US20230405585A1 - Apparatuses with fluidic channel geometries for sample to answer pcr analysis and methods of using same - Google Patents
Apparatuses with fluidic channel geometries for sample to answer pcr analysis and methods of using same Download PDFInfo
- Publication number
- US20230405585A1 US20230405585A1 US18/032,463 US202118032463A US2023405585A1 US 20230405585 A1 US20230405585 A1 US 20230405585A1 US 202118032463 A US202118032463 A US 202118032463A US 2023405585 A1 US2023405585 A1 US 2023405585A1
- Authority
- US
- United States
- Prior art keywords
- chip
- cartridge
- sample
- reservoir
- channel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004458 analytical method Methods 0.000 title claims abstract description 8
- 238000000034 method Methods 0.000 title claims description 31
- 230000003287 optical effect Effects 0.000 claims abstract description 30
- 239000011324 bead Substances 0.000 claims abstract description 21
- 238000004891 communication Methods 0.000 claims abstract description 14
- 238000007689 inspection Methods 0.000 claims abstract description 11
- 238000011529 RT qPCR Methods 0.000 claims abstract description 3
- 239000000523 sample Substances 0.000 claims description 47
- 239000012530 fluid Substances 0.000 claims description 40
- 239000012528 membrane Substances 0.000 claims description 13
- 239000012521 purified sample Substances 0.000 claims description 12
- 238000010828 elution Methods 0.000 claims description 11
- 239000012149 elution buffer Substances 0.000 claims description 11
- 239000002699 waste material Substances 0.000 claims description 7
- 239000011888 foil Substances 0.000 claims description 6
- 230000001351 cycling effect Effects 0.000 claims description 4
- 230000000881 depressing effect Effects 0.000 claims description 2
- 238000007599 discharging Methods 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- 238000011144 upstream manufacturing Methods 0.000 claims description 2
- 238000003753 real-time PCR Methods 0.000 description 27
- 238000001514 detection method Methods 0.000 description 21
- 239000007788 liquid Substances 0.000 description 13
- 239000003153 chemical reaction reagent Substances 0.000 description 9
- 239000012488 sample solution Substances 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 8
- 239000000203 mixture Substances 0.000 description 6
- 108020004414 DNA Proteins 0.000 description 5
- 238000013459 approach Methods 0.000 description 5
- 238000013461 design Methods 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 230000003321 amplification Effects 0.000 description 4
- 238000003491 array Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000003199 nucleic acid amplification method Methods 0.000 description 4
- 238000003556 assay Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 108020004635 Complementary DNA Proteins 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000012408 PCR amplification Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000010804 cDNA synthesis Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000002299 complementary DNA Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000009089 cytolysis Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 238000007886 magnetic bead extraction Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 238000010222 PCR analysis Methods 0.000 description 1
- 239000012807 PCR reagent Substances 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000003762 quantitative reverse transcription PCR Methods 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000012536 storage buffer Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B9/00—Piston machines or pumps characterised by the driving or driven means to or from their working members
- F04B9/02—Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical
- F04B9/04—Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical the means being cams, eccentrics or pin-and-slot mechanisms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502715—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502761—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L7/00—Heating or cooling apparatus; Heat insulating devices
- B01L7/52—Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
- C12N15/1003—Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
- C12N15/1006—Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers
- C12N15/1013—Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers by using magnetic beads
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
- C12Q1/6851—Quantitative amplification
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B43/00—Machines, pumps, or pumping installations having flexible working members
- F04B43/02—Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
- F04B43/04—Pumps having electric drive
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
- G01N21/03—Cuvette constructions
- G01N21/05—Flow-through cuvettes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/02—Adapting objects or devices to another
- B01L2200/026—Fluid interfacing between devices or objects, e.g. connectors, inlet details
- B01L2200/027—Fluid interfacing between devices or objects, e.g. connectors, inlet details for microfluidic devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/06—Fluid handling related problems
- B01L2200/0647—Handling flowable solids, e.g. microscopic beads, cells, particles
- B01L2200/0668—Trapping microscopic beads
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/10—Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/16—Reagents, handling or storing thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/04—Closures and closing means
- B01L2300/041—Connecting closures to device or container
- B01L2300/044—Connecting closures to device or container pierceable, e.g. films, membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/06—Auxiliary integrated devices, integrated components
- B01L2300/0627—Sensor or part of a sensor is integrated
- B01L2300/0654—Lenses; Optical fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/06—Auxiliary integrated devices, integrated components
- B01L2300/0672—Integrated piercing tool
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0861—Configuration of multiple channels and/or chambers in a single devices
- B01L2300/0883—Serpentine channels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0887—Laminated structure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/12—Specific details about materials
- B01L2300/123—Flexible; Elastomeric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0403—Moving fluids with specific forces or mechanical means specific forces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0403—Moving fluids with specific forces or mechanical means specific forces
- B01L2400/043—Moving fluids with specific forces or mechanical means specific forces magnetic forces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0475—Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
- B01L2400/0481—Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure squeezing of channels or chambers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/06—Valves, specific forms thereof
- B01L2400/0677—Valves, specific forms thereof phase change valves; Meltable, freezing, dissolvable plugs; Destructible barriers
- B01L2400/0683—Valves, specific forms thereof phase change valves; Meltable, freezing, dissolvable plugs; Destructible barriers mechanically breaking a wall or membrane within a channel or chamber
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B19/00—Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
- F04B19/006—Micropumps
Definitions
- the present invention in some embodiments thereof, relates to real-time, quantitative polymerase chain reaction (qPCR) and, more particularly, but not exclusively, to apparatuses and methods for improving the efficiency of qPCR processing and analysis.
- qPCR quantitative polymerase chain reaction
- the QIAstat-Dx is a system that employs multiple physical partitions and physical moving barriers or other actuation features to physically move or direct liquids.
- the instrument of this system either directly or indirectly actuates fluidic motion in a consumable to move liquids from one area to another through channels present in the consumable.
- cd-microfluidics Another approach is a centrifugal device, so-called “cd-microfluidics”, using different rotational speeds, interfacial features to accomplish liquid motion. See ufluidix.com/circle/whats-a-discman-and-how-is-it-a-medical-diagnostic-device-cd-microfluidics/. This is useful for some workflows, but qPCR relies on imaging the on-going PCR reaction at every thermal cycle.
- the DNA-Nudge system uses a rotation valve to control the sequence of reagent additions, but then ultimately performs PCR on discrete volumes in fixed locations.
- a chip for use in a real-time qPCR system comprising: at least one port for receiving a sample into the chip; at least one channel in fluidic communication with the at least port; a plurality of magnetically active beads disposed within the at least one channel that capture DNA/RNA from the sample as the sample passes through the at least one channel; and an optical inspection region in fluidic communication with the at least one channel for performing an optical analysis of the sample containing the eluted DNA/RNA previously captured on the magnetic beads.
- the chip further comprises at least one additional port for receiving at least one of wash fluid and elution fluid into the chip.
- the chip further comprises at least one inlet corresponding to and in fluidic communication with the at least one port and located on a top surface of the chip.
- the chip further comprises at least one magnetically active region configured to be magnetically active with the magnetically active beads.
- one magnetically active region is positioned upstream of the optical inspection region.
- the chip further comprises at least one heated region.
- one heated region is positioned on each side of the optical inspection region.
- the chip further comprises at least one filter disposed within the at least one channel.
- the at least one channel is 0.5 mm deep and 0.5 mm wide.
- the chip further comprises at least one burst valve.
- the at least one burst valve is 0.1 mm deep and 0.1 mm wide.
- the chip further comprises at least one chip stop disposed on and protruding from an exterior surface of the chip.
- the chip further comprises an exit valve for discharging the sample from the chip.
- a cartridge and chip assembly comprising: a cartridge including at least one fluid reservoir; a chip disposed beneath the cartridge with an inlet and a port corresponding to the at least one fluid reservoir; and an elastic membrane disposed on top of the cartridge.
- the assembly has a first configuration wherein the chip is held between at least one lower clip and at least one upper clip of the cartridge such that the inlet is not in fluid communication with the at least one fluid reservoir.
- the assembly has a second configuration wherein the chip is held between at least one upper clip of the cartridge and the cartridge such that the inlet is in fluid communication with the at least one fluid reservoir.
- the assembly further comprises at least one release located on the cartridge for transitioning the cartridge and chip assembly from a first configuration to a second configuration.
- the assembly further comprises an exit valve and outlet of the chip in fluid communication with a waste area of the cartridge.
- the assembly further comprises at least one of at least one foil seal, a compressible layer, and an optically transparent seal.
- a method of using a cartridge and chip assembly comprising: collecting and inserting a sample into a sample reservoir of a cartridge of the cartridge and chip assembly; pushing the sample from the sample reservoir into a chip of the cartridge and chip assembly by way of an inlet and a port of the chip; mixing the sample with magnetically active beads and then trapping the beads in the chip; retracting the sample from the chip back into the reservoir; pushing at least one wash fluid from at least one wash fluid reservoir in the cartridge; retracting the at least one wash fluid from the chip back into the at least one wash fluid reservoir; pushing an elution buffer into the chip, from an elution reservoir of the cartridge by depressing an elastic membrane, or from a PCR reservoir of the cartridge; retracting the elution buffer by, retracting the elastic member, or retracting the elution buffer into the PCR reservoir, thereby creating a purified sample; recovering the purified sample and pulling the purified sample into at least one heated region of the chip;
- Implementation of the method and/or system of embodiments of the invention can involve performing or completing selected tasks manually, automatically, or a combination thereof. Moreover, according to actual instrumentation and equipment of embodiments of the method and/or system of the invention, several selected tasks could be implemented by hardware, by software or by firmware or by a combination thereof using an operating system.
- a data processor such as a computing platform for executing a plurality of instructions.
- the data processor includes a volatile memory for storing instructions and/or data and/or a non-volatile storage, for example, a magnetic hard-disk and/or removable media, for storing instructions and/or data.
- a network connection is provided as well.
- a display and/or a user input device such as a keyboard or mouse are optionally provided as well.
- FIG. 1 is a top perspective view of a chip, in accordance with an exemplary embodiment of the invention.
- FIG. 2 is a bottom perspective view of a chip, in accordance with an exemplary embodiment of the invention.
- FIG. 3 is a bottom view of a chip, in accordance with an exemplary embodiment of the invention.
- FIG. 4 is an exploded view of a cartridge and chip assembly, in accordance with an exemplary embodiment of the invention.
- FIG. 5 is a top perspective view of a cartridge and chip assembly, in accordance with an exemplary embodiment of the invention.
- FIG. 6 is a bottom perspective view of a cartridge and chip assembly, in accordance with an exemplary embodiment of the invention.
- FIGS. 7 A- 7 B are cross-sectional views of a cartridge and chip assembly in different configurations, in accordance with an exemplary embodiment of the invention.
- FIG. 8 is a perspective view of an optical detection unit in use with a cartridge and chip assembly, in accordance with an exemplary embodiment of the invention.
- FIG. 9 is a flowchart of a method of using a chip, in accordance with an exemplary embodiment of the invention.
- FIG. 10 is a cross-sectional view of an inlet, in accordance with an exemplary embodiment of the invention.
- the present invention in some embodiments thereof, relates to real-time, quantitative polymerase chain reaction (qPCR) and, more particularly, but not exclusively, to apparatuses and methods for improving the efficiency of qPCR processing and analysis.
- qPCR quantitative polymerase chain reaction
- the inventions described herein fully automate the process of qPCR and PCR in one disposable consumable (e.g. cartridge/chip assembly) using a network of fluidic channels with access to bulk reagent reservoirs and/or a waste area.
- the inventions described herein minimize/simplify laboratory instrument requirements and/or costs; accelerate the process of sample extraction and/or purification for preparing samples for PCR amplification; and accelerate the qPCR process while still providing an effective level of sensitivity.
- One way of providing these benefits, as described in exemplary detail herein, is by using membrane-driven reservoirs (in a cartridge of the system combined with a driving motor) to push the appropriate reagents and samples into a chip in the correct sequence.
- FIG. 1 is a top perspective view of a chip 100 , in accordance with an exemplary embodiment of the invention.
- the chip 100 is a component part of a larger qPCR system, wherein when taken together are capable of performing real time qPCR analysis.
- a plurality of inlets 102 i , 102 ii , 102 iii , 102 iv , 102 v , and outlet 102 vi are provided to the chip 100 wherein fluids are introduced to the chip through the inlets, for example from fluid reservoirs or wells located in a cartridge 402 used with the chip 100 (described in more detail below with respect to FIGS.
- the chip 100 is configured with chip-stop/alignment features 104 , 106 around the perimeter or exterior of the chip 100 , which are used in conjunction with counter-part features of the cartridge 402 (“clips”, described in more detail below with respect to FIGS. 7 A- 7 B ).
- the chip 100 is injection molded for low cost, easily reproducible, scalable and/or modifiable construction.
- FIG. 2 is a bottom perspective view of the chip 100 , in accordance with an exemplary embodiment of the invention. An exemplary channel configuration is shown in FIG. 2 and further explained with respect to FIG. 3 .
- FIG. 3 is a bottom view of the chip 100 , in accordance with an exemplary embodiment of the invention.
- the chip 100 of FIG. 3 is described in conjunction with FIG. 9 , a flowchart 900 of a method of using the chip 100 , in accordance with an exemplary embodiment of the invention.
- a sample swab is previously collected and inserted ( 902 ) into a sample reservoir 502 i , shown and described in more detail in FIG. 5 , which contains a lysis agent to simultaneously lyse cells and protect the exposed DNA and RNA fragments from DNAse and RNAse proteomic activity.
- the chip 100 has a filter 304 designed into the channel the sample solution is pushed ( 904 i ) through to reduce the potential of clogging the chip 100 .
- a filter 304 designed into the channel the sample solution is pushed ( 904 i ) through to reduce the potential of clogging the chip 100 .
- the filter 304 After (i.e. downstream of) the filter 304 , there is a length 306 of a channel including a dried-down solution of silica or carboxylate magnetic beads with a surface that captures DNA/RNA from the sample solution.
- the sample solution passes through this channel length 306 a few times, through the repeated bends, to re-hydrate the beads into the sample solution and ensure the nucleic acid material has time to bind to the beads.
- on-chip magnetic bead extraction concentrates RNA and allows for low master mix usage. Magnetic bead extraction should exhibit excellent sensitivity, when employed as described herein.
- constriction region 308 that is shallower and thinner than the nominal channel.
- the nominal channel on the chip is roughly 0.5 mm deep and 0.5 mm wide.
- This smaller constriction region is 0.1 mm by 0.1 mm wide, in an embodiment.
- the sample solution is pushed through the chip 100 , and through the magnetic region 310 .
- the magnetic beads are attracted to the wall of the channel against a magnet that is present in the qPCR system.
- the remaining solution would continue through the channel and out the exit valve 302 vi , and exit port 502 vi that exits to a large waste area 504 of the cartridge 402 from which fluid cannot return to the chip 100 .
- the membrane 404 on the sample port retracts, due to operation of a specially-design camshaft driven by a membrane-driving motor of the qPCR system, described in at least one of the applications indicated in the Related Applications section, which correspondingly retracts ( 904 ii ) the sample solution back into its reservoir 502 i , optionally due to pneumatic and/or hydraulic pressure (in an embodiment where a second, immiscible fluid is being used to create pressure in addition to or in the alternative to air).
- the junction 318 is magnetized to assist with leakage prevention by substantially holding the magnetic beads in place.
- an elution buffer is then pushed into the chip 100 and over the magnetic beads.
- This elution buffer could come from either an elution reservoir 502 v , through inlet 102 v , or could alternatively come from the PCR-mix reservoir 502 ii , through inlet 102 ii , if elution into a PCR mix is desired.
- the PCR reservoir 502 ii would be empty and the membrane 404 would be depressed ( 908 i ) and held first.
- the fluid in the elution reservoir 502 v would be pushed into the magnet region 310 , and the membrane 404 corresponding to the PCR reservoir 502 ii would then retract ( 908 ii ), pulling the eluted purified sample into the PCR region of the chip 314 .
- the elution buffer would come from the PCR reservoir 502 ii , then after the washing steps, the elution buffer would be pushed ( 910 i ) from the PCR reservoir 502 ii all the way through the PCR regions 314 , 316 and into the magnetic region 310 to elute the sample, and then would retract ( 910 ii ) back into the PCR reservoir 502 ii after elution.
- the last functional region of this exemplary chip 100 is an optical detection region 312 , also called “the voxel”.
- An optical detection unit 800 of a qPCR system for analyzing the optical detection region 312 is shown as a representative example in FIG. 8 .
- the optical detection region 312 can be the same dimensions of the channels surrounding it, or it could have varying depths and widths to enhance optical detection of the fluorescent signal. In this embodiment, it is shown to be both wider and deeper than the fluidic channels surrounding it. This is the area where, in some embodiments, specific PCR components (primers, probes, and mastermix) can be optionally dried down for later rehydration as the elution solutions pass over it.
- Heating elements in the qPCR system are set ( 914 ) to desired temperatures to heat the separate PCR regions 314 , 316 to the desired temperatures for desired protocols.
- a hot region is optionally set to 95-98° C. and a cool region is optionally set to 55-60° C., and are heated to the specific temperatures by the heating elements. For most RNA workflows, this includes a time and temperature to enable the reverse transcription of the RNA into complementary DNA (cDNA).
- temperatures are defined for optimal amplification of DNA.
- one heating element with variability of heating zones may be used, or in additional examples more than two heating elements may be used.
- the fluorescent signal can be measured ( 918 ) by the optical detection unit 800 to characterize the qPCR amplification of the signal.
- the slug/sample is expelled ( 920 ) from the chip via the exit valve 302 vi and into the waste area 504 .
- multiple PCR channels (a plurality of channels) run in parallel through the common PCR heating areas. These could then all pass through a detection region located between the heated regions.
- capacitive liquid sensing arrays are positioned in and/or around PCR regions 314 , 316 which, in combination with the magnetic beads, allows for tracking of fluid within the fluidic channels of the chip 100 .
- the capacitive sensing arrays are positioned on either side of the optical detection region 312 . In doing so, the relative position of cycling between the two heating regions (heated PCR regions 314 , 316 ) may be determined. Further, the capacitive liquid sensing arrays may be positioned on the entry and exit sides of the heated PCR regions 314 , 316 , thus allowing full tracking of the sample as it moves through the amplification process.
- the capacitive arrays may work independently of the optical detection unit 312 , or in combination with, in detecting and transmitting signals or information to a processing unit (not shown) that controls the membrane-driving motor as well as instrumentation such as screens or diagnostics for a technician.
- FIG. 4 is an exploded view of a cartridge and chip assembly 400 , in accordance with an exemplary embodiment of the invention.
- FIG. 4 shows the elastic membrane 404 , a foil seal 406 , the cartridge 402 including reservoirs, a second foil seal 406 , a compressible layer 408 , the chip 100 , and a bottom seal 410 (which is optically transparent, in some embodiments of the invention, to enable scanning of the optical detection region 312 by the optical detection unit 800 ).
- the membrane 404 acts in combination with the reservoirs of the cartridge to form a fluidic seal, effectuating pneumatic and/or hydraulic pressure for moving fluids throughout the chip 100 as described.
- the compressible layer 408 can serve to fluidically seal the cartridge 402 to the chip 100 once the cartridge and chip assembly 400 is fully constructed.
- the fluidic reservoirs on the cartridge 402 are open on both ends, with the top of each reservoir being wide enough for the membrane 404 to deform into it to cause the pneumatic and/or hydraulic pressure used for fluidic motion.
- the bottom of each reservoir contains an orifice slightly larger than the puncturing feature of the inlets on the chip 100 . The orifice is sealed in its pre-use state.
- FIG. 5 is a top perspective view of a cartridge and chip assembly 400 , including the cartridge 402 and the chip 100 (not shown), in accordance with an exemplary embodiment of the invention.
- the various reservoirs 502 i the sample reservoir
- 502 ii the PCR reservoir
- 502 iii wash 1 reservoir
- 502 iv wash 2 reservoir
- 502 v the elution reservoir
- the exit port 502 vi into the waste area 504 are shown.
- FIG. 6 is a bottom perspective view of the cartridge and chip assembly 400 wherein the chip 100 can be seen mounted within the cartridge 402 , in accordance with an exemplary embodiment of the invention.
- FIGS. 7 A- 7 B are cross-sectional views of a cartridge and chip assembly 400 in different configurations, in accordance with an exemplary embodiment of the invention.
- FIG. 7 A shows a first configuration of the chip assembly 400 prior to insertion of the assembly 400 into a qPCR system, but after manufacture.
- the cartridge 402 contains a variety of one-way clips to retain the chip 100 to the cartridge 402 .
- Lower flexible clips 702 on the cartridge 402 engage the chip-stop/alignment features 104 of the chip 100 and retain the chip 100 to the cartridge 402 after initial assembly of the cartridge and chip assembly 400 in the factory and until it is inserted in the qPCR system.
- the lower retaining clips 702 hold the chip up against at least one upper retaining clip 704 of the cartridge 402 .
- These upper retaining clip 704 keep the chip 100 far enough away from the cartridge 402 to prevent the puncturing/sharp upward ends of the inlets on the chip 100 from pre-maturely puncturing the second foil seal 406 and compressible layer 408 on the bottom of the cartridge 402 (which would unintentionally establish a fluidic connection between the reservoirs of the cartridge 402 and the channels of the chip 100 ).
- a user would collect their sample on a swab or by some other method, and put it into the sample reservoir 502 i of the cartridge 402 .
- the swab breaks off in the cartridge 402 or at least deposits the sample in the cartridge, optionally with a registration feature in the sample reservoir 502 i that engages with the swab, this enabling the sample reservoir 502 i to be sealed using the attached lid with the swab/sample still in the cartridge 402 . In this manner, the swab/sample is submerged in the pre-stored wet reagents in the sample reservoir 502 i.
- FIG. 7 B shows a second configuration of the assembly 400 after the insertion of the assembly 400 into a qPCR system.
- system hardware features push inward on chip-stop releases 708 , which disengage/rock the upper clips 704 out and away from retaining the chip 100 in the lower position of the first configuration.
- the qPCR system then pushes on the bottom of the chip 100 by sustaining pressure on the releases 708 , the upper clips 704 and through to the lower clips 702 to mechanically press the chip 100 upwards into the second configuration shown in FIG. 7 B .
- the puncturing/sharp upward ends of the inlets pierce the compressible layer 408 between the chip 100 and cartridge 402 , and then subsequently puncture the second foil layer 406 while the sealing features seal up against the compressible layer 408 .
- the chip 100 sealed up against the cartridge 402 it also engages the upper retaining clips 704 .
- the chip-stop functionality is also effectuated by a chip-stop/alignment structure 106 (providing a structure in relief) on the side of the chip 100 that acts to retain the chip 100 in the second configuration.
- FIG. 8 is a perspective view of an optical detection unit 800 in use with a cartridge and chip assembly 400 , in accordance with an exemplary embodiment of the invention.
- the fluid crosses the optical detection region 312 wherein the optical detection unit 800 performs analysis on the sample.
- This type of detection is often referred to as dynamic detection, as the optical detection unit 800 is performing detection as the fluid cycles, and as amplification is occurring in real-time.
- FIG. 10 is a cross-sectional view of an exemplary embodiment of an inlet 1002 , showing a puncturing/sharp upward end 1004 and internal lumen 1006 which fluidically connects a reservoir of the cartridge to the channel network of the chip.
- a tray 1008 is provided around the inlet 1002 to capture and retain any leakage from the piercing/forming a fluidic connection between the inlet and a reservoir.
- compositions, method or structure may include additional ingredients, steps and/or parts, but only if the additional ingredients, steps and/or parts do not materially alter the basic and novel characteristics of the claimed composition, method or structure.
- a compound or “at least one compound” may include a plurality of compounds, including mixtures thereof.
- range format is merely for convenience and brevity and should not be construed as an inflexible limitation on the scope of the invention. Accordingly, the description of a range should be considered to have specifically disclosed all the possible subranges as well as individual numerical values within that range. For example, description of a range such as from 1 to 6 should be considered to have specifically disclosed subranges such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6 etc., as well as individual numbers within that range, for example, 1, 2, 3, 4, 5, and 6. This applies regardless of the breadth of the range.
- a numerical range is indicated herein, it is meant to include any cited numeral (fractional or integral) within the indicated range.
- the phrases “ranging/ranges between” a first indicate number and a second indicate number and “ranging/ranges from” a first indicate number “to” a second indicate number are used herein interchangeably and are meant to include the first and second indicated numbers and all the fractional and integral numerals therebetween.
- method refers to manners, means, techniques and procedures for accomplishing a given task including, but not limited to, those manners, means, techniques and procedures either known to, or readily developed from known manners, means, techniques and procedures by practitioners of the chemical, pharmacological, biological, biochemical and medical arts.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Clinical Laboratory Science (AREA)
- Analytical Chemistry (AREA)
- Hematology (AREA)
- Dispersion Chemistry (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Fluid Mechanics (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biomedical Technology (AREA)
- Mechanical Engineering (AREA)
- Immunology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Microbiology (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- General Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Reciprocating Pumps (AREA)
- Sampling And Sample Adjustment (AREA)
- Details Of Reciprocating Pumps (AREA)
- Degasification And Air Bubble Elimination (AREA)
Abstract
Various embodiments for a chip for use in a real-time qPCR system are disclosed. The chip can include at least one port for receiving a sample into the chip; at least one channel in fluidic communication with the at least port; a plurality of magnetically active beads disposed within the at least one channel that capture DNA/RNA from the sample as the sample passes through the at least one channel; and an optical inspection region in fluidic communication with the at least one channel for performing an optical analysis of the sample containing the eluted DNA/RNA previously captured on the magnetic beads.
Description
- This application claims the benefit of priority under Article 8 PCT of U.S. Provisional Patent Application No. 63/093,640 filed Oct. 19, 2020 and entitled “Point of Collection qPCR System.” This application is also related to PCT applications entitled “Fluidic Detection and Control Algorithm for PCR Analysis,” “Disposable Cartridge for Reagent Storage and Methods Using Same,” and “Method and Apparatus for Controlling Fluid Volumes to Achieve Separation and PCR Amplification,” and U.S. Design application Ser. No. 29/812,034 entitled “Fluidic Channel Geometries of a Chip,” all filed concurrently on Oct. 19, 2021 and listing the same Applicant, Formulatrix, Inc. The contents of the above applications are all incorporated by reference as if fully set forth herein in their entireties.
- The present invention, in some embodiments thereof, relates to real-time, quantitative polymerase chain reaction (qPCR) and, more particularly, but not exclusively, to apparatuses and methods for improving the efficiency of qPCR processing and analysis.
- There are a variety of different approaches to reducing the entire sample extraction, purification, and RT-qPCR processes onto a small and disposable format. One implementation can be found on the Roche Cobas Liat platform. This platform utilizes a small disposable transfer pipette to pipette a sample solution from a storage buffer into reagent storage consumable. The reagents required to run the assay are sealed in a tube with separate sections. During the course of the assay, specific sections are ruptured to introduce the appropriate reagents at the correct times in the correct sequence. This requires complicated and manual sample handling that occurs before the system can be used. Additionally, all the fluidics takes place in concealed reservoirs with no fluidic channels.
- Another approach is using electrowetting approaches with two-phase fluidics, such as oil and water/aqueous. This approach was commercialized by NuGen (Mondrian), Advanced Liquid Logic, Illumina (NeoPrep) to keep reagents specifically for NGS library prep separate and introduce them with prescribed electrowetting sequences. This works for some sequences but was largely a commercial failure. Baebies is now attempting to use this technology for PCR testing with their FINDER platform.
- The QIAstat-Dx is a system that employs multiple physical partitions and physical moving barriers or other actuation features to physically move or direct liquids. The instrument of this system either directly or indirectly actuates fluidic motion in a consumable to move liquids from one area to another through channels present in the consumable.
- Another approach is a centrifugal device, so-called “cd-microfluidics”, using different rotational speeds, interfacial features to accomplish liquid motion. See ufluidix.com/circle/whats-a-discman-and-how-is-it-a-medical-diagnostic-device-cd-microfluidics/. This is useful for some workflows, but qPCR relies on imaging the on-going PCR reaction at every thermal cycle. In addition, the DNA-Nudge system uses a rotation valve to control the sequence of reagent additions, but then ultimately performs PCR on discrete volumes in fixed locations.
- According to an aspect of some embodiments of the present invention there is provided a chip for use in a real-time qPCR system, comprising: at least one port for receiving a sample into the chip; at least one channel in fluidic communication with the at least port; a plurality of magnetically active beads disposed within the at least one channel that capture DNA/RNA from the sample as the sample passes through the at least one channel; and an optical inspection region in fluidic communication with the at least one channel for performing an optical analysis of the sample containing the eluted DNA/RNA previously captured on the magnetic beads.
- In an embodiment of the invention, the chip further comprises at least one additional port for receiving at least one of wash fluid and elution fluid into the chip.
- In an embodiment of the invention, the chip further comprises at least one inlet corresponding to and in fluidic communication with the at least one port and located on a top surface of the chip.
- In an embodiment of the invention, the chip further comprises at least one magnetically active region configured to be magnetically active with the magnetically active beads.
- In an embodiment of the invention, one magnetically active region is positioned upstream of the optical inspection region.
- In an embodiment of the invention, the chip further comprises at least one heated region.
- In an embodiment of the invention, one heated region is positioned on each side of the optical inspection region.
- In an embodiment of the invention, the chip further comprises at least one filter disposed within the at least one channel.
- In an embodiment of the invention, the at least one channel is 0.5 mm deep and 0.5 mm wide.
- In an embodiment of the invention, the chip further comprises at least one burst valve.
- In an embodiment of the invention, the at least one burst valve is 0.1 mm deep and 0.1 mm wide.
- In an embodiment of the invention, the chip further comprises at least one chip stop disposed on and protruding from an exterior surface of the chip.
- In an embodiment of the invention, the chip further comprises an exit valve for discharging the sample from the chip.
- According to a further aspect of some embodiments of the present invention there is provided a cartridge and chip assembly, comprising: a cartridge including at least one fluid reservoir; a chip disposed beneath the cartridge with an inlet and a port corresponding to the at least one fluid reservoir; and an elastic membrane disposed on top of the cartridge.
- In an embodiment of the invention, the assembly has a first configuration wherein the chip is held between at least one lower clip and at least one upper clip of the cartridge such that the inlet is not in fluid communication with the at least one fluid reservoir.
- In an embodiment of the invention, the assembly has a second configuration wherein the chip is held between at least one upper clip of the cartridge and the cartridge such that the inlet is in fluid communication with the at least one fluid reservoir.
- In an embodiment of the invention, the assembly further comprises at least one release located on the cartridge for transitioning the cartridge and chip assembly from a first configuration to a second configuration.
- In an embodiment of the invention, the assembly further comprises an exit valve and outlet of the chip in fluid communication with a waste area of the cartridge.
- In an embodiment of the invention, the assembly further comprises at least one of at least one foil seal, a compressible layer, and an optically transparent seal.
- According to a further aspect of some embodiments of the present invention there is provided a method of using a cartridge and chip assembly, comprising: collecting and inserting a sample into a sample reservoir of a cartridge of the cartridge and chip assembly; pushing the sample from the sample reservoir into a chip of the cartridge and chip assembly by way of an inlet and a port of the chip; mixing the sample with magnetically active beads and then trapping the beads in the chip; retracting the sample from the chip back into the reservoir; pushing at least one wash fluid from at least one wash fluid reservoir in the cartridge; retracting the at least one wash fluid from the chip back into the at least one wash fluid reservoir; pushing an elution buffer into the chip, from an elution reservoir of the cartridge by depressing an elastic membrane, or from a PCR reservoir of the cartridge; retracting the elution buffer by, retracting the elastic member, or retracting the elution buffer into the PCR reservoir, thereby creating a purified sample; recovering the purified sample and pulling the purified sample into at least one heated region of the chip; setting a temperature for the at least one heated region; cycling the purified sample past an optical inspection region of the chip; and measuring a signal taken from the purified sample at the optical inspection region.
- Unless otherwise defined, all technical and/or scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the invention pertains. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of embodiments of the invention, exemplary methods and/or materials are described below. In case of conflict, the patent specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and are not intended to be necessarily limiting.
- Implementation of the method and/or system of embodiments of the invention can involve performing or completing selected tasks manually, automatically, or a combination thereof. Moreover, according to actual instrumentation and equipment of embodiments of the method and/or system of the invention, several selected tasks could be implemented by hardware, by software or by firmware or by a combination thereof using an operating system.
- For example, hardware for performing selected tasks according to embodiments of the invention could be implemented as a chip or a circuit. As software, selected tasks according to embodiments of the invention could be implemented as a plurality of software instructions being executed by a computer using any suitable operating system. In an exemplary embodiment of the invention, one or more tasks according to exemplary embodiments of method and/or system as described herein are performed by a data processor, such as a computing platform for executing a plurality of instructions. Optionally, the data processor includes a volatile memory for storing instructions and/or data and/or a non-volatile storage, for example, a magnetic hard-disk and/or removable media, for storing instructions and/or data. Optionally, a network connection is provided as well. A display and/or a user input device such as a keyboard or mouse are optionally provided as well.
- Some embodiments of the invention are herein described, by way of example only, with reference to the accompanying drawings. With specific reference now to the drawings in detail, it is stressed that the particulars shown are by way of example, are not necessarily to scale and are for purposes of illustrative discussion of embodiments of the invention. In this regard, the description taken with the drawings makes apparent to those skilled in the art how embodiments of the invention may be practiced.
- In the drawings:
-
FIG. 1 is a top perspective view of a chip, in accordance with an exemplary embodiment of the invention; -
FIG. 2 is a bottom perspective view of a chip, in accordance with an exemplary embodiment of the invention; -
FIG. 3 is a bottom view of a chip, in accordance with an exemplary embodiment of the invention; -
FIG. 4 is an exploded view of a cartridge and chip assembly, in accordance with an exemplary embodiment of the invention; -
FIG. 5 is a top perspective view of a cartridge and chip assembly, in accordance with an exemplary embodiment of the invention; -
FIG. 6 is a bottom perspective view of a cartridge and chip assembly, in accordance with an exemplary embodiment of the invention; -
FIGS. 7A-7B are cross-sectional views of a cartridge and chip assembly in different configurations, in accordance with an exemplary embodiment of the invention; -
FIG. 8 is a perspective view of an optical detection unit in use with a cartridge and chip assembly, in accordance with an exemplary embodiment of the invention; -
FIG. 9 is a flowchart of a method of using a chip, in accordance with an exemplary embodiment of the invention; and, -
FIG. 10 is a cross-sectional view of an inlet, in accordance with an exemplary embodiment of the invention. - The present invention, in some embodiments thereof, relates to real-time, quantitative polymerase chain reaction (qPCR) and, more particularly, but not exclusively, to apparatuses and methods for improving the efficiency of qPCR processing and analysis.
- Before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not necessarily limited in its application to the details of construction and the arrangement of the components and/or methods set forth in the following description and/or illustrated in the drawings. The invention is capable of other embodiments or of being practiced or carried out in various ways.
- Generally, the inventions described herein fully automate the process of qPCR and PCR in one disposable consumable (e.g. cartridge/chip assembly) using a network of fluidic channels with access to bulk reagent reservoirs and/or a waste area. The inventions described herein: minimize/simplify laboratory instrument requirements and/or costs; accelerate the process of sample extraction and/or purification for preparing samples for PCR amplification; and accelerate the qPCR process while still providing an effective level of sensitivity. One way of providing these benefits, as described in exemplary detail herein, is by using membrane-driven reservoirs (in a cartridge of the system combined with a driving motor) to push the appropriate reagents and samples into a chip in the correct sequence. It is envisioned that with intelligently-planned channel design, small constrictions (“burst valves”), and imaging regions that are distinctly different (wider/deeper) that other channel portions, liquids can be introduced in the appropriate order but also to the appropriate regions of the chip in a controlled and predictable manner. Other components of the qPCR system are described with respect to the cross-referenced patent applications in the Related Applications section. An exemplary qPCR system utilizing some or all of these components will be available as a qPCR system from Formulatrix, Inc. of Bedford, MA.
-
FIG. 1 is a top perspective view of achip 100, in accordance with an exemplary embodiment of the invention. It should be understood that thechip 100 is a component part of a larger qPCR system, wherein when taken together are capable of performing real time qPCR analysis. In an embodiment of the invention, a plurality ofinlets 102 i, 102 ii, 102 iii, 102 iv, 102 v, and outlet 102 vi are provided to thechip 100 wherein fluids are introduced to the chip through the inlets, for example from fluid reservoirs or wells located in acartridge 402 used with the chip 100 (described in more detail below with respect toFIGS. 4, 5, 7A and 7B ) or exit the chip via outlet 102 vi. More or less inlets could be provided depending on how many or how much volume of the fluids are desired. In an embodiment of the invention, the inlets are configured with a puncturing/sharp upward end, for example by being formed by an angled cut. In some embodiments of the invention, thechip 100 is configured with chip-stop/alignment features 104, 106 around the perimeter or exterior of thechip 100, which are used in conjunction with counter-part features of the cartridge 402 (“clips”, described in more detail below with respect toFIGS. 7A-7B ). In an embodiment of the invention, thechip 100 is injection molded for low cost, easily reproducible, scalable and/or modifiable construction. -
FIG. 2 is a bottom perspective view of thechip 100, in accordance with an exemplary embodiment of the invention. An exemplary channel configuration is shown inFIG. 2 and further explained with respect toFIG. 3 . -
FIG. 3 is a bottom view of thechip 100, in accordance with an exemplary embodiment of the invention. In the interests of brevity, thechip 100 ofFIG. 3 is described in conjunction withFIG. 9 , a flowchart 900 of a method of using thechip 100, in accordance with an exemplary embodiment of the invention. A sample swab is previously collected and inserted (902) into asample reservoir 502 i, shown and described in more detail inFIG. 5 , which contains a lysis agent to simultaneously lyse cells and protect the exposed DNA and RNA fragments from DNAse and RNAse proteomic activity. This solution of the sample and lysis agent is pushed (904 i) from thesample reservoir 502 i into theinlet 102 i and through asample port 302 i of thechip 100 to introduce the solution to thechip 100 and its inventive fluidic channel geometry. It should be noted that throughout the Figures, inlet, port and reservoir/well reference numerals are consistently used wherein theinlet 102 i ofFIG. 1 corresponds to theport 302 i ofFIG. 3 , both of which correspond to thereservoir 502 i ofFIG. 5 , and so on, such that inlet 102 ii, port 302 ii and reservoir 502 ii also correspond, as an example. - In an embodiment of the invention, the
chip 100 has afilter 304 designed into the channel the sample solution is pushed (904 i) through to reduce the potential of clogging thechip 100. After (i.e. downstream of) thefilter 304, there is alength 306 of a channel including a dried-down solution of silica or carboxylate magnetic beads with a surface that captures DNA/RNA from the sample solution. The sample solution passes through this channel length 306 a few times, through the repeated bends, to re-hydrate the beads into the sample solution and ensure the nucleic acid material has time to bind to the beads. In an embodiment of the invention, on-chip magnetic bead extraction concentrates RNA and allows for low master mix usage. Magnetic bead extraction should exhibit excellent sensitivity, when employed as described herein. - As the sample solution proceeds down the channel, it passes through a
constriction region 308 that is shallower and thinner than the nominal channel. In an embodiment of the invention, the nominal channel on the chip is roughly 0.5 mm deep and 0.5 mm wide. This smaller constriction region is 0.1 mm by 0.1 mm wide, in an embodiment. These constriction regions, or “burst valves”, are designed to restrict flow of the fluid being pushed, avoid having the fluid go into undesired regions of thechip 100 and/or guide the fluid into a desired region of thechip 100. By the design of this chip, flow to the exit valve 302 vi at the end of themagnetic region 310 is generally desired, and as such is encouraged fluidically by the design and/or location in thechip 100 of the burst valves, such asburst valve 308. - The sample solution is pushed through the
chip 100, and through themagnetic region 310. During this fluidic move, the magnetic beads are attracted to the wall of the channel against a magnet that is present in the qPCR system. The remaining solution would continue through the channel and out the exit valve 302 vi, and exit port 502 vi that exits to alarge waste area 504 of thecartridge 402 from which fluid cannot return to thechip 100. After this push (904 i), themembrane 404 on the sample port retracts, due to operation of a specially-design camshaft driven by a membrane-driving motor of the qPCR system, described in at least one of the applications indicated in the Related Applications section, which correspondingly retracts (904 ii) the sample solution back into itsreservoir 502 i, optionally due to pneumatic and/or hydraulic pressure (in an embodiment where a second, immiscible fluid is being used to create pressure in addition to or in the alternative to air). - In operation, it is not unexpected that some sample solution permeates the unintended burst valves, for example at
junction 318, and progresses slightly into other regions of thechip 100. In this regard, the burst valves are leaky valves. However, this phenomenon is handled by subsequent wash liquids (ethanol in this embodiment) that enter from the wash reservoirs 502 iii, 502 iv through inlets 102 iii, 102 iv which also “leak” into those regions. The wash liquids are pushed (906 i) into thechip 100 and flow over the magnetically bound beads, removing impurities and flowing into thewaste area 504. In this embodiment, there are two reservoirs 502 iii, 502 iv that contain wash liquids that are pushed (906 i) into thechip 100 and then are retracted (906 ii) back (again by the membrane-driving motor), however, there could be more or less in other embodiments. Optionally, thejunction 318 is magnetized to assist with leakage prevention by substantially holding the magnetic beads in place. - After the magnetically bound beads are washed, an elution buffer is then pushed into the
chip 100 and over the magnetic beads. This elution buffer could come from either anelution reservoir 502 v, throughinlet 102 v, or could alternatively come from the PCR-mix reservoir 502 ii, through inlet 102 ii, if elution into a PCR mix is desired. In an embodiment where an elution buffer comes from theelution reservoir 502 v, the PCR reservoir 502 ii would be empty and themembrane 404 would be depressed (908 i) and held first. In this way, the fluid in theelution reservoir 502 v would be pushed into themagnet region 310, and themembrane 404 corresponding to the PCR reservoir 502 ii would then retract (908 ii), pulling the eluted purified sample into the PCR region of thechip 314. - In the embodiment where the elution buffer would come from the PCR reservoir 502 ii, then after the washing steps, the elution buffer would be pushed (910 i) from the PCR reservoir 502 ii all the way through the
PCR regions magnetic region 310 to elute the sample, and then would retract (910 ii) back into the PCR reservoir 502 ii after elution. - In an embodiment of the invention, the last functional region of this
exemplary chip 100 is anoptical detection region 312, also called “the voxel”. Anoptical detection unit 800 of a qPCR system for analyzing theoptical detection region 312 is shown as a representative example inFIG. 8 . Theoptical detection region 312 can be the same dimensions of the channels surrounding it, or it could have varying depths and widths to enhance optical detection of the fluorescent signal. In this embodiment, it is shown to be both wider and deeper than the fluidic channels surrounding it. This is the area where, in some embodiments, specific PCR components (primers, probes, and mastermix) can be optionally dried down for later rehydration as the elution solutions pass over it. - After the purified samples are recovered from the magnetic region and pulled (912) into the
PCR regions separate PCR regions - These steps, which involve positioning the eluted sample liquid volume, or “slug” of liquid, over either heated region for a desired amount of time while the heater is set to the desired temperature. After these steps, the heating elements are set (914) to the desired PCR annealing/extension and denaturing temperatures, and the slug is then cycled (916) between the two
heated regions chip 312. During this transit, the fluorescent signal can be measured (918) by theoptical detection unit 800 to characterize the qPCR amplification of the signal. Once measuring (918) is completed, the slug/sample is expelled (920) from the chip via the exit valve 302 vi and into thewaste area 504. - In another embodiment of the invention, multiple PCR channels (a plurality of channels) run in parallel through the common PCR heating areas. These could then all pass through a detection region located between the heated regions.
- In some embodiments of the invention, capacitive liquid sensing arrays are positioned in and/or around
PCR regions chip 100. In some embodiments, the capacitive sensing arrays are positioned on either side of theoptical detection region 312. In doing so, the relative position of cycling between the two heating regions (heated PCR regions 314, 316) may be determined. Further, the capacitive liquid sensing arrays may be positioned on the entry and exit sides of theheated PCR regions optical detection unit 312, or in combination with, in detecting and transmitting signals or information to a processing unit (not shown) that controls the membrane-driving motor as well as instrumentation such as screens or diagnostics for a technician. -
FIG. 4 is an exploded view of a cartridge andchip assembly 400, in accordance with an exemplary embodiment of the invention.FIG. 4 shows theelastic membrane 404, afoil seal 406, thecartridge 402 including reservoirs, asecond foil seal 406, acompressible layer 408, thechip 100, and a bottom seal 410 (which is optically transparent, in some embodiments of the invention, to enable scanning of theoptical detection region 312 by the optical detection unit 800). In an exemplary embodiment of the invention and as described elsewhere herein, themembrane 404 acts in combination with the reservoirs of the cartridge to form a fluidic seal, effectuating pneumatic and/or hydraulic pressure for moving fluids throughout thechip 100 as described. - Additionally, the
compressible layer 408 can serve to fluidically seal thecartridge 402 to thechip 100 once the cartridge andchip assembly 400 is fully constructed. The fluidic reservoirs on thecartridge 402 are open on both ends, with the top of each reservoir being wide enough for themembrane 404 to deform into it to cause the pneumatic and/or hydraulic pressure used for fluidic motion. The bottom of each reservoir contains an orifice slightly larger than the puncturing feature of the inlets on thechip 100. The orifice is sealed in its pre-use state. -
FIG. 5 is a top perspective view of a cartridge andchip assembly 400, including thecartridge 402 and the chip 100 (not shown), in accordance with an exemplary embodiment of the invention. In an embodiment of the invention, thevarious reservoirs 502 i (the sample reservoir), 502 ii (the PCR reservoir), 502 iii (wash 1 reservoir), 502 iv (wash 2 reservoir), 502 v (the elution reservoir), and the exit port 502 vi into thewaste area 504 are shown. -
FIG. 6 is a bottom perspective view of the cartridge andchip assembly 400 wherein thechip 100 can be seen mounted within thecartridge 402, in accordance with an exemplary embodiment of the invention. -
FIGS. 7A-7B are cross-sectional views of a cartridge andchip assembly 400 in different configurations, in accordance with an exemplary embodiment of the invention.FIG. 7A shows a first configuration of thechip assembly 400 prior to insertion of theassembly 400 into a qPCR system, but after manufacture. In an embodiment of the invention, thecartridge 402 contains a variety of one-way clips to retain thechip 100 to thecartridge 402. Lowerflexible clips 702 on thecartridge 402 engage the chip-stop/alignment features 104 of thechip 100 and retain thechip 100 to thecartridge 402 after initial assembly of the cartridge andchip assembly 400 in the factory and until it is inserted in the qPCR system. In this first configuration, the lower retaining clips 702 hold the chip up against at least oneupper retaining clip 704 of thecartridge 402. Theseupper retaining clip 704 keep thechip 100 far enough away from thecartridge 402 to prevent the puncturing/sharp upward ends of the inlets on thechip 100 from pre-maturely puncturing thesecond foil seal 406 andcompressible layer 408 on the bottom of the cartridge 402 (which would unintentionally establish a fluidic connection between the reservoirs of thecartridge 402 and the channels of the chip 100). - In an embodiment of the invention, a user would collect their sample on a swab or by some other method, and put it into the
sample reservoir 502 i of thecartridge 402. In an embodiment of the invention, the swab breaks off in thecartridge 402 or at least deposits the sample in the cartridge, optionally with a registration feature in thesample reservoir 502 i that engages with the swab, this enabling thesample reservoir 502 i to be sealed using the attached lid with the swab/sample still in thecartridge 402. In this manner, the swab/sample is submerged in the pre-stored wet reagents in thesample reservoir 502 i. -
FIG. 7B shows a second configuration of theassembly 400 after the insertion of theassembly 400 into a qPCR system. In an embodiment of the invention, when theassembly 400 is inserted into the qPCR system, system hardware features push inward on chip-stop releases 708, which disengage/rock theupper clips 704 out and away from retaining thechip 100 in the lower position of the first configuration. The qPCR system then pushes on the bottom of thechip 100 by sustaining pressure on thereleases 708, theupper clips 704 and through to thelower clips 702 to mechanically press thechip 100 upwards into the second configuration shown inFIG. 7B . During this motion, the puncturing/sharp upward ends of the inlets pierce thecompressible layer 408 between thechip 100 andcartridge 402, and then subsequently puncture thesecond foil layer 406 while the sealing features seal up against thecompressible layer 408. At this point, with thechip 100 sealed up against thecartridge 402, it also engages the upper retaining clips 704. The chip-stop functionality is also effectuated by a chip-stop/alignment structure 106 (providing a structure in relief) on the side of thechip 100 that acts to retain thechip 100 in the second configuration. - In an embodiment of the invention, once the
chip 100 is fluidically engaged with thecartridge 402, pins push on the topflexible membrane 404 to move liquids contained in the cartridge reservoirs into the channel network on thechip 100. The upper retaining clips 704 keep thechip 100 engaged and connected to thecartridge 402 throughout the course of the assay runtime, as well as afterward for safe disposal. -
FIG. 8 is a perspective view of anoptical detection unit 800 in use with a cartridge andchip assembly 400, in accordance with an exemplary embodiment of the invention. As a sample moves through thechip 100, by force resulting from the membrane-driving motor pushing pins into themembrane 404, the fluid crosses theoptical detection region 312 wherein theoptical detection unit 800 performs analysis on the sample. This type of detection is often referred to as dynamic detection, as theoptical detection unit 800 is performing detection as the fluid cycles, and as amplification is occurring in real-time. -
FIG. 10 is a cross-sectional view of an exemplary embodiment of aninlet 1002, showing a puncturing/sharpupward end 1004 andinternal lumen 1006 which fluidically connects a reservoir of the cartridge to the channel network of the chip. In some embodiments of the invention, atray 1008 is provided around theinlet 1002 to capture and retain any leakage from the piercing/forming a fluidic connection between the inlet and a reservoir. - The terms “comprises”, “comprising”, “includes”, “including”, “having” and their conjugates mean “including but not limited to”.
- The term “consisting of” means “including and limited to”.
- The term “consisting essentially of” means that the composition, method or structure may include additional ingredients, steps and/or parts, but only if the additional ingredients, steps and/or parts do not materially alter the basic and novel characteristics of the claimed composition, method or structure.
- The term “plurality” means “two or more”.
- As used herein, the singular form “a”, “an” and “the” include plural references unless the context clearly dictates otherwise. For example, the term “a compound” or “at least one compound” may include a plurality of compounds, including mixtures thereof.
- Throughout this application, various embodiments of this invention may be presented in a range format. It should be understood that the description in range format is merely for convenience and brevity and should not be construed as an inflexible limitation on the scope of the invention. Accordingly, the description of a range should be considered to have specifically disclosed all the possible subranges as well as individual numerical values within that range. For example, description of a range such as from 1 to 6 should be considered to have specifically disclosed subranges such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6 etc., as well as individual numbers within that range, for example, 1, 2, 3, 4, 5, and 6. This applies regardless of the breadth of the range.
- Whenever a numerical range is indicated herein, it is meant to include any cited numeral (fractional or integral) within the indicated range. The phrases “ranging/ranges between” a first indicate number and a second indicate number and “ranging/ranges from” a first indicate number “to” a second indicate number are used herein interchangeably and are meant to include the first and second indicated numbers and all the fractional and integral numerals therebetween.
- As used herein the term “method” refers to manners, means, techniques and procedures for accomplishing a given task including, but not limited to, those manners, means, techniques and procedures either known to, or readily developed from known manners, means, techniques and procedures by practitioners of the chemical, pharmacological, biological, biochemical and medical arts.
- It is appreciated that certain features of the invention, which are, for clarity, described in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the invention, which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable subcombination or as suitable in any other described embodiment of the invention. Certain features described in the context of various embodiments are not to be considered essential features of those embodiments, unless the embodiment is inoperative without those elements.
- Although the invention has been described in conjunction with specific embodiments thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, it is intended to embrace all such alternatives, modifications and variations that fall within the spirit and broad scope of the appended claims.
- All publications, patents and patent applications mentioned in this specification are herein incorporated in their entirety by reference into the specification, to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated herein by reference. In addition, citation or identification of any reference in this application shall not be construed as an admission that such reference is available as prior art to the present invention. To the extent that section headings are used, they should not be construed as necessarily limiting.
Claims (20)
1. A chip for use in a real-time qPCR system, comprising:
at least one port for receiving a sample into the chip;
at least one channel in fluidic communication with the at least port;
a plurality of magnetically active beads disposed within the at least one channel that capture DNA/RNA from the sample as the sample passes through the at least one channel; and
an optical inspection region in fluidic communication with the at least one channel for performing an optical analysis of the sample containing the eluted DNA/RNA previously captured on the magnetic beads.
2. The chip according to claim 1 , further comprising at least one additional port for receiving at least one of wash fluid and elution fluid into the chip.
3. The chip according to claim 1 , further comprising at least one inlet corresponding to and in fluidic communication with the at least one port and located on a top surface of the chip.
4. The chip according to claim 1 , further comprising at least one magnetically active region configured to be magnetically active with the magnetically active beads.
5. The chip according to claim 4 , wherein one magnetically active region is positioned upstream of the optical inspection region.
6. The chip according to claim 1 , further comprising at least one heated region.
7. The chip according to claim 6 , wherein one heated region is positioned on each side of the optical inspection region.
8. The chip according to claim 1 , further comprising at least one filter disposed within the at least one channel.
9. The chip according to claim 1 , wherein the at least one channel is 0.5 mm deep and 0.5 mm wide.
10. The chip according to claim 1 , further comprising at least one burst valve.
11. The chip according to claim 10 , wherein the at least one burst valve is 0.1 mm deep and 0.1 mm wide.
12. The chip according to claim 1 , further comprising at least one chip stop disposed on and protruding from an exterior surface of the chip.
13. The chip according to claim 1 , further comprising an exit valve for discharging the sample from the chip.
14. A cartridge and chip assembly, comprising:
a cartridge including at least one fluid reservoir;
a chip disposed beneath the cartridge with an inlet and a port corresponding to the at least one fluid reservoir; and
an elastic membrane disposed on top of the cartridge.
15. The cartridge and chip assembly according to claim 14 , having a first configuration wherein the chip is held between at least one lower clip and at least one upper clip of the cartridge such that the inlet is not in fluid communication with the at least one fluid reservoir.
16. The cartridge and chip assembly according to claim 14 , having a second configuration wherein the chip is held between at least one upper clip of the cartridge and the cartridge such that the inlet is in fluid communication with the at least one fluid reservoir.
17. The cartridge and chip assembly according to claim 14 , further comprising at least one release located on the cartridge for transitioning the cartridge and chip assembly from a first configuration to a second configuration.
18. The cartridge and chip assembly according to claim 14 , further comprising an exit valve and outlet of the chip in fluid communication with a waste area of the cartridge.
19. The cartridge and chip assembly according to claim 14 , further comprising at least one of at least one foil seal, a compressible layer, and an optically transparent seal.
20. A method of using a cartridge and chip assembly, comprising:
collecting and inserting a sample into a sample reservoir of a cartridge of the cartridge and chip assembly;
pushing the sample from the sample reservoir into a chip of the cartridge and chip assembly by way of an inlet and a port of the chip;
mixing the sample with magnetically active beads and then trapping the beads in the chip;
retracting the sample from the chip back into the reservoir;
pushing at least one wash fluid from at least one wash fluid reservoir in the cartridge;
retracting the at least one wash fluid from the chip back into the at least one wash fluid reservoir;
pushing an elution buffer into the chip,
from an elution reservoir of the cartridge by depressing an elastic membrane, or
from a PCR reservoir of the cartridge;
retracting the elution buffer by,
retracting the elastic member, or
retracting the elution buffer into the PCR reservoir, thereby creating a purified sample;
recovering the purified sample and pulling the purified sample into at least one heated region of the chip;
setting a temperature for the at least one heated region;
cycling the purified sample past an optical inspection region of the chip; and
measuring a signal taken from the purified sample at the optical inspection region.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/032,463 US20230405585A1 (en) | 2020-10-19 | 2021-10-19 | Apparatuses with fluidic channel geometries for sample to answer pcr analysis and methods of using same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202063093640P | 2020-10-19 | 2020-10-19 | |
PCT/US2021/055649 WO2022086991A1 (en) | 2020-10-19 | 2021-10-19 | Apparatuses with fluidic channel geometries for sample to answer pcr analysis and methods of using same |
US18/032,463 US20230405585A1 (en) | 2020-10-19 | 2021-10-19 | Apparatuses with fluidic channel geometries for sample to answer pcr analysis and methods of using same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2021/055649 A-371-Of-International WO2022086991A1 (en) | 2020-10-19 | 2021-10-19 | Apparatuses with fluidic channel geometries for sample to answer pcr analysis and methods of using same |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2021/055647 Continuation-In-Part WO2022086989A1 (en) | 2020-10-19 | 2021-10-19 | Disposable cartridge for reagent storage systems and methods using the same |
US18/032,459 Continuation-In-Part US20230405584A1 (en) | 2020-10-19 | 2021-10-19 | Disposable cartridge for reagent storage systems and methods using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
US20230405585A1 true US20230405585A1 (en) | 2023-12-21 |
Family
ID=81290030
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/032,455 Pending US20230381776A1 (en) | 2020-10-19 | 2021-10-19 | Method and apparatus for controlling fluid volumes to achieve separation and pcr amplification |
US18/032,463 Pending US20230405585A1 (en) | 2020-10-19 | 2021-10-19 | Apparatuses with fluidic channel geometries for sample to answer pcr analysis and methods of using same |
US18/032,459 Pending US20230405584A1 (en) | 2020-10-19 | 2021-10-19 | Disposable cartridge for reagent storage systems and methods using the same |
US18/032,457 Pending US20240002918A1 (en) | 2020-10-19 | 2021-10-19 | Fluidic detection and control algorithm for pcr analysis |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/032,455 Pending US20230381776A1 (en) | 2020-10-19 | 2021-10-19 | Method and apparatus for controlling fluid volumes to achieve separation and pcr amplification |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/032,459 Pending US20230405584A1 (en) | 2020-10-19 | 2021-10-19 | Disposable cartridge for reagent storage systems and methods using the same |
US18/032,457 Pending US20240002918A1 (en) | 2020-10-19 | 2021-10-19 | Fluidic detection and control algorithm for pcr analysis |
Country Status (8)
Country | Link |
---|---|
US (4) | US20230381776A1 (en) |
EP (4) | EP4229197A1 (en) |
JP (4) | JP2024520857A (en) |
KR (4) | KR20230141752A (en) |
CN (4) | CN116848264A (en) |
AU (4) | AU2021364539A1 (en) |
CA (4) | CA3224019A1 (en) |
WO (4) | WO2022086987A1 (en) |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4486152A (en) * | 1979-11-26 | 1984-12-04 | Hydro Rene Leduc | Pump with spring loaded valve |
US6960437B2 (en) * | 2001-04-06 | 2005-11-01 | California Institute Of Technology | Nucleic acid amplification utilizing microfluidic devices |
US20040094733A1 (en) * | 2001-08-31 | 2004-05-20 | Hower Robert W. | Micro-fluidic system |
GB0129816D0 (en) * | 2001-12-13 | 2002-01-30 | The Technology Partnership Plc | Testing device for chemical or biochemical analysis |
WO2006132666A1 (en) * | 2005-06-06 | 2006-12-14 | Decision Biomarkers, Inc. | Assays based on liquid flow over arrays |
TWI271435B (en) * | 2005-06-29 | 2007-01-21 | Univ Nat Cheng Kung | Polymerare Chain Reaction chip |
CN101351542A (en) * | 2005-07-15 | 2009-01-21 | 阿普尔拉公司 | Fluid processing device and method |
CN101273258A (en) * | 2005-09-30 | 2008-09-24 | 卡钳生命科学股份有限公司 | Microfluidic device for purifying a biological component using magnetic beads |
US9476856B2 (en) * | 2006-04-13 | 2016-10-25 | Advanced Liquid Logic, Inc. | Droplet-based affinity assays |
WO2008076395A2 (en) * | 2006-12-14 | 2008-06-26 | The Trustees Of The University Of Pennsylvania | Mechanically actuated diagnostic device |
WO2009049268A1 (en) * | 2007-10-12 | 2009-04-16 | Rheonix, Inc. | Integrated microfluidic device and methods |
BRPI1010169A2 (en) * | 2009-06-05 | 2016-03-29 | Integenx Inc | system that fits within a housing of no more than 10 ft3, cartridge, computer readable article, method, system configured to perform a method, optical system, instrument and device. |
WO2013133899A1 (en) * | 2012-03-08 | 2013-09-12 | Cyvek, Inc | Microfluidic assay systems employing micro-particles and methods of manufacture |
US9480791B2 (en) * | 2009-12-21 | 2016-11-01 | Bayer Healthcare Llc | Pumping devices, systems and methods for use with medical fluids including compensation for variations in pressure or flow rate |
US8944780B2 (en) * | 2011-03-25 | 2015-02-03 | Bayer Medical Care Inc. | Pumping devices, systems including multiple pistons and methods for use with medical fluids |
US20140174926A1 (en) * | 2011-05-02 | 2014-06-26 | Advanced Liquid Logic, Inc. | Molecular diagnostics platform |
US9174216B2 (en) * | 2013-03-13 | 2015-11-03 | DeNovo Science, Inc. | System for capturing and analyzing cells |
EP3450984B1 (en) * | 2013-01-31 | 2020-10-07 | Luminex Corporation | Fluid retention plates and analysis cartridges |
EP3039119A4 (en) * | 2013-08-27 | 2017-04-05 | GnuBIO, Inc. | Microfluidic devices and methods of their use |
US9802338B2 (en) * | 2013-10-16 | 2017-10-31 | Ford Global Technologies, Llc | Method for molding tailored composites |
US10208332B2 (en) * | 2014-05-21 | 2019-02-19 | Integenx Inc. | Fluidic cartridge with valve mechanism |
RU2682546C2 (en) * | 2014-05-27 | 2019-03-19 | Иллумина, Инк. | Systems and methods of biochemical analysis including main device and removable cartridge |
EP3970858B1 (en) * | 2015-07-24 | 2023-06-07 | Novel Microdevices, Inc. | Sample processing device comprising magnetic and mechanical actuating elements using linear or rotational motion |
CA3032193A1 (en) * | 2016-07-28 | 2018-02-01 | David E. Jones | Self-contained nucleic acid processing |
-
2021
- 2021-10-19 EP EP21883715.1A patent/EP4229197A1/en active Pending
- 2021-10-19 KR KR1020237016988A patent/KR20230141752A/en active Search and Examination
- 2021-10-19 EP EP21883711.0A patent/EP4228817A1/en active Pending
- 2021-10-19 AU AU2021364539A patent/AU2021364539A1/en active Pending
- 2021-10-19 US US18/032,455 patent/US20230381776A1/en active Pending
- 2021-10-19 CN CN202180085807.8A patent/CN116848264A/en active Pending
- 2021-10-19 WO PCT/US2021/055645 patent/WO2022086987A1/en active Application Filing
- 2021-10-19 EP EP21883713.6A patent/EP4229411A4/en active Pending
- 2021-10-19 CN CN202180085771.3A patent/CN116887875A/en active Pending
- 2021-10-19 WO PCT/US2021/055647 patent/WO2022086989A1/en active Application Filing
- 2021-10-19 CA CA3224019A patent/CA3224019A1/en active Pending
- 2021-10-19 AU AU2021365806A patent/AU2021365806A1/en active Pending
- 2021-10-19 CA CA3224022A patent/CA3224022A1/en active Pending
- 2021-10-19 JP JP2023576369A patent/JP2024520857A/en active Pending
- 2021-10-19 WO PCT/US2021/055649 patent/WO2022086991A1/en active Application Filing
- 2021-10-19 US US18/032,463 patent/US20230405585A1/en active Pending
- 2021-10-19 EP EP21883708.6A patent/EP4229296A1/en active Pending
- 2021-10-19 WO PCT/US2021/055638 patent/WO2022086981A1/en active Application Filing
- 2021-10-19 JP JP2023576372A patent/JP2024521466A/en active Pending
- 2021-10-19 CN CN202180085842.XA patent/CN116847927A/en active Pending
- 2021-10-19 US US18/032,459 patent/US20230405584A1/en active Pending
- 2021-10-19 US US18/032,457 patent/US20240002918A1/en active Pending
- 2021-10-19 JP JP2023576370A patent/JP2024521464A/en active Pending
- 2021-10-19 CA CA3224024A patent/CA3224024A1/en active Pending
- 2021-10-19 CA CA3224020A patent/CA3224020A1/en active Pending
- 2021-10-19 KR KR1020237016982A patent/KR20230141750A/en active Search and Examination
- 2021-10-19 AU AU2021364536A patent/AU2021364536A1/en active Pending
- 2021-10-19 KR KR1020237016983A patent/KR20230141751A/en active Search and Examination
- 2021-10-19 CN CN202180085884.3A patent/CN116888273A/en active Pending
- 2021-10-19 KR KR1020237016992A patent/KR20230141753A/en active Search and Examination
- 2021-10-19 JP JP2023576371A patent/JP2024521465A/en active Pending
- 2021-10-19 AU AU2021364540A patent/AU2021364540A1/en active Pending
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11813609B2 (en) | Microfluidic cartridge for molecular diagnosis | |
JP6347861B2 (en) | Test cartridge with integrated transfer module | |
EP3027317B1 (en) | A cartridge, cartridge reader and method for preventing reuse of the cartridge | |
US20090061450A1 (en) | System and method for diagnosis of infectious diseases | |
US20100129827A1 (en) | Method and device for sample preparation control | |
WO2007106552A2 (en) | System and method for diagnosis of infectious diseases | |
JP2006313122A (en) | Chemical analysis apparatus and chemical analysis cartridge | |
US20230405585A1 (en) | Apparatuses with fluidic channel geometries for sample to answer pcr analysis and methods of using same | |
CN218435756U (en) | Nucleic acid detection micro-fluidic chip for in-situ capture and amplification and nucleic acid detector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |