US20210266174A1 - CPU Mining in Blockchain Environments - Google Patents
CPU Mining in Blockchain Environments Download PDFInfo
- Publication number
- US20210266174A1 US20210266174A1 US17/141,278 US202117141278A US2021266174A1 US 20210266174 A1 US20210266174 A1 US 20210266174A1 US 202117141278 A US202117141278 A US 202117141278A US 2021266174 A1 US2021266174 A1 US 2021266174A1
- Authority
- US
- United States
- Prior art keywords
- proof
- work
- blockchain
- difficulty
- algorithm
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000005065 mining Methods 0.000 claims abstract description 100
- 238000012545 processing Methods 0.000 claims abstract description 75
- 238000000034 method Methods 0.000 claims abstract description 26
- 238000004422 calculation algorithm Methods 0.000 claims description 469
- 230000006854 communication Effects 0.000 claims description 49
- 238000004891 communication Methods 0.000 claims description 49
- 238000012946 outsourcing Methods 0.000 claims 6
- 238000003860 storage Methods 0.000 abstract description 20
- 230000008569 process Effects 0.000 abstract description 13
- 230000007246 mechanism Effects 0.000 description 31
- 230000006870 function Effects 0.000 description 28
- 230000004044 response Effects 0.000 description 24
- 230000008859 change Effects 0.000 description 19
- 238000004364 calculation method Methods 0.000 description 11
- 230000008901 benefit Effects 0.000 description 10
- 230000011664 signaling Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 5
- 230000006855 networking Effects 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 230000007175 bidirectional communication Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 230000002860 competitive effect Effects 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 241000685569 Ophiomyia phaseoli Species 0.000 description 1
- 240000005195 Rubus arcticus Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009429 electrical wiring Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000000135 prohibitive effect Effects 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/32—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
- H04L9/3236—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials using cryptographic hash functions
- H04L9/3239—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials using cryptographic hash functions involving non-keyed hash functions, e.g. modification detection codes [MDCs], MD5, SHA or RIPEMD
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/06—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols the encryption apparatus using shift registers or memories for block-wise or stream coding, e.g. DES systems or RC4; Hash functions; Pseudorandom sequence generators
- H04L9/0618—Block ciphers, i.e. encrypting groups of characters of a plain text message using fixed encryption transformation
- H04L9/0637—Modes of operation, e.g. cipher block chaining [CBC], electronic codebook [ECB] or Galois/counter mode [GCM]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/012—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor
- A61B1/018—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor for receiving instruments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/273—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the upper alimentary canal, e.g. oesophagoscopes, gastroscopes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61J—CONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
- A61J1/00—Containers specially adapted for medical or pharmaceutical purposes
- A61J1/05—Containers specially adapted for medical or pharmaceutical purposes for collecting, storing or administering blood, plasma or medical fluids ; Infusion or perfusion containers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61J—CONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
- A61J1/00—Containers specially adapted for medical or pharmaceutical purposes
- A61J1/05—Containers specially adapted for medical or pharmaceutical purposes for collecting, storing or administering blood, plasma or medical fluids ; Infusion or perfusion containers
- A61J1/06—Ampoules or carpules
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/001—Preparation for luminescence or biological staining
- A61K49/006—Biological staining of tissues in vivo, e.g. methylene blue or toluidine blue O administered in the buccal area to detect epithelial cancer cells, dyes used for delineating tissues during surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L24/00—Surgical adhesives or cements; Adhesives for colostomy devices
- A61L24/001—Use of materials characterised by their function or physical properties
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L24/00—Surgical adhesives or cements; Adhesives for colostomy devices
- A61L24/04—Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials
- A61L24/046—Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/04—Macromolecular materials
- A61L31/06—Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M39/00—Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
- A61M39/10—Tube connectors; Tube couplings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/007—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests for contrast media
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/178—Syringes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/178—Syringes
- A61M5/31—Details
- A61M5/32—Needles; Details of needles pertaining to their connection with syringe or hub; Accessories for bringing the needle into, or holding the needle on, the body; Devices for protection of needles
- A61M5/329—Needles; Details of needles pertaining to their connection with syringe or hub; Accessories for bringing the needle into, or holding the needle on, the body; Devices for protection of needles characterised by features of the needle shaft
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
- G06F12/02—Addressing or allocation; Relocation
- G06F12/08—Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
- G06F12/0802—Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches
- G06F12/0806—Multiuser, multiprocessor or multiprocessing cache systems
- G06F12/0815—Cache consistency protocols
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/23—Updating
- G06F16/2379—Updates performed during online database operations; commit processing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/24—Querying
- G06F16/245—Query processing
- G06F16/2458—Special types of queries, e.g. statistical queries, fuzzy queries or distributed queries
- G06F16/2465—Query processing support for facilitating data mining operations in structured databases
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/901—Indexing; Data structures therefor; Storage structures
- G06F16/9014—Indexing; Data structures therefor; Storage structures hash tables
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/60—Protecting data
- G06F21/602—Providing cryptographic facilities or services
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/60—Protecting data
- G06F21/64—Protecting data integrity, e.g. using checksums, certificates or signatures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/06—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols the encryption apparatus using shift registers or memories for block-wise or stream coding, e.g. DES systems or RC4; Hash functions; Pseudorandom sequence generators
- H04L9/0643—Hash functions, e.g. MD5, SHA, HMAC or f9 MAC
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/08—Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
- H04L9/0861—Generation of secret information including derivation or calculation of cryptographic keys or passwords
- H04L9/0869—Generation of secret information including derivation or calculation of cryptographic keys or passwords involving random numbers or seeds
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/32—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
- H04L9/3218—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials using proof of knowledge, e.g. Fiat-Shamir, GQ, Schnorr, ornon-interactive zero-knowledge proofs
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/32—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
- H04L9/3236—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials using cryptographic hash functions
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/50—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols using hash chains, e.g. blockchains or hash trees
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/442—Colorants, dyes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2400/00—Materials characterised by their function or physical properties
- A61L2400/06—Flowable or injectable implant compositions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2212/00—Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
- G06F2212/10—Providing a specific technical effect
- G06F2212/1016—Performance improvement
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2216/00—Indexing scheme relating to additional aspects of information retrieval not explicitly covered by G06F16/00 and subgroups
- G06F2216/03—Data mining
-
- H04L2209/38—
Definitions
- Exemplary embodiments may separate hashing operations from difficulty and proof-of-work operations.
- encryption such as a hashing algorithm
- Blockchain miners may also use a separate difficulty scheme and a separate proof-of-work scheme.
- the encryption/hashing algorithm, a difficulty algorithm, and a proof-of-work algorithm may thus be separately called or executed.
- a blockchain may thus use any encryption algorithm, any difficulty algorithm, and/or any proof-of-work algorithm.
- Blockchain environments may thus mix-and-match different encryption, difficulty, and/or proof-of-work schemes when mining blockchain data.
- Each encryption, difficulty, and/or proof-of-work scheme may be separate, stand-alone programs, files, or third-party services.
- Blockchain miners may be agnostic to a particular blockchain's encryption, difficulty, and/or proof-of-work schemes, thus allowing any blockchain miner to process or mine data in multiple blockchains.
- GPUs, ASICs, and other specialized processing hardware components may be deterred by forcing cache misses, cache latencies, and processor stalls.
- Hashing, difficulty, and/or proof-of-work schemes require less programming code, consume less storage space/usage in bytes, and execute faster.
- Blockchain mining schemes may further randomize byte or memory block access, further improve cryptographic security.
- FIGS. 1-19 are simplified illustrations of a blockchain environment, according to exemplary embodiments.
- FIGS. 20-21 are more detailed illustrations of an operating environment, according to exemplary embodiments.
- FIGS. 22-31 illustrate mining specifications, according to exemplary embodiments
- FIG. 32 illustrates remote retrieval, according to exemplary embodiments
- FIGS. 33-34 illustrate a bit shuffle operation, according to exemplary embodiments
- FIGS. 35-36 illustrate a database table, according to exemplary embodiments
- FIGS. 37-40 illustrate a table identifier mechanism, according to exemplary embodiments
- FIG. 41 illustrates agnostic blockchain mining, according to exemplary embodiments
- FIGS. 42-43 illustrate virtual blockchain mining, according to exemplary embodiments
- FIG. 44 is a flowchart illustrating a method or algorithm for mining blockchain transactions, according to exemplary embodiments.
- FIG. 45 depicts still more operating environments for additional aspects of exemplary embodiments.
- first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first device could be termed a second device, and, similarly, a second device could be termed a first device without departing from the teachings of the disclosure.
- FIGS. 1-19 are simplified illustrations of a blockchain environment 20 , according to exemplary embodiments.
- a miner system 22 receives one or more inputs 24 via a communications network 26 from a blockchain network server 28 . While the inputs 24 may be any electronic data 30 , in the blockchain environment 20 , the inputs 24 are blockchain transactions 32 (such as financial transactions, inventory/shipping data, and/or healthcare medical data). The actual form or content represented by the electronic data 30 and the blockchain transactions 32 may be unimportant.
- the blockchain network server 28 sends, distributes, or broadcasts the inputs 24 to some or all of the authorized mining participants (such as the miner system 22 ).
- the blockchain network server 28 may also specify a proof-of-work (“PoW”) target scheme 34 , which may accompany the inputs 24 or be separately sent from the inputs 24 .
- PoW proof-of-work
- the miner system 22 may mine the inputs 24 .
- the miner system 22 receives the inputs 24 , the miner system 22 has a hardware processor (such as CPU 36 ) and a solid-state memory device 38 that collects the inputs 24 (such as the blockchain transactions 32 ) into a block 40 of data.
- the miner system 22 finds a difficult proof-of-work (“PoW”) result 42 based on the block 40 of data.
- the miner system 22 performs, executes, or calls/requests a proof-of-work (“PoW”) mechanism 44 .
- the proof-of-work mechanism 44 is a computer program, instruction(s), or code that instruct or cause the miner system 22 to call, request, and/or execute an encryption algorithm 46 .
- the proof-of-work mechanism 44 may instruct or cause the miner system 22 to call, request, and/or execute a difficulty algorithm 48 that generates or creates a difficulty 50 .
- the proof-of-work mechanism 44 may also instruct or cause the miner system 22 to call, request, and/or execute a proof-of-work (“PoW”) algorithm 52 .
- the proof-of-work mechanism 44 may thus be one or more software applications or programming schemes that separate the encryption algorithm 46 from the difficulty algorithm 48 and/or from the proof-of-work algorithm 52 . Because the encryption algorithm 46 may be separately executed/called from the difficulty algorithm 48 and/or from the proof-of-work algorithm 52 , encryption of the electronic data 30 (representing the inputs 24 ) is separately performed from the difficulty 50 of solving the proof-of-work. In other words, any encryption algorithm 46 may be used, along with any difficulty algorithm 48 , and/or along with any proof-of-work algorithm 52 .
- FIG. 2 further illustrates the proof-of-work mechanism 44 .
- the encryption algorithm 46 may utilize any encryption scheme, process, and/or function, many readers may be familiar with a cryptographic hashing algorithm 54 (such as the SHA-256 used by BITCOIN®).
- the cryptographic hashing algorithm 54 may thus generate an output 56 (sometimes called a digest 58 ) by implementing or executing the cryptographic hashing algorithm 54 using the inputs 24 (such as the blockchain transactions 32 ). So, whatever the arbitrary bit values of the inputs 24 , and whatever the arbitrary bit length of the inputs 24 , the cryptographic hashing algorithm 54 may generate the output 56 as one or more hash values 60 , perhaps having a fixed length (or n-bit).
- the miner system 22 may thus receive the inputs 24 from the blockchain network server 28 , call and/or execute the encryption algorithm 46 (such as the cryptographic hashing algorithm 54 ), and generate the hash value(s) 60 .
- the miner system 22 may separately perform or call the proof-of-work algorithm 52 .
- the miner system 22 may read/retrieve the output(s) 56 and send the output(s) 56 to the proof-of-work algorithm 52 .
- the miner system 22 may thus generate the proof-of-work result 42 by calling and/or by executing the proof-of-work algorithm 52 using the output(s) 56 .
- the miner system 22 may send the hash value(s) 60 (generated by the cryptographic hashing algorithm 54 ) to the proof-of-work algorithm 52 , and the proof-of-work algorithm 52 generates the proof-of-work result 42 using the hash value(s) 60 .
- the proof-of-work algorithm 52 may also compare the proof-of-work result 42 to the proof-of-work (“PoW”) target scheme 34 .
- the proof-of-work algorithm 52 may, in general, have to satisfy or solve a mathematical puzzle 62 , perhaps defined or specified by the proof-of-work target scheme 34 .
- the proof-of-work target scheme 34 may also specify, or relate to, the difficulty 50 of solving the mathematical puzzle 62 .
- the difficulty 50 is a measure of how difficult it is to mine the block 40 of data, given the solution requirements of the proof-of-work target scheme 34 .
- the miner system 22 may own the block 40 of data. If the miner system 22 is the first to satisfy the proof-of-work target scheme 34 (e.g., the proof-of-work result 42 satisfies the mathematical puzzle 62 ), the miner system 22 may timestamp the block 40 of data and broadcast the block 40 of data, the timestamp, the proof-of-work result 42 , and/or the mathematical puzzle 62 to other miners in the blockchain environment 20 . The miner system 22 , for example, may broadcast a hash value representing the block 40 of data, and the other miners begin working on a next block in the blockchain 64 .
- the proof-of-work target scheme 34 e.g., the proof-of-work result 42 satisfies the mathematical puzzle 62
- the miner system 22 may broadcast a hash value representing the block 40 of data, and the other miners begin working on a next block in the blockchain 64 .
- Conventional mining schemes are integrated.
- a conventional blockchain miner attempts to solve the mathematical puzzle 62
- the conventional blockchain miner executes a conventional scheme that integrates hashing, difficulty, and proof-of-work. That is, conventional proof-of-work schemes require the miners to execute a combined software offering or pre-set combination of encryption and proof.
- These conventional proof-of-work scheme in other words, integrate a predetermined encryption/hashing algorithm into or with a predetermined difficulty and a predetermined proof-of-work algorithm.
- These conventional proof-of-work schemes thus force the miners to execute a predetermined or predefined scheme that functionally marries or bundles encryption, difficulty, and proof-of-work.
- BITCOIN's difficulty mechanism is a measure of how difficult it is to mine a BITCOIN® block of data.
- BITCOIN® miners are required to find a hash value below a given target (e.g., SHA256(nonce+input) has n leading zeros, where n determines the mining difficulty).
- the difficulty adjustment is directly related to the total estimated mining power (sometimes estimated in Total Hash Rate per second).
- BITCOIN's difficulty mechanism is adjusted to basically ensure that ten (10) minutes of computation are required before a miner may solve the mathematical puzzle 62 .
- FPGAs were able to compute the mathematical operations required to mine the block 40 of data twice as fast as the GPU.
- FPGA devices were more labor-intensive to build and still require customized configurations (both software programming and hardware).
- Today's BITCOIN® miners have pushed the hardware requirements even further by using a specialized application-specific integrated circuit (ASIC) that is exclusively designed for blockchain mining. These ASICs may be 100 billion times faster than mere CPUs.
- ASICs have made BITCOIN® mining undemocratic and only possible by a relatively few, well capitalized entities running mining farms.
- Today's BITCOIN® miners thus consume great quantities of electrical power and pose concerns for the electrical grid.
- the RAVENCOIN® scheme uses several different hashing algorithms, and a particular hashing algorithm is picked for one block based off of a hash of a previous block (the RAVENCOIN® scheme resembles a random selection of the hashing algorithm).
- the RAVENCOIN® scheme makes it very expensive for a miner to buy sixteen (16) different hardware rigs in order to mine according to the RAVENCOIN® scheme. Even if a miner decides to only mine the blocks that match a particular hardware requirement, the hardware still sits idle 14-15 cycles on average.
- Some blockchains may also alter or modify the mining scheme.
- the MONERO® mining scheme uses a specialized hashing function that implements a random change. That is, the MONERO® mining scheme uses a hash algorithm that unpredictably rewrites itself.
- the MONERO® mining network introduced a RandomX mining algorithm that was designed to deter ASICs and to improve the efficiency of conventional CPUs. MONERO's RandomX mining algorithm uses random code execution and memory-intensive techniques, rendering ASICs too expensive and ineffective to develop.
- the conventional mining schemes thus have many disadvantages.
- Conventional mining schemes have become so specialized and so expensive that only a small number of large miners have the resources to compete.
- Blockchain mining in other words, has become centralized and undemocratic.
- Some conventional schemes try to find new hashing algorithms, new proof-of-work schemes, or modify existing schemes to de-centralize and to democratize mining participants.
- Some conventional mining schemes (such as ETHERTUIM®) require very large memory spaces in bytes, which disadvantages its hardware.
- LITECOIN® also disadvantages hardware by copying large byte amounts of data.
- exemplary embodiments may mix-and-match the encryption algorithm 46 , the difficulty algorithm 48 , and the proof-of-work algorithm 52 .
- the inventor has observed that there is no mining law or scheme that requires a preset or predefined difficulty scheme (such as BITCOIN'S counting zeroes on the hash to decide its difficulty).
- exemplary embodiments may use any encryption algorithm 46 that a cryptographic coin, network, or scheme desires or specifies.
- exemplary embodiments may use any difficulty algorithm 48 that the cryptographic coin, network, or scheme desires or specifies.
- Exemplary embodiments may use any proof-of-work algorithm 52 that the cryptographic coin, network, or scheme desires or specifies.
- FIG. 4 illustrates the encryption algorithm 46 , the difficulty algorithm 48 , and proof-of-work algorithm 52 as separate software mechanisms.
- FIG. 5 illustrates alternative software mechanism where the difficulty algorithm 48 and proof-of-work algorithm 52 may be functionally intertwined, but the encryption algorithm 46 is a separate, stand-alone program, file, or service.
- FIG. 6 illustrates the inputs and outputs for the encryption algorithm 46 , the difficulty algorithm 48 , and proof-of-work algorithm 52 .
- FIG. 7 illustrates agnostic hashing.
- Exemplary embodiments may use any encryption algorithm 46 that a cryptographic coin, blockchain network, or scheme desires or specifies. Because most blockchain mining schemes use hashing, FIG. 7 illustrates the cryptographic hashing algorithm 54 .
- the proof-of-work (“PoW”) target scheme 34 may thus use any cryptographic hashing algorithm 54 , as exemplary embodiments are agnostic to hashing/encryption.
- the encryption algorithm 46 may be any cryptographic hashing algorithm 54 (e.g., the SHA-2 family (SHA-256 and SHA-512) and/or the SHA-3 family).
- FIG. 7 thus illustrates an electronic database 70 of encryption algorithms accessible to the miner system 22 . While the database 70 of encryption algorithms is illustrated as being locally stored in the memory device 38 of the miner system 22 , the database 70 of encryption algorithms may be remotely stored and accessed/queried at any networked location. Even though the database 70 of encryption algorithms may have any logical structure, a relational database is perhaps easiest to understand.
- FIG. 7 thus illustrates the database 70 of encryption algorithms as an electronic table 72 that maps, converts, or translates different proof-of-work target schemes 34 to their corresponding or associated encryption algorithm 46 (such as the particular cryptographic hashing algorithm 54 ).
- the miner system 22 may thus identify the encryption algorithm 46 by querying the electronic database 70 of encryption algorithms for the proof-of-work target scheme 34 specified for use by the blockchain environment 20 . So, once the particular cryptographic hashing algorithm 54 is identified, the miner system 22 may acquire or retrieve any inputs 24 (such as the blockchain transactions 32 ) and execute the cryptographic hashing algorithm 54 specified by the proof-of-work target scheme 34 . The miner system 22 may optionally send the inputs 24 via the Internet or other network (e.g., the communications network 26 illustrated in FIGS. 1-3 ) to a remote destination for service execution (as later paragraphs will explain). The encryption algorithm 46 (e.g., the cryptographic hashing algorithm 54 specified by the proof-of-work target scheme 34 ) may thus generate the output 56 /digest 58 represented as the hash value(s) 60 .
- the encryption algorithm 46 e.g., the cryptographic hashing algorithm 54 specified by the proof-of-work target scheme 34
- FIG. 8 illustrates agnostic difficulty.
- Exemplary embodiments may use any difficulty algorithm 48 that a cryptographic coin, blockchain network, or scheme desires or specifies.
- the miner system 22 may request, call, and/or execute the particular difficulty algorithm 48 selected by, or specified by, the proof-of-work target scheme 34 and/or the blockchain environment 20 .
- the proof-of-work target scheme 34 may thus use any difficulty algorithm 48 , as the miner system 22 is agnostic to difficulty.
- FIG. 8 illustrates an electronic database 74 of difficulty algorithms that is accessible to the miner system 22 .
- FIG. 8 thus illustrates the database 74 of difficulty algorithms as an electronic table 76 that maps, converts, or translates different proof-of-work target schemes 34 to their corresponding or associated difficulty algorithm 48 (such as the particular cryptographic hashing algorithm 54 ).
- the miner system 22 may thus identify the difficulty algorithm 48 by querying the electronic database 74 of difficulty algorithms.
- the miner system 22 may acquire or retrieve any inputs that are required by the difficulty algorithm 48 (such as the output hash value(s) 60 generated by the cryptographic hashing algorithm 54 ).
- the miner system 22 may execute the difficulty algorithm 48 specified by the proof-of-work target scheme 34 .
- the miner system 22 may optionally send the hash value(s) 60 via the Internet or other network (e.g., the communications network 26 illustrated in FIGS. 1-3 ) to a remote destination for service execution (as later paragraphs will explain).
- the difficulty algorithm 48 creates or generates the difficulty 50 based on the hash value(s) 60 .
- FIG. 9 illustrates agnostic proof-of-work.
- Exemplary embodiments may use any proof-of-work algorithm 52 that a cryptographic coin, blockchain network, or scheme desires or specifies.
- the proof-of-work target scheme 34 may thus use any proof-of-work algorithm 52 , as the miner system 22 is agnostic to encryption, difficulty, and/or proof-of-work.
- FIG. 9 illustrates an electronic database 78 of proof-of-work algorithms that is accessible to the miner system 22 . While the database 78 of proof-of-work algorithms is illustrated as being locally stored in the memory device 38 of the miner system 22 , the database 78 of proof-of-work algorithms may be remotely stored and accessed/queried at any networked location.
- FIG. 9 thus illustrates the database 78 of proof-of-work algorithms as an electronic table 80 that maps, converts, or translates different proof-of-work target schemes 34 to their corresponding proof-of-work algorithm 52 .
- the miner system 22 may thus identify the proof-of-work algorithm 52 by querying the electronic database 78 of proof-of-work algorithms. After the hash value(s) 60 are generated, and perhaps after the difficulty 50 is generated, the miner system 22 may execute the proof-of-work algorithm 52 (specified by the proof-of-work target scheme 34 ) using the hash value(s) 60 and/or the difficulty 50 as inputs.
- the miner system 22 may optionally send the hash value(s) 60 and/or the difficulty 50 via the Internet or other network to a remote destination for service execution (as later paragraphs will explain).
- the proof-of-work algorithm 52 generates the proof-of-work result 42 using the hash value(s) 60 and/or the difficulty 50 .
- the proof-of-work algorithm 52 may also compare the proof-of-work result 42 to the proof-of-work (“PoW”) target scheme 34 to ensure or to prove a solution to the mathematical puzzle 62 .
- PoW proof-of-work
- Exemplary embodiments may thus use any encryption algorithm 46 , any difficulty algorithm 48 , and/or any proof-of-work algorithm 52 .
- Exemplary embodiments may implement any cryptographic security. Instead of merely counting zeroes (as specified by BITCOIN′), exemplary embodiments may run the resulting hash value 60 through the difficulty algorithm 48 to calculate the difficulty 50 in order to determine whether it's more or less difficult than other hashes.
- exemplary embodiments may use any PoW target scheme 34 .
- the proof-of-work algorithm 52 may have to compare the hash value(s) 60 to a target hash value 82 .
- the target hash value 82 may be any minimum or maximum hash value that must be satisfied. If the hash value 60 is less than or perhaps equal to the target hash value 82 , then the proof-of-work algorithm 52 has perhaps solved the mathematical puzzle 62 . However, if the hash value 60 is greater than the target hash value 82 , then perhaps the proof-of-work algorithm 52 has failed to solve the mathematical puzzle 62 .
- the hash value 60 may need to be equal to or greater than the target hash value 82 to be satisfactory. Regardless, should the hash value 60 fail to satisfy the target hash value 82 , exemplary embodiments may modify any data or input (e.g., the electronic data 30 , a random number/nonce value, address, starting points, etc.) according to the proof-of-work target scheme 34 , again call or request the cryptographic hashing algorithm 54 to generate the corresponding hash value(s) 60 , and compare the hash value(s) 60 to the target hash value 82 . Exemplary embodiments may repeatedly modify the electronic data 30 and/or any other parameters until the corresponding hash value(s) 60 satisfy the target hash value 82 .
- any data or input e.g., the electronic data 30 , a random number/nonce value, address, starting points, etc.
- Exemplary embodiments may repeatedly modify the electronic data 30 and/or any other parameters until the corresponding hash value(s) 60 satisfy the target hash value 82
- Exemplary embodiments may also use any difficulty scheme.
- the difficulty algorithm 48 may have to compare the difficulty 50 to a target difficulty 84 .
- the target difficulty 84 has a bit or numeric value that represents a satisfactory difficulty of the corresponding cryptographic hashing algorithm 54 and/or the hash value 60 .
- the target difficulty 84 is a minimum value that represents a minimum permissible difficulty associated with the corresponding cryptographic hashing algorithm 54 . If the difficulty 50 is less than or perhaps equal to the target difficulty 84 , then perhaps the corresponding cryptographic hashing algorithm 54 and/or the hash value 60 is adequately difficult.
- exemplary embodiments may modify any data or input (e.g., the electronic data 30 , a random number/nonce value, address, starting points, etc.) and recompute the corresponding hash value(s) 60 .
- exemplary embodiments may additionally or alternatively change the cryptographic hashing algorithm 54 and/or the difficulty algorithm 48 and recompute.
- Exemplary embodiments may thus functionally separate hashing, difficulty, and proof-of-work.
- the conventional proof-of-work target scheme 34 functionally combines or performs both hashing and difficulty.
- the conventional proof-of-work target scheme 34 integrates or combines the difficulty in the hash.
- the conventional proof-of-work target scheme 34 integrates or combines the difficulty in the hash, thus greatly complicating the hash determination.
- Exemplary embodiments instead, may separate the hashing algorithm 54 from the difficulty algorithm 48 .
- Exemplary embodiments put the difficulty 50 in the measurement of the difficulty 50 .
- Exemplary embodiments remove the difficulty 50 from the hashing algorithm 54 .
- the hashing algorithm 54 is not complicated by also having to integrate/calculate the difficulty algorithm 48 .
- the difficulty algorithm 48 may thus be a separate, stand-alone function or service that determines or calculates which hash is more difficult.
- the hashing algorithm 54 is much simpler to code and much faster to execute, as the hashing algorithm 54 requires less programming code and less storage space/usage in bytes.
- the hashing algorithm 54 need not be complicated to deter ASIC mining. Exemplary embodiments need not rely on the hashing algorithm 54 to also determine the difficulty 50 and/or the proof-of-work.
- the difficulty algorithm 48 is, instead, a separate functional mechanism, perhaps performed or executed by a service provider. Exemplary embodiments thus need not use an electrical power-hungry mechanism that is inherent in the conventional proof-of-work scheme.
- FIG. 11 illustrates a randomized database table 90 .
- the difficulty algorithm 48 and/or the proof-of-work algorithm 52 may use or consult the database table 90 when conducting any proof-of-work (e.g., 34 and/or 44 ). While exemplary embodiments may use any encryption scheme, most blockchain mining uses some form of hashing.
- FIG. 11 thus the proof-of-work target scheme 34 that utilizes the separate cryptographic hashing algorithm 54 , but the difficulty algorithm 48 and/or the proof-of-work algorithm 52 implements a further randomization of the resulting hash value(s) 60 .
- the proof-of-work target scheme 34 or mechanism 44 may generate, store, and/or use the database table 90 when performing any proof-of-work.
- Exemplary embodiments may implement a bit shuffle operation 92 on the hash value(s) 60 .
- Exemplary embodiments may use entries in the database table 90 to perform the bit shuffle operation 92 (as later paragraphs will explain).
- Each entry 94 in the database table 90 may contain a random selection of bits/bytes 96 .
- the difficulty algorithm 48 and/or the proof-of-work algorithm 52 may select any bit values representing the hash value(s) 60 and swap any one or more of the bit values with any one or more entries 94 specified by the database table 90 .
- the difficulty algorithm 48 and/or the proof-of-work algorithm 52 may read or select a bit portion of the bit values representing the hash value(s) 60 and exchange or replace the bit portion with an entry 94 contained in, or referenced by, the database table 90 .
- Each entry 94 in the database table 90 represents or is associated with random bits or bytes. Exemplary embodiments may thus randomly shuffle the hash value(s) 60 generated by the cryptographic hashing algorithm 54 . Exemplary embodiments randomize byte or memory block access.
- FIG. 12 illustrates RAM binding. Exemplary embodiments may discourage or deter the use of specialized hardware (such as GPUs and ASICs) in blockchain mining.
- the proof-of-work target scheme 34 may take advantage of, or target, memory size restrictions and cache latency of any on-board processor cache memory 100 .
- any hardware processing element may have integrated/embedded L1, L2, and L3 SRAM/DRAM cache memory.
- the processor cache memory 100 is generally much smaller than a system/main memory (such as the memory device 38 ), so the hardware processing element may store frequently-needed data and instructions.
- any hardware processing element is able to quickly fetch or hit needed information. If the processor cache memory 100 does not store the needed information, then a cache miss has occurred and the hardware processing element must request and write blocks of data via a much-slower bus from the system/main memory 38 .
- a cache miss implies a cache latency in time and/or cycles to fetch the needed information from the system/main memory 38 . Any hardware processing element (again, whether a GPU, an ASIC, or the CPU 36 ) may sit idle, or stall, while awaiting fetches from the system/main memory 38 .
- Exemplary embodiments may thus force latency, cache misses, and stalls.
- Exemplary embodiments may target cache latency and processor stalls by generating, storing, and/or using the database table 90 when determining the hash value(s) 60 (as later paragraphs will explain).
- the database table 90 may be sized to overload the processor cache memory 100 .
- the database table 90 in other words, may have a table byte size 102 (in bits/bytes) that exceeds a storage capacity or cache byte size 104 of the processor cache memory 100 .
- the database table 90 for example, may exceed one gigabyte (1 GB).
- Today's L1, L2, and L3 processor cache memory is typically hundreds of megabits in size.
- the L1, L2, and L3 processor cache memory 100 lacks the storage capacity or byte size 104 to store the entire database table 90 . Perhaps only a portion (or perhaps none) of the database table 90 may be stored in the processor cache memory 100 . Indeed, exemplary embodiments thus force some, most, or even all of the database table 90 to be written or stored to the main/host memory device 38 (or accessed/retrieved from a remote source, as later paragraphs will explain).
- any hardware processing element (again, whether a GPU, an ASIC, or the CPU 36 ) is unable to cache the entire database table 90 , exemplary embodiments force a cache miss and further force the hardware processing element to repeatedly use the processor cache memory 100 to fetch and load a portion of the database table 90 .
- the main/system memory 38 thus provides perhaps a particular portion of the database table 90 via the bus to the processor cache memory 100 , and the processor cache memory 100 then provides that particular portion of the database table 90 to the hardware processing element.
- the hardware processing element may then purge or delete that particular portion of the database table 90 from the processor cache memory 100 and request/fetch/load another portion of the database table 90 .
- the hardware processing element may continuously repeat this cycle for loading/retrieving most or all portions of the database table 90 .
- the hardware processing element in other words, repeatedly queries the processor cache memory 100 and/or the main/host memory device 38 and awaits data retrieval.
- the hardware processing element must therefore sit, perhaps mostly idle, while the processor cache memory 100 and/or the main/host memory device 38 processes, retrieves, and sends different segments/portions/blocks of the database table 90 .
- the processor cache memory 100 and/or the main/host memory device 38 have the cache latency (perhaps measured in clock cycles, data transfer rate, or time) that limits blockchain computations.
- a faster processor/GPU/ASIC in other words, will not improve memory access times/speeds, so any computational speed/performance is limited by the latency of repeatedly accessing the processor cache memory 100 and/or the main/host memory device 38 .
- the database table 90 thus deters GPU/ASIC usage when processing the blockchain transactions 32 .
- the database table 90 may thus be purposefully designed to be non-cacheable by intensively using the processor cache memory 100 and/or the main/host memory device 38 as an ASIC-deterrence mechanism.
- Byte or memory block access may be randomized.
- exemplary embodiments may implement the bit shuffle operation 92 on the hash value(s) 60 .
- Exemplary embodiments may use the entries 94 in the database table 90 to perform the bit shuffle operation 92 (as later paragraphs will further explain).
- the proof-of-work target scheme 34 may use bit values representing the hash value(s) 60 , but the proof-of-work target scheme 34 may swap any one or more of the bit values with any one or more entries 94 specified by the database table 90 .
- Each entry 94 in the database table 90 may contain a random selection of bits/bytes.
- the proof-of-work target scheme 34 may cause the proof-of-work algorithm 52 to read or to select a bit portion of the bit values representing the hash value(s) 60 and exchange or replace the bit portion with an entry 94 contained in, or referenced by, the database table 90 .
- Each entry 94 in the database table 90 represents or is associated with random bits or bytes.
- the proof-of-work target scheme 34 may thus randomly shuffle the hash value(s) 60 generated by the cryptographic hashing algorithm 54 .
- Exemplary embodiments may discourage or deter specialized hardware in blockchain mining.
- the miner system 22 must have access to the database table 90 in order to execute the bit shuffle operation 92 , difficulty algorithm 48 , and/or the proof-of-work algorithm 52 .
- any processing component e.g., ASIC, GPU, or the CPU 36
- exemplary embodiments force the processing component to query the processor cache memory 100 and/or the main/host memory device 38 and to await data retrieval.
- the hardware processing component must therefore sit, perhaps mostly idle, while the processor cache memory 100 and/or the main/host memory device 38 processes, retrieves, and sends different segments/portions/blocks of the database table 90 .
- a faster GPU/ASIC will thus not improve memory access times/speeds.
- Exemplary embodiments thus force miners to choose the CPU 36 , as a faster GPU/ASIC provides no performance/speed gain. Moreover, because a faster GPU/ASIC is ineffective, the extra capital expense of a faster GPU/ASIC offers little or no benefit and cannot be justified. Exemplary embodiments thus bind miners to the CPU 36 for blockchain processing/mining.
- Exemplary embodiments thus include RAM hashing.
- the electronic database table 90 may have a random number of columns and/or a random number of rows.
- the electronic database table 90 may have a random number of database entries 94 .
- each columnar/row database entry 94 may also have a random sequence or selection of bits/bytes (1's and 0's). So, whatever the hash values 60 generated by the hashing algorithm 54 , the separate difficulty algorithm 48 and/or proof-of-work algorithm 52 may use the electronic database table 90 to further randomize the hash values 60 for additional cryptographic security.
- exemplary embodiments effectively confine hashing operations to the main/host memory device 38 (such as a subsystem RAM). Regardless of what device or service provider executes the hashing algorithm 54 , the electronic database table 90 , which is mostly or entirely stored in the main/host memory device 38 , provides the randomized inputs to the separate difficulty algorithm 48 and/or proof-of-work algorithm 52 . Operationally and functionally, then, exemplary embodiments divorce or functionally separate any hardware processing element from the hashing operation.
- the database table 90 may be randomly sized to always exceed the storage capacity or cache byte size 104 of the processor cache memory 100 . Hashing operations are thus reliant on cache latency, cache misses, and processor stalls when using the database table 90 .
- the hashing operations are thus largely confined to, and performed by, the off-board or off-processor main/host memory device 38 (such as a subsystem RAM). Because the main/host memory device 38 performs most or all of the cryptographic security, the hardware processing component (ASIC, GPU, or the CPU 36 ) may play little or no role in the hashing operations (perhaps only performing database lookup queries). Again, a better/faster ASIC or GPU provides little to no advantage in the hashing operations. Moreover, the main/host memory device 38 consumes much less electrical power, thus further providing reduced energy costs that deter/resist ASIC/GPU usage.
- Exemplary embodiments may also add cryptographic security. Exemplary embodiments may force the miner/network to possess, or have authorized access to, the database table 90 .
- the proof-of-work target scheme 34 swaps random bytes in the hash value 60 with other random bytes specified by the database table 90 . Any party that provides or determines a proof-of-work must possess (or have access to) the database table 90 . If the difficulty algorithm 48 and/or the proof-of-work algorithm 52 lacks authorized access to the database table 90 , then the difficulty algorithm 48 and/or the proof-of-work algorithm 52 cannot query the database table 90 nor perform database lookup operations. Difficulty and/or proof-of-work will fail without having access to the database table 90 .
- Exemplary embodiments may also separately specify the difficulty algorithm 48 .
- the proof-of-work target scheme 34 may cause the miner system 22 to apply the bit shuffle operation 92 to the hash value 60 .
- the proof-of-work target scheme 34 may also specify the difficulty algorithm 48 and the target difficulty 84 , perhaps having a high number or value. Because these byte accesses to the processor cache memory 100 are random and over a gigabyte of the memory space, the byte accesses blow or exceed the retrieval and/or byte size storage capabilities of the processor cache memory 100 .
- the proof-of-work target scheme 34 thus forces the miner system 22 to wait on the slower main/host memory device 38 (rather than waiting on the speed of the hardware processing component).
- a faster/better hardware processing element (such as an ASIC), in other words, does not alleviate the bottleneck of accessing the main/host memory device 38 .
- the miner system 22 consumes significantly less of electrical power (supplied by a power supply 110 ).
- the proof-of-work algorithm 52 and the difficulty algorithm 48 may be separate from the cryptographic hashing algorithm 54
- exemplary embodiments utilize the security of a well-tested hashing function, but exemplary embodiments also require the proof-of-work scheme to use the main/host memory device 38 , which makes it unreasonable to build ASICS.
- Exemplary embodiments may thus force usage of a particular physical memory.
- Exemplary embodiments may overload the processor cache memory 100 by gorging the byte size of the database table 90 with additional database entries. Even as L1, L2, and L3 processor cache memory 100 increases in the storage capacity or byte size 104 , exemplary embodiments may concomitantly increase the table byte size 102 (in bits/bytes) to ensure the database table 90 continues to exceeds the storage capacity or byte size 104 of the processor cache memory 100 .
- Exemplary embodiments may thus bind the encryption algorithm 46 , the difficulty algorithm 48 , and/or the proof-of-work algorithm 52 to the main/host memory device 38 to deter GPU/ASIC usage.
- Exemplary embodiments may also unbind the hashing algorithm 54 from the difficulty algorithm 48 .
- Exemplary embodiments easily validate the proof-of-work by changing how proof-of-work is calculated without changing the hashing algorithm 54 .
- the hashing algorithm 54 is disassociated or disconnected from the difficulty algorithm 48 , the cryptographically security of the hashing algorithm 54 is increased or improved.
- the separate difficulty algorithm 48 and/or proof-of-work algorithm 52 may have other/different objectives, without compromising the cryptographically security of the hashing algorithm 54 .
- the difficulty algorithm 48 and/or proof-of-work algorithm 52 may be designed for less consumption of the electrical power.
- the difficulty algorithm 48 and/or proof-of-work algorithm 52 may additionally or alternatively be designed to deter/resist ASIC/GPU usage, such as increased usage of the processor cache memory 100 and/or the main/host memory device 38 .
- the difficulty algorithm 48 and/or proof-of-work algorithm 52 need not be cryptographically secure. Because the hashing algorithm 54 ensures the cryptographically security, the difficulty algorithm 48 and/or proof-of-work algorithm 52 need not be burdened with providing the cryptographically security.
- the difficulty algorithm 48 and/or proof-of-work algorithm 52 each require less programming code and less storage space/usage in bytes, so each is much simpler to code and much faster to execute.
- FIG. 13 illustrates network binding. Because the encryption algorithm 46 , the difficulty algorithm 48 , and the proof-of-work algorithm 52 may be separate software modules, routines, or clients, network communications may be used to deter specialized hardware. As FIG. 13 illustrates, the miner system 22 communicates with the blockchain network server 28 via the communications network 26 . Because the miner system 22 may be authorized to perform blockchain mining (perhaps according to the proof-of-work target scheme 34 specified or used by the blockchain network server 28 ), the miner system 22 may receive the inputs 24 from the blockchain network server 28 . The miner system 22 , in other words, must use the communications network 26 to receive the inputs 24 and to subsequently mine the inputs 24 .
- the miner system 22 uses the inputs 24 to determine the hash value 60 and/or the difficulty 50 (as this disclosure above explains). However, suppose the blockchain network server 28 stores the database table 90 that is required for the difficulty algorithm 48 and/or the proof-of-work algorithm 52 . Even though the miner system 22 may execute the encryption algorithm 46 , the difficulty algorithm 48 , and/or the proof-of-work algorithm 52 , the miner system 22 may be forced to send one or more database queries to the blockchain network server 28 .
- the blockchain network server 28 may have a hardware processing element and a memory device (not shown for simplicity) that stores the database table 90 .
- the blockchain network server 28 may also store and execute a query handler software application (also not shown for simplicity) that receives queries from clients, identifies or looks up entries 94 in the database table 90 , and sends query responses to the clients. So, when the miner system 22 is instructed to perform, or require, the bit shuffle operation 92 , the miner system 22 may thus be forced to retrieve any entry 94 (specified by the database table 90 ) via the communications network 26 from the blockchain network server 28 . The miner system 22 may thus send the database query to the network address assigned to or associated with the blockchain network server 28 .
- a query handler software application also not shown for simplicity
- the miner system 22 then awaits a query response sent via the communications network 26 from the blockchain network server 28 , and the query response includes or specifies the random selection of bits/bytes retrieved from the particular entry 94 in the database table 90 .
- the miner system 22 may then perform the bit swap operation 92 on the hash value(s) 60 (as this disclosure above explains).
- Exemplary embodiments may use a network latency 112 to discourage or deter specialized hardware. Because the blockchain network server 28 may store the database table 90 , the miner system 22 is performance bound by the network latency 112 in the communications network 26 . Packet communications between the blockchain network server 28 and the destination miner system 22 require time, and the network latency 112 is affected by network routing, network segment travel distances, network traffic, and many other factors. Exemplary embodiments may thus additionally or alternatively force the miner system 22 to wait on the communications network 26 to obtain any entry 94 in the database table 90 . A faster/better hardware processing component (such as an ASIC) does not overcome bottleneck(s) due to the network latency 112 in the communications network 26 . Moreover, because the electrical power required by a network interface 114 is likely less than the hardware processing component, the miner system 22 consumes significantly less of electrical power.
- a faster/better hardware processing component such as an ASIC
- FIG. 14 illustrates party binding.
- the miner system 22 may utilize an authorized proof-of-work (“PoW”) service provider 120 that provides a PoW service 122 .
- the miner system 22 may communicate with a PoW server 124 via the communications network 26 , and the PoW server 124 is operated by, or on behalf of, the PoW service provider 120 .
- the PoW service provider 120 may be authorized to execute the difficulty algorithm 48 and/or the proof-of-work algorithm 52 as a provable party.
- the PoW server 124 may have a hardware processing element and a memory device (not shown for simplicity) that stores the difficulty algorithm 48 and/or the proof-of-work algorithm 52 .
- FIG. 14 illustrates a party identifier 126 as one of the inputs 24 to the difficulty algorithm 48 and to the proof-of-work algorithm 52 .
- the party identifier 126 may be supplied or sent from any network location (such as the blockchain network server 28 and/or the miner system 22 )
- the party identifier 126 may be locally retrieved from the memory device of the PoW server 124 .
- the miner system 22 may send a PoW request 128 to a network address (e.g., IP address) associated with the PoW server 124 .
- a network address e.g., IP address
- the PoW request 128 may include or specify one or more of the inputs 24 to the difficulty algorithm 48 and/or to the proof-of-work algorithm 52 .
- the PoW request 128 includes or specifies the hash value(s) 60 (determined by the hashing algorithm 54 , as above explained).
- the PoW server 124 may generate the difficulty 50 (by calling or executing the difficulty algorithm 48 ) and/or the proof-of-work result 42 (by calling and/or by executing the proof-of-work algorithm 52 ) using the hash value(s) 60 and the party identifier 126 .
- the PoW server 124 may then send the difficulty 50 and/or the proof-of-work result 42 as a PoW service response 130 back to the IP address associated with the miner system 22 and/or back to the IP address associated with the blockchain network server 28 .
- Either or both of the PoW server 124 and/or the blockchain network server 28 may compare the difficulty 50 and/or the proof-of-work result 42 to the proof-of-work (“PoW”) target scheme 34 . If the difficulty 50 and/or the proof-of-work result 42 satisfies the proof-of-work (“PoW”) target scheme 34 , then the correct, authorized party has solved the mathematical puzzle 62 associated with the mining scheme.
- Exemplary embodiments may thus be socially bound. Because the party identifier 126 may be an input to the difficulty algorithm 48 and/or to the proof-of-work algorithm 52 , the party identifier 126 must specify the correct name, code, alphanumeric combination, binary value, or any other representation of the PoW service provider 120 . If the wrong, incorrect, or unauthorized value is input, the difficulty algorithm 48 and/or the proof-of-work algorithm 52 will generate incorrect results that cannot satisfy the proof-of-work (“PoW”) target scheme 34 . An unauthorized party has been used to conduct the proof-of-work.
- PoW proof-of-work
- FIG. 15 illustrates machine binding.
- the miner system 22 may utilize a particular machine, device, or other computer to provide the PoW service 122 .
- the miner system 22 for example, must use the PoW server 124 to execute the difficulty algorithm 48 and/or the proof-of-work algorithm 52 as a provable party. That is, perhaps only the PoW server 124 is authorized to execute the difficulty algorithm 48 and/or the proof-of-work algorithm 52 .
- a different computer or server even if also operated by, or on behalf of, the PoW service provider 120 , is ineligible or unauthorized.
- FIG. 15 thus illustrates a machine identifier 130 as one of the inputs 24 to the difficulty algorithm 48 and/or to the proof-of-work algorithm 52 .
- the machine identifier 130 is any value, number, or alphanumeric combination that uniquely identifies the PoW server 124 executing the difficulty algorithm 48 and/or the proof-of-work algorithm 52 .
- the machine identifier 130 may be a chassis or manufacturer's serial number, MAC address, or IP address that is assigned to or associated with the PoW server 124 .
- the PoW server 124 may generate the difficulty 50 and/or the proof-of-work result 42 using the hash value(s) 60 and the machine identifier 130 as inputs.
- the PoW server 124 may then send the difficulty 50 and/or the proof-of-work result 42 as a PoW service response 130 back to the IP address associated with the miner system 22 and/or back to the IP address associated with the blockchain network server 28 .
- Either or both of the PoW server 124 and/or the blockchain network server 28 may compare the difficulty 50 and/or the proof-of-work result 42 to the proof-of-work (“PoW”) target scheme 34 . If the difficulty 50 and/or the proof-of-work result 42 satisfy the proof-of-work (“PoW”) target scheme 34 , then the correct, authorized machine or device has solved the mathematical puzzle 62 associated with the mining scheme. Exemplary embodiments may thus be machine bound.
- the difficulty algorithm 48 and/or the proof-of-work algorithm 52 will generate incorrect results that cannot satisfy the proof-of-work (“PoW”) target scheme 34 .
- An unauthorized computer has been used to conduct the proof-of-work.
- FIG. 16 further illustrates network binding.
- a predetermined network addressing scheme must be used to conduct the difficulty 50 and/or the proof-of-work result 42 .
- the proof-of-work (“PoW”) target scheme 34 requires one or more predetermined network addresses 134 when executing the difficulty algorithm 48 and/or the proof-of-work algorithm 52 .
- the inputs 24 to the difficulty algorithm 48 and/or to the proof-of-work algorithm 52 may include one or more source addresses 136 and/or one or more destination addresses 138 when routing packetized data via the communications network 26 from the miner system 22 to the PoW service provider 120 (e.g., the PoW server 124 ).
- the hash values 60 in other words, must traverse or travel a predetermined network routing 140 in order to satisfy the proof-of-work (“PoW”) target scheme 34 .
- the predetermined network routing 140 may even specify a chronological list or order of networked gateways, routers, switches, servers, and other nodal addresses that pass or route the inputs 24 from the miner system 22 to the PoW server 124 .
- the source addresses 136 , the destination addresses 138 , and/or the predetermined network routing 140 may thus be additional data inputs 24 to the difficulty algorithm 48 and/or to the proof-of-work algorithm 52 .
- the PoW server 124 may perform network packet inspection to read/retrieve the source addresses 136 , the destination addresses 138 , and/or the predetermined network routing 140 associated with, or specified by, a data packet.
- the PoW server 124 may generate the difficulty 50 and/or the proof-of-work result 42 using the hash value(s) 60 , the source addresses 136 , the destination addresses 138 , and/or the predetermined network routing 140 .
- the PoW server 124 may then send the difficulty 50 and/or the proof-of-work result 42 as the PoW service response 130 back to the IP address associated with the miner system 22 and/or back to the IP address associated with the blockchain network server 28 .
- Either or both of the PoW server 124 and/or the blockchain network server 28 may compare the difficulty 50 and/or the proof-of-work result 42 to the proof-of-work (“PoW”) target scheme 34 . If the difficulty 50 and/or the proof-of-work result 42 satisfy the proof-of-work (“PoW”) target scheme 34 , then the correct, authorized networked devices were used to solve the mathematical puzzle 62 associated with the mining scheme.
- the difficulty algorithm 48 and/or the proof-of-work algorithm 52 will fail to satisfy the proof-of-work (“PoW”) target scheme 34 .
- An unauthorized network of computers has been used to conduct the proof-of-work.
- FIG. 17 illustrates vendor processing.
- the miner system 22 may communicate with one or more service providers via the communications network 26 .
- the miner system 22 may enlist or request that any of the service providers provide or perform a processing service.
- An encryption service provider 150 may provide an encryption service 152 by instructing an encryption server 154 to execute the encryption algorithm 46 chosen or specified by the miner system 22 and/or the blockchain network server 28 .
- a difficulty service provider 156 may provide a difficulty service 158 by instructing a difficulty server 160 to execute the difficulty algorithm 48 chosen or specified by the miner system 22 and/or the blockchain network server 28 .
- the proof-of-work (PoW) service provider 120 may provide the PoW service 122 by executing the proof-of-work algorithm 52 chosen or specified by the miner system 22 and/or the blockchain network server 28 .
- the miner system 22 may thus outsource or subcontract any of the encryption algorithm 46 , the difficulty algorithm 48 , and/or the proof-of-work algorithm 52 to the service provider(s).
- the encryption algorithm 46 , the difficulty algorithm 48 , and/or the proof-of-work algorithm 52 may be separate software mechanisms or packages, the service providers 150 , 156 , and 120 may specialize in their respective algorithms 46 , 48 , and 52 and/or services 152 , 158 , and 122 .
- the encryption service provider 150 may offer a selection of different encryption services 152 and/or encryption algorithms 46 , with each encryption service 152 and/or encryption algorithm 46 tailored to a specific encryption need or feature.
- the difficulty service provider 156 may offer a selection of different difficulty services 158 and/or difficulty algorithms 48 that are tailored to a specific difficulty need or feature.
- the PoW service provider 120 may offer a selection of different PoW services 122 and/or PoW algorithms 52 that are tailored to a specific proof-of-work need or feature.
- the blockchain network server 28 , the miner system 22 , and/or the proof-of-work (“PoW”) target scheme 34 may thus mix-and-match encryption, difficulty, and proof-of-work options.
- Exemplary embodiments may thus decouple encryption, difficulty, and proof-of-work efforts. Because the encryption algorithm 46 may be a stand-alone software offering or module, exemplary embodiments greatly improve encryption security.
- the encryption algorithm 46 (such as the hashing algorithm 54 ) need not intertwine with the difficulty algorithm 48 and/or the proof-of-work algorithm 52 . Because the hashing algorithm 54 may be functionally divorced from difficulty and proof-of-work calculations, the hashing algorithm 54 remains a safe, secure, and proven cryptology scheme without exposure to software bugs and errors introduced by difficulty and proof-of-work needs.
- the difficulty algorithm 48 may also be severed or isolated from encryption and proof-of-work, thus allowing a blockchain scheme to dynamically alter or vary different difficulty calculations without affecting encryption and/or proof-of-work.
- the proof-of-work algorithm 52 may also be partitioned, split off, or disconnected from encryption and difficulty, thus allowing any blockchain scheme to dynamically alter or vary different proof-of-work calculations or schemes without affecting encryption and/or difficulty.
- FIG. 18 illustrates democratic mining. Exemplary embodiments reduce or even eliminate the need for graphics processors and specialized application-specific integrated circuits.
- the miner system 22 may thus rely on a conventional central processing unit (such as the CPU 36 ) to process the blockchain transactions 32 .
- the miner system 22 may thus be a conventional home or business server/desktop 160 or laptop computer 162 that is much cheaper to purchase, use, and maintain.
- the miner system 22 may even be a smartphone 164 , tablet computer 166 , or smartwatch 168 , as these devices also have adequate processing and memory capabilities to realistically mine and win the block 40 of data (illustrated in FIGS. 1-10 ).
- the miner system 22 may be any network-connected device, as exemplary embodiments reduce or even eliminate the need for specialized hardware processors.
- the miner system 22 thus opens-up blockchain mining to any network-connected appliance (e.g., refrigerator, washer, dryer), smart television, camera, smart thermostat, or other Internet of Thing.
- FIG. 19 also illustrates democratic mining. Because exemplary embodiments reduce or even eliminate the need for graphics processors and specialized application-specific integrated circuits, the miner system 22 may even be a car, truck, or other vehicle 170 .
- the vehicle 170 may have many electronic systems controlling many components and systems.
- the engine may have an engine electronic control unit or “ECU” 172
- the transmission may have a powertrain electronic control unit or “PCU” 174
- the braking system may have a brake electronic control unit or “BCU” 176
- the chassis system may have a chassis electronic control unit or “CUC” 178 .
- a controller area network 180 thus allows all the various electronic control units to communicate with each other (via messages sent/received via a CAN bus). All these controllers may also interface with the communications network 26 via a wireless vehicle transceiver 182 (illustrated as “TX/RX”).
- the vehicle 170 may thus communicate with the blockchain network server 28 to receive the inputs 24 (such as the blockchain transactions 32 ). The vehicle 170 may then use the various controllers 172 - 178 to mine the blockchain transactions 32 using the encryption algorithm 46 , the difficulty algorithm 48 , and/or the PoW algorithm 52 (as this disclosure above explains). The reader may immediately see that the vehicle 170 is a powerful processing platform for blockchain mining.
- the vehicle 170 may mine the blockchain transactions 32 when moving or stationary, as long as electrical power is available to the various controllers 172 - 178 and to the vehicle transceiver 182 . Indeed, even when parked with the ignition/battery/systems on or off, exemplary embodiments may maintain the electrical power to mine the blockchain transactions 32 . So, a driver/user may configure the vehicle 17 to mine the blockchain transactions 32 , even when the vehicle sits during work hours, sleep hours, shopping hours, and other times of idle use. The reader may also immediately see that vehicular mining opens up countless additional possibilities to win the block 40 of data (i.e., solve the puzzle 62 ) without additional investment in mining rigs. Thousands, millions, or even billions of vehicles 170 (e.g., cars, trucks, boats, planes, buses, trains, motorcycles) may mine the blockchain transactions 32 , thus providing a potential windfall to offset the purchasing and operational expenses.
- vehicles 170 e.g., cars, trucks, boats, planes, buses, trains, motorcycles
- Exemplary embodiments reduce energy consumption. Because a conventional, general purpose central processing unit (e.g., the CPU 36 ) is adequate for mining the blockchain transactions 32 , exemplary embodiments consume much less electrical power. Moreover, because a conventional central processing unit consumes much less electrical power, the CPU operates at much cooler temperatures, generates less waste heat/energy, and therefore requires less cooling, air conditioning, and refrigerant machinery. Exemplary embodiments are thus much cheaper to operate than GPUs and ASICs.
- a conventional, general purpose central processing unit e.g., the CPU 36
- the CPU operates at much cooler temperatures, generates less waste heat/energy, and therefore requires less cooling, air conditioning, and refrigerant machinery. Exemplary embodiments are thus much cheaper to operate than GPUs and ASICs.
- Exemplary embodiments thus democratize blockchain mining. Because encryption, difficulty, and proof-of-work efforts may be functionally divided, general-purpose computer equipment has the processing and memory capability to compete as blockchain miners. For example, because the function(s) that calculate(s) the magnitude of the proof of work (such as the difficulty algorithm 48 and/or the proof-of-work algorithm 52 ) may be detached or isolated from the function that performs cryptography (such as the hashing algorithm 54 ), encryption need not be modified in order to improve security (e.g., such as the MONERO® mining scheme). The well-tested SHA-256 hashing function, for example, remains stable and unaffected by difficulty and/or proof-of-work.
- the difficulty algorithm 48 need not be determined by or with the hashing algorithm 54 .
- the difficulty algorithm 48 may be separately determined as a true, independent measure of the difficulty 50 .
- the inventor has realized that most or all proof of work schemes generally may have two functions (i.e., one function to do a cryptographic hash and another function to determine the level of difficulty of a given hash). Exemplary embodiments may separate, or take away, what makes proof of work hard from the cryptographic hash and, perhaps instead, put it in the difficulty algorithm 48 that calculates which hash is more difficult.
- the difficulty algorithm 48 may be functionally combined with the proof-of-work algorithm 52 that calculates the magnitude of the proof of work instead of using the hashing algorithm 54 (as FIG. 5 illustrates). Exemplary embodiments need not try to design, develop, or modify hashing functions that deter ASIC mining.
- Encryption may thus be independent from proof-of-work determinations.
- the proof of work (such as the difficulty algorithm 48 and/or the proof-of-work algorithm 52 ) may be a different or separate software mechanism from the hashing mechanism.
- the difficulty 50 of the proof-of-work for example, may be a separate component from staking in a blockchain.
- the difficulty algorithm 48 and/or the proof-of-work algorithm 52 may require communications networking between provably different parties.
- the difficulty algorithm 48 and/or the proof-of-work algorithm 52 may require network delays and/or memory bandwidth limitations.
- the difficulty algorithm 48 and/or the proof-of-work algorithm 52 may have a random component (such as incorporating a random function), such that the difficulty algorithm 48 and/or the proof-of-work algorithm 52 may randomly to determine the difficulty 50 and/or the proof-of-work result 42 .
- Exemplary embodiments thus reduce or even eliminate the power intensive mechanism that is inherent in today's proof of work schemes by changing how the proof of work is calculated.
- Exemplary embodiments need not change the hashing algorithm 54 , and exemplary embodiments allow a more easily validated proof of work.
- the hashing algorithm 54 is not bound or required to determine the proof of work.
- the proof of work need not be cryptographically secure.
- the liberated, autonomous hashing algorithm 54 generates and guarantees an input (e.g., the hash values 60 ) that cannot be predicted by some other faster algorithm.
- the disassociated hashing algorithm 54 effectively generates the hash values 60 as random numbers.
- the hashing algorithm 54 in other words, provides cryptographic security, so neither the difficulty algorithm 48 nor the proof-of-work algorithm 52 need be cryptographically secure.
- the difficulty algorithm 48 and/or the proof-of-work algorithm 52 need not be folded into the hashing algorithm 54 .
- Exemplary embodiments provide great value to blockchains.
- Exemplary embodiments may functionally separate encryption (e.g., the hashing algorithm 54 ) from proof of work (such as the difficulty algorithm 48 and/or the proof-of-work algorithm 52 ).
- Exemplary embodiments may thus bind proof-of-work to a conventional central processing unit. Deploying a different cryptographic hash is hugely dangerous for blockchains, but deploying another difficulty or proof of work mechanism is not so dangerous.
- Exemplary embodiments allow blockchains to experiment with different difficulty functions (the difficulty algorithms 48 ) and/or different proof-of-work algorithms 52 without changing the hashing algorithm 54 . Exemplary embodiments thus mitigate risk and reduce problems with cryptographic security. Many blockchain environments would prefer to make their technology CPU mineable for lower power, lower costs, and more democratic participation.
- the barrier though, is that conventionally these goals would require changing their hash function.
- Exemplary embodiments instead, reduce costs and increase the pool of miner systems without changing the hash function.
- the difficulty algorithm 48 and/or the proof-of-work algorithm 52 may be refined, modified, or even replaced with little or no impact on the hashing algorithm 54 .
- Exemplary embodiments reduce electrical power consumption.
- Blockchain mining is very competitive, as the first miner that solves the mathematical puzzle 62 owns the block 40 of data and is financially rewarded. Large “farms” have thus overtaken blockchain mining, with each miner installation using hundreds or even thousands of ASIC-based computers to improve their chances of first solving the calculations specified by the mathematical puzzle 62 .
- ASIC-based blockchain mining requires tremendous energy resources, though, with some studies estimating that each BITCOIN® transaction consumes more daily electricity than an average American home. Moreover, because ASIC-based blockchain mining operates 24/7/365 at full processing power, the ASIC-based machines quickly wear out or fail and need periodic (perhaps yearly) replacement.
- Exemplary embodiments instead, retarget blockchain mining back to CPU-based machines that consume far less electrical power and that cost far less money to purchase. Because the capital costs and expenses are greatly reduced, more miners and more CPU-based machines may effectively participate and compete. The CPU-based machines, in other words, have a realistic and profitable chance of first solving the calculations specified by the mathematical puzzle 62 . Democratic participation is greatly increased.
- FIGS. 20-21 are more detailed illustrations of an operating environment, according to exemplary embodiments.
- FIG. 20 illustrates the blockchain network server 28 communicating with the miner system 22 via the communications network 26 .
- the blockchain network server 28 and the miner system 22 operate in the blockchain environment 20 .
- the blockchain network server 28 has a hardware processing component 190 (e.g., “P”) that executes a server-side blockchain software application 192 stored in a local memory device 194 .
- the blockchain network server 28 has a network interface to the communications network 26 , thus allowing two-way, bidirectional communication with the miner system 22 .
- the server-side blockchain software application 192 includes instructions, code, and/or programs that cause the blockchain network server 28 to perform operations, such as sending the inputs 24 (such as the blockchain transactions 32 ) and/or the proof-of-work (“PoW”) target scheme 34 via the communications network 26 to the network address (e.g., Internet protocol address) associated with or assigned to the miner system 22 .
- the inputs 24 may be any electronic data 30 that is shared among miners participating in the blockchain environment 20 .
- the miner system 22 operates as a mining node in the blockchain environment 20 .
- the miner system 22 has the central processing unit (e.g., “CPU”) 36 that executes a client-side blockchain mining software application 196 stored in the local memory device 38 .
- the miner system 22 has a network interface to the communications network 26 , thus allowing two-way, bidirectional communication with the blockchain network server 28 .
- the client-side blockchain mining software application 196 includes instructions, code, and/or programs that cause the miner system 22 to perform operations, such as receiving the inputs 24 , the electronic data 30 , and/or the proof-of-work (“PoW”) target scheme 34 .
- PoW proof-of-work
- the client-side blockchain mining software application 196 may then cause the miner system 22 to execute the proof-of-work (“PoW”) mechanism 44 based on the electronic data 30 representing the inputs 24 .
- the client-side blockchain mining software application 196 may instruct the CPU 36 to call and/or to execute the encryption algorithm 46 , the difficulty algorithm 48 , and/or the PoW algorithm 52 .
- the CPU 36 calls or executes any or all of the encryption algorithm 46 , the difficulty algorithm 48 , and/or the PoW algorithm 52 using the electronic data 30 .
- the miner system 22 mines blockchain transactional records. Whatever the electronic data 30 represents, the miner system 22 applies the electronic data 30 according to the proof-of-work target scheme 34 . While the proof-of-work target scheme 34 may specify any encryption algorithm 46 , most blockchains specify the hashing algorithm 54 .
- the miner system 22 may thus generate the hash values 60 by hashing the electronic data 30 (e.g., the blockchain transactions 32 ) using the hashing algorithm 54 .
- the miner system 22 may generate the difficulty 50 by executing the difficulty algorithm 48 using the hash values 60 .
- the miner system 22 may generate the proof-of-work result 42 using the hash value(s) 60 as inputs to the proof-of-work algorithm 52 .
- the miner system 22 earns or owns the right or ability to write/record blockchain transaction(s) to the block 40 of data.
- the miner system 22 may also earn or be rewarded with a compensation (such as a cryptographic coin, points, other currency/coin/money, or other value).
- the miner system 22 may own the block 40 of data. If the miner system 22 is the first to satisfy the proof-of-work target scheme 34 (e.g., the proof-of-work result 42 satisfies the mathematical puzzle 62 ), the miner system 22 earns the sole right or ability to write the blockchain transactions 32 to the block 40 of data.
- the miner system 22 may timestamp the block 40 of data and broadcast the block 40 of data, the timestamp, the proof-of-work result 42 , and/or the mathematical puzzle 62 to other miners in the blockchain environment 20 .
- the miner system 22 may broadcast a hash value representing the block 40 of data. The miner system 22 thus adds or chains the block 40 of data (and perhaps its hash value) to the blockchain 64 , and the other miners begin working on a next block in the blockchain 64 .
- the proof-of-work target scheme 34 and/or the mathematical puzzle 62 may vary. Satoshi's BITCOIN® proof-of-work scanned for a value that, when hashed, the hash value begins with a number of zero bits. The average work required is exponential in the number of zero bits required and can be verified by executing a single hash. BITCOIN's miners may increment a nonce in the block 40 of data until a value is found that gives the block's hash the required zero bits.
- FIG. 21 further illustrates the operating environment.
- the miner system 22 may optionally utilize vendors for any of the hashing algorithm 54 , the difficulty algorithm 48 , and the proof-of-work algorithm 52 .
- the miner system 22 may enlist or request that a service provider provide or perform a processing service.
- the encryption server 154 may communicate with the blockchain network server 28 and the miner system 22 via the communications network 26 .
- the encryption server 154 has a hardware processing element (“P”) that executes the encryption algorithm 46 stored in a local memory device.
- the encryption server 154 is operated on behalf of the encryption service provider 150 and provides the encryption service 152 .
- the miner system 22 and/or the blockchain network server 28 may send an encryption service request to the encryption server 154 , and the encryption service request may specify the inputs 24 (such as the blockchain transactions 32 ).
- the encryption server 154 executes the encryption algorithm 46 using the inputs 24 to generate the hash value(s) 60 .
- the encryption server 154 sends a service response to the miner system 22 , and the service response includes or specifies the hash value(s) 60 .
- the difficulty server 160 may communicate with the blockchain network server 28 and the miner system 22 via the communications network 26 .
- the difficulty server 160 has a hardware processing element (“P”) that executes the difficulty algorithm 48 stored in a local memory device.
- the difficulty service provider 156 may provide the difficulty service 158 by instructing the difficulty server 160 to execute the difficulty algorithm 48 chosen or specified by the miner system 22 and/or the blockchain network server 28 .
- the miner system 22 and/or the blockchain network server 28 may send a difficulty service request to the difficulty server 160 , and the difficulty service request may specify the hash value(s) 60 .
- the difficulty server 160 executes the difficulty algorithm 48 using the hash value(s) 60 to generate the difficulty 50 .
- the difficulty server 160 sends the service response to the miner system 22 , and the service response includes or specifies the difficulty 50 .
- the PoW server 124 may communicate with the blockchain network server 28 and the miner system 22 via the communications network 26 .
- the PoW server 124 has a hardware processing element (“P”) that executes the proof-of-work algorithm 52 stored in a local memory device.
- the PoW service provider 120 e.g., the PoW server 124
- the PoW server 124 may provide the PoW service 122 by executing the proof-of-work algorithm 52 chosen or specified by the miner system 22 and/or the blockchain network server 28 .
- the PoW server 124 sends the service response to the miner system 22 , and the service response includes or specifies the PoW result 42 .
- the miner system 22 may compare any of the hash value(s) 60 , the difficulty 50 , and/or the PoW result 42 to the proof-of-work target scheme 34 . If the proof-of-work target scheme 34 is satisfied, perhaps the miner system 22 is the first miner to have solved the puzzle 62 .
- Exemplary embodiments may be applied regardless of networking environment. Exemplary embodiments may be easily adapted to stationary or mobile devices having wide-area networking (e.g., 4G/LTE/5G cellular), wireless local area networking (WI-FI®), near field, and/or BLUETOOTH® capability. Exemplary embodiments may be applied to stationary or mobile devices utilizing any portion of the electromagnetic spectrum and any signaling standard (such as the IEEE 802 family of standards, GSM/CDMA/TDMA or any cellular standard, and/or the ISM band). Exemplary embodiments, however, may be applied to any processor-controlled device operating in the radio-frequency domain and/or the Internet Protocol (IP) domain.
- IP Internet Protocol
- Exemplary embodiments may be applied to any processor-controlled device utilizing a distributed computing network, such as the Internet (sometimes alternatively known as the “World Wide Web”), an intranet, a local-area network (LAN), and/or a wide-area network (WAN).
- Exemplary embodiments may be applied to any processor-controlled device utilizing power line technologies, in which signals are communicated via electrical wiring. Indeed, exemplary embodiments may be applied regardless of physical componentry, physical configuration, or communications standard(s).
- Exemplary embodiments may utilize any processing component, configuration, or system.
- the miner system 22 may utilize any desktop, mobile, or server central processing unit or chipset offered by INTEL®, ADVANCED MICRO DEVICES®, ARM®, TAIWAN SEMICONDUCTOR MANUFACTURING®, QUALCOMM®, or any other manufacturer.
- the miner system 22 may even use multiple central processing units or chipsets, which could include distributed processors or parallel processors in a single machine or multiple machines.
- the central processing unit or chipset can be used in supporting a virtual processing environment.
- the central processing unit or chipset could include a state machine or logic controller. When any of the central processing units or chipsets execute instructions to perform “operations,” this could include the central processing unit or chipset performing the operations directly and/or facilitating, directing, or cooperating with another device or component to perform the operations.
- Exemplary embodiments may packetize.
- the blockchain network server 28 and the miner system 22 may collect, send, and retrieve information.
- the information may be formatted or generated as packets of data according to a packet protocol (such as the Internet Protocol).
- the packets of data contain bits or bytes of data describing the contents, or payload, of a message.
- a header of each packet of data may be read or inspected and contain routing information identifying an origination address and/or a destination address.
- hashing algorithms there are many different hashing algorithms, and exemplary embodiments may be adapted to execute or to conform to any hashing algorithm, hashing family, and/or hashing scheme (e.g., Blake family, MD family, RIPE family, SHA family, CRC family).
- hashing family e.g., Blake family, MD family, RIPE family, SHA family, CRC family.
- hashing scheme e.g., Blake family, MD family, RIPE family, SHA family, CRC family.
- the miner system 22 may store or request different software packages.
- the hashing algorithm 54 may be a software file, executable program, routine, module, programming code, or third-party service that hashes the blockchain transactions 32 to generate the hash value(s) 60 .
- the difficulty algorithm 48 may be a software file, executable program, routine, module, programming code, or third-party service that uses the hash value(s) 60 to generate the difficulty 50 .
- the proof-of-work (“PoW”) algorithm 52 be a software file, executable program, routine, module, programming code, or third-party service that uses the hash value(s) 60 to generate the PoW result 42 .
- the miner system 22 may download or otherwise acquire the hashing algorithm 54 , the difficulty algorithm 48 , and/or the PoW algorithm 52 to provide mining operations for the blockchain transactions 32 .
- the blockchain environment 20 may flexibly switch or interchange encryption, difficulty, and proof-of-work. Because the hashing algorithm 54 , the difficulty algorithm 48 , and the proof-of-work algorithm 52 may be separate software packages, the proof-of-work (“PoW”) target scheme 34 and/or the blockchain environment 20 may mix-and-match the encryption algorithm 46 , the difficulty algorithm 48 , and the proof-of-work algorithm 52 . The blockchain environment 20 may thus easily evaluate different combinations of the encryption algorithm 46 , the difficulty algorithm 48 , and the proof-of-work algorithm 52 with little or no intra-algorithm or intra-application effect. The blockchain environment 20 may mix-and-match encryption, difficulty, and proof-of-work.
- PoW proof-of-work
- FIGS. 22-31 illustrate mining specifications, according to exemplary embodiments.
- the blockchain network server 28 may specify the proof-of-work (“PoW”) target scheme 34 that is required by the blockchain environment 20 . That is, when the miner system 22 participates as a miner and mines or processes blockchain records/transactions, the miner system 22 may be required or instructed to use the particular hashing algorithm 54 , the difficulty algorithm 48 , and/or the proof-of-work algorithm 52 specified by the blockchain network.
- PoW proof-of-work
- the miner system 22 may be required to download the client-side blockchain mining software application 196 that specifies or includes the hashing algorithm 54 , the difficulty algorithm 48 , and/or the proof-of-work algorithm 52 .
- the client-side blockchain mining software application 196 may thus comprise any software apps or modules, files, programming code, or instructions representing the hashing algorithm 54 , the difficulty algorithm 48 , and/or the proof-of-work algorithm 52 .
- FIGS. 23-25 illustrate an encryption identifier mechanism.
- FIG. 23 illustrates the miner system 22 receiving the proof-of-work (“PoW”) target scheme 34 that is required by the blockchain environment 20 .
- PoW proof-of-work
- exemplary embodiments may specify an encryption identifier (encryption “ID”) 200 associated with the blockchain network's chosen or required encryption scheme.
- the encryption identifier 200 may be any alphanumeric combination, hash value, network address, website, or other data/information that uniquely identifies the PoW target scheme 34 and/or the encryption algorithm 46 used by the blockchain environment 20 .
- FIG. 23 illustrates the miner system 22 receiving the proof-of-work (“PoW”) target scheme 34 that is required by the blockchain environment 20 .
- exemplary embodiments may specify an encryption identifier (encryption “ID”) 200 associated with the blockchain network's chosen or required encryption scheme.
- the encryption identifier 200 may be any alphanumeric combination, hash value, network address, website, or other data/information
- the miner system 22 may receive the encryption identifier 200 as a specification or parameter associated with the PoW target scheme 34 and/or the encryption algorithm 46 .
- the miner system 22 may receive a packetized message 202 from the blockchain network server 28 , and a packet header and/or payload may specify or include the encryption identifier 200 as a data field, specification, or parameter.
- the encryption identifier 200 may specify, be assigned to, or be associated with the hashing algorithm 54 .
- the blockchain network server 28 may thus send the encryption identifier 200 (via the communications network 26 ) to the miner system 22 .
- the encryption identifier 200 may be packaged as a downloadable component, parameter, or value with the client-side blockchain mining software application 196 . However, the encryption identifier 200 may additionally or alternatively be sent to the miner system 22 at any time via the message 202 . Because the encryption identifier 200 may be separately sent from the client-side blockchain mining software application 196 , the encryption identifier 200 may be dynamically updated or changed without downloading a new or updated client-side blockchain mining software application 196 .
- exemplary embodiments may consult the electronic database 70 of encryption algorithms.
- the miner system 22 may implement the encryption scheme represented by the encryption identifier 200 .
- the miner system 22 may obtain, read, or retrieve the encryption identifier 200 specified by the client-side blockchain mining software application 196 and/or packet inspect the message 202 from the blockchain network server 28 .
- the miner system 22 may identify the corresponding blockchain encryption scheme by querying the electronic database 70 of encryption algorithms for the encryption identifier 200 .
- FIG. 25 illustrates the electronic database 70 of encryption algorithms locally stored in the memory device 38 of the miner system 22 .
- the electronic database 70 of encryption algorithms may store, reference, or associate the encryption identifier 200 to its corresponding proof-of-work target scheme 34 and/or encryption algorithm 46 .
- the miner system 22 may thus perform or execute a database lookup for the encryption identifier 200 to identify which proof-of-work target scheme 34 and/or encryption algorithm 46 is required for miners operating in the blockchain environment 20 .
- the miner system 22 may then retrieve, call, and/or execute the encryption algorithm 46 using the inputs 24 (such as the blockchain transactions 32 ), as this disclosure above explained (with reference to FIG. 7 ).
- Exemplary embodiments may outsource encryption operations.
- the corresponding blockchain encryption scheme may require or specify the encryption service provider 150 that provides the encryption service 152 .
- the electronic database 70 of encryption algorithms may map or relate the encryption identifier 200 to its corresponding encryption service provider 150 that provides the encryption service 152 .
- the miner system 22 may thus identify an encryption service resource 204 that provides the encryption service 152 .
- the encryption service resource 204 may be an Internet protocol address, website/webpage, and/or uniform resource locator (URL) that is assigned to, or associated with, the encryption service provider 150 and/or the encryption service 152 .
- the miner system 22 may outsource or subcontract the inputs 24 (such as the blockchain transactions 32 ) to the encryption service resource 204 (perhaps using the service request and service response mechanism explained with reference to FIG. 21 ).
- the miner system 22 may call, request, and/or execute any encryption scheme specified by any client, cryptographic coin, or blockchain network.
- the miner system 22 may dynamically switch or mix-and-match different encryption schemes.
- the miner system 22 may perform any encryption scheme specified for the blockchain environment 20 .
- the blockchain environment 20 may dynamically change the encryption scheme at any time.
- the blockchain environment 20 may flexibly switch, change, and evaluate different encryption strategies, perhaps with little or no impact or effect on difficulty and proof-of-work operations.
- the miner system 22 may operate within or mine different blockchain environments 20 without specialized hardware rigs.
- Exemplary embodiments improve computer functioning. Because exemplary embodiments may only specify the encryption identifier 200 , the memory byte size consumed by the proof-of-work (“PoW”) target scheme 34 and/or the client-side blockchain mining software application 196 is reduced. That is, the blockchain network server 28 need not send the entire software program, code, or instructions representing the hashing algorithm 54 used by the blockchain environment 20 .
- the blockchain environment 20 , the blockchain network server 28 , and/or the proof-of-work (“PoW”) target scheme 34 need only specify much smaller byte-sized data or information representing the encryption algorithm 46 , the encryption service provider 150 , the encryption service 152 , the encryption identifier 200 , and/or the encryption service resource 204 .
- the blockchain environment 20 need not be burdened with conveying the hashing algorithm 54 to the miner system 22 and other mining nodes.
- the blockchain environment 20 and the communications network 26 convey less packet traffic, so packet travel times and network latency are reduced.
- the miner system 22 is relieved from processing/executing the hashing algorithm 54 and consumes less of the electrical power. Again, then, a faster and more expensive graphics processor or even ASIC will not speed up the hashing operation.
- the conventional central processing unit 36 is adequate, reduces costs, and promotes democratic mining.
- FIGS. 26-28 illustrate illustrates a difficulty identifier mechanism.
- FIG. 26 illustrates the miner system 22 receiving the proof-of-work (“PoW”) target scheme 34 that is required by the blockchain environment 20 .
- PoW proof-of-work
- exemplary embodiments may specify a difficulty identifier (difficulty “ID”) 210 associated with the blockchain network's chosen or required difficulty scheme.
- the difficulty identifier 210 may be any alphanumeric combination, hash value, network address, website, or other data/information that uniquely identifies the PoW target scheme 34 and/or the difficulty algorithm 48 used by the blockchain environment 20 .
- ID difficulty identifier
- the miner system 22 may receive the difficulty identifier 210 as a specification or parameter associated with the PoW target scheme 34 and/or the difficulty algorithm 48 .
- the miner system 22 may receive the packetized message 202 from the blockchain network server 28 , and a packet header and/or payload may specify or include the difficulty identifier 210 as a data field, specification, or parameter.
- the blockchain network server 28 may thus send the difficulty identifier 210 (via the communications network 26 ) to the miner system 22 .
- the difficulty identifier 210 may be packaged as a downloadable component, parameter, or value with the client-side blockchain mining software application 196 .
- the difficulty identifier 210 may additionally or alternatively be sent to the miner system 22 at any time via the message 202 . Because the difficulty identifier 210 may be separately sent from the client-side blockchain mining software application 196 , the difficulty identifier 210 may be dynamically updated or changed without downloading a new or updated client-side blockchain mining software application 196 .
- exemplary embodiments may consult the electronic database 74 of difficulty algorithms.
- the miner system 22 may implement the difficulty scheme represented by the difficulty identifier 210 .
- the miner system 22 may obtain, read, or retrieve the difficulty identifier 210 specified by the client-side blockchain mining software application 196 and/or packet inspect the message 202 from the blockchain network server 28 .
- the miner system 22 may identify the corresponding blockchain difficulty scheme by querying the electronic database 74 of difficulty algorithms for any query parameter (such as the difficulty identifier 210 ).
- FIG. 28 illustrates the electronic database 74 of difficulty algorithms locally stored in the memory device 38 of the miner system 22 .
- the electronic database 74 of difficulty algorithms may store, reference, or associate the difficulty identifier 210 to its corresponding proof-of-work target scheme 34 and/or difficulty algorithm 48 .
- the miner system 22 may thus perform or execute a database lookup for the difficulty identifier 210 to identify which proof-of-work target scheme 34 and/or difficulty algorithm 48 is required for miners operating in the blockchain environment 20 .
- the miner system 22 may then retrieve, call, and/or execute the difficulty algorithm 48 using the hash value(s) 60 , as this disclosure above explained (with reference to FIG. 8 ).
- Exemplary embodiments may outsource difficulty operations.
- the corresponding blockchain difficulty scheme may require or specify the difficulty service provider 156 that provides the difficulty service 158 .
- the electronic database 74 of difficulty algorithms may map or relate the difficulty identifier 210 to its corresponding difficulty service provider 156 that provides the difficulty service 158 .
- the miner system 22 may thus identify a difficulty service resource 212 that provides the difficulty service 158 .
- the difficulty service resource 212 may be an Internet protocol address, website/webpage, and/or uniform resource locator (URL) that is assigned to, or associated with, the difficulty service provider 156 and/or the difficulty service 158 .
- the miner system 22 may outsource or subcontract the hash value(s) 60 to the difficulty service resource 212 (perhaps using the service request and service response mechanism explained with reference to FIG. 21 ).
- Exemplary embodiments may thus be agnostic to difficulty.
- the miner system 22 may call, request, and/or execute any difficulty scheme specified by any client, cryptographic coin, or blockchain network.
- the miner system 22 may dynamically switch or mix-and-match different difficulty schemes.
- the miner system 22 may perform any difficulty scheme specified for the blockchain environment 20 .
- the blockchain environment 20 may dynamically change the difficulty scheme at any time.
- the blockchain environment 20 may flexibly switch, change, and evaluate different difficulty strategies, perhaps with little or no impact or effect on hashing and proof-of-work operations.
- the miner system 22 may operate within or mine different blockchain environments 20 without specialized hardware rigs.
- Exemplary embodiments improve computer functioning. Because exemplary embodiments may only specify the difficulty identifier 210 , the memory byte size consumed by the proof-of-work (“PoW”) target scheme 34 and/or the client-side blockchain mining software application 196 is reduced. That is, the blockchain network server 28 need not send the entire software program, code, or instructions representing the difficulty algorithm 48 used by the blockchain environment 20 .
- the blockchain environment 20 , the blockchain network server 28 , and/or the proof-of-work (“PoW”) target scheme 34 need only specify much smaller byte-sized data or information representing the difficulty algorithm 48 , the difficulty service provider 156 , the difficulty service 158 , the difficulty identifier 210 , and/or the difficulty service resource 212 .
- the blockchain environment 20 need not be burdened with conveying the difficulty algorithm 48 to the miner system 22 and other mining nodes.
- the blockchain environment 20 and the communications network 26 convey less packet traffic, so packet travel times and network latency are reduced.
- the miner system 22 is relieved from processing/executing the difficulty algorithm 48 and consumes less of the electrical power.
- a faster and more expensive graphics processor or even ASIC will not speed up the difficulty operation.
- the conventional central processing unit 36 is adequate, reduces costs, and promotes democratic mining.
- FIGS. 29-31 illustrate illustrates a proof-of-work (“PoW”) identifier mechanism.
- FIG. 29 illustrates the miner system 22 receiving the proof-of-work (“PoW”) target scheme 34 that is required by the blockchain environment 20 .
- PoW proof-of-work
- exemplary embodiments may specify a PoW identifier 214 associated with the blockchain network's chosen or required PoW scheme.
- the PoW identifier 214 may be any alphanumeric combination, hash value, network address, website, or other data/information that uniquely identifies the PoW target scheme 34 and/or the PoW algorithm 52 used by the blockchain environment 20 .
- FIG. 29 illustrates the miner system 22 receiving the proof-of-work (“PoW”) target scheme 34 that is required by the blockchain environment 20 .
- exemplary embodiments may specify a PoW identifier 214 associated with the blockchain network's chosen or required PoW scheme.
- the PoW identifier 214 may be any alphanumeric combination, hash value,
- the miner system 22 may receive the PoW identifier 214 as a specification or parameter associated with the PoW target scheme 34 and/or the PoW algorithm 52 .
- the miner system 22 may receive the packetized message 202 from the blockchain network server 28 , and a packet header and/or payload may specify or include the PoW identifier 214 as a data field, specification, or parameter.
- the blockchain network server 28 may thus send the PoW identifier 214 (via the communications network 26 ) to the miner system 22 .
- the PoW identifier 214 may be packaged as a downloadable component, parameter, or value with the client-side blockchain mining software application 196 .
- the PoW identifier 214 may additionally or alternatively be sent to the miner system 22 at any time via the message 202 . Because the PoW identifier 214 may be separately sent from the client-side blockchain mining software application 196 , the PoW identifier 214 may be dynamically updated or changed without downloading a new or updated client-side blockchain mining software application 196 .
- exemplary embodiments may consult the electronic database 78 of PoW algorithms.
- the miner system 22 may implement the proof-of-work scheme represented by the PoW identifier 214 .
- the miner system 22 may obtain, read, or retrieve the PoW identifier 214 specified by the client-side blockchain mining software application 196 and/or packet inspect the message 202 from the blockchain network server 28 .
- the miner system 22 may identify the corresponding blockchain proof-of-work scheme by querying the electronic database 78 of PoW algorithms for any query parameter (such as the PoW identifier 214 ).
- the 31 illustrates the database 78 of PoW algorithms locally stored in the memory device 38 of the miner system 22 .
- the electronic database 78 of PoW algorithms may store, reference, or associate the PoW identifier 214 to its corresponding proof-of-work target scheme 34 and/or difficulty algorithm 48 .
- the miner system 22 may thus perform or execute a database lookup for the PoW identifier 214 to identify which proof-of-work target scheme 34 and/or PoW algorithm 52 is required for miners operating in the blockchain environment 20 .
- the miner system 22 may then retrieve, call, and/or execute the PoW algorithm 52 using the hash value(s) 60 , as this disclosure above explained (with reference to FIG. 9 ).
- Exemplary embodiments may outsource difficulty operations.
- the miner system 22 determines the PoW identifier 214
- the corresponding blockchain proof-of-work scheme may require or specify the PoW service provider 120 that provides the PoW service 122 .
- the electronic database 78 of PoW algorithms may map or relate the PoW identifier 214 to its corresponding PoW service provider 120 and PoW service 122 .
- the miner system 22 may thus identify a PoW service resource 216 that provides the PoW service 122 .
- the PoW service resource 216 may be an Internet protocol address, website/webpage, and/or uniform resource locator (URL) that is assigned to, or associated with, the PoW service provider 120 and/or PoW service 122 .
- the miner system 22 may outsource or subcontract the hash value(s) 60 to the PoW service resource 216 (perhaps using the service request and service response mechanism explained with reference to FIG. 21 ).
- Exemplary embodiments may thus be agnostic to proof-of-work.
- the miner system 22 may call, request, and/or execute any proof-of-work scheme specified by any client, cryptographic coin, or blockchain network.
- the miner system 22 may dynamically switch or mix-and-match different proof-of-work schemes.
- the miner system 22 may perform any proof-of-work scheme specified for the blockchain environment 20 .
- the blockchain environment 20 may dynamically change the proof-of-work scheme at any time.
- the blockchain environment 20 may flexibly switch, change, and evaluate different proof-of-work strategies, perhaps with little or no impact or effect on hashing and difficulty operations.
- the miner system 22 may operate within or mine different blockchain environments 20 without specialized hardware rigs.
- Exemplary embodiments improve computer functioning. Because exemplary embodiments may only specify the PoW identifier 214 , the memory byte size consumed by the proof-of-work (“PoW”) target scheme 34 and/or the client-side blockchain mining software application 196 is reduced. That is, the blockchain network server 28 need not send the entire software program, code, or instructions representing the PoW algorithm 52 used by the blockchain environment 20 .
- the blockchain environment 20 , the blockchain network server 28 , and/or the proof-of-work (“PoW”) target scheme 34 need only specify much smaller byte-sized data or information representing the PoW algorithm 52 , the PoW service provider 120 , the PoW service 122 , the PoW identifier 214 , and/or the PoW service resource 216 .
- the blockchain environment 20 need not be burdened with conveying the PoW algorithm 52 to the miner system 22 and other mining nodes.
- the blockchain environment 20 and the communications network 26 convey less packet traffic, so packet travel times and network latency are reduced.
- the miner system 22 is relieved from processing/executing the PoW algorithm 52 and consumes less of the electrical power. Again, then, a faster and more expensive graphics processor or even ASIC will not speed up the difficulty operation.
- the conventional central processing unit 36 is adequate, reduces costs, and promotes democratic mining.
- FIG. 32 illustrates remote retrieval, according to exemplary embodiments.
- the miner system 22 may acquire or download the encryption algorithm 46 , the difficulty algorithm 48 , and/or the PoW algorithm 52 .
- the miner system 22 may determine the encryption identifier 200 (as this disclosure above explains) and send a query to the encryption server 154 .
- the query specifies the encryption identifier 200 .
- the encryption server 154 may query the database 70 of encryption algorithms for the encryption identifier 200 .
- the encryption server 154 may locally store the database 70 of encryption algorithms and function as a networked encryption resource for clients.
- the encryption server 154 identifies and/or retrieves the corresponding encryption algorithm 46 .
- the encryption server 154 sends a query response to the miner system 22 , and the query response specifies or includes the corresponding encryption algorithm 46 .
- the miner system 22 may then execute the encryption algorithm 46 , as above explained.
- the miner system 22 may remotely retrieve the difficulty algorithm 48 .
- the miner system 22 may acquire or download the difficulty algorithm 48 .
- the miner system 22 may determine the difficulty identifier 210 (as this disclosure above explains) and send a query to the difficulty server 160 .
- the query specifies the difficulty identifier 210 .
- the difficulty server 160 may query the database 74 of difficulty algorithms for the difficulty identifier 210 .
- the difficulty server 160 may locally store the database 74 of difficulty algorithms and function as a networked difficulty resource for clients.
- the difficulty server 160 identifies and/or retrieves the corresponding difficulty algorithm 48 .
- the difficulty server 160 sends a query response to the miner system 22 , and the query response specifies or includes the corresponding difficulty algorithm 48 .
- the miner system 22 may then execute the difficulty algorithm 48 , as above explained.
- the miner system 22 may remotely retrieve the PoW algorithm 52 .
- the miner system 22 may acquire or download the PoW algorithm 52 .
- the miner system 22 may determine the PoW identifier 214 (as this disclosure above explains) and send a query to the PoW server 124 .
- the query specifies the PoW identifier 214 .
- the PoW server 124 may query the database 78 of PoW algorithms for the PoW identifier 214 .
- the PoW server 124 may locally store the database 78 of PoW algorithms and function as a networked proof-of-work resource for clients.
- the PoW server 124 identifies and/or retrieves the corresponding PoW algorithm 52 .
- the PoW server 124 sends a query response to the miner system 22 , and the query response specifies or includes the corresponding PoW algorithm 52 .
- the miner system 22 may then execute the PoW algorithm 52 , as above explained.
- FIGS. 33-34 further illustrate the bit shuffle operation 92 , according to exemplary embodiments.
- the difficulty algorithm 48 and/or the proof-of-work algorithm 52 may perform the bit shuffle operation 92 to conduct any difficulty and/or proof-of-work.
- the hashing algorithm 54 After the hashing algorithm 54 generates the hash value(s) 60 (as this disclosure above explains), exemplary embodiments may use the database table 90 to further deter GPU/ASIC usage.
- the difficulty algorithm 48 and/or the proof-of-work algorithm 52 may implement the bit shuffle operation 92 on the hash value(s) 60 .
- FIG. 34 illustrates, suppose the hash value 60 is represented by a sequence or series of 256 bit values.
- the difficulty algorithm 48 and/or the proof-of-work algorithm 52 may select an arbitrary portion or number 220 of the bit values.
- the difficulty algorithm 48 and/or the proof-of-work algorithm 52 may call, use, or execute a random number generator (RNG) 222 to generate one or more random numbers 224 .
- RNG random number generator
- a first random number 224 may be used to select a random entry 94 in the database table 90 .
- the difficulty algorithm 48 and/or the proof-of-work algorithm 52 may then query the database table 90 for the random entry 94 and identify/retrieve the corresponding random bits 96 .
- the difficulty algorithm 48 and/or the proof-of-work algorithm 52 may then select and replace the arbitrary portion or number 220 of the bit values in the hash value 60 with the random bits retrieved from the entry 94 in the database table 90 .
- the bit shuffle operation 92 thus converts the hash value 60 and generates a resulting randomized hash value 226 .
- the difficulty algorithm 48 and/or the proof-of-work algorithm 52 may instruct or cause the miner system to repeat the bit shuffle operation 92 as many times as desired.
- the randomized hash value 226 may, or may not, have the same number of 256 bit values.
- the randomized hash value 226 may have less than, or more than, 256 bit values.
- the randomized hash value 226 may have an arbitrary number of bit values.
- FIGS. 35-36 further illustrate the database table 90 , according to exemplary embodiments.
- Exemplary embodiments may autonomously or automatically adjust the table byte size 102 (in bits/bytes) of the database table 90 to exceed the storage capacity or cache byte size 104 of the on-board processor cache memory 100 .
- the client-side blockchain mining application 196 may query the CPU 36 to determine the storage capacity or cache byte size 104 of the processor cache memory 100 . If the table byte size 102 consumed by the database table 90 exceeds the storage capacity or cache byte size 104 of the processor cache memory 100 , then perhaps no action or resolution is required.
- the database table 90 requires more bytes or space than allocated to, or available from, the processor cache memory 100 (integrated/embedded L1, L2, and L3 SRAM/DRAM cache memory). Any cache read/write operation 230 will invalidate, thus forcing the processing component (whether a GPU, ASIC, or the CPU 36 ) to incur a cache miss 232 and endure the cache latency 234 of requesting and writing blocks of data via the much-slower bus from the system/main memory 38 . The processing component (whether a GPU, ASIC, or the CPU 36 ) stalls, thus negating the use of a faster GPU or ASIC.
- Exemplary embodiments may auto-size the database table 90 .
- the client-side blockchain mining application 196 may compare the storage capacity or cache byte size 104 to the table byte size 102 of the database table 90 .
- the storage capacity or cache byte size 104 of the processor cache memory 100 may be subtracted from the table byte size 102 of the database table 90 . If the resulting value (in bits/bytes) is positive (greater than zero), then the database table 90 exceeds the storage capacity or cache byte size 104 of the processor cache memory 100 .
- the client-side blockchain mining application 196 may thus determine a cache deficit 236 , ensuring the cache miss 232 and the cache latency 234 .
- Exemplary embodiments may determine a cache surplus 238 . If the resulting value (in bits/bytes) is zero or negative, then the database table 90 is less than the storage capacity or cache byte size 104 of the processor cache memory 100 . Whatever the processing component (whether a GPU, ASIC, or the CPU 36 ), some or even all of the database table 90 could be stored and retrieved from the processor cache memory 100 , thus giving an advantage to a faster processing component.
- the client-side blockchain mining application 196 may thus increase the table byte size 102 of the database table 90 .
- the client-side blockchain mining application 196 may add one (1) or more additional database rows 240 and/or one (1) or more additional database columns 242 .
- the client-side blockchain mining application 196 may increase the table byte size 102 of the database table 90 by adding additional entries 94 , with each added entry 94 specifying more random bits 96 .
- the client-side blockchain mining application 196 may call, use, or execute the random number generator 222 to generate the random number 224 and then add the additional database row(s) 240 and/or additional database column(s) 242 according to the random number 224 .
- Exemplary embodiments may thus continually or periodically monitor the storage capacity or cache byte size 104 of the processor cache memory 100 and the table byte size 102 of the database table 90 .
- the cache surplus 238 may trigger a resizing operation to ensure the database table 90 always exceeds the processor cache memory 100 .
- the database table 90 may be large. The above examples only illustrated a simple configuration of a few database entries 94 . In actual practice, though, the database table 90 may have hundreds, thousands, or even millions of the rows and columns, perhaps producing hundreds, thousands, millions, or even billions of database entries 94 . Exemplary embodiments may repeatedly perform the bit shuffle operation 92 to suit any difficulty or proof-of-work strategy or scheme.
- the proof-of-work target scheme 34 , the difficulty algorithm 48 , and/or the proof-of-work algorithm 52 may each specify a minimum and/or a maximum number of bit shuffle operations that are performed.
- Exemplary embodiments may use the XOR/Shift random number generator (RNG) 222 coupled with the lookup database table 90 of randomized sets of bytes.
- the database table 90 may have any number of 256 byte tables combined and shuffled into one large byte lookup table. Exemplary embodiments may then index into this large table to translate the state built up while hashing into deterministic but random byte values.
- Using a 1GB lookup table results in a RAM Hash PoW algorithm that spends over 90% of its execution time waiting on memory (RAM) than it does computing the hash. This means far less power consumption, and ASIC and GPU resistance.
- the ideal platform for PoW using a RAM Hash is a Single Board Computer like a. Raspberry PI 4 with 2 GB of memory.
- the size of the database table 90 may be specified in bits for the index, the seed used to shuffle the lookup table, the number of rounds to shuffle the table, and the size of the resulting hash. Because the LXRHash is parameterized in this way, as computers get faster and larger memory caches, the LXRHash can be set to use 2 GB or 16 GB or more. The Memory bottleneck to computation is much easier to manage than attempts to find computational algorithms that cannot be executed faster and cheaper with custom hardware, or specialty hardware like GPUs. Very large lookup tables will blow the memory caches on pretty much any processor or computer architecture. The size of the database table 90 can be increased to counter improvements in memory caching.
- LXRHash may even be fast by using small lookup tables. ASIC implementations for small tables would be very easy and very fast. LXRHash only uses iterators (for indexing) shifts, binary ANDs and XORs, and random byte lookups.
- the use case for LXTHash is Proof of Work (PoW), not cryptographic hashing.
- the database table 90 may have equal numbers of every byte value, and shuffled deterministically.
- hashing the bytes from the source data are used to build offsets and state that are in turn used to map the next byte of source.
- the goal was to produce very randomized hashes as outputs, with a strong avalanche response to any change to any source byte. This is the prime requirement of PoW.
- collision avoidance is important but not critical. More critical is ensuring engineering the output of the hash isn't possible. Exemplary embodiments yield some interesting qualities.
- the database table 90 may be any size, so making a version that is ASIC resistant is possible by using very big lookup tables.
- Such tables blow the processor caches on CPUs and GPUs, making the speed of the hash dependent on random access of memory, not processor power.
- a very fast ASIC improving hashing is limited to about ⁇ 10% of the computational time for the hash. 90% of the time hashing isn't spent on computation but is spent waiting for memory access.
- LXRHash can be modified to be very fast. LXRHash would be an easy ASIC design as it only uses counters, decrements. XORs, and shifts.
- the hash may be altered by changing the size of the lookup table, the seed, size of the hash produced. Change any parameter and you change the space from which hashes are produced.
- the Microprocessor in most computer systems accounts for 10 ⁇ the power requirements of memory. If we consider PoW on a device over time, then LXRHash is estimated to reduce power requirements by about a factor of 10.
- LXRHash is comparatively slow by design (to make PoW CPU bound), but quite a number of use cases don't need PoW, but really just need to validate data matches the hash. So using LXRHash as a hashing function isn't as desirable as simply using it as a POW function. The somewhat obvious conclusion is that in fact we can use Sha256 as the hash function for applications, and only use the LXR approach as a PoW measure. So in this case, what we do is change how we compute the PoW of a hash. So instead of simply looking at the high order bits and saying that the greater the value the greater the difficulty (or the lower the value the lower the difficulty) we instead define an expensive function to calculate the PoW.
- Exemplary embodiments may break out PoW measures from cryptographic hashes.
- the advantage here is that what exactly it means to weigh PoW between miners can be determined apart from the hash that secures a blockchain.
- a good cryptographic hash provides a much better base from which to randomize PoW even if we are going to use a 1 GB byte map to bound performance by DRAM access. And we could also use past mining, reputation, staking, or other factors to add to PoW at this point.
- PoW may be represented as a nice standard sized value. Because exemplary embodiments may use a function to compute the PoW, we can also easily standardize the size of the difficulty. Since bytes that are all 0xFF or all 0x00 are pretty much wasted, we can simply count them and combine that count with the following bytes. This encoding is compact and easily compared to other difficulties in a standard size with plenty of resolution. So with PoW represented as a large number, the bigger the more difficult, the following rules may be followed. Where bit 0 is most significant, and bit 63 is least significant:
- Sha256 is very well tested as a cryptographic function, with excellent waterfall properties (meaning odds are very close to 50% that any change in the input will flit any particular bit in the resulting hash). Hashing the data being mined by the miners is pretty fast. If an application chooses to use a different hashing function, that's okay as well.
- FIGS. 37-40 illustrate a table identifier mechanism, according to exemplary embodiments.
- the blockchain network server 28 may specify the proof-of-work (“PoW”) target scheme 34 and/or the database table 90 that is required by the blockchain environment 20 .
- PoW proof-of-work
- exemplary embodiments may only specify a table identifier 250 associated with the blockchain network's chosen or required difficulty and proof-of-work scheme.
- the table identifier 250 may be any alphanumeric combination, hash value, network address, website, or other data/information that uniquely identifies the database table 90 used by the blockchain environment 20 .
- the blockchain network server 28 may thus send the table identifier 250 (via the communications network 26 ) to the miner system 22 .
- the table identifier 250 may be packaged as a downloadable component, parameter, or value with the client-side blockchain mining software application 196 .
- the table identifier 250 may additionally or alternatively be sent to the miner system 22 , such as the packetized message 202 that includes or specifies the table identifier 250 (explained with reference to FIGS. 22-31 ). Because the table identifier 250 may be separately sent from the client-side blockchain mining software application 196 , the table identifier 250 may be dynamically updated or changed without downloading a new or updated client-side blockchain mining software application 196 .
- Exemplary embodiments may consult an electronic database 252 of tables.
- the miner system 22 may use, call, and/or implement the database table 90 represented by the table identifier 250 .
- the miner system 22 may obtain, read, or retrieve the table identifier 250 specified by the client-side blockchain mining software application 196 .
- the miner system 22 may additionally or alternatively inspect, read, or retrieve the table identifier 250 from the message 202 .
- the miner system 22 may identify the corresponding database table 90 by querying the database 252 of tables for the table identifier 250 .
- FIG. 37 illustrates the electronic database 252 of tables locally stored in the memory device 38 of the miner system 22 .
- the database 252 of tables stores, references, or associates the table identifier 250 and/or the proof-of-work target scheme 34 to the corresponding database table 90 .
- the miner system 22 may thus identify and/or retrieve the database table 90 .
- the miner system 22 may then execute the difficulty algorithm 48 and/or the proof-of-work algorithm using the entries specified by the database table 90 (as this disclosure above explains).
- FIG. 38 illustrates remote retrieval.
- FIG. 38 illustrates the database 252 of tables remotely stored by a table server 254 and accessed via the communications network 26 .
- the table server 254 may be the only authorized source for the database table 90 .
- the table server 254 may thus operate within the blockchain environment 20 and provide the latest/current database table 90 for all miners in the blockchain network.
- the table server 254 may be operated on behalf of an authorized third-party vendor or supplier that provides the database table 90 for all miners in the blockchain network.
- the miner system 22 may send a query to the network address associated with or assigned to the table server 254 .
- the query specifies the table identifier 250 .
- the table server 254 When the table server 254 receives the query, the table server 254 queries the electronic database 252 of tables for the table identifier 250 specified by the query.
- the table server 254 has a hardware processor and memory device (not shown for simplicity) that stores and executes a query handler software application.
- the query handler software application causes the table server 254 to perform a database lookup operation.
- the table server 254 identifies the corresponding database table 90 by querying the database 252 of tables for the table identifier 250 .
- the table server 254 generates and sends a query response to the network address associated with or assigned to the miner system 22 , and the query response includes or specifies the database table 90 that is associated with the table identifier 250 .
- the miner system 22 may thus identify, download, and/or retrieve the database table 90 .
- exemplary embodiments may dynamically switch or change the database table 90 to suit any objective or performance criterion. Exemplary embodiments may thus need only specify the table identifier 250 , and the table identifier 250 may be dynamically changed at any time.
- the blockchain environment 20 may flexibly switch, change, and evaluate different database tables, merely by changing or modifying the table identifier 250 .
- the blockchain network may thus experiment with different database tables, different difficulty algorithms 48 , and/or different proof-of-work algorithms 52 with little or no impact or effect on hashing.
- the blockchain environment 20 may distribute, assign, or restore a new/different table identifier 250 (perhaps by updating the client-side blockchain mining software application 196 and/or distributing/broadcasting the message 202 , as this disclosure above explains).
- the blockchain environment 20 may thus dynamically change the database table 90 , which may concomitantly change the difficulty algorithm 48 and/or the proof-of-work algorithm 52 , for quick evaluation and/or problem resolution.
- FIG. 39 further illustrates table services.
- the table server 254 may serve different blockchain environments 20 .
- the table server 254 may server miners 22 a operating in blockchain environment 20 a .
- the table server 254 may also server miners 22 b operating in blockchain environment 20 b .
- the table server 254 may thus be operated on behalf of a table service provider 256 that provides a table service 258 to clients and blockchain networks.
- the table service provider 256 may receive, generate, and/or store different database tables 90 , perhaps according to a client's or a blockchain's specification. Each different table 90 may have its corresponding unique table identifier 250 .
- the table server 254 may offer and provide the corresponding database table 90 .
- the table service provider 256 and/or the table server 254 may thus be an authorized provider or participant in the blockchain environments 20 a - b .
- a first miner system 22 a for example, operating in the blockchain environment 20 a , may request and retrieve the database table 90 a that corresponds to the proof-of-work (“PoW”) target scheme 34 a .
- a different, second system 22 b operating in the blockchain environment 20 b , may request and retrieve the database table 90 b that corresponds to the proof-of-work (“PoW”) target scheme 34 b .
- Miners may query the table server 254 (perhaps by specifying the corresponding table ID 250 ) and retrieve the corresponding database table 90 .
- the table service provider 256 may thus specialize in randomized/cryptographic database tables, and the table server 254 may serve different blockchain networks.
- FIG. 40 further illustrates table services.
- the blockchain environment 20 and/or the miner system 22 may outsource the bit shuffle operation 92 to the table service provider 256 .
- the miner system 22 may outsource or subcontract the bit swap operation 92 to the table server 254 .
- the client-side blockchain mining software application 196 may thus cause or instruct the miner system 22 to generate a bit shuffle service request that is sent to the table service provider 256 (such as the IP address assigned to the table server 254 ).
- the bit shuffle service request may specify or include the hash values 60 .
- the bit shuffle service request may additionally or alternatively specify or include the table identifier 250 .
- the bit shuffle service request may additionally or alternatively specify or include a website, webpage, network address location, or server from which the hash values 60 may be downloaded, retrieved, or obtained to perform the bit shuffle operation 92 .
- the table service provider 256 may utilize any mechanism to provide the bit shuffle operation 92
- FIG. 40 illustrates a vendor's server/client relationship.
- the miner system 22 sends the bit shuffle service request to the table server 254 that is operated on behalf of the table service provider 256 .
- the table server 254 may query the database 252 of tables for the table identifier 250 specified by the bit shuffle service request.
- the table server 254 identifies the corresponding database table 90 .
- the table server 254 performs the bit shuffle operation 92 using the hash value(s) 60 specified by, or referenced by, the bit shuffle service request.
- the table server 254 generates and sends a service result to the network address associated with or assigned to the miner system 22 , and the service result includes or specifies data or information representing the randomized hash value(s) 226 .
- the miner system 22 may then execute, or outsource, the difficulty algorithm 48 and/or the proof-of-work algorithm 52 using the randomized hash value(s) 226 (as this disclosure above explained).
- Exemplary embodiments improve computer functioning.
- the database table 90 adds cryptographic security by further randomizing the hash value(s) 60 generated by the hashing algorithm 54 .
- exemplary embodiments may only specify the table identifier 250 .
- the memory byte size consumed by the proof-of-work (“PoW”) target scheme 34 and/or the client-side blockchain mining software application 196 is reduced. That is, the blockchain network server 28 need not send the entire software program, code, or instructions representing the database table 90 used by the blockchain environment 20 .
- the blockchain environment 20 , the blockchain network server 28 , and/or the proof-of-work (“PoW”) target scheme 34 need only specify the much smaller byte-sized table identifier 250 .
- the blockchain environment 20 need not be burdened with conveying the database table 90 to the miner system 22 and to other mining nodes.
- the blockchain environment 20 and the communication network 26 convey less packet traffic, so packet travel times and network latency are reduced.
- the miner system 22 is relieved from processing/executing the bit swap operation 92 and consumes less electrical power.
- a faster and more expensive graphics processor or even ASIC will not speed up the proof-of-work operation.
- the conventional central processing unit 36 is adequate, reduces costs, and promotes democratic mining.
- Exemplary embodiments improve cryptographic security. If the blockchain environment 20 , the proof-of-work (“PoW”) target scheme 34 and/or the client-side blockchain mining software application 196 specifies use of the database table 90 , only authorized miners may have access to the actual entries referenced by the database table 90 . That is, if miner system 22 is required to perform, implement, or even execute the bit shuffle operation 92 , the miner system 22 must have access to the correct database table 90 . An unauthorized or rogue entity, in other words, likely could not perform the bit shuffle operation 92 without access to the correct database table 90 .
- PoW proof-of-work
- the authorized miner system 22 may still be blind to the database table 90 .
- the authorized miner system 22 in other words, is operationally reliant on the table server 254 to perform the bit shuffle operation 92 that may be required for the difficulty algorithm 48 and/or for the proof-of-work algorithm 52 .
- the miner system 22 simply cannot solve the mathematical puzzle 62 without the table service 258 provided by the table server 254 .
- the database table 90 may thus be proprietary to the blockchain environment 20 , but, unknown and unavailable to even the authorized miner system 22 for added cryptographic security.
- FIG. 41 illustrates agnostic blockchain mining, according to exemplary embodiments.
- the miner system 22 may be agnostic to the blockchain environment 20 . Because the miner system 22 may be agnostic to encryption, difficulty, and proof-of-work operations, the miner system 22 may process or mine the blockchain transactions 32 in multiple blockchain environments 20 . That is, because the conventional CPU 36 is adequate for mining blockchain transactions 32 , no specialized ASIC is required for any particular blockchain environment 20 . The miner system 22 may thus participate in multiple blockchain environments 20 and potentially earn multiple rewards.
- the miner system 22 may participate in the blockchain environment 22 a and mine the blockchain transactions 32 a sent from the blockchain network server 28 a to authorized miners in blockchain network 260 a .
- the miner system 22 may thus mine the blockchain transactions 32 a according to the proof-of-work (“PoW”) target scheme 34 a that is specified by the blockchain environment 22 a , the blockchain network server 28 a , and/or the blockchain network 260 a .
- the miner system 22 may also participate in the blockchain environment 22 b and mine the blockchain transactions 32 b sent from the blockchain network server 28 b to authorized miners in blockchain network 260 b .
- the miner system 22 may thus mine the blockchain transactions 32 b according to the proof-of-work (“PoW”) target scheme 34 b that is specified by the blockchain environment 22 b , the blockchain network server 28 b , and/or the blockchain network 260 b .
- PoW proof-of-work
- the miner's conventional CPU 36 may be adequate for mining operations in both blockchain environments 22 a and 22 b .
- the miner system 22 may thus download, store, and execute the client-side blockchain mining software application 196 a that is required to mine the blockchain transactions 32 a in the blockchain environment 20 a .
- the miner system 22 may also download, store, and execute the client-side blockchain mining software application 196 b that is required to mine the blockchain transactions 32 b in the blockchain environment 20 b .
- the miner system 22 may thus call, execute, coordinate, or manage the encryption algorithm 46 a , the difficulty algorithm 48 a , and/or the proof-of-work (“PoW”) algorithm 52 a according to the proof-of-work (“PoW”) target scheme 34 a specified by the blockchain environment 20 a .
- the miner system 22 may also call, execute, coordinate, or manage the encryption algorithm 46 b , the difficulty algorithm 48 b , and/or the proof-of-work (“PoW”) algorithm 52 b according to the proof-of-work (“PoW”) target scheme 34 b specified by the blockchain environment 20 b .
- the miner system 22 has the hardware processor capability and performance (e.g., clock speed, processor core(s)/thread(s) count, cycles, the on-board cache memory 100 , thermal profile, electrical power consumption, and/or chipset) to mine in both blockchain environments 20 a and 20 b .
- the miner system 22 may participate in multiple blockchain environments 20 , thus having the capability to earn additional rewards, while also being less expensive to purchase and to operate.
- FIGS. 42-43 illustrate virtual blockchain mining, according to exemplary embodiments.
- the miner system 22 may outsource or subcontract mining operations to a virtual machine (or “VM”) 262 .
- the miner system 22 may implement different virtual machines 262 , with each virtual machine 262 dedicated to a particular blockchain environment 20 .
- the miner system 22 may assign the virtual machine 262 a to mining the blockchain transactions 32 a sent from the blockchain network server 28 a .
- the miner system 22 may assign the virtual machine 262 b to mining the blockchain transactions 32 b sent from the blockchain network server 28 b .
- the miner system 22 may thus be a server computer that participates in multiple blockchain environments 20 and potentially earns multiple rewards.
- the miner system 22 may provide virtual mining resources to multiple blockchain environments 20 , thus lending or sharing its hardware, computing, and programming resources. While FIG. 42 only illustrates two (2) virtual machines 262 a and 262 b , in practice the miner system 22 may implement any number or instantiations of different virtual machines 262 , with each virtual machine 262 serving or mining one or multiple blockchain environments 20 .
- the miner system 22 may inspect the blockchain transactions 32 for the proof-of-work (“PoW”) target scheme 34 that identifies the corresponding encryption, difficulty, and PoW scheme (such as by consulting the databases 70 , 74 , and 78 , as above explained).
- the miner system 22 may additionally or alternatively inspect the blockchain transactions 32 for the identifiers 200 , 210 , 214 , and 250 (as this disclosure above explains). Once the blockchain environment 20 is determined, the miner system 22 may then
- FIG. 43 illustrates a database lookup.
- the miner system 22 may identify the corresponding virtual machine 262 .
- the miner system 22 may consult an electronic database 264 of virtual machines. While the database 264 of virtual machines may have any structure, FIG. 43 illustrates a relational table 266 having entries that map or associate the PoW scheme 34 and/or any of the identifiers 200 , 210 , 214 , 250 to the corresponding virtual machine 262 .
- the miner system 22 may thus query the electronic database 264 of virtual machines for any of the PoW scheme 34 and/or any of the identifiers 200 , 210 , 214 , 250 and determine the corresponding virtual machine 262 . Once the virtual machine 262 is identified (e.g., a memory address or pointer, processor core, identifier, network address and/or service provider, or other indicator), the miner system 22 may assign the blockchain transactions 32 to the virtual machine 262 for mining.
- the virtual machine 262 e.g., a memory address or pointer, processor core, identifier, network address and/or service provider, or other indicator
- the miner system 22 may thus serve many blockchains.
- the miner system 22 may mine BITCOIN® and other cryptographic coin transactional records.
- the miner system 22 may also nearly simultaneously mine financial records sent from or associated with a financial institution, inventory/sales/shipping records sent from a retailer, and transactional records sent from an online website.
- the miner system 22 may participate in multiple blockchain environments 20 , thus having the capability to earn additional rewards, while also being less expensive to purchase and to operate.
- FIG. 44 is a flowchart illustrating a method or algorithm for mining the blockchain transactions 32 , according to exemplary embodiments.
- the inputs 24 (such as the blockchain transactions 32 ) may be received (Block 300 ).
- the proof-of-work (“PoW”) target scheme 34 may be received (Block 302 ).
- the message 202 may be received (Block 304 ).
- the identifiers 200 , 210 , 214 , and/or 250 may be received (Block 306 ).
- the block 40 of data may be generated (Block 308 ).
- the encryption algorithm 46 (such as the hashing algorithm 54 ) may be identified (Block 310 ) and the output 56 (such as the hash values 60 ) may be generated by encrypting/hashing the blockchain transactions 32 and/or the block 40 of data (Block 312 ).
- the encryption/hashing service provider 150 may be identified and the blockchain transactions 32 and/or the block 40 of data outsourced (Block 314 ).
- the output 56 (such as the hash values 60 ) may be received from the encryption/hashing service provider 150 (Block 316 ).
- the difficulty algorithm 48 may be identified (Block 318 ), the database table 90 may be generated or identified, and the difficulty 50 may be generated by executing the difficulty algorithm 48 (Block 320 ).
- the difficulty service provider 156 may be identified and the difficulty calculation outsourced (Block 322 ).
- the difficulty 50 may be received from the difficulty service provider 156 (Block 324 ).
- the PoW algorithm 52 may be identified (Block 326 ), the database table 90 may be generated or identified, and the PoW result 42 determined by executing the PoW algorithm 52 (Block 328 ).
- the PoW service provider 120 may be identified and the PoW calculation outsourced (Block 330 ).
- the PoW result 42 may be received from the PoW service provider 120 (Block 332 ).
- the output 56 (such as the hash values 60 ), the difficulty 50 , and/or the PoW result 42 may be compared to the PoW target scheme 34 (Block 334 ).
- Exemplary embodiments may win the block 40 of data. If the output 56 , the difficulty 50 , and/or the PoW result 42 satisfy the PoW target scheme 34 , then the miner system 22 may submit the output 56 , the difficulty 50 , and/or the PoW result 42 to the blockchain network server 28 .
- the miner system 22 may itself determine if the miner system 22 is the first to satisfy the PoW target scheme 34 , or the miner system 22 may rely on the blockchain network server 28 to determine the first solution. When the miner system 22 is the first solver, the miner system 22 earns the right to add the block 40 of data to the blockchain 64 . However, if the PoW target scheme 34 is not satisfied, the miner system 22 implements a change or modification and repeats.
- FIG. 45 is a schematic illustrating still more exemplary embodiments.
- FIG. 45 is a more detailed diagram illustrating a processor-controlled device 350 .
- the miner system 22 may be any home or business server/desktop 160 , laptop computer 162 , smartphone 164 , tablet computer 166 , or smartwatch 168 , as exemplary embodiments allow these devices to have adequate processing and memory capabilities to realistically mine and win the block 40 of data (as explained with reference to FIG. 18 ).
- exemplary embodiments allow any CPU-controlled device to realistically, and profitably, process the blockchain transactions 32 , thus allowing networked appliances, radios/stereos, clocks, tools (such as OBDII diagnostic analyzers and multimeters), HVAC thermostats and equipment, network switches/routers/modems, and electric/battery/ICU engine cars, trucks, airplanes, construction equipment, scooters, and other vehicles 170 .
- Exemplary embodiments may be applied to any signaling standard. Most readers are familiar with the smartphone 164 and mobile computing. Exemplary embodiments may be applied to any communications device using the Global System for Mobile (GSM) communications signaling standard, the Time Division Multiple Access (TDMA) signaling standard, the Code Division Multiple Access (CDMA) signaling standard, the “dual-mode” GSM-ANSI Interoperability Team (GAIT) signaling standard, or any variant of the GSM/CDMA/TDMA signaling standard. Exemplary embodiments may also be applied to other standards, such as the I.E.E.E. 802 family of standards, the Industrial, Scientific, and Medical band of the electromagnetic spectrum, BLUETOOTH®, low-power or near-field, and any other standard or value.
- GSM Global System for Mobile
- TDMA Time Division Multiple Access
- CDMA Code Division Multiple Access
- GIT Global System for Mobile
- Exemplary embodiments may also be applied to other standards, such as the I.E.E.E. 802 family of standards, the Industrial, Scientific, and
- Exemplary embodiments may be physically embodied on or in a computer-readable storage medium.
- This computer-readable medium may include CD-ROM, DVD, tape, cassette, floppy disk, optical disk, memory card, memory drive, and large-capacity disks.
- This computer-readable medium, or media could be distributed to end-subscribers, licensees, and assignees.
- a computer program product comprises processor-executable instructions for processing or mining the blockchain transactions 32 , as the above paragraphs explain.
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Computer Security & Cryptography (AREA)
- General Health & Medical Sciences (AREA)
- Theoretical Computer Science (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Physics & Mathematics (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Heart & Thoracic Surgery (AREA)
- Biomedical Technology (AREA)
- Surgery (AREA)
- Databases & Information Systems (AREA)
- Hematology (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Epidemiology (AREA)
- Vascular Medicine (AREA)
- Anesthesiology (AREA)
- Software Systems (AREA)
- Data Mining & Analysis (AREA)
- Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Optics & Photonics (AREA)
- Radiology & Medical Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Pharmacology & Pharmacy (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Pathology (AREA)
- Computer Hardware Design (AREA)
- Bioethics (AREA)
- Power Engineering (AREA)
- Computational Linguistics (AREA)
- Mathematical Physics (AREA)
- Probability & Statistics with Applications (AREA)
Abstract
Description
- This patent application claims domestic benefit of U.S. Provisional Application No. 63/061,372 filed Aug. 5, 2020 and is incorporated herein by reference in its entirety. This patent application claims domestic benefit of U.S. Provisional Application No. 62/962,486 filed Jan. 17, 2020 and is incorporated herein by reference in its entirety. This patent application also claims domestic benefit of U.S. Provisional Application No. 62/963,217 filed Jan. 20, 2020 and is incorporated herein by reference in its entirety.
- Today's blockchain processing consumes great hardware, network, and energy resources. When Satoshi first proposed a cryptographic blockchain, so-called “miners” expended CPU time and electricity to mine blockchain data. The mining of blockchains was democratic, meaning anyone with a conventional CPU-based computer could process the complicated calculations required to embed a block of data on a blockchain. Soon, though, the miners realized that a graphics processing unit (or GPU) was much faster than a CPU and could be optimized to solve the complicated calculations. Soon thereafter, most or all blockchain mining was performed by a specially programmed GPU computer, as a conventional CPU-based computer was comparatively too slow. Today, though, the miners use a specially-designed application-specific integrated circuit (or ASIC), as ASICs are even faster than GPUs. These ASIC computers are much faster at solving the complicated calculations, but the ASIC computers are very expensive and consume large amounts of electrical power. The ASIC computers are so cost prohibitive that, today, blockchain mining is largely undemocratic. Only a relatively small number of miners have access to the financial capital and to energy sources to mine blockchains.
- Exemplary embodiments may separate hashing operations from difficulty and proof-of-work operations. When blockchain transactions or other data is processed or mined, encryption (such as a hashing algorithm) may be a stand-alone software application or programming code. Blockchain miners may also use a separate difficulty scheme and a separate proof-of-work scheme. The encryption/hashing algorithm, a difficulty algorithm, and a proof-of-work algorithm may thus be separately called or executed. A blockchain may thus use any encryption algorithm, any difficulty algorithm, and/or any proof-of-work algorithm. Blockchain environments may thus mix-and-match different encryption, difficulty, and/or proof-of-work schemes when mining blockchain data. Each encryption, difficulty, and/or proof-of-work scheme may be separate, stand-alone programs, files, or third-party services. Blockchain miners may be agnostic to a particular blockchain's encryption, difficulty, and/or proof-of-work schemes, thus allowing any blockchain miner to process or mine data in multiple blockchains. GPUs, ASICs, and other specialized processing hardware components may be deterred by forcing cache misses, cache latencies, and processor stalls. Hashing, difficulty, and/or proof-of-work schemes require less programming code, consume less storage space/usage in bytes, and execute faster. Blockchain mining schemes may further randomize byte or memory block access, further improve cryptographic security.
- The features, aspects, and advantages of the exemplary embodiments are understood when the following Detailed Description is read with reference to the accompanying drawings, wherein:
-
FIGS. 1-19 are simplified illustrations of a blockchain environment, according to exemplary embodiments; -
FIGS. 20-21 are more detailed illustrations of an operating environment, according to exemplary embodiments; -
FIGS. 22-31 illustrate mining specifications, according to exemplary embodiments; -
FIG. 32 illustrates remote retrieval, according to exemplary embodiments; -
FIGS. 33-34 illustrate a bit shuffle operation, according to exemplary embodiments; -
FIGS. 35-36 illustrate a database table, according to exemplary embodiments; -
FIGS. 37-40 illustrate a table identifier mechanism, according to exemplary embodiments; -
FIG. 41 illustrates agnostic blockchain mining, according to exemplary embodiments -
FIGS. 42-43 illustrate virtual blockchain mining, according to exemplary embodiments; -
FIG. 44 is a flowchart illustrating a method or algorithm for mining blockchain transactions, according to exemplary embodiments; and -
FIG. 45 depicts still more operating environments for additional aspects of exemplary embodiments. - The exemplary embodiments will now be described more fully hereinafter with reference to the accompanying drawings. The exemplary embodiments may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. These embodiments are provided so that this disclosure will be thorough and complete and will fully convey the exemplary embodiments to those of ordinary skill in the art. Moreover, all statements herein reciting embodiments, as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents as well as equivalents developed in the future (i.e., any elements developed that perform the same function, regardless of structure).
- Thus, for example, it will be appreciated by those of ordinary skill in the art that the diagrams, schematics, illustrations, and the like represent conceptual views or processes illustrating the exemplary embodiments. The functions of the various elements shown in the figures may be provided through the use of dedicated hardware as well as hardware capable of executing associated software. Those of ordinary skill in the art further understand that the exemplary hardware, software, processes, methods, and/or operating systems described herein are for illustrative purposes and, thus, are not intended to be limited to any particular named manufacturer.
- As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless expressly stated otherwise. It will be further understood that the terms “includes,” “comprises,” “including,” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. It will be understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. Furthermore, “connected” or “coupled” as used herein may include wirelessly connected or coupled. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
- It will also be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first device could be termed a second device, and, similarly, a second device could be termed a first device without departing from the teachings of the disclosure.
-
FIGS. 1-19 are simplified illustrations of ablockchain environment 20, according to exemplary embodiments. Aminer system 22 receives one ormore inputs 24 via acommunications network 26 from ablockchain network server 28. While theinputs 24 may be anyelectronic data 30, in theblockchain environment 20, theinputs 24 are blockchain transactions 32 (such as financial transactions, inventory/shipping data, and/or healthcare medical data). The actual form or content represented by theelectronic data 30 and theblockchain transactions 32 may be unimportant. Theblockchain network server 28 sends, distributes, or broadcasts theinputs 24 to some or all of the authorized mining participants (such as the miner system 22). Theblockchain network server 28 may also specify a proof-of-work (“PoW”)target scheme 34, which may accompany theinputs 24 or be separately sent from theinputs 24. - The
miner system 22 may mine theinputs 24. When theminer system 22 receives theinputs 24, theminer system 22 has a hardware processor (such as CPU 36) and a solid-state memory device 38 that collects the inputs 24 (such as the blockchain transactions 32) into ablock 40 of data. Theminer system 22 then finds a difficult proof-of-work (“PoW”)result 42 based on theblock 40 of data. Theminer system 22 performs, executes, or calls/requests a proof-of-work (“PoW”)mechanism 44. The proof-of-work mechanism 44 is a computer program, instruction(s), or code that instruct or cause theminer system 22 to call, request, and/or execute anencryption algorithm 46. The proof-of-work mechanism 44 may instruct or cause theminer system 22 to call, request, and/or execute adifficulty algorithm 48 that generates or creates adifficulty 50. The proof-of-work mechanism 44 may also instruct or cause theminer system 22 to call, request, and/or execute a proof-of-work (“PoW”)algorithm 52. The proof-of-work mechanism 44 may thus be one or more software applications or programming schemes that separate theencryption algorithm 46 from thedifficulty algorithm 48 and/or from the proof-of-work algorithm 52. Because theencryption algorithm 46 may be separately executed/called from thedifficulty algorithm 48 and/or from the proof-of-work algorithm 52, encryption of the electronic data 30 (representing the inputs 24) is separately performed from thedifficulty 50 of solving the proof-of-work. In other words, anyencryption algorithm 46 may be used, along with anydifficulty algorithm 48, and/or along with any proof-of-work algorithm 52. -
FIG. 2 further illustrates the proof-of-work mechanism 44. While theencryption algorithm 46 may utilize any encryption scheme, process, and/or function, many readers may be familiar with a cryptographic hashing algorithm 54 (such as the SHA-256 used by BITCOIN®). Thecryptographic hashing algorithm 54 may thus generate an output 56 (sometimes called a digest 58) by implementing or executing thecryptographic hashing algorithm 54 using the inputs 24 (such as the blockchain transactions 32). So, whatever the arbitrary bit values of theinputs 24, and whatever the arbitrary bit length of theinputs 24, thecryptographic hashing algorithm 54 may generate theoutput 56 as one or more hash values 60, perhaps having a fixed length (or n-bit). Theminer system 22 may thus receive theinputs 24 from theblockchain network server 28, call and/or execute the encryption algorithm 46 (such as the cryptographic hashing algorithm 54), and generate the hash value(s) 60. - As
FIG. 3 illustrates, theminer system 22 may separately perform or call the proof-of-work algorithm 52. After theencryption algorithm 46 creates the output(s) 56, theminer system 22 may read/retrieve the output(s) 56 and send the output(s) 56 to the proof-of-work algorithm 52. Theminer system 22 may thus generate the proof-of-work result 42 by calling and/or by executing the proof-of-work algorithm 52 using the output(s) 56. Theminer system 22, for example, may send the hash value(s) 60 (generated by the cryptographic hashing algorithm 54) to the proof-of-work algorithm 52, and the proof-of-work algorithm 52 generates the proof-of-work result 42 using the hash value(s) 60. The proof-of-work algorithm 52 may also compare the proof-of-work result 42 to the proof-of-work (“PoW”)target scheme 34. The proof-of-work algorithm 52 may, in general, have to satisfy or solve amathematical puzzle 62, perhaps defined or specified by the proof-of-work target scheme 34. The proof-of-work target scheme 34 may also specify, or relate to, thedifficulty 50 of solving themathematical puzzle 62. That is, the more stringent or precise the proof-of-work target scheme 34 (e.g., a minimum/maximum value of the hash value 60), the more difficult themathematical puzzle 62 is to solve. In other words, thedifficulty 50 is a measure of how difficult it is to mine theblock 40 of data, given the solution requirements of the proof-of-work target scheme 34. - The
miner system 22 may own theblock 40 of data. If theminer system 22 is the first to satisfy the proof-of-work target scheme 34 (e.g., the proof-of-work result 42 satisfies the mathematical puzzle 62), theminer system 22 may timestamp theblock 40 of data and broadcast theblock 40 of data, the timestamp, the proof-of-work result 42, and/or themathematical puzzle 62 to other miners in theblockchain environment 20. Theminer system 22, for example, may broadcast a hash value representing theblock 40 of data, and the other miners begin working on a next block in theblockchain 64. - Today's BITCOIN® difficulty is increasing. On or about Jun. 16, 2020, BITCOIN's network adjusted its difficulty level (the measure of how hard it is for miners to compete for block rewards on the blockchain) to 15.78 trillion, which was nearly a 15% increase in the
difficulty 50. As thedifficulty 50 increases, older, less capable, and less power efficient miners are unable to compete. As a result, today's BITCOIN® miners must have the latest, fastest hardware (such as an ASIC) to profitably solve themathematical puzzle 62 according to the proof-of-work target scheme 34. Indeed, Satoshi envisioned that increasing hardware speed would allow miners to easier solve the proof-of-work. Satoshi thus explained that the difficulty would be a moving target to slow down generation of theblocks 40 of data. - Conventional mining schemes are integrated. When a conventional blockchain miner attempts to solve the
mathematical puzzle 62, the conventional blockchain miner executes a conventional scheme that integrates hashing, difficulty, and proof-of-work. That is, conventional proof-of-work schemes require the miners to execute a combined software offering or pre-set combination of encryption and proof. These conventional proof-of-work scheme, in other words, integrate a predetermined encryption/hashing algorithm into or with a predetermined difficulty and a predetermined proof-of-work algorithm. These conventional proof-of-work schemes thus force the miners to execute a predetermined or predefined scheme that functionally marries or bundles encryption, difficulty, and proof-of-work. - The conventional schemes specify a difficulty mechanism. BITCOIN's difficulty mechanism, for example, is a measure of how difficult it is to mine a BITCOIN® block of data. BITCOIN® miners are required to find a hash value below a given target (e.g., SHA256(nonce+input) has n leading zeros, where n determines the mining difficulty). The difficulty adjustment is directly related to the total estimated mining power (sometimes estimated in Total Hash Rate per second). BITCOIN's difficulty mechanism is adjusted to basically ensure that ten (10) minutes of computation are required before a miner may solve the
mathematical puzzle 62. - The conventional schemes force the use of specialized hardware. When blockchain mining first appeared, home/desktop computers and laptops (and their conventional processors or CPUs) were adequate. However, as blockchain mining became more difficult and competitive, miners gained an advantage by repurposing a dedicated graphics processing unit (or GPU) for blockchain mining. As an example, the RADEON® HD 5970 GPU has a clocked processing speed of executing about 3,200 of 32-bit instructions per clock, which is about 800 times more than the speed of a CPU that executes only four (4) 32-bit instructions per clock. This increased processor clock speed allowed GPUs to perform far more calculations and made GPUs more desirable for cryptocurrency/blockchain mining. Later, field programmable gate arrays (FPGAs) were also re-modeled for cryptocurrency/blockchain mining. FPGAs were able to compute the mathematical operations required to mine the
block 40 of data twice as fast as the GPU. However, FPGA devices were more labor-intensive to build and still require customized configurations (both software programming and hardware). Today's BITCOIN® miners have pushed the hardware requirements even further by using a specialized application-specific integrated circuit (ASIC) that is exclusively designed for blockchain mining. These ASICs may be 100 billion times faster than mere CPUs. These ASICs have made BITCOIN® mining undemocratic and only possible by a relatively few, well capitalized entities running mining farms. Today's BITCOIN® miners thus consume great quantities of electrical power and pose concerns for the electrical grid. - Today's conventional mining hardware has further specialized. Some ASICs have also been further designed for particular blockchains to achieve additional optimizations. For example, a hardware implementation of the SHA-256 hash is much faster than a version coded in software. Today, nearly all BITCOIN® mining is performed using hardware ASICs. Specialized hardware has even been developed for particular hashing functions. The RAVENCOIN® scheme, as an example, uses several different hashing algorithms, and a particular hashing algorithm is picked for one block based off of a hash of a previous block (the RAVENCOIN® scheme resembles a random selection of the hashing algorithm). However, because fifteen (15) of the sixteen (16) algorithms sit on the sidelines unused at any given time, the RAVENCOIN® scheme makes it very expensive for a miner to buy sixteen (16) different hardware rigs in order to mine according to the RAVENCOIN® scheme. Even if a miner decides to only mine the blocks that match a particular hardware requirement, the hardware still sits idle 14-15 cycles on average.
- Some blockchains may also alter or modify the mining scheme. For example, the MONERO® mining scheme uses a specialized hashing function that implements a random change. That is, the MONERO® mining scheme uses a hash algorithm that unpredictably rewrites itself. The MONERO® mining network introduced a RandomX mining algorithm that was designed to deter ASICs and to improve the efficiency of conventional CPUs. MONERO's RandomX mining algorithm uses random code execution and memory-intensive techniques, rendering ASICs too expensive and ineffective to develop.
- The conventional mining schemes thus have many disadvantages. Conventional mining schemes have become so specialized and so expensive that only a small number of large miners have the resources to compete. Blockchain mining, in other words, has become centralized and undemocratic. Some conventional schemes try to find new hashing algorithms, new proof-of-work schemes, or modify existing schemes to de-centralize and to democratize mining participants. Some conventional mining schemes (such as ETHERTUIM®) require very large memory spaces in bytes, which disadvantages its hardware. LITECOIN® also disadvantages hardware by copying large byte amounts of data.
- As
FIGS. 4-6 illustrate, though, exemplary embodiments may mix-and-match theencryption algorithm 46, thedifficulty algorithm 48, and the proof-of-work algorithm 52. The inventor has observed that there is no mining law or scheme that requires a preset or predefined difficulty scheme (such as BITCOIN'S counting zeroes on the hash to decide its difficulty). Instead, exemplary embodiments may use anyencryption algorithm 46 that a cryptographic coin, network, or scheme desires or specifies. Exemplary embodiments may use anydifficulty algorithm 48 that the cryptographic coin, network, or scheme desires or specifies. Exemplary embodiments may use any proof-of-work algorithm 52 that the cryptographic coin, network, or scheme desires or specifies.FIG. 4 illustrates theencryption algorithm 46, thedifficulty algorithm 48, and proof-of-work algorithm 52 as separate software mechanisms.FIG. 5 illustrates alternative software mechanism where thedifficulty algorithm 48 and proof-of-work algorithm 52 may be functionally intertwined, but theencryption algorithm 46 is a separate, stand-alone program, file, or service.FIG. 6 illustrates the inputs and outputs for theencryption algorithm 46, thedifficulty algorithm 48, and proof-of-work algorithm 52. -
FIG. 7 illustrates agnostic hashing. Exemplary embodiments may use anyencryption algorithm 46 that a cryptographic coin, blockchain network, or scheme desires or specifies. Because most blockchain mining schemes use hashing,FIG. 7 illustrates thecryptographic hashing algorithm 54. The proof-of-work (“PoW”)target scheme 34 may thus use anycryptographic hashing algorithm 54, as exemplary embodiments are agnostic to hashing/encryption. Theencryption algorithm 46 may be any cryptographic hashing algorithm 54 (e.g., the SHA-2 family (SHA-256 and SHA-512) and/or the SHA-3 family). Theminer system 22 need only request, call, and/or execute the particularcryptographic hashing algorithm 54 specified by the proof-of-work target scheme 34.FIG. 7 thus illustrates anelectronic database 70 of encryption algorithms accessible to theminer system 22. While thedatabase 70 of encryption algorithms is illustrated as being locally stored in thememory device 38 of theminer system 22, thedatabase 70 of encryption algorithms may be remotely stored and accessed/queried at any networked location. Even though thedatabase 70 of encryption algorithms may have any logical structure, a relational database is perhaps easiest to understand.FIG. 7 thus illustrates thedatabase 70 of encryption algorithms as an electronic table 72 that maps, converts, or translates different proof-of-work target schemes 34 to their corresponding or associated encryption algorithm 46 (such as the particular cryptographic hashing algorithm 54). Theminer system 22 may thus identify theencryption algorithm 46 by querying theelectronic database 70 of encryption algorithms for the proof-of-work target scheme 34 specified for use by theblockchain environment 20. So, once the particularcryptographic hashing algorithm 54 is identified, theminer system 22 may acquire or retrieve any inputs 24 (such as the blockchain transactions 32) and execute thecryptographic hashing algorithm 54 specified by the proof-of-work target scheme 34. Theminer system 22 may optionally send theinputs 24 via the Internet or other network (e.g., thecommunications network 26 illustrated inFIGS. 1-3 ) to a remote destination for service execution (as later paragraphs will explain). The encryption algorithm 46 (e.g., thecryptographic hashing algorithm 54 specified by the proof-of-work target scheme 34) may thus generate theoutput 56/digest 58 represented as the hash value(s) 60. -
FIG. 8 illustrates agnostic difficulty. Exemplary embodiments may use anydifficulty algorithm 48 that a cryptographic coin, blockchain network, or scheme desires or specifies. For example, when or even after the encryption algorithm 46 (e.g., the cryptographic hashing algorithm 54) generates the output 56 (such as the hash value(s) 60), theminer system 22 may request, call, and/or execute theparticular difficulty algorithm 48 selected by, or specified by, the proof-of-work target scheme 34 and/or theblockchain environment 20. The proof-of-work target scheme 34 may thus use anydifficulty algorithm 48, as theminer system 22 is agnostic to difficulty.FIG. 8 , for example, illustrates anelectronic database 74 of difficulty algorithms that is accessible to theminer system 22. While thedatabase 74 of difficulty algorithms is illustrated as being locally stored in thememory device 38 of theminer system 22, thedatabase 74 of difficulty algorithms may be remotely stored and accessed/queried at any networked location. Even though thedatabase 74 of difficulty algorithms may have any logical structure, a relational database is again perhaps easiest to understand.FIG. 8 thus illustrates thedatabase 74 of difficulty algorithms as an electronic table 76 that maps, converts, or translates different proof-of-work target schemes 34 to their corresponding or associated difficulty algorithm 48 (such as the particular cryptographic hashing algorithm 54). Theminer system 22 may thus identify thedifficulty algorithm 48 by querying theelectronic database 74 of difficulty algorithms. So, once theparticular difficulty algorithm 48 is identified, theminer system 22 may acquire or retrieve any inputs that are required by the difficulty algorithm 48 (such as the output hash value(s) 60 generated by the cryptographic hashing algorithm 54). Theminer system 22 may execute thedifficulty algorithm 48 specified by the proof-of-work target scheme 34. Theminer system 22 may optionally send the hash value(s) 60 via the Internet or other network (e.g., thecommunications network 26 illustrated inFIGS. 1-3 ) to a remote destination for service execution (as later paragraphs will explain). Thedifficulty algorithm 48 creates or generates thedifficulty 50 based on the hash value(s) 60. -
FIG. 9 illustrates agnostic proof-of-work. Exemplary embodiments may use any proof-of-work algorithm 52 that a cryptographic coin, blockchain network, or scheme desires or specifies. The proof-of-work target scheme 34 may thus use any proof-of-work algorithm 52, as theminer system 22 is agnostic to encryption, difficulty, and/or proof-of-work.FIG. 9 , for example, illustrates anelectronic database 78 of proof-of-work algorithms that is accessible to theminer system 22. While thedatabase 78 of proof-of-work algorithms is illustrated as being locally stored in thememory device 38 of theminer system 22, thedatabase 78 of proof-of-work algorithms may be remotely stored and accessed/queried at any networked location. Even though thedatabase 78 of proof-of-work algorithms may have any logical structure, a relational database is again perhaps easiest to understand.FIG. 9 thus illustrates thedatabase 78 of proof-of-work algorithms as an electronic table 80 that maps, converts, or translates different proof-of-work target schemes 34 to their corresponding proof-of-work algorithm 52. Theminer system 22 may thus identify the proof-of-work algorithm 52 by querying theelectronic database 78 of proof-of-work algorithms. After the hash value(s) 60 are generated, and perhaps after thedifficulty 50 is generated, theminer system 22 may execute the proof-of-work algorithm 52 (specified by the proof-of-work target scheme 34) using the hash value(s) 60 and/or thedifficulty 50 as inputs. Theminer system 22 may optionally send the hash value(s) 60 and/or thedifficulty 50 via the Internet or other network to a remote destination for service execution (as later paragraphs will explain). The proof-of-work algorithm 52 generates the proof-of-work result 42 using the hash value(s) 60 and/or thedifficulty 50. The proof-of-work algorithm 52 may also compare the proof-of-work result 42 to the proof-of-work (“PoW”)target scheme 34 to ensure or to prove a solution to themathematical puzzle 62. - Exemplary embodiments may thus use any
encryption algorithm 46, anydifficulty algorithm 48, and/or any proof-of-work algorithm 52. Exemplary embodiments may implement any cryptographic security. Instead of merely counting zeroes (as specified by BITCOIN′), exemplary embodiments may run the resultinghash value 60 through thedifficulty algorithm 48 to calculate thedifficulty 50 in order to determine whether it's more or less difficult than other hashes. - As
FIG. 10 illustrates, exemplary embodiments may use anyPoW target scheme 34. There are many different target schemes, some of which use or specify random number/nonce values, addresses, starting points, and other security schemes. The proof-of-work algorithm 52, for example, may have to compare the hash value(s) 60 to atarget hash value 82. Thetarget hash value 82 may be any minimum or maximum hash value that must be satisfied. If thehash value 60 is less than or perhaps equal to thetarget hash value 82, then the proof-of-work algorithm 52 has perhaps solved themathematical puzzle 62. However, if thehash value 60 is greater than thetarget hash value 82, then perhaps the proof-of-work algorithm 52 has failed to solve themathematical puzzle 62. Likewise, thehash value 60 may need to be equal to or greater than thetarget hash value 82 to be satisfactory. Regardless, should thehash value 60 fail to satisfy thetarget hash value 82, exemplary embodiments may modify any data or input (e.g., theelectronic data 30, a random number/nonce value, address, starting points, etc.) according to the proof-of-work target scheme 34, again call or request thecryptographic hashing algorithm 54 to generate the corresponding hash value(s) 60, and compare the hash value(s) 60 to thetarget hash value 82. Exemplary embodiments may repeatedly modify theelectronic data 30 and/or any other parameters until the corresponding hash value(s) 60 satisfy thetarget hash value 82. - Exemplary embodiments may also use any difficulty scheme. The inventor envisions that there will be many different difficulty schemes. The
difficulty algorithm 48, for example, may have to compare thedifficulty 50 to atarget difficulty 84. Thetarget difficulty 84 has a bit or numeric value that represents a satisfactory difficulty of the correspondingcryptographic hashing algorithm 54 and/or thehash value 60. For example, suppose thetarget difficulty 84 is a minimum value that represents a minimum permissible difficulty associated with the correspondingcryptographic hashing algorithm 54. If thedifficulty 50 is less than or perhaps equal to thetarget difficulty 84, then perhaps the correspondingcryptographic hashing algorithm 54 and/or thehash value 60 is adequately difficult. However, if thedifficulty 50 is greater than thetarget difficulty 84, then perhaps the correspondingcryptographic hashing algorithm 54 and/or thehash value 60 is too difficult. Likewise, thedifficulty 50 may need to be equal to or greater than thetarget difficulty 84 to be adequately difficult. Regardless, should thedifficulty 50 fail to satisfy thetarget difficulty 84, exemplary embodiments may modify any data or input (e.g., theelectronic data 30, a random number/nonce value, address, starting points, etc.) and recompute the corresponding hash value(s) 60. Moreover, exemplary embodiments may additionally or alternatively change thecryptographic hashing algorithm 54 and/or thedifficulty algorithm 48 and recompute. - Exemplary embodiments may thus functionally separate hashing, difficulty, and proof-of-work. The conventional proof-of-
work target scheme 34 functionally combines or performs both hashing and difficulty. The conventional proof-of-work target scheme 34 integrates or combines the difficulty in the hash. The conventional proof-of-work target scheme 34 integrates or combines the difficulty in the hash, thus greatly complicating the hash determination. Exemplary embodiments, instead, may separate thehashing algorithm 54 from thedifficulty algorithm 48. Exemplary embodiments put thedifficulty 50 in the measurement of thedifficulty 50. Exemplary embodiments remove thedifficulty 50 from the hashingalgorithm 54. Thehashing algorithm 54 is not complicated by also having to integrate/calculate thedifficulty algorithm 48. Thedifficulty algorithm 48 may thus be a separate, stand-alone function or service that determines or calculates which hash is more difficult. Thehashing algorithm 54 is much simpler to code and much faster to execute, as thehashing algorithm 54 requires less programming code and less storage space/usage in bytes. Thehashing algorithm 54 need not be complicated to deter ASIC mining. Exemplary embodiments need not rely on thehashing algorithm 54 to also determine thedifficulty 50 and/or the proof-of-work. Thedifficulty algorithm 48 is, instead, a separate functional mechanism, perhaps performed or executed by a service provider. Exemplary embodiments thus need not use an electrical power-hungry mechanism that is inherent in the conventional proof-of-work scheme. -
FIG. 11 illustrates a randomized database table 90. Thedifficulty algorithm 48 and/or the proof-of-work algorithm 52 may use or consult the database table 90 when conducting any proof-of-work (e.g., 34 and/or 44). While exemplary embodiments may use any encryption scheme, most blockchain mining uses some form of hashing.FIG. 11 thus the proof-of-work target scheme 34 that utilizes the separatecryptographic hashing algorithm 54, but thedifficulty algorithm 48 and/or the proof-of-work algorithm 52 implements a further randomization of the resulting hash value(s) 60. The proof-of-work target scheme 34 ormechanism 44 may generate, store, and/or use the database table 90 when performing any proof-of-work. Exemplary embodiments may implement abit shuffle operation 92 on the hash value(s) 60. Exemplary embodiments may use entries in the database table 90 to perform the bit shuffle operation 92 (as later paragraphs will explain). Eachentry 94 in the database table 90 may contain a random selection of bits/bytes 96. Thedifficulty algorithm 48 and/or the proof-of-work algorithm 52 may select any bit values representing the hash value(s) 60 and swap any one or more of the bit values with any one ormore entries 94 specified by the database table 90. Thedifficulty algorithm 48 and/or the proof-of-work algorithm 52 may read or select a bit portion of the bit values representing the hash value(s) 60 and exchange or replace the bit portion with anentry 94 contained in, or referenced by, the database table 90. Eachentry 94 in the database table 90 represents or is associated with random bits or bytes. Exemplary embodiments may thus randomly shuffle the hash value(s) 60 generated by thecryptographic hashing algorithm 54. Exemplary embodiments randomize byte or memory block access. -
FIG. 12 illustrates RAM binding. Exemplary embodiments may discourage or deter the use of specialized hardware (such as GPUs and ASICs) in blockchain mining. The proof-of-work target scheme 34, for example, may take advantage of, or target, memory size restrictions and cache latency of any on-boardprocessor cache memory 100. As the reader may understand, any hardware processing element (whether a GPU, an ASIC, or the CPU 36) may have integrated/embedded L1, L2, and L3 SRAM/DRAM cache memory. Theprocessor cache memory 100 is generally much smaller than a system/main memory (such as the memory device 38), so the hardware processing element may store frequently-needed data and instructions. Because theprocessor cache memory 100 is physically much closer to the processing core, any hardware processing element is able to quickly fetch or hit needed information. If theprocessor cache memory 100 does not store the needed information, then a cache miss has occurred and the hardware processing element must request and write blocks of data via a much-slower bus from the system/main memory 38. A cache miss implies a cache latency in time and/or cycles to fetch the needed information from the system/main memory 38. Any hardware processing element (again, whether a GPU, an ASIC, or the CPU 36) may sit idle, or stall, while awaiting fetches from the system/main memory 38. - Exemplary embodiments may thus force latency, cache misses, and stalls. Exemplary embodiments may target cache latency and processor stalls by generating, storing, and/or using the database table 90 when determining the hash value(s) 60 (as later paragraphs will explain). The database table 90, however, may be sized to overload the
processor cache memory 100. The database table 90, in other words, may have a table byte size 102 (in bits/bytes) that exceeds a storage capacity orcache byte size 104 of theprocessor cache memory 100. The database table 90, for example, may exceed one gigabyte (1 GB). Today's L1, L2, and L3 processor cache memory is typically hundreds of megabits in size. Because the database table 90 may exceed one gigabyte (1 GB), any caching operation will miss or invalidate. That is, the L1, L2, and L3processor cache memory 100 lacks the storage capacity orbyte size 104 to store the entire database table 90. Perhaps only a portion (or perhaps none) of the database table 90 may be stored in theprocessor cache memory 100. Indeed, exemplary embodiments thus force some, most, or even all of the database table 90 to be written or stored to the main/host memory device 38 (or accessed/retrieved from a remote source, as later paragraphs will explain). Because any hardware processing element (again, whether a GPU, an ASIC, or the CPU 36) is unable to cache the entire database table 90, exemplary embodiments force a cache miss and further force the hardware processing element to repeatedly use theprocessor cache memory 100 to fetch and load a portion of the database table 90. The main/system memory 38 thus provides perhaps a particular portion of the database table 90 via the bus to theprocessor cache memory 100, and theprocessor cache memory 100 then provides that particular portion of the database table 90 to the hardware processing element. The hardware processing element may then purge or delete that particular portion of the database table 90 from theprocessor cache memory 100 and request/fetch/load another portion of the database table 90. Because exemplary embodiments may force repeated cache misses, the hardware processing element may continuously repeat this cycle for loading/retrieving most or all portions of the database table 90. The hardware processing element, in other words, repeatedly queries theprocessor cache memory 100 and/or the main/host memory device 38 and awaits data retrieval. The hardware processing element must therefore sit, perhaps mostly idle, while theprocessor cache memory 100 and/or the main/host memory device 38 processes, retrieves, and sends different segments/portions/blocks of the database table 90. Theprocessor cache memory 100 and/or the main/host memory device 38 have the cache latency (perhaps measured in clock cycles, data transfer rate, or time) that limits blockchain computations. A faster processor/GPU/ASIC, in other words, will not improve memory access times/speeds, so any computational speed/performance is limited by the latency of repeatedly accessing theprocessor cache memory 100 and/or the main/host memory device 38. The database table 90 thus deters GPU/ASIC usage when processing theblockchain transactions 32. The database table 90 may thus be purposefully designed to be non-cacheable by intensively using theprocessor cache memory 100 and/or the main/host memory device 38 as an ASIC-deterrence mechanism. - Byte or memory block access may be randomized. Whatever the
hashing algorithm 54, exemplary embodiments may implement thebit shuffle operation 92 on the hash value(s) 60. Exemplary embodiments may use theentries 94 in the database table 90 to perform the bit shuffle operation 92 (as later paragraphs will further explain). The proof-of-work target scheme 34 may use bit values representing the hash value(s) 60, but the proof-of-work target scheme 34 may swap any one or more of the bit values with any one ormore entries 94 specified by the database table 90. Eachentry 94 in the database table 90 may contain a random selection of bits/bytes. The proof-of-work target scheme 34 may cause the proof-of-work algorithm 52 to read or to select a bit portion of the bit values representing the hash value(s) 60 and exchange or replace the bit portion with anentry 94 contained in, or referenced by, the database table 90. Eachentry 94 in the database table 90 represents or is associated with random bits or bytes. The proof-of-work target scheme 34 may thus randomly shuffle the hash value(s) 60 generated by thecryptographic hashing algorithm 54. - Exemplary embodiments may discourage or deter specialized hardware in blockchain mining. The
miner system 22 must have access to the database table 90 in order to execute thebit shuffle operation 92,difficulty algorithm 48, and/or the proof-of-work algorithm 52. Because any processing component (e.g., ASIC, GPU, or the CPU 36) is unable to cache the entire database table 90, exemplary embodiments force the processing component to query theprocessor cache memory 100 and/or the main/host memory device 38 and to await data retrieval. The hardware processing component must therefore sit, perhaps mostly idle, while theprocessor cache memory 100 and/or the main/host memory device 38 processes, retrieves, and sends different segments/portions/blocks of the database table 90. A faster GPU/ASIC will thus not improve memory access times/speeds. Exemplary embodiments thus force miners to choose theCPU 36, as a faster GPU/ASIC provides no performance/speed gain. Moreover, because a faster GPU/ASIC is ineffective, the extra capital expense of a faster GPU/ASIC offers little or no benefit and cannot be justified. Exemplary embodiments thus bind miners to theCPU 36 for blockchain processing/mining. - Exemplary embodiments thus include RAM hashing. The electronic database table 90 may have a random number of columns and/or a random number of rows. The electronic database table 90 may have a random number of
database entries 94. Moreover, each columnar/row database entry 94 may also have a random sequence or selection of bits/bytes (1's and 0's). So, whatever the hash values 60 generated by the hashingalgorithm 54, theseparate difficulty algorithm 48 and/or proof-of-work algorithm 52 may use the electronic database table 90 to further randomize the hash values 60 for additional cryptographic security. Indeed, because only at least a portion of the electronic database table 90 may be stored in theprocessor cache memory 100, exemplary embodiments effectively confine hashing operations to the main/host memory device 38 (such as a subsystem RAM). Regardless of what device or service provider executes thehashing algorithm 54, the electronic database table 90, which is mostly or entirely stored in the main/host memory device 38, provides the randomized inputs to theseparate difficulty algorithm 48 and/or proof-of-work algorithm 52. Operationally and functionally, then, exemplary embodiments divorce or functionally separate any hardware processing element from the hashing operation. Simply put, no matter what the performance/speed/capability of the ASIC, GPU, or theCPU 36, the database table 90 may be randomly sized to always exceed the storage capacity orcache byte size 104 of theprocessor cache memory 100. Hashing operations are thus reliant on cache latency, cache misses, and processor stalls when using the database table 90. The hashing operations are thus largely confined to, and performed by, the off-board or off-processor main/host memory device 38 (such as a subsystem RAM). Because the main/host memory device 38 performs most or all of the cryptographic security, the hardware processing component (ASIC, GPU, or the CPU 36) may play little or no role in the hashing operations (perhaps only performing database lookup queries). Again, a better/faster ASIC or GPU provides little to no advantage in the hashing operations. Moreover, the main/host memory device 38 consumes much less electrical power, thus further providing reduced energy costs that deter/resist ASIC/GPU usage. - Exemplary embodiments may also add cryptographic security. Exemplary embodiments may force the miner/network to possess, or have authorized access to, the database table 90. In simple words, the proof-of-
work target scheme 34 swaps random bytes in thehash value 60 with other random bytes specified by the database table 90. Any party that provides or determines a proof-of-work must possess (or have access to) the database table 90. If thedifficulty algorithm 48 and/or the proof-of-work algorithm 52 lacks authorized access to the database table 90, then thedifficulty algorithm 48 and/or the proof-of-work algorithm 52 cannot query the database table 90 nor perform database lookup operations. Difficulty and/or proof-of-work will fail without having access to the database table 90. - Exemplary embodiments may also separately specify the
difficulty algorithm 48. The proof-of-work target scheme 34 may cause theminer system 22 to apply thebit shuffle operation 92 to thehash value 60. The proof-of-work target scheme 34 may also specify thedifficulty algorithm 48 and thetarget difficulty 84, perhaps having a high number or value. Because these byte accesses to theprocessor cache memory 100 are random and over a gigabyte of the memory space, the byte accesses blow or exceed the retrieval and/or byte size storage capabilities of theprocessor cache memory 100. The proof-of-work target scheme 34 thus forces theminer system 22 to wait on the slower main/host memory device 38 (rather than waiting on the speed of the hardware processing component). A faster/better hardware processing element (such as an ASIC), in other words, does not alleviate the bottleneck of accessing the main/host memory device 38. Moreover, because exemplary embodiments may heavily rely on the main/host memory device 38 (rather than the hardware processing component) to do proof of work, theminer system 22 consumes significantly less of electrical power (supplied by a power supply 110). Because the proof-of-work algorithm 52 and thedifficulty algorithm 48 may be separate from thecryptographic hashing algorithm 54, exemplary embodiments utilize the security of a well-tested hashing function, but exemplary embodiments also require the proof-of-work scheme to use the main/host memory device 38, which makes it unreasonable to build ASICS. - Exemplary embodiments may thus force usage of a particular physical memory. Exemplary embodiments, for example, may overload the
processor cache memory 100 by gorging the byte size of the database table 90 with additional database entries. Even as L1, L2, and L3processor cache memory 100 increases in the storage capacity orbyte size 104, exemplary embodiments may concomitantly increase the table byte size 102 (in bits/bytes) to ensure the database table 90 continues to exceeds the storage capacity orbyte size 104 of theprocessor cache memory 100. Exemplary embodiments may thus bind theencryption algorithm 46, thedifficulty algorithm 48, and/or the proof-of-work algorithm 52 to the main/host memory device 38 to deter GPU/ASIC usage. - Exemplary embodiments may also unbind the
hashing algorithm 54 from thedifficulty algorithm 48. Exemplary embodiments easily validate the proof-of-work by changing how proof-of-work is calculated without changing thehashing algorithm 54. Because thehashing algorithm 54 is disassociated or disconnected from thedifficulty algorithm 48, the cryptographically security of thehashing algorithm 54 is increased or improved. Moreover, theseparate difficulty algorithm 48 and/or proof-of-work algorithm 52 may have other/different objectives, without compromising the cryptographically security of thehashing algorithm 54. Thedifficulty algorithm 48 and/or proof-of-work algorithm 52, for example, may be designed for less consumption of the electrical power. Thedifficulty algorithm 48 and/or proof-of-work algorithm 52 may additionally or alternatively be designed to deter/resist ASIC/GPU usage, such as increased usage of theprocessor cache memory 100 and/or the main/host memory device 38. Thedifficulty algorithm 48 and/or proof-of-work algorithm 52 need not be cryptographically secure. Because thehashing algorithm 54 ensures the cryptographically security, thedifficulty algorithm 48 and/or proof-of-work algorithm 52 need not be burdened with providing the cryptographically security. Thedifficulty algorithm 48 and/or proof-of-work algorithm 52 each require less programming code and less storage space/usage in bytes, so each is much simpler to code and much faster to execute. -
FIG. 13 illustrates network binding. Because theencryption algorithm 46, thedifficulty algorithm 48, and the proof-of-work algorithm 52 may be separate software modules, routines, or clients, network communications may be used to deter specialized hardware. AsFIG. 13 illustrates, theminer system 22 communicates with theblockchain network server 28 via thecommunications network 26. Because theminer system 22 may be authorized to perform blockchain mining (perhaps according to the proof-of-work target scheme 34 specified or used by the blockchain network server 28), theminer system 22 may receive theinputs 24 from theblockchain network server 28. Theminer system 22, in other words, must use thecommunications network 26 to receive theinputs 24 and to subsequently mine theinputs 24. Theminer system 22 uses theinputs 24 to determine thehash value 60 and/or the difficulty 50 (as this disclosure above explains). However, suppose theblockchain network server 28 stores the database table 90 that is required for thedifficulty algorithm 48 and/or the proof-of-work algorithm 52. Even though theminer system 22 may execute theencryption algorithm 46, thedifficulty algorithm 48, and/or the proof-of-work algorithm 52, theminer system 22 may be forced to send one or more database queries to theblockchain network server 28. Theblockchain network server 28 may have a hardware processing element and a memory device (not shown for simplicity) that stores the database table 90. Theblockchain network server 28 may also store and execute a query handler software application (also not shown for simplicity) that receives queries from clients, identifies or looks upentries 94 in the database table 90, and sends query responses to the clients. So, when theminer system 22 is instructed to perform, or require, thebit shuffle operation 92, theminer system 22 may thus be forced to retrieve any entry 94 (specified by the database table 90) via thecommunications network 26 from theblockchain network server 28. Theminer system 22 may thus send the database query to the network address assigned to or associated with theblockchain network server 28. Theminer system 22 then awaits a query response sent via thecommunications network 26 from theblockchain network server 28, and the query response includes or specifies the random selection of bits/bytes retrieved from theparticular entry 94 in the database table 90. Theminer system 22 may then perform thebit swap operation 92 on the hash value(s) 60 (as this disclosure above explains). - Exemplary embodiments may use a
network latency 112 to discourage or deter specialized hardware. Because theblockchain network server 28 may store the database table 90, theminer system 22 is performance bound by thenetwork latency 112 in thecommunications network 26. Packet communications between theblockchain network server 28 and thedestination miner system 22 require time, and thenetwork latency 112 is affected by network routing, network segment travel distances, network traffic, and many other factors. Exemplary embodiments may thus additionally or alternatively force theminer system 22 to wait on thecommunications network 26 to obtain anyentry 94 in the database table 90. A faster/better hardware processing component (such as an ASIC) does not overcome bottleneck(s) due to thenetwork latency 112 in thecommunications network 26. Moreover, because the electrical power required by anetwork interface 114 is likely less than the hardware processing component, theminer system 22 consumes significantly less of electrical power. -
FIG. 14 illustrates party binding. Here theminer system 22 may utilize an authorized proof-of-work (“PoW”)service provider 120 that provides aPoW service 122. Theminer system 22 may communicate with aPoW server 124 via thecommunications network 26, and thePoW server 124 is operated by, or on behalf of, thePoW service provider 120. Perhaps only thePoW service provider 120 may be authorized to execute thedifficulty algorithm 48 and/or the proof-of-work algorithm 52 as a provable party. ThePoW server 124 may have a hardware processing element and a memory device (not shown for simplicity) that stores thedifficulty algorithm 48 and/or the proof-of-work algorithm 52. If an incorrect or unauthorized party attempts the proof-of-work, the proof-of-work is designed to fail. As an example,FIG. 14 illustrates aparty identifier 126 as one of theinputs 24 to thedifficulty algorithm 48 and to the proof-of-work algorithm 52. While theparty identifier 126 may be supplied or sent from any network location (such as theblockchain network server 28 and/or the miner system 22), theparty identifier 126 may be locally retrieved from the memory device of thePoW server 124. Theminer system 22 may send aPoW request 128 to a network address (e.g., IP address) associated with thePoW server 124. ThePoW request 128 may include or specify one or more of theinputs 24 to thedifficulty algorithm 48 and/or to the proof-of-work algorithm 52. Suppose, for example, that thePoW request 128 includes or specifies the hash value(s) 60 (determined by the hashingalgorithm 54, as above explained). ThePoW server 124 may generate the difficulty 50 (by calling or executing the difficulty algorithm 48) and/or the proof-of-work result 42 (by calling and/or by executing the proof-of-work algorithm 52) using the hash value(s) 60 and theparty identifier 126. ThePoW server 124 may then send thedifficulty 50 and/or the proof-of-work result 42 as aPoW service response 130 back to the IP address associated with theminer system 22 and/or back to the IP address associated with theblockchain network server 28. Either or both of thePoW server 124 and/or theblockchain network server 28 may compare thedifficulty 50 and/or the proof-of-work result 42 to the proof-of-work (“PoW”)target scheme 34. If thedifficulty 50 and/or the proof-of-work result 42 satisfies the proof-of-work (“PoW”)target scheme 34, then the correct, authorized party has solved themathematical puzzle 62 associated with the mining scheme. - Exemplary embodiments may thus be socially bound. Because the
party identifier 126 may be an input to thedifficulty algorithm 48 and/or to the proof-of-work algorithm 52, theparty identifier 126 must specify the correct name, code, alphanumeric combination, binary value, or any other representation of thePoW service provider 120. If the wrong, incorrect, or unauthorized value is input, thedifficulty algorithm 48 and/or the proof-of-work algorithm 52 will generate incorrect results that cannot satisfy the proof-of-work (“PoW”)target scheme 34. An unauthorized party has been used to conduct the proof-of-work. -
FIG. 15 illustrates machine binding. Here theminer system 22 may utilize a particular machine, device, or other computer to provide thePoW service 122. Theminer system 22, for example, must use thePoW server 124 to execute thedifficulty algorithm 48 and/or the proof-of-work algorithm 52 as a provable party. That is, perhaps only thePoW server 124 is authorized to execute thedifficulty algorithm 48 and/or the proof-of-work algorithm 52. A different computer or server, even if also operated by, or on behalf of, thePoW service provider 120, is ineligible or unauthorized.FIG. 15 thus illustrates amachine identifier 130 as one of theinputs 24 to thedifficulty algorithm 48 and/or to the proof-of-work algorithm 52. Themachine identifier 130 is any value, number, or alphanumeric combination that uniquely identifies thePoW server 124 executing thedifficulty algorithm 48 and/or the proof-of-work algorithm 52. Themachine identifier 130, for example, may be a chassis or manufacturer's serial number, MAC address, or IP address that is assigned to or associated with thePoW server 124. When thePoW server 124 receives the input(s) 24 from the miner system 22 (perhaps via thePoW request 128, as above explained), thePoW server 124 may generate thedifficulty 50 and/or the proof-of-work result 42 using the hash value(s) 60 and themachine identifier 130 as inputs. ThePoW server 124 may then send thedifficulty 50 and/or the proof-of-work result 42 as aPoW service response 130 back to the IP address associated with theminer system 22 and/or back to the IP address associated with theblockchain network server 28. Either or both of thePoW server 124 and/or theblockchain network server 28 may compare thedifficulty 50 and/or the proof-of-work result 42 to the proof-of-work (“PoW”)target scheme 34. If thedifficulty 50 and/or the proof-of-work result 42 satisfy the proof-of-work (“PoW”)target scheme 34, then the correct, authorized machine or device has solved themathematical puzzle 62 associated with the mining scheme. Exemplary embodiments may thus be machine bound. If the wrong, incorrect, orunauthorized machine identifier 130 is input, thedifficulty algorithm 48 and/or the proof-of-work algorithm 52 will generate incorrect results that cannot satisfy the proof-of-work (“PoW”)target scheme 34. An unauthorized computer has been used to conduct the proof-of-work. -
FIG. 16 further illustrates network binding. Here a predetermined network addressing scheme must be used to conduct thedifficulty 50 and/or the proof-of-work result 42. Suppose, for example, that the proof-of-work (“PoW”)target scheme 34 requires one or more predetermined network addresses 134 when executing thedifficulty algorithm 48 and/or the proof-of-work algorithm 52. Theinputs 24 to thedifficulty algorithm 48 and/or to the proof-of-work algorithm 52, for example, may include one or more source addresses 136 and/or one or more destination addresses 138 when routing packetized data via thecommunications network 26 from theminer system 22 to the PoW service provider 120 (e.g., the PoW server 124). The hash values 60, in other words, must traverse or travel apredetermined network routing 140 in order to satisfy the proof-of-work (“PoW”)target scheme 34. Thepredetermined network routing 140 may even specify a chronological list or order of networked gateways, routers, switches, servers, and other nodal addresses that pass or route theinputs 24 from theminer system 22 to thePoW server 124. The source addresses 136, the destination addresses 138, and/or thepredetermined network routing 140 may thus beadditional data inputs 24 to thedifficulty algorithm 48 and/or to the proof-of-work algorithm 52. ThePoW server 124 may perform network packet inspection to read/retrieve the source addresses 136, the destination addresses 138, and/or thepredetermined network routing 140 associated with, or specified by, a data packet. When thePoW server 124 receives the input(s) 24 from the miner system 22 (perhaps via thePoW request 128, as above explained), thePoW server 124 may generate thedifficulty 50 and/or the proof-of-work result 42 using the hash value(s) 60, the source addresses 136, the destination addresses 138, and/or thepredetermined network routing 140. ThePoW server 124 may then send thedifficulty 50 and/or the proof-of-work result 42 as thePoW service response 130 back to the IP address associated with theminer system 22 and/or back to the IP address associated with theblockchain network server 28. Either or both of thePoW server 124 and/or theblockchain network server 28 may compare thedifficulty 50 and/or the proof-of-work result 42 to the proof-of-work (“PoW”)target scheme 34. If thedifficulty 50 and/or the proof-of-work result 42 satisfy the proof-of-work (“PoW”)target scheme 34, then the correct, authorized networked devices were used to solve themathematical puzzle 62 associated with the mining scheme. If a wrong, incorrect, or unauthorized routing was used, thedifficulty algorithm 48 and/or the proof-of-work algorithm 52 will fail to satisfy the proof-of-work (“PoW”)target scheme 34. An unauthorized network of computers has been used to conduct the proof-of-work. -
FIG. 17 illustrates vendor processing. Theminer system 22 may communicate with one or more service providers via thecommunications network 26. Theminer system 22 may enlist or request that any of the service providers provide or perform a processing service. Anencryption service provider 150, for example, may provide anencryption service 152 by instructing anencryption server 154 to execute theencryption algorithm 46 chosen or specified by theminer system 22 and/or theblockchain network server 28. Adifficulty service provider 156 may provide adifficulty service 158 by instructing adifficulty server 160 to execute thedifficulty algorithm 48 chosen or specified by theminer system 22 and/or theblockchain network server 28. The proof-of-work (PoW) service provider 120 (e.g., the PoW server 124) may provide thePoW service 122 by executing the proof-of-work algorithm 52 chosen or specified by theminer system 22 and/or theblockchain network server 28. Theminer system 22 may thus outsource or subcontract any of theencryption algorithm 46, thedifficulty algorithm 48, and/or the proof-of-work algorithm 52 to the service provider(s). Because theencryption algorithm 46, thedifficulty algorithm 48, and/or the proof-of-work algorithm 52 may be separate software mechanisms or packages, theservice providers respective algorithms services encryption service provider 150, for example, may offer a selection ofdifferent encryption services 152 and/orencryption algorithms 46, with eachencryption service 152 and/orencryption algorithm 46 tailored to a specific encryption need or feature. Thedifficulty service provider 156 may offer a selection ofdifferent difficulty services 158 and/ordifficulty algorithms 48 that are tailored to a specific difficulty need or feature. ThePoW service provider 120 may offer a selection ofdifferent PoW services 122 and/orPoW algorithms 52 that are tailored to a specific proof-of-work need or feature. Theblockchain network server 28, theminer system 22, and/or the proof-of-work (“PoW”)target scheme 34 may thus mix-and-match encryption, difficulty, and proof-of-work options. - Exemplary embodiments may thus decouple encryption, difficulty, and proof-of-work efforts. Because the
encryption algorithm 46 may be a stand-alone software offering or module, exemplary embodiments greatly improve encryption security. The encryption algorithm 46 (such as the hashing algorithm 54) need not intertwine with thedifficulty algorithm 48 and/or the proof-of-work algorithm 52. Because thehashing algorithm 54 may be functionally divorced from difficulty and proof-of-work calculations, the hashingalgorithm 54 remains a safe, secure, and proven cryptology scheme without exposure to software bugs and errors introduced by difficulty and proof-of-work needs. Thedifficulty algorithm 48 may also be severed or isolated from encryption and proof-of-work, thus allowing a blockchain scheme to dynamically alter or vary different difficulty calculations without affecting encryption and/or proof-of-work. The proof-of-work algorithm 52 may also be partitioned, split off, or disconnected from encryption and difficulty, thus allowing any blockchain scheme to dynamically alter or vary different proof-of-work calculations or schemes without affecting encryption and/or difficulty. -
FIG. 18 illustrates democratic mining. Exemplary embodiments reduce or even eliminate the need for graphics processors and specialized application-specific integrated circuits. Theminer system 22 may thus rely on a conventional central processing unit (such as the CPU 36) to process theblockchain transactions 32. Theminer system 22 may thus be a conventional home or business server/desktop 160 orlaptop computer 162 that is much cheaper to purchase, use, and maintain. Moreover, theminer system 22 may even be asmartphone 164,tablet computer 166, orsmartwatch 168, as these devices also have adequate processing and memory capabilities to realistically mine and win theblock 40 of data (illustrated inFIGS. 1-10 ). Indeed, theminer system 22 may be any network-connected device, as exemplary embodiments reduce or even eliminate the need for specialized hardware processors. Theminer system 22 thus opens-up blockchain mining to any network-connected appliance (e.g., refrigerator, washer, dryer), smart television, camera, smart thermostat, or other Internet of Thing. -
FIG. 19 also illustrates democratic mining. Because exemplary embodiments reduce or even eliminate the need for graphics processors and specialized application-specific integrated circuits, theminer system 22 may even be a car, truck, orother vehicle 170. As the reader may realize, thevehicle 170 may have many electronic systems controlling many components and systems. For example, the engine may have an engine electronic control unit or “ECU” 172, the transmission may have a powertrain electronic control unit or “PCU” 174, the braking system may have a brake electronic control unit or “BCU” 176, and the chassis system may have a chassis electronic control unit or “CUC” 178. There may be many more electronic control units throughout thevehicle 170. A controller area network 180 thus allows all the various electronic control units to communicate with each other (via messages sent/received via a CAN bus). All these controllers may also interface with thecommunications network 26 via a wireless vehicle transceiver 182 (illustrated as “TX/RX”). Thevehicle 170 may thus communicate with theblockchain network server 28 to receive the inputs 24 (such as the blockchain transactions 32). Thevehicle 170 may then use the various controllers 172-178 to mine theblockchain transactions 32 using theencryption algorithm 46, thedifficulty algorithm 48, and/or the PoW algorithm 52 (as this disclosure above explains). The reader may immediately see that thevehicle 170 is a powerful processing platform for blockchain mining. Thevehicle 170 may mine theblockchain transactions 32 when moving or stationary, as long as electrical power is available to the various controllers 172-178 and to thevehicle transceiver 182. Indeed, even when parked with the ignition/battery/systems on or off, exemplary embodiments may maintain the electrical power to mine theblockchain transactions 32. So, a driver/user may configure the vehicle 17 to mine theblockchain transactions 32, even when the vehicle sits during work hours, sleep hours, shopping hours, and other times of idle use. The reader may also immediately see that vehicular mining opens up countless additional possibilities to win theblock 40 of data (i.e., solve the puzzle 62) without additional investment in mining rigs. Thousands, millions, or even billions of vehicles 170 (e.g., cars, trucks, boats, planes, buses, trains, motorcycles) may mine theblockchain transactions 32, thus providing a potential windfall to offset the purchasing and operational expenses. - Exemplary embodiments reduce energy consumption. Because a conventional, general purpose central processing unit (e.g., the CPU 36) is adequate for mining the
blockchain transactions 32, exemplary embodiments consume much less electrical power. Moreover, because a conventional central processing unit consumes much less electrical power, the CPU operates at much cooler temperatures, generates less waste heat/energy, and therefore requires less cooling, air conditioning, and refrigerant machinery. Exemplary embodiments are thus much cheaper to operate than GPUs and ASICs. - Exemplary embodiments thus democratize blockchain mining. Because encryption, difficulty, and proof-of-work efforts may be functionally divided, general-purpose computer equipment has the processing and memory capability to compete as blockchain miners. For example, because the function(s) that calculate(s) the magnitude of the proof of work (such as the
difficulty algorithm 48 and/or the proof-of-work algorithm 52) may be detached or isolated from the function that performs cryptography (such as the hashing algorithm 54), encryption need not be modified in order to improve security (e.g., such as the MONERO® mining scheme). The well-tested SHA-256 hashing function, for example, remains stable and unaffected by difficulty and/or proof-of-work. Thedifficulty algorithm 48, in other words, need not be determined by or with thehashing algorithm 54. Thedifficulty algorithm 48, instead, may be separately determined as a true, independent measure of thedifficulty 50. The inventor has realized that most or all proof of work schemes generally may have two functions (i.e., one function to do a cryptographic hash and another function to determine the level of difficulty of a given hash). Exemplary embodiments may separate, or take away, what makes proof of work hard from the cryptographic hash and, perhaps instead, put it in thedifficulty algorithm 48 that calculates which hash is more difficult. Thedifficulty algorithm 48, for example, may be functionally combined with the proof-of-work algorithm 52 that calculates the magnitude of the proof of work instead of using the hashing algorithm 54 (asFIG. 5 illustrates). Exemplary embodiments need not try to design, develop, or modify hashing functions that deter ASIC mining. - Encryption may thus be independent from proof-of-work determinations. The proof of work (such as the
difficulty algorithm 48 and/or the proof-of-work algorithm 52) may be a different or separate software mechanism from the hashing mechanism. Thedifficulty 50 of the proof-of-work, for example, may be a separate component from staking in a blockchain. Thedifficulty algorithm 48 and/or the proof-of-work algorithm 52 may require communications networking between provably different parties. Thedifficulty algorithm 48 and/or the proof-of-work algorithm 52 may require network delays and/or memory bandwidth limitations. Thedifficulty algorithm 48 and/or the proof-of-work algorithm 52 may have a random component (such as incorporating a random function), such that thedifficulty algorithm 48 and/or the proof-of-work algorithm 52 may randomly to determine thedifficulty 50 and/or the proof-of-work result 42. Exemplary embodiments thus reduce or even eliminate the power intensive mechanism that is inherent in today's proof of work schemes by changing how the proof of work is calculated. Exemplary embodiments need not change thehashing algorithm 54, and exemplary embodiments allow a more easily validated proof of work. Thehashing algorithm 54 is not bound or required to determine the proof of work. The proof of work need not be cryptographically secure. The liberated,autonomous hashing algorithm 54 generates and guarantees an input (e.g., the hash values 60) that cannot be predicted by some other faster algorithm. The disassociatedhashing algorithm 54 effectively generates the hash values 60 as random numbers. Thehashing algorithm 54, in other words, provides cryptographic security, so neither thedifficulty algorithm 48 nor the proof-of-work algorithm 52 need be cryptographically secure. Thedifficulty algorithm 48 and/or the proof-of-work algorithm 52 need not be folded into thehashing algorithm 54. - Exemplary embodiments provide great value to blockchains. Exemplary embodiments may functionally separate encryption (e.g., the hashing algorithm 54) from proof of work (such as the
difficulty algorithm 48 and/or the proof-of-work algorithm 52). Exemplary embodiments may thus bind proof-of-work to a conventional central processing unit. Deploying a different cryptographic hash is hugely dangerous for blockchains, but deploying another difficulty or proof of work mechanism is not so dangerous. Exemplary embodiments allow blockchains to experiment with different difficulty functions (the difficulty algorithms 48) and/or different proof-of-work algorithms 52 without changing thehashing algorithm 54. Exemplary embodiments thus mitigate risk and reduce problems with cryptographic security. Many blockchain environments would prefer to make their technology CPU mineable for lower power, lower costs, and more democratic participation. The barrier, though, is that conventionally these goals would require changing their hash function. Exemplary embodiments, instead, reduce costs and increase the pool of miner systems without changing the hash function. Thedifficulty algorithm 48 and/or the proof-of-work algorithm 52 may be refined, modified, or even replaced with little or no impact on thehashing algorithm 54. - Exemplary embodiments reduce electrical power consumption. Blockchain mining is very competitive, as the first miner that solves the
mathematical puzzle 62 owns theblock 40 of data and is financially rewarded. Large “farms” have thus overtaken blockchain mining, with each miner installation using hundreds or even thousands of ASIC-based computers to improve their chances of first solving the calculations specified by themathematical puzzle 62. ASIC-based blockchain mining requires tremendous energy resources, though, with some studies estimating that each BITCOIN® transaction consumes more daily electricity than an average American home. Moreover, because ASIC-based blockchain mining operates 24/7/365 at full processing power, the ASIC-based machines quickly wear out or fail and need periodic (perhaps yearly) replacement. Exemplary embodiments, instead, retarget blockchain mining back to CPU-based machines that consume far less electrical power and that cost far less money to purchase. Because the capital costs and expenses are greatly reduced, more miners and more CPU-based machines may effectively participate and compete. The CPU-based machines, in other words, have a realistic and profitable chance of first solving the calculations specified by themathematical puzzle 62. Democratic participation is greatly increased. -
FIGS. 20-21 are more detailed illustrations of an operating environment, according to exemplary embodiments.FIG. 20 illustrates theblockchain network server 28 communicating with theminer system 22 via thecommunications network 26. Theblockchain network server 28 and theminer system 22 operate in theblockchain environment 20. Theblockchain network server 28 has a hardware processing component 190 (e.g., “P”) that executes a server-sideblockchain software application 192 stored in alocal memory device 194. Theblockchain network server 28 has a network interface to thecommunications network 26, thus allowing two-way, bidirectional communication with theminer system 22. The server-sideblockchain software application 192 includes instructions, code, and/or programs that cause theblockchain network server 28 to perform operations, such as sending the inputs 24 (such as the blockchain transactions 32) and/or the proof-of-work (“PoW”)target scheme 34 via thecommunications network 26 to the network address (e.g., Internet protocol address) associated with or assigned to theminer system 22. Theinputs 24 may be anyelectronic data 30 that is shared among miners participating in theblockchain environment 20. - The
miner system 22 operates as a mining node in theblockchain environment 20. Theminer system 22 has the central processing unit (e.g., “CPU”) 36 that executes a client-side blockchainmining software application 196 stored in thelocal memory device 38. Theminer system 22 has a network interface to thecommunications network 26, thus allowing two-way, bidirectional communication with theblockchain network server 28. The client-side blockchainmining software application 196 includes instructions, code, and/or programs that cause theminer system 22 to perform operations, such as receiving theinputs 24, theelectronic data 30, and/or the proof-of-work (“PoW”)target scheme 34. The client-side blockchainmining software application 196 may then cause theminer system 22 to execute the proof-of-work (“PoW”)mechanism 44 based on theelectronic data 30 representing theinputs 24. The client-side blockchainmining software application 196 may instruct theCPU 36 to call and/or to execute theencryption algorithm 46, thedifficulty algorithm 48, and/or thePoW algorithm 52. TheCPU 36 calls or executes any or all of theencryption algorithm 46, thedifficulty algorithm 48, and/or thePoW algorithm 52 using theelectronic data 30. - The
miner system 22 mines blockchain transactional records. Whatever theelectronic data 30 represents, theminer system 22 applies theelectronic data 30 according to the proof-of-work target scheme 34. While the proof-of-work target scheme 34 may specify anyencryption algorithm 46, most blockchains specify thehashing algorithm 54. Theminer system 22 may thus generate the hash values 60 by hashing the electronic data 30 (e.g., the blockchain transactions 32) using thehashing algorithm 54. Theminer system 22 may generate thedifficulty 50 by executing thedifficulty algorithm 48 using the hash values 60. Theminer system 22 may generate the proof-of-work result 42 using the hash value(s) 60 as inputs to the proof-of-work algorithm 52. If the proof-of-work result 42 satisfies themathematical puzzle 62, according to the rules/regulations specified by theblockchain network server 28 and/or the proof-of-work target scheme 34, then perhaps theminer system 22 earns or owns the right or ability to write/record blockchain transaction(s) to theblock 40 of data. Theminer system 22 may also earn or be rewarded with a compensation (such as a cryptographic coin, points, other currency/coin/money, or other value). - The
miner system 22 may own theblock 40 of data. If theminer system 22 is the first to satisfy the proof-of-work target scheme 34 (e.g., the proof-of-work result 42 satisfies the mathematical puzzle 62), theminer system 22 earns the sole right or ability to write theblockchain transactions 32 to theblock 40 of data. Theminer system 22 may timestamp theblock 40 of data and broadcast theblock 40 of data, the timestamp, the proof-of-work result 42, and/or themathematical puzzle 62 to other miners in theblockchain environment 20. Theminer system 22, may broadcast a hash value representing theblock 40 of data. Theminer system 22 thus adds or chains theblock 40 of data (and perhaps its hash value) to theblockchain 64, and the other miners begin working on a next block in theblockchain 64. - The proof-of-
work target scheme 34 and/or themathematical puzzle 62 may vary. Satoshi's BITCOIN® proof-of-work scanned for a value that, when hashed, the hash value begins with a number of zero bits. The average work required is exponential in the number of zero bits required and can be verified by executing a single hash. BITCOIN's miners may increment a nonce in theblock 40 of data until a value is found that gives the block's hash the required zero bits. -
FIG. 21 further illustrates the operating environment. Theminer system 22 may optionally utilize vendors for any of thehashing algorithm 54, thedifficulty algorithm 48, and the proof-of-work algorithm 52. Theminer system 22 may enlist or request that a service provider provide or perform a processing service. Theencryption server 154, for example, may communicate with theblockchain network server 28 and theminer system 22 via thecommunications network 26. Theencryption server 154 has a hardware processing element (“P”) that executes theencryption algorithm 46 stored in a local memory device. Theencryption server 154 is operated on behalf of theencryption service provider 150 and provides theencryption service 152. Theminer system 22 and/or theblockchain network server 28 may send an encryption service request to theencryption server 154, and the encryption service request may specify the inputs 24 (such as the blockchain transactions 32). Theencryption server 154 executes theencryption algorithm 46 using theinputs 24 to generate the hash value(s) 60. Theencryption server 154 sends a service response to theminer system 22, and the service response includes or specifies the hash value(s) 60. - Other suppliers may be used. The
difficulty server 160 may communicate with theblockchain network server 28 and theminer system 22 via thecommunications network 26. Thedifficulty server 160 has a hardware processing element (“P”) that executes thedifficulty algorithm 48 stored in a local memory device. Thedifficulty service provider 156 may provide thedifficulty service 158 by instructing thedifficulty server 160 to execute thedifficulty algorithm 48 chosen or specified by theminer system 22 and/or theblockchain network server 28. Theminer system 22 and/or theblockchain network server 28 may send a difficulty service request to thedifficulty server 160, and the difficulty service request may specify the hash value(s) 60. Thedifficulty server 160 executes thedifficulty algorithm 48 using the hash value(s) 60 to generate thedifficulty 50. Thedifficulty server 160 sends the service response to theminer system 22, and the service response includes or specifies thedifficulty 50. ThePoW server 124 may communicate with theblockchain network server 28 and theminer system 22 via thecommunications network 26. ThePoW server 124 has a hardware processing element (“P”) that executes the proof-of-work algorithm 52 stored in a local memory device. The PoW service provider 120 (e.g., the PoW server 124) may provide thePoW service 122 by executing the proof-of-work algorithm 52 chosen or specified by theminer system 22 and/or theblockchain network server 28. ThePoW server 124 sends the service response to theminer system 22, and the service response includes or specifies thePoW result 42. Theminer system 22 may compare any of the hash value(s) 60, thedifficulty 50, and/or thePoW result 42 to the proof-of-work target scheme 34. If the proof-of-work target scheme 34 is satisfied, perhaps theminer system 22 is the first miner to have solved thepuzzle 62. - Exemplary embodiments may be applied regardless of networking environment. Exemplary embodiments may be easily adapted to stationary or mobile devices having wide-area networking (e.g., 4G/LTE/5G cellular), wireless local area networking (WI-FI®), near field, and/or BLUETOOTH® capability. Exemplary embodiments may be applied to stationary or mobile devices utilizing any portion of the electromagnetic spectrum and any signaling standard (such as the IEEE 802 family of standards, GSM/CDMA/TDMA or any cellular standard, and/or the ISM band). Exemplary embodiments, however, may be applied to any processor-controlled device operating in the radio-frequency domain and/or the Internet Protocol (IP) domain. Exemplary embodiments may be applied to any processor-controlled device utilizing a distributed computing network, such as the Internet (sometimes alternatively known as the “World Wide Web”), an intranet, a local-area network (LAN), and/or a wide-area network (WAN). Exemplary embodiments may be applied to any processor-controlled device utilizing power line technologies, in which signals are communicated via electrical wiring. Indeed, exemplary embodiments may be applied regardless of physical componentry, physical configuration, or communications standard(s).
- Exemplary embodiments may utilize any processing component, configuration, or system. For example, the
miner system 22 may utilize any desktop, mobile, or server central processing unit or chipset offered by INTEL®, ADVANCED MICRO DEVICES®, ARM®, TAIWAN SEMICONDUCTOR MANUFACTURING®, QUALCOMM®, or any other manufacturer. Theminer system 22 may even use multiple central processing units or chipsets, which could include distributed processors or parallel processors in a single machine or multiple machines. The central processing unit or chipset can be used in supporting a virtual processing environment. The central processing unit or chipset could include a state machine or logic controller. When any of the central processing units or chipsets execute instructions to perform “operations,” this could include the central processing unit or chipset performing the operations directly and/or facilitating, directing, or cooperating with another device or component to perform the operations. - Exemplary embodiments may packetize. When the
blockchain network server 28 and theminer system 22 communicate via thecommunications network 26, theblockchain network server 28 and theminer system 22 may collect, send, and retrieve information. The information may be formatted or generated as packets of data according to a packet protocol (such as the Internet Protocol). The packets of data contain bits or bytes of data describing the contents, or payload, of a message. A header of each packet of data may be read or inspected and contain routing information identifying an origination address and/or a destination address. - Exemplary embodiments may use any encryption or hashing function. There are many encryption algorithms and schemes, and exemplary embodiments may be adapted to execute or to conform to any encryption algorithm and/or scheme. In the
blockchain environment 20, though, many readers may be familiar with the various hashing algorithms, especially the well-known SHA-256 hashing algorithm. The SHA-256 hashing algorithm acts on any electronic data or information to generate a 256-bit hash value as a cryptographic key. The key is thus a unique digital signature. However, there are many different hashing algorithms, and exemplary embodiments may be adapted to execute or to conform to any hashing algorithm, hashing family, and/or hashing scheme (e.g., Blake family, MD family, RIPE family, SHA family, CRC family). - The
miner system 22 may store or request different software packages. Thehashing algorithm 54 may be a software file, executable program, routine, module, programming code, or third-party service that hashes theblockchain transactions 32 to generate the hash value(s) 60. Thedifficulty algorithm 48 may be a software file, executable program, routine, module, programming code, or third-party service that uses the hash value(s) 60 to generate thedifficulty 50. The proof-of-work (“PoW”)algorithm 52 be a software file, executable program, routine, module, programming code, or third-party service that uses the hash value(s) 60 to generate thePoW result 42. Theminer system 22 may download or otherwise acquire thehashing algorithm 54, thedifficulty algorithm 48, and/or thePoW algorithm 52 to provide mining operations for theblockchain transactions 32. - The
blockchain environment 20 may flexibly switch or interchange encryption, difficulty, and proof-of-work. Because thehashing algorithm 54, thedifficulty algorithm 48, and the proof-of-work algorithm 52 may be separate software packages, the proof-of-work (“PoW”)target scheme 34 and/or theblockchain environment 20 may mix-and-match theencryption algorithm 46, thedifficulty algorithm 48, and the proof-of-work algorithm 52. Theblockchain environment 20 may thus easily evaluate different combinations of theencryption algorithm 46, thedifficulty algorithm 48, and the proof-of-work algorithm 52 with little or no intra-algorithm or intra-application effect. Theblockchain environment 20 may mix-and-match encryption, difficulty, and proof-of-work. -
FIGS. 22-31 illustrate mining specifications, according to exemplary embodiments. When theminer system 22 communicates with theblockchain network server 28, theblockchain network server 28 may specify the proof-of-work (“PoW”)target scheme 34 that is required by theblockchain environment 20. That is, when theminer system 22 participates as a miner and mines or processes blockchain records/transactions, theminer system 22 may be required or instructed to use theparticular hashing algorithm 54, thedifficulty algorithm 48, and/or the proof-of-work algorithm 52 specified by the blockchain network. For example, in order for theminer system 22 to be authorized or recognized as a mining participant, theminer system 22 may be required to download the client-side blockchainmining software application 196 that specifies or includes thehashing algorithm 54, thedifficulty algorithm 48, and/or the proof-of-work algorithm 52. The client-side blockchainmining software application 196 may thus comprise any software apps or modules, files, programming code, or instructions representing thehashing algorithm 54, thedifficulty algorithm 48, and/or the proof-of-work algorithm 52. -
FIGS. 23-25 illustrate an encryption identifier mechanism.FIG. 23 illustrates theminer system 22 receiving the proof-of-work (“PoW”)target scheme 34 that is required by theblockchain environment 20. In order to reduce a memory byte size and/or programming line size of thePoW target scheme 34 and/or the client-side blockchainmining software application 196, exemplary embodiments may specify an encryption identifier (encryption “ID”) 200 associated with the blockchain network's chosen or required encryption scheme. Theencryption identifier 200 may be any alphanumeric combination, hash value, network address, website, or other data/information that uniquely identifies thePoW target scheme 34 and/or theencryption algorithm 46 used by theblockchain environment 20. AsFIG. 23 illustrates, theminer system 22 may receive theencryption identifier 200 as a specification or parameter associated with thePoW target scheme 34 and/or theencryption algorithm 46. AsFIG. 24 illustrates, though, theminer system 22 may receive apacketized message 202 from theblockchain network server 28, and a packet header and/or payload may specify or include theencryption identifier 200 as a data field, specification, or parameter. Again, because many or most blockchain networks use hashing as an encryption mechanism, theencryption identifier 200 may specify, be assigned to, or be associated with thehashing algorithm 54. Theblockchain network server 28 may thus send the encryption identifier 200 (via the communications network 26) to theminer system 22. Theencryption identifier 200 may be packaged as a downloadable component, parameter, or value with the client-side blockchainmining software application 196. However, theencryption identifier 200 may additionally or alternatively be sent to theminer system 22 at any time via themessage 202. Because theencryption identifier 200 may be separately sent from the client-side blockchainmining software application 196, theencryption identifier 200 may be dynamically updated or changed without downloading a new or updated client-side blockchainmining software application 196. - As
FIG. 25 illustrates, exemplary embodiments may consult theelectronic database 70 of encryption algorithms. Once theminer system 22 receives or determines theencryption identifier 200, theminer system 22 may implement the encryption scheme represented by theencryption identifier 200. Theminer system 22 may obtain, read, or retrieve theencryption identifier 200 specified by the client-side blockchainmining software application 196 and/or packet inspect themessage 202 from theblockchain network server 28. Once theencryption identifier 200 is determined, theminer system 22 may identify the corresponding blockchain encryption scheme by querying theelectronic database 70 of encryption algorithms for theencryption identifier 200.FIG. 25 illustrates theelectronic database 70 of encryption algorithms locally stored in thememory device 38 of theminer system 22. Theelectronic database 70 of encryption algorithms may store, reference, or associate theencryption identifier 200 to its corresponding proof-of-work target scheme 34 and/orencryption algorithm 46. Theminer system 22 may thus perform or execute a database lookup for theencryption identifier 200 to identify which proof-of-work target scheme 34 and/orencryption algorithm 46 is required for miners operating in theblockchain environment 20. Theminer system 22 may then retrieve, call, and/or execute theencryption algorithm 46 using the inputs 24 (such as the blockchain transactions 32), as this disclosure above explained (with reference toFIG. 7 ). - Exemplary embodiments may outsource encryption operations. When the
miner system 22 determines theencryption identifier 200, the corresponding blockchain encryption scheme may require or specify theencryption service provider 150 that provides theencryption service 152. AsFIG. 25 also illustrates, theelectronic database 70 of encryption algorithms may map or relate theencryption identifier 200 to its correspondingencryption service provider 150 that provides theencryption service 152. Theminer system 22 may thus identify anencryption service resource 204 that provides theencryption service 152. Theencryption service resource 204, for example, may be an Internet protocol address, website/webpage, and/or uniform resource locator (URL) that is assigned to, or associated with, theencryption service provider 150 and/or theencryption service 152. Theminer system 22 may outsource or subcontract the inputs 24 (such as the blockchain transactions 32) to the encryption service resource 204 (perhaps using the service request and service response mechanism explained with reference toFIG. 21 ). - Exemplary embodiments may thus be agnostic to hashing. The
miner system 22 may call, request, and/or execute any encryption scheme specified by any client, cryptographic coin, or blockchain network. Theminer system 22 may dynamically switch or mix-and-match different encryption schemes. Once theminer system 22 determines the proof-of-work target scheme 34, theencryption algorithm 46, theencryption service provider 150, theencryption service 152, theencryption identifier 200, and/or theencryption service resource 204, theminer system 22 may perform any encryption scheme specified for theblockchain environment 20. Theblockchain environment 20 may dynamically change the encryption scheme at any time. Theblockchain environment 20 may flexibly switch, change, and evaluate different encryption strategies, perhaps with little or no impact or effect on difficulty and proof-of-work operations. Moreover, theminer system 22 may operate within or minedifferent blockchain environments 20 without specialized hardware rigs. - Exemplary embodiments improve computer functioning. Because exemplary embodiments may only specify the
encryption identifier 200, the memory byte size consumed by the proof-of-work (“PoW”)target scheme 34 and/or the client-side blockchainmining software application 196 is reduced. That is, theblockchain network server 28 need not send the entire software program, code, or instructions representing thehashing algorithm 54 used by theblockchain environment 20. Theblockchain environment 20, theblockchain network server 28, and/or the proof-of-work (“PoW”)target scheme 34 need only specify much smaller byte-sized data or information representing theencryption algorithm 46, theencryption service provider 150, theencryption service 152, theencryption identifier 200, and/or theencryption service resource 204. Theblockchain environment 20 need not be burdened with conveying thehashing algorithm 54 to theminer system 22 and other mining nodes. Theblockchain environment 20 and thecommunications network 26 convey less packet traffic, so packet travel times and network latency are reduced. Moreover, especially if theminer system 22 outsources the hashing operation, theminer system 22 is relieved from processing/executing thehashing algorithm 54 and consumes less of the electrical power. Again, then, a faster and more expensive graphics processor or even ASIC will not speed up the hashing operation. The conventionalcentral processing unit 36 is adequate, reduces costs, and promotes democratic mining. -
FIGS. 26-28 illustrate illustrates a difficulty identifier mechanism.FIG. 26 illustrates theminer system 22 receiving the proof-of-work (“PoW”)target scheme 34 that is required by theblockchain environment 20. In order to reduce a memory byte size and/or programming line size of thePoW target scheme 34 and/or the client-side blockchainmining software application 196, exemplary embodiments may specify a difficulty identifier (difficulty “ID”) 210 associated with the blockchain network's chosen or required difficulty scheme. Thedifficulty identifier 210 may be any alphanumeric combination, hash value, network address, website, or other data/information that uniquely identifies thePoW target scheme 34 and/or thedifficulty algorithm 48 used by theblockchain environment 20. AsFIG. 26 illustrates, theminer system 22 may receive thedifficulty identifier 210 as a specification or parameter associated with thePoW target scheme 34 and/or thedifficulty algorithm 48. AsFIG. 27 illustrates, though, theminer system 22 may receive thepacketized message 202 from theblockchain network server 28, and a packet header and/or payload may specify or include thedifficulty identifier 210 as a data field, specification, or parameter. Theblockchain network server 28 may thus send the difficulty identifier 210 (via the communications network 26) to theminer system 22. Thedifficulty identifier 210 may be packaged as a downloadable component, parameter, or value with the client-side blockchainmining software application 196. However, thedifficulty identifier 210 may additionally or alternatively be sent to theminer system 22 at any time via themessage 202. Because thedifficulty identifier 210 may be separately sent from the client-side blockchainmining software application 196, thedifficulty identifier 210 may be dynamically updated or changed without downloading a new or updated client-side blockchainmining software application 196. - As
FIG. 28 illustrates, exemplary embodiments may consult theelectronic database 74 of difficulty algorithms. Once theminer system 22 receives or determines thedifficulty identifier 210, theminer system 22 may implement the difficulty scheme represented by thedifficulty identifier 210. Theminer system 22 may obtain, read, or retrieve thedifficulty identifier 210 specified by the client-side blockchainmining software application 196 and/or packet inspect themessage 202 from theblockchain network server 28. Once thedifficulty identifier 210 is determined, theminer system 22 may identify the corresponding blockchain difficulty scheme by querying theelectronic database 74 of difficulty algorithms for any query parameter (such as the difficulty identifier 210).FIG. 28 illustrates theelectronic database 74 of difficulty algorithms locally stored in thememory device 38 of theminer system 22. Theelectronic database 74 of difficulty algorithms may store, reference, or associate thedifficulty identifier 210 to its corresponding proof-of-work target scheme 34 and/ordifficulty algorithm 48. Theminer system 22 may thus perform or execute a database lookup for thedifficulty identifier 210 to identify which proof-of-work target scheme 34 and/ordifficulty algorithm 48 is required for miners operating in theblockchain environment 20. Theminer system 22 may then retrieve, call, and/or execute thedifficulty algorithm 48 using the hash value(s) 60, as this disclosure above explained (with reference toFIG. 8 ). - Exemplary embodiments may outsource difficulty operations. When the
miner system 22 determines thedifficulty identifier 210, the corresponding blockchain difficulty scheme may require or specify thedifficulty service provider 156 that provides thedifficulty service 158. AsFIG. 28 also illustrates, theelectronic database 74 of difficulty algorithms may map or relate thedifficulty identifier 210 to its correspondingdifficulty service provider 156 that provides thedifficulty service 158. Theminer system 22 may thus identify adifficulty service resource 212 that provides thedifficulty service 158. Thedifficulty service resource 212, for example, may be an Internet protocol address, website/webpage, and/or uniform resource locator (URL) that is assigned to, or associated with, thedifficulty service provider 156 and/or thedifficulty service 158. Theminer system 22 may outsource or subcontract the hash value(s) 60 to the difficulty service resource 212 (perhaps using the service request and service response mechanism explained with reference toFIG. 21 ). - Exemplary embodiments may thus be agnostic to difficulty. The
miner system 22 may call, request, and/or execute any difficulty scheme specified by any client, cryptographic coin, or blockchain network. Theminer system 22 may dynamically switch or mix-and-match different difficulty schemes. Once theminer system 22 determines the proof-of-work target scheme 34, thedifficulty algorithm 48, thedifficulty service provider 156, thedifficulty service 158, thedifficulty identifier 210, and/or thedifficulty service resource 212, theminer system 22 may perform any difficulty scheme specified for theblockchain environment 20. Theblockchain environment 20 may dynamically change the difficulty scheme at any time. Theblockchain environment 20 may flexibly switch, change, and evaluate different difficulty strategies, perhaps with little or no impact or effect on hashing and proof-of-work operations. Moreover, theminer system 22 may operate within or minedifferent blockchain environments 20 without specialized hardware rigs. - Exemplary embodiments improve computer functioning. Because exemplary embodiments may only specify the
difficulty identifier 210, the memory byte size consumed by the proof-of-work (“PoW”)target scheme 34 and/or the client-side blockchainmining software application 196 is reduced. That is, theblockchain network server 28 need not send the entire software program, code, or instructions representing thedifficulty algorithm 48 used by theblockchain environment 20. Theblockchain environment 20, theblockchain network server 28, and/or the proof-of-work (“PoW”)target scheme 34 need only specify much smaller byte-sized data or information representing thedifficulty algorithm 48, thedifficulty service provider 156, thedifficulty service 158, thedifficulty identifier 210, and/or thedifficulty service resource 212. Theblockchain environment 20 need not be burdened with conveying thedifficulty algorithm 48 to theminer system 22 and other mining nodes. Theblockchain environment 20 and thecommunications network 26 convey less packet traffic, so packet travel times and network latency are reduced. Moreover, especially if theminer system 22 outsources the difficulty operation, theminer system 22 is relieved from processing/executing thedifficulty algorithm 48 and consumes less of the electrical power. Again, then, a faster and more expensive graphics processor or even ASIC will not speed up the difficulty operation. The conventionalcentral processing unit 36 is adequate, reduces costs, and promotes democratic mining. -
FIGS. 29-31 illustrate illustrates a proof-of-work (“PoW”) identifier mechanism.FIG. 29 illustrates theminer system 22 receiving the proof-of-work (“PoW”)target scheme 34 that is required by theblockchain environment 20. In order to reduce a memory byte size and/or programming line size of thePoW target scheme 34 and/or the client-side blockchainmining software application 196, exemplary embodiments may specify aPoW identifier 214 associated with the blockchain network's chosen or required PoW scheme. ThePoW identifier 214 may be any alphanumeric combination, hash value, network address, website, or other data/information that uniquely identifies thePoW target scheme 34 and/or thePoW algorithm 52 used by theblockchain environment 20. AsFIG. 29 illustrates, theminer system 22 may receive thePoW identifier 214 as a specification or parameter associated with thePoW target scheme 34 and/or thePoW algorithm 52. AsFIG. 30 illustrates, though, theminer system 22 may receive thepacketized message 202 from theblockchain network server 28, and a packet header and/or payload may specify or include thePoW identifier 214 as a data field, specification, or parameter. Theblockchain network server 28 may thus send the PoW identifier 214 (via the communications network 26) to theminer system 22. ThePoW identifier 214 may be packaged as a downloadable component, parameter, or value with the client-side blockchainmining software application 196. However, thePoW identifier 214 may additionally or alternatively be sent to theminer system 22 at any time via themessage 202. Because thePoW identifier 214 may be separately sent from the client-side blockchainmining software application 196, thePoW identifier 214 may be dynamically updated or changed without downloading a new or updated client-side blockchainmining software application 196. - As
FIG. 31 illustrates, exemplary embodiments may consult theelectronic database 78 of PoW algorithms. Once theminer system 22 receives or determines thePoW identifier 214, theminer system 22 may implement the proof-of-work scheme represented by thePoW identifier 214. Theminer system 22 may obtain, read, or retrieve thePoW identifier 214 specified by the client-side blockchainmining software application 196 and/or packet inspect themessage 202 from theblockchain network server 28. Once thePoW identifier 214 is determined, theminer system 22 may identify the corresponding blockchain proof-of-work scheme by querying theelectronic database 78 of PoW algorithms for any query parameter (such as the PoW identifier 214).FIG. 31 illustrates thedatabase 78 of PoW algorithms locally stored in thememory device 38 of theminer system 22. Theelectronic database 78 of PoW algorithms may store, reference, or associate thePoW identifier 214 to its corresponding proof-of-work target scheme 34 and/ordifficulty algorithm 48. Theminer system 22 may thus perform or execute a database lookup for thePoW identifier 214 to identify which proof-of-work target scheme 34 and/orPoW algorithm 52 is required for miners operating in theblockchain environment 20. Theminer system 22 may then retrieve, call, and/or execute thePoW algorithm 52 using the hash value(s) 60, as this disclosure above explained (with reference toFIG. 9 ). - Exemplary embodiments may outsource difficulty operations. When the
miner system 22 determines thePoW identifier 214, the corresponding blockchain proof-of-work scheme may require or specify thePoW service provider 120 that provides thePoW service 122. AsFIG. 31 also illustrates, theelectronic database 78 of PoW algorithms may map or relate thePoW identifier 214 to its correspondingPoW service provider 120 andPoW service 122. Theminer system 22 may thus identify aPoW service resource 216 that provides thePoW service 122. ThePoW service resource 216, for example, may be an Internet protocol address, website/webpage, and/or uniform resource locator (URL) that is assigned to, or associated with, thePoW service provider 120 and/orPoW service 122. Theminer system 22 may outsource or subcontract the hash value(s) 60 to the PoW service resource 216 (perhaps using the service request and service response mechanism explained with reference toFIG. 21 ). - Exemplary embodiments may thus be agnostic to proof-of-work. The
miner system 22 may call, request, and/or execute any proof-of-work scheme specified by any client, cryptographic coin, or blockchain network. Theminer system 22 may dynamically switch or mix-and-match different proof-of-work schemes. Once theminer system 22 determines the proof-of-work target scheme 34, thePoW algorithm 52, thePoW service provider 120, thePoW service 122, thePoW identifier 214, and/or thePoW service resource 216, theminer system 22 may perform any proof-of-work scheme specified for theblockchain environment 20. Theblockchain environment 20 may dynamically change the proof-of-work scheme at any time. Theblockchain environment 20 may flexibly switch, change, and evaluate different proof-of-work strategies, perhaps with little or no impact or effect on hashing and difficulty operations. Moreover, theminer system 22 may operate within or minedifferent blockchain environments 20 without specialized hardware rigs. - Exemplary embodiments improve computer functioning. Because exemplary embodiments may only specify the
PoW identifier 214, the memory byte size consumed by the proof-of-work (“PoW”)target scheme 34 and/or the client-side blockchainmining software application 196 is reduced. That is, theblockchain network server 28 need not send the entire software program, code, or instructions representing thePoW algorithm 52 used by theblockchain environment 20. Theblockchain environment 20, theblockchain network server 28, and/or the proof-of-work (“PoW”)target scheme 34 need only specify much smaller byte-sized data or information representing thePoW algorithm 52, thePoW service provider 120, thePoW service 122, thePoW identifier 214, and/or thePoW service resource 216. Theblockchain environment 20 need not be burdened with conveying thePoW algorithm 52 to theminer system 22 and other mining nodes. Theblockchain environment 20 and thecommunications network 26 convey less packet traffic, so packet travel times and network latency are reduced. Moreover, especially if theminer system 22 outsources the proof-of-work operation, theminer system 22 is relieved from processing/executing thePoW algorithm 52 and consumes less of the electrical power. Again, then, a faster and more expensive graphics processor or even ASIC will not speed up the difficulty operation. The conventionalcentral processing unit 36 is adequate, reduces costs, and promotes democratic mining. -
FIG. 32 illustrates remote retrieval, according to exemplary embodiments. After theminer system 22 determines the proof-of-work (“PoW”)target scheme 34 that is required by theblockchain environment 20, theminer system 22 may acquire or download theencryption algorithm 46, thedifficulty algorithm 48, and/or thePoW algorithm 52. For example, theminer system 22 may determine the encryption identifier 200 (as this disclosure above explains) and send a query to theencryption server 154. The query specifies theencryption identifier 200. When theencryption server 154 receives the query, theencryption server 154 may query thedatabase 70 of encryption algorithms for theencryption identifier 200. Theencryption server 154 may locally store thedatabase 70 of encryption algorithms and function as a networked encryption resource for clients. Theencryption server 154 identifies and/or retrieves the correspondingencryption algorithm 46. Theencryption server 154 sends a query response to theminer system 22, and the query response specifies or includes thecorresponding encryption algorithm 46. Theminer system 22 may then execute theencryption algorithm 46, as above explained. - The
miner system 22 may remotely retrieve thedifficulty algorithm 48. After theminer system 22 determines the proof-of-work (“PoW”)target scheme 34 that is required by theblockchain environment 20, theminer system 22 may acquire or download thedifficulty algorithm 48. For example, theminer system 22 may determine the difficulty identifier 210 (as this disclosure above explains) and send a query to thedifficulty server 160. The query specifies thedifficulty identifier 210. When thedifficulty server 160 receives the query, thedifficulty server 160 may query thedatabase 74 of difficulty algorithms for thedifficulty identifier 210. Thedifficulty server 160 may locally store thedatabase 74 of difficulty algorithms and function as a networked difficulty resource for clients. Thedifficulty server 160 identifies and/or retrieves thecorresponding difficulty algorithm 48. Thedifficulty server 160 sends a query response to theminer system 22, and the query response specifies or includes thecorresponding difficulty algorithm 48. Theminer system 22 may then execute thedifficulty algorithm 48, as above explained. - The
miner system 22 may remotely retrieve thePoW algorithm 52. After theminer system 22 determines the proof-of-work (“PoW”)target scheme 34 that is required by theblockchain environment 20, theminer system 22 may acquire or download thePoW algorithm 52. For example, theminer system 22 may determine the PoW identifier 214 (as this disclosure above explains) and send a query to thePoW server 124. The query specifies thePoW identifier 214. When thePoW server 124 receives the query, thePoW server 124 may query thedatabase 78 of PoW algorithms for thePoW identifier 214. ThePoW server 124 may locally store thedatabase 78 of PoW algorithms and function as a networked proof-of-work resource for clients. ThePoW server 124 identifies and/or retrieves thecorresponding PoW algorithm 52. ThePoW server 124 sends a query response to theminer system 22, and the query response specifies or includes thecorresponding PoW algorithm 52. Theminer system 22 may then execute thePoW algorithm 52, as above explained. -
FIGS. 33-34 further illustrate thebit shuffle operation 92, according to exemplary embodiments. Thedifficulty algorithm 48 and/or the proof-of-work algorithm 52 may perform thebit shuffle operation 92 to conduct any difficulty and/or proof-of-work. After thehashing algorithm 54 generates the hash value(s) 60 (as this disclosure above explains), exemplary embodiments may use the database table 90 to further deter GPU/ASIC usage. Thedifficulty algorithm 48 and/or the proof-of-work algorithm 52 may implement thebit shuffle operation 92 on the hash value(s) 60. AsFIG. 34 illustrates, suppose thehash value 60 is represented by a sequence or series of 256 bit values. Thedifficulty algorithm 48 and/or the proof-of-work algorithm 52 may select an arbitrary portion ornumber 220 of the bit values. Thedifficulty algorithm 48 and/or the proof-of-work algorithm 52, for example, may call, use, or execute a random number generator (RNG) 222 to generate one or morerandom numbers 224. As an example, a firstrandom number 224 may be used to select arandom entry 94 in the database table 90. Thedifficulty algorithm 48 and/or the proof-of-work algorithm 52 may then query the database table 90 for therandom entry 94 and identify/retrieve the correspondingrandom bits 96. Thedifficulty algorithm 48 and/or the proof-of-work algorithm 52 may then select and replace the arbitrary portion ornumber 220 of the bit values in thehash value 60 with the random bits retrieved from theentry 94 in the database table 90. Thebit shuffle operation 92 thus converts thehash value 60 and generates a resulting randomizedhash value 226. Thedifficulty algorithm 48 and/or the proof-of-work algorithm 52 may instruct or cause the miner system to repeat thebit shuffle operation 92 as many times as desired. Therandomized hash value 226 may, or may not, have the same number of 256 bit values. Therandomized hash value 226 may have less than, or more than, 256 bit values. Therandomized hash value 226 may have an arbitrary number of bit values. Once the specified or required number ofbit shuffle operations 92 is complete, thedifficulty algorithm 48 and/or the proof-of-work algorithm 52 may instruct or cause the miner system to determine thedifficulty 50 and/or the PoW result 42 (as this disclosure above explains). -
FIGS. 35-36 further illustrate the database table 90, according to exemplary embodiments. Exemplary embodiments may autonomously or automatically adjust the table byte size 102 (in bits/bytes) of the database table 90 to exceed the storage capacity orcache byte size 104 of the on-boardprocessor cache memory 100. The client-sideblockchain mining application 196, for example, may query theCPU 36 to determine the storage capacity orcache byte size 104 of theprocessor cache memory 100. If thetable byte size 102 consumed by the database table 90 exceeds the storage capacity orcache byte size 104 of theprocessor cache memory 100, then perhaps no action or resolution is required. That is, the database table 90 requires more bytes or space than allocated to, or available from, the processor cache memory 100 (integrated/embedded L1, L2, and L3 SRAM/DRAM cache memory). Any cache read/write operation 230 will invalidate, thus forcing the processing component (whether a GPU, ASIC, or the CPU 36) to incur acache miss 232 and endure thecache latency 234 of requesting and writing blocks of data via the much-slower bus from the system/main memory 38. The processing component (whether a GPU, ASIC, or the CPU 36) stalls, thus negating the use of a faster GPU or ASIC. - Exemplary embodiments may auto-size the database table 90. When the client-side
blockchain mining application 196 determines the storage capacity orcache byte size 104 of theprocessor cache memory 100, the client-sideblockchain mining application 196 may compare the storage capacity orcache byte size 104 to thetable byte size 102 of the database table 90. The storage capacity orcache byte size 104 of theprocessor cache memory 100, for example, may be subtracted from thetable byte size 102 of the database table 90. If the resulting value (in bits/bytes) is positive (greater than zero), then the database table 90 exceeds the storage capacity orcache byte size 104 of theprocessor cache memory 100. The client-sideblockchain mining application 196 may thus determine acache deficit 236, ensuring thecache miss 232 and thecache latency 234. - Exemplary embodiments, however, may determine a
cache surplus 238. If the resulting value (in bits/bytes) is zero or negative, then the database table 90 is less than the storage capacity orcache byte size 104 of theprocessor cache memory 100. Whatever the processing component (whether a GPU, ASIC, or the CPU 36), some or even all of the database table 90 could be stored and retrieved from theprocessor cache memory 100, thus giving an advantage to a faster processing component. The client-sideblockchain mining application 196 may thus increase thetable byte size 102 of the database table 90. The client-sideblockchain mining application 196, for example, may add one (1) or moreadditional database rows 240 and/or one (1) or moreadditional database columns 242. The client-sideblockchain mining application 196 may increase thetable byte size 102 of the database table 90 by addingadditional entries 94, with each addedentry 94 specifying morerandom bits 96. As an example, the client-sideblockchain mining application 196 may call, use, or execute therandom number generator 222 to generate therandom number 224 and then add the additional database row(s) 240 and/or additional database column(s) 242 according to therandom number 224. Exemplary embodiments may thus continually or periodically monitor the storage capacity orcache byte size 104 of theprocessor cache memory 100 and thetable byte size 102 of the database table 90. Thecache surplus 238 may trigger a resizing operation to ensure the database table 90 always exceeds theprocessor cache memory 100. - The database table 90 may be large. The above examples only illustrated a simple configuration of a
few database entries 94. In actual practice, though, the database table 90 may have hundreds, thousands, or even millions of the rows and columns, perhaps producing hundreds, thousands, millions, or even billions ofdatabase entries 94. Exemplary embodiments may repeatedly perform thebit shuffle operation 92 to suit any difficulty or proof-of-work strategy or scheme. The proof-of-work target scheme 34, thedifficulty algorithm 48, and/or the proof-of-work algorithm 52 may each specify a minimum and/or a maximum number of bit shuffle operations that are performed. - Exemplary embodiments may use the XOR/Shift random number generator (RNG) 222 coupled with the lookup database table 90 of randomized sets of bytes. The database table 90 may have any number of 256 byte tables combined and shuffled into one large byte lookup table. Exemplary embodiments may then index into this large table to translate the state built up while hashing into deterministic but random byte values. Using a 1GB lookup table results in a RAM Hash PoW algorithm that spends over 90% of its execution time waiting on memory (RAM) than it does computing the hash. This means far less power consumption, and ASIC and GPU resistance. The ideal platform for PoW using a RAM Hash is a Single Board Computer like a.
Raspberry PI 4 with 2 GB of memory. - Any or all parameters may be specified. The size of the database table 90 may be specified in bits for the index, the seed used to shuffle the lookup table, the number of rounds to shuffle the table, and the size of the resulting hash. Because the LXRHash is parameterized in this way, as computers get faster and larger memory caches, the LXRHash can be set to use 2 GB or 16 GB or more. The Memory bottleneck to computation is much easier to manage than attempts to find computational algorithms that cannot be executed faster and cheaper with custom hardware, or specialty hardware like GPUs. Very large lookup tables will blow the memory caches on pretty much any processor or computer architecture. The size of the database table 90 can be increased to counter improvements in memory caching. The number of bytes in the resulting hash can be increased for more security (greater hash space), without significantly more processing time. LXRHash may even be fast by using small lookup tables. ASIC implementations for small tables would be very easy and very fast. LXRHash only uses iterators (for indexing) shifts, binary ANDs and XORs, and random byte lookups. The use case for LXTHash is Proof of Work (PoW), not cryptographic hashing.
- The database table 90 may have equal numbers of every byte value, and shuffled deterministically. When hashing, the bytes from the source data are used to build offsets and state that are in turn used to map the next byte of source. In developing this hash, the goal was to produce very randomized hashes as outputs, with a strong avalanche response to any change to any source byte. This is the prime requirement of PoW. Because of the limited time to perform hashing in a blockchain, collision avoidance is important but not critical. More critical is ensuring engineering the output of the hash isn't possible. Exemplary embodiments yield some interesting qualities. For example, the database table 90 may be any size, so making a version that is ASIC resistant is possible by using very big lookup tables. Such tables blow the processor caches on CPUs and GPUs, making the speed of the hash dependent on random access of memory, not processor power. Using 1 GB lookup table, a very fast ASIC improving hashing is limited to about ˜10% of the computational time for the hash. 90% of the time hashing isn't spent on computation but is spent waiting for memory access. At smaller lookup table sizes, where processor caches work, LXRHash can be modified to be very fast. LXRHash would be an easy ASIC design as it only uses counters, decrements. XORs, and shifts. The hash may be altered by changing the size of the lookup table, the seed, size of the hash produced. Change any parameter and you change the space from which hashes are produced. The Microprocessor in most computer systems accounts for 10× the power requirements of memory. If we consider PoW on a device over time, then LXRHash is estimated to reduce power requirements by about a factor of 10.
- Testing has revealed some optimizations. LXRHash is comparatively slow by design (to make PoW CPU bound), but quite a number of use cases don't need PoW, but really just need to validate data matches the hash. So using LXRHash as a hashing function isn't as desirable as simply using it as a POW function. The somewhat obvious conclusion is that in fact we can use Sha256 as the hash function for applications, and only use the LXR approach as a PoW measure. So in this case, what we do is change how we compute the PoW of a hash. So instead of simply looking at the high order bits and saying that the greater the value the greater the difficulty (or the lower the value the lower the difficulty) we instead define an expensive function to calculate the PoW.
- Exemplary embodiments may break out PoW measures from cryptographic hashes. The advantage here is that what exactly it means to weigh PoW between miners can be determined apart from the hash that secures a blockchain. Also, a good cryptographic hash provides a much better base from which to randomize PoW even if we are going to use a 1 GB byte map to bound performance by DRAM access. And we could also use past mining, reputation, staking, or other factors to add to PoW at this point.
- PoW may be represented as a nice standard sized value. Because exemplary embodiments may use a function to compute the PoW, we can also easily standardize the size of the difficulty. Since bytes that are all 0xFF or all 0x00 are pretty much wasted, we can simply count them and combine that count with the following bytes. This encoding is compact and easily compared to other difficulties in a standard size with plenty of resolution. So with PoW represented as a large number, the bigger the more difficult, the following rules may be followed. Where bit 0 is most significant, and bit 63 is least significant:
-
- Bits 0-3 Count of leading 0xFF bytes; and
- Bits 4-63 bits of the following bytes.
- For example, given the hash
-
- ffffff7312334c442bf42625f7856fe0d50e4aa45c98d7a391c016b89e242d94, the difficulty is 37312334c442bf42. The computation counts the leading bytes with a value of 0xFF, then calculates the uint64 value of the next 8 bytes. The count is combined with the following bytes by shifting the 8 bytes right by 4, and adding the count shifted left by 60. As computing power grows, more significant bits of the hash can be used to represent the difficulty. At a minimum, difficulty is represented by 4 bits 0x0 plus the following 0±60 bits=>60 bits of accuracy. At the maximum, difficulty is represented by 4 bits 0xF plus the following 60 bits=>120±60=180 bits of accuracy.
- Sha256 is very well tested as a cryptographic function, with excellent waterfall properties (meaning odds are very close to 50% that any change in the input will flit any particular bit in the resulting hash). Hashing the data being mined by the miners is pretty fast. If an application chooses to use a different hashing function, that's okay as well.
-
FIGS. 37-40 illustrate a table identifier mechanism, according to exemplary embodiments. When theminer system 22 communicates with theblockchain network server 28, theblockchain network server 28 may specify the proof-of-work (“PoW”)target scheme 34 and/or the database table 90 that is required by theblockchain environment 20. For example, in order to reduce a memory byte size and/or programming line size of the proof-of-work (“PoW”)target scheme 34 and/or the client-side blockchainmining software application 196, exemplary embodiments may only specify atable identifier 250 associated with the blockchain network's chosen or required difficulty and proof-of-work scheme. Thetable identifier 250 may be any alphanumeric combination, hash value, network address, website, or other data/information that uniquely identifies the database table 90 used by theblockchain environment 20. Theblockchain network server 28 may thus send the table identifier 250 (via the communications network 26) to theminer system 22. Thetable identifier 250 may be packaged as a downloadable component, parameter, or value with the client-side blockchainmining software application 196. However, thetable identifier 250 may additionally or alternatively be sent to theminer system 22, such as thepacketized message 202 that includes or specifies the table identifier 250 (explained with reference toFIGS. 22-31 ). Because thetable identifier 250 may be separately sent from the client-side blockchainmining software application 196, thetable identifier 250 may be dynamically updated or changed without downloading a new or updated client-side blockchainmining software application 196. - Exemplary embodiments may consult an
electronic database 252 of tables. When theminer system 22 receives thetable identifier 250, theminer system 22 may use, call, and/or implement the database table 90 represented by thetable identifier 250. Theminer system 22 may obtain, read, or retrieve thetable identifier 250 specified by the client-side blockchainmining software application 196. Theminer system 22 may additionally or alternatively inspect, read, or retrieve thetable identifier 250 from themessage 202. Once thetable identifier 250 is determined, theminer system 22 may identify the corresponding database table 90 by querying thedatabase 252 of tables for thetable identifier 250.FIG. 37 illustrates theelectronic database 252 of tables locally stored in thememory device 38 of theminer system 22. Thedatabase 252 of tables stores, references, or associates thetable identifier 250 and/or the proof-of-work target scheme 34 to the corresponding database table 90. Theminer system 22 may thus identify and/or retrieve the database table 90. Theminer system 22 may then execute thedifficulty algorithm 48 and/or the proof-of-work algorithm using the entries specified by the database table 90 (as this disclosure above explains). -
FIG. 38 illustrates remote retrieval.FIG. 38 illustrates thedatabase 252 of tables remotely stored by atable server 254 and accessed via thecommunications network 26. Thetable server 254 may be the only authorized source for the database table 90. Thetable server 254 may thus operate within theblockchain environment 20 and provide the latest/current database table 90 for all miners in the blockchain network. Thetable server 254, however, may be operated on behalf of an authorized third-party vendor or supplier that provides the database table 90 for all miners in the blockchain network. Once theminer system 22 determines thetable identifier 250, theminer system 22 may send a query to the network address associated with or assigned to thetable server 254. The query specifies thetable identifier 250. When thetable server 254 receives the query, thetable server 254 queries theelectronic database 252 of tables for thetable identifier 250 specified by the query. Thetable server 254 has a hardware processor and memory device (not shown for simplicity) that stores and executes a query handler software application. The query handler software application causes thetable server 254 to perform a database lookup operation. Thetable server 254 identifies the corresponding database table 90 by querying thedatabase 252 of tables for thetable identifier 250. Thetable server 254 generates and sends a query response to the network address associated with or assigned to theminer system 22, and the query response includes or specifies the database table 90 that is associated with thetable identifier 250. Theminer system 22 may thus identify, download, and/or retrieve the database table 90. - Because the
database 252 of tables may store or reference many different database tables, exemplary embodiments may dynamically switch or change the database table 90 to suit any objective or performance criterion. Exemplary embodiments may thus need only specify thetable identifier 250, and thetable identifier 250 may be dynamically changed at any time. Theblockchain environment 20 may flexibly switch, change, and evaluate different database tables, merely by changing or modifying thetable identifier 250. The blockchain network may thus experiment with different database tables,different difficulty algorithms 48, and/or different proof-of-work algorithms 52 with little or no impact or effect on hashing. Should an experimental scheme prove or become undesirable, for whatever reason(s), the blockchain environment 20 (such as the blockchain network server 28) may distribute, assign, or restore a new/different table identifier 250 (perhaps by updating the client-side blockchainmining software application 196 and/or distributing/broadcasting themessage 202, as this disclosure above explains). Theblockchain environment 20 may thus dynamically change the database table 90, which may concomitantly change thedifficulty algorithm 48 and/or the proof-of-work algorithm 52, for quick evaluation and/or problem resolution. -
FIG. 39 further illustrates table services. Here thetable server 254 may servedifferent blockchain environments 20. For example, thetable server 254 mayserver miners 22 a operating inblockchain environment 20 a. Thetable server 254 may alsoserver miners 22 b operating inblockchain environment 20 b. Thetable server 254 may thus be operated on behalf of atable service provider 256 that provides atable service 258 to clients and blockchain networks. Thetable service provider 256 may receive, generate, and/or store different database tables 90, perhaps according to a client's or a blockchain's specification. Each different table 90 may have its correspondingunique table identifier 250. So, whatever the proof-of-work (“PoW”) target scheme (e.g., 34 a and 34 b) and/or theblockchain environment 20 a-b, thetable server 254 may offer and provide the corresponding database table 90. Thetable service provider 256 and/or thetable server 254 may thus be an authorized provider or participant in theblockchain environments 20 a-b. Afirst miner system 22 a, for example, operating in theblockchain environment 20 a, may request and retrieve the database table 90 a that corresponds to the proof-of-work (“PoW”)target scheme 34 a. A different,second system 22 b, operating in theblockchain environment 20 b, may request and retrieve the database table 90 b that corresponds to the proof-of-work (“PoW”)target scheme 34 b. Miners may query the table server 254 (perhaps by specifying the corresponding table ID 250) and retrieve the corresponding database table 90. Thetable service provider 256 may thus specialize in randomized/cryptographic database tables, and thetable server 254 may serve different blockchain networks. -
FIG. 40 further illustrates table services. Theblockchain environment 20 and/or theminer system 22 may outsource thebit shuffle operation 92 to thetable service provider 256. Once theminer system 22 determines or receives the hash value(s) 60 (generated by the hashing algorithm 54), theminer system 22 may outsource or subcontract thebit swap operation 92 to thetable server 254. The client-side blockchainmining software application 196 may thus cause or instruct theminer system 22 to generate a bit shuffle service request that is sent to the table service provider 256 (such as the IP address assigned to the table server 254). The bit shuffle service request may specify or include the hash values 60. The bit shuffle service request may additionally or alternatively specify or include thetable identifier 250. The bit shuffle service request may additionally or alternatively specify or include a website, webpage, network address location, or server from which the hash values 60 may be downloaded, retrieved, or obtained to perform thebit shuffle operation 92. While thetable service provider 256 may utilize any mechanism to provide thebit shuffle operation 92,FIG. 40 illustrates a vendor's server/client relationship. Theminer system 22 sends the bit shuffle service request to thetable server 254 that is operated on behalf of thetable service provider 256. When thetable server 254 receives the bit shuffle service request, thetable server 254 may query thedatabase 252 of tables for thetable identifier 250 specified by the bit shuffle service request. Thetable server 254 identifies the corresponding database table 90. Thetable server 254 performs thebit shuffle operation 92 using the hash value(s) 60 specified by, or referenced by, the bit shuffle service request. Thetable server 254 generates and sends a service result to the network address associated with or assigned to theminer system 22, and the service result includes or specifies data or information representing the randomized hash value(s) 226. Theminer system 22 may then execute, or outsource, thedifficulty algorithm 48 and/or the proof-of-work algorithm 52 using the randomized hash value(s) 226 (as this disclosure above explained). - Exemplary embodiments improve computer functioning. The database table 90 adds cryptographic security by further randomizing the hash value(s) 60 generated by the hashing
algorithm 54. Moreover, because the database table 90 may be remotely located and accessed, exemplary embodiments may only specify thetable identifier 250. The memory byte size consumed by the proof-of-work (“PoW”)target scheme 34 and/or the client-side blockchainmining software application 196 is reduced. That is, theblockchain network server 28 need not send the entire software program, code, or instructions representing the database table 90 used by theblockchain environment 20. Theblockchain environment 20, theblockchain network server 28, and/or the proof-of-work (“PoW”)target scheme 34 need only specify the much smaller byte-sized table identifier 250. Theblockchain environment 20 need not be burdened with conveying the database table 90 to theminer system 22 and to other mining nodes. Theblockchain environment 20 and thecommunication network 26 convey less packet traffic, so packet travel times and network latency are reduced. Moreover, especially if theminer system 22 outsources table operations, theminer system 22 is relieved from processing/executing thebit swap operation 92 and consumes less electrical power. Again, then, a faster and more expensive graphics processor or even ASIC will not speed up the proof-of-work operation. The conventionalcentral processing unit 36 is adequate, reduces costs, and promotes democratic mining. - Exemplary embodiments improve cryptographic security. If the
blockchain environment 20, the proof-of-work (“PoW”)target scheme 34 and/or the client-side blockchainmining software application 196 specifies use of the database table 90, only authorized miners may have access to the actual entries referenced by the database table 90. That is, ifminer system 22 is required to perform, implement, or even execute thebit shuffle operation 92, theminer system 22 must have access to the correct database table 90. An unauthorized or rogue entity, in other words, likely could not perform thebit shuffle operation 92 without access to the correct database table 90. Moreover, if thebit shuffle operation 92 is remotely performed from the miner system 22 (such as by thetable server 254, as above explained), perhaps not even the authorizedminer system 22 need have access to the database table 90. So, even if theminer system 22 is authorized to mine orprocess blockchain transactions 32 in theblockchain environment 20, the authorizedminer system 22 may still be blind to the database table 90. The authorizedminer system 22, in other words, is operationally reliant on thetable server 254 to perform thebit shuffle operation 92 that may be required for thedifficulty algorithm 48 and/or for the proof-of-work algorithm 52. Theminer system 22 simply cannot solve themathematical puzzle 62 without thetable service 258 provided by thetable server 254. The database table 90 may thus be proprietary to theblockchain environment 20, but, unknown and unavailable to even the authorizedminer system 22 for added cryptographic security. -
FIG. 41 illustrates agnostic blockchain mining, according to exemplary embodiments. As the reader may now realize, theminer system 22 may be agnostic to theblockchain environment 20. Because theminer system 22 may be agnostic to encryption, difficulty, and proof-of-work operations, theminer system 22 may process or mine theblockchain transactions 32 inmultiple blockchain environments 20. That is, because theconventional CPU 36 is adequate formining blockchain transactions 32, no specialized ASIC is required for anyparticular blockchain environment 20. Theminer system 22 may thus participate inmultiple blockchain environments 20 and potentially earn multiple rewards. Theminer system 22, for example, may participate in theblockchain environment 22 a and mine theblockchain transactions 32 a sent from theblockchain network server 28 a to authorized miners inblockchain network 260 a. Theminer system 22 may thus mine theblockchain transactions 32 a according to the proof-of-work (“PoW”)target scheme 34 a that is specified by theblockchain environment 22 a, theblockchain network server 28 a, and/or theblockchain network 260 a. Theminer system 22, however, may also participate in theblockchain environment 22 b and mine theblockchain transactions 32 b sent from theblockchain network server 28 b to authorized miners inblockchain network 260 b. Theminer system 22 may thus mine theblockchain transactions 32 b according to the proof-of-work (“PoW”)target scheme 34 b that is specified by theblockchain environment 22 b, theblockchain network server 28 b, and/or theblockchain network 260 b. Because exemplary embodiments require no specialized GPU or ASIC, the miner'sconventional CPU 36 may be adequate for mining operations in bothblockchain environments miner system 22 may thus download, store, and execute the client-side blockchainmining software application 196 a that is required to mine theblockchain transactions 32 a in theblockchain environment 20 a. Theminer system 22 may also download, store, and execute the client-side blockchainmining software application 196 b that is required to mine theblockchain transactions 32 b in theblockchain environment 20 b. Theminer system 22 may thus call, execute, coordinate, or manage theencryption algorithm 46 a, thedifficulty algorithm 48 a, and/or the proof-of-work (“PoW”)algorithm 52 a according to the proof-of-work (“PoW”)target scheme 34 a specified by theblockchain environment 20 a. Theminer system 22 may also call, execute, coordinate, or manage theencryption algorithm 46 b, thedifficulty algorithm 48 b, and/or the proof-of-work (“PoW”)algorithm 52 b according to the proof-of-work (“PoW”)target scheme 34 b specified by theblockchain environment 20 b. Because exemplary embodiments require no specialized GPU or ASIC, theminer system 22 has the hardware processor capability and performance (e.g., clock speed, processor core(s)/thread(s) count, cycles, the on-board cache memory 100, thermal profile, electrical power consumption, and/or chipset) to mine in bothblockchain environments miner system 22 may participate inmultiple blockchain environments 20, thus having the capability to earn additional rewards, while also being less expensive to purchase and to operate. -
FIGS. 42-43 illustrate virtual blockchain mining, according to exemplary embodiments. Because theminer system 22 may be agnostic to theblockchain environment 20, theminer system 22 may outsource or subcontract mining operations to a virtual machine (or “VM”) 262. For example, theminer system 22 may implement differentvirtual machines 262, with eachvirtual machine 262 dedicated to aparticular blockchain environment 20. Theminer system 22, for example, may assign thevirtual machine 262 a to mining theblockchain transactions 32 a sent from theblockchain network server 28 a. Theminer system 22 may assign thevirtual machine 262 b to mining theblockchain transactions 32 b sent from theblockchain network server 28 b. Theminer system 22 may thus be a server computer that participates inmultiple blockchain environments 20 and potentially earns multiple rewards. Theminer system 22 may provide virtual mining resources tomultiple blockchain environments 20, thus lending or sharing its hardware, computing, and programming resources. WhileFIG. 42 only illustrates two (2)virtual machines miner system 22 may implement any number or instantiations of differentvirtual machines 262, with eachvirtual machine 262 serving or mining one ormultiple blockchain environments 20. So, when theminer system 22 receives theblockchain transactions 32, theminer system 22 may inspect theblockchain transactions 32 for the proof-of-work (“PoW”)target scheme 34 that identifies the corresponding encryption, difficulty, and PoW scheme (such as by consulting thedatabases miner system 22 may additionally or alternatively inspect theblockchain transactions 32 for theidentifiers blockchain environment 20 is determined, theminer system 22 may then -
FIG. 43 illustrates a database lookup. When theminer system 22 determines thePoW scheme 34 and/or any of theidentifiers miner system 22 may identify the correspondingvirtual machine 262. For example, theminer system 22 may consult anelectronic database 264 of virtual machines. While thedatabase 264 of virtual machines may have any structure,FIG. 43 illustrates a relational table 266 having entries that map or associate thePoW scheme 34 and/or any of theidentifiers virtual machine 262. Theminer system 22 may thus query theelectronic database 264 of virtual machines for any of thePoW scheme 34 and/or any of theidentifiers virtual machine 262. Once thevirtual machine 262 is identified (e.g., a memory address or pointer, processor core, identifier, network address and/or service provider, or other indicator), theminer system 22 may assign theblockchain transactions 32 to thevirtual machine 262 for mining. - The
miner system 22 may thus serve many blockchains. Theminer system 22, for example, may mine BITCOIN® and other cryptographic coin transactional records. However, theminer system 22 may also nearly simultaneously mine financial records sent from or associated with a financial institution, inventory/sales/shipping records sent from a retailer, and transactional records sent from an online website. Theminer system 22 may participate inmultiple blockchain environments 20, thus having the capability to earn additional rewards, while also being less expensive to purchase and to operate. -
FIG. 44 is a flowchart illustrating a method or algorithm for mining theblockchain transactions 32, according to exemplary embodiments. The inputs 24 (such as the blockchain transactions 32) may be received (Block 300). The proof-of-work (“PoW”)target scheme 34 may be received (Block 302). Themessage 202 may be received (Block 304). Theidentifiers block 40 of data may be generated (Block 308). The encryption algorithm 46 (such as the hashing algorithm 54) may be identified (Block 310) and the output 56 (such as the hash values 60) may be generated by encrypting/hashing theblockchain transactions 32 and/or theblock 40 of data (Block 312). The encryption/hashing service provider 150 may be identified and theblockchain transactions 32 and/or theblock 40 of data outsourced (Block 314). The output 56 (such as the hash values 60) may be received from the encryption/hashing service provider 150 (Block 316). Thedifficulty algorithm 48 may be identified (Block 318), the database table 90 may be generated or identified, and thedifficulty 50 may be generated by executing the difficulty algorithm 48 (Block 320). Thedifficulty service provider 156 may be identified and the difficulty calculation outsourced (Block 322). Thedifficulty 50 may be received from the difficulty service provider 156 (Block 324). ThePoW algorithm 52 may be identified (Block 326), the database table 90 may be generated or identified, and thePoW result 42 determined by executing the PoW algorithm 52 (Block 328). ThePoW service provider 120 may be identified and the PoW calculation outsourced (Block 330). ThePoW result 42 may be received from the PoW service provider 120 (Block 332). The output 56 (such as the hash values 60), thedifficulty 50, and/or thePoW result 42 may be compared to the PoW target scheme 34 (Block 334). - Exemplary embodiments may win the
block 40 of data. If theoutput 56, thedifficulty 50, and/or thePoW result 42 satisfy thePoW target scheme 34, then theminer system 22 may submit theoutput 56, thedifficulty 50, and/or thePoW result 42 to theblockchain network server 28. Theminer system 22 may itself determine if theminer system 22 is the first to satisfy thePoW target scheme 34, or theminer system 22 may rely on theblockchain network server 28 to determine the first solution. When theminer system 22 is the first solver, theminer system 22 earns the right to add theblock 40 of data to theblockchain 64. However, if thePoW target scheme 34 is not satisfied, theminer system 22 implements a change or modification and repeats. -
FIG. 45 is a schematic illustrating still more exemplary embodiments.FIG. 45 is a more detailed diagram illustrating a processor-controlleddevice 350. As earlier paragraphs explained, theminer system 22 may be any home or business server/desktop 160,laptop computer 162,smartphone 164,tablet computer 166, orsmartwatch 168, as exemplary embodiments allow these devices to have adequate processing and memory capabilities to realistically mine and win theblock 40 of data (as explained with reference toFIG. 18 ). Moreover, exemplary embodiments allow any CPU-controlled device to realistically, and profitably, process theblockchain transactions 32, thus allowing networked appliances, radios/stereos, clocks, tools (such as OBDII diagnostic analyzers and multimeters), HVAC thermostats and equipment, network switches/routers/modems, and electric/battery/ICU engine cars, trucks, airplanes, construction equipment, scooters, andother vehicles 170. - Exemplary embodiments may be applied to any signaling standard. Most readers are familiar with the
smartphone 164 and mobile computing. Exemplary embodiments may be applied to any communications device using the Global System for Mobile (GSM) communications signaling standard, the Time Division Multiple Access (TDMA) signaling standard, the Code Division Multiple Access (CDMA) signaling standard, the “dual-mode” GSM-ANSI Interoperability Team (GAIT) signaling standard, or any variant of the GSM/CDMA/TDMA signaling standard. Exemplary embodiments may also be applied to other standards, such as the I.E.E.E. 802 family of standards, the Industrial, Scientific, and Medical band of the electromagnetic spectrum, BLUETOOTH®, low-power or near-field, and any other standard or value. - Exemplary embodiments may be physically embodied on or in a computer-readable storage medium. This computer-readable medium, for example, may include CD-ROM, DVD, tape, cassette, floppy disk, optical disk, memory card, memory drive, and large-capacity disks. This computer-readable medium, or media, could be distributed to end-subscribers, licensees, and assignees. A computer program product comprises processor-executable instructions for processing or mining the
blockchain transactions 32, as the above paragraphs explain. - While the exemplary embodiments have been described with respect to various features, aspects, and embodiments, those skilled and unskilled in the art will recognize the exemplary embodiments are not so limited. Other variations, modifications, and alternative embodiments may be made without departing from the spirit and scope of the exemplary embodiments.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/141,278 US20210266174A1 (en) | 2020-01-17 | 2021-01-05 | CPU Mining in Blockchain Environments |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202062962486P | 2020-01-17 | 2020-01-17 | |
US202062963217P | 2020-01-20 | 2020-01-20 | |
US202063061372P | 2020-08-05 | 2020-08-05 | |
US17/141,278 US20210266174A1 (en) | 2020-01-17 | 2021-01-05 | CPU Mining in Blockchain Environments |
Publications (1)
Publication Number | Publication Date |
---|---|
US20210266174A1 true US20210266174A1 (en) | 2021-08-26 |
Family
ID=76858054
Family Applications (11)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/037,980 Active 2041-02-22 US11444749B2 (en) | 2020-01-17 | 2020-09-30 | Separating hashing from proof-of-work in blockchain environments |
US17/037,995 Active 2040-11-14 US11343075B2 (en) | 2020-01-17 | 2020-09-30 | RAM hashing in blockchain environments |
US17/141,278 Abandoned US20210266174A1 (en) | 2020-01-17 | 2021-01-05 | CPU Mining in Blockchain Environments |
US17/450,703 Abandoned US20220103341A1 (en) | 2020-01-17 | 2021-10-13 | CPU Mining in Blockchain Environments |
US17/450,702 Abandoned US20220103364A1 (en) | 2020-01-17 | 2021-10-13 | Hashing Cache Misses in Blockchain Environments |
US17/450,698 Abandoned US20220103343A1 (en) | 2020-01-17 | 2021-10-13 | Encryption & Proof-of-Work in Blockchain Environments |
US17/450,699 Abandoned US20220103344A1 (en) | 2020-01-17 | 2021-10-13 | Encryption & Proof-of-Work in Blockchain Environments |
US17/751,864 Active US11863305B2 (en) | 2020-01-17 | 2022-05-24 | RAM hashing in blockchain environments |
US17/942,270 Active US11943334B2 (en) | 2020-01-17 | 2022-09-12 | Separating hashing from proof-of-work in blockchain environments |
US18/540,067 Pending US20240113862A1 (en) | 2020-01-17 | 2023-12-14 | RAM Hashing in Blockchain Environments |
US18/613,550 Pending US20240275580A1 (en) | 2020-01-17 | 2024-03-22 | Separating hashing from proof-of-work in blockchain environments |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/037,980 Active 2041-02-22 US11444749B2 (en) | 2020-01-17 | 2020-09-30 | Separating hashing from proof-of-work in blockchain environments |
US17/037,995 Active 2040-11-14 US11343075B2 (en) | 2020-01-17 | 2020-09-30 | RAM hashing in blockchain environments |
Family Applications After (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/450,703 Abandoned US20220103341A1 (en) | 2020-01-17 | 2021-10-13 | CPU Mining in Blockchain Environments |
US17/450,702 Abandoned US20220103364A1 (en) | 2020-01-17 | 2021-10-13 | Hashing Cache Misses in Blockchain Environments |
US17/450,698 Abandoned US20220103343A1 (en) | 2020-01-17 | 2021-10-13 | Encryption & Proof-of-Work in Blockchain Environments |
US17/450,699 Abandoned US20220103344A1 (en) | 2020-01-17 | 2021-10-13 | Encryption & Proof-of-Work in Blockchain Environments |
US17/751,864 Active US11863305B2 (en) | 2020-01-17 | 2022-05-24 | RAM hashing in blockchain environments |
US17/942,270 Active US11943334B2 (en) | 2020-01-17 | 2022-09-12 | Separating hashing from proof-of-work in blockchain environments |
US18/540,067 Pending US20240113862A1 (en) | 2020-01-17 | 2023-12-14 | RAM Hashing in Blockchain Environments |
US18/613,550 Pending US20240275580A1 (en) | 2020-01-17 | 2024-03-22 | Separating hashing from proof-of-work in blockchain environments |
Country Status (1)
Country | Link |
---|---|
US (11) | US11444749B2 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11296889B2 (en) | 2017-02-17 | 2022-04-05 | Inveniam Capital Partners, Inc. | Secret sharing via blockchains |
US11328290B2 (en) | 2018-08-06 | 2022-05-10 | Inveniam Capital Partners, Inc. | Stable cryptocurrency coinage |
US11334874B2 (en) | 2018-08-06 | 2022-05-17 | Inveniam Capital Partners, Inc. | Digital contracts in blockchain environments |
US11431815B1 (en) * | 2020-05-07 | 2022-08-30 | Xilinx, Inc. | Mining proxy acceleration |
US11477271B2 (en) | 2018-05-18 | 2022-10-18 | Inveniam Capital Partners, Inc. | Load balancing in blockchain environments |
US11580534B2 (en) | 2017-03-22 | 2023-02-14 | Inveniam Capital Partners, Inc. | Auditing of electronic documents |
US11580535B2 (en) | 2018-05-18 | 2023-02-14 | Inveniam Capital Partners, Inc. | Recordation of device usage to public/private blockchains |
US11863686B2 (en) | 2017-01-30 | 2024-01-02 | Inveniam Capital Partners, Inc. | Validating authenticity of electronic documents shared via computer networks |
US11863305B2 (en) | 2020-01-17 | 2024-01-02 | Inveniam Capital Partners, Inc. | RAM hashing in blockchain environments |
US11989208B2 (en) | 2018-08-06 | 2024-05-21 | Inveniam Capital Partners, Inc. | Transactional sharding of blockchain transactions |
US12008015B2 (en) | 2018-05-18 | 2024-06-11 | Inveniam Capital Partners, Inc. | Import and export in blockchain environments |
US12007972B2 (en) | 2021-06-19 | 2024-06-11 | Inveniam Capital Partners, Inc. | Systems and methods for processing blockchain transactions |
US12008526B2 (en) | 2021-03-26 | 2024-06-11 | Inveniam Capital Partners, Inc. | Computer system and method for programmatic collateralization services |
US12137179B2 (en) | 2022-07-25 | 2024-11-05 | Inveniam Capital Partners, Inc. | Systems and methods for processing blockchain transactions |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11245536B2 (en) * | 2019-04-16 | 2022-02-08 | Meta Platforms, Inc. | Secure multi-party computation attribution |
US11804951B2 (en) * | 2021-07-19 | 2023-10-31 | Infineon Technologies Ag | Advanced sensor security protocol |
CN114002587B (en) * | 2021-12-30 | 2022-03-18 | 中科声龙科技发展(北京)有限公司 | Chip supporting workload proving mechanism and testing method thereof |
US12052375B2 (en) * | 2022-04-06 | 2024-07-30 | Western Digital Technologies, Inc. | Hiding proof-of-space in blockchain systems |
Citations (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170236123A1 (en) * | 2016-02-16 | 2017-08-17 | Blockstack Inc. | Decentralized processing of global naming systems |
US20170300912A1 (en) * | 2016-04-13 | 2017-10-19 | Paypal, Inc. | Public ledger authentication system |
US20170359374A1 (en) * | 2016-06-11 | 2017-12-14 | Lntel Corporation | Blockchain System with Nucleobase Sequencing as Proof of Work |
US20190079950A1 (en) * | 2017-09-08 | 2019-03-14 | ULedger, Inc. | Systems and methods of providing immutable records |
US20190081796A1 (en) * | 2017-09-14 | 2019-03-14 | The Toronto-Dominion Bank | Management of Cryptographically Secure Exchanges of Data Using Permissioned Distributed Ledgers |
US20190340586A1 (en) * | 2018-05-04 | 2019-11-07 | Smart Worldwide Financial Technology | Conducting optimized cross-blockchain currency transactions using machine learning |
US20200026699A1 (en) * | 2018-07-20 | 2020-01-23 | True Blockchain Technology Ltd. | Highly Performant Decentralized Public Ledger with Hybrid Consensus |
US20200045019A1 (en) * | 2018-07-31 | 2020-02-06 | Ezblock Ltd. | Blockchain joining for a limited processing capability device and device access security |
US20200244470A1 (en) * | 2017-03-17 | 2020-07-30 | Bundersdruckerei Gmbh | Issuing virtual documents in a block chain |
US20200320522A1 (en) * | 2018-05-18 | 2020-10-08 | Factom, Inc. | Recordation of Device Usage to Blockchains |
US20200320620A1 (en) * | 2017-03-22 | 2020-10-08 | Factom, Inc. | Auditing of Electronic Documents |
US10826685B1 (en) * | 2016-06-28 | 2020-11-03 | Amazon Technologies, Inc. | Combined blockchain integrity |
US20200396209A1 (en) * | 2019-06-17 | 2020-12-17 | The Government Of The United States, As Represented By The Secretary Of The Army | Block Chain Network and Hash-Based Cuckoo Filter |
US10873457B1 (en) * | 2017-09-13 | 2020-12-22 | Inveniam.io, LLC | Data structure having internal self-references suitable for immutably representing and verifying data generated over time |
US20210035092A1 (en) * | 2017-07-20 | 2021-02-04 | Chicago Mercantile Exchange Inc. | Blockchain including linked digital assets |
US10915895B1 (en) * | 2016-03-04 | 2021-02-09 | Perkins Coie LLP | Managing electronic cryptocurrencies |
US20210042758A1 (en) * | 2016-09-15 | 2021-02-11 | American Express Travel Related Services Company, Inc. | Systems and methods for blockchain based payment networks |
US20210044976A1 (en) * | 2018-08-21 | 2021-02-11 | HYPR Corp. | Secure mobile initiated authentications to web-services |
US20210073750A1 (en) * | 2015-07-01 | 2021-03-11 | The Clearing House Payments Company L.L.C. | Real-time payment system, method, apparatus, and computer program |
US10949926B1 (en) * | 2017-05-24 | 2021-03-16 | State Farm Mutual Automobile Insurance Company | Fault determination of blockchain subrogation claims |
US10956973B1 (en) * | 2016-07-06 | 2021-03-23 | LedgerFunding, Inc. | System and method for verifiable invoice and credit financing |
US20210091934A1 (en) * | 2017-07-24 | 2021-03-25 | nChain Holdings Limited | Methods and systems for blockchain-implemented event-lock encryption |
US10965466B2 (en) * | 2018-08-03 | 2021-03-30 | National Taiwan University | Estimable proof-of-work for blockchain |
US20210144149A1 (en) * | 2018-03-06 | 2021-05-13 | Americorp Investments Llc | Customized View Of Restricted Information Recorded Into A Blockchain |
US20210201328A1 (en) * | 2016-12-02 | 2021-07-01 | Persephone GmbH | System and method for managing transactions in dynamic digital documents |
US20210201321A1 (en) * | 2015-10-02 | 2021-07-01 | Chicago Mercantile Exchange Inc. | Virtual payment processing system |
US11063770B1 (en) * | 2020-03-13 | 2021-07-13 | Alipay (Hangzhou) Information Technology Co., Ltd. | Data authorization based on decentralized identifiers |
US20210226773A1 (en) * | 2020-01-17 | 2021-07-22 | Factom, Inc. | RAM Hashing in Blockchain Environments |
US11075744B2 (en) * | 2017-11-20 | 2021-07-27 | Acronis International Gmbh | Blockchain-based media content authentication methods and systems |
US20210248514A1 (en) * | 2018-05-06 | 2021-08-12 | Strong Force TX Portfolio 2018, LLC | Artificial intelligence selection and configuration |
US20210266167A1 (en) * | 2015-07-14 | 2021-08-26 | Fmr Llc | Social Aggregating, Fractionally Efficient Transfer Guidance, Conditional Triggered Transaction, Datastructures, Apparatuses, Methods and Systems |
US11164250B2 (en) * | 2018-08-06 | 2021-11-02 | Inveniam Capital Partners, Inc. | Stable cryptocurrency coinage |
US11164254B1 (en) * | 2018-02-14 | 2021-11-02 | Equity Shift, Inc. | Blockchain instrument for transferable equity |
US20210342836A1 (en) * | 2018-05-06 | 2021-11-04 | Strong Force TX Portfolio 2018, LLC | Systems and methods for controlling rights related to digital knowledge |
US20220012731A1 (en) * | 2020-04-22 | 2022-01-13 | Atrium Separate IP Holdings Number 1, LLC | Blockchain architecture, system, method and device including a hybrid public-private iteration for facilitating secure data collection and controlled distribution using a decentralized transaction information platform and token ecosystem |
US20220019559A1 (en) * | 2018-05-18 | 2022-01-20 | Inveniam Capital Partners, Inc. | Blockchain Services |
US20220023742A1 (en) * | 2016-05-02 | 2022-01-27 | Bao Tran | Blockchain |
US20220040557A1 (en) * | 2016-02-02 | 2022-02-10 | Bao Tran | Non-fungible token (nft) |
US20220043831A1 (en) * | 2018-08-06 | 2022-02-10 | Inveniam Capital Partners, Inc. | Transactional Sharding of Blockchain Transactions |
US20220058623A1 (en) * | 2018-08-06 | 2022-02-24 | Inveniam Capital Partners, Inc. | Stable Cryptocurrency Coinage |
US20220083991A1 (en) * | 2015-01-20 | 2022-03-17 | Pollen, Inc. | Electronic capital marketplace systems and methods |
US20220141231A1 (en) * | 2018-03-06 | 2022-05-05 | Americorp Investments Llc | Blockchain-Based Commercial Inventory Systems And Methods |
US20220156737A1 (en) * | 2016-02-23 | 2022-05-19 | nChain Holdings Limited | Tokenisation method and system for implementing exchanges on a blockchain |
US11347769B2 (en) * | 2018-05-18 | 2022-05-31 | Inveniam Capital Partners, Inc. | Import and export in blockchain environments |
US20220173893A1 (en) * | 2017-10-24 | 2022-06-02 | 0Chain Corp. | Non-fungible token blockchain processing |
US20220198554A1 (en) * | 2018-05-17 | 2022-06-23 | Flexa Network Inc. | System digital asset-backed data interaction system |
US20220215389A1 (en) * | 2017-11-28 | 2022-07-07 | American Express Travel Related Services Company, Inc. | Transaction authorization process using blockchain |
US20220245626A1 (en) * | 2017-01-31 | 2022-08-04 | Nchain Licensing Ag | Computer-implemented system and method for generating and extracting user related data stored on a blockchain |
US11423398B1 (en) * | 2018-05-29 | 2022-08-23 | Block, Inc. | Recommending conditions for blockchain-enforced contracts |
US11443370B2 (en) * | 2017-03-31 | 2022-09-13 | Inveniam Capital Partners, Inc. | Due diligence in electronic documents |
US20220405260A1 (en) * | 2021-06-19 | 2022-12-22 | Inveniam Capital Partners, Inc. | Systems and methods for processing blockchain transactions |
US20220407728A1 (en) * | 2021-06-19 | 2022-12-22 | Inveniam Capital Partners, Inc. | Systems and methods for processing blockchain transactions |
Family Cites Families (329)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE419738B (en) | 1976-11-04 | 1981-08-24 | Trelleborg Marin Ab | PROCEDURES FOR TREATING UNDER A WATER USE EXISTING PARTS OF CONSTRUCTIONS |
US4309569A (en) | 1979-09-05 | 1982-01-05 | The Board Of Trustees Of The Leland Stanford Junior University | Method of providing digital signatures |
US5499294A (en) | 1993-11-24 | 1996-03-12 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Digital camera with apparatus for authentication of images produced from an image file |
US5799087A (en) | 1994-04-28 | 1998-08-25 | Citibank, N.A. | Electronic-monetary system |
US5606609A (en) | 1994-09-19 | 1997-02-25 | Scientific-Atlanta | Electronic document verification system and method |
US5966446A (en) | 1995-09-29 | 1999-10-12 | Intel Corporation | Time-bracketing infrastructure implementation |
US5862218A (en) | 1996-04-04 | 1999-01-19 | Fotonation, Inc. | Method and apparatus for in-camera image marking and authentication |
US6363481B1 (en) | 1998-08-03 | 2002-03-26 | Nortel Networks Limited | Method and apparatus for secure data storage using distributed databases |
JP2002542502A (en) | 1999-02-16 | 2002-12-10 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Authentication and verification in digital camera architecture |
US20070027787A1 (en) | 1999-10-06 | 2007-02-01 | Tripp Thomas W | Software system for real monetary instruments |
US7730113B1 (en) | 2000-03-07 | 2010-06-01 | Applied Discovery, Inc. | Network-based system and method for accessing and processing emails and other electronic legal documents that may include duplicate information |
US8145556B2 (en) | 2000-04-10 | 2012-03-27 | Tealdi Daniel A | Online mortgage approval and settlement system and method therefor |
US7028263B2 (en) | 2000-07-19 | 2006-04-11 | Research In Motion Limited | User interface and method for viewing short messages on a wireless device |
US7206768B1 (en) | 2000-08-14 | 2007-04-17 | Jpmorgan Chase Bank, N.A. | Electronic multiparty accounts receivable and accounts payable system |
US7249089B2 (en) | 2000-12-29 | 2007-07-24 | Hartford Fire Insurance Company | Method and system for auctioning bankruptcy assets and valuing same |
US20020143687A1 (en) | 2001-03-30 | 2002-10-03 | Reuben Bahar | Method and system for auctioning bad debts utilizing an assorting arangement based on the geographic locaiton where jurisdiction is present over the debtor |
DE10128728C2 (en) | 2001-06-13 | 2003-10-23 | Siemens Ag | Arrangement for personal protection of information, in particular about violations of the law |
US20030018563A1 (en) | 2001-07-13 | 2003-01-23 | Efficient Capital Corporation | Trading and processing of commercial accounts receivable |
AU2002357686A1 (en) | 2001-11-01 | 2003-05-12 | A4S Technologies, Inc. | Remote surveillance system |
US7212808B2 (en) | 2002-10-15 | 2007-05-01 | Wildseed Ltd. | Unified message box for wireless mobile communication devices |
US20040085445A1 (en) | 2002-10-30 | 2004-05-06 | Park Ho-Sang | Apparatus for secured video signal transmission for video surveillance system |
GB2400463B (en) | 2003-04-11 | 2005-05-25 | Nextenders | Data processing apparatus and method for distributing and authenticating electronic documents |
US8719576B2 (en) | 2003-12-22 | 2014-05-06 | Guardtime IP Holdings, Ltd | Document verification with distributed calendar infrastructure |
US20050206741A1 (en) | 2004-03-19 | 2005-09-22 | Raber Gregory W | Law enforcement vehicle surveillance system |
US20060075228A1 (en) | 2004-06-22 | 2006-04-06 | Black Alistair D | Method and apparatus for recognition and real time protection from view of sensitive terms in documents |
EP1769637A2 (en) | 2004-07-09 | 2007-04-04 | Emitall Surveillance S.A. | Smart video surveillance system ensuring privacy |
US20060184443A1 (en) | 2005-02-16 | 2006-08-17 | Amir Erez | Method for conducting an on-line forum for auctioning intangible assets |
US20070174630A1 (en) | 2005-02-21 | 2007-07-26 | Marvin Shannon | System and Method of Mobile Anti-Pharming and Improving Two Factor Usage |
KR101197365B1 (en) | 2005-04-06 | 2012-11-05 | 삼성전자주식회사 | Multimedia message service method and apparatus |
JP3943118B2 (en) | 2005-04-28 | 2007-07-11 | Sbシステム株式会社 | Electronic information storage method and apparatus, electronic information division storage method and apparatus, electronic information division restoration processing method and apparatus, and programs thereof |
WO2007029116A2 (en) | 2005-07-01 | 2007-03-15 | 0733660 B.C. Ltd. Dba E-Mail2, Inc. | Electronic mail messaging system |
WO2007022222A2 (en) | 2005-08-18 | 2007-02-22 | Creditmax Llc | Debt sales system and method |
WO2007022381A2 (en) | 2005-08-18 | 2007-02-22 | Creditmax Llc | Systems and methods for acquiring, managing, placing, collecting and reselling debt |
KR100653512B1 (en) | 2005-09-03 | 2006-12-05 | 삼성에스디에스 주식회사 | System for managing and storaging electronic document and method for registering and using the electronic document performed by the system |
TWI298128B (en) | 2005-10-20 | 2008-06-21 | Ind Tech Res Inst | Method and system for managing distributed storage of digital contents |
KR100838870B1 (en) | 2005-11-14 | 2008-06-16 | 엘지전자 주식회사 | Ventilating apparatus |
WO2007069176A2 (en) | 2005-12-16 | 2007-06-21 | Koninklijke Philips Electronics N.V. | Method for the detection of a use of a camera unit in a mobile device |
US9378343B1 (en) | 2006-06-16 | 2016-06-28 | Nokia Corporation | Automatic detection of required network key type |
US20080010466A1 (en) | 2006-07-10 | 2008-01-10 | William Hopper | Digital identifier chaining |
US20080059726A1 (en) | 2006-08-31 | 2008-03-06 | Carlos Rozas | Dynamic measurement of an operating system in a virtualized system |
US8943332B2 (en) | 2006-10-31 | 2015-01-27 | Hewlett-Packard Development Company, L.P. | Audit-log integrity using redactable signatures |
ES2568661T3 (en) | 2006-11-07 | 2016-05-03 | Security First Corp. | Systems and methods to distribute and guarantee data |
US9411976B2 (en) | 2006-12-01 | 2016-08-09 | Maidsafe Foundation | Communication system and method |
US7949597B2 (en) | 2007-02-02 | 2011-05-24 | Zadoorian James A | Method of collecting delinquent specialized debt |
JP4895378B2 (en) | 2007-02-05 | 2012-03-14 | 株式会社オリコム | Secret information delivery system and secret information delivery method |
US10231077B2 (en) | 2007-07-03 | 2019-03-12 | Eingot Llc | Records access and management |
US20090025063A1 (en) | 2007-07-18 | 2009-01-22 | Novell, Inc. | Role-based access control for redacted content |
US8266439B2 (en) | 2007-09-12 | 2012-09-11 | Hewlett-Packard Development Company, L.P. | Integrity verification of pseudonymized documents |
US8245038B2 (en) | 2008-03-26 | 2012-08-14 | Palo Alto Research Center Incorporated | Method and apparatus for verifying integrity of redacted documents |
KR101650118B1 (en) | 2008-07-11 | 2016-08-22 | 마벨 월드 트레이드 리미티드 | Power save mode for access points |
US8301654B2 (en) | 2009-02-24 | 2012-10-30 | Hitachi, Ltd. | Geographical distributed storage system based on hierarchical peer to peer architecture |
US8558888B2 (en) | 2009-02-27 | 2013-10-15 | Third Iris Corp. | Bandwidth shaping client to capture, transform, cache, and upload images from a remote point of recordation to a network service |
US20130222587A1 (en) | 2009-02-27 | 2013-08-29 | Barracuda Networks, Inc | Self-Connecting Internet Camera With Enhanced Security and Bandwidth Shaping |
JP5383297B2 (en) | 2009-04-13 | 2014-01-08 | 株式会社日立国際電気 | Signature device |
US8572695B2 (en) | 2009-09-08 | 2013-10-29 | Ricoh Co., Ltd | Method for applying a physical seal authorization to documents in electronic workflows |
US20110161674A1 (en) | 2009-12-29 | 2011-06-30 | Konica Minolta Systems Laboratory, Inc. | Document authentication using document digest verification by remote server |
US8359361B2 (en) | 2010-05-06 | 2013-01-22 | Microsoft Corporation | Techniques to share media files through messaging |
US9124423B2 (en) | 2010-05-14 | 2015-09-01 | International Business Machines Corporation | Iterative data secret-sharing transformation |
US8601498B2 (en) | 2010-05-28 | 2013-12-03 | Security First Corp. | Accelerator system for use with secure data storage |
US8612477B2 (en) | 2010-09-24 | 2013-12-17 | Aol Inc. | Systems and methods for customized electronic communications |
US8504480B2 (en) | 2011-02-03 | 2013-08-06 | Ricoh Co., Ltd | Creation of signatures for authenticating applications |
US8560722B2 (en) | 2011-03-18 | 2013-10-15 | International Business Machines Corporation | System and method to govern sensitive data exchange with mobile devices based on threshold sensitivity values |
US8485897B1 (en) | 2011-04-13 | 2013-07-16 | Zynga Inc. | System and method for providing branded virtual objects in a virtual environment |
US8706616B1 (en) | 2011-06-20 | 2014-04-22 | Kevin Flynn | System and method to profit by purchasing unsecured debt and negotiating reduction in amount due |
US9769250B2 (en) | 2013-08-08 | 2017-09-19 | Architecture Technology Corporation | Fight-through nodes with disposable virtual machines and rollback of persistent state |
US8990322B2 (en) | 2011-09-22 | 2015-03-24 | Alcatel Lucent | Archive control for text messages |
WO2013065133A1 (en) | 2011-11-01 | 2013-05-10 | 株式会社野村総合研究所 | Time verification system and time verification program |
US8767954B2 (en) | 2011-12-01 | 2014-07-01 | Colloid, Llc | Methods and systems for deriving a cryptographic framework |
US9792451B2 (en) | 2011-12-09 | 2017-10-17 | Echarge2 Corporation | System and methods for using cipher objects to protect data |
US20170213287A1 (en) | 2012-03-06 | 2017-07-27 | Daniel B. Bruno | System and method for providing a cryptographic platform for exchanging debt securities denominated in virtual currencies |
US9489827B2 (en) | 2012-03-12 | 2016-11-08 | Cisco Technology, Inc. | System and method for distributing content in a video surveillance network |
US20130275765A1 (en) | 2012-04-12 | 2013-10-17 | James Frazier Lay | Secure digital document distribution with real-time sender control of recipient document content access rights |
US8867741B2 (en) | 2012-04-13 | 2014-10-21 | Xerox Corporation | Mobile field level encryption of private documents |
US10984913B2 (en) | 2012-04-27 | 2021-04-20 | Netspective Communications Llc | Blockchain system for natural language processing |
EP2858297B1 (en) | 2012-07-05 | 2017-03-01 | Nippon Telegraph And Telephone Corporation | Secret sharing system, data distribution apparatus, distributed data transform apparatus, secret sharing method and program |
US9818109B2 (en) | 2012-08-16 | 2017-11-14 | Danny Loh | User generated autonomous digital token system |
US9009705B2 (en) | 2012-10-01 | 2015-04-14 | International Business Machines Corporation | Authenticated distribution of virtual machine images |
KR101747221B1 (en) | 2012-12-20 | 2017-06-15 | 한화테크윈 주식회사 | Image data transmitting and receiving method and camara terminal and server for image forgery detection in security camera system |
US9483657B2 (en) | 2013-01-14 | 2016-11-01 | Accenture Global Services Limited | Secure online distributed data storage services |
US9405930B2 (en) | 2013-03-12 | 2016-08-02 | Jacqueline K. Vestevich | User-controlled centralized privacy marketplace system |
US10438285B1 (en) | 2013-03-15 | 2019-10-08 | Charles Schwab & Co., Inc. | System and method for displaying order status and receiving and changing orders |
US9904954B2 (en) | 2013-03-15 | 2018-02-27 | Ten-X, Llc | Flexible commercial loan pool |
US20140344015A1 (en) | 2013-05-20 | 2014-11-20 | José Antonio Puértolas-Montañés | Systems and methods enabling consumers to control and monetize their personal data |
US9411982B1 (en) | 2013-08-07 | 2016-08-09 | Amazon Technologies, Inc. | Enabling transfer of digital assets |
RS61234B1 (en) | 2013-11-19 | 2021-01-29 | Top Galore Ltd | Block mining methods and apparatus |
DE102013227136B4 (en) | 2013-12-23 | 2020-12-31 | Mathys Ag Bettlach | Coated hemiprosthetic implant |
US20160330244A1 (en) | 2014-01-06 | 2016-11-10 | Maxwell Forest Pty Ltd | Secure Storage of Data Among Multiple Devices |
US10060130B2 (en) | 2014-01-13 | 2018-08-28 | King Abdulaziz City For Science And Technology | Ash insulation panels |
US20150206106A1 (en) | 2014-01-13 | 2015-07-23 | Yaron Edan Yago | Method for creating, issuing and redeeming payment assured contracts based on mathemematically and objectively verifiable criteria |
JP6312344B2 (en) | 2014-02-18 | 2018-04-18 | 日本電信電話株式会社 | Security device, method thereof, and program |
US20150242835A1 (en) | 2014-02-21 | 2015-08-27 | HomeAway.com, Inc. | Correlating transactions for an aggregated electronic transaction in association with split payment operations |
US9197662B2 (en) | 2014-02-26 | 2015-11-24 | Symantec Corporation | Systems and methods for optimizing scans of pre-installed applications |
US20170178237A1 (en) | 2014-03-11 | 2017-06-22 | Dragonfly Fintech Pte Ltd | Computer implemented frameworks and methods configured to create and manage a virtual currency |
WO2015142765A1 (en) | 2014-03-17 | 2015-09-24 | Coinbase, Inc | Bitcoin host computer system |
US9398018B2 (en) | 2014-03-18 | 2016-07-19 | nTrust Technology Solutions Corp. | Virtual currency system |
US9830580B2 (en) | 2014-03-18 | 2017-11-28 | nChain Holdings Limited | Virtual currency system |
WO2015144971A1 (en) | 2014-03-27 | 2015-10-01 | Nokia Technologies Oy | Method and apparatus for automatic inter-device authorisation |
US11080777B2 (en) | 2014-03-31 | 2021-08-03 | Monticello Enterprises LLC | System and method for providing a social media shopping experience |
US10237074B2 (en) | 2014-04-08 | 2019-03-19 | Hewlett Packard Enterprise Development Lp | Redactable document signatures |
US11164164B2 (en) | 2014-05-15 | 2021-11-02 | Uphold Global Foundation | System and method for converting cryptocurrency to virtual assets whose value is substantiated by a reserve of assets |
US10489757B2 (en) | 2014-05-19 | 2019-11-26 | OX Labs Inc. | System and method for rendering virtual currency related services |
US20150363769A1 (en) | 2014-06-16 | 2015-12-17 | Bank Of America Corporation | Cryptocurrency Real-Time Conversion System |
US20150379484A1 (en) | 2014-06-25 | 2015-12-31 | Fexco | International payment systems and methods |
US9946894B2 (en) | 2014-06-27 | 2018-04-17 | Panasonic Intellectual Property Management Co., Ltd. | Data processing method and data processing device |
US10356094B2 (en) | 2014-06-30 | 2019-07-16 | Vescel, Llc | Uniqueness and auditing of a data resource through an immutable record of transactions in a hash history |
TWI533771B (en) | 2014-07-17 | 2016-05-11 | 矽品精密工業股份有限公司 | Coreless package substrate and fabrication method thereof |
US10320781B2 (en) | 2016-12-08 | 2019-06-11 | Sensoriant, Inc. | System and methods for sharing and trading user data and preferences between computer programs and other entities while preserving user privacy |
US20160071096A1 (en) | 2014-09-08 | 2016-03-10 | Andrew Rosca | Method and System for Securing Cryptocurrency Wallet |
US9424576B2 (en) | 2014-09-15 | 2016-08-23 | Xerox Corporation | Methods and systems of creating a payment record with a cryptographically secure audit trail |
US20160098578A1 (en) | 2014-10-06 | 2016-04-07 | Nuoffer, Inc. | System and method for persistent data integrity in document communication |
JP2016085381A (en) | 2014-10-27 | 2016-05-19 | パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America | Encryption method, encryption device and encryption system |
US10819959B2 (en) | 2014-11-05 | 2020-10-27 | Jason Christopher Palazzolo | Firearm environmental recording apparatus and system |
CA3005157A1 (en) | 2014-11-14 | 2016-05-19 | Hector Jose Maximiliano Ponzone | Unified option trading system |
US11238443B2 (en) | 2014-11-26 | 2022-02-01 | Ncr Corporation | Secure crypto currency point-of-sale (POS) management |
US20160162897A1 (en) | 2014-12-03 | 2016-06-09 | The Filing Cabinet, LLC | System and method for user authentication using crypto-currency transactions as access tokens |
US20160217436A1 (en) | 2015-01-25 | 2016-07-28 | Dror Samuel Brama | Method, System and Program Product for Tracking and Securing Transactions of Authenticated Items over Block Chain Systems. |
US9875510B1 (en) | 2015-02-03 | 2018-01-23 | Lance Kasper | Consensus system for tracking peer-to-peer digital records |
US9588790B1 (en) | 2015-02-04 | 2017-03-07 | Amazon Technologies, Inc. | Stateful virtual compute system |
US10594484B2 (en) | 2015-02-13 | 2020-03-17 | Yoti Holding Limited | Digital identity system |
US9785764B2 (en) | 2015-02-13 | 2017-10-10 | Yoti Ltd | Digital identity |
US10853592B2 (en) | 2015-02-13 | 2020-12-01 | Yoti Holding Limited | Digital identity system |
US9436923B1 (en) | 2015-02-26 | 2016-09-06 | Skuchain, Inc. | Tracking unitization occurring in a supply chain |
EP3262817A4 (en) | 2015-02-27 | 2018-10-31 | Visa International Service Association | Transaction signing utilizing asymmetric cryptography |
US20160260091A1 (en) | 2015-03-04 | 2016-09-08 | THC Farmaceuticals, Inc. | Universal wallet for digital currency |
WO2016149047A1 (en) | 2015-03-13 | 2016-09-22 | United States Postal Service | Methods and systems for data authentication services |
US20160267472A1 (en) | 2015-03-13 | 2016-09-15 | Gyft, Inc. | Securing digital gift cards with a public ledger |
US20160275294A1 (en) | 2015-03-16 | 2016-09-22 | The MaidSafe Foundation | Data system and method |
US20160283920A1 (en) | 2015-03-28 | 2016-09-29 | Justin Fisher | Authentication and verification of digital data utilizing blockchain technology |
WO2016160850A1 (en) | 2015-03-30 | 2016-10-06 | Iperial, Inc. | System and method for authenticating digital content |
WO2016161073A1 (en) | 2015-03-31 | 2016-10-06 | Nasdaq, Inc. | Systems and methods of blockchain transaction recordation |
US20160292680A1 (en) | 2015-04-05 | 2016-10-06 | Digital Asset Holdings | Digital asset intermediary electronic settlement platform |
US9667600B2 (en) | 2015-04-06 | 2017-05-30 | At&T Intellectual Property I, L.P. | Decentralized and distributed secure home subscriber server device |
SG11201708295XA (en) | 2015-04-06 | 2017-11-29 | Bitmark Inc | System and method for decentralized title recordation and authentication |
US20160300200A1 (en) | 2015-04-09 | 2016-10-13 | Conjectural Technologies, Llc | Personal electronic currency |
US20160321751A1 (en) | 2015-04-28 | 2016-11-03 | Domus Tower, Inc. | Real-time settlement of securities trades over append-only ledgers |
US20160321435A1 (en) | 2015-05-01 | 2016-11-03 | Monegraph, Inc. | Managing digital content via block chain registers |
US20160321629A1 (en) | 2015-05-01 | 2016-11-03 | Monegraph, Inc. | Digital content rights transfers within social networks |
CN107851111A (en) | 2015-05-05 | 2018-03-27 | 识卡公司 | Use the identity management services of block chain |
US9876646B2 (en) | 2015-05-05 | 2018-01-23 | ShoCard, Inc. | User identification management system and method |
US9942046B2 (en) | 2015-05-06 | 2018-04-10 | 21, Inc. | Digital currency mining circuitry with adaptable difficulty compare capabilities |
US20160328791A1 (en) | 2015-05-08 | 2016-11-10 | Gdr Acquisition Company Llc | System and method for electronic consumer debt validation and dispute process |
US20160342977A1 (en) | 2015-05-20 | 2016-11-24 | Vennd.io Pty Ltd | Device, method and system for virtual asset transactions |
US20160342989A1 (en) | 2015-05-21 | 2016-11-24 | Mastercard International Incorporated | Method and system for processing blockchain-based transactions on existing payment networks |
US20160371771A1 (en) | 2015-06-16 | 2016-12-22 | BitPagos, Inc. | Loan processing service utilizing a distributed ledger digital asset |
CA2991211C (en) | 2015-07-02 | 2024-02-20 | Nasdaq, Inc. | Systems and methods of secure provenance for distributed transaction databases |
EP3866387A1 (en) | 2015-07-02 | 2021-08-18 | Leading Software Limited | Resilient secret sharing cloud based architecture for data vault |
US11488147B2 (en) | 2015-07-14 | 2022-11-01 | Fmr Llc | Computationally efficient transfer processing and auditing apparatuses, methods and systems |
US20170228731A1 (en) | 2016-02-09 | 2017-08-10 | Fmr Llc | Computationally Efficient Transfer Processing and Auditing Apparatuses, Methods and Systems |
US11636471B2 (en) | 2017-12-15 | 2023-04-25 | Fmr Llc | Social data tracking datastructures, apparatuses, methods and systems |
US20170053249A1 (en) | 2015-07-30 | 2017-02-23 | NXT-ID, Inc. | Electronic Crypto-Currency Management Method and System |
US10366204B2 (en) | 2015-08-03 | 2019-07-30 | Change Healthcare Holdings, Llc | System and method for decentralized autonomous healthcare economy platform |
US10402792B2 (en) | 2015-08-13 | 2019-09-03 | The Toronto-Dominion Bank | Systems and method for tracking enterprise events using hybrid public-private blockchain ledgers |
US10303887B2 (en) | 2015-09-14 | 2019-05-28 | T0.Com, Inc. | Data verification methods and systems using a hash tree, such as a time-centric merkle hash tree |
WO2017049309A1 (en) | 2015-09-17 | 2017-03-23 | Eoriginal, Inc. | System and method for electronic data capture and management for audit, monitoring, reporting and compliance |
EP4354311A3 (en) | 2015-10-17 | 2024-05-22 | Banqu, Inc. | Blockchain-based identity and transaction platform |
US10846663B2 (en) | 2015-10-29 | 2020-11-24 | Cornell University | Systems and methods for securing cryptocurrency purchases |
US20170134162A1 (en) | 2015-11-10 | 2017-05-11 | Shannon Code | System and process for verifying digital media content authenticity |
US11562353B2 (en) * | 2015-11-24 | 2023-01-24 | Mastercard International Incorporated | Method and system for gross settlement by use of an opaque blockchain |
US10013573B2 (en) | 2015-12-16 | 2018-07-03 | International Business Machines Corporation | Personal ledger blockchain |
US9584493B1 (en) | 2015-12-18 | 2017-02-28 | Wickr Inc. | Decentralized authoritative messaging |
DE102016002549A1 (en) | 2016-01-18 | 2017-07-20 | Roland Harras | Method for the multi-layered protection of (login) data, in particular passwords |
EA034354B1 (en) | 2016-02-08 | 2020-01-30 | Линдси Молони | System and method for document information authenticity verification |
WO2017136956A1 (en) | 2016-02-12 | 2017-08-17 | Royal Bank Of Canada | Methods and systems for digital reward processing |
US20170243289A1 (en) | 2016-02-18 | 2017-08-24 | Christopher Michael RUFO | Hybrid trading platform integrating fiat and crypto investments |
US10135870B2 (en) | 2016-02-22 | 2018-11-20 | Bank Of America Corporation | System for external validation of secure process transactions |
US10679215B2 (en) | 2016-02-22 | 2020-06-09 | Bank Of America Corporation | System for control of device identity and usage in a process data network |
US10496989B2 (en) | 2016-02-22 | 2019-12-03 | Bank Of America Corporation | System to enable contactless access to a transaction terminal using a process data network |
WO2017145010A1 (en) | 2016-02-23 | 2017-08-31 | nChain Holdings Limited | Secure multiparty loss resistant storage and transfer of cryptographic keys for blockchain based systems in conjunction with a wallet management system |
MX2018010048A (en) | 2016-02-23 | 2019-01-21 | Nchain Holdings Ltd | Universal tokenisation system for blockchain-based cryptocurrencies. |
CN112686653B (en) | 2016-02-23 | 2024-06-07 | 区块链控股有限公司 | Registration and automation management method for intelligent contract executed by block chain |
EP3423999A1 (en) | 2016-03-03 | 2019-01-09 | NEC Laboratories Europe GmbH | Method for managing data in a network of nodes |
NZ746878A (en) | 2016-04-01 | 2022-11-25 | Jpmorgan Chase Bank Na | Systems and methods for providing data privacy in a private distributed ledger |
US10586270B2 (en) | 2016-04-14 | 2020-03-10 | Ebay Inc. | Network site cart user interface having multiple user-specified currency formats |
US10046228B2 (en) | 2016-05-02 | 2018-08-14 | Bao Tran | Smart device |
WO2017190795A1 (en) | 2016-05-06 | 2017-11-09 | Rwe International Se | System for evaluating telemetry data |
US10305694B2 (en) | 2016-05-27 | 2019-05-28 | Mastercard International Incorporated | Method and system for efficient distribution of configuration data utilizing permissioned blockchain technology |
US20170344983A1 (en) | 2016-05-30 | 2017-11-30 | Business Information Exchange System Corp. | BIXCoin: A Secure Peer-to-Peer Payment System Based on the Public Payments Ledger |
US20180108024A1 (en) | 2016-06-03 | 2018-04-19 | Chronicled, Inc | Open registry for provenance and tracking of goods in the supply chain |
US10447478B2 (en) | 2016-06-06 | 2019-10-15 | Microsoft Technology Licensing, Llc | Cryptographic applications for a blockchain system |
AU2017279012A1 (en) | 2016-06-06 | 2018-08-16 | Financial & Risk Organisation Limited | Systems and methods for providing a personal distributed ledger |
US20170364642A1 (en) | 2016-06-15 | 2017-12-21 | Texas Health Biomedical Advancement Center, Inc. | Systems, apparatus, articles, and methods for identifying levels of service in a hospital department |
US20170373859A1 (en) | 2016-06-23 | 2017-12-28 | Praxik, Llc | Cryptographic Signature System and Related Systems and Methods |
US10108954B2 (en) | 2016-06-24 | 2018-10-23 | PokitDok, Inc. | System and method for cryptographically verified data driven contracts |
US10445698B2 (en) | 2016-06-30 | 2019-10-15 | Clause, Inc. | System and method for forming, storing, managing, and executing contracts |
WO2018013898A1 (en) | 2016-07-14 | 2018-01-18 | Diebold Nixdorf Incorporated | Using a distributed ledger for tracking debt data |
KR101795695B1 (en) | 2016-07-14 | 2017-12-01 | 주식회사 코인플러그 | Method for providing archiving service and verification service of data transceived via messenger service and server using the same |
US10277540B2 (en) | 2016-08-11 | 2019-04-30 | Jurni Inc. | Systems and methods for digital video journaling |
US10878522B2 (en) | 2016-08-18 | 2020-12-29 | First American Financial Corporation | Systems and methods for using blockchains to record, manage, and transfer ownership rights to land titles |
US10025941B1 (en) | 2016-08-23 | 2018-07-17 | Wells Fargo Bank, N.A. | Data element tokenization management |
WO2018049523A1 (en) | 2016-09-14 | 2018-03-22 | Royal Bank Of Canada | Credit score platform |
US10262138B2 (en) | 2016-09-15 | 2019-04-16 | Paypal, Inc. | Techniques for ransomware detection and mitigation |
CA3037674C (en) | 2016-09-20 | 2022-05-17 | Nant Holdings Ip, Llc | Sample tracking via sample tracking chains, systems and methods |
US10185550B2 (en) | 2016-09-28 | 2019-01-22 | Mcafee, Inc. | Device-driven auto-recovery using multiple recovery sources |
US10587628B2 (en) | 2016-09-29 | 2020-03-10 | Microsoft Technology Licensing, Llc | Verifiable outsourced ledgers |
US11128603B2 (en) | 2016-09-30 | 2021-09-21 | Nec Corporation | Method and system for providing a transaction forwarding service in blockchain implementations |
US10157295B2 (en) | 2016-10-07 | 2018-12-18 | Acronis International Gmbh | System and method for file authenticity certification using blockchain network |
US10789239B2 (en) | 2016-10-10 | 2020-09-29 | AlphaPoint | Finite state machine distributed ledger |
US20180123779A1 (en) | 2016-11-01 | 2018-05-03 | Jiangang Zhang | Flexible Blockchain Smart-Contract Deployment |
EP3535659A4 (en) | 2016-11-03 | 2020-02-12 | Visa International Service Association | Systems and methods for creating a universal record |
WO2018089098A1 (en) | 2016-11-08 | 2018-05-17 | Aware, Inc. | Decentralized biometric identity authentication |
US10491378B2 (en) | 2016-11-16 | 2019-11-26 | StreamSpace, LLC | Decentralized nodal network for providing security of files in distributed filesystems |
US20180144292A1 (en) | 2016-11-22 | 2018-05-24 | Wal-Mart Stores, Inc. | Apparatus and method for tracking consumer premises inventory |
US20180157700A1 (en) | 2016-12-06 | 2018-06-07 | International Business Machines Corporation | Storing and verifying event logs in a blockchain |
US20180158034A1 (en) | 2016-12-07 | 2018-06-07 | International Business Machines Corporation | Dynamic reordering of blockchain transactions to optimize performance and scalability |
US10628268B1 (en) | 2016-12-15 | 2020-04-21 | EMC IP Holding Company LLC | Proof of data replication consistency using blockchain |
LU93377B1 (en) | 2016-12-15 | 2018-07-03 | Luxembourg Inst Science & Tech List | P2p network data distribution and retrieval using blockchain log |
WO2018115992A1 (en) | 2016-12-22 | 2018-06-28 | Itext Group | Distributed blockchain-based method for saving the location of a file |
US20180182042A1 (en) | 2016-12-22 | 2018-06-28 | American Express Travel Related Services Company, Inc. | Systems and methods for estimating transaction rates |
FR3061330B1 (en) | 2016-12-28 | 2019-05-24 | Bull Sas | SYSTEM AND METHOD FOR CREATING AND MANAGING DECENTRALIZED AUTHORIZATIONS FOR CONNECTED OBJECTS |
EP3563521A1 (en) | 2016-12-30 | 2019-11-06 | INTEL Corporation | Service provision to iot devices |
US10445302B2 (en) | 2017-01-03 | 2019-10-15 | International Business Machines Corporation | Limiting blockchain size to optimize performance |
US20180189781A1 (en) | 2017-01-05 | 2018-07-05 | The Toronto-Dominion Bank | Real-time approval and execution of data exchanges between computing systems |
WO2018127923A1 (en) | 2017-01-08 | 2018-07-12 | Eyal Hertzog | Methods for exchanging and evaluating virtual currency |
US10355869B2 (en) | 2017-01-12 | 2019-07-16 | International Business Machines Corporation | Private blockchain transaction management and termination |
US11631077B2 (en) | 2017-01-17 | 2023-04-18 | HashLynx Inc. | System for facilitating secure electronic communications between entities and processing resource transfers |
US20180219683A1 (en) | 2017-01-30 | 2018-08-02 | Factom | Possession and Alteration of Documents |
US10419225B2 (en) | 2017-01-30 | 2019-09-17 | Factom, Inc. | Validating documents via blockchain |
US20180247191A1 (en) | 2017-02-03 | 2018-08-30 | Milestone Entertainment Llc | Architectures, systems and methods for program defined entertainment state system, decentralized cryptocurrency system and system with segregated secure functions and public functions |
US20180225649A1 (en) | 2017-02-06 | 2018-08-09 | American Express Travel Related Services Company, Inc. | Charge splitting across multiple payment systems |
US11321681B2 (en) | 2017-02-06 | 2022-05-03 | Northern Trust Corporation | Systems and methods for issuing and tracking digital tokens within distributed network nodes |
US10411897B2 (en) | 2017-02-17 | 2019-09-10 | Factom, Inc. | Secret sharing via blockchains |
WO2018163044A1 (en) | 2017-03-05 | 2018-09-13 | Tatchell Shona | System and method for provision of supply chain financing of ethically verified product where there has been verification of production processes and products inspection using blockchain smart contracts |
US20180260888A1 (en) | 2017-03-08 | 2018-09-13 | Factom | Validating Mortgage Documents |
US20180260889A1 (en) | 2017-03-10 | 2018-09-13 | Factom | Sourcing Mortgage Documents via Blockchains |
US20180268504A1 (en) | 2017-03-15 | 2018-09-20 | Factom | Indexing Mortgage Documents via Blockchains |
WO2018170504A1 (en) | 2017-03-17 | 2018-09-20 | Labyrinth Research Llc | Unified control of privacy-impacting devices |
US11003146B2 (en) | 2017-03-17 | 2021-05-11 | General Electric Company | Distributed optimal control of an aircraft propulsion system |
US11816642B2 (en) | 2017-03-20 | 2023-11-14 | Steven Victor Wasserman | Blockchain digital currency: systems and methods for use in enterprise blockchain banking |
CN107196900B (en) | 2017-03-24 | 2020-04-24 | 创新先进技术有限公司 | Consensus checking method and device |
CN111327703B (en) | 2017-03-28 | 2022-05-31 | 创新先进技术有限公司 | Consensus method and device based on block chain |
CN113766035B (en) | 2017-03-28 | 2023-05-23 | 创新先进技术有限公司 | Service acceptance and consensus method and device |
US20180285971A1 (en) | 2017-03-31 | 2018-10-04 | International Business Machines Corporation | Management of consumer debt collection using a blockchain and machine learning |
US11538031B2 (en) | 2017-03-31 | 2022-12-27 | Vijay Madisetti | Method and system for identity and access management for blockchain interoperability |
US10102526B1 (en) | 2017-03-31 | 2018-10-16 | Vijay K. Madisetti | Method and system for blockchain-based combined identity, ownership, integrity and custody management |
US10102265B1 (en) | 2017-04-12 | 2018-10-16 | Vijay K. Madisetti | Method and system for tuning blockchain scalability for fast and low-cost payment and transaction processing |
US10270599B2 (en) | 2017-04-27 | 2019-04-23 | Factom, Inc. | Data reproducibility using blockchains |
US10496995B2 (en) | 2017-05-01 | 2019-12-03 | Facebook, Inc. | Facilitating payment transactions between users of a plurality of payment providers |
JP2020523716A (en) | 2017-05-04 | 2020-08-06 | モンティチェロ・エンタープライゼス・エルエルシー | Providing cryptocurrency payments through a browser application programming interface |
WO2018209333A1 (en) | 2017-05-12 | 2018-11-15 | Insurdata Corporation | Method and system configured for risk asset data collection |
US9882918B1 (en) | 2017-05-15 | 2018-01-30 | Forcepoint, LLC | User behavior profile in a blockchain |
US10663303B2 (en) * | 2017-06-12 | 2020-05-26 | Panasonic Intellectual Property Management Co., Ltd. | System and method for dynamically authenticating map data using blockchains |
US20180365201A1 (en) | 2017-06-14 | 2018-12-20 | Clause, Inc. | System and method for compound data-driven contracts and documentation |
WO2018232297A1 (en) | 2017-06-15 | 2018-12-20 | Sweetbridge | Solo-party collateralized liquidity |
US11055703B2 (en) | 2017-06-19 | 2021-07-06 | Hitachi, Ltd. | Smart contract lifecycle management |
US11900306B2 (en) | 2017-07-05 | 2024-02-13 | United Parcel Service Of America, Inc. | Verifiable parcel distributed ledger shipping and tracking system |
US10944546B2 (en) | 2017-07-07 | 2021-03-09 | Microsoft Technology Licensing, Llc | Blockchain object interface |
CN107370730B (en) | 2017-07-14 | 2020-06-02 | 创新先进技术有限公司 | Login information processing method and equipment |
US20190050855A1 (en) | 2017-07-24 | 2019-02-14 | William Martino | Blockchain-based systems, methods, and apparatus for securing access to information stores |
CN107566337B (en) | 2017-07-26 | 2019-08-09 | 阿里巴巴集团控股有限公司 | Communication means and device between a kind of block chain node |
CN107392618B (en) | 2017-07-28 | 2021-02-12 | 苏州朗润创新知识产权运营有限公司 | Method and equipment for implanting intelligent contract |
US10594488B2 (en) | 2017-08-05 | 2020-03-17 | Proclus Technologies Limited | Method and system for implementing automatic transaction rebroadcasting for transient blockchains |
US10135607B1 (en) | 2017-08-11 | 2018-11-20 | Dragonchain, Inc. | Distributed ledger interaction systems and methods |
US10795977B2 (en) | 2017-08-24 | 2020-10-06 | Oracle International Corporation | Digital asset traceability and assurance using a distributed ledger |
US11037095B2 (en) | 2017-09-11 | 2021-06-15 | Accenture Global Solutions Limited | Distributed ledger technology for freight system |
WO2019055585A1 (en) | 2017-09-12 | 2019-03-21 | Kadena Llc | Parallel-chain architecture for blockchain systems |
EP3669282B1 (en) | 2017-09-20 | 2022-11-02 | Samsung Electronics Co., Ltd. | Method and apparatus for managing a service request in a blockchain network |
WO2019060855A1 (en) | 2017-09-22 | 2019-03-28 | Kowala Cayman SEZC | System and method of distributed, self-regulating, asset-tracking cryptocurrencies |
EP3688705B1 (en) | 2017-09-29 | 2023-08-02 | Leverage Rock LLC | Transaction privacy in public distributed ledger systems |
US10958418B2 (en) | 2017-10-10 | 2021-03-23 | Chromata Corporation | System and method for a blockchain network with heterogeneous privacy |
US11463241B2 (en) | 2017-10-20 | 2022-10-04 | Hewlett Packard Enterprise Development Lp | Transmitting or receiving blockchain information |
US11063744B2 (en) | 2017-10-20 | 2021-07-13 | Sap Se | Document flow tracking using blockchain |
EP3726438A1 (en) | 2017-10-23 | 2020-10-21 | Siemens Aktiengesellschaft | Method and control system for controlling and/or monitoring devices |
US20190132350A1 (en) | 2017-10-30 | 2019-05-02 | Pricewaterhousecoopers Llp | System and method for validation of distributed data storage systems |
US10735450B2 (en) | 2017-11-30 | 2020-08-04 | Intel Corporation | Trust topology selection for distributed transaction processing in computing environments |
US11836717B2 (en) | 2017-12-04 | 2023-12-05 | Vijay Madisetti | System and method for processing payments in fiat currency using blockchain and tethered tokens |
US20190311357A1 (en) | 2018-04-04 | 2019-10-10 | Vijay Madisetti | Method and System for Exchange of Value or Tokens Between Blockchain Networks |
US10476847B1 (en) | 2017-12-08 | 2019-11-12 | Symbiont.Io, Inc. | Systems, methods, and devices for implementing a smart contract on a distributed ledger technology platform |
US11315110B2 (en) | 2017-12-27 | 2022-04-26 | International Business Machines Corporation | Private resource discovery and subgroup formation on a blockchain |
US10896418B2 (en) | 2017-12-29 | 2021-01-19 | Ebay Inc. | Secure management of data files using a blockchain |
CA3088610A1 (en) | 2018-01-17 | 2019-07-25 | Geeq Corporation | Blockchain methods, nodes, systems and products |
CN111727594B (en) | 2018-01-31 | 2023-04-04 | 有线电视实验室公司 | System and method for privacy management using digital ledgers |
US10929842B1 (en) | 2018-03-05 | 2021-02-23 | Winklevoss Ip, Llc | System, method and program product for depositing and withdrawing stable value digital assets in exchange for fiat |
US10373129B1 (en) | 2018-03-05 | 2019-08-06 | Winklevoss Ip, Llc | System, method and program product for generating and utilizing stable value digital assets |
US11387981B2 (en) | 2018-02-13 | 2022-07-12 | Accenture Global Solutions Limited | Platform for multi-party digital records using distributed ledger system |
US10880071B2 (en) | 2018-02-23 | 2020-12-29 | Samsung Electronics Co., Ltd. | Programmable blockchain solid state drive and switch |
US10803540B2 (en) * | 2018-03-14 | 2020-10-13 | Motorola Solutions, Inc. | System for validating and appending incident-related data records in a distributed electronic ledger |
US10796393B2 (en) * | 2018-03-14 | 2020-10-06 | Motorola Solutions, Inc. | System for validating and appending incident-related data records in an inter-agency distributed electronic ledger |
US20190288832A1 (en) | 2018-03-14 | 2019-09-19 | Wei Kang Tsai | Separation of transaction and account data in blockchains |
US20190287107A1 (en) | 2018-03-15 | 2019-09-19 | International Business Machines Corporation | Resource equity for blockchain |
US20200410460A1 (en) | 2018-03-18 | 2020-12-31 | Valid Network Ltd | Method and system for assessing future execution of a smart contract based on previous executions on a blockchain-based platform |
US11146545B2 (en) * | 2018-03-27 | 2021-10-12 | Exosite LLC | Apparatus and method for establishing secured connection |
US20190303623A1 (en) | 2018-04-02 | 2019-10-03 | Ca, Inc. | Promotion smart contracts for software development processes |
US20210119785A1 (en) | 2018-04-18 | 2021-04-22 | 2Key New Economics Ltd. | Decentralized protocol for maintaining cryptographically proven multi-step referral networks |
US11797987B2 (en) | 2018-04-19 | 2023-10-24 | Vechain Foundation Limited | Blockchain transaction processing |
WO2019204794A1 (en) * | 2018-04-20 | 2019-10-24 | Infonetworks Llc | System for verification of pseudonymous credentials for digital identities with managed access to personal data on trust networks |
US10855446B2 (en) | 2018-04-24 | 2020-12-01 | Duvon Corporation | Autonomous exchange via entrusted ledger |
US10904000B2 (en) | 2018-04-26 | 2021-01-26 | Microsoft Technology Licensing, Llc | Cryptlet proofing services |
US11743045B2 (en) | 2018-04-27 | 2023-08-29 | Nchain Licensing Ag | Partitioning a blockchain network |
US20190332691A1 (en) | 2018-04-30 | 2019-10-31 | Robert Dale Beadles | Universal subscription and cryptocurrency payment management platforms and methods of use |
US11475419B2 (en) | 2018-04-30 | 2022-10-18 | Robert Dale Beadles | Universal subscription and cryptocurrency payment management platforms and methods of use |
US10986097B2 (en) * | 2018-04-30 | 2021-04-20 | Bank Of America Corporation | System for using a distributed ledger to manage user entitlements to computing resources |
US20190340607A1 (en) * | 2018-05-01 | 2019-11-07 | Masterworks.io, LLC | System for central authority-permissioned transfer of blockchain tokens |
US20190347628A1 (en) | 2018-05-08 | 2019-11-14 | Intangible Labs, Inc | Cryptocurrency protocol with built-in intervention responsive to a cryptocurrency exchange rate |
CA3098730A1 (en) | 2018-05-10 | 2019-11-14 | Miovision Technologies Incorporated | Blockchain data exchange network and methods and systems for submitting data to and transacting data on such a network |
US11134120B2 (en) | 2018-05-18 | 2021-09-28 | Inveniam Capital Partners, Inc. | Load balancing in blockchain environments |
US20190354606A1 (en) | 2018-05-18 | 2019-11-21 | Factom | Private Cryptocoinage in Blockchain Environments |
US20190361917A1 (en) | 2018-05-25 | 2019-11-28 | Bao Tran | Smart device |
US10505737B1 (en) | 2018-06-04 | 2019-12-10 | Syniverse Technologies, Llc | System and method for blockchain-based consent and campaign management |
WO2019237128A1 (en) | 2018-06-08 | 2019-12-12 | Rocket Lawyer Incorporated | Cryptographic contract payment and dispute resolution system |
US10698743B2 (en) | 2018-06-21 | 2020-06-30 | Paypal, Inc. | Shared application interface data through a device-to-device communication session |
JP7262076B2 (en) | 2018-06-28 | 2023-04-21 | パナソニックIpマネジメント株式会社 | Mobile robot and control method |
US20210366586A1 (en) | 2018-07-02 | 2021-11-25 | Kelly Dell Tyler | Enterprise Consumer Safety System |
US20200004946A1 (en) | 2018-07-02 | 2020-01-02 | Cyberark Software Ltd. | Secretless and secure authentication of network resources |
US10970685B2 (en) | 2018-07-12 | 2021-04-06 | Capital One Services, Llc | Electronic funds transfers based on automatic cryptocurrency transactions |
US11216448B2 (en) | 2018-07-24 | 2022-01-04 | Ernst & Young U.S. Llp | Information storage and retrieval using an off-chain isomorphic database and a distributed ledger |
US20200034571A1 (en) * | 2018-07-25 | 2020-01-30 | Nicholas Andrew Fett | Method for Smart Contract Data Input through a Proof-of-Work Consensus Mechanism |
US20200034813A1 (en) | 2018-07-30 | 2020-01-30 | Wells Fargo Bank, N.A. | Systems and methods for scheduling business-to-individual payments |
US11410136B2 (en) | 2018-08-01 | 2022-08-09 | American Express Travel Related Services Company, Inc. | Procurement system using blockchain |
US11295296B2 (en) | 2018-08-06 | 2022-04-05 | Inveniam Capital Partners, Inc. | Digital contracts in blockchain environments |
US11044095B2 (en) | 2018-08-06 | 2021-06-22 | Factom, Inc. | Debt recordation to blockchains |
US10764752B1 (en) | 2018-08-21 | 2020-09-01 | HYPR Corp. | Secure mobile initiated authentication |
US11057366B2 (en) | 2018-08-21 | 2021-07-06 | HYPR Corp. | Federated identity management with decentralized computing platforms |
US10762927B2 (en) * | 2018-08-28 | 2020-09-01 | Motorola Solutions, Inc. | Method to log audio in a distributed, immutable transaction log for end-to-end verification and auditing |
US10298395B1 (en) | 2018-09-26 | 2019-05-21 | Accenture Global Solutions Limited | Interoperability of zero-knowledge proof enabled blockchains |
US10997159B2 (en) | 2018-10-09 | 2021-05-04 | International Business Machines Corporation | Blockchain notification board storing blockchain resources |
US11341451B2 (en) | 2018-10-10 | 2022-05-24 | Questaweb Holdings Inc. | Hierarchical blockchain architecture for global trade management |
US10958419B2 (en) * | 2018-10-22 | 2021-03-23 | Motorola Solutions, Inc. | Method to establish distributed ledger networks with multiple access levels for an incident |
US20200134760A1 (en) * | 2018-10-31 | 2020-04-30 | Motorola Solutions, Inc | Method for Weighted Voting in a Public Safety Distributed Ledger |
US20200302433A1 (en) | 2018-11-27 | 2020-09-24 | Its, Inc. | Distributed ledger settlement transactions |
JP6892504B2 (en) | 2018-11-27 | 2021-06-23 | アドバンスド ニュー テクノロジーズ カンパニー リミテッド | Executing multi-party transactions using smart contracts |
US20200175506A1 (en) | 2018-12-03 | 2020-06-04 | Factom, Inc. | Conversion of Cryptocurrencies |
US10826705B2 (en) | 2018-12-13 | 2020-11-03 | International Business Machines Corporation | Compact state database system |
DE102018010197A1 (en) | 2018-12-18 | 2020-06-18 | GRID INVENT gGmbH | Electronic element and electrically controlled display element |
US20200314648A1 (en) | 2019-03-29 | 2020-10-01 | Parallel Wireless, Inc. | Distributed HSS Using Blockchain |
CN110392052B (en) | 2019-07-22 | 2021-05-25 | 中国工商银行股份有限公司 | Intelligent contract processing system and method for block chain |
CN110599147B (en) | 2019-09-17 | 2022-11-22 | 福州大学 | Ciphertext retrieval fair payment method and system based on block chain |
WO2020098839A2 (en) | 2020-02-14 | 2020-05-22 | Alipay (Hangzhou) Information Technology Co., Ltd. | Data authorization based on decentralized identifiers |
CN111090875B (en) | 2020-03-18 | 2020-10-02 | 支付宝(杭州)信息技术有限公司 | Contract deployment method and device |
US20220006641A1 (en) | 2020-07-03 | 2022-01-06 | Inveniam Capital Partners, Inc. | Distribution of Blockchain Validation |
-
2020
- 2020-09-30 US US17/037,980 patent/US11444749B2/en active Active
- 2020-09-30 US US17/037,995 patent/US11343075B2/en active Active
-
2021
- 2021-01-05 US US17/141,278 patent/US20210266174A1/en not_active Abandoned
- 2021-10-13 US US17/450,703 patent/US20220103341A1/en not_active Abandoned
- 2021-10-13 US US17/450,702 patent/US20220103364A1/en not_active Abandoned
- 2021-10-13 US US17/450,698 patent/US20220103343A1/en not_active Abandoned
- 2021-10-13 US US17/450,699 patent/US20220103344A1/en not_active Abandoned
-
2022
- 2022-05-24 US US17/751,864 patent/US11863305B2/en active Active
- 2022-09-12 US US17/942,270 patent/US11943334B2/en active Active
-
2023
- 2023-12-14 US US18/540,067 patent/US20240113862A1/en active Pending
-
2024
- 2024-03-22 US US18/613,550 patent/US20240275580A1/en active Pending
Patent Citations (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220083991A1 (en) * | 2015-01-20 | 2022-03-17 | Pollen, Inc. | Electronic capital marketplace systems and methods |
US20210073750A1 (en) * | 2015-07-01 | 2021-03-11 | The Clearing House Payments Company L.L.C. | Real-time payment system, method, apparatus, and computer program |
US20210266167A1 (en) * | 2015-07-14 | 2021-08-26 | Fmr Llc | Social Aggregating, Fractionally Efficient Transfer Guidance, Conditional Triggered Transaction, Datastructures, Apparatuses, Methods and Systems |
US20210201321A1 (en) * | 2015-10-02 | 2021-07-01 | Chicago Mercantile Exchange Inc. | Virtual payment processing system |
US20220040557A1 (en) * | 2016-02-02 | 2022-02-10 | Bao Tran | Non-fungible token (nft) |
US20170236123A1 (en) * | 2016-02-16 | 2017-08-17 | Blockstack Inc. | Decentralized processing of global naming systems |
US20220156737A1 (en) * | 2016-02-23 | 2022-05-19 | nChain Holdings Limited | Tokenisation method and system for implementing exchanges on a blockchain |
US10915895B1 (en) * | 2016-03-04 | 2021-02-09 | Perkins Coie LLP | Managing electronic cryptocurrencies |
US20170300912A1 (en) * | 2016-04-13 | 2017-10-19 | Paypal, Inc. | Public ledger authentication system |
US20220023742A1 (en) * | 2016-05-02 | 2022-01-27 | Bao Tran | Blockchain |
US20170359374A1 (en) * | 2016-06-11 | 2017-12-14 | Lntel Corporation | Blockchain System with Nucleobase Sequencing as Proof of Work |
US10826685B1 (en) * | 2016-06-28 | 2020-11-03 | Amazon Technologies, Inc. | Combined blockchain integrity |
US10956973B1 (en) * | 2016-07-06 | 2021-03-23 | LedgerFunding, Inc. | System and method for verifiable invoice and credit financing |
US20210042758A1 (en) * | 2016-09-15 | 2021-02-11 | American Express Travel Related Services Company, Inc. | Systems and methods for blockchain based payment networks |
US20210201328A1 (en) * | 2016-12-02 | 2021-07-01 | Persephone GmbH | System and method for managing transactions in dynamic digital documents |
US20220245626A1 (en) * | 2017-01-31 | 2022-08-04 | Nchain Licensing Ag | Computer-implemented system and method for generating and extracting user related data stored on a blockchain |
US20200244470A1 (en) * | 2017-03-17 | 2020-07-30 | Bundersdruckerei Gmbh | Issuing virtual documents in a block chain |
US20200320620A1 (en) * | 2017-03-22 | 2020-10-08 | Factom, Inc. | Auditing of Electronic Documents |
US11443370B2 (en) * | 2017-03-31 | 2022-09-13 | Inveniam Capital Partners, Inc. | Due diligence in electronic documents |
US10949926B1 (en) * | 2017-05-24 | 2021-03-16 | State Farm Mutual Automobile Insurance Company | Fault determination of blockchain subrogation claims |
US20210035092A1 (en) * | 2017-07-20 | 2021-02-04 | Chicago Mercantile Exchange Inc. | Blockchain including linked digital assets |
US20210091934A1 (en) * | 2017-07-24 | 2021-03-25 | nChain Holdings Limited | Methods and systems for blockchain-implemented event-lock encryption |
US20190079950A1 (en) * | 2017-09-08 | 2019-03-14 | ULedger, Inc. | Systems and methods of providing immutable records |
US10873457B1 (en) * | 2017-09-13 | 2020-12-22 | Inveniam.io, LLC | Data structure having internal self-references suitable for immutably representing and verifying data generated over time |
US20190081796A1 (en) * | 2017-09-14 | 2019-03-14 | The Toronto-Dominion Bank | Management of Cryptographically Secure Exchanges of Data Using Permissioned Distributed Ledgers |
US20220173893A1 (en) * | 2017-10-24 | 2022-06-02 | 0Chain Corp. | Non-fungible token blockchain processing |
US11075744B2 (en) * | 2017-11-20 | 2021-07-27 | Acronis International Gmbh | Blockchain-based media content authentication methods and systems |
US20220215389A1 (en) * | 2017-11-28 | 2022-07-07 | American Express Travel Related Services Company, Inc. | Transaction authorization process using blockchain |
US11164254B1 (en) * | 2018-02-14 | 2021-11-02 | Equity Shift, Inc. | Blockchain instrument for transferable equity |
US20210144149A1 (en) * | 2018-03-06 | 2021-05-13 | Americorp Investments Llc | Customized View Of Restricted Information Recorded Into A Blockchain |
US20220141231A1 (en) * | 2018-03-06 | 2022-05-05 | Americorp Investments Llc | Blockchain-Based Commercial Inventory Systems And Methods |
US20190340586A1 (en) * | 2018-05-04 | 2019-11-07 | Smart Worldwide Financial Technology | Conducting optimized cross-blockchain currency transactions using machine learning |
US20220172207A1 (en) * | 2018-05-06 | 2022-06-02 | Strong Force TX Portfolio 2018, LLC | Computer-implemented methods for controlling rights related to digital knowledge |
US20210342836A1 (en) * | 2018-05-06 | 2021-11-04 | Strong Force TX Portfolio 2018, LLC | Systems and methods for controlling rights related to digital knowledge |
US20210248514A1 (en) * | 2018-05-06 | 2021-08-12 | Strong Force TX Portfolio 2018, LLC | Artificial intelligence selection and configuration |
US20220198554A1 (en) * | 2018-05-17 | 2022-06-23 | Flexa Network Inc. | System digital asset-backed data interaction system |
US20220019559A1 (en) * | 2018-05-18 | 2022-01-20 | Inveniam Capital Partners, Inc. | Blockchain Services |
US20200320522A1 (en) * | 2018-05-18 | 2020-10-08 | Factom, Inc. | Recordation of Device Usage to Blockchains |
US11347769B2 (en) * | 2018-05-18 | 2022-05-31 | Inveniam Capital Partners, Inc. | Import and export in blockchain environments |
US11423398B1 (en) * | 2018-05-29 | 2022-08-23 | Block, Inc. | Recommending conditions for blockchain-enforced contracts |
US20200026699A1 (en) * | 2018-07-20 | 2020-01-23 | True Blockchain Technology Ltd. | Highly Performant Decentralized Public Ledger with Hybrid Consensus |
US20200045019A1 (en) * | 2018-07-31 | 2020-02-06 | Ezblock Ltd. | Blockchain joining for a limited processing capability device and device access security |
US10965466B2 (en) * | 2018-08-03 | 2021-03-30 | National Taiwan University | Estimable proof-of-work for blockchain |
US20220043831A1 (en) * | 2018-08-06 | 2022-02-10 | Inveniam Capital Partners, Inc. | Transactional Sharding of Blockchain Transactions |
US20220058623A1 (en) * | 2018-08-06 | 2022-02-24 | Inveniam Capital Partners, Inc. | Stable Cryptocurrency Coinage |
US11164250B2 (en) * | 2018-08-06 | 2021-11-02 | Inveniam Capital Partners, Inc. | Stable cryptocurrency coinage |
US20210044976A1 (en) * | 2018-08-21 | 2021-02-11 | HYPR Corp. | Secure mobile initiated authentications to web-services |
US20200396209A1 (en) * | 2019-06-17 | 2020-12-17 | The Government Of The United States, As Represented By The Secretary Of The Army | Block Chain Network and Hash-Based Cuckoo Filter |
US20210226773A1 (en) * | 2020-01-17 | 2021-07-22 | Factom, Inc. | RAM Hashing in Blockchain Environments |
US11063770B1 (en) * | 2020-03-13 | 2021-07-13 | Alipay (Hangzhou) Information Technology Co., Ltd. | Data authorization based on decentralized identifiers |
US20220012731A1 (en) * | 2020-04-22 | 2022-01-13 | Atrium Separate IP Holdings Number 1, LLC | Blockchain architecture, system, method and device including a hybrid public-private iteration for facilitating secure data collection and controlled distribution using a decentralized transaction information platform and token ecosystem |
US20220405260A1 (en) * | 2021-06-19 | 2022-12-22 | Inveniam Capital Partners, Inc. | Systems and methods for processing blockchain transactions |
US20220407728A1 (en) * | 2021-06-19 | 2022-12-22 | Inveniam Capital Partners, Inc. | Systems and methods for processing blockchain transactions |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11863686B2 (en) | 2017-01-30 | 2024-01-02 | Inveniam Capital Partners, Inc. | Validating authenticity of electronic documents shared via computer networks |
US11296889B2 (en) | 2017-02-17 | 2022-04-05 | Inveniam Capital Partners, Inc. | Secret sharing via blockchains |
US11580534B2 (en) | 2017-03-22 | 2023-02-14 | Inveniam Capital Partners, Inc. | Auditing of electronic documents |
US11587074B2 (en) | 2018-05-18 | 2023-02-21 | Inveniam Capital Partners, Inc. | Recordation of device usage to blockchains |
US12118541B2 (en) | 2018-05-18 | 2024-10-15 | Inveniam Capital Partners, Inc. | Recordation of device usage to blockchains |
US12008015B2 (en) | 2018-05-18 | 2024-06-11 | Inveniam Capital Partners, Inc. | Import and export in blockchain environments |
US11930072B2 (en) | 2018-05-18 | 2024-03-12 | Inveniam Capital Partners, Inc. | Load balancing in blockchain environments |
US11477271B2 (en) | 2018-05-18 | 2022-10-18 | Inveniam Capital Partners, Inc. | Load balancing in blockchain environments |
US11580535B2 (en) | 2018-05-18 | 2023-02-14 | Inveniam Capital Partners, Inc. | Recordation of device usage to public/private blockchains |
US11620642B2 (en) | 2018-08-06 | 2023-04-04 | Inveniam Capital Partners, Inc. | Digital contracts in blockchain environments |
US11989208B2 (en) | 2018-08-06 | 2024-05-21 | Inveniam Capital Partners, Inc. | Transactional sharding of blockchain transactions |
US11615398B2 (en) | 2018-08-06 | 2023-03-28 | Inveniam Capital Partners, Inc. | Digital contracts in blockchain environments |
US11531981B2 (en) | 2018-08-06 | 2022-12-20 | Inveniam Capital Partners, Inc. | Digital contracts in blockchain environments |
US11676132B2 (en) | 2018-08-06 | 2023-06-13 | Inveniam Capital Partners, Inc. | Smart contracts in blockchain environments |
US11687916B2 (en) | 2018-08-06 | 2023-06-27 | Inveniam Capital Partners, Inc. | Decisional architectures in blockchain environments |
US11328290B2 (en) | 2018-08-06 | 2022-05-10 | Inveniam Capital Partners, Inc. | Stable cryptocurrency coinage |
US11334874B2 (en) | 2018-08-06 | 2022-05-17 | Inveniam Capital Partners, Inc. | Digital contracts in blockchain environments |
US11348097B2 (en) | 2018-08-06 | 2022-05-31 | Inveniam Capital Partners, Inc. | Digital contracts in blockchain environments |
US11587069B2 (en) | 2018-08-06 | 2023-02-21 | Inveniam Capital Partners, Inc. | Digital contracts in blockchain environments |
US11943334B2 (en) | 2020-01-17 | 2024-03-26 | Inveniam Capital Partners, Inc. | Separating hashing from proof-of-work in blockchain environments |
US11863305B2 (en) | 2020-01-17 | 2024-01-02 | Inveniam Capital Partners, Inc. | RAM hashing in blockchain environments |
US11431815B1 (en) * | 2020-05-07 | 2022-08-30 | Xilinx, Inc. | Mining proxy acceleration |
US12008526B2 (en) | 2021-03-26 | 2024-06-11 | Inveniam Capital Partners, Inc. | Computer system and method for programmatic collateralization services |
US12007972B2 (en) | 2021-06-19 | 2024-06-11 | Inveniam Capital Partners, Inc. | Systems and methods for processing blockchain transactions |
US12137179B2 (en) | 2022-07-25 | 2024-11-05 | Inveniam Capital Partners, Inc. | Systems and methods for processing blockchain transactions |
Also Published As
Publication number | Publication date |
---|---|
US20220103341A1 (en) | 2022-03-31 |
US11444749B2 (en) | 2022-09-13 |
US20240275580A1 (en) | 2024-08-15 |
US20210226773A1 (en) | 2021-07-22 |
US20210226769A1 (en) | 2021-07-22 |
US20220286273A1 (en) | 2022-09-08 |
US11863305B2 (en) | 2024-01-02 |
US20240113862A1 (en) | 2024-04-04 |
US20220103364A1 (en) | 2022-03-31 |
US11943334B2 (en) | 2024-03-26 |
US20220103343A1 (en) | 2022-03-31 |
US11343075B2 (en) | 2022-05-24 |
US20230147204A1 (en) | 2023-05-11 |
US20220103344A1 (en) | 2022-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11343075B2 (en) | RAM hashing in blockchain environments | |
US20220006641A1 (en) | Distribution of Blockchain Validation | |
EP3268873B1 (en) | Memcached systems having local caches | |
CN100424681C (en) | Information processing system, information processing method, and computer program used therewith | |
CN103823763B (en) | Device for controlling the access to buffer structure | |
Linguaglossa et al. | High-speed data plane and network functions virtualization by vectorizing packet processing | |
CN112948120A (en) | Load balancing method, system, device and storage medium | |
JP2020512571A (en) | Method for providing random numbers for a control unit of a vehicle network and vehicle network implementing the method | |
CN105593820A (en) | Producer system partitioning among leasing agent systems | |
CN113312663A (en) | Distributed data storage method and system, and computer readable storage medium | |
US20200073952A1 (en) | Method and Apparatus for Acceleration of Hash-Based Lookup | |
JP6740600B2 (en) | Program execution system, program execution method, and program | |
US20220156123A1 (en) | Data mesh segmented across clients, networks, and computing infrastructures | |
CN103442000B (en) | WEB caching replacement method and device, http proxy server | |
CN104536736A (en) | Server and method thereof, and systems and method thereof | |
US20210021524A1 (en) | Load balancing system and method | |
CN113868711A (en) | Data federation storage method, data federation query method and data federation query system | |
Seymen et al. | Design and Implementation of a Lightweight Bloom Filter Accelerator for IoT Applications | |
JP2013210836A (en) | Data transfer circuit and data transfer method | |
Bhagavath et al. | Swappable Battery Data Management System | |
Singh et al. | An Analysis of Machine Learning-Based Memcached Data Partitioning and Sharding Optimization | |
CN117911148A (en) | Method, device, system and storage medium for determining transaction validity | |
CN118233471A (en) | Dynamic endorsement node scheduling method and device based on alliance chain and electronic equipment | |
Wang et al. | An Efficient Storage Optimization Scheme for Blockchain Based on Hash Slot | |
CN118796150A (en) | Data processing method and server cluster |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: FACTOM, INC., TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SNOW, PAUL;REEL/FRAME:057197/0418 Effective date: 20210729 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
AS | Assignment |
Owner name: INVENIAM CAPITAL PARTNERS, INC., NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FACTOM, INC.;REEL/FRAME:059508/0613 Effective date: 20220405 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: 1221 INVENIAM LLC, FLORIDA Free format text: SECURITY INTEREST;ASSIGNOR:INVENIAM CAPITAL PARTNERS, INC.;REEL/FRAME:067932/0074 Effective date: 20231020 |