US20210332874A1 - Torque converter and drive unit - Google Patents
Torque converter and drive unit Download PDFInfo
- Publication number
- US20210332874A1 US20210332874A1 US17/217,236 US202117217236A US2021332874A1 US 20210332874 A1 US20210332874 A1 US 20210332874A1 US 202117217236 A US202117217236 A US 202117217236A US 2021332874 A1 US2021332874 A1 US 2021332874A1
- Authority
- US
- United States
- Prior art keywords
- clutch
- torque converter
- cover
- turbine
- impeller
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H45/00—Combinations of fluid gearings for conveying rotary motion with couplings or clutches
- F16H45/02—Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K1/00—Arrangement or mounting of electrical propulsion units
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K17/00—Arrangement or mounting of transmissions in vehicles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H45/00—Combinations of fluid gearings for conveying rotary motion with couplings or clutches
- F16H2045/002—Combinations of fluid gearings for conveying rotary motion with couplings or clutches comprising a clutch between prime mover and fluid gearing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H45/00—Combinations of fluid gearings for conveying rotary motion with couplings or clutches
- F16H2045/005—Combinations of fluid gearings for conveying rotary motion with couplings or clutches comprising a clutch between fluid gearing and the mechanical gearing unit
Definitions
- the present invention relates to a torque converter and a drive unit.
- a torque converter is installed for amplifying a torque outputted from a prime mover.
- a type of electric car in which a torque converter is installed to amplify a torque outputted from a motor (e.g., Publication of Japan Patent No. 5370233).
- a torque converter is disposed between a prime mover and an output shaft.
- the torque converter includes a cover, an impeller, a turbine, and a first clutch.
- the impeller is unitarily rotated with the cover.
- the turbine is disposed opposite to the impeller.
- the first clutch is configured to allow and block transmitting power outputted from the prime mover to the cover.
- the first clutch when the prime mover is rotated at a high speed (of e.g., 8000 rpm or greater), for instance, the first clutch is turned to a clutch-off state; whereby the power outputted from the prime mover is not transmitted to the cover. Because of this, such a situation can be prevented that the torque converter is damaged or broken when the strength thereof is not enough to withstand the rotational speed of the prime mover. It should be noted that when the prime mover is rotated at a low speed, the first clutch can be turned to the clutch-off state.
- the torque converter further includes a second clutch.
- the second clutch is configured to allow and block transmitting the power outputted from the prime mover to the output shaft without through the cover.
- the torque converter further includes a third clutch.
- the third clutch is configured to be capable of blocking transmitting the power from the output shaft to the turbine.
- the third clutch is a one-way clutch.
- the one-way clutch is configured to allow transmitting the power from the turbine to the output shaft and block transmitting the power from the output shaft to the turbine.
- the first clutch is a wet clutch.
- the first clutch is a dry clutch.
- the torque converter further includes a stator.
- the stator is disposed between the impeller and the turbine.
- the stator is attached to a stationary shaft in a non-rotatable manner.
- a one-way clutch conventionally disposed between the stationary shaft and the stator can be omitted, whereby the torque converter can be reduced in cost, weight, and size.
- a drive unit includes a prime mover and the torque converter configured as any of the above.
- the torque converter is a component that the power outputted from the prime mover is transmitted.
- the torque converter can be prevented from being damaged or broken.
- FIG. 1 is a schematic diagram of a drive unit.
- FIG. 2 is a schematic diagram of a torque converter.
- FIG. 3 is a schematic diagram of a drive unit according to a modification.
- FIG. 4 is a schematic diagram of a torque converter according to another modification.
- axial direction refers to an extending direction of a rotational axis of a torque converter.
- circumferential direction refers to a circumferential direction of an imaginary circle about the rotational axis
- radial direction refers to a radial direction of the imaginary circle about the rotational axis.
- a drive unit 100 includes a motor 2 (exemplary prime mover) and a torque converter 3 .
- the drive unit 100 outputs power to an output shaft 102 .
- the output shaft 102 is, for instance, an input shaft of a transmission 101 .
- the drive unit 100 is installed in, for instance, an electric car.
- the drive unit 100 is configured to drive a drive wheel.
- the motor 2 is an electric motor.
- the motor 2 includes a motor casing 21 , a stator 22 , and a rotor 23 .
- the motor 2 is of a so-called inner rotor type.
- the motor casing 21 is non-rotatable, while being fixed to a vehicle body frame or so forth.
- the stator 22 is fixed to the inner peripheral surface of the motor casing 21 .
- the stator 22 is non-rotatable.
- the rotor 23 is rotated about a rotational axis O.
- the rotor 23 is disposed radially inside the stator 22 .
- the torque converter 3 is configured to be rotated about the rotational axis O.
- the rotational axis O of the torque converter 3 is substantially matched with that of the motor 2 .
- the drive unit 100 is rotated about the rotational axis O.
- the torque converter 3 is disposed between the motor 2 and the output shaft 102 .
- the torque converter 3 is configured to amplify a torque inputted thereto from the motor 2 and output the amplified torque to the output shaft 102 .
- the torque converter 3 includes a cover 31 , an impeller 32 , a turbine 33 , a stator 34 , a first clutch 35 , a second clutch 36 , and a third clutch 37 . Hydraulic oil is supplied to the interior of the torque converter 3 .
- the cover 31 is disposed in a rotatable manner.
- the cover 31 is rotatable relative to the motor 2 .
- the cover 31 is rotatable relative to the rotor 23 .
- the cover 31 is configured to cover the turbine 33 .
- the cover 31 is configured to cover the first and second clutches 35 and 36 .
- the impeller 32 is rotated unitarily with the cover 31 .
- the impeller 32 is fixed to the cover 31 by welding or so forth.
- the impeller 32 includes an impeller shell 321 , a plurality of impeller blades 322 , and an impeller hub 323 .
- the impeller shell 321 is fixed to the cover 31 .
- the plural impeller blades 322 are attached to the inner surface of the impeller shell 321 .
- the impeller hub 323 is attached to the inner peripheral end of the impeller shell 321 . It should be noted that the impeller hub 323 can be provided together with the impeller shell 321 as a single member, or alternatively, can be provided as a member separated from the impeller shell 321 .
- the turbine 33 is disposed opposite to the impeller 32 . When described in detail, the turbine 33 is axially opposed to the impeller 32 . The turbine 33 is a component that power is transmitted from the impeller 32 through hydraulic fluid.
- the turbine 33 includes a turbine shell 331 , a plurality of turbine blades 332 , and a turbine hub 333 .
- the plural turbine blades 332 are fixed to the inner surface of the turbine shell 331 .
- the turbine hub 333 is fixed to the inner peripheral end of the turbine shell 331 .
- the turbine hub 333 is fixed to the turbine shell 331 by at least one rivet.
- the turbine hub 333 can be provided as a member separated from the turbine shell 331 , or alternatively, can be provided together with the turbine shell 331 as a single member.
- the turbine hub 333 is supported by the output shaft 102 through the third clutch 37 .
- the stator 34 is configured to regulate the flow of the hydraulic oil returning from the turbine 33 to the impeller 32 .
- the stator 34 is rotatable about the rotational axis O.
- the stator 34 is supported by a stationary shaft 103 through a one-way clutch 104 .
- the stator 34 is disposed axially between the impeller 32 and the turbine 33 .
- the stator 34 includes a stator carrier 341 having a disc shape and a plurality of stator blades 342 attached to the outer peripheral surface of the stator carrier 341 .
- the first clutch 35 is configured to allow and block transmitting power outputted from the motor 2 to the cover 31 .
- the first clutch 35 is configured to couple an output shaft 24 of the motor 2 and the cover 31 to each other and decouple the output shaft 24 and the cover 31 from each other.
- the first clutch 35 is disposed in a power transmission path between the motor 2 and the cover 31 .
- the power transmission path is a path for transmitting the power outputted from the motor 2 to the cover 31 . It should be noted that this is the only one power transmission path provided between the motor 2 and the cover 31 .
- the first clutch 35 is a wet clutch.
- the first clutch 35 is disposed in a space enclosed by the cover 31 and the impeller 32 .
- the first clutch 35 is disposed between the cover 31 and the turbine 33 .
- the first clutch 35 When turned to a clutch-on state, the first clutch 35 transmits the power outputted from the motor 2 to the cover 31 . Contrarily, when turned to a clutch-off state, the first clutch 35 blocks transmitting the power outputted from the motor 2 to the cover 31 .
- the states of the first clutch 35 are controlled by, for instance, the pressure of the hydraulic oil supplied to the interior of the torque converter 3 and the direction that the hydraulic oil is supplied.
- the second clutch 36 is configured to allow and block transmitting the power outputted from the motor 2 to the output shaft 102 without through the cover 31 .
- the second clutch 36 is configured to couple the output shaft 24 of the motor 2 and the output shaft 102 to each other and decouple the output shafts 24 and 102 from each other.
- the second clutch 36 is disposed in a power transmission path between the motor 2 and the output shaft 102 . It should be noted that the cover 31 is not included in the power transmission path in which the second clutch 36 is disposed. In other words, this is a power transmission path for transmitting the power outputted from the motor 2 to the output shaft 102 without through the cover 31 .
- the second clutch 36 is a wet clutch.
- the second clutch 36 is disposed in the space enclosed by the cover 31 and the impeller 32 .
- the second clutch 36 is disposed between the cover 31 and the turbine 33 .
- the second clutch 36 is disposed between the first clutch 35 and the turbine 33 .
- the second clutch 36 When turned to a clutch-on state, the second clutch 36 transmits the power outputted from the motor 2 to the output shaft 102 . It should be noted that the second clutch 36 transmits the power outputted from the motor 2 to the output shaft 102 without through the cover 31 and impeller 32 , the turbine 33 , and so forth.
- the second clutch 36 blocks transmitting the power outputted from the motor 2 to the output shaft 102 .
- the states of the second clutch 36 are controlled by, for instance, the pressure of the hydraulic oil supplied to the interior of the torque converter 3 and the direction that the hydraulic oil is supplied.
- the second clutch 36 is turned to the clutch-off state when the first clutch 35 is in the clutch-on state, whereas the second clutch 36 is turned to the clutch-on state when the first clutch 35 is in the clutch-off state.
- the third clutch 37 is disposed between the turbine 33 and the output shaft 102 .
- the third clutch 37 is disposed between the turbine hub 333 and the output shaft 102 .
- the third clutch 37 is configured to be capable of blocking transmitting power from the output shaft 102 to the turbine 33 .
- the third clutch 37 is a one-way clutch.
- the third clutch 37 is configured to allow transmitting power from the turbine 33 to the output shaft 102 but block transmitting power from the output shaft 102 to the turbine 33 .
- the torque converter 3 configured as described above transmits power as follows.
- the first clutch 35 is turned to the clutch-on state, whereas the second clutch 36 is turned to the clutch-off state. In this condition, the first clutch 35 transmits the power outputted from the motor 2 to the cover 31 . On the other hand, the second clutch 36 does not transmit the power outputted from the motor 2 to the output shaft 102 .
- the power transmitted to the cover 31 is transmitted to the impeller 32 and is then transmitted to the turbine 33 through the hydraulic oil. Subsequently, the power is transmitted to the output shaft 102 through the third clutch 37 .
- the power outputted from the motor 2 is transmitted through the power transmission path in the order of to the first clutch 35 , the cover 31 , the impeller 32 , the turbine 33 , the third clutch 37 , and the output shaft 102 .
- the first clutch 35 is turned to the clutch-off state, whereas the second clutch 36 is turned to the clutch-on state.
- the first clutch 35 does not transmit the power outputted from the motor 2 to the cover 31 .
- the power outputted from the motor 2 is not transmitted to the cover 31 .
- the second clutch 36 transmits the power outputted from the motor 2 to the output shaft 102 .
- the power outputted from the motor 2 is transmitted to the output shaft 102 through the second clutch 36 without being transmitted to the cover 31 .
- the second clutch 36 transmits the power outputted from the motor 2 to the output shaft 102 without through the cover 31 . Therefore, even when the motor 2 is rotated at a high speed, the cover 31 , the impeller 32 , and the turbine 33 are not rotated together with the motor 2 at the high speed. Because of this, such a situation can be prevented that the torque converter 3 is damaged or broken due to the high-speed rotation of the motor 2 .
- the first clutch 35 is provided as the wet clutch.
- the first clutch 35 can be provided as a dry clutch.
- the first clutch 35 can be disposed outside a space enclosed by the cover 31 and the impeller 32 .
- the third clutch 37 is provided as the one-way clutch.
- the configuration of the third clutch 37 is not limited to this.
- the second clutch 36 is directly coupled to the output shaft 102 .
- the configuration of the second clutch 36 is not limited to this.
- the second clutch 36 can be coupled to the output shaft 102 through a reduction gear and/or so forth.
- the motor 2 has been explained as an example of the prime mover.
- another type of prime mover such as an engine can be used instead.
- the stator 34 is attached to the stationary shaft 103 through the one-way clutch 104 .
- the method of attaching the stator 34 is not limited to this.
- the stator 34 can be attached to the stationary shaft 103 in a non-rotatable manner.
- the stator 34 is attached to the stationary shaft 103 without through any one-way clutch. Because of this, the stator 34 is not rotated about the rotational axis O in both forward and reverse directions.
- the stator carrier 341 includes a spline hole and the stationary shaft 103 is spline-coupled to the stator carrier 341 .
- a stator is attached to a stationary shaft through a one-way clutch.
- the stator when the torque converter is in a coupling range, the stator is enabled to rotate together with an impeller so as not to hinder rotation of the impeller.
- the torque converter 3 when the torque converter 3 is in a coupling range, the first clutch 35 is turned to the clutch-off state, whereby rotation of the impeller 32 can be stopped. Therefore, even when the stator 34 is attached to the stationary shaft 103 in a non-rotatable manner, this does not result in a drawback that the stator 34 hinders rotation of the impeller 32 . Consequently, the one-way clutch can be omitted, whereby the torque converter can be made low-cost, lightweight, and compact.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Hybrid Electric Vehicles (AREA)
- Arrangement Of Transmissions (AREA)
Abstract
Description
- This application claims priority to Japanese Patent Application Nos. 2020-078968, filed Apr. 28, 2020, and 2020-107207, filed Jun. 22, 2020. The entire contents of these applications are incorporated by reference herein in their entireties.
- The present invention relates to a torque converter and a drive unit.
- A torque converter is installed for amplifying a torque outputted from a prime mover. There has been proposed a type of electric car in which a torque converter is installed to amplify a torque outputted from a motor (e.g., Publication of Japan Patent No. 5370233).
- As a result of keen study, the inventor of the present invention found the following. When a motor or so forth is used as a prime mover, such a prime mover is rotated at a high rotational speed of, e.g., about 8000 rpm or greater even in normal traveling. Hence, it is concerned that a torque converter is damaged or broken if not having strength enough to withstand the high rotational speed.
- In view of the above, it is an object of the present invention to prevent a torque converter from being damaged or broken.
- A torque converter according to a first aspect of the present invention is disposed between a prime mover and an output shaft. The torque converter includes a cover, an impeller, a turbine, and a first clutch. The impeller is unitarily rotated with the cover. The turbine is disposed opposite to the impeller. The first clutch is configured to allow and block transmitting power outputted from the prime mover to the cover.
- According to this configuration, when the prime mover is rotated at a high speed (of e.g., 8000 rpm or greater), for instance, the first clutch is turned to a clutch-off state; whereby the power outputted from the prime mover is not transmitted to the cover. Because of this, such a situation can be prevented that the torque converter is damaged or broken when the strength thereof is not enough to withstand the rotational speed of the prime mover. It should be noted that when the prime mover is rotated at a low speed, the first clutch can be turned to the clutch-off state.
- Preferably, the torque converter further includes a second clutch. The second clutch is configured to allow and block transmitting the power outputted from the prime mover to the output shaft without through the cover.
- Preferably, the torque converter further includes a third clutch. The third clutch is configured to be capable of blocking transmitting the power from the output shaft to the turbine.
- Preferably, the third clutch is a one-way clutch. The one-way clutch is configured to allow transmitting the power from the turbine to the output shaft and block transmitting the power from the output shaft to the turbine.
- Preferably, the first clutch is a wet clutch.
- Preferably, the first clutch is a dry clutch.
- Preferably, the torque converter further includes a stator. The stator is disposed between the impeller and the turbine. The stator is attached to a stationary shaft in a non-rotatable manner. According to this configuration, a one-way clutch conventionally disposed between the stationary shaft and the stator can be omitted, whereby the torque converter can be reduced in cost, weight, and size.
- A drive unit according to a second aspect of the present invention includes a prime mover and the torque converter configured as any of the above. The torque converter is a component that the power outputted from the prime mover is transmitted.
- Overall, according to the present invention, the torque converter can be prevented from being damaged or broken.
-
FIG. 1 is a schematic diagram of a drive unit. -
FIG. 2 is a schematic diagram of a torque converter. -
FIG. 3 is a schematic diagram of a drive unit according to a modification. -
FIG. 4 is a schematic diagram of a torque converter according to another modification. - A drive unit according to the present preferred embodiment will be hereinafter explained with reference to drawings. It should be noted that in the following explanation, the term “axial direction” refers to an extending direction of a rotational axis of a torque converter. On the other hand, the term “circumferential direction” refers to a circumferential direction of an imaginary circle about the rotational axis, whereas the term “radial direction” refers to a radial direction of the imaginary circle about the rotational axis.
- As shown in
FIG. 1 , adrive unit 100 includes a motor 2 (exemplary prime mover) and atorque converter 3. Thedrive unit 100 outputs power to anoutput shaft 102. It should be noted that theoutput shaft 102 is, for instance, an input shaft of atransmission 101. Thedrive unit 100 is installed in, for instance, an electric car. Thedrive unit 100 is configured to drive a drive wheel. - The
motor 2 is an electric motor. Themotor 2 includes amotor casing 21, astator 22, and arotor 23. In the present preferred embodiment, themotor 2 is of a so-called inner rotor type. Themotor casing 21 is non-rotatable, while being fixed to a vehicle body frame or so forth. - The
stator 22 is fixed to the inner peripheral surface of themotor casing 21. Thestator 22 is non-rotatable. Therotor 23 is rotated about a rotational axis O. Therotor 23 is disposed radially inside thestator 22. - The
torque converter 3 is configured to be rotated about the rotational axis O. The rotational axis O of thetorque converter 3 is substantially matched with that of themotor 2. In other words, thedrive unit 100 is rotated about the rotational axis O. - The
torque converter 3 is disposed between themotor 2 and theoutput shaft 102. Thetorque converter 3 is configured to amplify a torque inputted thereto from themotor 2 and output the amplified torque to theoutput shaft 102. - As shown in
FIG. 2 , thetorque converter 3 includes acover 31, animpeller 32, aturbine 33, astator 34, a first clutch 35, a second clutch 36, and a third clutch 37. Hydraulic oil is supplied to the interior of thetorque converter 3. - The
cover 31 is disposed in a rotatable manner. Thecover 31 is rotatable relative to themotor 2. When described in detail, thecover 31 is rotatable relative to therotor 23. Thecover 31 is configured to cover theturbine 33. Besides, thecover 31 is configured to cover the first andsecond clutches - The
impeller 32 is rotated unitarily with thecover 31. When described in detail, theimpeller 32 is fixed to thecover 31 by welding or so forth. Theimpeller 32 includes animpeller shell 321, a plurality ofimpeller blades 322, and animpeller hub 323. - The
impeller shell 321 is fixed to thecover 31. Theplural impeller blades 322 are attached to the inner surface of theimpeller shell 321. - The
impeller hub 323 is attached to the inner peripheral end of theimpeller shell 321. It should be noted that theimpeller hub 323 can be provided together with theimpeller shell 321 as a single member, or alternatively, can be provided as a member separated from theimpeller shell 321. - The
turbine 33 is disposed opposite to theimpeller 32. When described in detail, theturbine 33 is axially opposed to theimpeller 32. Theturbine 33 is a component that power is transmitted from theimpeller 32 through hydraulic fluid. - The
turbine 33 includes aturbine shell 331, a plurality ofturbine blades 332, and aturbine hub 333. Theplural turbine blades 332 are fixed to the inner surface of theturbine shell 331. - The
turbine hub 333 is fixed to the inner peripheral end of theturbine shell 331. For example, theturbine hub 333 is fixed to theturbine shell 331 by at least one rivet. Theturbine hub 333 can be provided as a member separated from theturbine shell 331, or alternatively, can be provided together with theturbine shell 331 as a single member. - The
turbine hub 333 is supported by theoutput shaft 102 through the third clutch 37. - The
stator 34 is configured to regulate the flow of the hydraulic oil returning from theturbine 33 to theimpeller 32. Thestator 34 is rotatable about the rotational axis O. For example, thestator 34 is supported by astationary shaft 103 through a one-way clutch 104. Thestator 34 is disposed axially between theimpeller 32 and theturbine 33. - The
stator 34 includes astator carrier 341 having a disc shape and a plurality ofstator blades 342 attached to the outer peripheral surface of thestator carrier 341. - The first clutch 35 is configured to allow and block transmitting power outputted from the
motor 2 to thecover 31. The first clutch 35 is configured to couple anoutput shaft 24 of themotor 2 and thecover 31 to each other and decouple theoutput shaft 24 and thecover 31 from each other. - The first clutch 35 is disposed in a power transmission path between the
motor 2 and thecover 31. The power transmission path is a path for transmitting the power outputted from themotor 2 to thecover 31. It should be noted that this is the only one power transmission path provided between themotor 2 and thecover 31. - The first clutch 35 is a wet clutch. The first clutch 35 is disposed in a space enclosed by the
cover 31 and theimpeller 32. When described in detail, the first clutch 35 is disposed between thecover 31 and theturbine 33. - When turned to a clutch-on state, the first clutch 35 transmits the power outputted from the
motor 2 to thecover 31. Contrarily, when turned to a clutch-off state, the first clutch 35 blocks transmitting the power outputted from themotor 2 to thecover 31. The states of the first clutch 35 are controlled by, for instance, the pressure of the hydraulic oil supplied to the interior of thetorque converter 3 and the direction that the hydraulic oil is supplied. - The second clutch 36 is configured to allow and block transmitting the power outputted from the
motor 2 to theoutput shaft 102 without through thecover 31. The second clutch 36 is configured to couple theoutput shaft 24 of themotor 2 and theoutput shaft 102 to each other and decouple theoutput shafts - The second clutch 36 is disposed in a power transmission path between the
motor 2 and theoutput shaft 102. It should be noted that thecover 31 is not included in the power transmission path in which the second clutch 36 is disposed. In other words, this is a power transmission path for transmitting the power outputted from themotor 2 to theoutput shaft 102 without through thecover 31. - The second clutch 36 is a wet clutch. The second clutch 36 is disposed in the space enclosed by the
cover 31 and theimpeller 32. When described in detail, the second clutch 36 is disposed between thecover 31 and theturbine 33. It should be noted that the second clutch 36 is disposed between the first clutch 35 and theturbine 33. - When turned to a clutch-on state, the second clutch 36 transmits the power outputted from the
motor 2 to theoutput shaft 102. It should be noted that the second clutch 36 transmits the power outputted from themotor 2 to theoutput shaft 102 without through thecover 31 andimpeller 32, theturbine 33, and so forth. - Contrarily, when turned to a clutch-off state, the second clutch 36 blocks transmitting the power outputted from the
motor 2 to theoutput shaft 102. The states of the second clutch 36 are controlled by, for instance, the pressure of the hydraulic oil supplied to the interior of thetorque converter 3 and the direction that the hydraulic oil is supplied. - It should be noted that in traveling of a vehicle, the second clutch 36 is turned to the clutch-off state when the first clutch 35 is in the clutch-on state, whereas the second clutch 36 is turned to the clutch-on state when the first clutch 35 is in the clutch-off state.
- The third clutch 37 is disposed between the
turbine 33 and theoutput shaft 102. When described in detail, the third clutch 37 is disposed between theturbine hub 333 and theoutput shaft 102. - The third clutch 37 is configured to be capable of blocking transmitting power from the
output shaft 102 to theturbine 33. When described in detail, the third clutch 37 is a one-way clutch. The third clutch 37 is configured to allow transmitting power from theturbine 33 to theoutput shaft 102 but block transmitting power from theoutput shaft 102 to theturbine 33. - The
torque converter 3 configured as described above transmits power as follows. - First, when the rotational speed of the
motor 2 is low in starting or so forth, the first clutch 35 is turned to the clutch-on state, whereas the second clutch 36 is turned to the clutch-off state. In this condition, the first clutch 35 transmits the power outputted from themotor 2 to thecover 31. On the other hand, the second clutch 36 does not transmit the power outputted from themotor 2 to theoutput shaft 102. - The power transmitted to the
cover 31 is transmitted to theimpeller 32 and is then transmitted to theturbine 33 through the hydraulic oil. Subsequently, the power is transmitted to theoutput shaft 102 through the third clutch 37. In other words, the power outputted from themotor 2 is transmitted through the power transmission path in the order of to the first clutch 35, thecover 31, theimpeller 32, theturbine 33, the third clutch 37, and theoutput shaft 102. - Next, when the rotational speed of the
motor 2 exceeds a predetermined value, the first clutch 35 is turned to the clutch-off state, whereas the second clutch 36 is turned to the clutch-on state. In this condition, the first clutch 35 does not transmit the power outputted from themotor 2 to thecover 31. In other words, the power outputted from themotor 2 is not transmitted to thecover 31. On the other hand, the second clutch 36 transmits the power outputted from themotor 2 to theoutput shaft 102. - Because of this, the power outputted from the
motor 2 is transmitted to theoutput shaft 102 through the second clutch 36 without being transmitted to thecover 31. In other words, the second clutch 36 transmits the power outputted from themotor 2 to theoutput shaft 102 without through thecover 31. Therefore, even when themotor 2 is rotated at a high speed, thecover 31, theimpeller 32, and theturbine 33 are not rotated together with themotor 2 at the high speed. Because of this, such a situation can be prevented that thetorque converter 3 is damaged or broken due to the high-speed rotation of themotor 2. - One preferred embodiment of the present invention has been explained above. However, the present invention is not limited to the above, and a variety of changes can be made without departing from the gist of the present invention.
- In the preferred embodiment described above, the first clutch 35 is provided as the wet clutch. However, the first clutch 35 can be provided as a dry clutch. In this case, as shown in
FIG. 3 , the first clutch 35 can be disposed outside a space enclosed by thecover 31 and theimpeller 32. - In the preferred embodiment described above, the third clutch 37 is provided as the one-way clutch. However, the configuration of the third clutch 37 is not limited to this.
- In the preferred embodiment described above, the second clutch 36 is directly coupled to the
output shaft 102. However, the configuration of the second clutch 36 is not limited to this. For example, the second clutch 36 can be coupled to theoutput shaft 102 through a reduction gear and/or so forth. - In the preferred embodiment described above, the
motor 2 has been explained as an example of the prime mover. However, another type of prime mover such as an engine can be used instead. - In the preferred embodiment described above, the
stator 34 is attached to thestationary shaft 103 through the one-way clutch 104. However, the method of attaching thestator 34 is not limited to this. For example, as shown inFIG. 4 , thestator 34 can be attached to thestationary shaft 103 in a non-rotatable manner. When described in detail, thestator 34 is attached to thestationary shaft 103 without through any one-way clutch. Because of this, thestator 34 is not rotated about the rotational axis O in both forward and reverse directions. For example, thestator carrier 341 includes a spline hole and thestationary shaft 103 is spline-coupled to thestator carrier 341. - According to modification 5, advantageous effects can be obtained as follows. First, in a well-known torque converter, a stator is attached to a stationary shaft through a one-way clutch. With this configuration, when the torque converter is in a coupling range, the stator is enabled to rotate together with an impeller so as not to hinder rotation of the impeller. By contrast, in the
torque converter 3 according to the preferred embodiment described above and modification 5, when thetorque converter 3 is in a coupling range, the first clutch 35 is turned to the clutch-off state, whereby rotation of theimpeller 32 can be stopped. Therefore, even when thestator 34 is attached to thestationary shaft 103 in a non-rotatable manner, this does not result in a drawback that thestator 34 hinders rotation of theimpeller 32. Consequently, the one-way clutch can be omitted, whereby the torque converter can be made low-cost, lightweight, and compact. -
- 2 Motor
- 3 Torque converter
- 31 Cover
- 32 Impeller
- 33 Turbine
- 34 Stator
- 35 First clutch
- 36 Second clutch
- 37 Third clutch
- 100 Drive unit
- 102 Output shaft
Claims (8)
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JPJP2020-078968 | 2020-04-28 | ||
JP2020-078968 | 2020-04-28 | ||
JP2020078968 | 2020-04-28 | ||
JP2020-107207 | 2020-06-22 | ||
JPJP2020-107207 | 2020-06-22 | ||
JP2020107207A JP7576409B2 (en) | 2020-04-28 | 2020-06-22 | Torque converter and drive unit |
Publications (2)
Publication Number | Publication Date |
---|---|
US20210332874A1 true US20210332874A1 (en) | 2021-10-28 |
US11635129B2 US11635129B2 (en) | 2023-04-25 |
Family
ID=78221926
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/217,236 Active US11635129B2 (en) | 2020-04-28 | 2021-03-30 | Torque converter and drive unit |
Country Status (1)
Country | Link |
---|---|
US (1) | US11635129B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11920663B2 (en) * | 2022-06-29 | 2024-03-05 | Exedy Corporation | Drive unit |
US20240084890A1 (en) * | 2022-04-29 | 2024-03-14 | Exedy Globalparts Corporation | Selectable torque path torque converter |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4018106A (en) * | 1974-08-19 | 1977-04-19 | Toyota Jidosha Kogyo Kabushiki Kaisha | Power transmission system |
US5789823A (en) * | 1996-11-20 | 1998-08-04 | General Motors Corporation | Electric hybrid transmission with a torque converter |
US20100273603A1 (en) * | 2009-04-23 | 2010-10-28 | Gm Global Technology Operations, Inc. | Vehicle launch device having fluid coupling |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8615209D0 (en) * | 1986-06-21 | 1986-07-23 | Brown Gear Ind | Transmission |
JP3299050B2 (en) * | 1994-09-29 | 2002-07-08 | 株式会社エクセディ | Power transmission mechanism |
DE19823771A1 (en) * | 1997-06-05 | 1998-12-10 | Luk Getriebe Systeme Gmbh | Hydrodynamic torque-converter |
WO2002021020A1 (en) * | 2000-09-08 | 2002-03-14 | Voith Turbo Gmbh & Co. Kg | Starter unit |
DE10350932A1 (en) * | 2002-11-02 | 2004-05-19 | Luk Lamellen Und Kupplungsbau Beteiligungs Kg | Synchronizing control for motor vehicle automatic transmission has free pinion and shift sleeve with Synchronizing ring mounted between them for selective engagement |
FR2928432B3 (en) * | 2008-03-04 | 2010-03-19 | Valeo Embrayages | DAMPING DEVICE COMPRISING IMPROVED BRAKE MEANS. |
JP5370233B2 (en) | 2010-03-26 | 2013-12-18 | トヨタ自動車株式会社 | Vehicle control device |
DE102011088853B4 (en) * | 2011-12-16 | 2021-08-26 | Zf Friedrichshafen Ag | Method for controlling a converter clutch |
US9494220B2 (en) * | 2014-10-21 | 2016-11-15 | Caterpillar Inc. | Apparatus for controlling operation of a torque converter |
DE102014222717B4 (en) * | 2014-11-06 | 2024-02-15 | Schaeffler Technologies AG & Co. KG | Coupling device |
-
2021
- 2021-03-30 US US17/217,236 patent/US11635129B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4018106A (en) * | 1974-08-19 | 1977-04-19 | Toyota Jidosha Kogyo Kabushiki Kaisha | Power transmission system |
US5789823A (en) * | 1996-11-20 | 1998-08-04 | General Motors Corporation | Electric hybrid transmission with a torque converter |
US20100273603A1 (en) * | 2009-04-23 | 2010-10-28 | Gm Global Technology Operations, Inc. | Vehicle launch device having fluid coupling |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20240084890A1 (en) * | 2022-04-29 | 2024-03-14 | Exedy Globalparts Corporation | Selectable torque path torque converter |
US11920663B2 (en) * | 2022-06-29 | 2024-03-05 | Exedy Corporation | Drive unit |
Also Published As
Publication number | Publication date |
---|---|
US11635129B2 (en) | 2023-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11635129B2 (en) | Torque converter and drive unit | |
US20110132709A1 (en) | Torque converter | |
US11131373B2 (en) | Torque converter | |
MX2022007010A (en) | Hybrid drive module. | |
US11745577B2 (en) | Torque converter | |
US11035450B2 (en) | Drive unit | |
JP7576409B2 (en) | Torque converter and drive unit | |
US9995380B2 (en) | Hydrodynamic starting element having a pump wheel which can be rotated relative to a housing | |
US10792991B2 (en) | Hybrid module including torque converter having a stator friction brake | |
JP5212315B2 (en) | Power transmission device | |
US11535094B2 (en) | Drive unit | |
EP3699457A1 (en) | Torque converter | |
US12109876B2 (en) | Drive unit | |
US11433756B2 (en) | Drive device | |
US11831221B2 (en) | Drive device | |
US11331998B2 (en) | System for a hybrid torque converter with e-motor on an output | |
US20230327515A1 (en) | Drive unit | |
US11920663B2 (en) | Drive unit | |
JP6328177B2 (en) | Shaft support structure | |
JP7003002B2 (en) | Vehicle torque converter | |
JP6328178B2 (en) | Transmission unit | |
US20140102087A1 (en) | Power transmission device | |
CN109863332B (en) | Torque converter with one-way clutch for automatic transmission | |
JP2022100619A (en) | Driving unit | |
JP6268016B2 (en) | Power transmission device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: EXEDY CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MATSUOKA, YOSHIHIRO;REEL/FRAME:055769/0373 Effective date: 20210303 |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |