US20220215732A1 - Systems and methods for improved assisted or independent living environments - Google Patents
Systems and methods for improved assisted or independent living environments Download PDFInfo
- Publication number
- US20220215732A1 US20220215732A1 US17/701,316 US202217701316A US2022215732A1 US 20220215732 A1 US20220215732 A1 US 20220215732A1 US 202217701316 A US202217701316 A US 202217701316A US 2022215732 A1 US2022215732 A1 US 2022215732A1
- Authority
- US
- United States
- Prior art keywords
- sensor data
- individual
- property
- data
- controller
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 80
- 238000004891 communication Methods 0.000 claims description 90
- 230000015654 memory Effects 0.000 claims description 33
- 238000004458 analytical method Methods 0.000 claims description 24
- 230000033001 locomotion Effects 0.000 claims description 21
- 238000003384 imaging method Methods 0.000 claims description 6
- 230000002159 abnormal effect Effects 0.000 description 60
- 238000012545 processing Methods 0.000 description 57
- 230000000875 corresponding effect Effects 0.000 description 31
- 230000005540 biological transmission Effects 0.000 description 28
- 239000007789 gas Substances 0.000 description 22
- 230000009471 action Effects 0.000 description 17
- 230000004044 response Effects 0.000 description 10
- 230000008901 benefit Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 230000001133 acceleration Effects 0.000 description 8
- 230000006378 damage Effects 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 230000006870 function Effects 0.000 description 7
- 230000000116 mitigating effect Effects 0.000 description 7
- 230000007613 environmental effect Effects 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 241001465754 Metazoa Species 0.000 description 5
- 230000036760 body temperature Effects 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 208000027418 Wounds and injury Diseases 0.000 description 4
- 238000004378 air conditioning Methods 0.000 description 4
- 238000004590 computer program Methods 0.000 description 4
- 230000036541 health Effects 0.000 description 4
- 208000014674 injury Diseases 0.000 description 4
- 239000004984 smart glass Substances 0.000 description 4
- 239000003345 natural gas Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000005856 abnormality Effects 0.000 description 2
- 230000036772 blood pressure Effects 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 239000000779 smoke Substances 0.000 description 2
- 230000009182 swimming Effects 0.000 description 2
- 238000009423 ventilation Methods 0.000 description 2
- 238000007792 addition Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 235000005770 birds nest Nutrition 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000010411 cooking Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000002079 cooperative effect Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 238000009428 plumbing Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 238000010223 real-time analysis Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- CCEKAJIANROZEO-UHFFFAOYSA-N sulfluramid Chemical group CCNS(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F CCEKAJIANROZEO-UHFFFAOYSA-N 0.000 description 1
- 238000001931 thermography Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 235000005765 wild carrot Nutrition 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/02—Services making use of location information
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B15/00—Systems controlled by a computer
- G05B15/02—Systems controlled by a computer electric
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/20—Instruments for performing navigational calculations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/20—Administration of product repair or maintenance
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/01—Customer relationship services
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/018—Certifying business or products
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q40/00—Finance; Insurance; Tax strategies; Processing of corporate or income taxes
- G06Q40/08—Insurance
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/10—Services
- G06Q50/16—Real estate
- G06Q50/163—Real estate management
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/16—Human faces, e.g. facial parts, sketches or expressions
- G06V40/172—Classification, e.g. identification
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B1/00—Systems for signalling characterised solely by the form of transmission of the signal
- G08B1/02—Systems for signalling characterised solely by the form of transmission of the signal using only mechanical transmission
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B13/00—Burglar, theft or intruder alarms
- G08B13/22—Electrical actuation
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B17/00—Fire alarms; Alarms responsive to explosion
- G08B17/10—Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B21/00—Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
- G08B21/02—Alarms for ensuring the safety of persons
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B21/00—Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
- G08B21/02—Alarms for ensuring the safety of persons
- G08B21/04—Alarms for ensuring the safety of persons responsive to non-activity, e.g. of elderly persons
- G08B21/0407—Alarms for ensuring the safety of persons responsive to non-activity, e.g. of elderly persons based on behaviour analysis
- G08B21/043—Alarms for ensuring the safety of persons responsive to non-activity, e.g. of elderly persons based on behaviour analysis detecting an emergency event, e.g. a fall
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B21/00—Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
- G08B21/02—Alarms for ensuring the safety of persons
- G08B21/04—Alarms for ensuring the safety of persons responsive to non-activity, e.g. of elderly persons
- G08B21/0438—Sensor means for detecting
- G08B21/0446—Sensor means for detecting worn on the body to detect changes of posture, e.g. a fall, inclination, acceleration, gait
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B21/00—Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
- G08B21/02—Alarms for ensuring the safety of persons
- G08B21/04—Alarms for ensuring the safety of persons responsive to non-activity, e.g. of elderly persons
- G08B21/0438—Sensor means for detecting
- G08B21/0461—Sensor means for detecting integrated or attached to an item closely associated with the person but not worn by the person, e.g. chair, walking stick, bed sensor
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B21/00—Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
- G08B21/18—Status alarms
- G08B21/182—Level alarms, e.g. alarms responsive to variables exceeding a threshold
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B21/00—Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
- G08B21/18—Status alarms
- G08B21/185—Electrical failure alarms
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B7/00—Signalling systems according to more than one of groups G08B3/00 - G08B6/00; Personal calling systems according to more than one of groups G08B3/00 - G08B6/00
- G08B7/06—Signalling systems according to more than one of groups G08B3/00 - G08B6/00; Personal calling systems according to more than one of groups G08B3/00 - G08B6/00 using electric transmission, e.g. involving audible and visible signalling through the use of sound and light sources
- G08B7/062—Signalling systems according to more than one of groups G08B3/00 - G08B6/00; Personal calling systems according to more than one of groups G08B3/00 - G08B6/00 using electric transmission, e.g. involving audible and visible signalling through the use of sound and light sources indicating emergency exits
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B7/00—Signalling systems according to more than one of groups G08B3/00 - G08B6/00; Personal calling systems according to more than one of groups G08B3/00 - G08B6/00
- G08B7/06—Signalling systems according to more than one of groups G08B3/00 - G08B6/00; Personal calling systems according to more than one of groups G08B3/00 - G08B6/00 using electric transmission, e.g. involving audible and visible signalling through the use of sound and light sources
- G08B7/066—Signalling systems according to more than one of groups G08B3/00 - G08B6/00; Personal calling systems according to more than one of groups G08B3/00 - G08B6/00 using electric transmission, e.g. involving audible and visible signalling through the use of sound and light sources guiding along a path, e.g. evacuation path lighting strip
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/2803—Home automation networks
- H04L12/2816—Controlling appliance services of a home automation network by calling their functionalities
- H04L12/2818—Controlling appliance services of a home automation network by calling their functionalities from a device located outside both the home and the home network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/2803—Home automation networks
- H04L12/2823—Reporting information sensed by appliance or service execution status of appliance services in a home automation network
- H04L12/2825—Reporting to a device located outside the home and the home network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/2803—Home automation networks
- H04L12/283—Processing of data at an internetworking point of a home automation network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/12—Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/66—Remote control of cameras or camera parts, e.g. by remote control devices
- H04N23/661—Transmitting camera control signals through networks, e.g. control via the Internet
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/02—Services making use of location information
- H04W4/024—Guidance services
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B21/00—Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
- G08B21/02—Alarms for ensuring the safety of persons
- G08B21/04—Alarms for ensuring the safety of persons responsive to non-activity, e.g. of elderly persons
- G08B21/0438—Sensor means for detecting
- G08B21/0453—Sensor means for detecting worn on the body to detect health condition by physiological monitoring, e.g. electrocardiogram, temperature, breathing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/90—Services for handling of emergency or hazardous situations, e.g. earthquake and tsunami warning systems [ETWS]
Definitions
- the present disclosure generally relates to managing a connected property. More particularly, the present disclosure relates to assessing sensor data from smart devices in a property to detect when individuals may be in peril, and facilitating actions to mitigate the situation.
- the present embodiments may, inter alia, access certain device data to detect certain conditions and situations within a property and determine actions or commands to perform to address the conditions and situations. Further, the present embodiments may effectively and efficiently communicate relevant information associated with the conditions and enable users to facilitate the actions or commands.
- One particular functionality relates to analyzing sensor data to detect when one or more individuals may be in peril, such as in an independent or assisted living environment, and then notifying proper individuals of the situation.
- the present embodiments may relate to (1) home control and/or automation, as well as (2) loss prevention, reduction, and/or mitigation through proactively identifying periled individuals, notifying an individual of detected situations, and enabling individuals to mitigate the detected situations.
- the foregoing functionality also may be used by an insurance provider to generate, update, or adjust insurance policies, premiums, rates, discounts, points, and/or rewards, and/or make recommendations to an insured individual.
- a computer-implemented method of detecting periled individuals within an independent or assisted living environment may be provided.
- the independent or assisted living environment may be populated with a hardware controller in communication with a plurality of sensors.
- the method may include (1) receiving, by the hardware controller, sensor data from at least one sensor located within the independent or assisted living environment, the at least one sensor either (i) secured to an individual or (ii) configured to sense environmental data within a proximity of the individual; (2) analyzing the sensor data by one or more processors; (3) based upon the analyzing, determining that the individual is in peril; (4) responsive to determining that the individual is in peril, generating a notification indicating that the individual is in peril; and/or (5) communicating the notification to an electronic device of an additional individual to facilitate alleviating a risk associated with the individual being in peril.
- the method may include additional, less, or alternate actions, including those discussed elsewhere herein.
- a hardware controller for detecting periled individuals within an independent or assisted living environment, where the hardware controller may communication with a set of sensors populated within the independent or assisted living environment, may be provided.
- the hardware controller may include a communication module adapted to interface with the set of sensors populated within the independent or assisted living environment; a memory adapted to store non-transitory computer executable instructions; and/or a processor adapted to interface with the communication module and the memory.
- the processor may be configured to execute the non-transitory computer executable instructions to cause the processor to receive, via the communication module, sensor data from at least one sensor of the set of sensors located within the independent or assisted living environment, the at least one sensor either (i) secured to an individual or (ii) configured to sense environmental data within a proximity of the individual, analyze the sensor data, based upon the analyzing, determine that the individual is in peril, responsive to determining that the individual is in peril, generate a notification indicating that the individual is in peril, and/or communicate, via the communication module, the notification to an electronic device of an additional individual to facilitate alleviating a risk associated with the individual being in peril.
- the hardware controller may include additional, less, or alternate functionality, including that discussed elsewhere herein.
- FIG. 1 depicts an exemplary environment including components and entities associated with managing device operation and facilitating insurance policy processing, in accordance with some embodiments.
- FIG. 2 is an exemplary signal diagram associated with assessing sensor data to detect individuals in peril and facilitating various actions to mitigate the situations, in accordance with some embodiments.
- FIG. 3 is a flow diagram of an exemplary computer-implemented method of assessing sensor data to detect individuals in peril and facilitating various actions to mitigate the situations, in accordance with some embodiments.
- FIG. 4 is a block diagram of an exemplary controller in accordance with some embodiments.
- FIG. 5 is a block diagram of an exemplary processing server in accordance with some embodiments.
- FIGS. 6A and 6B depict exemplary interfaces associated with notifying of periled individuals and facilitating various actions to mitigate the situations, in accordance with some embodiments.
- the present embodiments may relate to, inter alia, assessing operation of devices or personal property within a home or other type of property, such as household furniture, appliances, electronics, vehicles (e.g., cars, boats, motorcycles), and/or other personal belongings (e.g., clothing, jewelry, antiques).
- a home or property may have a “smart” central controller that may be wirelessly connected, or connected via hard-wire, with various household related items, devices, and/or sensors.
- the central controller may be associated with any type of property, such as homes, office buildings, restaurants, farms, and/or other types of properties.
- the central controller, and/or one or more remote processors or servers associated with an insurance provider or other entity may be in wireless or wired communication with various “smart” items or devices, such as smart appliances (e.g., clothes washer, dryer, dish washer, refrigerator, etc.); smart heating devices (e.g., furnace, space heater, etc.); smart cooling devices (e.g., air conditioning units, fans, ceiling fans, etc.); smart plumbing fixtures (e.g., toilets, showers, water heaters, piping, interior and yard sprinklers, etc.); smart cooking devices (e.g., stoves, ovens, grills, microwaves, etc.); smart wiring, lighting, and lamps; smart personal vehicles; smart thermostats; smart windows, doors, or garage doors; smart window blinds or shutters; wearable devices; and/or other smart devices and/or sensors capable of wireless or wired communication.
- Each smart device (or sensor associated therewith), as well as the central controller and/or insurance provider remote processor(s) may be equipped with a processor, memory unit, software
- the central controller, and/or insurance provider remote processor(s) may collect or retrieve various data from the devices or personal property, analyze the data, and/or identify various situations indicated by the data and/or actions to facilitate based upon the analysis.
- the central controller and/or insurance provider remote processor(s) may receive operation data from the smart devices, where the operation data may include various sensor data associated with the smart devices.
- the central controller and/or insurance provider remote processor(s) may analyze the operation data (e.g., by comparing the operation data to baseline sensor data) to detect that an individual may be in peril, or otherwise exposed to injury, loss, destruction and/or the like. According to embodiments, the individual be located within an independent or assisted living environment.
- the central controller and/or the insurance provider may generate a notification that indicates the situation and may communicate the notification to a proper individual who may be in position to help the individual in peril.
- the central controller and/or insurance provider may also determine to process an insurance policy that may be impacted by the situation.
- the systems and methods discussed herein address a challenge that is particular to property management.
- the challenge relates to a difficulty in identifying when an individual located on a premises may be in peril or otherwise in need of help, as well as a difficulty in mitigating the situation. This is particularly apparent when the individual is not under constant care or connected to conventional monitoring machines.
- Existing environments rely on individuals to self-report situations and/or rely on caregivers to happen upon the situations. However, these existing environments still result in numerous situations that go unaddressed as a result of nobody noticing situations or the individual being unable to call or signal for assistance.
- the present systems and methods leverage sensor data from connected devices to detect and identify situations in which individuals may be in peril or otherwise in need of assistance, and dynamically generate notifications of the same and send the notifications to proper individuals in position to offer assistance. Therefore, because the systems and methods employ the collection and analysis of sensors data associated with connected devices within the property, the systems and methods are necessarily rooted in computer technology in order to overcome the noted shortcomings that specifically arise in the realm of property management.
- the systems and methods provide improvements in a technical field, namely, property automation and safety.
- the systems and methods employ complex steps that go beyond the mere concept of simply retrieving and combining data using a computer.
- the hardware components receive data from connected devices, analyze the data identify a potentially threatening situation for an individual, generating a notification that indicates the potentially threatening situation, and/or communicate the notification to a proper individual.
- a central controller in a property retrieves and analyzes sensor data from a plurality of connected devices in the property, the central controller and the connected devices are part of a “thin client” environment that improves data persistence and information processing. This combination of elements further impose meaningful limits in that the operations are applied to improve property automation and safety by detecting potentially threatening situations, and facilitating mitigating actions in a meaningful and effective way.
- the systems and methods may support a dynamic, real-time or near-real-time analysis of any received data.
- the central controller and/or insurance provider may retrieve and/or receive real-time sensor data from the sensors, analyze the sensor data in real-time, and dynamically determine that an individual is in peril.
- the central controller and/or insurance provider may dynamically generate a notification of the situation in real-time, and communicate the notification to another individual in real-time. Accordingly, the real-time capability of the systems and methods enable the individuals in peril with an assurance of efficient and effective treatment should the individuals be in peril, and enable any caregivers with real-time notifications that individuals are in peril.
- the systems and methods offer numerous benefits relating to the safety of individuals.
- the systems and methods may automatically detect situations in which individuals may be in peril, and may automatically facilitate actions to address the situations.
- the safety of individuals may improve, especially in independent or assisted living environments.
- the systems and methods enable additional individuals to be notified of the situations so that the additional individuals are able to promptly address the situations.
- the systems and methods may further offer a benefit to insurance providers and customers thereof.
- the present embodiments may facilitate (a) providing and updating insurance policies; (b) the handling or adjusting of home insurance claims; (c) the disbursement of monies related to insurance claims; (d) modifying insurance coverage amounts; (e) updating and improving estimate models, and/or (f) other insurance-related activities.
- the systems and methods may further offer a benefit to customers by offering improved insurance claim processing.
- the insurance providers may stand out as a cost-effective insurance provider, thereby retaining existing customers and attracting new customers. It should be appreciated that further benefits to the systems and methods are envisioned.
- the method may also include adjusting an insurance policy, premium, or discount (such as a homeowners, renters, auto, home, health, or life insurance policy, premium, or discount) based upon the assisted living and/or other functionality discussed herein, and/or an insured having a home and/or mobile device with such functionality.
- an insurance policy, premium, or discount such as a homeowners, renters, auto, home, health, or life insurance policy, premium, or discount
- FIG. 1 depicts an exemplary environment 100 including components and entities for managing devices associated with a property and processing insurance policies associated therewith. Although FIG. 1 depicts certain entities, components, and devices, it should be appreciated that additional, fewer, or alternate entities and components are envisioned.
- the environment 100 may include a property 105 that contains a controller 120 and a plurality of devices 110 that may be each connected to a local communication network 115 .
- the property 105 may be an independent or assisted living environment in which one or more individuals needing independent or assisted living care may reside.
- the independent or assisted living environment may employ caregivers who provide care to the residents as needed.
- the property 105 may be other types of properties, such as a private residence, an office, a hotel, or the like.
- Each of the plurality of devices 110 may be a “smart” device that may be configured with one or more sensors capable of sensing and communicating operating data associated with the corresponding device 110 .
- the plurality of devices 110 may include a smart alarm system 110 a, a smart stove 110 b, and/or a smart washing machine 110 c.
- Each of the plurality of devices 110 may be located within or proximate to the property 105 (generally, “on premises”).
- one or more of the plurality of devices 110 may be a device that is wearable by an individual, such as a heart rate monitor, a pedometer, a blood pressure monitor, or other types of wearable devices or monitors.
- FIG. 1 depicts only one property 105 , it should be appreciated that multiple properties are envisioned, each with its own controller and devices. Further, it should be appreciated that additional, fewer, or alternate devices may be present in the property 105 .
- the plurality of devices 110 may be purchased from a manufacturer with the “smart” functionally incorporated therein. In other cases, the plurality of devices 110 may have been purchased as “dumb” devices and subsequently modified to add the “smart” functionality to the device. For instance, a homeowner may purchase an alarm system that installs sensors on or near a door to detect when a door has been opened and/or unlocked.
- the plurality of devices 110 may monitor their own status or condition via the sensors to detect any issues or problems. In response to detecting issues or problems, the plurality of devices 110 may be able to indicate the issues or problems via display components, such as LED lights, display screens, or other visual indicators. In further embodiments, the controller 120 may be configured to monitor, via sensor data, whether the plurality of devices 110 and/or parts thereof have been installed correctly, whether replacement parts are new and/or otherwise in good condition, and/or other conditions associated with the plurality of devices 110 and/or parts thereof.
- the plurality of devices 110 may be configured to communicate with a controller 120 via the local communication network 115 .
- the local communication network 115 may facilitate any type of data communication between devices and controllers located on or proximate to the property 105 via any standard or technology (e.g., LAN, WLAN, any IEEE 802 standard including Ethernet, and/or others).
- the local communication network 115 may further support various short-range communication protocols, such as Bluetooth®, Bluetooth® Low Energy, near field communication (NFC), radio-frequency identification (RFID), and/or other types of short-range protocols.
- the plurality of devices 110 may transmit, to the controller 120 via the local communication network 115 (and/or to the insurance provider 130 remote processing server 135 via the network 125 ), operational data gathered from sensors associated with the plurality of devices 110 .
- the operational data may be audio data, image or video data, motion data, status data, usage amounts, vital sign data, and/or other data or information.
- the operational data may include imaging or audio data recorded within a room; a heart rate of an individual wearing one of the plurality of devices 110 ; and/or other information that may be pertinent to an operation state or status of the plurality of devices 110 .
- the operational data may include motion data that may indicate the presence of and movement of any individuals within the property 105 and/or located on the exterior of the property 105 .
- the operational data may include device usage data.
- the operational data may include a timestamp representing the time that the operational data was recorded.
- the controller 120 may be coupled to a database 112 that stores various operational data and information associated with the plurality of devices 110 .
- FIG. 1 depicts the database 112 as coupled to the controller 120 , it is envisioned that the database 112 may be maintained in the “cloud” such that any element of the environment 100 capable of communicating over either the local network 115 or one or more other networks 125 may directly interact with the database 112 .
- the database 112 may organize the operational data according to which individual device 110 the data may be associated and/or the room or subsection of the property in which the data was recorded. Further, the database 112 may maintain an inventory list that includes the plurality of devices 110 , as well as various data and information associated with the plurality of devices 110 (e.g., locations, replacement costs, etc.).
- the database 112 may maintain various operation states of the plurality of devices 110 .
- the operation states may specify various settings of the plurality of devices 110 such that when the respective device is configured at the setting(s), the respective device will operate in the corresponding operation state.
- an operation state for a smart thermostat may be “heat conservation” whereby the corresponding setting is 64 degrees (as opposed to a more “normal” 70 degree setting). It should be appreciated that each operation state may specify settings for more than one of the devices 110 .
- the controller 120 (and/or the plurality of devices 112 ) may be configured to communicate with other components and entities, such as an insurance provider 130 and various third party source(s) 138 via the network(s) 125 .
- the network(s) 125 may facilitate any data communication between the controller 120 located on the property 105 and entities or individuals remote to the property 105 via any standard or technology (e.g., GSM, CDMA, TDMA, WCDMA, LTE, EDGE, OFDM, GPRS, EV-DO, UWB, IEEE 802 including Ethernet, WiMAX, Wi-Fi, and/or others).
- GSM Global System for Mobile communications
- CDMA Code Division Multiple Access
- TDMA Wideband Code Division Multiple Access
- WCDMA Wideband Code Division Multiple Access
- LTE Long Term Evolution
- EDGE OFDM
- OFDM GPRS
- EV-DO Universal Mobile communications
- UWB Universal Mobile communications
- IEEE 802 including Ethernet, WiMAX, Wi-Fi, and/or others.
- the insurance provider 130 may be any individual, group of individuals, company, corporation, or other type of entity that may issue insurance policies for customers, such as a home insurance policy associated with the property 105 .
- the insurance provider 130 may include one or more processing server(s) 135 configured to facilitate the functionalities as discussed herein.
- FIG. 1 depicts the processing server 135 as a part of the insurance provider 130 , it should be appreciated that the processing server 135 may be separate from (and connected to or accessible by) the insurance provider 130 .
- the present disclosure describes the systems and methods as being facilitated in part by the insurance provider 130 , it should be appreciated that other non-insurance related entities may implement the systems and methods.
- a general contractor may aggregate the insurance-risk data across many properties to determine which appliances or products provide the best protection against specific causes of loss, and/or deploy the appliances or products based upon where causes of loss are most likely to occur. Accordingly, it may not be necessary for the property 105 to have an associated insurance policy for the property owners to enjoy the benefits of the systems and methods.
- the third-party source(s) 138 may represent any entity or component that is configured to obtain, detect, and/or determine data or information that may be relevant to the devices 110 of the property 105 .
- the third-party source(s) 138 may be a manufacturer, supplier, servicer, or retailer of the any of the devices 110 , as well as for replacement devices for the devices 110 .
- the third-party source 138 may be refrigerator manufacturer that sells refrigerators of the same or different types or models as the refrigerator device 110 .
- the third-party source(s) 138 may store data associated with a replacement device (e.g., cost, retail location, general information, availability, or the like).
- the third-party source(s) 138 may store baseline data associated with various types of situations in which individuals may be in peril.
- the third-party source(s) 138 may be configured to communicate various data or information to the controller 120 and/or to the insurance provider 130 via the network(s) 125 , whereby the controller 120 and/or the insurance provider 130 may examine the data or information to facilitate various functionalities.
- the controller 120 , the insurance provider 130 and/or the processing server 135 , and the third-party source(s) 138 may also be in communication, via the network(s) 125 , with an electronic device 145 associated with an individual 140 .
- the individual 140 may have an insurance policy (e.g., a long-term care insurance policy) associated with the property 105 , or may otherwise be associated with the property 105 (e.g., the individual 140 may live in the property 105 ).
- the individual 140 may also be associated with a resident of the property 105 (e.g., a family member of a person who resides in the property 105 ).
- the electronic device 145 may be a mobile device, such as a smartphone, a desktop computer, a laptop, a tablet, a phablet, a smart watch, smart glasses, wearable electronics, pager, personal digital assistant, or any other electronic device, including computing devices configured for wireless radio frequency (RF) communication and data transmission.
- the controller 120 and/or insurance provider 130 remote processing server 135
- the controller 120 (and/or insurance provider 130 remote processing server 135 ) may enable the individual 140 to remotely control various of the plurality of devices 110 via the electronic device 145 .
- the controller 120 may analyze sensor data from any of the plurality of devices 110 to determine if one or more individuals may be in peril or otherwise in need of help or assistance.
- the controller 120 and/or insurance provider 130 remote processing server 135 ) may generate notifications or alerts that may indicate the situation, and communicate the notifications or alerts to the electronic device 145 via the network 125 .
- the controller 120 and/or insurance provider 130 or remote processing server 135 ) may determine any changes to or processing associated with an insurance policy that may result from the situation, and may communicate with the remote processing server 135 to facilitate the processing.
- the controller 120 may also transmit any modifications to insurance policies based upon detected data from the plurality of devices 110 .
- the individual e.g., a policyholder
- the electronic device may transmit, via the network 125 , the accepted or modified insurance claim back to the controller 120 (and/or insurance provider 130 remote processing server 135 ).
- the controller 120 may facilitate any processing of the insurance claim with the processing server 135 of the insurance provider 130 . Additionally or alternatively, the processing server 135 may facilitate the proposed insurance claim communications and processing directly with the customer 140 . In some implementations, the insurance provider 130 remote processing server 135 may provide the same functionality as that described herein with respect to the controller 120 .
- FIG. 2 illustrated is an exemplary signal diagram 200 associated with detecting when individuals may be in peril and communicating notifications relating thereto.
- FIG. 2 includes a set of smart devices 210 (such as the smart devices 110 as discussed with respect to FIG. 1 ), a controller 220 (such as the controller 120 as discussed with respect to FIG. 1 ), a processing server 235 (such as the processing server 135 as discussed with respect to FIG. 1 ), and a user device 245 (such as the user device 145 as discussed with respect to FIG. 1 ).
- a set of smart devices 210 such as the smart devices 110 as discussed with respect to FIG. 1
- a controller 220 such as the controller 120 as discussed with respect to FIG. 1
- a processing server 235 such as the processing server 135 as discussed with respect to FIG. 1
- a user device 245 such as the user device 145 as discussed with respect to FIG. 1 .
- the smart devices 210 and the controller 220 may be located within an independent or assisted living environment 205 (which generally may be the property 105 as discussed with respect to FIG. 1 ).
- the individual who may be in peril may be an individual who resides in the independent or assisted living environment 205 and who may receive care by employees or other workers of the independent or assisted living environment 205 .
- the smart devices 210 may include a set of sensors configured to generate and communicate various sensor data.
- the user device 245 may belong to an individual associated with the independent or assisted living environment 205 , such as an employee or worker, a resident of the independent or assisted living environment 205 , a caregiver, caretaker, and/or family member of an individual residing in the independent or assisted living environment 205 , or an individual otherwise associated with an individual residing in the independent or assisted living environment 205 .
- the signal diagram 200 may begin when the controller 220 optionally requests ( 250 ) the smart devices 210 for sensor data.
- the controller 220 may periodically request the smart devices 210 for sensor data, or the controller 220 may request the smart devices 210 for sensor data in response to various triggers (e.g., at a certain time of the day or in response to receiving particular sensor data from a particular smart device 210 ).
- the controller 220 may also request sensor data from one or more specific smart devices 210 .
- the smart device(s) 210 may be devices configured to be worn by an individual, such as a resident of the independent or assisted living environment 205 .
- the smart device(s) 210 may send ( 252 ) sensor data to the controller 220 .
- the sensor data may be audio data, imaging data (e.g., images and/or videos), motion/movement sensor data, location data, and/or vital sign data. It should be appreciated that other types of sensor data and combinations of sensor data are envisioned.
- the smart device(s) 210 may provide the sensor data automatically as the data is detected, in response to receiving a request from the controller 220 , or in response to various triggers.
- the smart device 210 may be a heart rate monitor that may send heart rate data of an individual to the controller 220 when the corresponding heart rate exceeds 120 beats/minute.
- the smart device 210 may be a band wearable by an individual that may send acceleration data to the controller 220 when the corresponding acceleration exceeds a certain threshold (which may be indicative of a fall).
- the controller 220 may optionally access ( 254 ) baseline sensor data that may correspond to the received sensor data. In particular, if the controller 220 receives sensor data or a particular type (e.g., acceleration data), the controller 220 may access baseline data of the same type (e.g., baseline acceleration data).
- the controller 220 may analyze ( 256 ) the received sensor data. In particular, the controller 220 may analyze the received sensor data to determine whether there are any abnormalities, causes for concern, and/or the like. In one implementation, the controller 220 may compare the received sensor data to the baseline sensor data to determine a level of similarity, where the level of similarity may meet a set threshold value. In another implementation, the controller 220 may compare the received sensor data to any corresponding threshold levels which may indicate any abnormalities, causes for concert, and/or the like.
- the controller 220 may determine ( 258 ) if the individual is in peril. In particular, if the received sensor data meets or exceeds any threshold level (or differs from any threshold level by a certain amount or percentage), or if any calculated similarity level meets a threshold value, then the controller may deem that an individual is in peril. For example, if the received sensor data is audio data having a decibel reading and the controller 220 determines that the decibel reading exceeds a threshold decibel level, then the controller 220 may deem that the individual is in peril (such as if the individual is summoning help).
- the controller 220 may examine various combinations of sensor data (e.g., audio data, imaging data, motion/movement sensor data, location data, and/or vital sign data) to assess the situation. For example, the controller 220 may determine that the individual's heart rate is above a threshold amount, but may also determine that the individual is currently located in a fitness center, and therefore deem that the individual is not in peril. Conversely, the controller 220 may determine that the individual's heart rate is above a threshold value, and may determine that the individual is located in his or her room, and therefore deem that the individual may be in peril.
- sensor data e.g., audio data, imaging data, motion/movement sensor data, location data, and/or vital sign data
- the controller 220 may generate ( 260 ) a notification indicating that the individual is in peril.
- the notification may include any details of the situation and may also include various selections that enable a receiving individual (e.g., an individual associated with the user device 245 ) to initiate help or aid for the individual in peril.
- the notification may include contact information for the independent or assisted living environment 205 and/or for an individual associated therewith.
- the controller 220 may send ( 262 ) the notification to the user device 245 , so that the individual associated with the user device 245 may access and review the notification.
- the individual associated with the user device 245 may review the notification and take any appropriate action, in particular any action that may alleviate the situation resulting from the individual residing in the independent or assisted living environment 205 being in peril.
- the caregiver may access the room of the individual and provide any needed care, or may summon appropriate medical personnel.
- the controller 220 may also facilitate insurance processing associated with the situation of the individual.
- the controller may send ( 264 ) an indication of the event (i.e., the individual being in peril) to the processing server 325 , via one or more standard channels.
- the processing server 325 may examine the indication of the event and access ( 266 ) an insurance policy that may belong to the individual in peril (i.e., the individual in peril may be a policy holder for the insurance policy).
- the processing server 235 may also process ( 268 ) the insurance policy accordingly.
- the processing server 235 may determine whether the individual being in peril may impact the insurance policy, and may adjust the insurance policy accordingly, such as by adjusting the insurance policy to insure a particular type of care that was previously not needed by the individual.
- FIG. 2 depicts the controller 220 performing various steps and determinations
- the processing server 235 may perform the same or similar steps or determinations.
- the processing server 235 may receive the sensor data, compare the sensor data to baseline data, generate a notification, communicate a notification, determine a mitigating action, and/or facilitate the mitigating action.
- FIG. 3 depicted is a block diagram of an exemplary computer-implemented method 300 of detecting individuals who may be in peril within an independent or assisted living environment (and/or abnormal conditions associated with individuals or premises).
- the method 300 may be facilitated by an electronic device within the property, such as the controller 120 that may be in direct or indirect communication with an insurance provider (such as the insurance provider 130 or a remote processor or server thereof).
- an insurance provider such as the insurance provider 130 or a remote processor or server thereof.
- the method 300 may begin when the controller receives (block 305 ) sensor data associated with an individual from at least one sensor.
- the sensor may be secured to the individual (e.g., a wearable device including an accelerometer, a heart rate monitor, a vital signs monitor, and/or the like) or configured to sense environmental data within a proximity of the individual (e.g., an audio sensor, a device usage sensor, a video camera, and/or the like).
- the controller may request the sensor data from the at least one sensor.
- the controller may optionally access (block 310 ) baseline sensor data corresponding to the retrieved sensor data.
- the retrieved sensor data may have a specific type (e.g., wearable device data, recorded video, recorded audio), where the controller may access baseline sensor data that corresponds to the type of retrieved sensor data.
- the controller may analyze (block 315 ) the received sensor data according to various calculations, techniques, or algorithms. The analysis may determine whether the retrieved sensor data is consistent with or reflects that the individual is in peril (and/or abnormal condition exists). In particular, the controller may determine whether the sensor data meets or exceeds any threshold level (or differs from any threshold level by a certain amount or percentage), or whether any calculated similarity level meets a threshold value.
- the controller may determine that the individual is in peril. For further example, if the sensor data indicates a heart rate that is dropping by a certain amount or percentage, then the controller may determine that the individual is in peril.
- the controller may end or proceed to any other functionality. If the controller determines that the individual is in peril (“YES”), then the controller may generate (block 325 ) a notification indicating that the individual is in peril.
- the notification may include various information, such as an identification of the individual, a current location of the individual, a description of the situation and/or abnormal condition, contact information of relevant individuals, and/or other information.
- the controller may communicate (block 330 ) the notification to an electronic device of an additional individual.
- the controller may store an identification of the electronic device.
- the electronic device may be a smartphone belonging to a caregiver associated with the individual.
- the controller may communicate the notification to an insurance provider.
- FIG. 4 illustrates a diagram of an exemplary controller 420 (such as the controller 120 discussed with respect to FIG. 1 ) in which the functionalities as discussed herein may be implemented. It should be appreciated that the controller 420 may be associated with a property, as discussed herein.
- the controller 420 may include a processor 422 as well as a memory 478 .
- the memory 478 may store an operating system 479 capable of facilitating the functionalities as discussed herein, as well as a set of applications 475 (i.e., machine readable instructions).
- one of the set of applications 475 may be a peril detection application 484 configured to analyze sensor data, detect when individuals may be in peril, and facilitate actions to mitigate the detected situations.
- the set of applications 475 may also include one or more other applications 484 , such as an insurance processing application.
- the processor 422 may interface with the memory 478 to execute the operating system 479 and the set of applications 475 .
- the memory 478 may also include a data record storage 480 that stores various data, such as baseline data corresponding to various types of sensor data.
- the peril detection application 484 may interface with the data record storage 480 to retrieve relevant baseline data that the peril detection application 484 may use to determine whether individuals may be in peril.
- the memory 478 may include one or more forms of volatile and/or non-volatile, fixed and/or removable memory, such as read-only memory (ROM), electronic programmable read-only memory (EPROM), random access memory (RAM), erasable electronic programmable read-only memory (EEPROM), and/or other hard drives, flash memory, MicroSD cards, and others.
- ROM read-only memory
- EPROM electronic programmable read-only memory
- RAM random access memory
- EEPROM erasable electronic programmable read-only memory
- other hard drives flash memory, MicroSD cards, and others.
- the controller 420 may further include a communication module 477 configured to communicate data via one or more networks 425 .
- the communication module 477 may include one or more transceivers (e.g., WWAN, WLAN, and/or WPAN transceivers) functioning in accordance with IEEE standards, 3GPP standards, or other standards, and/or configured to receive and transmit data via one or more external ports 476 .
- the communication module 477 may include a short-range network component (e.g., an RFID reader) configured for short-range network communications. For instance, the communication module 477 may receive, via the network 425 , sensor data from a plurality of devices populated within a property.
- the controller 420 may further include a user interface 481 configured to present information to a user and/or receive inputs from the user.
- the user interface 481 may include a display screen 482 and I/O components 483 (e.g., ports, capacitive or resistive touch sensitive input panels, keys, buttons, lights, LEDs, speakers, microphones).
- the user may access the controller 420 via the user interface 481 to assess sensor data, process insurance policies, and/or perform other functions.
- the controller 420 may be configured to perform insurance-related functions, such as generating proposed insurance claims and facilitating insurance claim processing.
- the controller 420 may perform the functionalities as discussed herein as part of a “cloud” network or may otherwise communicate with other hardware or software components within the cloud to send, retrieve, and/or otherwise analyze data.
- a computer program product in accordance with an embodiment may include a computer usable storage medium (e.g., standard random access memory (RAM), an optical disc, a universal serial bus (USB) drive, or the like) having computer-readable program code embodied therein, wherein the computer-readable program code may be adapted to be executed by the processor 422 (e.g., working in connection with the operating system 479 ) to facilitate the functions as described herein.
- the program code may be implemented in any desired language, and may be implemented as machine code, assembly code, byte code, interpretable source code or the like (e.g., via C, C++, Java, Actionscript, Objective-C, Javascript, CSS, XML).
- the computer program product may be part of a cloud network of resources.
- FIG. 5 illustrates a diagram of an exemplary processing server 535 (such as the processing server 135 discussed with respect to FIG. 1 ) in which the functionalities as discussed herein may be implemented. It should be appreciated that the processing server 535 may be associated with an insurance provider, as discussed herein. In one embodiment, the processing server may be configured with the same functionality as that of the controllers 120 , 220 of FIGS. 1 and 2 , respectively.
- the processing server 535 may include a processor 522 , as well as a memory 578 .
- the memory 578 may store an operating system 579 capable of facilitating the functionalities as discussed herein as well as a set of applications 575 (i.e., machine readable instructions).
- one of the set of applications 575 may be a policy processing application 584 configured to manage customer insurance policies.
- other applications 590 are envisioned, such as a peril detection application configured to determine whether individuals may be in peril.
- the processor 522 may interface with the memory 578 to execute the operating system 579 and the set of applications 575 .
- the memory 578 may also include a data record storage 580 that stores various information associated with customer insurance policies, as well as baseline data corresponding to a set of default sensor data and thresholds relating thereto.
- the policy processing application 584 may interface with the data record storage 580 to retrieve relevant information that the policy processing application 584 may use to manage insurance policies, generate notifications, and/or perform other functionalities, such as determine whether individuals are in peril.
- the device replacement application may interface with the data record storage 580 to retrieve device information.
- the memory 578 may include one or more forms of volatile and/or non-volatile, fixed and/or removable memory, such as read-only memory (ROM), electronic programmable read-only memory (EPROM), random access memory (RAM), erasable electronic programmable read-only memory (EEPROM), and/or other hard drives, flash memory, MicroSD cards, and others.
- ROM read-only memory
- EPROM electronic programmable read-only memory
- RAM random access memory
- EEPROM erasable electronic programmable read-only memory
- other hard drives flash memory, MicroSD cards, and others.
- the processing server 535 may further include a communication module 577 configured to communicate data via one or more networks 525 .
- the communication module 577 may include one or more transceivers (e.g., WWAN, WLAN, and/or WPAN transceivers) functioning in accordance with IEEE standards, 3GPP standards, or other standards, and configured to receive and transmit data via one or more external ports 576 .
- the communication module 577 may transmit, via the network 525 , baseline data corresponding to a set of default intrusion attempts.
- the processing server 525 may further include a user interface 581 configured to present information to a user and/or receive inputs from the user.
- the user interface 581 may include a display screen 582 and I/O components 583 (e.g., ports, capacitive or resistive touch sensitive input panels, keys, buttons, lights, LEDs, speakers, microphones).
- the user may access the processing server 535 via the user interface 581 to process insurance policies and/or perform other functions.
- the processing server 535 may perform the functionalities as discussed herein as part of a “cloud” network or may otherwise communicate with other hardware or software components within the cloud to send, retrieve, and/or otherwise analyze data.
- a computer program product in accordance with an embodiment may include a computer usable storage medium (e.g., standard random access memory (RAM), an optical disc, a universal serial bus (USB) drive, or the like) having computer-readable program code embodied therein, wherein the computer-readable program code may be adapted to be executed by the processor 522 (e.g., working in connection with the operating system 579 ) to facilitate the functions as described herein.
- the program code may be implemented in any desired language, and may be implemented as machine code, assembly code, byte code, interpretable source code or the like (e.g., via C, C++, Java, Actionscript, Objective-C, Javascript, CSS, XML).
- the computer program product may be part of a cloud network of resources.
- FIGS. 6A and 6B illustrate exemplary interfaces associated with example commands, displays, and actions for electronic devices.
- An electronic device e.g., a mobile device, such as a smartphone
- a dedicated application associated with an insurance provider (or with an independent or assisted living environment) and that is configured to operate on the electronic device may display the interfaces.
- the interfaces are merely examples and that alternative or additional content is envisioned.
- FIG. 6A illustrates an interface 650 including details related to situation in which an individual is deemed to be in peril.
- the interface 650 may include an alert that details the situation: that data has been detected indicating that John Doe may have experienced a fall.
- the interface 650 further enables a user of the electronic device to select an appropriate action to take.
- the interface 650 may include a “dismiss” selection 651 that, upon selection, may dismiss the interface 650 , a “contact” selection 652 that, upon selection, may cause the electronic device to contact John Doe (e.g., via a phone call or text message) or another individual, and a “more info” selection 653 that, upon selection, may retrieve more information related to the situation.
- FIG. 6B illustrates an additional interface 655 that may include more information relating to the situation indicated in FIG. 6A .
- the electronic device may display the interface 655 in response to the user selecting the “more info” selection 653 of the interface 650 .
- the interface 655 may indicate the location of John Doe (as shown: Room 204 ). Thus, the user of the electronic device may know where to find John Doe within the independent or assisted living environment, and may be better equipped to handle the situation and/or may be afforded with the ability to reach John Doe in a shorter amount of time.
- the interface 655 may include an “okay” selection 656 that, upon selection, may dismiss the interface 655 .
- a computer-implemented method of detecting periled individuals within an independent or assisted living environment may be provided.
- the independent or assisted living environment may be populated with a hardware controller in communication with a plurality of sensors.
- the method may include (1) receiving, by the hardware controller, sensor data from at least one sensor located within the independent or assisted living environment, the at least one sensor either (i) secured to an individual or (ii) configured to sense environmental data within a proximity of the individual; (2) analyzing the sensor data by one or more processors; (3) based upon the analyzing, determining that the individual is in peril; (4) responsive to determining that the individual is in peril, generating a notification indicating that the individual is in peril; and/or (5) communicating the notification to an electronic device of an additional individual to facilitate alleviating a risk associated with the individual being in peril.
- the method may include additional, less, or alternate actions, including those discussed elsewhere herein, and/or may be implemented via one or more local or remote processors, and/or via computer-executable instructions stored
- receiving the sensor data may include receiving motion data from a wearable device that is removably secured to the individual.
- analyzing the sensor data may include analyzing the motion data from the wearable device to determine that the individual has experienced a rapid acceleration.
- the sensor data may include vital sign data, and analyzing the sensor data may include analyzing the vital sign data to determine that the individual is in need of immediate care.
- analyzing the sensor data may include (1) analyzing the sensor data to determine a current condition of the individual; (2) receiving updated sensor data from the at least one sensor; and (3) determining, from the updated sensor data, that the current condition is maintained for a threshold period of time.
- the sensor data may include audio data received from a microphone located within a room of the individual, and wherein analyzing the sensor data may include determining, from the audio data, that the individual has suffered a fall.
- analyzing the sensor data may include accessing baseline sensor data corresponding to the retrieved sensor data, and comparing the received sensor data to the baseline sensor data.
- comparing the received sensor data to the baseline sensor data may include (1) determining a level of similarity between the retrieved sensor data and the baseline sensor data, and (2) determining that the level of similarity meets a threshold value.
- communicating the notification to the electronic device may include (1) identifying a caregiver for the individual, and (2) communicating the notification to the electronic device of the caregiver.
- the method may further include identifying an insurance-related event associated with the individual being in peril.
- a hardware controller for detecting periled individuals within an independent or assisted living environment, where the hardware controller may communication with a set of sensors populated within the independent or assisted living environment, may be provided.
- the hardware controller may include (1) a communication module adapted to interface with the set of sensors populated within the independent or assisted living environment; (2) a memory adapted to store non-transitory computer executable instructions; and/or (3) a processor adapted to interface with the communication module and the memory.
- the processor may be configured to execute the non-transitory computer executable instructions to cause the processor to (a) receive, via the communication module, sensor data from at least one sensor of the set of sensors located within the independent or assisted living environment, the at least one sensor either (i) secured to an individual or (ii) configured to sense environmental data within a proximity of the individual, (b) analyze the sensor data, (c) based upon the analyzing, determine that the individual is in peril, (d) responsive to determining that the individual is in peril, generate a notification indicating that the individual is in peril, and/or (e) communicate, via the communication module, the notification to an electronic device of an additional individual to facilitate alleviating a risk associated with the individual being in peril.
- the hardware controller may include additional, less, or alternate functionality, including that discussed elsewhere herein.
- the processor may be configured to receive motion data from a wearable device that is removably secured to the individual.
- the processor may be configured to analyze the motion data from the wearable device to determine that the individual has experienced a rapid acceleration.
- the sensor data may include vital sign data, and where to analyze the sensor data, the processor may be configured to analyze the vital sign data to determine that the individual is in need of immediate care.
- the processor may be configured to analyze the sensor data to (1) determine a current condition of the individual, (2) receive updated sensor data from the at least one sensor, and (3) determine, from the updated sensor data, that the current condition is maintained for a threshold period of time.
- the sensor data may include audio data received from a microphone located within a room of the individual, and wherein to analyze the sensor data, the processor may be configured to determine, from the audio data, that the individual has suffered a fall.
- the processor may be configured to (1) access baseline sensor data corresponding to the retrieved sensor data, and (2) compare the received sensor data to the baseline sensor data.
- the processor may be configured to (1) determine a level of similarity between the retrieved sensor data and the baseline sensor data, and (2) determine that the level of similarity meets a threshold value.
- the processor may be configured to (1) identify a caregiver for the individual, and (2) communicate the notification to the electronic device of the caregiver. Moreover, in one implementation, the processor may be further configured to identify an insurance-related event associated with the individual being in peril.
- the home controller may analyze various sensor data (e.g., vibrations, sounds, pressure data, etc.) to determine whether an individual has fallen or otherwise detect that individual has suffered an injury or is in a position of immobility.
- sensor data may be acceleration data from a wearable device that indicates a sudden acceleration, which may indicate a fall or other incident.
- the controller, and/or the insurance provider remote processing server may also monitor locations (e.g., via GPS coordinates) of individuals on the premises, as well as receive motion-activated, proximity, and/or connection data from sensors installed at various locations on the premises.
- the controller, and/or the insurance provider remote processing server may monitor the temperature of individuals via thermal sensors associated with the individuals. For instance, if the controller, and/or the insurance provider remote processing server, determines that a particular individual's temperature is below a certain threshold for a certain amount of time, then the controller, and/or the insurance provider remote processing server, respectively, may determine that the individual is at risk (and/or that there is an abnormal condition) and may generate and send a notice to another individual of the situation.
- the controller, and/or the insurance provider remote processing server may also establish baseline or “normal” conditions for an individual, a property or portion of the property, and/or may determine whether the individual, and/or one or more properties or parameters deviates from the baseline or “normal” conditions.
- the methods of smart home control and/or automation, or assisted living, detailed above may also include actions directed to independent living.
- the wired or wireless communication or data transmission, and/or data, received and/or analyzed by the smart home controller or remote processor may include audio data.
- the smart home controller or remote processor may be configured to determine that an insured has fallen from voice recognition or vibrations contained within the audio data from analysis of the audio data by the smart home controller or remote processor, and/or analyze the audio data to determine an estimated level of severity of an injury for the insured.
- the wired or wireless communication or data transmission, and/or data, received and/or analyzed by the smart home controller or remote processor may include GPS (Global Positioning System) data that the smart home controller or remote processor may use or analyze to identify a location of the insured, such as GPS data transmitted from a mobile device, smart watch, smart glasses, smart clothes, or a wearable electronics device.
- GPS Global Positioning System
- the wired or wireless communication or data transmission, and/or data, received and/or analyzed by the smart home controller or remote processor may include movement data of persons or animals within the insured home.
- the smart home controller or remote processor may be configured to determine, from analysis of the movement data by the smart home controller or remote processor, a likelihood of an abnormal condition (e.g., insured home occupant or animal injury, unexpected insured home vacancy, etc.) from a lack of movement within the insured home for a given amount of time or a pre-determined threshold of time, and then issue a message to a mobile device of the insured or a friend or neighbor.
- a likelihood of an abnormal condition e.g., insured home occupant or animal injury, unexpected insured home vacancy, etc.
- the wired or wireless communication or data transmission, and/or data, received and/or analyzed by the smart home controller or remote processor may include movement data of persons or animals within the insured home.
- the smart home controller or remote processor may be configured to determine, from analysis of the movement data by the smart home controller or remote processor, a likelihood of an abnormal condition (e.g., unexpected insured home occupancy) from movement detected within the insured home when the insured home is not occupied by the insured, and then issue a message to a mobile device of the insured or a friend or neighbor.
- an abnormal condition e.g., unexpected insured home occupancy
- the wired or wireless communication or data transmission, and/or data, received and/or analyzed by the smart home controller or remote processor may include smart door data from a smart garage door or smart door indicating that the smart garage door or smart door has been opened or shut.
- the smart home controller or remote processor may be configured to compare the smart door data with other data (such as data associated with an amount of electricity usage, operating equipment, or thermal imaging data) to determine whether an occupant has entered or exited an insured home, and, if so, generate an alert to a family member that the occupant has either entered or exited the insured home, respectively.
- the wired or wireless communication or data transmission, and/or data, received and/or analyzed by the smart home controller or remote processor may include data regarding the operation of a stove or oven (e.g., temperature, time on, etc.).
- the smart home controller or remote processor may analyze the data to determine that the stove or oven is on at too high a temperature or has been on for too long a time, and then automatically de-energize or turn off the stove or oven, and/or generate and transmit a corresponding wireless communication message to the insured indicating the abnormal stove or oven condition.
- the wired or wireless communication or data transmission, and/or data, received and/or analyzed by the smart home controller or remote processor may include body heat data associated with a body temperature of a person or animal.
- the smart home controller or remote processor may analyze the body heat data to determine that the body temperature is abnormal (e.g., too cold or too hot), and then generate and transmit a wireless communication message to an insured, family member, friend, neighbor, or caregiver indicating that the body temperature of the person or animal is abnormal.
- the wired or wireless communication or data transmission, and/or data, received and/or analyzed by the smart home controller or remote processor may include shower data.
- the smart home controller or remote processor may analyze the shower data to determine that a person has fallen while taking a shower.
- the shower data may include pressure data (such as from pressure sensing smart hand rails or pressure sensing smart floor or tub mats).
- the smart home controller or remote processor may then generate and transmit a wireless communication message to an insured, family member, friend, neighbor, or caregiver indicating that the person has fallen, or has likely fallen, while taking a shower.
- the shower data may be generated from pressure sensing matting.
- the smart home controller or remote processor may be configured to analyze the shower data to determine (a) whether the person that fell has gotten up, (b) a likely severity of a fall taken by the person, and/or (c) whether assistance is likely needed.
- the smart home controller or remote processor may then generate and transmit a corresponding wireless communication message to an insured, family member, friend, neighbor, or caregiver indicating the situation or that assistance is needed as determined by the smart home controller or remote processor.
- the wired or wireless communication or data transmission, and/or data, received and/or analyzed by the smart home controller or remote processor may include data indicating a normal routine of a person (e.g., time of day they usually wake, go to sleep, shower, cook, watch television, use a computer or other electronics, etc.).
- the smart home controller or remote processor may be configured to learn, from analysis of the data by the smart home controller or remote processor, the normal routine of the person over time, and compare present data indicating a current time and/or an activity of the person with the normal routine of the person learned to detect potential abnormal conditions. After which, the smart home controller or remote processor may then generate and transmit a corresponding wireless communication message to an insured, family member, friend, neighbor, or caregiver indicating an abnormal condition detected by the smart home controller or remote processor.
- the wired or wireless communication or data transmission, and/or data, received and/or analyzed by the smart home controller or remote processor may include data indicating vitals (e.g., blood pressure, heart rate, oxygen levels, etc.) of an occupant of the insured home.
- the smart home controller or remote processor may analyze the data indicating vitals to detect or determine an abnormal or unhealthy condition. After which, the smart home controller or remote processor may generate and transmit a message to an insured or family members of the occupant when the vitals indicate an abnormal or unhealthy condition of the occupant, as determined or detected by the smart home controller or remote processor.
- the wired or wireless communication or data transmission, and/or data, received and/or analyzed by the smart home controller or remote processor may include data indicating that an infant or young child (1) is in a vicinity of, or in, a swimming pool located within a yard of the insured home, and (2) is not being supervised by an adult.
- the smart home controller or remote processor may generate and transmit an electronic warning or message to the insured or family members to facilitate appropriate supervision in the vicinity of the swimming pool.
- the wired or wireless communication or data transmission, and/or data, received and/or analyzed by the smart home controller or remote processor may include a body heat reading of an occupant of the insured home.
- the smart home controller or remote processor may determine, based upon the analysis by the smart home controller or remote processor of the wired or wireless communication or data transmission, and/or data received, that the body heat of the occupant is too cold or too hot (as compared to normal), and then remotely adjust a smart thermostat setting accordingly (e.g., (1) if the occupant's body temperature is too hot, then the smart home controller or remote processor may direct or control turning on the air conditioning or adjusting the air conditioning, or (2) if the occupant's body temperature is too cold, then the smart home controller or remote processor may direct or control turning on the furnace/heat or adjusting the furnace setting) to maintain an appropriate temperature within the insured home and/or health of the occupant.
- a smart thermostat setting e.g., (1) if the occupant's body temperature is too hot, then the smart home controller
- the wired or wireless communication or data transmission, and/or data, received and/or analyzed by the smart home controller or remote processor may include bed data gathered from a bed sensor, smart bed, or bed room camera indicating an abnormal condition or that a person has remained in bed for an abnormal period of time. Based upon the analysis by the smart home controller or remote processor of the bed data, the smart home controller or remote processor may determine that the abnormal condition exists or that the person has remained in bed for an abnormal period of time. After which, the smart home controller or remote processor may generate and transmit a corresponding wireless communication message to an insured, family member, friend, neighbor, or caregiver indicating the abnormal condition exists or that the person has remained in bed for an abnormal amount of time.
- the wired or wireless communication or data transmission, and/or data, received and/or analyzed by the smart home controller or remote processor may include gas data gathered from, or generated by, a gas sensor, detector, or meter indicating a gas or natural gas leak within the insured home. Based upon the analysis by the smart home controller or remote processor of the gas data, the smart home controller or remote processor may determine that an abnormal condition exists, such as the gas or natural gas leak exists, within the home. The smart home controller or remote processor may generate and transmit a corresponding wireless communication message to an insured, family member, friend, neighbor, or caregiver indicating that the abnormal condition, or gas or natural gas leak, exists.
- the wired or wireless communication or data transmission, and/or data, received and/or analyzed by the smart home controller or remote processor may include odor data gathered from, or generated by, an odor detector, sensor, or meter indicating an abnormal odor condition within the insured home. Based upon the analysis by the smart home controller or remote processor of the odor data, the smart home controller or remote processor may determine that the abnormal odor condition exists within the home. The smart home controller or remote processor may then generate and transmit a corresponding wireless communication message to an insured, family member, friend, neighbor, or caregiver indicating that the abnormal odor condition exists.
- the wired or wireless communication or data transmission, and/or data, received and/or analyzed by the smart home controller or remote processor may include smell data gathered from, or generated by, a smell detector, sensor, or meter indicating an abnormal smell condition within the insured home. Based upon the analysis by the smart home controller or remote processor of the smell data, the smart home controller or remote processor may determine that the abnormal smell condition exists within the home. The smart home controller or remote processor may then generate and transmit a corresponding wireless communication message to an insured, family member, friend, neighbor, or caregiver indicating that the abnormal smell condition exists.
- the wired or wireless communication or data transmission, and/or data, received and/or analyzed by the smart home controller or remote processor may include mold data gathered from, or generated by, a mold detector, sensor, or meter indicating an abnormal mold condition within the insured home. Based upon the analysis by the smart home controller or remote processor of the mold data, the smart home controller or remote processor may determine that the abnormal mold condition exists within the home. The smart home controller or remote processor may then generate and transmit a corresponding wireless communication message to an insured, family member, friend, neighbor, or caregiver indicating that the abnormal mold condition exists.
- the wired or wireless communication or data transmission, and/or data, received and/or analyzed by the smart home controller or remote processor may include temperature data gathered from, or generated by, a temperature detector, sensor, or meter indicating an abnormal temperature condition within the insured home. Based upon the analysis by the smart home controller or remote processor of the temperature data, the smart home controller or remote processor may determine that the abnormal temperature condition exists within the home. The smart home controller or remote processor may then generate and transmit a corresponding wireless communication message to an insured, family member, friend, neighbor, or caregiver indicating that the abnormal temperature condition exists.
- the wired or wireless communication or data transmission, and/or data, received and/or analyzed by the smart home controller or remote processor may include humidity data gathered from, or generated by, a humidity detector, sensor, or meter indicating an abnormal humidity condition within the insured home. Based upon the analysis by the smart home controller or remote processor of the humidity data, the smart home controller or remote processor may determine that the abnormal humidity condition exists within the home. The smart home controller or remote processor may then generate and transmit a corresponding wireless communication message to an insured, family member, friend, neighbor, or caregiver indicating that the abnormal humidity condition exists.
- the wired or wireless communication or data transmission, and/or data, received and/or analyzed by the smart home controller or remote processor may include moisture data gathered from, or generated by, a moisture detector, sensor, or meter indicating an abnormal moisture condition within the insured home. Based upon the analysis by the smart home controller or remote processor of the moisture data, the smart home controller or remote processor may determine that the abnormal moisture condition exists within the home. The smart home controller or remote processor may then generate and transmit a corresponding wireless communication message to an insured, family member, friend, neighbor, or caregiver indicating that the abnormal moisture condition exists.
- the wired or wireless communication or data transmission, and/or data, received and/or analyzed by the smart home controller or remote processor may include sound data gathered from, or generated by, a sound detector, sensor, or meter indicating an abnormal sound condition within the insured home. Based upon the analysis by the smart home controller or remote processor of the sound data, the smart home controller or remote processor may determine that the abnormal sound condition exists within the home. The smart home controller or remote processor may then generate and transmit a corresponding wireless communication message to an insured, family member, friend, neighbor, or caregiver indicating that the abnormal sound condition exists.
- the gas, odor, smell, mold, temperature, humidity, moisture, or sound data may be analyzed at or via the smart home controller or remote processor. From the data analysis, the smart home controller or remote processor may determine a likely cause of an associated abnormal gas, odor, smell, mold, temperature, humidity, moisture, or sound condition, respectively.
- the methods discussed herein may include (1) directing or controlling, at or via the smart home controller or remote processor, various smart home equipment to mitigate the abnormal gas, odor, smell, mold, temperature, humidity, moisture, or sound condition, respectively (such as operating fans, or smart ventilation, air conditioning, furnace, heating, environmental, or other smart equipment); (2) generating an insurance claim, at or via the smart home controller or remote processor, associated with the abnormal gas, odor, smell, mold, temperature, humidity, moisture, or sound condition, respectively; (3) handling or processing the insurance claim, at or via the smart home controller or remote processor, associated with the abnormal gas, odor, smell, mold, temperature, humidity, moisture, or sound condition, respectively; and/or (4) updating, at or via the smart home controller or remote processor, a premium, rate, or discount for an insurance policy associated with, or covering, the insured home and/or insured or occupant of the insured home based upon the abnormal gas, odor, smell, mold, temperature, humidity, moisture, or sound condition, respectively.
- various smart home equipment such as operating fans, or smart ventilation,
- the gas, odor, smell, mold, temperature, humidity, moisture, or sound data may be analyzed at or via the smart home controller or remote processor to determine a corresponding abnormal condition, or a likely cause of the abnormal condition.
- the smart home controller or remote processor may receive gas, odor, smell, mold, temperature, humidity, moisture, or sound data indicative of actual gas, odor, smell, mold, temperature, humidity, moisture, or sound conditions within the insured home.
- the smart home controller or remote processor may compare the gas, odor, smell, mold, temperature, humidity, moisture, or sound data received with expected gas, odor, smell, mold, temperature, humidity, moisture, or sound data or conditions stored in a memory unit, and if differences exist, the smart home controller or remote processor may determine that a corresponding abnormal condition exists and/or determine a cause (or potential cause) of the corresponding abnormal condition.
- the smart home controller or remote processor may compare the gas, odor, smell, mold, temperature, humidity, moisture, or sound data received with a baseline of “normal” gas, odor, smell, mold, temperature, humidity, moisture, or sound data or conditions of the insured home gathered over time and/or stored in a memory unit, and if differences exist, the smart home controller or remote processor may determine that a corresponding abnormal condition exists and/or determine a cause (or potential cause) of the corresponding abnormal condition.
- the wired or wireless communication or data transmission, and/or data, received and/or analyzed by the smart home controller or remote processor may include data regarding the operation of a stove or oven (e.g., temperature, time on, etc.). Based upon the analysis by the smart home controller or remote processor of the data, the smart home controller or remote processor may determine that an abnormal condition exists within the home. For instance, the smart home controller or remote processor may analyze the data to determine that the stove or oven has been left unattended for too long, and automatically turn off or de-energize the stove or oven, respectively, and/or generate and transmit a corresponding wireless communication message to the insured or a family member indicating that the abnormal condition exists and/or that the stove or oven has been automatically turned off.
- data regarding the operation of a stove or oven e.g., temperature, time on, etc.
- the smart home controller or remote processor may determine that an abnormal condition exists within the home. For instance, the smart home controller or remote processor may analyze the data to determine that the stove or oven has been left unattended for too long, and
- the wired or wireless communication or data transmission, and/or data, received and/or analyzed by the smart home controller or remote processor may include data regarding running water (e.g., washer, tub, shower, etc.). Based upon the analysis by the smart home controller or remote processor of the data, the smart home controller or remote processor may determine that an abnormal condition exists within the home. For instance, the smart home controller or remote processor may analyze the data to determine that the running water has been flowing for too long or left unattended for too long, and automatically turn off or de-energize an electrical valve (e.g., solenoid valve) or stop a source of the flowing water, and/or generate and transmit a corresponding wireless communication message to the insured or a family member indicating that the abnormal condition exists and/or that the water has been automatically turned off.
- an electrical valve e.g., solenoid valve
- the wired or wireless communication or data transmission, and/or data, received and/or analyzed by the smart home controller or remote processor may include fireplace data regarding fireplace operation (e.g., flue, duct, or damper position, chimney opening, gas, etc.).
- fireplace data regarding fireplace operation e.g., flue, duct, or damper position, chimney opening, gas, etc.
- the smart home controller or remote processor may determine that an abnormal condition exists within the home. For instance, the smart home controller or remote processor may analyze the data to determine that an abnormal fireplace conditions exists (e.g., flue or damper in wrong position, gas on or off, chimney plugged with debris or bird nest, smoke is collecting on the interior of the insured home, etc.).
- the smart home controller or remote processor may generate and transmit an associated alert or message, and/or automatically direct or control (such as via wireless communication) the operation of smart equipment to alleviate the impact of the abnormal fireplace condition (e.g., opens, closes, moves or changes flue or damper position; opens, closes, or operates a gas valve; starts or operates ventilation equipment or fans to move smoke out of the interior of the insured home; prevents closing damper(s) until the temperature of the fireplace has cooled down to a predetermined set point after use, etc.).
- the abnormal fireplace condition e.g., opens, closes, moves or changes flue or damper position; opens, closes, or operates a gas valve; starts or operates ventilation equipment or fans to move smoke out of the interior of the insured home; prevents closing damper(s) until the temperature of the fireplace has cooled down to a predetermined set point after use, etc.
- the term “smart” may refer to devices, sensors, or appliances located within or proximate to a property, and with the ability to communicate information about the status of the device, sensor, or appliance and/or receive instructions that control the operation of the device, sensor, or appliance.
- a smart thermostat may be able to remotely communicate the current temperature of the home and receive instructions to adjust the temperature to a new level.
- a smart water tank may be able to remotely communicate the water level contained therein and receive instructions to restrict the flow of water leaving the tank.
- “dumb” devices, sensors, or appliances located within or proximate to a property require manual control.
- a person would have to manually interact with the thermostat. As such, a person is unable to use a communication network to remotely adjust a “dumb” device, sensor, or appliance.
- a “smart device” as used herein may refer to any of a smart device, sensor, appliance, and/or other smart equipment that may be located (or disposed) within or proximate to a property. In embodiments in which an appliance and a sensor external to the particular appliance are associated with each other, “smart device” may refer to both the external sensors and the appliance collectively.
- Some exemplary devices that may be “smart devices” are, without limitation, valves, piping, clothes washers/dryers, dish washers, refrigerators, sprinkler systems, toilets, showers, sinks, soil monitors, doors, locks, windows, shutters, ovens, grills, fire places, furnaces, lighting, sump pumps, security cameras, and alarm systems.
- an individual associated with the property shall be referred to as the “homeowner,” “property owner,” or “policyholder,” but it is also envisioned that the individual is a family member of the homeowner, a person renting/subletting the property, a person living or working on the property, a neighbor of the property, or any other individual that may have an interest in preventing or mitigating damage to the property.
- any reference to “home” or “property” is meant to be exemplary and not limiting.
- the systems and methods described herein may be applied to any property, such as offices, farms, lots, parks, and/or other types of properties or buildings. Accordingly, “homeowner” may be used interchangeably with “property owner.”
- an insurance customer may opt-in to a rewards, insurance discount, or other type of program.
- an insurance provider remote server may collect data from the customer's mobile device, smart home controller, or other smart devices—such as with the customer's permission.
- the data collected may be related to insured assets or individuals before (and/or after) an insurance-related event, including those events discussed elsewhere herein.
- risk averse insureds, home owners, home or apartment occupants, or care givers may receive discounts or insurance cost savings related to life, home, renters, personal articles, auto, and other types of insurance from the insurance provider.
- smart or interconnected home data, and/or other data may be collected or received by an insurance provider remote server, such as via direct or indirect wireless communication or data transmission from a smart home controller, mobile device, or other customer computing device, after a customer affirmatively consents or otherwise opts-in to an insurance discount, reward, or other program.
- the insurance provider may then analyze the data received with the customer's permission to provide benefits to the customer.
- risk averse customers may receive insurance discounts or other insurance cost savings based upon data that reflects low risk behavior and/or technology that mitigates or prevents risk to home or apartment occupants, and/or insured assets, such as homes, personal belongings, or vehicles.
- routines, subroutines, applications, or instructions may constitute either software (e.g., code embodied on a non-transitory, machine-readable medium) or hardware.
- routines, etc. are tangible units capable of performing certain operations and may be configured or arranged in a certain manner.
- one or more computer systems e.g., a standalone, client or server computer system
- one or more hardware modules of a computer system e.g., a processor or a group of processors
- software e.g., an application or application portion
- a hardware module may be implemented mechanically or electronically.
- a hardware module may comprise dedicated circuitry or logic that is permanently configured (e.g., as a special-purpose processor, such as a field programmable gate array (FPGA) or an application-specific integrated circuit (ASIC)) to perform certain operations.
- a hardware module may also comprise programmable logic or circuitry (e.g., as encompassed within a general-purpose processor or other programmable processor) that is temporarily configured by software to perform certain operations. It will be appreciated that the decision to implement a hardware module mechanically, in dedicated and permanently configured circuitry, or in temporarily configured circuitry (e.g., configured by software) may be driven by cost and time considerations.
- the term “hardware module” should be understood to encompass a tangible entity, be that an entity that is physically constructed, permanently configured (e.g., hardwired), or temporarily configured (e.g., programmed) to operate in a certain manner or to perform certain operations described herein.
- hardware modules are temporarily configured (e.g., programmed)
- each of the hardware modules need not be configured or instantiated at any one instance in time.
- the hardware modules comprise a general-purpose processor configured using software
- the general-purpose processor may be configured as respective different hardware modules at different times.
- Software may accordingly configure a processor, for instance, to constitute a particular hardware module at one instance of time and to constitute a different hardware module at a different instance of time.
- Hardware modules may provide information to, and receive information from, other hardware modules. Accordingly, the described hardware modules may be regarded as being communicatively coupled. Where multiple of such hardware modules exist contemporaneously, communications may be achieved through signal transmission (e.g., over appropriate circuits and buses) that connect the hardware modules. In embodiments in which multiple hardware modules are configured or instantiated at different times, communications between such hardware modules may be achieved, for instance, through the storage and retrieval of information in memory structures to which the multiple hardware modules have access. For instance, one hardware module may perform an operation and store the output of that operation in a memory device to which it is communicatively coupled. A further hardware module may then, at a later time, access the memory device to retrieve and process the stored output. Hardware modules may also initiate communications with input or output devices, and may operate on a resource (e.g., a collection of information).
- a resource e.g., a collection of information
- processors may be temporarily configured (e.g., by software) or permanently configured to perform the relevant operations. Whether temporarily or permanently configured, such processors may constitute processor-implemented modules that operate to perform one or more operations or functions.
- the modules referred to herein may, in some exemplary embodiments, comprise processor-implemented modules.
- the methods or routines described herein may be at least partially processor-implemented. For instance, at least some of the operations of a method may be performed by one or more processors or processor-implemented hardware modules. The performance of certain of the operations may be distributed among the one or more processors, not only residing within a single machine, but deployed across a number of machines. In some exemplary embodiments, the processor or processors may be located in a single location (e.g., within a home environment, an office environment, or as a server farm), while in other embodiments the processors may be distributed across a number of locations.
- the performance of certain of the operations may be distributed among the one or more processors, not only residing within a single machine, but deployed across a number of machines.
- the one or more processors or processor-implemented modules may be located in a single geographic location (e.g., within a home environment, an office environment, or a server farm). In other exemplary embodiments, the one or more processors or processor-implemented modules may be distributed across a number of geographic locations.
- any reference to “one embodiment” or “an embodiment” means that a particular element, feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment.
- the appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment.
- an insurance provider is used interchangeably herein to generally refer to a party or entity (e.g., a business or other organizational entity) that provides insurance products, e.g., by offering and issuing insurance policies.
- an insurance provider may be an insurance company.
- an insurance provider may offer or provide one or more different types of insurance policies.
- Other types of insurance policies may include, for instance, condominium owner insurance, renter's insurance, life insurance (e.g., whole-life, universal, variable, term), health insurance, disability insurance, long-term care insurance, annuities, business insurance (e.g., property, liability, commercial auto, workers compensation, professional and specialty liability, inland marine and mobile property, surety and fidelity bonds), automobile insurance, boat insurance, insurance for catastrophic events such as flood, fire, volcano damage and the like, motorcycle insurance, farm and ranch insurance, personal liability insurance, personal umbrella insurance, community organization insurance (e.g., for associations, religious organizations, cooperatives), personal articles, and/or other types of insurance products.
- the insurance providers process claims related to insurance policies that cover one or more properties (e.g., homes, automobiles, personal property), although processing other insurance policies is also envisioned.
- insured generally refers to a person, party or entity that is responsible for payment of the insurance premiums.
- the guarantor may or may not be the same party as the insured, such as in situations when a guarantor has power of attorney for the insured.
- an “annuitant,” as referred to herein, generally refers to a person, party or entity that is entitled to receive benefits from an annuity insurance product offered by the insuring party.
- the annuitant may or may not be the same party as the guarantor.
- the terms “comprises,” “comprising,” “includes,” “including,” “has,” “having” or any other variation thereof, are intended to cover a non-exclusive inclusion. For instance, a process, method, article, or apparatus that comprises a list of elements is not necessarily limited to only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. Further, unless expressly stated to the contrary, “or” refers to an inclusive or and not to an exclusive or. For instance, a condition A or B is satisfied by any one of the following: A is true (or present) and B is false (or not present), A is false (or not present) and B is true (or present), and both A and B are true (or present).
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Emergency Management (AREA)
- Theoretical Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Marketing (AREA)
- General Business, Economics & Management (AREA)
- Economics (AREA)
- Strategic Management (AREA)
- Accounting & Taxation (AREA)
- Finance (AREA)
- General Health & Medical Sciences (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Human Resources & Organizations (AREA)
- Development Economics (AREA)
- Tourism & Hospitality (AREA)
- Gerontology & Geriatric Medicine (AREA)
- Computing Systems (AREA)
- Entrepreneurship & Innovation (AREA)
- Technology Law (AREA)
- Operations Research (AREA)
- Multimedia (AREA)
- Quality & Reliability (AREA)
- Medical Informatics (AREA)
- General Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Social Psychology (AREA)
- Chemical & Material Sciences (AREA)
- Psychology (AREA)
- Psychiatry (AREA)
- Primary Health Care (AREA)
- Human Computer Interaction (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Alarm Systems (AREA)
Abstract
The present embodiments relate to detecting instances of individuals being in peril within an independent or assisted living environment. According to certain aspects, with an individual's permission or affirmative consent, a hardware controller (such as a smart or interconnected home controller, or even a mobile device) may receive and analyze sensor data detected within the independent or assisted living environment to determine whether an individual may be in peril. In this circumstance, the hardware controller may generate a notification that indicates the situation and may communicate the notification to a proper individual, such as a family member or care giver, who may be in a position to mitigate or alleviate any risks posed by the situation. The foregoing functionality also may be used by an insurance provider to generate, update, or adjust insurance policies, premiums, rates, or discounts, and/or make recommendations to an insured individual.
Description
- This application claims priority to U.S. patent application Ser. No. 16/738,328 (filed Jan. 9, 2020, and entitled “SYSTEMS AND METHODS for IMPROVED ASSISTED OR INDEPENDENT LIVING ENVIRONMENTS”); which is a continuation of U.S. patent application Ser. No. 14/873,865 (filed Oct. 2, 2015, and entitled “SYSTEMS AND METHODS for IMPROVED ASSISTED OR INDEPENDENT LIVING ENVIRONMENTS”); which claims benefit of the filing date of U.S. Provisional Patent Application Nos. 62/060,962 (filed Oct. 7, 2014, and entitled “SYSTEMS AND METHODS FOR MANAGING DEVICES WITHIN A CONNECTED PROPERTY AND INSURANCE POLICIES ASSOCIATED THEREWITH”); 62/105,407 (filed Jan. 20, 2015, and entitled “SYSTEMS AND METHODS FOR MANAGING DEVICES WITHIN A CONNECTED PROPERTY AND INSURANCE POLICIES ASSOCIATED THEREWITH”); 62/187,624 (filed Jul. 1, 2015, and entitled “SYSTEMS AND METHODS FOR FACILITATING DEVICE REPLACEMENT WITHIN A CONNECTED PROPERTY”); 62/187,645 (filed Jul. 1, 2015, and entitled “SYSTEMS AND METHODS FOR MANAGING BUILDING CODE COMPLIANCE FOR A PROPERTY”); 62/187,651 (filed Jul. 1, 2015, and entitled “SYSTEMS AND METHODS FOR AUTOMATICALLY GENERATING AN ESCAPE ROUTE”); 62/187,642 (filed Jul. 1, 2015, and entitled “SYSTEMS AND METHODS FOR ANALYZING SENSOR DATA TO DETECT PROPERTY INTRUSION EVENTS”); 62/187,666 (filed Jul. 1, 2015, and entitled “SYSTEMS AND METHODS FOR IMPROVED ASSISTED OR INDEPENDENT LIVING ENVIRONMENTS”); 62/189,329 (filed Jul. 7, 2015, and entitled “SYSTEMS AND METHODS FOR MANAGING WARRANTY INFORMATION ASSOCIATED WITH DEVICES POPULATED WITHIN A PROPERTY”); 62/193,317 (filed Jul. 16, 2015, and entitled “SYSTEMS AND METHODS FOR MANAGING SMART DEVICES BASED UPON ELECTRICAL USAGE DATA”); 62/197,343 (filed July 27, 2015, and entitled “SYSTEMS AND METHODS FOR CONTROLLING SMART DEVICES BASED UPON IMAGE DATA FROM IMAGE SENSORS”); 62/198,813 (filed Jul. 30, 2015, and entitled “SYSTEMS AND METHODS FOR MANAGING SERVICE LOG INFORMATION”); 62/200,375 (filed Aug. 3, 2015, and entitled “SYSTEMS AND METHODS FOR AUTOMATICALLY RESPONDING TO A FIRE”); 62/201,671 (filed Aug. 6, 2015, and entitled “SYSTEMS AND METHODS FOR AUTOMATICALLY MITIGATING RISK OF DAMAGE FROM BROKEN CIRCUITS”); 62/220,383 (filed Sep. 18, 2015, and entitled “METHODS AND SYSTEMS FOR RESPONDING TO A BROKEN CIRCUIT”)—which are all hereby incorporated by reference in their entireties.
- The present disclosure generally relates to managing a connected property. More particularly, the present disclosure relates to assessing sensor data from smart devices in a property to detect when individuals may be in peril, and facilitating actions to mitigate the situation.
- With the proliferation of the “internet of things,” more household devices and items are gaining communication and network connectivity capabilities. The new capabilities are enabling easier data detection and more accurate information and metrics. However, the ability to detect certain conditions associated with devices and items may be limited. Additionally, the channels to control and maintain devices and items as a response to certain conditions may also be limited.
- The present embodiments may, inter alia, access certain device data to detect certain conditions and situations within a property and determine actions or commands to perform to address the conditions and situations. Further, the present embodiments may effectively and efficiently communicate relevant information associated with the conditions and enable users to facilitate the actions or commands. One particular functionality relates to analyzing sensor data to detect when one or more individuals may be in peril, such as in an independent or assisted living environment, and then notifying proper individuals of the situation.
- Generally, the present embodiments may relate to (1) home control and/or automation, as well as (2) loss prevention, reduction, and/or mitigation through proactively identifying periled individuals, notifying an individual of detected situations, and enabling individuals to mitigate the detected situations. The foregoing functionality also may be used by an insurance provider to generate, update, or adjust insurance policies, premiums, rates, discounts, points, and/or rewards, and/or make recommendations to an insured individual.
- According to one embodiment, a computer-implemented method of detecting periled individuals within an independent or assisted living environment may be provided. The independent or assisted living environment may be populated with a hardware controller in communication with a plurality of sensors. The method may include (1) receiving, by the hardware controller, sensor data from at least one sensor located within the independent or assisted living environment, the at least one sensor either (i) secured to an individual or (ii) configured to sense environmental data within a proximity of the individual; (2) analyzing the sensor data by one or more processors; (3) based upon the analyzing, determining that the individual is in peril; (4) responsive to determining that the individual is in peril, generating a notification indicating that the individual is in peril; and/or (5) communicating the notification to an electronic device of an additional individual to facilitate alleviating a risk associated with the individual being in peril. The method may include additional, less, or alternate actions, including those discussed elsewhere herein.
- According to another embodiment, a hardware controller for detecting periled individuals within an independent or assisted living environment, where the hardware controller may communication with a set of sensors populated within the independent or assisted living environment, may be provided. The hardware controller may include a communication module adapted to interface with the set of sensors populated within the independent or assisted living environment; a memory adapted to store non-transitory computer executable instructions; and/or a processor adapted to interface with the communication module and the memory. The processor may be configured to execute the non-transitory computer executable instructions to cause the processor to receive, via the communication module, sensor data from at least one sensor of the set of sensors located within the independent or assisted living environment, the at least one sensor either (i) secured to an individual or (ii) configured to sense environmental data within a proximity of the individual, analyze the sensor data, based upon the analyzing, determine that the individual is in peril, responsive to determining that the individual is in peril, generate a notification indicating that the individual is in peril, and/or communicate, via the communication module, the notification to an electronic device of an additional individual to facilitate alleviating a risk associated with the individual being in peril. The hardware controller may include additional, less, or alternate functionality, including that discussed elsewhere herein.
- Advantages will become more apparent to those skilled in the art from the following description of the preferred embodiments which have been shown and described by way of illustration. As will be realized, the present embodiments may be capable of other and different embodiments, and their details are capable of modification in various respects. Accordingly, the drawings and description are to be regarded as illustrative in nature and not as restrictive.
- The Figures described below depict various aspects of the system and methods disclosed herein. It should be understood that each Figure depicts an embodiment of a particular aspect of the disclosed system and methods, and that each of the figures is intended to accord with a possible embodiment thereof. Further, wherever possible, the following description refers to the reference numerals included in the following figures, in which features depicted in multiple figures are designated with consistent reference numerals.
- There are shown in the drawings arrangements which are presently discussed, it being understood, however, that the present embodiments are not limited to the precise arrangements and instrumentalities shown, wherein:
-
FIG. 1 depicts an exemplary environment including components and entities associated with managing device operation and facilitating insurance policy processing, in accordance with some embodiments. -
FIG. 2 is an exemplary signal diagram associated with assessing sensor data to detect individuals in peril and facilitating various actions to mitigate the situations, in accordance with some embodiments. -
FIG. 3 is a flow diagram of an exemplary computer-implemented method of assessing sensor data to detect individuals in peril and facilitating various actions to mitigate the situations, in accordance with some embodiments. -
FIG. 4 is a block diagram of an exemplary controller in accordance with some embodiments. -
FIG. 5 is a block diagram of an exemplary processing server in accordance with some embodiments. -
FIGS. 6A and 6B depict exemplary interfaces associated with notifying of periled individuals and facilitating various actions to mitigate the situations, in accordance with some embodiments. - The Figures depict preferred embodiments for purposes of illustration only. One skilled in the art will readily recognize from the following discussion that alternative embodiments of the systems and methods illustrated herein may be employed without departing from the principles of the invention described herein.
- The present embodiments may relate to, inter alia, assessing operation of devices or personal property within a home or other type of property, such as household furniture, appliances, electronics, vehicles (e.g., cars, boats, motorcycles), and/or other personal belongings (e.g., clothing, jewelry, antiques). Generally, a home or property may have a “smart” central controller that may be wirelessly connected, or connected via hard-wire, with various household related items, devices, and/or sensors. The central controller may be associated with any type of property, such as homes, office buildings, restaurants, farms, and/or other types of properties.
- The central controller, and/or one or more remote processors or servers associated with an insurance provider or other entity, may be in wireless or wired communication with various “smart” items or devices, such as smart appliances (e.g., clothes washer, dryer, dish washer, refrigerator, etc.); smart heating devices (e.g., furnace, space heater, etc.); smart cooling devices (e.g., air conditioning units, fans, ceiling fans, etc.); smart plumbing fixtures (e.g., toilets, showers, water heaters, piping, interior and yard sprinklers, etc.); smart cooking devices (e.g., stoves, ovens, grills, microwaves, etc.); smart wiring, lighting, and lamps; smart personal vehicles; smart thermostats; smart windows, doors, or garage doors; smart window blinds or shutters; wearable devices; and/or other smart devices and/or sensors capable of wireless or wired communication. Each smart device (or sensor associated therewith), as well as the central controller and/or insurance provider remote processor(s), may be equipped with a processor, memory unit, software applications, wireless transceivers, local power supply, various types of sensors, and/or other components.
- The central controller, and/or insurance provider remote processor(s), may collect or retrieve various data from the devices or personal property, analyze the data, and/or identify various situations indicated by the data and/or actions to facilitate based upon the analysis. In particular, the central controller and/or insurance provider remote processor(s) may receive operation data from the smart devices, where the operation data may include various sensor data associated with the smart devices. The central controller and/or insurance provider remote processor(s) may analyze the operation data (e.g., by comparing the operation data to baseline sensor data) to detect that an individual may be in peril, or otherwise exposed to injury, loss, destruction and/or the like. According to embodiments, the individual be located within an independent or assisted living environment. In these situations, the central controller and/or the insurance provider may generate a notification that indicates the situation and may communicate the notification to a proper individual who may be in position to help the individual in peril. The central controller and/or insurance provider may also determine to process an insurance policy that may be impacted by the situation.
- The systems and methods discussed herein address a challenge that is particular to property management. In particular, the challenge relates to a difficulty in identifying when an individual located on a premises may be in peril or otherwise in need of help, as well as a difficulty in mitigating the situation. This is particularly apparent when the individual is not under constant care or connected to conventional monitoring machines. Existing environments rely on individuals to self-report situations and/or rely on caregivers to happen upon the situations. However, these existing environments still result in numerous situations that go unaddressed as a result of nobody noticing situations or the individual being unable to call or signal for assistance. In contrast, the present systems and methods leverage sensor data from connected devices to detect and identify situations in which individuals may be in peril or otherwise in need of assistance, and dynamically generate notifications of the same and send the notifications to proper individuals in position to offer assistance. Therefore, because the systems and methods employ the collection and analysis of sensors data associated with connected devices within the property, the systems and methods are necessarily rooted in computer technology in order to overcome the noted shortcomings that specifically arise in the realm of property management.
- Similarly, the systems and methods provide improvements in a technical field, namely, property automation and safety. Instead of the systems and methods merely being performed by hardware components using basic functions, the systems and methods employ complex steps that go beyond the mere concept of simply retrieving and combining data using a computer. In particular, the hardware components receive data from connected devices, analyze the data identify a potentially threatening situation for an individual, generating a notification that indicates the potentially threatening situation, and/or communicate the notification to a proper individual. Additionally, because a central controller in a property retrieves and analyzes sensor data from a plurality of connected devices in the property, the central controller and the connected devices are part of a “thin client” environment that improves data persistence and information processing. This combination of elements further impose meaningful limits in that the operations are applied to improve property automation and safety by detecting potentially threatening situations, and facilitating mitigating actions in a meaningful and effective way.
- According to implementations, the systems and methods may support a dynamic, real-time or near-real-time analysis of any received data. In particular, the central controller and/or insurance provider may retrieve and/or receive real-time sensor data from the sensors, analyze the sensor data in real-time, and dynamically determine that an individual is in peril. Additionally, the central controller and/or insurance provider may dynamically generate a notification of the situation in real-time, and communicate the notification to another individual in real-time. Accordingly, the real-time capability of the systems and methods enable the individuals in peril with an assurance of efficient and effective treatment should the individuals be in peril, and enable any caregivers with real-time notifications that individuals are in peril.
- Generally, the systems and methods offer numerous benefits relating to the safety of individuals. In particular, the systems and methods may automatically detect situations in which individuals may be in peril, and may automatically facilitate actions to address the situations. As a result, the safety of individuals may improve, especially in independent or assisted living environments. Further, the systems and methods enable additional individuals to be notified of the situations so that the additional individuals are able to promptly address the situations.
- The systems and methods may further offer a benefit to insurance providers and customers thereof. Particularly, the present embodiments may facilitate (a) providing and updating insurance policies; (b) the handling or adjusting of home insurance claims; (c) the disbursement of monies related to insurance claims; (d) modifying insurance coverage amounts; (e) updating and improving estimate models, and/or (f) other insurance-related activities. The systems and methods may further offer a benefit to customers by offering improved insurance claim processing. Further, the insurance providers may stand out as a cost-effective insurance provider, thereby retaining existing customers and attracting new customers. It should be appreciated that further benefits to the systems and methods are envisioned.
- The method may also include adjusting an insurance policy, premium, or discount (such as a homeowners, renters, auto, home, health, or life insurance policy, premium, or discount) based upon the assisted living and/or other functionality discussed herein, and/or an insured having a home and/or mobile device with such functionality.
-
FIG. 1 depicts anexemplary environment 100 including components and entities for managing devices associated with a property and processing insurance policies associated therewith. AlthoughFIG. 1 depicts certain entities, components, and devices, it should be appreciated that additional, fewer, or alternate entities and components are envisioned. - As illustrated in
FIG. 1 , theenvironment 100 may include aproperty 105 that contains acontroller 120 and a plurality ofdevices 110 that may be each connected to alocal communication network 115. According to the present embodiments, theproperty 105 may be an independent or assisted living environment in which one or more individuals needing independent or assisted living care may reside. The independent or assisted living environment may employ caregivers who provide care to the residents as needed. However, it should be appreciated that theproperty 105 may be other types of properties, such as a private residence, an office, a hotel, or the like. - Each of the plurality of
devices 110 may be a “smart” device that may be configured with one or more sensors capable of sensing and communicating operating data associated with thecorresponding device 110. As shown inFIG. 1 , the plurality ofdevices 110 may include asmart alarm system 110 a, asmart stove 110 b, and/or asmart washing machine 110 c. Each of the plurality ofdevices 110 may be located within or proximate to the property 105 (generally, “on premises”). In one implementation, one or more of the plurality ofdevices 110 may be a device that is wearable by an individual, such as a heart rate monitor, a pedometer, a blood pressure monitor, or other types of wearable devices or monitors. AlthoughFIG. 1 depicts only oneproperty 105, it should be appreciated that multiple properties are envisioned, each with its own controller and devices. Further, it should be appreciated that additional, fewer, or alternate devices may be present in theproperty 105. - In some cases, the plurality of
devices 110 may be purchased from a manufacturer with the “smart” functionally incorporated therein. In other cases, the plurality ofdevices 110 may have been purchased as “dumb” devices and subsequently modified to add the “smart” functionality to the device. For instance, a homeowner may purchase an alarm system that installs sensors on or near a door to detect when a door has been opened and/or unlocked. - In some embodiments, the plurality of
devices 110 may monitor their own status or condition via the sensors to detect any issues or problems. In response to detecting issues or problems, the plurality ofdevices 110 may be able to indicate the issues or problems via display components, such as LED lights, display screens, or other visual indicators. In further embodiments, thecontroller 120 may be configured to monitor, via sensor data, whether the plurality ofdevices 110 and/or parts thereof have been installed correctly, whether replacement parts are new and/or otherwise in good condition, and/or other conditions associated with the plurality ofdevices 110 and/or parts thereof. - The plurality of
devices 110 may be configured to communicate with acontroller 120 via thelocal communication network 115. Thelocal communication network 115 may facilitate any type of data communication between devices and controllers located on or proximate to theproperty 105 via any standard or technology (e.g., LAN, WLAN, any IEEE 802 standard including Ethernet, and/or others). Thelocal communication network 115 may further support various short-range communication protocols, such as Bluetooth®, Bluetooth® Low Energy, near field communication (NFC), radio-frequency identification (RFID), and/or other types of short-range protocols. - According to aspects, the plurality of
devices 110 may transmit, to thecontroller 120 via the local communication network 115 (and/or to theinsurance provider 130remote processing server 135 via the network 125), operational data gathered from sensors associated with the plurality ofdevices 110. The operational data may be audio data, image or video data, motion data, status data, usage amounts, vital sign data, and/or other data or information. For instance, the operational data may include imaging or audio data recorded within a room; a heart rate of an individual wearing one of the plurality ofdevices 110; and/or other information that may be pertinent to an operation state or status of the plurality ofdevices 110. For further instance, the operational data may include motion data that may indicate the presence of and movement of any individuals within theproperty 105 and/or located on the exterior of theproperty 105. Additionally, the operational data may include device usage data. The operational data may include a timestamp representing the time that the operational data was recorded. - The
controller 120 may be coupled to adatabase 112 that stores various operational data and information associated with the plurality ofdevices 110. AlthoughFIG. 1 depicts thedatabase 112 as coupled to thecontroller 120, it is envisioned that thedatabase 112 may be maintained in the “cloud” such that any element of theenvironment 100 capable of communicating over either thelocal network 115 or one or moreother networks 125 may directly interact with thedatabase 112. - In some embodiments, the
database 112 may organize the operational data according to whichindividual device 110 the data may be associated and/or the room or subsection of the property in which the data was recorded. Further, thedatabase 112 may maintain an inventory list that includes the plurality ofdevices 110, as well as various data and information associated with the plurality of devices 110 (e.g., locations, replacement costs, etc.). - In one embodiment, the
database 112 may maintain various operation states of the plurality ofdevices 110. In particular, the operation states may specify various settings of the plurality ofdevices 110 such that when the respective device is configured at the setting(s), the respective device will operate in the corresponding operation state. For instance, an operation state for a smart thermostat may be “heat conservation” whereby the corresponding setting is 64 degrees (as opposed to a more “normal” 70 degree setting). It should be appreciated that each operation state may specify settings for more than one of thedevices 110. - The controller 120 (and/or the plurality of devices 112) may be configured to communicate with other components and entities, such as an
insurance provider 130 and various third party source(s) 138 via the network(s) 125. According to some embodiments, the network(s) 125 may facilitate any data communication between thecontroller 120 located on theproperty 105 and entities or individuals remote to theproperty 105 via any standard or technology (e.g., GSM, CDMA, TDMA, WCDMA, LTE, EDGE, OFDM, GPRS, EV-DO, UWB, IEEE 802 including Ethernet, WiMAX, Wi-Fi, and/or others). In some cases, both thelocal network 115 and the network 125(s) may utilize the same technology. - Generally, the
insurance provider 130 may be any individual, group of individuals, company, corporation, or other type of entity that may issue insurance policies for customers, such as a home insurance policy associated with theproperty 105. According to the present embodiments, theinsurance provider 130 may include one or more processing server(s) 135 configured to facilitate the functionalities as discussed herein. AlthoughFIG. 1 depicts theprocessing server 135 as a part of theinsurance provider 130, it should be appreciated that theprocessing server 135 may be separate from (and connected to or accessible by) theinsurance provider 130. - Further, although the present disclosure describes the systems and methods as being facilitated in part by the
insurance provider 130, it should be appreciated that other non-insurance related entities may implement the systems and methods. For instance, a general contractor may aggregate the insurance-risk data across many properties to determine which appliances or products provide the best protection against specific causes of loss, and/or deploy the appliances or products based upon where causes of loss are most likely to occur. Accordingly, it may not be necessary for theproperty 105 to have an associated insurance policy for the property owners to enjoy the benefits of the systems and methods. - The third-party source(s) 138 may represent any entity or component that is configured to obtain, detect, and/or determine data or information that may be relevant to the
devices 110 of theproperty 105. In some embodiments, the third-party source(s) 138 may be a manufacturer, supplier, servicer, or retailer of the any of thedevices 110, as well as for replacement devices for thedevices 110. For instance, if one of thedevices 110 is a refrigerator, the third-party source 138 may be refrigerator manufacturer that sells refrigerators of the same or different types or models as therefrigerator device 110. The third-party source(s) 138 may store data associated with a replacement device (e.g., cost, retail location, general information, availability, or the like). Further, the third-party source(s) 138 may store baseline data associated with various types of situations in which individuals may be in peril. The third-party source(s) 138 may be configured to communicate various data or information to thecontroller 120 and/or to theinsurance provider 130 via the network(s) 125, whereby thecontroller 120 and/or theinsurance provider 130 may examine the data or information to facilitate various functionalities. - The
controller 120, theinsurance provider 130 and/or theprocessing server 135, and the third-party source(s) 138 may also be in communication, via the network(s) 125, with anelectronic device 145 associated with an individual 140. In some embodiments, the individual 140 may have an insurance policy (e.g., a long-term care insurance policy) associated with theproperty 105, or may otherwise be associated with the property 105 (e.g., the individual 140 may live in the property 105). The individual 140 may also be associated with a resident of the property 105 (e.g., a family member of a person who resides in the property 105). Theelectronic device 145 may be a mobile device, such as a smartphone, a desktop computer, a laptop, a tablet, a phablet, a smart watch, smart glasses, wearable electronics, pager, personal digital assistant, or any other electronic device, including computing devices configured for wireless radio frequency (RF) communication and data transmission. In some implementations, the controller 120 (and/orinsurance provider 130 remote processing server 135) may communicate, to the individual 140 via theelectronic device 145, an indication of the operation of the plurality ofdevices 110, such as the commands transmitted to the plurality ofdevices 110. Further, the controller 120 (and/orinsurance provider 130 remote processing server 135) may enable the individual 140 to remotely control various of the plurality ofdevices 110 via theelectronic device 145. - According to some other implementations, the controller 120 (and/or
insurance provider 130 remote processing server 135) may analyze sensor data from any of the plurality ofdevices 110 to determine if one or more individuals may be in peril or otherwise in need of help or assistance. The controller 120 (and/orinsurance provider 130 remote processing server 135) may generate notifications or alerts that may indicate the situation, and communicate the notifications or alerts to theelectronic device 145 via thenetwork 125. Further, the controller 120 (and/orinsurance provider 130 or remote processing server 135) may determine any changes to or processing associated with an insurance policy that may result from the situation, and may communicate with theremote processing server 135 to facilitate the processing. - The controller 120 (and/or
insurance provider 130 remote processing server 135) may also transmit any modifications to insurance policies based upon detected data from the plurality ofdevices 110. In response, the individual (e.g., a policyholder) may accept the proposed insurance claim or make modifications to the proposed insurance claim, and/or otherwise accept/reject any modifications to the insurance policy. The electronic device may transmit, via thenetwork 125, the accepted or modified insurance claim back to the controller 120 (and/orinsurance provider 130 remote processing server 135). - The
controller 120 may facilitate any processing of the insurance claim with theprocessing server 135 of theinsurance provider 130. Additionally or alternatively, theprocessing server 135 may facilitate the proposed insurance claim communications and processing directly with thecustomer 140. In some implementations, theinsurance provider 130remote processing server 135 may provide the same functionality as that described herein with respect to thecontroller 120. - Referring to
FIG. 2 , illustrated is an exemplary signal diagram 200 associated with detecting when individuals may be in peril and communicating notifications relating thereto.FIG. 2 includes a set of smart devices 210 (such as thesmart devices 110 as discussed with respect toFIG. 1 ), a controller 220 (such as thecontroller 120 as discussed with respect toFIG. 1 ), a processing server 235 (such as theprocessing server 135 as discussed with respect toFIG. 1 ), and a user device 245 (such as theuser device 145 as discussed with respect toFIG. 1 ). - The
smart devices 210 and thecontroller 220 may be located within an independent or assisted living environment 205 (which generally may be theproperty 105 as discussed with respect toFIG. 1 ). The individual who may be in peril may be an individual who resides in the independent or assistedliving environment 205 and who may receive care by employees or other workers of the independent or assistedliving environment 205. According to embodiments, thesmart devices 210 may include a set of sensors configured to generate and communicate various sensor data. Further, according to embodiments, theuser device 245 may belong to an individual associated with the independent or assistedliving environment 205, such as an employee or worker, a resident of the independent or assistedliving environment 205, a caregiver, caretaker, and/or family member of an individual residing in the independent or assistedliving environment 205, or an individual otherwise associated with an individual residing in the independent or assistedliving environment 205. - The signal diagram 200 may begin when the
controller 220 optionally requests (250) thesmart devices 210 for sensor data. In some implementations, thecontroller 220 may periodically request thesmart devices 210 for sensor data, or thecontroller 220 may request thesmart devices 210 for sensor data in response to various triggers (e.g., at a certain time of the day or in response to receiving particular sensor data from a particular smart device 210). Thecontroller 220 may also request sensor data from one or more specificsmart devices 210. In an implementation, the smart device(s) 210 may be devices configured to be worn by an individual, such as a resident of the independent or assistedliving environment 205. - The smart device(s) 210 may send (252) sensor data to the
controller 220. For example, the sensor data may be audio data, imaging data (e.g., images and/or videos), motion/movement sensor data, location data, and/or vital sign data. It should be appreciated that other types of sensor data and combinations of sensor data are envisioned. The smart device(s) 210 may provide the sensor data automatically as the data is detected, in response to receiving a request from thecontroller 220, or in response to various triggers. For example, thesmart device 210 may be a heart rate monitor that may send heart rate data of an individual to thecontroller 220 when the corresponding heart rate exceeds 120 beats/minute. For further example, thesmart device 210 may be a band wearable by an individual that may send acceleration data to thecontroller 220 when the corresponding acceleration exceeds a certain threshold (which may be indicative of a fall). - The
controller 220 may optionally access (254) baseline sensor data that may correspond to the received sensor data. In particular, if thecontroller 220 receives sensor data or a particular type (e.g., acceleration data), thecontroller 220 may access baseline data of the same type (e.g., baseline acceleration data). Thecontroller 220 may analyze (256) the received sensor data. In particular, thecontroller 220 may analyze the received sensor data to determine whether there are any abnormalities, causes for concern, and/or the like. In one implementation, thecontroller 220 may compare the received sensor data to the baseline sensor data to determine a level of similarity, where the level of similarity may meet a set threshold value. In another implementation, thecontroller 220 may compare the received sensor data to any corresponding threshold levels which may indicate any abnormalities, causes for concert, and/or the like. - Based upon the analysis of (256), the
controller 220 may determine (258) if the individual is in peril. In particular, if the received sensor data meets or exceeds any threshold level (or differs from any threshold level by a certain amount or percentage), or if any calculated similarity level meets a threshold value, then the controller may deem that an individual is in peril. For example, if the received sensor data is audio data having a decibel reading and thecontroller 220 determines that the decibel reading exceeds a threshold decibel level, then thecontroller 220 may deem that the individual is in peril (such as if the individual is summoning help). - In one embodiment, the
controller 220 may examine various combinations of sensor data (e.g., audio data, imaging data, motion/movement sensor data, location data, and/or vital sign data) to assess the situation. For example, thecontroller 220 may determine that the individual's heart rate is above a threshold amount, but may also determine that the individual is currently located in a fitness center, and therefore deem that the individual is not in peril. Conversely, thecontroller 220 may determine that the individual's heart rate is above a threshold value, and may determine that the individual is located in his or her room, and therefore deem that the individual may be in peril. - If the
controller 220 determines that the individual is not in peril (“NO”), processing may end or proceed to other functionality. If thecontroller 220 determines that the individual is in peril (“YES”), the controller may generate (260) a notification indicating that the individual is in peril. In embodiments, the notification may include any details of the situation and may also include various selections that enable a receiving individual (e.g., an individual associated with the user device 245) to initiate help or aid for the individual in peril. For example, the notification may include contact information for the independent or assistedliving environment 205 and/or for an individual associated therewith. - The
controller 220 may send (262) the notification to theuser device 245, so that the individual associated with theuser device 245 may access and review the notification. As discussed above, the individual associated with theuser device 245 may review the notification and take any appropriate action, in particular any action that may alleviate the situation resulting from the individual residing in the independent or assistedliving environment 205 being in peril. For example, if the individual associated with theuser device 245 is a caregiver employed by the independent or assistedliving environment 205, the caregiver may access the room of the individual and provide any needed care, or may summon appropriate medical personnel. - In some embodiments, the
controller 220 may also facilitate insurance processing associated with the situation of the individual. In particular, the controller may send (264) an indication of the event (i.e., the individual being in peril) to theprocessing server 325, via one or more standard channels. Theprocessing server 325 may examine the indication of the event and access (266) an insurance policy that may belong to the individual in peril (i.e., the individual in peril may be a policy holder for the insurance policy). Theprocessing server 235 may also process (268) the insurance policy accordingly. In particular, theprocessing server 235 may determine whether the individual being in peril may impact the insurance policy, and may adjust the insurance policy accordingly, such as by adjusting the insurance policy to insure a particular type of care that was previously not needed by the individual. - Although
FIG. 2 depicts thecontroller 220 performing various steps and determinations, it should be appreciated that theprocessing server 235 may perform the same or similar steps or determinations. For example, theprocessing server 235 may receive the sensor data, compare the sensor data to baseline data, generate a notification, communicate a notification, determine a mitigating action, and/or facilitate the mitigating action. - Referring to
FIG. 3 , depicted is a block diagram of an exemplary computer-implementedmethod 300 of detecting individuals who may be in peril within an independent or assisted living environment (and/or abnormal conditions associated with individuals or premises). Themethod 300 may be facilitated by an electronic device within the property, such as thecontroller 120 that may be in direct or indirect communication with an insurance provider (such as theinsurance provider 130 or a remote processor or server thereof). - The
method 300 may begin when the controller receives (block 305) sensor data associated with an individual from at least one sensor. In some embodiments, the sensor may be secured to the individual (e.g., a wearable device including an accelerometer, a heart rate monitor, a vital signs monitor, and/or the like) or configured to sense environmental data within a proximity of the individual (e.g., an audio sensor, a device usage sensor, a video camera, and/or the like). In one implementation, the controller may request the sensor data from the at least one sensor. - The controller may optionally access (block 310) baseline sensor data corresponding to the retrieved sensor data. In some implementations, the retrieved sensor data may have a specific type (e.g., wearable device data, recorded video, recorded audio), where the controller may access baseline sensor data that corresponds to the type of retrieved sensor data. The controller may analyze (block 315) the received sensor data according to various calculations, techniques, or algorithms. The analysis may determine whether the retrieved sensor data is consistent with or reflects that the individual is in peril (and/or abnormal condition exists). In particular, the controller may determine whether the sensor data meets or exceeds any threshold level (or differs from any threshold level by a certain amount or percentage), or whether any calculated similarity level meets a threshold value.
- For example, if a microphone detects a loud crash that exceeds a certain decibel level (which may be associated with the individual falling), then the controller may determine that the individual is in peril. For further example, if the sensor data indicates a heart rate that is dropping by a certain amount or percentage, then the controller may determine that the individual is in peril.
- If the controller determines that the individual is not in peril (“NO”), then processing may end or proceed to any other functionality. If the controller determines that the individual is in peril (“YES”), then the controller may generate (block 325) a notification indicating that the individual is in peril. In some implementations, the notification may include various information, such as an identification of the individual, a current location of the individual, a description of the situation and/or abnormal condition, contact information of relevant individuals, and/or other information.
- The controller may communicate (block 330) the notification to an electronic device of an additional individual. The controller may store an identification of the electronic device. For example, the electronic device may be a smartphone belonging to a caregiver associated with the individual. In some scenarios, the controller may communicate the notification to an insurance provider.
-
FIG. 4 illustrates a diagram of an exemplary controller 420 (such as thecontroller 120 discussed with respect toFIG. 1 ) in which the functionalities as discussed herein may be implemented. It should be appreciated that thecontroller 420 may be associated with a property, as discussed herein. - The
controller 420 may include aprocessor 422 as well as amemory 478. Thememory 478 may store anoperating system 479 capable of facilitating the functionalities as discussed herein, as well as a set of applications 475 (i.e., machine readable instructions). For instance, one of the set ofapplications 475 may be aperil detection application 484 configured to analyze sensor data, detect when individuals may be in peril, and facilitate actions to mitigate the detected situations. The set ofapplications 475 may also include one or moreother applications 484, such as an insurance processing application. - The
processor 422 may interface with thememory 478 to execute theoperating system 479 and the set ofapplications 475. According to some embodiments, thememory 478 may also include adata record storage 480 that stores various data, such as baseline data corresponding to various types of sensor data. Theperil detection application 484 may interface with thedata record storage 480 to retrieve relevant baseline data that theperil detection application 484 may use to determine whether individuals may be in peril. Thememory 478 may include one or more forms of volatile and/or non-volatile, fixed and/or removable memory, such as read-only memory (ROM), electronic programmable read-only memory (EPROM), random access memory (RAM), erasable electronic programmable read-only memory (EEPROM), and/or other hard drives, flash memory, MicroSD cards, and others. - The
controller 420 may further include acommunication module 477 configured to communicate data via one ormore networks 425. According to some embodiments, thecommunication module 477 may include one or more transceivers (e.g., WWAN, WLAN, and/or WPAN transceivers) functioning in accordance with IEEE standards, 3GPP standards, or other standards, and/or configured to receive and transmit data via one or moreexternal ports 476. Further, thecommunication module 477 may include a short-range network component (e.g., an RFID reader) configured for short-range network communications. For instance, thecommunication module 477 may receive, via thenetwork 425, sensor data from a plurality of devices populated within a property. - The
controller 420 may further include auser interface 481 configured to present information to a user and/or receive inputs from the user. As shown inFIG. 4 , theuser interface 481 may include adisplay screen 482 and I/O components 483 (e.g., ports, capacitive or resistive touch sensitive input panels, keys, buttons, lights, LEDs, speakers, microphones). According to some embodiments, the user may access thecontroller 420 via theuser interface 481 to assess sensor data, process insurance policies, and/or perform other functions. Thecontroller 420 may be configured to perform insurance-related functions, such as generating proposed insurance claims and facilitating insurance claim processing. In some embodiments, thecontroller 420 may perform the functionalities as discussed herein as part of a “cloud” network or may otherwise communicate with other hardware or software components within the cloud to send, retrieve, and/or otherwise analyze data. - In general, a computer program product in accordance with an embodiment may include a computer usable storage medium (e.g., standard random access memory (RAM), an optical disc, a universal serial bus (USB) drive, or the like) having computer-readable program code embodied therein, wherein the computer-readable program code may be adapted to be executed by the processor 422 (e.g., working in connection with the operating system 479) to facilitate the functions as described herein. In this regard, the program code may be implemented in any desired language, and may be implemented as machine code, assembly code, byte code, interpretable source code or the like (e.g., via C, C++, Java, Actionscript, Objective-C, Javascript, CSS, XML). In some embodiments, the computer program product may be part of a cloud network of resources.
-
FIG. 5 illustrates a diagram of an exemplary processing server 535 (such as theprocessing server 135 discussed with respect toFIG. 1 ) in which the functionalities as discussed herein may be implemented. It should be appreciated that theprocessing server 535 may be associated with an insurance provider, as discussed herein. In one embodiment, the processing server may be configured with the same functionality as that of thecontrollers FIGS. 1 and 2 , respectively. - The
processing server 535 may include aprocessor 522, as well as amemory 578. Thememory 578 may store anoperating system 579 capable of facilitating the functionalities as discussed herein as well as a set of applications 575 (i.e., machine readable instructions). For instance, one of the set ofapplications 575 may be apolicy processing application 584 configured to manage customer insurance policies. It should be appreciated thatother applications 590 are envisioned, such as a peril detection application configured to determine whether individuals may be in peril. - The
processor 522 may interface with thememory 578 to execute theoperating system 579 and the set ofapplications 575. According to some embodiments, thememory 578 may also include adata record storage 580 that stores various information associated with customer insurance policies, as well as baseline data corresponding to a set of default sensor data and thresholds relating thereto. Thepolicy processing application 584 may interface with thedata record storage 580 to retrieve relevant information that thepolicy processing application 584 may use to manage insurance policies, generate notifications, and/or perform other functionalities, such as determine whether individuals are in peril. Further, the device replacement application may interface with thedata record storage 580 to retrieve device information. Thememory 578 may include one or more forms of volatile and/or non-volatile, fixed and/or removable memory, such as read-only memory (ROM), electronic programmable read-only memory (EPROM), random access memory (RAM), erasable electronic programmable read-only memory (EEPROM), and/or other hard drives, flash memory, MicroSD cards, and others. - The
processing server 535 may further include acommunication module 577 configured to communicate data via one ormore networks 525. According to some embodiments, thecommunication module 577 may include one or more transceivers (e.g., WWAN, WLAN, and/or WPAN transceivers) functioning in accordance with IEEE standards, 3GPP standards, or other standards, and configured to receive and transmit data via one or moreexternal ports 576. For instance, thecommunication module 577 may transmit, via thenetwork 525, baseline data corresponding to a set of default intrusion attempts. - The
processing server 525 may further include auser interface 581 configured to present information to a user and/or receive inputs from the user. As shown inFIG. 5 , theuser interface 581 may include adisplay screen 582 and I/O components 583 (e.g., ports, capacitive or resistive touch sensitive input panels, keys, buttons, lights, LEDs, speakers, microphones). According to some embodiments, the user may access theprocessing server 535 via theuser interface 581 to process insurance policies and/or perform other functions. In some embodiments, theprocessing server 535 may perform the functionalities as discussed herein as part of a “cloud” network or may otherwise communicate with other hardware or software components within the cloud to send, retrieve, and/or otherwise analyze data. - In general, a computer program product in accordance with an embodiment may include a computer usable storage medium (e.g., standard random access memory (RAM), an optical disc, a universal serial bus (USB) drive, or the like) having computer-readable program code embodied therein, wherein the computer-readable program code may be adapted to be executed by the processor 522 (e.g., working in connection with the operating system 579) to facilitate the functions as described herein. In this regard, the program code may be implemented in any desired language, and may be implemented as machine code, assembly code, byte code, interpretable source code or the like (e.g., via C, C++, Java, Actionscript, Objective-C, Javascript, CSS, XML). In some embodiments, the computer program product may be part of a cloud network of resources.
-
FIGS. 6A and 6B illustrate exemplary interfaces associated with example commands, displays, and actions for electronic devices. An electronic device (e.g., a mobile device, such as a smartphone) may be configured to display the interfaces and/or receive selections and inputs via the interfaces. For example, a dedicated application associated with an insurance provider (or with an independent or assisted living environment) and that is configured to operate on the electronic device may display the interfaces. It should be appreciated that the interfaces are merely examples and that alternative or additional content is envisioned. -
FIG. 6A illustrates aninterface 650 including details related to situation in which an individual is deemed to be in peril. In particular, theinterface 650 may include an alert that details the situation: that data has been detected indicating that John Doe may have experienced a fall. Theinterface 650 further enables a user of the electronic device to select an appropriate action to take. In particular, theinterface 650 may include a “dismiss”selection 651 that, upon selection, may dismiss theinterface 650, a “contact”selection 652 that, upon selection, may cause the electronic device to contact John Doe (e.g., via a phone call or text message) or another individual, and a “more info”selection 653 that, upon selection, may retrieve more information related to the situation. -
FIG. 6B illustrates anadditional interface 655 that may include more information relating to the situation indicated inFIG. 6A . In one implementation, the electronic device may display theinterface 655 in response to the user selecting the “more info”selection 653 of theinterface 650. Theinterface 655 may indicate the location of John Doe (as shown: Room 204). Thus, the user of the electronic device may know where to find John Doe within the independent or assisted living environment, and may be better equipped to handle the situation and/or may be afforded with the ability to reach John Doe in a shorter amount of time. Theinterface 655 may include an “okay”selection 656 that, upon selection, may dismiss theinterface 655. - In one aspect, a computer-implemented method of detecting periled individuals within an independent or assisted living environment may be provided. The independent or assisted living environment may be populated with a hardware controller in communication with a plurality of sensors. The method may include (1) receiving, by the hardware controller, sensor data from at least one sensor located within the independent or assisted living environment, the at least one sensor either (i) secured to an individual or (ii) configured to sense environmental data within a proximity of the individual; (2) analyzing the sensor data by one or more processors; (3) based upon the analyzing, determining that the individual is in peril; (4) responsive to determining that the individual is in peril, generating a notification indicating that the individual is in peril; and/or (5) communicating the notification to an electronic device of an additional individual to facilitate alleviating a risk associated with the individual being in peril. The method may include additional, less, or alternate actions, including those discussed elsewhere herein, and/or may be implemented via one or more local or remote processors, and/or via computer-executable instructions stored on non-transitory computer-readable media or medium.
- In one implementation, receiving the sensor data may include receiving motion data from a wearable device that is removably secured to the individual. In another implementation, analyzing the sensor data may include analyzing the motion data from the wearable device to determine that the individual has experienced a rapid acceleration. In a further implementation, the sensor data may include vital sign data, and analyzing the sensor data may include analyzing the vital sign data to determine that the individual is in need of immediate care.
- In a still further implementation, analyzing the sensor data may include (1) analyzing the sensor data to determine a current condition of the individual; (2) receiving updated sensor data from the at least one sensor; and (3) determining, from the updated sensor data, that the current condition is maintained for a threshold period of time.
- Additionally, in one implementation, the sensor data may include audio data received from a microphone located within a room of the individual, and wherein analyzing the sensor data may include determining, from the audio data, that the individual has suffered a fall. In another implementation, analyzing the sensor data may include accessing baseline sensor data corresponding to the retrieved sensor data, and comparing the received sensor data to the baseline sensor data. In a further implementation, comparing the received sensor data to the baseline sensor data may include (1) determining a level of similarity between the retrieved sensor data and the baseline sensor data, and (2) determining that the level of similarity meets a threshold value.
- In another implementation, communicating the notification to the electronic device may include (1) identifying a caregiver for the individual, and (2) communicating the notification to the electronic device of the caregiver. In an additional implementation, the method may further include identifying an insurance-related event associated with the individual being in peril.
- In a further aspect, a hardware controller for detecting periled individuals within an independent or assisted living environment, where the hardware controller may communication with a set of sensors populated within the independent or assisted living environment, may be provided. The hardware controller may include (1) a communication module adapted to interface with the set of sensors populated within the independent or assisted living environment; (2) a memory adapted to store non-transitory computer executable instructions; and/or (3) a processor adapted to interface with the communication module and the memory. The processor may be configured to execute the non-transitory computer executable instructions to cause the processor to (a) receive, via the communication module, sensor data from at least one sensor of the set of sensors located within the independent or assisted living environment, the at least one sensor either (i) secured to an individual or (ii) configured to sense environmental data within a proximity of the individual, (b) analyze the sensor data, (c) based upon the analyzing, determine that the individual is in peril, (d) responsive to determining that the individual is in peril, generate a notification indicating that the individual is in peril, and/or (e) communicate, via the communication module, the notification to an electronic device of an additional individual to facilitate alleviating a risk associated with the individual being in peril. The hardware controller may include additional, less, or alternate functionality, including that discussed elsewhere herein.
- In one implementation, to receive the sensor data, the processor may be configured to receive motion data from a wearable device that is removably secured to the individual. In another implementation, to analyze the sensor data, the processor may be configured to analyze the motion data from the wearable device to determine that the individual has experienced a rapid acceleration. Further, in one implementation, the sensor data may include vital sign data, and where to analyze the sensor data, the processor may be configured to analyze the vital sign data to determine that the individual is in need of immediate care.
- In an additional implementation, to analyze the sensor data, the processor may be configured to analyze the sensor data to (1) determine a current condition of the individual, (2) receive updated sensor data from the at least one sensor, and (3) determine, from the updated sensor data, that the current condition is maintained for a threshold period of time. In a further implementation, the sensor data may include audio data received from a microphone located within a room of the individual, and wherein to analyze the sensor data, the processor may be configured to determine, from the audio data, that the individual has suffered a fall.
- Additionally, in one implementation, to analyze the sensor data, the processor is may be configured to (1) access baseline sensor data corresponding to the retrieved sensor data, and (2) compare the received sensor data to the baseline sensor data. In another implementation, to compare the received sensor data to the baseline sensor data, the processor may be configured to (1) determine a level of similarity between the retrieved sensor data and the baseline sensor data, and (2) determine that the level of similarity meets a threshold value.
- In one implementation, to communicate the notification to the electronic device, the processor may be configured to (1) identify a caregiver for the individual, and (2) communicate the notification to the electronic device of the caregiver. Moreover, in one implementation, the processor may be further configured to identify an insurance-related event associated with the individual being in peril.
- The systems and methods may facilitate various functionalities associated with independent and/or assisted living environments. In some implementations, the home controller may analyze various sensor data (e.g., vibrations, sounds, pressure data, etc.) to determine whether an individual has fallen or otherwise detect that individual has suffered an injury or is in a position of immobility. For instance, the sensor data may be acceleration data from a wearable device that indicates a sudden acceleration, which may indicate a fall or other incident.
- The controller, and/or the insurance provider remote processing server, may also monitor locations (e.g., via GPS coordinates) of individuals on the premises, as well as receive motion-activated, proximity, and/or connection data from sensors installed at various locations on the premises. The controller, and/or the insurance provider remote processing server, may monitor the temperature of individuals via thermal sensors associated with the individuals. For instance, if the controller, and/or the insurance provider remote processing server, determines that a particular individual's temperature is below a certain threshold for a certain amount of time, then the controller, and/or the insurance provider remote processing server, respectively, may determine that the individual is at risk (and/or that there is an abnormal condition) and may generate and send a notice to another individual of the situation.
- The controller, and/or the insurance provider remote processing server, may also establish baseline or “normal” conditions for an individual, a property or portion of the property, and/or may determine whether the individual, and/or one or more properties or parameters deviates from the baseline or “normal” conditions.
- As noted, the methods of smart home control and/or automation, or assisted living, detailed above may also include actions directed to independent living. For example, the wired or wireless communication or data transmission, and/or data, received and/or analyzed by the smart home controller or remote processor may include audio data. The smart home controller or remote processor may be configured to determine that an insured has fallen from voice recognition or vibrations contained within the audio data from analysis of the audio data by the smart home controller or remote processor, and/or analyze the audio data to determine an estimated level of severity of an injury for the insured.
- The wired or wireless communication or data transmission, and/or data, received and/or analyzed by the smart home controller or remote processor may include GPS (Global Positioning System) data that the smart home controller or remote processor may use or analyze to identify a location of the insured, such as GPS data transmitted from a mobile device, smart watch, smart glasses, smart clothes, or a wearable electronics device.
- The wired or wireless communication or data transmission, and/or data, received and/or analyzed by the smart home controller or remote processor may include movement data of persons or animals within the insured home. The smart home controller or remote processor may be configured to determine, from analysis of the movement data by the smart home controller or remote processor, a likelihood of an abnormal condition (e.g., insured home occupant or animal injury, unexpected insured home vacancy, etc.) from a lack of movement within the insured home for a given amount of time or a pre-determined threshold of time, and then issue a message to a mobile device of the insured or a friend or neighbor.
- The wired or wireless communication or data transmission, and/or data, received and/or analyzed by the smart home controller or remote processor may include movement data of persons or animals within the insured home. The smart home controller or remote processor may be configured to determine, from analysis of the movement data by the smart home controller or remote processor, a likelihood of an abnormal condition (e.g., unexpected insured home occupancy) from movement detected within the insured home when the insured home is not occupied by the insured, and then issue a message to a mobile device of the insured or a friend or neighbor.
- The wired or wireless communication or data transmission, and/or data, received and/or analyzed by the smart home controller or remote processor may include smart door data from a smart garage door or smart door indicating that the smart garage door or smart door has been opened or shut. The smart home controller or remote processor may be configured to compare the smart door data with other data (such as data associated with an amount of electricity usage, operating equipment, or thermal imaging data) to determine whether an occupant has entered or exited an insured home, and, if so, generate an alert to a family member that the occupant has either entered or exited the insured home, respectively.
- The wired or wireless communication or data transmission, and/or data, received and/or analyzed by the smart home controller or remote processor may include data regarding the operation of a stove or oven (e.g., temperature, time on, etc.). The smart home controller or remote processor may analyze the data to determine that the stove or oven is on at too high a temperature or has been on for too long a time, and then automatically de-energize or turn off the stove or oven, and/or generate and transmit a corresponding wireless communication message to the insured indicating the abnormal stove or oven condition.
- The wired or wireless communication or data transmission, and/or data, received and/or analyzed by the smart home controller or remote processor may include body heat data associated with a body temperature of a person or animal. The smart home controller or remote processor may analyze the body heat data to determine that the body temperature is abnormal (e.g., too cold or too hot), and then generate and transmit a wireless communication message to an insured, family member, friend, neighbor, or caregiver indicating that the body temperature of the person or animal is abnormal.
- The wired or wireless communication or data transmission, and/or data, received and/or analyzed by the smart home controller or remote processor may include shower data. The smart home controller or remote processor may analyze the shower data to determine that a person has fallen while taking a shower. The shower data may include pressure data (such as from pressure sensing smart hand rails or pressure sensing smart floor or tub mats). The smart home controller or remote processor may then generate and transmit a wireless communication message to an insured, family member, friend, neighbor, or caregiver indicating that the person has fallen, or has likely fallen, while taking a shower.
- The shower data may be generated from pressure sensing matting. The smart home controller or remote processor may be configured to analyze the shower data to determine (a) whether the person that fell has gotten up, (b) a likely severity of a fall taken by the person, and/or (c) whether assistance is likely needed. The smart home controller or remote processor may then generate and transmit a corresponding wireless communication message to an insured, family member, friend, neighbor, or caregiver indicating the situation or that assistance is needed as determined by the smart home controller or remote processor.
- The wired or wireless communication or data transmission, and/or data, received and/or analyzed by the smart home controller or remote processor may include data indicating a normal routine of a person (e.g., time of day they usually wake, go to sleep, shower, cook, watch television, use a computer or other electronics, etc.). The smart home controller or remote processor may be configured to learn, from analysis of the data by the smart home controller or remote processor, the normal routine of the person over time, and compare present data indicating a current time and/or an activity of the person with the normal routine of the person learned to detect potential abnormal conditions. After which, the smart home controller or remote processor may then generate and transmit a corresponding wireless communication message to an insured, family member, friend, neighbor, or caregiver indicating an abnormal condition detected by the smart home controller or remote processor.
- The wired or wireless communication or data transmission, and/or data, received and/or analyzed by the smart home controller or remote processor may include data indicating vitals (e.g., blood pressure, heart rate, oxygen levels, etc.) of an occupant of the insured home. The smart home controller or remote processor may analyze the data indicating vitals to detect or determine an abnormal or unhealthy condition. After which, the smart home controller or remote processor may generate and transmit a message to an insured or family members of the occupant when the vitals indicate an abnormal or unhealthy condition of the occupant, as determined or detected by the smart home controller or remote processor.
- The wired or wireless communication or data transmission, and/or data, received and/or analyzed by the smart home controller or remote processor may include data indicating that an infant or young child (1) is in a vicinity of, or in, a swimming pool located within a yard of the insured home, and (2) is not being supervised by an adult. In response to determining such from analysis of the data (and/or based upon the analysis by the smart home controller or remote processor of the wired or wireless communication or data transmission, and/or data received), the smart home controller or remote processor may generate and transmit an electronic warning or message to the insured or family members to facilitate appropriate supervision in the vicinity of the swimming pool.
- The wired or wireless communication or data transmission, and/or data, received and/or analyzed by the smart home controller or remote processor may include a body heat reading of an occupant of the insured home. The smart home controller or remote processor may determine, based upon the analysis by the smart home controller or remote processor of the wired or wireless communication or data transmission, and/or data received, that the body heat of the occupant is too cold or too hot (as compared to normal), and then remotely adjust a smart thermostat setting accordingly (e.g., (1) if the occupant's body temperature is too hot, then the smart home controller or remote processor may direct or control turning on the air conditioning or adjusting the air conditioning, or (2) if the occupant's body temperature is too cold, then the smart home controller or remote processor may direct or control turning on the furnace/heat or adjusting the furnace setting) to maintain an appropriate temperature within the insured home and/or health of the occupant.
- The wired or wireless communication or data transmission, and/or data, received and/or analyzed by the smart home controller or remote processor may include bed data gathered from a bed sensor, smart bed, or bed room camera indicating an abnormal condition or that a person has remained in bed for an abnormal period of time. Based upon the analysis by the smart home controller or remote processor of the bed data, the smart home controller or remote processor may determine that the abnormal condition exists or that the person has remained in bed for an abnormal period of time. After which, the smart home controller or remote processor may generate and transmit a corresponding wireless communication message to an insured, family member, friend, neighbor, or caregiver indicating the abnormal condition exists or that the person has remained in bed for an abnormal amount of time.
- The wired or wireless communication or data transmission, and/or data, received and/or analyzed by the smart home controller or remote processor may include gas data gathered from, or generated by, a gas sensor, detector, or meter indicating a gas or natural gas leak within the insured home. Based upon the analysis by the smart home controller or remote processor of the gas data, the smart home controller or remote processor may determine that an abnormal condition exists, such as the gas or natural gas leak exists, within the home. The smart home controller or remote processor may generate and transmit a corresponding wireless communication message to an insured, family member, friend, neighbor, or caregiver indicating that the abnormal condition, or gas or natural gas leak, exists.
- The wired or wireless communication or data transmission, and/or data, received and/or analyzed by the smart home controller or remote processor may include odor data gathered from, or generated by, an odor detector, sensor, or meter indicating an abnormal odor condition within the insured home. Based upon the analysis by the smart home controller or remote processor of the odor data, the smart home controller or remote processor may determine that the abnormal odor condition exists within the home. The smart home controller or remote processor may then generate and transmit a corresponding wireless communication message to an insured, family member, friend, neighbor, or caregiver indicating that the abnormal odor condition exists.
- The wired or wireless communication or data transmission, and/or data, received and/or analyzed by the smart home controller or remote processor may include smell data gathered from, or generated by, a smell detector, sensor, or meter indicating an abnormal smell condition within the insured home. Based upon the analysis by the smart home controller or remote processor of the smell data, the smart home controller or remote processor may determine that the abnormal smell condition exists within the home. The smart home controller or remote processor may then generate and transmit a corresponding wireless communication message to an insured, family member, friend, neighbor, or caregiver indicating that the abnormal smell condition exists.
- The wired or wireless communication or data transmission, and/or data, received and/or analyzed by the smart home controller or remote processor may include mold data gathered from, or generated by, a mold detector, sensor, or meter indicating an abnormal mold condition within the insured home. Based upon the analysis by the smart home controller or remote processor of the mold data, the smart home controller or remote processor may determine that the abnormal mold condition exists within the home. The smart home controller or remote processor may then generate and transmit a corresponding wireless communication message to an insured, family member, friend, neighbor, or caregiver indicating that the abnormal mold condition exists.
- The wired or wireless communication or data transmission, and/or data, received and/or analyzed by the smart home controller or remote processor may include temperature data gathered from, or generated by, a temperature detector, sensor, or meter indicating an abnormal temperature condition within the insured home. Based upon the analysis by the smart home controller or remote processor of the temperature data, the smart home controller or remote processor may determine that the abnormal temperature condition exists within the home. The smart home controller or remote processor may then generate and transmit a corresponding wireless communication message to an insured, family member, friend, neighbor, or caregiver indicating that the abnormal temperature condition exists.
- The wired or wireless communication or data transmission, and/or data, received and/or analyzed by the smart home controller or remote processor may include humidity data gathered from, or generated by, a humidity detector, sensor, or meter indicating an abnormal humidity condition within the insured home. Based upon the analysis by the smart home controller or remote processor of the humidity data, the smart home controller or remote processor may determine that the abnormal humidity condition exists within the home. The smart home controller or remote processor may then generate and transmit a corresponding wireless communication message to an insured, family member, friend, neighbor, or caregiver indicating that the abnormal humidity condition exists.
- The wired or wireless communication or data transmission, and/or data, received and/or analyzed by the smart home controller or remote processor may include moisture data gathered from, or generated by, a moisture detector, sensor, or meter indicating an abnormal moisture condition within the insured home. Based upon the analysis by the smart home controller or remote processor of the moisture data, the smart home controller or remote processor may determine that the abnormal moisture condition exists within the home. The smart home controller or remote processor may then generate and transmit a corresponding wireless communication message to an insured, family member, friend, neighbor, or caregiver indicating that the abnormal moisture condition exists.
- The wired or wireless communication or data transmission, and/or data, received and/or analyzed by the smart home controller or remote processor may include sound data gathered from, or generated by, a sound detector, sensor, or meter indicating an abnormal sound condition within the insured home. Based upon the analysis by the smart home controller or remote processor of the sound data, the smart home controller or remote processor may determine that the abnormal sound condition exists within the home. The smart home controller or remote processor may then generate and transmit a corresponding wireless communication message to an insured, family member, friend, neighbor, or caregiver indicating that the abnormal sound condition exists.
- The gas, odor, smell, mold, temperature, humidity, moisture, or sound data may be analyzed at or via the smart home controller or remote processor. From the data analysis, the smart home controller or remote processor may determine a likely cause of an associated abnormal gas, odor, smell, mold, temperature, humidity, moisture, or sound condition, respectively. The methods discussed herein may include (1) directing or controlling, at or via the smart home controller or remote processor, various smart home equipment to mitigate the abnormal gas, odor, smell, mold, temperature, humidity, moisture, or sound condition, respectively (such as operating fans, or smart ventilation, air conditioning, furnace, heating, environmental, or other smart equipment); (2) generating an insurance claim, at or via the smart home controller or remote processor, associated with the abnormal gas, odor, smell, mold, temperature, humidity, moisture, or sound condition, respectively; (3) handling or processing the insurance claim, at or via the smart home controller or remote processor, associated with the abnormal gas, odor, smell, mold, temperature, humidity, moisture, or sound condition, respectively; and/or (4) updating, at or via the smart home controller or remote processor, a premium, rate, or discount for an insurance policy associated with, or covering, the insured home and/or insured or occupant of the insured home based upon the abnormal gas, odor, smell, mold, temperature, humidity, moisture, or sound condition, respectively.
- The gas, odor, smell, mold, temperature, humidity, moisture, or sound data may be analyzed at or via the smart home controller or remote processor to determine a corresponding abnormal condition, or a likely cause of the abnormal condition. For instance, the smart home controller or remote processor may receive gas, odor, smell, mold, temperature, humidity, moisture, or sound data indicative of actual gas, odor, smell, mold, temperature, humidity, moisture, or sound conditions within the insured home. The smart home controller or remote processor may compare the gas, odor, smell, mold, temperature, humidity, moisture, or sound data received with expected gas, odor, smell, mold, temperature, humidity, moisture, or sound data or conditions stored in a memory unit, and if differences exist, the smart home controller or remote processor may determine that a corresponding abnormal condition exists and/or determine a cause (or potential cause) of the corresponding abnormal condition. Additionally or alternatively, the smart home controller or remote processor may compare the gas, odor, smell, mold, temperature, humidity, moisture, or sound data received with a baseline of “normal” gas, odor, smell, mold, temperature, humidity, moisture, or sound data or conditions of the insured home gathered over time and/or stored in a memory unit, and if differences exist, the smart home controller or remote processor may determine that a corresponding abnormal condition exists and/or determine a cause (or potential cause) of the corresponding abnormal condition.
- The wired or wireless communication or data transmission, and/or data, received and/or analyzed by the smart home controller or remote processor may include data regarding the operation of a stove or oven (e.g., temperature, time on, etc.). Based upon the analysis by the smart home controller or remote processor of the data, the smart home controller or remote processor may determine that an abnormal condition exists within the home. For instance, the smart home controller or remote processor may analyze the data to determine that the stove or oven has been left unattended for too long, and automatically turn off or de-energize the stove or oven, respectively, and/or generate and transmit a corresponding wireless communication message to the insured or a family member indicating that the abnormal condition exists and/or that the stove or oven has been automatically turned off.
- The wired or wireless communication or data transmission, and/or data, received and/or analyzed by the smart home controller or remote processor may include data regarding running water (e.g., washer, tub, shower, etc.). Based upon the analysis by the smart home controller or remote processor of the data, the smart home controller or remote processor may determine that an abnormal condition exists within the home. For instance, the smart home controller or remote processor may analyze the data to determine that the running water has been flowing for too long or left unattended for too long, and automatically turn off or de-energize an electrical valve (e.g., solenoid valve) or stop a source of the flowing water, and/or generate and transmit a corresponding wireless communication message to the insured or a family member indicating that the abnormal condition exists and/or that the water has been automatically turned off.
- The wired or wireless communication or data transmission, and/or data, received and/or analyzed by the smart home controller or remote processor may include fireplace data regarding fireplace operation (e.g., flue, duct, or damper position, chimney opening, gas, etc.). Based upon the analysis by the smart home controller or remote processor of the data, the smart home controller or remote processor may determine that an abnormal condition exists within the home. For instance, the smart home controller or remote processor may analyze the data to determine that an abnormal fireplace conditions exists (e.g., flue or damper in wrong position, gas on or off, chimney plugged with debris or bird nest, smoke is collecting on the interior of the insured home, etc.). In response, the smart home controller or remote processor may generate and transmit an associated alert or message, and/or automatically direct or control (such as via wireless communication) the operation of smart equipment to alleviate the impact of the abnormal fireplace condition (e.g., opens, closes, moves or changes flue or damper position; opens, closes, or operates a gas valve; starts or operates ventilation equipment or fans to move smoke out of the interior of the insured home; prevents closing damper(s) until the temperature of the fireplace has cooled down to a predetermined set point after use, etc.).
- As used herein, the term “smart” may refer to devices, sensors, or appliances located within or proximate to a property, and with the ability to communicate information about the status of the device, sensor, or appliance and/or receive instructions that control the operation of the device, sensor, or appliance. In one instance, a smart thermostat may be able to remotely communicate the current temperature of the home and receive instructions to adjust the temperature to a new level. In another instance, a smart water tank may be able to remotely communicate the water level contained therein and receive instructions to restrict the flow of water leaving the tank. In contrast, “dumb” devices, sensors, or appliances located within or proximate to a property require manual control. Referring again to the thermostat embodiment, to adjust the temperature on a “dumb” thermostat, a person would have to manually interact with the thermostat. As such, a person is unable to use a communication network to remotely adjust a “dumb” device, sensor, or appliance.
- A “smart device” as used herein may refer to any of a smart device, sensor, appliance, and/or other smart equipment that may be located (or disposed) within or proximate to a property. In embodiments in which an appliance and a sensor external to the particular appliance are associated with each other, “smart device” may refer to both the external sensors and the appliance collectively. Some exemplary devices that may be “smart devices” are, without limitation, valves, piping, clothes washers/dryers, dish washers, refrigerators, sprinkler systems, toilets, showers, sinks, soil monitors, doors, locks, windows, shutters, ovens, grills, fire places, furnaces, lighting, sump pumps, security cameras, and alarm systems. Similarly, an individual associated with the property shall be referred to as the “homeowner,” “property owner,” or “policyholder,” but it is also envisioned that the individual is a family member of the homeowner, a person renting/subletting the property, a person living or working on the property, a neighbor of the property, or any other individual that may have an interest in preventing or mitigating damage to the property.
- Further, any reference to “home” or “property” is meant to be exemplary and not limiting. The systems and methods described herein may be applied to any property, such as offices, farms, lots, parks, and/or other types of properties or buildings. Accordingly, “homeowner” may be used interchangeably with “property owner.”
- With the foregoing, an insurance customer may opt-in to a rewards, insurance discount, or other type of program. After the insurance customer provides their affirmative consent, an insurance provider remote server may collect data from the customer's mobile device, smart home controller, or other smart devices—such as with the customer's permission. The data collected may be related to insured assets or individuals before (and/or after) an insurance-related event, including those events discussed elsewhere herein. In return, risk averse insureds, home owners, home or apartment occupants, or care givers may receive discounts or insurance cost savings related to life, home, renters, personal articles, auto, and other types of insurance from the insurance provider.
- In one aspect, smart or interconnected home data, and/or other data, including the types of data discussed elsewhere herein, may be collected or received by an insurance provider remote server, such as via direct or indirect wireless communication or data transmission from a smart home controller, mobile device, or other customer computing device, after a customer affirmatively consents or otherwise opts-in to an insurance discount, reward, or other program. The insurance provider may then analyze the data received with the customer's permission to provide benefits to the customer. As a result, risk averse customers may receive insurance discounts or other insurance cost savings based upon data that reflects low risk behavior and/or technology that mitigates or prevents risk to home or apartment occupants, and/or insured assets, such as homes, personal belongings, or vehicles.
- Although the following text sets forth a detailed description of numerous different embodiments, it should be understood that the legal scope of the invention is defined by the words of the claims set forth at the end of this patent. The detailed description is to be construed as exemplary only and does not describe every possible embodiment, as describing every possible embodiment would be impractical, if not impossible. One could implement numerous alternate embodiments, using either current technology or technology developed after the filing date of this patent, which would still fall within the scope of the claims.
- Throughout this specification, plural instances may implement components, operations, or structures described as a single instance. Although individual operations of one or more methods are illustrated and described as separate operations, one or more of the individual operations may be performed concurrently, and nothing requires that the operations be performed in the order illustrated. Structures and functionality presented as separate components in exemplary configurations may be implemented as a combined structure or component. Similarly, structures and functionality presented as a single component may be implemented as separate components. These and other variations, modifications, additions, and improvements fall within the scope of the subject matter herein.
- Additionally, certain embodiments are described herein as including logic or a number of routines, subroutines, applications, or instructions. These may constitute either software (e.g., code embodied on a non-transitory, machine-readable medium) or hardware. In hardware, the routines, etc., are tangible units capable of performing certain operations and may be configured or arranged in a certain manner. In exemplary embodiments, one or more computer systems (e.g., a standalone, client or server computer system) or one or more hardware modules of a computer system (e.g., a processor or a group of processors) may be configured by software (e.g., an application or application portion) as a hardware module that operates to perform certain operations as described herein.
- In various embodiments, a hardware module may be implemented mechanically or electronically. For instance, a hardware module may comprise dedicated circuitry or logic that is permanently configured (e.g., as a special-purpose processor, such as a field programmable gate array (FPGA) or an application-specific integrated circuit (ASIC)) to perform certain operations. A hardware module may also comprise programmable logic or circuitry (e.g., as encompassed within a general-purpose processor or other programmable processor) that is temporarily configured by software to perform certain operations. It will be appreciated that the decision to implement a hardware module mechanically, in dedicated and permanently configured circuitry, or in temporarily configured circuitry (e.g., configured by software) may be driven by cost and time considerations.
- Accordingly, the term “hardware module” should be understood to encompass a tangible entity, be that an entity that is physically constructed, permanently configured (e.g., hardwired), or temporarily configured (e.g., programmed) to operate in a certain manner or to perform certain operations described herein. Considering embodiments in which hardware modules are temporarily configured (e.g., programmed), each of the hardware modules need not be configured or instantiated at any one instance in time. For instance, where the hardware modules comprise a general-purpose processor configured using software, the general-purpose processor may be configured as respective different hardware modules at different times. Software may accordingly configure a processor, for instance, to constitute a particular hardware module at one instance of time and to constitute a different hardware module at a different instance of time.
- Hardware modules may provide information to, and receive information from, other hardware modules. Accordingly, the described hardware modules may be regarded as being communicatively coupled. Where multiple of such hardware modules exist contemporaneously, communications may be achieved through signal transmission (e.g., over appropriate circuits and buses) that connect the hardware modules. In embodiments in which multiple hardware modules are configured or instantiated at different times, communications between such hardware modules may be achieved, for instance, through the storage and retrieval of information in memory structures to which the multiple hardware modules have access. For instance, one hardware module may perform an operation and store the output of that operation in a memory device to which it is communicatively coupled. A further hardware module may then, at a later time, access the memory device to retrieve and process the stored output. Hardware modules may also initiate communications with input or output devices, and may operate on a resource (e.g., a collection of information).
- The various operations of exemplary methods described herein may be performed, at least partially, by one or more processors that are temporarily configured (e.g., by software) or permanently configured to perform the relevant operations. Whether temporarily or permanently configured, such processors may constitute processor-implemented modules that operate to perform one or more operations or functions. The modules referred to herein may, in some exemplary embodiments, comprise processor-implemented modules.
- Similarly, the methods or routines described herein may be at least partially processor-implemented. For instance, at least some of the operations of a method may be performed by one or more processors or processor-implemented hardware modules. The performance of certain of the operations may be distributed among the one or more processors, not only residing within a single machine, but deployed across a number of machines. In some exemplary embodiments, the processor or processors may be located in a single location (e.g., within a home environment, an office environment, or as a server farm), while in other embodiments the processors may be distributed across a number of locations.
- The performance of certain of the operations may be distributed among the one or more processors, not only residing within a single machine, but deployed across a number of machines. In some exemplary embodiments, the one or more processors or processor-implemented modules may be located in a single geographic location (e.g., within a home environment, an office environment, or a server farm). In other exemplary embodiments, the one or more processors or processor-implemented modules may be distributed across a number of geographic locations.
- Unless specifically stated otherwise, discussions herein using words such as “processing,” “computing,” “calculating,” “determining,” “presenting,” “displaying,” or the like may refer to actions or processes of a machine (e.g., a computer) that manipulates or transforms data represented as physical (e.g., electronic, magnetic, or optical) quantities within one or more memories (e.g., volatile memory, non-volatile memory, or a combination thereof), registers, or other machine components that receive, store, transmit, or display information.
- As used herein any reference to “one embodiment” or “an embodiment” means that a particular element, feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment.
- The terms “insurer,” “insuring party,” and “insurance provider” are used interchangeably herein to generally refer to a party or entity (e.g., a business or other organizational entity) that provides insurance products, e.g., by offering and issuing insurance policies. Typically, but not necessarily, an insurance provider may be an insurance company.
- Although the embodiments discussed herein relate to property or care-type insurance policies, it should be appreciated that an insurance provider may offer or provide one or more different types of insurance policies. Other types of insurance policies may include, for instance, condominium owner insurance, renter's insurance, life insurance (e.g., whole-life, universal, variable, term), health insurance, disability insurance, long-term care insurance, annuities, business insurance (e.g., property, liability, commercial auto, workers compensation, professional and specialty liability, inland marine and mobile property, surety and fidelity bonds), automobile insurance, boat insurance, insurance for catastrophic events such as flood, fire, volcano damage and the like, motorcycle insurance, farm and ranch insurance, personal liability insurance, personal umbrella insurance, community organization insurance (e.g., for associations, religious organizations, cooperatives), personal articles, and/or other types of insurance products. In embodiments as described herein, the insurance providers process claims related to insurance policies that cover one or more properties (e.g., homes, automobiles, personal property), although processing other insurance policies is also envisioned.
- The terms “insured,” “insured party,” “policyholder,” “customer,” “claimant,” and “potential claimant” are used interchangeably herein to refer to a person, party, or entity (e.g., a business or other organizational entity) that is covered by the insurance policy, e.g., whose insured article or entity (e.g., property, life, health, auto, home, business) is covered by the policy. A “guarantor,” as used herein, generally refers to a person, party or entity that is responsible for payment of the insurance premiums. The guarantor may or may not be the same party as the insured, such as in situations when a guarantor has power of attorney for the insured. An “annuitant,” as referred to herein, generally refers to a person, party or entity that is entitled to receive benefits from an annuity insurance product offered by the insuring party. The annuitant may or may not be the same party as the guarantor.
- As used herein, the terms “comprises,” “comprising,” “includes,” “including,” “has,” “having” or any other variation thereof, are intended to cover a non-exclusive inclusion. For instance, a process, method, article, or apparatus that comprises a list of elements is not necessarily limited to only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. Further, unless expressly stated to the contrary, “or” refers to an inclusive or and not to an exclusive or. For instance, a condition A or B is satisfied by any one of the following: A is true (or present) and B is false (or not present), A is false (or not present) and B is true (or present), and both A and B are true (or present).
- In addition, use of the “a” or “an” are employed to describe elements and components of the embodiments herein. This is done merely for convenience and to give a general sense of the description. This description, and the claims that follow, should be read to include one or at least one and the singular also includes the plural unless it is obvious that it is meant otherwise.
- The patent claims at the end of this patent application are not intended to be construed under 35 U.S.C. § 112(f) unless traditional means-plus-function language is expressly recited, such as “means for” or “step for” language being explicitly recited in the claim(s).
- This detailed description is to be construed as examples and does not describe every possible embodiment, as describing every possible embodiment would be impractical, if not impossible. One could implement numerous alternate embodiments, using either current technology or technology developed after the filing date of this application.
Claims (20)
1. A computer-implemented method of detecting periled individuals within a property, the property, the method comprising:
receiving, by the hardware controller, sensor data from at least one sensor located within the property, of a plurality of sensors installed at various locations on the property;
analyzing the sensor data by one or more processors, wherein analyzing the sensor data includes analyzing sensor data associated with a room of the property, and wherein analyzing the sensor data is based on accessing baseline sensor data associated with the room of the property;
based upon the analyzing, determining that an individual located in the room of the property has experienced a fall;
responsive to determining that the individual in the room of the property has experienced a fall, generating a notification indicating that the individual in the room of the property has experienced a fall; and
communicating the notification to an electronic device.
2. The computer-implemented method of claim 1 , wherein the sensor data includes imaging data.
3. The computer-implemented method of claim 1 , wherein the sensor data includes motion data.
4. The computer-implemented method of claim 1 , wherein the electronic device is a personal digital assistant device.
5. The computer-implemented method of claim 1 , wherein analyzing the sensor data is further based on accessing baseline sensor data associated with the individual.
6. The computer-implemented method of claim 5 , wherein analyzing the sensor data based on accessing baseline sensor data associated with the individual includes learning a routine associated with the individual.
7. The computer-implemented method of claim 1 , wherein analyzing the sensor data comprises:
analyzing the sensor data to determine a current condition of the individual;
receiving updated sensor data from the at least one sensor; and
determining, from the updated sensor data, that a current condition is maintained for a threshold period of time.
8. A hardware controller for detecting periled individuals within a property, the hardware controller in communication with a set of sensors installed at various locations on the property, comprising:
a communication module adapted to interface with a plurality of sensors installed at various locations on the property;
a memory adapted to store non-transitory computer executable instructions; and
a processor adapted to interface with the communication module and the memory, wherein the processor is configured to execute the non-transitory computer executable instructions to cause the processor to:
receive, via the communication module, sensor data from at least one sensor of the plurality of sensors installed at various locations on the property,
analyze the sensor data, wherein analyzing the sensor data includes analyzing sensor data associated with a room of the property, and wherein analyzing the sensor data is based on accessing baseline sensor data associated with the room of the property,
based upon the analyzing, determine that an individual located in the room of the property has experienced a fall,
responsive to determining that the individual in the room of the property has experienced a fall, generating a notification indicating that the individual in the room of the property has experienced a fall, and
communicate, via the communication module, the notification to an electronic device.
9. The hardware controller of claim 8 , wherein the sensor data includes imaging data.
10. The hardware controller of claim 8 , wherein the sensor data includes motion data.
11. The hardware controller of claim 8 , wherein the electronic device is a personal digital assistant device.
12. The hardware controller of claim 8 , wherein to analyze the sensor data, the processor is configured further to access baseline sensor data associated with the individual.
13. The hardware controller of claim 12 , wherein analyzing the sensor data based on accessing baseline sensor data associated with the individual includes learning a routine associated with the individual.
14. A computer-readable medium storing non-transitory instructions for detecting periled individuals within a property, that, when executed by one or more processors, cause the one or more processors to:
receive sensor data from at least one sensor located within the property, of a plurality of sensors installed at various locations on the property;
analyze the sensor data, wherein analyzing the sensor data includes analyzing sensor data associated with a room of the property, and wherein analyzing the sensor data is based on accessing baseline sensor data associated with the room of the property;
based upon the analysis, determine that an individual located in the room of the property has experienced a fall;
responsive to determining that the individual in the room of the property has experienced a fall, generate a notification indicating that the individual in the room of the property has experienced a fall; and
communicate the notification to an electronic device.
15. The computer-readable medium storing non-transitory instructions of claim 14 , wherein the sensor data includes imaging data.
16. The computer-readable medium storing non-transitory instructions of claim 14 , wherein the sensor data includes motion data.
17. The computer-readable medium storing non-transitory instructions of claim 14 , wherein the electronic device is a personal digital assistant device.
18. The computer-readable medium storing non-transitory instructions of claim 14 , wherein the instructions that cause the one or more processors to analyze the sensor data include instructions that cause the one or more processors to analyze the sensor data based on accessing baseline sensor data associated with the individual.
19. The computer-readable medium storing non-transitory instructions of claim 18 , wherein analyzing the sensor data based on accessing baseline sensor data associated with the individual includes learning a routine associated with the individual.
20. The computer-readable medium storing non-transitory instructions of claim 14 , wherein the instructions that cause the one or more processors to analyze the sensor data include instructions that cause the one or more processors to:
analyze the sensor data to determine a current condition of the individual;
receive updated sensor data from the at least one sensor of the plurality of sensors; and
determine, from the updated sensor data, that a current condition is maintained for a threshold period of time.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/701,316 US20220215732A1 (en) | 2014-10-07 | 2022-03-22 | Systems and methods for improved assisted or independent living environments |
US17/706,302 US20220215733A1 (en) | 2014-10-07 | 2022-03-28 | Systems and methods for improved assisted or independent living environments |
US17/857,880 US20220334544A1 (en) | 2014-10-07 | 2022-07-05 | Systems and methods for improved assisted or independent living environments |
Applications Claiming Priority (17)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462060962P | 2014-10-07 | 2014-10-07 | |
US201562105407P | 2015-01-20 | 2015-01-20 | |
US201562187624P | 2015-07-01 | 2015-07-01 | |
US201562187666P | 2015-07-01 | 2015-07-01 | |
US201562187645P | 2015-07-01 | 2015-07-01 | |
US201562187651P | 2015-07-01 | 2015-07-01 | |
US201562187642P | 2015-07-01 | 2015-07-01 | |
US201562189329P | 2015-07-07 | 2015-07-07 | |
US201562193317P | 2015-07-16 | 2015-07-16 | |
US201562197343P | 2015-07-27 | 2015-07-27 | |
US201562198813P | 2015-07-30 | 2015-07-30 | |
US201562200375P | 2015-08-03 | 2015-08-03 | |
US201562201671P | 2015-08-06 | 2015-08-06 | |
US201562220383P | 2015-09-18 | 2015-09-18 | |
US14/873,865 US10573146B1 (en) | 2014-10-07 | 2015-10-02 | Systems and methods for improved assisted or independent living environments |
US16/738,328 US11423754B1 (en) | 2014-10-07 | 2020-01-09 | Systems and methods for improved assisted or independent living environments |
US17/701,316 US20220215732A1 (en) | 2014-10-07 | 2022-03-22 | Systems and methods for improved assisted or independent living environments |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/738,328 Continuation US11423754B1 (en) | 2014-10-07 | 2020-01-09 | Systems and methods for improved assisted or independent living environments |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/706,302 Continuation US20220215733A1 (en) | 2014-10-07 | 2022-03-28 | Systems and methods for improved assisted or independent living environments |
Publications (1)
Publication Number | Publication Date |
---|---|
US20220215732A1 true US20220215732A1 (en) | 2022-07-07 |
Family
ID=61189017
Family Applications (31)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/873,783 Active 2036-11-29 US10356303B1 (en) | 2014-10-07 | 2015-10-02 | Systems and methods for controlling smart devices based upon image data from image sensors |
US14/873,942 Active 2036-09-21 US10249158B1 (en) | 2014-10-07 | 2015-10-02 | Systems and methods for automatically responding to a fire |
US14/873,864 Active US9898912B1 (en) | 2014-10-07 | 2015-10-02 | Systems and methods for automatically generating an escape route |
US14/873,904 Abandoned US20210142648A1 (en) | 2014-10-07 | 2015-10-02 | Systems and methods for automatically mitigating risk of damage from broken circuits |
US14/873,865 Active 2038-09-21 US10573146B1 (en) | 2014-10-07 | 2015-10-02 | Systems and methods for improved assisted or independent living environments |
US14/873,968 Active 2038-01-12 US10282788B1 (en) | 2014-10-07 | 2015-10-02 | Systems and methods for managing service log information |
US14/873,817 Active 2038-09-08 US10515372B1 (en) | 2014-10-07 | 2015-10-02 | Systems and methods for managing building code compliance for a property |
US14/873,914 Active 2036-10-31 US10353359B1 (en) | 2014-10-07 | 2015-10-02 | Systems and methods for managing smart devices based upon electrical usage data |
US14/873,823 Active US10388135B1 (en) | 2014-10-07 | 2015-10-02 | Systems and methods for analyzing sensor data to detect property intrusion events |
US14/873,771 Active 2038-01-12 US10346811B1 (en) | 2014-10-07 | 2015-10-02 | Systems and methods for responding to a broken circuit |
US15/895,149 Active US10282961B1 (en) | 2014-10-07 | 2018-02-13 | Systems and methods for automatically generating an escape route |
US16/266,423 Active US10522009B1 (en) | 2014-10-07 | 2019-02-04 | Systems and methods for automatically responding to a fire |
US16/282,789 Active US10573149B1 (en) | 2014-10-07 | 2019-02-22 | Systems and methods for automatically generating an escape route |
US16/393,336 Abandoned US20210297579A1 (en) | 2014-10-07 | 2019-04-24 | Systems and Methods for Controlling Smart Devices Based Upon Image Data From Image Sensors |
US16/393,131 Active US11049078B1 (en) | 2014-10-07 | 2019-04-24 | Systems and methods for responding to a broken circuit |
US16/393,312 Active US10795329B1 (en) | 2014-10-07 | 2019-04-24 | Systems and methods for managing smart devices based upon electrical usage data |
US16/445,399 Active US10741033B1 (en) | 2014-10-07 | 2019-06-19 | System and methods for analyzing sensor data to detect property intrusion events |
US16/674,140 Active 2036-08-03 US11551235B1 (en) | 2014-10-07 | 2019-11-05 | Systems and methods for managing building code compliance for a property |
US16/692,536 Active US10943447B1 (en) | 2014-10-07 | 2019-11-22 | Systems and methods for automatically responding to a fire |
US16/700,783 Active US11004320B1 (en) | 2014-10-07 | 2019-12-02 | Systems and methods for analyzing sensor data to detect property intrusion events |
US16/738,328 Active 2036-03-03 US11423754B1 (en) | 2014-10-07 | 2020-01-09 | Systems and methods for improved assisted or independent living environments |
US16/740,010 Active US11043098B1 (en) | 2014-10-07 | 2020-01-10 | Systems and methods for automatically generating an escape route |
US16/899,380 Pending US20200302549A1 (en) | 2014-10-07 | 2020-06-11 | Systems and methods for managing warranty information |
US17/009,914 Active US11656585B1 (en) | 2014-10-07 | 2020-09-02 | Systems and methods for managing smart devices based upon electrical usage data |
US17/167,963 Abandoned US20240013640A1 (en) | 2014-10-07 | 2021-02-04 | Systems and methods for analyzing sensor data to detect property intrusion events |
US17/170,659 Active US11334040B2 (en) | 2014-10-07 | 2021-02-08 | Systems and methods for automatically responding to a fire |
US17/701,316 Pending US20220215732A1 (en) | 2014-10-07 | 2022-03-22 | Systems and methods for improved assisted or independent living environments |
US17/706,302 Pending US20220215733A1 (en) | 2014-10-07 | 2022-03-28 | Systems and methods for improved assisted or independent living environments |
US17/857,880 Pending US20220334544A1 (en) | 2014-10-07 | 2022-07-05 | Systems and methods for improved assisted or independent living environments |
US18/094,731 Active US11815864B2 (en) | 2014-10-07 | 2023-01-09 | Systems and methods for managing building code compliance for a property |
US18/134,756 Pending US20230251610A1 (en) | 2014-10-07 | 2023-04-14 | Systems and Methods for Managing Smart Devices Based Upon Electrical Usage Data |
Family Applications Before (26)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/873,783 Active 2036-11-29 US10356303B1 (en) | 2014-10-07 | 2015-10-02 | Systems and methods for controlling smart devices based upon image data from image sensors |
US14/873,942 Active 2036-09-21 US10249158B1 (en) | 2014-10-07 | 2015-10-02 | Systems and methods for automatically responding to a fire |
US14/873,864 Active US9898912B1 (en) | 2014-10-07 | 2015-10-02 | Systems and methods for automatically generating an escape route |
US14/873,904 Abandoned US20210142648A1 (en) | 2014-10-07 | 2015-10-02 | Systems and methods for automatically mitigating risk of damage from broken circuits |
US14/873,865 Active 2038-09-21 US10573146B1 (en) | 2014-10-07 | 2015-10-02 | Systems and methods for improved assisted or independent living environments |
US14/873,968 Active 2038-01-12 US10282788B1 (en) | 2014-10-07 | 2015-10-02 | Systems and methods for managing service log information |
US14/873,817 Active 2038-09-08 US10515372B1 (en) | 2014-10-07 | 2015-10-02 | Systems and methods for managing building code compliance for a property |
US14/873,914 Active 2036-10-31 US10353359B1 (en) | 2014-10-07 | 2015-10-02 | Systems and methods for managing smart devices based upon electrical usage data |
US14/873,823 Active US10388135B1 (en) | 2014-10-07 | 2015-10-02 | Systems and methods for analyzing sensor data to detect property intrusion events |
US14/873,771 Active 2038-01-12 US10346811B1 (en) | 2014-10-07 | 2015-10-02 | Systems and methods for responding to a broken circuit |
US15/895,149 Active US10282961B1 (en) | 2014-10-07 | 2018-02-13 | Systems and methods for automatically generating an escape route |
US16/266,423 Active US10522009B1 (en) | 2014-10-07 | 2019-02-04 | Systems and methods for automatically responding to a fire |
US16/282,789 Active US10573149B1 (en) | 2014-10-07 | 2019-02-22 | Systems and methods for automatically generating an escape route |
US16/393,336 Abandoned US20210297579A1 (en) | 2014-10-07 | 2019-04-24 | Systems and Methods for Controlling Smart Devices Based Upon Image Data From Image Sensors |
US16/393,131 Active US11049078B1 (en) | 2014-10-07 | 2019-04-24 | Systems and methods for responding to a broken circuit |
US16/393,312 Active US10795329B1 (en) | 2014-10-07 | 2019-04-24 | Systems and methods for managing smart devices based upon electrical usage data |
US16/445,399 Active US10741033B1 (en) | 2014-10-07 | 2019-06-19 | System and methods for analyzing sensor data to detect property intrusion events |
US16/674,140 Active 2036-08-03 US11551235B1 (en) | 2014-10-07 | 2019-11-05 | Systems and methods for managing building code compliance for a property |
US16/692,536 Active US10943447B1 (en) | 2014-10-07 | 2019-11-22 | Systems and methods for automatically responding to a fire |
US16/700,783 Active US11004320B1 (en) | 2014-10-07 | 2019-12-02 | Systems and methods for analyzing sensor data to detect property intrusion events |
US16/738,328 Active 2036-03-03 US11423754B1 (en) | 2014-10-07 | 2020-01-09 | Systems and methods for improved assisted or independent living environments |
US16/740,010 Active US11043098B1 (en) | 2014-10-07 | 2020-01-10 | Systems and methods for automatically generating an escape route |
US16/899,380 Pending US20200302549A1 (en) | 2014-10-07 | 2020-06-11 | Systems and methods for managing warranty information |
US17/009,914 Active US11656585B1 (en) | 2014-10-07 | 2020-09-02 | Systems and methods for managing smart devices based upon electrical usage data |
US17/167,963 Abandoned US20240013640A1 (en) | 2014-10-07 | 2021-02-04 | Systems and methods for analyzing sensor data to detect property intrusion events |
US17/170,659 Active US11334040B2 (en) | 2014-10-07 | 2021-02-08 | Systems and methods for automatically responding to a fire |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/706,302 Pending US20220215733A1 (en) | 2014-10-07 | 2022-03-28 | Systems and methods for improved assisted or independent living environments |
US17/857,880 Pending US20220334544A1 (en) | 2014-10-07 | 2022-07-05 | Systems and methods for improved assisted or independent living environments |
US18/094,731 Active US11815864B2 (en) | 2014-10-07 | 2023-01-09 | Systems and methods for managing building code compliance for a property |
US18/134,756 Pending US20230251610A1 (en) | 2014-10-07 | 2023-04-14 | Systems and Methods for Managing Smart Devices Based Upon Electrical Usage Data |
Country Status (1)
Country | Link |
---|---|
US (31) | US10356303B1 (en) |
Families Citing this family (139)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11205926B2 (en) | 2009-12-22 | 2021-12-21 | View, Inc. | Window antennas for emitting radio frequency signals |
US11592723B2 (en) | 2009-12-22 | 2023-02-28 | View, Inc. | Automated commissioning of controllers in a window network |
US20130271813A1 (en) | 2012-04-17 | 2013-10-17 | View, Inc. | Controller for optically-switchable windows |
US11732527B2 (en) | 2009-12-22 | 2023-08-22 | View, Inc. | Wirelessly powered and powering electrochromic windows |
US11342791B2 (en) | 2009-12-22 | 2022-05-24 | View, Inc. | Wirelessly powered and powering electrochromic windows |
US10303035B2 (en) | 2009-12-22 | 2019-05-28 | View, Inc. | Self-contained EC IGU |
US11630366B2 (en) | 2009-12-22 | 2023-04-18 | View, Inc. | Window antennas for emitting radio frequency signals |
US11054792B2 (en) | 2012-04-13 | 2021-07-06 | View, Inc. | Monitoring sites containing switchable optical devices and controllers |
US10989977B2 (en) | 2011-03-16 | 2021-04-27 | View, Inc. | Onboard controller for multistate windows |
US10365531B2 (en) | 2012-04-13 | 2019-07-30 | View, Inc. | Applications for controlling optically switchable devices |
US10964320B2 (en) | 2012-04-13 | 2021-03-30 | View, Inc. | Controlling optically-switchable devices |
WO2018200702A1 (en) | 2017-04-26 | 2018-11-01 | View, Inc. | Tintable window system computing platform |
US11300848B2 (en) | 2015-10-06 | 2022-04-12 | View, Inc. | Controllers for optically-switchable devices |
US11764990B2 (en) | 2013-07-26 | 2023-09-19 | Skybell Technologies Ip, Llc | Doorbell communications systems and methods |
US11909549B2 (en) | 2013-07-26 | 2024-02-20 | Skybell Technologies Ip, Llc | Doorbell communication systems and methods |
US10552911B1 (en) * | 2014-01-10 | 2020-02-04 | United Services Automobile Association (Usaa) | Determining status of building modifications using informatics sensor data |
US11150616B2 (en) | 2014-03-05 | 2021-10-19 | View, Inc. | Site monitoring system |
US11868103B2 (en) | 2014-03-05 | 2024-01-09 | View, Inc. | Site monitoring system |
EP3114640B1 (en) | 2014-03-05 | 2022-11-02 | View, Inc. | Monitoring sites containing switchable optical devices and controllers |
US10181160B1 (en) | 2014-04-25 | 2019-01-15 | State Farm Mutual Automobile Insurance Company | Systems and methods for assigning damage caused by an insurance-related event |
US11743071B2 (en) | 2018-05-02 | 2023-08-29 | View, Inc. | Sensing and communications unit for optically switchable window systems |
CN106575064B (en) | 2014-06-30 | 2021-05-07 | 唯景公司 | Method and system for controlling an optically switchable window network during periods of reduced power availability |
WO2020227702A2 (en) | 2019-05-09 | 2020-11-12 | View, Inc. | Antenna systems for controlled coverage in buildings |
US10356303B1 (en) | 2014-10-07 | 2019-07-16 | State Farm Mutual Automobile Insurance Company | Systems and methods for controlling smart devices based upon image data from image sensors |
US11114742B2 (en) | 2014-11-25 | 2021-09-07 | View, Inc. | Window antennas |
AU2015353606B2 (en) | 2014-11-25 | 2020-05-21 | View, Inc. | Window antennas |
CA2970300A1 (en) | 2014-12-08 | 2016-06-16 | View, Inc. | Multiple interacting systems at a site |
US11740948B2 (en) | 2014-12-08 | 2023-08-29 | View, Inc. | Multiple interacting systems at a site |
US11575537B2 (en) * | 2015-03-27 | 2023-02-07 | Skybell Technologies Ip, Llc | Doorbell communication systems and methods |
US20230163993A1 (en) * | 2015-03-27 | 2023-05-25 | Skybell Technologies Ip, Llc | Doorbell communication systems and methods |
US11641452B2 (en) | 2015-05-08 | 2023-05-02 | Skybell Technologies Ip, Llc | Doorbell communication systems and methods |
US10565566B1 (en) | 2015-09-10 | 2020-02-18 | State Farm Mutual Automobile Insurance Company | Systems and methods for ordering a replacement component or repair service |
US11384596B2 (en) | 2015-09-18 | 2022-07-12 | View, Inc. | Trunk line window controllers |
US10902524B2 (en) | 2015-09-30 | 2021-01-26 | Sensormatic Electronics, LLC | Sensor based system and method for augmenting underwriting of insurance policies |
US11151654B2 (en) * | 2015-09-30 | 2021-10-19 | Johnson Controls Tyco IP Holdings LLP | System and method for determining risk profile, adjusting insurance premiums and automatically collecting premiums based on sensor data |
US11436911B2 (en) | 2015-09-30 | 2022-09-06 | Johnson Controls Tyco IP Holdings LLP | Sensor based system and method for premises safety and operational profiling based on drift analysis |
US9767680B1 (en) * | 2015-09-30 | 2017-09-19 | Alarm.Com Incorporated | Abberation detection technology |
US10721147B2 (en) | 2015-11-05 | 2020-07-21 | Cecelumen, Llc | Methods and apparatus for associating content with one or more wireless signals and/or controlling access to content associated with such signals |
US11740091B2 (en) * | 2015-11-05 | 2023-08-29 | Cecelumen, Llc | Methods and apparatus for distributing and/or receiving locally relevant information in emergencies |
US10415980B1 (en) | 2015-11-05 | 2019-09-17 | Cecelumen, Llc | Methods and apparatus for communicating and/or storing information to enhance experiences relating to visits to sites such as theme parks, zoos and/or other places of interest |
EP3374832B1 (en) * | 2015-11-09 | 2019-10-16 | Otis Elevator Company | Self-diagnostic electrical circuit |
US10915829B1 (en) * | 2015-12-09 | 2021-02-09 | One Concern, Inc. | Data model update for structural-damage predictor after an earthquake |
US10482746B1 (en) | 2016-01-06 | 2019-11-19 | State Farm Mutual Automobile Insurance Company | Sensor data to identify catastrophe areas |
KR102329984B1 (en) * | 2016-01-08 | 2021-11-24 | 삼성전자주식회사 | Method and apparatus for controlling device in communication system |
US10950110B2 (en) * | 2016-02-08 | 2021-03-16 | Security Services Northwest, Inc. | Location based security alert system |
JP6084717B1 (en) * | 2016-02-09 | 2017-02-22 | 株式会社クマガワ | Evacuation guidance system |
US10956980B1 (en) * | 2016-02-23 | 2021-03-23 | State Farm Mutual Automobile Insurance Company | Systems and methods for operating drones in response to an incident |
WO2017177361A1 (en) * | 2016-04-11 | 2017-10-19 | Telefonaktiebolaget Lm Ericsson (Publ) | Flight path control based on cell broadcast messages |
US10552914B2 (en) | 2016-05-05 | 2020-02-04 | Sensormatic Electronics, LLC | Method and apparatus for evaluating risk based on sensor monitoring |
US10225369B2 (en) * | 2016-06-02 | 2019-03-05 | At&T Intellectual Property I, L.P. | Method and apparatus for providing a recommended action for a venue via a network |
US10810676B2 (en) | 2016-06-06 | 2020-10-20 | Sensormatic Electronics, LLC | Method and apparatus for increasing the density of data surrounding an event |
US10091303B1 (en) * | 2016-06-12 | 2018-10-02 | Apple Inc. | Using in-home location awareness |
AU2017285025A1 (en) * | 2016-06-13 | 2018-12-13 | Intergraph Corporation | Systems and methods for expediting repairs of utility equipment using electronic dialogs with people |
CA3034630A1 (en) | 2016-08-22 | 2018-03-01 | View, Inc. | Electromagnetic-shielding electrochromic windows |
US11451043B1 (en) | 2016-10-27 | 2022-09-20 | State Farm Mutual Automobile Insurance Company | Systems and methods for utilizing electricity monitoring devices to mitigate or prevent structural damage |
KR102539580B1 (en) * | 2016-12-01 | 2023-06-05 | 삼성전자주식회사 | Method for sharing information on conditional action and an electronic device thereof |
CN106683301A (en) * | 2017-01-03 | 2017-05-17 | 京东方科技集团股份有限公司 | Escape route generation method, device and system |
US10930141B2 (en) * | 2017-03-15 | 2021-02-23 | Carrier Corporation | System and method for indicating building fire danger ratings |
US11892738B2 (en) | 2017-04-26 | 2024-02-06 | View, Inc. | Tandem vision window and media display |
US11747696B2 (en) | 2017-04-26 | 2023-09-05 | View, Inc. | Tandem vision window and media display |
US11747698B2 (en) | 2017-04-26 | 2023-09-05 | View, Inc. | Tandem vision window and media display |
US11493819B2 (en) | 2017-04-26 | 2022-11-08 | View, Inc. | Displays for tintable windows |
US10325471B1 (en) | 2017-04-28 | 2019-06-18 | BlueOwl, LLC | Systems and methods for detecting a medical emergency event |
NL2019123B1 (en) * | 2017-06-26 | 2019-01-07 | Epesi Creative New Media B V | Method and system of presence detection |
US10540871B2 (en) * | 2017-07-05 | 2020-01-21 | Oneevent Technologies, Inc. | Evacuation system |
US11108584B2 (en) | 2017-08-10 | 2021-08-31 | The Adt Security Corporation | User scene and schedule creation based on time of the year |
US11627289B1 (en) * | 2017-09-19 | 2023-04-11 | Amazon Technologies, Inc. | Activating security system alarms based on data generated by audio/video recording and communication devices |
US20210256616A1 (en) | 2017-09-27 | 2021-08-19 | State Farm Mutual Automobile Insurance Company | Automobile Monitoring Systems and Methods for Risk Determination |
US20190146441A1 (en) * | 2017-11-16 | 2019-05-16 | Associated Materials, Llc | Methods and systems for home automation using an internet of things platform |
US10810860B1 (en) * | 2018-01-03 | 2020-10-20 | Objectvideo Labs, Llc | Intelligent vent hood |
US11941114B1 (en) * | 2018-01-31 | 2024-03-26 | Vivint, Inc. | Deterrence techniques for security and automation systems |
US11488077B1 (en) * | 2018-01-31 | 2022-11-01 | Vivint, Inc. | Smart sensing techniques |
US10825318B1 (en) | 2018-04-09 | 2020-11-03 | State Farm Mutual Automobile Insurance Company | Sensing peripheral heuristic evidence, reinforcement, and engagement system |
US11585672B1 (en) * | 2018-04-11 | 2023-02-21 | Palantir Technologies Inc. | Three-dimensional representations of routes |
US11386412B1 (en) | 2018-04-12 | 2022-07-12 | Wells Fargo Bank, N.A. | Authentication circle management |
US11481837B1 (en) * | 2018-04-12 | 2022-10-25 | Wells Fargo Bank, N.A. | Authentication circle management |
US10943308B1 (en) | 2018-05-03 | 2021-03-09 | Wells Fargo Bank, N.A. | Systems and methods for pervasive advisor for major expenditures |
US10904076B2 (en) * | 2018-05-30 | 2021-01-26 | International Business Machines Corporation | Directing functioning of an object based on its association to another object in an environment |
US10834986B2 (en) | 2018-07-12 | 2020-11-17 | Sarah Nicole Ciccaglione | Smart safety helmet with heads-up display |
WO2020024046A1 (en) * | 2018-07-30 | 2020-02-06 | Dejero Labs Inc. | System and method to adapt communications responsive to actionable intelligence |
US11049162B2 (en) * | 2018-08-30 | 2021-06-29 | International Business Machines Corporation | Method, medium, and system for automated hardware device replacement |
US11158004B2 (en) | 2018-11-05 | 2021-10-26 | EIG Technology, Inc. | Property assessment using a virtual assistant |
US11323846B2 (en) * | 2018-11-29 | 2022-05-03 | Motorola Solutions, Inc. | Device, system and method for evacuation task management |
US20200175843A1 (en) * | 2018-12-03 | 2020-06-04 | At& T Intellectual Property I, L.P. | Methods and systems for first responder access to localized presence and identification information |
JP6667878B1 (en) * | 2018-12-14 | 2020-03-18 | 株式会社ポケモン | Costume effect support device, costume effect support system, and costume effect support method |
US10945190B2 (en) | 2019-01-04 | 2021-03-09 | Apple Inc. | Predictive routing based on microlocation |
CN110099103A (en) * | 2019-04-12 | 2019-08-06 | 上海路正轨道交通设备有限公司 | Auxiliary security guard system and method in a kind of work business system job |
US10895392B2 (en) * | 2019-04-23 | 2021-01-19 | Resource Management Data System, LLC | Systems and methods for heating and cooling a facility |
US10841780B1 (en) * | 2019-05-15 | 2020-11-17 | Ronald S. Ogaz | System and method of automatically evaluating and communicating an emergency situation |
WO2020260931A1 (en) * | 2019-06-28 | 2020-12-30 | Tecnoform S.P.A. | System for the monitoring of the status of furnishing components, in particular for the interior furnishing of recreational vehicles or the like |
US20220358822A1 (en) * | 2019-07-01 | 2022-11-10 | Sekisui House, Ltd. | Emergency responding method, safety confirmation system, management device, space section, and method for controlling management device |
US11894129B1 (en) | 2019-07-03 | 2024-02-06 | State Farm Mutual Automobile Insurance Company | Senior living care coordination platforms |
CN112311476A (en) * | 2019-07-25 | 2021-02-02 | 上海长智系统集成有限公司 | Escape evacuation method, escape evacuation device, escape evacuation storage medium and escape evacuation system based on sound wave communication |
US11080990B2 (en) | 2019-08-05 | 2021-08-03 | Factory Mutual Insurance Company | Portable 360-degree video-based fire and smoke detector and wireless alerting system |
US11367527B1 (en) | 2019-08-19 | 2022-06-21 | State Farm Mutual Automobile Insurance Company | Senior living engagement and care support platforms |
US20210056559A1 (en) * | 2019-08-24 | 2021-02-25 | Eli Altaras | Digital device warranty method and devices |
CN110517388A (en) * | 2019-08-30 | 2019-11-29 | 北京青岳科技有限公司 | A kind of entrance guard controlling method and system with security audit |
US11393055B2 (en) | 2019-09-09 | 2022-07-19 | Alarm.Com Incorporated | Visitor-tailored property configuration |
US11176799B2 (en) * | 2019-09-10 | 2021-11-16 | Jonathan Thompson | Global positioning system equipped with hazard detector and a system for providing hazard alerts thereby |
WO2021055061A1 (en) * | 2019-09-17 | 2021-03-25 | Hewlett-Packard Development Company, L.P. | Power management setting configuration |
US11270401B2 (en) * | 2019-09-18 | 2022-03-08 | International Business Machines Corporation | Generating a customized egress blueprint |
US11640587B2 (en) * | 2019-09-30 | 2023-05-02 | Mitchell International, Inc. | Vehicle repair workflow automation with OEM repair procedure verification |
EP3800621A1 (en) | 2019-10-02 | 2021-04-07 | Université de Marne La Vallee | Method and device for guiding by connected object in a building |
US11537703B2 (en) * | 2019-10-11 | 2022-12-27 | Moon River Investments, Llc | GFI tripped circuit detection and wireless notification systems and methods |
CN110718039A (en) * | 2019-10-18 | 2020-01-21 | Oppo广东移动通信有限公司 | Fire alarm method, fire alarm device, household equipment and control terminal |
US20210142334A1 (en) * | 2019-11-08 | 2021-05-13 | Ul Llc | Technologies for using machine learning to determine product certification eligibility |
US20220087574A1 (en) * | 2019-11-26 | 2022-03-24 | Scanalytics, Inc. | Neurological and other medical diagnosis from path data |
EP3836101A1 (en) * | 2019-12-11 | 2021-06-16 | Carrier Corporation | A method and a system for determining safe evacuation paths |
US11734767B1 (en) | 2020-02-28 | 2023-08-22 | State Farm Mutual Automobile Insurance Company | Systems and methods for light detection and ranging (lidar) based generation of a homeowners insurance quote |
US11217085B2 (en) * | 2020-03-02 | 2022-01-04 | Tetra Ventures LLC | Real time intervention platform for at-risk conduct |
JP7503752B2 (en) * | 2020-03-05 | 2024-06-21 | パナソニックIpマネジメント株式会社 | Information processing system and information processing method |
CN111431562B (en) * | 2020-03-05 | 2022-01-11 | 许昌北邮万联网络技术有限公司 | Fire-fighting information transmission system, method and device |
TW202206925A (en) | 2020-03-26 | 2022-02-16 | 美商視野公司 | Access and messaging in a multi client network |
US20210334538A1 (en) | 2020-04-27 | 2021-10-28 | State Farm Mutual Automobile Insurance Company | Systems and methods for a 3d model for viewing potential placement of an object |
US11631493B2 (en) | 2020-05-27 | 2023-04-18 | View Operating Corporation | Systems and methods for managing building wellness |
US11659374B1 (en) * | 2020-06-01 | 2023-05-23 | United Services Automobile Association (Usaa) | Fire warning network and emergency guidance system |
CN111739238A (en) * | 2020-06-08 | 2020-10-02 | 珠海格力电器股份有限公司 | Dynamically-adjusted escape route generation method, system and device and fire detector |
CN111784986B (en) * | 2020-07-13 | 2021-02-09 | 和宇健康科技股份有限公司 | Intelligent security alarm method based on big data |
US11488255B1 (en) | 2020-08-03 | 2022-11-01 | State Farm Mutual Automobile Insurance Company | Apparatuses, systems and methods for mitigating property loss based on an event driven probable roof loss confidence score |
CN112073901A (en) * | 2020-08-17 | 2020-12-11 | 珠海格力电器股份有限公司 | Safety early warning method, system, device, equipment and storage medium |
US11688516B2 (en) | 2021-01-19 | 2023-06-27 | State Farm Mutual Automobile Insurance Company | Alert systems for senior living engagement and care support platforms |
US11445340B2 (en) * | 2021-01-21 | 2022-09-13 | Flying Cloud Technologies, Inc. | Anomalous subject and device identification based on rolling baseline |
US11635080B1 (en) | 2021-02-12 | 2023-04-25 | State Farm Mutual Automobile Insurance Company | Determining and utilizing a desired frequency for a mechanical shaker for a sump pump system |
US11481704B2 (en) | 2021-03-09 | 2022-10-25 | Togal.Ai Inc. | Methods and apparatus for artificial intelligence conversion of change orders into an actionable interface |
US11475174B2 (en) | 2021-03-09 | 2022-10-18 | Togal.Ai Inc. | Methods and apparatus for artificial intelligence conversion of a two-dimensional reference into an actionable interface |
US11797733B2 (en) | 2021-03-09 | 2023-10-24 | Togal.Ai Inc | Artificial intelligence determination of building metrics for code compliance |
EP4063789A1 (en) * | 2021-03-26 | 2022-09-28 | Universite Gustave Eiffel | Method and device for guiding by connected object in a building by location of each positioning terminal |
US20220416530A1 (en) * | 2021-06-23 | 2022-12-29 | Musco Corporation | Apparatus, method, and system for remote control of ground fault circuit interrupters (gfcis) in electrical systems |
US20230029280A1 (en) * | 2021-07-23 | 2023-01-26 | Dell Products, L.P. | System and method for providing a warranty assigned to a logical device group |
DE102021119788A1 (en) | 2021-07-29 | 2023-02-02 | Bayerische Motoren Werke Aktiengesellschaft | Method and device for routing through a road network |
US11972681B2 (en) * | 2021-11-01 | 2024-04-30 | Jpmorgan Chase Bank, N.A. | Systems and methods for wayfinding in hazardous environments |
USD1014553S1 (en) | 2021-12-17 | 2024-02-13 | Christal Bramble-Hill | Display screen or portion thereof with a graphical user interface for a house appliance monitoring app |
US20230342867A1 (en) * | 2022-04-20 | 2023-10-26 | State Farm Mutual Automobile Insurance Company | Systems and Methods for Generating a Home Score for a User |
US11537964B1 (en) | 2022-06-03 | 2022-12-27 | Cecilian Partners, Inc. | Anti-monotony system and method associated with new home construction in a master-planned community |
WO2024084612A1 (en) * | 2022-10-19 | 2024-04-25 | ファナック株式会社 | Warranty information notification system and computer-readable storage medium |
US11876371B1 (en) | 2023-01-23 | 2024-01-16 | Mark Schwarzbach | Electric power circuit testing device, system, and method |
US11822767B1 (en) * | 2023-03-13 | 2023-11-21 | The Prudential Insurance Company Of America | Display tool |
US12001641B1 (en) * | 2023-03-16 | 2024-06-04 | Taiwan Semiconductor Manufacturing Company Limited | Emergency response system |
CN117606482B (en) * | 2023-11-22 | 2024-05-10 | 珠海西默电气股份有限公司 | Emergency lighting system and method integrating path navigation function |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050137465A1 (en) * | 2003-12-23 | 2005-06-23 | General Electric Company | System and method for remote monitoring in home activity of persons living independently |
Family Cites Families (560)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1042341A (en) | 1912-05-07 | 1912-10-22 | David Harrington | Flash-lamp. |
US1446000A (en) | 1920-11-18 | 1923-02-20 | Davis Cleland | Armament for aircraft |
US3648326A (en) * | 1969-11-21 | 1972-03-14 | Rixson Inc | Electromechanical door holder-closer |
US3740739A (en) * | 1971-11-30 | 1973-06-19 | Dresser Ind | Well monitoring and warning system |
US3771823A (en) * | 1972-02-24 | 1973-11-13 | Schlage Lock Co | Electrically controlled hold-open device |
US3875612A (en) | 1972-10-05 | 1975-04-08 | Kidde & Co Walter | Door control device |
US3817161A (en) | 1972-10-26 | 1974-06-18 | N Koplon | Smoke protection system |
US3934306A (en) * | 1975-01-06 | 1976-01-27 | Federal Sign And Signal Corporation | Door closure device |
US4066072A (en) * | 1976-02-12 | 1978-01-03 | Cummins Betty L | Comfort cushion for infants |
US4418712A (en) | 1980-01-16 | 1983-12-06 | Braley Charles A | Overflow control system |
US4688026A (en) | 1984-05-15 | 1987-08-18 | Scribner James R | Method of collecting and using data associated with tagged objects |
US5005125A (en) | 1986-02-28 | 1991-04-02 | Sensormatic Electronics Corporation | Surveillance, pricing and inventory system |
US5099751A (en) | 1989-05-02 | 1992-03-31 | Gpac, Inc. | Control system for doors of a negative air pressure enclosure |
US5038268A (en) | 1989-05-12 | 1991-08-06 | Aquametrics, Inc. | Irrigation system controller apparatus |
CA2025201C (en) | 1990-09-12 | 1992-09-01 | Dominic Carbone | Electronic accident estimating system |
US6850252B1 (en) | 1999-10-05 | 2005-02-01 | Steven M. Hoffberg | Intelligent electronic appliance system and method |
US5267587A (en) | 1992-04-07 | 1993-12-07 | Brown Geoffrey P | Utilities shutoff system |
US5576952A (en) * | 1993-03-09 | 1996-11-19 | Metriplex, Inc. | Medical alert distribution system with selective filtering of medical information |
US5572438A (en) | 1995-01-05 | 1996-11-05 | Teco Energy Management Services | Engery management and building automation system |
US5553609A (en) | 1995-02-09 | 1996-09-10 | Visiting Nurse Service, Inc. | Intelligent remote visual monitoring system for home health care service |
US5554433A (en) | 1995-02-10 | 1996-09-10 | The Bilco Company | Fire rated floor door and control system |
US5884289A (en) * | 1995-06-16 | 1999-03-16 | Card Alert Services, Inc. | Debit card fraud detection and control system |
US8090598B2 (en) | 1996-01-29 | 2012-01-03 | Progressive Casualty Insurance Company | Monitoring system for determining and communicating a cost of insurance |
DE19613178A1 (en) * | 1996-04-02 | 1997-10-09 | Heinrich Landert | Method for operating a door system and a door system operating according to the method |
US5903426A (en) | 1996-10-18 | 1999-05-11 | Balluff, Inc. | Overvoltage protection apparatus for a data interface |
US6324516B1 (en) | 1997-06-11 | 2001-11-27 | Matthew P. Shults | System and apparatus for utilization review of medical claims |
US6466921B1 (en) * | 1997-06-13 | 2002-10-15 | Pitney Bowes Inc. | Virtual postage meter with secure digital signature device |
US6023762A (en) | 1997-07-09 | 2000-02-08 | Northern Telecom Limited | Multi-view personalized communications agent |
US6026166A (en) * | 1997-10-20 | 2000-02-15 | Cryptoworx Corporation | Digitally certifying a user identity and a computer system in combination |
US5967975A (en) | 1997-11-13 | 1999-10-19 | Ridgeway; Donald G. | Home health parameter monitoring system |
US6535855B1 (en) | 1997-12-09 | 2003-03-18 | The Chase Manhattan Bank | Push banking system and method |
US5935251A (en) | 1997-12-22 | 1999-08-10 | Hewlett Packard Company | Method and apparatus expedited log-on to an application program |
US5979607A (en) * | 1998-03-31 | 1999-11-09 | Allen; Thomas H. | Multiple level building with an elevator system operable as a means of emergency egress and evacuation during a fire incident |
US8882666B1 (en) | 1998-05-08 | 2014-11-11 | Ideal Life Inc. | Personal health monitoring and/or communication system |
AU750050B2 (en) * | 1998-06-03 | 2002-07-11 | Scott Laboratories, Inc. | Apparatus and method for providing a conscious patient relief from pain and anxiety associated with medical or surgical procedures |
US6526807B1 (en) | 1998-06-18 | 2003-03-04 | Joseph Doumit | Early warning water leak detection system |
US20030025599A1 (en) | 2001-05-11 | 2003-02-06 | Monroe David A. | Method and apparatus for collecting, sending, archiving and retrieving motion video and still images and notification of detected events |
US6363366B1 (en) * | 1998-08-31 | 2002-03-26 | David L. Henty | Produce identification and pricing system for checkouts |
US6286682B1 (en) * | 1998-10-05 | 2001-09-11 | Mywil, Inc. | Medical alert message kit |
US6341265B1 (en) | 1998-12-03 | 2002-01-22 | P5 E.Health Services, Inc. | Provider claim editing and settlement system |
US6104831A (en) | 1998-12-10 | 2000-08-15 | Esco Electronics Corporation | Method for rejection of flickering lights in an imaging system |
JP4085500B2 (en) * | 1999-01-29 | 2008-05-14 | 株式会社エクォス・リサーチ | Vehicle status grasping device, agent device, and vehicle control device |
US6155324A (en) | 1999-03-29 | 2000-12-05 | The Cookson Company | Apparatus and method for operating a door |
AUPQ439299A0 (en) | 1999-12-01 | 1999-12-23 | Silverbrook Research Pty Ltd | Interface system |
EP1246414B1 (en) | 1999-05-26 | 2012-05-23 | Johnson Controls Technology Company | Wireless communications system and method therefor |
US7467094B2 (en) | 1999-06-23 | 2008-12-16 | Visicu, Inc. | System and method for accounting and billing patients in a hospital environment |
US6553336B1 (en) | 1999-06-25 | 2003-04-22 | Telemonitor, Inc. | Smart remote monitoring system and method |
US6554183B1 (en) * | 1999-06-30 | 2003-04-29 | Ge Capital Fleet Services | Automated systems and methods for authorization and settlement of fleet maintenance and repair transactions |
US6934692B1 (en) * | 1999-07-06 | 2005-08-23 | Dana B. Duncan | On-line interactive system and method for transacting business |
DE29921419U1 (en) | 1999-12-06 | 2000-03-02 | Shen, Ein-Yiao, Taipeh/T'ai-pei | Measuring device for physiological activities in combination with a cell phone |
EP1109400A1 (en) * | 1999-12-16 | 2001-06-20 | CANAL+ Société Anonyme | Transmission of a command to a receiver or to a decoder |
US7156809B2 (en) | 1999-12-17 | 2007-01-02 | Q-Tec Systems Llc | Method and apparatus for health and disease management combining patient data monitoring with wireless internet connectivity |
US6934862B2 (en) | 2000-01-07 | 2005-08-23 | Robertshaw Controls Company | Appliance retrofit monitoring device with a memory storing an electronic signature |
US6317047B1 (en) * | 2000-04-28 | 2001-11-13 | Michael Stein | Firefighter's safety device |
US6222455B1 (en) | 2000-06-14 | 2001-04-24 | Richard A. Kaiser | Multi-functional smoke detector and signal device |
US6954758B1 (en) * | 2000-06-30 | 2005-10-11 | Ncr Corporation | Building predictive models within interactive business analysis processes |
US6847892B2 (en) | 2001-10-29 | 2005-01-25 | Digital Angel Corporation | System for localizing and sensing objects and providing alerts |
US8380630B2 (en) | 2000-07-06 | 2013-02-19 | David Paul Felsher | Information record infrastructure, system and method |
US6237618B1 (en) | 2000-07-06 | 2001-05-29 | Nicholas D. Kushner | System and method for controlling the unwanted flow of water through a water supply line |
US20020046047A1 (en) | 2000-07-07 | 2002-04-18 | Budd Jeffrey R. | Patient care management system and method |
US6826536B1 (en) | 2000-07-22 | 2004-11-30 | Bert Forman | Health care billing monitor system for detecting health care provider fraud |
US20050030175A1 (en) | 2003-08-07 | 2005-02-10 | Wolfe Daniel G. | Security apparatus, system, and method |
JP2002108865A (en) | 2000-09-29 | 2002-04-12 | Hitachi Kokusai Electric Inc | Data retrieving system |
US8682952B2 (en) | 2000-11-09 | 2014-03-25 | Intel-Ge Care Innovations Llc | System for maximizing the effectiveness of care giving |
WO2003036439A2 (en) | 2001-03-09 | 2003-05-01 | Shipon Jacob A | System and method for audio-visual one-on-one real time supervision |
US6611206B2 (en) | 2001-03-15 | 2003-08-26 | Koninklijke Philips Electronics N.V. | Automatic system for monitoring independent person requiring occasional assistance |
JP2002279091A (en) * | 2001-03-16 | 2002-09-27 | Hitachi Ltd | Maintenance service system of home electric appliance |
US7181017B1 (en) | 2001-03-23 | 2007-02-20 | David Felsher | System and method for secure three-party communications |
US20020147006A1 (en) | 2001-04-09 | 2002-10-10 | Coon Bradley S. | Proximity-based control of building functions |
US20030048191A1 (en) | 2001-04-20 | 2003-03-13 | Denton Juangi Michael | Denton's sumpump alarm company |
US10298735B2 (en) | 2001-04-24 | 2019-05-21 | Northwater Intellectual Property Fund L.P. 2 | Method and apparatus for dynamic configuration of a multiprocessor health data system |
US7340401B1 (en) | 2001-06-18 | 2008-03-04 | Koenig Martin D | Method of product procurement and cash flow including a manufacturer, a transaction facilitator, and third party payor |
US6886139B2 (en) | 2001-10-01 | 2005-04-26 | Yadong Liu | Method and apparatus for managing infant care |
US7259656B1 (en) * | 2001-11-13 | 2007-08-21 | Ch2M Hill Industrial Design & Construction, Inc. | System and method for displaying safe exit routes during an emergency condition |
JP2003157357A (en) | 2001-11-21 | 2003-05-30 | Matsushita Electric Ind Co Ltd | Use charge calculation method for home electrical equipment and home electrical equipment |
US7395219B2 (en) * | 2001-12-08 | 2008-07-01 | Kenneth Ray Strech | Insurance on demand transaction management system |
US7308356B2 (en) | 2002-01-30 | 2007-12-11 | Comverse, Inc. | Wireless personalized self-service network |
US6691724B2 (en) | 2002-04-11 | 2004-02-17 | Michael Brent Ford | Method and system for controlling a household water supply |
US7356516B2 (en) * | 2002-06-13 | 2008-04-08 | Visa U.S.A. Inc. | Method and system for facilitating electronic dispute resolution |
US6873256B2 (en) | 2002-06-21 | 2005-03-29 | Dorothy Lemelson | Intelligent building alarm |
US8639650B1 (en) | 2003-06-25 | 2014-01-28 | Susan Pierpoint Gill | Profile-responsive system for information exchange in human- and device-adaptive query-response networks for task and crowd management, distributed collaboration and data integration |
JP4003591B2 (en) | 2002-07-11 | 2007-11-07 | ソニー株式会社 | Monitoring system, monitoring method and program |
US7030767B2 (en) | 2002-08-12 | 2006-04-18 | Flo-Guard Water Leak Mitigation Systems, L.L.C. | Water leak mitigation system |
US6812848B2 (en) | 2002-08-12 | 2004-11-02 | Flo-Guard Water Leak Mitigation Systems, Llc | Water leak mitigation system |
US20040054789A1 (en) | 2002-09-12 | 2004-03-18 | International Business Machines Corporation | Pervasive home network portal |
DE10246033B4 (en) * | 2002-10-02 | 2006-02-23 | Novar Gmbh | flight control system |
US20060100912A1 (en) | 2002-12-16 | 2006-05-11 | Questerra Llc. | Real-time insurance policy underwriting and risk management |
US20040153382A1 (en) * | 2003-01-31 | 2004-08-05 | Richard Boccuzzi | System and method for determining discrepancies in a communications system |
US8655683B2 (en) | 2003-02-04 | 2014-02-18 | Allstate Insurance Company | Remote contents estimating system and method |
HK1052830A2 (en) | 2003-02-26 | 2003-09-05 | Intexact Technologies Ltd | An integrated programmable system for controlling the operation of electrical and/or electronic appliances of a premises |
US7774268B2 (en) | 2003-03-03 | 2010-08-10 | The Tb Group, Inc. | System, method, and apparatus for identifying and authenticating the presence of high value assets at remote locations |
FR2852723B1 (en) | 2003-03-18 | 2006-05-19 | METHOD FOR REMOTE COMMUNICATION BETWEEN AN ORDER TRANSMITTER AND ORDER RECEIVER | |
JP4084694B2 (en) | 2003-04-22 | 2008-04-30 | シャープ株式会社 | Washing machine |
US20040220538A1 (en) | 2003-04-22 | 2004-11-04 | Panopoulos Peter John | Hygienic diaper, sensor pad, and or sensing belt with alert, readout, transmission, paging, software & patient information database recording means for treating & caring for wetness, feces, & disease |
US7071821B2 (en) | 2003-05-14 | 2006-07-04 | Bellsouth Intellectual Property Corporation | Method and system for alerting a person to a situation |
US20040249250A1 (en) | 2003-06-04 | 2004-12-09 | Mcgee Michael D. | System and apparatus for monitoring and prompting medical self-care events and communicating medical self-care status |
WO2005008385A2 (en) * | 2003-07-07 | 2005-01-27 | Cryptography Research, Inc. | Reprogrammable security for controlling piracy and enabling interactive content |
WO2005008914A1 (en) | 2003-07-10 | 2005-01-27 | University Of Florida Research Foundation, Inc. | Mobile care-giving and intelligent assistance device |
US9311676B2 (en) | 2003-09-04 | 2016-04-12 | Hartford Fire Insurance Company | Systems and methods for analyzing sensor data |
US20050080520A1 (en) | 2003-09-22 | 2005-04-14 | Robert Kline | Waste recovery and material handling process to replace the traditional trash transfer station and landfil by extracting reusable material and energy from joined refuse streams to include; office waste, dry waste, wet garbage and the special hazardous material handling of biological, chemical, and nuclear waste |
WO2005038613A2 (en) | 2003-10-17 | 2005-04-28 | Hydralift Amclyde, Inc. | Equipment component monitoring and replacement management system |
US7376244B2 (en) | 2003-11-24 | 2008-05-20 | Micron Technology, Inc. | Imaging surveillance system and method for event detection in low illumination |
US8185191B1 (en) * | 2003-12-29 | 2012-05-22 | Michael Evan Shapiro | Pulse monitoring and warning system for infants |
US20050139420A1 (en) | 2003-12-31 | 2005-06-30 | Spoltore Michael T. | Fire ladder with wireless deployment |
US7309216B1 (en) | 2004-01-23 | 2007-12-18 | Spadola Jr Joseph | Pump control and management system |
US7091865B2 (en) | 2004-02-04 | 2006-08-15 | General Electric Company | System and method for determining periods of interest in home of persons living independently |
US20060154642A1 (en) | 2004-02-20 | 2006-07-13 | Scannell Robert F Jr | Medication & health, environmental, and security monitoring, alert, intervention, information and network system with associated and supporting apparatuses |
US10522026B2 (en) | 2008-08-11 | 2019-12-31 | Icontrol Networks, Inc. | Automation system user interface with three-dimensional display |
US11277465B2 (en) | 2004-03-16 | 2022-03-15 | Icontrol Networks, Inc. | Generating risk profile using data of home monitoring and security system |
US9609003B1 (en) | 2007-06-12 | 2017-03-28 | Icontrol Networks, Inc. | Generating risk profile using data of home monitoring and security system |
US7154399B2 (en) | 2004-04-09 | 2006-12-26 | General Electric Company | System and method for determining whether a resident is at home or away |
US7242305B2 (en) | 2004-04-09 | 2007-07-10 | General Electric Company | Device and method for monitoring movement within a home |
WO2005104765A2 (en) * | 2004-04-27 | 2005-11-10 | Tour Andover Controls | A cellular telephone based electronic access control system |
US7809587B2 (en) | 2004-05-07 | 2010-10-05 | International Business Machines Corporation | Rapid business support of insured property using image analysis |
US8856383B2 (en) | 2004-05-20 | 2014-10-07 | Presto Services, Inc. | Systems and methods for controlling information and use of communications devices through a central server |
US7042352B2 (en) | 2004-05-27 | 2006-05-09 | Lawrence Kates | Wireless repeater for sensor system |
US7218237B2 (en) | 2004-05-27 | 2007-05-15 | Lawrence Kates | Method and apparatus for detecting water leaks |
US7623028B2 (en) * | 2004-05-27 | 2009-11-24 | Lawrence Kates | System and method for high-sensitivity sensor |
CA2569800A1 (en) | 2004-06-08 | 2005-12-22 | Kieran Patterson | Emergency lighting |
US20080184272A1 (en) | 2004-06-16 | 2008-07-31 | Brownewell Michael L | Documentation system for loss control |
US7562121B2 (en) | 2004-08-04 | 2009-07-14 | Kimberco, Inc. | Computer-automated system and method of assessing the orientation, awareness and responses of a person with reduced capacity |
US20060033625A1 (en) | 2004-08-11 | 2006-02-16 | General Electric Company | Digital assurance method and system to extend in-home living |
US20060058612A1 (en) * | 2004-08-18 | 2006-03-16 | Ashok Dave | Medical alert communication systems and methods |
US7502498B2 (en) | 2004-09-10 | 2009-03-10 | Available For Licensing | Patient monitoring apparatus |
US7590589B2 (en) | 2004-09-10 | 2009-09-15 | Hoffberg Steven M | Game theoretic prioritization scheme for mobile ad hoc networks permitting hierarchal deference |
US8311941B2 (en) | 2004-09-13 | 2012-11-13 | The Toronto-Dominion Bank | Purchasing alert methods and apparatus |
US7411510B1 (en) | 2004-10-14 | 2008-08-12 | Nixon Kenneth R | Internet-based informal care delivery system |
US8224753B2 (en) * | 2004-12-07 | 2012-07-17 | Farsheed Atef | System and method for identity verification and management |
US7515063B2 (en) | 2004-12-07 | 2009-04-07 | Steven Nigel Dario Brundula | Automatic garage door closing device |
US20090259581A1 (en) | 2004-12-21 | 2009-10-15 | Horowitz Kenneth A | Financial activity relating to natural peril events |
US8029710B2 (en) | 2006-11-03 | 2011-10-04 | University Of Southern California | Gantry robotics system and related material transport for contour crafting |
US20060184379A1 (en) | 2005-02-14 | 2006-08-17 | Accenture Global Services Gmbh | Embedded warranty management |
WO2006094288A2 (en) | 2005-03-04 | 2006-09-08 | Peterson Eric K | Method and apparatus for mobile health and wellness management incorporating real-time coaching and feedback, community and rewards |
FI117526B3 (en) | 2005-03-17 | 2016-07-05 | Innohome Oy | Accessory that controls and monitors the operation of home appliances and entertainment equipment |
US8836580B2 (en) * | 2005-05-09 | 2014-09-16 | Ehud Mendelson | RF proximity tags providing indoor and outdoor navigation and method of use |
US20060001545A1 (en) * | 2005-05-04 | 2006-01-05 | Mr. Brian Wolf | Non-Intrusive Fall Protection Device, System and Method |
US10643217B2 (en) | 2005-05-26 | 2020-05-05 | Efunds Corporation | Debit-based identity theft monitoring and prevention |
US20070289635A1 (en) | 2005-06-22 | 2007-12-20 | Ghazarian John D | Secure wireless leak detection system |
CA2619781C (en) * | 2005-08-16 | 2017-11-07 | Nielsen Media Research, Inc. | Display device on/off detection methods and apparatus |
US8150720B2 (en) * | 2005-08-29 | 2012-04-03 | Emerson Retail Services, Inc. | Dispatch management model |
US8566121B2 (en) | 2005-08-29 | 2013-10-22 | Narayanan Ramasubramanian | Personalized medical adherence management system |
GB0519848D0 (en) | 2005-09-29 | 2005-11-09 | Jewellery Store The Dmcc | A method of trading |
US7733224B2 (en) | 2006-06-30 | 2010-06-08 | Bao Tran | Mesh network personal emergency response appliance |
US8019622B2 (en) | 2005-10-24 | 2011-09-13 | CellTrak Technologies, Inc. | Home health point-of-care and administration system |
US20070096938A1 (en) | 2005-10-31 | 2007-05-03 | Emmanuel Enrique Lopez | System and method for adaptation of wireless remote controls |
US20070146150A1 (en) * | 2005-12-22 | 2007-06-28 | Gerry Calabrese | Carbon monoxide poisoning avoidance system |
US8825043B2 (en) | 2006-01-04 | 2014-09-02 | Vtech Telecommunications Limited | Cordless phone system with integrated alarm and remote monitoring capability |
US7598856B1 (en) | 2006-01-31 | 2009-10-06 | Firesite Llc | Navigation aid for low-visibility environments |
US20070186165A1 (en) | 2006-02-07 | 2007-08-09 | Pudding Ltd. | Method And Apparatus For Electronically Providing Advertisements |
GB0603523D0 (en) * | 2006-02-22 | 2006-04-05 | Qinetiq Ltd | Apparatus and method for generating random numbers |
US20070276626A1 (en) | 2006-03-16 | 2007-11-29 | Bruffey Timothy N | System and apparatus for remote monitoring of conditions in locations undergoing water damage restoration |
US8041636B1 (en) | 2006-04-14 | 2011-10-18 | Intuit Inc. | Method and apparatus for dynamically determining insurance coverage |
EP2012655A4 (en) | 2006-04-20 | 2009-11-25 | Iq Life Inc | Interactive patient monitoring system using speech recognition |
US7956735B2 (en) | 2006-05-15 | 2011-06-07 | Cernium Corporation | Automated, remotely-verified alarm system with intrusion and video surveillance and digital video recording |
US7683793B2 (en) * | 2006-06-06 | 2010-03-23 | Honeywell International Inc. | Time-dependent classification and signaling of evacuation route safety |
EP1884787A1 (en) * | 2006-07-10 | 2008-02-06 | S. THIIM ApS | A current sensor for measuring electric current in a conductor and a short circuit indicator system comprising such a sensor |
US7551080B2 (en) | 2006-07-17 | 2009-06-23 | Sensormatic Electronics Corporation | Control for embedded and door-mounted antennas |
KR100772412B1 (en) | 2006-07-18 | 2007-11-01 | 삼성전자주식회사 | Apparatus and method of controlling home control network |
US8108271B1 (en) | 2006-07-18 | 2012-01-31 | Intuit Inc. | Method and apparatus for lower of cost or market value monitoring and notification |
US20080240379A1 (en) | 2006-08-03 | 2008-10-02 | Pudding Ltd. | Automatic retrieval and presentation of information relevant to the context of a user's conversation |
US9030315B2 (en) | 2006-08-29 | 2015-05-12 | Siemens Industry, Inc. | Binding methods and devices in a building automation system |
NZ575550A (en) * | 2006-09-22 | 2011-12-22 | Cipla Ltd | Rifaximin |
US8229767B2 (en) | 2006-10-18 | 2012-07-24 | Hartford Fire Insurance Company | System and method for salvage calculation, fraud prevention and insurance adjustment |
US8050665B1 (en) | 2006-10-20 | 2011-11-01 | Avaya Inc. | Alert reminder trigger by motion-detector |
US20080101160A1 (en) * | 2006-11-01 | 2008-05-01 | Rodney Besson | Med Alert Watch |
CA2567275A1 (en) | 2006-11-06 | 2008-05-06 | Saskatchewan Telecommunications | Health monitoring system and method |
US20080115543A1 (en) | 2006-11-17 | 2008-05-22 | Electronics And Telecommunications Research Institute | Door management system for field service and delivery personnel |
US7586418B2 (en) | 2006-11-17 | 2009-09-08 | General Electric Company | Multifunctional personal emergency response system |
US7945497B2 (en) | 2006-12-22 | 2011-05-17 | Hartford Fire Insurance Company | System and method for utilizing interrelated computerized predictive models |
US8253574B2 (en) * | 2006-12-29 | 2012-08-28 | Honeywell International Inc. | Systems and methods to predict fire and smoke propagation |
US8358214B2 (en) * | 2007-02-02 | 2013-01-22 | Hartford Fire Insurance Company | Systems and methods for sensor-enhanced health evaluation |
US20080235629A1 (en) | 2007-03-23 | 2008-09-25 | Mozes Incorporated | Display of multi-sided user object information in networked computing environment |
US20090012373A1 (en) | 2007-04-06 | 2009-01-08 | Laurea Ammattikorkeakoulu Oy | System and Method for Providing Health Care Services |
US7961946B2 (en) | 2007-05-15 | 2011-06-14 | Digisensory Technologies Pty Ltd | Method and system for background estimation in localization and tracking of objects in a smart video camera |
US8831299B2 (en) | 2007-05-22 | 2014-09-09 | Intellectual Ventures Fund 83 Llc | Capturing data for individual physiological monitoring |
US20080294462A1 (en) | 2007-05-23 | 2008-11-27 | Laura Nuhaan | System, Method, And Apparatus Of Facilitating Web-Based Interactions Between An Elderly And Caregivers |
KR101113237B1 (en) * | 2007-05-30 | 2012-02-20 | 삼성전자주식회사 | Method and apparatus for providing remote device with service of Universal Plug and Play network |
US8165938B2 (en) * | 2007-06-04 | 2012-04-24 | Visa U.S.A. Inc. | Prepaid card fraud and risk management |
GB0711770D0 (en) * | 2007-06-18 | 2007-07-25 | Domia Ltd | Off site monitoring/control of electrical equipment |
US8046243B2 (en) * | 2007-07-17 | 2011-10-25 | Sap Ag | Automatic insurance adjustments using real world awareness |
US7652481B2 (en) | 2007-08-17 | 2010-01-26 | Detec Systems Llc | Method and apparatus to detect and locate roof leaks |
CN100544150C (en) | 2007-08-22 | 2009-09-23 | 董右云 | Intelligentized electric energy management system assembled device |
GB0718911D0 (en) * | 2007-09-28 | 2007-11-07 | Chilvers Graham | Power isolator |
US8154398B2 (en) | 2007-10-23 | 2012-04-10 | La Crosse Technology | Remote location monitoring |
US9297150B2 (en) | 2007-10-24 | 2016-03-29 | Michael Edward Klicpera | Water use monitoring apparatus and water damage prevention system |
US8552855B2 (en) | 2007-11-06 | 2013-10-08 | Three H, Llc | Method and system for safety monitoring |
US9779403B2 (en) | 2007-12-07 | 2017-10-03 | Jpmorgan Chase Bank, N.A. | Mobile fraud prevention system and method |
US8188709B2 (en) * | 2008-01-09 | 2012-05-29 | Seiko Epson Corporation | Power transmission control device, power transmitting device, non-contact power transmitting system, and electronic instrument |
TW200933538A (en) | 2008-01-31 | 2009-08-01 | Univ Nat Chiao Tung | Nursing system |
JP4905377B2 (en) | 2008-01-31 | 2012-03-28 | ブラザー工業株式会社 | Information processing device |
US8255090B2 (en) | 2008-02-01 | 2012-08-28 | Energyhub | System and method for home energy monitor and control |
US8773827B2 (en) * | 2008-02-19 | 2014-07-08 | Simply Automated Incorporated | Intelligent circuit breaker apparatus and methods |
JP4453764B2 (en) * | 2008-02-22 | 2010-04-21 | トヨタ自動車株式会社 | Vehicle diagnostic device, vehicle diagnostic system, and diagnostic method |
US20090240170A1 (en) * | 2008-03-20 | 2009-09-24 | Wright State University | Systems and methods for determining pre-fall conditions based on the angular orientation of a patient |
US11864051B2 (en) | 2008-04-01 | 2024-01-02 | Blancco Technology Group IP Oy | Systems and methods for monitoring and managing use of mobile electronic devices |
CN102077230A (en) | 2008-04-17 | 2011-05-25 | 旅行者保险公司 | A method of and system for determining and processing object structure condition information |
US8219558B1 (en) | 2008-04-25 | 2012-07-10 | David Scott Trandal | Methods and systems for inventory management |
US8409104B2 (en) | 2008-05-02 | 2013-04-02 | Conopco Inc. | Heart age assessment |
US8649987B2 (en) | 2008-05-07 | 2014-02-11 | PowerHouse dynamics, Inc. | System and method to monitor and manage performance of appliances |
US20090281393A1 (en) | 2008-05-08 | 2009-11-12 | Putnam Technical Group, Inc. | Method and apparatus for administering and monitoring patient treatment |
US20130100268A1 (en) | 2008-05-27 | 2013-04-25 | University Health Network | Emergency detection and response system and method |
GB2460301A (en) | 2008-05-30 | 2009-12-02 | Pulsar Process Measurement Ltd | Sump monitoring method and apparatus |
EP2128515A1 (en) | 2008-05-30 | 2009-12-02 | Koninklijke Philips Electronics N.V. | A water appliance having a flow control unit and a filter assembly |
US8346225B2 (en) * | 2009-01-28 | 2013-01-01 | Headwater Partners I, Llc | Quality of service for device assisted services |
US8229861B1 (en) | 2008-06-11 | 2012-07-24 | Trandal David S | Methods and systems for online warranty management |
US8976937B2 (en) | 2008-06-27 | 2015-03-10 | Adt Us Holding, Inc. | Method and apparatus for communication between a security system and a monitoring center |
US20090326981A1 (en) | 2008-06-27 | 2009-12-31 | Microsoft Corporation | Universal health data collector and advisor for people |
US9001989B2 (en) | 2008-08-04 | 2015-04-07 | Centurylink Intellectual Property Llc | System and method for a smart dialer |
US8798289B1 (en) * | 2008-08-05 | 2014-08-05 | Audience, Inc. | Adaptive power saving for an audio device |
US8346594B2 (en) | 2008-09-09 | 2013-01-01 | At&T Intellectual Property I | Comprehensive information market exchange |
US8482884B2 (en) | 2008-09-25 | 2013-07-09 | William J. Hennessey, JR. | Emergency utility interruption system |
DE102008042391A1 (en) * | 2008-09-26 | 2010-04-01 | Robert Bosch Gmbh | Fire safety device, method for fire safety and computer program |
US8725601B2 (en) * | 2008-11-21 | 2014-05-13 | Pscu Financial Services | Method and apparatus for consumer driven protection for payment card transactions |
US20100131416A1 (en) * | 2008-11-25 | 2010-05-27 | Daryl Anne Means | Building Pin Identification System |
GB0822237D0 (en) | 2008-12-05 | 2009-01-14 | Howell Steven | Remote health and security monitoring |
NZ593984A (en) | 2008-12-10 | 2014-02-28 | Moqom Ltd | Electronic transaction fraud prevention |
US8083367B2 (en) * | 2008-12-12 | 2011-12-27 | Anderson Jerry T | Emergency exit route illumination system and methods |
US8140418B1 (en) | 2009-01-09 | 2012-03-20 | Apple Inc. | Cardholder-not-present authorization |
US9020769B2 (en) | 2009-01-26 | 2015-04-28 | Geneva Cleantech Inc. | Automatic detection of appliances |
US20100188230A1 (en) | 2009-01-29 | 2010-07-29 | Ted Lindsay | Dynamic reminder system, method and apparatus for individuals suffering from diminishing cognitive skills |
US8280633B1 (en) | 2009-02-10 | 2012-10-02 | Strategic Design Federation W, Inc. | Weather risk estimation system and method |
US8441356B1 (en) | 2009-02-16 | 2013-05-14 | Handhold Adaptive, LLC | Methods for remote assistance of disabled persons |
US20100299217A1 (en) | 2009-02-16 | 2010-11-25 | Richard Hui | Warranty management system |
CA2752875A1 (en) | 2009-02-20 | 2010-08-26 | Moqom Limited | Merchant alert system and method for fraud prevention |
US9747417B2 (en) | 2013-11-14 | 2017-08-29 | Mores, Inc. | Method and apparatus for enhanced personal care |
CN101858948B (en) * | 2009-04-10 | 2015-01-28 | 阿海珐输配电英国有限公司 | Method and system for carrying out transient and intermittent earth fault detection and direction determination in three-phase medium-voltage distribution system |
US8352315B2 (en) * | 2009-05-04 | 2013-01-08 | Visa International Service Association | Pre-authorization of a transaction using predictive modeling |
CA2762163C (en) | 2009-05-18 | 2017-12-12 | Alarm.Com Incorporated | Remote device control and energy monitoring |
US8289160B1 (en) | 2009-05-29 | 2012-10-16 | United Services Automobile Association (Usaa) | Systems and methods for recording and using information about conditions present in a house or other location |
WO2010141601A2 (en) * | 2009-06-02 | 2010-12-09 | Schneider Electric USA, Inc. | Methods of integrating multiple management domains |
US10548512B2 (en) | 2009-06-24 | 2020-02-04 | The Medical Research, Infrastructure and Health Services Fund of the Tel Aviv Medical Center | Automated near-fall detector |
US8106769B1 (en) | 2009-06-26 | 2012-01-31 | United Services Automobile Association (Usaa) | Systems and methods for automated house damage detection and reporting |
US20110021140A1 (en) | 2009-07-22 | 2011-01-27 | Boston Life Labs | Method and apparatus for providing home healthcare services using a sensor network |
NL1037342C2 (en) | 2009-10-02 | 2011-04-05 | Inventor Invest Holding B V | SECURITY SYSTEM AND METHOD FOR PROTECTING AN AREA. |
US8605209B2 (en) | 2009-11-24 | 2013-12-10 | Gregory Towle Becker | Hurricane damage recording camera system |
US8401514B2 (en) * | 2009-12-03 | 2013-03-19 | Osocad Remote Limited Liability Company | System and method for controlling an emergency event in a region of interest |
US20110161119A1 (en) * | 2009-12-24 | 2011-06-30 | The Travelers Companies, Inc. | Risk assessment and control, insurance premium determinations, and other applications using busyness |
US20120079092A1 (en) | 2009-12-28 | 2012-03-29 | Telefonaktiebolaget L M Ericsson (Publ) | Management of data flows between user equipment nodes and clusters of networked resource nodes |
US9558520B2 (en) | 2009-12-31 | 2017-01-31 | Hartford Fire Insurance Company | System and method for geocoded insurance processing using mobile devices |
US20110166714A1 (en) | 2010-01-04 | 2011-07-07 | Stachnik Michael S | Systems and methods for monitoring and controlling water flow of premises |
US20110173122A1 (en) | 2010-01-09 | 2011-07-14 | Tara Chand Singhal | Systems and methods of bank security in online commerce |
US20110195687A1 (en) * | 2010-02-10 | 2011-08-11 | Qualcomm Incorporated | Method and apparatus for communication of emergency response instructions |
US20110203383A1 (en) | 2010-02-11 | 2011-08-25 | Phelps Matthew B | Method to determine percentage of damage to structure from single or multiple forces |
US20110202293A1 (en) | 2010-02-15 | 2011-08-18 | General Electric Company | Diagnostics using sub-metering device |
US20110202365A1 (en) | 2010-02-17 | 2011-08-18 | Sukhwant Singh Khanuja | Systems and Methods for Providing Personalized Health Care |
JP2011170724A (en) * | 2010-02-22 | 2011-09-01 | Hitachi Ltd | Failure diagnosis system, failure diagnosis apparatus and failure diagnosis program |
WO2011113035A2 (en) | 2010-03-12 | 2011-09-15 | Scotte Hudsmith | In-home health monitoring apparatus and system |
WO2011119976A2 (en) | 2010-03-26 | 2011-09-29 | Visa International Service Association | System and method for early detection of fraudulent transactions |
US20110246123A1 (en) | 2010-03-30 | 2011-10-06 | Welch Allyn, Inc. | Personal status monitoring |
WO2011133628A1 (en) | 2010-04-21 | 2011-10-27 | Raymond Koverzin | Remotely managed assistive device |
GB2479908B (en) * | 2010-04-28 | 2013-07-10 | Toshiba Res Europ Ltd | Apparatus and method for privacy-driven moderation of metering data |
US8650048B1 (en) | 2010-04-28 | 2014-02-11 | United Services Automobile Association (Usaa) | Method and system for insuring real property in wildfire prone areas |
US20120101855A1 (en) | 2010-05-17 | 2012-04-26 | The Travelers Indemnity Company | Monitoring client-selected vehicle parameters in accordance with client preferences |
WO2011162587A2 (en) | 2010-06-26 | 2011-12-29 | 엘지전자 주식회사 | Network system |
US8010992B1 (en) | 2010-07-14 | 2011-08-30 | Domanicom Corp. | Devices, systems, and methods for providing increased security when multiplexing one or more services at a customer premises |
US8572677B2 (en) | 2010-07-14 | 2013-10-29 | William G. Bartholomay | Devices, systems, and methods for enabling reconfiguration of services supported by a network of devices |
US8220296B2 (en) * | 2010-07-15 | 2012-07-17 | Fenix Manufacturing | Locking assembly hasp |
US9460471B2 (en) | 2010-07-16 | 2016-10-04 | Hartford Fire Insurance Company | System and method for an automated validation system |
US11152118B2 (en) | 2010-07-20 | 2021-10-19 | Interfaced Solutions, Inc. | Electronic medical record interactive interface system |
US20130143519A1 (en) * | 2010-07-29 | 2013-06-06 | J&M I.P. Holding Company, Llc | Fall-Responsive Emergency Device, System, and Method |
AU2010358067A1 (en) * | 2010-07-29 | 2013-02-14 | J & M I.P. Holding Company, Llc | Fall-responsive emergency device, system, and method |
DE102010034072A1 (en) * | 2010-08-12 | 2012-02-16 | Crosscan Gmbh | Personnel control system for the evacuation of a building or a building section |
US20120046973A1 (en) * | 2010-08-23 | 2012-02-23 | Bank Of America Corporation | Unemployment Insurance Marketing System |
US9330567B2 (en) * | 2011-11-16 | 2016-05-03 | Autoconnect Holdings Llc | Etiquette suggestion |
US20120095846A1 (en) | 2010-10-13 | 2012-04-19 | Derek John Leverant | Systems and methods for providing social networking, wherein a user can create multiple profiles within a single account |
US8359211B2 (en) | 2010-11-09 | 2013-01-22 | Hartford Fire Insurance Company | System and method for active insurance underwriting using intelligent IP-addressable devices |
WO2012065078A2 (en) | 2010-11-11 | 2012-05-18 | Rutgers, The State University Of New Jersey | System and method to measure and control power consumption in a residential or commercial building via a wall socket to ensure optimum energy usage therein |
CN106251525A (en) | 2010-11-19 | 2016-12-21 | 株式会社尼康 | System and electronic equipment |
US20120143754A1 (en) * | 2010-12-03 | 2012-06-07 | Narendra Patel | Enhanced credit card security apparatus and method |
US20120166115A1 (en) * | 2010-12-23 | 2012-06-28 | Nexgrid, Llc | Platform, system and method for energy profiling |
US9165334B2 (en) | 2010-12-28 | 2015-10-20 | Pet Check Technology Llc | Pet and people care management system |
US8615414B2 (en) * | 2011-03-08 | 2013-12-24 | T.R.U.S.T. Technology Solutions Llc | Apparatus and method for optimizing insurance policies |
US8587290B2 (en) * | 2011-03-29 | 2013-11-19 | General Electric Company | Method, system and device of phase identification using a smart meter |
CA3177719A1 (en) | 2011-04-04 | 2012-10-04 | Alarm.Com Incorporated | Fall detection and reporting technology |
US9424606B2 (en) | 2011-04-28 | 2016-08-23 | Allstate Insurance Company | Enhanced claims settlement |
US20120296580A1 (en) | 2011-05-16 | 2012-11-22 | Dov Barkay | Method and system for identifying leaks in liquid pipe construction |
US20130030974A1 (en) | 2011-05-27 | 2013-01-31 | Brendan Casey | Device and method for automatically allocating and transferring funds in an account |
US8924994B2 (en) * | 2011-05-31 | 2014-12-30 | The Nielsen Company (Us), Llc | Power management for audience measurement meters |
US8965327B2 (en) | 2011-06-09 | 2015-02-24 | Alan H. Davis | Interactive multi-channel communication system |
US20120323382A1 (en) | 2011-06-15 | 2012-12-20 | Expanergy, Llc | Systems and methods to assess and optimize energy usage for a facility |
US20120323609A1 (en) | 2011-06-16 | 2012-12-20 | Enservio, Inc. | Systems and methods for predicting the value of personal property |
US8868616B1 (en) | 2011-07-07 | 2014-10-21 | Integrity Tracking, Llc | Event data monitoring systems and methods |
US9082072B1 (en) * | 2011-07-14 | 2015-07-14 | Donald K. Wedding, Jr. | Method for applying usage based data |
US20120054124A1 (en) * | 2011-07-21 | 2012-03-01 | Sunil Rodrigues | Building energy efficiency diagnostic and monitoring system |
US8929588B2 (en) | 2011-07-22 | 2015-01-06 | Honeywell International Inc. | Object tracking |
CN104106101B (en) | 2011-07-29 | 2017-03-29 | Adt 美国控股股份有限公司 | Security system and method |
MX357516B (en) * | 2011-08-17 | 2018-07-12 | Trans Union Llc | Systems and methods for generating vehicle insurance premium quotes based on a vehicle history. |
US8618927B2 (en) | 2011-08-24 | 2013-12-31 | At&T Intellectual Property I, L.P. | Methods, systems, and products for notifications in security systems |
WO2013033655A1 (en) | 2011-08-31 | 2013-03-07 | Lifeguard Health Networks, Inc. | Health management system |
US8786425B1 (en) | 2011-09-09 | 2014-07-22 | Alarm.Com Incorporated | Aberration engine |
US20130073306A1 (en) | 2011-09-16 | 2013-03-21 | Jordan Shlain | Healthcare pre-visit and follow-up system |
CA2848988C (en) | 2011-09-19 | 2018-05-22 | Tata Consultancy Services Limited | A computing platform for development and deployment of sensor data based applications and services |
US20130073299A1 (en) | 2011-09-20 | 2013-03-21 | The Warman Group, LLC | Caregiving social network |
EP2575113A1 (en) | 2011-09-30 | 2013-04-03 | General Electric Company | Method and device for fall detection and a system comprising such device |
US20130085688A1 (en) | 2011-09-30 | 2013-04-04 | Craig Miller | Water flow sensor and monitoring system comprising a water flow sensor |
JP5318172B2 (en) * | 2011-09-30 | 2013-10-16 | 株式会社東芝 | Electronic equipment and programs |
US9644974B2 (en) * | 2011-10-19 | 2017-05-09 | Honeywell International Inc. | Model-based generation of information and evacuation messages |
WO2013059822A1 (en) * | 2011-10-22 | 2013-04-25 | Coon Jonathan | Systems and methods for automatically filling-in information |
US9536052B2 (en) | 2011-10-28 | 2017-01-03 | Parkland Center For Clinical Innovation | Clinical predictive and monitoring system and method |
IL216497A (en) | 2011-11-21 | 2016-07-31 | Yona Senesh | Apparatus and method for distributing a liquid through a network of conduits |
US20140257862A1 (en) | 2011-11-29 | 2014-09-11 | Wildfire Defense Systems, Inc. | Mobile application for risk management |
US8670998B2 (en) | 2011-12-02 | 2014-03-11 | Mckesson Specialty Arizona Inc. | Notification services for patients |
US20130169817A1 (en) * | 2011-12-07 | 2013-07-04 | Nettalon Security Systems, Inc. | Method and system for enabling smart building rescue |
EP2788566B1 (en) * | 2011-12-09 | 2017-05-17 | Sargent Manufacturing Company | Fire actuated release mechanism to separate electronic door lock from fire door |
US20130145693A1 (en) * | 2011-12-12 | 2013-06-13 | Shenzhen Guangan Fire-Fighting & Decoration Engineering Co., LTD | Self-Illuminating Fire Door |
US9092554B2 (en) | 2011-12-13 | 2015-07-28 | Intel-Ge Care Innovations Llc | Alzheimers support system |
US20130166325A1 (en) * | 2011-12-23 | 2013-06-27 | Mohan Ganapathy | Apparatuses, systems and methods for insurance quoting |
US20140108031A1 (en) | 2011-12-29 | 2014-04-17 | Daniel Ferrara | System and method for increasing medication adherence rates |
US8803690B2 (en) | 2012-01-06 | 2014-08-12 | Panasonic Corporation Of North America | Context dependent application/event activation for people with various cognitive ability levels |
US9208661B2 (en) | 2012-01-06 | 2015-12-08 | Panasonic Corporation Of North America | Context dependent application/event activation for people with various cognitive ability levels |
US20150094830A1 (en) | 2012-01-18 | 2015-04-02 | Rest Devices, Inc. | Network-based Care System |
US8719134B1 (en) | 2012-02-01 | 2014-05-06 | Allstate Insurance Company | Insurance rating plan |
US9038892B2 (en) * | 2012-02-14 | 2015-05-26 | Diebold Self-Service Systems Division Of Diebold, Incorporated | Banking apparatus controlled responsive to data bearing records |
US20140032433A1 (en) | 2012-02-15 | 2014-01-30 | Monitormyproperty Llc | Method and system for monitoring property |
US9335297B1 (en) * | 2012-02-24 | 2016-05-10 | WaterTally, Inc. | Flow sensing device |
WO2013126866A1 (en) | 2012-02-24 | 2013-08-29 | B3, Llc | Systems and methods for comprehensive insurance loss management and loss minimization |
US9317983B2 (en) | 2012-03-14 | 2016-04-19 | Autoconnect Holdings Llc | Automatic communication of damage and health in detected vehicle incidents |
US8847781B2 (en) | 2012-03-28 | 2014-09-30 | Sony Corporation | Building management system with privacy-guarded assistance mechanism and method of operation thereof |
US10684753B2 (en) * | 2012-03-28 | 2020-06-16 | The Travelers Indemnity Company | Systems and methods for geospatial value subject analysis and management |
US20130262155A1 (en) | 2012-04-03 | 2013-10-03 | Thomas J. HinKamp | System and method for collection and distibution of medical information |
AU2013243453B2 (en) | 2012-04-04 | 2017-11-16 | Cardiocom, Llc | Health-monitoring system with multiple health monitoring devices, interactive voice recognition, and mobile interfaces for data collection and transmission |
US8991198B2 (en) * | 2012-04-10 | 2015-03-31 | International Business Machines Corporation | Cooling system control and servicing based on time-based variation of an operational variable |
US20130290013A1 (en) * | 2012-04-25 | 2013-10-31 | Virginia Mason Medical Center | Medical alert system |
US20130290033A1 (en) | 2012-04-25 | 2013-10-31 | State Farm Mutual Automobile Insurance Company | Systems and methods for electronic receipt based contents inventory and casualty claim processing |
US9408561B2 (en) | 2012-04-27 | 2016-08-09 | The Curators Of The University Of Missouri | Activity analysis, fall detection and risk assessment systems and methods |
US9597016B2 (en) | 2012-04-27 | 2017-03-21 | The Curators Of The University Of Missouri | Activity analysis, fall detection and risk assessment systems and methods |
CN104272310B (en) * | 2012-05-02 | 2017-12-08 | 皇家飞利浦有限公司 | For medical science warning to be routed to the apparatus and method of selected office worker |
US20130304514A1 (en) | 2012-05-08 | 2013-11-14 | Elwha Llc | Systems and methods for insurance based on monitored characteristics of an autonomous drive mode selection system |
WO2013172871A1 (en) | 2012-05-16 | 2013-11-21 | Early Bird Alert, Inc. | An interactive communications system for the coordination and management of patient- centered health care services |
GB201208653D0 (en) * | 2012-05-16 | 2012-06-27 | Coopers Fire Ltd | Smoke or fire barrier |
US10387960B2 (en) | 2012-05-24 | 2019-08-20 | State Farm Mutual Automobile Insurance Company | System and method for real-time accident documentation and claim submission |
US9098993B2 (en) * | 2012-08-02 | 2015-08-04 | Drs Medical Devices, Llc | Patient monitoring system for bathroom |
US8712893B1 (en) | 2012-08-16 | 2014-04-29 | Allstate Insurance Company | Enhanced claims damage estimation using aggregate display |
US8510196B1 (en) | 2012-08-16 | 2013-08-13 | Allstate Insurance Company | Feedback loop in mobile damage assessment and claims processing |
US8620841B1 (en) * | 2012-08-31 | 2013-12-31 | Nest Labs, Inc. | Dynamic distributed-sensor thermostat network for forecasting external events |
US8490006B1 (en) | 2012-09-04 | 2013-07-16 | State Farm Mutual Automobile Insurance Company | Scene creation for building automation systems |
US8929853B2 (en) | 2012-09-05 | 2015-01-06 | Apple Inc. | Mobile emergency attack and failsafe detection |
US10223750B1 (en) | 2012-09-10 | 2019-03-05 | Allstate Insurance Company | Optimized inventory analysis for insurance purposes |
US10332059B2 (en) | 2013-03-14 | 2019-06-25 | Google Llc | Security scoring in a smart-sensored home |
US9960929B2 (en) | 2012-09-21 | 2018-05-01 | Google Llc | Environmental sensing with a doorbell at a smart-home |
US9208676B2 (en) | 2013-03-14 | 2015-12-08 | Google Inc. | Devices, methods, and associated information processing for security in a smart-sensored home |
US9881474B2 (en) | 2012-09-21 | 2018-01-30 | Google Llc | Initially detecting a visitor at a smart-home |
US9654434B2 (en) | 2012-10-01 | 2017-05-16 | Sharp Kabushiki Kaisha | Message originating server, message orginating method, terminal, electric appliance control system, and electric appliance |
WO2014055505A1 (en) | 2012-10-01 | 2014-04-10 | The General Hospital Corporation | Bodipy dyes for biological imaging |
US9107034B2 (en) * | 2012-10-04 | 2015-08-11 | Honeywell International Inc. | Emergency broadcasting systems and methods |
CN202865924U (en) | 2012-10-15 | 2013-04-10 | 吉林大学 | Intelligent monitoring equipment for household water based on single-point perception |
US20140118140A1 (en) * | 2012-10-25 | 2014-05-01 | David Amis | Methods and systems for requesting the aid of security volunteers using a security network |
US20140122133A1 (en) | 2012-10-31 | 2014-05-01 | Bodyshopbids, Inc. | Method of virtually settling insurance claims |
US20140136242A1 (en) | 2012-11-12 | 2014-05-15 | State Farm Mutual Automobile Insurance Company | Home sensor data gathering for insurance rating purposes |
US8533144B1 (en) | 2012-11-12 | 2013-09-10 | State Farm Mutual Automobile Insurance Company | Automation and security application store suggestions based on usage data |
US8527306B1 (en) | 2012-11-12 | 2013-09-03 | State Farm Mutual Automobile Insurance Company | Automation and security application store suggestions based on claims data |
WO2014207558A2 (en) | 2013-06-27 | 2014-12-31 | Scope Technologies Holdings Limited | Onboard vehicle accident detection and damage estimation system and method of use |
US20140139539A1 (en) * | 2012-11-16 | 2014-05-22 | Cisco Technology, Inc. | Emergency digital signage |
US8924241B2 (en) | 2012-11-19 | 2014-12-30 | Hartford Fire Insurance Company | System and method to determine an insurance policy benefit associated with an asset |
US9740187B2 (en) * | 2012-11-21 | 2017-08-22 | Microsoft Technology Licensing, Llc | Controlling hardware in an environment |
CA2890593A1 (en) * | 2012-11-22 | 2014-05-30 | Geob International Sdn. Bhd. | A medical monitoring system |
US9755770B2 (en) * | 2012-11-27 | 2017-09-05 | Myminfo Pty Ltd. | Method, device and system of encoding a digital interactive response action in an analog broadcasting message |
CA2894838C (en) | 2012-12-11 | 2021-02-23 | Adt Us Holdings, Inc. | Security panel communication system |
KR20140076265A (en) * | 2012-12-12 | 2014-06-20 | 엘지전자 주식회사 | Media device and control method thereof |
US10354520B2 (en) * | 2012-12-17 | 2019-07-16 | Itron, Inc. | Power line communication over disconnected service lines |
US20140180723A1 (en) | 2012-12-21 | 2014-06-26 | The Travelers Indemnity Company | Systems and methods for surface segment data |
US9185202B2 (en) | 2012-12-31 | 2015-11-10 | Cerner Innovation, Inc. | Alert management utilizing mobile devices |
US9049168B2 (en) | 2013-01-11 | 2015-06-02 | State Farm Mutual Automobile Insurance Company | Home sensor data gathering for neighbor notification purposes |
US8890680B2 (en) | 2013-01-11 | 2014-11-18 | State Farm Mutual Automobile Insurance Company | Alternative billing modes for security and automation applications |
US8973149B2 (en) | 2013-01-14 | 2015-03-03 | Lookout, Inc. | Detection of and privacy preserving response to observation of display screen |
JP2014142889A (en) | 2013-01-25 | 2014-08-07 | Mamoru Taniguchi | Elderly people or the like nursing care system by cloud type groupware |
US20140222298A1 (en) | 2013-02-03 | 2014-08-07 | Michael H. Gurin | Systems For a Shared Vehicle |
DE102013201873B4 (en) | 2013-02-05 | 2017-09-21 | Siemens Schweiz Ag | Dynamic emergency assistance |
CN105209840B (en) * | 2013-02-05 | 2018-01-12 | 真实制造有限公司 | Refrigeration plant is controlled using portable electron device |
US20150002293A1 (en) | 2013-06-26 | 2015-01-01 | Michael Nepo | System and method for disseminating information and implementing medical interventions to facilitate the safe emergence of users from crises |
US20140222469A1 (en) | 2013-02-06 | 2014-08-07 | Kemper Corporate Services, Inc. | System and method for automated intelligent insurance re-quoting |
US20140229205A1 (en) * | 2013-02-11 | 2014-08-14 | G Wizicon Technologies, Inc. | Global insurance compliance management system |
US20140244997A1 (en) | 2013-02-25 | 2014-08-28 | Qualcomm Incorporated | Emergency mode for iot devices |
US10164966B2 (en) | 2013-02-25 | 2018-12-25 | Lockstep Technologies Pty Ltd | Decoupling identity from devices in the internet of things |
US20140257836A1 (en) | 2013-03-05 | 2014-09-11 | Clinton Colin Graham Walker | Automated interactive health care application for patient care |
US9280252B1 (en) | 2013-03-08 | 2016-03-08 | Allstate Insurance Company | Configuring an application task list of an application based on previous selections of application tasks |
US9208525B2 (en) * | 2013-03-10 | 2015-12-08 | State Farm Mutual Automobile Insurance Company | System and method for determining and monitoring auto insurance incentives |
US9047703B2 (en) * | 2013-03-13 | 2015-06-02 | Honda Motor Co., Ltd. | Augmented reality heads up display (HUD) for left turn safety cues |
US20160371620A1 (en) | 2013-03-14 | 2016-12-22 | Humana Inc. | Computerized method and system for scheduling tasks for an in-home caregiver |
US9685053B2 (en) | 2013-03-14 | 2017-06-20 | Richard Palmeri | Conducting and guiding individuals safely |
US20160054563A9 (en) * | 2013-03-14 | 2016-02-25 | Honda Motor Co., Ltd. | 3-dimensional (3-d) navigation |
WO2014152339A1 (en) * | 2013-03-14 | 2014-09-25 | Robert Bosch Gmbh | Time and environment aware graphical displays for driver information and driver assistance systems |
US8972100B2 (en) | 2013-03-15 | 2015-03-03 | State Farm Mutual Automobile Insurance Company | System and method for facilitating transportation of a vehicle involved in a crash |
US9280681B2 (en) * | 2013-03-15 | 2016-03-08 | Leeo, Inc. | Environmental monitoring device |
US9830579B2 (en) | 2013-03-15 | 2017-11-28 | Vivint, Inc. | Methods for providing notifications for follow-up actions in response to events detected by an automation system, and systems and devices related thereto |
US10073929B2 (en) | 2013-03-15 | 2018-09-11 | Adt Us Holdings, Inc. | Security system using visual floor plan |
US9579457B2 (en) * | 2013-03-15 | 2017-02-28 | Flint Hills Scientific, L.L.C. | Method, apparatus and system for automatic treatment of pain |
US20140276238A1 (en) | 2013-03-15 | 2014-09-18 | Ivan Osorio | Method, system and apparatus for fall detection |
US9898168B2 (en) | 2013-03-15 | 2018-02-20 | Adt Us Holdings, Inc. | Security system access profiles |
US11616837B2 (en) * | 2013-04-11 | 2023-03-28 | Intrepid Networks, Llc | Distributed processing network system, integrated response systems and methods providing situational awareness information for emergency response |
US9892295B2 (en) | 2013-04-12 | 2018-02-13 | Neology, Inc. | Systems and methods for connecting people with product information |
WO2014172322A1 (en) | 2013-04-15 | 2014-10-23 | Flextronics Ap, Llc | Vehicle intruder alert detection and indication |
US9251687B2 (en) * | 2013-04-19 | 2016-02-02 | Jonathan Thompson | Global positioning system equipped hazard detector and a system for providing hazard alerts thereby |
US9027137B2 (en) * | 2013-04-22 | 2015-05-05 | Imperva, Inc. | Automatic generation of different attribute values for detecting a same type of web application layer attack |
JP2016524209A (en) * | 2013-04-23 | 2016-08-12 | カナリー コネクト,インコーポレイテッド | Security and / or monitoring device and system |
US9857414B1 (en) * | 2013-05-10 | 2018-01-02 | Alarm.Com Incorporated | Monitoring and fault detection of electrical appliances for ambient intelligence |
US9476935B2 (en) * | 2013-05-10 | 2016-10-25 | Alarm.Com Incorporated | Monitoring and fault detection of electrical appliances for ambient intelligence |
US9959717B2 (en) * | 2013-05-17 | 2018-05-01 | Networked Emergency Systems Inc. | Security and first-responder emergency lighting system |
US9123221B2 (en) | 2013-05-20 | 2015-09-01 | Apple Inc. | Wireless device networks with smoke detection capabilities |
US20140358592A1 (en) | 2013-05-31 | 2014-12-04 | OneEvent Technologies, LLC | Sensors for usage-based property insurance |
US20140362213A1 (en) | 2013-06-05 | 2014-12-11 | Vincent Tseng | Residence fall and inactivity monitoring system |
JP6204086B2 (en) | 2013-06-28 | 2017-09-27 | 日本光電工業株式会社 | Respiratory state determination device |
TWI547623B (en) | 2013-07-16 | 2016-09-01 | 許今彥 | Intelligent toilet with multiple sensing fields |
US10360634B2 (en) | 2013-07-16 | 2019-07-23 | Esurance Insurance Services, Inc. | Virtual home inspection |
US9424737B2 (en) | 2013-07-26 | 2016-08-23 | Adt Holdings, Inc. | User management of a response to a system alarm event |
US20150032480A1 (en) * | 2013-07-26 | 2015-01-29 | Bank Of America Corporation | Use of e-receipts to determine insurance valuation |
US9947051B1 (en) | 2013-08-16 | 2018-04-17 | United Services Automobile Association | Identifying and recommending insurance policy products/services using informatic sensor data |
US10846370B2 (en) * | 2013-08-19 | 2020-11-24 | University Of Virginia Patent Foundation | Techniques facilitating mobile telemedicine for stroke patients |
US9516141B2 (en) * | 2013-08-29 | 2016-12-06 | Verizon Patent And Licensing Inc. | Method and system for processing machine-to-machine sensor data |
ES2744423T3 (en) | 2013-09-11 | 2020-02-25 | Koninklijke Philips Nv | Fall detection method and system |
US10687193B2 (en) | 2013-09-19 | 2020-06-16 | Unaliwear, Inc. | Assist device and system |
CA3182299A1 (en) | 2013-10-07 | 2015-04-16 | Google Llc | Visual and auditory user notification methods for smart-home hazard detector |
CA2925542C (en) | 2013-10-17 | 2021-08-17 | Adt Us Holdings, Inc. | Portable system for managing events |
US9824397B1 (en) | 2013-10-23 | 2017-11-21 | Allstate Insurance Company | Creating a scene for property claims adjustment |
US10269074B1 (en) | 2013-10-23 | 2019-04-23 | Allstate Insurance Company | Communication schemes for property claims adjustments |
US10383794B2 (en) | 2013-10-23 | 2019-08-20 | Nexpil, Inc. | Medication compliance alert device |
US10810283B2 (en) | 2013-10-31 | 2020-10-20 | Knox Medical Diagnostics Inc. | Systems and methods for monitoring respiratory function |
US9336670B2 (en) * | 2013-11-06 | 2016-05-10 | Nettalon Security Systems, Inc. | Method for remote initialization of targeted nonlethal counter measures in an active shooter suspect incident |
US10474768B2 (en) * | 2013-11-08 | 2019-11-12 | Schneider Electric USA, Inc. | Sensor-based facility energy modeling |
US20150154880A1 (en) | 2013-12-02 | 2015-06-04 | Aetna Inc. | Healthcare management with a support network |
US10089691B2 (en) | 2013-12-04 | 2018-10-02 | State Farm Mutual Automobile Insurance Company | Systems and methods for detecting potentially inaccurate insurance claims |
WO2015084415A1 (en) * | 2013-12-16 | 2015-06-11 | Intel Corporation | Emergency evacuation service |
US20150161452A1 (en) | 2013-12-11 | 2015-06-11 | Echostar Technologies, Llc | Home Monitoring and Control |
US9900177B2 (en) | 2013-12-11 | 2018-02-20 | Echostar Technologies International Corporation | Maintaining up-to-date home automation models |
US20150170288A1 (en) | 2013-12-12 | 2015-06-18 | The Travelers Indemnity Company | Systems and methods for weather event-based insurance claim handling |
US9696740B2 (en) * | 2013-12-17 | 2017-07-04 | Eaton Corporation | Method and apparatus to change generator start delay and runtime following outage |
US20150187019A1 (en) | 2013-12-31 | 2015-07-02 | Hartford Fire Insurance Company | Systems and method for autonomous vehicle data processing |
US20150187016A1 (en) * | 2013-12-31 | 2015-07-02 | Hartford Fire Insurance Company | System and method for telematics based underwriting |
US10552911B1 (en) | 2014-01-10 | 2020-02-04 | United Services Automobile Association (Usaa) | Determining status of building modifications using informatics sensor data |
US9429925B2 (en) | 2014-01-15 | 2016-08-30 | Haier Us Appliance Solutions, Inc. | Method for operating an appliance and a refrigerator appliance |
US9368009B2 (en) | 2014-01-28 | 2016-06-14 | Honeywell International Inc. | Home automation system monitored by security system |
US10475141B2 (en) | 2014-02-06 | 2019-11-12 | Empoweryu, Inc. | System and method for adaptive indirect monitoring of subject for well-being in unattended setting |
US9798993B2 (en) | 2014-02-11 | 2017-10-24 | State Farm Mutual Automobile Insurance Company | Systems and methods for simulating home loss prevention |
US10380692B1 (en) | 2014-02-21 | 2019-08-13 | Allstate Insurance Company | Home device sensing |
US10430887B1 (en) | 2014-02-21 | 2019-10-01 | Allstate Insurance Company | Device sensing |
US8917186B1 (en) | 2014-03-04 | 2014-12-23 | State Farm Mutual Automobile Insurance Company | Audio monitoring and sound identification process for remote alarms |
US10467701B1 (en) | 2014-03-10 | 2019-11-05 | Allstate Insurance Company | Home event detection and processing |
US10043369B2 (en) | 2014-03-20 | 2018-08-07 | Better Alerts, LLC | System and method for sending medical emergency alerts |
US20150269825A1 (en) * | 2014-03-20 | 2015-09-24 | Bao Tran | Patient monitoring appliance |
US10062118B1 (en) | 2014-04-02 | 2018-08-28 | Liberty Mutual Insurance Company | Concepts for providing an insurance quote |
US9491277B2 (en) | 2014-04-03 | 2016-11-08 | Melissa Vincent | Computerized method and system for global health, personal safety and emergency response |
US9672728B2 (en) | 2014-04-07 | 2017-06-06 | Google Inc. | Smart hazard detector drills |
US10636104B2 (en) | 2014-04-16 | 2020-04-28 | Vios Medical, Inc. | Patient care and health information management systems and methods |
US10181160B1 (en) | 2014-04-25 | 2019-01-15 | State Farm Mutual Automobile Insurance Company | Systems and methods for assigning damage caused by an insurance-related event |
US10296978B1 (en) | 2014-05-08 | 2019-05-21 | Allstate Insurance Company | Connected home and alert notifications |
US20150350848A1 (en) * | 2014-05-30 | 2015-12-03 | Ebay Inc. | Remote monitoring of users at a home location |
US9939823B2 (en) * | 2014-06-05 | 2018-04-10 | Wise Spaces Ltd. | Home automation control system |
US20150356701A1 (en) | 2014-06-06 | 2015-12-10 | Play-it Health, Inc. | Monitoring and adapting a patient's medical regimen and facilitating communication with a caregiver |
US9727921B2 (en) | 2014-06-09 | 2017-08-08 | State Farm Mutual Automobile Insurance Company | Systems and methods for processing damage to insured properties or structures |
WO2015191562A1 (en) | 2014-06-09 | 2015-12-17 | Revon Systems, Llc | Systems and methods for health tracking and management |
US10922935B2 (en) * | 2014-06-13 | 2021-02-16 | Vivint, Inc. | Detecting a premise condition using audio analytics |
US10198771B1 (en) | 2014-06-20 | 2019-02-05 | Allstate Insurance Company | Data hub |
AU2015283818B2 (en) | 2014-06-30 | 2018-02-15 | Evolving Machine Intelligence Pty Ltd | A system and method for modelling system behaviour |
WO2016001165A2 (en) | 2014-07-02 | 2016-01-07 | Doro AB | Improved communication |
WO2016007866A1 (en) | 2014-07-11 | 2016-01-14 | Simon Adam J | A system for the distributed collection of brain health information |
US10452233B2 (en) | 2014-07-18 | 2019-10-22 | Shanghai Chule (Cootek) Information Technology Co., Ltd. | Information interactive platform, system and method |
US10354329B2 (en) | 2014-08-06 | 2019-07-16 | Hartford Fire Insurance Company | Smart sensors for roof ice formation and property condition monitoring |
CA2958077C (en) | 2014-08-15 | 2021-03-30 | Adt Us Holdings, Inc. | Using degree of confidence to prevent false security system alarms |
US9683856B2 (en) * | 2014-08-18 | 2017-06-20 | Trimble Inc. | Evacuation navigation device |
US20160165387A1 (en) * | 2014-08-26 | 2016-06-09 | Hoang Nhu | Smart home platform with data analytics for monitoring and related methods |
WO2016037308A1 (en) * | 2014-09-09 | 2016-03-17 | 陈硕鸿 | Intelligent disaster prevention and escape method and disaster prevention and escape system thereof |
US9299239B1 (en) | 2014-09-17 | 2016-03-29 | Travis John GIECK | Device and methods for monitoring environmental conditions |
US9800570B1 (en) | 2014-09-26 | 2017-10-24 | Adt Us Holdings, Inc. | Method of persistent authentication with disablement upon removal of a wearable device |
US10356303B1 (en) | 2014-10-07 | 2019-07-16 | State Farm Mutual Automobile Insurance Company | Systems and methods for controlling smart devices based upon image data from image sensors |
EP3221708A4 (en) | 2014-11-17 | 2018-06-27 | Curb Inc. | Resource monitoring system with disaggregation of devices and device-specific notifications |
US9057746B1 (en) | 2014-11-26 | 2015-06-16 | Sense Labs, Inc. | Determining information about devices in a building using different sets of features |
US9443195B2 (en) | 2014-11-26 | 2016-09-13 | Sense Labs, Inc. | Assisted labeling of devices with disaggregation |
US9739813B2 (en) | 2014-11-26 | 2017-08-22 | Sense Labs, Inc. | Determining information about devices in a building using different sets of features |
US9152737B1 (en) | 2014-11-26 | 2015-10-06 | Sense Labs, Inc. | Providing notifications to a user |
US20160161940A1 (en) | 2014-12-04 | 2016-06-09 | Yaakov S. MAX | Intelligent water emergency system |
US9861151B2 (en) | 2014-12-05 | 2018-01-09 | SaPHIBeat Technologies, Inc. | Activity monitoring systems and methods for accident detection and response |
US9613523B2 (en) * | 2014-12-09 | 2017-04-04 | Unilectric, Llc | Integrated hazard risk management and mitigation system |
RU2712819C2 (en) * | 2014-12-19 | 2020-01-31 | Конинклейке Филипс Н.В. | Medical bracelet standard |
US10653369B2 (en) | 2014-12-23 | 2020-05-19 | Intel Corporation | Device for health monitoring and response |
US10129047B2 (en) | 2015-01-29 | 2018-11-13 | Time Warner Cable Enterprises Llc | Home automation system deployment |
US20160225562A1 (en) * | 2015-01-29 | 2016-08-04 | Unilectric, Llc | Enhanced circuit breakers and circuit breaker panels and systems and methods using the same |
US9923971B2 (en) | 2015-02-02 | 2018-03-20 | State Farm Mutual Automobile Insurance Company | Systems and methods for identifying unidentified plumbing supply products |
US10970990B1 (en) | 2015-02-19 | 2021-04-06 | State Farm Mutual Automobile Insurance Company | Systems and methods for monitoring building health |
US20160269883A1 (en) | 2015-03-13 | 2016-09-15 | Kapali Eswaran | Automated Service Systems and Methods |
US11042131B2 (en) | 2015-03-16 | 2021-06-22 | Rockwell Automation Technologies, Inc. | Backup of an industrial automation plant in the cloud |
WO2016147126A1 (en) | 2015-03-19 | 2016-09-22 | Koninklijke Philips N.V. | Systems and methods for building supportive relationships between patients and caregivers |
US10107708B1 (en) | 2015-04-02 | 2018-10-23 | State Farm Mutual Automobile Insurance Company | Smart carpet, pad, or strip for leak detection and loss mitigation |
USD764461S1 (en) | 2015-04-17 | 2016-08-23 | Viveo Labs, Inc. | Device for tracking status of time-sensitive articles |
US9866507B2 (en) | 2015-04-27 | 2018-01-09 | Agt International Gmbh | Method of monitoring well-being of semi-independent persons and system thereof |
EP3940609A1 (en) * | 2015-04-30 | 2022-01-19 | Honeywell International Inc. | System for integrating multiple sensor data to predict a fall risk |
US9706376B2 (en) * | 2015-05-15 | 2017-07-11 | Avaya Inc. | Navigational aid for emergency response personnel |
US10902946B2 (en) | 2015-05-20 | 2021-01-26 | Watchrx, Inc. | Medication adherence device and coordinated care platform |
US10142822B1 (en) * | 2015-07-25 | 2018-11-27 | Gary M. Zalewski | Wireless coded communication (WCC) devices with power harvesting power sources triggered with incidental mechanical forces |
US10217068B1 (en) | 2015-08-10 | 2019-02-26 | State Farm Mutual Automobile Insurance Company | Systems and methods for pre-scheduling repair of home equipment |
US10229394B1 (en) | 2015-08-10 | 2019-03-12 | State Farm Mutual Automobile Insurance Company | Systems and methods for sending diagnostic information during scheduling of home equipment repair |
US10206630B2 (en) | 2015-08-28 | 2019-02-19 | Foresite Healthcare, Llc | Systems for automatic assessment of fall risk |
KR102612874B1 (en) | 2015-08-31 | 2023-12-12 | 마시모 코오퍼레이션 | Wireless patient monitoring systems and methods |
US9882985B1 (en) | 2015-09-14 | 2018-01-30 | EMC IP Holding Company LLC | Data storage path optimization for internet of things computing system |
US9767680B1 (en) | 2015-09-30 | 2017-09-19 | Alarm.Com Incorporated | Abberation detection technology |
KR20240058171A (en) | 2015-10-29 | 2024-05-03 | 라이 킹 티 | A system and method for mobile platform designed for digital health management and support for remote patient monitoring |
US9922524B2 (en) | 2015-10-30 | 2018-03-20 | Blue Willow Systems, Inc. | Methods for detecting and handling fall and perimeter breach events for residents of an assisted living facility |
US20170124277A1 (en) | 2015-11-03 | 2017-05-04 | Wolf Shlagman | Systems and Methods for Automated and Remote Care Giving |
US10047974B1 (en) | 2015-11-06 | 2018-08-14 | State Farm Mutual Automobile Insurance Company | Automated water heater flushing and monitoring system |
US9888371B1 (en) | 2015-11-13 | 2018-02-06 | State Farm Mutual Automobile Insurance Company | Portable home and hotel security system |
WO2017106775A1 (en) | 2015-12-17 | 2017-06-22 | Rapidsos, Inc. | Devices and methods for efficient emergency calling |
US10482746B1 (en) | 2016-01-06 | 2019-11-19 | State Farm Mutual Automobile Insurance Company | Sensor data to identify catastrophe areas |
US10147296B2 (en) | 2016-01-12 | 2018-12-04 | Fallcall Solutions, Llc | System for detecting falls and discriminating the severity of falls |
US10387966B1 (en) | 2016-01-14 | 2019-08-20 | State Farm Mutual Automobile Insurance Company | Identifying property usage type based upon smart sensor data |
US10295363B1 (en) | 2016-01-22 | 2019-05-21 | State Farm Mutual Automobile Insurance Company | Autonomous operation suitability assessment and mapping |
US20190122760A1 (en) | 2016-02-03 | 2019-04-25 | Kevin Sunlin Wang | Method and system for customized scheduling of home health care services |
WO2017161457A1 (en) | 2016-03-24 | 2017-09-28 | Alert Labs Inc. | System and method for characterizing and passively monitoring a property to identify events affecting occupants of the property |
US10446007B2 (en) | 2016-04-14 | 2019-10-15 | Konica Minolta, Inc. | Watching system and management server |
JP2019515398A (en) | 2016-05-13 | 2019-06-06 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | System and method for tracing informal findings on a carer by a carer |
US10319209B2 (en) | 2016-06-03 | 2019-06-11 | John Carlton-Foss | Method and system for motion analysis and fall prevention |
JP2019527864A (en) | 2016-06-03 | 2019-10-03 | エスアールアイ インターナショナルSRI International | Virtual health assistant to promote a safe and independent life |
US10226204B2 (en) | 2016-06-17 | 2019-03-12 | Philips North America Llc | Method for detecting and responding to falls by residents within a facility |
US9911042B1 (en) | 2016-07-01 | 2018-03-06 | State Farm Mutual Automobile Insurance Company | Real property image analysis system to identify similar properties |
FI3485474T3 (en) * | 2016-07-13 | 2023-08-23 | Palarum Llc | Patient monitoring system |
US20180032696A1 (en) | 2016-07-28 | 2018-02-01 | Nancy ROME | Wholecare |
US11042938B1 (en) | 2016-08-08 | 2021-06-22 | Allstate Insurance Company | Driver identity detection and alerts |
US10506990B2 (en) | 2016-09-09 | 2019-12-17 | Qualcomm Incorporated | Devices and methods for fall detection based on phase segmentation |
KR102573383B1 (en) | 2016-11-01 | 2023-09-01 | 삼성전자주식회사 | Electronic apparatus and controlling method thereof |
US20180211724A1 (en) | 2016-11-11 | 2018-07-26 | Kevin Sunlin Wang | System and method for healthcare billing verification |
WO2018102579A1 (en) | 2016-12-02 | 2018-06-07 | Cardiac Pacemakers, Inc. | Multi-sensor stroke detection |
WO2018106562A1 (en) | 2016-12-05 | 2018-06-14 | Barron Associates, Inc. | Autonomous fall monitor having sensor compensation |
WO2018106839A2 (en) | 2016-12-06 | 2018-06-14 | Nocira, Llc | Systems and methods for treating neurological disorders |
US20180160988A1 (en) * | 2016-12-13 | 2018-06-14 | Liza Miller | Medical Alert Device |
CN110139598B (en) | 2016-12-29 | 2022-07-01 | 关健强 | Monitoring and tracking system, method, article and apparatus |
EP3573591A4 (en) | 2017-01-26 | 2021-06-30 | Elements of Genius, Inc. | Wearable interactive notification device and interactive notification system |
US10624559B2 (en) * | 2017-02-13 | 2020-04-21 | Starkey Laboratories, Inc. | Fall prediction system and method of using the same |
US9800958B1 (en) | 2017-02-22 | 2017-10-24 | Sense Labs, Inc. | Training power models using network data |
US9699529B1 (en) | 2017-02-22 | 2017-07-04 | Sense Labs, Inc. | Identifying device state changes using power data and network data |
US10750252B2 (en) | 2017-02-22 | 2020-08-18 | Sense Labs, Inc. | Identifying device state changes using power data and network data |
US11126708B2 (en) | 2017-02-24 | 2021-09-21 | The Adt Security Corporation | Automatic password reset using a security system |
CA3054563C (en) | 2017-02-24 | 2023-12-12 | Adt Us Holdings, Inc. | Detecting an intruder's wireless device during a break in to a premises |
US11164082B2 (en) | 2017-02-28 | 2021-11-02 | Anixa Diagnostics Corporation | Methods for using artificial neural network analysis on flow cytometry data for cancer diagnosis |
CA2998249A1 (en) | 2017-03-17 | 2018-09-17 | Edatanetworks Inc. | Artificial intelligence engine incenting merchant transaction with consumer affinity |
US20180308569A1 (en) | 2017-04-25 | 2018-10-25 | S Eric Luellen | System or method for engaging patients, coordinating care, pharmacovigilance, analysis or maximizing safety or clinical outcomes |
US10325471B1 (en) | 2017-04-28 | 2019-06-18 | BlueOwl, LLC | Systems and methods for detecting a medical emergency event |
US20180322947A1 (en) | 2017-05-03 | 2018-11-08 | ScriptDrop, Inc. | Systems and methods for providing prescription medication delivery and reminder services |
US10258295B2 (en) | 2017-05-09 | 2019-04-16 | LifePod Solutions, Inc. | Voice controlled assistance for monitoring adverse events of a user and/or coordinating emergency actions such as caregiver communication |
US20180342329A1 (en) | 2017-05-24 | 2018-11-29 | Happie Home, Inc. | Happie home system |
US11138861B2 (en) | 2017-05-25 | 2021-10-05 | Robert Blatt | Easily customizable inhabitant behavioral routines in a location monitoring and action system |
US10430553B2 (en) | 2017-06-08 | 2019-10-01 | Sethumadavan Sanjay-Gopal | Systems and methods for personalized care management |
US10623790B2 (en) | 2017-08-11 | 2020-04-14 | Benjamin Dean Maddalena | Methods and systems for cloud-based content management |
US10542889B2 (en) | 2017-08-14 | 2020-01-28 | Amrita Vishwa Vidyapeetham | Systems, methods, and devices for remote health monitoring and management |
CN111373484A (en) | 2017-09-20 | 2020-07-03 | 强生消费者公司 | Lactation guide system and method |
US20190099114A1 (en) * | 2017-09-29 | 2019-04-04 | Sensogram Technologies, Inc. | Fall sensing and medical alert systems |
GB2568073A (en) | 2017-11-03 | 2019-05-08 | Tended Ltd | Method and apparatus for monitoring the safety of a person |
US11020003B2 (en) | 2017-11-07 | 2021-06-01 | Foneclay, Inc. | Patient monitoring and communication system |
US10930398B2 (en) * | 2017-12-12 | 2021-02-23 | Jawahar Jain | Graded escalation based triage |
US10181246B1 (en) | 2018-01-03 | 2019-01-15 | William David Jackson | Universal user variable control utility (UUVCU) |
JP7118757B2 (en) | 2018-01-22 | 2022-08-16 | パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ | Server, program and method |
US20190228397A1 (en) | 2018-01-25 | 2019-07-25 | The Bartley J. Madden Foundation | Dynamic economizer methods and systems for improving profitability, savings, and liquidity via model training |
WO2019173045A1 (en) | 2018-03-08 | 2019-09-12 | Frontive, Inc. | Methods and systems for speech signal processing |
US11232694B2 (en) | 2018-03-14 | 2022-01-25 | Safely You Inc. | System and method for detecting, recording and communicating events in the care and treatment of cognitively impaired persons |
US10825318B1 (en) | 2018-04-09 | 2020-11-03 | State Farm Mutual Automobile Insurance Company | Sensing peripheral heuristic evidence, reinforcement, and engagement system |
US20190320900A1 (en) | 2018-04-18 | 2019-10-24 | CureCompanion Inc. | Telemedicine system |
US10827951B2 (en) * | 2018-04-19 | 2020-11-10 | Careview Communications, Inc. | Fall detection using sensors in a smart monitoring safety system |
US20200013500A1 (en) | 2018-07-03 | 2020-01-09 | Eric Mora | Cloud-based system for caregiver and client for credentialing, patient referrals, clinical documentation, and scheduling |
KR101940029B1 (en) | 2018-07-11 | 2019-01-18 | 주식회사 마키나락스 | Anomaly detection |
US10740691B2 (en) | 2018-10-02 | 2020-08-11 | Sense Labs, Inc. | Identifying devices connected to a smart plug |
US10692606B2 (en) | 2018-10-23 | 2020-06-23 | International Business Machines Corporation | Stress level reduction using haptic feedback |
US20200143655A1 (en) | 2018-11-06 | 2020-05-07 | iEldra Inc. | Smart activities monitoring (sam) processing of data |
US11651666B2 (en) | 2020-02-12 | 2023-05-16 | Alarm.Com Incorporated | Attempted entry detection |
-
2015
- 2015-10-02 US US14/873,783 patent/US10356303B1/en active Active
- 2015-10-02 US US14/873,942 patent/US10249158B1/en active Active
- 2015-10-02 US US14/873,864 patent/US9898912B1/en active Active
- 2015-10-02 US US14/873,904 patent/US20210142648A1/en not_active Abandoned
- 2015-10-02 US US14/873,865 patent/US10573146B1/en active Active
- 2015-10-02 US US14/873,968 patent/US10282788B1/en active Active
- 2015-10-02 US US14/873,817 patent/US10515372B1/en active Active
- 2015-10-02 US US14/873,914 patent/US10353359B1/en active Active
- 2015-10-02 US US14/873,823 patent/US10388135B1/en active Active
- 2015-10-02 US US14/873,771 patent/US10346811B1/en active Active
-
2018
- 2018-02-13 US US15/895,149 patent/US10282961B1/en active Active
-
2019
- 2019-02-04 US US16/266,423 patent/US10522009B1/en active Active
- 2019-02-22 US US16/282,789 patent/US10573149B1/en active Active
- 2019-04-24 US US16/393,336 patent/US20210297579A1/en not_active Abandoned
- 2019-04-24 US US16/393,131 patent/US11049078B1/en active Active
- 2019-04-24 US US16/393,312 patent/US10795329B1/en active Active
- 2019-06-19 US US16/445,399 patent/US10741033B1/en active Active
- 2019-11-05 US US16/674,140 patent/US11551235B1/en active Active
- 2019-11-22 US US16/692,536 patent/US10943447B1/en active Active
- 2019-12-02 US US16/700,783 patent/US11004320B1/en active Active
-
2020
- 2020-01-09 US US16/738,328 patent/US11423754B1/en active Active
- 2020-01-10 US US16/740,010 patent/US11043098B1/en active Active
- 2020-06-11 US US16/899,380 patent/US20200302549A1/en active Pending
- 2020-09-02 US US17/009,914 patent/US11656585B1/en active Active
-
2021
- 2021-02-04 US US17/167,963 patent/US20240013640A1/en not_active Abandoned
- 2021-02-08 US US17/170,659 patent/US11334040B2/en active Active
-
2022
- 2022-03-22 US US17/701,316 patent/US20220215732A1/en active Pending
- 2022-03-28 US US17/706,302 patent/US20220215733A1/en active Pending
- 2022-07-05 US US17/857,880 patent/US20220334544A1/en active Pending
-
2023
- 2023-01-09 US US18/094,731 patent/US11815864B2/en active Active
- 2023-04-14 US US18/134,756 patent/US20230251610A1/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050137465A1 (en) * | 2003-12-23 | 2005-06-23 | General Electric Company | System and method for remote monitoring in home activity of persons living independently |
Also Published As
Publication number | Publication date |
---|---|
US10346811B1 (en) | 2019-07-09 |
US10356303B1 (en) | 2019-07-16 |
US10388135B1 (en) | 2019-08-20 |
US10282961B1 (en) | 2019-05-07 |
US10943447B1 (en) | 2021-03-09 |
US10515372B1 (en) | 2019-12-24 |
US11656585B1 (en) | 2023-05-23 |
US20230251610A1 (en) | 2023-08-10 |
US11815864B2 (en) | 2023-11-14 |
US10741033B1 (en) | 2020-08-11 |
US20240013640A1 (en) | 2024-01-11 |
US10522009B1 (en) | 2019-12-31 |
US20220215733A1 (en) | 2022-07-07 |
US20210158671A1 (en) | 2021-05-27 |
US20230161305A1 (en) | 2023-05-25 |
US20200302549A1 (en) | 2020-09-24 |
US11049078B1 (en) | 2021-06-29 |
US10573146B1 (en) | 2020-02-25 |
US9898912B1 (en) | 2018-02-20 |
US11551235B1 (en) | 2023-01-10 |
US11423754B1 (en) | 2022-08-23 |
US11334040B2 (en) | 2022-05-17 |
US11004320B1 (en) | 2021-05-11 |
US20210142648A1 (en) | 2021-05-13 |
US10249158B1 (en) | 2019-04-02 |
US10353359B1 (en) | 2019-07-16 |
US10795329B1 (en) | 2020-10-06 |
US20220334544A1 (en) | 2022-10-20 |
US11043098B1 (en) | 2021-06-22 |
US10573149B1 (en) | 2020-02-25 |
US20210297579A1 (en) | 2021-09-23 |
US10282788B1 (en) | 2019-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11423754B1 (en) | Systems and methods for improved assisted or independent living environments | |
US11042137B1 (en) | Systems and methods for managing the operation of devices within a property | |
US11769996B2 (en) | Systems and methods for utilizing electricity monitoring devices to mitigate or prevent structural damage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: STATE FARM MUTUAL AUTOMOBILE INSURANCE COMPANY, ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JORDAN, JACKIE O., II;DONOVAN, JOHN;TURRENTINE, DAVID;AND OTHERS;SIGNING DATES FROM 20151104 TO 20151215;REEL/FRAME:059411/0169 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |