutes; etc.
- This initial cool down cycle may also be referred to herein as a start plateau or beginning plateau.
- the method may include an end plateau, such that the surface temperature is kept substantially constant for a period of time.
- the surface temperature may be maintained between about 0° C. and about ⁇ 15° C.; about ⁇ 5° C.
- the surface temperature may be incrementally decreased from about ⁇ 2° C. to about ⁇ 7° C.
- the surface temperature may incrementally decrease by 0.2° C. between the beginning and end plateaus.
- the increment may be between about 0.1° C. and about 0.5° C.; about 0.1° C.
- the water flow rate may vary over time as shown and described for FIGS. 19 A- 19 B .
- the skewer or clip is retracted at about or substantially 120 minutes from a start of the method, as described elsewhere herein.
- FIGS. 21 A- 21 B show a method of making clear ice that is similar to that of FIGS. 20 A- 20 B , except that the method of FIGS. 21 A- 21 B further includes an annealing phase at or near the end of the method.
- an annealing phase may comprise a period of warmer surface temperatures to lessen or reduce internal stress that may lead to cracking.
- an annealing phase may be characterized by one or more surface temperature periods that range in temperature from about ⁇ 5° C. to about 20° C.; about ⁇ 2° C. to about 15° C.; about 0° C. to about 10° C., or any range or subrange therebetween.
- an annealing phase may include a first period at a surface temperature between about ⁇ 5° C. and about 5° C. and a second period at a surface temperature between about 5° C. and about 15° C.
- an annealing phase may be characterized by one period at a fixed surface temperature or a plurality of periods, each at a different temperature from a previous temperature and a future temperature. Each period of time may range from about 2 minutes to about 60 minutes; about 5 minutes to about 30 minutes; about 5 minutes to about 25 minutes; about 5 minutes to about 20 minutes; about 5 minutes to about 15 minutes; about 10 minutes to about 15 minutes; or any range or subrange therebetween.
- the skewer or clip is retracted at about or substantially 120 minutes from a start of the method, as described elsewhere herein.
- FIGS. 22 - 22 B show a method of making clear ice that is similar to that of FIGS. 21 A- 21 B , except that the method of FIGS. 22 A- 22 B further includes a mid-method plateau, such that the surface temperature is kept substantially constant for a period of time.
- the surface temperature may be maintained between about ⁇ 10° C. and about 0° C.; about ⁇ 8° C. and about 0° C.; about ⁇ 6° C. and about 0° C.; about ⁇ 6° C. and about ⁇ 2° C.; about ⁇ 5° C. and about ⁇ 2° C.; about ⁇ 5° C.
- a mid-cycle plateau may include a surface temperature of about ⁇ 4° C. for about 45 minutes.
- the surface temperature may be incrementally decreased from about ⁇ 2° C. to about ⁇ 7° C.
- the surface temperature may incrementally decrease by 0.2° C. between the beginning and end plateaus.
- the increment may be between about 0.1° C. and about 0.5° C.; about 0.1° C.
- the water flow rate may vary over time as shown and described for FIGS. 19 A- 19 B .
- the skewer or clip is retracted at about or substantially 120 minutes from a start of the method, as described elsewhere herein.
- FIGS. 23 A- 23 B show another method of making clear ice.
- the method is similar to that shown in FIGS. 22 A- 22 B , except the method of FIGS. 23 A- 23 B includes shifting or adjusting between fluid inlet valves positioned in an inner region and fluid inlet valves positioned in an outer region.
- the inner and outer inlet valves are arranged similar to the embodiment shown in FIG. 11 A , with the term “inner” meaning towards the middle of the length of the elongate trough.
- the overall water flow rate as a percentage of max water flow, decreases incrementally over time.
- the size of the increments may vary over time; alternatively, the increments may not vary over time, such that increment remains the same over time or is fixed.
- the increment is about 2%, such that the flow rate decreases by an increment of about 2% over time. In other embodiments, the increment may be less than about 2% or more than about 2%.
- the increment may be from about 0.5% to about 95%; about 1% to about 95%; about 2% to about 10%; about 1% to about 5%; about 5% to about 10%; about 5% to about 95%; about 10% to about 90%; about 15% to about 85%; about 20% to about 80%; about 25% to about 75%; about 30% to about 70%; about 35% to about 65%; about 40% to about 60%; about 45% to about 55%; about 45% to about 50%; etc.
- the percent max water flow may decrease gradually over time.
- the overall water flow rate or percent may comprise a combination of flow from flow inlet valves in an inner region and flow inlet valves in an outer region.
- FIG. 23 B shows the intersection between the decreasing outer region water flow and the increasing inner region water flow.
- the intersection point may be characterized by equal or substantially equal water flow from the inner region and outer region inlet valves (e.g., about 50% of max coming from inner region and about 50% of max coming from outer region).
- flow through the inlet valves in the inner region increases incrementally over time.
- the increment may be about 0.25% to about 5%; about 0.5% to about 5%; about 0.75% to about 5%; about 0.5% to about 4%; about 0.5% to about 3%; about 1% to about 3%; about 1.5% to about 2.5%; about 1% to about 50%; about 2% to about 20%; etc.
- the water flow through the inlet valves in the inner region may start or begin at a flow of about 0% to about 50%; about 0% to about 25%; about 5% to about 20%; about 10% to about 20%; about 5% to about 15%; about 8% to about 12%; etc. As shown in FIG. 23 A , flow through the inlet valves in the outer region decreases incrementally over time.
- the increment may be about 0.25% to about 5%; about 0.5% to about 5%; about 0.75% to about 5%; about 0.5% to about 4%; about 0.5% to about 3%; about 1% to about 3%; about 1.5% to about 2.5%; about 1% to about 50%; about 2% to about 20%; etc.
- the water flow through the inlet valves in the outer region may start or begin at a flow of about 50% to about 100%; about 50% to about 95%; about 60% to about 95%; about 70% to about 95%; about 80% to about 95%; about 90% to about 95%; about 85% to about 95%; about 88% to about 93%; etc.
- water flow through the inner region inlet valves may decrease over time and the water flow through the outer region inlet valves may increase over time.
- the water flow through the inner region inlet valves may stay constant or fixed while the water flow through the outer region inlet valves increases or decreases over time.
- the water flow through the outer region inlet valves may stay constant or fixed while the water flow through the inner region inlet valves increases or decreases over time.
- FIGS. 24 A- 24 B show a method of making clear ice.
- the method of FIGS. 24 A- 24 B are similar to that shown in FIGS. 22 A- 22 B , except that instead of the percent max water flow decreasing incrementally over time, the method of FIGS. 24 A- 24 B include an incremental decrease in water flow over time followed by a period of water flow reversal.
- Flow reversal means that inlet valves switch to outlet valves and/or outlet valves switch to inlet valves.
- the percentage max water flow incrementally decreases over time.
- the increment may be between about 1% to about 10%; about 1% to about 8%; about 1% to about 6%; about 1% to about 4%; about 2% to about 4%; about 2% to about 5%; etc. for about 50 minutes to about 180 minutes; about 60 minutes to about 170 minutes; about 70 minutes to about 160 minutes; about 70 minutes to about 160 minutes; about 80 minutes to about 150 minutes; about 100 minutes to about 150 minutes; about 125 minutes to about 145 minutes; about 130 minutes to about 140 minutes; etc.
- a starting water flow percent may be between about 100% to about 50%; about 90% to about 50%; about 80% to about 60%; about 100% to about 90%; etc.
- An end water flow percent may be between about 0% to about 50%; about 5% to about 45%; about 10% to about 40%; about 15% to about 35%; about 20% to about 30%; about 20% to about 25%; etc.
- This period of positive flow may be followed by a period of flow reversal as described above.
- water flow may be reversed that the fluid inlet valve becomes a fluid outlet valve, such that the water flow percent represents a flow of liquid out of the elongate trough.
- reversed water flow may occur at between about 0% to about 50%; about 5% to about 45%; about 10% to about 40%; about 15% to about 35%; about 20% to about 35%; about 25% to about 35% about 28% to about 33% of max flow; etc.
- the period of water flow reversal may be between about 5 minutes to about 100 minutes; about 15% minutes to about 90 minutes; about 25 minutes to about 80 minutes; about 30 minutes to about 80 minutes; about 40 minutes to about 80 minutes; about 50 minutes to about 80 minutes; about 60 minutes to about 80 minutes; about 65 minutes to about 75 minutes; about 70 minutes to about 80 minutes; etc.
- the annealing period may be characterized by a period of about 0% flow such that no liquid is coming into or out of the elongate trough.
- the annealing period may be characterized by low water flow, for example 1% to about 10%; about 5% to about 15%; about 5% to about 10%; etc.
- FIGS. 25 A- 25 B show a method of making clear ice similar to a combination of the methods shown in FIGS. 23 A- 23 B and FIGS. 24 A- 24 B .
- the water flow from the inlet valves has switch almost exclusively (i.e., 100%) to inner region flow from the inner region inlet valves.
- water flow may switch almost exclusively (i.e., 100%) to outer region flow from the outer region inlet valves.
- the intersection period in which about 50% of water flow is from the inner region inlet valves and about 50% from the outer region inlet valves, has a time window of about 5 minutes to about 60 minutes; about 10 minutes to about 55 minutes; about 15 minutes to about 50 minutes; about 15 minutes to about 45 minutes; about 20 minutes to about 40 minutes; about 25 minutes to about 35 minutes; about 28 minutes to about 32 minutes; etc.
- the methods of the preferred embodiment and variations thereof can be embodied and/or implemented at least in part as a machine configured to receive a computer-readable medium storing computer-readable instructions.
- the instructions are preferably executed by computer-executable components preferably integrated with the system and one or more portions of the processor on a computing device in communication with various components of the device for producing clear ice, such as but not limited to its various valves.
- the computer-readable medium can be stored on any suitable computer-readable media such as RAMs, ROMs, flash memory, EEPROMs, optical devices (e.g., CD or DVD), hard drives, floppy drives, or any suitable device.
- the computer-executable component is preferably a general or application-specific processor, but any suitable dedicated hardware or hardware/firmware combination can alternatively or additionally execute the instructions.
- trough may include, and is contemplated to include, a plurality of troughs.
- claims and disclosure may include terms such as “a plurality,” “one or more,” or “at least one;” however, the absence of such terms is not intended to mean, and should not be interpreted to mean, that a plurality is not conceived.
- the term “comprising” or “comprises” is intended to mean that the devices, systems, and methods include the recited elements, and may additionally include any other elements.
- “Consisting essentially of” shall mean that the devices, systems, and methods include the recited elements and exclude other elements of essential significance to the combination for the stated purpose. Thus, a system or method consisting essentially of the elements as defined herein would not exclude other materials, features, or steps that do not materially affect the basic and novel characteristic(s) of the claimed disclosure.
- Consisting of shall mean that the devices, systems, and methods include the recited elements and exclude anything more than a trivial or inconsequential element or step. Embodiments defined by each of these transitional terms are within the scope of this disclosure.
- Example 10 Ice Formation as a Function of Cross-Sectional Shape of the Elongate Trough
- the cross-sectional shape of the elongate trough can have an impact on both the clarity of clear ice formed as well as the time required of a freezing operation of the device to generate a particular volume of clear ice in many embodiments. Because heat flow through ice is directly proportional to 1/W 2 (wherein W is the distance to the center of the flume at a given height), the time required for the formation of a certain volume of ice can be approximated by the following Formula 1:
- Lv is the Latent Heat of Fusion of the liquid (e.g., water)
- K is the thermal conductivity of ice
- ⁇ T is the temperature differential experienced across the medium in which heat is flowing.
- Table 1 shows the difference in time required to grow an ingot of ice having a height of 85.0 mm in various elongate troughs, all having a semicircular base flume surface wall with a 3-inch diameter but with varying slopes of the side flume walls. Because they have an identical base flume surface wall, no difference is noted in the rate of ice formation until is growth expands onto the side flume surface walls.
- the example with the greatest slope of its walls yields the slowest time for forming the last 5 mm increments of ice height, an additional 228 seconds over the example having vertical walls.
- the stress ( ⁇ ) experienced by ice can be calculated by the following Formula 2:
- a is the coefficient of thermal expansion for ice (5.0 ⁇ 10 ⁇ 5 ° C. ⁇ 1 ), E is Young's modulus, and ⁇ T is the temperature differential experienced across the medium in which heat is flowing. Empirically, it is known that ice can withstand about 1 MPa of stress under this calculation before cracking.
- n is a first material constant for ice (a value of 3, unitless)
- a 0 is a second material constant for ice (1.36 ⁇ 10 9 MPa ⁇ 3 s ⁇ 1 )
- ⁇ is the starting stress of the material in MPa
- E Young's Modulus
- Q is the activation energy (78,000 Jmol ⁇ 1 K ⁇ 1 )
- R is the universal gas constant
- T is the absolute temperature. Ice accumulation and relaxation can occur simultaneously as long as the experienced conditions do not apply a stress greater than 1 MPa at any point during the cycle. Therefore, the temperature of a cold surface for the generation of ice, such as a flume surface wall, can be ramped down as long as its schedule allows for sufficient relaxation against the gaining stress.
- Table 2 depicts one embodiment of such a temperature schedule for a linear accumulation of ice in one dimension that is orthogonal to a cold surface that additionally takes into account the insulating properties of ice (see Example 1 and various discussions herein).
- the starting conditions and time were experimentally determined as to reasonably approach the 1 MPa maximum stress, but each subsequent temperature step and duration thereat were calculated by the above formulae such that sufficient relaxation could occur at a pace that allowed the total stress to remain just under about 1 MPa. This thereby can maximize the rate of ice accumulation while preserving a clarity unblemished with cracks.
- about 5.5 cm of clear ice can be generated in 198 minutes without cracking.
- a im A outer - A inner ln ⁇ ( A outer A inner ) ( Formula ⁇ 4 )
- a outer is the surface area of the outer cylindrical surface and A inner is the surface area of the inner cylindrical surface.
- k is the thermal conductivity of the material
- A is A lm
- ⁇ T is the change in temperature across the system
- Ar is the change in radius for the cylinder.
- Table 3 presents an example temperature ramp schedule for ice formation that allows for sufficient relaxation in order to maintain the total stress on the ice under 1 MPa.
- the elongate trough was 72 inches (about 1829 mm) long, a height of 3.5 inches (about 88.9 mm), a semicircular bottom having a radius of 1.5 inches (about 38.1 mm) and wherein the side walls had a slope of 2° off vertical (e.g., FIG. 3 C ).
- the model was run out to about 40 mm of accumulated ice thickness wherein the elongate trough would reach approximately maximum ice formation within its defined volume.
- the presented temperature schedule can produce the approximately 40 mm of ice needed to fill the exemplary elongate trough in about 2 hours without cracking.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
Abstract
A device for producing an elongate ingot of clear ice comprises a housing comprising at least one flume surface wall that defines at least one elongate trough; at least one fluid intake disposed to provide a flow of liquid into the at least one elongate trough; at least one drain disposed to drain liquid from at least one elongate trough; wherein the at least a portion of the at least one flume surface wall is in thermal communication with a cooling source; and wherein the at least one fluid intake and the at least one drain are adapted to provide a constant flow of fluid to the at least one elongate trough during a freezing operation of the device. The cooling source can be an internal cooling cavity.
Description
- This application claims the priority benefit of U.S. Provisional Application No. 63/276,506, filed on Nov. 5, 2021, and the priority benefit of U.S. Provisional Application No. 63/116,453, filed on Nov. 20, 2020, the disclosures of which are herein incorporated by reference in their entireties.
- All publications and patent applications mentioned in this specification are herein incorporated by reference in their entirety, as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference in its entirety.
- This disclosure relates generally to the field of ice manufacturing, and more specifically to the field of clear ice manufacturing. Described herein are devices and methods for producing clear ice.
- From the end of the prohibition era to modern day, craft cocktails are a mainstay in most restaurants and bars. To enhance the overall experience, some restaurants and bars add garnishes and/or specialty ice to the cocktails. Currently, these restaurants and bars buy large blocks of ice that are then cut down in-house to the appropriate size for each drink. Some companies in the space claim to produce clear ice using directional freezing, but the clarity of the ice and scalability of the technology are questionable with many techniques often requiring the use of dangerous saws to cut down larger blocks of ice. Further, issues with standard ice machines include cracking, trapped air bubbles, and water impurities resulting in ice that lacks the desired appeal and appearance.
- Ice can crack under a variety of circumstances experienced during or after a freezing process. Sometimes, during the freezing process, when the exterior of the ice freezes first and then further cools during subsequent freezing, interior tension in the ice is created. This interior tension causes cracking of the ice when it exceeds a certain threshold (e.g., about 1 MPa). Unclear ice may result from super cooling. Water crystallizes around nucleation sites. The ice then grows from this point forming a near perfect lattice structure, given the proper environment. For example, some ice machines slightly super cool the water before freezing. This causes smaller, faster crystallization, which can lead to uneven pressure and greater cloudiness. Lastly, impurities in the water used for freezing can create unclear ice. While impurities play a role in the imperfections in ice, they often aren't the main culprit. Filtered water has on
average 30 ppm impurities - In other cases, some ice machines create cloudy ice because the water contains dissolved air, whereas clear ice contains almost none. During the freezing process, as water turns to ice, and the remaining water reaches saturation level for dissolved gases, the dissolved gas comes out of solution. The gas bubbles stick to the ice-water interface due to surface adhesion. If these gas bubbles do not get released, they become frozen into the ice, resulting in optical imperfections which affect the straight passage of light (i.e., “cloudiness”).
- Furthermore, many extant clear ice machines produce large and unwieldly blocks that are far too large for convenient use in a cocktail as a comestible. In addition to the long freezing times usually required to produce them, often around 24 to 72 hours, these large blocks must be cut down to a size useful as a comestible. Much time and effort then, is expended to produce even a simple and solid shape of clear ice for use in a cocktail.
- Taken together, improper ice freezing techniques and equipment result in less-than-ideal ice for the booming craft cocktail industry. Thus, there is a need for new and useful devices and methods for creating clear ice.
- There is a need for new and useful device and method for producing clear ice specifically for use in beverages. In many embodiments, the disclosure herein includes for a device for making clear ice comprising: at least one housing comprising at least one flume surface wall that defines at least one elongate trough; at least one fluid intake disposed to provide a flow of fluid into the at least one elongate trough; at least one drain disposed to drain fluid from at least one elongate trough; wherein the at least a portion of the at least one flume surface wall is in thermal communication with a cooling source; and wherein the at least one fluid intake and the at least one drain are configured to provide a substantially constant flow of fluid to the at least one elongate trough during a freezing operation of the device. In some embodiments, the cooling source is at least one internal cooling cavity defined by the housing, and wherein the device further comprises at least one coolant intake connected to the at least one internal cooling cavity and at least one coolant outtake connected to the at least one internal cooling cavity. In other embodiments, the cooling source is selected from the group consisting of: an evaporator, cold plate, and a condenser.
- In certain embodiments, three flume surface walls of the housing define one elongate trough such that a cross-section of the elongate trough has a U-shape defined by two parallel side flume surface walls and a semicircular base flume surface wall. In other embodiments, three flume surface walls of the housing define one elongate trough such that a cross-section of the elongate trough has a tapered U-shape defined by at least one of the two side flume surface walls having an interior angle greater than about 0 degrees and less than or equal to about 15 degrees from upright and a semicircular base flume surface wall.
- In further embodiments, three flume surface walls of the housing define one elongate trough such that a cross-section of the elongate trough has a U-shape defined by two parallel side flume surface walls and a semi-elliptical base flume surface wall. In other embodiments, three flume surface walls of the housing define one elongate trough such that a cross-section of the elongate trough has a tapered U-shape defined by at least one of the two side flume surface walls having an interior angle greater than about 0 degrees and less than or equal to about 15 degrees from upright and a semi-elliptical base flume surface wall.
- In additional embodiments, three flume surface walls of the housing define one elongate trough such that a cross-section of the elongate trough has a bracket shape defined by two parallel side flume surface walls orthogonal to a flat base flume surface wall. In other embodiments, three flume surface walls of the housing define one elongate trough such that a cross-section of the elongate trough has a tapered bracket shape defined by at least one of the two side flume surface walls having an interior angle greater than about 0 degrees and less than or equal to about 15 degrees from upright to a flat base flume surface wall.
- In some embodiments, the elongate trough has a length of about 45.72 cm to about 3.66 m (about 18 inches to about 12 feet). In other embodiments, the elongate trough has a length of about 2.44 m to about 2.13 m (about 3 feet to about 7 feet). In further embodiments, the elongate trough has a length of about 2.03 m (about 80 inches). In some embodiments, the elongate trough has a depth of about 3.81 cm to about 12.70 cm (about 1.5 to about 5 inches). In other embodiments, the elongate trough has a depth of about 8.89 cm (about 3.5 inches). In some embodiments, the elongate trough has a total depth divided into an ice-forming zone and a fluid overflow zone. In other embodiments, the elongate trough has a total depth of about 12.70 cm (about 5 inches) divided into an ice-forming zone of about 8.89 cm (about 3.5 inches) and a fluid overflow zone of about 3.81 cm (about 1.5 inches.) In further embodiments, a surface area of the flume surface wall at least coextensive with the fluid overflow zone comprises a thermally insulating material. In additional embodiments, the thermally insulating material comprises high density polyethylene. In some embodiments, the elongate trough has a width of about 2.54 cm to about 12.70 cm (about 1 to about 5 inches.) In other embodiments, the elongate trough has a width of about 7.62 cm (about 3 inches.) In some embodiments, the housing defines two or more elongate troughs positioned parallel to one another. In further embodiments, the two or more elongate troughs are positioned anti-parallel to one another.
- In some embodiments, the fluid intake comprises a fluid intake manifold that defines a single intake manifold cavity that is fluidly connected to the two or more elongate troughs through a fluid entry portal corresponding to each elongate trough. In further embodiments, the fluid intake manifold further comprises an intake flow divider insert having a porosity of about 10% open area to about 50% open area within the intake manifold cavity. In additional embodiments, the intake manifold cavity is shaped as a rectangular prism and wherein the intake flow divider insert is coupled to opposite corners of the intake manifold cavity, thereby dividing the intake manifold cavity into a first and second triangular prism, wherein at least one fluid inlet pipe is in fluid communication to the first triangular prism, and wherein the corresponding fluid entry portals are in fluid communication to the second triangular prism. In some embodiments, at least one of the fluid entry portals comprises a porous flow straightener insert.
- In some embodiments, the drain comprises a drain manifold that defines a single drain manifold cavity that is fluidly connected to the two or more elongate throughs through a fluid exit portal corresponding to each elongate trough. In other embodiments, the drain manifold further comprises a drain flow divider insert having a porosity of about 10% open area to about 50% open area within the drain manifold. In additional embodiments, the drain manifold cavity is shaped as a rectangular prism, and wherein the drain flow divider insert forms an arcuate shape and is coupled to adjacent corners of the drain manifold cavity, thereby dividing the drain manifold cavity into a first and second portion wherein at least one drainage pipe is in fluid communication to the first portion, and wherein the corresponding fluid exit portals are in fluid communication to the second portion. In some embodiments, at least one of the fluid exit portals comprises a porous flow straightener insert.
- In some embodiments, the substantially constant flow of fluid is provided at a velocity of at least about 0.09 m/s (about 0.3 ft/s) through the at least one elongate trough. In other embodiments, the substantially constant flow of fluid is provided at a velocity of at least about 0.21 m/s (about 0.7 ft/s) through the at least one elongate trough.
- In some embodiments, the device further comprises at least one lid configured to enclose at least one elongate trough when removably coupled to the housing. In other embodiments, the device further comprises one or more inclusion holders configured to be disposed within a cavity defined by the at least one elongate trough. In some embodiments, the one or more inclusion holders are retractable. In additional embodiments, the one or more inclusion holders are coupled to at least one lid configured to enclose at least one elongate trough when removably coupled to the housing.
- In many embodiments, the disclosure herein includes for a method for manufacturing clear ice comprising: providing a device for making clear ice comprising: a housing comprising at least one flume surface wall that defines at least one elongate trough; at least one fluid intake disposed to provide a flow of fluid into the at least one elongate trough; at least one drain disposed to drain fluid from at least one elongate trough; wherein the at least a portion of the at least one flume surface wall is in thermal communication with a cooling source; and wherein the at least one fluid intake and the at least one drain are configured to provide a substantially constant flow of fluid to the at least one elongate trough during a freezing operation of the device; providing a substantially constant flow of fluid down the at least one elongate trough via the fluid intake and the drain; and cooling the at least one flume surface wall to a temperature of less than or equal to about 0 degrees Celsius at the at least one flume surface wall. In some embodiments, the cooling source of the device is at least one internal cooling cavity defined by the housing, and wherein the device further comprises at least one coolant intake valve connected to the at least one internal cooling cavity and at least one coolant outtake valve connected to the at least one internal cooling cavity. In other embodiments, the cooling source is selected from the group consisting of: an evaporator, cold plate, and a condenser.
- In some embodiments, the clear ice machine of the method further comprises: at least one or more retractable inclusion holders configured to be disposed within at least one elongate trough; and the method further comprises: securing an item with at least one inclusion holder such that the item is positioned within a cavity defined by the at least one elongate trough. In further embodiments, the method further comprises retracting the one or more retractable inclusion holders after a sufficient accumulation of ice within the elongate trough such that the item remains at least partially embedded in the accumulation of ice upon retraction of the one or more inclusion holders.
- In some embodiments of the method, the substantially constant flow of fluid down the at least one elongate trough has a velocity of at least about 0.09 m/s (about 0.3 ft/s) through the at least one elongate trough. In other embodiments, the substantially constant flow of fluid has a velocity of at least about 0.21 m/s (about 0.7 ft/s) through the at least one elongate trough.
- In many embodiments, the disclosure herein includes for a device for introducing inclusions into clear ice comprising: a rigid substrate; at least one inclusion holder connected to the substrate adapted to secure an item in a predetermined position, wherein the inclusions holder comprises retraction mechanism and at least one of a skewer, hook, or clamp; and wherein the retraction mechanism is configured to disengage the item from an inclusion holder and retract the inclusion holder.
- In some embodiments, the disclosure herein provides for a device for making clear ice comprising: at least one housing comprising at least two flume surface walls that define at least two elongate troughs arranged parallel to each other; at least one fluid intake disposed to provide a flow of fluid into the at least two elongate troughs; at least one drain disposed to drain fluid from the at least two elongate troughs; wherein the at least a portion of each of the at least two flume surface walls is in thermal communication with a cooling source; wherein the at least one fluid intake and the at least one drain are configured to provide a substantially constant flow of fluid to the at least two elongate troughs during a freezing operation of the device; wherein the fluid intake comprises a fluid intake manifold that defines a single intake manifold cavity that is fluidly connected to the at least two elongate troughs through a fluid entry portal corresponding to each elongate trough; and wherein the drain comprises a drain manifold that defines a single drain manifold cavity that is fluidly connected to the at least two elongate throughs through a fluid exit portal corresponding to each elongate trough. In some embodiments, the cooling source is selected from the group consisting of: an internal cooling cavity defined by the housing, an evaporator, a cold plate, and a condenser.
- In some embodiments, the disclosure herein includes for a device for making clear ice comprising: at least one housing comprising at least one flume surface wall that defines at least one elongate trough; at least one fluid intake disposed to provide a flow of fluid into the at least one elongate trough; at least one drain disposed to drain fluid from the at least one elongate trough; wherein the at least a portion of the at least one flume surface wall is in thermal communication with a cooling source; and wherein the at least one fluid intake and the at least one drain are configured to provide a substantially constant flow of fluid to the at least one elongate trough during a freezing operation of the device. In some embodiments, the cooling source is selected from the group consisting of: an internal cooling cavity defined by the housing, an evaporator, a cold plate, and a condenser.
- In some embodiments, three flume surface walls of the housing define one elongate trough such that a cross-section of the elongate trough has a tapered U-shape defined by at least one of the two side flume surface walls having an interior angle greater than or equal to about 0 degrees and less than or equal to about 15 degrees from upright and a semicircular base flume surface wall. In other embodiments, three flume surface walls of the housing define one elongate trough such that a cross-section of the elongate trough has a tapered bracket shape defined by at least one of the two side flume surface walls having an interior angle greater than or equal to about 0 degrees and less than or equal to about 15 degrees from upright to a flat base flume surface wall. In some embodiments, the elongate trough has a total depth divided into an ice-forming zone and a fluid overflow zone, and wherein a surface area of the flume surface wall at least coextensive with the fluid overflow zone comprises a thermally insulating material.
- In some embodiments, the housing comprises at least two flume surface walls that define two or more elongate troughs, and wherein the fluid intake comprises a fluid intake manifold that defines a single intake manifold cavity that is fluidly connected to the two or more elongate troughs through a fluid entry portal corresponding to each elongate trough. In further embodiments, the fluid intake manifold further comprises an intake flow divider insert having a porosity of about 10% open area to about 50% open area within the intake manifold cavity, the intake manifold cavity is shaped as a rectangular prism, and the intake flow divider insert is coupled to opposite corners of the intake manifold cavity, thereby dividing the intake manifold cavity into a first and second triangular prism, wherein at least one fluid inlet pipe is in fluid communication to the first triangular prism, and wherein the corresponding fluid entry portals are in fluid communication to the second triangular prism. In additional embodiments, at least one of the fluid entry portals comprises a porous flow straightener insert.
- In some embodiments, the housing comprises at least two flume surface walls that define two or more elongate troughs, and wherein the drain comprises a drain manifold that defines a single drain manifold cavity that is fluidly connected to the two or more elongate throughs through a fluid exit portal corresponding to each elongate trough. In further embodiments, the drain manifold further comprises a drain flow divider insert having a porosity of about 10% open area to about 50% open area within the drain manifold cavity, the drain manifold cavity is shaped as a rectangular prism, and the drain flow divider insert forms an arcuate shape and is coupled to adjacent corners of the drain manifold cavity, thereby dividing the drain manifold cavity into a first and second portion wherein at least one drainage pipe is in fluid communication to the first portion, and wherein the corresponding fluid exit portals are in fluid communication to the second portion. In additional embodiments, at least one of the fluid exit portals comprises a porous flow straightener insert.
- In some embodiments, the substantially constant flow of fluid is provided at a velocity of at least about 0.09 m/s (about 0.3 ft/s) through the at least one elongate trough. In further embodiments, the device further comprises at least one lid configured to enclose at least one elongate trough when removably coupled to the housing. In additional embodiments, the device further comprises one or more retractable inclusion holders configured to be disposed within a cavity defined by the at least one elongate trough.
- In some embodiments, the disclosure herein provides for a method for manufacturing clear ice comprising: providing a device for making clear ice comprising: a housing comprising at least one flume surface wall that defines at least one elongate trough; at least one fluid intake disposed to provide a flow of fluid into the at least one elongate trough; at least one drain disposed to drain fluid from at least one elongate trough; wherein the at least a portion of the at least one flume surface wall is in thermal communication with a cooling source; and wherein the at least one fluid intake and the at least one drain are configured to provide a substantially constant flow of fluid to the at least one elongate trough during a freezing operation of the device; providing a substantially constant flow of fluid down the at least one elongate trough via the fluid intake and the drain; and cooling the at least one flume surface wall to a temperature of less than or equal to about 0 degrees Celsius at the at least one flume surface wall. In some embodiments of the method, the cooling source is selected from the group consisting of: an internal cooling cavity defined by the housing, an evaporator, a cold plate, and a condenser. In further embodiments, the clear ice machine further comprises: at least one or more retractable inclusion holders configured to be disposed within at least one elongate trough; and the method further comprises: securing an item with at least one inclusion holder such that the item is positioned within a cavity defined by the at least one elongate trough; and retracting the one or more retractable inclusion holders after a sufficient accumulation of ice within the elongate trough such that the item remains at least partially embedded in the accumulation of ice upon retraction of the one or more inclusion holders. In additional embodiments of the method, the substantially constant flow of fluid down the at least one elongate trough has a velocity of at least about 0.09 m/s (about 0.3 ft/s) through the at least one elongate trough
- The foregoing is a summary, and thus, necessarily limited in detail. The above-mentioned aspects, as well as other aspects, features, and advantages of the present technology are described below in connection with various embodiments, with reference made to the accompanying drawings.
-
FIG. 1A illustrates an exploded view of one embodiment of a device for making clear ice with a cutout to depict interior features. -
FIG. 1B illustrates the general dimensions of an elongate trough for a device for making clear ice. -
FIG. 2 illustrates a cross-section of one embodiment of a device for making clear ice midway through a freezing operation. -
FIG. 3 illustrates a perspective view of one embodiment of a device for making clear ice -
FIG. 4 illustrates a cross-sectional view of an embodiment of a device for making clear ice. -
FIG. 5 illustrates a cross-sectional view of an embodiment of an elongate trough. -
FIG. 6A illustrates a perspective view of an embodiment of a fluid intake manifold. -
FIG. 6B illustrates a perspective view of an embodiment of a drain manifold. -
FIG. 7 illustrates a perspective view of an embodiment of a flow straightener insert in position within an elongate trough. -
FIG. 8 illustrates a perspective view of another embodiment of a device for making clear ice having one elongate trough shown in cross-section. -
FIG. 9 illustrates a perspective view of another embodiment of a fluid inlet manifold in cross-section. -
FIG. 10 illustrates a perspective view of one embodiment of an ingot removal structure positioned in an elongate trough before the formation of clear ice. -
FIG. 11A illustrates a perspective view of another embodiment of a device for making clear ice having the lid attached. -
FIG. 11B illustrates a profile view of an embodiment for a lid for a clear ice making device. -
FIG. 11C illustrates a cross-sectional view of an embodiment or a device for making clear ice. -
FIGS. 12A-12C illustrate cross-sections of various embodiments of the elongate trough having different cross-sectional shapes. -
FIGS. 13A-13C illustrate cross-sections of various embodiments of the elongate trough having different cross-sectional shapes. -
FIGS. 14A-14C illustrate cross-sections of various embodiments of the elongate trough having different cross-sectional shapes. -
FIGS. 15A-15D illustrate cross-sections of various embodiments of the elongate trough having different cross-sectional shapes. -
FIG. 16 illustrates a method of making clear ice. -
FIGS. 17A-17B illustrate one embodiment for a method of making clear ice. -
FIGS. 18A-18B illustrate one embodiment for a method of making clear ice. -
FIGS. 19A-19B illustrate one embodiment for a method of making clear ice. -
FIGS. 20A-20B illustrate one embodiment for a method of making clear ice. -
FIGS. 21A-21B illustrate one embodiment for a method of making clear ice. -
FIGS. 22A-22B illustrate one embodiment for a method of making clear ice. -
FIGS. 23A-23B illustrate one embodiment for a method of making clear ice. -
FIGS. 24A-24B illustrate one embodiment for a method of making clear ice. -
FIGS. 25A-25B illustrate one embodiment for a method of making clear ice - The illustrated embodiments are merely examples and are not intended to limit the disclosure. The schematics are drawn to illustrate features and concepts and are not necessarily drawn to scale.
- The foregoing is a summary, and thus, necessarily limited in detail. The above-mentioned aspects, as well as other aspects, features, and advantages of the present technology will now be described in connection with various embodiments. The inclusion of the following embodiments is not intended to limit the disclosure to these embodiments, but rather to enable any person skilled in the art to make and use the contemplated invention(s). Other embodiments may be utilized, and modifications may be made without departing from the spirit or scope of the subject matter presented herein. Aspects of the disclosure, as described and illustrated herein, can be arranged, combined, modified, and designed in a variety of different formulations, all of which are explicitly contemplated and form part of this disclosure.
- It is an object of the present disclosure to describe devices, systems, and methods for creating clear ice. For example, the devices, systems and methods described herein may be configured to produce clear ice in a variety of shapes that are ready for use in beverages.
- Disclosed herein are devices and methods for making clear ice. In particular, the disclosure herein provides for devices and methods allowing for the expedited production of clear ice having an improved quality over preexisting apparatuses and methods. In many embodiments, the devices and methods disclosed herein are adapted for the freezing of water into clear ice; however, one of skill in the art will appreciate how these devices and methods can be adapted to allow for the freezing of other liquids (e.g., ethanol, etc.) in situations where the removal of air bubbles and dissolved impurities is desired. As used herein, the terms “fluid” and “liquid” will be used interchangeably to refer to the material being flowed through the device and being frozen into comestibles. Because water is the chosen fluid to be frozen in many embodiments, the term “water” will be frequently used also; however, this use of the term “water” should not be considered limiting for the reasons stated herein. For similar reasons, the use of the term “ice” to refer to the chosen liquid when frozen should also not be considered limiting either.
- In some embodiments, the ice created by the systems and devices described herein may have one or more of the following characteristics: clear, relatively free of impurities, relatively free of gas bubbles, relatively free of dissolved gasses, and/or cracking, may or may not have inclusions (e.g., flowers, liquor, food, etc.), etc. Such characteristics shall not be viewed as limiting in any way.
- In some embodiments, water or liquid used to make the clear ice may be deaerated (e.g., gas sweeps, via vacuum, etc.), degassed, purified (e.g., sediment filtered, activated carbon block filtered, granular activated carbon filtered, reverse osmosis filtered, distilled, passed over an ion exchange column, treated with ultraviolet light, ultrafiltered, activated alumina filtered, ionized, etc.), or otherwise treated before being used to make clear ice. The water or liquid may be from a private well, a municipality, groundwater source, reservoir, etc.
- The device functions to produce clear ice. The device is used for the production of clear ice in any situations where transparent ice is desired, such as for consumption in cocktails and other beverages but can additionally or alternatively be used for any suitable applications where a liquid material is frozen. Described broadly for many embodiments, the device generally provides at least one elongate trough or flume in thermal communication with one or more reservoirs or lines of circulating coolant or one or more cooling apparatuses (e.g., cooling plate, element, etc.). A flow of fluid (e.g., water) is provided down at least a portion of the length of the elongate trough during a freezing operation of the device. Clear ice forms on the surface walls of the trough, growing in thickness and filling up to a certain height in the elongate trough, according to various predetermined parameters described herein. In many embodiments, the speed of water (as either laminar or turbulent flow) through the elongate trough can be critical for the formation of clear ice by driving out air bubbles from the ice forming surface. In some embodiments, the device provides a flow of water having a velocity of at least about 0.09 m/s (about 0.3 ft/s) throughout the length of the
elongate trough 108. In other embodiments, the velocity of the water is at least about 0.15 m/s (about 0.5 ft/s). In still other embodiments, the velocity of the water is at least about 0.21 m/s (about 0.7 ft/s). Once an ingot of ice has been generated within the at least one elongate trough, the freezing operation can be stopped, allowing for the collection of the ice ingot. The generated ice ingot can be subsequently modified to produce a variety of aesthetically pleasing comestibles. As used herein, the terms “elongate trough” and “flume” are considered synonymous and can be used interchangeably throughout. - In many embodiments, the devices and methods presented herein allow for the generation of clear ice at a rate superior to existing techniques. In some embodiments, the devices and methods herein can generate clear ice at a speed of at least about 7 mm/hr measured as linear height of accumulated clear ice on any given point of a surface wall of a trough per unit time. In another embodiment, the devices and methods herein can generate clear ice on a given point at a speed of at least about 24 mm/hr. Furthermore, in the devices and methods described herein, ice grows in multiple directions, thereby effectively halving the thickness of ice through which heat must flow to generate new ice. This provides a dramatic advantage in speed over preexisting technologies that can only grow ice in a single direction. For example, a Clinebell CB3002XD produces ice in one direction at a speed of about 3.0 mm/hr while a CFBI PIM0206 produces ice in one direction at about 6.4 mm/hr. With some embodiments of the devices and methods described herein achieving a total ice formation rate of about 1.27 cm to about 2.54 cm per hour, the disclosure herein can more than double the rate of clear ice formation over these other devices.
- As shown in
FIG. 1 , thedevice 100 in many embodiments comprises ahousing 102 that encloses at least oneinternal cooling cavity 104. The housing additionally comprises one or moreflume surface walls elongate troughs elongate trough 108 having afirst end 110 a and asecond end 110 b. During a freezing operation of thedevice 100, clear ice is formed within the at least oneelongate trough 108. Across various embodiments, thehousing 102 can define any number ofelongate troughs 108 greater than or equal to one, and eachelongate trough 108 can be shaped by any number of correspondingflume surface walls 106. In some embodiments, thedevice 100 comprises sixelongate troughs 108. In certain embodiments, a plurality ofelongate troughs 108 and/orinternal cooling cavities 104 can be defined by onehousing 102. In other embodiments, eachelongate trough 108 and/orinternal cooling cavity 104 can be defined by aseparate housing 102. In these embodiments, the plurality of housings 102 (and therefore, plurality ofelongate troughs 108 and/or cooling cavities 104) can be arranged within thedevice 100 by various structural supports (not shown). In various embodiments, various subsections of the housing can be composed of various materials. For example, some subsections (e.g.,flume surface walls elongate troughs 108, theelongate troughs 108 can be arranged parallel to each other. In other embodiments, theelongate troughs 108 can be arranged anti-parallel to each other (e.g., seeFIG. 8 below). - In embodiments wherein each
elongate trough 108 has a continuous arcuate shape, the elongate trough can be considered to be defined by a singularflume surface wall 106. However, in many embodiments, anelongate trough 108 can be defined by three flume surface walls 106: two sideflume surface walls flume surface wall 106 a. The particular shape and contour of the one or moreflume surface walls 106 of eachelongate trough 108 define a cross-sectional shape or profile for thatelongate trough 108. Various cross-sectional shapes are presented herein. In various embodiments wherein thehousing 102 defines more than oneelongate trough 108, eachelongate trough 108 can have the same cross-sectional profile or a different cross-sectional profile than another elongate trough of thesame device 100. In certain embodiments, a singleelongate trough 108 can be shaped such that its cross-sectional shape changes over the length of theelongate trough 108. In some of these embodiments, having such a variable shape could assist with the removal of the produced ingot of ice from thedevice 100. As described herein, the cross-sectional shape of anelongate trough 108 of thedevice 100 can greatly influence the clarity and therefore the quality of the produced clear ice in many embodiments. - Furthermore, in some embodiments, the
flume surface walls 106 of anelongate trough 108 comprise a single, uniform material. In some embodiments, theflume surface walls 106 comprise aluminum, stainless steel, copper, or another thermally conductive material or thermally conductive metal or alloy. In additional embodiments, theflume surface walls 106 comprise material that is food-safe or otherwise known to be non-toxic when used in the production of comestibles. In other embodiments, various subsections of theflume surface walls 106 can comprise a material different from other subsections of theflume surface walls 106 of the sameelongate trough 108. For example, in some embodiments, portions of theflume surface walls 106 outside the intended area of ice formation (i.e., outside the ice-forming zone and within the fluid overflow zone, seeFIGS. 2 and 5 below) can comprise a thermally insulating material such as high-density polyethylene (HDPE) while the portions of theflume surface walls 106 comprise a thermally conductive material such as aluminum, stainless steel, or copper. -
FIG. 1B depicts the various dimensions for a genericelongate trough 108. An elongate trough can have alength 120, a depth orheight 122, and awidth 124. As used herein, the terms “depth” and “height” 122 in reference to anelongate trough 108 will be considered synonymous and will be used interchangeably. In some embodiments, anelongate trough 108 can have adepth 122 measured from its lowest point to the highest point of one of itssurface walls 106 ranging from about 2.54 cm to about 25.40 cm (about 1 to about 10 inches). In other embodiments, anelongate trough 108 can have adepth 122 of about 3.81 cm to about 12.70 cm (about 1.5 inches to about 5 inches). In further embodiments, anelongate trough 108 can have adepth 122 of about 5.08 cm to about 12.70 cm (about 2 inches to about 5 inches). In some embodiments, the at least oneelongate trough 108 has a depth of about 8.89 cm (about 3.5 inches). In some embodiments, thedepth 122 of anelongate trough 108 can be divided by Line A into an ice-formingzone 122 b and afluid overflow zone 122 a (also seeFIGS. 2 and 5 below). In these embodiments, atotal depth 122 of theelongate trough 108 can be subdivided between these zones in various proportions without deviating from the scope of this disclosure. For example, in some embodiments, anelongate trough 108 can have atotal depth 122 of about 12.70 cm (about 5 inches) divided into an ice-formingzone 122 b of about 8.89 cm (about 3.5 inches) and afluid overflow zone 122 a of about 3.81 cm (about 1.5 inches). - In additional embodiments, an
elongate trough 108 can have aminimum width 124 measured from between the two closest points of oppositeside surface walls 106 of about 2.54 cm to about 30.48 cm (about 1 inch to about 12 inches). In some embodiments, anelongate trough 108 can have aminimum width 124 of about 2.54 cm to about 25.4 cm (1 inch to about 10 inches). In other embodiments, anelongate trough 108 can have aminimum width 124 of about 2.54 cm to about 12.70 cm (about 1 inch to about 5 inches). In certain embodiments, the at least oneelongate trough 108 can have aminimum width 124 of about 7.62 cm (about 3 inches). - In some embodiments, the at least one
elongate trough 108 can have alength 120 of at least about 45.72 cm (about 18 inches). In other embodiments, the at least oneelongate trough 108 can have alength 120 of at least about 91.44 cm (about 3 feet). In still further embodiments, the at least oneelongate trough 108 can have alength 120 of about 1.22 m to about 3.66 m (about 4 to about 12 feet). In other embodiments, the at least oneelongate trough 108 can have alength 120 of about 1.22 m to about 2.44 m (about 4 feet to about 8 feet). In other embodiments, the at least oneelongate trough 108 can have alength 120 of about 91.44 cm to about 2.13 m (about 3 feet to about 7 feet). In further embodiments, the at least oneelongate trough 108 can have alength 120 of about 1.83 m (about 6 feet). In certain embodiments, the at least oneelongate trough 108 can have alength 120 of about 2.03 m (about 80 inches). In some embodiments, the at least oneelongate trough 108 can have alength 120 of about 45.72 cm to about 3.66 m (about 18 inches to about 12 feet). In various embodiments wherein thehousing 102 defines a plurality ofelongate troughs 108, each trough can have the same or different length than anotherelongate trough 108 of thedevice 100. - Returning to
FIG. 1A , the at least oneelongate trough 108 is defined in such a manner by thehousing 102 to allow for the flow of water (or another liquid, in various embodiments) down at least a portion of the length of anelongate trough 108 from at least onefluid intake 112 to at least onedrain 114. In some embodiments, afirst end 110 a of anelongate trough 108 can be understood to mean an end nearest afluid intake 112, and asecond end 110 b of anelongate trough 108 can be understood to mean an end nearest adrain 114. In these embodiments, it can be understood that fluid (e.g., water) flows down anelongate trough 108 from thefluid intake 112 to thedrain 114, i.e., from thefirst end 110 a to thesecond end 110 b. As illustrated in the embodiment ofFIG. 1 , eachelongate trough 108 can be fed by asingle fluid intake 112 and drained by asingle drain 114; however, different numbers, arrangements and placements of these valves are possible without deviating from the scope of this disclosure (e.g.,FIGS. 11A-11C ). Because ice forms and grows upon at least a portion of theflume surface walls 106 during a freezing operation of thedevice 100, the one ormore fluid intake 112 and drain 114 can be positioned to allow for the free passage of water over the growing ice ingot (i.e., in thefluid overflow zone 122 a) regardless of the ingot's height or at least up to a predetermined height of ice (i.e., in the ice-formingzone 122 b). - In some embodiments, the at least one
fluid intake 112 and at least onedrain 114 are configured to provide a flow of water such that the entire volume defined within theelongate trough 108 is filled with moving water except for the portion occupied by the growing mass of clear ice during a freezing operation of thedevice 100. In some embodiments, the at least onefluid intake 112 and drain 114 provide fluid (e.g., water) having a velocity of at least about 0.09 m/s (about 0.3 ft/s) throughout the length of theelongate trough 108. In other embodiments, the velocity of the water is at least about 0.15 m/s (about 0.5 ft/s). In still other embodiments, the velocity of the water is at least about 0.21 m/s (about 0.7 ft/s). In other embodiments, the at least onefluid intake 112 and at least onedrain 114 are adapted to provide a flow of water such that the entire volume defined within the ice-forming zone 112 b and a portion of the fluid overflow zone 112 a is filled with moving water except for the portion occupied by the growing mass of clear ice during a freezing operation of thedevice 100. - The at least one
fluid intake 112 and/or drain 114 are fluidly connected to a fluid supply such as a water supply (not shown) and any other additional equipment appreciated by those of skill in the art to allow for a substantially continuous flow of fluid to the at least oneelongate trough 108 during a freezing operation of thedevice 100. In some embodiments, the fluid supply provides a substantially continuous stream of new fluid to the device throughout the entire freezing operation; in other embodiments, the fluid supply can recirculate at least a portion of a starting volume of fluid throughout the freezing operation. In certain embodiments, de-aerated water can be supplied or recirculated to thedevice 100 from the fluid supply. - In many embodiments, an appropriate velocity of fluid into the at least one
elongate trough 108 can be critical for the formation of clear ice as opposed to cloudy or opaque ice. In various circumstances, quickly freezing a volume of still or slow-moving water can trap air bubbles and impurities within the ice, resulting in a hazy appearance. However, in addition to other advantages of thedevice 100 described herein, the device's 100 flow of water can mitigate the trapping of air bubbles within the ice during the freezing process, even at high rates of freezing. In some embodiments, the flow of water can also be turbulent flow. Therefore, thedevice 100 as disclosed herein is capable of producing a solid ingot of clear ice of sufficient quality faster than other known methods. - In some embodiments, the flow rate of fluid remains constant over the whole duration of a freezing operation of the
device 100. In other embodiments, the flow rate of the fluid varies over a freezing operation of thedevice 100. In some embodiments, periods of flow reversal may occur in which thefluid intake 112 becomes thefluid drain 114, and thefluid drain 114 becomes thefluid intake 112. - At least one
internal cooling cavity 104, defined byhousing 102, is in thermal communication with theflume surface walls 106 across many embodiments, thereby establishing the heat transfer necessary for the formation of clear ice in the at least oneelongate trough 108. In some embodiments, the at least oneinternal cooling cavity 104 is a singularinternal cooling cavity 104. In other embodiments, the at least oneinternal cooling cavity 104 is a plurality of cooling cavities that are in thermal communication with various subsets offlume surface walls 106 and/or portions offlume surface walls 106. In some embodiments for anelongate trough 108 having a baseflume surface wall 106 a and two sideflume surface walls flume surface wall internal cooling cavity 104 defined by thehousing 102. Across various embodiments, the at least oneinternal cooling cavity 104 can include various structures and architectural features within in order to facilitate an even flow and distribution of coolant within it. In some embodiments, these structures can include but are not limited to mesh grates. - During a freezing operation of the
device 100, the at least oneinternal cooling cavity 104 can be at least partially filled by a circulating coolant sufficient to lower the temperature of at least a portion of one or moreflume surface walls 106 to about 0° C. or colder. In another embodiment, the at least oneinternal cooling cavity 104 can be at least partially filled by a circulating coolant sufficient to lower the temperature of at least a portion of one or moreflume surface walls 106 to about −45° C. In still other embodiments, the at least oneinternal cooling cavity 104 can be at least partially filled by a circulating coolant sufficient to lower the temperature of at least a portion of one or moreflume surface walls 106 to about 0° C. to about −20° C. In further embodiments, the at least oneinternal cooling cavity 104 can be at least partially filled by a circulating coolant sufficient to lower the temperature of at least a portion of one or moreflume surface walls 106 to about −2° C. to about −20° C. In still further embodiments, the at least oneinternal cooling cavity 104 can be at least partially filled by a circulating coolant sufficient to lower the temperature of at least a portion of one or moreflume surface walls 106 to about −2° C. to about −35° C. In some embodiments, theinternal cooling cavity 106 and its contained circulating coolant are adapted to hold at least a portion of one or moreflume surface walls 106 to a constant temperature during a freezing operation of thedevice 100. In other embodiments, theinternal cooling cavity 106 and its contained circulating coolant are adapted to provide a variable temperature to at least a portion of one or moreflume surface walls 106 during a freezing operation of thedevice 100 that changes according a predetermined temperature schedule. - In many embodiments, the volume of the at least one
internal cooling cavity 104 can be minimized and/or insulated from portions of thehousing 102 that are not flumesurface walls 106 in order to minimize the amount of coolant needed to sufficiently cool theflume surface walls 106 for the generation of ice. As one of skill in the art will appreciate, the one or more cooling cavities may be replaced with other cooling apparatuses (e.g., cooling plate, cooling elements, etc.), without departing from the scope of the present disclosure. - One of skill in the art will appreciate that a variety of coolants can be used including, but not limited to, propylene glycol, ethylene glycol, and brine. For the circulation of coolant, the at least one
internal coolant cavity 104 is fluidly connected to a coolant circulation system (not shown) via at least onecoolant intake 116 and at least onecoolant outtake 118. As illustrated in the embodiment ofFIG. 1 , the singularinternal cooling cavity 104 is fed by asingular coolant intake 116 and drained by asingular coolant outtake 118; however, different numbers, arrangements and placements of these features are possible without deviating from the scope of this disclosure. In particular, embodiments wherein the housing encloses a plurality ofinternal cooling cavities 104 can comprise various numbers, arrangements, placements, and fluid connectivities ofinternal cooling cavities 104,coolant intakes 116, andcoolant outtakes valves 118, without deviating from the scope of this disclosure. One of skill in the art will appreciate that the coolant circulation system can comprise any number of pumps, compressors, evaporators, etc. that are needed to provide a sufficient circulation of coolant for the features of the disclosure as described herein. - The embodiment of the
device 100 ofFIG. 1A has at least oneinternal cooling cavity 104; however, the at least oneinternal cooling cavity 104 can be replaced by other cooling sources, such as cold plates, condensers, evaporators, etc. in alternative embodiments. For example, evaporator pipes (not shown) could be efficiently snaked in contact with and directly behind theflume surface walls 106 to allow heat transfer between theflume surface walls 106 and the evaporator pipes. In this manner, it can be considered thatdevice 100 is arranged such that at least a portion of the at least oneflume surface wall 106 is in thermal communication with a cooling source, and wherein the at least onecooling cavity 104 ofFIG. 1A is one embodiment of such a cooling source. In alternate embodiments, the evaporator pipes of the above example can be considered cooling cavities defined by the housing. - In various embodiments, the
device 100, optionally, further comprises alid 120 that comprises a substrate that removably couples or attaches to thehousing 102 to enclose and thermally insulate the at least oneelongate trough 108. As illustrated in the embodiment ofFIG. 1 , asingular lid 120 can be adapted to enclose all of theelongate troughs lids 120 can be adapted to cover each elongate trough individually or in distinct subsets. In further embodiments, thelid 120 can comprise one ormore inclusion holders 122, such as small skewers, clips, or clamps, positioned on the substrate of the lid such that the holders can secure an item (e.g., a piece of fruit or other edible good, a flower, etc.) within anelongate trough 108 when thelid 120 is fitted to thehousing 102 of thedevice 100. In some embodiments, theinclusion holders 122 are retractable such that they can disengage the item and be retracted when sufficient ice has formed within the elongate trough to secure the item within the growing ice ingot in a predetermined position as arranged for by the positioning of theinclusion holder 122. In various embodiments, the inclusion holders can be retracted by mechanical means (e.g., automatically or manually actuated) or manually (e.g., by hand). In some embodiments, the inclusion holders can be retracted by mechanical means when a predetermined duration of time has expired during a freezing operation of the device. Alternatively, or additionally, one or moreside surface walls 106,inclusion holders 122, or other components ofdevice 100 may be sensorized such that a progress of ice formation may be monitored for removal of the inclusion holders. Further, in some embodiments, the inclusion holders can be retracted by mechanical means when the ice formed in thetrough 106 reaches a predetermined volume during a freezing operation of the device. - In other embodiments, the
lid 120 as described above can be adapted to fit onto other clear ice makers including but not limited to a Clinebell Equipment CB300X2D or a Clinebell Equipment CI-4. Such an adaptedlid 120 in these embodiments would provide similar ease of introduction of inclusions to clear ice generated by these alternate devices. - In still further embodiments, the
inclusion holders 122 can be adapted to position an item within anelongate trough 108 without the use of alid 120. In these embodiments, theinclusion holders 122 can be suspended over uncoveredelongate troughs 108 by a scaffold or frame, or they can be integrated in a position on a top edge of thehousing 102 itself. -
FIG. 2 depicts a cross-section of anexemplary device 200 for making clear ice midway during a freezing operation. In this embodiment, thehousing 202 of thedevice 200 defines a singleelongate trough 204 with a semicircular baseflume surface wall 206 and a first and second sideflume surface wall surface flume walls internal cooling cavity 212 or other cooling apparatus enclosed by thehousing 202. During a freezing operation of thedevice 200, sufficient coolant is circulated through theinternal cooling cavity 212 such thatwater 214 flowing down the length of theelongate trough 204 in its ice-formingzone 205 b as divided by Line A can freeze on thesurface flume walls FIG. 2 depicts a midway point during a freezing operation in which clear ice 216 (shaded area) has begun to form on theflume surface walls Arrows 218 illustrate the general direction of ice formation during this process. When a solid ingot of clear ice has formed, any remaining flowing water can traverse theelongate trough 204 in thefluid overflow zone 205 a. -
FIG. 3 depicts a perspective view of one embodiment of adevice 300 for making clear ice. Thedevice 300 comprises ahousing 302 enclosing sixelongate troughs 304 each in thermal communication with an individual internal cooling cavity (not shown, seeFIGS. 4-5 ). Afluid intake 314 directs a fluid (not shown) to be frozen in the device 300 (e.g., water) into afluid intake manifold 315 which then distributes the fluid into each of theelongate troughs 304 via a fluid entry portal (not shown) positioned at thefirst end 310 a of eachelongate trough 304. After flowing through the length of anelongate trough 304, fluid can exit via afluid exit portal 319 into a singularfluid drain manifold 317 that collects the fluid from allelongate troughs 304. Thefluid drain manifold 317 can then direct the fluid out of thedevice 300 via afluid outlet 316. A fluid supply (not shown) can be connected to thefluid intake 314 and optionally thefluid outlet 316 as well in order to provide a continuous flow of fluid through theelongate troughs 304 during a freezing operation of the device. In some embodiments, the fluid supply and/or mechanical components of thefluid intake 314 and/orfluid outlet 316 can regulate at least one of the quantity, flow rate, and temperature of the fluid entering theelongate troughs 304. - Coolant outlet and
inlet lines 308 connect the internal cooling cavities (not shown) to a coolant supply (not shown) that chills and circulates coolant through thedevice 300 during a freezing operation. As discussed herein, various coolants can be employed, including, but not limited to, propylene glycol, ethylene glycol, and brine. In some embodiments, the coolant supply and/or mechanical components of the coolant outlet andinlet lines 308 can regulate at least one of coolant temperature and flow rate into the plurality of internal cooling cavities either individually or collectively. In alternative embodiments, the internal cooling cavities can be replaced by other cooling sources, such as cold plates, condensers, evaporators, etc. - The
device 300 can also comprises alid 320, in some embodiments. A lid, when constructed of thermally insulating materials, can assist in maintaining a uniform and adequately cool temperature within thedevice 300 that can contribute to the generation of clear ice along all the flume surface walls of allelongate troughs 304. In the embodiment shown inFIG. 3 , thelid 320, shown in an open configuration, comprises two halves separately hinged at either thefirst end 310 a or thesecond end 310 b and of sufficient dimensions as to fully enclose theelongate troughs 304 when both halves of thelid 320 are rotated down to a closed configuration (not shown). One of skill in the art will appreciate that a variety of lid constructions and attachments can be employed without deviating from the scope of this disclosure. In some embodiments, nolid 320 is present on thedevice 300. In further embodiments, theexterior walls 303 of thehousing 302 can comprise thermally insulating materials including, but not limited to, polyoxymethylene (POM), polyurethane, polystyrene, fiberglass, and mineral wool, etc. to further assist in the maintenance of a satisfactorily and uniformly chilled environment within thedevice 300 to contribute towards efficient generation of clear ice in each of theelongate troughs 304. In additional embodiments, thedevice 300 can rest uponadjustable legs 321 or leveled rails (not shown) that can automatically or manually level thedevice 300 so that an equal fluid level or a level fluid surface can be more readily attained through theelongate troughs 304 during a freezing operation of thedevice 300. -
FIG. 4 depicts a cross-section of an embodiment of adevice 400 for making clear ice. Thedevice 400 compriseshousing 402 defining a plurality ofelongate troughs 404 enclosed on five sides (one side not shown) by a plurality ofexterior walls 403. In many embodiments, theexterior walls 403 can comprise thermally insulating material as described elsewhere herein. In this embodiment, theelongate troughs 404 are each in thermal communication with a separateinternal cooling cavity 408. During a freezing operation of thedevice 400, coolant is circulated by a coolant supply through each of theinternal cooling cavities 408 while a fluid (e.g., water) is circulated through each of theelongate troughs 404. In some embodiments, such as the embodiment ofFIG. 4 , the elongate troughs have a greater height than the intended height of the ingot of clear ice to be formed. Having such a fluid overflow space (seeFIG. 5 below) above an ice-forming zone can allow for the passage of fluid through anelongate trough 404 even after a substantial height of clear ice has developed, and in some embodiments, maintaining this constant flow of fluid can be important for producing aesthetically pleasing clear ice. To impede the formation of clear ice above the intended height, theelongate troughs 404 can comprise a thermally insulatingstrip 422 along each side flume wall of theelongate trough 404 starting at a height substantially matching that of the intended ingot height and continuing to the top of the trough 404 (i.e., coextensive with the fluid overflow zone). In this manner, theelongate troughs 404, in certain embodiments, can comprise multiple materials as described herein. For example, the portions of anelongate trough 404 on which ice formation is desired can be composed of or include aluminum, stainless steel, or another material that easily conducts heat while the insulatingstrips 422 can comprise high density polyethylene (HDPE), polyoxymethylene (POM) (a.k.a. Delrin @), or another thermally insulating material or polymer. -
FIG. 4 also depicts one embodiment of an internal architecture of afluid intake 414 andfluid outlet 416 although other arrangements of plumbing can be employed in alternative embodiments. In in the embodiment depicted inFIG. 4 , thefluid outlet 416 is attached to afluid drain manifold 417 positioned at asecond end 410 b (the first end not depicted) of thedevice 400. -
FIG. 5 shows a cross-sectional profile of the embodiment of an elongate trough ofFIG. 4 above. Theprofile 500 of the elongate trough, which in some embodiments can be considered as part of housing of the device as described herein, defines an ice-formingzone 504 b and afluid overflow zone 504 a (divided by Line A for illustrative purposes) with a semi-circular basesurface flume wall 502 a and two sidesurface flume walls FIG. 5 , at least a portion of the flume surface walls 502 a-c of the ice-formingzone 504 b are in contact with aninternal coolant cavity 506 defined by acoolant cavity wall 507. In other embodiments, all portions of the surface flume walls 502 a-c of the ice-formingzone 504 b are in contact with theinternal coolant cavity 506. In order to impede the formation of ice within thefluid overflow zone 504 a, insulatingstrips surface flume walls fluid overflow zone 504 a in the embodiment ofFIG. 5 . In alternative embodiments, insulatingstrips zone 504 b to slow down the rate of ice formation as it approaches the border of thefluid overflow zone 504 a. In this manner, it can be said that a surface area of one or moresurface flume walls fluid overflow zone 504 a can comprise a thermally insulating material. In certain embodiments, the insulatingstrips surface flume walls surface flume wall 502 a. In other embodiments, one or both of sidesurface flume walls zone 504 b, forming a non-right angle with Line B. See the analogous discussion of θ, θ1, and θ2 below inFIGS. 12A-12C, 13A-13C, and 14A-14C . - In the embodiment of
FIG. 5 , the flume surface walls 502 a-c and thecoolant cavity wall 507 are monolithic and can be produced by extruding a singular material (e.g., aluminum, etc.) through a mold (not shown) or by roll forming or die stamping (e.g., stainless steel, etc.). In this embodiment, the insulatingstrips notches strips surface flume walls strips profile 500, including, but not limited to, adhesives, mechanical fasteners, etc. In other embodiments, theprofile 500 can be produced in various subassemblies that are subsequently attached to form the complete elongate trough. In these embodiments, various coupling means can be employed to secure the subassemblies to each other, including, but not limited to, welds, adhesives, and mechanical fasteners. -
FIG. 6A depicts a perspective view down the width of an embodiment offluid intake manifold 600 a. Fluid (e.g., water) enters theintake manifold cavity 601 a of thefluid inlet manifold 600 a through at least onefluid intake pipe 602 a. In some embodiments, the at least onefluid intake pipe 602 a is coupled to thefluid intake 414 ofFIG. 4 . In other embodiments, thefluid intake manifold 600 a can be considered part of thefluid intake 112 ofFIG. 1 or thefluid intake 414 ofFIG. 4 . In the embodiment ofFIG. 6A , there are fourfluid inlet pipes 602 a, but any number greater than or equal to one can be employed in alternative embodiments. Fluid leaves themanifold cavity 601 a throughfluid entry portals 604 a that direct the flow of fluid into one or more elongate troughs (not shown). In many embodiments, there is only onefluid entry portal 604 a for each elongate trough, although any number of elongate troughs (and therefore correspondingfluid entry portals 604 a) can connect to afluid intake manifold 600 a. In some embodiments, the dimensions of afluid entry portal 604 a match that of the profile of the corresponding elongate trough (its ice-forming and fluid overflow zones combined, e.g., seeFIG. 5 ). In other embodiments, the dimensions of afluid entry portal 604 a differ from that of the profile of the corresponding elongate trough. In certain embodiments, the dimensions of afluid entry portal 604 a match the width and profile of the corresponding elongate trough but is shorter than the full height of the elongate trough. In many embodiments, however, eachfluid entry portal 604 a is fitted with a flow straightener insert (not shown, seeFIG. 7 ) that organizes the turbulence of the flow of fluid into the elongate trough. - In many embodiments, a
fluid intake manifold 600 a further comprises a cavity divider 606 a. The cavity divider 606 a is a rigid or semi-rigid but porous insert that mitigates the formation of a circular current of fluid within themanifold cavity 601 a as fluid makes its way from thefluid inlet pipes 602 a to thefluid entry portals 604 a. In many embodiments, the cavity divider 606 a has a porosity of 5% to 75% open area. In other embodiments, the cavity divider 606 a has a porosity of 10% to 50% open area. In further embodiments, the cavity divider 606 a has a porosity of 15% to 30% open area. In the embodiment ofFIG. 6A , the cavity divider 606 a reaches across opposite corners, dividing the rectangular prism of themanifold cavity 601 a into twotriangular prisms fluid inlet pipes 602 a are in fluid communication to a firsttriangular prism 603 a and thefluid entry portals 604 a are in fluid communication to a secondtriangular prism 603 b. The term “fluid communication” is hereby intended to mean that elements “in fluid communication” can pass fluid (e.g., water) between each other. In alternative embodiments, themanifold cavity 601 a and cavity divider 606 a can take other geometries. For example, themanifold cavity 601 a may take the shape of a cylinder, triangular prism, or the like. In other embodiments, the cavity divider 606 a is absent. In many embodiments, the flow of fluid into and out of themanifold cavity 601 a is sufficient to completely fill or substantially fill (approximately 95% filled or more) themanifold cavity 601 a. -
FIG. 6B depicts a perspective view down the length of adrain manifold 600 b. Fluid (e.g., water) enters thedrain manifold cavity 601 b of thedrain manifold 600 b through at least onefluid exit portal 604 b. In many embodiments, there is onefluid exit portal 604 b for each connected elongate trough (not shown), although any number of elongate troughs (and thereforefluid exit portals 604 b) can connect to adrain manifold 600 b. In some embodiments, the dimensions of afluid exit portal 604 b match that of the profile of the corresponding elongate trough (its ice-forming and fluid overflow zones combined, e.g., seeFIG. 5 ). In other embodiments, the dimensions of afluid exit portal 604 b differ from that of the profile of the corresponding elongate trough. In certain embodiments, the dimensions of afluid exit portal 604 b match the width and profile of the corresponding elongate trough but is shorter than the full height of the elongate trough. In many embodiments, however, eachfluid exit portal 604 b is fitted with a flow straightener insert (not shown, seeFIG. 7 ) that organizes the turbulence of the flow of fluid out of the elongate trough. Fluid leaves thedrain manifold cavity 601 b through at least onedrainage pipe 602 b. In some embodiments, the at least onedrainage pipe 602 b is coupled to thefluid outlet 416 ofFIG. 4 . In the embodiment ofFIG. 6B , there are fourdrainage pipes 602 b, but any number greater than or equal to one can be employed in alternative embodiments. - In many embodiments, a
drain manifold 600 b further comprises acavity divider 606 b. Thecavity divider 606 b is a rigid or semi-rigid but porous insert that mitigates the formation of a circular current of fluid within thedrain manifold cavity 601 b as fluid makes its way from thefluid exit portals 604 b to thedrainage pipes 602 b. In many embodiments, the cavity divider 606 a has a porosity of 5% to 75% open area. In other embodiments, the cavity divider 606 a has a porosity of 10% to 50% open area. In further embodiments, the cavity divider 606 a has a porosity of 15% to 30% open area. In the embodiment ofFIG. 6B , the cavity divider 606 a forms an arcuate shape between adjacent corners of the same side of the rectangular prism of thedrain manifold cavity 601 b thereby dividing thedrain manifold cavity 601 b into a first 603 a andsecond portion 603 b wherein at least onedrainage pipe 602 b is in fluid communication to thefirst portion 603 a and wherein the correspondingfluid exit portals 604 b are in fluid communication to thesecond portion 603 b. In alternative embodiments, thedrain manifold cavity 601 b andcavity divider 606 b can take other geometries. For example, thedrain manifold cavity 601 b may take the shape of a cylinder, triangular prism, or the like. In other embodiments, thecavity divider 606 b is absent. In many embodiments, the flow of fluid into and out of themanifold cavity 601 b is sufficient to completely fill or substantially fill (approximately 95% filled or more) themanifold cavity 601 b. -
FIG. 7 depicts a perspective view of aflow straightener insert 700 positioned within anelongate trough 750 attached to either a fluid entry portal or fluid exit portal of theelongate trough 750. In many embodiments, aflow straightener insert 700 comprises a rigid or semi-rigid material defining one or more apertures oropenings 702. Theseopenings 702 can have a variety of shapes, number, and arrangement in theflow straightener insert 700 across multiple embodiments, but in many embodiments, the openings are all circular (except for those abutting against the edge of the insert 700), have the same diameter, and spaced in series of packed columns as shown inFIG. 7 . In some embodiments, the highest one ormore openings 702 a of theflow straightener insert 700 is no taller than the maximum height of the corresponding fluid inlet portal or fluid exit portal. In some embodiments, the highest one ormore openings 702 a are no taller than Line C, a predetermined height that is within the fluid overflow zone of theelongate trough 750 but less than the maximum height of theelongate trough 750. In some embodiments, eachelongate trough 750 has aflow straightener insert 700 positioned at both its corresponding fluid entry portal and fluid exit portal. In other embodiments, eachelongate trough 750 has aflow straightener insert 700 positioned at only one of its fluid entry portal or fluid exit portal. In still other embodiments, anelongate trough 750 can lack aflow straightener insert 700 at both its fluid entry portal and fluid exit portal. Across various embodiments, theflow straightener insert 700 can be coupled to the flow entry portal or fluid exit portal by a variety of coupling means, including, but not limited to adhesives, mechanical fasteners, etc. - In many embodiments, the
flow straightener insert 700 serves to organize the flow of fluid into or out of anelongate trough 750. As a particular range of velocities can be critical for the development of clear ice at speeds superior to existing technologies in some embodiments, theflow straightener insert 700 can prevent or mitigate the formation of swirling vortexes of fluid within theelongate trough 750. Such vortexes can generate areas within theelongate trough 750 where fluid is moving too slowly, thus leading to cloudy sections within the generated ingot of clear ice. -
FIG. 8 depicts a perspective view and partial cross-section of an alternate embodiment of adevice 800 for making clear ice. Thedevice 800 comprises ahousing 802 that defines eightelongate troughs 804 showing oneelongate trough 804 a in cross-section. In other embodiments, any number of elongate troughs can be employed. Fluid (e.g., water) enters eachelongate trough 804 through a correspondingindividual inlet manifold 806 and exits via a corresponding individual drain manifold 808 (only drain manifold 808 a ofelongate trough 804 a is visible inFIG. 8 ). Adjacentelongate troughs 804 are arranged anti-parallel to each other such that theinlet manifold 806 of one elongate trough is adjacent to one or more drain manifolds 808 on a giventerminal end device 800 and vice versa. In some embodiments, such an arrangement allows for a more compact arrangement ofelongate troughs 804. Eachelongate trough 804 is in thermal communication with an internal coolant cavity 805 (only theinternal cooling cavity 805 a ofelongate trough 804 a is visible) through which coolant (supplied by a coolant supply, coolant inlet and outlet lines, all not shown) flows during a freezing operation of thedevice 800. Fluid (e.g., water) enters theinlet manifolds 806 and exits from the drain manifolds 808 via a fluid supply, and fluid inlet and outlet lines (all not shown). -
FIG. 9 shows a perspective cross-sectional view of an embodiment of an inlet manifold 906 of adevice 900 for forming clear ice. In some embodiments, the inlet manifold 906 ofFIG. 9 can be the same embodiment of those depicted inFIG. 8 . The inlet manifold 906 in this embodiment features aninlet pipe 908 that connects to aninternal cavity 910 defined by anouter casing 907 of the inlet manifold 906. Aflow guide 912 within theinternal cavity 910 redirects incoming fluid around its perimeter through anedge gap 916 to enter aguide cavity 917. From theguide cavity 917, fluid can then pass through the one ormore channels 920 of aflow straightener plug 918 to enter anelongate trough 904. Theflow straightener plug 918 can have any number ofchannels 920 in various embodiments, and in some embodiments, such as the embodiment ofFIG. 9 , somechannels 920 can have longer lengths than others and can extend farther into theguide cavity 917 thanother channels 920. This arrangement of theflow guide 912 and flowstraightener plug 918 organizes the general flow of fluid into the inlet manifold 906 in a manner that avoids inefficient whirlpooling of fluid while maintaining sufficient velocity into theelongate trough 904 for the generation of clear ice. In many embodiments, fluid exits anelongate trough 804 through aflow straightener plug 918 and into the drain manifold 808. -
FIG. 10 depicts a detailed perspective view of one embodiment of adevice 1000 for producing clear ice with an embodiment of aningot removal structure 1030 in position over anelongate trough 1004. In many embodiments, aningot removal structure 1030 comprises asupport beam 1032 through which aningot implant 1034 is secured extending down into the ice-forming zone of theelongate trough 1004. Aningot removal structure 1030 can be positioned at one or both terminal ends of an elongate trough (i.e., near a fluid entry orexit portal 1019 of a fluid inlet or drain manifold 1017) in various embodiments. In other embodiments, one or moreingot removal structures 1030 can be positioned at other locations along the length of theelongate trough 1004. During a freezing operation of thedevice 1000, clear ice accumulates in theelongate trough 1004. Because theingot implant 1034 extends into the ice-forming zone, theingot implant 1034 becomes embedded in the ingot of ice. Once the freezing operation of thedevice 1000 has been completed and the ingot of ice is to be removed from theelongate trough 1004, the ingot can be lifted out of the trough by gripping thesupport beam 1032 of at least oneingot removal structure 1030. Aningot removal structure 1030 can be removed from an ingot of ice by mechanically cutting off a length of the ingot that contains theingot implant 1034. By positioning aningot removal structure 1030 very near the terminal ends of an elongate trough, very little ice must be cut to remove theingot removal structure 1030. Because theingot implant 1034 is in contact with the fluid that forms a comestible, it can be valuable that theingot implant 1034 comprises food-safe material. In some embodiments, theingot implant 1034 is a food-safe zip tie that passes through a hole in thesupport beam 1032, although one will appreciate that many alternative shapes, materials, and arrangements can be employed to form aningot removal structure 1030 without deviating from the scope of this disclosure. -
FIG. 11A depicts a perspective view of an alternate embodiment of adevice 1100 for making clear ice. Thedevice 1100 comprises ahousing 1102 defining a singleelongate trough 1104 as well as at least one internal cooling cavity (not shown). Acoolant manifold 1106 can control the flow of coolant in and out of the at least one internal cooling cavities via a plurality of coolant inlets andoutlets 1108 when connected by various plumbing elements (not shown). In embodiments wherein thedevice 1100 comprises a plurality of internal cooling cavities thecoolant manifold 1106 can control the flow of coolant through each internal cooling cavity individually. In some embodiments, thecoolant manifold 1106 can further comprise coolant inlets andoutlets 1108 of its own. - The
device 1100 comprises aremovable lid 1110 depicted inFIG. 11A in an attached position with itsrigid substrate 1112 secured to thehousing 1102. Thelid 1110 features a plurality offluid inlets 1114 and outlets 1116 (analogous to thefluid intake 112 and drain 114 ofFIG. 1A , respectively) along its length in this embodiment. In many embodiments, this arrangement offluid inlets 1114 andoutlets 1116 can allow for a turbulent flow of water through the whole length of theelongate trough 1104 that is fully filled with water during a freezing operation of thedevice 1100. In additional embodiments, positioning thefluid inlets 1114 andoutlets 1116 in the lid can keep them above the freezing level, thereby leaving them operation for the full duration of a freezing operation. Although this embodiment of thelid 1110 is used with an embodiment of thedevice 1100 that comprise at least one internal cooling cavity inFIG. 11A , the embodiment of thelid 1110 ofFIG. 11A can be used on a device using an alternate cooling source for the flume surface walls, such as a cold plate, evaporator, or condenser. - In further embodiments, the
lid 1110 can further comprise one ormore inclusion holders 1118 that extend through thelid 1110 into the ice-making volume defined by theelongate trough 1104. In the embodiment ofFIG. 11A , a plurality ofinclusion holders 1118 are all attached to agantry 1120 that allows for a synchronized motion (e.g., a retraction motion) of theinclusion holders 1118.FIG. 11B illustrates a profile view of alid 1110 unattached to thehousing 1102 of thedevice 1100. Theinclusion holders 1118 indeed traverse thesubstrate 1112 of thelid 1110, and eachinclusion holder 1118 can be fitted to secure an inclusion 1122 (e.g., a piece of fruit or other edible good, a flower, etc.) such that theinclusion 1122 can be held in position within anelongate trough 1104 during a freezing operation of thedevice 1100. -
FIG. 11C depicts a cross-sectional view of an embodiment of thedevice 1100 ofFIG. 11A . In this embodiment, theelongate trough 1104 is defined by threeflume surface walls internal cooling cavity internal cooling cavity outlets cooling cavities flume surface wall device 1100. -
FIGS. 12A-12C, 13A-13C, and 14A-14C depict various embodiments of possible cross-sectional shapes for an elongate trough. InFIGS. 12A-12C , the elongate trough is defined by a semicircularbase surface wall side surface walls FIG. 12A , theside surface walls base surface wall 1202 a. InFIG. 12B , the firstside surface wall 1204 b has an internal angle θ away from a vertical position as defined inFIG. 12A . Across many embodiments, the angle θ can be any value greater than about 0° but less than or equal to about 15°. In other embodiments, the angle θ can be about 0.25° to about 10°. In still other embodiments, the angle θ can be about 0.25° to about 8°. In further embodiments, the angle θ can be about 0.25° to about 5°. In still further embodiments, the angle θ can be about 1° to about 10°. InFIG. 12B , despite the first side surface wall's 1204 b deviation from upright, the secondside surface wall 1206 b stands upright, creating an asymmetric cross-sectional shape for the elongate trough. InFIG. 12C , the firstside surface wall 1204 c has an internal angle θ1 away from vertical and the secondside surface wall 1206 c has an internal angle θ2 away from vertical. In many embodiments, both θ1 and θ2 can each be any value greater than about 0° but less than or equal to about 15°. In other embodiments, the angles θ1 and θ2 can each be about 0.25° to about 10°. In still other embodiments, the angles θ1 and θ2 can each be about 0.25° to about 8°. In further embodiments, the angles θ1 and θ2 can each be about 0.25° to about 5°. In still further embodiments, the angles θ1 and θ2 can each be about 1° to about 10°. In some embodiments, θ1 and θ2 have the same value, creating a symmetric cross-sectional shape for the elongate trough. In alternate embodiments, θ1 and θ2 have the different values, creating an asymmetric cross-sectional shape for the elongate trough. Therefore, across many embodiments, at least one of the two sideflume surface walls -
FIGS. 13A-13C depict analogous cross-sectional shapes for an elongate trough wherein thebase surface wall FIGS. 14A-14C further depict analogous cross-sectional shapes for an elongate trough wherein thebase surface wall side surface walls base surface wall 1402 a (shown inFIG. 14A ). - In many embodiments of
FIGS. 13A-13C , the angles θ, θ1, and θ2 can each be any value greater than about 0° but less than or equal to about 15°. In other embodiments, the angles θ, θ1, and θ2 can each be about 0.25° to about 10°. In still other embodiments, the angles θ, θ1, and θ2 can each be about 0.25° to about 8°. In further embodiments, the angles θ, θ1, and θ2 can each be about 0.25° to about 5°. In still further embodiments, the angles θ, θ1, and θ2 can each be about 1° to about 10°. In some embodiments, θ1 and θ2 have the same value, creating a symmetric cross-sectional shape for the elongate trough. In alternate embodiments, θ1 and θ2 have the different values, creating an asymmetric cross-sectional shape for the elongate trough. Therefore, across many embodiments, at least one of the two sideflume surface walls - In many embodiments of
FIGS. 14A-14C , the angles θ, θ1, and θ2 can each be any value greater than about 0° but less than or equal to about 15°. In other embodiments, the angles θ, θ1, and θ2 can each be about 0.25° to about 10°. In still other embodiments, the angles θ, θ1, and θ2 can each be about 0.25° to about 8°. In further embodiments, the angles θ, θ1, and θ2 can each be about 0.25° to about 5°. In still further embodiments, the angles θ, θ1, and θ2 can each be about 1° to about 10°. In some embodiments, θ1 and θ2 have the same value, creating a symmetric cross-sectional shape for the elongate trough. In alternate embodiments, θ1 and θ2 have the different values, creating an asymmetric cross-sectional shape for the elongate trough. Therefore, across many embodiments, at least one of the two sideflume surface walls side surface walls base surface wall FIGS. 14A-14C ). In some embodiments, the joints connectingside surface walls base surface wall base surface wall side surface walls base surface wall base surface wall - The embodiments of possible cross-sectional shapes for an elongate flume depicted in
FIGS. 12A-12C, 13A-13C, and 14A-14C are intended to be illustrative and not limiting of the total possible cross-sectional shapes available.FIGS. 15A-15D depict further illustrative examples of cross-sectional shapes including various irregular shapes. As shown inFIG. 15A , an elongate trough can have abase surface wall 1502 a having an arcuate but lopsided shape. As shown inFIG. 15B , an elongate trough can have abase surface wall 1502 b having a waveform pattern. As shown inFIG. 15C , an elongate trough can have two base surface walls 1502 cl and 1502 c 2 to define a V-shape for a base. In other embodiments, an elongate trough can comprise any number of flume surface walls.FIG. 15D , for example, shows an embodiment having three base surface walls 1502d 1, 1502d 2, and 1502d 3 forming a V-shape that forms a shoulder with theside surface wall 1506 d. AlthoughFIGS. 15A-15D are depicted as having vertical sidewalls and sharp joint transitions, one of skill in the art will appreciate that other embodiments can have sloping sidewalls and smoother, bent arcuate joint transitions as described above forFIGS. 12A-12C, 13A-13C, and 14A-14C . - For some embodiments, having a θ, θ1, and θ2 greater than about 0° can be valuable to the production of clear ice during a freezing operation of the device. In certain embodiments of the device, clear ice forms on at least a portion of the base flume wall and the two side surface walls (as shown in
FIG. 2 ). As discussed above, this arrangement can be considered “multi-directional freezing” in certain embodiments. Multi-directional freezing can greatly expedite clear ice production since ice can accumulate on multiple surfaces simultaneously to form a single piece of clear ice. However, when the portions of clear ice that are forming on opposite side surface walls begin to approach each other, at least two situations can occur that can damage the clarity of the ice. First, the space between the ice of the two side walls can fill in too quickly with new ice, therefore trapping air and other impurities inside a narrow portion of the ingot of ice. This creates a plane of cloudy ice that can run through a portion of the volume of the ingot, thus ruining the desired clear ice properties. Second, ice bridges can develop between the two opposing ice sheets accumulating on the side surface walls. These ice bridges disrupt the desired simple crystal lattice for the clear ice and can yield internal cracks, visible to an observer, in the final product once the spaces around the bridges are similarly frozen. This, too, ruins the desired clarity of the final product. - In some embodiments with certain flow rates, angling one or more side surface walls of an elongate trough can avoid or mitigate the above concerns. By sloping their planes of ice formation slightly away from each other, the device can, in certain embodiments, instead direct a more gradual filling in of ice from the bottom of a “v-shaped” or “u-shaped” valley rather than suddenly abutting two vertical planes of clear ice into each other. In many embodiments, sloping the side surface walls does slightly lengthen the required time to produce an ingot of clear ice compared to an analogous elongate trough having vertical walls (see Example 1, below). In other embodiments, the device can generate an ingot of clear ice using elongate troughs having vertical side surface walls by intentional control of flow rate and temperature of the three side walls.
- Once an ingot of ice has been produced, such as by an embodiment of the device of the above figures, it can be further processed to efficiently generate a plurality of comestibles with aesthetically pleasing shapes and/or additional properties as described herein.
- As shown in
FIG. 16 , amethod 1600 for producing clear ice of one embodiment includes providing a device for making clear ice in block S1602, optionally positioning an item with at least one inclusion holder in block S1604, providing a flow of water down at least one elongate trough in block S1606, circulating coolant through the at least one internal cooling cavity in block S1608, and optionally retracting the one or more inclusion holders in block S1610. The method functions to produce clear ice, particularly ingots of clear ice. The method is used for the production of clear ice for consumption in beverages but can additionally, or alternatively, be used for any suitable applications. The method can be configured and/or adapted to function for any suitable rapid freezing of liquids to produce frozen substances. - The
method 1600 includes for providing a device for making clear ice according to block S1602. The device for making clear ice can be any of the embodiments of devices described elsewhere herein and depicted in the various figures above. - Next, at step S1604, the
method 1600 optionally includes for positioning at least one item in at least one inclusion holder. As described above, the inclusion holders can secure an item within the space defined by an elongate trough during a freezing operation of the device such that the one or more items will be inside the ingot of clear ice upon completion of the freezing cycle. These inclusion holders, such as skewers, clips, or clamps, can be affixed to a lid of the device or elsewhere as described above. - At Step S1606, the
method 1600 then includes providing a flow of water down at least one elongate trough. In many embodiments, the flow of water is provided to the elongate trough by at least one fluid intake valve positioned in the housing of the device or in the lid of the device and drained by at least one drain valve as described above. In other embodiments, the flow of water can be provided by other means appreciated by those of skill in the art. A sufficient flow rate of water is required in order to exclude air bubbles and impurities from the growing layer of clear ice on at least one flume surface wall during a freezing operation of the device in many embodiments. - At Step S1608, the method next includes cooling at least a portion of at least one flume surface wall of the at least one elongate trough to produce a growing layer of clear ice on the at least a portion of at least one flume surface wall. In many embodiments, this cooling can be performed by the circulation of coolant through at least one internal coolant cavity as described above. Also as discussed above, coolant is provided to the device by a coolant supply system via at least one coolant intake valve and is cycled out by at least one coolant outtake valve in many embodiments. In alternate embodiments, Step S1608 includes for providing and utilizing an alternative cooling apparatus including but not limited to cold plates, compressors, etc. for the generation of the temperatures needed to produce clear ice on the one or more flume surface walls.
- In some embodiments, the at least a portion of at least one flume surface wall is cooled to a temperature of about 0° C. or less. In another embodiment, the at least a portion of at least one flume surface wall is cooled to about −45° C. In still other embodiments, the at least a portion of at least one flume surface wall is cooled to about 0° C. to about −20° C. In further embodiments, the at least a portion of at least one flume surface wall is cooled to about −2° C. to about −20° C. In further embodiments, the at least a portion of at least one flume surface wall is cooled to about −2° C. to about −35° C. In some embodiments, the at least a portion of at least one flume surface wall is adapted to hold a constant temperature during a freezing operation of the device. In other embodiments, the at least a portion of at least one flume surface wall is adapted to provide a variable temperature during a freezing operation of the device that changes according a predetermined temperature schedule.
- In many embodiments, the cooling of step S1608 involves gradually decreasing the temperature of the flume surface walls over time. In many embodiments, a gradual decrease in temperature allows the device to overcome the inherent insulating properties of the ice as it forms. Because ice freezes directionally outwards from the flume surface walls that relay the chilled temperatures to the flow of water as shown in
FIG. 2 , the insulating properties of ice proportionally impede the heat transfer between the flume surface walls and flow of water as the layer of ice grows. In some embodiments, the temperature of the flume surface walls decreases from about 0° C. to about −30° C. over the duration of a freezing operation of the device. In other embodiments, the temperature of the flume surface walls decreases from about −2° C. to about −20° C. over the duration of a freezing operation of the device. In some embodiments, a freezing operation of the device lasts about 12 hours or less. In other embodiments, a freezing operation of the device lasts about 30 minutes to about 10 hours. In still further embodiments, a freezing operation of the device lasts about 30 minutes to about 4 hours. In additional embodiments, a freezing operation of the device lasts about 2 hours. - At optional Step S1610, the
method 1600 provides for retracting the at least one inclusion holder. In many embodiments, the at least one inclusion holder should be retracted before the growing layer of clear ice comes into contact with the inclusion holder. In many embodiments, the at least one inclusion holder is retracted after a sufficient accumulation of ice has formed within the elongate trough such that the item remains at least partially embedded in the accumulation of ice upon retraction of the at least one inclusion holder. In some embodiments, the at least one inclusion holder is retracted by mechanical means. In some of these embodiments, the at least one inclusion holder is retracted mechanically after a certain duration of time of a freezing operation has passed or after a predetermined volume of ice has formed. In other embodiments, the at least one inclusion holder is retracted manually. In various embodiments wherein there are a plurality of inclusion holders, each or a subset can be collectively retracted simultaneously or individually at different times and/or at different volumes of formed ice. - Regardless of the presence or operation of any inclusion holders, the
method 1600 allows for the flow of water and the circulation of coolant until a desired quantity of clear has formed within the at least one elongate trough. The resulting ingot of clear ice will have a length and cross-sectional shape determined by or related to those of the corresponding elongate trough in which it formed. Once the ingot of ice has formed to a predetermined or desired height or volume, the flow of water and circulation of coolant can be ceased, and the ingot of ice can be removed by a variety of means appreciated by those of skill in the art, including but not limited to letting the ingot slightly melt and removing it by mechanical means. In some embodiment, the slight melting can be provided by a circulation of warmer coolant in the at least one internal cooling cavities. In other embodiments, one or more side surface walls may further include one or more heating elements or heating means, such that an external surface of the ice ingot may be melted to facilitate ice removal from the device. In some embodiments, the ingot of ice can be removed vertically by lifting it out of an elongate trough, but in other embodiments, the ingot of ice can be removed horizontally by sliding it out of the elongate trough through an openable or removable end wall. In some embodiments, the device is adapted such that the ingot of ice adheres to a surface of the lid such that removing the lid additionally removes the ingot of ice with it. -
FIGS. 17A-25B show various exemplary, non-limiting methods for forming clear ice using any ice device described herein or known in the art. As used herein, the terms “flow inlet” and “flow inlet valve” can be considered synonymous with “fluid intake valve” and will be used interchangeably. Similarly, as used herein, the term “outlet” and “outlet valve” can be considered synonymous with “drain valve.” As one of skill in the art will appreciate, any of the parameters, temperature ranges, stages, rates, time periods, circulation, agitation, etc. of any ofFIGS. 17A-25B may be exchanged with each other. Various parameters were adjusted in each of the figures. For example, temperature of ice forming surface (e.g., flume surface walls), temperature of water, time, end plateau (i.e., flow or temperature stays constant for a time period at the end of the method, mid-cycle plateau (i.e., flow or temperature stays constant for a time period during the recipe), flow paths (i.e., flow inlets that are located towards the outside of the elongate trough are being controlled separately from flow inlets towards a center of the elongate trough), flow direction (i.e., flow reversal; pump direction is switched such that the inlets become the outlets and the outlets become the inlets), circulation (e.g., maintain some degree of water flow at the ice formation boundary to prevent dissolved gasses from freezing in the water), initial cool down (i.e., an initial aggressive ramp down in temperature to bring the water in the molds close to freezing more quickly, for example an initial temperature drop to about 0° C. to about −15° C.), annealing (i.e., period at the end of the method after the ice has been formed that allows for the temperature gradient in the ice to lessen or reduce internal stresses that can lead to cracking), and flow rate of the coolant. For example, one or more temperature plateaus may be from about 3 minutes to about 100 minutes. Further for example, an annealing period may be characterized by a coolant source temperature between about −2° C. and about 15° C. and the percentage max flow of about 0% to about 5%. As shown below, each step in each method may include or comprise about 1 to about 20 minutes; about 2 minutes to about 15 minutes; about 5 minutes to about 10 minutes; substantially 5 minutes; substantially 6 minutes; substantially 8 minutes; about less than 10 minutes; etc. As shown in the following figures, the initial steps may vary in time from about 5 minutes to about 10 minutes and then the subsequent steps may vary in time from about 2.5 minutes to about 7.5 minutes. Although, as one of skill in the art will appreciate decreasing or increasing a step by about 1 minute to about 10 minutes will not depart substantially from the scope of this disclosure. - In some embodiments, a method for forming clear ice includes: providing a device, for example, any of the above embodiments; optionally inserting a skewer or clip through the lid, the skewer or clip being coupled to an item or configured to release a fluid into a cavity in the ice (e.g., skewer defines one or more apertures); circulating, using the fluid inlet and outlet valves, a fluid in the elongate trough; optionally varying overtime one or both of: a temperature of the cooling apparatus or source or a fluid flow, through the fluid inlet valve, as a percentage of max flow; and optionally retracting the skewer or clip when the ice formation encases at least a portion of the item.
- As shown above, in some embodiments, temperature of the flume surface walls (hereinafter, “surface temperature”) is varied (e.g., 0° C. and about −25° C. or any of the ice making methods described elsewhere herein); in other embodiments, the flow rate of water (hereinafter, “water flow rate”) is varied (e.g., percentage of max water flow between about 5% and about 100% or any of the ice making methods described elsewhere herein). In some embodiments, both surface temperature and water flow rate are varied. In some embodiments, neither temperature nor flow rate are varied. In various other embodiments, the temperature of the water flowing through the elongate troughs (hereinafter “water temperature) can be varied solely or in addition to the other parameters named above.
- In some embodiments, the device is configured to receive an inclusion holder (e.g., a skewer or clip), such that the method includes inserting the skewer or clip and optionally retracting the skewer or clip at a predetermined time. The predetermined time is dependent on a type of item coupled to the skewer, dependent on a volume of the elongate trough, a random predetermined time, or combination thereof. In some embodiments, ice formation is monitored via a sensorized mold and/or skewer/clip such that the skewer or clip is removed or retracted based on a progress of ice formation. The method may optionally include releasing the ice from the elongate trough with the item encased therein, for example via gravity, manual removal, automatic removal (e.g., ejector pin, air, hydraulics, etc.). In some embodiments, the method optionally includes sealing a lid to the device, for example via a gasket, pressure seal, screw type seal, etc.
-
FIGS. 17A-17B show varied surface temperature over time at a constant flow. As shown inFIG. 17A , surface temperature is decreased incrementally over time. The size of the increments may vary over time; alternatively, the increments may not vary over time (i.e., are fixed), such that increment remains the same over time. In one exemplary embodiment, the increment is 0.1° C., such that the surface temperature decreases by an increment of about 0.1° C. over time. In other embodiments, the increment may be less than about 0.1° C. or more than about 0.1° C. In some embodiments, the increment may be from about 0.25° C. to about 5° C.; 0.5° C. to about 5° C.; about 1° C. to about 5° C.; about 0.5° C. to about 3° C.; about 0.5° C. to about 2.5° C.; etc. - Further, as shown in
FIGS. 17A-17B , a surface temperature variation may be from about 0° C. to about −10° C.; about 0° C. to about −25° C.; about 0° C. to about −10° C.; about −2° C. to about −7° C.; about −1° C. to about −10° C.; etc. For example, the surface temperature may decrease gradually over time. In the example shown inFIGS. 17A-17B , the percent max water flow remains at 100% through the duration of the ice making method. Alternatively, as one of skill in the art will appreciate, and as shown elsewhere herein, the percent max water flow may vary over time. - Further, as shown in
FIGS. 17A-17B , a skewer or clip may be retracted at one or more of: a predetermined time, based on a degree of ice formation, based on a volume of ice formation, based on a type of inclusion or item coupled to the skewer or clip, based on a sensor reading (e.g., temperature, clarity of ice, volume of ice, etc.) or a combination thereof. As shown inFIGS. 17A-17B and for any of the embodiments described herein, a skewer or clip may be retracted after about 30 minutes to about 180 minutes; about 45 minutes to about 165 minutes; about 30 minutes to about 140 minutes; about 45 minutes to about 125 minutes; about 60 minutes to about 110 minutes; about 75 minutes to about 90 minutes; at about 90 minutes; at about 120 minutes; etc. from or after the start time (time=0) of the method. Alternatively, or additionally, in any of the embodiments described herein, a skewer or clip, may include a heating means (e.g., heating element, heating coils, etc.) such that the skewer or clip may be heated and retracted at any time during or after the ice making process. -
FIGS. 18A-18B show varied flow water rate over time at a constant surface temperature. As shown inFIG. 18A , water flow rate, as a percentage of max water flow, is decreased incrementally over time. The size of the increments may vary over time; alternatively, the increments may not vary over time, such that increment remains the same over time. In one exemplary embodiment, the increment is about 2%, such that the water flow rate decreases by an increment of about 2% over time. In other embodiments, the increment may be less than about 2% or more than about 2%. In some embodiments, the increment may be from about 0.5% to about 95%; about 1% to about 95%; about 2% to about 10%; about 1% to about 5%; about 5% to about 10%; about 5% to about 95%; about 10% to about 90%; about 15% to about 85%; about 20% to about 80%; about 25% to about 75%; about 30% to about 70%; about 35% to about 65%; about 40% to about 60%; about 45% to about 55%; about 45% to about 50%; etc. For example, the percent max water flow may decrease gradually over time. In the example shown inFIGS. 18A-18B , the surface temperature remains constant or fixed during the method. For example, the surface temperature may remain close to or at about −5° C. to about −10° C. For example, the surface temperature may remain at about or substantially −7° C. Alternatively, as one of skill in the art will appreciate, and as shown elsewhere herein, the surface temperature may vary over time. In this embodiment, the skewer or clip is retracted after about or substantially 120 minutes from the start (time=0) of the method. -
FIGS. 19A-19B show varied water flow rate and surface temperature over time. As one can appreciate,FIGS. 19A-19B show a combination of the methods ofFIGS. 17A-17B andFIGS. 18A-18B . In this embodiment, both the surface temperature and the water flow rate are varied over time. The variation may be incremental, at a fixed interval, or variable, in a defined pattern or stochastic within a defined range. -
FIGS. 20A-20B show a method of making clear ice. The method includes an initial cool down cycle where the surface temperature remains fixed for a period of time. For example, the surface temperature may be set at or below about 0° C.; at or below about −2° C.; at or below about −4° C.; at or below about −6° C.; at or below about −8° C.; at or below about −10° C.; at or below about −12° C.; at or below about −14° C.; at or below about −16° C.; at or below about −18° C.; at or below about −20° C. The surface temperature may be set between about 0° C. and about −25° C.; about −5° C. and about −20° C.; about −10° C. and about −15° C.; or about or substantially −10° C. The period of time may range from about 1 minute to about 20 minutes about 1 minute to about 15 minutes; about 5 minutes to about 15 minutes; about 5 minutes to about 10 minutes; about 6 minutes to about 8 minutes; etc. This initial cool down cycle may also be referred to herein as a start plateau or beginning plateau. Further, as shown inFIGS. 20A-20B , the method may include an end plateau, such that the surface temperature is kept substantially constant for a period of time. For example, the surface temperature may be maintained between about 0° C. and about −15° C.; about −5° C. and about −15° C.; about −5° C. and about −10° C.; about −6° C. and about −8° C.; etc. for about 5 to about 150 minutes; about 10 minutes to about 145 minutes; about 20 minutes to about 140 minutes; about 75 minutes to about 115 minutes; about 90 minutes to about 110 minutes; about 100 minutes to about 110 minutes; etc. In between the initial plateau and the end plateau, the surface temperature may be incrementally decreased from about −2° C. to about −7° C. For example, the surface temperature may incrementally decrease by 0.2° C. between the beginning and end plateaus. Alternatively, the increment may be between about 0.1° C. and about 0.5° C.; about 0.1° C. and 1° C.; about 0.1° C. and about 0.3° C.; about 0.1° C. and about 0.4° C.; etc. For the embodiment shown inFIGS. 20A-20B , the water flow rate may vary over time as shown and described forFIGS. 19A-19B . Further, in the embodiment ofFIGS. 20A-20B , the skewer or clip is retracted at about or substantially 120 minutes from a start of the method, as described elsewhere herein. -
FIGS. 21A-21B show a method of making clear ice that is similar to that ofFIGS. 20A-20B , except that the method ofFIGS. 21A-21B further includes an annealing phase at or near the end of the method. For example, an annealing phase may comprise a period of warmer surface temperatures to lessen or reduce internal stress that may lead to cracking. In some embodiments, an annealing phase may be characterized by one or more surface temperature periods that range in temperature from about −5° C. to about 20° C.; about −2° C. to about 15° C.; about 0° C. to about 10° C., or any range or subrange therebetween. For example, an annealing phase may include a first period at a surface temperature between about −5° C. and about 5° C. and a second period at a surface temperature between about 5° C. and about 15° C. Alternatively, an annealing phase may be characterized by one period at a fixed surface temperature or a plurality of periods, each at a different temperature from a previous temperature and a future temperature. Each period of time may range from about 2 minutes to about 60 minutes; about 5 minutes to about 30 minutes; about 5 minutes to about 25 minutes; about 5 minutes to about 20 minutes; about 5 minutes to about 15 minutes; about 10 minutes to about 15 minutes; or any range or subrange therebetween. Further, in the embodiment ofFIGS. 21A-21B , the skewer or clip is retracted at about or substantially 120 minutes from a start of the method, as described elsewhere herein. -
FIGS. 22-22B show a method of making clear ice that is similar to that ofFIGS. 21A-21B , except that the method ofFIGS. 22A-22B further includes a mid-method plateau, such that the surface temperature is kept substantially constant for a period of time. For example, the surface temperature may be maintained between about −10° C. and about 0° C.; about −8° C. and about 0° C.; about −6° C. and about 0° C.; about −6° C. and about −2° C.; about −5° C. and about −2° C.; about −5° C. and about −3° C.; or any range or subrange therebetween for about 5 to about 100 minutes; about 10 minutes to about 95 minutes; about 20 minutes to about 90 minutes; about 30 minutes to about 75 minutes; about 30 minutes to about 60 minutes; about 30 minutes to about 50 minutes; etc. In one example, a mid-cycle plateau may include a surface temperature of about −4° C. for about 45 minutes. In between the initial plateau and the end plateau, the surface temperature may be incrementally decreased from about −2° C. to about −7° C. For example, the surface temperature may incrementally decrease by 0.2° C. between the beginning and end plateaus. Alternatively, the increment may be between about 0.1° C. and about 0.5° C.; about 0.1° C. and 1° C.; about 0.1° C. and about 0.3° C.; about 0.1° C. and about 0.4° C.; etc. For the embodiment shown inFIGS. 20A-20B , the water flow rate may vary over time as shown and described forFIGS. 19A-19B . Further, in the embodiment ofFIGS. 20A-20B , the skewer or clip is retracted at about or substantially 120 minutes from a start of the method, as described elsewhere herein. -
FIGS. 23A-23B show another method of making clear ice. The method is similar to that shown inFIGS. 22A-22B , except the method ofFIGS. 23A-23B includes shifting or adjusting between fluid inlet valves positioned in an inner region and fluid inlet valves positioned in an outer region. In one exemplary embodiment, the inner and outer inlet valves are arranged similar to the embodiment shown inFIG. 11A , with the term “inner” meaning towards the middle of the length of the elongate trough. As shown inFIGS. 23A-23B , the overall water flow rate, as a percentage of max water flow, decreases incrementally over time. The size of the increments may vary over time; alternatively, the increments may not vary over time, such that increment remains the same over time or is fixed. In one exemplary embodiment, the increment is about 2%, such that the flow rate decreases by an increment of about 2% over time. In other embodiments, the increment may be less than about 2% or more than about 2%. In some embodiments, the increment may be from about 0.5% to about 95%; about 1% to about 95%; about 2% to about 10%; about 1% to about 5%; about 5% to about 10%; about 5% to about 95%; about 10% to about 90%; about 15% to about 85%; about 20% to about 80%; about 25% to about 75%; about 30% to about 70%; about 35% to about 65%; about 40% to about 60%; about 45% to about 55%; about 45% to about 50%; etc. For example, the percent max water flow may decrease gradually over time. However, as shown inFIGS. 23A-23B , the overall water flow rate or percent may comprise a combination of flow from flow inlet valves in an inner region and flow inlet valves in an outer region. For example, as water flow into the mold from the inner region inlet valves increases over time, water flow into the mold from the outer region inlet valves decreases over time. This is exemplified in the graph ofFIG. 23B , which shows the intersection between the decreasing outer region water flow and the increasing inner region water flow. For example, the intersection point may be characterized by equal or substantially equal water flow from the inner region and outer region inlet valves (e.g., about 50% of max coming from inner region and about 50% of max coming from outer region). As shown inFIG. 23A , flow through the inlet valves in the inner region increases incrementally over time. For example, the increment may be about 0.25% to about 5%; about 0.5% to about 5%; about 0.75% to about 5%; about 0.5% to about 4%; about 0.5% to about 3%; about 1% to about 3%; about 1.5% to about 2.5%; about 1% to about 50%; about 2% to about 20%; etc. The water flow through the inlet valves in the inner region may start or begin at a flow of about 0% to about 50%; about 0% to about 25%; about 5% to about 20%; about 10% to about 20%; about 5% to about 15%; about 8% to about 12%; etc. As shown inFIG. 23A , flow through the inlet valves in the outer region decreases incrementally over time. For example, the increment may be about 0.25% to about 5%; about 0.5% to about 5%; about 0.75% to about 5%; about 0.5% to about 4%; about 0.5% to about 3%; about 1% to about 3%; about 1.5% to about 2.5%; about 1% to about 50%; about 2% to about 20%; etc. The water flow through the inlet valves in the outer region may start or begin at a flow of about 50% to about 100%; about 50% to about 95%; about 60% to about 95%; about 70% to about 95%; about 80% to about 95%; about 90% to about 95%; about 85% to about 95%; about 88% to about 93%; etc. Alternatively, water flow through the inner region inlet valves may decrease over time and the water flow through the outer region inlet valves may increase over time. Alternatively still, the water flow through the inner region inlet valves may stay constant or fixed while the water flow through the outer region inlet valves increases or decreases over time. Alternatively still, the water flow through the outer region inlet valves may stay constant or fixed while the water flow through the inner region inlet valves increases or decreases over time. -
FIGS. 24A-24B show a method of making clear ice. The method ofFIGS. 24A-24B are similar to that shown inFIGS. 22A-22B , except that instead of the percent max water flow decreasing incrementally over time, the method ofFIGS. 24A-24B include an incremental decrease in water flow over time followed by a period of water flow reversal. Flow reversal means that inlet valves switch to outlet valves and/or outlet valves switch to inlet valves. As shown inFIGS. 24A-24B , the percentage max water flow incrementally decreases over time. For example, the increment may be between about 1% to about 10%; about 1% to about 8%; about 1% to about 6%; about 1% to about 4%; about 2% to about 4%; about 2% to about 5%; etc. for about 50 minutes to about 180 minutes; about 60 minutes to about 170 minutes; about 70 minutes to about 160 minutes; about 70 minutes to about 160 minutes; about 80 minutes to about 150 minutes; about 100 minutes to about 150 minutes; about 125 minutes to about 145 minutes; about 130 minutes to about 140 minutes; etc. A starting water flow percent may be between about 100% to about 50%; about 90% to about 50%; about 80% to about 60%; about 100% to about 90%; etc. An end water flow percent may be between about 0% to about 50%; about 5% to about 45%; about 10% to about 40%; about 15% to about 35%; about 20% to about 30%; about 20% to about 25%; etc. This period of positive flow may be followed by a period of flow reversal as described above. In this embodiment, water flow may be reversed that the fluid inlet valve becomes a fluid outlet valve, such that the water flow percent represents a flow of liquid out of the elongate trough. For example, reversed water flow may occur at between about 0% to about 50%; about 5% to about 45%; about 10% to about 40%; about 15% to about 35%; about 20% to about 35%; about 25% to about 35% about 28% to about 33% of max flow; etc. The period of water flow reversal may be between about 5 minutes to about 100 minutes; about 15% minutes to about 90 minutes; about 25 minutes to about 80 minutes; about 30 minutes to about 80 minutes; about 40 minutes to about 80 minutes; about 50 minutes to about 80 minutes; about 60 minutes to about 80 minutes; about 65 minutes to about 75 minutes; about 70 minutes to about 80 minutes; etc. In some embodiments, as shown inFIGS. 23A-23B , the annealing period may be characterized by a period of about 0% flow such that no liquid is coming into or out of the elongate trough. In other embodiments, the annealing period may be characterized by low water flow, for example 1% to about 10%; about 5% to about 15%; about 5% to about 10%; etc. -
FIGS. 25A-25B show a method of making clear ice similar to a combination of the methods shown inFIGS. 23A-23B andFIGS. 24A-24B . In this embodiment, during the water flow reversal period, end plateau, and annealing phases, the water flow from the inlet valves has switch almost exclusively (i.e., 100%) to inner region flow from the inner region inlet valves. In other embodiments, water flow may switch almost exclusively (i.e., 100%) to outer region flow from the outer region inlet valves. Further, as shown inFIGS. 25A-25B , the intersection period, in which about 50% of water flow is from the inner region inlet valves and about 50% from the outer region inlet valves, has a time window of about 5 minutes to about 60 minutes; about 10 minutes to about 55 minutes; about 15 minutes to about 50 minutes; about 15 minutes to about 45 minutes; about 20 minutes to about 40 minutes; about 25 minutes to about 35 minutes; about 28 minutes to about 32 minutes; etc. - The methods of the preferred embodiment and variations thereof can be embodied and/or implemented at least in part as a machine configured to receive a computer-readable medium storing computer-readable instructions. The instructions are preferably executed by computer-executable components preferably integrated with the system and one or more portions of the processor on a computing device in communication with various components of the device for producing clear ice, such as but not limited to its various valves. The computer-readable medium can be stored on any suitable computer-readable media such as RAMs, ROMs, flash memory, EEPROMs, optical devices (e.g., CD or DVD), hard drives, floppy drives, or any suitable device. The computer-executable component is preferably a general or application-specific processor, but any suitable dedicated hardware or hardware/firmware combination can alternatively or additionally execute the instructions.
- As used in the description and claims, the singular form “a”, “an” and “the” include both singular and plural references unless the context clearly dictates otherwise. For example, the term “trough” may include, and is contemplated to include, a plurality of troughs. At times, the claims and disclosure may include terms such as “a plurality,” “one or more,” or “at least one;” however, the absence of such terms is not intended to mean, and should not be interpreted to mean, that a plurality is not conceived.
- The term “about” or “approximately,” when used before a numerical designation or range (e.g., to define a length or pressure), indicates approximations which may vary by (+) or (−) 5%, 1% or 0.1%. All numerical ranges provided herein are inclusive of the stated start and end numbers. The term “substantially” indicates mostly (i.e., greater than 50%) or essentially all of a device, substance, or composition.
- As used herein, the term “comprising” or “comprises” is intended to mean that the devices, systems, and methods include the recited elements, and may additionally include any other elements. “Consisting essentially of” shall mean that the devices, systems, and methods include the recited elements and exclude other elements of essential significance to the combination for the stated purpose. Thus, a system or method consisting essentially of the elements as defined herein would not exclude other materials, features, or steps that do not materially affect the basic and novel characteristic(s) of the claimed disclosure. “Consisting of” shall mean that the devices, systems, and methods include the recited elements and exclude anything more than a trivial or inconsequential element or step. Embodiments defined by each of these transitional terms are within the scope of this disclosure.
- The examples and illustrations included herein show, by way of illustration and not of limitation, specific embodiments in which the subject matter may be practiced. Other embodiments may be utilized and derived therefrom, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. Such embodiments of the inventive subject matter may be referred to herein individually or collectively by the term “invention” merely for convenience and without intending to voluntarily limit the scope of this application to any single invention or inventive concept, if more than one is in fact disclosed. Thus, although specific embodiments have been illustrated and described herein, any arrangement calculated to achieve the same purpose may be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, will be apparent to those of skill in the art upon reviewing the above description.
- As described above, the cross-sectional shape of the elongate trough can have an impact on both the clarity of clear ice formed as well as the time required of a freezing operation of the device to generate a particular volume of clear ice in many embodiments. Because heat flow through ice is directly proportional to 1/W2 (wherein W is the distance to the center of the flume at a given height), the time required for the formation of a certain volume of ice can be approximated by the following Formula 1:
-
- Wherein Lv is the Latent Heat of Fusion of the liquid (e.g., water), K is the thermal conductivity of ice, and ΔT is the temperature differential experienced across the medium in which heat is flowing.
- Table 1 shows the difference in time required to grow an ingot of ice having a height of 85.0 mm in various elongate troughs, all having a semicircular base flume surface wall with a 3-inch diameter but with varying slopes of the side flume walls. Because they have an identical base flume surface wall, no difference is noted in the rate of ice formation until is growth expands onto the side flume surface walls. By the end of the ice formation process, the example with the greatest slope of its walls (an 8.5° angle) yields the slowest time for forming the last 5 mm increments of ice height, an additional 228 seconds over the example having vertical walls.
- In applying too great of a temperature differential across a length of a solid material, cracks can form in ice, which negatively affects the visual clarity of ice. For example, if one ramps the freezing temperature down too quickly, the newly frozen ice will form cracks as it suddenly freezes. Ramping the temperature down, however, can be quite valuable during a freezing operation of various ice makers, including embodiments of the device of
FIG. 1 as described herein, in order to overcome the inherent insulating properties of the accumulating ice. In many embodiments, ramping down the temperature of the surface for ice generation such as a flume surface wall of the device described herein can be necessary to generate a sizable ingot of ice in a freezing operation having a duration of twelve hours or less. - Therefore, for the generation of a high-quality clear ice product, this stress must be avoided during the ice formation process. The stress (σ) experienced by ice can be calculated by the following Formula 2:
-
σ=αEΔT (Formula 2) - Wherein a is the coefficient of thermal expansion for ice (5.0×10−5° C.−1), E is Young's modulus, and ΔT is the temperature differential experienced across the medium in which heat is flowing. Empirically, it is known that ice can withstand about 1 MPa of stress under this calculation before cracking.
- However, as long as the conditions are not so stressful as to crack the ice, the ice naturally “relaxes” over time and reduces its experienced stress (this process is also known as creep, where solids materials near their melting point undergo physical deformations; this reduces the likelihood of cracking). The time tλ required to relax a proportion of stress λ (the relaxation factor) from a material can be calculated by the following Formula 3:
-
- Wherein n is a first material constant for ice (a value of 3, unitless), A0 is a second material constant for ice (1.36×109 MPa−3s−1), σ is the starting stress of the material in MPa, E is Young's Modulus, Q is the activation energy (78,000 Jmol−1K−1), R is the universal gas constant, and T is the absolute temperature. Ice accumulation and relaxation can occur simultaneously as long as the experienced conditions do not apply a stress greater than 1 MPa at any point during the cycle. Therefore, the temperature of a cold surface for the generation of ice, such as a flume surface wall, can be ramped down as long as its schedule allows for sufficient relaxation against the gaining stress.
- Table 2 depicts one embodiment of such a temperature schedule for a linear accumulation of ice in one dimension that is orthogonal to a cold surface that additionally takes into account the insulating properties of ice (see Example 1 and various discussions herein). The starting conditions and time were experimentally determined as to reasonably approach the 1 MPa maximum stress, but each subsequent temperature step and duration thereat were calculated by the above formulae such that sufficient relaxation could occur at a pace that allowed the total stress to remain just under about 1 MPa. This thereby can maximize the rate of ice accumulation while preserving a clarity unblemished with cracks. By this model, about 5.5 cm of clear ice can be generated in 198 minutes without cracking.
- Because the accumulation of clear ice within an elongate trough of the device as described herein generally occurs in a multidirectional manner (e.g.,
FIG. 2 ), a second stress model was generated by applying the principles of above Example 2 to the dimensions of one embodiment of an elongate trough and approximating the surface area of heat transfer with that of a pipe (ignoring the end caps). This cylindrical approximation requires the use of a log mean cross sectional area (see Formula 4) within Fourier's Law of Heat Exchange (see Formula 5) because of the changing radius as accumulates and its effects on surface area available for heat exchange. -
- Wherein Aouter is the surface area of the outer cylindrical surface and Ainner is the surface area of the inner cylindrical surface. The surface area of a cylindrical shape can be calculated by A=2πL wherein r is the radius of the cylinder and L is the length of the cylinder.
-
- Wherein k is the thermal conductivity of the material, A is Alm, ΔT is the change in temperature across the system, and Ar is the change in radius for the cylinder.
- Table 3 presents an example temperature ramp schedule for ice formation that allows for sufficient relaxation in order to maintain the total stress on the ice under 1 MPa. In this embodiment, the elongate trough was 72 inches (about 1829 mm) long, a height of 3.5 inches (about 88.9 mm), a semicircular bottom having a radius of 1.5 inches (about 38.1 mm) and wherein the side walls had a slope of 2° off vertical (e.g.,
FIG. 3C ). The model was run out to about 40 mm of accumulated ice thickness wherein the elongate trough would reach approximately maximum ice formation within its defined volume. As depicted, the presented temperature schedule can produce the approximately 40 mm of ice needed to fill the exemplary elongate trough in about 2 hours without cracking.
Claims (22)
1-64. (canceled)
65. A device for making clear ice comprising:
at least one housing comprising at least one flume surface wall that defines at least one elongate trough;
at least one fluid intake disposed to provide a flow of fluid into the at least one elongate trough; and
at least one drain disposed to drain fluid from the at least one elongate trough,
wherein at least a portion of the at least one flume surface wall is in thermal communication with a cooling source,
wherein the at least one fluid intake and the at least one drain are configured to provide a substantially constant flow of fluid to the at least one elongate trough during a freezing operation of the device,
wherein the at least one fluid intake comprises a fluid intake manifold that defines an intake manifold cavity that is fluidly connected to the at least one elongate trough through a fluid entry portal.
66. The device of claim 65 , wherein the cooling source is selected from the group consisting of: an internal cooling cavity defined by the housing, an evaporator, a cold plate, and a condenser.
67. The device of claim 65 , wherein the at least one elongate trough has a total depth divided into an ice-forming zone and a fluid overflow zone, and wherein a surface area of the flume surface wall at least coextensive with the fluid overflow zone and comprises a thermally insulating material.
68. The device of claim 65 , wherein the drain comprises a drain manifold that defines a single drain manifold cavity that is fluidly connected to the at least one elongate trough through a fluid exit portal of the at least one elongate trough.
69. The device of claim 68 , wherein the drain manifold further comprises a drain flow divider insert having a porosity of about 10% open area to about 50% open area within the drain manifold cavity.
70. The device of claim 69 , wherein the drain flow divider insert forms an arcuate shape and is coupled to adjacent corners of the drain manifold cavity, thereby dividing the drain manifold cavity into a first portion and a second portion, wherein at least one drainage pipe is in fluid communication with the first portion, and wherein the fluid exit portal is in fluid communication with the second portion.
71. The device of claim 65 , wherein the substantially constant flow of fluid is provided at a velocity of at least about 0.09 m/s (about 0.3 ft/s) through the at least one elongate trough.
72. The device of claim 65 , wherein the substantially constant flow of fluid has a velocity of at least about 0.21 m/s (about 0.7 ft/s) through the at least one elongate trough.
73. The device of claim 65 , further comprising at least one lid configured to enclose the at least one elongate trough when the at least one trough is removably coupled to the housing.
74. The device of claim 65 , further comprising one or more retractable inclusion holders configured to be disposed within a cavity defined by the at least one elongate trough.
75. A method for manufacturing clear ice comprising:
providing a device for making clear ice comprising:
a housing comprising at least one flume surface wall that defines at least one elongate trough;
a fluid intake disposed to provide a flow of fluid into the at least one elongate trough;
a drain disposed to drain fluid from the at least one elongate trough;
wherein at least a portion of the at least one flume surface wall is in thermal communication with a cooling source;
wherein the fluid intake and the drain are configured to provide a substantially constant flow of fluid to the at least one elongate trough during a freezing operation of the device, the fluid intake comprising a fluid intake manifold that defines a single intake manifold cavity that is fluidly connected to the at least one elongate trough through a fluid entry portal;
providing a substantially constant flow of fluid down the at least one elongate trough via the fluid intake and the drain; and
cooling the at least one flume surface wall to a temperature of less than or equal to about 0 degrees Celsius.
76. The method of claim 75 , wherein the cooling source is selected from the group consisting of: an internal cooling cavity defined by the housing, an evaporator, a cold plate, and a condenser.
77. The method of claim 75 , wherein the device for making clear ice further comprises:
one or more inclusion holders configured to be disposed within the at least one elongate trough and retracted in response to a predefined level of ice accumulation within a cavity defined by the at least one elongate trough.
78. The method of claim 77 , further comprising:
securing an item with the one or more inclusion holders such that the item is positioned within a cavity defined by the at least one elongate trough; and
retracting the one or more inclusion holders after a sufficient accumulation of ice within the at least one elongate trough such that the item remains at least partially embedded in the accumulation of ice upon retraction of the one or more inclusion holders.
79. The method of claim 75 , wherein the substantially constant flow of fluid down the at least one elongate trough has a velocity of at least about 0.09 m/s (about 0.3 ft/s) through the at least one elongate trough.
80. The method of claim 75 , wherein the substantially constant flow of fluid has a velocity of at least about 0.21 m/s (about 0.7 ft/s) through the at least one elongate trough.
81. A device for making clear ice comprising:
at least one housing defining a plurality of elongate troughs;
at least one fluid intake disposed to provide a flow of fluid into the plurality of elongate troughs; and
at least one drain disposed to drain fluid from the plurality of elongate troughs,
wherein at least a portion of an exterior of each of the plurality of elongate troughs is in thermal communication with a cooling source,
wherein the at least one fluid intake and the at least one drain are configured to provide a substantially constant flow of fluid to the plurality of elongate troughs during a freezing operation of the device,
wherein the fluid intake comprises a fluid intake manifold that defines an intake manifold cavity that is fluidly connected to each of the plurality of elongate troughs through a plurality of fluid entry portals.
82. The device of claim 81 , wherein the cooling source is selected from the group consisting of: an internal cooling cavity defined by the housing, an evaporator, a cold plate, and a condenser.
83. The device of claim 81 , wherein each of the plurality of elongate troughs has a total depth divided into an ice-forming zone and a fluid overflow zone, and wherein a portion of an internal surface of each of the plurality of elongate troughs is at least coextensive with the fluid overflow zone and comprises a thermally insulating material.
84. The device of claim 81 , wherein plurality of elongate troughs comprises at least four troughs arranged substantially in parallel and in a side by side arrangement.
85. The device of claim 81 , wherein the substantially constant flow of fluid is provided at a velocity of at least about 0.09 m/s (about 0.3 ft/s) through the at least one elongate trough.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/253,555 US20240027118A1 (en) | 2020-11-20 | 2021-11-18 | Devices for producing clear ice products and related methods |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202063116453P | 2020-11-20 | 2020-11-20 | |
US202163276506P | 2021-11-05 | 2021-11-05 | |
PCT/US2021/059988 WO2022109201A1 (en) | 2020-11-20 | 2021-11-18 | Devices for producing clear ice products and related methods |
US18/253,555 US20240027118A1 (en) | 2020-11-20 | 2021-11-18 | Devices for producing clear ice products and related methods |
Publications (1)
Publication Number | Publication Date |
---|---|
US20240027118A1 true US20240027118A1 (en) | 2024-01-25 |
Family
ID=81658108
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/253,555 Pending US20240027118A1 (en) | 2020-11-20 | 2021-11-18 | Devices for producing clear ice products and related methods |
US17/530,426 Active US11408659B2 (en) | 2020-11-20 | 2021-11-18 | Devices for producing clear ice products and related methods |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/530,426 Active US11408659B2 (en) | 2020-11-20 | 2021-11-18 | Devices for producing clear ice products and related methods |
Country Status (3)
Country | Link |
---|---|
US (2) | US20240027118A1 (en) |
EP (1) | EP4248152A1 (en) |
WO (1) | WO2022109201A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4055331A4 (en) | 2019-11-06 | 2023-11-22 | Abstract Ice, Inc. | Systems and methods for creating clear ice |
US20230027053A1 (en) * | 2021-07-21 | 2023-01-26 | Haier Us Appliance Solutions, Inc. | Clear ice making systems and methods |
US20240167747A1 (en) * | 2022-11-21 | 2024-05-23 | Abstract Ice, Inc. | Devices for producing clear ice products |
WO2024177741A1 (en) * | 2023-02-21 | 2024-08-29 | Abstract Ice, Inc. | Devices for producing clear ice products |
Family Cites Families (166)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2334941A (en) | 1943-11-23 | Baixast device for ice cubes | ||
US230318A (en) | 1880-07-20 | John w | ||
US1380933A (en) | 1920-04-01 | 1921-06-07 | Frank H Czieslik | Method of ice-making |
US2036706A (en) | 1934-12-03 | 1936-04-07 | Law Harold Ward | Frozen confection |
US2221847A (en) | 1939-10-04 | 1940-11-19 | Samuel R Rodgers | Ice making machine |
US2677249A (en) | 1951-09-18 | 1954-05-04 | Sabra E Mason | Apparatus for forming ice cubes |
US2717504A (en) | 1954-09-15 | 1955-09-13 | Servel Inc | Ice maker |
US3173175A (en) | 1958-05-09 | 1965-03-16 | Jerome H Lemelson | Molding apparatus |
US3226944A (en) | 1964-09-28 | 1966-01-04 | Myles F Connors | Portable ice maker |
IT1048918B (en) | 1971-03-10 | 1980-12-20 | Seinankaihatu Co Ltd | METHOD TO PRESERVE THE COLOR OF ANIMAL FABRICS |
US3796063A (en) | 1972-04-06 | 1974-03-12 | W Wulke | Ice cube making device |
US3812686A (en) | 1973-01-12 | 1974-05-28 | Winget Ltd | Ice making apparatus |
US3940232A (en) | 1974-04-01 | 1976-02-24 | Stock Malcolm D | Apparatus for making ice cubes or the like |
US3952539A (en) | 1974-11-18 | 1976-04-27 | General Motors Corporation | Water tray for clear ice maker |
US3984996A (en) | 1975-04-02 | 1976-10-12 | General Motors Corporation | Vertical tube ice maker |
FR2330977A1 (en) | 1975-11-07 | 1977-06-03 | Castel Mac Spa | Batch type ice cube making machine - has freezer elements which dip into pivotable water trough |
US4112921A (en) | 1977-04-25 | 1978-09-12 | Calmac Manufacturing Corporation | Method and system for utilizing a flexible tubing solar collector |
US4164343A (en) | 1977-09-12 | 1979-08-14 | Henry Voyt Machine Co. Inc. | Eccentric ball type valve |
US4189928A (en) | 1978-08-23 | 1980-02-26 | Cerny Adrian F | Ice top meat cutting apparatus |
US4335155A (en) | 1981-03-06 | 1982-06-15 | General Mills, Inc. | Composition for aerated frozen desserts containing fruit puree and method of preparation |
US4455843A (en) | 1981-06-21 | 1984-06-26 | Quarles James H | Ice making machine for selectively making solid and hollow ice |
US4498595A (en) | 1982-09-28 | 1985-02-12 | Wilson Roland B | Ice block making and storage system |
US4601174A (en) | 1982-09-28 | 1986-07-22 | Wilson Roland B | Ice block making and storage system |
CA1226450A (en) | 1983-07-29 | 1987-09-08 | Gregory S. Degaynor | Ice bowl freezing apparatus |
CA1211948A (en) | 1983-09-06 | 1986-09-30 | Walter Povajnuk | Icemaker |
JPS6138373A (en) | 1984-07-31 | 1986-02-24 | 株式会社ニチレイ | Manufacture of processing ice in which soluble additive component is dispersed and included |
JPS646664A (en) | 1987-06-26 | 1989-01-11 | Matsushita Refrigeration | Ice machine for refrigerator, etc. |
US4776566A (en) | 1987-07-10 | 1988-10-11 | Henry Vogt Machine Co. | Raised hardface overlay valve seat |
EP0333887B1 (en) | 1988-03-19 | 1990-12-12 | Theo Wessa | Device for making small translucent pieces of ice |
US4833894A (en) | 1988-05-02 | 1989-05-30 | Whirlpool Corporation | Ice maker with overtemperature protection |
US4852359A (en) | 1988-07-27 | 1989-08-01 | Manzotti Ermanno J | Process and apparatus for making clear ice cubes |
DE3835132A1 (en) | 1988-10-15 | 1990-04-19 | Gaggenau Werke | DEVICE FOR THE PRODUCTION OF CLEAR DISEASES |
US4990169A (en) * | 1988-11-14 | 1991-02-05 | Broad Research | Ice making method and/or apparatus |
US5032157A (en) | 1988-12-01 | 1991-07-16 | Thermadyne, Inc. | Icemaker system with wide range condensing temperatures |
US4954151A (en) | 1989-01-10 | 1990-09-04 | Polar Spring Corporation | Method and means for optimizing batch crystallization for purifying water |
DE3909318A1 (en) | 1989-03-21 | 1990-09-27 | Josef Hobelsberger | METHOD FOR PRODUCING AN ICE BODY WITH AT LEAST ONE INCLUSION |
WO1990011479A2 (en) | 1989-03-21 | 1990-10-04 | Josef Hobelsberger | Process and device for manufacturing ice figures |
JPH0367973A (en) | 1989-08-08 | 1991-03-22 | Yokohama Ichiba Reizou Kk | Ice-making machine and decorated ice |
JPH03170759A (en) | 1989-11-29 | 1991-07-24 | Matsushita Refrig Co Ltd | Automatic ice plant |
US5069044A (en) | 1990-02-21 | 1991-12-03 | Prr Industries, Inc. | Ice block press |
DE4012249A1 (en) * | 1990-04-14 | 1991-10-17 | Gaggenau Werke | DEVICE FOR THE PRODUCTION OF CLEAR TISSUES AND CONTROL CIRCUIT TO THEREFORE |
US5054547A (en) | 1990-09-28 | 1991-10-08 | Henry Vogt Machine Co. | Vertical tube heat exchanger apparatus having resilient distributor devices and a resilient distributor device therefor |
US5076069A (en) | 1990-11-16 | 1991-12-31 | Brown Kenneth G | Means and methods for making blocks of crystal clear ice |
US5167132A (en) | 1991-07-15 | 1992-12-01 | Meier Gary B | Automatic ice block machine |
US5187948A (en) | 1991-12-31 | 1993-02-23 | Whirlpool Corporation | Clear cube ice maker |
US5431027A (en) | 1992-03-23 | 1995-07-11 | Henry Vogt Machine Co. | Flake ice-making apparatus |
US5254355A (en) | 1992-05-29 | 1993-10-19 | Kraft General Foods, Inc. | Process for beverage tablets and products therefrom |
JP3340185B2 (en) | 1993-05-13 | 2002-11-05 | 松下冷機株式会社 | Automatic ice making equipment |
US5419285A (en) | 1994-04-25 | 1995-05-30 | Henry Vogt Machine Co. | Boiler economizer and control system |
US5555747A (en) | 1994-07-28 | 1996-09-17 | Polar Spring Corporation | Control of crystal growth in water purification by directional freeze crystallization |
US5618463A (en) | 1994-12-08 | 1997-04-08 | Rindler; Joe | Ice ball molding apparatus |
TW350761B (en) | 1996-08-30 | 1999-01-21 | Air Prod & Chem | Method and apparatus for moulding a food product |
JP2883315B2 (en) | 1996-11-19 | 1999-04-19 | 勝三 素村 | Ornamental flower in ice and its manufacturing method |
US5778677A (en) | 1997-04-22 | 1998-07-14 | Hung; Chichuan | Device for making ice blocks |
US6233962B1 (en) | 1997-05-12 | 2001-05-22 | Sir Worldwide, Llc | Channeled freeze processing of non-solid materials |
JPH11142033A (en) * | 1997-11-07 | 1999-05-28 | Hoshizaki Electric Co Ltd | Falling type ice making machine |
US6004606A (en) | 1998-02-23 | 1999-12-21 | Nestec S.A. | Process for preparation of extruded patterned frozen confectionery products |
US6089035A (en) | 1998-12-31 | 2000-07-18 | Mildengren; Steve | Integrated mini ice sheets |
US7426838B1 (en) | 1999-10-08 | 2008-09-23 | General Electric Company | Icemaker assembly |
US6405546B1 (en) | 2000-08-16 | 2002-06-18 | Gregory M. Billman | Ice maker harvest control and method |
EP1320298B8 (en) | 2000-08-18 | 2007-10-10 | FBD Partnership LP | Frozen beverage machine |
US6857277B2 (en) | 2000-09-01 | 2005-02-22 | Katsuzo Somura | Process and equipment for manufacturing clear, solid ice of spherical and other shapes |
US6357720B1 (en) | 2001-06-19 | 2002-03-19 | General Electric Company | Clear ice tray |
US20030129282A1 (en) | 2001-08-31 | 2003-07-10 | Solorio Hector A. | Frozen drink mixes |
JP3588775B2 (en) | 2001-10-17 | 2004-11-17 | 有限会社大信製作所 | Apparatus for producing molded ice blocks and method for producing molded ice blocks |
JP2003279208A (en) | 2002-03-22 | 2003-10-02 | Matsushita Refrig Co Ltd | Water storage type ice making machine |
US6935124B2 (en) | 2002-05-30 | 2005-08-30 | Matsushita Electric Industrial Co., Ltd. | Clear ice making apparatus, clear ice making method and refrigerator |
IL151013A (en) | 2002-07-31 | 2003-12-10 | Lior Halevy | Frozen confectionery product and method of preparation |
JP4572833B2 (en) | 2003-03-11 | 2010-11-04 | パナソニック株式会社 | Ice making equipment |
KR200317463Y1 (en) | 2003-03-17 | 2003-06-25 | 심현선 | A molding apparatus for a ice sculpture |
US7082782B2 (en) | 2003-08-29 | 2006-08-01 | Manitowoc Foodservice Companies, Inc. | Low-volume ice making machine |
US7021081B2 (en) | 2003-11-03 | 2006-04-04 | Airgas Dry Ice | Dry ice block extruder |
TWI335407B (en) | 2003-12-19 | 2011-01-01 | Hoshizaki Electric Co Ltd | Automatic ice making machine |
DE202004002823U1 (en) | 2004-02-20 | 2004-04-29 | Gabotex Vertrieb Import Providing Gmbh | Ice cube or ice stick mold for producing ice for cooling drinks has profiled mold with connected fruit or vegetable shapes and narrow portions at ends holding ends of profiled cocktail sticks |
CA2471969A1 (en) | 2004-06-23 | 2005-12-23 | Lionel Gerber | Heat exchanger for use in an ice machine |
US7340913B2 (en) | 2004-08-05 | 2008-03-11 | Manitowoc Foodservice Companies, Inc. | Ice machine and ice-making assembly including a water distributor |
US7210298B2 (en) | 2005-05-18 | 2007-05-01 | Ching-Yu Lin | Ice cube maker |
US8628814B2 (en) | 2005-06-08 | 2014-01-14 | Dazzlepie Partners, Ltd. | Acid-thickened food compositions and products |
US7703299B2 (en) | 2005-06-22 | 2010-04-27 | Manitowoc Foodservice Companies, Inc. | Ice making machine, evaporator assembly for an ice making machine, and method of manufacturing same |
ATE524074T1 (en) | 2005-07-22 | 2011-09-15 | Unilever Nv | BEVERAGE PREPRODUCT AND PROCESS FOR ITS PRODUCTION |
US7540161B2 (en) | 2005-10-05 | 2009-06-02 | Mile High Equipment Llc | Ice making machine, method and evaporator assemblies |
US20080075820A1 (en) | 2006-09-25 | 2008-03-27 | Fernandez Raymon E | System and method for adding moisture to food during barbecue grilling |
US20080092574A1 (en) | 2006-10-20 | 2008-04-24 | Doberstein Andrew J | Cooler with multi-parameter cube ice maker control |
DE602006016963D1 (en) | 2006-10-31 | 2010-10-28 | Electrolux Home Prod Corp | Apparatus and method for the automatic production of transparent ice and refrigerator with such a device |
US8042344B2 (en) | 2006-11-02 | 2011-10-25 | Hoshizaki Denki Kabushiki Kaisha | Automatic ice making machine and operation method therefor |
WO2008061179A2 (en) | 2006-11-15 | 2008-05-22 | Tiax Llc | Devices and methods for making ice |
US7832219B2 (en) | 2006-12-29 | 2010-11-16 | Manitowoc Foodservice Companies, Inc. | Ice making machine and method |
US7448863B2 (en) | 2007-03-07 | 2008-11-11 | Wu Chang Yang | Ice-carving machine |
CN101077094B (en) | 2007-06-27 | 2011-11-16 | 张占发 | Tea-type capable of holding tea flavor |
NL1034074C2 (en) | 2007-07-02 | 2009-01-05 | Schoonen Beheer B V W | Device and method for manufacturing ice cubes. |
US20090152438A1 (en) | 2007-12-12 | 2009-06-18 | Yue-Long Chu | Clear Ice Cube Tray |
US20090208611A1 (en) | 2008-02-18 | 2009-08-20 | Mary Elizabeth Williams | Food Product |
US8783046B2 (en) | 2009-12-08 | 2014-07-22 | Wet Enterprises, Inc. | Ice display device |
US20110300264A1 (en) | 2010-06-06 | 2011-12-08 | Neta Edith Ramos Da Conceicao | Frozen instant beverage product |
KR101264618B1 (en) | 2010-06-24 | 2013-05-27 | 코웨이 주식회사 | Method for making ice |
US8882489B1 (en) | 2010-07-09 | 2014-11-11 | Coomer Properties, LLC | Ice shaping device |
KR102010969B1 (en) | 2010-12-08 | 2019-08-14 | 웅진코웨이 주식회사 | Ice maker and ice making method using the same |
US20170042181A1 (en) | 2011-01-25 | 2017-02-16 | Ice Pro Systems, Llc | Ice machine for dispensing flavored ice cubes and methods of making flavored ice cubes |
US20120192584A1 (en) | 2011-01-25 | 2012-08-02 | Fiaschi Robert J | Ice Machine For Dispensing Flavored Ice Cubes |
KR101218236B1 (en) | 2011-04-01 | 2013-01-03 | 김혜련 | Iceberg ice use for iceberg water and equipment, method thereof |
US9066529B2 (en) | 2011-04-27 | 2015-06-30 | Brooklyn Water Enterprises, Llc | Method and apparatus for flavored ice making |
CN202141268U (en) | 2011-06-07 | 2012-02-08 | 甄世华 | Hollow ice-making molding mould |
US8844314B2 (en) | 2011-06-22 | 2014-09-30 | Whirlpool Corporation | Clear ice making system and method |
US8756951B2 (en) * | 2011-06-22 | 2014-06-24 | Whirlpool Corporation | Vertical ice maker producing clear ice pieces |
KR101913423B1 (en) | 2011-09-09 | 2018-12-31 | 엘지전자 주식회사 | refrigerator |
US9238575B2 (en) | 2012-02-23 | 2016-01-19 | Michael Guido | Ice luge apparatus, systems, and methods for chilled beverage dispensing |
US20130232992A1 (en) | 2012-03-08 | 2013-09-12 | Hana Bisceglie | Novel ice and methods of manufacturing ice |
KR101225651B1 (en) | 2012-06-19 | 2013-01-23 | 나필용 | Ice making plate and injection molding apparatus of ice making plate |
US20130340462A1 (en) | 2012-06-22 | 2013-12-26 | Jeffrey L. Bush | Ice bar system |
ES2467699B1 (en) | 2012-09-28 | 2015-04-08 | Manuel Estrada Amo | Fast freezing of ice cubes comprising method, device, product and uses |
US9291381B2 (en) | 2012-11-13 | 2016-03-22 | William G. Nelson | Clear ice making machine |
US8925335B2 (en) | 2012-11-16 | 2015-01-06 | Whirlpool Corporation | Ice cube release and rapid freeze using fluid exchange apparatus and methods |
US9310116B2 (en) | 2012-11-16 | 2016-04-12 | Whirlpool Corporation | Ice storage to hold ice and minimize melting of ice spheres |
CN102980328B (en) | 2012-12-10 | 2015-04-22 | 丹佛斯(杭州)板式换热器有限公司 | Plate type heat exchanger |
US20140165602A1 (en) | 2012-12-13 | 2014-06-19 | Whirlpool Corporation | Clear ice maker and method for forming clear ice |
US9151527B2 (en) | 2012-12-13 | 2015-10-06 | Whirlpool Corporation | Molded clear ice spheres |
US9074803B2 (en) | 2012-12-13 | 2015-07-07 | Whirlpool Corporation | Clear ice spheres |
US9200823B2 (en) | 2012-12-13 | 2015-12-01 | Whirlpool Corporation | Ice maker with thermoelectrically cooled mold for producing spherical clear ice |
US9476629B2 (en) | 2012-12-13 | 2016-10-25 | Whirlpool Corporation | Clear ice maker and method for forming clear ice |
US9074802B2 (en) | 2012-12-13 | 2015-07-07 | Whirlpool Corporation | Clear ice hybrid mold |
US9759472B2 (en) | 2012-12-13 | 2017-09-12 | Whirlpool Corporation | Clear ice maker with warm air flow |
US9470448B2 (en) | 2012-12-13 | 2016-10-18 | Whirlpool Corporation | Apparatus to warm plastic side of mold |
US9696079B2 (en) | 2012-12-13 | 2017-07-04 | Whirlpool Corporation | Rotational ice maker |
US9459034B2 (en) | 2012-12-13 | 2016-10-04 | Whirlpool Corporation | Method of producing ice segments |
US9518770B2 (en) | 2012-12-13 | 2016-12-13 | Whirlpool Corporation | Multi-sheet spherical ice making |
US9080800B2 (en) | 2012-12-13 | 2015-07-14 | Whirlpool Corporation | Molded clear ice spheres |
US9163867B2 (en) | 2012-12-14 | 2015-10-20 | Whirlpool Corporation | Ice cube shape manipulation via heat |
US9733003B2 (en) | 2012-12-27 | 2017-08-15 | OXEN, Inc. | Ice maker |
KR102130632B1 (en) | 2013-01-02 | 2020-07-06 | 엘지전자 주식회사 | Ice maker |
JP5324005B1 (en) | 2013-02-07 | 2013-10-23 | 稲森 總一郎 | Ice machine |
GB201307560D0 (en) | 2013-04-26 | 2013-06-12 | British American Tobacco Co | Ice article |
NL2010730C2 (en) | 2013-04-29 | 2014-10-30 | R Th M Van Der Kemp Beheer B V | MAIN FOR ICE IMAGE, AND METHOD FOR MAKING ICE IMAGE. |
EP2807931A1 (en) | 2013-05-28 | 2014-12-03 | W. Schoonen Beheer B.V. | Ice cube maker |
WO2015009929A1 (en) | 2013-07-18 | 2015-01-22 | Propeller, Inc. | Ice mold |
US10151519B2 (en) | 2013-07-23 | 2018-12-11 | Wintersmiths, Llc | Devices and methods for making shaped clear ice |
US9784492B2 (en) | 2013-07-23 | 2017-10-10 | Wintersmiths, Llc | Device and method for producing clear ice spheres |
US9759470B2 (en) | 2013-08-08 | 2017-09-12 | Sweet Ice, Inc. | Method and apparatus for instant ice making |
US9574811B2 (en) | 2013-10-18 | 2017-02-21 | Rocco Papalia | Transparent ice maker |
US9874387B2 (en) | 2013-10-24 | 2018-01-23 | Grant Richard Jobb | Method of producing and packaging ice cubes |
JP6598429B2 (en) | 2014-01-16 | 2019-10-30 | 江崎グリコ株式会社 | Ice grain group for cold liquid food with ice and method for producing the same, container with ice grain group, and cold liquid food with ice |
KR20170018003A (en) | 2014-06-12 | 2017-02-15 | 엘라드 모르 | Methods and apparatus for creating photonic structured ice cube |
JP2016054654A (en) | 2014-09-05 | 2016-04-21 | グリコ乳業株式会社 | Frozen material group for cold liquid food containing ice, method for producing the same, container containing frozen material group, and cold liquid food containing ice |
US9482456B2 (en) | 2014-09-24 | 2016-11-01 | Hani Toma | Automatic turning ice block apparatus and method |
CN106135628A (en) | 2015-04-21 | 2016-11-23 | 陈昶旸 | There is ice body structure and the manufacture method thereof of water-soluble inclusions |
US20170082338A1 (en) | 2015-09-18 | 2017-03-23 | Jesse L. Wobrock | Systems and methods for forming shaped ice |
KR101760814B1 (en) | 2015-11-03 | 2017-07-25 | 서대원 | Apparatus of molding ice-ball |
TR201608296A3 (en) | 2016-06-17 | 2018-03-21 | Arcelik As | A COOLER WITH TRANSPARENT ICE MAKING APPARATUS |
US20180017303A1 (en) | 2016-07-12 | 2018-01-18 | Hsu- Hui Hsu | Ice making for making single layer and double layer ice brick |
US10184710B2 (en) | 2016-09-07 | 2019-01-22 | Bsh Hausgeraete Gmbh | Ice maker tray with integrated flow channel for a fluid, ice maker and household refrigeration apparatus |
US10746452B2 (en) | 2016-12-08 | 2020-08-18 | Whirlpool Corporation | Ice cutting tray |
US10422564B2 (en) | 2017-03-06 | 2019-09-24 | Ice Castles, Llc | Apparatus and methods for constructing ice structures |
CN106949685A (en) * | 2017-04-21 | 2017-07-14 | 合肥梦飞电器有限公司 | Ice making equipment |
US20180306479A1 (en) | 2017-04-22 | 2018-10-25 | Jordan VAZQUEZ | Ice tray assembly |
KR102363407B1 (en) | 2017-07-05 | 2022-02-16 | 엘지전자 주식회사 | Refrigerator |
US10544974B2 (en) | 2017-09-01 | 2020-01-28 | Rebound Technologies, Inc. | Solid production methods, systems, and devices |
US10539354B2 (en) | 2017-12-22 | 2020-01-21 | Electrolux Home Products, Inc. | Direct cooling ice maker |
US10724779B2 (en) | 2018-01-04 | 2020-07-28 | Big A Ice Company, LLC | System and method for manufacturing shaped ice |
US10746453B2 (en) | 2018-02-23 | 2020-08-18 | Haier Us Appliance Solutions, Inc. | Active ice press assembly |
US10605511B2 (en) | 2018-05-02 | 2020-03-31 | Bsh Home Appliances Corporation | Clear ice maker assembly for producing clear ice for refrigerator appliance |
US11105543B2 (en) | 2018-07-20 | 2021-08-31 | Weller Ice, LLC | Ice machine |
US10788250B2 (en) | 2018-07-25 | 2020-09-29 | Haier Us Appliance Solutions, Inc. | Ice making assemblies and methods for making clear ice |
CN208606446U (en) | 2018-07-26 | 2019-03-15 | 济南美特斯机械设备有限公司 | Slice ice machine water recovery apparatus |
CN208804924U (en) | 2018-07-26 | 2019-04-30 | 济南美特斯机械设备有限公司 | Slice ice machine easy to repair |
US10801768B2 (en) * | 2018-08-06 | 2020-10-13 | Haier Us Appliance Solutions, Inc. | Ice making assemblies for making clear ice |
CN111197906B (en) | 2018-11-16 | 2022-07-08 | Lg电子株式会社 | Ice maker and refrigerator with same |
EP4055331A4 (en) | 2019-11-06 | 2023-11-22 | Abstract Ice, Inc. | Systems and methods for creating clear ice |
-
2021
- 2021-11-18 US US18/253,555 patent/US20240027118A1/en active Pending
- 2021-11-18 EP EP21895628.2A patent/EP4248152A1/en active Pending
- 2021-11-18 US US17/530,426 patent/US11408659B2/en active Active
- 2021-11-18 WO PCT/US2021/059988 patent/WO2022109201A1/en unknown
Also Published As
Publication number | Publication date |
---|---|
US11408659B2 (en) | 2022-08-09 |
WO2022109201A1 (en) | 2022-05-27 |
US20220163249A1 (en) | 2022-05-26 |
EP4248152A1 (en) | 2023-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11408659B2 (en) | Devices for producing clear ice products and related methods | |
RU2312817C1 (en) | Water purifier | |
RU2278717C2 (en) | Method and device for continuous crystallization of liquid by freezing | |
US5555747A (en) | Control of crystal growth in water purification by directional freeze crystallization | |
CA2928835A1 (en) | Ice making and harvesting | |
EP4279839A1 (en) | Ice maker | |
CN115447050A (en) | Film casting sheet forming cooling device and technological method | |
KR20120105662A (en) | Ice and cold water maker and making method | |
US12072134B2 (en) | Systems and methods for creating clear ice | |
RU2274607C2 (en) | Method of purification of water and the installation for its realization | |
US11732944B2 (en) | Apparatus and method for craft ice production | |
US5029453A (en) | Channel block ice system | |
RU2003104764A (en) | METHOD FOR WATER CLEANING AND INSTALLATION FOR ITS IMPLEMENTATION | |
RU2351542C1 (en) | Water purifier | |
WO2023225523A2 (en) | Devices for producing clear ice products | |
CN203900429U (en) | Casting platform for casting ingots | |
JP3812341B2 (en) | Ice making apparatus and ice making method | |
US20240167747A1 (en) | Devices for producing clear ice products | |
CN205939851U (en) | Scrape formula piece ice maker structure outward | |
CN218256297U (en) | Film casting sheet forming cooling device | |
CA2451082A1 (en) | Device and method for storing and regenerating a two-phase coolant fluid | |
CN217275087U (en) | Sliding door automatic closing device for refrigerator | |
WO2022077347A1 (en) | Flow rate control method for an ice making assembly | |
CN118168217B (en) | Layered high-purity ice body manufacturing device | |
KR20140003984U (en) | Water Purifier and Hot/Cold Water Supplier in Capable of Making Various Shaped Ice |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ABSTRACT ICE, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NOTANEY, ASHOK KUMAR;STEVENSON, TODD;WHALEN, ANDREW;AND OTHERS;SIGNING DATES FROM 20211111 TO 20211115;REEL/FRAME:063687/0994 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: APPLICATION UNDERGOING PREEXAM PROCESSING |