US20190239824A1 - Patient position detection system - Google Patents
Patient position detection system Download PDFInfo
- Publication number
- US20190239824A1 US20190239824A1 US16/387,017 US201916387017A US2019239824A1 US 20190239824 A1 US20190239824 A1 US 20190239824A1 US 201916387017 A US201916387017 A US 201916387017A US 2019239824 A1 US2019239824 A1 US 2019239824A1
- Authority
- US
- United States
- Prior art keywords
- patient
- wireless
- monitor
- data
- sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000001514 detection method Methods 0.000 title abstract description 16
- 230000033001 locomotion Effects 0.000 claims abstract description 103
- 208000004210 Pressure Ulcer Diseases 0.000 claims abstract description 34
- 238000012544 monitoring process Methods 0.000 claims description 107
- 238000000034 method Methods 0.000 claims description 69
- 230000003287 optical effect Effects 0.000 claims description 64
- 230000008859 change Effects 0.000 claims description 34
- 230000036642 wellbeing Effects 0.000 claims 9
- 238000012360 testing method Methods 0.000 abstract description 25
- 238000004458 analytical method Methods 0.000 abstract description 8
- 230000002265 prevention Effects 0.000 abstract description 7
- 238000001931 thermography Methods 0.000 abstract description 7
- 230000036772 blood pressure Effects 0.000 description 60
- 238000005516 engineering process Methods 0.000 description 41
- 238000004891 communication Methods 0.000 description 35
- 230000008569 process Effects 0.000 description 29
- 230000001413 cellular effect Effects 0.000 description 25
- 230000015654 memory Effects 0.000 description 25
- 238000003032 molecular docking Methods 0.000 description 24
- 238000012545 processing Methods 0.000 description 24
- 238000012806 monitoring device Methods 0.000 description 22
- 230000005540 biological transmission Effects 0.000 description 20
- 238000005259 measurement Methods 0.000 description 20
- 230000006870 function Effects 0.000 description 19
- 238000013500 data storage Methods 0.000 description 13
- 238000009530 blood pressure measurement Methods 0.000 description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 11
- 239000008280 blood Substances 0.000 description 11
- 210000004369 blood Anatomy 0.000 description 11
- 230000007246 mechanism Effects 0.000 description 11
- 229910052760 oxygen Inorganic materials 0.000 description 11
- 239000001301 oxygen Substances 0.000 description 11
- 230000000241 respiratory effect Effects 0.000 description 10
- 238000004422 calculation algorithm Methods 0.000 description 9
- 230000008901 benefit Effects 0.000 description 7
- 230000036387 respiratory rate Effects 0.000 description 7
- 238000005096 rolling process Methods 0.000 description 7
- 238000002106 pulse oximetry Methods 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 239000000853 adhesive Substances 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- 210000004556 brain Anatomy 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 5
- 230000000747 cardiac effect Effects 0.000 description 5
- 238000000537 electroencephalography Methods 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 206010039897 Sedation Diseases 0.000 description 4
- 230000029058 respiratory gaseous exchange Effects 0.000 description 4
- 230000036280 sedation Effects 0.000 description 4
- 230000001960 triggered effect Effects 0.000 description 4
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- 108010054147 Hemoglobins Proteins 0.000 description 3
- 102000001554 Hemoglobins Human genes 0.000 description 3
- 108010061951 Methemoglobin Proteins 0.000 description 3
- 208000037656 Respiratory Sounds Diseases 0.000 description 3
- 230000035487 diastolic blood pressure Effects 0.000 description 3
- 239000008103 glucose Substances 0.000 description 3
- 230000000474 nursing effect Effects 0.000 description 3
- 230000010412 perfusion Effects 0.000 description 3
- 230000035488 systolic blood pressure Effects 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 206010002091 Anaesthesia Diseases 0.000 description 2
- 108010003320 Carboxyhemoglobin Proteins 0.000 description 2
- 210000001367 artery Anatomy 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000001143 conditioned effect Effects 0.000 description 2
- 230000003750 conditioning effect Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000004217 heart function Effects 0.000 description 2
- 230000003434 inspiratory effect Effects 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 230000005291 magnetic effect Effects 0.000 description 2
- 230000013011 mating Effects 0.000 description 2
- 230000000541 pulsatile effect Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 208000031872 Body Remains Diseases 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 206010011985 Decubitus ulcer Diseases 0.000 description 1
- 206010016803 Fluid overload Diseases 0.000 description 1
- 241000288140 Gruiformes Species 0.000 description 1
- 206010039109 Rhonchi Diseases 0.000 description 1
- 206010042241 Stridor Diseases 0.000 description 1
- 102100040396 Transcobalamin-1 Human genes 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000012491 analyte Substances 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 208000008784 apnea Diseases 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 230000008081 blood perfusion Effects 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 230000002490 cerebral effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000001079 digestive effect Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 210000000624 ear auricle Anatomy 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002565 electrocardiography Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- WABPQHHGFIMREM-OUBTZVSYSA-N lead-208 Chemical compound [208Pb] WABPQHHGFIMREM-OUBTZVSYSA-N 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000005226 mechanical processes and functions Effects 0.000 description 1
- 238000002496 oximetry Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 206010037833 rales Diseases 0.000 description 1
- 238000002798 spectrophotometry method Methods 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 230000006442 vascular tone Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/74—Details of notification to user or communication with user or patient ; user input means
- A61B5/746—Alarms related to a physiological condition, e.g. details of setting alarm thresholds or avoiding false alarms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0002—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
- A61B5/0004—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by the type of physiological signal transmitted
- A61B5/0013—Medical image data
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0002—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
- A61B5/0015—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
- A61B5/002—Monitoring the patient using a local or closed circuit, e.g. in a room or building
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0002—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
- A61B5/0015—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
- A61B5/0024—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system for multiple sensor units attached to the patient, e.g. using a body or personal area network
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0077—Devices for viewing the surface of the body, e.g. camera, magnifying lens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/01—Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
- A61B5/015—By temperature mapping of body part
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/0205—Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
- A61B5/02055—Simultaneously evaluating both cardiovascular condition and temperature
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/024—Detecting, measuring or recording pulse rate or heart rate
- A61B5/02416—Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
- A61B5/1113—Local tracking of patients, e.g. in a hospital or private home
- A61B5/1115—Monitoring leaving of a patient support, e.g. a bed or a wheelchair
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
- A61B5/1121—Determining geometric values, e.g. centre of rotation or angular range of movement
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
- A61B5/1126—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb using a particular sensing technique
- A61B5/1128—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb using a particular sensing technique using image analysis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
- A61B5/1455—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
- A61B5/14551—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7271—Specific aspects of physiological measurement analysis
- A61B5/7282—Event detection, e.g. detecting unique waveforms indicative of a medical condition
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2560/00—Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
- A61B2560/02—Operational features
- A61B2560/0266—Operational features for monitoring or limiting apparatus function
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2560/00—Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
- A61B2560/04—Constructional details of apparatus
- A61B2560/0475—Special features of memory means, e.g. removable memory cards
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
- A61B5/1116—Determining posture transitions
- A61B5/1117—Fall detection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/44—Detecting, measuring or recording for evaluating the integumentary system, e.g. skin, hair or nails
- A61B5/441—Skin evaluation, e.g. for skin disorder diagnosis
- A61B5/447—Skin evaluation, e.g. for skin disorder diagnosis specially adapted for aiding the prevention of ulcer or pressure sore development, i.e. before the ulcer or sore has developed
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7246—Details of waveform analysis using correlation, e.g. template matching or determination of similarity
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7271—Specific aspects of physiological measurement analysis
- A61B5/7275—Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
Definitions
- Hospitals, nursing homes, and other patient care facilities typically include patient monitoring devices at one or more bedsides in the facility.
- Patient monitoring devices generally include sensors, processing equipment, and displays for obtaining and analyzing a medical patient's physiological parameters such as blood oxygen saturation level, respiratory rate, and the like.
- Clinicians including doctors, nurses, and other medical personnel, use the physiological parameters obtained from patient monitors to diagnose illnesses and to prescribe treatments. Clinicians also use the physiological parameters to monitor patients during various clinical situations to determine whether to increase the level of medical care given to patients.
- the patient monitoring devices can be used to monitor a pulse oximeter.
- Pulse oximetry is a widely accepted noninvasive procedure for measuring the oxygen saturation level of arterial blood, an indicator of a person's oxygen supply.
- a typical pulse oximetry system utilizes an optical sensor clipped onto a fingertip to measure the relative volume of oxygenated hemoglobin in pulsatile arterial blood flowing within the fingertip.
- Oxygen saturation (SpO 2 ) pulse rate, a plethysmograph waveform, perfusion index (PI), pleth variability index (PVI), methemoglobin (MetHb), carboxyhemoglobin (CoHb), total hemoglobin (tHb), glucose, and/or otherwise can be displayed on a monitor accordingly.
- the patient monitoring devices can also communicate with an acoustic sensor comprising an acoustic transducer, such as a piezoelectric element.
- the acoustic sensor can detect respiratory and other biological sounds of a patient and provide signals reflecting these sounds to a patient monitor.
- An example of such an acoustic sensor which can implement any of the acoustic sensing functions described herein, is described in U.S. application Ser. No. 12/643,939, filed Dec. 21, 2009, titled “Acoustic Sensor Assembly,” and in U.S. application Ser. No. 61/313,645, filed Mar. 12, 2010, titled “Acoustic Respiratory Monitoring Sensor Having Multiple Sensing Elements,” the disclosures of which are hereby incorporated by reference in their entirety.
- Blood pressure is another example of a physiological parameter that can be monitored.
- Many devices allow blood pressure to be measured by sphygmomanometer systems that utilize an inflatable cuff applied to a person's arm. The cuff is inflated to a pressure level high enough to occlude a major artery. When air is slowly released from the cuff, blood pressure can be estimated by detecting “Korotkoff” sounds using a stethoscope or other detection means placed over the artery.
- physiological parameters include respiration rate, blood analyte measurements, such as oxygen saturation, and ECG.
- a wireless patient monitoring device including one or more sensors configured to obtain physiological information.
- the one or more sensors can include an optical sensor, an acoustic respiratory sensor, and/or a blood pressure measurement device.
- Other sensors including but not limited to, an EEG, ECG, and/or a sedation state sensor can also be used with the present disclosure.
- the one or more sensors are connected to a wireless monitor configured to receive the sensor data and to wirelessly transmit sensor data or physiological parameters reflective of the sensor data to a bedside monitor.
- the bedside monitor can be configured to output the physiological parameters, communication channel, and/or communication status.
- Another aspect of the disclosure is directed toward a system configured to wirelessly communicate physiological information, the system including a battery, a housing, a rechargeable electrical storage module, and a memory module configured to store wireless communication information.
- the wireless communication information stored on the data storage component facilitates communication between the wireless monitor and the bedside monitor.
- the information may be a unique identifier used to pair the wireless monitor with the bedside monitor.
- the information may be a password used to make sure only the correct receiver has access to the transmitted physiological data.
- the information may be channel information to make certain the wireless monitor and bedside monitor communicate on the same channel.
- the bedside monitor can be configured to receive and recharge the removable battery.
- the battery may include a data storage component configured to store wireless communication information.
- the bedside monitor communicates wireless communication information to the battery through a hard wired connection, and the battery stores the information.
- the battery communicates wireless communication information to the bedside monitor through a hard wired connection.
- Another aspect of the disclosure is directed toward a bedside monitor configured to receive the wireless monitor.
- the bedside monitor communicates wireless communication information to the wireless monitor when the wireless monitor is physically and electrically connected with the bedside monitor.
- the wireless monitor communicates information to the bedside monitor when the wireless monitor is physically and electrically connected with the bedside monitor.
- the wireless monitor can be configured to transmit physiological data over a first wireless technology when a signal strength of the first wireless technology is sufficiently strong and transmit physiological data over a second wireless technology when the signal strength of the first wireless technology is not sufficiently strong.
- the wireless monitor can be configured to transmit physiological data over a first wireless technology when the wireless monitor is within a pre-determined distance from the wireless receiver and transmit physiological data over a second wireless technology when the wireless monitor is not within a pre-determined distance from the bedside monitor.
- the battery includes a display.
- the display can be configured to activate when the wireless transmitter transmits physiological data over a first wireless technology and deactivate when the wireless transmitter transmits physiological data over a second wireless technology.
- One aspect of the disclosure is a method of wirelessly monitoring physiological information.
- the method includes providing a battery including a data storage component, physically connecting the battery to a bedside monitor, storing data on the data storage component of the battery, connecting the battery to a wireless monitor, and transmitting physiological data from the wireless monitor to the bedside monitor.
- transmitting physiological data from the wireless monitor to the bedside monitor includes transmitting physiological data over a first wireless technology when the wireless monitor is within a pre-determined distance from the bedside monitor and transmitting physiological data over a second wireless technology when the wireless monitor is not within a pre-determined distance from the bedside monitor.
- the first wireless technology is Bluetooth or ZigBee
- the second wireless technology is Wi-Fi or cellular telephony.
- transmitting physiological data from the wireless monitor to the bedside monitor includes transmitting physiological data over a first wireless technology when a signal strength of the first wireless technology is sufficiently strong and transmitting physiological data over a second wireless technology when the signal strength of the first wireless technology is not sufficiently strong.
- the wireless monitor can be configured to be coupled to an arm band attached to the patient.
- the wireless monitor can be configured to be coupled to a patient's belt, can be carried by the patient (e.g., via a shoulder strap or handle), or can be placed on the patient's bed next to the patient, among other locations.
- the wireless monitor battery includes a display screen.
- the display screen When the wireless monitor is within a pre-determined distance from the bedside monitor and transmits data over Bluetooth or Zigbee, the display screen deactivates. When the wireless monitor is not within a pre-determined distance from the bedside monitor and transmits data over Wi-Fi or cellular telephony, the display screen activates. Alternatively, independent of the communication protocol used by the device, when the wireless monitor is a pre-determined distance from the bedside monitor, the display screen activates. Similarly when the wireless monitor is within a pre-determined distance to the bedside monitor, the display screen deactivates.
- a blood pressure device can be used.
- the blood pressure device can be coupled to a medical patient and a wireless transceiver electrically coupled with the blood pressure device.
- the wireless transceiver can wirelessly transmit blood pressure data received by the blood pressure device and physiological data received from one or more physiological sensors coupled to the blood pressure device.
- a single cable can be provided for connecting multiple different types of sensors together.
- a wireless patient monitoring device for measuring one or more parameters can be secured to an arm of the patient.
- a wireless measurement device for measuring oxygen saturation and respiration rate can be secured to the arm of a patient.
- the wireless monitoring device can connect to an oximeter probe and an acoustic respiration probe.
- the monitor can have a display screen and/or can transmit wireless information to a bedside monitor.
- a docking station can be provided for the wireless monitoring device to dock it to a docking station forming a bedside monitor.
- the patient monitoring devices can be coupled to a blood pressure cuff and measure blood pressure.
- the patient monitoring system can include a sensor configured to obtain physiological information, an anchor connected to the sensor, and a wireless transceiver connected to the anchor.
- a first cable can connect the sensor to the anchor and a second cable can connect the anchor to the wireless transceiver.
- the anchor can adhere to the patient or be carried by the patient in any manner discussed herein.
- the patient monitoring system can include one or more sensors configured to obtain physiological information and a wireless transceiver configured to receive the physiological information.
- the wireless transceiver can include a housing having a first side and a second side. At least one connector can be positioned on the first side and at least one connector can be positioned on the second side. In certain aspects, the first side of housing can be opposite the second side of the housing.
- a docking station can include a bedside monitor having a docking port configured to receive a first patient monitor and a docking station adapter configured to adapt the docking port to receive a second patient monitor.
- the second patient monitor can be a different size than the first patient monitor.
- the first patient monitor can communicate with the bedside monitor over a wired connection when the first patient monitor is connected to the docking port.
- the second patient monitor can communicate with the bedside monitor over a wired connection when the second patient monitor is connected to the docking station adapter and the docking station adapter is connected to the docking port.
- a patient monitoring system can include a first sensor, a second sensor, and a wireless patient monitor configured to receive physiological information from the first sensor and the second sensor.
- the patient monitoring system can include a single cable connecting the first sensor and the second sensor to the wireless patient monitor.
- the single cable can include a first cable section connecting the wireless patient monitor and the first sensor and a second cable section connecting the first sensor and the second sensor.
- the first sensor and the second sensor can be powered by a shared power line and/or can transmit signals over a shared signal line.
- a patient monitoring system can include one or more sensors configured to obtain physiological information, a patient monitor configured to receive the physiological information, and a cable hub having one or more inlet connectors connected to the one or more sensors and an outlet connector connected to the patient monitor.
- the one or more inlet connectors can be positioned on a first end of the cable hub and the outlet connector can be positioned on a second end of the cable hub, opposite the first end.
- the patient monitor can include a wireless transceiver.
- the patient monitor can be configured to be worn by the patient.
- the cable hub can be configured to adhere to the patient.
- a first cable extends from at least one of the one or more sensors to one of the one or more inlet connectors, and a second cable extends from the outlet connector to the patient monitor.
- the method can include providing a wireless transceiver having a first end and a second end opposite the first end, a first connector positioned on the first end, and a second connector positioned on the second end.
- the method can include connecting a first end of a first cable to the first connector, and connecting a first end of a second cable to the second connector.
- the method can include connecting a second end of the first cable to a first sensor.
- the method can include connecting a second end of the second cable to a second sensor or a cable hub connected to one or more sensors.
- the method can include connecting a third sensor and/or anchor to the second cable.
- the method can include connecting a third cable to a third connector on the second end of the wireless transceiver.
- a wireless monitor including a housing, a battery, and a strap.
- the housing can include one or more outlets configured to receive one or more sensors.
- the battery can be configured to removably engage the housing.
- a portion of the strap can be disposed between the housing and the battery when the housing is engaged with the battery.
- the portion of the strap disposed between the housing and the battery can be a separately formed component from a remainder of the strap.
- the portion of the strap can include one or more mating features configured to mate with corresponding features of the housing.
- the one or more mating features are flush with the corresponding features of the housing.
- the housing can include a recessed portion for receiving the strap.
- FIGS. 1A and 1B illustrate embodiments of wireless patient monitoring systems.
- FIGS. 1C and 1D illustrate further embodiments of wireless patient monitoring systems.
- FIG. 1E illustrates the embodiment of the wireless patient monitoring system illustrated in FIGS. 1A-1B in schematic form.
- FIGS. 2A and 2B illustrate embodiments of wireless patient monitoring systems having a single cable connection system.
- FIGS. 3A and 3B illustrates additional embodiment of patient monitoring systems.
- FIGS. 4A and 4B illustrate embodiments of an optical ear sensor and an acoustic sensor connected via a single cable connection system.
- FIG. 5 illustrates an embodiment of a wireless transceiver that can be used with any of the patient monitoring systems described above.
- FIGS. 6A through 6C illustrate additional embodiments of patient monitoring systems.
- FIG. 7 illustrates an embodiment of a physiological parameter display that can be used with any of the patient monitoring systems described above.
- FIG. 8 illustrates a further embodiment of a patient monitoring system.
- FIGS. 9A-9D illustrate an embodiment of a wireless patient monitoring system.
- FIG. 10 illustrates the embodiment of the wireless patient monitoring system illustrated in FIGS. 9A-9D in schematic form.
- FIG. 11 illustrates one embodiment of a method of using a wireless patient monitoring system.
- FIG. 12 illustrates a wireless monitor having a display screen.
- FIGS. 13-15 illustrate methods of using a wireless monitor having a display screen.
- FIGS. 16A-16G illustrate another embodiment of a wireless patient monitoring system.
- FIGS. 17A-17C illustrate another embodiment of a wireless patient monitoring system.
- FIGS. 18A-18C illustrate an animation of patient movement created using a wireless patient monitor.
- FIG. 19 depicts an embodiment of a patient movement detector.
- FIG. 20 depicts an embodiment of a fall warning process.
- FIG. 21 depicts an embodiment of a bedsore warning process.
- FIG. 22 depicts an embodiment of another fall warning process.
- medical sensors are often attached to patients to monitor physiological parameters of the patients.
- medical sensors include, but are not limited to, blood oxygen sensors, such as pulse oximetry sensors, acoustic respiratory sensors, EEGs, ECGs, blood pressure sensors, sedation state sensors, etc.
- blood oxygen sensors such as pulse oximetry sensors, acoustic respiratory sensors, EEGs, ECGs, blood pressure sensors, sedation state sensors, etc.
- each sensor attached to a patient is connected to a bedside monitoring device with a cable.
- the cables limit the patient's freedom of movement and impede a care providers access to the patient.
- the cables connecting the patient to the bedside monitoring device also make it more difficult to move the patient from room to room or switch to different bedside monitors.
- wireless patient monitoring systems that include a wireless device coupled to a patient and to one or more sensors.
- the wireless device transmits sensor data obtained from the sensors to a patient monitor.
- these patient monitoring systems can advantageously replace some or all cables that connect patients to bedside monitoring devices.
- a single cable connection system is also provided for connecting multiple different types of sensors together.
- the blood pressure cuff and/or wireless transceiver can also be coupled to additional sensors, such as optical sensors, acoustic sensors, and/or electrocardiograph sensors.
- the wireless transceiver can transmit blood pressure data and sensor data from the other sensors to a wireless receiver, which can be a patient monitor.
- FIGS. 1A and 1B illustrate embodiments of wireless patient monitoring systems 100 A, 100 B, respectively.
- a blood pressure device 110 is connected to a patient 101 .
- the blood pressure device 110 includes a wireless transceiver 116 , which can transmit sensor data obtained from the patient 101 to a wireless transceiver 120 .
- the patient 101 is advantageously not physically coupled to a bedside monitor in the depicted embodiment and can therefore have greater freedom of movement.
- the blood pressure device 110 a includes an inflatable cuff 112 , which can be an oscilometric cuff that is actuated electronically (e.g., via intelligent cuff inflation and/or based on a time interval) to obtain blood pressure information.
- the cuff 112 is coupled to a wireless transceiver 116 .
- the blood pressure device 110 a is also coupled to a fingertip optical sensor 102 via a cable 107 .
- the optical sensor 102 can include one or more emitters and detectors for obtaining physiological information indicative of one or more blood parameters of the patient 101 .
- the optical sensor 102 can also be used to obtain a photoplethysmograph, a measure of plethysmograph variability, pulse rate, a measure of blood perfusion, and the like.
- the blood pressure device 110 a is coupled to an acoustic sensor 104 a via a cable 105 .
- the cable 105 connecting the acoustic sensor 104 a to the blood pressure device 110 includes two portions, namely a cable 105 a and a cable 105 b .
- the cable 105 a connects the acoustic sensor 104 a to an anchor 104 b , which is coupled to the blood pressure device 110 a via the cable 105 b .
- the anchor 104 b can be adhered to the patient's skin to reduce noise due to accidental tugging of the acoustic sensor 104 a.
- the acoustic sensor 104 a can be a piezoelectric sensor or the like that obtains physiological information reflective of one or more respiratory parameters of the patient 101 . These parameters can include, for example, respiratory rate, inspiratory time, expiratory time, inspiration-to-expiration ratio, inspiratory flow, expiratory flow, tidal volume, minute volume, apnea duration, breath sounds, rales, rhonchi, stridor, and changes in breath sounds such as decreased volume or change in airflow.
- the respiratory sensor 104 a can measure other physiological sounds such as heart rate (e.g., to help with probe-off detection), heart sounds (e.g., S 1 , S 2 , S 3 , S 4 , and murmurs), and changes in heart sounds such as normal to murmur or split heart sounds indicating fluid overload.
- a second acoustic respiratory sensor can be provided over the patient's 101 chest for additional heart sound detection.
- the acoustic sensor 104 can include any of the features described in U.S. patent application Ser. No. 12/643,939, filed Dec. 21, 2009, titled “Acoustic Sensor Assembly,” the disclosure of which is hereby incorporated by reference in its entirety.
- the acoustic sensor 104 can be used to generate an exciter waveform that can be detected by the optical sensor 102 at the fingertip, by an optical sensor attached to an ear of the patient (see FIGS. 2A, 3 ), by an ECG sensor (see FIG. 2C ), or by another acoustic sensor (not shown).
- the velocity of the exciter waveform can be calculated by a processor (such as a processor in the wireless transceiver 120 , described below). From this velocity, the processor can derive a blood pressure measurement or blood pressure estimate.
- the processor can output the blood pressure measurement for display.
- the processor can also use the blood pressure measurement to determine whether to trigger the blood pressure cuff 112 .
- the acoustic sensor 104 placed on the upper chest can be advantageously combined with an ECG electrode (such as in structure 208 of FIG. 2B ), thereby providing dual benefit of two signals generated from a single mechanical assembly.
- the timing relationship from fidicial markers from the ECG signal, related cardiac acoustic signal and the resulting peripheral pulse from the finger pulse oximeters produces a transit time that correlates to the cardiovascular performance such as blood pressure, vascular tone, vascular volume and cardiac mechanical function.
- Pulse wave transit time or PWTT in currently available systems depends on ECG as the sole reference point, but such systems may not be able to isolate the transit time variables associated to cardiac functions, such as the pre-ejection period (PEP).
- the addition of the cardiac acoustical signal allows isolation of the cardiac functions and provides additional cardiac performance metrics. Timing calculations can be performed by the processor in the wireless transceiver 120 or a in distributed processor found in an on-body structure (e.g., such as any of the devices herein or below: 112 , 210 , 230 , 402 , 806 ).
- the wireless patient monitoring system 100 uses some or all of the velocity-based blood pressure measurement techniques described in U.S. Pat. No. 5,590,649, filed Apr. 15, 1994, titled “Apparatus and Method for Measuring an Induced Perturbation to Determine Blood Pressure,” or in U.S. Pat. No. 5,785,659, filed Jan. 17, 1996, titled “Automatically Activated Blood Pressure Measurement Device,” the disclosures of which are hereby incorporated by reference in their entirety.
- An example display related to such blood pressure calculations is described below with respect to FIG. 7 .
- the wireless transceiver 116 can transmit data using any of a variety of wireless technologies, such as Wi-Fi (802.11x), Bluetooth (802.15.2), Zigbee (802.15.4), cellular telephony, infrared, RFID, satellite transmission, proprietary protocols, combinations of the same, and the like.
- the wireless transceiver 116 can perform solely telemetry functions, such as measuring and reporting information about the patient 101 .
- the wireless transceiver 116 can be a transceiver that also receives data and/or instructions, as will be described in further detail below.
- the wireless receiver 120 receives information from and/or sends information to the wireless transceiver via an antenna 122 .
- the wireless receiver 120 is a patient monitor.
- the wireless receiver 120 can include one or more processors that process sensor signals received from the wireless transceiver 116 corresponding to the sensors 102 a , 102 b , 104 , and/or 106 in order to derive any of the physiological parameters described above.
- the wireless transceiver 120 can also display any of these parameters, including trends, waveforms, related alarms, and the like.
- the wireless receiver 120 can further include a computer-readable storage medium, such as a physical storage device, for storing the physiological data.
- the wireless transceiver 120 can also include a network interface for communicating the physiological data to one or more hosts over a network, such as to a nurse's station computer in a hospital network.
- the wireless transceiver 116 can send raw data for processing to a central nurse's station computer, to a clinician device, and/or to a bedside device (e.g., the receiver 116 ).
- the wireless transceiver 116 can also send raw data to a central nurse's station computer, clinician device, and/or to a bedside device for calculation, which retransmits calculated measurements back to the blood pressure device 110 (or to the bedside device).
- the wireless transceiver 116 can also calculate measurements from the raw data and send the measurements to a central nurse's station computer, to a pager or other clinician device, or to a bedside device (e.g., the receiver 116 ).
- Many other configurations of data transmission are possible.
- the wireless transceiver 120 can also determine various measures of data confidence, such as the data confidence indicators described in U.S. Pat. No. 7,024,233 entitled “Pulse oximetry data confidence indicator,” the disclosure of which is hereby incorporated by reference in its entirety.
- the wireless transceiver 120 can also determine a perfusion index, such as the perfusion index described in U.S. Pat. No. 7,292,883 entitled “Physiological assessment system,” the disclosure of which is hereby incorporated by reference in its entirety.
- the wireless transceiver 120 can determine a plethysmograph variability index (PVI), such as the PVI described in U.S. Publication No. 2008/0188760 entitled “Plethysmograph variability processor,” the disclosure of which is hereby incorporated by reference in its entirety.
- PVI plethysmograph variability index
- the wireless transceiver 120 can send data and instructions to the wireless transceiver 116 in some embodiments. For instance, the wireless transceiver 120 can intelligently determine when to inflate the cuff 112 and can send inflation signals to the transceiver 116 . Similarly, the wireless transceiver 120 can remotely control any other sensors that can be attached to the transceiver 116 or the cuff 112 . The transceiver 120 can send software or firmware updates to the transceiver 116 .
- the transceiver 120 (or the transceiver 116 ) can adjust the amount of signal data transmitted by the transceiver 116 based at least in part on the acuity of the patient, using, for example, any of the techniques described in U.S. Patent Publication No. 2009/0119330, filed Jan. 7, 2009, titled “Systems and Methods for Storing, Analyzing, and Retrieving Medical Data,” the disclosure of which is hereby incorporated by reference in its entirety.
- the wireless transceiver 116 can perform some or all of the patient monitor functions described above, instead of or in addition to the monitoring functions described above with respect to the wireless transceiver 120 .
- the wireless transceiver 116 might also include a display that outputs data reflecting any of the parameters described above (see, e.g., FIG. 5 ).
- the wireless transceiver 116 can either send raw signal data to be processed by the wireless transceiver 120 , can send processed signal data to be displayed and/or passed on by the wireless transceiver 120 , or can perform some combination of the above.
- the wireless transceiver 116 can perform at least some front-end processing of the data, such as bandpass filtering, analog-to-digital conversion, and/or signal conditioning, prior to sending the data to the transceiver 120 .
- An alternative embodiment may include at least some front end processing embedded in any of the sensors described herein (such as sensors 102 , 104 , 204 , 202 , 208 , 412 , 804 , 840 , 808 ) or cable hub 806 (see FIG. 8 ).
- the cuff 112 is a reusable, disposable, or resposable device.
- any of the sensors 102 , 104 a or cables 105 , 107 can be disposable or resposable.
- Resposable devices can include devices that are partially disposable and partially reusable.
- the acoustic sensor 104 a can include reusable electronics but a disposable contact surface (such as an adhesive) where the sensor 104 a comes into contact with the patient's skin.
- any of the sensors, cuffs, and cables described herein can be reusable, disposable, or resposable.
- the cuff 112 can also can have its own power (e.g., via batteries) either as extra power or as a sole source of power for the transceiver 116 .
- the batteries can be disposable or reusable.
- the cuff 112 can include one or more photovoltaic solar cells or other power sources. Likewise, batteries, solar sources, or other power sources can be provided for either of the sensors 102 , 104 a.
- the blood pressure device 110 b can communicate wirelessly with the acoustic sensor 104 a and with the optical sensor 102 .
- wireless transceivers (not shown) can be provided in one or both of the sensors 102 , 104 a , using any of the wireless technologies described above.
- the wireless transceivers can transmit data using any of a variety of wireless technologies, such as Wi-Fi (802.11x), Bluetooth (802.15.2), Zigbee (802.15.4), cellular telephony, infrared, RFID, satellite transmission, proprietary protocols, combinations of the same, and the like.
- the wireless transceivers can transmit data, raw signals, processed signals, conditioned signals, or the like to the blood pressure device 110 b .
- the blood pressure device 110 b can transmit these signals on to the wireless transceiver 120 .
- the blood pressure device 110 b can also process the signals received from the sensors 102 , 104 a prior to transmitting the signals to the wireless transceiver 120 .
- the sensors 102 , 104 a can also transmit data, raw signals, processed signals, conditioned signals, or the like directly to the wireless transceiver 120 or patient monitor.
- the system 100 B shown can be considered to be a body LAN, piconet, or other individual network.
- FIGS. 1C and 1D illustrate another embodiment in which a wireless monitor 150 is secured to the arm of the patient.
- the wireless monitor 150 is a fully functional stand-alone monitor capable of various physiological measurements.
- the wireless monitor is small and light enough to comfortably be secured to and carried around on the arm of a patient.
- the wireless monitor 150 connects to an acoustic respiration sensor 104 A on a first side of patient monitor 150 and an oximeter sensor 102 on a second side of patient monitor 150 .
- This configuration of connected sensors to opposite sides of the monitor prevents cable clutter and entanglements.
- the wireless monitor 150 includes a screen 154 .
- the wireless monitor 150 couples to and is held to the arm of the patient by arm band 152 .
- the arm band is not an inflatable blood pressure cuff, however, as described with respect to the other figures, the arm band 152 can incorporate a blood pressure cuff for blood pressure readings.
- the wireless monitor 150 can transmit data to a bedside monitor using any of a variety of wireless technologies, such as Wi-Fi (802.11x), Bluetooth (802.15.2), Zigbee (802.15.4), cellular telephony, infrared, RFID, satellite transmission, proprietary protocols, combinations of the same, and the like.
- Wi-Fi 802.11x
- Bluetooth 802.15.2
- Zigbee 802.15.4
- cellular telephony infrared
- RFID infrared
- satellite transmission proprietary protocols, combinations of the same, and the like.
- the monitor 150 can be docked to a docking station 163 .
- the docking station 163 includes a bedside monitor 164 and docking station adapter 160 .
- Docking station adapter 160 adapts an otherwise incompatible docking port of bedside monitor 164 so that patient monitor 150 can dock.
- the docking station adapter 162 includes a port 162 for docking with the patient monitor 150 .
- the patient monitor 150 can communicate with the bedside monitor 164 over a wired connection.
- Handheld monitor 166 is configured to dock directly to bedside monitor 164 without the need for a docking station adapter 162 .
- the handheld monitor 166 can communicate with the bedside monitor 164 over a wired connection.
- FIG. 1E illustrates details of an embodiment of the wireless monitoring system 100 A in a schematic form.
- the wireless monitoring system 100 A is drawn in connection with the acoustic sensor 104 a and the optical sensor 102 .
- the system 100 A sends signals from the acoustic sensor 104 a and the optical sensor 102 to the sensor interface 170 and passes the signals to the DSP 172 for processing into representations of physiological parameters.
- the DSP also communicates with a memory or information element, such as a resistor or capacitor, located on one of the sensors, such memory typically contains information related to the properties of the sensor that may be useful in processing the signals, such as, for example, emitter energy wavelengths.
- the physiological parameters are passed to an instrument manager 174 , which may further process the parameters for display.
- the instrument manager 174 may include a memory buffer 176 to maintain this data for processing throughout a period of time.
- Memory buffer 176 may include RAM, Flash or other solid state memory, magnetic or optical disk-based memories, combinations of the same or the like.
- the wireless transceiver 120 is capable of wirelessly receiving the physiological data and/or parameters from DSP 172 or instrument manager 174 .
- the bedside monitor 916 can include one or more displays 178 , control buttons, a speaker for audio messages, and/or a wireless signal broadcaster.
- the wireless transceiver 120 can also include a processor 180 to further process the data and/or parameters for display.
- FIGS. 2A and 2B illustrate additional embodiments of patient monitoring systems 200 A and 200 B, respectively.
- FIG. 2A illustrates a wireless patient monitoring system 200 A
- FIG. 2B illustrates a standalone patient monitoring system 200 B.
- a blood pressure device 210 a is connected to a patient 201 .
- the blood pressure device 210 a includes a wireless transceiver 216 a , which can transmit sensor data obtained from the patient 201 to a wireless receiver at 220 via antenna 218 .
- the wireless transceiver 216 a can transmit data using any of a variety of wireless technologies, such as Wi-Fi (802.11x), Bluetooth (802.15.2), Zigbee (802.15.4), cellular telephony, infrared, RFID, satellite transmission, proprietary protocols, combinations of the same, and the like.
- the blood pressure device 210 a includes an inflatable cuff 212 a , which can include any of the features of the cuff 112 described above. Additionally, the cuff 212 a includes a pocket 214 , which holds the wireless transceiver 216 a (shown by dashed lines). The wireless transceiver 216 a can be electrically connected to the cuff 212 a via a connector (see, e.g., FIG. 5 ) in some embodiments. As will be described elsewhere herein, the form of attachment of the wireless transceiver 216 a to the cuff 212 a is not restricted to a pocket connection mechanism and can vary in other implementations.
- the wireless transceiver 216 a is also coupled to various sensors in FIGS. 2A , including an acoustic sensor 204 a and/or an optical ear sensor 202 a .
- the acoustic sensor 204 a can have any of the features of the acoustic sensor 104 described above.
- the ear clip sensor 202 a can be an optical sensor that obtains physiological information regarding one or more blood parameters of the patient 201 . These parameters can include any of the blood-related parameters described above with respect to the optical sensor 102 .
- the ear clip sensor 202 a is an LNOP TC-I ear reusable sensor available from Masimo® Corporation of Irvine, Calif.
- the ear clip sensor 202 a is a concha ear sensor (see FIGS. 4A and 4B ).
- the sensors 202 a , 204 a are coupled to the wireless transceiver 216 a via a single cable 205 .
- the cable 205 is shown having two sections, a cable 205 a and a cable 205 b .
- the wireless transceiver 216 a is coupled to an acoustic sensor 204 a via the cable 205 b .
- the acoustic sensor 204 a is coupled to the optical ear sensor 202 a via the cable 205 a .
- the cable 205 is relatively short and can thereby increase the patient's 201 freedom of movement. Moreover, because a single cable 205 is used to connect two or more different types of sensors, such as sensors 202 a , 204 a , the patient's mobility and comfort can be further enhanced.
- the cable 205 is a shared cable 205 that is shared by the optical ear sensor 202 a and the acoustic sensor 204 a .
- the shared cable 205 can share power and ground lines for each of the sensors 202 a , 204 a .
- Signal lines in the cable 205 can convey signals from the sensors 202 a , 204 a to the wireless transceiver 216 and/or instructions from the wireless transceiver 216 to the sensors 202 a , 204 a .
- the signal lines can be separate within the cable 205 for the different sensors 202 a , 204 a .
- the signal lines can be shared as well, forming an electrical bus.
- the two cables 205 a , 205 a can be part of a single cable or can be separate cables 205 a , 205 b .
- the cable 205 a , 205 b can connect to the acoustic sensor 204 a via a single connector.
- the cable 205 b can be connected to a first port on the acoustic sensor 204 a and the cable 205 a can be coupled to a second port on the acoustic sensor 204 a.
- FIG. 2B further illustrates an embodiment of the cable 205 in the context of a standalone patient monitoring system 200 B.
- a blood pressure device 210 b is provided that includes a patient monitor 216 b disposed on a cuff 212 b .
- the patient monitor 216 b includes a display 219 for outputting physiological parameter measurements, trends, waveforms, patient data, and optionally other data for presentation to a clinician.
- the display 219 can be an LCD display, for example, with a touch screen or the like.
- the patient monitor 216 b can act as a standalone device, not needing to communicate with other devices to process and measure physiological parameters.
- the patient monitor 216 b can also include any of the wireless functionality described above.
- the patient monitor 216 b can transmit data using any of a variety of wireless technologies, such as Wi-Fi (802.11x), Bluetooth (802.15.2), Zigbee (802.15.4), cellular telephony, infrared, RFID, satellite transmission, proprietary protocols, combinations of the same, and the like.
- Wi-Fi 802.11x
- Bluetooth 802.15.2
- Zigbee 802.15.4
- cellular telephony infrared
- RFID infrared
- satellite transmission proprietary protocols, combinations of the same, and the like.
- the patient monitor 216 b can be integrated into the cuff 212 b or can be detachable from the cuff 212 b .
- the patient monitor 216 b can be a readily available mobile computing device with a patient monitoring software application.
- the patient monitor 216 b can be a smart phone, personal digital assistant (PDA), or other wireless device.
- the patient monitoring software application on the device can perform any of a variety of functions, such as calculating physiological parameters, displaying physiological data, documenting physiological data, and/or wirelessly transmitting physiological data (including measurements or uncalculated raw sensor data) via email, text message (e.g., SMS or MMS), or some other communication medium.
- any of the wireless transceivers or patient monitors described herein can be substituted with such a mobile computing device.
- the patient monitor 216 b is connected to three different types of sensors.
- An optical sensor 202 b coupled to a patient's 201 finger, is connected to the patient monitor 216 b via a cable 207 .
- an acoustic sensor 204 b and an electrocardiograph (ECG) sensor 206 are attached to the patient monitor 206 b via the cable 205 .
- the optical sensor 202 b can perform any of the optical sensor functions described above.
- the acoustic sensor 204 b can perform any of the acoustic sensor functions described above.
- the ECG sensor 206 can be used to monitor electrical activity of the patient's 201 heart.
- the ECG sensor 206 is a bundle sensor that includes one or more ECG leads 208 in a single package.
- the ECG sensor 206 can include one, two, or three or more leads.
- One or more of the leads 208 can be an active lead or leads, while another lead 208 can be a reference lead.
- Other configurations are possible with additional leads within the same package or at different points on the patient's body.
- Using a bundle ECG sensor 206 can advantageously enable a single cable connection via the cable 205 to the cuff 212 b .
- an acoustical sensor can be included in the ECG sensor 206 to advantageously reduce the overall complexity of the on-body assembly.
- the cable 205 a in FIG. 2B can connect two sensors to the cuff 212 b , namely the ECG sensor 206 and the acoustic sensor 204 b .
- the cable 205 a can further connect an optical ear sensor to the acoustic sensor 204 b in some embodiments, optionally replacing the finger optical sensor 202 b .
- the cable 205 a shown in FIG. 2B can have all the features described above with respect to cable 205 a of FIG. 2A .
- any of the sensors, cuffs, wireless sensors, or patient monitors described herein can include one or more accelerometers or other motion measurement devices (such as gyroscopes).
- one or more of the acoustic sensor 204 b , the ECG sensor 206 , the cuff 212 b , the patient monitor 216 b , and/or the optical sensor 202 b can include one or more motion measurement devices.
- a motion measurement device can be used by a processor (such as in the patient monitor 216 b or other device) to determine motion and/or position of a patient.
- a motion measurement device can be used to determine whether a patient is sitting up, lying down, walking, or the like.
- Movement and/or position data obtained from a motion measurement device can be used to adjust a parameter calculation algorithm to compensate for the patient's motion.
- a parameter measurement algorithm that compensates for motion can more aggressively compensate for motion in response to high degree of measured movement. When less motion is detected, the algorithm can compensate less aggressively.
- Movement and/or position data can also be used as a contributing factor to adjusting parameter measurements. Blood pressure, for instance, can change during patient motion due to changes in blood flow. If the patient is detected to be moving, the patient's calculated blood pressure (or other parameter) can therefore be adjusted differently than when the patient is detected to be sitting.
- a database can be assembled that includes movement and parameter data (raw or measured parameters) for one or more patients over time.
- the database can be analyzed by a processor to detect trends that can be used to perform parameter calculation adjustments based on motion or position. Many other variations and uses of the motion and/or position data are possible.
- the cuff can be a holder for the patient monitoring devices and/or wireless transceivers and not include any blood pressure measuring functionality.
- the patient monitoring devices and/or wireless transceivers shown need not be coupled to the patient via a cuff, but can be coupled to the patient at any other location, including not at all.
- the devices can be coupled to the patient's belt (see FIGS. 3A and 3B ), can be carried by the patient (e.g., via a shoulder strap or handle), or can be placed on the patient's bed next to the patient, among other possible locations.
- the wireless transceiver 216 can be attached to the cuff 212 without the use of the pocket 214 .
- the wireless transceiver can be sewn, glued, buttoned or otherwise attached to the cuff using any various known attachment mechanisms.
- the wireless transceiver 216 can be directly coupled to the patient (e.g., via an armband) and the cuff 212 can be omitted entirely.
- the wireless transceiver 216 can be coupled to a non-occlusive blood pressure device. Many other configurations are possible.
- FIGS. 3A and 3B illustrate further embodiments of a patient monitoring system 300 A, 300 B having a single cable connecting multiple sensors.
- FIG. 3A depicts a tethered patient monitoring system 300 A
- FIG. 3B depicts a wireless patient monitoring system 300 B.
- the patient monitoring systems 300 A, 300 B illustrate example embodiments where a single cable 305 can be used to connect multiple sensors, without using a blood pressure cuff.
- the acoustic and ECG sensors 204 b , 206 of FIG. 2 are again shown coupled to the patient 201 . As above, these sensors 204 b , 206 are coupled together via a cable 205 . However, the cable 250 is coupled to a junction device 230 a instead of to a blood pressure cuff. In addition, the optical sensor 202 b is coupled to the patient 201 and to the junction device 230 a via a cable 207 .
- the junction device 230 a can anchor the cable 205 b to the patient 201 (such as via the patient's belt) and pass through any signals received from the sensors 202 b , 204 b , 206 to a patient monitor 240 via a single cable 232 .
- the junction device 230 a can include at least some front-end signal processing circuitry. In some embodiments, the junction device 230 a also includes a processor for processing physiological parameter measurements. Further, the junction device 230 a can include all the features of the patient monitor 216 b in some embodiments, such as providing a display that outputs parameters measured from data obtained by the sensors 202 b , 204 b , 206 .
- the patient monitor 240 is connected to a medical stand 250 .
- the patient monitor 240 includes parameter measuring modules 242 , one of which is connected to the junction device 230 a via the cable 232 .
- the patient monitor 240 further includes a display 246 .
- the display 246 is a user-rotatable display in the depicted embodiment.
- the patient monitoring system 300 B includes nearly identical features to the patient monitoring system 300 A.
- the junction device 230 b includes wireless capability, enabling the junction device 230 b to wirelessly communicate with the patient monitor 240 and/or other devices.
- the wireless patient monitoring system 300 B can transmit data using any of a variety of wireless technologies, such as Wi-Fi (802.11x), Bluetooth (802.15.2), Zigbee (802.15.4), cellular telephony, infrared, RFID, satellite transmission, proprietary protocols, combinations of the same, and the like.
- FIGS. 4A and 4B illustrate embodiments of patient monitoring systems 400 A, 400 B that depict alternative cable connection systems 410 for connecting sensors to a patient monitor 402 .
- these cable connection systems 410 can advantageously enhance patient mobility and comfort.
- the patient monitoring system 400 A includes a patient monitor 402 a that measures physiological parameters based on signals obtained from sensors 412 , 420 coupled to a patient.
- sensors 412 , 420 coupled to a patient.
- These sensors include an optical ear sensor 412 and an acoustic sensor 420 in the embodiment shown.
- the optical ear sensor 412 can include any of the features of the optical sensors described above.
- the acoustic sensor 420 can include any of the features of the acoustic sensors described above.
- the optical ear sensor 412 can be shaped to conform to the cartilaginous structures of the ear, such that the cartilaginous structures can provide additional support to the sensor 412 , providing a more secure connection. This connection can be particularly beneficial for monitoring during pre-hospital and emergency use where the patient can move or be moved.
- the optical ear sensor 412 can have any of the features described in U.S. application Ser. No. 12/658,872, filed Feb. 16, 2010, entitled “Ear Sensor,” the disclosure of which is hereby incorporated by reference in its entirety.
- An instrument cable 450 connects the patient monitor 402 a to the cable connection system 410 .
- the cable connection system 410 includes a sensor cable 440 connected to the instrument cable 250 .
- the sensor cable 440 is bifurcated into two cable sections 416 , 422 , which connect to the individual sensors 412 , 420 respectively.
- An anchor 430 a connects the sensor cable 440 and cable sections 416 , 422 .
- the anchor 430 a can include an adhesive for anchoring the cable connection system 410 to the patient, so as to reduce noise from cable movement or the like.
- the cable connection system 410 can reduce the number and size of cables connecting the patient to a patient monitor 402 a .
- the cable connection system 410 can also be used to connect with any of the other sensors, patient-worn monitors, or wireless devices described above.
- FIG. 4B illustrates the patient monitoring system 400 B, which includes many of the features of the monitoring system 400 A.
- an optical ear sensor 412 and an acoustic sensor 420 are coupled to the patient.
- the cable connection system 410 is shown, including the cable sections 416 , 422 coupled to an anchor 430 b .
- the cable connection system 410 communicates wirelessly with a patient monitor 402 b .
- the anchor 430 b can include a wireless transceiver, or a separate wireless dongle or other device (not shown) can couple to the anchor 430 b .
- the anchor 430 b can be connected to a blood pressure cuff, wireless transceiver, junction device, or other device in some embodiments.
- the wireless transceiver, wireless dongle, or other device can transmit data using any of a variety of wireless technologies, such as Wi-Fi (802.11x), Bluetooth (802.15.2), Zigbee (802.15.4), cellular telephony, infrared, RFID, satellite transmission, proprietary protocols, combinations of the same, and the like.
- FIG. 5 illustrates a more detailed embodiment of a wireless transceiver 516 .
- the wireless transceiver 516 can have all of the features of the wireless transceiver 516 described above.
- the wireless transceiver 516 can connect to a blood pressure cuff and to one or more physiological sensors, and the transceiver 516 can transmit sensor data to a wireless receiver.
- the wireless transceiver 516 can transmit data using any of a variety of wireless technologies, such as Wi-Fi (802.11x), Bluetooth (802.15.2), Zigbee (802.15.4), cellular telephony, infrared, RFID, satellite transmission, proprietary protocols, combinations of the same, and the like.
- the depicted embodiment of the transceiver 516 includes a housing 530 , which includes connectors 552 for sensor cables (e.g., for optical, acoustic, ECG, and/or other sensors) and a connector 560 for attachment to a blood pressure cuff or other patient-wearable device.
- the transceiver 516 further includes an antenna 518 , which although shown as an external antenna, can be internal in some implementations.
- the transceiver 516 can include one or more connectors on one or more sides of the housing 530 . Providing connectors on different sides of the housing 530 allows for convenient sensor connection and prevents the sensor cables from tangling.
- the housing can include two connectors 552 on a first side of the housing 530 and an additional connector 560 on a second side of the housing 530 .
- the transceiver 516 includes a display 554 that depicts values of various parameters, such as systolic and diastolic blood pressure, SpO2, and respiratory rate (RR).
- the display 554 can also display trends, alarms, and the like.
- the transceiver 516 can be implemented with the display 554 in embodiments where the transceiver 516 also acts as a patient monitor.
- the transceiver 516 further includes controls 556 , which can be used to manipulate settings and functions of the transceiver 516 .
- FIGS. 6A through 6C illustrate embodiments of wireless patient monitoring systems 600 .
- These wireless patient monitoring systems can transmit data using any of a variety of wireless technologies, such as Wi-Fi (802.11x), Bluetooth (802.15.2), Zigbee (802.15.4), cellular telephony, infrared, RFID, satellite transmission, proprietary protocols, combinations of the same, and the like.
- FIG. 6A illustrates a patient monitoring system 600 A that includes a wireless transceiver 616 , which can include the features of any of the transceivers 216 , 216 described above.
- the transceiver 616 provides a wireless signal over a wireless link 612 to a patient monitor 620 .
- the wireless signal can include physiological information obtained from one or more sensors, physiological information that has been front-end processed by the transceiver 616 , or the like.
- the patient monitor 620 can act as the wireless receiver 220 of FIG. 2 .
- the patient monitor 620 can process the wireless signal received from the transceiver 616 to obtain values, waveforms, and the like for one or more physiological parameters.
- the patient monitor 620 can perform any of the patient monitoring functions described above with respect to FIGS. 2 through 5 .
- the patient monitor 620 can provide at least some of the physiological information received from the transceiver 616 to a multi-patient monitoring system (MMS) 640 over a network 630 .
- the MMS 640 can include one or more physical computing devices, such as servers, having hardware and/or software for providing the physiological information to other devices in the network 630 .
- the MMS 640 can use standardized protocols (such as TCP/IP) or proprietary protocols to communicate the physiological information to one or more nurses' station computers (not shown) and/or clinician devices (not shown) via the network 630 .
- the MMS 640 can include some or all the features of the MMS described in U.S. Publication No. 2008/0188760, referred to above.
- the network 630 can be a LAN or WAN, wireless LAN (“WLAN”), or other type of network used in any hospital, nursing home, patient care center, or other clinical location.
- the network 210 can interconnect devices from multiple hospitals or clinical locations, which can be remote from one another, through the Internet, one or more Intranets, a leased line, or the like.
- the MMS 640 can advantageously distribute the physiological information to a variety of devices that are geographically co-located or geographically separated.
- FIG. 6B illustrates another embodiment of a patient monitoring system 600 B, where the transceiver 616 transmits physiological information to a base station 624 via the wireless link 612 .
- the transceiver 616 can perform the functions of a patient monitor, such as any of the patient monitor functions described above.
- the transceiver 616 can provide processed sensor signals to the base station 624 , which forwards the information on to the MMS 640 over the network 630 .
- FIG. 6C illustrates yet another embodiment of a patient monitoring system 600 B, where the transceiver 616 transmits physiological information directly to the MMS 640 .
- the MMS 640 can include wireless receiver functionality, for example.
- the embodiments shown in FIGS. 6A through 6 C illustrate that the transceiver 616 can communicate with a variety of different types of devices.
- FIG. 7 illustrates an embodiment of a physiological parameter display 700 .
- the physiological parameter display 700 can be output by any of the systems described above.
- the physiological parameter display 700 can be output by any of the wireless receivers, transceivers, or patient monitors described above.
- the parameter display 700 can be output over a variety of wireless technologies, such as Wi-Fi (802.11x), Bluetooth (802.15.2), Zigbee (802.15.4), cellular telephony, infrared, RFID, satellite transmission, proprietary protocols, combinations of the same, and the like.
- the physiological parameter display 700 can display multiple parameters, including noninvasive blood pressure (NIBP) obtained using both oscillometric and non-oscillometric techniques.
- NIBP noninvasive blood pressure
- the physiological parameter display 700 can display any of the physiological parameters described above, to name a few.
- the physiological parameter display 700 is shown displaying oxygen saturation 702 , heart rate 704 , and respiratory rate 706 .
- the physiological parameter display 700 displays blood pressure 708 , including systolic and diastolic blood pressure.
- the display 700 further shows a plot 710 of continuous or substantially continuous blood pressure values measured over time.
- the plot 710 includes a trace 712 a for systolic pressure and a trace 712 b for diastolic pressure.
- the traces 712 a , 712 b can be generated using a variety of devices and techniques. For instance, the traces 712 a , 712 b can be generated using any of the velocity-based continuous blood pressure measurement techniques described above and described in further detail in U.S. Pat. Nos. 5,590,649 and 5,785,659, referred to above.
- oscillometric blood pressure measurements (sometimes referred to as Gold Standard NIBP) can be taken, using any of the cuffs described above. These measurements are shown by markers 714 on the plot 710 .
- the markers 714 are “X's” in the depicted embodiment, but the type of marker 714 used can be different in other implementations.
- oscillometric blood pressure measurements are taken at predefined intervals, resulting in the measurements shown by the markers 714 .
- oscillometric blood pressure measurements can be triggered using ICI techniques, e.g., based at least partly on an analysis of the noninvasive blood pressure measurements indicated by the traces 712 a , 712 b .
- the display 700 can provide a clinician with continuous and oscillometric blood pressure information.
- FIG. 8 illustrates another embodiment of a patient monitoring system 800 .
- the features of the patient monitoring system 800 can be combined with any of the features of the systems described above. Likewise, any of the features described above can be incorporated into the patient monitoring system 800 .
- the patient monitoring system 800 includes a cable hub 806 that enables one or many sensors to be selectively connected and disconnected to the cable hub 806 .
- the monitoring system 800 includes a cuff 810 with a patient device 816 for providing physiological information to a monitor 820 or which can receive power from a power supply ( 820 ).
- the cuff 810 can be a blood pressure cuff or merely a holder for the patient device 816 .
- the patient device 816 can instead be a wireless transceiver having all the features of the wireless devices described above.
- the wireless transceiver can transmit data using any of a variety of wireless technologies, such as Wi-Fi (802.11x), Bluetooth (802.15.2), Zigbee (802.15.4), cellular telephony, infrared, RFID, satellite transmission, proprietary protocols, combinations of the same, and the like.
- the patient device 816 is in coupled with an optical finger sensor 802 via cable 807 . Further, the patient device 816 is coupled with the cable hub 806 via a cable 805 a .
- the cable hub 806 can be selectively connected to one or more sensors.
- example sensors shown coupled to the cable hub 806 include an ECG sensor 808 a and a brain sensor 840 .
- the ECG sensor 808 a can be single-lead or multi-lead sensor.
- the brain sensor 840 can be an electroencephalography (EEG) sensor and/or an optical sensor.
- EEG sensor that can be used as the brain sensor 840 is the SEDLineTM sensor available from Masimo® Corporation of Irvine, Calif., which can be used for depth-of-anesthesia monitoring among other uses.
- Optical brain sensors can perform spectrophotometric measurements using, for example, reflectance pulse oximetry.
- the brain sensor 840 can incorporate both an EEG/depth-of-anesthesia sensor and an optical sensor for cerebral oximetry.
- the ECG sensor 808 a is coupled to an acoustic sensor 804 and one or more additional ECG leads 808 b .
- additional leads 808 b are shown, for a 5-lead ECG configuration.
- one or two additional leads 808 b are used instead of four additional leads .
- up to at least 12 leads 808 b can be included.
- Acoustic sensors can also be disposed in the ECG sensor 808 a and/or lead(s) 808 b or on other locations of the body, such as over a patient's stomach (e.g., to detect bowel sounds, thereby verifying patient's digestive health, for example, in preparation for discharge from a hospital).
- the acoustic sensor 804 can connect directly to the cable hub 806 instead of to the ECG sensor 808 a.
- the cable hub 806 can enable one or many sensors to be selectively connected and disconnected to the cable hub 806 .
- This configurability aspect of the cable hub 806 can allow different sensors to be attached or removed from a patient based on the patient's monitoring needs, without coupling new cables to the monitor 820 .
- a single, light-weight cable 832 couples to the monitor 820 in certain embodiments, or wireless technology can be used to communicate with the monitor 820 (see, e.g., FIG. 1 ).
- a patient's monitoring needs can change as the patient is moved from one area of a care facility to another, such as from an operating room or intensive care unit to a general floor.
- the cable configuration shown can allow the patient to be disconnected from a single cable to the monitor 820 and easily moved to another room, where a new monitor can be coupled to the patient.
- the monitor 820 may move with the patient from room to room, but the single cable connection 832 rather than several can facilitate easier patient transport.
- the cuff 810 and/or patient device 816 need not be included, but the cable hub 806 can instead connect directly to the monitor wirelessly or via a cable.
- the cable hub 806 or the patient device 816 may include electronics for front-end processing, digitizing, or signal processing for one or more sensors. Placing front-end signal conditioning and/or analog-to-digital conversion circuitry in one or more of these devices can make it possible to send continuous waveforms wirelessly and/or allow for a small, more user-friendly wire (and hence cable 832 ) routing to the monitor 820 .
- the cable hub 806 can also be attached to the patient via an adhesive, allowing the cable hub 806 to become a wearable component.
- the various sensors, cables, and cable hub 806 shown can be a complete body-worn patient monitoring system.
- the body-worn patient monitoring system can communicate with a patient monitor 820 as shown, which can be a tablet, handheld device, a hardware module, or a traditional monitor with a large display, to name a few possible devices.
- FIGS. 9A-9D illustrate another embodiment of a wireless monitoring system 900 including a wireless monitor 902 coupled to a sensor 930 .
- the wireless monitoring system 900 is configured to connect to one or more sensors and/or a bedside monitor.
- the features of the wireless monitoring system 900 can be combined with any of the features of the systems described above. Likewise, any of the features described above can be incorporated into the patient monitoring system 900 .
- the wireless monitor 902 includes a removable battery 904 having a data storage component.
- the removable battery 904 can be used to pair the wireless monitor 902 with the correct bedside monitor as described below.
- the battery 904 is positioned on the front side of the wireless monitor 902 , so the battery 904 can be replaced without disconnecting a wireless monitor housing from the patient. Further details of these drawings are described below.
- FIG. 10 illustrates details of an embodiment of the wireless monitoring system 900 in a schematic form.
- the sensor 930 includes energy emitters 1016 located on one side of a patient monitoring site 1018 and one or more detectors 1020 located generally opposite.
- the patient monitoring site 1018 is usually a patient's finger (as pictured), toe, ear lobe, or the like.
- Energy emitters 1016 such as LEDs, emit particular wavelengths of energy through the flesh of a patient at the monitoring site 1018 , which attenuates the energy.
- the detector(s) 1020 then detect the attenuated energy and send representative signals to the wireless monitor 902 .
- the wireless monitor 902 can include a sensor interface 1024 and a digital signal processor (DSP) 1026 .
- the sensor interface 1024 receives the signals from the sensor 930 detector(s) 1020 and passes the signals to the DSP 1026 for processing into representations of physiological parameters.
- the DSP 1026 also communicates with a memory or information element, such as a resistor or capacitor, 1030 located on the sensor 930 , such memory typically contains information related to the properties of the sensor that may be useful in processing the signals, such as, for example, emitter 1016 energy wavelengths.
- the physiological parameters are passed to an instrument manager 1028 , which may further process the parameters for display by a bedside monitor 916 .
- the instrument manager 1028 may include a memory buffer 1034 to maintain this data for processing throughout a period of time.
- Memory buffer 1034 may include RAM, Flash or other solid state memory, magnetic or optical disk-based memories, combinations of the same or the like.
- the wireless monitor is able to display one or more physiological parameters.
- the wireless monitor 902 can include one or more displays 1036 , control buttons 1040 , one or more speakers 1038 for audio messages.
- Control buttons 1040 may comprise a keypad, a full keyboard, a touch screen, a track wheel, and the like.
- the wireless monitor 902 is powered by a battery 904 .
- the battery 904 directly or indirectly powers the sensor interface 1024 , DSP 1026 , and the instrument manager 1028 .
- the battery 904 includes memory 932 , such memory stores wireless communication information needed for the wireless monitor 902 to wirelessly communicate with bedside monitor 916 .
- the battery 904 can communicate the information stored on the memory 932 to the wireless monitor 902 or bedside monitor 916 , and the memory 932 can store information received from the wireless monitor 902 or bedside monitor 916 .
- the bedside monitor 916 wirelessly receives the physiological data and/or parameters from the wireless monitor 902 and is able to display one or more physiological parameters.
- the bedside monitor 916 can include one or more displays 1008 , control buttons 1010 , a speaker 1012 for audio messages, and/or a wireless signal broadcaster.
- Control buttons 1010 may comprise a keypad, a full keyboard, a track wheel, and the like.
- the wireless monitor 902 can include an optional internal battery 905 capable of powering the wireless monitor 902 when the battery 904 is disconnected from the wireless monitor 902 .
- the internal battery 905 can include additional backup memory 933 to store information when the battery 904 is disconnected from the wireless monitor 902 .
- the internal battery 905 can be useful when a caregiver replaces the battery 904 with a different, fully-charged battery. While the battery 904 is disconnected from the wireless monitor 902 , the wireless monitor 902 can continue to display and communicate information.
- the wireless patient monitoring system includes one or more sensors, including, but not limited to, a sensor 930 to monitor oxygen saturation and pulse rate. These physiological parameters can be measured using a pulse oximeter.
- the sensor 930 has light emitting diodes that transmit optical radiation of red and infrared wavelengths into a tissue site and a detector that responds to the intensity of the optical radiation after absorption (e.g. by transmission or transreflectance) by pulsatile arterial blood flowing within the tissue site. Based on this response, a processor determines measurements for SpO 2 , pulse rate, and can output representative plethsmorgraphic waveforms.
- pulse oximetry as used herein encompasses its broad ordinary meaning known to one of skill in the art, which includes at least those noninvasive procedures for measuring parameters of circulating blood through spectroscopy.
- the wireless monitoring system 900 can include any of the sensors described herein in addition to or in alternative to the pulse oximeter.
- the wireless monitoring system 900 can also include sensors for monitoring acoustics, sedation state, blood pressure, ECG, body temperature, and/or cardiac output.
- the wireless monitor may also include an accelerometer or gyroscope.
- the wireless patient monitoring system may include any of the above-mentioned sensors alone or in combination with each other.
- the wireless monitor 902 includes a wireless transmitter to transmit sensor data and/or a wireless receiver to receive data from another wireless transmitter or transceiver. By transmitting the sensor data wirelessly, the wireless monitor 902 can advantageously replace some or all cables that connect patients to bedside monitoring devices. Alternatively, the wireless monitor 902 calculates physiological parameters based on the sensor data and wirelessly transmits the physiological parameters and/or the sensor data itself to the bedside monitor.
- the physiological parameter can be numerical information, such as oxygen saturation (SpO 2 ) or pulse rate, or a graphical depiction of the sensor data.
- the data processors can be positioned in the wireless monitor housing or the battery. By configuring the wireless monitor 902 to calculate the physiological parameter, less data transfer is required to transmit information from the wireless monitor to the bedside monitor. Processing the sensor data in the wireless monitor 902 also improves the quality of the signal transferred to the bedside monitor.
- the wireless monitor 902 includes a removable battery 904 and a base 906 .
- the base 906 can include processing and wireless transmission capabilities and/or share processing function with the battery 904 .
- Removable battery 904 includes a release mechanism 912 to release the battery 904 from the base 906 .
- the base 906 can include a battery receiving portion 914 and a notch 917 to lock the removable battery 904 in place.
- Wireless monitor 902 can have one or more outlets 910 to plug in the sensor 930 , such as the pulse oximeter, acoustic respiratory sensor,
- one or more outlets 910 can be positioned on one or more sides of the wireless monitor 902 .
- the wireless monitor can include an outlet on one side for an acoustic respiratory sensor and an outlet on an opposite side for a pulse oximeter.
- Wireless monitor 902 can include an opening 908 through which an arm band 934 can be passed to secure the wireless monitor 902 to the arm of the patient, as shown in FIG. 9A .
- the arm band 934 can be reusable, disposable or resposable.
- any of the sensors 930 can be disposable or resposable.
- Resposable devices can include devices that are partially disposable and partially reusable.
- the acoustic sensor can include reusable electronics, but a disposable contact surface (such as an adhesive) where the sensor comes into contact with the patient's skin.
- the sensors 930 and/or wireless monitor 902 need not be worn around the patient's arm, but can be worn at any other location, including not at all.
- the sensors 930 and/or wireless monitor 902 need not be coupled to an arm band, but can be coupled to a patient's belt or a chest strap, can be carried by the patient (e.g., via a shoulder strap or handle), or can be placed on the patient's bed next to the patient, among other locations.
- FIG. 9D illustrates the battery 904 docked with a bedside monitor 916 .
- Bedside monitor 916 has a battery charging station 922 for receiving and charging removable battery 904 .
- the battery charging station 922 can charge a second battery, so when the battery levels of the first battery are low, a second battery is readily available.
- Each battery is capable of powering the wireless monitor 902 for at least one nursing shift, so each nurse only has to replace the battery once either at the beginning or end of each shift.
- An adapter 918 can be integrated with the bedside monitor or separately connected to bedside monitor 916 .
- the bedside monitor 916 includes a release mechanism 926 to release the adaptor 918 from the bedside monitor 916 .
- Adaptor 918 includes docking station 920 to receive the entire wireless monitor (not shown). Locking mechanism 924 holds the wireless monitor 902 in place.
- Other components may be connected to the bedside monitor 916 instead of the adaptor 918 , such as a handheld patient monitor device.
- the adaptor 918 includes a docking station 920 to receive the entire wireless monitor 902 .
- the wireless monitor 902 can be placed in the docking station 920 when it is not in use to prevent the wireless monitor 902 from being lost.
- the bedside monitor 916 can charge the battery 904 when the wireless monitor 902 is connected to the bedside monitor 916 .
- the bedside monitor 916 can communicate a password, unique identifier, appropriate channel information, or other wireless communication information to the wireless monitor 902 , and vice versa, when the wireless monitor 902 is connected to the bedside monitor 916 .
- the bedside monitor 916 is capable of simultaneously receiving a first battery and a wireless monitor 902 having a second battery.
- the bedside monitor 916 is configured to charge and sync both the first and second batteries.
- the first battery and/or the wireless monitor 902 and second battery are physically docked in the bedside monitor 916 , the first and/or second battery can communication with the bedside monitor 916 over a wired connection.
- the bedside monitor 916 can include a display screen 928 for displaying the physiological parameters, including trends, waveforms, related alarms, and the like. In certain aspects, the bedside monitor 916 can display the appropriate channel for communication and/or whether the wireless monitor 902 is properly communicating with the bedside monitor 916 .
- the bedside monitor 916 can include a computer-readable storage medium, such as a physical storage device, for storing the physiological data.
- the bedside monitor can include a network interface for communicating the physiological data to one or more hosts over a network, such as to a nurse's station computer in a hospital network.
- the wireless monitor 902 can transmit data to the bedside monitor 916 using any of a variety of wireless technologies, such as Wi-Fi (802.11x), Bluetooth, ZigBee, cellular telephony, infrared, RFID, satellite transmission, proprietary protocols, combinations of the same, and the like.
- the wireless monitor 902 can perform solely telemetry functions, such as measuring and reporting information about the patient.
- the wireless monitor 902 can be configured to utilize different wireless technologies.
- it may be desirable to transmit data over Bluetooth or ZigBee for example, when the distance between the wireless monitor 902 and the bedside monitor 916 is within range of Bluetooth or ZigBee communication. Transmitting data using Bluetooth or ZigBee is advantageous because these technologies require less power than other wireless technologies.
- it may be desirable to transmit data using Wi-Fi or cellular telephony for example, when the wireless monitor is out of range of communication for Bluetooth or ZigBee.
- a wireless monitor 902 may be able to transmit data over a greater distance using Wi-Fi or cellular telephony than other wireless technologies.
- the wireless monitor 902 automatically transmits data over Bluetooth or ZigBee when the wireless monitor 902 is within a pre-determined distance from bedside monitor 916 .
- the wireless transmitter 902 automatically transmits data over Wi-Fi or cellular telephony when the wireless monitor 902 is beyond a pre-determined distance away from the bedside monitor 916 .
- the wireless monitor 902 can automatically convert from Bluetooth or ZigBee to Wi-Fi or cellular telephony, and vice versa, depending on the distance between the wireless monitor 902 and bedside monitor 916 .
- the wireless monitor 902 automatically transmits data over Bluetooth or ZigBee when the Bluetooth or ZigBee signal strength is sufficiently strong or when there is interference with Wi-Fi or cellular telephony.
- the wireless monitor 902 automatically transmits data over Wi-Fi or cellular telephony when the Bluetooth or ZigBee signal strength is not sufficiently strong.
- the wireless monitor 902 can automatically convert from Bluetooth or ZigBee to Wi-Fi or cellular telephony, and vice versa, depending on signal strength.
- Existing wireless bedside monitoring devices can be difficult to use because it can be difficult to pair the wireless device with the correct bedside monitor, making it difficult to switch wireless devices or switch bedside monitors.
- Some wireless systems require the care provider to program the wireless device to communicate with the correct patient monitor.
- Other wireless systems require a separate token or encryption key and several steps to pair the wireless device with the correct bedside monitors.
- Some systems require the token to be connected to the bedside monitor, then connected to the wireless device, and then reconnected to the bedside monitor.
- the removable battery 904 includes a data storage component, such as memory 932 , capable of storing wireless communication information.
- the battery 904 is configured to connect to both the wireless monitor 902 and the bedside monitor 916 .
- Combining the battery 904 with a data storage component can decrease the total number of components and decrease the number of steps it takes to transfer wireless communication information between the wireless monitor 902 and bedside monitor 916 because a separate token or encryption key is not needed. This method of data transfer also eliminates user input errors arising from users having to program the wireless monitor 902 and/or bedside monitor 916 and allows for easy transfer of wireless communication information between the wireless monitor 902 and bedside monitor 916 .
- security tokens prevent the bedside monitor 916 from accessing the transmitted data unless wireless monitor 902 and bedside monitor 916 share the same password.
- the password may be a word, passphrase, or an array of randomly chosen bytes.
- the bedside monitor 916 can communicate a password to the battery 904 , and the battery 904 stores the password on its data storage component.
- the battery 904 can communicate a password for the wireless monitor 902 to the bedside monitor 916 .
- the battery 904 can then be disconnected from the bedside monitor 916 and connected to the wireless monitor 902 .
- the battery 904 can communicate the password to the wireless monitor 902 .
- the wireless monitor 902 can then communicate wirelessly with the correct bedside monitor 916 .
- the bedside monitor 916 communicates a unique identifier to the battery 904 , and the battery 904 stores the unique identifier on its data storage component.
- the battery 904 can communicate a unique identifier for the wireless monitor 902 to the bedside monitor 916 .
- the battery 904 can then be disconnected from the bedside monitor 916 and connected to the wireless monitor 902 .
- the battery 904 can communicate the unique identifier to the wireless monitor 902 , so that the wireless monitor 902 can transmit data to the correct bedside monitor 916 .
- the wireless monitor 902 it is desirable for the wireless monitor 902 to be configured to transmit data over the correct channel.
- Channels provide a mechanism to avoid sources of wireless interference.
- the bedside monitor 916 communicates the appropriate channel to the battery 904 , and the battery 904 stores the channel information on its data storage component. If necessary, the battery 904 can communicate a wireless monitor channel the bedside monitor 916 . The battery 904 is then disconnected from the bedside monitor 916 and connected to the wireless monitor 902 . When the battery 904 is connected to the wireless monitor 902 , the battery 904 can communicate the appropriate channel information to the wireless monitor 902 , thereby ensuring the wireless monitor 902 transmits data over the correct channel.
- the battery 904 can receive or communicate any one or combination of passwords, tokens, or channels as described above.
- the wireless communication information can include information to communicate over each protocol the wireless monitor 902 is configured to communicate over. For example, if the wireless monitor 902 is capable of communicating over Wi-Fi and Bluetooth, then the battery 904 is capable of receiving wireless communication information to communicate over both Wi-Fi and Bluetooth.
- the battery 904 is initially connected to the wireless monitor 902 .
- the wireless monitor 902 can communicate wireless communication information identifying the wireless monitor 902 to the battery 904 , and the battery 904 can store the information on its data storage component.
- the battery can communicate wireless communication information identifying the bedside monitor 916 to the wireless monitor 902 .
- the battery 904 is connected to the bedside monitor 916 .
- the battery 904 can then communicate wireless communication information stored on the data storage component to the bedside monitor 916 , such as a password, unique identifier, channel, or other data information.
- FIG. 11 illustrates an embodiment for using the wireless patient monitoring system that can be used in connection with any wireless patient monitoring system described herein.
- the operator connects the removable battery to the bedside monitor (block 1102 ) and the bedside monitor and the battery communicate wireless communication information with each other (block 1104 ).
- the operator then disconnects the battery from the bedside monitor (block 1106 ) and connects the battery to the wireless monitor (block 1108 ).
- the battery and the wireless monitor communicate wireless communication information with each other (block 1110 ).
- the wireless monitor receives data from the one or more sensors (block 1112 )
- the wireless monitor processes the sensor data into representations of physiological parameters (block 1114 ).
- the wireless monitor then wireless communicates the physiological parameters and/or the sensor data to the bedside monitor (block 1116 ).
- the data storage component of the battery 904 stores wireless communication information related to the wireless monitor 902 .
- the wireless communication information can be a password, unique identifier, channel, etc.
- the bedside monitor 916 can communicate wireless communication information to the battery 904
- the battery 904 can communicate wireless communication information to the bedside monitor 916 .
- the battery 904 is then disconnected from the bedside monitor 16 and connected to the wireless monitor 902 . Since the battery 904 already communicated the wireless communication information to the bedside monitor 916 , the battery 904 provides all remaining wireless communication information to the wireless monitor.
- the wireless monitor reconfigures itself according to the information on the battery and no further information is required to be communicated with the bedside monitor 916 . This reduces the total number of steps necessary to pair the wireless monitor 902 with the correct bedside monitor 916 .
- FIG. 12 illustrates another embodiment of the wireless patient monitor 1202 .
- the features of the wireless patient monitor 1202 can be combined with any of the features of the systems described above. Likewise, any of the features described above can be incorporated into the patient monitor 1202 .
- the wireless patient monitor 1202 can include a housing 1205 that removably engages a battery 1204 .
- the monitor 1202 can include a release mechanism 1212 for releasing the battery 1204 from the housing 1206 and/or one or more outlets 1210 for engaging one or more sensors.
- the wireless patient monitor 1202 can include a wireless transceiver capable of transmitting data using any of a variety of wireless technologies, such as Wi-Fi (802.11x), Bluetooth (802.15.2), Zigbee (802.15.4), cellular telephony, infrared, RFID, satellite transmission, proprietary protocols, combinations of the same, and the like.
- Wi-Fi 802.11x
- Bluetooth 802.15.2
- Zigbee 802.15.4
- cellular telephony infrared
- RFID satellite transmission
- proprietary protocols combinations of the same, and the like.
- the battery 1204 can include a display screen 1240 .
- the display screen 1240 can indicate any number of parameters, including, but not limited to, physiological parameters, battery levels, and wireless signal strength. Positioning the display screen 1240 on the battery 1204 helps reduce the size of the housing.
- the display screen 1240 can include a touch interface to permit a user to access different parameters or settings (e.g., display settings, connectivity settings, etc.). In certain aspects, the display screen 1240 can rotate depending on the orientation of the battery 1204 .
- the display screen 1240 can selectively display certain parameters depending on the location of the battery 1204 . For example, if the battery is connected to the bedside monitor or disconnected from the wireless monitor, the battery may only display battery levels. If the battery is connected to the wireless monitor, then the battery may display additional parameters other than battery levels.
- the display screen 1240 can selectively display certain parameters depending on the distance between the wireless monitor 1202 and the bedside monitor 1216 . Referring to FIG. 13 , if the wireless monitor 1202 is within a predetermined distance from the bedside monitor—(block 1300 ), then the display screen 1240 deactivates (block 1302 ). If the wireless monitor 1202 is not within a predetermined distance from the bedside monitor (block 1300 ), then the display screen 1240 initializes (block 1304 ). The display screen 1240 only needs to be active when the patient is not close to the bedside monitor.
- the display screen 1240 can selectively display certain parameters depending on the type of wireless connection between the wireless monitor 1202 and the bedside monitor and/or hospital IT infrastructure. Referring to FIG. 14 , if the wireless monitor 1202 wirelessly communicates physiological parameters and/or sensor data over Bluetooth (block 1410 ), then the display screen deactivates (block 1412 ). If the wireless monitor 1202 wirelessly communicates physiological parameters and/or sensor data over Wi-Fi (block 1414 ), then the display screen 1240 initializes (block 1416 ).
- the wireless monitor 1202 can selectively transmit information over different wireless connections and display certain parameters depending on the distance between the wireless monitor 1202 and the bedside monitor. Referring to FIG. 15 , if the wireless monitor 1202 is within a predetermined distance from the bedside monitor (block 1520 ), then the wireless monitor 1202 wirelessly communicates physiological parameters and/or sensor data to the bedside monitor over Bluetooth (block 1522 ). If the wireless monitor 1202 wirelessly communicates to the bedside monitor over Bluetooth (block 1522 ), then the display screen 1240 deactivates (block 1524 ). The display screen 1240 does not need to be active since the bedside monitor is nearby.
- the wireless monitor 1202 wirelessly communicates physiological parameters and/or sensor data to the bedside monitor over Wi-Fi (block 1526 ). If the wireless monitor 1202 wireless communicates to the bedside monitor over Wi-Fi (block 1526 ), then the display screen 1240 initializes (block 1528 ). If the wireless monitor 1202 is communicating over Wi-Fi, then it is more likely that the patient is not in the patient room. In that case, it is necessary to have a secondary display screen available to monitor the patient's physiological parameters.
- FIGS. 14 and 15 were discussed in reference to Bluetooth and Wi-Fi, the system can wirelessly communication information over ZigBee or cellular telephony. Also, the system may convert from a first wireless technology (e.g., Bluetooth) to a second wireless technology (Wi-Fi) based on signal strength rather than distance.
- a first wireless technology e.g., Bluetooth
- Wi-Fi wireless technology
- the wireless monitor 1202 can help the hospital staff monitor the patient when the patient is not close to the bedside monitor.
- the bedside monitor will notify the staff if any of the patient's physiological parameters are irregular by activating an audible alarm and/or by alerting a staff member using the hospital IT infrastructure.
- the wireless monitor 1202 can send the physiological parameters and/or sensor data directly over the hospital IT infrastructure, so the hospital staff can continuously monitor the patient at the nurse's station or any other location. If the patient exhibits any irregular physiological parameters, the wireless monitor 1202 can activate an audible alarm and/or alert a staff member using the hospital IT infrastructure.
- the wireless monitor 1202 can use triangulation to provide the location of the patient, so the staff member can quickly find the patient. By configuring the wireless monitor 1202 to process the sensor data, the wireless monitor 1202 is capable of communicating physiological parameters over the hospital IT infrastructure without the bedside monitor.
- Any of the systems described herein can include a display screen and can be configured to carry out any of the methods described in FIGS. 13-15 .
- FIGS. 16A-F illustrate another embodiment of a wireless patient monitoring system.
- the features of the wireless patient monitoring system can be combined with any of the features of the systems described above. Likewise, any of the features described above can be incorporated into the wireless patient monitoring system.
- FIG. 16A illustrates the wireless monitor 1602 with the battery 1604 detached from the base 1606 .
- the base 1606 can include processing and wireless transmission capabilities and/or share processing function with the battery 1604 .
- the battery 1602 removably engages an anterior surface of the base 1606 .
- the battery 1602 can engage the housing 1602 via a magnet, a clip, a band, a snap fit, a friction fit, or otherwise.
- the housing 1602 can include one or more outlets 1610 for engaging one or more sensors 1630 .
- the housing 1206 can include an outlet on one end of the housing and another outlet on the opposite end of the housing. Disposing outlets on opposite ends of the housing can be useful to prevent sensor cables from tangling.
- the battery 1604 can include a display screen 1640 and a user input device 1644 .
- the user input device can activate the screen, adjust display settings, select physiological parameters to display, and/or otherwise control the display screen 1640 .
- the user input device 1644 can be a touch pad.
- a user can tap the touch pad to select a feature and/or swipe in different directions to change selections. For example, the user can swipe right or left to change the parameters displayed on the display screen. Other functions can also be performed using the three inputs of the touch pad—left swipe, right swipe, and tap.
- Other user input devices 1644 can include one or more buttons, switches, or other control.
- the display screen can be the user input device.
- FIG. 16B illustrates a strap 1646 for securing the wireless monitor 1602 to the patient.
- the strap 1646 can include any fabric, elastic, or otherwise flexible material.
- the strap 1646 can be waterproof.
- One or both ends of the strap 1646 can be tapered.
- One or both ends of the strap 1646 can include a covering to protect the strap ends.
- the strap 1646 can be secured to the patient as an arm band, a shoulder strap, a belt, or in any other configuration. A portion of the strap 1646 can be secured to another portion of the strap 1646 using Velcro 1660 , clasps, adhesive, snap-fits, or any other connector.
- the strap 1646 can include a band (not shown) for securing an excess portion of the strap 1646 .
- the strap 1646 can include a connector 1650 for engaging the wireless monitor 1602 and an adjustment mechanism 1648 to adjust the length of the strap 1646 and/or secure any excess strap 1646 .
- the connector 1650 can be an integral portion of the strap 1646 or a separately formed component secured to the strap 1646 .
- the connector 1650 can include an opening 1656 on opposite sides of the connector 1650 for securing either end of the strap 1646 .
- One or both ends of the strap 1646 can be removably secured to the connector 1650 .
- the connector 1650 engages the housing by being disposed between the base 1606 and the battery 1604 . At least a portion of the connector 1650 can overlay a portion of the housing.
- the connector 1650 can include certain features to mate with a corresponding feature of the base 1606 and/or battery 1604 .
- the connector 1650 can include one or more recesses 1652 configured to mate with one or more protrusions 1658 on the base 1606 .
- the connector 1650 can include a recess 1652 on opposite ends of the connector 1650 that mate with protrusions 1658 on opposite ends of the base 1606 .
- the connector 1650 can be flush with the protrusions 1658 to provide a flat surface for the battery 1604 .
- the connector 1650 can pass through an opening of the wireless monitor.
- the wireless monitor can include an opening 1208 for engaging the strap 1646 .
- the connector 1650 can engage the wireless monitor 1602 using clips, ties, buckles, buttons, or any other connector.
- the wireless monitor 1602 can include a wireless transceiver capable of transmitting data using any of a variety of wireless technologies, such as Wi-Fi (802.11x), Bluetooth (802.15.2), Zigbee (802.15.4), cellular telephony, infrared, RFID, satellite transmission, proprietary protocols, combinations of the same, and the like.
- Wi-Fi 802.11x
- Bluetooth 802.15.2
- Zigbee 802.15.4
- cellular telephony infrared
- RFID satellite transmission
- proprietary protocols combinations of the same, and the like.
- FIGS. 16D-16F illustrate a bedside monitor 1616 configured to receive the wireless monitor 1602 .
- the bedside monitor can include one or more input ports 1627 configured to receive cables.
- the bedside monitor 1616 can include a port 1617 configured to receive a handheld device, such as the handheld monitor 166 shown in FIG. 1D . Further details about the handheld device can be found in U.S. application Ser. No. 13/651,167, filed Oct. 12, 2012, entitled “Medical Monitoring Hub,” which is hereby incorporated by reference in its entirety.
- the port 1617 can removably engage an adapter 1618 .
- the adapter 1618 can include a release mechanism 1626 to release the adapter 1618 from the port 1617 .
- the release mechanism 1626 is studded, so a user must use one or more tools to release the release mechanism 1626 .
- the adapter 1618 can be configured to receive a battery 1604 and/or a wireless monitor 1602 .
- the adapter 1618 can include a docking adaptor door 1620 configured to receive the stand alone battery 1604 and/or and a port for receiving a the wireless monitor 1602 including a battery 1604 .
- the docking adaptor door 1620 can pivot to facilitate insertion and removal of the wireless monitor 1602 .
- FIGS. 17A-17C illustrate another embodiment of a wireless monitor 1702 .
- the wireless monitor 1702 can include any of the other wireless monitor features described herein.
- any of the other wireless monitor embodiments discussed herein can include any of the features of the wireless monitor 1702 .
- the wireless monitor 1702 can include a battery 1704 removably engaged with a base 1706 .
- the base 1706 can include processing and wireless transmission capabilities and/or share processing function with the battery 1704 .
- FIG. 17A illustrates an exploded view of the wireless monitor 1702 .
- the housing can include one or more outlets 1710 configured to connect to one or more sensors (not shown).
- the battery can include a display 1740 capable of displaying physiological parameters, connectivity information, and/or other content.
- the battery 1704 can include a touch pad 1744 or other user input device. The touch pad 1744 can permit the user to swipe right, swipe left, or tap to control the wireless monitor 1702 .
- the battery 1704 can include an additional user input device (e.g., button 1745 ) that can activate/deactivate the wireless monitor or provide other functionality.
- the battery can include one or more protrusions, ribs, struts, detents, or the like configured to be received in corresponding grooves, notches, recesses, openings, or the like in the base 1706 .
- FIG. 17B illustrates views of an inner portion of the battery 1704 and an inner portion of the housing.
- the battery 1704 can include two protrusions 1741 on each end of the battery 1704 and along an inner portion of the battery 1704 .
- One or more of the protrusions 1741 can be a different size or shape from the other protrusions 1741 .
- the base 1706 can include two grooves 1743 on each end of the base 1706 and along an inner portion of the base 1706 .
- Each of the grooves 1743 can be configured to receive one of the protrusions 1741 .
- One or more of the grooves 1743 can be a different size or shape from the other grooves 1743 .
- FIG. 17C illustrates a perspective view of the battery 1704 engaged with the base 1706 .
- the wireless monitor 1702 can include a wireless transceiver capable of transmitting data using any of a variety of wireless technologies, such as Wi-Fi (802.11x), Bluetooth (802.15.2), Zigbee (802.15.4), cellular telephony, infrared, RFID, satellite transmission, proprietary protocols, combinations of the same, and the like.
- Wi-Fi 802.11x
- Bluetooth 802.15.2
- Zigbee 802.15.4
- cellular telephony infrared
- RFID satellite transmission
- proprietary protocols combinations of the same, and the like.
- any of the wireless monitoring systems described herein can include an accelerometer or gyroscope that can be used to detect one or more of patient orientation, patient movement, whether the patient is falling, or the like.
- the wireless monitoring system can include an alert system to alert the caregiver that the patient is falling, getting out of bed, or otherwise moving in a prohibited manner.
- the alert can be an audible and/or visual alarm on the monitoring system or transmitted to a caregiver (e.g., nurses' station, pager, home computer, or otherwise).
- the information received by the accelerometer or gyroscope can be used to create an indication and/or animation of patient movement.
- This animation can be displayed on the patient monitor or transmitted to a nurses station or other off-site location to enable the caregiver to monitor the patient.
- the animation can be viewed real time and/or be recorded for playback. For example, if an alarm alerts the caregiver that the patient has fallen out of bed, the caregiver can be presented playbacks of one or more of the patient's movement during that period of time.
- FIGS. 18A-18C illustrate examples of the animation that can be displayed on a bedside monitor, nurses' station monitor, or other display screen.
- FIG. 18A illustrates a patient lying in bed 1801 , and the patient rolling over 1803 .
- FIG. 18B illustrates the patient lying in bed 1805 , and the patient sitting up 1807 .
- FIG. 18C illustrates the patient lying in bed 1809 , and the patient getting out of bed 1811 .
- Other patient movements can also be illustrated, such as a patient falling, walking, or otherwise.
- bedsores sometimes called pressure sores.
- Bedsores often result from patients maintaining the same position in bed (or in a chair) over an extended period of time. If left untreated, bedsores can result in life-threatening staph infections. Nurses may attempt to prevent bedsores by instructing patients to turn over, get up, or manually turning patients with limited mobility from time to time. However, with increasingly large workloads, it can be difficult for hospital staff to keep track of each patient's turning/movement schedule to prevent bedsores.
- a patient movement detector can address these and other issues.
- the patient movement detector may receive inputs from position sensors, a thermal imaging camera, a video camera, and/or triangulation data. Based on one or more of these inputs, the patient movement detector can perform one or more of the following: fall prevention detection, bedsore prevention analysis, patient location detection, and patient walk test scoring.
- the patient movement detector can, for example, output a fall warning alarm, a bedsore warning alarm, patient location information, and/or walk test scores.
- the patient movement detector 1910 includes a fall warning module 1912 , a bedsore warning module 1914 , a patient location detector 1916 , and a walk test scoring module 1918 .
- the patient movement detector 1910 receives inputs, including position sensor data, infrared (IR) or thermal imaging camera data, video camera data, triangulation data, and physiological parameter data.
- the patient movement detector 1910 outputs a fall warning alarm, bedsore warning alarm, the patient's location, and a walk test score.
- Some of the inputs to the patient movement detector 1910 may be omitted in some embodiments.
- any of the modules may be omitted, and some of the outputs may be omitted as well.
- the patient movement detector 1910 can include hardware and/or software, such as hardware processor comprising digital logic circuitry, a memory, and the like for performing the tasks described herein, among possibly others.
- the patient movement detector 1910 can be implemented by any of the patient monitoring systems or devices, including wireless devices, described herein. In an embodiment, however, the patient movement detector 1910 is implemented by the multi-patient monitoring system 640 described above. For instance, the patient movement detector 1910 can be implemented in a central hospital server or clinical facility server or the like. In other embodiments, the patient movement detector 1910 can be implemented by a bedside device that communicates wirelessly with any of the patient-worn monitoring systems described above.
- the patient-worn monitoring system can send the patient movement detector 1910 position sensor data from an accelerometer, gyroscope, or compass in the patient-worn monitoring system.
- the IR camera data and/or video camera data can be sent to the patient movement detector 1910 from an IR camera and/or video camera installed at or in the bedside device or elsewhere in the patient's room.
- the IR camera and video camera may be implemented in a single device.
- Triangulation data can be provided to the patient movement detector 1910 from wireless access points in a hospital, for example, wherever a patient's wireless transceiver (e.g., the patient-worn monitoring system) is detected. Further, the patient-worn monitoring system can transmit physiological parameter data to the patient movement detector 1910 .
- the patient movement detector 1910 can operate at least in part without interacting with a patient-worn monitoring system.
- the patient may be coupled with a bedside monitoring device via sensors connected to the bedside monitoring device or wirelessly.
- the bedside monitoring device may implement the patient monitoring detector 1910 .
- One or more position sensors may be integrated with one or more of the physiological sensors coupled with the patient.
- the position sensors are omitted and the patient movement detector 1910 uses IR camera data and/or video camera data to perform patient movement detection.
- the fall warning module 1912 can help prevent patient falls by anticipating falls before they are about to occur.
- the fall warning module 1912 performs fall prevention detection for patients who are marked as high risk for falling (e.g., in an EMR system).
- the fall warning module 1912 performs fall prevention detection for all patients.
- the fall warning module 1912 may also detect when a fall has occurred. In either case (actual fall or predicted potential fall), the fall warning module 1912 can issue an audible and/or visual alarm, which may also be sent over a network, to one or more clinicians regarding a possible fall or actual occurrence of a fall.
- the fall warning module 1912 can analyze IR camera data to determine whether a fall has occurred in one embodiment. For instance, the fall warning module 1912 can monitor the IR image data for changes in thermal temperature in the IR image. If the temperature detected in the image, which may be represented by pixel intensity or luminosity, drops, then the fall warning module 1912 can sound an alarm. This drop in IR temperature can be indicative of the patient leaving the bed (e.g., by falling) or having already left the bed. Other embodiments are also described below with respect to FIG. 20 .
- the fall warning module 1912 may also detect potential falls based on position sensor data from an accelerometer, gyroscope, or compass. Any of these devices can provide outputs that reflect changes in patient position. For instance, the gyroscope can output motion data indicative of an orientation of the patient or a rotation of the patient. The fall warning module 1912 can analyze the changes in patient position, such as changes in the orientation or rotation of the patient, to predict an upcoming fall and alarm accordingly. In one example, the fall warning module 1912 can determine that the changes in the orientation or rotation of the patient suggest that the patient performed a sideways roll or partial sideways roll where the patient rotated in the bed while the patient's body remained parallel to the surface of the bed.
- Such a sideways roll or partial sideways roll can be indicative of an elevated risk that the patient subsequently leaves the bed in an unsafe manner. More generally, the fall warning module 1912 can determine whether a portion of the patient to which the position sensor is attached has rolled or turned a certain amount and alarm accordingly if that amount is indicative of a potential fall or actual fall.
- the fall warning module 1912 may also perform sensor fusion or parallel analysis of sensor inputs to improve fall prevention and/or fall detection. For instance, the fall warning module 1912 can analyze both position sensor data and IR camera data. If both the position sensor data and IR camera data indicate that the patient may be falling or has fallen, the fall warning module 1912 can have greater confidence that a fall has occurred or is about to occur. Accordingly, in one embodiment, the fall warning module 1912 alarms a fall warning alarm if both the position sensor data and the IR camera data indicate that a fall may have occurred or may be about to occur. In another embodiment, the fall warning module 1912 calculates an internal confidence value of a fall based on both the position data and the IR camera data.
- the fall warning module 1912 can analyze the confidence values to determine whether to alarm, for example, by averaging the confidence values and comparing the average value to a threshold (e.g., above a threshold indicates an alarm should be made). The fall warning module 1912 can also analyze the confidence values by determining that if one of the confidence values is over a threshold, a fall warning alarm should be made.
- the fall warning module 1912 can use other inputs, such as the triangulation data and/or video camera data to detect falls that are about to occur or that have occurred.
- Triangulation data can be used to detect a patient's position in the hospital or clinical facility (e.g., by the patient location detector 1916 ). If the triangulation data indicates that the patient is in a single location, not moving, and that position is other than the patient's bed, and the position sensor data indicates that the patient is not moving, and the IR camera data indicates that the bed is empty, or based on another combination of these inputs, the fall warning module 1912 may issue an alarm.
- IR cameras may also be placed in other locations of the hospital, such as the bathroom, to determine whether a patient is still on a toilet or whether the patient has fallen to the floor (e.g., by analyzing thermal image data of the toilet to determine whether the patient is still on the toilet).
- the fall warning module 1912 may analyze video camera data to compare images of the patient in the bed and out of the bed, for example, by comparing pixels to determine whether the patient has left the bed. However, if the patient covers himself or herself with a sheet, the video camera image data may be less useful than IR camera data, which can detect thermal energy given off by a patient even when a sheet is over the patient.
- the fall warning module 1912 can use the various inputs to the patient movement detector 1910 to determine whether the patient 1) has left the bed, 2) has rolled over in the bed (and is possibly about to fall), 3) is rolling off the bed, or 4) is on the floor, among many other possibilities. Further, such analysis may also be applied to patients sitting in a chair.
- the thermal camera and/or the video camera use motion-tracking algorithms to swivel and track the patient wherever the patient moves within a room.
- the cameras can output thermal imaging data and/or video camera images to a clinician over a network, for example, by sending the image data to a nurse's station computer, a clinician device, or to a server that can send the image data to the nurse's station computer or clinician device.
- the bedsore warning module 1914 can perform similar analysis as the fall warning module 1912 , with one difference being in one embodiment that the bedsore warning module 1914 looks for lack of movement in the patient to predict whether the patient has been in one place too long. If the patient has been in one place too long or in one position too long, the patient may be at risk for developing a bedsore, whether the patient is in a bed or in a chair.
- the bedsore warning module 1914 can therefore analyze the IR image data, position sensor data, and/or triangulation data (and/or video camera data) to determine whether the patient has not moved for a period of time. As above, the bedsore warning module 1914 can compute the change of a patient not moving based on one of these inputs or based on a plurality of these inputs.
- the bedsore warning module 1914 can also compute a confidence that the patient has not moved. Either the fall warning module 1912 or the bedsore warning module 1914 can output their respective calculated confidence values or scores for presentation on a display to a clinician.
- the bedsore warning module 1914 can compare the amount of time that a patient has not moved or has moved only a small amount to a threshold. If the threshold is met or exceeded, the bedsore warning module 1914 can trigger an audible and/or visual alarm (which may also be sent to a clinician over a network). The alarm can remind the clinician to check the patient and possibly move the patient or instruct the patient to move (e.g., by rolling over in bed or by getting up) to reduce the risk of bedsores.
- the patient location detector 1916 may perform any of the patient location detection techniques described above, such as triangulation using triangulation data obtained from different wireless access points in a clinical facility.
- the patient location detector 1916 can also perform dead reckoning to determine patient position based on the position sensor data. Accelerometer or gyroscope data can be integrated, for instance, by the patient location detector 1916 to detect approximate patient position, speed, distance traveled, and so forth.
- the triangulation techniques described herein may detect approximate patient position, speed, distance traveled, and so forth.
- position sensors drift, and accordingly, position, distance, and/or speed can become inaccurate over time. Accordingly, the patient location detector 1916 can update the position, distance, and/or speed information obtained from the position sensor(s) with triangulation information.
- the triangulation information can therefore act to calibrate the position sensor data in an embodiment.
- the walk test scoring module 1918 can compute a walk test score automatically based on an analysis of walking behavior of a patient. Hospitals often administer walk tests to patients to determine whether patients are fit for discharge. For example, a clinician may instruct a patient to walk down a hallway or walk for a set period of time (such as a few minutes). The clinician may then evaluate the patient's walking performance to see whether the patient is well enough to leave the hospital.
- the walk test scoring module 1918 can automate walk test scoring based on any of the inputs to the patient movement detector 1910 described above. For instance, the walk test scoring module 1918 can evaluate the position sensor data or triangulation data to determine a patient's location, distance traveled, and/or speed. If the patient walks a relatively longer distance in a period of time, or if the patient walks relatively faster, the walk test scoring module 1918 can assign a higher score to the patient than if the patient were to walk a shorter distance or walk slower. The walk test scoring module 1918 can be invoked in response to request from a clinician (e.g., through a user interface output on a display) or may instead programmatically monitor a patient whenever the patient walks and update a walk score accordingly.
- a clinician e.g., through a user interface output on a display
- the walk test scoring module 1918 could instead calculate a general patient movement score, which can reflect any of a variety of factors, including distance traveled in a given time period (such as a day, an hour, etc.), walking speed, degree of patient movement within a bed (which data may be determined in part by the IR or video camera data in addition to or instead of position sensor data), and so forth.
- the walk test scoring module 1918 can use the parameter data to adjust walk test scores. If a patient's respiratory rate or SpO2 are severely adversely affected by walking, the walk test scoring module 1918 can score the test lower than if the respiratory rate or SpO2 (or other parameter values) stay within normal expected limits for patient walking.
- the walk test scoring module 1918 can compute a steadiness of the patient or use a steadiness calculation to adjust the walk test score.
- the walk test scoring module 1918 may, for instance, detect any wobbling or unsteadiness of the patient when walking or standing using output from a position sensor.
- the walk test scoring module 1918 may lower the walk test score if the patient is more wobbly or unsteady.
- the walk test scoring module 1918 or patient location detector 1916 can output a fall warning alarm if the patient appears to be wobbling or unsteady as detected by the position sensor(s).
- FIG. 20 depicts an embodiment of a fall warning process 2000 , which may be implemented by the fall warning module 1912 or any other patient monitoring system.
- the fall warning module 1912 captures a baseline thermal image of patient bed with patient in the bed. The fall warning module 1912 then can capture thermal images of the bed over time at block 2004 .
- the fall warning module 1912 can determine a thermal profile of the bed.
- the thermal profile may be a value that represents a sum of thermal values from a thermal image.
- the thermal profile may be represented as a thermal image map of the bed, or a spectrogram of thermal images (e.g., in the frequency or spectral domain).
- the fall warning module 1912 can determine at block 2008 whether a significant drop or change in the thermal profile has occurred. For instance, if the sum of thermal values from the thermal image differs significantly from the baseline image, the change may be significant. This analysis may be performed in the frequency or spectral domain, e.g., by analyzing a spectrogram of the thermal imaging data.
- the fall warning module 1912 can trigger an alarm that the patient may have left the bed (or has fallen, or is falling). Thereafter, the process 2000 may end. Otherwise, if the significant change has not occurred, the fall warning module 1912 can detect rolling or sliding in the thermal profile at block 2012 . If the patient has moved in the bed, rolling may be inferred, for instance. If the patient's thermal profile indicates movement off the bed, the fall warning module 1912 may infer that the patient is sliding or falling off the bed and alarm that the patient may be leaving the bed at block 2014 .
- the process 2000 may be modified to perform block 2012 or 2008 but not both in one embodiment.
- FIG. 21 depicts an embodiment of a bedsore warning process 2100 , which may be implemented by the bedsore warning module 1912 or any other patient monitoring system.
- Blocks 2102 through 2106 of the process 2100 can proceed similarly to blocks 2002 through 2006 of the process 2000 .
- the bedsore warning module 1912 determines whether a significant change in the thermal profile has occurred after a certain time period, which may be minutes, an hour or hours, or the like. The significant thermal change can be indicated by the sum or spectrogram described above. If so, the process 2100 can loop back to block 2104 , continuing to capture thermal images and thereby monitoring the patient. If not, the bedsore warning process 2100 can issue an alarm at block 2110 .
- FIG. 22 depicts an embodiment of a fall warning process 2200 , which may be implemented by the fall warning module 1912 or any other patient monitoring system.
- the fall warning module 1912 receives motion data from a position sensor, such as a gyroscope.
- the motion data can be indicative of an orientation or a rotation of the patient while the patient is in the bed.
- the fall warning module 1912 compares the motion data with a predetermined fall threshold indicative of a degree or significance of motion or rotation of the patient.
- the predetermined fall threshold can be a degree of rotation, such as 30°, 60°, 90°, 120°, 150°, or 180° (or some other value) of sideways rotation, by the patient while the patient's body remains parallel to the surface of the bed.
- the process 2200 may end. For instance, if the motion data indicates that the patient rotated sideways by 20°, the fall warning module 1912 can determine that the 20° of sideways rotation does not exceed a predetermined fall threshold of (for example) 90° of sideways rotation, so the process 2200 ends.
- a predetermined fall threshold for example
- the fall warning module 1912 at block 2208 can trigger an alarm that the patient may leave the bed, may have left the bed, may have fallen, or is falling.
- the fall warning module 1912 can determine that the 100° of sideways rotation exceeds the predetermined fall threshold of (e.g.) 90° of sideways rotation, so the fall warning module 1912 triggers the alarm.
- the alarm can, in some cases, be considered an early fall warning alarm that indicates a greater risk that the patient may subsequently leave the bed in an unsafe manner. Thereafter, the process 2200 may end.
- the process 2200 may be modified to so that before an alarm is triggered at block 2208 , the fall warning module 1912 also performs one or more additional checks before triggering the alarm.
- the fall warning module 1912 can, for instance, determine whether a significant drop or change in the thermal profile has occurred as described with respect to block 2008 of the process 2000 , before triggering the alarm.
- Such one or more additional checks can advantageously, in certain embodiments, provide greater confidence that an alarm is triggered under conditions that may require or soon require the attention of a caregiver, and thereby reduce a number of false alarms.
- certain rolling motions for example, a partial sideways roll
- followed by leaving the bed can be more likely to indicate of a dangerous situation for the patient than other motions by the patient before the patient leaves the bed.
- the ability to detect such rolling motions followed by detecting leaving the bed can desirably enable caregivers to treat an alarm triggered under such conditions with an elevated priority because the alarm may likely reflect a greater need for urgent attention or for significant attention or resources to attend to the patient relative to one or more other conditions or alarms.
- the fall warning module 1912 may take into account how fast the motion data is changing in order to trigger an alarm. If the motion data changes quickly, or has a high rate of change, this may indicate that the patient is now falling or has fallen.
- a method of triggering a medical monitoring alarm can include, under control of a hardware processor comprising digital logic circuitry: receiving, from a position sensor, movement data indicative of an orientation or rotation of a patient occupying a patient bed; receiving, from a thermal imaging camera, a baseline thermal image of the patient bed with the patient occupying the patient bed; receiving a second thermal image of the patient bed from the thermal imaging camera; determining whether a portion of the patient to which the position sensor is attached rotated sideways more than a threshold amount in the patient bed based at least on the movement data; determining a degree of change in thermal data between the second thermal image and the baseline thermal image; and triggering an alarm responsive to determining that the patient rotated sideways more than the threshold amount and the determined degree of change in the thermal data.
- determining the degree of any change includes determining whether a temperature value of the thermal data has decreased to or below a threshold.
- the alarm can include a fall warning alarm indicating that the patient is at fall risk or has fallen.
- the alarm can include a bedsore warning alarm.
- the position sensor can be an accelerometer, gyroscope, or compass.
- a general purpose processor can be a microprocessor, but in the alternative, the processor can be a controller, microcontroller, or state machine, combinations of the same, or the like.
- a processor can include electrical circuitry configured to process computer-executable instructions.
- a processor includes an FPGA or other programmable device that performs logic operations without processing computer-executable instructions.
- a processor can also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
- a computing environment can include any type of computer system, including, but not limited to, a computer system based on a microprocessor, a mainframe computer, a digital signal processor, a portable computing device, a device controller, or a computational engine within an appliance, to name a few.
- a software module can reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of non-transitory computer-readable storage medium, media, or physical computer storage known in the art.
- An example storage medium can be coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium can be integral to the processor.
- the storage medium can be volatile or nonvolatile.
- the processor and the storage medium can reside in an ASIC.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Surgery (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Physiology (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Dentistry (AREA)
- Computer Networks & Wireless Communication (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Artificial Intelligence (AREA)
- Psychiatry (AREA)
- Signal Processing (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Pulmonology (AREA)
- Optics & Photonics (AREA)
- Geometry (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
- Dermatology (AREA)
Abstract
Description
- The present application is a continuation of U.S. patent application Ser. No. 14/511,974, filed Oct. 10, 2014, titled Patient Position Detection System, which claims priority to U.S. Provisional Patent Application Ser. No. 61/889,939, filed Oct. 11, 2013, titled Patient Position Detection System, and is a continuation-in-part of U.S. patent application Ser. No. 13/762,270, filed Feb. 7, 2013, titled Wireless Patient Monitoring Device, which claims priority as a non-provisional of U.S. Provisional Patent Application Ser. No. 61/597,126, filed Feb. 9, 2012, titled Wireless Patient Monitoring System, U.S. Provisional Patent Application Ser. No. 61/625,584, filed Apr. 17, 2012, titled Wireless Patient Monitoring Device, and U.S. Provisional Patent Application Ser. No. 61/703,713, filed Sep. 20, 2012, titled Wireless Patient Monitoring Device. All of the foregoing applications are hereby incorporated by reference in their entirety.
- Hospitals, nursing homes, and other patient care facilities typically include patient monitoring devices at one or more bedsides in the facility. Patient monitoring devices generally include sensors, processing equipment, and displays for obtaining and analyzing a medical patient's physiological parameters such as blood oxygen saturation level, respiratory rate, and the like. Clinicians, including doctors, nurses, and other medical personnel, use the physiological parameters obtained from patient monitors to diagnose illnesses and to prescribe treatments. Clinicians also use the physiological parameters to monitor patients during various clinical situations to determine whether to increase the level of medical care given to patients.
- For example, the patient monitoring devices can be used to monitor a pulse oximeter. Pulse oximetry is a widely accepted noninvasive procedure for measuring the oxygen saturation level of arterial blood, an indicator of a person's oxygen supply. A typical pulse oximetry system utilizes an optical sensor clipped onto a fingertip to measure the relative volume of oxygenated hemoglobin in pulsatile arterial blood flowing within the fingertip. Oxygen saturation (SpO2), pulse rate, a plethysmograph waveform, perfusion index (PI), pleth variability index (PVI), methemoglobin (MetHb), carboxyhemoglobin (CoHb), total hemoglobin (tHb), glucose, and/or otherwise can be displayed on a monitor accordingly.
- The patient monitoring devices can also communicate with an acoustic sensor comprising an acoustic transducer, such as a piezoelectric element. The acoustic sensor can detect respiratory and other biological sounds of a patient and provide signals reflecting these sounds to a patient monitor. An example of such an acoustic sensor, which can implement any of the acoustic sensing functions described herein, is described in U.S. application Ser. No. 12/643,939, filed Dec. 21, 2009, titled “Acoustic Sensor Assembly,” and in U.S. application Ser. No. 61/313,645, filed Mar. 12, 2010, titled “Acoustic Respiratory Monitoring Sensor Having Multiple Sensing Elements,” the disclosures of which are hereby incorporated by reference in their entirety.
- Blood pressure is another example of a physiological parameter that can be monitored. Many devices allow blood pressure to be measured by sphygmomanometer systems that utilize an inflatable cuff applied to a person's arm. The cuff is inflated to a pressure level high enough to occlude a major artery. When air is slowly released from the cuff, blood pressure can be estimated by detecting “Korotkoff” sounds using a stethoscope or other detection means placed over the artery. Other Examples of physiological parameters that can be measured include respiration rate, blood analyte measurements, such as oxygen saturation, and ECG.
- One aspect of the disclosure is a wireless patient monitoring device including one or more sensors configured to obtain physiological information. The one or more sensors can include an optical sensor, an acoustic respiratory sensor, and/or a blood pressure measurement device. Other sensors, including but not limited to, an EEG, ECG, and/or a sedation state sensor can also be used with the present disclosure. The one or more sensors are connected to a wireless monitor configured to receive the sensor data and to wirelessly transmit sensor data or physiological parameters reflective of the sensor data to a bedside monitor. The bedside monitor can be configured to output the physiological parameters, communication channel, and/or communication status.
- Another aspect of the disclosure is directed toward a system configured to wirelessly communicate physiological information, the system including a battery, a housing, a rechargeable electrical storage module, and a memory module configured to store wireless communication information.
- In some aspects of the disclosure, the wireless communication information stored on the data storage component facilitates communication between the wireless monitor and the bedside monitor. The information may be a unique identifier used to pair the wireless monitor with the bedside monitor. The information may be a password used to make sure only the correct receiver has access to the transmitted physiological data. The information may be channel information to make certain the wireless monitor and bedside monitor communicate on the same channel.
- In some aspects of the disclosure, the bedside monitor can be configured to receive and recharge the removable battery. The battery may include a data storage component configured to store wireless communication information. In some embodiments, the bedside monitor communicates wireless communication information to the battery through a hard wired connection, and the battery stores the information. In some embodiments, the battery communicates wireless communication information to the bedside monitor through a hard wired connection.
- Another aspect of the disclosure is directed toward a bedside monitor configured to receive the wireless monitor. In some embodiments, the bedside monitor communicates wireless communication information to the wireless monitor when the wireless monitor is physically and electrically connected with the bedside monitor. In some embodiments, the wireless monitor communicates information to the bedside monitor when the wireless monitor is physically and electrically connected with the bedside monitor.
- In another aspect of the disclosure, the wireless monitor can be configured to transmit physiological data over a first wireless technology when a signal strength of the first wireless technology is sufficiently strong and transmit physiological data over a second wireless technology when the signal strength of the first wireless technology is not sufficiently strong.
- In yet another aspect of the disclosure, the wireless monitor can be configured to transmit physiological data over a first wireless technology when the wireless monitor is within a pre-determined distance from the wireless receiver and transmit physiological data over a second wireless technology when the wireless monitor is not within a pre-determined distance from the bedside monitor.
- In another aspect of the disclosure, the battery includes a display. The display can be configured to activate when the wireless transmitter transmits physiological data over a first wireless technology and deactivate when the wireless transmitter transmits physiological data over a second wireless technology.
- One aspect of the disclosure is a method of wirelessly monitoring physiological information. The method includes providing a battery including a data storage component, physically connecting the battery to a bedside monitor, storing data on the data storage component of the battery, connecting the battery to a wireless monitor, and transmitting physiological data from the wireless monitor to the bedside monitor.
- In another aspect of the disclosure, transmitting physiological data from the wireless monitor to the bedside monitor includes transmitting physiological data over a first wireless technology when the wireless monitor is within a pre-determined distance from the bedside monitor and transmitting physiological data over a second wireless technology when the wireless monitor is not within a pre-determined distance from the bedside monitor. In some embodiments of the disclosure, the first wireless technology is Bluetooth or ZigBee, and the second wireless technology is Wi-Fi or cellular telephony.
- In yet another aspect of the disclosure, transmitting physiological data from the wireless monitor to the bedside monitor includes transmitting physiological data over a first wireless technology when a signal strength of the first wireless technology is sufficiently strong and transmitting physiological data over a second wireless technology when the signal strength of the first wireless technology is not sufficiently strong.
- In some aspects of the disclosure, the wireless monitor can be configured to be coupled to an arm band attached to the patient. Alternatively, the wireless monitor can be configured to be coupled to a patient's belt, can be carried by the patient (e.g., via a shoulder strap or handle), or can be placed on the patient's bed next to the patient, among other locations.
- In another aspect of the disclosure, the wireless monitor battery includes a display screen. When the wireless monitor is within a pre-determined distance from the bedside monitor and transmits data over Bluetooth or Zigbee, the display screen deactivates. When the wireless monitor is not within a pre-determined distance from the bedside monitor and transmits data over Wi-Fi or cellular telephony, the display screen activates. Alternatively, independent of the communication protocol used by the device, when the wireless monitor is a pre-determined distance from the bedside monitor, the display screen activates. Similarly when the wireless monitor is within a pre-determined distance to the bedside monitor, the display screen deactivates.
- In certain aspects of the disclosure, a blood pressure device can be used. The blood pressure device can be coupled to a medical patient and a wireless transceiver electrically coupled with the blood pressure device. The wireless transceiver can wirelessly transmit blood pressure data received by the blood pressure device and physiological data received from one or more physiological sensors coupled to the blood pressure device. To further increase patient mobility, in some embodiments, a single cable can be provided for connecting multiple different types of sensors together.
- In certain aspects of the disclosure, a wireless patient monitoring device for measuring one or more parameters can be secured to an arm of the patient. For example, a wireless measurement device for measuring oxygen saturation and respiration rate can be secured to the arm of a patient. The wireless monitoring device can connect to an oximeter probe and an acoustic respiration probe. The monitor can have a display screen and/or can transmit wireless information to a bedside monitor. In an embodiment, a docking station can be provided for the wireless monitoring device to dock it to a docking station forming a bedside monitor.
- In some aspects of the disclosure, the patient monitoring devices can be coupled to a blood pressure cuff and measure blood pressure.
- In some aspects of the disclosure, the patient monitoring system can include a sensor configured to obtain physiological information, an anchor connected to the sensor, and a wireless transceiver connected to the anchor. A first cable can connect the sensor to the anchor and a second cable can connect the anchor to the wireless transceiver. In certain aspects, the anchor can adhere to the patient or be carried by the patient in any manner discussed herein.
- In some aspects of the disclosure, the patient monitoring system can include one or more sensors configured to obtain physiological information and a wireless transceiver configured to receive the physiological information. The wireless transceiver can include a housing having a first side and a second side. At least one connector can be positioned on the first side and at least one connector can be positioned on the second side. In certain aspects, the first side of housing can be opposite the second side of the housing.
- In some aspects of the disclosure, a docking station can include a bedside monitor having a docking port configured to receive a first patient monitor and a docking station adapter configured to adapt the docking port to receive a second patient monitor. The second patient monitor can be a different size than the first patient monitor. In certain aspects, the first patient monitor can communicate with the bedside monitor over a wired connection when the first patient monitor is connected to the docking port. In certain aspects, the second patient monitor can communicate with the bedside monitor over a wired connection when the second patient monitor is connected to the docking station adapter and the docking station adapter is connected to the docking port.
- In some aspects of the disclosure, a patient monitoring system can include a first sensor, a second sensor, and a wireless patient monitor configured to receive physiological information from the first sensor and the second sensor. The patient monitoring system can include a single cable connecting the first sensor and the second sensor to the wireless patient monitor. In certain aspects, the single cable can include a first cable section connecting the wireless patient monitor and the first sensor and a second cable section connecting the first sensor and the second sensor. In certain aspects, the first sensor and the second sensor can be powered by a shared power line and/or can transmit signals over a shared signal line.
- In some aspects of the disclosure, a patient monitoring system can include one or more sensors configured to obtain physiological information, a patient monitor configured to receive the physiological information, and a cable hub having one or more inlet connectors connected to the one or more sensors and an outlet connector connected to the patient monitor. In certain aspects, the one or more inlet connectors can be positioned on a first end of the cable hub and the outlet connector can be positioned on a second end of the cable hub, opposite the first end. In certain aspects, the patient monitor can include a wireless transceiver. In certain aspects, the patient monitor can be configured to be worn by the patient. In certain aspects, the cable hub can be configured to adhere to the patient. In certain aspects, a first cable extends from at least one of the one or more sensors to one of the one or more inlet connectors, and a second cable extends from the outlet connector to the patient monitor.
- Some aspects of the disclosure describe a method of using a patient monitoring system. The method can include providing a wireless transceiver having a first end and a second end opposite the first end, a first connector positioned on the first end, and a second connector positioned on the second end. The method can include connecting a first end of a first cable to the first connector, and connecting a first end of a second cable to the second connector. In certain aspects, the method can include connecting a second end of the first cable to a first sensor. In certain aspects, the method can include connecting a second end of the second cable to a second sensor or a cable hub connected to one or more sensors. In certain aspects, the method can include connecting a third sensor and/or anchor to the second cable. In certain aspects, the method can include connecting a third cable to a third connector on the second end of the wireless transceiver.
- Certain aspects of this disclosure are directed toward a wireless monitor including a housing, a battery, and a strap. The housing can include one or more outlets configured to receive one or more sensors. The battery can be configured to removably engage the housing. A portion of the strap can be disposed between the housing and the battery when the housing is engaged with the battery. In certain aspects, the portion of the strap disposed between the housing and the battery can be a separately formed component from a remainder of the strap. In certain aspects, the portion of the strap can include one or more mating features configured to mate with corresponding features of the housing. In certain aspects, the one or more mating features are flush with the corresponding features of the housing. In certain aspects, the housing can include a recessed portion for receiving the strap.
- For purposes of summarizing the disclosure, certain aspects, advantages and novel features of the inventions have been described herein. It is to be understood that not necessarily all such advantages can be achieved in accordance with any particular embodiment of the inventions disclosed herein. Thus, the inventions disclosed herein can be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other advantages as can be taught or suggested herein.
- Various embodiments will be described hereinafter with reference to the accompanying drawings. These embodiments are illustrated and described by example only, and are not intended to limit the scope of the disclosure. In the drawings, similar elements have similar reference numerals.
-
FIGS. 1A and 1B illustrate embodiments of wireless patient monitoring systems. -
FIGS. 1C and 1D illustrate further embodiments of wireless patient monitoring systems. -
FIG. 1E illustrates the embodiment of the wireless patient monitoring system illustrated inFIGS. 1A-1B in schematic form. -
FIGS. 2A and 2B illustrate embodiments of wireless patient monitoring systems having a single cable connection system. -
FIGS. 3A and 3B illustrates additional embodiment of patient monitoring systems. -
FIGS. 4A and 4B illustrate embodiments of an optical ear sensor and an acoustic sensor connected via a single cable connection system. -
FIG. 5 illustrates an embodiment of a wireless transceiver that can be used with any of the patient monitoring systems described above. -
FIGS. 6A through 6C illustrate additional embodiments of patient monitoring systems. -
FIG. 7 illustrates an embodiment of a physiological parameter display that can be used with any of the patient monitoring systems described above. -
FIG. 8 illustrates a further embodiment of a patient monitoring system. -
FIGS. 9A-9D illustrate an embodiment of a wireless patient monitoring system. -
FIG. 10 illustrates the embodiment of the wireless patient monitoring system illustrated inFIGS. 9A-9D in schematic form. -
FIG. 11 illustrates one embodiment of a method of using a wireless patient monitoring system. -
FIG. 12 illustrates a wireless monitor having a display screen. -
FIGS. 13-15 illustrate methods of using a wireless monitor having a display screen. -
FIGS. 16A-16G illustrate another embodiment of a wireless patient monitoring system. -
FIGS. 17A-17C illustrate another embodiment of a wireless patient monitoring system. -
FIGS. 18A-18C illustrate an animation of patient movement created using a wireless patient monitor. -
FIG. 19 depicts an embodiment of a patient movement detector. -
FIG. 20 depicts an embodiment of a fall warning process. -
FIG. 21 depicts an embodiment of a bedsore warning process. -
FIG. 22 depicts an embodiment of another fall warning process. - In clinical settings, medical sensors are often attached to patients to monitor physiological parameters of the patients. Some examples of medical sensors include, but are not limited to, blood oxygen sensors, such as pulse oximetry sensors, acoustic respiratory sensors, EEGs, ECGs, blood pressure sensors, sedation state sensors, etc. Typically, each sensor attached to a patient is connected to a bedside monitoring device with a cable. The cables limit the patient's freedom of movement and impede a care providers access to the patient. The cables connecting the patient to the bedside monitoring device also make it more difficult to move the patient from room to room or switch to different bedside monitors.
- This disclosure describes embodiments of wireless patient monitoring systems that include a wireless device coupled to a patient and to one or more sensors. In one embodiment, the wireless device transmits sensor data obtained from the sensors to a patient monitor. By transmitting the sensor data wirelessly, these patient monitoring systems can advantageously replace some or all cables that connect patients to bedside monitoring devices. To further increase patient mobility and comfort, in some embodiments, a single cable connection system is also provided for connecting multiple different types of sensors together.
- These patient monitoring systems are primarily described in the context of an example blood pressure cuff that includes a wireless transceiver. The blood pressure cuff and/or wireless transceiver can also be coupled to additional sensors, such as optical sensors, acoustic sensors, and/or electrocardiograph sensors. The wireless transceiver can transmit blood pressure data and sensor data from the other sensors to a wireless receiver, which can be a patient monitor. These and other features described herein can be applied to a variety of sensor configurations, including configurations that do not include a blood pressure cuff. In an embodiment, an arm band without a blood pressure cuff can be used to secure a wireless patient monitor connected to various sensors.
-
FIGS. 1A and 1B illustrate embodiments of wirelesspatient monitoring systems patient 101. The blood pressure device 110 includes awireless transceiver 116, which can transmit sensor data obtained from thepatient 101 to awireless transceiver 120. Thus, thepatient 101 is advantageously not physically coupled to a bedside monitor in the depicted embodiment and can therefore have greater freedom of movement. - Referring to
FIG. 1A , theblood pressure device 110 a includes aninflatable cuff 112, which can be an oscilometric cuff that is actuated electronically (e.g., via intelligent cuff inflation and/or based on a time interval) to obtain blood pressure information. Thecuff 112 is coupled to awireless transceiver 116. Theblood pressure device 110 a is also coupled to a fingertipoptical sensor 102 via acable 107. Theoptical sensor 102 can include one or more emitters and detectors for obtaining physiological information indicative of one or more blood parameters of thepatient 101. These parameters can include various blood analytes such as oxygen, carbon monoxide, methemoglobin, total hemoglobin, glucose, proteins, glucose, lipids, a percentage thereof (e.g., concentration or saturation), and the like. Theoptical sensor 102 can also be used to obtain a photoplethysmograph, a measure of plethysmograph variability, pulse rate, a measure of blood perfusion, and the like. - Additionally, the
blood pressure device 110 a is coupled to anacoustic sensor 104 a via a cable 105. The cable 105 connecting theacoustic sensor 104 a to the blood pressure device 110 includes two portions, namely acable 105 a and acable 105 b. Thecable 105 a connects theacoustic sensor 104 a to ananchor 104 b, which is coupled to theblood pressure device 110 a via thecable 105 b. Theanchor 104 b can be adhered to the patient's skin to reduce noise due to accidental tugging of theacoustic sensor 104 a. - The
acoustic sensor 104 a can be a piezoelectric sensor or the like that obtains physiological information reflective of one or more respiratory parameters of thepatient 101. These parameters can include, for example, respiratory rate, inspiratory time, expiratory time, inspiration-to-expiration ratio, inspiratory flow, expiratory flow, tidal volume, minute volume, apnea duration, breath sounds, rales, rhonchi, stridor, and changes in breath sounds such as decreased volume or change in airflow. In addition, in some cases therespiratory sensor 104 a, or another lead of therespiratory sensor 104 a (not shown), can measure other physiological sounds such as heart rate (e.g., to help with probe-off detection), heart sounds (e.g., S1, S2, S3, S4, and murmurs), and changes in heart sounds such as normal to murmur or split heart sounds indicating fluid overload. In some implementations, a second acoustic respiratory sensor can be provided over the patient's 101 chest for additional heart sound detection. In one embodiment, the acoustic sensor 104 can include any of the features described in U.S. patent application Ser. No. 12/643,939, filed Dec. 21, 2009, titled “Acoustic Sensor Assembly,” the disclosure of which is hereby incorporated by reference in its entirety. - The acoustic sensor 104 can be used to generate an exciter waveform that can be detected by the
optical sensor 102 at the fingertip, by an optical sensor attached to an ear of the patient (seeFIGS. 2A, 3 ), by an ECG sensor (seeFIG. 2C ), or by another acoustic sensor (not shown). The velocity of the exciter waveform can be calculated by a processor (such as a processor in thewireless transceiver 120, described below). From this velocity, the processor can derive a blood pressure measurement or blood pressure estimate. The processor can output the blood pressure measurement for display. The processor can also use the blood pressure measurement to determine whether to trigger theblood pressure cuff 112. - In another embodiment, the acoustic sensor 104 placed on the upper chest can be advantageously combined with an ECG electrode (such as in
structure 208 ofFIG. 2B ), thereby providing dual benefit of two signals generated from a single mechanical assembly. The timing relationship from fidicial markers from the ECG signal, related cardiac acoustic signal and the resulting peripheral pulse from the finger pulse oximeters produces a transit time that correlates to the cardiovascular performance such as blood pressure, vascular tone, vascular volume and cardiac mechanical function. Pulse wave transit time or PWTT in currently available systems depends on ECG as the sole reference point, but such systems may not be able to isolate the transit time variables associated to cardiac functions, such as the pre-ejection period (PEP). In certain embodiments, the addition of the cardiac acoustical signal allows isolation of the cardiac functions and provides additional cardiac performance metrics. Timing calculations can be performed by the processor in thewireless transceiver 120 or a in distributed processor found in an on-body structure (e.g., such as any of the devices herein or below: 112, 210, 230, 402, 806). - In certain embodiments, the wireless patient monitoring system 100 uses some or all of the velocity-based blood pressure measurement techniques described in U.S. Pat. No. 5,590,649, filed Apr. 15, 1994, titled “Apparatus and Method for Measuring an Induced Perturbation to Determine Blood Pressure,” or in U.S. Pat. No. 5,785,659, filed Jan. 17, 1996, titled “Automatically Activated Blood Pressure Measurement Device,” the disclosures of which are hereby incorporated by reference in their entirety. An example display related to such blood pressure calculations is described below with respect to
FIG. 7 . - The
wireless transceiver 116 can transmit data using any of a variety of wireless technologies, such as Wi-Fi (802.11x), Bluetooth (802.15.2), Zigbee (802.15.4), cellular telephony, infrared, RFID, satellite transmission, proprietary protocols, combinations of the same, and the like. Thewireless transceiver 116 can perform solely telemetry functions, such as measuring and reporting information about thepatient 101. Alternatively, thewireless transceiver 116 can be a transceiver that also receives data and/or instructions, as will be described in further detail below. - The
wireless receiver 120 receives information from and/or sends information to the wireless transceiver via anantenna 122. In certain embodiments, thewireless receiver 120 is a patient monitor. As such, thewireless receiver 120 can include one or more processors that process sensor signals received from thewireless transceiver 116 corresponding to the sensors 102 a, 102 b, 104, and/or 106 in order to derive any of the physiological parameters described above. Thewireless transceiver 120 can also display any of these parameters, including trends, waveforms, related alarms, and the like. Thewireless receiver 120 can further include a computer-readable storage medium, such as a physical storage device, for storing the physiological data. Thewireless transceiver 120 can also include a network interface for communicating the physiological data to one or more hosts over a network, such as to a nurse's station computer in a hospital network. - Moreover, in certain embodiments, the
wireless transceiver 116 can send raw data for processing to a central nurse's station computer, to a clinician device, and/or to a bedside device (e.g., the receiver 116). Thewireless transceiver 116 can also send raw data to a central nurse's station computer, clinician device, and/or to a bedside device for calculation, which retransmits calculated measurements back to the blood pressure device 110 (or to the bedside device). Thewireless transceiver 116 can also calculate measurements from the raw data and send the measurements to a central nurse's station computer, to a pager or other clinician device, or to a bedside device (e.g., the receiver 116). Many other configurations of data transmission are possible. - In addition to deriving any of the parameters mentioned above from the data obtained from the sensors 102 a, 102 b, 104, and/or 106, the
wireless transceiver 120 can also determine various measures of data confidence, such as the data confidence indicators described in U.S. Pat. No. 7,024,233 entitled “Pulse oximetry data confidence indicator,” the disclosure of which is hereby incorporated by reference in its entirety. Thewireless transceiver 120 can also determine a perfusion index, such as the perfusion index described in U.S. Pat. No. 7,292,883 entitled “Physiological assessment system,” the disclosure of which is hereby incorporated by reference in its entirety. Moreover, thewireless transceiver 120 can determine a plethysmograph variability index (PVI), such as the PVI described in U.S. Publication No. 2008/0188760 entitled “Plethysmograph variability processor,” the disclosure of which is hereby incorporated by reference in its entirety. - In addition, the
wireless transceiver 120 can send data and instructions to thewireless transceiver 116 in some embodiments. For instance, thewireless transceiver 120 can intelligently determine when to inflate thecuff 112 and can send inflation signals to thetransceiver 116. Similarly, thewireless transceiver 120 can remotely control any other sensors that can be attached to thetransceiver 116 or thecuff 112. Thetransceiver 120 can send software or firmware updates to thetransceiver 116. Moreover, the transceiver 120 (or the transceiver 116) can adjust the amount of signal data transmitted by thetransceiver 116 based at least in part on the acuity of the patient, using, for example, any of the techniques described in U.S. Patent Publication No. 2009/0119330, filed Jan. 7, 2009, titled “Systems and Methods for Storing, Analyzing, and Retrieving Medical Data,” the disclosure of which is hereby incorporated by reference in its entirety. - In alternative embodiments, the
wireless transceiver 116 can perform some or all of the patient monitor functions described above, instead of or in addition to the monitoring functions described above with respect to thewireless transceiver 120. In some cases, thewireless transceiver 116 might also include a display that outputs data reflecting any of the parameters described above (see, e.g.,FIG. 5 ). Thus, thewireless transceiver 116 can either send raw signal data to be processed by thewireless transceiver 120, can send processed signal data to be displayed and/or passed on by thewireless transceiver 120, or can perform some combination of the above. Moreover, in some implementations, thewireless transceiver 116 can perform at least some front-end processing of the data, such as bandpass filtering, analog-to-digital conversion, and/or signal conditioning, prior to sending the data to thetransceiver 120. An alternative embodiment may include at least some front end processing embedded in any of the sensors described herein (such assensors FIG. 8 ). - In certain embodiments, the
cuff 112 is a reusable, disposable, or resposable device. Similarly, any of thesensors cables 105, 107 can be disposable or resposable. Resposable devices can include devices that are partially disposable and partially reusable. Thus, for example, theacoustic sensor 104 a can include reusable electronics but a disposable contact surface (such as an adhesive) where thesensor 104 a comes into contact with the patient's skin. Generally, any of the sensors, cuffs, and cables described herein can be reusable, disposable, or resposable. - The
cuff 112 can also can have its own power (e.g., via batteries) either as extra power or as a sole source of power for thetransceiver 116. The batteries can be disposable or reusable. In some embodiments, thecuff 112 can include one or more photovoltaic solar cells or other power sources. Likewise, batteries, solar sources, or other power sources can be provided for either of thesensors - Referring to
FIG. 1B , another embodiment of thesystem 100B is shown. In thesystem 100B, theblood pressure device 110 b can communicate wirelessly with theacoustic sensor 104 a and with theoptical sensor 102. For instance, wireless transceivers (not shown) can be provided in one or both of thesensors blood pressure device 110 b. Theblood pressure device 110 b can transmit these signals on to thewireless transceiver 120. In addition, in some embodiments, theblood pressure device 110 b can also process the signals received from thesensors wireless transceiver 120. Thesensors wireless transceiver 120 or patient monitor. In one embodiment, thesystem 100B shown can be considered to be a body LAN, piconet, or other individual network. -
FIGS. 1C and 1D illustrate another embodiment in which awireless monitor 150 is secured to the arm of the patient. The wireless monitor 150 is a fully functional stand-alone monitor capable of various physiological measurements. The wireless monitor is small and light enough to comfortably be secured to and carried around on the arm of a patient. In the embodiment shown inFIG. 1C , thewireless monitor 150 connects to anacoustic respiration sensor 104A on a first side ofpatient monitor 150 and anoximeter sensor 102 on a second side ofpatient monitor 150. This configuration of connected sensors to opposite sides of the monitor prevents cable clutter and entanglements. The wireless monitor 150 includes ascreen 154. The wireless monitor 150 couples to and is held to the arm of the patient byarm band 152. InFIG. 1C , the arm band is not an inflatable blood pressure cuff, however, as described with respect to the other figures, thearm band 152 can incorporate a blood pressure cuff for blood pressure readings. - The wireless monitor 150 can transmit data to a bedside monitor using any of a variety of wireless technologies, such as Wi-Fi (802.11x), Bluetooth (802.15.2), Zigbee (802.15.4), cellular telephony, infrared, RFID, satellite transmission, proprietary protocols, combinations of the same, and the like.
- In an embodiment shown in
FIG. 1D , themonitor 150 can be docked to adocking station 163. Thedocking station 163 includes abedside monitor 164 anddocking station adapter 160.Docking station adapter 160 adapts an otherwise incompatible docking port of bedside monitor 164 so thatpatient monitor 150 can dock. Thedocking station adapter 162 includes aport 162 for docking with thepatient monitor 150. When the patient monitor 150 is physically docked in thedocking station adapter 160, the patient monitor 150 can communicate with the bedside monitor 164 over a wired connection. - Also shown in
FIG. 1D is handheldpatient monitor 166.Handheld monitor 166 is configured to dock directly to bedside monitor 164 without the need for adocking station adapter 162. When thehandheld monitor 166 is physically docked in thebedside monitor 164, thehandheld monitor 166 can communicate with the bedside monitor 164 over a wired connection. -
FIG. 1E illustrates details of an embodiment of thewireless monitoring system 100A in a schematic form. Although other types of sensors can be used, thewireless monitoring system 100A is drawn in connection with theacoustic sensor 104 a and theoptical sensor 102. Thesystem 100A sends signals from theacoustic sensor 104 a and theoptical sensor 102 to thesensor interface 170 and passes the signals to theDSP 172 for processing into representations of physiological parameters. In some embodiments, the DSP also communicates with a memory or information element, such as a resistor or capacitor, located on one of the sensors, such memory typically contains information related to the properties of the sensor that may be useful in processing the signals, such as, for example, emitter energy wavelengths. - In some embodiments, the physiological parameters are passed to an
instrument manager 174, which may further process the parameters for display. Theinstrument manager 174 may include amemory buffer 176 to maintain this data for processing throughout a period of time.Memory buffer 176 may include RAM, Flash or other solid state memory, magnetic or optical disk-based memories, combinations of the same or the like. - The
wireless transceiver 120 is capable of wirelessly receiving the physiological data and/or parameters fromDSP 172 orinstrument manager 174. The bedside monitor 916 can include one ormore displays 178, control buttons, a speaker for audio messages, and/or a wireless signal broadcaster. Thewireless transceiver 120 can also include aprocessor 180 to further process the data and/or parameters for display. -
FIGS. 2A and 2B illustrate additional embodiments ofpatient monitoring systems FIG. 2A illustrates a wirelesspatient monitoring system 200A, whileFIG. 2B illustrates a standalonepatient monitoring system 200B. - Referring specifically to
FIG. 2A , ablood pressure device 210 a is connected to apatient 201. Theblood pressure device 210 a includes awireless transceiver 216 a, which can transmit sensor data obtained from thepatient 201 to a wireless receiver at 220 viaantenna 218. Thewireless transceiver 216 a can transmit data using any of a variety of wireless technologies, such as Wi-Fi (802.11x), Bluetooth (802.15.2), Zigbee (802.15.4), cellular telephony, infrared, RFID, satellite transmission, proprietary protocols, combinations of the same, and the like. - In the depicted embodiment, the
blood pressure device 210 a includes aninflatable cuff 212 a, which can include any of the features of thecuff 112 described above. Additionally, thecuff 212 a includes apocket 214, which holds thewireless transceiver 216 a (shown by dashed lines). Thewireless transceiver 216 a can be electrically connected to thecuff 212 a via a connector (see, e.g.,FIG. 5 ) in some embodiments. As will be described elsewhere herein, the form of attachment of thewireless transceiver 216 a to thecuff 212 a is not restricted to a pocket connection mechanism and can vary in other implementations. - The
wireless transceiver 216 a is also coupled to various sensors inFIGS. 2A , including anacoustic sensor 204 a and/or anoptical ear sensor 202 a. Theacoustic sensor 204 a can have any of the features of the acoustic sensor 104 described above. Theear clip sensor 202 a can be an optical sensor that obtains physiological information regarding one or more blood parameters of thepatient 201. These parameters can include any of the blood-related parameters described above with respect to theoptical sensor 102. In one embodiment, theear clip sensor 202 a is an LNOP TC-I ear reusable sensor available from Masimo® Corporation of Irvine, Calif. In some embodiments, theear clip sensor 202 a is a concha ear sensor (seeFIGS. 4A and 4B ). - Advantageously, in the depicted embodiment, the
sensors wireless transceiver 216 a via a single cable 205. The cable 205 is shown having two sections, acable 205 a and acable 205 b. For example, thewireless transceiver 216 a is coupled to anacoustic sensor 204 a via thecable 205 b. In turn, theacoustic sensor 204 a is coupled to theoptical ear sensor 202 a via thecable 205 a. Advantageously, because thesensors 202 a, 204 are attached to the wireless transceiver 216 in the cuff 212 in the depicted embodiment, the cable 205 is relatively short and can thereby increase the patient's 201 freedom of movement. Moreover, because a single cable 205 is used to connect two or more different types of sensors, such assensors - In some embodiments, the cable 205 is a shared cable 205 that is shared by the
optical ear sensor 202 a and theacoustic sensor 204 a. The shared cable 205 can share power and ground lines for each of thesensors sensors sensors different sensors - The two
cables separate cables cable acoustic sensor 204 a via a single connector. As separate cables, in one embodiment, thecable 205 b can be connected to a first port on theacoustic sensor 204 a and thecable 205 a can be coupled to a second port on theacoustic sensor 204 a. -
FIG. 2B further illustrates an embodiment of the cable 205 in the context of a standalonepatient monitoring system 200B. In the standalonepatient monitoring system 200B, a blood pressure device 210 b is provided that includes apatient monitor 216 b disposed on acuff 212 b. The patient monitor 216 b includes adisplay 219 for outputting physiological parameter measurements, trends, waveforms, patient data, and optionally other data for presentation to a clinician. Thedisplay 219 can be an LCD display, for example, with a touch screen or the like. The patient monitor 216 b can act as a standalone device, not needing to communicate with other devices to process and measure physiological parameters. In some embodiments, the patient monitor 216 b can also include any of the wireless functionality described above. For example, the patient monitor 216 b can transmit data using any of a variety of wireless technologies, such as Wi-Fi (802.11x), Bluetooth (802.15.2), Zigbee (802.15.4), cellular telephony, infrared, RFID, satellite transmission, proprietary protocols, combinations of the same, and the like. - The patient monitor 216 b can be integrated into the
cuff 212 b or can be detachable from thecuff 212 b. In one embodiment, the patient monitor 216 b can be a readily available mobile computing device with a patient monitoring software application. For example, the patient monitor 216 b can be a smart phone, personal digital assistant (PDA), or other wireless device. The patient monitoring software application on the device can perform any of a variety of functions, such as calculating physiological parameters, displaying physiological data, documenting physiological data, and/or wirelessly transmitting physiological data (including measurements or uncalculated raw sensor data) via email, text message (e.g., SMS or MMS), or some other communication medium. Moreover, any of the wireless transceivers or patient monitors described herein can be substituted with such a mobile computing device. - In the depicted embodiment, the patient monitor 216 b is connected to three different types of sensors. An
optical sensor 202 b, coupled to a patient's 201 finger, is connected to the patient monitor 216 b via acable 207. In addition, anacoustic sensor 204 b and an electrocardiograph (ECG)sensor 206 are attached to the patient monitor 206 b via the cable 205. Theoptical sensor 202 b can perform any of the optical sensor functions described above. Likewise, theacoustic sensor 204 b can perform any of the acoustic sensor functions described above. TheECG sensor 206 can be used to monitor electrical activity of the patient's 201 heart. - Advantageously, in the depicted embodiment, the
ECG sensor 206 is a bundle sensor that includes one or more ECG leads 208 in a single package. For example, theECG sensor 206 can include one, two, or three or more leads. One or more of theleads 208 can be an active lead or leads, while another lead 208 can be a reference lead. Other configurations are possible with additional leads within the same package or at different points on the patient's body. Using abundle ECG sensor 206 can advantageously enable a single cable connection via the cable 205 to thecuff 212 b. Similarly, an acoustical sensor can be included in theECG sensor 206 to advantageously reduce the overall complexity of the on-body assembly. - The
cable 205 a inFIG. 2B can connect two sensors to thecuff 212 b, namely theECG sensor 206 and theacoustic sensor 204 b. Although not shown, thecable 205 a can further connect an optical ear sensor to theacoustic sensor 204 b in some embodiments, optionally replacing the fingeroptical sensor 202 b. Thecable 205 a shown inFIG. 2B can have all the features described above with respect tocable 205 a ofFIG. 2A . - Although not shown, in some embodiments, any of the sensors, cuffs, wireless sensors, or patient monitors described herein can include one or more accelerometers or other motion measurement devices (such as gyroscopes). For example, in
FIG. 2B , one or more of theacoustic sensor 204 b, theECG sensor 206, thecuff 212 b, the patient monitor 216 b, and/or theoptical sensor 202 b can include one or more motion measurement devices. A motion measurement device can be used by a processor (such as in the patient monitor 216 b or other device) to determine motion and/or position of a patient. For example, a motion measurement device can be used to determine whether a patient is sitting up, lying down, walking, or the like. - Movement and/or position data obtained from a motion measurement device can be used to adjust a parameter calculation algorithm to compensate for the patient's motion. For example, a parameter measurement algorithm that compensates for motion can more aggressively compensate for motion in response to high degree of measured movement. When less motion is detected, the algorithm can compensate less aggressively. Movement and/or position data can also be used as a contributing factor to adjusting parameter measurements. Blood pressure, for instance, can change during patient motion due to changes in blood flow. If the patient is detected to be moving, the patient's calculated blood pressure (or other parameter) can therefore be adjusted differently than when the patient is detected to be sitting.
- A database can be assembled that includes movement and parameter data (raw or measured parameters) for one or more patients over time. The database can be analyzed by a processor to detect trends that can be used to perform parameter calculation adjustments based on motion or position. Many other variations and uses of the motion and/or position data are possible.
- Although the patient monitoring systems described herein, including the
systems FIGS. 3A and 3B ), can be carried by the patient (e.g., via a shoulder strap or handle), or can be placed on the patient's bed next to the patient, among other possible locations. - Additionally, various features shown in
FIGS. 2A and 2B can be changed or omitted. For instance, the wireless transceiver 216 can be attached to the cuff 212 without the use of thepocket 214. For example, the wireless transceiver can be sewn, glued, buttoned or otherwise attached to the cuff using any various known attachment mechanisms. Or, the wireless transceiver 216 can be directly coupled to the patient (e.g., via an armband) and the cuff 212 can be omitted entirely. Instead of a cuff, the wireless transceiver 216 can be coupled to a non-occlusive blood pressure device. Many other configurations are possible. -
FIGS. 3A and 3B illustrate further embodiments of apatient monitoring system FIG. 3A depicts a tetheredpatient monitoring system 300A, whileFIG. 3B depicts a wirelesspatient monitoring system 300B. Thepatient monitoring systems - Referring to
FIG. 3A , the acoustic andECG sensors FIG. 2 are again shown coupled to thepatient 201. As above, thesesensors cable 250 is coupled to ajunction device 230 a instead of to a blood pressure cuff. In addition, theoptical sensor 202 b is coupled to thepatient 201 and to thejunction device 230 a via acable 207. Thejunction device 230 a can anchor thecable 205 b to the patient 201 (such as via the patient's belt) and pass through any signals received from thesensors patient monitor 240 via asingle cable 232. - In some embodiments, however, the
junction device 230 a can include at least some front-end signal processing circuitry. In some embodiments, thejunction device 230 a also includes a processor for processing physiological parameter measurements. Further, thejunction device 230 a can include all the features of the patient monitor 216 b in some embodiments, such as providing a display that outputs parameters measured from data obtained by thesensors - In the depicted embodiment, the patient monitor 240 is connected to a
medical stand 250. The patient monitor 240 includes parameter measuring modules 242, one of which is connected to thejunction device 230 a via thecable 232. The patient monitor 240 further includes adisplay 246. Thedisplay 246 is a user-rotatable display in the depicted embodiment. - Referring to
FIG. 3B , thepatient monitoring system 300B includes nearly identical features to thepatient monitoring system 300A. However, thejunction device 230 b includes wireless capability, enabling thejunction device 230 b to wirelessly communicate with the patient monitor 240 and/or other devices. The wirelesspatient monitoring system 300B can transmit data using any of a variety of wireless technologies, such as Wi-Fi (802.11x), Bluetooth (802.15.2), Zigbee (802.15.4), cellular telephony, infrared, RFID, satellite transmission, proprietary protocols, combinations of the same, and the like. -
FIGS. 4A and 4B illustrate embodiments ofpatient monitoring systems cable connection systems 410 for connecting sensors to a patient monitor 402. Like the cable 205 described above, thesecable connection systems 410 can advantageously enhance patient mobility and comfort. - Referring to
FIG. 4A , thepatient monitoring system 400A includes a patient monitor 402 a that measures physiological parameters based on signals obtained fromsensors optical ear sensor 412 and anacoustic sensor 420 in the embodiment shown. Theoptical ear sensor 412 can include any of the features of the optical sensors described above. Likewise, theacoustic sensor 420 can include any of the features of the acoustic sensors described above. - The
optical ear sensor 412 can be shaped to conform to the cartilaginous structures of the ear, such that the cartilaginous structures can provide additional support to thesensor 412, providing a more secure connection. This connection can be particularly beneficial for monitoring during pre-hospital and emergency use where the patient can move or be moved. In some embodiments, theoptical ear sensor 412 can have any of the features described in U.S. application Ser. No. 12/658,872, filed Feb. 16, 2010, entitled “Ear Sensor,” the disclosure of which is hereby incorporated by reference in its entirety. - An
instrument cable 450 connects the patient monitor 402 a to thecable connection system 410. Thecable connection system 410 includes asensor cable 440 connected to theinstrument cable 250. Thesensor cable 440 is bifurcated into twocable sections individual sensors anchor 430 a connects thesensor cable 440 andcable sections anchor 430 a can include an adhesive for anchoring thecable connection system 410 to the patient, so as to reduce noise from cable movement or the like. Advantageously, thecable connection system 410 can reduce the number and size of cables connecting the patient to a patient monitor 402 a. Thecable connection system 410 can also be used to connect with any of the other sensors, patient-worn monitors, or wireless devices described above. -
FIG. 4B illustrates thepatient monitoring system 400B, which includes many of the features of themonitoring system 400A. For example, anoptical ear sensor 412 and anacoustic sensor 420 are coupled to the patient. Likewise, thecable connection system 410 is shown, including thecable sections anchor 430 b. In the depicted embodiment, thecable connection system 410 communicates wirelessly with apatient monitor 402 b. For example, theanchor 430 b can include a wireless transceiver, or a separate wireless dongle or other device (not shown) can couple to theanchor 430 b. Theanchor 430 b can be connected to a blood pressure cuff, wireless transceiver, junction device, or other device in some embodiments. The wireless transceiver, wireless dongle, or other device can transmit data using any of a variety of wireless technologies, such as Wi-Fi (802.11x), Bluetooth (802.15.2), Zigbee (802.15.4), cellular telephony, infrared, RFID, satellite transmission, proprietary protocols, combinations of the same, and the like. -
FIG. 5 illustrates a more detailed embodiment of awireless transceiver 516. Thewireless transceiver 516 can have all of the features of thewireless transceiver 516 described above. For example, thewireless transceiver 516 can connect to a blood pressure cuff and to one or more physiological sensors, and thetransceiver 516 can transmit sensor data to a wireless receiver. Thewireless transceiver 516 can transmit data using any of a variety of wireless technologies, such as Wi-Fi (802.11x), Bluetooth (802.15.2), Zigbee (802.15.4), cellular telephony, infrared, RFID, satellite transmission, proprietary protocols, combinations of the same, and the like. - The depicted embodiment of the
transceiver 516 includes ahousing 530, which includesconnectors 552 for sensor cables (e.g., for optical, acoustic, ECG, and/or other sensors) and aconnector 560 for attachment to a blood pressure cuff or other patient-wearable device. Thetransceiver 516 further includes anantenna 518, which although shown as an external antenna, can be internal in some implementations. - The
transceiver 516 can include one or more connectors on one or more sides of thehousing 530. Providing connectors on different sides of thehousing 530 allows for convenient sensor connection and prevents the sensor cables from tangling. For example, as shown inFIG. 5 , the housing can include twoconnectors 552 on a first side of thehousing 530 and anadditional connector 560 on a second side of thehousing 530. - In addition, the
transceiver 516 includes adisplay 554 that depicts values of various parameters, such as systolic and diastolic blood pressure, SpO2, and respiratory rate (RR). Thedisplay 554 can also display trends, alarms, and the like. Thetransceiver 516 can be implemented with thedisplay 554 in embodiments where thetransceiver 516 also acts as a patient monitor. Thetransceiver 516 further includescontrols 556, which can be used to manipulate settings and functions of thetransceiver 516. -
FIGS. 6A through 6C illustrate embodiments of wireless patient monitoring systems 600. These wireless patient monitoring systems can transmit data using any of a variety of wireless technologies, such as Wi-Fi (802.11x), Bluetooth (802.15.2), Zigbee (802.15.4), cellular telephony, infrared, RFID, satellite transmission, proprietary protocols, combinations of the same, and the like. -
FIG. 6A illustrates apatient monitoring system 600A that includes awireless transceiver 616, which can include the features of any of the transceivers 216, 216 described above. Thetransceiver 616 provides a wireless signal over awireless link 612 to apatient monitor 620. The wireless signal can include physiological information obtained from one or more sensors, physiological information that has been front-end processed by thetransceiver 616, or the like. - The patient monitor 620 can act as the
wireless receiver 220 ofFIG. 2 . The patient monitor 620 can process the wireless signal received from thetransceiver 616 to obtain values, waveforms, and the like for one or more physiological parameters. The patient monitor 620 can perform any of the patient monitoring functions described above with respect toFIGS. 2 through 5 . - In addition, the patient monitor 620 can provide at least some of the physiological information received from the
transceiver 616 to a multi-patient monitoring system (MMS) 640 over anetwork 630. TheMMS 640 can include one or more physical computing devices, such as servers, having hardware and/or software for providing the physiological information to other devices in thenetwork 630. For example, theMMS 640 can use standardized protocols (such as TCP/IP) or proprietary protocols to communicate the physiological information to one or more nurses' station computers (not shown) and/or clinician devices (not shown) via thenetwork 630. In one embodiment, theMMS 640 can include some or all the features of the MMS described in U.S. Publication No. 2008/0188760, referred to above. - The
network 630 can be a LAN or WAN, wireless LAN (“WLAN”), or other type of network used in any hospital, nursing home, patient care center, or other clinical location. In some implementations, the network 210 can interconnect devices from multiple hospitals or clinical locations, which can be remote from one another, through the Internet, one or more Intranets, a leased line, or the like. Thus, theMMS 640 can advantageously distribute the physiological information to a variety of devices that are geographically co-located or geographically separated. -
FIG. 6B illustrates another embodiment of apatient monitoring system 600B, where thetransceiver 616 transmits physiological information to abase station 624 via thewireless link 612. In this embodiment, thetransceiver 616 can perform the functions of a patient monitor, such as any of the patient monitor functions described above. Thetransceiver 616 can provide processed sensor signals to thebase station 624, which forwards the information on to theMMS 640 over thenetwork 630. -
FIG. 6C illustrates yet another embodiment of apatient monitoring system 600B, where thetransceiver 616 transmits physiological information directly to theMMS 640. TheMMS 640 can include wireless receiver functionality, for example. Thus, the embodiments shown inFIGS. 6A through 6C illustrate that thetransceiver 616 can communicate with a variety of different types of devices. -
FIG. 7 illustrates an embodiment of aphysiological parameter display 700. Thephysiological parameter display 700 can be output by any of the systems described above. For instance, thephysiological parameter display 700 can be output by any of the wireless receivers, transceivers, or patient monitors described above. Theparameter display 700 can be output over a variety of wireless technologies, such as Wi-Fi (802.11x), Bluetooth (802.15.2), Zigbee (802.15.4), cellular telephony, infrared, RFID, satellite transmission, proprietary protocols, combinations of the same, and the like. Advantageously, in certain embodiments, thephysiological parameter display 700 can display multiple parameters, including noninvasive blood pressure (NIBP) obtained using both oscillometric and non-oscillometric techniques. - The
physiological parameter display 700 can display any of the physiological parameters described above, to name a few. In the depicted embodiment, thephysiological parameter display 700 is shown displayingoxygen saturation 702,heart rate 704, andrespiratory rate 706. In addition, thephysiological parameter display 700 displaysblood pressure 708, including systolic and diastolic blood pressure. - The
display 700 further shows aplot 710 of continuous or substantially continuous blood pressure values measured over time. Theplot 710 includes atrace 712 a for systolic pressure and atrace 712 b for diastolic pressure. Thetraces traces - Periodically, oscillometric blood pressure measurements (sometimes referred to as Gold Standard NIBP) can be taken, using any of the cuffs described above. These measurements are shown by
markers 714 on theplot 710. By way of illustration, themarkers 714 are “X's” in the depicted embodiment, but the type ofmarker 714 used can be different in other implementations. In certain embodiments, oscillometric blood pressure measurements are taken at predefined intervals, resulting in the measurements shown by themarkers 714. - In addition to or instead of taking these measurements at intervals, oscillometric blood pressure measurements can be triggered using ICI techniques, e.g., based at least partly on an analysis of the noninvasive blood pressure measurements indicated by the
traces plot 710, thedisplay 700 can provide a clinician with continuous and oscillometric blood pressure information. -
FIG. 8 illustrates another embodiment of apatient monitoring system 800. The features of thepatient monitoring system 800 can be combined with any of the features of the systems described above. Likewise, any of the features described above can be incorporated into thepatient monitoring system 800. Advantageously, in the depicted embodiment, thepatient monitoring system 800 includes acable hub 806 that enables one or many sensors to be selectively connected and disconnected to thecable hub 806. - Like the patient monitoring systems described above, the
monitoring system 800 includes acuff 810 with apatient device 816 for providing physiological information to amonitor 820 or which can receive power from a power supply (820). Thecuff 810 can be a blood pressure cuff or merely a holder for thepatient device 816. Thepatient device 816 can instead be a wireless transceiver having all the features of the wireless devices described above. The wireless transceiver can transmit data using any of a variety of wireless technologies, such as Wi-Fi (802.11x), Bluetooth (802.15.2), Zigbee (802.15.4), cellular telephony, infrared, RFID, satellite transmission, proprietary protocols, combinations of the same, and the like. - The
patient device 816 is in coupled with anoptical finger sensor 802 viacable 807. Further, thepatient device 816 is coupled with thecable hub 806 via acable 805 a. Thecable hub 806 can be selectively connected to one or more sensors. In the depicted embodiment, example sensors shown coupled to thecable hub 806 include an ECG sensor 808 a and abrain sensor 840. The ECG sensor 808 a can be single-lead or multi-lead sensor. Thebrain sensor 840 can be an electroencephalography (EEG) sensor and/or an optical sensor. An example of EEG sensor that can be used as thebrain sensor 840 is the SEDLine™ sensor available from Masimo® Corporation of Irvine, Calif., which can be used for depth-of-anesthesia monitoring among other uses. Optical brain sensors can perform spectrophotometric measurements using, for example, reflectance pulse oximetry. Thebrain sensor 840 can incorporate both an EEG/depth-of-anesthesia sensor and an optical sensor for cerebral oximetry. - The ECG sensor 808 a is coupled to an
acoustic sensor 804 and one or more additional ECG leads 808 b. For illustrative purposes, fouradditional leads 808 b are shown, for a 5-lead ECG configuration. In some embodiments, one or twoadditional leads 808 b are used instead of four additional leads . In some embodiments, up to at least 12 leads 808 b can be included. Acoustic sensors can also be disposed in the ECG sensor 808 a and/or lead(s) 808 b or on other locations of the body, such as over a patient's stomach (e.g., to detect bowel sounds, thereby verifying patient's digestive health, for example, in preparation for discharge from a hospital). Further, in some embodiments, theacoustic sensor 804 can connect directly to thecable hub 806 instead of to the ECG sensor 808 a. - As mentioned above, the
cable hub 806 can enable one or many sensors to be selectively connected and disconnected to thecable hub 806. This configurability aspect of thecable hub 806 can allow different sensors to be attached or removed from a patient based on the patient's monitoring needs, without coupling new cables to themonitor 820. Instead, a single, light-weight cable 832 couples to themonitor 820 in certain embodiments, or wireless technology can be used to communicate with the monitor 820 (see, e.g.,FIG. 1 ). A patient's monitoring needs can change as the patient is moved from one area of a care facility to another, such as from an operating room or intensive care unit to a general floor. The cable configuration shown, including thecable hub 806, can allow the patient to be disconnected from a single cable to themonitor 820 and easily moved to another room, where a new monitor can be coupled to the patient. Of course, themonitor 820 may move with the patient from room to room, but thesingle cable connection 832 rather than several can facilitate easier patient transport. - Further, in some embodiments, the
cuff 810 and/orpatient device 816 need not be included, but thecable hub 806 can instead connect directly to the monitor wirelessly or via a cable. Additionally, thecable hub 806 or thepatient device 816 may include electronics for front-end processing, digitizing, or signal processing for one or more sensors. Placing front-end signal conditioning and/or analog-to-digital conversion circuitry in one or more of these devices can make it possible to send continuous waveforms wirelessly and/or allow for a small, more user-friendly wire (and hence cable 832) routing to themonitor 820. - The
cable hub 806 can also be attached to the patient via an adhesive, allowing thecable hub 806 to become a wearable component. Together, the various sensors, cables, andcable hub 806 shown can be a complete body-worn patient monitoring system. The body-worn patient monitoring system can communicate with apatient monitor 820 as shown, which can be a tablet, handheld device, a hardware module, or a traditional monitor with a large display, to name a few possible devices. -
FIGS. 9A-9D illustrate another embodiment of awireless monitoring system 900 including awireless monitor 902 coupled to asensor 930. Thewireless monitoring system 900 is configured to connect to one or more sensors and/or a bedside monitor. The features of thewireless monitoring system 900 can be combined with any of the features of the systems described above. Likewise, any of the features described above can be incorporated into thepatient monitoring system 900. The wireless monitor 902 includes aremovable battery 904 having a data storage component. Theremovable battery 904 can be used to pair thewireless monitor 902 with the correct bedside monitor as described below. Thebattery 904 is positioned on the front side of thewireless monitor 902, so thebattery 904 can be replaced without disconnecting a wireless monitor housing from the patient. Further details of these drawings are described below. -
FIG. 10 illustrates details of an embodiment of thewireless monitoring system 900 in a schematic form. Typically, thesensor 930 includesenergy emitters 1016 located on one side of apatient monitoring site 1018 and one ormore detectors 1020 located generally opposite. Thepatient monitoring site 1018 is usually a patient's finger (as pictured), toe, ear lobe, or the like.Energy emitters 1016, such as LEDs, emit particular wavelengths of energy through the flesh of a patient at themonitoring site 1018, which attenuates the energy. The detector(s) 1020 then detect the attenuated energy and send representative signals to thewireless monitor 902. - The wireless monitor 902 can include a
sensor interface 1024 and a digital signal processor (DSP) 1026. Thesensor interface 1024 receives the signals from thesensor 930 detector(s) 1020 and passes the signals to theDSP 1026 for processing into representations of physiological parameters. In some embodiments, theDSP 1026 also communicates with a memory or information element, such as a resistor or capacitor, 1030 located on thesensor 930, such memory typically contains information related to the properties of the sensor that may be useful in processing the signals, such as, for example,emitter 1016 energy wavelengths. - In some embodiments, the physiological parameters are passed to an
instrument manager 1028, which may further process the parameters for display by abedside monitor 916. Theinstrument manager 1028 may include amemory buffer 1034 to maintain this data for processing throughout a period of time.Memory buffer 1034 may include RAM, Flash or other solid state memory, magnetic or optical disk-based memories, combinations of the same or the like. - In some embodiments, the wireless monitor is able to display one or more physiological parameters. The wireless monitor 902 can include one or
more displays 1036,control buttons 1040, one ormore speakers 1038 for audio messages.Control buttons 1040 may comprise a keypad, a full keyboard, a touch screen, a track wheel, and the like. - The wireless monitor 902 is powered by a
battery 904. In some embodiments, thebattery 904 directly or indirectly powers thesensor interface 1024,DSP 1026, and theinstrument manager 1028. - The
battery 904 includesmemory 932, such memory stores wireless communication information needed for thewireless monitor 902 to wirelessly communicate withbedside monitor 916. Thebattery 904 can communicate the information stored on thememory 932 to thewireless monitor 902 or bedside monitor 916, and thememory 932 can store information received from thewireless monitor 902 orbedside monitor 916. - The bedside monitor 916 wirelessly receives the physiological data and/or parameters from the
wireless monitor 902 and is able to display one or more physiological parameters. The bedside monitor 916 can include one ormore displays 1008,control buttons 1010, aspeaker 1012 for audio messages, and/or a wireless signal broadcaster.Control buttons 1010 may comprise a keypad, a full keyboard, a track wheel, and the like. - As shown in
FIG. 10 , thewireless monitor 902 can include an optionalinternal battery 905 capable of powering thewireless monitor 902 when thebattery 904 is disconnected from thewireless monitor 902. Theinternal battery 905 can includeadditional backup memory 933 to store information when thebattery 904 is disconnected from thewireless monitor 902. Theinternal battery 905 can be useful when a caregiver replaces thebattery 904 with a different, fully-charged battery. While thebattery 904 is disconnected from thewireless monitor 902, thewireless monitor 902 can continue to display and communicate information. - In several embodiments, the wireless patient monitoring system includes one or more sensors, including, but not limited to, a
sensor 930 to monitor oxygen saturation and pulse rate. These physiological parameters can be measured using a pulse oximeter. In general, thesensor 930 has light emitting diodes that transmit optical radiation of red and infrared wavelengths into a tissue site and a detector that responds to the intensity of the optical radiation after absorption (e.g. by transmission or transreflectance) by pulsatile arterial blood flowing within the tissue site. Based on this response, a processor determines measurements for SpO2, pulse rate, and can output representative plethsmorgraphic waveforms. Thus, “pulse oximetry” as used herein encompasses its broad ordinary meaning known to one of skill in the art, which includes at least those noninvasive procedures for measuring parameters of circulating blood through spectroscopy. - The
wireless monitoring system 900 can include any of the sensors described herein in addition to or in alternative to the pulse oximeter. For example, thewireless monitoring system 900 can also include sensors for monitoring acoustics, sedation state, blood pressure, ECG, body temperature, and/or cardiac output. The wireless monitor may also include an accelerometer or gyroscope. The wireless patient monitoring system may include any of the above-mentioned sensors alone or in combination with each other. - In several embodiments, the
wireless monitor 902 includes a wireless transmitter to transmit sensor data and/or a wireless receiver to receive data from another wireless transmitter or transceiver. By transmitting the sensor data wirelessly, thewireless monitor 902 can advantageously replace some or all cables that connect patients to bedside monitoring devices. Alternatively, thewireless monitor 902 calculates physiological parameters based on the sensor data and wirelessly transmits the physiological parameters and/or the sensor data itself to the bedside monitor. The physiological parameter can be numerical information, such as oxygen saturation (SpO2) or pulse rate, or a graphical depiction of the sensor data. The data processors can be positioned in the wireless monitor housing or the battery. By configuring thewireless monitor 902 to calculate the physiological parameter, less data transfer is required to transmit information from the wireless monitor to the bedside monitor. Processing the sensor data in thewireless monitor 902 also improves the quality of the signal transferred to the bedside monitor. - As shown in
FIGS. 9B-9C , thewireless monitor 902 includes aremovable battery 904 and abase 906. The base 906 can include processing and wireless transmission capabilities and/or share processing function with thebattery 904.Removable battery 904 includes arelease mechanism 912 to release thebattery 904 from thebase 906. As depicted inFIG. 9B , the base 906 can include abattery receiving portion 914 and anotch 917 to lock theremovable battery 904 in place. Wireless monitor 902 can have one ormore outlets 910 to plug in thesensor 930, such as the pulse oximeter, acoustic respiratory sensor, - ECG, sedation sensor, blood pressure cuff, or any other sensor. In some embodiments, one or
more outlets 910 can be positioned on one or more sides of thewireless monitor 902. For example, the wireless monitor can include an outlet on one side for an acoustic respiratory sensor and an outlet on an opposite side for a pulse oximeter. - Wireless monitor 902 can include an
opening 908 through which anarm band 934 can be passed to secure thewireless monitor 902 to the arm of the patient, as shown inFIG. 9A . Thearm band 934 can be reusable, disposable or resposable. Similarly, any of thesensors 930 can be disposable or resposable. Resposable devices can include devices that are partially disposable and partially reusable. Thus, for example, the acoustic sensor can include reusable electronics, but a disposable contact surface (such as an adhesive) where the sensor comes into contact with the patient's skin. - The
sensors 930 and/or wireless monitor 902 need not be worn around the patient's arm, but can be worn at any other location, including not at all. Thesensors 930 and/or wireless monitor 902 need not be coupled to an arm band, but can be coupled to a patient's belt or a chest strap, can be carried by the patient (e.g., via a shoulder strap or handle), or can be placed on the patient's bed next to the patient, among other locations. -
FIG. 9D illustrates thebattery 904 docked with abedside monitor 916.Bedside monitor 916 has abattery charging station 922 for receiving and chargingremovable battery 904. When thewireless monitor 902 is using a first battery, thebattery charging station 922 can charge a second battery, so when the battery levels of the first battery are low, a second battery is readily available. Each battery is capable of powering thewireless monitor 902 for at least one nursing shift, so each nurse only has to replace the battery once either at the beginning or end of each shift. - An
adapter 918 can be integrated with the bedside monitor or separately connected to bedside monitor 916. The bedside monitor 916 includes arelease mechanism 926 to release theadaptor 918 from thebedside monitor 916.Adaptor 918 includesdocking station 920 to receive the entire wireless monitor (not shown).Locking mechanism 924 holds thewireless monitor 902 in place. Other components may be connected to the bedside monitor 916 instead of theadaptor 918, such as a handheld patient monitor device. - In some embodiments, the
adaptor 918 includes adocking station 920 to receive theentire wireless monitor 902. The wireless monitor 902 can be placed in thedocking station 920 when it is not in use to prevent the wireless monitor 902 from being lost. The bedside monitor 916 can charge thebattery 904 when thewireless monitor 902 is connected to thebedside monitor 916. In certain aspects, the bedside monitor 916 can communicate a password, unique identifier, appropriate channel information, or other wireless communication information to thewireless monitor 902, and vice versa, when thewireless monitor 902 is connected to thebedside monitor 916. - As shown in
FIG. 9D , the bedside monitor 916 is capable of simultaneously receiving a first battery and awireless monitor 902 having a second battery. The bedside monitor 916 is configured to charge and sync both the first and second batteries. When the first battery and/or thewireless monitor 902 and second battery are physically docked in thebedside monitor 916, the first and/or second battery can communication with the bedside monitor 916 over a wired connection. - The bedside monitor 916 can include a
display screen 928 for displaying the physiological parameters, including trends, waveforms, related alarms, and the like. In certain aspects, the bedside monitor 916 can display the appropriate channel for communication and/or whether thewireless monitor 902 is properly communicating with thebedside monitor 916. - The bedside monitor 916 can include a computer-readable storage medium, such as a physical storage device, for storing the physiological data. In certain aspects, the bedside monitor can include a network interface for communicating the physiological data to one or more hosts over a network, such as to a nurse's station computer in a hospital network.
- The wireless monitor 902 can transmit data to the bedside monitor 916 using any of a variety of wireless technologies, such as Wi-Fi (802.11x), Bluetooth, ZigBee, cellular telephony, infrared, RFID, satellite transmission, proprietary protocols, combinations of the same, and the like. The wireless monitor 902 can perform solely telemetry functions, such as measuring and reporting information about the patient.
- The
wireless monitor 902, or any of the wireless monitor embodiments discussed herein, can be configured to utilize different wireless technologies. In certain scenarios, it may be desirable to transmit data over Bluetooth or ZigBee, for example, when the distance between thewireless monitor 902 and the bedside monitor 916 is within range of Bluetooth or ZigBee communication. Transmitting data using Bluetooth or ZigBee is advantageous because these technologies require less power than other wireless technologies. In other scenarios, it may be desirable to transmit data using Wi-Fi or cellular telephony, for example, when the wireless monitor is out of range of communication for Bluetooth or ZigBee. Awireless monitor 902 may be able to transmit data over a greater distance using Wi-Fi or cellular telephony than other wireless technologies. In still other scenarios, it may be desirable to transmit data using a first wireless technology and automatically switch to a second wireless technology in order to maximize data transfer and energy efficiency. - In some embodiments, the
wireless monitor 902 automatically transmits data over Bluetooth or ZigBee when thewireless monitor 902 is within a pre-determined distance frombedside monitor 916. Thewireless transmitter 902 automatically transmits data over Wi-Fi or cellular telephony when thewireless monitor 902 is beyond a pre-determined distance away from thebedside monitor 916. In certain embodiments, thewireless monitor 902 can automatically convert from Bluetooth or ZigBee to Wi-Fi or cellular telephony, and vice versa, depending on the distance between thewireless monitor 902 and bedside monitor 916. - In some embodiments, the
wireless monitor 902 automatically transmits data over Bluetooth or ZigBee when the Bluetooth or ZigBee signal strength is sufficiently strong or when there is interference with Wi-Fi or cellular telephony. The wireless monitor 902 automatically transmits data over Wi-Fi or cellular telephony when the Bluetooth or ZigBee signal strength is not sufficiently strong. In certain embodiments, thewireless monitor 902 can automatically convert from Bluetooth or ZigBee to Wi-Fi or cellular telephony, and vice versa, depending on signal strength. - Existing wireless bedside monitoring devices can be difficult to use because it can be difficult to pair the wireless device with the correct bedside monitor, making it difficult to switch wireless devices or switch bedside monitors. Some wireless systems require the care provider to program the wireless device to communicate with the correct patient monitor. Other wireless systems require a separate token or encryption key and several steps to pair the wireless device with the correct bedside monitors. Some systems require the token to be connected to the bedside monitor, then connected to the wireless device, and then reconnected to the bedside monitor.
- In certain scenarios, it may be desirable to share wireless communication information between a
wireless monitor 902 and abedside monitor 916 without a separate token or encryption key. In some embodiments, theremovable battery 904 includes a data storage component, such asmemory 932, capable of storing wireless communication information. Thebattery 904 is configured to connect to both thewireless monitor 902 and thebedside monitor 916. Combining thebattery 904 with a data storage component can decrease the total number of components and decrease the number of steps it takes to transfer wireless communication information between thewireless monitor 902 and bedside monitor 916 because a separate token or encryption key is not needed. This method of data transfer also eliminates user input errors arising from users having to program thewireless monitor 902 and/or bedside monitor 916 and allows for easy transfer of wireless communication information between thewireless monitor 902 and bedside monitor 916. - For security purposes, it may be desirable to use security tokens to ensure that the
correct bedside monitor 916 receives the correct wirelessly transmitted data. Security tokens prevent the bedside monitor 916 from accessing the transmitted data unlesswireless monitor 902 and bedside monitor 916 share the same password. The password may be a word, passphrase, or an array of randomly chosen bytes. - When the
battery 904 is connected to thebedside monitor 916, the bedside monitor 916 can communicate a password to thebattery 904, and thebattery 904 stores the password on its data storage component. Thebattery 904 can communicate a password for thewireless monitor 902 to thebedside monitor 916. Thebattery 904 can then be disconnected from the bedside monitor 916 and connected to thewireless monitor 902. When thebattery 904 is connected to thewireless monitor 902, thebattery 904 can communicate the password to thewireless monitor 902. The wireless monitor 902 can then communicate wirelessly with thecorrect bedside monitor 916. - In some scenarios, it may be desirable to pair the
wireless monitor 902 with the bedside monitor 916 to avoid interference from other wireless devices. When theremovable battery 904 is connected to thebedside monitor 916, the bedside monitor 916 communicates a unique identifier to thebattery 904, and thebattery 904 stores the unique identifier on its data storage component. Thebattery 904 can communicate a unique identifier for thewireless monitor 902 to thebedside monitor 916. Thebattery 904 can then be disconnected from the bedside monitor 916 and connected to thewireless monitor 902. When thebattery 904 is connected to thewireless monitor 902, thebattery 904 can communicate the unique identifier to thewireless monitor 902, so that thewireless monitor 902 can transmit data to thecorrect bedside monitor 916. - In some scenarios, it is desirable for the
wireless monitor 902 to be configured to transmit data over the correct channel. Channels provide a mechanism to avoid sources of wireless interference. When theremovable battery 904 is connected to thebedside monitor 916, the bedside monitor 916 communicates the appropriate channel to thebattery 904, and thebattery 904 stores the channel information on its data storage component. If necessary, thebattery 904 can communicate a wireless monitor channel thebedside monitor 916. Thebattery 904 is then disconnected from the bedside monitor 916 and connected to thewireless monitor 902. When thebattery 904 is connected to thewireless monitor 902, thebattery 904 can communicate the appropriate channel information to thewireless monitor 902, thereby ensuring thewireless monitor 902 transmits data over the correct channel. - The
battery 904, or any battery embodiment described herein, can receive or communicate any one or combination of passwords, tokens, or channels as described above. The wireless communication information can include information to communicate over each protocol thewireless monitor 902 is configured to communicate over. For example, if thewireless monitor 902 is capable of communicating over Wi-Fi and Bluetooth, then thebattery 904 is capable of receiving wireless communication information to communicate over both Wi-Fi and Bluetooth. - In some scenarios, the method in any of the above mentioned methodologies may be reversed. For example, in some embodiments, the
battery 904 is initially connected to thewireless monitor 902. When thebattery 904 is connected to thewireless monitor 902, thewireless monitor 902 can communicate wireless communication information identifying thewireless monitor 902 to thebattery 904, and thebattery 904 can store the information on its data storage component. The battery can communicate wireless communication information identifying the bedside monitor 916 to thewireless monitor 902. After thebattery 904 is disconnected from thewireless monitor 902, thebattery 904 is connected to thebedside monitor 916. Thebattery 904 can then communicate wireless communication information stored on the data storage component to thebedside monitor 916, such as a password, unique identifier, channel, or other data information. -
FIG. 11 illustrates an embodiment for using the wireless patient monitoring system that can be used in connection with any wireless patient monitoring system described herein. The operator connects the removable battery to the bedside monitor (block 1102) and the bedside monitor and the battery communicate wireless communication information with each other (block 1104). The operator then disconnects the battery from the bedside monitor (block 1106) and connects the battery to the wireless monitor (block 1108). The battery and the wireless monitor communicate wireless communication information with each other (block 1110). After the wireless monitor receives data from the one or more sensors (block 1112), the wireless monitor processes the sensor data into representations of physiological parameters (block 1114). The wireless monitor then wireless communicates the physiological parameters and/or the sensor data to the bedside monitor (block 1116). - In some embodiments, the data storage component of the
battery 904 stores wireless communication information related to thewireless monitor 902. The wireless communication information can be a password, unique identifier, channel, etc. When thebattery 904 is engaged with thebedside monitor 916, the bedside monitor 916 can communicate wireless communication information to thebattery 904, and thebattery 904 can communicate wireless communication information to thebedside monitor 916. Thebattery 904 is then disconnected from the bedside monitor 16 and connected to thewireless monitor 902. Since thebattery 904 already communicated the wireless communication information to thebedside monitor 916, thebattery 904 provides all remaining wireless communication information to the wireless monitor. The wireless monitor reconfigures itself according to the information on the battery and no further information is required to be communicated with thebedside monitor 916. This reduces the total number of steps necessary to pair thewireless monitor 902 with thecorrect bedside monitor 916. -
FIG. 12 illustrates another embodiment of thewireless patient monitor 1202. The features of the wireless patient monitor 1202 can be combined with any of the features of the systems described above. Likewise, any of the features described above can be incorporated into thepatient monitor 1202. - As shown in
FIG. 12 , the wireless patient monitor 1202 can include a housing 1205 that removably engages abattery 1204. Themonitor 1202 can include arelease mechanism 1212 for releasing thebattery 1204 from thehousing 1206 and/or one ormore outlets 1210 for engaging one or more sensors. - The wireless patient monitor 1202 can include a wireless transceiver capable of transmitting data using any of a variety of wireless technologies, such as Wi-Fi (802.11x), Bluetooth (802.15.2), Zigbee (802.15.4), cellular telephony, infrared, RFID, satellite transmission, proprietary protocols, combinations of the same, and the like.
- As shown in
FIG. 12 , thebattery 1204 can include adisplay screen 1240. Thedisplay screen 1240 can indicate any number of parameters, including, but not limited to, physiological parameters, battery levels, and wireless signal strength. Positioning thedisplay screen 1240 on thebattery 1204 helps reduce the size of the housing. - The
display screen 1240 can include a touch interface to permit a user to access different parameters or settings (e.g., display settings, connectivity settings, etc.). In certain aspects, thedisplay screen 1240 can rotate depending on the orientation of thebattery 1204. - To save energy, the
display screen 1240 can selectively display certain parameters depending on the location of thebattery 1204. For example, if the battery is connected to the bedside monitor or disconnected from the wireless monitor, the battery may only display battery levels. If the battery is connected to the wireless monitor, then the battery may display additional parameters other than battery levels. - The
display screen 1240 can selectively display certain parameters depending on the distance between thewireless monitor 1202 and the bedside monitor 1216. Referring toFIG. 13 , if thewireless monitor 1202 is within a predetermined distance from the bedside monitor—(block 1300), then thedisplay screen 1240 deactivates (block 1302). If thewireless monitor 1202 is not within a predetermined distance from the bedside monitor (block 1300), then thedisplay screen 1240 initializes (block 1304). Thedisplay screen 1240 only needs to be active when the patient is not close to the bedside monitor. - The
display screen 1240 can selectively display certain parameters depending on the type of wireless connection between thewireless monitor 1202 and the bedside monitor and/or hospital IT infrastructure. Referring toFIG. 14 , if thewireless monitor 1202 wirelessly communicates physiological parameters and/or sensor data over Bluetooth (block 1410), then the display screen deactivates (block 1412). If thewireless monitor 1202 wirelessly communicates physiological parameters and/or sensor data over Wi-Fi (block 1414), then thedisplay screen 1240 initializes (block 1416). - The
wireless monitor 1202 can selectively transmit information over different wireless connections and display certain parameters depending on the distance between thewireless monitor 1202 and the bedside monitor. Referring toFIG. 15 , if thewireless monitor 1202 is within a predetermined distance from the bedside monitor (block 1520), then thewireless monitor 1202 wirelessly communicates physiological parameters and/or sensor data to the bedside monitor over Bluetooth (block 1522). If thewireless monitor 1202 wirelessly communicates to the bedside monitor over Bluetooth (block 1522), then thedisplay screen 1240 deactivates (block 1524). Thedisplay screen 1240 does not need to be active since the bedside monitor is nearby. - If the
wireless monitor 1202 is not within a predetermined distance from the bedside monitor (block 1520), then thewireless monitor 1202 wirelessly communicates physiological parameters and/or sensor data to the bedside monitor over Wi-Fi (block 1526). If thewireless monitor 1202 wireless communicates to the bedside monitor over Wi-Fi (block 1526), then thedisplay screen 1240 initializes (block 1528). If thewireless monitor 1202 is communicating over Wi-Fi, then it is more likely that the patient is not in the patient room. In that case, it is necessary to have a secondary display screen available to monitor the patient's physiological parameters. - Although
FIGS. 14 and 15 were discussed in reference to Bluetooth and Wi-Fi, the system can wirelessly communication information over ZigBee or cellular telephony. Also, the system may convert from a first wireless technology (e.g., Bluetooth) to a second wireless technology (Wi-Fi) based on signal strength rather than distance. - The
wireless monitor 1202 can help the hospital staff monitor the patient when the patient is not close to the bedside monitor. When the patient is close to the bedside monitor, the bedside monitor will notify the staff if any of the patient's physiological parameters are irregular by activating an audible alarm and/or by alerting a staff member using the hospital IT infrastructure. When the patient is more than a pre-determined distance from the bedside monitor, thewireless monitor 1202 can send the physiological parameters and/or sensor data directly over the hospital IT infrastructure, so the hospital staff can continuously monitor the patient at the nurse's station or any other location. If the patient exhibits any irregular physiological parameters, thewireless monitor 1202 can activate an audible alarm and/or alert a staff member using the hospital IT infrastructure. Thewireless monitor 1202 can use triangulation to provide the location of the patient, so the staff member can quickly find the patient. By configuring thewireless monitor 1202 to process the sensor data, thewireless monitor 1202 is capable of communicating physiological parameters over the hospital IT infrastructure without the bedside monitor. - Any of the systems described herein can include a display screen and can be configured to carry out any of the methods described in
FIGS. 13-15 . -
FIGS. 16A-F illustrate another embodiment of a wireless patient monitoring system. The features of the wireless patient monitoring system can be combined with any of the features of the systems described above. Likewise, any of the features described above can be incorporated into the wireless patient monitoring system. -
FIG. 16A illustrates thewireless monitor 1602 with thebattery 1604 detached from thebase 1606. Thebase 1606 can include processing and wireless transmission capabilities and/or share processing function with thebattery 1604. Thebattery 1602 removably engages an anterior surface of thebase 1606. Thebattery 1602 can engage thehousing 1602 via a magnet, a clip, a band, a snap fit, a friction fit, or otherwise. Thehousing 1602 can include one ormore outlets 1610 for engaging one ormore sensors 1630. As shown inFIG. 16A , thehousing 1206 can include an outlet on one end of the housing and another outlet on the opposite end of the housing. Disposing outlets on opposite ends of the housing can be useful to prevent sensor cables from tangling. - The
battery 1604 can include adisplay screen 1640 and auser input device 1644. The user input device can activate the screen, adjust display settings, select physiological parameters to display, and/or otherwise control thedisplay screen 1640. As shown inFIG. 16A , theuser input device 1644 can be a touch pad. A user can tap the touch pad to select a feature and/or swipe in different directions to change selections. For example, the user can swipe right or left to change the parameters displayed on the display screen. Other functions can also be performed using the three inputs of the touch pad—left swipe, right swipe, and tap. Otheruser input devices 1644 can include one or more buttons, switches, or other control. In certain aspects, the display screen can be the user input device. -
FIG. 16B illustrates astrap 1646 for securing thewireless monitor 1602 to the patient. Thestrap 1646 can include any fabric, elastic, or otherwise flexible material. In certain aspects, thestrap 1646 can be waterproof. One or both ends of thestrap 1646 can be tapered. One or both ends of thestrap 1646 can include a covering to protect the strap ends. - The
strap 1646 can be secured to the patient as an arm band, a shoulder strap, a belt, or in any other configuration. A portion of thestrap 1646 can be secured to another portion of thestrap 1646 usingVelcro 1660, clasps, adhesive, snap-fits, or any other connector. Thestrap 1646 can include a band (not shown) for securing an excess portion of thestrap 1646. - As shown in
FIG. 16B , thestrap 1646 can include aconnector 1650 for engaging thewireless monitor 1602 and anadjustment mechanism 1648 to adjust the length of thestrap 1646 and/or secure anyexcess strap 1646. Theconnector 1650 can be an integral portion of thestrap 1646 or a separately formed component secured to thestrap 1646. As shown inFIG. 16B , theconnector 1650 can include anopening 1656 on opposite sides of theconnector 1650 for securing either end of thestrap 1646. One or both ends of thestrap 1646 can be removably secured to theconnector 1650. - In certain aspects, the
connector 1650 engages the housing by being disposed between the base 1606 and thebattery 1604. At least a portion of theconnector 1650 can overlay a portion of the housing. Theconnector 1650 can include certain features to mate with a corresponding feature of thebase 1606 and/orbattery 1604. For example, theconnector 1650 can include one ormore recesses 1652 configured to mate with one ormore protrusions 1658 on thebase 1606. As shown inFIG. 16C , theconnector 1650 can include arecess 1652 on opposite ends of theconnector 1650 that mate withprotrusions 1658 on opposite ends of thebase 1606. Theconnector 1650 can be flush with theprotrusions 1658 to provide a flat surface for thebattery 1604. - In other aspects, the
connector 1650 can pass through an opening of the wireless monitor. For example, as shown inFIG. 12 , the wireless monitor can include anopening 1208 for engaging thestrap 1646. In still other aspects, theconnector 1650 can engage thewireless monitor 1602 using clips, ties, buckles, buttons, or any other connector. - The
wireless monitor 1602 can include a wireless transceiver capable of transmitting data using any of a variety of wireless technologies, such as Wi-Fi (802.11x), Bluetooth (802.15.2), Zigbee (802.15.4), cellular telephony, infrared, RFID, satellite transmission, proprietary protocols, combinations of the same, and the like. -
FIGS. 16D-16F illustrate abedside monitor 1616 configured to receive thewireless monitor 1602. The bedside monitor can include one ormore input ports 1627 configured to receive cables. In certain aspects, thebedside monitor 1616 can include aport 1617 configured to receive a handheld device, such as thehandheld monitor 166 shown inFIG. 1D . Further details about the handheld device can be found in U.S. application Ser. No. 13/651,167, filed Oct. 12, 2012, entitled “Medical Monitoring Hub,” which is hereby incorporated by reference in its entirety. - The
port 1617 can removably engage anadapter 1618. For example, theadapter 1618 can include arelease mechanism 1626 to release theadapter 1618 from theport 1617. In certain aspects, therelease mechanism 1626 is studded, so a user must use one or more tools to release therelease mechanism 1626. - The
adapter 1618 can be configured to receive abattery 1604 and/or awireless monitor 1602. Theadapter 1618 can include adocking adaptor door 1620 configured to receive the standalone battery 1604 and/or and a port for receiving a thewireless monitor 1602 including abattery 1604. In certain aspects, as shown inFIG. 16F , thedocking adaptor door 1620 can pivot to facilitate insertion and removal of thewireless monitor 1602. When thebattery 1604 and/orwireless monitor 1602 having abattery 1604 is physically connected to theadapter 1618, thebatteries 1606 can charge and can communicate and/or receive information from thebedside monitor 1616 over a wired connection. -
FIGS. 17A-17C illustrate another embodiment of awireless monitor 1702. Thewireless monitor 1702 can include any of the other wireless monitor features described herein. Likewise, any of the other wireless monitor embodiments discussed herein can include any of the features of thewireless monitor 1702. - The
wireless monitor 1702 can include abattery 1704 removably engaged with abase 1706. Thebase 1706 can include processing and wireless transmission capabilities and/or share processing function with thebattery 1704.FIG. 17A illustrates an exploded view of thewireless monitor 1702. The housing can include one ormore outlets 1710 configured to connect to one or more sensors (not shown). The battery can include adisplay 1740 capable of displaying physiological parameters, connectivity information, and/or other content. Thebattery 1704 can include atouch pad 1744 or other user input device. Thetouch pad 1744 can permit the user to swipe right, swipe left, or tap to control thewireless monitor 1702. Thebattery 1704 can include an additional user input device (e.g., button 1745) that can activate/deactivate the wireless monitor or provide other functionality. - The battery can include one or more protrusions, ribs, struts, detents, or the like configured to be received in corresponding grooves, notches, recesses, openings, or the like in the
base 1706.FIG. 17B illustrates views of an inner portion of thebattery 1704 and an inner portion of the housing. Thebattery 1704 can include twoprotrusions 1741 on each end of thebattery 1704 and along an inner portion of thebattery 1704. One or more of theprotrusions 1741 can be a different size or shape from theother protrusions 1741. Thebase 1706 can include twogrooves 1743 on each end of thebase 1706 and along an inner portion of thebase 1706. Each of thegrooves 1743 can be configured to receive one of theprotrusions 1741. One or more of thegrooves 1743 can be a different size or shape from theother grooves 1743.FIG. 17C illustrates a perspective view of thebattery 1704 engaged with thebase 1706. - The
wireless monitor 1702 can include a wireless transceiver capable of transmitting data using any of a variety of wireless technologies, such as Wi-Fi (802.11x), Bluetooth (802.15.2), Zigbee (802.15.4), cellular telephony, infrared, RFID, satellite transmission, proprietary protocols, combinations of the same, and the like. - As described above, any of the wireless monitoring systems described herein can include an accelerometer or gyroscope that can be used to detect one or more of patient orientation, patient movement, whether the patient is falling, or the like. In certain aspects, the wireless monitoring system can include an alert system to alert the caregiver that the patient is falling, getting out of bed, or otherwise moving in a prohibited manner. The alert can be an audible and/or visual alarm on the monitoring system or transmitted to a caregiver (e.g., nurses' station, pager, home computer, or otherwise).
- In certain aspects, the information received by the accelerometer or gyroscope can be used to create an indication and/or animation of patient movement. This animation can be displayed on the patient monitor or transmitted to a nurses station or other off-site location to enable the caregiver to monitor the patient. The animation can be viewed real time and/or be recorded for playback. For example, if an alarm alerts the caregiver that the patient has fallen out of bed, the caregiver can be presented playbacks of one or more of the patient's movement during that period of time.
-
FIGS. 18A-18C illustrate examples of the animation that can be displayed on a bedside monitor, nurses' station monitor, or other display screen.FIG. 18A illustrates a patient lying inbed 1801, and the patient rolling over 1803.FIG. 18B illustrates the patient lying inbed 1805, and the patient sitting up 1807.FIG. 18C illustrates the patient lying inbed 1809, and the patient getting out ofbed 1811. Other patient movements can also be illustrated, such as a patient falling, walking, or otherwise. - Sometimes unnecessary injuries occur to hospital patients due to falling, whether while walking or falling out of a patient bed. Patient falls can be difficult to detect because rarely do patients fall out of bed quickly, which might be easy to detect as an impact with an accelerometer. Rather, patients often tend to slide out of bed more slowly, resulting in accelerometer outputs that may not register any hard impact.
- Another problem sometimes occurring in hospitals results from lack of patient movement, which can result in bedsores (sometimes called pressure sores). Bedsores often result from patients maintaining the same position in bed (or in a chair) over an extended period of time. If left untreated, bedsores can result in life-threatening staph infections. Nurses may attempt to prevent bedsores by instructing patients to turn over, get up, or manually turning patients with limited mobility from time to time. However, with increasingly large workloads, it can be difficult for hospital staff to keep track of each patient's turning/movement schedule to prevent bedsores.
- Advantageously, in certain embodiments, a patient movement detector can address these and other issues. The patient movement detector may receive inputs from position sensors, a thermal imaging camera, a video camera, and/or triangulation data. Based on one or more of these inputs, the patient movement detector can perform one or more of the following: fall prevention detection, bedsore prevention analysis, patient location detection, and patient walk test scoring. The patient movement detector can, for example, output a fall warning alarm, a bedsore warning alarm, patient location information, and/or walk test scores.
- An example
patient movement detector 1910 is shown inFIG. 19 . Thepatient movement detector 1910 includes afall warning module 1912, abedsore warning module 1914, apatient location detector 1916, and a walktest scoring module 1918. In addition, thepatient movement detector 1910 receives inputs, including position sensor data, infrared (IR) or thermal imaging camera data, video camera data, triangulation data, and physiological parameter data. In response to one or more of these inputs, thepatient movement detector 1910 outputs a fall warning alarm, bedsore warning alarm, the patient's location, and a walk test score. Some of the inputs to thepatient movement detector 1910 may be omitted in some embodiments. Likewise, any of the modules may be omitted, and some of the outputs may be omitted as well. - In general, the
patient movement detector 1910 can include hardware and/or software, such as hardware processor comprising digital logic circuitry, a memory, and the like for performing the tasks described herein, among possibly others. Thepatient movement detector 1910 can be implemented by any of the patient monitoring systems or devices, including wireless devices, described herein. In an embodiment, however, thepatient movement detector 1910 is implemented by themulti-patient monitoring system 640 described above. For instance, thepatient movement detector 1910 can be implemented in a central hospital server or clinical facility server or the like. In other embodiments, thepatient movement detector 1910 can be implemented by a bedside device that communicates wirelessly with any of the patient-worn monitoring systems described above. - For instance, the patient-worn monitoring system can send the
patient movement detector 1910 position sensor data from an accelerometer, gyroscope, or compass in the patient-worn monitoring system. The IR camera data and/or video camera data can be sent to thepatient movement detector 1910 from an IR camera and/or video camera installed at or in the bedside device or elsewhere in the patient's room. The IR camera and video camera may be implemented in a single device. Triangulation data can be provided to thepatient movement detector 1910 from wireless access points in a hospital, for example, wherever a patient's wireless transceiver (e.g., the patient-worn monitoring system) is detected. Further, the patient-worn monitoring system can transmit physiological parameter data to thepatient movement detector 1910. - However, in other embodiments, the
patient movement detector 1910 can operate at least in part without interacting with a patient-worn monitoring system. Instead, the patient may be coupled with a bedside monitoring device via sensors connected to the bedside monitoring device or wirelessly. The bedside monitoring device may implement thepatient monitoring detector 1910. One or more position sensors may be integrated with one or more of the physiological sensors coupled with the patient. Alternatively, the position sensors are omitted and thepatient movement detector 1910 uses IR camera data and/or video camera data to perform patient movement detection. - The
fall warning module 1912 can help prevent patient falls by anticipating falls before they are about to occur. In an embodiment, thefall warning module 1912 performs fall prevention detection for patients who are marked as high risk for falling (e.g., in an EMR system). Alternatively, thefall warning module 1912 performs fall prevention detection for all patients. Thefall warning module 1912 may also detect when a fall has occurred. In either case (actual fall or predicted potential fall), thefall warning module 1912 can issue an audible and/or visual alarm, which may also be sent over a network, to one or more clinicians regarding a possible fall or actual occurrence of a fall. - The
fall warning module 1912 can analyze IR camera data to determine whether a fall has occurred in one embodiment. For instance, thefall warning module 1912 can monitor the IR image data for changes in thermal temperature in the IR image. If the temperature detected in the image, which may be represented by pixel intensity or luminosity, drops, then thefall warning module 1912 can sound an alarm. This drop in IR temperature can be indicative of the patient leaving the bed (e.g., by falling) or having already left the bed. Other embodiments are also described below with respect toFIG. 20 . - The
fall warning module 1912 may also detect potential falls based on position sensor data from an accelerometer, gyroscope, or compass. Any of these devices can provide outputs that reflect changes in patient position. For instance, the gyroscope can output motion data indicative of an orientation of the patient or a rotation of the patient. Thefall warning module 1912 can analyze the changes in patient position, such as changes in the orientation or rotation of the patient, to predict an upcoming fall and alarm accordingly. In one example, thefall warning module 1912 can determine that the changes in the orientation or rotation of the patient suggest that the patient performed a sideways roll or partial sideways roll where the patient rotated in the bed while the patient's body remained parallel to the surface of the bed. Such a sideways roll or partial sideways roll can be indicative of an elevated risk that the patient subsequently leaves the bed in an unsafe manner. More generally, thefall warning module 1912 can determine whether a portion of the patient to which the position sensor is attached has rolled or turned a certain amount and alarm accordingly if that amount is indicative of a potential fall or actual fall. - Moreover, the
fall warning module 1912 may also perform sensor fusion or parallel analysis of sensor inputs to improve fall prevention and/or fall detection. For instance, thefall warning module 1912 can analyze both position sensor data and IR camera data. If both the position sensor data and IR camera data indicate that the patient may be falling or has fallen, thefall warning module 1912 can have greater confidence that a fall has occurred or is about to occur. Accordingly, in one embodiment, thefall warning module 1912 alarms a fall warning alarm if both the position sensor data and the IR camera data indicate that a fall may have occurred or may be about to occur. In another embodiment, thefall warning module 1912 calculates an internal confidence value of a fall based on both the position data and the IR camera data. Thefall warning module 1912 can analyze the confidence values to determine whether to alarm, for example, by averaging the confidence values and comparing the average value to a threshold (e.g., above a threshold indicates an alarm should be made). Thefall warning module 1912 can also analyze the confidence values by determining that if one of the confidence values is over a threshold, a fall warning alarm should be made. - Many other configurations are possible that combine the outputs of the position sensor(s), IR camera data, and the like.
- Further, the
fall warning module 1912 can use other inputs, such as the triangulation data and/or video camera data to detect falls that are about to occur or that have occurred. Triangulation data, as described above, can be used to detect a patient's position in the hospital or clinical facility (e.g., by the patient location detector 1916). If the triangulation data indicates that the patient is in a single location, not moving, and that position is other than the patient's bed, and the position sensor data indicates that the patient is not moving, and the IR camera data indicates that the bed is empty, or based on another combination of these inputs, thefall warning module 1912 may issue an alarm. IR cameras may also be placed in other locations of the hospital, such as the bathroom, to determine whether a patient is still on a toilet or whether the patient has fallen to the floor (e.g., by analyzing thermal image data of the toilet to determine whether the patient is still on the toilet). - Likewise, the
fall warning module 1912 may analyze video camera data to compare images of the patient in the bed and out of the bed, for example, by comparing pixels to determine whether the patient has left the bed. However, if the patient covers himself or herself with a sheet, the video camera image data may be less useful than IR camera data, which can detect thermal energy given off by a patient even when a sheet is over the patient. - Thus, the
fall warning module 1912 can use the various inputs to thepatient movement detector 1910 to determine whether the patient 1) has left the bed, 2) has rolled over in the bed (and is possibly about to fall), 3) is rolling off the bed, or 4) is on the floor, among many other possibilities. Further, such analysis may also be applied to patients sitting in a chair. In an embodiment, the thermal camera and/or the video camera use motion-tracking algorithms to swivel and track the patient wherever the patient moves within a room. The cameras can output thermal imaging data and/or video camera images to a clinician over a network, for example, by sending the image data to a nurse's station computer, a clinician device, or to a server that can send the image data to the nurse's station computer or clinician device. - The
bedsore warning module 1914 can perform similar analysis as thefall warning module 1912, with one difference being in one embodiment that thebedsore warning module 1914 looks for lack of movement in the patient to predict whether the patient has been in one place too long. If the patient has been in one place too long or in one position too long, the patient may be at risk for developing a bedsore, whether the patient is in a bed or in a chair. Thebedsore warning module 1914 can therefore analyze the IR image data, position sensor data, and/or triangulation data (and/or video camera data) to determine whether the patient has not moved for a period of time. As above, thebedsore warning module 1914 can compute the change of a patient not moving based on one of these inputs or based on a plurality of these inputs. Thebedsore warning module 1914 can also compute a confidence that the patient has not moved. Either thefall warning module 1912 or thebedsore warning module 1914 can output their respective calculated confidence values or scores for presentation on a display to a clinician. - The
bedsore warning module 1914 can compare the amount of time that a patient has not moved or has moved only a small amount to a threshold. If the threshold is met or exceeded, thebedsore warning module 1914 can trigger an audible and/or visual alarm (which may also be sent to a clinician over a network). The alarm can remind the clinician to check the patient and possibly move the patient or instruct the patient to move (e.g., by rolling over in bed or by getting up) to reduce the risk of bedsores. - The
patient location detector 1916 may perform any of the patient location detection techniques described above, such as triangulation using triangulation data obtained from different wireless access points in a clinical facility. Thepatient location detector 1916 can also perform dead reckoning to determine patient position based on the position sensor data. Accelerometer or gyroscope data can be integrated, for instance, by thepatient location detector 1916 to detect approximate patient position, speed, distance traveled, and so forth. Likewise, the triangulation techniques described herein may detect approximate patient position, speed, distance traveled, and so forth. Sometimes, position sensors drift, and accordingly, position, distance, and/or speed can become inaccurate over time. Accordingly, thepatient location detector 1916 can update the position, distance, and/or speed information obtained from the position sensor(s) with triangulation information. The triangulation information can therefore act to calibrate the position sensor data in an embodiment. - The walk
test scoring module 1918 can compute a walk test score automatically based on an analysis of walking behavior of a patient. Hospitals often administer walk tests to patients to determine whether patients are fit for discharge. For example, a clinician may instruct a patient to walk down a hallway or walk for a set period of time (such as a few minutes). The clinician may then evaluate the patient's walking performance to see whether the patient is well enough to leave the hospital. - In an embodiment, the walk
test scoring module 1918 can automate walk test scoring based on any of the inputs to thepatient movement detector 1910 described above. For instance, the walktest scoring module 1918 can evaluate the position sensor data or triangulation data to determine a patient's location, distance traveled, and/or speed. If the patient walks a relatively longer distance in a period of time, or if the patient walks relatively faster, the walktest scoring module 1918 can assign a higher score to the patient than if the patient were to walk a shorter distance or walk slower. The walktest scoring module 1918 can be invoked in response to request from a clinician (e.g., through a user interface output on a display) or may instead programmatically monitor a patient whenever the patient walks and update a walk score accordingly. More generally, the walktest scoring module 1918 could instead calculate a general patient movement score, which can reflect any of a variety of factors, including distance traveled in a given time period (such as a day, an hour, etc.), walking speed, degree of patient movement within a bed (which data may be determined in part by the IR or video camera data in addition to or instead of position sensor data), and so forth. - In addition, the walk
test scoring module 1918 can use the parameter data to adjust walk test scores. If a patient's respiratory rate or SpO2 are severely adversely affected by walking, the walktest scoring module 1918 can score the test lower than if the respiratory rate or SpO2 (or other parameter values) stay within normal expected limits for patient walking. - Further, in some embodiments, the walk
test scoring module 1918 can compute a steadiness of the patient or use a steadiness calculation to adjust the walk test score. The walktest scoring module 1918 may, for instance, detect any wobbling or unsteadiness of the patient when walking or standing using output from a position sensor. The walktest scoring module 1918 may lower the walk test score if the patient is more wobbly or unsteady. Further, the walktest scoring module 1918 orpatient location detector 1916 can output a fall warning alarm if the patient appears to be wobbling or unsteady as detected by the position sensor(s). -
FIG. 20 depicts an embodiment of afall warning process 2000, which may be implemented by thefall warning module 1912 or any other patient monitoring system. - At
block 2002, thefall warning module 1912 captures a baseline thermal image of patient bed with patient in the bed. Thefall warning module 1912 then can capture thermal images of the bed over time atblock 2004. - At
block 2006, thefall warning module 1912 can determine a thermal profile of the bed. The thermal profile may be a value that represents a sum of thermal values from a thermal image. Alternatively, the thermal profile may be represented as a thermal image map of the bed, or a spectrogram of thermal images (e.g., in the frequency or spectral domain). - The
fall warning module 1912 can determine atblock 2008 whether a significant drop or change in the thermal profile has occurred. For instance, if the sum of thermal values from the thermal image differs significantly from the baseline image, the change may be significant. This analysis may be performed in the frequency or spectral domain, e.g., by analyzing a spectrogram of the thermal imaging data. - If the significant change or drop has occurred, at
block 2010, thefall warning module 1912 can trigger an alarm that the patient may have left the bed (or has fallen, or is falling). Thereafter, theprocess 2000 may end. Otherwise, if the significant change has not occurred, thefall warning module 1912 can detect rolling or sliding in the thermal profile atblock 2012. If the patient has moved in the bed, rolling may be inferred, for instance. If the patient's thermal profile indicates movement off the bed, thefall warning module 1912 may infer that the patient is sliding or falling off the bed and alarm that the patient may be leaving the bed atblock 2014. Theprocess 2000 may be modified to performblock -
FIG. 21 depicts an embodiment of abedsore warning process 2100, which may be implemented by thebedsore warning module 1912 or any other patient monitoring system. -
Blocks 2102 through 2106 of theprocess 2100 can proceed similarly toblocks 2002 through 2006 of theprocess 2000. Atblock 2108, thebedsore warning module 1912 determines whether a significant change in the thermal profile has occurred after a certain time period, which may be minutes, an hour or hours, or the like. The significant thermal change can be indicated by the sum or spectrogram described above. If so, theprocess 2100 can loop back to block 2104, continuing to capture thermal images and thereby monitoring the patient. If not, thebedsore warning process 2100 can issue an alarm atblock 2110. -
FIG. 22 depicts an embodiment of afall warning process 2200, which may be implemented by thefall warning module 1912 or any other patient monitoring system. - At
block 2202, thefall warning module 1912 receives motion data from a position sensor, such as a gyroscope. The motion data can be indicative of an orientation or a rotation of the patient while the patient is in the bed. - At
block 2204, thefall warning module 1912 compares the motion data with a predetermined fall threshold indicative of a degree or significance of motion or rotation of the patient. In one example, the predetermined fall threshold can be a degree of rotation, such as 30°, 60°, 90°, 120°, 150°, or 180° (or some other value) of sideways rotation, by the patient while the patient's body remains parallel to the surface of the bed. - In response to the
fall warning module 1912 determining atblock 2206 that the predetermined fall threshold is not exceeded by the motion data, theprocess 2200 may end. For instance, if the motion data indicates that the patient rotated sideways by 20°, thefall warning module 1912 can determine that the 20° of sideways rotation does not exceed a predetermined fall threshold of (for example) 90° of sideways rotation, so theprocess 2200 ends. - On the other hand, in response to the
fall warning module 1912 determining atblock 2206 that the predetermined fall threshold is exceeded by the motion data, thefall warning module 1912 atblock 2208 can trigger an alarm that the patient may leave the bed, may have left the bed, may have fallen, or is falling. In one example, if the motion data indicates that the patient rotated sideways by 100°, thefall warning module 1912 can determine that the 100° of sideways rotation exceeds the predetermined fall threshold of (e.g.) 90° of sideways rotation, so thefall warning module 1912 triggers the alarm. The alarm can, in some cases, be considered an early fall warning alarm that indicates a greater risk that the patient may subsequently leave the bed in an unsafe manner. Thereafter, theprocess 2200 may end. - The
process 2200 may be modified to so that before an alarm is triggered atblock 2208, thefall warning module 1912 also performs one or more additional checks before triggering the alarm. Thefall warning module 1912 can, for instance, determine whether a significant drop or change in the thermal profile has occurred as described with respect to block 2008 of theprocess 2000, before triggering the alarm. Such one or more additional checks can advantageously, in certain embodiments, provide greater confidence that an alarm is triggered under conditions that may require or soon require the attention of a caregiver, and thereby reduce a number of false alarms. Moreover, in some instances, certain rolling motions (for example, a partial sideways roll) followed by leaving the bed can be more likely to indicate of a dangerous situation for the patient than other motions by the patient before the patient leaves the bed. Accordingly, the ability to detect such rolling motions followed by detecting leaving the bed can desirably enable caregivers to treat an alarm triggered under such conditions with an elevated priority because the alarm may likely reflect a greater need for urgent attention or for significant attention or resources to attend to the patient relative to one or more other conditions or alarms. In addition, thefall warning module 1912 may take into account how fast the motion data is changing in order to trigger an alarm. If the motion data changes quickly, or has a high rate of change, this may indicate that the patient is now falling or has fallen. - In certain embodiments, a method of triggering a medical monitoring alarm can include, under control of a hardware processor comprising digital logic circuitry: receiving, from a position sensor, movement data indicative of an orientation or rotation of a patient occupying a patient bed; receiving, from a thermal imaging camera, a baseline thermal image of the patient bed with the patient occupying the patient bed; receiving a second thermal image of the patient bed from the thermal imaging camera; determining whether a portion of the patient to which the position sensor is attached rotated sideways more than a threshold amount in the patient bed based at least on the movement data; determining a degree of change in thermal data between the second thermal image and the baseline thermal image; and triggering an alarm responsive to determining that the patient rotated sideways more than the threshold amount and the determined degree of change in the thermal data.
- In certain embodiments, determining the degree of any change includes determining whether a temperature value of the thermal data has decreased to or below a threshold. The alarm can include a fall warning alarm indicating that the patient is at fall risk or has fallen. The alarm can include a fall warning alarm indicating that the patient has left the patient bed. Determining the degree of change can include determining whether the degree of change in the thermal data has not met or exceeded a threshold. The alarm can include a bedsore warning alarm. The position sensor can be an accelerometer, gyroscope, or compass.
- Many other variations than those described herein will be apparent from this disclosure. For example, depending on the embodiment, certain acts, events, or functions of any of the algorithms described herein can be performed in a different sequence, can be added, merged, or left out altogether (e.g., not all described acts or events are necessary for the practice of the algorithms). Moreover, in certain embodiments, acts or events can be performed concurrently, e.g., through multi-threaded processing, interrupt processing, or multiple processors or processor cores or on other parallel architectures, rather than sequentially. In addition, different tasks or processes can be performed by different machines and/or computing systems that can function together.
- The various illustrative logical blocks, modules, and algorithm steps described in connection with the embodiments disclosed herein can be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. The described functionality can be implemented in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the disclosure.
- The various illustrative logical blocks and modules described in connection with the embodiments disclosed herein can be implemented or performed by a machine, such as a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general purpose processor can be a microprocessor, but in the alternative, the processor can be a controller, microcontroller, or state machine, combinations of the same, or the like. A processor can include electrical circuitry configured to process computer-executable instructions. In another embodiment, a processor includes an FPGA or other programmable device that performs logic operations without processing computer-executable instructions. A processor can also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. A computing environment can include any type of computer system, including, but not limited to, a computer system based on a microprocessor, a mainframe computer, a digital signal processor, a portable computing device, a device controller, or a computational engine within an appliance, to name a few.
- The steps of a method, process, or algorithm described in connection with the embodiments disclosed herein can be embodied directly in hardware, in a software module stored in one or more memory devices and executed by one or more processors, or in a combination of the two. A software module can reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of non-transitory computer-readable storage medium, media, or physical computer storage known in the art. An example storage medium can be coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium can be integral to the processor. The storage medium can be volatile or nonvolatile. The processor and the storage medium can reside in an ASIC.
- Conditional language used herein, such as, among others, “can,” “might,” “may,” “e.g.,” and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or states. Thus, such conditional language is not generally intended to imply that features, elements and/or states are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without author input or prompting, whether these features, elements and/or states are included or are to be performed in any particular embodiment. The terms “comprising,” “including,” “having,” and the like are synonymous and are used inclusively, in an open-ended fashion, and do not exclude additional elements, features, acts, operations, and so forth. Also, the term “or” is used in its inclusive sense (and not in its exclusive sense) so that when used, for example, to connect a list of elements, the term “or” means one, some, or all of the elements in the list. Further, the term “each,” as used herein, in addition to having its ordinary meaning, can mean any subset of a set of elements to which the term “each” is applied.
- While the above detailed description has shown, described, and pointed out novel features as applied to various embodiments, it will be understood that various omissions, substitutions, and changes in the form and details of the devices or algorithms illustrated can be made without departing from the spirit of the disclosure. As will be recognized, certain embodiments of the inventions described herein can be embodied within a form that does not provide all of the features and benefits set forth herein, as some features can be used or practiced separately from others.
Claims (17)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/387,017 US20190239824A1 (en) | 2012-02-09 | 2019-04-17 | Patient position detection system |
US18/342,286 US20230329649A1 (en) | 2012-02-09 | 2023-06-27 | Patient position detection system |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261597126P | 2012-02-09 | 2012-02-09 | |
US201261625584P | 2012-04-17 | 2012-04-17 | |
US201261703713P | 2012-09-20 | 2012-09-20 | |
US13/762,270 US10149616B2 (en) | 2012-02-09 | 2013-02-07 | Wireless patient monitoring device |
US201361889939P | 2013-10-11 | 2013-10-11 | |
US14/511,974 US10307111B2 (en) | 2012-02-09 | 2014-10-10 | Patient position detection system |
US16/387,017 US20190239824A1 (en) | 2012-02-09 | 2019-04-17 | Patient position detection system |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/511,974 Continuation US10307111B2 (en) | 2012-02-09 | 2014-10-10 | Patient position detection system |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/342,286 Continuation US20230329649A1 (en) | 2012-02-09 | 2023-06-27 | Patient position detection system |
Publications (1)
Publication Number | Publication Date |
---|---|
US20190239824A1 true US20190239824A1 (en) | 2019-08-08 |
Family
ID=52826759
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/511,974 Active US10307111B2 (en) | 2012-02-09 | 2014-10-10 | Patient position detection system |
US16/387,017 Abandoned US20190239824A1 (en) | 2012-02-09 | 2019-04-17 | Patient position detection system |
US18/342,286 Pending US20230329649A1 (en) | 2012-02-09 | 2023-06-27 | Patient position detection system |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/511,974 Active US10307111B2 (en) | 2012-02-09 | 2014-10-10 | Patient position detection system |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/342,286 Pending US20230329649A1 (en) | 2012-02-09 | 2023-06-27 | Patient position detection system |
Country Status (1)
Country | Link |
---|---|
US (3) | US10307111B2 (en) |
Cited By (59)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10531819B2 (en) | 2012-04-17 | 2020-01-14 | Masimo Corporation | Hypersaturation index |
US10568553B2 (en) | 2015-02-06 | 2020-02-25 | Masimo Corporation | Soft boot pulse oximetry sensor |
US10575779B2 (en) | 2013-03-14 | 2020-03-03 | Masimo Corporation | Patient monitor placement indicator |
USRE47882E1 (en) | 2010-03-01 | 2020-03-03 | Masimo Corporation | Adaptive alarm system |
US10582886B2 (en) | 2008-07-03 | 2020-03-10 | Masimo Corporation | Multi-stream data collection system for noninvasive measurement of blood constituents |
US10588518B2 (en) | 2006-09-20 | 2020-03-17 | Masimo Corporation | Congenital heart disease monitor |
US10595747B2 (en) | 2009-10-16 | 2020-03-24 | Masimo Corporation | Respiration processor |
US10637181B2 (en) | 2017-08-15 | 2020-04-28 | Masimo Corporation | Water resistant connector for noninvasive patient monitor |
US10667762B2 (en) | 2017-02-24 | 2020-06-02 | Masimo Corporation | Modular multi-parameter patient monitoring device |
US10672260B2 (en) | 2013-03-13 | 2020-06-02 | Masimo Corporation | Systems and methods for monitoring a patient health network |
US10667764B2 (en) | 2018-04-19 | 2020-06-02 | Masimo Corporation | Mobile patient alarm display |
USD890708S1 (en) | 2017-08-15 | 2020-07-21 | Masimo Corporation | Connector |
US10729384B2 (en) | 2012-01-04 | 2020-08-04 | Masimo Corporation | Automated condition screening and detection |
US10736518B2 (en) | 2015-08-31 | 2020-08-11 | Masimo Corporation | Systems and methods to monitor repositioning of a patient |
US10779098B2 (en) | 2018-07-10 | 2020-09-15 | Masimo Corporation | Patient monitor alarm speaker analyzer |
US10784634B2 (en) | 2015-02-06 | 2020-09-22 | Masimo Corporation | Pogo pin connector |
US10825568B2 (en) | 2013-10-11 | 2020-11-03 | Masimo Corporation | Alarm notification system |
US10827961B1 (en) | 2012-08-29 | 2020-11-10 | Masimo Corporation | Physiological measurement calibration |
US10863938B2 (en) | 2006-10-12 | 2020-12-15 | Masimo Corporation | System and method for monitoring the life of a physiological sensor |
US10869602B2 (en) | 2002-03-25 | 2020-12-22 | Masimo Corporation | Physiological measurement communications adapter |
USD906970S1 (en) | 2017-08-15 | 2021-01-05 | Masimo Corporation | Connector |
US10912524B2 (en) | 2006-09-22 | 2021-02-09 | Masimo Corporation | Modular patient monitor |
US10925550B2 (en) | 2011-10-13 | 2021-02-23 | Masimo Corporation | Medical monitoring hub |
US10932729B2 (en) | 2018-06-06 | 2021-03-02 | Masimo Corporation | Opioid overdose monitoring |
US10959652B2 (en) | 2001-07-02 | 2021-03-30 | Masimo Corporation | Low power pulse oximeter |
US11033210B2 (en) | 2008-03-04 | 2021-06-15 | Masimo Corporation | Multispot monitoring for use in optical coherence tomography |
US11076777B2 (en) | 2016-10-13 | 2021-08-03 | Masimo Corporation | Systems and methods for monitoring orientation to reduce pressure ulcer formation |
US11083397B2 (en) | 2012-02-09 | 2021-08-10 | Masimo Corporation | Wireless patient monitoring device |
US11114188B2 (en) | 2009-10-06 | 2021-09-07 | Cercacor Laboratories, Inc. | System for monitoring a physiological parameter of a user |
US11133105B2 (en) | 2009-03-04 | 2021-09-28 | Masimo Corporation | Medical monitoring system |
US11145408B2 (en) | 2009-03-04 | 2021-10-12 | Masimo Corporation | Medical communication protocol translator |
US11172890B2 (en) | 2012-01-04 | 2021-11-16 | Masimo Corporation | Automated condition screening and detection |
US11176801B2 (en) | 2011-08-19 | 2021-11-16 | Masimo Corporation | Health care sanitation monitoring system |
US11178776B2 (en) | 2015-02-06 | 2021-11-16 | Masimo Corporation | Fold flex circuit for LNOP |
US11191484B2 (en) | 2016-04-29 | 2021-12-07 | Masimo Corporation | Optical sensor tape |
US11229408B2 (en) | 2006-12-22 | 2022-01-25 | Masimo Corporation | Optical patient monitor |
US11241199B2 (en) | 2011-10-13 | 2022-02-08 | Masimo Corporation | System for displaying medical monitoring data |
US11241181B2 (en) * | 2019-09-04 | 2022-02-08 | Bittium Biosignals Oy | Bio-signal measurement apparatus, docking apparatus and methods of their coupling |
US11272839B2 (en) | 2018-10-12 | 2022-03-15 | Ma Simo Corporation | System for transmission of sensor data using dual communication protocol |
US11291061B2 (en) | 2017-01-18 | 2022-03-29 | Masimo Corporation | Patient-worn wireless physiological sensor with pairing functionality |
US20220199247A1 (en) * | 2020-12-21 | 2022-06-23 | Sheikh K. Jasimuddin | Telemedicine stethoscope device |
US11389093B2 (en) | 2018-10-11 | 2022-07-19 | Masimo Corporation | Low noise oximetry cable |
US11417426B2 (en) | 2017-02-24 | 2022-08-16 | Masimo Corporation | System for displaying medical monitoring data |
US11439329B2 (en) | 2011-07-13 | 2022-09-13 | Masimo Corporation | Multiple measurement mode in a physiological sensor |
US11445948B2 (en) | 2018-10-11 | 2022-09-20 | Masimo Corporation | Patient connector assembly with vertical detents |
US11464410B2 (en) | 2018-10-12 | 2022-10-11 | Masimo Corporation | Medical systems and methods |
US11559275B2 (en) | 2008-12-30 | 2023-01-24 | Masimo Corporation | Acoustic sensor assembly |
US11638532B2 (en) | 2008-07-03 | 2023-05-02 | Masimo Corporation | User-worn device for noninvasively measuring a physiological parameter of a user |
US11679579B2 (en) | 2015-12-17 | 2023-06-20 | Masimo Corporation | Varnish-coated release liner |
US11751780B2 (en) | 2013-10-07 | 2023-09-12 | Masimo Corporation | Regional oximetry sensor |
US11872156B2 (en) | 2018-08-22 | 2024-01-16 | Masimo Corporation | Core body temperature measurement |
EP4125589A4 (en) * | 2020-03-25 | 2024-05-15 | Vlepis Solutions Pty Ltd | Devices, systems and methods for monitoring physiological characteristics of a patient |
US11986289B2 (en) | 2018-11-27 | 2024-05-21 | Willow Laboratories, Inc. | Assembly for medical monitoring device with multiple physiological sensors |
US11992342B2 (en) | 2013-01-02 | 2024-05-28 | Masimo Corporation | Acoustic respiratory monitoring sensor with probe-off detection |
US12004869B2 (en) | 2018-11-05 | 2024-06-11 | Masimo Corporation | System to monitor and manage patient hydration via plethysmograph variablity index in response to the passive leg raising |
US12004881B2 (en) | 2012-01-04 | 2024-06-11 | Masimo Corporation | Automated condition screening and detection |
US12036014B2 (en) | 2015-01-23 | 2024-07-16 | Masimo Corporation | Nasal/oral cannula system and manufacturing |
US12097043B2 (en) | 2018-06-06 | 2024-09-24 | Masimo Corporation | Locating a locally stored medication |
US12133717B2 (en) | 2021-07-05 | 2024-11-05 | Masimo Corporation | Systems and methods for patient fall detection |
Families Citing this family (138)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE521277T1 (en) | 1998-06-03 | 2011-09-15 | Masimo Corp | STEREO PULSE OXIMETER |
US6684090B2 (en) | 1999-01-07 | 2004-01-27 | Masimo Corporation | Pulse oximetry data confidence indicator |
ATE434970T1 (en) | 2000-08-18 | 2009-07-15 | Masimo Corp | TWO-MODE PULSE OXIMETER |
US6850787B2 (en) | 2001-06-29 | 2005-02-01 | Masimo Laboratories, Inc. | Signal component processor |
US6920345B2 (en) | 2003-01-24 | 2005-07-19 | Masimo Corporation | Optical sensor including disposable and reusable elements |
US7003338B2 (en) | 2003-07-08 | 2006-02-21 | Masimo Corporation | Method and apparatus for reducing coupling between signals |
US7500950B2 (en) | 2003-07-25 | 2009-03-10 | Masimo Corporation | Multipurpose sensor port |
US7415297B2 (en) | 2004-03-08 | 2008-08-19 | Masimo Corporation | Physiological parameter system |
WO2006118654A1 (en) | 2005-03-01 | 2006-11-09 | Masimo Laboratories, Inc. | Noninvasive multi-parameter patient monitor |
JP2008537903A (en) | 2005-04-13 | 2008-10-02 | グルコライト・コーポレーシヨン | Data processing and calibration method for blood glucose monitor based on OCT |
US7962188B2 (en) | 2005-10-14 | 2011-06-14 | Masimo Corporation | Robust alarm system |
US8182443B1 (en) | 2006-01-17 | 2012-05-22 | Masimo Corporation | Drug administration controller |
US8219172B2 (en) | 2006-03-17 | 2012-07-10 | Glt Acquisition Corp. | System and method for creating a stable optical interface |
US7941199B2 (en) | 2006-05-15 | 2011-05-10 | Masimo Laboratories, Inc. | Sepsis monitor |
US10188348B2 (en) | 2006-06-05 | 2019-01-29 | Masimo Corporation | Parameter upgrade system |
US9161696B2 (en) | 2006-09-22 | 2015-10-20 | Masimo Corporation | Modular patient monitor |
US8265723B1 (en) | 2006-10-12 | 2012-09-11 | Cercacor Laboratories, Inc. | Oximeter probe off indicator defining probe off space |
EP2073692B1 (en) | 2006-10-12 | 2017-07-26 | Masimo Corporation | Perfusion index smoothing |
US9861305B1 (en) | 2006-10-12 | 2018-01-09 | Masimo Corporation | Method and apparatus for calibration to reduce coupling between signals in a measurement system |
US8255026B1 (en) | 2006-10-12 | 2012-08-28 | Masimo Corporation, Inc. | Patient monitor capable of monitoring the quality of attached probes and accessories |
US8600467B2 (en) | 2006-11-29 | 2013-12-03 | Cercacor Laboratories, Inc. | Optical sensor including disposable and reusable elements |
EP2096994B1 (en) | 2006-12-09 | 2018-10-03 | Masimo Corporation | Plethysmograph variability determination |
US8374665B2 (en) | 2007-04-21 | 2013-02-12 | Cercacor Laboratories, Inc. | Tissue profile wellness monitor |
US20090275844A1 (en) | 2008-05-02 | 2009-11-05 | Masimo Corporation | Monitor configuration system |
EP2312995B1 (en) | 2008-05-05 | 2017-06-28 | Masimo Corporation | Pulse oximetry system with electrical decoupling circuitry |
US8203438B2 (en) | 2008-07-29 | 2012-06-19 | Masimo Corporation | Alarm suspend system |
US8588880B2 (en) | 2009-02-16 | 2013-11-19 | Masimo Corporation | Ear sensor |
US10007758B2 (en) | 2009-03-04 | 2018-06-26 | Masimo Corporation | Medical monitoring system |
US8388353B2 (en) | 2009-03-11 | 2013-03-05 | Cercacor Laboratories, Inc. | Magnetic connector |
WO2010135373A1 (en) | 2009-05-19 | 2010-11-25 | Masimo Corporation | Disposable components for reusable physiological sensor |
US8571619B2 (en) | 2009-05-20 | 2013-10-29 | Masimo Corporation | Hemoglobin display and patient treatment |
US8473020B2 (en) | 2009-07-29 | 2013-06-25 | Cercacor Laboratories, Inc. | Non-invasive physiological sensor cover |
US9579039B2 (en) | 2011-01-10 | 2017-02-28 | Masimo Corporation | Non-invasive intravascular volume index monitor |
US20110137297A1 (en) | 2009-09-17 | 2011-06-09 | Kiani Massi Joe E | Pharmacological management system |
WO2011047207A2 (en) | 2009-10-15 | 2011-04-21 | Masimo Corporation | Acoustic respiratory monitoring sensor having multiple sensing elements |
US10463340B2 (en) | 2009-10-15 | 2019-11-05 | Masimo Corporation | Acoustic respiratory monitoring systems and methods |
US8523781B2 (en) | 2009-10-15 | 2013-09-03 | Masimo Corporation | Bidirectional physiological information display |
WO2011047216A2 (en) | 2009-10-15 | 2011-04-21 | Masimo Corporation | Physiological acoustic monitoring system |
US9839381B1 (en) | 2009-11-24 | 2017-12-12 | Cercacor Laboratories, Inc. | Physiological measurement system with automatic wavelength adjustment |
DE112010004682T5 (en) | 2009-12-04 | 2013-03-28 | Masimo Corporation | Calibration for multi-level physiological monitors |
US9153112B1 (en) | 2009-12-21 | 2015-10-06 | Masimo Corporation | Modular patient monitor |
WO2011091059A1 (en) | 2010-01-19 | 2011-07-28 | Masimo Corporation | Wellness analysis system |
WO2011112524A1 (en) | 2010-03-08 | 2011-09-15 | Masimo Corporation | Reprocessing of a physiological sensor |
US9138180B1 (en) | 2010-05-03 | 2015-09-22 | Masimo Corporation | Sensor adapter cable |
US10852069B2 (en) | 2010-05-04 | 2020-12-01 | Fractal Heatsink Technologies, LLC | System and method for maintaining efficiency of a fractal heat sink |
US8666468B1 (en) | 2010-05-06 | 2014-03-04 | Masimo Corporation | Patient monitor for determining microcirculation state |
US9408542B1 (en) | 2010-07-22 | 2016-08-09 | Masimo Corporation | Non-invasive blood pressure measurement system |
JP5710767B2 (en) | 2010-09-28 | 2015-04-30 | マシモ コーポレイション | Depth of consciousness monitor including oximeter |
US20120226117A1 (en) | 2010-12-01 | 2012-09-06 | Lamego Marcelo M | Handheld processing device including medical applications for minimally and non invasive glucose measurements |
EP3567603A1 (en) | 2011-02-13 | 2019-11-13 | Masimo Corporation | Medical risk characterization system |
US9066666B2 (en) | 2011-02-25 | 2015-06-30 | Cercacor Laboratories, Inc. | Patient monitor for monitoring microcirculation |
US9532722B2 (en) | 2011-06-21 | 2017-01-03 | Masimo Corporation | Patient monitoring system |
US9986919B2 (en) | 2011-06-21 | 2018-06-05 | Masimo Corporation | Patient monitoring system |
EP2765909B1 (en) | 2011-10-13 | 2019-06-26 | Masimo Corporation | Physiological acoustic monitoring system |
US9778079B1 (en) | 2011-10-27 | 2017-10-03 | Masimo Corporation | Physiological monitor gauge panel |
US9195385B2 (en) | 2012-03-25 | 2015-11-24 | Masimo Corporation | Physiological monitor touchscreen interface |
WO2013184965A1 (en) | 2012-06-07 | 2013-12-12 | Masimo Corporation | Depth of consciousness monitor |
US9697928B2 (en) | 2012-08-01 | 2017-07-04 | Masimo Corporation | Automated assembly sensor cable |
US9749232B2 (en) | 2012-09-20 | 2017-08-29 | Masimo Corporation | Intelligent medical network edge router |
US9955937B2 (en) | 2012-09-20 | 2018-05-01 | Masimo Corporation | Acoustic patient sensor coupler |
US9717458B2 (en) | 2012-10-20 | 2017-08-01 | Masimo Corporation | Magnetic-flap optical sensor |
US9787568B2 (en) | 2012-11-05 | 2017-10-10 | Cercacor Laboratories, Inc. | Physiological test credit method |
US9724025B1 (en) | 2013-01-16 | 2017-08-08 | Masimo Corporation | Active-pulse blood analysis system |
WO2014127252A1 (en) * | 2013-02-15 | 2014-08-21 | Welch Allyn, Inc. | Remote health care system |
US9891079B2 (en) | 2013-07-17 | 2018-02-13 | Masimo Corporation | Pulser with double-bearing position encoder for non-invasive physiological monitoring |
WO2015020911A2 (en) | 2013-08-05 | 2015-02-12 | Cercacor Laboratories, Inc. | Blood pressure monitor with valve-chamber assembly |
WO2015038683A2 (en) | 2013-09-12 | 2015-03-19 | Cercacor Laboratories, Inc. | Medical device management system |
US11147518B1 (en) | 2013-10-07 | 2021-10-19 | Masimo Corporation | Regional oximetry signal processor |
US10828007B1 (en) | 2013-10-11 | 2020-11-10 | Masimo Corporation | Acoustic sensor with attachment portion |
US10279247B2 (en) | 2013-12-13 | 2019-05-07 | Masimo Corporation | Avatar-incentive healthcare therapy |
CN103690285B (en) * | 2013-12-16 | 2015-08-05 | 北京京东方光电科技有限公司 | A kind of intelligent nursing device |
US11259745B2 (en) | 2014-01-28 | 2022-03-01 | Masimo Corporation | Autonomous drug delivery system |
US10086138B1 (en) | 2014-01-28 | 2018-10-02 | Masimo Corporation | Autonomous drug delivery system |
US9814410B2 (en) | 2014-05-06 | 2017-11-14 | Stryker Corporation | Person support apparatus with position monitoring |
US10231670B2 (en) | 2014-06-19 | 2019-03-19 | Masimo Corporation | Proximity sensor in pulse oximeter |
US10383520B2 (en) | 2014-09-18 | 2019-08-20 | Masimo Semiconductor, Inc. | Enhanced visible near-infrared photodiode and non-invasive physiological sensor |
US10154815B2 (en) | 2014-10-07 | 2018-12-18 | Masimo Corporation | Modular physiological sensors |
US9940810B2 (en) * | 2014-11-19 | 2018-04-10 | Stryker Corporation | Person support apparatuses with patient mobility monitoring |
US10524738B2 (en) | 2015-05-04 | 2020-01-07 | Cercacor Laboratories, Inc. | Noninvasive sensor system with visual infographic display |
US11653862B2 (en) | 2015-05-22 | 2023-05-23 | Cercacor Laboratories, Inc. | Non-invasive optical physiological differential pathlength sensor |
US10448871B2 (en) | 2015-07-02 | 2019-10-22 | Masimo Corporation | Advanced pulse oximetry sensor |
WO2017025546A1 (en) * | 2015-08-10 | 2017-02-16 | Koninklijke Philips N.V. | Occupancy detection |
CN108135503A (en) | 2015-08-11 | 2018-06-08 | 迈心诺公司 | The medical monitoring analysis and playback of label including the light in response to being decayed by bodily tissue |
US10226215B2 (en) * | 2015-08-28 | 2019-03-12 | Covidien Lp | Cable management feature for wearable medical monitor |
US11864926B2 (en) | 2015-08-28 | 2024-01-09 | Foresite Healthcare, Llc | Systems and methods for detecting attempted bed exit |
US10206630B2 (en) | 2015-08-28 | 2019-02-19 | Foresite Healthcare, Llc | Systems for automatic assessment of fall risk |
US11504066B1 (en) | 2015-09-04 | 2022-11-22 | Cercacor Laboratories, Inc. | Low-noise sensor system |
US10765402B2 (en) * | 2015-11-23 | 2020-09-08 | QT Ultrasound LLC | Automatic laterality identification for ultrasound tomography systems |
US10537285B2 (en) | 2016-03-04 | 2020-01-21 | Masimo Corporation | Nose sensor |
US10993662B2 (en) | 2016-03-04 | 2021-05-04 | Masimo Corporation | Nose sensor |
CA3030850C (en) * | 2016-06-28 | 2023-12-05 | Foresite Healthcare, Llc | Systems and methods for use in detecting falls utilizing thermal sensing |
US10617302B2 (en) | 2016-07-07 | 2020-04-14 | Masimo Corporation | Wearable pulse oximeter and respiration monitor |
CN109561855B (en) * | 2016-08-08 | 2022-06-21 | 皇家飞利浦有限公司 | Device, system and method for fall detection |
US11504058B1 (en) | 2016-12-02 | 2022-11-22 | Masimo Corporation | Multi-site noninvasive measurement of a physiological parameter |
WO2018119239A1 (en) | 2016-12-22 | 2018-06-28 | Cercacor Laboratories, Inc | Methods and devices for detecting intensity of light with translucent detector |
US10321856B2 (en) | 2017-01-12 | 2019-06-18 | Hill-Rom Services, Inc. | Bed exit monitoring system |
JP2018114015A (en) * | 2017-01-16 | 2018-07-26 | パナソニックIpマネジメント株式会社 | Biological information detection device, biological information detection method, and biological information detection system |
JP6951701B2 (en) * | 2017-02-10 | 2021-10-20 | ミネベアミツミ株式会社 | Bed monitoring system |
US20180233018A1 (en) * | 2017-02-13 | 2018-08-16 | Starkey Laboratories, Inc. | Fall prediction system including a beacon and method of using same |
US11086609B2 (en) | 2017-02-24 | 2021-08-10 | Masimo Corporation | Medical monitoring hub |
WO2018156648A1 (en) | 2017-02-24 | 2018-08-30 | Masimo Corporation | Managing dynamic licenses for physiological parameters in a patient monitoring environment |
US10388120B2 (en) | 2017-02-24 | 2019-08-20 | Masimo Corporation | Localized projection of audible noises in medical settings |
WO2018156809A1 (en) | 2017-02-24 | 2018-08-30 | Masimo Corporation | Augmented reality system for displaying patient data |
EP3592231A1 (en) | 2017-03-10 | 2020-01-15 | Masimo Corporation | Pneumonia screener |
WO2018194992A1 (en) | 2017-04-18 | 2018-10-25 | Masimo Corporation | Nose sensor |
US10918281B2 (en) | 2017-04-26 | 2021-02-16 | Masimo Corporation | Medical monitoring device having multiple configurations |
USD835284S1 (en) | 2017-04-28 | 2018-12-04 | Masimo Corporation | Medical monitoring device |
USD835285S1 (en) | 2017-04-28 | 2018-12-04 | Masimo Corporation | Medical monitoring device |
USD835282S1 (en) | 2017-04-28 | 2018-12-04 | Masimo Corporation | Medical monitoring device |
USD835283S1 (en) | 2017-04-28 | 2018-12-04 | Masimo Corporation | Medical monitoring device |
US10856750B2 (en) | 2017-04-28 | 2020-12-08 | Masimo Corporation | Spot check measurement system |
CN110809804B (en) | 2017-05-08 | 2023-10-27 | 梅西莫股份有限公司 | System for pairing a medical system with a network controller using an adapter |
US11026604B2 (en) | 2017-07-13 | 2021-06-08 | Cercacor Laboratories, Inc. | Medical monitoring device for harmonizing physiological measurements |
US10553099B2 (en) * | 2017-08-07 | 2020-02-04 | Ricoh Company, Ltd. | Information providing apparatus and information providing system |
JP2021500128A (en) | 2017-10-19 | 2021-01-07 | マシモ・コーポレイション | Display configuration of medical monitoring system |
US10987066B2 (en) | 2017-10-31 | 2021-04-27 | Masimo Corporation | System for displaying oxygen state indications |
USD925597S1 (en) | 2017-10-31 | 2021-07-20 | Masimo Corporation | Display screen or portion thereof with graphical user interface |
US20190167226A1 (en) * | 2017-12-04 | 2019-06-06 | International Business Machines Corporation | Infant gastrointestinal monitor |
US20190198168A1 (en) * | 2017-12-22 | 2019-06-27 | Stryker Corporation | Techniques For Performing Remote Diagnosis Of A Medical Device |
US11766198B2 (en) | 2018-02-02 | 2023-09-26 | Cercacor Laboratories, Inc. | Limb-worn patient monitoring device |
US11908581B2 (en) | 2018-04-10 | 2024-02-20 | Hill-Rom Services, Inc. | Patient risk assessment based on data from multiple sources in a healthcare facility |
US11504071B2 (en) | 2018-04-10 | 2022-11-22 | Hill-Rom Services, Inc. | Patient risk assessment based on data from multiple sources in a healthcare facility |
WO2019209915A1 (en) | 2018-04-24 | 2019-10-31 | Cercacor Laboratories, Inc. | Easy insert finger sensor for transmission based spectroscopy sensor |
US11451965B2 (en) * | 2018-06-04 | 2022-09-20 | T.J.Smith And Nephew, Limited | Device communication management in user activity monitoring systems |
JP7480475B2 (en) * | 2018-09-28 | 2024-05-10 | 株式会社リコー | Notification control system, notification control method, and program |
US11039761B2 (en) * | 2018-12-14 | 2021-06-22 | At&T Intellectual Property I, L.P. | Fall prediction based on electroencephalography and gait analysis data |
GB2581767B (en) * | 2018-12-21 | 2022-06-15 | Rinicare Ltd | Patient fall prevention |
GB201900581D0 (en) | 2019-01-16 | 2019-03-06 | Os Contracts Ltd | Bed exit monitoring |
FR3094542B1 (en) | 2019-04-01 | 2021-05-28 | Yooliv | Device for detecting and alerting human behavior in a room |
EP4248847B1 (en) | 2020-01-13 | 2024-11-06 | Masimo Corporation | Wearable device with physiological parameters monitoring |
CN111387990B (en) * | 2020-03-24 | 2022-11-04 | 首都医科大学宣武医院 | Cerebral apoplexy hemiplegia patient is with early warning system that leaves bed |
WO2021195902A1 (en) * | 2020-03-30 | 2021-10-07 | 华为技术有限公司 | Method and apparatus for controlling positioning confidence score |
US11961332B1 (en) | 2020-06-19 | 2024-04-16 | Apple Inc. | Electronic devices with 6 minute walk distance estimates |
US20220054046A1 (en) * | 2020-08-23 | 2022-02-24 | Envision Analytics, Inc. | Assessing patient out-of-bed and out-of-chair activities using embedded infrared thermal cameras |
US11671566B2 (en) | 2020-12-03 | 2023-06-06 | Vitalchat, Inc. | Attention focusing for multiple patients monitoring |
US11076778B1 (en) * | 2020-12-03 | 2021-08-03 | Vitalchat, Inc. | Hospital bed state detection via camera |
US20230008323A1 (en) * | 2021-07-12 | 2023-01-12 | GE Precision Healthcare LLC | Systems and methods for predicting and preventing patient departures from bed |
CN114010429B (en) * | 2021-11-03 | 2023-12-29 | 河北医科大学第二医院 | Processing device for new coronaries pneumonia management and isolation management system |
Family Cites Families (734)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3646606A (en) | 1969-08-06 | 1972-02-29 | Care Electronics Inc | Physiological monitoring system |
US3690313A (en) | 1970-10-09 | 1972-09-12 | Mennen Greatbatch Electronics | Electrically isolated signal path means for a physiological monitor |
US3978849A (en) | 1975-04-17 | 1976-09-07 | International Telephone And Telegraph Corporation | Pulse rate indicator |
US4108166A (en) | 1976-05-19 | 1978-08-22 | Walter Schmid | Cardiac frequency measuring instrument |
US4129125A (en) | 1976-12-27 | 1978-12-12 | Camin Research Corp. | Patient monitoring system |
US4231354A (en) | 1978-07-14 | 1980-11-04 | Howmedica, Incorporated | Pulsatile blood pumping apparatus and method |
US4589415A (en) | 1984-08-31 | 1986-05-20 | Haaga John R | Method and system for fragmenting kidney stones |
US4662378A (en) | 1984-10-30 | 1987-05-05 | Wendl Thomis | Device for monitoring body signals |
US4838275A (en) | 1985-11-29 | 1989-06-13 | Lee Arnold St J | Home medical surveillance system |
JPS6399840A (en) | 1986-10-17 | 1988-05-02 | テルモ株式会社 | Bio-signal measuring apparatus |
US4966154A (en) | 1988-02-04 | 1990-10-30 | Jonni Cooper | Multiple parameter monitoring system for hospital patients |
US5069213A (en) | 1988-04-29 | 1991-12-03 | Thor Technology Corporation | Oximeter sensor assembly with integral cable and encoder |
US4964408A (en) | 1988-04-29 | 1990-10-23 | Thor Technology Corporation | Oximeter sensor assembly with integral cable |
US5041187A (en) | 1988-04-29 | 1991-08-20 | Thor Technology Corporation | Oximeter sensor assembly with integral cable and method of forming the same |
DE3817052A1 (en) | 1988-05-19 | 1989-11-30 | Draegerwerk Ag | METHOD FOR MONITORING PATIENT DATA AND CIRCUIT ARRANGEMENT THEREFOR |
US4960128A (en) | 1988-11-14 | 1990-10-02 | Paramed Technology Incorporated | Method and apparatus for continuously and non-invasively measuring the blood pressure of a patient |
US5163438A (en) | 1988-11-14 | 1992-11-17 | Paramed Technology Incorporated | Method and apparatus for continuously and noninvasively measuring the blood pressure of a patient |
US4852570A (en) | 1989-02-09 | 1989-08-01 | Levine Alfred B | Comparative medical-physical analysis |
US5296688A (en) | 1989-12-04 | 1994-03-22 | Hamilton David W | Apparatus and method for recording progress notes |
US5358519A (en) | 1989-12-06 | 1994-10-25 | Medtronic, Inc. | Muscle control and monitoring system |
JPH05505954A (en) | 1990-03-16 | 1993-09-02 | サイズメド・インスツルメンツ・インコーポレーテツド | Myocardial ischemia detection system |
GB9011887D0 (en) | 1990-05-26 | 1990-07-18 | Le Fit Ltd | Pulse responsive device |
US5503149A (en) | 1990-07-09 | 1996-04-02 | Beavin; William C. | Computer simulation of live organ using arthroscopic and/or laparoscopic data |
US5822544A (en) | 1990-07-27 | 1998-10-13 | Executone Information Systems, Inc. | Patient care and communication system |
CU22179A1 (en) | 1990-11-09 | 1994-01-31 | Neurociencias Centro | Method and system for evaluating abnormal electro-magnetic physiological activity of the heart and brain and plotting it in graph form. |
JPH0614922B2 (en) | 1991-02-15 | 1994-03-02 | 日本光電工業株式会社 | Calibration test equipment for pulse oximeter |
US5319355A (en) | 1991-03-06 | 1994-06-07 | Russek Linda G | Alarm for patient monitor and life support equipment system |
US5490505A (en) | 1991-03-07 | 1996-02-13 | Masimo Corporation | Signal processing apparatus |
US5632272A (en) | 1991-03-07 | 1997-05-27 | Masimo Corporation | Signal processing apparatus |
MX9702434A (en) | 1991-03-07 | 1998-05-31 | Masimo Corp | Signal processing apparatus. |
AU658177B2 (en) | 1991-03-07 | 1995-04-06 | Masimo Corporation | Signal processing apparatus and method |
US6580086B1 (en) | 1999-08-26 | 2003-06-17 | Masimo Corporation | Shielded optical probe and method |
US5645440A (en) | 1995-10-16 | 1997-07-08 | Masimo Corporation | Patient cable connector |
US5638818A (en) | 1991-03-21 | 1997-06-17 | Masimo Corporation | Low noise optical probe |
US6541756B2 (en) | 1991-03-21 | 2003-04-01 | Masimo Corporation | Shielded optical probe having an electrical connector |
US5995855A (en) | 1998-02-11 | 1999-11-30 | Masimo Corporation | Pulse oximetry sensor adapter |
US5377676A (en) | 1991-04-03 | 1995-01-03 | Cedars-Sinai Medical Center | Method for determining the biodistribution of substances using fluorescence spectroscopy |
US5161539A (en) | 1991-05-09 | 1992-11-10 | Physio-Control | Method and apparatus for performing mapping-type analysis including use of limited electrode sets |
IL98613A (en) | 1991-06-25 | 1996-01-31 | Technion Res & Dev Foundation | Method and apparatus for analyzing the electrical activity of the heart |
US5277189A (en) | 1991-08-16 | 1994-01-11 | Nid, Inc. | Method and apparatus for the measurement and analysis of cardiac rates and amplitude variations |
US5694020A (en) | 1991-09-26 | 1997-12-02 | Braun Aktiengesellschaft | Apparatus for controlling battery discharge |
AU667199B2 (en) | 1991-11-08 | 1996-03-14 | Physiometrix, Inc. | EEG headpiece with disposable electrodes and apparatus and system and method for use therewith |
US5353793A (en) | 1991-11-25 | 1994-10-11 | Oishi-Kogyo Company | Sensor apparatus |
JPH05168013A (en) | 1991-12-16 | 1993-07-02 | Matsushita Electric Ind Co Ltd | System for medical treatment at home |
US7497828B1 (en) | 1992-01-10 | 2009-03-03 | Wilk Ultrasound Of Canada, Inc. | Ultrasonic medical device and associated method |
US5544649A (en) | 1992-03-25 | 1996-08-13 | Cardiomedix, Inc. | Ambulatory patient health monitoring techniques utilizing interactive visual communication |
JP3158636B2 (en) | 1992-04-30 | 2001-04-23 | 株式会社島津製作所 | Ultrasound diagnostic equipment |
US5262944A (en) | 1992-05-15 | 1993-11-16 | Hewlett-Packard Company | Method for use of color and selective highlighting to indicate patient critical events in a centralized patient monitoring system |
US5331549A (en) | 1992-07-30 | 1994-07-19 | Crawford Jr John M | Medical monitor system |
US7758503B2 (en) | 1997-01-27 | 2010-07-20 | Lynn Lawrence A | Microprocessor system for the analysis of physiologic and financial datasets |
US5494041A (en) | 1992-08-19 | 1996-02-27 | Wilk; Peter J. | Method for use in surgical operation |
US5333106A (en) | 1992-10-09 | 1994-07-26 | Circadian, Inc. | Apparatus and visual display method for training in the power use of aerosol pharmaceutical inhalers |
US6101478A (en) | 1997-04-30 | 2000-08-08 | Health Hero Network | Multi-user remote health monitoring system |
US6168563B1 (en) | 1992-11-17 | 2001-01-02 | Health Hero Network, Inc. | Remote health monitoring and maintenance system |
KR950703891A (en) | 1992-12-07 | 1995-11-17 | 안드레드 빌러스 | Electronic Stethoscope |
US5566676A (en) | 1992-12-11 | 1996-10-22 | Siemens Medical Systems, Inc. | Pressure data acquisition device for a patient monitoring system |
DK0601589T3 (en) | 1992-12-11 | 2000-07-24 | Siemens Medical Systems Inc | Portable, modular patient monitor with data capture modules |
JP3466612B2 (en) | 1992-12-11 | 2003-11-17 | シーメンス メディカル ソリューションズ ユーエスエー インコーポレイテッド | Docking station for patient monitoring system |
US5685314A (en) | 1992-12-11 | 1997-11-11 | Siemens Medical Systems, Inc. | Auxiliary docking station for a patient monitoring system |
US5576952A (en) | 1993-03-09 | 1996-11-19 | Metriplex, Inc. | Medical alert distribution system with selective filtering of medical information |
US5416695A (en) | 1993-03-09 | 1995-05-16 | Metriplex, Inc. | Method and apparatus for alerting patients and medical personnel of emergency medical situations |
US5400794A (en) | 1993-03-19 | 1995-03-28 | Gorman; Peter G. | Biomedical response monitor and technique using error correction |
US5341805A (en) | 1993-04-06 | 1994-08-30 | Cedars-Sinai Medical Center | Glucose fluorescence monitor and method |
US5558638A (en) | 1993-04-30 | 1996-09-24 | Healthdyne, Inc. | Patient monitor and support system |
US5494043A (en) | 1993-05-04 | 1996-02-27 | Vital Insite, Inc. | Arterial sensor |
USD353195S (en) | 1993-05-28 | 1994-12-06 | Gary Savage | Electronic stethoscope housing |
USD353196S (en) | 1993-05-28 | 1994-12-06 | Gary Savage | Stethoscope head |
US5337744A (en) | 1993-07-14 | 1994-08-16 | Masimo Corporation | Low noise finger cot probe |
US5452717A (en) | 1993-07-14 | 1995-09-26 | Masimo Corporation | Finger-cot probe |
US6285898B1 (en) | 1993-07-20 | 2001-09-04 | Biosense, Inc. | Cardiac electromechanics |
US6983179B2 (en) | 1993-07-20 | 2006-01-03 | Biosense, Inc. | Method for mapping a heart using catheters having ultrasonic position sensors |
US5566678B1 (en) | 1993-09-10 | 1999-11-30 | Cadwell Ind Inc | Digital eeg noise synthesizer |
US5456252A (en) | 1993-09-30 | 1995-10-10 | Cedars-Sinai Medical Center | Induced fluorescence spectroscopy blood perfusion and pH monitor and method |
US5689641A (en) | 1993-10-01 | 1997-11-18 | Vicor, Inc. | Multimedia collaboration system arrangement for routing compressed AV signal through a participant site without decompressing the AV signal |
US7376453B1 (en) | 1993-10-06 | 2008-05-20 | Masimo Corporation | Signal processing apparatus |
US5505202A (en) | 1993-12-08 | 1996-04-09 | Casio Computer Co., Ltd. | Portable and collapsable electrocardiograph |
US5533511A (en) | 1994-01-05 | 1996-07-09 | Vital Insite, Incorporated | Apparatus and method for noninvasive blood pressure measurement |
USD359546S (en) | 1994-01-27 | 1995-06-20 | The Ratechnologies Inc. | Housing for a dental unit disinfecting device |
US5640967A (en) | 1994-03-29 | 1997-06-24 | Quinton Electrophysiology Corporation | Monitoring system and method for use during an electrophysiology study |
US5810734A (en) | 1994-04-15 | 1998-09-22 | Vital Insite, Inc. | Apparatus and method for measuring an induced perturbation to determine a physiological parameter |
US5904654A (en) | 1995-10-20 | 1999-05-18 | Vital Insite, Inc. | Exciter-detector unit for measuring physiological parameters |
US5791347A (en) | 1994-04-15 | 1998-08-11 | Vital Insite, Inc. | Motion insensitive pulse detector |
US5785659A (en) | 1994-04-15 | 1998-07-28 | Vital Insite, Inc. | Automatically activated blood pressure measurement device |
US5590649A (en) | 1994-04-15 | 1997-01-07 | Vital Insite, Inc. | Apparatus and method for measuring an induced perturbation to determine blood pressure |
US6371921B1 (en) | 1994-04-15 | 2002-04-16 | Masimo Corporation | System and method of determining whether to recalibrate a blood pressure monitor |
USD362063S (en) | 1994-04-21 | 1995-09-05 | Gary Savage | Stethoscope headset |
USD363120S (en) | 1994-04-21 | 1995-10-10 | Gary Savage | Stethoscope ear tip |
USD361840S (en) | 1994-04-21 | 1995-08-29 | Gary Savage | Stethoscope head |
US5561275A (en) | 1994-04-28 | 1996-10-01 | Delstar Services Informatiques (1993) Inc. | Headset for electronic stethoscope |
US5734739A (en) | 1994-05-31 | 1998-03-31 | University Of Washington | Method for determining the contour of an in vivo organ using multiple image frames of the organ |
US5724983A (en) | 1994-08-01 | 1998-03-10 | New England Center Hospitals, Inc. | Continuous monitoring using a predictive instrument |
EP1905352B1 (en) | 1994-10-07 | 2014-07-16 | Masimo Corporation | Signal processing method |
US8019400B2 (en) | 1994-10-07 | 2011-09-13 | Masimo Corporation | Signal processing apparatus |
US5579001A (en) | 1994-10-20 | 1996-11-26 | Hewlett-Packard Co. | Paging-based backchannel in a medical telemetry system |
US5725308A (en) | 1994-12-23 | 1998-03-10 | Rtd Technology, Inc. | Quick registering thermometer |
US5562002A (en) | 1995-02-03 | 1996-10-08 | Sensidyne Inc. | Positive displacement piston flow meter with damping assembly |
US5553609A (en) | 1995-02-09 | 1996-09-10 | Visiting Nurse Service, Inc. | Intelligent remote visual monitoring system for home health care service |
AU5530996A (en) | 1995-03-31 | 1996-10-16 | Michael W. Cox | System and method of generating prognosis reports for corona ry health management |
US6329139B1 (en) | 1995-04-25 | 2001-12-11 | Discovery Partners International | Automated sorting system for matrices with memory |
US5619991A (en) | 1995-04-26 | 1997-04-15 | Lucent Technologies Inc. | Delivery of medical services using electronic data communications |
US6931268B1 (en) | 1995-06-07 | 2005-08-16 | Masimo Laboratories, Inc. | Active pulse blood constituent monitoring |
US5743262A (en) | 1995-06-07 | 1998-04-28 | Masimo Corporation | Blood glucose monitoring system |
US5760910A (en) | 1995-06-07 | 1998-06-02 | Masimo Corporation | Optical filter for spectroscopic measurement and method of producing the optical filter |
US5638816A (en) | 1995-06-07 | 1997-06-17 | Masimo Corporation | Active pulse blood constituent monitoring |
US6517283B2 (en) | 2001-01-16 | 2003-02-11 | Donald Edward Coffey | Cascading chute drainage system |
US5758644A (en) | 1995-06-07 | 1998-06-02 | Masimo Corporation | Manual and automatic probe calibration |
US5942986A (en) | 1995-08-09 | 1999-08-24 | Cedars-Sinai Medical Center | System and method for automatic critical event notification |
KR100197580B1 (en) | 1995-09-13 | 1999-06-15 | 이민화 | A living body monitoring system making use of wireless netwokk |
USD393830S (en) | 1995-10-16 | 1998-04-28 | Masimo Corporation | Patient cable connector |
US6232609B1 (en) | 1995-12-01 | 2001-05-15 | Cedars-Sinai Medical Center | Glucose monitoring apparatus and method using laser-induced emission spectroscopy |
US5931160A (en) | 1995-12-08 | 1999-08-03 | Cardiopulmonary Corporation | Ventilator control system and method |
ATE206564T1 (en) | 1995-12-14 | 2001-10-15 | Koninkl Philips Electronics Nv | DEVICE CONTAINING A RECHARGEABLE BATTERY AND A DISPLAY UNIT ON WHICH THE DISPLAY SYMBOLS DISPLAYED DURING A BATTERY CYCLE ARE DISPLAYED IN AN ACCELERATED DISPLAY TYPE AS A DEMONSTRATION MODE |
US6915149B2 (en) | 1996-01-08 | 2005-07-05 | Biosense, Inc. | Method of pacing a heart using implantable device |
US6253097B1 (en) | 1996-03-06 | 2001-06-26 | Datex-Ohmeda, Inc. | Noninvasive medical monitoring instrument using surface emitting laser devices |
US5822546A (en) | 1996-03-08 | 1998-10-13 | George; Stanley W. | Hand held docking station with deployable light source, rechargeable battery pack and recessed grip, for connecting to a palm top computer |
US5782805A (en) | 1996-04-10 | 1998-07-21 | Meinzer; Randolph | Medical infusion pump |
US5941836A (en) | 1996-06-12 | 1999-08-24 | Friedman; Mark B. | Patient position monitor |
US5890929A (en) | 1996-06-19 | 1999-04-06 | Masimo Corporation | Shielded medical connector |
US6027452A (en) | 1996-06-26 | 2000-02-22 | Vital Insite, Inc. | Rapid non-invasive blood pressure measuring device |
US5687717A (en) | 1996-08-06 | 1997-11-18 | Tremont Medical, Inc. | Patient monitoring system with chassis mounted or remotely operable modules and portable computer |
US5910139A (en) | 1996-08-29 | 1999-06-08 | Storz Instrument Co. | Numeric keypad simulated on touchscreen |
US5772585A (en) | 1996-08-30 | 1998-06-30 | Emc, Inc | System and method for managing patient medical records |
US5987519A (en) | 1996-09-20 | 1999-11-16 | Georgia Tech Research Corporation | Telemedicine system using voice video and data encapsulation and de-encapsulation for communicating medical information between central monitoring stations and remote patient monitoring stations |
US5924074A (en) | 1996-09-27 | 1999-07-13 | Azron Incorporated | Electronic medical records system |
US6018673A (en) | 1996-10-10 | 2000-01-25 | Nellcor Puritan Bennett Incorporated | Motion compatible sensor for non-invasive optical blood analysis |
US5855550A (en) | 1996-11-13 | 1999-01-05 | Lai; Joseph | Method and system for remotely monitoring multiple medical parameters |
US6364834B1 (en) | 1996-11-13 | 2002-04-02 | Criticare Systems, Inc. | Method and system for remotely monitoring multiple medical parameters in an integrated medical monitoring system |
US5921920A (en) | 1996-12-12 | 1999-07-13 | The Trustees Of The University Of Pennsylvania | Intensive care information graphical display |
WO1998029790A2 (en) | 1996-12-30 | 1998-07-09 | Imd Soft Ltd. | Medical information system |
WO1998040014A1 (en) | 1997-03-10 | 1998-09-17 | Robin Medical Inc. | Method and apparatus for the assessment and display of variability in mechanical activity of the heart, and enhancement of ultrasound contrast imaging by variability analysis |
US6032678A (en) | 1997-03-14 | 2000-03-07 | Shraga Rottem | Adjunct to diagnostic imaging systems for analysis of images of an object or a body part or organ |
US6229856B1 (en) | 1997-04-14 | 2001-05-08 | Masimo Corporation | Method and apparatus for demodulating signals in a pulse oximetry system |
US6002952A (en) | 1997-04-14 | 1999-12-14 | Masimo Corporation | Signal processing apparatus and method |
US5919134A (en) | 1997-04-14 | 1999-07-06 | Masimo Corp. | Method and apparatus for demodulating signals in a pulse oximetry system |
JPH10336064A (en) | 1997-05-29 | 1998-12-18 | Hitachi Denshi Ltd | Radio equipment |
US6269262B1 (en) | 1997-06-20 | 2001-07-31 | Hitachi, Ltd. | Biomagnetic field measuring apparatus |
US6124597A (en) | 1997-07-07 | 2000-09-26 | Cedars-Sinai Medical Center | Method and devices for laser induced fluorescence attenuation spectroscopy |
WO1999013766A1 (en) | 1997-09-16 | 1999-03-25 | Kinetic Concepts, Inc. | Critical care management system incorporating remote imaging and telemetry |
US6139494A (en) | 1997-10-15 | 2000-10-31 | Health Informatics Tools | Method and apparatus for an integrated clinical tele-informatics system |
US6230142B1 (en) | 1997-12-24 | 2001-05-08 | Homeopt, Llc | Health care data manipulation and analysis system |
US6184521B1 (en) | 1998-01-06 | 2001-02-06 | Masimo Corporation | Photodiode detector with integrated noise shielding |
US6860266B2 (en) | 2000-11-03 | 2005-03-01 | Dartmouth-Hitchcock Clinic | Physiological object displays |
US6014346A (en) * | 1998-02-12 | 2000-01-11 | Accucure, L.L.C. | Medical timer/monitor and method of monitoring patient status |
US6241683B1 (en) | 1998-02-20 | 2001-06-05 | INSTITUT DE RECHERCHES CLINIQUES DE MONTRéAL (IRCM) | Phonospirometry for non-invasive monitoring of respiration |
US6267723B1 (en) | 1998-03-02 | 2001-07-31 | Nihon Kohden Corporation | Medical telemetery system, and a sensor device and a receiver for the same |
US6195576B1 (en) | 1998-03-09 | 2001-02-27 | New York University | Quantitative magnetoencephalogram system and method |
US6525386B1 (en) | 1998-03-10 | 2003-02-25 | Masimo Corporation | Non-protruding optoelectronic lens |
US6024699A (en) | 1998-03-13 | 2000-02-15 | Healthware Corporation | Systems, methods and computer program products for monitoring, diagnosing and treating medical conditions of remotely located patients |
US5997343A (en) | 1998-03-19 | 1999-12-07 | Masimo Corporation | Patient cable sensor switch |
US6165005A (en) | 1998-03-19 | 2000-12-26 | Masimo Corporation | Patient cable sensor switch |
US6171237B1 (en) | 1998-03-30 | 2001-01-09 | Boaz Avitall | Remote health monitoring system |
US7899518B2 (en) | 1998-04-06 | 2011-03-01 | Masimo Laboratories, Inc. | Non-invasive tissue glucose level monitoring |
US6505059B1 (en) | 1998-04-06 | 2003-01-07 | The General Hospital Corporation | Non-invasive tissue glucose level monitoring |
US6728560B2 (en) | 1998-04-06 | 2004-04-27 | The General Hospital Corporation | Non-invasive tissue glucose level monitoring |
US6721582B2 (en) | 1999-04-06 | 2004-04-13 | Argose, Inc. | Non-invasive tissue glucose level monitoring |
US6106463A (en) | 1998-04-20 | 2000-08-22 | Wilk; Peter J. | Medical imaging device and associated method including flexible display |
US6175752B1 (en) | 1998-04-30 | 2001-01-16 | Therasense, Inc. | Analyte monitoring device and methods of use |
ATE521277T1 (en) | 1998-06-03 | 2011-09-15 | Masimo Corp | STEREO PULSE OXIMETER |
US6093146A (en) | 1998-06-05 | 2000-07-25 | Matsushita Electric Works, Ltd. | Physiological monitoring |
US6128521A (en) | 1998-07-10 | 2000-10-03 | Physiometrix, Inc. | Self adjusting headgear appliance using reservoir electrodes |
US6285896B1 (en) | 1998-07-13 | 2001-09-04 | Masimo Corporation | Fetal pulse oximetry sensor |
US6558320B1 (en) | 2000-01-20 | 2003-05-06 | Medtronic Minimed, Inc. | Handheld personal data assistant (PDA) with a medical device and method of using the same |
US6129675A (en) | 1998-09-11 | 2000-10-10 | Jay; Gregory D. | Device and method for measuring pulsus paradoxus |
US7612999B2 (en) | 1998-09-18 | 2009-11-03 | Flo Healthcare Solutions, Llc | Mobile clinical workstation |
US6185448B1 (en) | 1998-09-29 | 2001-02-06 | Simcha Borovsky | Apparatus and method for locating and mapping a catheter in intracardiac operations |
US6167258A (en) | 1998-10-09 | 2000-12-26 | Cleveland Medical Devices Inc. | Programmable wireless data acquisition system |
US6519487B1 (en) | 1998-10-15 | 2003-02-11 | Sensidyne, Inc. | Reusable pulse oximeter probe and disposable bandage apparatus |
US7245953B1 (en) | 1999-04-12 | 2007-07-17 | Masimo Corporation | Reusable pulse oximeter probe and disposable bandage apparatii |
US6321100B1 (en) | 1999-07-13 | 2001-11-20 | Sensidyne, Inc. | Reusable pulse oximeter probe with disposable liner |
US6144868A (en) | 1998-10-15 | 2000-11-07 | Sensidyne, Inc. | Reusable pulse oximeter probe and disposable bandage apparatus |
USRE41912E1 (en) | 1998-10-15 | 2010-11-02 | Masimo Corporation | Reusable pulse oximeter probe and disposable bandage apparatus |
US6684091B2 (en) | 1998-10-15 | 2004-01-27 | Sensidyne, Inc. | Reusable pulse oximeter probe and disposable bandage method |
US6721585B1 (en) | 1998-10-15 | 2004-04-13 | Sensidyne, Inc. | Universal modular pulse oximeter probe for use with reusable and disposable patient attachment devices |
US6343224B1 (en) | 1998-10-15 | 2002-01-29 | Sensidyne, Inc. | Reusable pulse oximeter probe and disposable bandage apparatus |
US6132218A (en) | 1998-11-13 | 2000-10-17 | Benja-Athon; Anuthep | Images for communication of medical information in computer |
US6463311B1 (en) | 1998-12-30 | 2002-10-08 | Masimo Corporation | Plethysmograph pulse recognition processor |
US6385589B1 (en) | 1998-12-30 | 2002-05-07 | Pharmacia Corporation | System for monitoring and managing the health care of a patient population |
US6606511B1 (en) | 1999-01-07 | 2003-08-12 | Masimo Corporation | Pulse oximetry pulse indicator |
US6684090B2 (en) | 1999-01-07 | 2004-01-27 | Masimo Corporation | Pulse oximetry data confidence indicator |
US6770028B1 (en) | 1999-01-25 | 2004-08-03 | Masimo Corporation | Dual-mode pulse oximeter |
CA2358454C (en) | 1999-01-25 | 2010-03-23 | Masimo Corporation | Universal/upgrading pulse oximeter |
US6658276B2 (en) | 1999-01-25 | 2003-12-02 | Masimo Corporation | Pulse oximeter user interface |
US20020140675A1 (en) | 1999-01-25 | 2002-10-03 | Ali Ammar Al | System and method for altering a display mode based on a gravity-responsive sensor |
US7208119B1 (en) | 2000-03-01 | 2007-04-24 | Roche Diagnostics Operations, Inc. | Hospital meter system |
US6358201B1 (en) | 1999-03-02 | 2002-03-19 | Doc L. Childre | Method and apparatus for facilitating physiological coherence and autonomic balance |
US6360114B1 (en) | 1999-03-25 | 2002-03-19 | Masimo Corporation | Pulse oximeter probe-off detector |
US7577475B2 (en) | 1999-04-16 | 2009-08-18 | Cardiocom | System, method, and apparatus for combining information from an implanted device with information from a patient monitoring apparatus |
US6291096B1 (en) | 1999-04-16 | 2001-09-18 | The Gillette Company | Pass/fail battery indicator and tester |
US6290646B1 (en) | 1999-04-16 | 2001-09-18 | Cardiocom | Apparatus and method for monitoring and communicating wellness parameters of ambulatory patients |
US8442618B2 (en) | 1999-05-18 | 2013-05-14 | Mediguide Ltd. | Method and system for delivering a medical device to a selected position within a lumen |
US6312378B1 (en) | 1999-06-03 | 2001-11-06 | Cardiac Intelligence Corporation | System and method for automated collection and analysis of patient information retrieved from an implantable medical device for remote patient care |
US6526300B1 (en) | 1999-06-18 | 2003-02-25 | Masimo Corporation | Pulse oximeter probe-off detection system |
US6804656B1 (en) | 1999-06-23 | 2004-10-12 | Visicu, Inc. | System and method for providing continuous, expert network critical care services from a remote location(s) |
US7321862B2 (en) | 1999-06-23 | 2008-01-22 | Visicu, Inc. | System and method for patient-worn monitoring of patients in geographically dispersed health care locations |
US7315825B2 (en) | 1999-06-23 | 2008-01-01 | Visicu, Inc. | Rules-based patient care system for use in healthcare locations |
US7395216B2 (en) | 1999-06-23 | 2008-07-01 | Visicu, Inc. | Using predictive models to continuously update a treatment plan for a patient in a health care location |
US8401874B2 (en) | 1999-06-23 | 2013-03-19 | Koninklijke Philips Electronics N.V. | Rules-based system for maternal-fetal care |
US7256708B2 (en) | 1999-06-23 | 2007-08-14 | Visicu, Inc. | Telecommunications network for remote patient monitoring |
US7454359B2 (en) | 1999-06-23 | 2008-11-18 | Visicu, Inc. | System and method for displaying a health status of hospitalized patients |
US7467094B2 (en) | 1999-06-23 | 2008-12-16 | Visicu, Inc. | System and method for accounting and billing patients in a hospital environment |
US8175895B2 (en) | 1999-06-23 | 2012-05-08 | Koninklijke Philips Electronics N.V. | Remote command center for patient monitoring |
US7991625B2 (en) | 1999-06-23 | 2011-08-02 | Koninklijke Philips Electronics N.V. | System for providing expert care to a basic care medical facility from a remote location |
US7433827B2 (en) | 1999-06-23 | 2008-10-07 | Visicu, Inc. | System and method for displaying a health status of hospitalized patients |
US7650291B2 (en) | 1999-06-23 | 2010-01-19 | Koninklijke Philips Electronics N.V. | Video visitation system and method for a health care location |
US7475019B2 (en) | 1999-11-18 | 2009-01-06 | Visicu, Inc. | System and method for physician note creation and management |
US7454360B2 (en) | 1999-06-23 | 2008-11-18 | Visicu, Inc. | Order evaluation system for use in a healthcare location |
US7411509B2 (en) | 1999-06-23 | 2008-08-12 | Visicu, Inc. | System and method for observing patients in geographically dispersed health care locations |
US6301493B1 (en) | 1999-07-10 | 2001-10-09 | Physiometrix, Inc. | Reservoir electrodes for electroencephalograph headgear appliance |
US6338039B1 (en) | 1999-07-20 | 2002-01-08 | Michael Lonski | Method for automated collection of psychotherapy patient information and generating reports and treatment plans |
US6354235B1 (en) | 1999-07-30 | 2002-03-12 | Robert C. Davies | Convoy of towed ocean going cargo vessels and method for shipping across an ocean |
US6515273B2 (en) | 1999-08-26 | 2003-02-04 | Masimo Corporation | System for indicating the expiration of the useful operating life of a pulse oximetry sensor |
US20020052311A1 (en) | 1999-09-03 | 2002-05-02 | Beka Solomon | Methods and compostions for the treatment and/or diagnosis of neurological diseases and disorders |
US20040013647A1 (en) | 1999-09-03 | 2004-01-22 | Ramot At Tel-Aviv University Ltd. | Methods and compositions for treating a plaque-forming disease |
US6385476B1 (en) | 1999-09-21 | 2002-05-07 | Biosense, Inc. | Method and apparatus for intracardially surveying a condition of a chamber of a heart |
WO2001028416A1 (en) | 1999-09-24 | 2001-04-26 | Healthetech, Inc. | Physiological monitor and associated computation, display and communication unit |
US6470893B1 (en) | 2000-05-15 | 2002-10-29 | Peter V. Boesen | Wireless biopotential sensing device and method with capability of short-range radio frequency transmission and reception |
US6694180B1 (en) | 1999-10-11 | 2004-02-17 | Peter V. Boesen | Wireless biopotential sensing device and method with capability of short-range radio frequency transmission and reception |
US6943348B1 (en) | 1999-10-19 | 2005-09-13 | Masimo Corporation | System for detecting injection holding material |
DE60028230T2 (en) | 1999-10-27 | 2007-03-29 | Hospira Sedation, Inc., North Billerica | MODULE FOR OBTAINING PATIENTS ELECTROENECEPHALOGRAPHIC SIGNALS |
US6317627B1 (en) | 1999-11-02 | 2001-11-13 | Physiometrix, Inc. | Anesthesia monitoring system based on electroencephalographic signals |
AU1459001A (en) | 1999-11-03 | 2001-05-14 | Argose, Inc. | Asynchronous fluorescence scan |
US8326649B2 (en) | 1999-11-18 | 2012-12-04 | Koninklijke Philips Electronics N.V. | System for providing expert care to outpatients from a remote location |
US7470236B1 (en) | 1999-11-24 | 2008-12-30 | Nuvasive, Inc. | Electromyography system |
WO2001040914A2 (en) | 1999-11-30 | 2001-06-07 | Vercel Development Corporation | Hand held internet browser with folding keyboard |
US6542764B1 (en) | 1999-12-01 | 2003-04-01 | Masimo Corporation | Pulse oximeter monitor for expressing the urgency of the patient's condition |
US7693697B2 (en) | 1999-12-07 | 2010-04-06 | University Of Utah Research Foundation | Anesthesia drug monitor |
US7413546B2 (en) | 1999-12-07 | 2008-08-19 | Univeristy Of Utah Research Foundation | Method and apparatus for monitoring dynamic cardiovascular function using n-dimensional representations of critical functions |
US7654966B2 (en) | 1999-12-07 | 2010-02-02 | University Of Utah Research Foundation | Method and apparatus for monitoring dynamic cardiovascular function using n-dimensional representatives of critical functions |
US6671531B2 (en) | 1999-12-09 | 2003-12-30 | Masimo Corporation | Sensor wrap including foldable applicator |
US6377829B1 (en) | 1999-12-09 | 2002-04-23 | Masimo Corporation | Resposable pulse oximetry sensor |
US6950687B2 (en) | 1999-12-09 | 2005-09-27 | Masimo Corporation | Isolation and communication element for a resposable pulse oximetry sensor |
US6152754A (en) | 1999-12-21 | 2000-11-28 | Masimo Corporation | Circuit board based cable connector |
JP2004512856A (en) | 1999-12-23 | 2004-04-30 | シーラス、コーポレイション | Imaging and therapeutic ultrasound transducers |
JP2001216044A (en) | 2000-02-01 | 2001-08-10 | Nec Yonezawa Ltd | Information processor with security function |
WO2001060246A2 (en) | 2000-02-18 | 2001-08-23 | Argose, Inc. | Multivariate analysis of green to ultraviolet spectra of cell and tissue samples |
EP1257192A1 (en) | 2000-02-18 | 2002-11-20 | Argose, Inc. | Generation of spatially-averaged excitation-emission map in heterogeneous tissue |
US6650939B2 (en) | 2000-03-17 | 2003-11-18 | Medtronic, Inc. | Universal interface for implantable medical device data management |
USD437058S1 (en) | 2000-03-31 | 2001-01-30 | Shai N. Gozani | Hand-held monitor |
US20010046366A1 (en) | 2000-04-11 | 2001-11-29 | Susskind Robert Aaron | System for controlling a remotely located video recording device |
US6441747B1 (en) | 2000-04-18 | 2002-08-27 | Motorola, Inc. | Wireless system protocol for telemetry monitoring |
EP1404213B1 (en) | 2000-05-19 | 2011-03-23 | Welch Allyn Protocol Inc | Patient monitoring system |
US6430525B1 (en) | 2000-06-05 | 2002-08-06 | Masimo Corporation | Variable mode averager |
US7378975B1 (en) * | 2000-06-09 | 2008-05-27 | Bed-Check Corporation | Method and apparatus for mitigating the risk of pressure sores |
US6646556B1 (en) * | 2000-06-09 | 2003-11-11 | Bed-Check Corporation | Apparatus and method for reducing the risk of decubitus ulcers |
US7285090B2 (en) | 2000-06-16 | 2007-10-23 | Bodymedia, Inc. | Apparatus for detecting, receiving, deriving and displaying human physiological and contextual information |
US7689437B1 (en) | 2000-06-16 | 2010-03-30 | Bodymedia, Inc. | System for monitoring health, wellness and fitness |
US6470199B1 (en) | 2000-06-21 | 2002-10-22 | Masimo Corporation | Elastic sock for positioning an optical probe |
US6697656B1 (en) | 2000-06-27 | 2004-02-24 | Masimo Corporation | Pulse oximetry sensor compatible with multiple pulse oximetry systems |
USRE41236E1 (en) | 2000-07-05 | 2010-04-20 | Seely Andrew J E | Method and apparatus for multiple patient parameter variability analysis and display |
US6961285B2 (en) | 2000-07-07 | 2005-11-01 | Ddms Holdings L.L.C. | Drug delivery management system |
US6855112B2 (en) | 2000-07-14 | 2005-02-15 | The University Of Hong Kong | Method of and system for health treatment |
WO2002010201A2 (en) | 2000-07-31 | 2002-02-07 | Active Motif | Peptide-mediated delivery of molecules into cells |
US6640116B2 (en) | 2000-08-18 | 2003-10-28 | Masimo Corporation | Optical spectroscopy pathlength measurement system |
ATE434970T1 (en) | 2000-08-18 | 2009-07-15 | Masimo Corp | TWO-MODE PULSE OXIMETER |
US6907237B1 (en) | 2000-08-28 | 2005-06-14 | Motorola, Inc. | Communication system that provides backup communication services to a plurality of communication devices |
US6368283B1 (en) | 2000-09-08 | 2002-04-09 | Institut De Recherches Cliniques De Montreal | Method and apparatus for estimating systolic and mean pulmonary artery pressures of a patient |
EP1195139A1 (en) | 2000-10-05 | 2002-04-10 | Ecole Polytechnique Féderale de Lausanne (EPFL) | Body movement monitoring system and method |
EP1332463A4 (en) | 2000-10-10 | 2007-08-01 | Univ Utah Res Found | Method and apparatus for monitoring anesthesia drug dosages, concentrations, and effects using n-dimensional representations of critical functions |
US6990087B2 (en) | 2002-04-25 | 2006-01-24 | Raytheon Company | Dynamic wireless resource utilization |
US20020045836A1 (en) | 2000-10-16 | 2002-04-18 | Dima Alkawwas | Operation of wireless biopotential monitoring system |
US7313423B2 (en) | 2000-11-07 | 2007-12-25 | Research In Motion Limited | Communication device with multiple detachable communication modules |
AU2002235128A1 (en) | 2000-11-14 | 2002-05-27 | Genetag Technology, Inc. | Expression miniarrays and uses thereof |
US6524240B1 (en) | 2000-11-22 | 2003-02-25 | Medwave, Inc. | Docking station for portable medical devices |
US6746404B2 (en) | 2000-12-18 | 2004-06-08 | Biosense, Inc. | Method for anchoring a medical device between tissue |
US6760607B2 (en) | 2000-12-29 | 2004-07-06 | Masimo Corporation | Ribbon cable substrate pulse oximetry sensor |
US6837848B2 (en) | 2003-01-15 | 2005-01-04 | Medtronic, Inc. | Methods and apparatus for accessing and stabilizing an area of the heart |
US6551243B2 (en) | 2001-01-24 | 2003-04-22 | Siemens Medical Solutions Health Services Corporation | System and user interface for use in providing medical information and health care delivery support |
US6985764B2 (en) | 2001-05-03 | 2006-01-10 | Masimo Corporation | Flex circuit shielded optical sensor |
US20070093721A1 (en) | 2001-05-17 | 2007-04-26 | Lynn Lawrence A | Microprocessor system for the analysis of physiologic and financial datasets |
US6582393B2 (en) | 2001-05-29 | 2003-06-24 | Therafuse, Inc. | Compensating drug delivery system |
US6783492B2 (en) | 2001-06-26 | 2004-08-31 | Steven Dominguez | System and method for monitoring body functions |
US6850787B2 (en) | 2001-06-29 | 2005-02-01 | Masimo Laboratories, Inc. | Signal component processor |
US6916283B2 (en) | 2001-06-29 | 2005-07-12 | Ethicon, Inc. | System and method for assessing urinary function |
US6697658B2 (en) | 2001-07-02 | 2004-02-24 | Masimo Corporation | Low power pulse oximeter |
US6595316B2 (en) | 2001-07-18 | 2003-07-22 | Andromed, Inc. | Tension-adjustable mechanism for stethoscope earpieces |
DE60235894D1 (en) | 2001-08-03 | 2010-05-20 | Hill Rom Services Inc | Patienten-point-of-care-computersystem |
US20030058838A1 (en) | 2001-09-06 | 2003-03-27 | Michael Wengrovitz | System and method for transmitting information via a call center SIP server |
US7025729B2 (en) | 2001-09-14 | 2006-04-11 | Biancamed Limited | Apparatus for detecting sleep apnea using electrocardiogram signals |
US6807050B1 (en) | 2002-10-25 | 2004-10-19 | Hewlett-Packard Development Company | Configurable image display with integral docking station |
US7399277B2 (en) | 2001-12-27 | 2008-07-15 | Medtronic Minimed, Inc. | System for monitoring physiological characteristics |
US7022072B2 (en) | 2001-12-27 | 2006-04-04 | Medtronic Minimed, Inc. | System for monitoring physiological characteristics |
US6934570B2 (en) | 2002-01-08 | 2005-08-23 | Masimo Corporation | Physiological sensor combination |
US7355512B1 (en) | 2002-01-24 | 2008-04-08 | Masimo Corporation | Parallel alarm processor |
US6822564B2 (en) | 2002-01-24 | 2004-11-23 | Masimo Corporation | Parallel measurement alarm processor |
WO2003065557A2 (en) | 2002-01-25 | 2003-08-07 | Masimo Corporation | Power supply rail controller |
US6795724B2 (en) | 2002-02-19 | 2004-09-21 | Mark Bradford Hogan | Color-based neurofeedback |
WO2003071939A1 (en) | 2002-02-22 | 2003-09-04 | Masimo Corporation | Active pulse spectraphotometry |
US7509494B2 (en) | 2002-03-01 | 2009-03-24 | Masimo Corporation | Interface cable |
US20040122487A1 (en) | 2002-12-18 | 2004-06-24 | John Hatlestad | Advanced patient management with composite parameter indices |
US7468032B2 (en) | 2002-12-18 | 2008-12-23 | Cardiac Pacemakers, Inc. | Advanced patient management for identifying, displaying and assisting with correlating health-related data |
US8718738B2 (en) | 2002-03-08 | 2014-05-06 | Glt Acquisition Corp. | Method and apparatus for coupling a sample probe with a sample site |
US8504128B2 (en) | 2002-03-08 | 2013-08-06 | Glt Acquisition Corp. | Method and apparatus for coupling a channeled sample probe to tissue |
DE60334398D1 (en) * | 2002-03-18 | 2010-11-11 | Hill Rom Services Inc | HOSPITAL WITH A CONTROLLED INFLATABLE PAD |
US6850788B2 (en) | 2002-03-25 | 2005-02-01 | Masimo Corporation | Physiological measurement communications adapter |
US8239780B2 (en) | 2002-04-23 | 2012-08-07 | Draeger Medical Systems, Inc. | System and user interface supporting trend indicative display of patient medical parameters |
US6932796B2 (en) | 2002-05-15 | 2005-08-23 | Tearafuse, Inc. | Liquid metering system |
US20050005710A1 (en) | 2002-05-15 | 2005-01-13 | Therafuse, Inc. | Liquid metering system |
US6917293B2 (en) * | 2002-05-17 | 2005-07-12 | Tactilitics, Inc. | Integral, flexible, electronic patient sensing and monitoring system |
US7590950B2 (en) | 2002-06-05 | 2009-09-15 | Gtech Rhode Island Corporation | Mobile lottery terminal including features facilitating use by visually impaired ticket agents |
US6661161B1 (en) | 2002-06-27 | 2003-12-09 | Andromed Inc. | Piezoelectric biological sound monitor with printed circuit board |
US6817979B2 (en) | 2002-06-28 | 2004-11-16 | Nokia Corporation | System and method for interacting with a user's virtual physiological model via a mobile terminal |
US7314446B2 (en) | 2002-07-22 | 2008-01-01 | Ep Medsystems, Inc. | Method and apparatus for time gating of medical images |
US7096054B2 (en) | 2002-08-01 | 2006-08-22 | Masimo Corporation | Low noise optical housing |
US20040186357A1 (en) | 2002-08-20 | 2004-09-23 | Welch Allyn, Inc. | Diagnostic instrument workstation |
US7020508B2 (en) | 2002-08-22 | 2006-03-28 | Bodymedia, Inc. | Apparatus for detecting human physiological and contextual information |
US8663106B2 (en) | 2002-08-22 | 2014-03-04 | Bodymedia, Inc. | Non-invasive temperature monitoring device |
US7341559B2 (en) | 2002-09-14 | 2008-03-11 | Masimo Corporation | Pulse oximetry ear sensor |
US7142901B2 (en) | 2002-09-25 | 2006-11-28 | Masimo Corporation | Parameter compensated physiological monitor |
US7274955B2 (en) | 2002-09-25 | 2007-09-25 | Masimo Corporation | Parameter compensated pulse oximeter |
USD483872S1 (en) | 2002-09-27 | 2003-12-16 | Baxter International Inc. | Display portion for a medical machine |
US7096052B2 (en) | 2002-10-04 | 2006-08-22 | Masimo Corporation | Optical probe including predetermined emission wavelength based on patient type |
WO2004036390A2 (en) | 2002-10-18 | 2004-04-29 | Trustees Of Boston University | Patient activity monitor |
US7049469B2 (en) | 2002-10-24 | 2006-05-23 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Process for preparing (R)-salbutamol |
KR100488012B1 (en) | 2002-11-11 | 2005-05-06 | 엘지전자 주식회사 | Portable computer system |
AU2003287735A1 (en) | 2002-11-12 | 2004-06-03 | Argose, Inc. | Non-invasive measurement of analytes |
US20040147818A1 (en) | 2002-11-18 | 2004-07-29 | Andrew Levy | Portable system for monitoring and processing patient parameters in multiple oprational modes |
US7027849B2 (en) | 2002-11-22 | 2006-04-11 | Masimo Laboratories, Inc. | Blood parameter measurement system |
US6970792B1 (en) | 2002-12-04 | 2005-11-29 | Masimo Laboratories, Inc. | Systems and methods for determining blood oxygen saturation values using complex number encoding |
US20040122787A1 (en) | 2002-12-18 | 2004-06-24 | Avinash Gopal B. | Enhanced computer-assisted medical data processing system and method |
US20050038680A1 (en) | 2002-12-19 | 2005-02-17 | Mcmahon Kevin Lee | System and method for glucose monitoring |
US7919713B2 (en) | 2007-04-16 | 2011-04-05 | Masimo Corporation | Low noise oximetry cable including conductive cords |
AU2003303382A1 (en) | 2002-12-20 | 2004-07-22 | Axon Medical, Inc. | System providing emergency medical care with real-time instructions and associated methods |
US7356178B2 (en) | 2002-12-31 | 2008-04-08 | Koninklijke Philips Electronics N.V. | System and method for improved multiple-dimension image displays |
US20050148882A1 (en) | 2004-01-06 | 2005-07-07 | Triage Wireless, Incc. | Vital signs monitor used for conditioning a patient's response |
US7396330B2 (en) | 2003-01-07 | 2008-07-08 | Triage Data Networks | Wireless, internet-based medical-diagnostic system |
US20060142648A1 (en) | 2003-01-07 | 2006-06-29 | Triage Data Networks | Wireless, internet-based, medical diagnostic system |
US7225006B2 (en) | 2003-01-23 | 2007-05-29 | Masimo Corporation | Attachment and optical probe |
US6920345B2 (en) | 2003-01-24 | 2005-07-19 | Masimo Corporation | Optical sensor including disposable and reusable elements |
US7848935B2 (en) | 2003-01-31 | 2010-12-07 | I.M.D. Soft Ltd. | Medical information event manager |
US8620678B2 (en) | 2003-01-31 | 2013-12-31 | Imd Soft Ltd. | Medical information query system |
DE602004026280D1 (en) | 2003-02-07 | 2010-05-12 | Alfred E Mann Inst Biomed Eng | SURGICAL DRAIN WITH SENSORS FOR MONITORING THE INTERNAL TISSUE CONDITION AND MONITORING LIQUID IN LUMEN |
WO2008005388A2 (en) | 2006-06-30 | 2008-01-10 | Dtherapeutics, Llc | Localization of body lumen junctions |
US6980419B2 (en) | 2003-03-12 | 2005-12-27 | Zonare Medical Systems, Inc. | Portable ultrasound unit and docking station |
JP2006520657A (en) | 2003-03-21 | 2006-09-14 | ウェルチ・アリン・インコーポレーテッド | Personal condition physiological monitoring system and structure, and monitoring method |
KR20040087870A (en) | 2003-04-09 | 2004-10-15 | (주)에이치쓰리시스템 | Method and System for Providing Tele-Healthcare by Using Household Medical Devices |
WO2004105601A1 (en) | 2003-05-06 | 2004-12-09 | Everest Biomedical Instruments | Anesthesia and sedation monitoring system and method |
US7639145B2 (en) | 2003-05-19 | 2009-12-29 | Ge Medical Systems Information Technologies, Inc. | Method and apparatus for communicating an alarm while monitoring |
US7079035B2 (en) | 2003-05-19 | 2006-07-18 | Ge Medical Systems Information Technologies, Inc. | Method and apparatus for controlling an alarm while monitoring |
WO2005002436A1 (en) | 2003-07-01 | 2005-01-13 | Queensland University Of Technology | Motion monitoring and analysis system |
US7003338B2 (en) | 2003-07-08 | 2006-02-21 | Masimo Corporation | Method and apparatus for reducing coupling between signals |
WO2005007215A2 (en) | 2003-07-09 | 2005-01-27 | Glucolight Corporation | Method and apparatus for tissue oximetry |
US7967749B2 (en) | 2003-07-23 | 2011-06-28 | Ge Medical Systems Information Technologies, Inc. | Monitoring system and method using rules |
US7500950B2 (en) | 2003-07-25 | 2009-03-10 | Masimo Corporation | Multipurpose sensor port |
US7549961B1 (en) | 2003-07-31 | 2009-06-23 | Sonosite, Inc. | System and method supporting imaging and monitoring applications |
EP1653905B1 (en) | 2003-08-04 | 2016-06-15 | Carefusion 203, Inc. | Portable ventilator system |
US20070185390A1 (en) | 2003-08-19 | 2007-08-09 | Welch Allyn, Inc. | Information workflow for a medical diagnostic workstation |
US7254431B2 (en) | 2003-08-28 | 2007-08-07 | Masimo Corporation | Physiological parameter tracking system |
US20060155175A1 (en) | 2003-09-02 | 2006-07-13 | Matsushita Electric Industrial Co., Ltd. | Biological sensor and support system using the same |
JP4306380B2 (en) | 2003-09-10 | 2009-07-29 | 株式会社日立メディコ | Medical image display method and apparatus |
US7361155B2 (en) | 2003-09-16 | 2008-04-22 | Therafuse, Inc. | Compensating liquid delivery system and method |
US7254434B2 (en) | 2003-10-14 | 2007-08-07 | Masimo Corporation | Variable pressure reusable sensor |
US7396331B2 (en) * | 2003-10-27 | 2008-07-08 | Home Guardian, Llc | System and process for non-invasive collection and analysis of physiological signals |
US20090131759A1 (en) | 2003-11-04 | 2009-05-21 | Nathaniel Sims | Life sign detection and health state assessment system |
US7483729B2 (en) | 2003-11-05 | 2009-01-27 | Masimo Corporation | Pulse oximeter access apparatus and method |
US7373193B2 (en) | 2003-11-07 | 2008-05-13 | Masimo Corporation | Pulse oximetry data capture system |
WO2005050525A1 (en) | 2003-11-12 | 2005-06-02 | Draeger Medical Systems, Inc. | A healthcare processing device and display system |
US7783879B2 (en) | 2003-11-20 | 2010-08-24 | Nokia Corporation | Method and device relating to security in a radio communication network |
US7858322B2 (en) | 2003-12-23 | 2010-12-28 | Nono, Inc. | Method of determining inhibition of binding to TRPM7 protein |
WO2005065241A2 (en) | 2003-12-24 | 2005-07-21 | Argose, Inc. | Smmr (small molecule metabolite reporters) for use as in vivo glucose biosensors |
WO2005065418A2 (en) | 2003-12-31 | 2005-07-21 | Board Of Regents, The University Of Texas System | Compositions and methods of use of targeting peptides for diagnosis and therapy |
US7280858B2 (en) | 2004-01-05 | 2007-10-09 | Masimo Corporation | Pulse oximetry sensor |
EP1711104B1 (en) | 2004-01-16 | 2014-03-12 | Compumedics Limited | Method and apparatus for ecg-derived sleep disordered breathing monitoring, detection and classification |
US7510849B2 (en) | 2004-01-29 | 2009-03-31 | Glucolight Corporation | OCT based method for diagnosis and therapy |
JP2005218036A (en) | 2004-02-02 | 2005-08-11 | Fuji Xerox Co Ltd | Network server |
US7371981B2 (en) | 2004-02-20 | 2008-05-13 | Masimo Corporation | Connector switch |
US7438683B2 (en) | 2004-03-04 | 2008-10-21 | Masimo Corporation | Application identification sensor |
US7415297B2 (en) | 2004-03-08 | 2008-08-19 | Masimo Corporation | Physiological parameter system |
US20050208648A1 (en) | 2004-03-17 | 2005-09-22 | Therafuse, Inc. | Microdialysis needle assembly |
US20050209518A1 (en) | 2004-03-17 | 2005-09-22 | Therafuse, Inc. | Self-calibrating body analyte monitoring system |
US7439856B2 (en) | 2004-03-20 | 2008-10-21 | Welch Allyn, Inc. | Health care patient status event processing and reporting |
WO2005096922A1 (en) | 2004-03-31 | 2005-10-20 | Masimo Corporation | Physiological assessment system |
JP2005295375A (en) | 2004-04-02 | 2005-10-20 | Omron Corp | Information acquisition support system |
US7179228B2 (en) | 2004-04-07 | 2007-02-20 | Triage Wireless, Inc. | Cuffless system for measuring blood pressure |
US20050261598A1 (en) | 2004-04-07 | 2005-11-24 | Triage Wireless, Inc. | Patch sensor system for measuring vital signs |
US7238159B2 (en) | 2004-04-07 | 2007-07-03 | Triage Wireless, Inc. | Device, system and method for monitoring vital signs |
US7004907B2 (en) | 2004-04-07 | 2006-02-28 | Triage Wireless, Inc. | Blood-pressure monitoring device featuring a calibration-based analysis |
US20060009697A1 (en) | 2004-04-07 | 2006-01-12 | Triage Wireless, Inc. | Wireless, internet-based system for measuring vital signs from a plurality of patients in a hospital or medical clinic |
US20060009698A1 (en) | 2004-04-07 | 2006-01-12 | Triage Wireless, Inc. | Hand-held monitor for measuring vital signs |
US20050228244A1 (en) | 2004-04-07 | 2005-10-13 | Triage Wireless, Inc. | Small-scale, vital-signs monitoring device, system and method |
CA2464029A1 (en) | 2004-04-08 | 2005-10-08 | Valery Telfort | Non-invasive ventilation monitor |
CA2464634A1 (en) | 2004-04-16 | 2005-10-16 | Andromed Inc. | Pap estimator |
US8868147B2 (en) | 2004-04-28 | 2014-10-21 | Glt Acquisition Corp. | Method and apparatus for controlling positioning of a noninvasive analyzer sample probe |
US20080281181A1 (en) | 2004-05-14 | 2008-11-13 | The Research Foundation Of State University Of New York | Combination of Multi-Modality Imaging Technologies |
US20050277872A1 (en) | 2004-05-24 | 2005-12-15 | Colby John E Jr | Apparatus and method for mobile medical services |
US7761167B2 (en) | 2004-06-10 | 2010-07-20 | Medtronic Urinary Solutions, Inc. | Systems and methods for clinician control of stimulation systems |
US20070100222A1 (en) | 2004-06-14 | 2007-05-03 | Metronic Minimed, Inc. | Analyte sensing apparatus for hospital use |
US9341565B2 (en) | 2004-07-07 | 2016-05-17 | Masimo Corporation | Multiple-wavelength physiological monitor |
US7343186B2 (en) | 2004-07-07 | 2008-03-11 | Masimo Laboratories, Inc. | Multi-wavelength physiological monitor |
US7937128B2 (en) | 2004-07-09 | 2011-05-03 | Masimo Corporation | Cyanotic infant sensor |
US7319386B2 (en) * | 2004-08-02 | 2008-01-15 | Hill-Rom Services, Inc. | Configurable system for alerting caregivers |
US7559520B2 (en) | 2004-08-06 | 2009-07-14 | Hewlett-Packard Development Company, L.P. | Apparatuses and methods for supporting peripheral devices |
US8036727B2 (en) | 2004-08-11 | 2011-10-11 | Glt Acquisition Corp. | Methods for noninvasively measuring analyte levels in a subject |
US7254429B2 (en) | 2004-08-11 | 2007-08-07 | Glucolight Corporation | Method and apparatus for monitoring glucose levels in a biological tissue |
US7976472B2 (en) | 2004-09-07 | 2011-07-12 | Masimo Corporation | Noninvasive hypovolemia monitor |
KR100657901B1 (en) | 2004-10-12 | 2006-12-14 | 삼성전자주식회사 | Method and apparatus of generating avata for representing state of health |
US20060084878A1 (en) | 2004-10-18 | 2006-04-20 | Triage Wireless, Inc. | Personal computer-based vital signs monitor |
DE602005022348D1 (en) | 2004-10-29 | 2010-08-26 | Draeger Medical Systems Inc | AUTOMATIC SWITCHING BETWEEN WIRELESS PAN / LAN |
EP1815370A2 (en) | 2004-11-12 | 2007-08-08 | Koninklijke Philips Electronics N.V. | Message integrity for secure communication of wireless medical devices |
US7658716B2 (en) | 2004-12-07 | 2010-02-09 | Triage Wireless, Inc. | Vital signs monitor using an optical ear-based module |
US7947030B2 (en) | 2004-12-30 | 2011-05-24 | Reynaldo Calderon | Retrograde perfusion of tumor sites |
AU2006204886B2 (en) | 2005-01-13 | 2011-08-04 | Welch Allyn, Inc. | Vital signs monitor |
US20060189871A1 (en) | 2005-02-18 | 2006-08-24 | Ammar Al-Ali | Portable patient monitor |
USD554263S1 (en) | 2005-02-18 | 2007-10-30 | Masimo Corporation | Portable patient monitor |
USD566282S1 (en) | 2005-02-18 | 2008-04-08 | Masimo Corporation | Stand for a portable patient monitor |
WO2006118654A1 (en) | 2005-03-01 | 2006-11-09 | Masimo Laboratories, Inc. | Noninvasive multi-parameter patient monitor |
US8956292B2 (en) | 2005-03-02 | 2015-02-17 | Spacelabs Healthcare Llc | Trending display of patient wellness |
AU2006218595A1 (en) | 2005-03-02 | 2006-09-08 | Spacelabs Medical | Trending display of patient wellness |
US20090054735A1 (en) | 2005-03-08 | 2009-02-26 | Vanderbilt University Office Of Technology Transfer And Enterprise Development | System and method for remote monitoring of multiple healthcare patients |
US7937129B2 (en) | 2005-03-21 | 2011-05-03 | Masimo Corporation | Variable aperture sensor |
JP2008537903A (en) | 2005-04-13 | 2008-10-02 | グルコライト・コーポレーシヨン | Data processing and calibration method for blood glucose monitor based on OCT |
DE102005017038A1 (en) | 2005-04-13 | 2006-10-19 | Schaeffler Kg | Traction drive, in particular belt drive for ancillaries of an internal combustion engine |
US7630755B2 (en) | 2005-05-04 | 2009-12-08 | Cardiac Pacemakers Inc. | Syncope logbook and method of using same |
US8597193B2 (en) | 2005-05-06 | 2013-12-03 | Vasonova, Inc. | Apparatus and method for endovascular device guiding and positioning using physiological parameters |
JP4723281B2 (en) | 2005-05-16 | 2011-07-13 | Hoya株式会社 | Electronic endoscope system |
US7768408B2 (en) | 2005-05-17 | 2010-08-03 | Abbott Diabetes Care Inc. | Method and system for providing data management in data monitoring system |
US20070027368A1 (en) | 2005-07-14 | 2007-02-01 | Collins John P | 3D anatomical visualization of physiological signals for online monitoring |
US20080221396A1 (en) | 2005-07-25 | 2008-09-11 | Becton Dickinson And Company | Method and System for Monitoring Medical Treatment |
US8033996B2 (en) | 2005-07-26 | 2011-10-11 | Adidas Ag | Computer interfaces including physiologically guided avatars |
WO2007021745A2 (en) | 2005-08-09 | 2007-02-22 | Mednova | A system and method for automated medical diagnostic interpretation and report generation |
US20070055540A1 (en) | 2005-09-08 | 2007-03-08 | Searete Llc, A Limited Liability Corporation | Data techniques related to tissue coding |
US8038625B2 (en) | 2005-09-15 | 2011-10-18 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for three-dimensional mapping of electrophysiology information |
US20070060798A1 (en) | 2005-09-15 | 2007-03-15 | Hagai Krupnik | System and method for presentation of data streams |
US20080058614A1 (en) | 2005-09-20 | 2008-03-06 | Triage Wireless, Inc. | Wireless, internet-based system for measuring vital signs from a plurality of patients in a hospital or medical clinic |
WO2007038290A2 (en) | 2005-09-22 | 2007-04-05 | Nuvasive, Inc. | Multi-channel stimulation threshold detection algorithm for use in neurophysiology monitoring |
JP5282347B2 (en) | 2005-09-27 | 2013-09-04 | 株式会社デンソーウェーブ | Information reading system |
US7962188B2 (en) | 2005-10-14 | 2011-06-14 | Masimo Corporation | Robust alarm system |
US7530942B1 (en) | 2005-10-18 | 2009-05-12 | Masimo Corporation | Remote sensing infant warmer |
US8234129B2 (en) | 2005-10-18 | 2012-07-31 | Wellstat Vaccines, Llc | Systems and methods for obtaining, storing, processing and utilizing immunologic and other information of individuals and populations |
US20070232941A1 (en) | 2005-10-27 | 2007-10-04 | Stan Rabinovich | System, apparatus, and method for imaging and treating tissue |
US20070096897A1 (en) | 2005-10-31 | 2007-05-03 | Welch Allyn, Inc. | Attachment/location monitoring of a signal generating entity |
WO2007051889A1 (en) | 2005-11-04 | 2007-05-10 | Nokia Corporation | Apparatus for detecting body condition |
US7588558B2 (en) | 2005-11-10 | 2009-09-15 | Thera Fuse, Inc. | Laminated sprinkler hypodermic needle |
US20070118399A1 (en) | 2005-11-22 | 2007-05-24 | Avinash Gopal B | System and method for integrated learning and understanding of healthcare informatics |
EP2374407B1 (en) | 2005-11-29 | 2021-05-05 | Masimo Corporation | Optical sensor including disposable and reusable elements |
JP2007174051A (en) | 2005-12-20 | 2007-07-05 | Fujifilm Corp | Digital camera and program |
US20070142715A1 (en) | 2005-12-20 | 2007-06-21 | Triage Wireless, Inc. | Chest strap for measuring vital signs |
US7990382B2 (en) | 2006-01-03 | 2011-08-02 | Masimo Corporation | Virtual display |
DE602007012999D1 (en) * | 2006-01-07 | 2011-04-21 | Arthur Koblasz | USE OF RFID TO PREVENT OR DETECT SCORES, BREAKS, BEDDING, AND MEDICAL FAULTS |
US8182443B1 (en) | 2006-01-17 | 2012-05-22 | Masimo Corporation | Drug administration controller |
CH716953B1 (en) | 2006-01-30 | 2021-08-16 | Hamilton Medical Ag | Method and device for simplifying a diagnostic assessment of a mechanically ventilated patient. |
US20070185393A1 (en) | 2006-02-03 | 2007-08-09 | Triage Wireless, Inc. | System for measuring vital signs using an optical module featuring a green light source |
US20080021854A1 (en) | 2006-02-24 | 2008-01-24 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Search techniques related to tissue coding |
JP2009530880A (en) | 2006-03-13 | 2009-08-27 | ノボ・ノルデイスク・エー/エス | Secure pairing of electronic devices using complex communication means |
US8219172B2 (en) | 2006-03-17 | 2012-07-10 | Glt Acquisition Corp. | System and method for creating a stable optical interface |
US20070244724A1 (en) | 2006-04-13 | 2007-10-18 | Pendergast John W | Case based outcome prediction in a real-time monitoring system |
US8770482B2 (en) | 2006-04-26 | 2014-07-08 | Roche Diagnostics Operations, Inc. | Apparatus and method to administer and manage an intelligent base unit for a handheld medical device |
US20070254593A1 (en) | 2006-04-28 | 2007-11-01 | Medtronic Minimed, Inc. | Wireless data communication for a medical device network that supports a plurality of data communication modes |
US20070255125A1 (en) | 2006-04-28 | 2007-11-01 | Moberg Sheldon B | Monitor devices for networked fluid infusion systems |
US20070255126A1 (en) | 2006-04-28 | 2007-11-01 | Moberg Sheldon B | Data communication in networked fluid infusion systems |
WO2007131169A2 (en) | 2006-05-04 | 2007-11-15 | Capstone Mobile Technologies, Llc | System and method for remotely monitoring and controlling a water meter |
WO2007134190A2 (en) | 2006-05-10 | 2007-11-22 | Regents Of The University Of Minnesota | Methods and apparatus of three dimensional cardiac electrophysiological imaging |
WO2007134165A2 (en) | 2006-05-12 | 2007-11-22 | Invivo Corporation | Method of transferring software and patient data in an mri wireless patient monitor system |
US9060683B2 (en) * | 2006-05-12 | 2015-06-23 | Bao Tran | Mobile wireless appliance |
US8323189B2 (en) * | 2006-05-12 | 2012-12-04 | Bao Tran | Health monitoring appliance |
US9176141B2 (en) | 2006-05-15 | 2015-11-03 | Cercacor Laboratories, Inc. | Physiological monitor calibration system |
US7941199B2 (en) | 2006-05-15 | 2011-05-10 | Masimo Laboratories, Inc. | Sepsis monitor |
US8998809B2 (en) | 2006-05-15 | 2015-04-07 | Cercacor Laboratories, Inc. | Systems and methods for calibrating minimally invasive and non-invasive physiological sensor devices |
US7988639B2 (en) | 2006-05-17 | 2011-08-02 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for complex geometry modeling of anatomy using multiple surface models |
US7993275B2 (en) | 2006-05-25 | 2011-08-09 | Sotera Wireless, Inc. | Bilateral device, system and method for monitoring vital signs |
US9149192B2 (en) | 2006-05-26 | 2015-10-06 | Sotera Wireless, Inc. | System for measuring vital signs using bilateral pulse transit time |
CN101460086B (en) | 2006-05-31 | 2011-09-14 | 皇家飞利浦电子股份有限公司 | Display of trends and anticipated trends from mitigation |
WO2007140478A2 (en) | 2006-05-31 | 2007-12-06 | Masimo Corporation | Respiratory monitoring |
SE530331C2 (en) | 2006-06-02 | 2008-05-06 | Gripping Heart Ab | Interface system for state machine |
TW200819540A (en) | 2006-07-11 | 2008-05-01 | Genelux Corp | Methods and compositions for detection of microorganisms and cells and treatment of diseases and disorders |
JP5005277B2 (en) | 2006-07-13 | 2012-08-22 | 日東電工株式会社 | Patches and patch preparations |
PT2061512T (en) | 2006-08-23 | 2020-01-14 | Yeda Res & Dev | Conjugates of rgd peptides and porphyrin or (bacterio)chlorophyll photosynthesizers and their uses |
US9957293B2 (en) | 2006-08-23 | 2018-05-01 | Yeda Research And Development Company Ltd. | Conjugates of RGD peptides and porphyrin or (bacterio)chlorophyll photosynthesizers and their uses |
US9370312B2 (en) | 2006-09-06 | 2016-06-21 | Biosense Webster, Inc. | Correlation of cardiac electrical maps with body surface measurements |
US8442607B2 (en) | 2006-09-07 | 2013-05-14 | Sotera Wireless, Inc. | Hand-held vital signs monitor |
US20080082004A1 (en) | 2006-09-08 | 2008-04-03 | Triage Wireless, Inc. | Blood pressure monitor |
USD609193S1 (en) | 2007-10-12 | 2010-02-02 | Masimo Corporation | Connector assembly |
USD614305S1 (en) | 2008-02-29 | 2010-04-20 | Masimo Corporation | Connector assembly |
US8457707B2 (en) | 2006-09-20 | 2013-06-04 | Masimo Corporation | Congenital heart disease monitor |
USD587657S1 (en) | 2007-10-12 | 2009-03-03 | Masimo Corporation | Connector assembly |
US8315683B2 (en) | 2006-09-20 | 2012-11-20 | Masimo Corporation | Duo connector patient cable |
US8840549B2 (en) | 2006-09-22 | 2014-09-23 | Masimo Corporation | Modular patient monitor |
US9161696B2 (en) | 2006-09-22 | 2015-10-20 | Masimo Corporation | Modular patient monitor |
US8255026B1 (en) | 2006-10-12 | 2012-08-28 | Masimo Corporation, Inc. | Patient monitor capable of monitoring the quality of attached probes and accessories |
US7880626B2 (en) | 2006-10-12 | 2011-02-01 | Masimo Corporation | System and method for monitoring the life of a physiological sensor |
EP2073692B1 (en) | 2006-10-12 | 2017-07-26 | Masimo Corporation | Perfusion index smoothing |
US8265723B1 (en) | 2006-10-12 | 2012-09-11 | Cercacor Laboratories, Inc. | Oximeter probe off indicator defining probe off space |
US20080091089A1 (en) | 2006-10-12 | 2008-04-17 | Kenneth Shane Guillory | Single use, self-contained surface physiological monitor |
US20080091090A1 (en) | 2006-10-12 | 2008-04-17 | Kenneth Shane Guillory | Self-contained surface physiological monitor with adhesive attachment |
US8326545B2 (en) | 2006-10-18 | 2012-12-04 | General Electric Company | System and method for displaying a pharmacokinetic and pharmacodynamic drug model |
US7794407B2 (en) | 2006-10-23 | 2010-09-14 | Bard Access Systems, Inc. | Method of locating the tip of a central venous catheter |
US7684845B2 (en) | 2006-11-01 | 2010-03-23 | G Pulse International Co., Ltd. | Physiological measurement display |
US8449469B2 (en) | 2006-11-10 | 2013-05-28 | Sotera Wireless, Inc. | Two-part patch sensor for monitoring vital signs |
FR2908293B1 (en) | 2006-11-15 | 2009-07-31 | Commissariat Energie Atomique | DEVICE AND METHOD FOR MONITORING THE MOVEMENT OF A LIVING BEING |
US8600467B2 (en) | 2006-11-29 | 2013-12-03 | Cercacor Laboratories, Inc. | Optical sensor including disposable and reusable elements |
EP2096994B1 (en) | 2006-12-09 | 2018-10-03 | Masimo Corporation | Plethysmograph variability determination |
JP2010515026A (en) | 2006-12-21 | 2010-05-06 | コグノッシ, インコーポレイテッド | Method for adjusting SET and use thereof |
US7791155B2 (en) | 2006-12-22 | 2010-09-07 | Masimo Laboratories, Inc. | Detector shield |
US8852094B2 (en) | 2006-12-22 | 2014-10-07 | Masimo Corporation | Physiological parameter system |
US8312174B2 (en) | 2007-01-11 | 2012-11-13 | Koninklijke Philips Electronics N.V. | Protocol converter for wireless patient monitoring |
WO2008087629A2 (en) | 2007-01-16 | 2008-07-24 | Simbionix Ltd. | Preoperative surgical simulation |
US20080169922A1 (en) | 2007-01-16 | 2008-07-17 | Peter Alan Issokson | Portable deterrent alarm system |
US8652060B2 (en) | 2007-01-20 | 2014-02-18 | Masimo Corporation | Perfusion trend indicator |
US20080188795A1 (en) | 2007-02-02 | 2008-08-07 | Katz Hal H | Patient monitoring and drug delivery system and method of use |
US20080194918A1 (en) | 2007-02-09 | 2008-08-14 | Kulik Robert S | Vital signs monitor with patient entertainment console |
US20080208912A1 (en) | 2007-02-26 | 2008-08-28 | Garibaldi Jeffrey M | System and method for providing contextually relevant medical information |
US20080221399A1 (en) | 2007-03-05 | 2008-09-11 | Triage Wireless, Inc. | Monitor for measuring vital signs and rendering video images |
US20080221461A1 (en) | 2007-03-05 | 2008-09-11 | Triage Wireless, Inc. | Vital sign monitor for cufflessly measuring blood pressure without using an external calibration |
US8036736B2 (en) | 2007-03-21 | 2011-10-11 | Neuro Vista Corporation | Implantable systems and methods for identifying a contra-ictal condition in a subject |
US8781544B2 (en) | 2007-03-27 | 2014-07-15 | Cercacor Laboratories, Inc. | Multiple wavelength optical sensor |
US8374665B2 (en) | 2007-04-21 | 2013-02-12 | Cercacor Laboratories, Inc. | Tissue profile wellness monitor |
WO2008153754A1 (en) * | 2007-05-24 | 2008-12-18 | Peter Salgo | System and method for patient monitoring |
DE102007024154A1 (en) | 2007-05-24 | 2008-11-27 | Siemens Ag | Method for automatic selection of a display mode for an image data record of an organ to be examined |
JP2008301329A (en) | 2007-06-01 | 2008-12-11 | Renesas Technology Corp | Wireless communication system, sim card, mobile communication terminal, and data guarantee method |
US8852127B2 (en) | 2007-06-08 | 2014-10-07 | Ric Investments, Llc | System and method for monitoring information related to sleep |
US20100130875A1 (en) | 2008-06-18 | 2010-05-27 | Triage Wireless, Inc. | Body-worn system for measuring blood pressure |
EP2162059B1 (en) | 2007-06-12 | 2021-01-13 | Sotera Wireless, Inc. | Vital sign monitor and method for measuring blood pressure using optical, electrical, and pressure waveforms |
US8574161B2 (en) | 2007-06-12 | 2013-11-05 | Sotera Wireless, Inc. | Vital sign monitor for cufflessly measuring blood pressure using a pulse transit time corrected for vascular index |
US8602997B2 (en) | 2007-06-12 | 2013-12-10 | Sotera Wireless, Inc. | Body-worn system for measuring continuous non-invasive blood pressure (cNIBP) |
US11607152B2 (en) | 2007-06-12 | 2023-03-21 | Sotera Wireless, Inc. | Optical sensors for use in vital sign monitoring |
US20080312542A1 (en) | 2007-06-13 | 2008-12-18 | Triage Wireless, Inc. | Multi-sensor array for measuring blood pressure |
US8313432B2 (en) | 2007-06-20 | 2012-11-20 | Surgmatix, Inc. | Surgical data monitoring and display system |
US20080319327A1 (en) | 2007-06-25 | 2008-12-25 | Triage Wireless, Inc. | Body-worn sensor featuring a low-power processor and multi-sensor array for measuring blood pressure |
US20090005651A1 (en) | 2007-06-27 | 2009-01-01 | Welch Allyn, Inc. | Portable systems, devices and methods for displaying varied information depending on usage circumstances |
US8764671B2 (en) | 2007-06-28 | 2014-07-01 | Masimo Corporation | Disposable active pulse sensor |
US8068104B2 (en) | 2007-06-29 | 2011-11-29 | Carlyle Rampersad | Totally integrated intelligent dynamic systems display |
JP5215602B2 (en) | 2007-07-10 | 2013-06-19 | フクダ電子株式会社 | Biological information transmission system |
WO2009009761A1 (en) | 2007-07-11 | 2009-01-15 | Triage Wireless, Inc. | Device for determining respiratory rate and other vital signs |
US9788744B2 (en) | 2007-07-27 | 2017-10-17 | Cyberonics, Inc. | Systems for monitoring brain activity and patient advisory device |
US7865232B1 (en) | 2007-08-07 | 2011-01-04 | Pacesetter, Inc. | Method and system for automatically calibrating ischemia detection parameters |
US7551717B2 (en) | 2007-08-21 | 2009-06-23 | Wisconsin Alumni Research Foundation | Virtual 4D treatment suite |
US20090069642A1 (en) | 2007-09-11 | 2009-03-12 | Aid Networks, Llc | Wearable Wireless Electronic Patient Data Communications and Physiological Monitoring Device |
US8048040B2 (en) | 2007-09-13 | 2011-11-01 | Masimo Corporation | Fluid titration system |
US8442630B2 (en) | 2007-10-09 | 2013-05-14 | University of Pittsburgh—of the Commonwealth System of Higher Education | Automated assessment of atrioventricular and ventriculoatrial conduction |
US8310336B2 (en) | 2008-10-10 | 2012-11-13 | Masimo Corporation | Systems and methods for storing, analyzing, retrieving and displaying streaming medical data |
US8355766B2 (en) | 2007-10-12 | 2013-01-15 | Masimo Corporation | Ceramic emitter substrate |
EP2227843B1 (en) | 2007-10-12 | 2019-03-06 | Masimo Corporation | Connector assembly |
JP2011501274A (en) | 2007-10-12 | 2011-01-06 | マシモ コーポレイション | System and method for storing, analyzing and retrieving medical data |
US20090247984A1 (en) | 2007-10-24 | 2009-10-01 | Masimo Laboratories, Inc. | Use of microneedles for small molecule metabolite reporter delivery |
AU2008317311B2 (en) | 2007-10-24 | 2013-07-04 | Nuvasive, Inc. | Surgical trajectory monitoring system and related methods |
US20090112072A1 (en) | 2007-10-26 | 2009-04-30 | Triage Wireless, Inc. | System that displays both vital sign information and entertainment content on a common video monitor |
US20090118628A1 (en) | 2007-11-01 | 2009-05-07 | Triage Wireless, Inc. | System for measuring blood pressure featuring a blood pressure cuff comprising size information |
US7987069B2 (en) * | 2007-11-12 | 2011-07-26 | Bee Cave, Llc | Monitoring patient support exiting and initiating response |
US20090124867A1 (en) | 2007-11-13 | 2009-05-14 | Hirsh Robert A | Method and device to administer anesthetic and or vosactive agents according to non-invasively monitored cardiac and or neurological parameters |
EP2232670A4 (en) | 2007-11-26 | 2012-06-27 | Gwacs Defense Inc | Smart battery system and methods of use |
FR2924847B1 (en) | 2007-12-06 | 2014-08-29 | Vigilio | METHOD AND EQUIPMENT FOR DETECTING CRITICAL SITUATION OF A SUBJECT |
US20090287120A1 (en) | 2007-12-18 | 2009-11-19 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Circulatory monitoring systems and methods |
US20100036209A1 (en) | 2008-08-07 | 2010-02-11 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Circulatory monitoring systems and methods |
US20090171170A1 (en) * | 2007-12-28 | 2009-07-02 | Nellcor Puritan Bennett Llc | Medical Monitoring With Portable Electronic Device System And Method |
AU2009215426B2 (en) | 2008-02-21 | 2015-06-11 | Burnham Institute For Medical Research | Methods and compositions related to peptides and proteins with C-terminal elements |
JP5236752B2 (en) | 2008-03-04 | 2013-07-17 | カーディアック ペースメイカーズ, インコーポレイテッド | Radio frequency loaded antenna for implantable devices |
WO2009111542A2 (en) | 2008-03-04 | 2009-09-11 | Glucolight Corporation | Methods and systems for analyte level estimation in optical coherence tomography |
ITPI20080032A1 (en) | 2008-04-18 | 2009-10-19 | Antonio Mazzeo | SUPPORT DEVICE FOR SENSORS AND / OR ACTUATORS MADE AS A NETWORK OF MEASUREMENT AND / OR IMPLEMENTATION KNOTS |
US8494608B2 (en) | 2008-04-18 | 2013-07-23 | Medtronic, Inc. | Method and apparatus for mapping a structure |
US9883809B2 (en) | 2008-05-01 | 2018-02-06 | Earlysense Ltd. | Monitoring, predicting and treating clinical episodes |
US20090275844A1 (en) | 2008-05-02 | 2009-11-05 | Masimo Corporation | Monitor configuration system |
EP2312995B1 (en) | 2008-05-05 | 2017-06-28 | Masimo Corporation | Pulse oximetry system with electrical decoupling circuitry |
US8773269B2 (en) | 2008-06-27 | 2014-07-08 | Neal T. RICHARDSON | Autonomous fall monitor |
US20100004518A1 (en) | 2008-07-03 | 2010-01-07 | Masimo Laboratories, Inc. | Heat sink for noninvasive medical sensor |
USD621516S1 (en) | 2008-08-25 | 2010-08-10 | Masimo Laboratories, Inc. | Patient monitoring sensor |
USD606659S1 (en) | 2008-08-25 | 2009-12-22 | Masimo Laboratories, Inc. | Patient monitor |
US10722562B2 (en) | 2008-07-23 | 2020-07-28 | Immudex Aps | Combinatorial analysis and repair |
US8203438B2 (en) | 2008-07-29 | 2012-06-19 | Masimo Corporation | Alarm suspend system |
US8203704B2 (en) | 2008-08-04 | 2012-06-19 | Cercacor Laboratories, Inc. | Multi-stream sensor for noninvasive measurement of blood constituents |
US8600777B2 (en) | 2008-08-28 | 2013-12-03 | I.M.D. Soft Ltd. | Monitoring patient conditions |
WO2010024418A1 (en) | 2008-09-01 | 2010-03-04 | 学校法人同志社 | Arteriosclerosis evaluating apparatus |
US8911377B2 (en) | 2008-09-15 | 2014-12-16 | Masimo Corporation | Patient monitor including multi-parameter graphical display |
US8346330B2 (en) | 2008-10-13 | 2013-01-01 | Masimo Corporation | Reflection-detector sensor position indicator |
US8401602B2 (en) | 2008-10-13 | 2013-03-19 | Masimo Corporation | Secondary-emitter sensor position indicator |
JP5883647B2 (en) | 2008-11-07 | 2016-03-15 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | Hospital TV / monitor display control by hierarchical access control |
TW201019898A (en) | 2008-11-17 | 2010-06-01 | Univ Nat Yang Ming | Method and apparatus for presenting heart rate variability by sound and/or light |
US8771204B2 (en) | 2008-12-30 | 2014-07-08 | Masimo Corporation | Acoustic sensor assembly |
JP5167156B2 (en) | 2009-01-19 | 2013-03-21 | 株式会社デンソー | Biological condition evaluation apparatus, biological condition evaluation system, program, and recording medium |
US10460408B2 (en) | 2009-01-31 | 2019-10-29 | Mayo Foundation For Medical Education And Research | Presentation of critical patient data |
US8588880B2 (en) | 2009-02-16 | 2013-11-19 | Masimo Corporation | Ear sensor |
US8764672B2 (en) | 2009-02-17 | 2014-07-01 | Preston K. Manwaring | System, method and device for monitoring the condition of an internal organ |
US10007758B2 (en) | 2009-03-04 | 2018-06-26 | Masimo Corporation | Medical monitoring system |
US9323894B2 (en) | 2011-08-19 | 2016-04-26 | Masimo Corporation | Health care sanitation monitoring system |
US10032002B2 (en) | 2009-03-04 | 2018-07-24 | Masimo Corporation | Medical monitoring system |
JP5749658B2 (en) | 2009-03-04 | 2015-07-15 | マシモ・コーポレイション | Medical monitoring system |
US8388353B2 (en) | 2009-03-11 | 2013-03-05 | Cercacor Laboratories, Inc. | Magnetic connector |
US20100305412A1 (en) | 2009-03-23 | 2010-12-02 | Darrah Mark I | Device and system for wireless monitoring of the vital signs of patients |
US8897847B2 (en) | 2009-03-23 | 2014-11-25 | Masimo Corporation | Digit gauge for noninvasive optical sensor |
WO2010111363A2 (en) | 2009-03-24 | 2010-09-30 | Wound Sentry, Llc | Patient movement detection system and method |
US8094013B1 (en) | 2009-03-31 | 2012-01-10 | Lee Taek Kyu | Baby monitoring system |
US8105208B2 (en) | 2009-05-18 | 2012-01-31 | Adidas Ag | Portable fitness monitoring systems with displays and applications thereof |
WO2010135373A1 (en) | 2009-05-19 | 2010-11-25 | Masimo Corporation | Disposable components for reusable physiological sensor |
US20150164437A1 (en) | 2009-05-20 | 2015-06-18 | Sotera Wireless, Inc. | Graphical mapping system for continuously monitoring a patient's vital signs, motion, and location |
US8571619B2 (en) | 2009-05-20 | 2013-10-29 | Masimo Corporation | Hemoglobin display and patient treatment |
US8738118B2 (en) | 2009-05-20 | 2014-05-27 | Sotera Wireless, Inc. | Cable system for generating signals for detecting motion and measuring vital signs |
US8956293B2 (en) | 2009-05-20 | 2015-02-17 | Sotera Wireless, Inc. | Graphical ‘mapping system’ for continuously monitoring a patient's vital signs, motion, and location |
USD621515S1 (en) | 2009-06-02 | 2010-08-10 | The Procter & Gamble Company | Skin analyzing device |
US9843743B2 (en) | 2009-06-03 | 2017-12-12 | Flir Systems, Inc. | Infant monitoring systems and methods using thermal imaging |
US8501093B2 (en) | 2009-06-11 | 2013-08-06 | Roche Diagnostics Operations, Inc. | Portable handheld medical diagnostic devices with color-changing indicatior |
US8418524B2 (en) | 2009-06-12 | 2013-04-16 | Masimo Corporation | Non-invasive sensor calibration device |
US8437824B2 (en) | 2009-06-17 | 2013-05-07 | Sotera Wireless, Inc. | Body-worn pulse oximeter |
CN102460446B (en) | 2009-06-29 | 2016-08-24 | 皇家飞利浦电子股份有限公司 | There is the most again the patient-monitoring of the display segments of size regulation |
EP2881034B1 (en) | 2009-06-30 | 2020-06-10 | Edwards Lifesciences Corporation | Monitoring and displaying a patient's status |
US8670811B2 (en) | 2009-06-30 | 2014-03-11 | Masimo Corporation | Pulse oximetry system for adjusting medical ventilation |
US20110208015A1 (en) | 2009-07-20 | 2011-08-25 | Masimo Corporation | Wireless patient monitoring system |
US8471713B2 (en) | 2009-07-24 | 2013-06-25 | Cercacor Laboratories, Inc. | Interference detector for patient monitor |
US8473020B2 (en) | 2009-07-29 | 2013-06-25 | Cercacor Laboratories, Inc. | Non-invasive physiological sensor cover |
US20110028809A1 (en) | 2009-07-29 | 2011-02-03 | Masimo Corporation | Patient monitor ambient display device |
US20110028806A1 (en) | 2009-07-29 | 2011-02-03 | Sean Merritt | Reflectance calibration of fluorescence-based glucose measurements |
US8491504B2 (en) | 2009-08-04 | 2013-07-23 | University Of South Carolina | Devices and methods for monitoring sit to stand transfers |
DE102009038500A1 (en) | 2009-08-21 | 2011-03-03 | Osypka, Peter, Dr.- Ing. | Device for measuring the size of an intracardiac opening |
US8688183B2 (en) | 2009-09-03 | 2014-04-01 | Ceracor Laboratories, Inc. | Emitter driver for noninvasive patient monitor |
US8545417B2 (en) | 2009-09-14 | 2013-10-01 | Sotera Wireless, Inc. | Body-worn monitor for measuring respiration rate |
US8239010B2 (en) | 2009-09-14 | 2012-08-07 | Sotera Wireless, Inc. | System for measuring vital signs during hemodialysis |
US20110172498A1 (en) | 2009-09-14 | 2011-07-14 | Olsen Gregory A | Spot check monitor credit system |
US9579039B2 (en) | 2011-01-10 | 2017-02-28 | Masimo Corporation | Non-invasive intravascular volume index monitor |
US8364250B2 (en) * | 2009-09-15 | 2013-01-29 | Sotera Wireless, Inc. | Body-worn vital sign monitor |
US8321004B2 (en) | 2009-09-15 | 2012-11-27 | Sotera Wireless, Inc. | Body-worn vital sign monitor |
US20110066042A1 (en) | 2009-09-15 | 2011-03-17 | Texas Instruments Incorporated | Estimation of blood flow and hemodynamic parameters from a single chest-worn sensor, and other circuits, devices and processes |
US8527038B2 (en) | 2009-09-15 | 2013-09-03 | Sotera Wireless, Inc. | Body-worn vital sign monitor |
US8571618B1 (en) | 2009-09-28 | 2013-10-29 | Cercacor Laboratories, Inc. | Adaptive calibration system for spectrophotometric measurements |
US9554739B2 (en) | 2009-09-29 | 2017-01-31 | Covidien Lp | Smart cable for coupling a medical sensor to an electronic patient monitor |
US20110078596A1 (en) | 2009-09-30 | 2011-03-31 | Nellcor Puritan Bennett Llc | Protocol Analyzer System And Method For Medical Monitoring Module |
US8565847B2 (en) | 2009-09-30 | 2013-10-22 | Covidien Lp | Evaluation board for a medical monitoring module system and method |
US20110082711A1 (en) | 2009-10-06 | 2011-04-07 | Masimo Laboratories, Inc. | Personal digital assistant or organizer for monitoring glucose levels |
JP5909037B2 (en) | 2009-10-07 | 2016-04-26 | 日本光電工業株式会社 | Biological information monitor device with alarm priority changing function and alarm control method |
WO2011044408A2 (en) | 2009-10-08 | 2011-04-14 | The Regents Of The University Of Michigan | Real-time visual alert display |
US20110087084A1 (en) | 2009-10-09 | 2011-04-14 | Electronics And Telecommunications Research Institute | Face mask type vital signs measuring apparatus and vital signs management system using the same |
WO2011046908A1 (en) | 2009-10-13 | 2011-04-21 | Cardiopulmonary Corporation | Method and apparatus for displaying data from medical devices |
WO2011047211A1 (en) | 2009-10-15 | 2011-04-21 | Masimo Corporation | Pulse oximetry system with low noise cable hub |
US8430817B1 (en) | 2009-10-15 | 2013-04-30 | Masimo Corporation | System for determining confidence in respiratory rate measurements |
US10463340B2 (en) | 2009-10-15 | 2019-11-05 | Masimo Corporation | Acoustic respiratory monitoring systems and methods |
WO2011047207A2 (en) | 2009-10-15 | 2011-04-21 | Masimo Corporation | Acoustic respiratory monitoring sensor having multiple sensing elements |
US8523781B2 (en) | 2009-10-15 | 2013-09-03 | Masimo Corporation | Bidirectional physiological information display |
US8577433B2 (en) | 2009-11-18 | 2013-11-05 | Covidien Lp | Medical device alarm modeling |
DE112010004682T5 (en) | 2009-12-04 | 2013-03-28 | Masimo Corporation | Calibration for multi-level physiological monitors |
CN102792304B (en) | 2009-12-11 | 2016-03-23 | 皇家飞利浦电子股份有限公司 | For generating the figured system and method for patient's states |
US9153112B1 (en) | 2009-12-21 | 2015-10-06 | Masimo Corporation | Modular patient monitor |
US8744875B2 (en) | 2009-12-23 | 2014-06-03 | Mindray Ds Usa, Inc. | Systems and methods for synchronizing data of a patient monitor and a portable sensor module |
USD659836S1 (en) | 2009-12-29 | 2012-05-15 | Cardionet, Inc. | Portable heart monitor |
WO2011091059A1 (en) | 2010-01-19 | 2011-07-28 | Masimo Corporation | Wellness analysis system |
US8683996B2 (en) | 2010-01-22 | 2014-04-01 | Carleton Technologies, Inc. | Life support and microclimate integrated system and process |
CA2786917A1 (en) | 2010-01-27 | 2011-08-04 | Robert Miller | Risk modeling for pressure ulcer formation |
DE112011100761T5 (en) | 2010-03-01 | 2013-01-03 | Masimo Corporation | Adaptive alarm system |
WO2011112524A1 (en) | 2010-03-08 | 2011-09-15 | Masimo Corporation | Reprocessing of a physiological sensor |
US20110224556A1 (en) | 2010-03-10 | 2011-09-15 | Sotera Wireless, Inc. | Body-worn vital sign monitor |
EP2549919B1 (en) | 2010-03-21 | 2019-02-27 | Spacelabs Healthcare LLC | Multi-display bedside monitoring system |
US9173594B2 (en) | 2010-04-19 | 2015-11-03 | Sotera Wireless, Inc. | Body-worn monitor for measuring respiratory rate |
US8979765B2 (en) | 2010-04-19 | 2015-03-17 | Sotera Wireless, Inc. | Body-worn monitor for measuring respiratory rate |
US9339209B2 (en) | 2010-04-19 | 2016-05-17 | Sotera Wireless, Inc. | Body-worn monitor for measuring respiratory rate |
US8888700B2 (en) | 2010-04-19 | 2014-11-18 | Sotera Wireless, Inc. | Body-worn monitor for measuring respiratory rate |
US8747330B2 (en) | 2010-04-19 | 2014-06-10 | Sotera Wireless, Inc. | Body-worn monitor for measuring respiratory rate |
US9173593B2 (en) | 2010-04-19 | 2015-11-03 | Sotera Wireless, Inc. | Body-worn monitor for measuring respiratory rate |
JP6192032B2 (en) * | 2010-04-22 | 2017-09-06 | リーフ ヘルスケア インコーポレイテッド | A system for monitoring a patient's physiological status |
US8712494B1 (en) | 2010-05-03 | 2014-04-29 | Masimo Corporation | Reflective non-invasive sensor |
US9138180B1 (en) | 2010-05-03 | 2015-09-22 | Masimo Corporation | Sensor adapter cable |
US8666468B1 (en) | 2010-05-06 | 2014-03-04 | Masimo Corporation | Patient monitor for determining microcirculation state |
US8852994B2 (en) | 2010-05-24 | 2014-10-07 | Masimo Semiconductor, Inc. | Method of fabricating bifacial tandem solar cells |
US8428677B2 (en) | 2010-05-28 | 2013-04-23 | Covidien Lp | Retinopathy of prematurity determination and alarm system |
US8957777B2 (en) | 2010-06-30 | 2015-02-17 | Welch Allyn, Inc. | Body area network pairing improvements for clinical workflows |
US9271660B2 (en) | 2010-07-02 | 2016-03-01 | Gangming Luo | Virtual prosthetic limb system |
US8620625B2 (en) * | 2010-07-30 | 2013-12-31 | Hill-Rom Services, Inc. | Above bed sensor |
US8740792B1 (en) | 2010-07-12 | 2014-06-03 | Masimo Corporation | Patient monitor capable of accounting for environmental conditions |
US20120029300A1 (en) * | 2010-07-27 | 2012-02-02 | Carefusion 303, Inc. | System and method for reducing false alarms and false negatives based on motion and position sensing |
US8578082B2 (en) | 2010-07-29 | 2013-11-05 | Covidien LLP | Configurable patient monitoring system |
US8315812B2 (en) | 2010-08-12 | 2012-11-20 | Heartflow, Inc. | Method and system for patient-specific modeling of blood flow |
US9649054B2 (en) | 2010-08-26 | 2017-05-16 | Cercacor Laboratories, Inc. | Blood pressure measurement method |
US8455290B2 (en) | 2010-09-04 | 2013-06-04 | Masimo Semiconductor, Inc. | Method of fabricating epitaxial structures |
US9204823B2 (en) * | 2010-09-23 | 2015-12-08 | Stryker Corporation | Video monitoring system |
JP5710767B2 (en) | 2010-09-28 | 2015-04-30 | マシモ コーポレイション | Depth of consciousness monitor including oximeter |
US8723677B1 (en) | 2010-10-20 | 2014-05-13 | Masimo Corporation | Patient safety system with automatically adjusting bed |
JP2014504893A (en) * | 2010-10-28 | 2014-02-27 | エンハンスド サーフェイス ダイナミクス,インコーポレイテッド | Pressure sensor assembly and related methods for avoiding the development of pressure ulcers |
GB201018774D0 (en) | 2010-11-05 | 2010-12-22 | Learning Clinic The Ltd | A system and method for monitoring the health of a hospital patient |
US8560648B2 (en) * | 2010-11-10 | 2013-10-15 | Microsoft Corporation | Location control service |
US20120123799A1 (en) | 2010-11-15 | 2012-05-17 | Cerner Innovation, Inc. | Interactive organ diagrams |
BR112013012329B1 (en) | 2010-11-19 | 2021-05-04 | Spacelabs Healthcare, Llc | SCREEN DEVICE FOR USE IN A PATIENT MONITORING SYSTEM AND PATIENT MONITORING SYSTEM |
US8907287B2 (en) * | 2010-12-01 | 2014-12-09 | Hill-Rom Services, Inc. | Patient monitoring system |
SG10201510693UA (en) | 2010-12-28 | 2016-01-28 | Sotera Wireless Inc | Body-worn system for continous, noninvasive measurement of cardiac output, stroke volume, cardiac power, and blood pressure |
US20120209084A1 (en) | 2011-01-21 | 2012-08-16 | Masimo Corporation | Respiratory event alert system |
US9875339B2 (en) | 2011-01-27 | 2018-01-23 | Simbionix Ltd. | System and method for generating a patient-specific digital image-based model of an anatomical structure |
US9195799B2 (en) * | 2011-02-08 | 2015-11-24 | Aulisa Medtech International, Inc. | Wireless patient monitoring system |
EP3567603A1 (en) | 2011-02-13 | 2019-11-13 | Masimo Corporation | Medical risk characterization system |
US9439574B2 (en) | 2011-02-18 | 2016-09-13 | Sotera Wireless, Inc. | Modular wrist-worn processor for patient monitoring |
US9066666B2 (en) | 2011-02-25 | 2015-06-30 | Cercacor Laboratories, Inc. | Patient monitor for monitoring microcirculation |
JP5250064B2 (en) | 2011-03-03 | 2013-07-31 | 富士フイルム株式会社 | Ultrasonic diagnostic apparatus and ultrasonic image generation method |
US8830449B1 (en) | 2011-04-18 | 2014-09-09 | Cercacor Laboratories, Inc. | Blood analysis system |
WO2012145430A1 (en) | 2011-04-18 | 2012-10-26 | Cercacor Laboratories, Inc. | Pediatric monitor sensor steady game |
US9095316B2 (en) | 2011-04-20 | 2015-08-04 | Masimo Corporation | System for generating alarms based on alarm patterns |
AU2012250829A1 (en) | 2011-05-02 | 2013-12-19 | The Regents Of The University Of California | System and method for targeting heart rhythm disorders using shaped ablation |
US10354555B2 (en) | 2011-05-02 | 2019-07-16 | Simbionix Ltd. | System and method for performing a hybrid simulation of a medical procedure |
US9622692B2 (en) | 2011-05-16 | 2017-04-18 | Masimo Corporation | Personal health device |
US9532722B2 (en) | 2011-06-21 | 2017-01-03 | Masimo Corporation | Patient monitoring system |
US9986919B2 (en) | 2011-06-21 | 2018-06-05 | Masimo Corporation | Patient monitoring system |
US11439329B2 (en) | 2011-07-13 | 2022-09-13 | Masimo Corporation | Multiple measurement mode in a physiological sensor |
US20130023775A1 (en) | 2011-07-20 | 2013-01-24 | Cercacor Laboratories, Inc. | Magnetic Reusable Sensor |
US8755872B1 (en) | 2011-07-28 | 2014-06-17 | Masimo Corporation | Patient monitoring system for indicating an abnormal condition |
US20130035603A1 (en) | 2011-08-03 | 2013-02-07 | Jochen Jarausch | Troponin based rule-in and rule-out algorithm of myocardial infarction |
US20130060147A1 (en) | 2011-08-04 | 2013-03-07 | Masimo Corporation | Occlusive non-inflatable blood pressure device |
US9408573B2 (en) | 2011-08-11 | 2016-08-09 | Sotera Wireless, Inc. | Patient interface for reusable optical sensor |
US20130096405A1 (en) | 2011-08-12 | 2013-04-18 | Masimo Corporation | Fingertip pulse oximeter |
US20130046197A1 (en) | 2011-08-16 | 2013-02-21 | Daniel F. Dlugos, Jr. | Docking station for patient bedside monitoring units |
US9782077B2 (en) | 2011-08-17 | 2017-10-10 | Masimo Corporation | Modulated physiological sensor |
US20140257057A1 (en) * | 2011-09-23 | 2014-09-11 | Tomorrow Options-Microelectronics, S.A. | System And Method For Monitoring And Registering The Inclination And Direction Of An Individual |
US9943269B2 (en) | 2011-10-13 | 2018-04-17 | Masimo Corporation | System for displaying medical monitoring data |
EP2765909B1 (en) | 2011-10-13 | 2019-06-26 | Masimo Corporation | Physiological acoustic monitoring system |
WO2013056160A2 (en) | 2011-10-13 | 2013-04-18 | Masimo Corporation | Medical monitoring hub |
US20130109929A1 (en) | 2011-10-28 | 2013-05-02 | Mindray Ds Usa, Inc. | Systems and methods for patient monitors to automatically identify patients |
US9014038B2 (en) * | 2011-12-19 | 2015-04-21 | Bandwidth.Com, Inc. | Intelligent multi-streaming for enhancing or avoiding dropped and interrupted communication sessions |
US9392945B2 (en) | 2012-01-04 | 2016-07-19 | Masimo Corporation | Automated CCHD screening and detection |
EP2803057A4 (en) * | 2012-01-13 | 2015-07-08 | Enhanced Surface Dynamics Inc | System and methods for risk management analysis of a pressure sensing system |
USD679018S1 (en) | 2012-02-02 | 2013-03-26 | Cardiac Pacemakers, Inc. | Communicator |
US10149616B2 (en) | 2012-02-09 | 2018-12-11 | Masimo Corporation | Wireless patient monitoring device |
US9480435B2 (en) | 2012-02-09 | 2016-11-01 | Masimo Corporation | Configurable patient monitoring system |
US8947239B1 (en) | 2012-03-05 | 2015-02-03 | Fitbit, Inc. | Near field communication system, and method of operating same |
DK2833783T4 (en) * | 2012-04-02 | 2020-10-19 | Podimetrics Inc | METHOD AND DEVICE FOR INDICATING THE OCCURRENCE OF BEGINNING, OPEN WOUNDS AND ITS PROGRESSION |
JP6490577B2 (en) | 2012-04-17 | 2019-03-27 | マシモ・コーポレイション | How to operate a pulse oximeter device |
US20130296672A1 (en) | 2012-05-02 | 2013-11-07 | Masimo Corporation | Noninvasive physiological sensor cover |
EP2666406A3 (en) * | 2012-05-22 | 2013-12-04 | Hill-Rom Services, Inc. | Occupant egress prediction systems, methods and devices |
US20130340175A1 (en) * | 2012-06-20 | 2013-12-26 | International Business Machines Corporation | Managing mattress pressure on wounds |
WO2014015254A1 (en) | 2012-07-19 | 2014-01-23 | Sotera Wireless, Inc. | Apparatus to secure and adjust flexible conduit |
US9697928B2 (en) | 2012-08-01 | 2017-07-04 | Masimo Corporation | Automated assembly sensor cable |
USD709846S1 (en) | 2012-09-07 | 2014-07-29 | Jonathan Oswaks | Wristband with communication device enclosed therein |
US9877650B2 (en) | 2012-09-20 | 2018-01-30 | Masimo Corporation | Physiological monitor with mobile computing device connectivity |
US9749232B2 (en) | 2012-09-20 | 2017-08-29 | Masimo Corporation | Intelligent medical network edge router |
USD692145S1 (en) | 2012-09-20 | 2013-10-22 | Masimo Corporation | Medical proximity detection token |
US9955937B2 (en) | 2012-09-20 | 2018-05-01 | Masimo Corporation | Acoustic patient sensor coupler |
US9717458B2 (en) | 2012-10-20 | 2017-08-01 | Masimo Corporation | Magnetic-flap optical sensor |
US9560996B2 (en) | 2012-10-30 | 2017-02-07 | Masimo Corporation | Universal medical system |
US9787568B2 (en) | 2012-11-05 | 2017-10-10 | Cercacor Laboratories, Inc. | Physiological test credit method |
US8866620B2 (en) * | 2012-11-29 | 2014-10-21 | Centrak, Inc. | System and method for fall prevention and detection |
US20140166076A1 (en) | 2012-12-17 | 2014-06-19 | Masimo Semiconductor, Inc | Pool solar power generator |
US9965946B2 (en) | 2013-03-13 | 2018-05-08 | Masimo Corporation | Systems and methods for monitoring a patient health network |
WO2014159132A1 (en) | 2013-03-14 | 2014-10-02 | Cercacor Laboratories, Inc. | Systems and methods for testing patient monitors |
US20140275871A1 (en) | 2013-03-14 | 2014-09-18 | Cercacor Laboratories, Inc. | Wireless optical communication between noninvasive physiological sensors and patient monitors |
US9936917B2 (en) | 2013-03-14 | 2018-04-10 | Masimo Laboratories, Inc. | Patient monitor placement indicator |
US9474474B2 (en) | 2013-03-14 | 2016-10-25 | Masimo Corporation | Patient monitor as a minimally invasive glucometer |
US10456038B2 (en) | 2013-03-15 | 2019-10-29 | Cercacor Laboratories, Inc. | Cloud-based physiological monitoring system |
CN105263532A (en) | 2013-04-02 | 2016-01-20 | 索泰拉无线公司 | Devices and methods for sterilization/disinfection control of medical devices |
US20150094618A1 (en) * | 2013-10-01 | 2015-04-02 | Covidien Lp | Automated pressure ulcer prevention |
EP3054835B1 (en) | 2013-10-11 | 2021-03-31 | Masimo Corporation | System for displaying medical monitoring data |
US10832818B2 (en) | 2013-10-11 | 2020-11-10 | Masimo Corporation | Alarm notification system |
USD745167S1 (en) | 2014-05-26 | 2015-12-08 | Shenzhen Mindray Bio-Medical Electronic Co., Ltd. | Telemetry monitor |
US9844341B2 (en) | 2014-08-14 | 2017-12-19 | Zoll Medical Corporation | Patient interface for reusable optical sensor |
EP4368101A3 (en) | 2014-08-22 | 2024-05-29 | Sotera Wireless, Inc. | System for calibrating a blood pressure measurement based on vascular transit of a pulse wave |
KR102612874B1 (en) | 2015-08-31 | 2023-12-12 | 마시모 코오퍼레이션 | Wireless patient monitoring systems and methods |
-
2014
- 2014-10-10 US US14/511,974 patent/US10307111B2/en active Active
-
2019
- 2019-04-17 US US16/387,017 patent/US20190239824A1/en not_active Abandoned
-
2023
- 2023-06-27 US US18/342,286 patent/US20230329649A1/en active Pending
Cited By (134)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11219391B2 (en) | 2001-07-02 | 2022-01-11 | Masimo Corporation | Low power pulse oximeter |
US10980455B2 (en) | 2001-07-02 | 2021-04-20 | Masimo Corporation | Low power pulse oximeter |
US10959652B2 (en) | 2001-07-02 | 2021-03-30 | Masimo Corporation | Low power pulse oximeter |
US10869602B2 (en) | 2002-03-25 | 2020-12-22 | Masimo Corporation | Physiological measurement communications adapter |
US11607139B2 (en) | 2006-09-20 | 2023-03-21 | Masimo Corporation | Congenital heart disease monitor |
US10588518B2 (en) | 2006-09-20 | 2020-03-17 | Masimo Corporation | Congenital heart disease monitor |
US10912524B2 (en) | 2006-09-22 | 2021-02-09 | Masimo Corporation | Modular patient monitor |
US11317837B2 (en) | 2006-10-12 | 2022-05-03 | Masimo Corporation | System and method for monitoring the life of a physiological sensor |
US10863938B2 (en) | 2006-10-12 | 2020-12-15 | Masimo Corporation | System and method for monitoring the life of a physiological sensor |
US11857319B2 (en) | 2006-10-12 | 2024-01-02 | Masimo Corporation | System and method for monitoring the life of a physiological sensor |
US12127835B2 (en) | 2006-10-12 | 2024-10-29 | Masimo Corporation | System and method for monitoring the life of a physiological sensor |
US11229408B2 (en) | 2006-12-22 | 2022-01-25 | Masimo Corporation | Optical patient monitor |
US12089968B2 (en) | 2006-12-22 | 2024-09-17 | Masimo Corporation | Optical patient monitor |
US11660028B2 (en) | 2008-03-04 | 2023-05-30 | Masimo Corporation | Multispot monitoring for use in optical coherence tomography |
US11426105B2 (en) | 2008-03-04 | 2022-08-30 | Masimo Corporation | Flowometry in optical coherence tomography for analyte level estimation |
US11033210B2 (en) | 2008-03-04 | 2021-06-15 | Masimo Corporation | Multispot monitoring for use in optical coherence tomography |
US10702195B1 (en) | 2008-07-03 | 2020-07-07 | Masimo Corporation | Multi-stream data collection system for noninvasive measurement of blood constituents |
US11642036B2 (en) | 2008-07-03 | 2023-05-09 | Masimo Corporation | User-worn device for noninvasively measuring a physiological parameter of a user |
US11484230B2 (en) | 2008-07-03 | 2022-11-01 | Masimo Corporation | User-worn device for noninvasively measuring a physiological parameter of a user |
US10702194B1 (en) | 2008-07-03 | 2020-07-07 | Masimo Corporation | Multi-stream data collection system for noninvasive measurement of blood constituents |
US10631765B1 (en) | 2008-07-03 | 2020-04-28 | Masimo Corporation | Multi-stream data collection system for noninvasive measurement of blood constituents |
US10709366B1 (en) | 2008-07-03 | 2020-07-14 | Masimo Corporation | Multi-stream data collection system for noninvasive measurement of blood constituents |
US10624563B2 (en) | 2008-07-03 | 2020-04-21 | Masimo Corporation | Multi-stream data collection system for noninvasive measurement of blood constituents |
US11638532B2 (en) | 2008-07-03 | 2023-05-02 | Masimo Corporation | User-worn device for noninvasively measuring a physiological parameter of a user |
US12036009B1 (en) | 2008-07-03 | 2024-07-16 | Masimo Corporation | User-worn device for noninvasively measuring a physiological parameter of a user |
US10743803B2 (en) | 2008-07-03 | 2020-08-18 | Masimo Corporation | Multi-stream data collection system for noninvasive measurement of blood constituents |
US10758166B2 (en) | 2008-07-03 | 2020-09-01 | Masimo Corporation | Multi-stream data collection system for noninvasive measurement of blood constituents |
US12023139B1 (en) | 2008-07-03 | 2024-07-02 | Masimo Corporation | User-worn device for noninvasively measuring a physiological parameter of a user |
US10624564B1 (en) | 2008-07-03 | 2020-04-21 | Masimo Corporation | Multi-stream data collection system for noninvasive measurement of blood constituents |
US10945648B2 (en) | 2008-07-03 | 2021-03-16 | Masimo Corporation | User-worn device for noninvasively measuring a physiological parameter of a user |
US11642037B2 (en) | 2008-07-03 | 2023-05-09 | Masimo Corporation | User-worn device for noninvasively measuring a physiological parameter of a user |
US11647914B2 (en) | 2008-07-03 | 2023-05-16 | Masimo Corporation | User-worn device for noninvasively measuring a physiological parameter of a user |
US10617338B2 (en) | 2008-07-03 | 2020-04-14 | Masimo Corporation | Multi-stream data collection system for noninvasive measurement of blood constituents |
US10610138B2 (en) | 2008-07-03 | 2020-04-07 | Masimo Corporation | Multi-stream data collection system for noninvasive measurement of blood constituents |
US10588554B2 (en) | 2008-07-03 | 2020-03-17 | Masimo Corporation | Multi-stream data collection system for noninvasive measurement of blood constituents |
US10912501B2 (en) | 2008-07-03 | 2021-02-09 | Masimo Corporation | User-worn device for noninvasively measuring a physiological parameter of a user |
US10912502B2 (en) | 2008-07-03 | 2021-02-09 | Masimo Corporation | User-worn device for noninvasively measuring a physiological parameter of a user |
US10912500B2 (en) | 2008-07-03 | 2021-02-09 | Masimo Corporation | Multi-stream data collection system for noninvasive measurement of blood constituents |
US10588553B2 (en) | 2008-07-03 | 2020-03-17 | Masimo Corporation | Multi-stream data collection system for noninvasive measurement of blood constituents |
US10582886B2 (en) | 2008-07-03 | 2020-03-10 | Masimo Corporation | Multi-stream data collection system for noninvasive measurement of blood constituents |
US11484229B2 (en) | 2008-07-03 | 2022-11-01 | Masimo Corporation | User-worn device for noninvasively measuring a physiological parameter of a user |
US11426103B2 (en) | 2008-07-03 | 2022-08-30 | Masimo Corporation | Multi-stream data collection system for noninvasive measurement of blood constituents |
US11559275B2 (en) | 2008-12-30 | 2023-01-24 | Masimo Corporation | Acoustic sensor assembly |
US11133105B2 (en) | 2009-03-04 | 2021-09-28 | Masimo Corporation | Medical monitoring system |
US12057222B2 (en) | 2009-03-04 | 2024-08-06 | Masimo Corporation | Physiological alarm threshold determination |
US11158421B2 (en) | 2009-03-04 | 2021-10-26 | Masimo Corporation | Physiological parameter alarm delay |
US11145408B2 (en) | 2009-03-04 | 2021-10-12 | Masimo Corporation | Medical communication protocol translator |
US11114188B2 (en) | 2009-10-06 | 2021-09-07 | Cercacor Laboratories, Inc. | System for monitoring a physiological parameter of a user |
US10595747B2 (en) | 2009-10-16 | 2020-03-24 | Masimo Corporation | Respiration processor |
US11974841B2 (en) | 2009-10-16 | 2024-05-07 | Masimo Corporation | Respiration processor |
USRE49007E1 (en) | 2010-03-01 | 2022-04-05 | Masimo Corporation | Adaptive alarm system |
USRE47882E1 (en) | 2010-03-01 | 2020-03-03 | Masimo Corporation | Adaptive alarm system |
US11439329B2 (en) | 2011-07-13 | 2022-09-13 | Masimo Corporation | Multiple measurement mode in a physiological sensor |
US11176801B2 (en) | 2011-08-19 | 2021-11-16 | Masimo Corporation | Health care sanitation monitoring system |
US11816973B2 (en) | 2011-08-19 | 2023-11-14 | Masimo Corporation | Health care sanitation monitoring system |
US10925550B2 (en) | 2011-10-13 | 2021-02-23 | Masimo Corporation | Medical monitoring hub |
US11241199B2 (en) | 2011-10-13 | 2022-02-08 | Masimo Corporation | System for displaying medical monitoring data |
US12004881B2 (en) | 2012-01-04 | 2024-06-11 | Masimo Corporation | Automated condition screening and detection |
US12011300B2 (en) | 2012-01-04 | 2024-06-18 | Masimo Corporation | Automated condition screening and detection |
US11172890B2 (en) | 2012-01-04 | 2021-11-16 | Masimo Corporation | Automated condition screening and detection |
US10729384B2 (en) | 2012-01-04 | 2020-08-04 | Masimo Corporation | Automated condition screening and detection |
US11083397B2 (en) | 2012-02-09 | 2021-08-10 | Masimo Corporation | Wireless patient monitoring device |
US10531819B2 (en) | 2012-04-17 | 2020-01-14 | Masimo Corporation | Hypersaturation index |
US11071480B2 (en) | 2012-04-17 | 2021-07-27 | Masimo Corporation | Hypersaturation index |
US10674948B2 (en) | 2012-04-17 | 2020-06-09 | Mastmo Corporation | Hypersaturation index |
US10827961B1 (en) | 2012-08-29 | 2020-11-10 | Masimo Corporation | Physiological measurement calibration |
US12042285B1 (en) | 2012-08-29 | 2024-07-23 | Masimo Corporation | Physiological measurement calibration |
US11992342B2 (en) | 2013-01-02 | 2024-05-28 | Masimo Corporation | Acoustic respiratory monitoring sensor with probe-off detection |
US10672260B2 (en) | 2013-03-13 | 2020-06-02 | Masimo Corporation | Systems and methods for monitoring a patient health network |
US11645905B2 (en) | 2013-03-13 | 2023-05-09 | Masimo Corporation | Systems and methods for monitoring a patient health network |
US11504062B2 (en) | 2013-03-14 | 2022-11-22 | Masimo Corporation | Patient monitor placement indicator |
US12042300B2 (en) | 2013-03-14 | 2024-07-23 | Masimo Corporation | Patient monitor placement indicator |
US10575779B2 (en) | 2013-03-14 | 2020-03-03 | Masimo Corporation | Patient monitor placement indicator |
US11751780B2 (en) | 2013-10-07 | 2023-09-12 | Masimo Corporation | Regional oximetry sensor |
US11488711B2 (en) | 2013-10-11 | 2022-11-01 | Masimo Corporation | Alarm notification system |
US11699526B2 (en) | 2013-10-11 | 2023-07-11 | Masimo Corporation | Alarm notification system |
US10825568B2 (en) | 2013-10-11 | 2020-11-03 | Masimo Corporation | Alarm notification system |
US12009098B2 (en) | 2013-10-11 | 2024-06-11 | Masimo Corporation | Alarm notification system |
US10832818B2 (en) | 2013-10-11 | 2020-11-10 | Masimo Corporation | Alarm notification system |
US12036014B2 (en) | 2015-01-23 | 2024-07-16 | Masimo Corporation | Nasal/oral cannula system and manufacturing |
US11894640B2 (en) | 2015-02-06 | 2024-02-06 | Masimo Corporation | Pogo pin connector |
US11178776B2 (en) | 2015-02-06 | 2021-11-16 | Masimo Corporation | Fold flex circuit for LNOP |
US10784634B2 (en) | 2015-02-06 | 2020-09-22 | Masimo Corporation | Pogo pin connector |
US11437768B2 (en) | 2015-02-06 | 2022-09-06 | Masimo Corporation | Pogo pin connector |
US11903140B2 (en) | 2015-02-06 | 2024-02-13 | Masimo Corporation | Fold flex circuit for LNOP |
US10568553B2 (en) | 2015-02-06 | 2020-02-25 | Masimo Corporation | Soft boot pulse oximetry sensor |
US11602289B2 (en) | 2015-02-06 | 2023-03-14 | Masimo Corporation | Soft boot pulse oximetry sensor |
US12127834B2 (en) | 2015-02-06 | 2024-10-29 | Masimo Corporation | Soft boot pulse oximetry sensor |
US12015226B2 (en) | 2015-02-06 | 2024-06-18 | Masimo Corporation | Pogo pin connector |
US11089963B2 (en) | 2015-08-31 | 2021-08-17 | Masimo Corporation | Systems and methods for patient fall detection |
US10736518B2 (en) | 2015-08-31 | 2020-08-11 | Masimo Corporation | Systems and methods to monitor repositioning of a patient |
US11679579B2 (en) | 2015-12-17 | 2023-06-20 | Masimo Corporation | Varnish-coated release liner |
US11191484B2 (en) | 2016-04-29 | 2021-12-07 | Masimo Corporation | Optical sensor tape |
US12004877B2 (en) | 2016-04-29 | 2024-06-11 | Masimo Corporation | Optical sensor tape |
US11076777B2 (en) | 2016-10-13 | 2021-08-03 | Masimo Corporation | Systems and methods for monitoring orientation to reduce pressure ulcer formation |
US11291061B2 (en) | 2017-01-18 | 2022-03-29 | Masimo Corporation | Patient-worn wireless physiological sensor with pairing functionality |
US11825536B2 (en) | 2017-01-18 | 2023-11-21 | Masimo Corporation | Patient-worn wireless physiological sensor with pairing functionality |
US11417426B2 (en) | 2017-02-24 | 2022-08-16 | Masimo Corporation | System for displaying medical monitoring data |
US11096631B2 (en) | 2017-02-24 | 2021-08-24 | Masimo Corporation | Modular multi-parameter patient monitoring device |
US11969269B2 (en) | 2017-02-24 | 2024-04-30 | Masimo Corporation | Modular multi-parameter patient monitoring device |
US11596365B2 (en) | 2017-02-24 | 2023-03-07 | Masimo Corporation | Modular multi-parameter patient monitoring device |
US10667762B2 (en) | 2017-02-24 | 2020-06-02 | Masimo Corporation | Modular multi-parameter patient monitoring device |
US11901070B2 (en) | 2017-02-24 | 2024-02-13 | Masimo Corporation | System for displaying medical monitoring data |
US11705666B2 (en) | 2017-08-15 | 2023-07-18 | Masimo Corporation | Water resistant connector for noninvasive patient monitor |
US11095068B2 (en) | 2017-08-15 | 2021-08-17 | Masimo Corporation | Water resistant connector for noninvasive patient monitor |
USD890708S1 (en) | 2017-08-15 | 2020-07-21 | Masimo Corporation | Connector |
USD906970S1 (en) | 2017-08-15 | 2021-01-05 | Masimo Corporation | Connector |
US10637181B2 (en) | 2017-08-15 | 2020-04-28 | Masimo Corporation | Water resistant connector for noninvasive patient monitor |
US11109818B2 (en) | 2018-04-19 | 2021-09-07 | Masimo Corporation | Mobile patient alarm display |
US11844634B2 (en) | 2018-04-19 | 2023-12-19 | Masimo Corporation | Mobile patient alarm display |
US10667764B2 (en) | 2018-04-19 | 2020-06-02 | Masimo Corporation | Mobile patient alarm display |
US10939878B2 (en) | 2018-06-06 | 2021-03-09 | Masimo Corporation | Opioid overdose monitoring |
US10932729B2 (en) | 2018-06-06 | 2021-03-02 | Masimo Corporation | Opioid overdose monitoring |
US12097043B2 (en) | 2018-06-06 | 2024-09-24 | Masimo Corporation | Locating a locally stored medication |
US11627919B2 (en) | 2018-06-06 | 2023-04-18 | Masimo Corporation | Opioid overdose monitoring |
US11564642B2 (en) | 2018-06-06 | 2023-01-31 | Masimo Corporation | Opioid overdose monitoring |
US11812229B2 (en) | 2018-07-10 | 2023-11-07 | Masimo Corporation | Patient monitor alarm speaker analyzer |
US11082786B2 (en) | 2018-07-10 | 2021-08-03 | Masimo Corporation | Patient monitor alarm speaker analyzer |
US10779098B2 (en) | 2018-07-10 | 2020-09-15 | Masimo Corporation | Patient monitor alarm speaker analyzer |
US11872156B2 (en) | 2018-08-22 | 2024-01-16 | Masimo Corporation | Core body temperature measurement |
US11445948B2 (en) | 2018-10-11 | 2022-09-20 | Masimo Corporation | Patient connector assembly with vertical detents |
US11389093B2 (en) | 2018-10-11 | 2022-07-19 | Masimo Corporation | Low noise oximetry cable |
US12053280B2 (en) | 2018-10-11 | 2024-08-06 | Masimo Corporation | Low noise oximetry cable |
US11464410B2 (en) | 2018-10-12 | 2022-10-11 | Masimo Corporation | Medical systems and methods |
US12042245B2 (en) | 2018-10-12 | 2024-07-23 | Masimo Corporation | Medical systems and methods |
US11272839B2 (en) | 2018-10-12 | 2022-03-15 | Ma Simo Corporation | System for transmission of sensor data using dual communication protocol |
US12004869B2 (en) | 2018-11-05 | 2024-06-11 | Masimo Corporation | System to monitor and manage patient hydration via plethysmograph variablity index in response to the passive leg raising |
US11986289B2 (en) | 2018-11-27 | 2024-05-21 | Willow Laboratories, Inc. | Assembly for medical monitoring device with multiple physiological sensors |
US11241181B2 (en) * | 2019-09-04 | 2022-02-08 | Bittium Biosignals Oy | Bio-signal measurement apparatus, docking apparatus and methods of their coupling |
EP4125589A4 (en) * | 2020-03-25 | 2024-05-15 | Vlepis Solutions Pty Ltd | Devices, systems and methods for monitoring physiological characteristics of a patient |
US20220199247A1 (en) * | 2020-12-21 | 2022-06-23 | Sheikh K. Jasimuddin | Telemedicine stethoscope device |
US12133717B2 (en) | 2021-07-05 | 2024-11-05 | Masimo Corporation | Systems and methods for patient fall detection |
US12142136B2 (en) | 2023-04-04 | 2024-11-12 | Masimo Corporation | Systems and methods for monitoring a patient health network |
US12142875B2 (en) | 2023-07-11 | 2024-11-12 | Masimo Corporation | Water resistant connector for noninvasive patient monitor |
Also Published As
Publication number | Publication date |
---|---|
US20150112151A1 (en) | 2015-04-23 |
US10307111B2 (en) | 2019-06-04 |
US20230329649A1 (en) | 2023-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230329649A1 (en) | Patient position detection system | |
US12109022B2 (en) | Wireless patient monitoring device | |
US11963736B2 (en) | Wireless patient monitoring system | |
US20110040197A1 (en) | Wireless patient monitoring system | |
US20190183422A1 (en) | Body-worn vital sign monitor | |
US8527038B2 (en) | Body-worn vital sign monitor | |
US8321004B2 (en) | Body-worn vital sign monitor | |
US7761261B2 (en) | Portable wireless gateway for remote medical examination | |
US20110066051A1 (en) | Body-worn vital sign monitor | |
US20120165688A1 (en) | Wireless optical pulsimetry system for a healthcare environment | |
US20150065832A1 (en) | System and methods of identifying and alerting a user of a health event | |
Navaneethan et al. | Healthcare Measurement of ECG and Body Temperature Signals Using Android Mobile |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MASIMO CORPORATION, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MUHSIN, BILAL;HOUSEL, PETER SCOTT;GHOREYSHI, ATIYEH;AND OTHERS;SIGNING DATES FROM 20150216 TO 20180621;REEL/FRAME:049203/0038 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STCV | Information on status: appeal procedure |
Free format text: NOTICE OF APPEAL FILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |