US20140104413A1 - Integrated dimensioning and weighing system - Google Patents
Integrated dimensioning and weighing system Download PDFInfo
- Publication number
- US20140104413A1 US20140104413A1 US13/784,933 US201313784933A US2014104413A1 US 20140104413 A1 US20140104413 A1 US 20140104413A1 US 201313784933 A US201313784933 A US 201313784933A US 2014104413 A1 US2014104413 A1 US 2014104413A1
- Authority
- US
- United States
- Prior art keywords
- image
- computing device
- analysis system
- range
- dimensions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01G—WEIGHING
- G01G19/00—Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
- G01G19/002—Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for postal parcels and letters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01G—WEIGHING
- G01G19/00—Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
- G01G19/40—Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups with provisions for indicating, recording, or computing price or other quantities dependent on the weight
- G01G19/413—Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups with provisions for indicating, recording, or computing price or other quantities dependent on the weight using electromechanical or electronic computing means
- G01G19/414—Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups with provisions for indicating, recording, or computing price or other quantities dependent on the weight using electromechanical or electronic computing means using electronic computing means only
- G01G19/4148—Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups with provisions for indicating, recording, or computing price or other quantities dependent on the weight using electromechanical or electronic computing means using electronic computing means only for controlling postal rate in articles to be mailed
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/02—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/02—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
- G01B11/022—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by means of tv-camera scanning
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
- G01B11/25—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
- G01B11/2513—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object with several lines being projected in more than one direction, e.g. grids, patterns
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/08—Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
- G06Q10/083—Shipping
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/04—Billing or invoicing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/18—Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07B—TICKET-ISSUING APPARATUS; FARE-REGISTERING APPARATUS; FRANKING APPARATUS
- G07B17/00—Franking apparatus
- G07B17/00459—Details relating to mailpieces in a franking system
- G07B17/00661—Sensing or measuring mailpieces
- G07B2017/00685—Measuring the dimensions of mailpieces
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07B—TICKET-ISSUING APPARATUS; FARE-REGISTERING APPARATUS; FRANKING APPARATUS
- G07B17/00—Franking apparatus
- G07B17/00459—Details relating to mailpieces in a franking system
- G07B17/00661—Sensing or measuring mailpieces
- G07B2017/00701—Measuring the weight of mailpieces
Definitions
- the present invention relates to the field of devices for weighing and dimensioning packages, more specifically, to an integrated dimensioning and weighing system for packages.
- Shipping companies typically charge customers for their services based on package size (i.e., volumetric weight) and/or weight (i.e., dead weight).
- package size i.e., volumetric weight
- weight i.e., dead weight
- a customer When printing a shipping label for a package to be shipped, a customer enters both the size and weight of the package into a software application that bills the customer based on the information.
- customers get this information by hand-measuring package's dimensions (e.g., with a tape measure) and may weigh the package on a scale. In some cases, customers simply guess the weight of the package. Both guessing of the weight and hand-measurement of dimensions are prone to error, particularly when packages have irregular shape.
- an additional bill may be issued to the customer. Additional bills may reduce customer satisfaction, and, if the shipping customer is a retail company who has already passed along the shipping cost to an end customer, decrease the customer's earnings.
- shipping companies may also collect the package's origin, destination, and linear dimensions from a customer to determine the correct charges for shipping a package. Manual entry of this information by a customer or the shipping company is also error prone.
- the present invention embraces an object analysis system.
- the system includes a scale for measuring the weight of the object, a range camera configured to produce a range image of an area in which the object is located, and a computing device configured to determine the dimensions of the object based, at least in part, on the range image.
- the range camera is configured to produce a visible image of the scale's measured weight of the object and the computing device is configured to determine the weight of the object based, at least in part, on the visible image.
- the scale may be an analog scale having a gauge and the visible image produced by the range camera includes the scale's gauge.
- the scale may be a digital scale having a display and the visible image produced by the range camera includes the scale's display.
- the computing device is configured to execute shipment billing software.
- the object analysis system transmits the weight of the object and determined dimensions to a host platform configured to execute shipment billing software.
- the object analysis system includes a microphone for capturing audio from a user and the computing device is configured for converting the captured audio to text.
- the range camera is configured to project a visible laser pattern onto the object and produce a visible image of the object and the computing device is configured to determine the dimensions of the object based, at least in part, on the visible image of the object.
- the scale and the range camera are fixed in position and orientation relative to each other and the computing device is configured to determine the dimensions of the object based, at least in part, on ground plane data of the area in which the object is located.
- the ground plane data may be generated by capturing an initial range image and identifying a planar region in the initial range image that corresponds to a ground plane.
- the present invention embraces a method for determining the dimensions of an object that includes capturing a range image of a scene that includes the object and determining the dimensions of the object based, at least in part, on the range image and ground plane data of the area in which the object is located.
- the range camera's field of view is narrower than the visible camera's field of view and the display is configured to present the visible image produced by the visible camera and an outlined shape on the displayed visible image corresponding to the range camera's field of view.
- the display is configured to present the visible image produced by the visible camera and a symbol on the displayed visible image corresponding to the optical center of the range camera's field of view.
- the present invention embraces a method for determining the dimensions of an object that includes projecting a laser pattern (e.g., a visible laser pattern) onto the object, capturing an image of the projected pattern on the object, and determining the dimensions of the objection based, at least in part, on the captured image.
- a laser pattern e.g., a visible laser pattern
- FIG. 1 illustrates an object analysis system in accordance with one or more exemplary embodiments.
- FIG. 2 illustrates a system for determining dimensions associated with an object in accordance with one or more embodiments of the present disclosure.
- FIG. 3 illustrates a method for determining dimensions associated with an object in accordance with one or more embodiments of the present disclosure.
- FIG. 4 is a schematic physical form view of one embodiment of a terminal in accordance with aspects of the present invention.
- FIG. 5 is a block diagram of the terminal of FIG. 4 .
- FIG. 6 is a diagrammatic illustration of one embodiment of an imaging subsystem for use in the terminal of FIG. 4 .
- FIG. 7 is a flowchart illustrating one embodiment of a method for measuring at least one dimension of an object using the terminal of FIG. 4 .
- FIG. 8 is an illustration of a first image of the object obtained using the fixed imaging subsystem of FIG. 6 .
- FIG. 9 is a view of the terminal of FIG. 4 illustrating on the display the object disposed in the center of the display for use in obtaining the first image of FIG. 8 .
- FIG. 10 is a second aligned image of the object obtained using the movable imaging subsystem of FIG. 6 .
- FIG. 11 is a diagrammatic illustration of the geometry between an object and the image of the object on an image sensor array.
- FIG. 12 is a diagrammatic illustration of another embodiment of an imaging subsystem for use in the terminal of FIG. 4 , which terminal may include an aimer.
- FIG. 13 is a diagrammatic illustration of another embodiment of a single movable imaging subsystem and actuator for use in the terminal of FIG. 4 .
- FIG. 14 is an elevational side view of one implementation of an imaging subsystem and actuator for use in the terminal of FIG. 4 .
- FIG. 15 is a top view of the imaging subsystem and actuator of FIG. 14 .
- FIG. 16 is a timing diagram illustrating one embodiment for use in determining one or more dimensions and for decoding a decodable performed by the indicia reading terminal of FIG. 4 .
- FIG. 17 depicts the near field relationship between a laser pattern and a camera system's field of view as employed in an exemplary method.
- FIG. 18 depicts the far field relationship between a laser pattern and a camera system's field of view as employed in an exemplary method.
- FIG. 19 depicts an exemplary arrangement of a standard rectilinear box-shaped object on a flat surface upon which a laser pattern has been projected in accordance with an exemplary method.
- FIG. 20 schematically depicts a relationship between the width of a laser line and the size of the field of view of a small number of pixels within a camera system.
- the present invention embraces a system that accurately collects a package's size, weight, linear dimensions, origin, and destination and that may be integrated with billing systems to reduce errors in transcribing that data.
- FIG. 1 illustrates an exemplary object analysis system 11 .
- the system 11 includes a scale 12 , a range camera 102 , a computing device 104 , and a microphone 18 .
- the scale 12 measures the weight of the object 112
- the range camera 102 is configured to produce a range image of an area 110 in which the object is located
- the computing device 104 is configured to determine the dimensions of the object 112 based, at least in part, on the range image.
- the scale 12 measures the weight of the object 112 .
- Exemplary scales 12 include analog scales having gauges or and digital scales having displays.
- the scale 12 of FIG. 1 includes a window 13 for showing the measured weight of the object 112 .
- the window 13 may be a gauge or display depending on the type of scale 12 .
- the scale 12 also includes top surface markings 14 to guide a user to place the object in a preferred orientation for analysis by the system. For example, a particular orientation may improve the range image and/or visible image produced by range camera 102 . Additionally, the scale may include top surface markings 16 to facilitate the computing device's estimation of a reference plane during the process of determining the dimensions of the object 112 .
- the scale 12 transmits the measured weight of the object 112 to the computing device 104 and/or a host platform 17 .
- the scale 12 may transmit this information via a wireless connection and/or a wired connection (e.g., a USB connection, such as a USB 1.0, 2.0, and/or 3.0).
- the object analysis system 11 includes a range camera 102 that is configured to produce a range image of an area 110 in which the object 112 is located.
- the range camera 102 is also configured to produce a visible image of the scale's measured weight of the object 112 (e.g., a visible image that includes window 13 ).
- the range camera 102 may be separate from the computing device 104 , or the range camera 102 and the computing device 104 may be part of the same device.
- the range camera 102 is typically communicatively connected to the computing device 104 .
- the depicted object analysis system 11 includes a microphone 18 .
- the microphone 18 may be separate from the range camera 102 , or the microphone 18 and the range camera 102 may be part of the same device.
- the microphone 18 may be separate from the computing device 104 , or the microphone 18 and the computing device 104 may be part of the same device.
- the microphone 18 captures audio from a user of the object analysis system 11 , which may then be converted to text (e.g., ASCII text).
- text e.g., ASCII text
- the text may be presented to the user via a user-interface for validation or correction (e.g., by displaying the text on a monitor or by having a computerized reader speak the words back to the user).
- the text is typically used as an input for software (e.g., billing software and/or dimensioning software).
- the text i.e., as generated by converting audio from the user
- exemplary object analysis systems reduce the need for error-prone manual entry of data.
- the text may be used as a command to direct software (e.g., billing software and/or dimensioning software).
- direct software e.g., billing software and/or dimensioning software.
- a user interface may indicate a numbering for each object and ask the user which package should be dimensioned. The user could then give a verbal command by saying a number, and the audio as captured by the microphone 18 can be converted into text which commands the dimensioning software.
- the user could give verbal commands to describe the general class of the object (e.g., “measure a box”) or to indicate the type of information being provided (e.g., a command of “destination address” to indicate that an address will be provided next).
- the computing device 104 may be configured for converting the audio captured by the microphone 18 to text. Additionally, the computing device 104 may be configured to transmit the captured audio (e.g., as a file or a live stream) to a speech-to-text module and receive the text. The captured audio may be transcoded as necessary by the computing device 104 .
- the computing device 104 may or may not include the speech-to-text module. For example, the computing device 104 may transmit (e.g., via a network connection) the captured audio to an external speech-to-text service provider (e.g., Google's cloud-based speech-to-text service).
- the speech-to-text module transmits the text and a confidence measure of each converted phrase.
- the computing device 104 may be configured to enter the text into shipment billing software (e.g., by transmitting the text to a host platform 17 configured to execute shipment billing software).
- the object analysis system 11 includes a computing device 104 .
- the computing device 104 depicted in FIG. 1 includes a processor 106 and a memory 108 . Additional aspects of processor 106 and memory 108 are discussed with respect to FIG. 2 .
- Memory 108 can store executable instructions, such as, for example, computer readable instructions (e.g., software), that can be executed by processor 106 . Although not illustrated in FIG. 1 , memory 108 can be coupled to processor 106 .
- the computing device 104 is configured to determine the dimensions of an object 112 based, at least in part, on a range image produced by range camera 102 . Exemplary methods of determining the dimensions of an object 112 are discussed with respect to FIGS. 2-16 .
- the computing device 104 may also be configured to determine the weight of an object 112 based, at least in part, on a visible image produced by range camera 102 . For example, the computing device 104 may execute software that processes the visible image to read the weight measured by the scale 12 .
- the computing device 104 may be configured to calculate the density of the object 112 based on its determined dimensions and weight. Furthermore, the computing device 104 may be configured to compare the calculated density to a realistic density threshold (e.g., as preprogrammed data or tables). If the calculated density exceeds a given realistic density threshold, the computing device 104 may: re-determine the dimensions of the object 112 based on the range image; instruct the range camera 102 to produce a new range image; instruct the range camera 102 to produce a new visible image and/or instruct the scale 12 to re-measure the object 112 .
- a realistic density threshold e.g., as preprogrammed data or tables
- the computing device 104 may also be configured to compare the determined dimensions of the object 112 with the dimensions of the scale 12 .
- the scale's dimensions may be known (e.g., as preprogrammed data or tables), and the computing device 104 may be configured to determine the dimensions of the object based on the range image and the known dimensions of the scale 12 . Again, if the determined dimensions exceed a given threshold of comparison, the computing device 104 may: re-determine the dimensions of the object 112 based on the range image; instruct the range camera 102 to produce a new range image; instruct the range camera 102 to produce a new visible image and/or instruct the scale 12 to re-measure the object 112 .
- the computing device 104 may be configured to execute shipment billing software. In such embodiments, the computing device 104 may be a part of the same device as the host platform 17 , or the object analysis system 11 may not include a host platform 17 .
- the object analysis system 11 may transmit (e.g., via a wireless connection and/or a wired connection, such as a USB connection) the weight of the object 112 and determined dimensions to a host platform 17 configured to execute shipment billing software.
- the computing device 104 may transmit the weight of the object 112 and determined dimensions to the host platform 17 .
- the range camera 102 is configured to project a laser pattern (e.g., a visible laser pattern) onto the object 112 and produce a visible image of the object 112
- the computing device 104 is configured to determine the dimensions of the object 112 based, at least in part, on the visible image of the object 112 .
- the projection of the laser pattern on the object 112 provides additional information or an alternative or supplemental method for determining the dimensions of the object 112 .
- the laser pattern will facilitate user-placement of the object with respect to the range camera.
- An exemplary object analysis system 11 includes a scale 12 and a range camera 102 that are fixed in position and orientation relative to each other.
- the computing device 104 of such an exemplary object analysis system 11 may be configured to determine the dimensions of the object 112 based, at least in part, on ground plane data of the area 110 in which the object is located.
- the ground plane data may include data generated by capturing an initial range image and identifying a planar region in the initial range image that corresponds to a ground plane.
- the ground plane data may be stored on the computing device 104 during manufacturing after calibrating the object analysis system 11 .
- the ground plane data may also be updated by the computing device 104 after installation of the object analysis system 11 or periodically during use by capturing an initial range image and identifying a planar region in the initial range image that corresponds to a ground plane.
- the computing device 104 may be configured to verify the validity of the ground plane data by identifying a planar region in the range image produced by the range camera 102 that corresponds to a ground plane. If the ground plane data does not correspond to the identified planar region in the range image, the computing device 104 may update the ground plane data.
- the computing device 104 may be configured to control the object analysis system in accordance with multiple modes. While in a detection mode, the computing device 104 may be configured to evaluate image viability and/or quality (e.g., of an infra-red image or visible image) in response to movement or the placement of an object in the range camera's field of view. Based on the evaluation of the image viability and/or quality, the computing device 104 may be configured to place the object analysis system in another mode, such as an image capture mode for capturing an image using the range camera 102 or an adjust mode for adjusting the position of the range camera 102 .
- image viability and/or quality e.g., of an infra-red image or visible image
- the object analysis system may include positioning devices, (e.g., servo motors, tilt motors, and/or three-axis accelerometers) to change the position of the range camera relative to the object.
- the computing device 104 may be configured to control and receive signals from the positioning devices. After evaluating image viability and/or quality, the computing device may place the object analysis system in an adjust mode.
- the computing device may be configured to have two adjust modes, semiautomatic and automatic. In semiautomatic adjust mode, the computing device may be configured to provide visual or audio feedback to an operator that then moves the range camera (e.g., adjusts the camera's tilt angle and/or height). In automatic mode, the computing device may be configured to control and receive signals from the positioning devices to adjust the position of the range camera. By adjusting the position of the range camera, the object analysis system can achieve higher dimensioning accuracy.
- the present invention embraces a method for determining the dimensions of an object.
- the method includes capturing an image of a scene that includes the object and determining the dimensions of the object based, at least in part, on the range image and ground plane data of the area in which the object is located.
- the ground plane data may include data generated by capturing an initial range image and identifying a planar region in the initial range image that corresponds to a ground plane.
- the method may also include verifying the validity of the ground plane data by identifying a planar region in the range image that corresponds to a ground plane.
- This exemplary method for determining the dimensions of an object is typically used in conjunction with a range camera on a fixed mount at a given distance and orientation with respect to the area in which the object is placed for dimensioning.
- utilizing the ground plane data rather than identifying the ground plane for each implementation of the method, can reduce the time and resources required to determine the dimensions of the object.
- the present invention embraces another method for determining the dimensions of an object.
- the method includes projecting a laser pattern (e.g., a visible laser pattern) onto an object, capturing an image of the projected pattern on the object, and determining the dimensions of the object based, at least in part, on the captured image.
- a laser pattern e.g., a visible laser pattern
- the object has a rectangular box shape.
- An exemplary method includes projecting a laser pattern (e.g., a grid or a set of lines) onto a rectangular box.
- the box is positioned such that two non-parallel faces are visible to the system or device projecting the laser pattern and a camera system with known field of view characteristics.
- the camera system is used to capture an image of the laser light reflecting off of the box.
- image analysis techniques e.g., imaging software
- the edges of the box are determined.
- the relative size and orientation of the faces is determined by comparing the distance between lines of the laser pattern in the captured image to the known distance between the lines of the laser pattern as projected while considering the characteristics of the camera system's field of view, such as size, aspect ratio, distortion, and/or angular magnification.
- the distance from the camera system to the box may also be desired and may be used to determine the dimensions of the box.
- the distance between the camera system and the box can be determined using a variety of methods. For example, the distance from the camera system to the box may be determined from the laser pattern and the camera system's field of view. Additionally, sonar ranging techniques or considering the light time of flight may facilitate determination of this distance.
- Another exemplary method includes projecting a laser pattern including two horizontal, parallel lines and two vertical, parallel lines. The distance between each set of parallel lines is constant.
- the laser pattern is collimated, producing a constant-size square or rectangle in the center of the laser pattern as it propagates away from the device that generated the laser pattern.
- FIGS. 17 and 18 An exemplary laser pattern including two horizontal, parallel lines and two vertical, parallel lines is depicted in FIGS. 17 and 18 .
- the exemplary laser pattern is aligned to the field of view of the camera system, and the relationship between the laser pattern and the field of view are determined. This relationship may be determined by a precision alignment of the laser pattern to a known fixture pattern and/or a software calibration process may process two or more images from the camera system.
- FIG. 17 depicts the approximated relationship between the laser pattern and the camera's near-field field of view
- FIG. 18 depicts the approximated relationship between the laser pattern and the camera's far-field field of view.
- the exemplary method typically includes projecting the laser pattern onto two faces of a standard rectilinear box-shaped object such that the two horizontal laser lines are parallel to and on opposite side of the edge connecting the two faces (i.e., one horizontal laser line above the edge and the other horizontal line below the edge). Additionally, the laser pattern is typically projected such that the laser pattern fully traverses the visible faces of the object.
- FIG. 19 depicts an exemplary arrangement of a standard rectilinear box-shaped object 5001 upon which a laser pattern 5002 has been projected.
- the two horizontal laser lines are parallel to and on opposite sides of the edge connecting the two faces.
- the laser pattern 5002 fully traverse the visible faces of the object 5001 . Accordingly, a number of break points, typically ten break points, are formed in the projected laser pattern 5002 . These break points are identified in FIG. 19 by open circles.
- the exemplary method includes capturing an image of the projected laser pattern on the object (e.g., with a camera system).
- the dimensions of the object are then determined, at least in part, from the captured image.
- a processor may be used to process the image to identify the break points in the projected laser pattern.
- the break points may be translated into coordinates in a three-dimensional space.
- any two break points which are connected by a laser line segment can be used to calculate a dimension of the object.
- the method includes determining the coordinates of the break points in a three-dimensional space based on the known size of the central rectangle (e.g., a square).
- the known size of the rectangle is used as a ruler or measuring stick in the image to determine the dimensions of the object.
- Exemplary methods include projecting a laser pattern including laser lines having a profile with a small divergence angle.
- the divergence angle is typically between about 1 and 30 milliradians (e.g., between about 2 and 20 milliradians). In an exemplary embodiment, the divergence angle is between about 3 and 10 milliradians (e.g., about 6 milliradians).
- the laser lines' divergence angle corresponds to the divergence of a small number of pixels (e.g., between about 2 and 10 pixels) within the camera system used to capture an image.
- a small number of pixels e.g., between about 2 and 10 pixels
- the width of the laser lines increases at a similar rate. Accordingly, the width of the laser lines covers approximately the same number of pixels, although not necessarily the same set of pixels, regardless of the projected laser pattern's distance from the camera system.
- the laser pattern includes laser lines having a profile with a divergence angle such that the width of the laser line in the far field corresponds to the field of view of a small number of pixels in the far field.
- the divergence angle of the laser lines does not necessarily match the field of view of the small number of pixels in the near field.
- FIG. 20 schematically depicts such a relationship between the laser lines' width and the field of view of a small number of pixels within a camera system.
- the depicted device 6000 includes the camera system and a laser projecting module.
- Exemplary methods utilizing a laser pattern that includes laser lines having a profile with a small divergence angle prevents the loss of resolution in the far field.
- projected laser lines are conventionally collimated, the laser lines appear increasingly thinner on a target object as the distance between the laser projection module and the target object increases. If the reflected light from a projected laser line falls on an area of the camera system's sensor that is approximately one pixel wide or smaller, the precision of the dimensioning method can be no greater than one pixel.
- projected laser lines have a profile with a small divergence angle, the projected line has an energy distribution encompassing multiple pixels facilitating a more precise determination of the center of the projected line. Accordingly, methods employing projected laser lines having a profile with a small divergence angle facilitate measurements that exceed the resolution of the camera pixel sampling.
- the present invention embraces a terminal for measuring at least one dimension of an object.
- the terminal includes a range camera, a visible camera (e.g., a grayscale and/or RGB sensor), and a display that are fixed in position and orientation relative to each other.
- the range camera is configured to produce a range image of an area in which an object is located
- the visible camera is configured to produce a visible image of an area in which the object is located.
- the display is configured to present information associated with the range camera's field of view and the visible camera's field of view.
- the range camera's field of view is narrower than the visible camera's field of view.
- the display is configured to present the visible image produced by the visible camera and an outlined shape on the displayed visible image corresponding to the range camera's field of view (e.g., a rectangle).
- the outlined shape shows the user of the terminal when the object to be dimensioned is within the range camera's field of view.
- the interior of the outlined shape typically corresponds to the intersection or overlap between the visible image and the range image.
- the display is configured to present information associated with the optimal orientation of the range camera and visible camera with respect to the object. Such information further facilitates accurate dimensioning by encouraging the user to adjust the orientation of the terminal to an orientation that accelerates or improves the dimensioning process.
- the display may be configured to present the visible image produced by the visible camera and a symbol on the displayed visible image corresponding to the optical center of the range camera's field of view. Again, presenting such a symbol on the display facilitates accurate dimensioning by encouraging the user to adjust the orientation of the terminal to an orientation that accelerates or improves the dimensioning process.
- the symbol shown by the display is a crosshair target having three prongs.
- the display may be configured to show the three prongs of the crosshairs on the displayed visible image in an orientation that corresponds to the optimal orientation of the range camera and visible camera with respect to a corner of the rectangular box.
- the display may be configured to show the visible image produced by the visible camera and a line on the displayed visible image in an orientation that corresponds to the optimal orientation of the range camera and visible camera with respect to the medial axis of the object.
- the display may also be configured to show the visible image produced by the visible camera and an ellipse on the displayed visible image in an orientation that corresponds to the optimal orientation of the range camera and visible camera with respect to the base of the object.
- the configuration of the terminal's display presents information associated with the range camera's field of view and the visible camera's field of view.
- the information helps the user determine the three degrees of freedom and/or the three degrees of freedom for translation of the camera relative to the object that will ensure or at least facilitate an accurate measurement of the object.
- the terminal may include a processor that is configured to automatically initiate a dimensioning method when the orientation of the terminal with respect to an object corresponds to an orientation that accelerates or improves the dimensioning process. Automatically initiating the dimensioning method in this manner prevents any undesirable motion of the terminal that may be induced when an operator presses a button or other input device on the terminal. Additionally, automatically initiating the dimensioning method typically improves the accuracy of the dimensioning method.
- the terminal's display may be configured to present information associated with the optimal orientation of the range camera and visible camera with respect to the object.
- the terminal's processor may be configured to analyze the output of the display (i.e., the visible image and the information associated with the optimal orientation) and initiate the dimensioning method (e.g., including capturing a range image) when the orientation information and the visible image align.
- the terminal's processor may be configured to analyze the output of the display using imaged-based edge detection methods (e.g., a Canny edge detector).
- the processor may be configured to analyze the output of the display using edge detection methods and, when the combined edge strengths of the three prongs and three of the object's edges (i.e., at a corner) exceed a threshold, the processor automatically initiates a dimensioning method. In other words, when the three prongs align with the object's edges, the processor automatically initiates a dimensioning method.
- the edge detection methods are only applied in the central part of the display's output image (i.e., near the displayed orientation information) to reduce the amount of computation.
- the display is configured to present information associated with the optimal distance of the terminal from the object. Such information further facilitates accurate dimensioning by encouraging the user to position the terminal at a distance from the object that accelerates or improves the dimensioning process.
- the range camera of the terminal typically has a shorter depth of view than does the visible camera. Additionally, when objects are very close to the terminal the range camera typically does not work as accurately, but the visible camera functions normally. Thus, when viewing the visible image produced by the visible camera on the display, objects outside of the range camera's optimal range (i.e., either too close or too far from the terminal to accurately determine the object's dimensions) appear normal.
- the display may be configured to present the visible image produced by the visible camera modified such that portions of the visible image corresponding to portions of the range image with high values (e.g., distances beyond the range camera's optimal range) are degraded (e.g., a percentage of the pixels corresponding to the range image's high values are converted to a different color, such as white or grey).
- the amount of degradation e.g., the percentage of pixels converted
- the amount of degradation typically corresponds to the range image's value beyond the upper end of the range camera's optimal range.
- the amount of degradation occurs such that the clarity of objects in the displayed visible image corresponds to the range camera's ability to determine the object's dimensions.
- the amount of degradation may begin at a certain low level corresponding to a threshold distance from the terminal, increase linearly up to a maximum distance after which the degradation is such that the visible image is no longer displayed (e.g., only grey or white is depicted).
- the display may be configured to present the visible image produced by the visible camera modified such that portions of the visible image corresponding to portions of the range image with low values (e.g., distances less than the range camera's optimal range) are degraded (e.g., a percentage of the pixels corresponding to the range image's high values are converted to a different color, such as black or grey).
- the amount of degradation e.g., the percentage of pixels converted
- the degradation is complete (i.e., only black or grey) if the range image's value is less than the lower end of the range camera's optimal range. Additional aspects of an exemplary terminal and dimensioning method are described herein with respect to FIGS. 4-16 .
- one or more embodiments include a range camera configured to produce a range image of an area in which the object is located, and a computing device configured to determine the dimensions of the object based, at least in part, on the range image.
- One or more embodiments of the present disclosure can increase the automation involved in determining the dimensions associated with (e.g., of) an object (e.g., a box or package to be shipped by a shipping company). For example, one or more embodiments of the present disclosure may not involve an employee of the shipping company physically contacting the object during measurement (e.g., may not involve the employee manually measuring the object and/or manually entering the measurements into a computing system) to determine its dimensions. Accordingly, one or more embodiments of the present disclosure can decrease and/or eliminate the involvement of an employee of the shipping company in determining the dimensions of the object.
- FIGS. 2 and 3 that form a part hereof.
- the drawings show by way of illustration how one or more embodiments of the disclosure may be practiced. These embodiments are described in sufficient detail to enable those of ordinary skill in the art to practice one or more embodiments of this disclosure. It is to be understood that other embodiments may be utilized and that process, electrical, and/or structural changes may be made without departing from the scope of the present disclosure.
- FIGS. 2 and 3 are intended to illustrate the embodiments of the present disclosure, and should not be taken in a limiting sense.
- “a” or “a number of” something can refer to one or more such things.
- “a number of planar regions” can refer to one or more planar regions.
- FIG. 2 illustrates a system 114 for determining dimensions associated with (e.g., of) an object 112 in accordance with one or more embodiments of the present disclosure of this exemplary dimensioning method.
- object 112 is a rectangular shaped box (e.g., a rectangular shaped package).
- object 112 can be a cylindrical shaped package.
- object 112 could be a rectangular shaped box with one or more arbitrarily damaged faces.
- system 114 includes a range camera 102 and a computing device 104 .
- range camera 102 is separate from computing device 104 (e.g., range camera 102 and computing device 104 are separate devices).
- range camera 102 and computing device 104 can be part of the same device (e.g., range camera 102 can include computing device 104 , or vice versa).
- Range camera 102 and computing device 104 can be coupled by and/or communicate via any suitable wired or wireless connection (not shown in FIG. 2 ).
- computing device 104 includes a processor 106 and a memory 108 .
- Memory 108 can store executable instructions, such as, for example, computer readable instructions (e.g., software), that can be executed by processor 106 .
- executable instructions such as, for example, computer readable instructions (e.g., software)
- memory 108 can be coupled to processor 106 .
- Memory 108 can be volatile or nonvolatile memory. Memory 108 can also be removable (e.g., portable) memory, or non-removable (e.g., internal) memory.
- memory 108 can be random access memory (RAM) (e.g., dynamic random access memory (DRAM) and/or phase change random access memory (PCRA)), read-only memory (ROM) (e.g., electrically erasable programmable read-only memory (EEPROM) and/or compact-disc read-only memory (CD-ROM)), flash memory, a laser disc, a digital versatile disc (DVO) or other optical disk storage, and/or a magnetic medium such as magnetic cassettes, tapes, or disks, among other types of memory.
- RAM random access memory
- DRAM dynamic random access memory
- PCA phase change random access memory
- ROM read-only memory
- EEPROM electrically erasable programmable read-only memory
- CD-ROM compact-disc read-only memory
- flash memory a laser disc, a digital
- memory 108 is illustrated as being located in computing device 104 , embodiments of the present disclosure are not so limited.
- memory 108 can also be located internal to another computing resource (e.g., enabling computer readable instructions to be downloaded over the Internet or another wired or wireless connection).
- range camera 102 can be part of a handheld and/or portable device, such as a barcode scanner. In some embodiments, range camera 102 can be mounted on a tripod.
- Range camera 102 can produce (e.g., capture, acquire, and/or generate) a range image of an area (e.g., scene). Range camera 102 can produce the range image of the area using, for example, structured near-infrared (near-IR) illumination, among other techniques for producing range images.
- an area e.g., scene
- Range camera 102 can produce the range image of the area using, for example, structured near-infrared (near-IR) illumination, among other techniques for producing range images.
- near-IR structured near-infrared
- the range image can be a two-dimensional image that shows the distance to different points in the area from a specific point (e.g., from the range camera).
- the distance can be conveyed in real-world units (e.g., metric units such as meters or millimeters), or the distance can be an integer value (e.g., 11-bit) that can be converted to real-world units.
- the range image can be a two-dimensional matrix with one channel that can hold integers or floating point values.
- the range image can be visualized as different black and white shadings (e.g., different intensities, brightnesses, and/or darknesses) and/or different colors in any color space (e.g., RGB or HSV) that correspond to different distances between the range camera and different points in the area.
- black and white shadings e.g., different intensities, brightnesses, and/or darknesses
- colors in any color space e.g., RGB or HSV
- range camera 102 can produce a range image of an area (e.g., area 110 illustrated in FIG. 2 ) in which object 112 is located. That is, range camera 102 can produce a range image of an area that includes object 112 .
- Range camera 102 can be located a distance d from object 112 when range camera 102 produces the range image, as illustrated in FIG. 2 .
- Distance d can be, for instance, 0.75 to 5.0 meters.
- embodiments of the present disclosure are not limited to a particular distance between range camera 102 and object 112 .
- the range image produced by range camera 102 can be visualized as black and white shadings corresponding to different distances between range camera 102 and different portions of object 112 .
- the darkness of the shading can increase as the distance between range camera 102 and the different portions of object 112 decreases (e.g., the closer a portion of object 112 is to range camera 102 , the darker the portion will appear in the range image).
- the range image can be visualized as different colors corresponding to the different distances between range camera 102 and the different portions of object 112 .
- Computing device 104 can determine the dimensions (e.g., the length, width, height, diameter, etc.) of object 112 based, at least in part, on the range image produced by range camera 102 .
- processor 106 can execute executable instructions stored in memory 108 to determine the dimensions of object 112 based, at least in part, on the range image.
- computing device 104 can identify a number of planar regions in the range image produced by range camera 102 .
- the identified planar regions may include planar regions that correspond to object 112 (e.g., to surfaces of object 112 ). That is, computing device 104 can identify planar regions in the range image that correspond to object 112 .
- object 112 is a rectangular shaped box (e.g., the embodiment illustrated in FIG. 2 )
- computing device 104 can identify two or three mutually orthogonal planar regions that correspond to surfaces (e.g., faces) of object 112 (e.g., the three surfaces of object 112 shown in FIG. 2 ).
- computing device 104 can determine the dimensions of object 112 based, at least in part, on the identified planar regions (e.g., on the dimensions of the identified planar regions). For example, computing device 104 can determine the dimensions of the planar regions that correspond to object 112 . For instance, computing device 104 can determine the dimensions of the planar regions that correspond to object 112 based, at least in part, on the distances of the planar regions within the range image. Computing device 104 can then determine the dimensions of object 112 based, at least in part, on the dimensions of the planar regions.
- Computing device 104 can identify the planar regions in the range image that correspond to object 112 by, for example, determining (e.g., calculating) coordinates (e.g., real-world x, y, z coordinates in millimeters) for each point (e.g., each row, column, and depth tuple) in the range image.
- Intrinsic calibration parameters associated with range camera 102 can be used to convert each point in the range image into the real-world coordinates.
- the system can undistort the range image using, for example, the distortion coefficients for the camera to correct for radial, tangential, and/or other types of lens distortion.
- the two-dimensional matrix of the real-world coordinates may be downsized by a factor between 0.25 and 0.5.
- Computing device 104 can then build a number of planar regions through the determined real-world coordinates. For example, a number of planar regions can be built near the points, wherein the planar regions may include planes of best fit to the points. Computing device 104 can retain the planar regions that are within a particular (e.g., pre-defined) size and/or a particular portion of the range image. The planar regions that are not within the particular size or the particular portion of the range image can be disregarded.
- Computing device 104 can then upsample each of the planar regions (e.g., the mask of each of the planar regions) that are within the particular size and/or the particular portion of the range image to fit in an image of the original (e.g., full) dimensions of the range image. Computing device 104 can then refine the planar regions to include only points that lie within an upper bound from the planar regions.
- each of the planar regions e.g., the mask of each of the planar regions
- Computing device 104 can then fit a polygon to each of the planar regions that are within the particular size and/or the particular portion of the range image, and retain the planar regions whose fitted polygon has four vertices and is convex. These retained planar regions are the planar regions that correspond to object 112 (e.g., to surfaces of object 112 ). The planar regions whose fitted polygon does not have four vertices and/or is not convex can be disregarded. Computing device 104 can also disregard the planar regions in the range image that correspond to the ground plane and background clutter of area 110 .
- Computing device 104 can disregard (e.g., ignore) edge regions in the range image that correspond to the edges of area 110 while identifying the planar regions in the range image that correspond to object 112 .
- computing device 104 can run a three dimensional edge detector on the range image before identifying planar regions in the range image, and can then disregard the detected edge regions while identifying the planar regions.
- the edge detection can also identify non-uniform regions that can be disregarded while identifying the planar regions.
- computing device 104 can determine the dimensions of object 112 based, at least in part, on the identified planar regions (e.g., on the dimensions of the identified planar regions). For example, computing device 104 can determine the dimensions of object 112 by arranging the identified planar regions (e.g., the planar regions whose fitted polygon has four vertices and is convex) into a shape corresponding to the shape of object 112 , and determining a measure of centrality (e.g., an average) for the dimensions of clustered edges of the arranged shape. The dimensions of the edges of the arranged shape correspond to the dimensions of object 112 .
- a measure of centrality e.g., an average
- computing device 104 can perform (e.g., run) a number of quality checks. For example, in embodiments in which object 112 is a rectangular shaped box, computing device 104 can determine whether the identified planar regions fit together into a rectangular arrangement that approximates a true rectangular box within (e.g., below) a particular error threshold.
- computing device 104 can include a user interface (not shown in FIG. 2 ).
- the user interface can include, for example, a screen that can provide (e.g., display and/or present) information to a user of computing device 104 .
- the user interface can provide the determined dimensions of object 112 to a user of computing device 104 .
- computing device 104 can determine the volume of object 112 based, at least in part, on the determined dimensions of object 112 .
- Computing device 104 can provide the determined volume to a user of computing device 104 via the user interface.
- FIG. 3 illustrates a method 220 for determining dimensions associated with (e.g., of) an object in accordance with one or more embodiments of the present disclosure.
- the object can be, for example, object 112 previously described in connection with FIG. 2 .
- Method 220 can be performed, for example, by computing device 104 previously described in connection with FIG. 2 .
- method 220 includes capturing a range image of a scene that includes the object.
- the range image can be, for example, analogous to the range image previously described in connection with FIG. 2 (e.g., the range image of the scene can be analogous to the range image of area 110 illustrated in FIG. 2 ), and the range image can be captured in a manner analogous to that previously described in connection with FIG. 2 .
- method 220 includes determining the dimensions (e.g., the length, width, height, diameter, etc.) associated with the object based, at least in part, on the range image.
- the dimensions associated with (e.g., of) the object can be determined in a manner analogous to that previously described in connection with FIG. 2 .
- the volume of the object can be determined based, at least in part, on the determined dimensions associated with the object.
- determining the dimensions associated with the object can include determining the dimensions of the smallest volume rectangular box large enough to contain the object based, at least in part, on the range image.
- the dimensions of the smallest volume rectangular box large enough to contain the object can be determined by, for example, determining and disregarding (e.g., masking out) the portion (e.g., part) of the range image containing information (e.g., data) associated with (e.g., from) the ground plane of the scene that includes the object, determining (e.g., finding) the height of a plane that is parallel to the ground plane and above which the object does not extend, projecting additional (e.g., other) portions of the range image on the ground plane, and determining (e.g., estimating) a bounding rectangle of the projected portions of the range image on the ground plane.
- FIG. 4 illustrates one embodiment of a terminal 1000 operable for measuring at least one dimension of an object 10 in accordance with aspects of the present invention.
- terminal 1000 may determine a height H, a width W, and a depth D of an object.
- terminal 1000 may be operable to read a decodable indicia 15 such as a barcode disposed on the object.
- the terminal may be suitable for shipping applications in which an object such as a package is subject to shipping from one location to another location.
- the dimension (dimensioning) information and other measurement (e.g., volume measurement information) respecting object 10 may be used, e.g., to determine a cost for shipping a package or for determining a proper arrangement of the package in a shipping container.
- a terminal in accordance with aspects of the present invention may include at least one or more imaging subsystems such as one or more camera modules and an actuator to adjust the pointing angle of the one or more camera modules to provide true stereo imaging.
- the terminal may be operable to attempt to determine at least one of a height, a width, and a depth based on effecting the adjustment of the pointing angle of the one or more camera modules.
- a terminal in accordance with aspects of the present invention may include at least one or more imaging subsystems such as camera modules and an actuator based on wires of nickel-titanium shape memory alloy (SMA) and an associated control and heating ASIC (application-specific integrated circuit) to adjust the pointing angle of the one or more camera modules to provide true stereo imaging.
- SMA nickel-titanium shape memory alloy
- ASIC application-specific integrated circuit
- the distance to the package can be determined by measuring the amount of drive current or voltage drop across the SMA actuator.
- the terminal may be operable to attempt to determine at least one of a height, a width, a depth, based on the actuator effecting the adjustment of the pointing angle of the one or more camera modules, the measured distance, and the obtained image of the object.
- terminal 1000 in one embodiment may include a trigger 1220 , a display 1222 , a pointer mechanism 1224 , and a keyboard 1226 disposed on a common side of a hand held housing 1014 .
- Display 1222 and pointer mechanism 1224 in combination can be regarded as a user interface of terminal 1000 .
- Terminal 1000 may incorporate a graphical user interface and may present buttons 1230 , 1232 , and 1234 corresponding to various operating modes such as a setup mode, a spatial measurement mode, and an indicia decode mode, respectively.
- Display 1222 in one embodiment can incorporate a touch panel for navigation and virtual actuator selection in which case a user interface of terminal 1000 can be provided by display 1222 .
- Hand held housing 1014 of terminal 1000 can in another embodiment be devoid of a display and can be in a gun style form factor.
- the terminal may be an indicia reading terminal and may generally include hand held indicia reading terminals, fixed indicia reading terminals, and other terminals.
- Those of ordinary skill in the art will recognize that the present invention is applicable to a variety of other devices having an imaging subassembly which may be configured as, for example, mobile phones, cell phones, satellite phones, smart phones, telemetric devices, personal data assistants, and other devices.
- FIG. 5 depicts a block diagram of one embodiment of terminal 1000 .
- Terminal 1000 may generally include at least one imaging subsystem 900 , an illumination subsystem 800 , hand held housing 1014 , a memory 1085 , and a processor 1060 .
- Imaging subsystem 900 may include an imaging optics assembly 200 operable for focusing an image onto an image sensor pixel array 1033 .
- An actuator 950 is operably connected to imaging subsystem 900 for moving imaging subsystem 900 and operably connected to processor 1060 ( FIG. 5 ) via interface 952 .
- Hand held housing 1014 may encapsulate illumination subsystem 800 , imaging subsystem 900 , and actuator 950 .
- Memory 1085 is capable of storing and or capturing a frame of image data, in which the frame of image data may represent light incident on image sensor array 1033 . After an exposure period, a frame of image data can be read out. Analog image signals that are read out of array 1033 can be amplified by gain block 1036 converted into digital form byanalog-to-digital converter 1037 and sent to DMA unit 1070 . DMA unit 1070 , in turn, can transfer digitized image data into volatile memory 1080 . Processor 1060 can address one or more frames of image data retained in volatile memory 1080 for processing of the frames for determining one or more dimensions of the object and/or for decoding of decodable indicia represented on the object.
- FIG. 6 illustrates one embodiment of the imaging subsystem employable in terminal 1000 .
- an imaging subsystem 2900 may include a first fixed imaging subsystem 2210 , and a second movable imaging subsystem 2220 .
- An actuator 2300 may be operably connected to imaging subsystem 2220 for moving imaging subsystem 2220 .
- First fixed imaging subsystem 2210 is operable for obtaining a first image or frame of image data of the object
- second movable imaging subsystem 2220 is operable for obtaining a second image or frame of image data of the object.
- Actuator 2300 is operable to bring the second image into alignment with the first image as described in greater detail below.
- either the first fixed imaging subsystem 2210 or the second movable imaging subsystem 2220 may also be employed to obtain an image of decodable indicia 15 ( FIG. 4 ) such as a decodable barcode.
- FIGS. 6-10 illustrate one embodiment of the terminal in a spatial measurement mode.
- a spatial measurement mode may be made active by selection of button 1232 ( FIG. 4 ).
- terminal 1000 FIG. 4
- can perform one or more spatial measurements e.g., measurements to determine one or more of a terminal to target distance (z distance) or a dimension (e.g., h, w, d) of an object or another spatial related measurement (e.g., a volume measurement, a distance measurement between any two points).
- terminal 10 may obtain or capture first image data, e.g., at least a portion of a frame of image data such as a first image 100 using fixed imaging subsystem 2210 ( FIG. 6 ) within a field of view 20 ( FIGS. 4 and 8 ).
- first image data e.g., at least a portion of a frame of image data such as a first image 100 using fixed imaging subsystem 2210 ( FIG. 6 ) within a field of view 20 ( FIGS. 4 and 8 ).
- a user may operate terminal 1000 to display object 10 using fixed imaging subsystem 2210 ( FIG. 6 ) in the center of display 1222 as shown in FIG. 9 .
- Terminal 1000 can be configured so that block 602 is executed responsively to trigger 1220 ( FIG. 4 ) being initiated.
- imaging the object generally in the center of the display results when the object is aligned with an imaging axis or optical axis 2025 of fixed imaging subsystem 2210 .
- the optical axis may be a line or an imaginary line that defines the path along which light propagates through the system.
- the optical axis may passes through the center of curvature of the imaging optics assembly and may be coincident with a mechanical axis of imaging subsystem 2210 .
- terminal 1000 may be adapted to move an optical axis 2026 ( FIG. 6 ) of movable imaging subsystem 2220 ( FIG. 6 ) using actuator 2300 ( FIG. 6 ) to align second image data, e.g., at least a portion of a frame of image data such as a second image 120 using movable imaging subsystem 2220 ( FIG. 6 ) within a field of view 20 ( FIGS. 4 and 10 ) with the first image data.
- second image data e.g., at least a portion of a frame of image data such as a second image 120 using movable imaging subsystem 2220 ( FIG. 6 ) within a field of view 20 ( FIGS. 4 and 10 ) with the first image data.
- optical axis 2026 of imaging subsystem 2220 may be pivoted, tilted or deflected, for example in the direction of double-headed arrow R 1 in response to actuator 2300 to align the second image of the object with the object in the first image.
- the terminal may include a suitable software program employing a subtraction routine to determine when the image of the object in the second image data is aligned with the object in the first image data.
- a subtraction routine to determine when the image of the object in the second image data is aligned with the object in the first image data.
- the entire images of the object may be compared, or a portion of the images of the object may be compared. Thus, the better the images of the object are aligned, the smaller the subtracted difference will be.
- an attempt to determine at least one of a height, a width, and a depth dimension of the object is made based on moving the optical axis of the movable imaging subsystem to align the image of the object in the second image data with the image of the object in the first image data.
- the position of the angle of the optical axis is related to the distance between the terminal and the object, and the position of the angle of the optical axis and/or the distance between the terminal and the object may be used in combination with the number of pixels used for imaging the object in the image sensor array to the determine the dimensions of the object.
- the angle of the optical axis of the movable imaging subsystem relative to the terminal is related to the distance from the movable imaging subsystem (e.g., the front of the images sensor array) to the object (e.g., front surface, point, edge, etc.), and the angle of the optical axis of the movable imaging subsystem relative to the terminal is related to the distance from the fixed imaging subsystem (e.g., the front of the images sensor array) to the object (e.g., front surface, point, edge, etc.).
- the relationship between an angle ⁇ of the optical axis of the movable imaging subsystem relative to the terminal, a distance A from the fixed imaging subsystem to the object, and a distance C between the fixed imaging subsystem and the movable imaging subsystem may be expressed as follows:
- angle ⁇ of the optical axis of the movable imaging subsystem relative to the terminal a distance B from the fixed imaging subsystem to the object, and distance C between the fixed imaging subsystem and the movable imaging subsystem may be expressed as follows:
- the actual size of an object relative to the size of the object observed on an image sensor array may be generally defined as follows:
- h is a dimension of the object (such as height) of the object on the image sensor array
- f is focal length of the imaging optics lens
- H is a dimension of the actual object (such as height)
- D is distance from the object to the imaging optic lens.
- the vertical size of the imaging sensor e.g., the height in millimeters or inches
- the height of the image of the object occupying a portion of the imaging sensor would be related to a ratio of the number of pixels forming the imaged object to the total pixels disposed vertically along the image sensor.
- a height of an observed image on the imaging sensor may be determined as follows:
- an actual height measurement may be determined as follows:
- an observed image of the object is 100 pixels high, and a distance D is 5 feet
- the actual object height would be greater than when the observed image of the object is 100 pixels high, and a distance D is 2 feet.
- Other actual dimensions (e.g., width and depth) of the object may be similarly obtained.
- the terminal may be setup using a suitable setup routine that is accessed by a user or by a manufacturer for coordinating the predetermined actual object to dimensioning at various distances, e.g., coordinate a voltage or current reading required to effect the actuator to align the object in the second image with the image of the object in the first image, to create a lookup table.
- suitable programming or algorithms employing, for example, the relationships described above, may be employed to determine actual dimensions based on the number of pixels observed on the imaging sensor.
- suitable edge detection or shape identifier algorithms or processing may be employed with analyzing standard objects, e.g., boxes, cylindrical tubes, triangular packages, etc., to determine and/or confirm determined dimensional measurements.
- FIG. 12 illustrates another embodiment of an imaging subsystem employable in terminal 1000 ( FIG. 4 ).
- Alignment of the second image may also be accomplished using a projected image pattern P from an aimer onto the object to determine the dimensions of the object.
- an aimer such as a laser aimer may project an aimer pattern onto the object.
- the projected aimer pattern may be a dot, point, or other pattern.
- the imaged object with the dot in the second image may be aligned, e.g., the actuator effective to move the movable imaging subsystem so that the laser dot on the imaged second image aligns with the laser dot in the first image.
- the aimer pattern may be orthogonal lines or a series of dots that a user may be able to align adjacent to or along one or more sides or edges such as orthogonal sides or edges of the object.
- an imaging subsystem 3900 may include a first fixed imaging subsystem 3210 , and a second movable imaging subsystem 3220 .
- terminal 1000 FIG. 4
- terminal 1000 FIG. 4
- aiming subsystem 600 FIG. 5
- An actuator 3300 may be operably attached to imaging subsystem 3220 for moving imaging subsystem 3220 .
- First fixed imaging subsystem 3210 is operable for obtaining a first image of the object having an aimer pattern P such as a point or other pattern.
- Second movable imaging subsystem 3220 is operable for obtaining a second image of the object.
- Actuator 3300 is operable to bring the second image into alignment with the first image be aligning point P in the second image with point p in the second image.
- an optical axis 3026 of imaging subsystem 3220 may be pivoted, tilted or deflected, for example in the direction of double-headed arrow R 2 in response to actuator 3300 to align the second image of the object with the object in the first image.
- either the first fixed imaging subsystem 3210 , or the second movable imaging subsystem 3220 may also be employed to obtain an image of decodable indicia 15 ( FIG. 4 ) such as a decodable barcode.
- FIG. 13 illustrates another embodiment of an imaging subsystem employable in terminal 1000 ( FIG. 4 ).
- an imaging subsystem 4900 may be employed in accordance with aspects of the present invention.
- an imaging subsystem 4900 may include a movable imaging subsystem 4100 .
- An actuator 4300 may be operably attached to imaging subsystem 4100 for moving imaging subsystem 4100 from a first position to a second position remote from the first position.
- Movable imaging subsystem 4100 is operable for obtaining a first image of the object at the first position or orientation, and after taking a first image, moved or translate the movable imaging subsystem to a second location or orientation such as in the direction of arrow L 1 using actuator 4300 to provide a distance L between the first position and the second position prior to aligning the object and obtaining a second image of the object.
- Actuator 4300 is also operable to bring the second image into alignment with the first image.
- an optical axis 4026 of imaging subsystem 4100 may be pivoted, tilted or deflected, for example in the direction of double-headed arrow R 3 in response to actuator 4100 to align the second image of the object with the object in the first image.
- terminal 1000 may include an aiming subsystem 600 ( FIG. 5 ) for projecting an aiming pattern onto the object in combination with imaging subsystem 4900 .
- the movable imaging subsystem 4100 may also be employed to obtain an image of decodable indicia 15 ( FIG. 4 ) such as a decodable barcode.
- the second aligned image be performed in an operable time after the first image so that the effect of the user holding and moving the terminal when obtaining the images or the object moving when obtaining the image does not result in errors in determining the one or more dimensions of the object. It is desirable minimize the time delay between the first image and the second aligned image. For example, it may be suitable that the images be obtained within about 0.5 second or less, or possibly within about 1 ⁇ 8 second or less, about 1/16 second or less, or about 1/32 second or less.
- the actuators employed in the various embodiments may comprise one or more actuators which are positioned in the terminal to move the movable imagining subsystem in accordance with instructions received from processor 1060 ( FIG. 5 ).
- a suitable actuator include a shaped memory alloy (SMA) which changes in length in response to an electrical bias, a piezo actuator, a MEMS actuator, and other types of electromechanical actuators.
- the actuator may allow for moving or pivoting the optical axis of the imaging optics assembly, or in connection with the actuator in FIG. 13 , also moving the imaging subsystem from side-to-side along a line or a curve.
- an actuator 5300 may comprise four actuators 5310 , 5320 , 5330 , and 5430 disposed beneath each corner of an imaging subsystem 5900 to movable support the imaging subsystem on a circuit board 5700 .
- the actuators may be selected so that they are capable of compressing and expanding and, when mounted to the circuit board, are capable of pivoting the imaging subsystem relative to the circuit board.
- the movement of imaging subsystem by the actuators may occur in response to a signal from the processor.
- the actuators may employ a shaped memory alloy (SMA) member which cooperates with one or more biasing elements 5350 such as springs, for operably moving the imaging subsystem.
- SMA shaped memory alloy
- the processor may process the comparison of the first image to the observed image obtained from the movable imaging subsystem, and based on the comparison, determine the required adjustment of the position of the movable imaging subsystem to align the object in the second image with the obtained image in the first obtained image.
- the terminal may include a motion sensor 1300 ( FIG. 5 ) operably connected to processor 1060 ( FIG. 5 ) via interface 1310 ( FIG. 5 ) operable to remove the effect of shaking due to the user holding the terminal at the same time as obtaining the first image and second aligned image which is used for determining one of more dimensions of the object as described above.
- a suitable system for use in the above noted terminal may include the image stabilizer for a microcamera disclosed in U.S. Pat. No. 7,307,653 issued to Dutta, the entire contents of which are incorporated herein by reference.
- the imaging optics assembly may employ a fixed focus imaging optics assembly.
- the optics may be focused at a hyperfocal distance so that objects in the images from some near distance to infinity will be sharp.
- the imaging optics assembly may be focused at a distance of 15 inches or greater, in the range of 3 or 4 feet distance, or at other distances.
- the imaging optics assembly may comprise an autofocus lens.
- the exemplary terminal may include a suitable shape memory alloy actuator apparatus for controlling an imaging subassembly such as a microcamera disclosed in U.S. Pat. No. 7,974,025 by Topliss, the entire contents of which are incorporated herein by reference.
- the exemplary terminal may be operably employed to separately obtain images and dimensions of the various sides of an object, e.g., two or more of a front elevational view, a side elevational view, and a top view, may be separately obtained by a user similar to measuring an object as one would with a ruler.
- the exemplary terminal may include a suitable autofocusing microcamera such as a microcamera disclosed in U.S. Patent Application Publication No. 2011/0279916 by Brown et al., the entire contents of which is incorporated herein by reference.
- a suitable autofocusing microcamera such as a microcamera disclosed in U.S. Patent Application Publication No. 2011/0279916 by Brown et al., the entire contents of which is incorporated herein by reference.
- a fluid lens or adaptive lens may comprise an interface between two fluids having dissimilar optical indices.
- the shape of the interface can be changed by the application of external forces so that light passing across the interface can be directed to propagate in desired directions.
- an actuator may be operable to apply pressure to the fluid to change the shape of the lens.
- an actuator may be operable to apply a DC voltage across a coating of the fluid to decrease its water repellency in a process called electrowetting to change the shape of the lens.
- the exemplary terminal may include a suitable fluid lens as disclosed in U.S. Pat. No. 8,027,096 issued to Feng et al., the entire contents of which is incorporated herein by reference.
- a timing diagram may be employed for obtaining a first image of the object for use in determining one or more dimensions as described above, and also used for decoding a decodable indicia disposed on an object using for example, the first imaging subassembly.
- the movable subassembly and actuator may be activated to determine one or more dimensions as described above.
- the first frame of image data of the object using the first imaging subassembly may be used in combination with the aligned image of the object using the movable imaging subsystem.
- a signal 7002 may be a trigger signal which can be made active by actuation of trigger 1220 ( FIG. 4 ), and which can be deactivated by releasing of trigger 1220 ( FIG. 4 ).
- a trigger signal may also become inactive after a time out period or after a successful decode of a decodable indicia.
- a signal 7102 illustrates illumination subsystem 800 ( FIG. 5 ) having an energization level, e.g., illustrating an illumination pattern where illumination or light is alternatively turned on and off.
- Periods 7110 , 7120 , 7130 , 7140 , and 7150 illustrate where illumination is on, and periods 7115 , 7125 , 7135 , and 7145 illustrate where illumination is off.
- a signal 7202 is an exposure control signal illustrating active states defining exposure periods and inactive states intermediate the exposure periods for an image sensor of a terminal.
- an image sensor array of terminal 1000 FIG. 4
- Exposure control signal 7202 can be applied to an image sensor array of terminal 1000 ( FIG. 4 ) so that pixels of an image sensor array are sensitive to light during active periods of the exposure control signal and not sensitive to light during inactive periods thereof.
- the image sensor array of terminal 1000 FIG. 4
- the image sensor array of terminal 1000 is sensitive to light incident thereon.
- a signal 7302 is a readout control signal illustrating the exposed pixels in the image sensor array being transferred to memory or secondary storage in the imager so that the imager may be operable to being ready for the next active portion of the exposure control signal.
- period 7410 may be used in combination with movable imaging subsystem to determine one or more dimensions as described above.
- periods 7410 , 7420 , 7430 , and 7440 are periods in which processer 1060 ( FIG. 5 ) may process one or more frames of image data.
- periods 7410 , 7420 , 7430 , and 7440 may correspond to one or more attempts to decode decodable indicia in which the image resulted during periods when indicia reading terminal 1000 ( FIG. 4 ) was illuminating the decodable indicia.
- indicia reading terminal 1000 may include an image sensor 1032 comprising multiple pixel image sensor array 1033 having pixels arranged in rows and columns of pixels, associated column circuitry 1034 and row circuitry 1035 .
- image sensor 1032 Associated with the image sensor 1032 can be amplifier circuitry 1036 (amplifier), and an analog to digital converter 1037 which converts image information in the form of analog signals read out of image sensor array 1033 into image information in the form of digital signals.
- Image sensor 1032 can also have an associated timing and control circuit 1038 for use in controlling, e.g., the exposure period of image sensor 1032 , gain applied to the amplifier 1036 , etc.
- the noted circuit components 1032 , 1036 , 1037 , and 1038 can be packaged into a common image sensor integrated circuit 1040 .
- Image sensor integrated circuit 1040 can incorporate fewer than the noted number of components.
- Image sensor integrated circuit 1040 including image sensor array 1033 and imaging lens assembly 200 can be incorporated in hand held housing 1014 .
- image sensor integrated circuit 1040 can be provided e.g., by an MT9V022 (752 ⁇ 480 pixel array) or an MT9V023 (752 ⁇ 480 pixel array) image sensor integrated circuit available from Aptina Imaging (formerly Micron Technology, Inc.).
- image sensor array 1033 can be a hybrid monochrome and color image sensor array having a first subset of monochrome pixels without color filter elements and a second subset of color pixels having color sensitive filter elements.
- image sensor integrated circuit 1040 can incorporate a Bayer pattern filter, so that defined at the image sensor array 1033 are red pixels at red pixel positions, green pixels at green pixel positions, and blue pixels at blue pixel positions.
- Frames that are provided utilizing such an image sensor array incorporating a Bayer pattern can include red pixel values at red pixel positions, green pixel values at green pixel positions, and blue pixel values at blue pixel positions.
- processor 1060 prior to subjecting a frame to further processing can interpolate pixel values at frame pixel positions intermediate of green pixel positions utilizing green pixel values for development of a monochrome frame of image data.
- processor 1060 prior to subjecting a frame for further processing can interpolate pixel values intermediate of red pixel positions utilizing red pixel values for development of a monochrome frame of image data.
- Processor 1060 can alternatively, prior to subjecting a frame for further processing interpolate pixel values intermediate of blue pixel positions utilizing blue pixel values.
- An imaging subsystem of terminal 1000 can include image sensor 1032 and lens assembly 200 for focusing an image onto image sensor array 1033 of image sensor 1032 .
- image signals can be read out of image sensor 1032 , converted, and stored into a system memory such as RAM 1080 .
- Memory 1085 of terminal 1000 can include RAM 1080 , a nonvolatile memory such as EPROM 1082 and a storage memory device 1084 such as may be provided by a flash memory or a hard drive memory.
- terminal 1000 can include processor 1060 which can be adapted to read out image data stored in memory 1080 and subject such image data to various image processing algorithms.
- Terminal 1000 can include a direct memory access unit (DMA) 1070 for routing image information read out from image sensor 1032 that has been subject to conversion to RAM 1080 .
- DMA direct memory access unit
- terminal 1000 can employ a system bus providing for bus arbitration mechanism (e.g., a PCI bus) thus eliminating the need for a central DMA controller.
- bus arbitration mechanism e.g., a PCI bus
- imaging lens assembly 200 can be adapted for focusing an image of decodable indicia 15 located within a field of view 20 on the object onto image sensor array 1033 .
- a size in target space of a field of view 20 of terminal 1000 can be varied in a number of alternative ways.
- a size in target space of a field of view 20 can be varied, e.g., by changing a terminal to target distance, changing an imaging lens assembly setting, changing a number of pixels of image sensor array 1033 that are subject to read out.
- Imaging light rays can be transmitted about an imaging axis.
- Lens assembly 200 can be adapted to be capable of multiple focal lengths and multiple planes of optimum focus (best focus distances).
- Terminal 1000 may include illumination subsystem 800 for illumination of target, and projection of an illumination pattern (not shown).
- Illumination subsystem 800 may emit light having a random polarization.
- the illumination pattern in the embodiment shown can be projected to be proximate to but larger than an area defined by field of view 20 , but can also be projected in an area smaller than an area defined by a field of view 20 .
- Illumination subsystem 800 can include a light source bank 500 , comprising one or more light sources.
- Light source assembly 800 may further include one or more light source banks, each comprising one or more light sources, for example.
- Such light sources can illustratively include light emitting diodes (LEDs), in an illustrative embodiment.
- LEDs light emitting diodes
- LEDs with any of a wide variety of wavelengths and filters or combination of wavelengths or filters may be used in various embodiments.
- Other types of light sources may also be used in other embodiments.
- the light sources may illustratively be mounted to a printed circuit board. This may be the same printed circuit board on which an image sensor integrated circuit 1040 having an image sensor array 1033 may illustratively be mounted.
- Terminal 1000 can also include an aiming subsystem 600 for projecting an aiming pattern (not shown).
- Aiming subsystem 600 which can comprise a light source bank can be coupled to aiming light source bank power input unit 1208 for providing electrical power to a light source bank of aiming subsystem 600 .
- Power input unit 1208 can be coupled to system bus 1500 via interface 1108 for communication with processor 1060 .
- illumination subsystem 800 may include, in addition to light source bank 500 , an illumination lens assembly 300 , as is shown in the embodiment of FIG. 5 .
- illumination subsystem 800 can include alternative light shaping optics, e.g., one or more diffusers, mirrors and prisms.
- terminal 1000 can be oriented by an operator with respect to a target, (e.g., a piece of paper, a package, another type of substrate, screen, etc.) bearing decodable indicia 15 in such manner that the illumination pattern (not shown) is projected on decodable indicia 15 .
- decodable indicia 15 is provided by a 10 barcode symbol.
- Decodable indicia 15 could also be provided by a 2D barcode symbol or optical character recognition (OCR) characters.
- lens assembly 200 can be controlled with use of an electrical power input unit 1202 which provides energy for changing a plane of optimum focus of lens assembly 200 .
- electrical power input unit 1202 can operate as a controlled voltage source, and in another embodiment, as a controlled current source.
- Electrical power input unit 1202 can apply signals for changing optical characteristics of lens assembly 200 , e.g., for changing a focal length and/or a best focus distance of (a plane of optimum focus of) lens assembly 200 .
- a light source bank electrical power input unit 1206 can provide energy to light source bank 500 .
- electrical power input unit 1206 can operate as a controlled voltage source. In another embodiment, electrical power input unit 1206 can operate as a controlled current source. In another embodiment electrical power input unit 1206 can operate as a combined controlled voltage and controlled current source. Electrical power input unit 1206 can change a level of electrical power provided to (energization level of) light source bank 500 , e.g., for changing a level of illumination output by light source bank 500 of illumination subsystem 800 for generating the illumination pattern.
- terminal 1000 can include a power supply 1402 that supplies power to a power grid 1404 to which electrical components of terminal 1000 can be connected.
- Power supply 1402 can be coupled to various power sources, e.g., a battery 1406 , a serial interface 1408 (e.g., USB, RS232), and/or AC/DC transformer 1410 .
- power input unit 1206 can include a charging capacitor that is continually charged by power supply 1402 .
- Power input unit 1206 can be configured to output energy within a range of energization levels.
- An average energization level of illumination subsystem 800 during exposure periods with the first illumination and exposure control configuration active can be higher than an average energization level of illumination and exposure control configuration active.
- Terminal 1000 can also include a number of peripheral devices including trigger 1220 which may be used to make active a trigger signal for activating frame readout and/or certain decoding processes.
- Terminal 1000 can be adapted so that activation of trigger 1220 activates a trigger signal and initiates a decode attempt.
- terminal 1000 can be operative so that in response to activation of a trigger signal, a succession of frames can be captured by way of read out of image information from image sensor array 1033 (typically in the form of analog signals) and then storage of the image information after conversion into memory 1080 (which can buffer one or more of the succession of frames at a given time).
- Processor 1060 can be operative to subject one or more of the succession of frames to a decode attempt.
- processor 1060 can process image data of a frame corresponding to a line of pixel positions (e.g., a row, a column, or a diagonal set of pixel positions) to determine a spatial pattern of dark and light cells and can convert each light and dark cell pattern determined into a character or character string via table lookup.
- a line of pixel positions e.g., a row, a column, or a diagonal set of pixel positions
- a decode attempt can comprise the steps of locating a finder pattern using a feature detection algorithm, locating matrix lines intersecting the finder pattern according to a predetermined relationship with the finder pattern, determining a pattern of dark and light cells along the matrix lines, and converting each light pattern into a character or character string via table lookup.
- Terminal 1000 can include various interface circuits for coupling various peripheral devices to system address/data bus (system bus) 1500 , for communication with processor 1060 also coupled to system bus 1500 .
- Terminal 1000 can include an interface circuit 1028 for coupling image sensor timing and control circuit 1038 to system bus 1500 , an interface circuit 1102 for coupling electrical power input unit 1202 to system bus 1500 , an interface circuit 1106 for coupling illumination light source bank power input unit 1206 to system bus 1500 , and an interface circuit 1120 for coupling trigger 1220 to system bus 1500 .
- Terminal 1000 can also include display 1222 coupled to system bus 1500 and in communication with processor 1060 , via an interface 1122 , as well as pointer mechanism 1224 in communication with processor 1060 via an interface 1124 connected to system bus 1500 .
- Terminal 1000 can also include keyboard 1226 coupled to systems bus 1500 and in communication with processor 1060 via an interface 1126 .
- Terminal 1000 can also include range detector unit 1210 coupled to system bus 1500 via interface 1110 .
- range detector unit 1210 can be an acoustic range detector unit.
- Various interface circuits of terminal 1000 can share circuit components.
- a common microcontroller can be established for providing control inputs to both image sensor timing and control circuit 1038 and to power input unit 1206 .
- a common microcontroller providing control inputs to circuit 1038 and to power input unit 1206 can be provided to coordinate timing between image sensor array controls and illumination subsystem controls.
- a succession of frames of image data that can be captured and subject to the described processing can be full frames (including pixel values corresponding to each pixel of image sensor array 1033 or a maximum number of pixels read out from image sensor array 1033 during operation of terminal 1000 ).
- a succession of frames of image data that can be captured and subject to the described processing can also be “windowed frames” comprising pixel values corresponding to less than a full frame of pixels of image sensor array 1033 .
- a succession of frames of image data that can be captured and subject to the above described processing can also comprise a combination of full frames and windowed frames.
- a full frame can be read out for capture by selectively addressing pixels of image sensor 1032 having image sensor array 1033 corresponding to the full frame.
- a windowed frame can be read out for capture by selectively addressing pixels or ranges of pixels of image sensor 1032 having image sensor array 1033 corresponding to the windowed frame.
- a number of pixels subject to addressing and read out determine a picture size of a frame. Accordingly, a full frame can be regarded as having a first relatively larger picture size and a windowed frame can be regarded as having a relatively smaller picture size relative to a picture size of a full frame.
- a picture size of a windowed frame can vary depending on the number of pixels subject to addressing and readout for capture of a windowed frame.
- Terminal 1000 can capture frames of image data at a rate known as a frame rate.
- a typical frame rate is 60 frames per second (FPS) which translates to a frame time (frame period) of 16.6 ms.
- Another typical frame rate is 30 frames per second (FPS) which translates to a frame time (frame period) of 33.3 ms per frame.
- a frame rate of terminal 1000 can be increased (and frame time decreased) by decreasing of a frame picture size.
- Another exemplary method of determining the dimensions of an object utilizes one or more of the foregoing methods to improve the accuracy of the method.
- the method includes capturing a range image of the object and capturing a visible image of the object (e.g., using a range camera with both an infra-red sensor and an RGB or monochrome camera).
- the range image and visible image are then aligned based on the relative positions from which the two images were captured.
- the method includes performing a first method of determining the object's dimensions based on either the range image or the visible image.
- the method then includes performing a second method of determining the object's dimensions based on the other image (i.e., not the image used in the first method).
- the results of the first and second methods are then compared. If the compared results are not within a suitable threshold, new images may be captured or the first and second methods may be performed again using the original images.
- the method includes simultaneously performing a first method of determining the object's dimensions based on the range image and a second method of determining the object's dimensions based on the visible image.
- the determined dimension is provided to the other method, and the other method adjusts its process for determining the object's dimensions.
- the other method may assume the determined dimension to be correct or the other method may verify the determined dimension in view of the image it is using to determine the object's dimensions.
- the method performs both dimensioning methods simultaneously and dynamically. Such dynamic sharing of information between dimensioning methods facilitates the efficient determination of reliable dimensions of the object.
- the foregoing method may be implemented by an appropriately configured computing device (e.g., including a processor and memory).
- an appropriately configured computing device e.g., including a processor and memory.
- the foregoing disclosure has presented a number of systems, methods, and devices for determining the dimensions of an object. Although methods have been disclosed with respect to particular systems and/or devices, the methods may be performed using different systems and/or devices than those particularly disclosed. Similarly, the systems and devices may perform different methods than those methods specifically disclosed with respect to a given system or device. Furthermore, the systems and devices may perform multiple methods for determining the dimensions of an object (e.g., to increase accuracy). Aspects of each of the methods for determining the dimensions of an object may be used in or combined with other methods. Finally, components (e.g., a range camera, camera system, scale, and/or computing device) of a given disclosed system or device may be incorporated into other disclosed systems or devices to provide increased functionality.
- components e.g., a range camera, camera system, scale, and/or computing device
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Business, Economics & Management (AREA)
- Mathematical Physics (AREA)
- Development Economics (AREA)
- Economics (AREA)
- Marketing (AREA)
- General Business, Economics & Management (AREA)
- Strategic Management (AREA)
- Quality & Reliability (AREA)
- Entrepreneurship & Innovation (AREA)
- Human Resources & Organizations (AREA)
- Operations Research (AREA)
- Finance (AREA)
- Tourism & Hospitality (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Accounting & Taxation (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
An object analysis system includes a scale for measuring the weight of the object, a range camera configured to produce a range image of an area in which the object is located, and a computing device configured to determine the dimensions of the object based, at least in part, on the range image. Methods for determining the dimensions of an object include capturing a range image and/or a visible image of a scene that includes the object.
Description
- This application hereby claims the benefit of pending U.S. Provisional Patent Application No. 61/714,394 for an “Integrated Dimensioning and Weighing System” (filed Oct. 16, 2012 at the United States Patent and Trademark Office), which is hereby incorporated by reference in its entirety.
- The present invention relates to the field of devices for weighing and dimensioning packages, more specifically, to an integrated dimensioning and weighing system for packages.
- Shipping companies typically charge customers for their services based on package size (i.e., volumetric weight) and/or weight (i.e., dead weight). When printing a shipping label for a package to be shipped, a customer enters both the size and weight of the package into a software application that bills the customer based on the information. Typically, customers get this information by hand-measuring package's dimensions (e.g., with a tape measure) and may weigh the package on a scale. In some cases, customers simply guess the weight of the package. Both guessing of the weight and hand-measurement of dimensions are prone to error, particularly when packages have irregular shape. When the shipping company determines, at a later time, that the package is larger and/or heavier than reported by the customer, an additional bill may be issued to the customer. Additional bills may reduce customer satisfaction, and, if the shipping customer is a retail company who has already passed along the shipping cost to an end customer, decrease the customer's earnings.
- Furthermore, shipping companies may also collect the package's origin, destination, and linear dimensions from a customer to determine the correct charges for shipping a package. Manual entry of this information by a customer or the shipping company is also error prone.
- As such, there is a commercial need for systems that accurately collect a package's size, weight, linear dimensions, origin, and destination and for integration with billing systems to reduce errors in transcribing that data.
- Accordingly, in one aspect, the present invention embraces an object analysis system. The system includes a scale for measuring the weight of the object, a range camera configured to produce a range image of an area in which the object is located, and a computing device configured to determine the dimensions of the object based, at least in part, on the range image.
- In an exemplary embodiment, the range camera is configured to produce a visible image of the scale's measured weight of the object and the computing device is configured to determine the weight of the object based, at least in part, on the visible image. The scale may be an analog scale having a gauge and the visible image produced by the range camera includes the scale's gauge. Alternatively, the scale may be a digital scale having a display and the visible image produced by the range camera includes the scale's display.
- In yet another exemplary embodiment, the computing device is configured to execute shipment billing software.
- In yet another exemplary embodiment, the object analysis system transmits the weight of the object and determined dimensions to a host platform configured to execute shipment billing software.
- In yet another exemplary embodiment, the object analysis system includes a microphone for capturing audio from a user and the computing device is configured for converting the captured audio to text.
- In yet another exemplary embodiment, the range camera is configured to project a visible laser pattern onto the object and produce a visible image of the object and the computing device is configured to determine the dimensions of the object based, at least in part, on the visible image of the object.
- In yet another exemplary embodiment, the scale and the range camera are fixed in position and orientation relative to each other and the computing device is configured to determine the dimensions of the object based, at least in part, on ground plane data of the area in which the object is located. The ground plane data may be generated by capturing an initial range image and identifying a planar region in the initial range image that corresponds to a ground plane.
- In another aspect, the present invention embraces a method for determining the dimensions of an object that includes capturing a range image of a scene that includes the object and determining the dimensions of the object based, at least in part, on the range image and ground plane data of the area in which the object is located.
- In yet another aspect, the present invention embraces a terminal for measuring at least one dimension of an object that includes a range camera, a visible camera, a display that are fixed in position and orientation relative to each other. The range camera is configured to produce a range image of an area in which the object is located. The visible camera is configured to produce a visible image of an area in which the object is located. The display is configured to present information associated with the range camera's field of view and the visible camera's field of view.
- In an exemplary embodiment, the range camera's field of view is narrower than the visible camera's field of view and the display is configured to present the visible image produced by the visible camera and an outlined shape on the displayed visible image corresponding to the range camera's field of view.
- In another exemplary embodiment, the display is configured to present the visible image produced by the visible camera and a symbol on the displayed visible image corresponding to the optical center of the range camera's field of view.
- In yet another aspect, the present invention embraces a method for determining the dimensions of an object that includes projecting a laser pattern (e.g., a visible laser pattern) onto the object, capturing an image of the projected pattern on the object, and determining the dimensions of the objection based, at least in part, on the captured image.
- The foregoing illustrative summary, as well as other exemplary objectives and/or advantages of the invention, and the manner in which the same are accomplished, are further explained within the following detailed description and its accompanying drawings.
-
FIG. 1 illustrates an object analysis system in accordance with one or more exemplary embodiments. -
FIG. 2 illustrates a system for determining dimensions associated with an object in accordance with one or more embodiments of the present disclosure. -
FIG. 3 illustrates a method for determining dimensions associated with an object in accordance with one or more embodiments of the present disclosure. -
FIG. 4 is a schematic physical form view of one embodiment of a terminal in accordance with aspects of the present invention. -
FIG. 5 is a block diagram of the terminal ofFIG. 4 . -
FIG. 6 is a diagrammatic illustration of one embodiment of an imaging subsystem for use in the terminal ofFIG. 4 . -
FIG. 7 is a flowchart illustrating one embodiment of a method for measuring at least one dimension of an object using the terminal ofFIG. 4 . -
FIG. 8 is an illustration of a first image of the object obtained using the fixed imaging subsystem ofFIG. 6 . -
FIG. 9 is a view of the terminal ofFIG. 4 illustrating on the display the object disposed in the center of the display for use in obtaining the first image ofFIG. 8 . -
FIG. 10 is a second aligned image of the object obtained using the movable imaging subsystem ofFIG. 6 . -
FIG. 11 is a diagrammatic illustration of the geometry between an object and the image of the object on an image sensor array. -
FIG. 12 is a diagrammatic illustration of another embodiment of an imaging subsystem for use in the terminal ofFIG. 4 , which terminal may include an aimer. -
FIG. 13 is a diagrammatic illustration of another embodiment of a single movable imaging subsystem and actuator for use in the terminal ofFIG. 4 . -
FIG. 14 is an elevational side view of one implementation of an imaging subsystem and actuator for use in the terminal ofFIG. 4 . -
FIG. 15 is a top view of the imaging subsystem and actuator ofFIG. 14 . -
FIG. 16 is a timing diagram illustrating one embodiment for use in determining one or more dimensions and for decoding a decodable performed by the indicia reading terminal ofFIG. 4 . -
FIG. 17 depicts the near field relationship between a laser pattern and a camera system's field of view as employed in an exemplary method. -
FIG. 18 depicts the far field relationship between a laser pattern and a camera system's field of view as employed in an exemplary method. -
FIG. 19 depicts an exemplary arrangement of a standard rectilinear box-shaped object on a flat surface upon which a laser pattern has been projected in accordance with an exemplary method. -
FIG. 20 schematically depicts a relationship between the width of a laser line and the size of the field of view of a small number of pixels within a camera system. - The present invention embraces a system that accurately collects a package's size, weight, linear dimensions, origin, and destination and that may be integrated with billing systems to reduce errors in transcribing that data.
- In one aspect, the present invention embraces an object analysis system.
FIG. 1 illustrates an exemplaryobject analysis system 11. As depicted, thesystem 11 includes ascale 12, arange camera 102, acomputing device 104, and amicrophone 18. Typically, thescale 12 measures the weight of theobject 112, therange camera 102 is configured to produce a range image of anarea 110 in which the object is located, and thecomputing device 104 is configured to determine the dimensions of theobject 112 based, at least in part, on the range image. - As noted, the
scale 12 measures the weight of theobject 112.Exemplary scales 12 include analog scales having gauges or and digital scales having displays. Thescale 12 ofFIG. 1 includes awindow 13 for showing the measured weight of theobject 112. Thewindow 13 may be a gauge or display depending on the type ofscale 12. - The
scale 12 also includestop surface markings 14 to guide a user to place the object in a preferred orientation for analysis by the system. For example, a particular orientation may improve the range image and/or visible image produced byrange camera 102. Additionally, the scale may includetop surface markings 16 to facilitate the computing device's estimation of a reference plane during the process of determining the dimensions of theobject 112. - In exemplary embodiments, the
scale 12 transmits the measured weight of theobject 112 to thecomputing device 104 and/or ahost platform 17. In this regard, thescale 12 may transmit this information via a wireless connection and/or a wired connection (e.g., a USB connection, such as a USB 1.0, 2.0, and/or 3.0). - As noted, the
object analysis system 11 includes arange camera 102 that is configured to produce a range image of anarea 110 in which theobject 112 is located. In exemplary embodiments, therange camera 102 is also configured to produce a visible image of the scale's measured weight of the object 112 (e.g., a visible image that includes window 13). Therange camera 102 may be separate from thecomputing device 104, or therange camera 102 and thecomputing device 104 may be part of the same device. Therange camera 102 is typically communicatively connected to thecomputing device 104. - The depicted
object analysis system 11 includes amicrophone 18. Themicrophone 18 may be separate from therange camera 102, or themicrophone 18 and therange camera 102 may be part of the same device. Similarly, themicrophone 18 may be separate from thecomputing device 104, or themicrophone 18 and thecomputing device 104 may be part of the same device. - The
microphone 18 captures audio from a user of theobject analysis system 11, which may then be converted to text (e.g., ASCII text). In exemplary embodiments, the text may be presented to the user via a user-interface for validation or correction (e.g., by displaying the text on a monitor or by having a computerized reader speak the words back to the user). The text is typically used as an input for software (e.g., billing software and/or dimensioning software). For example, the text (i.e., as generated by converting audio from the user) may be an address, in which case the computing device may be configured to determine the components of the address. In this regard, exemplary object analysis systems reduce the need for error-prone manual entry of data. - Additionally, the text may be used as a command to direct software (e.g., billing software and/or dimensioning software). For example, if multiple objects are detected in the range camera's field of view, a user interface may indicate a numbering for each object and ask the user which package should be dimensioned. The user could then give a verbal command by saying a number, and the audio as captured by the
microphone 18 can be converted into text which commands the dimensioning software. Similarly, the user could give verbal commands to describe the general class of the object (e.g., “measure a box”) or to indicate the type of information being provided (e.g., a command of “destination address” to indicate that an address will be provided next). - The
computing device 104 may be configured for converting the audio captured by themicrophone 18 to text. Additionally, thecomputing device 104 may be configured to transmit the captured audio (e.g., as a file or a live stream) to a speech-to-text module and receive the text. The captured audio may be transcoded as necessary by thecomputing device 104. Thecomputing device 104 may or may not include the speech-to-text module. For example, thecomputing device 104 may transmit (e.g., via a network connection) the captured audio to an external speech-to-text service provider (e.g., Google's cloud-based speech-to-text service). In exemplary embodiments, the speech-to-text module transmits the text and a confidence measure of each converted phrase. Thecomputing device 104 may be configured to enter the text into shipment billing software (e.g., by transmitting the text to ahost platform 17 configured to execute shipment billing software). - As noted, the
object analysis system 11 includes acomputing device 104. Thecomputing device 104 depicted inFIG. 1 includes aprocessor 106 and amemory 108. Additional aspects ofprocessor 106 andmemory 108 are discussed with respect toFIG. 2 .Memory 108 can store executable instructions, such as, for example, computer readable instructions (e.g., software), that can be executed byprocessor 106. Although not illustrated inFIG. 1 ,memory 108 can be coupled toprocessor 106. - The
computing device 104 is configured to determine the dimensions of anobject 112 based, at least in part, on a range image produced byrange camera 102. Exemplary methods of determining the dimensions of anobject 112 are discussed with respect toFIGS. 2-16 . Thecomputing device 104 may also be configured to determine the weight of anobject 112 based, at least in part, on a visible image produced byrange camera 102. For example, thecomputing device 104 may execute software that processes the visible image to read the weight measured by thescale 12. - The
computing device 104 may be configured to calculate the density of theobject 112 based on its determined dimensions and weight. Furthermore, thecomputing device 104 may be configured to compare the calculated density to a realistic density threshold (e.g., as preprogrammed data or tables). If the calculated density exceeds a given realistic density threshold, thecomputing device 104 may: re-determine the dimensions of theobject 112 based on the range image; instruct therange camera 102 to produce a new range image; instruct therange camera 102 to produce a new visible image and/or instruct thescale 12 to re-measure theobject 112. - The
computing device 104 may also be configured to compare the determined dimensions of theobject 112 with the dimensions of thescale 12. In this regard, the scale's dimensions may be known (e.g., as preprogrammed data or tables), and thecomputing device 104 may be configured to determine the dimensions of the object based on the range image and the known dimensions of thescale 12. Again, if the determined dimensions exceed a given threshold of comparison, thecomputing device 104 may: re-determine the dimensions of theobject 112 based on the range image; instruct therange camera 102 to produce a new range image; instruct therange camera 102 to produce a new visible image and/or instruct thescale 12 to re-measure theobject 112. - In exemplary embodiments, the
computing device 104 may be configured to execute shipment billing software. In such embodiments, thecomputing device 104 may be a part of the same device as thehost platform 17, or theobject analysis system 11 may not include ahost platform 17. - Alternatively, the
object analysis system 11 may transmit (e.g., via a wireless connection and/or a wired connection, such as a USB connection) the weight of theobject 112 and determined dimensions to ahost platform 17 configured to execute shipment billing software. For example, thecomputing device 104 may transmit the weight of theobject 112 and determined dimensions to thehost platform 17. - In exemplary embodiments, the
range camera 102 is configured to project a laser pattern (e.g., a visible laser pattern) onto theobject 112 and produce a visible image of theobject 112, and thecomputing device 104 is configured to determine the dimensions of theobject 112 based, at least in part, on the visible image of theobject 112. In this regard, the projection of the laser pattern on theobject 112 provides additional information or an alternative or supplemental method for determining the dimensions of theobject 112. Furthermore, the laser pattern will facilitate user-placement of the object with respect to the range camera. - An exemplary
object analysis system 11 includes ascale 12 and arange camera 102 that are fixed in position and orientation relative to each other. Thecomputing device 104 of such an exemplaryobject analysis system 11 may be configured to determine the dimensions of theobject 112 based, at least in part, on ground plane data of thearea 110 in which the object is located. The ground plane data may include data generated by capturing an initial range image and identifying a planar region in the initial range image that corresponds to a ground plane. - The ground plane data may be stored on the
computing device 104 during manufacturing after calibrating theobject analysis system 11. The ground plane data may also be updated by thecomputing device 104 after installation of theobject analysis system 11 or periodically during use by capturing an initial range image and identifying a planar region in the initial range image that corresponds to a ground plane. - The
computing device 104 may be configured to verify the validity of the ground plane data by identifying a planar region in the range image produced by therange camera 102 that corresponds to a ground plane. If the ground plane data does not correspond to the identified planar region in the range image, thecomputing device 104 may update the ground plane data. - In exemplary embodiments, the
computing device 104 may be configured to control the object analysis system in accordance with multiple modes. While in a detection mode, thecomputing device 104 may be configured to evaluate image viability and/or quality (e.g., of an infra-red image or visible image) in response to movement or the placement of an object in the range camera's field of view. Based on the evaluation of the image viability and/or quality, thecomputing device 104 may be configured to place the object analysis system in another mode, such as an image capture mode for capturing an image using therange camera 102 or an adjust mode for adjusting the position of therange camera 102. - In exemplary embodiments, the object analysis system may include positioning devices, (e.g., servo motors, tilt motors, and/or three-axis accelerometers) to change the position of the range camera relative to the object. In this regard, the
computing device 104 may be configured to control and receive signals from the positioning devices. After evaluating image viability and/or quality, the computing device may place the object analysis system in an adjust mode. The computing device may be configured to have two adjust modes, semiautomatic and automatic. In semiautomatic adjust mode, the computing device may be configured to provide visual or audio feedback to an operator that then moves the range camera (e.g., adjusts the camera's tilt angle and/or height). In automatic mode, the computing device may be configured to control and receive signals from the positioning devices to adjust the position of the range camera. By adjusting the position of the range camera, the object analysis system can achieve higher dimensioning accuracy. - In another aspect, the present invention embraces a method for determining the dimensions of an object. The method includes capturing an image of a scene that includes the object and determining the dimensions of the object based, at least in part, on the range image and ground plane data of the area in which the object is located. As noted with respect to an exemplary object analysis system, the ground plane data may include data generated by capturing an initial range image and identifying a planar region in the initial range image that corresponds to a ground plane. The method may also include verifying the validity of the ground plane data by identifying a planar region in the range image that corresponds to a ground plane.
- This exemplary method for determining the dimensions of an object is typically used in conjunction with a range camera on a fixed mount at a given distance and orientation with respect to the area in which the object is placed for dimensioning. In this regard, utilizing the ground plane data, rather than identifying the ground plane for each implementation of the method, can reduce the time and resources required to determine the dimensions of the object.
- In yet another aspect, the present invention embraces another method for determining the dimensions of an object. The method includes projecting a laser pattern (e.g., a visible laser pattern) onto an object, capturing an image of the projected pattern on the object, and determining the dimensions of the object based, at least in part, on the captured image. In an exemplary embodiment, the object has a rectangular box shape.
- An exemplary method includes projecting a laser pattern (e.g., a grid or a set of lines) onto a rectangular box. Typically, the box is positioned such that two non-parallel faces are visible to the system or device projecting the laser pattern and a camera system with known field of view characteristics. The camera system is used to capture an image of the laser light reflecting off of the box. Using image analysis techniques (e.g., imaging software), the edges of the box are determined. The relative size and orientation of the faces is determined by comparing the distance between lines of the laser pattern in the captured image to the known distance between the lines of the laser pattern as projected while considering the characteristics of the camera system's field of view, such as size, aspect ratio, distortion, and/or angular magnification.
- The distance from the camera system to the box may also be desired and may be used to determine the dimensions of the box. The distance between the camera system and the box can be determined using a variety of methods. For example, the distance from the camera system to the box may be determined from the laser pattern and the camera system's field of view. Additionally, sonar ranging techniques or considering the light time of flight may facilitate determination of this distance.
- Another exemplary method includes projecting a laser pattern including two horizontal, parallel lines and two vertical, parallel lines. The distance between each set of parallel lines is constant. In this regard, the laser pattern is collimated, producing a constant-size square or rectangle in the center of the laser pattern as it propagates away from the device that generated the laser pattern.
- An exemplary laser pattern including two horizontal, parallel lines and two vertical, parallel lines is depicted in
FIGS. 17 and 18 . The exemplary laser pattern is aligned to the field of view of the camera system, and the relationship between the laser pattern and the field of view are determined. This relationship may be determined by a precision alignment of the laser pattern to a known fixture pattern and/or a software calibration process may process two or more images from the camera system.FIG. 17 depicts the approximated relationship between the laser pattern and the camera's near-field field of view, andFIG. 18 depicts the approximated relationship between the laser pattern and the camera's far-field field of view. - The exemplary method typically includes projecting the laser pattern onto two faces of a standard rectilinear box-shaped object such that the two horizontal laser lines are parallel to and on opposite side of the edge connecting the two faces (i.e., one horizontal laser line above the edge and the other horizontal line below the edge). Additionally, the laser pattern is typically projected such that the laser pattern fully traverses the visible faces of the object.
-
FIG. 19 depicts an exemplary arrangement of a standard rectilinear box-shapedobject 5001 upon which alaser pattern 5002 has been projected. As depicted, the two horizontal laser lines are parallel to and on opposite sides of the edge connecting the two faces. Additionally, thelaser pattern 5002 fully traverse the visible faces of theobject 5001. Accordingly, a number of break points, typically ten break points, are formed in the projectedlaser pattern 5002. These break points are identified inFIG. 19 by open circles. - The exemplary method includes capturing an image of the projected laser pattern on the object (e.g., with a camera system). The dimensions of the object are then determined, at least in part, from the captured image. For example, a processor may be used to process the image to identify the break points in the projected laser pattern. Using the known relationship between the laser pattern and the field of view, the break points may be translated into coordinates in a three-dimensional space. Typically, any two break points which are connected by a laser line segment can be used to calculate a dimension of the object.
- In an exemplary embodiment, the method includes determining the coordinates of the break points in a three-dimensional space based on the known size of the central rectangle (e.g., a square). In other words, the known size of the rectangle is used as a ruler or measuring stick in the image to determine the dimensions of the object.
- Exemplary methods include projecting a laser pattern including laser lines having a profile with a small divergence angle. In other words, the width of the laser lines increases as the distance from the device projecting the pattern increases. The divergence angle is typically between about 1 and 30 milliradians (e.g., between about 2 and 20 milliradians). In an exemplary embodiment, the divergence angle is between about 3 and 10 milliradians (e.g., about 6 milliradians).
- In exemplary embodiments, the laser lines' divergence angle corresponds to the divergence of a small number of pixels (e.g., between about 2 and 10 pixels) within the camera system used to capture an image. Thus, as the field of view of this small number of pixels expands with increasing distance from the camera system, the width of the laser lines increases at a similar rate. Accordingly, the width of the laser lines covers approximately the same number of pixels, although not necessarily the same set of pixels, regardless of the projected laser pattern's distance from the camera system.
- In another exemplary embodiment, the laser pattern includes laser lines having a profile with a divergence angle such that the width of the laser line in the far field corresponds to the field of view of a small number of pixels in the far field. In this regard, the divergence angle of the laser lines does not necessarily match the field of view of the small number of pixels in the near field.
FIG. 20 schematically depicts such a relationship between the laser lines' width and the field of view of a small number of pixels within a camera system. The depicteddevice 6000 includes the camera system and a laser projecting module. - Exemplary methods utilizing a laser pattern that includes laser lines having a profile with a small divergence angle prevents the loss of resolution in the far field. When projected laser lines are conventionally collimated, the laser lines appear increasingly thinner on a target object as the distance between the laser projection module and the target object increases. If the reflected light from a projected laser line falls on an area of the camera system's sensor that is approximately one pixel wide or smaller, the precision of the dimensioning method can be no greater than one pixel. In contrast, when projected laser lines have a profile with a small divergence angle, the projected line has an energy distribution encompassing multiple pixels facilitating a more precise determination of the center of the projected line. Accordingly, methods employing projected laser lines having a profile with a small divergence angle facilitate measurements that exceed the resolution of the camera pixel sampling.
- In yet another aspect, the present invention embraces a terminal for measuring at least one dimension of an object. The terminal includes a range camera, a visible camera (e.g., a grayscale and/or RGB sensor), and a display that are fixed in position and orientation relative to each other. The range camera is configured to produce a range image of an area in which an object is located, and the visible camera is configured to produce a visible image of an area in which the object is located. The display is configured to present information associated with the range camera's field of view and the visible camera's field of view.
- Typically, the range camera's field of view is narrower than the visible camera's field of view. To facilitate accurate dimensioning, the display is configured to present the visible image produced by the visible camera and an outlined shape on the displayed visible image corresponding to the range camera's field of view (e.g., a rectangle). The outlined shape shows the user of the terminal when the object to be dimensioned is within the range camera's field of view. In other words, the interior of the outlined shape typically corresponds to the intersection or overlap between the visible image and the range image.
- In exemplary embodiments, the display is configured to present information associated with the optimal orientation of the range camera and visible camera with respect to the object. Such information further facilitates accurate dimensioning by encouraging the user to adjust the orientation of the terminal to an orientation that accelerates or improves the dimensioning process.
- The display may be configured to present the visible image produced by the visible camera and a symbol on the displayed visible image corresponding to the optical center of the range camera's field of view. Again, presenting such a symbol on the display facilitates accurate dimensioning by encouraging the user to adjust the orientation of the terminal to an orientation that accelerates or improves the dimensioning process.
- In exemplary embodiments, the symbol shown by the display is a crosshair target having three prongs. When the object is a rectangular box, the display may be configured to show the three prongs of the crosshairs on the displayed visible image in an orientation that corresponds to the optimal orientation of the range camera and visible camera with respect to a corner of the rectangular box.
- When the object to be dimensioned is cylindrically shaped (e.g., having a medial axis and base), the display may be configured to show the visible image produced by the visible camera and a line on the displayed visible image in an orientation that corresponds to the optimal orientation of the range camera and visible camera with respect to the medial axis of the object. The display may also be configured to show the visible image produced by the visible camera and an ellipse on the displayed visible image in an orientation that corresponds to the optimal orientation of the range camera and visible camera with respect to the base of the object.
- As noted, the configuration of the terminal's display presents information associated with the range camera's field of view and the visible camera's field of view. The information helps the user determine the three degrees of freedom and/or the three degrees of freedom for translation of the camera relative to the object that will ensure or at least facilitate an accurate measurement of the object.
- In exemplary embodiments, the terminal may include a processor that is configured to automatically initiate a dimensioning method when the orientation of the terminal with respect to an object corresponds to an orientation that accelerates or improves the dimensioning process. Automatically initiating the dimensioning method in this manner prevents any undesirable motion of the terminal that may be induced when an operator presses a button or other input device on the terminal. Additionally, automatically initiating the dimensioning method typically improves the accuracy of the dimensioning method.
- As noted, the terminal's display may be configured to present information associated with the optimal orientation of the range camera and visible camera with respect to the object. The terminal's processor may be configured to analyze the output of the display (i.e., the visible image and the information associated with the optimal orientation) and initiate the dimensioning method (e.g., including capturing a range image) when the orientation information and the visible image align. The terminal's processor may be configured to analyze the output of the display using imaged-based edge detection methods (e.g., a Canny edge detector).
- For example, if the orientation information presented by the display is a crosshair target having three prongs, the processor may be configured to analyze the output of the display using edge detection methods and, when the combined edge strengths of the three prongs and three of the object's edges (i.e., at a corner) exceed a threshold, the processor automatically initiates a dimensioning method. In other words, when the three prongs align with the object's edges, the processor automatically initiates a dimensioning method. Typically, the edge detection methods are only applied in the central part of the display's output image (i.e., near the displayed orientation information) to reduce the amount of computation.
- In exemplary embodiments, the display is configured to present information associated with the optimal distance of the terminal from the object. Such information further facilitates accurate dimensioning by encouraging the user to position the terminal at a distance from the object that accelerates or improves the dimensioning process. For example, the range camera of the terminal typically has a shorter depth of view than does the visible camera. Additionally, when objects are very close to the terminal the range camera typically does not work as accurately, but the visible camera functions normally. Thus, when viewing the visible image produced by the visible camera on the display, objects outside of the range camera's optimal range (i.e., either too close or too far from the terminal to accurately determine the object's dimensions) appear normal.
- Accordingly, the display may be configured to present the visible image produced by the visible camera modified such that portions of the visible image corresponding to portions of the range image with high values (e.g., distances beyond the range camera's optimal range) are degraded (e.g., a percentage of the pixels corresponding to the range image's high values are converted to a different color, such as white or grey). The amount of degradation (e.g., the percentage of pixels converted) typically corresponds to the range image's value beyond the upper end of the range camera's optimal range. In other words, the amount of degradation occurs such that the clarity of objects in the displayed visible image corresponds to the range camera's ability to determine the object's dimensions. The amount of degradation may begin at a certain low level corresponding to a threshold distance from the terminal, increase linearly up to a maximum distance after which the degradation is such that the visible image is no longer displayed (e.g., only grey or white is depicted).
- Similarly, the display may be configured to present the visible image produced by the visible camera modified such that portions of the visible image corresponding to portions of the range image with low values (e.g., distances less than the range camera's optimal range) are degraded (e.g., a percentage of the pixels corresponding to the range image's high values are converted to a different color, such as black or grey). The amount of degradation (e.g., the percentage of pixels converted) may correspond to the range image's value under the lower end of the range camera's optimal range. Typically, the degradation is complete (i.e., only black or grey) if the range image's value is less than the lower end of the range camera's optimal range. Additional aspects of an exemplary terminal and dimensioning method are described herein with respect to
FIGS. 4-16 . - An exemplary method of determining the dimensions of an object using a range camera is described in U.S. patent application Ser. No. 13/278,559 filed at the U.S. Patent and Trademark Office on Oct. 21, 2011 and titled “Determining Dimensions Associated with an Object,” which is hereby incorporated by reference in its entirety.
- In this regard, devices, methods, and systems for determining dimensions associated with an object are described herein. For example, one or more embodiments include a range camera configured to produce a range image of an area in which the object is located, and a computing device configured to determine the dimensions of the object based, at least in part, on the range image.
- One or more embodiments of the present disclosure can increase the automation involved in determining the dimensions associated with (e.g., of) an object (e.g., a box or package to be shipped by a shipping company). For example, one or more embodiments of the present disclosure may not involve an employee of the shipping company physically contacting the object during measurement (e.g., may not involve the employee manually measuring the object and/or manually entering the measurements into a computing system) to determine its dimensions. Accordingly, one or more embodiments of the present disclosure can decrease and/or eliminate the involvement of an employee of the shipping company in determining the dimensions of the object. This can, for example, increase the productivity of the employee, decrease the amount of time involved in determining the object's dimensions, reduce and/or eliminate errors in determining the object's dimensions (e.g., increase the accuracy of the determined dimensions), and/or enable a customer to check in and/or pay for a package's shipping at an automated station (e.g., without the help of an employee), among other benefits.
- In the following description, reference is made to
FIGS. 2 and 3 that form a part hereof. The drawings show by way of illustration how one or more embodiments of the disclosure may be practiced. These embodiments are described in sufficient detail to enable those of ordinary skill in the art to practice one or more embodiments of this disclosure. It is to be understood that other embodiments may be utilized and that process, electrical, and/or structural changes may be made without departing from the scope of the present disclosure. - As will be appreciated, elements shown in the various embodiments herein can be added, exchanged, combined, and/or eliminated so as to provide a number of additional embodiments of the present disclosure. The proportion and the relative scale of the elements provided in
FIGS. 2 and 3 are intended to illustrate the embodiments of the present disclosure, and should not be taken in a limiting sense. As used in the disclosure of this exemplary dimensioning method, “a” or “a number of” something can refer to one or more such things. For example, “a number of planar regions” can refer to one or more planar regions. -
FIG. 2 illustrates asystem 114 for determining dimensions associated with (e.g., of) anobject 112 in accordance with one or more embodiments of the present disclosure of this exemplary dimensioning method. In the embodiment illustrated inFIG. 2 ,object 112 is a rectangular shaped box (e.g., a rectangular shaped package). However, embodiments of the present disclosure are not limited to a particular object shape, object scale, or type of object. For example, in some embodiments, object 112 can be a cylindrical shaped package. As an additional example, object 112 could be a rectangular shaped box with one or more arbitrarily damaged faces. - As shown in
FIG. 2 ,system 114 includes arange camera 102 and acomputing device 104. In the embodiment illustrated inFIG. 2 ,range camera 102 is separate from computing device 104 (e.g.,range camera 102 andcomputing device 104 are separate devices). However, embodiments of the present disclosure are not so limited. For example, in some embodiments,range camera 102 andcomputing device 104 can be part of the same device (e.g.,range camera 102 can includecomputing device 104, or vice versa).Range camera 102 andcomputing device 104 can be coupled by and/or communicate via any suitable wired or wireless connection (not shown inFIG. 2 ). - As shown in
FIG. 2 ,computing device 104 includes aprocessor 106 and amemory 108.Memory 108 can store executable instructions, such as, for example, computer readable instructions (e.g., software), that can be executed byprocessor 106. Although not illustrated inFIG. 2 ,memory 108 can be coupled toprocessor 106. -
Memory 108 can be volatile or nonvolatile memory.Memory 108 can also be removable (e.g., portable) memory, or non-removable (e.g., internal) memory. For example,memory 108 can be random access memory (RAM) (e.g., dynamic random access memory (DRAM) and/or phase change random access memory (PCRA)), read-only memory (ROM) (e.g., electrically erasable programmable read-only memory (EEPROM) and/or compact-disc read-only memory (CD-ROM)), flash memory, a laser disc, a digital versatile disc (DVO) or other optical disk storage, and/or a magnetic medium such as magnetic cassettes, tapes, or disks, among other types of memory. - Further, although
memory 108 is illustrated as being located incomputing device 104, embodiments of the present disclosure are not so limited. For example,memory 108 can also be located internal to another computing resource (e.g., enabling computer readable instructions to be downloaded over the Internet or another wired or wireless connection). - In some embodiments,
range camera 102 can be part of a handheld and/or portable device, such as a barcode scanner. In some embodiments,range camera 102 can be mounted on a tripod. -
Range camera 102 can produce (e.g., capture, acquire, and/or generate) a range image of an area (e.g., scene).Range camera 102 can produce the range image of the area using, for example, structured near-infrared (near-IR) illumination, among other techniques for producing range images. - The range image can be a two-dimensional image that shows the distance to different points in the area from a specific point (e.g., from the range camera). The distance can be conveyed in real-world units (e.g., metric units such as meters or millimeters), or the distance can be an integer value (e.g., 11-bit) that can be converted to real-world units. The range image can be a two-dimensional matrix with one channel that can hold integers or floating point values. For instance, the range image can be visualized as different black and white shadings (e.g., different intensities, brightnesses, and/or darknesses) and/or different colors in any color space (e.g., RGB or HSV) that correspond to different distances between the range camera and different points in the area.
- For example,
range camera 102 can produce a range image of an area (e.g.,area 110 illustrated inFIG. 2 ) in which object 112 is located. That is,range camera 102 can produce a range image of an area that includesobject 112. -
Range camera 102 can be located a distance d fromobject 112 whenrange camera 102 produces the range image, as illustrated inFIG. 2 . Distance d can be, for instance, 0.75 to 5.0 meters. However, embodiments of the present disclosure are not limited to a particular distance betweenrange camera 102 andobject 112. - The range image produced by
range camera 102 can be visualized as black and white shadings corresponding to different distances betweenrange camera 102 and different portions ofobject 112. For example, the darkness of the shading can increase as the distance betweenrange camera 102 and the different portions ofobject 112 decreases (e.g., the closer a portion ofobject 112 is to rangecamera 102, the darker the portion will appear in the range image). Additionally and/or alternatively, the range image can be visualized as different colors corresponding to the different distances betweenrange camera 102 and the different portions ofobject 112.Computing device 104 can determine the dimensions (e.g., the length, width, height, diameter, etc.) ofobject 112 based, at least in part, on the range image produced byrange camera 102. For instance,processor 106 can execute executable instructions stored inmemory 108 to determine the dimensions ofobject 112 based, at least in part, on the range image. - For example,
computing device 104 can identify a number of planar regions in the range image produced byrange camera 102. The identified planar regions may include planar regions that correspond to object 112 (e.g., to surfaces of object 112). That is,computing device 104 can identify planar regions in the range image that correspond to object 112. For instance, in embodiments in which object 112 is a rectangular shaped box (e.g., the embodiment illustrated inFIG. 2 ),computing device 104 can identify two or three mutually orthogonal planar regions that correspond to surfaces (e.g., faces) of object 112 (e.g., the three surfaces ofobject 112 shown inFIG. 2 ). - Once the planar regions that correspond to object 112 have been identified,
computing device 104 can determine the dimensions ofobject 112 based, at least in part, on the identified planar regions (e.g., on the dimensions of the identified planar regions). For example,computing device 104 can determine the dimensions of the planar regions that correspond to object 112. For instance,computing device 104 can determine the dimensions of the planar regions that correspond to object 112 based, at least in part, on the distances of the planar regions within the range image.Computing device 104 can then determine the dimensions ofobject 112 based, at least in part, on the dimensions of the planar regions. -
Computing device 104 can identify the planar regions in the range image that correspond to object 112 by, for example, determining (e.g., calculating) coordinates (e.g., real-world x, y, z coordinates in millimeters) for each point (e.g., each row, column, and depth tuple) in the range image. Intrinsic calibration parameters associated withrange camera 102 can be used to convert each point in the range image into the real-world coordinates. The system can undistort the range image using, for example, the distortion coefficients for the camera to correct for radial, tangential, and/or other types of lens distortion. In some embodiments, the two-dimensional matrix of the real-world coordinates may be downsized by a factor between 0.25 and 0.5. -
Computing device 104 can then build a number of planar regions through the determined real-world coordinates. For example, a number of planar regions can be built near the points, wherein the planar regions may include planes of best fit to the points.Computing device 104 can retain the planar regions that are within a particular (e.g., pre-defined) size and/or a particular portion of the range image. The planar regions that are not within the particular size or the particular portion of the range image can be disregarded. -
Computing device 104 can then upsample each of the planar regions (e.g., the mask of each of the planar regions) that are within the particular size and/or the particular portion of the range image to fit in an image of the original (e.g., full) dimensions of the range image.Computing device 104 can then refine the planar regions to include only points that lie within an upper bound from the planar regions. -
Computing device 104 can then fit a polygon to each of the planar regions that are within the particular size and/or the particular portion of the range image, and retain the planar regions whose fitted polygon has four vertices and is convex. These retained planar regions are the planar regions that correspond to object 112 (e.g., to surfaces of object 112). The planar regions whose fitted polygon does not have four vertices and/or is not convex can be disregarded.Computing device 104 can also disregard the planar regions in the range image that correspond to the ground plane and background clutter ofarea 110. -
Computing device 104 can disregard (e.g., ignore) edge regions in the range image that correspond to the edges ofarea 110 while identifying the planar regions in the range image that correspond to object 112. For example,computing device 104 can run a three dimensional edge detector on the range image before identifying planar regions in the range image, and can then disregard the detected edge regions while identifying the planar regions. The edge detection can also identify non-uniform regions that can be disregarded while identifying the planar regions. - Once the planar regions that correspond to object 112 have been identified,
computing device 104 can determine the dimensions ofobject 112 based, at least in part, on the identified planar regions (e.g., on the dimensions of the identified planar regions). For example,computing device 104 can determine the dimensions ofobject 112 by arranging the identified planar regions (e.g., the planar regions whose fitted polygon has four vertices and is convex) into a shape corresponding to the shape ofobject 112, and determining a measure of centrality (e.g., an average) for the dimensions of clustered edges of the arranged shape. The dimensions of the edges of the arranged shape correspond to the dimensions ofobject 112. - Once the arranged shape (e.g., the bounding volume of the object) is constructed,
computing device 104 can perform (e.g., run) a number of quality checks. For example, in embodiments in which object 112 is a rectangular shaped box,computing device 104 can determine whether the identified planar regions fit together into a rectangular arrangement that approximates a true rectangular box within (e.g., below) a particular error threshold. - In some embodiments,
computing device 104 can include a user interface (not shown inFIG. 2 ). The user interface can include, for example, a screen that can provide (e.g., display and/or present) information to a user ofcomputing device 104. For example, the user interface can provide the determined dimensions ofobject 112 to a user ofcomputing device 104. - In some embodiments,
computing device 104 can determine the volume ofobject 112 based, at least in part, on the determined dimensions ofobject 112.Computing device 104 can provide the determined volume to a user ofcomputing device 104 via the user interface. -
FIG. 3 illustrates amethod 220 for determining dimensions associated with (e.g., of) an object in accordance with one or more embodiments of the present disclosure. The object can be, for example, object 112 previously described in connection withFIG. 2 .Method 220 can be performed, for example, by computingdevice 104 previously described in connection withFIG. 2 . - At
block 222,method 220 includes capturing a range image of a scene that includes the object. The range image can be, for example, analogous to the range image previously described in connection withFIG. 2 (e.g., the range image of the scene can be analogous to the range image ofarea 110 illustrated inFIG. 2 ), and the range image can be captured in a manner analogous to that previously described in connection withFIG. 2 . - At
block 224,method 220 includes determining the dimensions (e.g., the length, width, height, diameter, etc.) associated with the object based, at least in part, on the range image. For example, the dimensions associated with (e.g., of) the object can be determined in a manner analogous to that previously described in connection withFIG. 2 . In some embodiments, the volume of the object can be determined based, at least in part, on the determined dimensions associated with the object. - As an additional example, determining the dimensions associated with the object can include determining the dimensions of the smallest volume rectangular box large enough to contain the object based, at least in part, on the range image. The dimensions of the smallest volume rectangular box large enough to contain the object can be determined by, for example, determining and disregarding (e.g., masking out) the portion (e.g., part) of the range image containing information (e.g., data) associated with (e.g., from) the ground plane of the scene that includes the object, determining (e.g., finding) the height of a plane that is parallel to the ground plane and above which the object does not extend, projecting additional (e.g., other) portions of the range image on the ground plane, and determining (e.g., estimating) a bounding rectangle of the projected portions of the range image on the ground plane.
- Although specific embodiments have been illustrated and described herein, those of ordinary skill in the art will appreciate that any arrangement calculated to achieve the same techniques can be substituted for the specific embodiments shown. This disclosure of exemplary methods of determining the dimensions of an object is intended to cover any and all adaptations or variations of various embodiments of the disclosure.
- An exemplary method of determining the dimensions of an object and an exemplary terminal for dimensioning objects are described in U.S. patent application Ser. No. 13/471,973 filed at the U.S. Patent and Trademark Office on May 15, 2012 and titled “Terminals and Methods for Dimensioning Objects,” which is hereby incorporated by reference in its entirety.
-
FIG. 4 illustrates one embodiment of a terminal 1000 operable for measuring at least one dimension of anobject 10 in accordance with aspects of the present invention. For example, terminal 1000 may determine a height H, a width W, and a depth D of an object. In addition, terminal 1000 may be operable to read adecodable indicia 15 such as a barcode disposed on the object. For example, the terminal may be suitable for shipping applications in which an object such as a package is subject to shipping from one location to another location. The dimension (dimensioning) information and other measurement (e.g., volume measurement information) respectingobject 10 may be used, e.g., to determine a cost for shipping a package or for determining a proper arrangement of the package in a shipping container. - In one embodiment, a terminal in accordance with aspects of the present invention may include at least one or more imaging subsystems such as one or more camera modules and an actuator to adjust the pointing angle of the one or more camera modules to provide true stereo imaging. The terminal may be operable to attempt to determine at least one of a height, a width, and a depth based on effecting the adjustment of the pointing angle of the one or more camera modules.
- For example, a terminal in accordance with aspects of the present invention may include at least one or more imaging subsystems such as camera modules and an actuator based on wires of nickel-titanium shape memory alloy (SMA) and an associated control and heating ASIC (application-specific integrated circuit) to adjust the pointing angle of the one or more camera modules to provide true stereo imaging. Using true stereo imaging, the distance to the package can be determined by measuring the amount of drive current or voltage drop across the SMA actuator. The terminal may be operable to attempt to determine at least one of a height, a width, a depth, based on the actuator effecting the adjustment of the pointing angle of the one or more camera modules, the measured distance, and the obtained image of the object.
- With reference still to
FIG. 4 , terminal 1000 in one embodiment may include atrigger 1220, adisplay 1222, apointer mechanism 1224, and akeyboard 1226 disposed on a common side of a hand heldhousing 1014.Display 1222 andpointer mechanism 1224 in combination can be regarded as a user interface of terminal 1000. Terminal 1000 may incorporate a graphical user interface and may presentbuttons Display 1222 in one embodiment can incorporate a touch panel for navigation and virtual actuator selection in which case a user interface of terminal 1000 can be provided bydisplay 1222. Hand heldhousing 1014 of terminal 1000 can in another embodiment be devoid of a display and can be in a gun style form factor. The terminal may be an indicia reading terminal and may generally include hand held indicia reading terminals, fixed indicia reading terminals, and other terminals. Those of ordinary skill in the art will recognize that the present invention is applicable to a variety of other devices having an imaging subassembly which may be configured as, for example, mobile phones, cell phones, satellite phones, smart phones, telemetric devices, personal data assistants, and other devices. -
FIG. 5 depicts a block diagram of one embodiment of terminal 1000. Terminal 1000 may generally include at least oneimaging subsystem 900, anillumination subsystem 800, hand heldhousing 1014, amemory 1085, and aprocessor 1060.Imaging subsystem 900 may include animaging optics assembly 200 operable for focusing an image onto an imagesensor pixel array 1033. Anactuator 950 is operably connected toimaging subsystem 900 for movingimaging subsystem 900 and operably connected to processor 1060 (FIG. 5 ) viainterface 952. Hand heldhousing 1014 may encapsulateillumination subsystem 800,imaging subsystem 900, andactuator 950.Memory 1085 is capable of storing and or capturing a frame of image data, in which the frame of image data may represent light incident onimage sensor array 1033. After an exposure period, a frame of image data can be read out. Analog image signals that are read out ofarray 1033 can be amplified bygain block 1036 converted into digital form byanalog-to-digital converter 1037 and sent toDMA unit 1070.DMA unit 1070, in turn, can transfer digitized image data intovolatile memory 1080.Processor 1060 can address one or more frames of image data retained involatile memory 1080 for processing of the frames for determining one or more dimensions of the object and/or for decoding of decodable indicia represented on the object. -
FIG. 6 illustrates one embodiment of the imaging subsystem employable in terminal 1000. In this exemplary embodiment, animaging subsystem 2900 may include a firstfixed imaging subsystem 2210, and a secondmovable imaging subsystem 2220. Anactuator 2300 may be operably connected toimaging subsystem 2220 for movingimaging subsystem 2220. First fixedimaging subsystem 2210 is operable for obtaining a first image or frame of image data of the object, and secondmovable imaging subsystem 2220 is operable for obtaining a second image or frame of image data of the object.Actuator 2300 is operable to bring the second image into alignment with the first image as described in greater detail below. In addition, either the firstfixed imaging subsystem 2210 or the secondmovable imaging subsystem 2220 may also be employed to obtain an image of decodable indicia 15 (FIG. 4 ) such as a decodable barcode. -
FIGS. 6-10 illustrate one embodiment of the terminal in a spatial measurement mode. For example, a spatial measurement mode may be made active by selection of button 1232 (FIG. 4 ). In a spatial measurement operating mode, terminal 1000 (FIG. 4 ) can perform one or more spatial measurements, e.g., measurements to determine one or more of a terminal to target distance (z distance) or a dimension (e.g., h, w, d) of an object or another spatial related measurement (e.g., a volume measurement, a distance measurement between any two points). - Initially, at
block 602 as shown inFIG. 7 , terminal 10 may obtain or capture first image data, e.g., at least a portion of a frame of image data such as afirst image 100 using fixed imaging subsystem 2210 (FIG. 6 ) within a field of view 20 (FIGS. 4 and 8 ). For example, a user may operate terminal 1000 to displayobject 10 using fixed imaging subsystem 2210 (FIG. 6 ) in the center ofdisplay 1222 as shown inFIG. 9 . Terminal 1000 can be configured so thatblock 602 is executed responsively to trigger 1220 (FIG. 4 ) being initiated. With reference again toFIG. 3 , imaging the object generally in the center of the display results when the object is aligned with an imaging axis oroptical axis 2025 of fixedimaging subsystem 2210. For example, the optical axis may be a line or an imaginary line that defines the path along which light propagates through the system. The optical axis may passes through the center of curvature of the imaging optics assembly and may be coincident with a mechanical axis ofimaging subsystem 2210. - With reference again to
FIG. 7 , at 604, terminal 1000 may be adapted to move an optical axis 2026 (FIG. 6 ) of movable imaging subsystem 2220 (FIG. 6 ) using actuator 2300 (FIG. 6 ) to align second image data, e.g., at least a portion of a frame of image data such as asecond image 120 using movable imaging subsystem 2220 (FIG. 6 ) within a field of view 20 (FIGS. 4 and 10 ) with the first image data. As shown inFIG. 6 ,optical axis 2026 ofimaging subsystem 2220 may be pivoted, tilted or deflected, for example in the direction of double-headed arrow R1 in response to actuator 2300 to align the second image of the object with the object in the first image. - For example, the terminal may include a suitable software program employing a subtraction routine to determine when the image of the object in the second image data is aligned with the object in the first image data. The closer the aligned images of the object are, the resulting subtraction of the two images such as subtracting the amplitude of the corresponding pixels of the imagers will become smaller as the images align and match. The entire images of the object may be compared, or a portion of the images of the object may be compared. Thus, the better the images of the object are aligned, the smaller the subtracted difference will be.
- A shown in
FIG. 7 , at 606, an attempt to determine at least one of a height, a width, and a depth dimension of the object is made based on moving the optical axis of the movable imaging subsystem to align the image of the object in the second image data with the image of the object in the first image data. For example, the position of the angle of the optical axis is related to the distance between the terminal and the object, and the position of the angle of the optical axis and/or the distance between the terminal and the object may be used in combination with the number of pixels used for imaging the object in the image sensor array to the determine the dimensions of the object. - With reference again to
FIG. 6 , the angle of the optical axis of the movable imaging subsystem relative to the terminal is related to the distance from the movable imaging subsystem (e.g., the front of the images sensor array) to the object (e.g., front surface, point, edge, etc.), and the angle of the optical axis of the movable imaging subsystem relative to the terminal is related to the distance from the fixed imaging subsystem (e.g., the front of the images sensor array) to the object (e.g., front surface, point, edge, etc.). - For example, the relationship between an angle Θ of the optical axis of the movable imaging subsystem relative to the terminal, a distance A from the fixed imaging subsystem to the object, and a distance C between the fixed imaging subsystem and the movable imaging subsystem may be expressed as follows:
-
tan Θ=A/C. - The relationship between angle Θ of the optical axis of the movable imaging subsystem relative to the terminal, a distance B from the fixed imaging subsystem to the object, and distance C between the fixed imaging subsystem and the movable imaging subsystem may be expressed as follows:
-
cos Θ=C/B. - With reference to
FIG. 11 , the actual size of an object relative to the size of the object observed on an image sensor array may be generally defined as follows: -
- where h is a dimension of the object (such as height) of the object on the image sensor array, f is focal length of the imaging optics lens, H is a dimension of the actual object (such as height), and D is distance from the object to the imaging optic lens.
- With reference to measuring, for example a height dimension, knowing the vertical size of the imaging sensor (e.g., the height in millimeters or inches) and number of pixels vertically disposed along the imaging sensor, the height of the image of the object occupying a portion of the imaging sensor would be related to a ratio of the number of pixels forming the imaged object to the total pixels disposed vertically along the image sensor.
- For example, a height of an observed image on the imaging sensor may be determined as follows:
-
- In one embodiment, an actual height measurement may be determined as follows:
-
- For example, where an observed image of the object is 100 pixels high, and a distance D is 5 feet, the actual object height would be greater than when the observed image of the object is 100 pixels high, and a distance D is 2 feet. Other actual dimensions (e.g., width and depth) of the object may be similarly obtained.
- From the present description, it will be appreciated that the terminal may be setup using a suitable setup routine that is accessed by a user or by a manufacturer for coordinating the predetermined actual object to dimensioning at various distances, e.g., coordinate a voltage or current reading required to effect the actuator to align the object in the second image with the image of the object in the first image, to create a lookup table. Alternatively, suitable programming or algorithms employing, for example, the relationships described above, may be employed to determine actual dimensions based on the number of pixels observed on the imaging sensor. In addition, suitable edge detection or shape identifier algorithms or processing may be employed with analyzing standard objects, e.g., boxes, cylindrical tubes, triangular packages, etc., to determine and/or confirm determined dimensional measurements.
-
FIG. 12 illustrates another embodiment of an imaging subsystem employable in terminal 1000 (FIG. 4 ). Alignment of the second image may also be accomplished using a projected image pattern P from an aimer onto the object to determine the dimensions of the object. In activating the terminal, an aimer such as a laser aimer may project an aimer pattern onto the object. The projected aimer pattern may be a dot, point, or other pattern. The imaged object with the dot in the second image may be aligned, e.g., the actuator effective to move the movable imaging subsystem so that the laser dot on the imaged second image aligns with the laser dot in the first image. The aimer pattern may be orthogonal lines or a series of dots that a user may be able to align adjacent to or along one or more sides or edges such as orthogonal sides or edges of the object. - In this exemplary embodiment, an
imaging subsystem 3900 may include a firstfixed imaging subsystem 3210, and a secondmovable imaging subsystem 3220. In addition, terminal 1000 (FIG. 4 ) may include an aiming subsystem 600 (FIG. 5 ) for projecting an aiming pattern onto the object, in accordance with aspects of the present invention. An actuator 3300 may be operably attached toimaging subsystem 3220 for movingimaging subsystem 3220. First fixedimaging subsystem 3210 is operable for obtaining a first image of the object having an aimer pattern P such as a point or other pattern. Secondmovable imaging subsystem 3220 is operable for obtaining a second image of the object. Actuator 3300 is operable to bring the second image into alignment with the first image be aligning point P in the second image with point p in the second image. For example, anoptical axis 3026 ofimaging subsystem 3220 may be pivoted, tilted or deflected, for example in the direction of double-headed arrow R2 in response to actuator 3300 to align the second image of the object with the object in the first image. In addition, either the firstfixed imaging subsystem 3210, or the secondmovable imaging subsystem 3220 may also be employed to obtain an image of decodable indicia 15 (FIG. 4 ) such as a decodable barcode. -
FIG. 13 illustrates another embodiment of an imaging subsystem employable in terminal 1000 (FIG. 4 ). In this embodiment, animaging subsystem 4900 may be employed in accordance with aspects of the present invention. For example, animaging subsystem 4900 may include amovable imaging subsystem 4100. Anactuator 4300 may be operably attached toimaging subsystem 4100 for movingimaging subsystem 4100 from a first position to a second position remote from the first position.Movable imaging subsystem 4100 is operable for obtaining a first image of the object at the first position or orientation, and after taking a first image, moved or translate the movable imaging subsystem to a second location or orientation such as in the direction of arrowL1 using actuator 4300 to provide a distance L between the first position and the second position prior to aligning the object and obtaining a second image of the object.Actuator 4300 is also operable to bring the second image into alignment with the first image. For example, an optical axis 4026 ofimaging subsystem 4100 may be pivoted, tilted or deflected, for example in the direction of double-headed arrow R3 in response to actuator 4100 to align the second image of the object with the object in the first image. As noted above, terminal 1000 (FIG. 4 ) may include an aiming subsystem 600 (FIG. 5 ) for projecting an aiming pattern onto the object in combination withimaging subsystem 4900. In addition, themovable imaging subsystem 4100 may also be employed to obtain an image of decodable indicia 15 (FIG. 4 ) such as a decodable barcode. - From the present description of the various imaging subsystems and actuators, it will be appreciated that the second aligned image be performed in an operable time after the first image so that the effect of the user holding and moving the terminal when obtaining the images or the object moving when obtaining the image does not result in errors in determining the one or more dimensions of the object. It is desirable minimize the time delay between the first image and the second aligned image. For example, it may be suitable that the images be obtained within about 0.5 second or less, or possibly within about ⅛ second or less, about 1/16 second or less, or about 1/32 second or less.
- With reference to
FIGS. 6 , 11, and 12, the actuators employed in the various embodiments may comprise one or more actuators which are positioned in the terminal to move the movable imagining subsystem in accordance with instructions received from processor 1060 (FIG. 5 ). Examples of a suitable actuator include a shaped memory alloy (SMA) which changes in length in response to an electrical bias, a piezo actuator, a MEMS actuator, and other types of electromechanical actuators. The actuator may allow for moving or pivoting the optical axis of the imaging optics assembly, or in connection with the actuator inFIG. 13 , also moving the imaging subsystem from side-to-side along a line or a curve. - As shown in
FIGS. 14 and 15 , anactuator 5300 may comprise fouractuators imaging subsystem 5900 to movable support the imaging subsystem on acircuit board 5700. The actuators may be selected so that they are capable of compressing and expanding and, when mounted to the circuit board, are capable of pivoting the imaging subsystem relative to the circuit board. The movement of imaging subsystem by the actuators may occur in response to a signal from the processor. The actuators may employ a shaped memory alloy (SMA) member which cooperates with one ormore biasing elements 5350 such as springs, for operably moving the imaging subsystem. In addition, although four actuators are shown as being employed, more or fewer than four actuators may be used. The processor may process the comparison of the first image to the observed image obtained from the movable imaging subsystem, and based on the comparison, determine the required adjustment of the position of the movable imaging subsystem to align the object in the second image with the obtained image in the first obtained image. - In addition, the terminal may include a motion sensor 1300 (
FIG. 5 ) operably connected to processor 1060 (FIG. 5 ) via interface 1310 (FIG. 5 ) operable to remove the effect of shaking due to the user holding the terminal at the same time as obtaining the first image and second aligned image which is used for determining one of more dimensions of the object as described above. A suitable system for use in the above noted terminal may include the image stabilizer for a microcamera disclosed in U.S. Pat. No. 7,307,653 issued to Dutta, the entire contents of which are incorporated herein by reference. - The imaging optics assembly may employ a fixed focus imaging optics assembly. For example, the optics may be focused at a hyperfocal distance so that objects in the images from some near distance to infinity will be sharp. The imaging optics assembly may be focused at a distance of 15 inches or greater, in the range of 3 or 4 feet distance, or at other distances. Alternatively, the imaging optics assembly may comprise an autofocus lens. The exemplary terminal may include a suitable shape memory alloy actuator apparatus for controlling an imaging subassembly such as a microcamera disclosed in U.S. Pat. No. 7,974,025 by Topliss, the entire contents of which are incorporated herein by reference.
- From the present description, it will be appreciated that the exemplary terminal may be operably employed to separately obtain images and dimensions of the various sides of an object, e.g., two or more of a front elevational view, a side elevational view, and a top view, may be separately obtained by a user similar to measuring an object as one would with a ruler.
- The exemplary terminal may include a suitable autofocusing microcamera such as a microcamera disclosed in U.S. Patent Application Publication No. 2011/0279916 by Brown et al., the entire contents of which is incorporated herein by reference.
- In addition, it will be appreciated that the described imaging subsystems in the embodiments shown in
FIGS. 6 , 12, and 13, may employ fluid lenses or adaptive lenses. For example, a fluid lens or adaptive lens may comprise an interface between two fluids having dissimilar optical indices. The shape of the interface can be changed by the application of external forces so that light passing across the interface can be directed to propagate in desired directions. As a result, the optical characteristics of a fluid lens, such its focal length and the orientation of its optical axis, can be changed. With use of a fluid lens or adaptive lens, for example, an actuator may be operable to apply pressure to the fluid to change the shape of the lens. In another embodiments, an actuator may be operable to apply a DC voltage across a coating of the fluid to decrease its water repellency in a process called electrowetting to change the shape of the lens. The exemplary terminal may include a suitable fluid lens as disclosed in U.S. Pat. No. 8,027,096 issued to Feng et al., the entire contents of which is incorporated herein by reference. - With reference to
FIG. 16 , a timing diagram may be employed for obtaining a first image of the object for use in determining one or more dimensions as described above, and also used for decoding a decodable indicia disposed on an object using for example, the first imaging subassembly. At the same time or generally simultaneously after activation of the first imaging subassembly, the movable subassembly and actuator may be activated to determine one or more dimensions as described above. For example, the first frame of image data of the object using the first imaging subassembly may be used in combination with the aligned image of the object using the movable imaging subsystem. - A
signal 7002 may be a trigger signal which can be made active by actuation of trigger 1220 (FIG. 4 ), and which can be deactivated by releasing of trigger 1220 (FIG. 4 ). A trigger signal may also become inactive after a time out period or after a successful decode of a decodable indicia. - A
signal 7102 illustrates illumination subsystem 800 (FIG. 5 ) having an energization level, e.g., illustrating an illumination pattern where illumination or light is alternatively turned on and off.Periods periods - A
signal 7202 is an exposure control signal illustrating active states defining exposure periods and inactive states intermediate the exposure periods for an image sensor of a terminal. For example, in an active state, an image sensor array of terminal 1000 (FIG. 4 ) is sensitive to light incident thereon.Exposure control signal 7202 can be applied to an image sensor array of terminal 1000 (FIG. 4 ) so that pixels of an image sensor array are sensitive to light during active periods of the exposure control signal and not sensitive to light during inactive periods thereof. Duringexposure periods FIG. 4 ) is sensitive to light incident thereon. - A
signal 7302 is a readout control signal illustrating the exposed pixels in the image sensor array being transferred to memory or secondary storage in the imager so that the imager may be operable to being ready for the next active portion of the exposure control signal. In the timing diagram ofFIG. 16 ,period 7410 may be used in combination with movable imaging subsystem to determine one or more dimensions as described above. In addition, in the timing diagram ofFIG. 16 ,periods FIG. 5 ) may process one or more frames of image data. For example,periods FIG. 4 ) was illuminating the decodable indicia. - With reference again to
FIG. 5 , indicia reading terminal 1000 may include animage sensor 1032 comprising multiple pixelimage sensor array 1033 having pixels arranged in rows and columns of pixels, associatedcolumn circuitry 1034 androw circuitry 1035. Associated with theimage sensor 1032 can be amplifier circuitry 1036 (amplifier), and an analog todigital converter 1037 which converts image information in the form of analog signals read out ofimage sensor array 1033 into image information in the form of digital signals.Image sensor 1032 can also have an associated timing andcontrol circuit 1038 for use in controlling, e.g., the exposure period ofimage sensor 1032, gain applied to theamplifier 1036, etc. Thenoted circuit components image sensor array 1033 andimaging lens assembly 200 can be incorporated in hand heldhousing 1014. - In one example, image sensor integrated circuit 1040 can be provided e.g., by an MT9V022 (752×480 pixel array) or an MT9V023 (752×480 pixel array) image sensor integrated circuit available from Aptina Imaging (formerly Micron Technology, Inc.). In one example,
image sensor array 1033 can be a hybrid monochrome and color image sensor array having a first subset of monochrome pixels without color filter elements and a second subset of color pixels having color sensitive filter elements. In one example, image sensor integrated circuit 1040 can incorporate a Bayer pattern filter, so that defined at theimage sensor array 1033 are red pixels at red pixel positions, green pixels at green pixel positions, and blue pixels at blue pixel positions. Frames that are provided utilizing such an image sensor array incorporating a Bayer pattern can include red pixel values at red pixel positions, green pixel values at green pixel positions, and blue pixel values at blue pixel positions. In an embodiment incorporating a Bayer pattern image sensor array,processor 1060 prior to subjecting a frame to further processing can interpolate pixel values at frame pixel positions intermediate of green pixel positions utilizing green pixel values for development of a monochrome frame of image data. Alternatively,processor 1060 prior to subjecting a frame for further processing can interpolate pixel values intermediate of red pixel positions utilizing red pixel values for development of a monochrome frame of image data.Processor 1060 can alternatively, prior to subjecting a frame for further processing interpolate pixel values intermediate of blue pixel positions utilizing blue pixel values. An imaging subsystem of terminal 1000 can includeimage sensor 1032 andlens assembly 200 for focusing an image ontoimage sensor array 1033 ofimage sensor 1032. - In the course of operation of terminal 1000, image signals can be read out of
image sensor 1032, converted, and stored into a system memory such asRAM 1080.Memory 1085 of terminal 1000 can includeRAM 1080, a nonvolatile memory such asEPROM 1082 and astorage memory device 1084 such as may be provided by a flash memory or a hard drive memory. In one embodiment, terminal 1000 can includeprocessor 1060 which can be adapted to read out image data stored inmemory 1080 and subject such image data to various image processing algorithms. Terminal 1000 can include a direct memory access unit (DMA) 1070 for routing image information read out fromimage sensor 1032 that has been subject to conversion toRAM 1080. In another embodiment, terminal 1000 can employ a system bus providing for bus arbitration mechanism (e.g., a PCI bus) thus eliminating the need for a central DMA controller. A skilled artisan would appreciate that other embodiments of the system bus architecture and/or direct memory access components providing for efficient data transfer between theimage sensor 1032 andRAM 1080 are within the scope and the spirit of the present invention. - Reference still to
FIG. 5 and referring to further aspects of terminal 1000,imaging lens assembly 200 can be adapted for focusing an image ofdecodable indicia 15 located within a field ofview 20 on the object ontoimage sensor array 1033. A size in target space of a field ofview 20 of terminal 1000 can be varied in a number of alternative ways. A size in target space of a field ofview 20 can be varied, e.g., by changing a terminal to target distance, changing an imaging lens assembly setting, changing a number of pixels ofimage sensor array 1033 that are subject to read out. Imaging light rays can be transmitted about an imaging axis.Lens assembly 200 can be adapted to be capable of multiple focal lengths and multiple planes of optimum focus (best focus distances). - Terminal 1000 may include
illumination subsystem 800 for illumination of target, and projection of an illumination pattern (not shown).Illumination subsystem 800 may emit light having a random polarization. The illumination pattern, in the embodiment shown can be projected to be proximate to but larger than an area defined by field ofview 20, but can also be projected in an area smaller than an area defined by a field ofview 20.Illumination subsystem 800 can include alight source bank 500, comprising one or more light sources.Light source assembly 800 may further include one or more light source banks, each comprising one or more light sources, for example. Such light sources can illustratively include light emitting diodes (LEDs), in an illustrative embodiment. LEDs with any of a wide variety of wavelengths and filters or combination of wavelengths or filters may be used in various embodiments. Other types of light sources may also be used in other embodiments. The light sources may illustratively be mounted to a printed circuit board. This may be the same printed circuit board on which an image sensor integrated circuit 1040 having animage sensor array 1033 may illustratively be mounted. - Terminal 1000 can also include an aiming
subsystem 600 for projecting an aiming pattern (not shown). Aimingsubsystem 600 which can comprise a light source bank can be coupled to aiming light source bankpower input unit 1208 for providing electrical power to a light source bank of aimingsubsystem 600.Power input unit 1208 can be coupled tosystem bus 1500 viainterface 1108 for communication withprocessor 1060. - In one embodiment,
illumination subsystem 800 may include, in addition tolight source bank 500, anillumination lens assembly 300, as is shown in the embodiment ofFIG. 5 . In addition to or in place ofillumination lens assembly 300,illumination subsystem 800 can include alternative light shaping optics, e.g., one or more diffusers, mirrors and prisms. In use, terminal 1000 can be oriented by an operator with respect to a target, (e.g., a piece of paper, a package, another type of substrate, screen, etc.) bearingdecodable indicia 15 in such manner that the illumination pattern (not shown) is projected ondecodable indicia 15. In the example ofFIG. 5 ,decodable indicia 15 is provided by a 10 barcode symbol.Decodable indicia 15 could also be provided by a 2D barcode symbol or optical character recognition (OCR) characters. Referring to further aspects of terminal 1000,lens assembly 200 can be controlled with use of an electricalpower input unit 1202 which provides energy for changing a plane of optimum focus oflens assembly 200. In one embodiment, electricalpower input unit 1202 can operate as a controlled voltage source, and in another embodiment, as a controlled current source. Electricalpower input unit 1202 can apply signals for changing optical characteristics oflens assembly 200, e.g., for changing a focal length and/or a best focus distance of (a plane of optimum focus of)lens assembly 200. A light source bank electricalpower input unit 1206 can provide energy tolight source bank 500. In one embodiment, electricalpower input unit 1206 can operate as a controlled voltage source. In another embodiment, electricalpower input unit 1206 can operate as a controlled current source. In another embodiment electricalpower input unit 1206 can operate as a combined controlled voltage and controlled current source. Electricalpower input unit 1206 can change a level of electrical power provided to (energization level of)light source bank 500, e.g., for changing a level of illumination output bylight source bank 500 ofillumination subsystem 800 for generating the illumination pattern. - In another aspect, terminal 1000 can include a
power supply 1402 that supplies power to apower grid 1404 to which electrical components of terminal 1000 can be connected.Power supply 1402 can be coupled to various power sources, e.g., abattery 1406, a serial interface 1408 (e.g., USB, RS232), and/or AC/DC transformer 1410. - Further, regarding
power input unit 1206,power input unit 1206 can include a charging capacitor that is continually charged bypower supply 1402.Power input unit 1206 can be configured to output energy within a range of energization levels. An average energization level ofillumination subsystem 800 during exposure periods with the first illumination and exposure control configuration active can be higher than an average energization level of illumination and exposure control configuration active. - Terminal 1000 can also include a number of peripheral
devices including trigger 1220 which may be used to make active a trigger signal for activating frame readout and/or certain decoding processes. Terminal 1000 can be adapted so that activation oftrigger 1220 activates a trigger signal and initiates a decode attempt. Specifically, terminal 1000 can be operative so that in response to activation of a trigger signal, a succession of frames can be captured by way of read out of image information from image sensor array 1033 (typically in the form of analog signals) and then storage of the image information after conversion into memory 1080 (which can buffer one or more of the succession of frames at a given time).Processor 1060 can be operative to subject one or more of the succession of frames to a decode attempt. - For attempting to decode a barcode symbol, e.g., a one dimensional barcode symbol,
processor 1060 can process image data of a frame corresponding to a line of pixel positions (e.g., a row, a column, or a diagonal set of pixel positions) to determine a spatial pattern of dark and light cells and can convert each light and dark cell pattern determined into a character or character string via table lookup. Where a decodable indicia representation is a 2D barcode symbology, a decode attempt can comprise the steps of locating a finder pattern using a feature detection algorithm, locating matrix lines intersecting the finder pattern according to a predetermined relationship with the finder pattern, determining a pattern of dark and light cells along the matrix lines, and converting each light pattern into a character or character string via table lookup. - Terminal 1000 can include various interface circuits for coupling various peripheral devices to system address/data bus (system bus) 1500, for communication with
processor 1060 also coupled tosystem bus 1500. Terminal 1000 can include aninterface circuit 1028 for coupling image sensor timing andcontrol circuit 1038 tosystem bus 1500, aninterface circuit 1102 for coupling electricalpower input unit 1202 tosystem bus 1500, aninterface circuit 1106 for coupling illumination light source bankpower input unit 1206 tosystem bus 1500, and aninterface circuit 1120 forcoupling trigger 1220 tosystem bus 1500. Terminal 1000 can also includedisplay 1222 coupled tosystem bus 1500 and in communication withprocessor 1060, via aninterface 1122, as well aspointer mechanism 1224 in communication withprocessor 1060 via aninterface 1124 connected tosystem bus 1500. Terminal 1000 can also includekeyboard 1226 coupled tosystems bus 1500 and in communication withprocessor 1060 via aninterface 1126. Terminal 1000 can also includerange detector unit 1210 coupled tosystem bus 1500 viainterface 1110. In one embodiment,range detector unit 1210 can be an acoustic range detector unit. Various interface circuits of terminal 1000 can share circuit components. For example, a common microcontroller can be established for providing control inputs to both image sensor timing andcontrol circuit 1038 and topower input unit 1206. A common microcontroller providing control inputs tocircuit 1038 and topower input unit 1206 can be provided to coordinate timing between image sensor array controls and illumination subsystem controls. - A succession of frames of image data that can be captured and subject to the described processing can be full frames (including pixel values corresponding to each pixel of
image sensor array 1033 or a maximum number of pixels read out fromimage sensor array 1033 during operation of terminal 1000). A succession of frames of image data that can be captured and subject to the described processing can also be “windowed frames” comprising pixel values corresponding to less than a full frame of pixels ofimage sensor array 1033. A succession of frames of image data that can be captured and subject to the above described processing can also comprise a combination of full frames and windowed frames. A full frame can be read out for capture by selectively addressing pixels ofimage sensor 1032 havingimage sensor array 1033 corresponding to the full frame. A windowed frame can be read out for capture by selectively addressing pixels or ranges of pixels ofimage sensor 1032 havingimage sensor array 1033 corresponding to the windowed frame. In one embodiment, a number of pixels subject to addressing and read out determine a picture size of a frame. Accordingly, a full frame can be regarded as having a first relatively larger picture size and a windowed frame can be regarded as having a relatively smaller picture size relative to a picture size of a full frame. A picture size of a windowed frame can vary depending on the number of pixels subject to addressing and readout for capture of a windowed frame. - Terminal 1000 can capture frames of image data at a rate known as a frame rate. A typical frame rate is 60 frames per second (FPS) which translates to a frame time (frame period) of 16.6 ms. Another typical frame rate is 30 frames per second (FPS) which translates to a frame time (frame period) of 33.3 ms per frame. A frame rate of terminal 1000 can be increased (and frame time decreased) by decreasing of a frame picture size.
- In numerous cases herein wherein systems and apparatuses and methods are described as having a certain number of elements, it will be understood that such systems, apparatuses and methods can be practiced with fewer than the mentioned certain number of elements. Also, while a number of particular embodiments have been described, it will be understood that features and aspects that have been described with reference to each particular embodiment can be used with each remaining particularly described embodiment.
- Another exemplary method of determining the dimensions of an object utilizes one or more of the foregoing methods to improve the accuracy of the method. In particular, the method includes capturing a range image of the object and capturing a visible image of the object (e.g., using a range camera with both an infra-red sensor and an RGB or monochrome camera). The range image and visible image are then aligned based on the relative positions from which the two images were captured.
- In an exemplary embodiment, the method includes performing a first method of determining the object's dimensions based on either the range image or the visible image. The method then includes performing a second method of determining the object's dimensions based on the other image (i.e., not the image used in the first method). The results of the first and second methods are then compared. If the compared results are not within a suitable threshold, new images may be captured or the first and second methods may be performed again using the original images.
- In another exemplary embodiment, the method includes simultaneously performing a first method of determining the object's dimensions based on the range image and a second method of determining the object's dimensions based on the visible image. When one of the methods determines one of the object's dimensions, the determined dimension is provided to the other method, and the other method adjusts its process for determining the object's dimensions. For example, the other method may assume the determined dimension to be correct or the other method may verify the determined dimension in view of the image it is using to determine the object's dimensions. In other words, the method performs both dimensioning methods simultaneously and dynamically. Such dynamic sharing of information between dimensioning methods facilitates the efficient determination of reliable dimensions of the object.
- As would be recognized by one of ordinary skill in the art upon consideration of the present disclosure, the foregoing method may be implemented by an appropriately configured computing device (e.g., including a processor and memory).
- The foregoing disclosure has presented a number of systems, methods, and devices for determining the dimensions of an object. Although methods have been disclosed with respect to particular systems and/or devices, the methods may be performed using different systems and/or devices than those particularly disclosed. Similarly, the systems and devices may perform different methods than those methods specifically disclosed with respect to a given system or device. Furthermore, the systems and devices may perform multiple methods for determining the dimensions of an object (e.g., to increase accuracy). Aspects of each of the methods for determining the dimensions of an object may be used in or combined with other methods. Finally, components (e.g., a range camera, camera system, scale, and/or computing device) of a given disclosed system or device may be incorporated into other disclosed systems or devices to provide increased functionality.
- In the specification and/or figures, typical embodiments of the invention have been disclosed. The present invention is not limited to such exemplary embodiments. The use of the term “and/or” includes any and all combinations of one or more of the associated listed items. The figures are schematic representations and so are not necessarily drawn to scale. Unless otherwise noted, specific terms have been used in a generic and descriptive sense and not for purposes of limitation.
Claims (20)
1. An object analysis system, comprising:
a scale for measuring the weight of an object;
a range camera configured to produce a range image of an area in which the object is located; and
a computing device configured to determine the dimensions of the object based, at least in part, on the range image.
2. The object analysis system according to claim 1 , wherein the range camera is separate from the computing device.
3. The object analysis system according to claim 1 , wherein the scale comprises a top surface having markings to guide a user to place the object in a preferred orientation.
4. The object analysis system according to claim 1 , wherein the computing device estimates a reference plane from the range image; and
the scale comprises a top surface having markings to facilitate the computing device's estimation of the reference plane.
5. The object analysis system according to claim 1 , wherein the computing device is configured to execute shipment billing software.
6. The object analysis system according to claim 1 , wherein the scale transmits the measured weight of the object to the computing device.
7. The object analysis system according to claim 6 , wherein the scale transmits the measured weight to the computing device via a wireless connection.
8. The object analysis system according to claim 1 , wherein the scale transmits the measured weight of the object to a host platform configured to execute shipment billing software.
9. The object analysis system according to claim 8 , wherein the scale transmits the measured weight of the object to the host platform via a wired connection.
10. The object analysis system according to claim 1 , wherein the computing device is configured to:
calculate the density of the object based on the determined dimensions and determined weight; and
determine if the calculated density exceeds a realistic density threshold.
11. The object analysis system according to claim 1 , comprising a microphone for capturing audio from a user;
wherein the computing device is configured for converting the captured audio to text.
12. An object analysis system, comprising:
a scale for measuring the weight of an object;
a range camera configured to produce a range image of an area in which the object is located and a visible image of the scale's measured weight of the object; and
a computing device configured to determine the dimensions of the object based, at least in part, on the range image and to determine the weight of the object based, at least in part, on the visible image.
13. The object analysis system according to claim 12 , wherein:
the scale comprises an analog scale having a gauge; and
the visible image produced by the range camera includes the scale's gauge.
14. The object analysis system according to claim 12 , wherein:
the scale comprises a digital scale having a display; and
the visible image produced by the range camera includes the scale's display.
15. The object analysis system according to claim 12 , wherein the object analysis system transmits the weight of the object and determined dimensions to a host platform configured to execute shipment billing software.
16. The object analysis system according to claim 15 , wherein the object analysis system transmits the weight of the object and determined dimensions to the host platform via a wireless connection.
17. An object analysis system, comprising:
a scale for measuring the weight of an object;
a range camera configured to produce a range image of an area in which the object is located, project a visible laser pattern onto the object, and produce a visible image of the object;
a computing device configured to determine the dimensions of the object based, at least in part, on the range image and the visible image of the object.
18. The object analysis system according to claim 17 , wherein the computing device is configured to:
calculate the density of the object based on the determined dimensions and determined weight; and
determine if the calculated density exceeds a realistic density threshold.
19. The object analysis system according to claim 17 , wherein the computing device estimates a reference plane from the range image; and
the scale comprises a top surface having markings to facilitate the computing device's estimation of the reference plane.
20. The object analysis system according to claim 17 , wherein the computing device is configured to execute shipment billing software.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/784,933 US20140104413A1 (en) | 2012-10-16 | 2013-03-05 | Integrated dimensioning and weighing system |
EP16152477.2A EP3035011A1 (en) | 2012-10-16 | 2013-09-25 | Integrated dimensioning system |
EP13186043.9A EP2722656A1 (en) | 2012-10-16 | 2013-09-25 | Integrated dimensioning and weighing system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261714394P | 2012-10-16 | 2012-10-16 | |
US13/784,933 US20140104413A1 (en) | 2012-10-16 | 2013-03-05 | Integrated dimensioning and weighing system |
Publications (1)
Publication Number | Publication Date |
---|---|
US20140104413A1 true US20140104413A1 (en) | 2014-04-17 |
Family
ID=50474997
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/784,933 Abandoned US20140104413A1 (en) | 2012-10-16 | 2013-03-05 | Integrated dimensioning and weighing system |
US13/785,177 Active 2034-06-05 US9841311B2 (en) | 2012-10-16 | 2013-03-05 | Dimensioning system |
US15/817,840 Active US10908013B2 (en) | 2012-10-16 | 2017-11-20 | Dimensioning system |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/785,177 Active 2034-06-05 US9841311B2 (en) | 2012-10-16 | 2013-03-05 | Dimensioning system |
US15/817,840 Active US10908013B2 (en) | 2012-10-16 | 2017-11-20 | Dimensioning system |
Country Status (2)
Country | Link |
---|---|
US (3) | US20140104413A1 (en) |
EP (1) | EP3035011A1 (en) |
Cited By (415)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140267609A1 (en) * | 2013-03-13 | 2014-09-18 | Intermec Ip Corp. | Systems and methods for enhancing dimensioning, for example volume dimensioning |
US20140379613A1 (en) * | 2013-06-21 | 2014-12-25 | Panasonic Corporation | Information processing device, information processing system, information processing method, and computer-readable non-transitory storage medium |
US8985461B2 (en) | 2013-06-28 | 2015-03-24 | Hand Held Products, Inc. | Mobile device having an improved user interface for reading code symbols |
US9007368B2 (en) | 2012-05-07 | 2015-04-14 | Intermec Ip Corp. | Dimensioning system calibration systems and methods |
US9037344B2 (en) | 2013-05-24 | 2015-05-19 | Hand Held Products, Inc. | System and method for display of information using a vehicle-mount computer |
US9053378B1 (en) | 2013-12-12 | 2015-06-09 | Hand Held Products, Inc. | Laser barcode scanner |
US20150170378A1 (en) * | 2013-12-16 | 2015-06-18 | Symbol Technologies, Inc. | Method and apparatus for dimensioning box object |
US9070032B2 (en) | 2013-04-10 | 2015-06-30 | Hand Held Products, Inc. | Method of programming a symbol reading system |
US9082023B2 (en) | 2013-09-05 | 2015-07-14 | Hand Held Products, Inc. | Method for operating a laser scanner |
US9104929B2 (en) | 2013-06-26 | 2015-08-11 | Hand Held Products, Inc. | Code symbol reading system having adaptive autofocus |
US9141839B2 (en) | 2013-06-07 | 2015-09-22 | Hand Held Products, Inc. | System and method for reading code symbols at long range using source power control |
EP2927840A1 (en) | 2014-04-04 | 2015-10-07 | Hand Held Products, Inc. | Multifunction point of sale system |
US9165174B2 (en) | 2013-10-14 | 2015-10-20 | Hand Held Products, Inc. | Indicia reader |
US9183426B2 (en) | 2013-09-11 | 2015-11-10 | Hand Held Products, Inc. | Handheld indicia reader having locking endcap |
US9224022B2 (en) | 2014-04-29 | 2015-12-29 | Hand Held Products, Inc. | Autofocus lens system for indicia readers |
US9224027B2 (en) | 2014-04-01 | 2015-12-29 | Hand Held Products, Inc. | Hand-mounted indicia-reading device with finger motion triggering |
US9239950B2 (en) | 2013-07-01 | 2016-01-19 | Hand Held Products, Inc. | Dimensioning system |
US9250652B2 (en) | 2013-07-02 | 2016-02-02 | Hand Held Products, Inc. | Electronic device case |
US9251411B2 (en) | 2013-09-24 | 2016-02-02 | Hand Held Products, Inc. | Augmented-reality signature capture |
US9258033B2 (en) | 2014-04-21 | 2016-02-09 | Hand Held Products, Inc. | Docking system and method using near field communication |
EP2988209A1 (en) | 2014-08-19 | 2016-02-24 | Hand Held Products, Inc. | Mobile computing device with data cognition software |
US9277668B2 (en) | 2014-05-13 | 2016-03-01 | Hand Held Products, Inc. | Indicia-reading module with an integrated flexible circuit |
EP2990911A1 (en) | 2014-08-29 | 2016-03-02 | Hand Held Products, Inc. | Gesture-controlled computer system |
US9280693B2 (en) | 2014-05-13 | 2016-03-08 | Hand Held Products, Inc. | Indicia-reader housing with an integrated optical structure |
US9297900B2 (en) | 2013-07-25 | 2016-03-29 | Hand Held Products, Inc. | Code symbol reading system having adjustable object detection |
US9301427B2 (en) | 2014-05-13 | 2016-03-29 | Hand Held Products, Inc. | Heat-dissipation structure for an indicia reading module |
EP3001368A1 (en) | 2014-09-26 | 2016-03-30 | Honeywell International Inc. | System and method for workflow management |
US9310609B2 (en) | 2014-07-25 | 2016-04-12 | Hand Held Products, Inc. | Axially reinforced flexible scan element |
EP3007096A1 (en) | 2014-10-10 | 2016-04-13 | Hand Held Products, Inc. | Depth sensor based auto-focus system for an indicia scanner |
EP3006893A1 (en) | 2014-10-10 | 2016-04-13 | Hand Held Products, Inc. | Methods for improving the accuracy of dimensioning-system measurements |
EP3009968A1 (en) | 2014-10-15 | 2016-04-20 | Vocollect, Inc. | Systems and methods for worker resource management |
EP3012601A1 (en) | 2014-10-21 | 2016-04-27 | Hand Held Products, Inc. | Handheld dimensioning system with measurement-conformance feedback |
EP3012579A1 (en) | 2014-10-21 | 2016-04-27 | Hand Held Products, Inc. | System and method for dimensioning |
EP3016023A1 (en) | 2014-10-31 | 2016-05-04 | Honeywell International Inc. | Scanner with illumination system |
EP3016046A1 (en) | 2014-11-03 | 2016-05-04 | Hand Held Products, Inc. | Directing an inspector through an inspection |
EP3018557A1 (en) | 2014-11-05 | 2016-05-11 | Hand Held Products, Inc. | Barcode scanning system using wearable device with embedded camera |
US20160133026A1 (en) * | 2014-11-06 | 2016-05-12 | Symbol Technologies, Inc. | Non-parametric method of and system for estimating dimensions of objects of arbitrary shape |
EP3023979A1 (en) | 2014-10-29 | 2016-05-25 | Hand Held Products, Inc. | Method and system for recognizing speech using wildcards in an expected response |
EP3023980A1 (en) | 2014-11-07 | 2016-05-25 | Hand Held Products, Inc. | Concatenated expected responses for speech recognition |
JP2016099306A (en) * | 2014-11-26 | 2016-05-30 | 株式会社ミツトヨ | Image measuring device and measuring device |
WO2016089483A1 (en) * | 2014-12-05 | 2016-06-09 | Symbol Technologies, Llc | Apparatus for and method of estimating dimensions of an object associated with a code in automatic response to reading the code |
US9373018B2 (en) | 2014-01-08 | 2016-06-21 | Hand Held Products, Inc. | Indicia-reader having unitary-construction |
EP3035074A1 (en) | 2014-12-18 | 2016-06-22 | Hand Held Products, Inc. | Collision-avoidance system and method |
EP3035151A1 (en) | 2014-12-18 | 2016-06-22 | Hand Held Products, Inc. | Wearable sled system for a mobile computer device |
EP3037951A1 (en) | 2014-12-22 | 2016-06-29 | Hand Held Products, Inc. | Delayed trim of managed nand flash memory in computing devices |
EP3038030A1 (en) | 2014-12-28 | 2016-06-29 | Hand Held Products, Inc. | Dynamic check digit utilization via electronic tag |
EP3038029A1 (en) | 2014-12-26 | 2016-06-29 | Hand Held Products, Inc. | Product and location management via voice recognition |
EP3038009A1 (en) | 2014-12-23 | 2016-06-29 | Hand Held Products, Inc. | Method of barcode templating for enhanced decoding performance |
EP3037912A1 (en) | 2014-12-23 | 2016-06-29 | Hand Held Products, Inc. | Tablet computer with interface channels |
EP3038068A2 (en) | 2014-12-22 | 2016-06-29 | Hand Held Products, Inc. | Barcode-based safety system and method |
EP3038010A1 (en) | 2014-12-23 | 2016-06-29 | Hand Held Products, Inc. | Mini-barcode reading module with flash memory management |
EP3037924A1 (en) | 2014-12-22 | 2016-06-29 | Hand Held Products, Inc. | Augmented display and glove with markers as us user input device |
EP3040921A1 (en) | 2014-12-29 | 2016-07-06 | Hand Held Products, Inc. | Confirming product location using a subset of a product identifier |
EP3040906A1 (en) | 2014-12-30 | 2016-07-06 | Hand Held Products, Inc. | Visual feedback for code readers |
EP3040954A1 (en) | 2014-12-30 | 2016-07-06 | Hand Held Products, Inc. | Point of sale (pos) code sensing apparatus |
EP3040903A1 (en) | 2014-12-30 | 2016-07-06 | Hand Held Products, Inc. | System and method for detecting barcode printing errors |
EP3040908A1 (en) | 2014-12-30 | 2016-07-06 | Hand Held Products, Inc. | Real-time adjustable window feature for barcode scanning and process of scanning barcode with adjustable window feature |
EP3040907A2 (en) | 2014-12-27 | 2016-07-06 | Hand Held Products, Inc. | Acceleration-based motion tolerance and predictive coding |
US9390596B1 (en) | 2015-02-23 | 2016-07-12 | Hand Held Products, Inc. | Device, system, and method for determining the status of checkout lanes |
EP3043235A2 (en) | 2014-12-31 | 2016-07-13 | Hand Held Products, Inc. | Reconfigurable sled for a mobile device |
EP3043300A1 (en) | 2015-01-09 | 2016-07-13 | Honeywell International Inc. | Restocking workflow prioritization |
EP3043443A1 (en) | 2015-01-08 | 2016-07-13 | Hand Held Products, Inc. | Charge limit selection for variable power supply configuration |
EP3045953A1 (en) | 2014-12-30 | 2016-07-20 | Hand Held Products, Inc. | Augmented reality vision barcode scanning system and method |
EP3046032A2 (en) | 2014-12-28 | 2016-07-20 | Hand Held Products, Inc. | Remote monitoring of vehicle diagnostic information |
EP3057092A1 (en) | 2015-02-11 | 2016-08-17 | Hand Held Products, Inc. | Methods for training a speech recognition system |
US9424454B2 (en) | 2012-10-24 | 2016-08-23 | Honeywell International, Inc. | Chip on board based highly integrated imager |
US9443123B2 (en) | 2014-07-18 | 2016-09-13 | Hand Held Products, Inc. | System and method for indicia verification |
US9443222B2 (en) | 2014-10-14 | 2016-09-13 | Hand Held Products, Inc. | Identifying inventory items in a storage facility |
EP3070587A1 (en) | 2015-03-20 | 2016-09-21 | Hand Held Products, Inc. | Method and apparatus for scanning a barcode with a smart device while displaying an application on the smart device |
EP3076330A1 (en) | 2015-03-31 | 2016-10-05 | Hand Held Products, Inc. | Aimer for barcode scanning |
US9464885B2 (en) | 2013-08-30 | 2016-10-11 | Hand Held Products, Inc. | System and method for package dimensioning |
US9478113B2 (en) | 2014-06-27 | 2016-10-25 | Hand Held Products, Inc. | Cordless indicia reader with a multifunction coil for wireless charging and EAS deactivation |
EP3086281A1 (en) | 2015-04-21 | 2016-10-26 | Hand Held Products, Inc. | Systems and methods for imaging |
EP3086259A1 (en) | 2015-04-21 | 2016-10-26 | Hand Held Products, Inc. | Capturing a graphic information presentation |
US9490540B1 (en) | 2015-09-02 | 2016-11-08 | Hand Held Products, Inc. | Patch antenna |
US9488986B1 (en) | 2015-07-31 | 2016-11-08 | Hand Held Products, Inc. | System and method for tracking an item on a pallet in a warehouse |
EP3096293A1 (en) | 2015-05-19 | 2016-11-23 | Hand Held Products, Inc. | Methods for improving the accuracy of dimensioning-system measurements |
US9507974B1 (en) | 2015-06-10 | 2016-11-29 | Hand Held Products, Inc. | Indicia-reading systems having an interface with a user's nervous system |
US9530038B2 (en) | 2013-11-25 | 2016-12-27 | Hand Held Products, Inc. | Indicia-reading system |
EP3118576A1 (en) | 2015-07-15 | 2017-01-18 | Hand Held Products, Inc. | Mobile dimensioning device with dynamic accuracy compatible with nist standard |
EP3118573A1 (en) | 2015-07-16 | 2017-01-18 | Hand Held Products, Inc. | Dimensioning and imaging items |
US9557166B2 (en) | 2014-10-21 | 2017-01-31 | Hand Held Products, Inc. | Dimensioning system with multipath interference mitigation |
US20170030766A1 (en) * | 2015-07-28 | 2017-02-02 | Wal-Mart Stores, Inc. | Systems and methods for determining measurement data of an item |
EP3131196A1 (en) | 2015-08-12 | 2017-02-15 | Hand Held Products, Inc. | Faceted actuator shaft with rotation prevention |
US9572901B2 (en) | 2013-09-06 | 2017-02-21 | Hand Held Products, Inc. | Device having light source to reduce surface pathogens |
EP3136219A1 (en) | 2015-08-27 | 2017-03-01 | Hand Held Products, Inc. | Interactive display |
EP3147151A1 (en) | 2015-09-25 | 2017-03-29 | Hand Held Products, Inc. | A system and process for displaying information from a mobile computer in a vehicle |
EP3151553A1 (en) | 2015-09-30 | 2017-04-05 | Hand Held Products, Inc. | A self-calibrating projection apparatus and process |
EP3159770A1 (en) | 2015-10-19 | 2017-04-26 | Hand Held Products, Inc. | Quick release dock system and method |
US9646189B2 (en) | 2014-10-31 | 2017-05-09 | Honeywell International, Inc. | Scanner with illumination system |
US9646191B2 (en) | 2015-09-23 | 2017-05-09 | Intermec Technologies Corporation | Evaluating images |
EP3165939A1 (en) | 2015-10-29 | 2017-05-10 | Hand Held Products, Inc. | Dynamically created and updated indoor positioning map |
US9652648B2 (en) | 2015-09-11 | 2017-05-16 | Hand Held Products, Inc. | Positioning an object with respect to a target location |
US9656487B2 (en) | 2015-10-13 | 2017-05-23 | Intermec Technologies Corporation | Magnetic media holder for printer |
US9659198B2 (en) | 2015-09-10 | 2017-05-23 | Hand Held Products, Inc. | System and method of determining if a surface is printed or a mobile device screen |
US9665757B2 (en) | 2014-03-07 | 2017-05-30 | Hand Held Products, Inc. | Indicia reader for size-limited applications |
US9662900B1 (en) | 2016-07-14 | 2017-05-30 | Datamax-O'neil Corporation | Wireless thermal printhead system and method |
EP3173980A1 (en) | 2015-11-24 | 2017-05-31 | Intermec Technologies Corporation | Automatic print speed control for indicia printer |
US9672398B2 (en) | 2013-08-26 | 2017-06-06 | Intermec Ip Corporation | Aiming imagers |
US9674430B1 (en) | 2016-03-09 | 2017-06-06 | Hand Held Products, Inc. | Imaging device for producing high resolution images using subpixel shifts and method of using same |
US9679178B2 (en) | 2014-12-26 | 2017-06-13 | Hand Held Products, Inc. | Scanning improvements for saturated signals using automatic and fixed gain control methods |
US9678536B2 (en) | 2014-12-18 | 2017-06-13 | Hand Held Products, Inc. | Flip-open wearable computer |
US9680282B2 (en) | 2015-11-17 | 2017-06-13 | Hand Held Products, Inc. | Laser aiming for mobile devices |
US9684809B2 (en) | 2015-10-29 | 2017-06-20 | Hand Held Products, Inc. | Scanner assembly with removable shock mount |
US9685049B2 (en) | 2014-12-30 | 2017-06-20 | Hand Held Products, Inc. | Method and system for improving barcode scanner performance |
US9682625B2 (en) | 2013-05-24 | 2017-06-20 | Hand Held Products, Inc. | System and method for display of information using a vehicle-mount computer |
US20170185960A1 (en) * | 2015-12-28 | 2017-06-29 | Toshiba Tec Kabushiki Kaisha | Sales data processing apparatus and method for executing data processing of article |
US9697401B2 (en) | 2015-11-24 | 2017-07-04 | Hand Held Products, Inc. | Add-on device with configurable optics for an image scanner for scanning barcodes |
US9701140B1 (en) | 2016-09-20 | 2017-07-11 | Datamax-O'neil Corporation | Method and system to calculate line feed error in labels on a printer |
USD792407S1 (en) | 2015-06-02 | 2017-07-18 | Hand Held Products, Inc. | Mobile computer housing |
EP3193188A1 (en) | 2016-01-12 | 2017-07-19 | Hand Held Products, Inc. | Programmable reference beacons |
EP3193146A1 (en) | 2016-01-14 | 2017-07-19 | Hand Held Products, Inc. | Multi-spectral imaging using longitudinal chromatic aberrations |
US9721132B2 (en) | 2014-12-31 | 2017-08-01 | Hand Held Products, Inc. | Reconfigurable sled for a mobile device |
EP3200120A1 (en) | 2016-01-26 | 2017-08-02 | Hand Held Products, Inc. | Enhanced matrix symbol error correction method |
US9727840B2 (en) | 2016-01-04 | 2017-08-08 | Hand Held Products, Inc. | Package physical characteristic identification system and method in supply chain management |
US9729744B2 (en) | 2015-12-21 | 2017-08-08 | Hand Held Products, Inc. | System and method of border detection on a document and for producing an image of the document |
US9727769B2 (en) | 2014-12-22 | 2017-08-08 | Hand Held Products, Inc. | Conformable hand mount for a mobile scanner |
US9727841B1 (en) | 2016-05-20 | 2017-08-08 | Vocollect, Inc. | Systems and methods for reducing picking operation errors |
US9734639B2 (en) | 2014-12-31 | 2017-08-15 | Hand Held Products, Inc. | System and method for monitoring an industrial vehicle |
US9741135B2 (en) * | 2014-12-22 | 2017-08-22 | Baidu Online Networks Technology (Beijing) Co., Ltd. | Method for measuring object and smart device |
US9752864B2 (en) | 2014-10-21 | 2017-09-05 | Hand Held Products, Inc. | Handheld dimensioning system with feedback |
US9761096B2 (en) | 2014-12-18 | 2017-09-12 | Hand Held Products, Inc. | Active emergency exit systems for buildings |
US20170264880A1 (en) * | 2016-03-14 | 2017-09-14 | Symbol Technologies, Llc | Device and method of dimensioning using digital images and depth data |
US9767581B2 (en) | 2014-12-12 | 2017-09-19 | Hand Held Products, Inc. | Auto-contrast viewfinder for an indicia reader |
US9767337B2 (en) | 2015-09-30 | 2017-09-19 | Hand Held Products, Inc. | Indicia reader safety |
EP3220369A1 (en) | 2016-09-29 | 2017-09-20 | Hand Held Products, Inc. | Monitoring user biometric parameters with nanotechnology in personal locator beacon |
US9773142B2 (en) | 2013-07-22 | 2017-09-26 | Hand Held Products, Inc. | System and method for selectively reading code symbols |
US9774940B2 (en) | 2014-12-27 | 2017-09-26 | Hand Held Products, Inc. | Power configurable headband system and method |
US9781502B2 (en) | 2015-09-09 | 2017-10-03 | Hand Held Products, Inc. | Process and system for sending headset control information from a mobile device to a wireless headset |
US9779546B2 (en) | 2012-05-04 | 2017-10-03 | Intermec Ip Corp. | Volume dimensioning systems and methods |
US9781681B2 (en) | 2015-08-26 | 2017-10-03 | Hand Held Products, Inc. | Fleet power management through information storage sharing |
US9785814B1 (en) | 2016-09-23 | 2017-10-10 | Hand Held Products, Inc. | Three dimensional aimer for barcode scanning |
US9794392B2 (en) | 2014-07-10 | 2017-10-17 | Hand Held Products, Inc. | Mobile-phone adapter for electronic transactions |
EP3232367A1 (en) | 2016-04-15 | 2017-10-18 | Hand Held Products, Inc. | Imaging barcode reader with color separated aimer and illuminator |
US9800293B2 (en) | 2013-11-08 | 2017-10-24 | Hand Held Products, Inc. | System for configuring indicia readers using NFC technology |
US9805343B2 (en) | 2016-01-05 | 2017-10-31 | Intermec Technologies Corporation | System and method for guided printer servicing |
US9802427B1 (en) | 2017-01-18 | 2017-10-31 | Datamax-O'neil Corporation | Printers and methods for detecting print media thickness therein |
US9805240B1 (en) | 2016-04-18 | 2017-10-31 | Symbol Technologies, Llc | Barcode scanning and dimensioning |
US9805257B1 (en) | 2016-09-07 | 2017-10-31 | Datamax-O'neil Corporation | Printer method and apparatus |
US9805237B2 (en) | 2015-09-18 | 2017-10-31 | Hand Held Products, Inc. | Cancelling noise caused by the flicker of ambient lights |
EP3239891A1 (en) | 2016-04-14 | 2017-11-01 | Hand Held Products, Inc. | Customizable aimer system for indicia reading terminal |
EP3239892A1 (en) | 2016-04-26 | 2017-11-01 | Hand Held Products, Inc. | Indicia reading device and methods for decoding decodable indicia employing stereoscopic imaging |
US9811650B2 (en) | 2014-12-31 | 2017-11-07 | Hand Held Products, Inc. | User authentication system and method |
US9823059B2 (en) | 2014-08-06 | 2017-11-21 | Hand Held Products, Inc. | Dimensioning system with guided alignment |
US9827796B1 (en) | 2017-01-03 | 2017-11-28 | Datamax-O'neil Corporation | Automatic thermal printhead cleaning system |
US9835486B2 (en) | 2015-07-07 | 2017-12-05 | Hand Held Products, Inc. | Mobile dimensioner apparatus for use in commerce |
EP3252703A1 (en) | 2016-06-03 | 2017-12-06 | Hand Held Products, Inc. | Wearable metrological apparatus |
WO2017209996A1 (en) * | 2016-05-31 | 2017-12-07 | Microsoft Technology Licensing, Llc | Visualization alignment for three-dimensional scanning |
US9843660B2 (en) | 2014-12-29 | 2017-12-12 | Hand Held Products, Inc. | Tag mounted distributed headset with electronics module |
US9841311B2 (en) | 2012-10-16 | 2017-12-12 | Hand Held Products, Inc. | Dimensioning system |
US9844158B2 (en) | 2015-12-18 | 2017-12-12 | Honeywell International, Inc. | Battery cover locking mechanism of a mobile terminal and method of manufacturing the same |
EP3255376A1 (en) | 2016-06-10 | 2017-12-13 | Hand Held Products, Inc. | Scene change detection in a dimensioner |
US9844956B2 (en) | 2015-10-07 | 2017-12-19 | Intermec Technologies Corporation | Print position correction |
EP3258210A1 (en) | 2016-06-15 | 2017-12-20 | Hand Held Products, Inc. | Automatic mode switching in a volume dimensioner |
US9849691B1 (en) | 2017-01-26 | 2017-12-26 | Datamax-O'neil Corporation | Detecting printing ribbon orientation |
US9852102B2 (en) | 2015-04-15 | 2017-12-26 | Hand Held Products, Inc. | System for exchanging information between wireless peripherals and back-end systems via a peripheral hub |
US9857167B2 (en) | 2015-06-23 | 2018-01-02 | Hand Held Products, Inc. | Dual-projector three-dimensional scanner |
US9861182B2 (en) | 2015-02-05 | 2018-01-09 | Hand Held Products, Inc. | Device for supporting an electronic tool on a user's hand |
US9864887B1 (en) | 2016-07-07 | 2018-01-09 | Hand Held Products, Inc. | Energizing scanners |
US9876923B2 (en) | 2015-10-27 | 2018-01-23 | Intermec Technologies Corporation | Media width sensing |
US9876957B2 (en) | 2016-06-21 | 2018-01-23 | Hand Held Products, Inc. | Dual mode image sensor and method of using same |
US9881194B1 (en) | 2016-09-19 | 2018-01-30 | Hand Held Products, Inc. | Dot peen mark image acquisition |
US9879823B2 (en) | 2014-12-31 | 2018-01-30 | Hand Held Products, Inc. | Reclosable strap assembly |
US9892356B1 (en) | 2016-10-27 | 2018-02-13 | Hand Held Products, Inc. | Backlit display detection and radio signature recognition |
US9891612B2 (en) | 2015-05-05 | 2018-02-13 | Hand Held Products, Inc. | Intermediate linear positioning |
US9892876B2 (en) | 2015-06-16 | 2018-02-13 | Hand Held Products, Inc. | Tactile switch for a mobile electronic device |
US9902175B1 (en) | 2016-08-02 | 2018-02-27 | Datamax-O'neil Corporation | Thermal printer having real-time force feedback on printhead pressure and method of using same |
US9908351B1 (en) | 2017-02-27 | 2018-03-06 | Datamax-O'neil Corporation | Segmented enclosure |
US9911023B2 (en) | 2015-08-17 | 2018-03-06 | Hand Held Products, Inc. | Indicia reader having a filtered multifunction image sensor |
US9924006B2 (en) | 2014-10-31 | 2018-03-20 | Hand Held Products, Inc. | Adaptable interface for a mobile computing device |
US9919547B2 (en) | 2016-08-04 | 2018-03-20 | Datamax-O'neil Corporation | System and method for active printing consistency control and damage protection |
US9930050B2 (en) | 2015-04-01 | 2018-03-27 | Hand Held Products, Inc. | Device management proxy for secure devices |
US9930142B2 (en) | 2013-05-24 | 2018-03-27 | Hand Held Products, Inc. | System for providing a continuous communication link with a symbol reading device |
US9935946B2 (en) | 2015-12-16 | 2018-04-03 | Hand Held Products, Inc. | Method and system for tracking an electronic device at an electronic device docking station |
US9931867B1 (en) | 2016-09-23 | 2018-04-03 | Datamax-O'neil Corporation | Method and system of determining a width of a printer ribbon |
US9936278B1 (en) | 2016-10-03 | 2018-04-03 | Vocollect, Inc. | Communication headsets and systems for mobile application control and power savings |
US9939259B2 (en) | 2012-10-04 | 2018-04-10 | Hand Held Products, Inc. | Measuring object dimensions using mobile computer |
US9940497B2 (en) | 2016-08-16 | 2018-04-10 | Hand Held Products, Inc. | Minimizing laser persistence on two-dimensional image sensors |
US9937735B1 (en) | 2017-04-20 | 2018-04-10 | Datamax—O'Neil Corporation | Self-strip media module |
US9949005B2 (en) | 2015-06-18 | 2018-04-17 | Hand Held Products, Inc. | Customizable headset |
US9946962B2 (en) | 2016-09-13 | 2018-04-17 | Datamax-O'neil Corporation | Print precision improvement over long print jobs |
US9955522B2 (en) | 2015-07-07 | 2018-04-24 | Hand Held Products, Inc. | WiFi enable based on cell signals |
US9953296B2 (en) | 2013-01-11 | 2018-04-24 | Hand Held Products, Inc. | System, method, and computer-readable medium for managing edge devices |
US9954871B2 (en) | 2015-05-06 | 2018-04-24 | Hand Held Products, Inc. | Method and system to protect software-based network-connected devices from advanced persistent threat |
US9955099B2 (en) | 2016-06-21 | 2018-04-24 | Hand Held Products, Inc. | Minimum height CMOS image sensor |
US9978088B2 (en) | 2015-05-08 | 2018-05-22 | Hand Held Products, Inc. | Application independent DEX/UCS interface |
US9984366B1 (en) | 2017-06-09 | 2018-05-29 | Hand Held Products, Inc. | Secure paper-free bills in workflow applications |
US9990524B2 (en) | 2016-06-16 | 2018-06-05 | Hand Held Products, Inc. | Eye gaze detection controlled indicia scanning system and method |
US9990784B2 (en) | 2016-02-05 | 2018-06-05 | Hand Held Products, Inc. | Dynamic identification badge |
US9997935B2 (en) | 2015-01-08 | 2018-06-12 | Hand Held Products, Inc. | System and method for charging a barcode scanner |
US10007112B2 (en) | 2015-05-06 | 2018-06-26 | Hand Held Products, Inc. | Hands-free human machine interface responsive to a driver of a vehicle |
US10007858B2 (en) | 2012-05-15 | 2018-06-26 | Honeywell International Inc. | Terminals and methods for dimensioning objects |
US10025314B2 (en) | 2016-01-27 | 2018-07-17 | Hand Held Products, Inc. | Vehicle positioning and object avoidance |
US10022993B2 (en) | 2016-12-02 | 2018-07-17 | Datamax-O'neil Corporation | Media guides for use in printers and methods for using the same |
US10026377B2 (en) | 2015-11-12 | 2018-07-17 | Hand Held Products, Inc. | IRDA converter tag |
US10026187B2 (en) | 2016-01-12 | 2018-07-17 | Hand Held Products, Inc. | Using image data to calculate an object's weight |
US20180202797A1 (en) * | 2017-01-13 | 2018-07-19 | Optoelectronics Co., Ltd. | Dimension measuring apparatus, information reading apparatus having measuring function, and dimension measuring method |
US10038716B2 (en) | 2015-05-01 | 2018-07-31 | Hand Held Products, Inc. | System and method for regulating barcode data injection into a running application on a smart device |
US10035367B1 (en) | 2017-06-21 | 2018-07-31 | Datamax-O'neil Corporation | Single motor dynamic ribbon feedback system for a printer |
US10044880B2 (en) | 2016-12-16 | 2018-08-07 | Datamax-O'neil Corporation | Comparing printer models |
US10042593B2 (en) | 2016-09-02 | 2018-08-07 | Datamax-O'neil Corporation | Printer smart folders using USB mass storage profile |
US10051446B2 (en) | 2015-03-06 | 2018-08-14 | Hand Held Products, Inc. | Power reports in wireless scanner systems |
US10049245B2 (en) | 2012-06-20 | 2018-08-14 | Metrologic Instruments, Inc. | Laser scanning code symbol reading system providing control over length of laser scan line projected onto a scanned object using dynamic range-dependent scan angle control |
US10049290B2 (en) | 2014-12-31 | 2018-08-14 | Hand Held Products, Inc. | Industrial vehicle positioning system and method |
US10055625B2 (en) | 2016-04-15 | 2018-08-21 | Hand Held Products, Inc. | Imaging barcode reader with color-separated aimer and illuminator |
US10064005B2 (en) | 2015-12-09 | 2018-08-28 | Hand Held Products, Inc. | Mobile device with configurable communication technology modes and geofences |
US10060729B2 (en) | 2014-10-21 | 2018-08-28 | Hand Held Products, Inc. | Handheld dimensioner with data-quality indication |
US10061565B2 (en) | 2015-01-08 | 2018-08-28 | Hand Held Products, Inc. | Application development using mutliple primary user interfaces |
US10061118B2 (en) | 2016-02-04 | 2018-08-28 | Hand Held Products, Inc. | Beam shaping system and scanner |
US10066982B2 (en) | 2015-06-16 | 2018-09-04 | Hand Held Products, Inc. | Calibrating a volume dimensioner |
US10084556B1 (en) | 2017-10-20 | 2018-09-25 | Hand Held Products, Inc. | Identifying and transmitting invisible fence signals with a mobile data terminal |
US10085101B2 (en) | 2016-07-13 | 2018-09-25 | Hand Held Products, Inc. | Systems and methods for determining microphone position |
US10097681B2 (en) | 2016-06-14 | 2018-10-09 | Hand Held Products, Inc. | Managing energy usage in mobile devices |
US10099485B1 (en) | 2017-07-31 | 2018-10-16 | Datamax-O'neil Corporation | Thermal print heads and printers including the same |
US10105963B2 (en) | 2017-03-03 | 2018-10-23 | Datamax-O'neil Corporation | Region-of-interest based print quality optimization |
US10114997B2 (en) | 2016-11-16 | 2018-10-30 | Hand Held Products, Inc. | Reader for optical indicia presented under two or more imaging conditions within a single frame time |
US10120657B2 (en) | 2015-01-08 | 2018-11-06 | Hand Held Products, Inc. | Facilitating workflow application development |
US10129414B2 (en) | 2015-11-04 | 2018-11-13 | Intermec Technologies Corporation | Systems and methods for detecting transparent media in printers |
US10127423B1 (en) | 2017-07-06 | 2018-11-13 | Hand Held Products, Inc. | Methods for changing a configuration of a device for reading machine-readable code |
US10134120B2 (en) | 2014-10-10 | 2018-11-20 | Hand Held Products, Inc. | Image-stitching for dimensioning |
US10139495B2 (en) | 2014-01-24 | 2018-11-27 | Hand Held Products, Inc. | Shelving and package locating systems for delivery vehicles |
US10140724B2 (en) | 2009-01-12 | 2018-11-27 | Intermec Ip Corporation | Semi-automatic dimensioning with imager on a portable device |
US10145955B2 (en) | 2016-02-04 | 2018-12-04 | Symbol Technologies, Llc | Methods and systems for processing point-cloud data with a line scanner |
US10146194B2 (en) | 2015-10-14 | 2018-12-04 | Hand Held Products, Inc. | Building lighting and temperature control with an augmented reality system |
US10158612B2 (en) | 2017-02-07 | 2018-12-18 | Hand Held Products, Inc. | Imaging-based automatic data extraction with security scheme |
US10158834B2 (en) | 2016-08-30 | 2018-12-18 | Hand Held Products, Inc. | Corrected projection perspective distortion |
US10163044B2 (en) | 2016-12-15 | 2018-12-25 | Datamax-O'neil Corporation | Auto-adjusted print location on center-tracked printers |
US10176521B2 (en) | 2014-12-15 | 2019-01-08 | Hand Held Products, Inc. | Augmented reality virtual product for display |
US10181321B2 (en) | 2016-09-27 | 2019-01-15 | Vocollect, Inc. | Utilization of location and environment to improve recognition |
US10181896B1 (en) | 2017-11-01 | 2019-01-15 | Hand Held Products, Inc. | Systems and methods for reducing power consumption in a satellite communication device |
US10183500B2 (en) | 2016-06-01 | 2019-01-22 | Datamax-O'neil Corporation | Thermal printhead temperature control |
US10192194B2 (en) | 2015-11-18 | 2019-01-29 | Hand Held Products, Inc. | In-vehicle package location identification at load and delivery times |
US10195880B2 (en) | 2017-03-02 | 2019-02-05 | Datamax-O'neil Corporation | Automatic width detection |
US10203402B2 (en) | 2013-06-07 | 2019-02-12 | Hand Held Products, Inc. | Method of error correction for 3D imaging device |
US10210366B2 (en) | 2016-07-15 | 2019-02-19 | Hand Held Products, Inc. | Imaging scanner with positioning and display |
US10210364B1 (en) | 2017-10-31 | 2019-02-19 | Hand Held Products, Inc. | Direct part marking scanners including dome diffusers with edge illumination assemblies |
US10216969B2 (en) | 2017-07-10 | 2019-02-26 | Hand Held Products, Inc. | Illuminator for directly providing dark field and bright field illumination |
US10225544B2 (en) | 2015-11-19 | 2019-03-05 | Hand Held Products, Inc. | High resolution dot pattern |
US10223626B2 (en) | 2017-04-19 | 2019-03-05 | Hand Held Products, Inc. | High ambient light electronic screen communication method |
US10237421B2 (en) | 2016-12-22 | 2019-03-19 | Datamax-O'neil Corporation | Printers and methods for identifying a source of a problem therein |
US10232628B1 (en) | 2017-12-08 | 2019-03-19 | Datamax-O'neil Corporation | Removably retaining a print head assembly on a printer |
US10245861B1 (en) | 2017-10-04 | 2019-04-02 | Datamax-O'neil Corporation | Printers, printer spindle assemblies, and methods for determining media width for controlling media tension |
US10247547B2 (en) | 2015-06-23 | 2019-04-02 | Hand Held Products, Inc. | Optical pattern projector |
US10249030B2 (en) | 2015-10-30 | 2019-04-02 | Hand Held Products, Inc. | Image transformation for indicia reading |
US10252874B2 (en) | 2017-02-20 | 2019-04-09 | Datamax-O'neil Corporation | Clutch bearing to keep media tension for better sensing accuracy |
US10255469B2 (en) | 2017-07-28 | 2019-04-09 | Hand Held Products, Inc. | Illumination apparatus for a barcode reader |
US10262660B2 (en) | 2015-01-08 | 2019-04-16 | Hand Held Products, Inc. | Voice mode asset retrieval |
US10264165B2 (en) | 2017-07-11 | 2019-04-16 | Hand Held Products, Inc. | Optical bar assemblies for optical systems and isolation damping systems including the same |
US10263443B2 (en) | 2017-01-13 | 2019-04-16 | Hand Held Products, Inc. | Power capacity indicator |
US10275624B2 (en) | 2013-10-29 | 2019-04-30 | Hand Held Products, Inc. | Hybrid system and method for reading indicia |
US10275088B2 (en) | 2014-12-18 | 2019-04-30 | Hand Held Products, Inc. | Systems and methods for identifying faulty touch panel having intermittent field failures |
US10276009B2 (en) | 2017-01-26 | 2019-04-30 | Hand Held Products, Inc. | Method of reading a barcode and deactivating an electronic article surveillance tag |
US10282526B2 (en) | 2015-12-09 | 2019-05-07 | Hand Held Products, Inc. | Generation of randomized passwords for one-time usage |
US10286694B2 (en) | 2016-09-02 | 2019-05-14 | Datamax-O'neil Corporation | Ultra compact printer |
US10293624B2 (en) | 2017-10-23 | 2019-05-21 | Datamax-O'neil Corporation | Smart media hanger with media width detection |
US10304174B2 (en) | 2016-12-19 | 2019-05-28 | Datamax-O'neil Corporation | Printer-verifiers and systems and methods for verifying printed indicia |
US10312483B2 (en) | 2015-09-30 | 2019-06-04 | Hand Held Products, Inc. | Double locking mechanism on a battery latch |
US10317474B2 (en) | 2014-12-18 | 2019-06-11 | Hand Held Products, Inc. | Systems and methods for identifying faulty battery in an electronic device |
US10321127B2 (en) | 2012-08-20 | 2019-06-11 | Intermec Ip Corp. | Volume dimensioning system calibration systems and methods |
US10323929B1 (en) | 2017-12-19 | 2019-06-18 | Datamax-O'neil Corporation | Width detecting media hanger |
US10325436B2 (en) | 2015-12-31 | 2019-06-18 | Hand Held Products, Inc. | Devices, systems, and methods for optical validation |
US10345383B2 (en) | 2015-07-07 | 2019-07-09 | Hand Held Products, Inc. | Useful battery capacity / state of health gauge |
US20190212955A1 (en) | 2018-01-05 | 2019-07-11 | Datamax-O'neil Corporation | Methods, apparatuses, and systems for verifying printed image and improving print quality |
US10354449B2 (en) | 2015-06-12 | 2019-07-16 | Hand Held Products, Inc. | Augmented reality lighting effects |
US10352689B2 (en) | 2016-01-28 | 2019-07-16 | Symbol Technologies, Llc | Methods and systems for high precision locationing with depth values |
US10354411B2 (en) | 2016-12-20 | 2019-07-16 | Symbol Technologies, Llc | Methods, systems and apparatus for segmenting objects |
US10350905B2 (en) | 2017-01-26 | 2019-07-16 | Datamax-O'neil Corporation | Detecting printing ribbon orientation |
US10360424B2 (en) | 2016-12-28 | 2019-07-23 | Hand Held Products, Inc. | Illuminator for DPM scanner |
US10360728B2 (en) | 2015-05-19 | 2019-07-23 | Hand Held Products, Inc. | Augmented reality device, system, and method for safety |
US10372389B2 (en) | 2017-09-22 | 2019-08-06 | Datamax-O'neil Corporation | Systems and methods for printer maintenance operations |
US10369804B2 (en) | 2017-11-10 | 2019-08-06 | Datamax-O'neil Corporation | Secure thermal print head |
US10369823B2 (en) | 2017-11-06 | 2019-08-06 | Datamax-O'neil Corporation | Print head pressure detection and adjustment |
US10373032B2 (en) | 2017-08-01 | 2019-08-06 | Datamax-O'neil Corporation | Cryptographic printhead |
US10375473B2 (en) | 2016-09-20 | 2019-08-06 | Vocollect, Inc. | Distributed environmental microphones to minimize noise during speech recognition |
US10373143B2 (en) | 2015-09-24 | 2019-08-06 | Hand Held Products, Inc. | Product identification using electroencephalography |
US10372954B2 (en) | 2016-08-16 | 2019-08-06 | Hand Held Products, Inc. | Method for reading indicia off a display of a mobile device |
US10387699B2 (en) | 2017-01-12 | 2019-08-20 | Hand Held Products, Inc. | Waking system in barcode scanner |
US10384462B2 (en) | 2016-08-17 | 2019-08-20 | Datamax-O'neil Corporation | Easy replacement of thermal print head and simple adjustment on print pressure |
US10397388B2 (en) | 2015-11-02 | 2019-08-27 | Hand Held Products, Inc. | Extended features for network communication |
US10395081B2 (en) | 2016-12-09 | 2019-08-27 | Hand Held Products, Inc. | Encoding document capture bounds with barcodes |
US10394316B2 (en) | 2016-04-07 | 2019-08-27 | Hand Held Products, Inc. | Multiple display modes on a mobile device |
CN110188472A (en) * | 2019-05-30 | 2019-08-30 | 小耳朵(广东)电子科技股份有限公司 | Intelligent weight measuring method and mobile phone check weighing management system based on AI operation management |
US10399361B2 (en) | 2017-11-21 | 2019-09-03 | Datamax-O'neil Corporation | Printer, system and method for programming RFID tags on media labels |
US10402038B2 (en) | 2015-01-08 | 2019-09-03 | Hand Held Products, Inc. | Stack handling using multiple primary user interfaces |
US10401436B2 (en) | 2015-05-04 | 2019-09-03 | Hand Held Products, Inc. | Tracking battery conditions |
US10399369B2 (en) | 2017-10-23 | 2019-09-03 | Datamax-O'neil Corporation | Smart media hanger with media width detection |
US10399359B2 (en) | 2017-09-06 | 2019-09-03 | Vocollect, Inc. | Autocorrection for uneven print pressure on print media |
US10410629B2 (en) | 2015-08-19 | 2019-09-10 | Hand Held Products, Inc. | Auto-complete methods for spoken complete value entries |
US10427424B2 (en) | 2017-11-01 | 2019-10-01 | Datamax-O'neil Corporation | Estimating a remaining amount of a consumable resource based on a center of mass calculation |
US10438409B2 (en) | 2014-12-15 | 2019-10-08 | Hand Held Products, Inc. | Augmented reality asset locator |
US10434800B1 (en) | 2018-05-17 | 2019-10-08 | Datamax-O'neil Corporation | Printer roll feed mechanism |
US10438098B2 (en) | 2017-05-19 | 2019-10-08 | Hand Held Products, Inc. | High-speed OCR decode using depleted centerlines |
US10438186B2 (en) * | 2015-09-28 | 2019-10-08 | Walmart Apollo, Llc | Produce weigh station and method of use |
US10451405B2 (en) | 2016-11-22 | 2019-10-22 | Symbol Technologies, Llc | Dimensioning system for, and method of, dimensioning freight in motion along an unconstrained path in a venue |
US10463140B2 (en) | 2017-04-28 | 2019-11-05 | Hand Held Products, Inc. | Attachment apparatus for electronic device |
US10467513B2 (en) | 2015-08-12 | 2019-11-05 | Datamax-O'neil Corporation | Verification of a printed image on media |
US10468015B2 (en) | 2017-01-12 | 2019-11-05 | Vocollect, Inc. | Automated TTS self correction system |
EP3564880A1 (en) | 2018-05-01 | 2019-11-06 | Honeywell International Inc. | System and method for validating physical-item security |
US10484847B2 (en) | 2016-09-13 | 2019-11-19 | Hand Held Products, Inc. | Methods for provisioning a wireless beacon |
US10509619B2 (en) | 2014-12-15 | 2019-12-17 | Hand Held Products, Inc. | Augmented reality quick-start and user guide |
US10521914B2 (en) | 2017-09-07 | 2019-12-31 | Symbol Technologies, Llc | Multi-sensor object recognition system and method |
US10523038B2 (en) | 2017-05-23 | 2019-12-31 | Hand Held Products, Inc. | System and method for wireless charging of a beacon and/or sensor device |
US10546160B2 (en) | 2018-01-05 | 2020-01-28 | Datamax-O'neil Corporation | Methods, apparatuses, and systems for providing print quality feedback and controlling print quality of machine-readable indicia |
US10549561B2 (en) | 2017-05-04 | 2020-02-04 | Datamax-O'neil Corporation | Apparatus for sealing an enclosure |
US10572763B2 (en) | 2017-09-07 | 2020-02-25 | Symbol Technologies, Llc | Method and apparatus for support surface edge detection |
US10591918B2 (en) | 2017-05-01 | 2020-03-17 | Symbol Technologies, Llc | Fixed segmented lattice planning for a mobile automation apparatus |
US10592536B2 (en) | 2017-05-30 | 2020-03-17 | Hand Held Products, Inc. | Systems and methods for determining a location of a user when using an imaging device in an indoor facility |
US10621470B2 (en) | 2017-09-29 | 2020-04-14 | Datamax-O'neil Corporation | Methods for optical character recognition (OCR) |
US10635871B2 (en) | 2017-08-04 | 2020-04-28 | Hand Held Products, Inc. | Indicia reader acoustic for multiple mounting positions |
US10640325B2 (en) | 2016-08-05 | 2020-05-05 | Datamax-O'neil Corporation | Rigid yet flexible spindle for rolled material |
US10644944B2 (en) | 2017-06-30 | 2020-05-05 | Datamax-O'neil Corporation | Managing a fleet of devices |
US10652403B2 (en) | 2017-01-10 | 2020-05-12 | Datamax-O'neil Corporation | Printer script autocorrect |
US10650631B2 (en) | 2017-07-28 | 2020-05-12 | Hand Held Products, Inc. | Systems and methods for processing a distorted image |
US10654287B2 (en) | 2017-10-19 | 2020-05-19 | Datamax-O'neil Corporation | Print quality setup using banks in parallel |
US10654697B2 (en) | 2017-12-01 | 2020-05-19 | Hand Held Products, Inc. | Gyroscopically stabilized vehicle system |
US10663590B2 (en) | 2017-05-01 | 2020-05-26 | Symbol Technologies, Llc | Device and method for merging lidar data |
US10661982B2 (en) * | 2018-07-20 | 2020-05-26 | Spacemaptech, Llc | Systems and processes for space management of three dimensional containers |
US10679101B2 (en) | 2017-10-25 | 2020-06-09 | Hand Held Products, Inc. | Optical character recognition systems and methods |
US10685665B2 (en) | 2016-08-17 | 2020-06-16 | Vocollect, Inc. | Method and apparatus to improve speech recognition in a high audio noise environment |
US10698470B2 (en) | 2016-12-09 | 2020-06-30 | Hand Held Products, Inc. | Smart battery balance system and method |
US10703112B2 (en) | 2017-12-13 | 2020-07-07 | Datamax-O'neil Corporation | Image to script converter |
US10714121B2 (en) | 2016-07-27 | 2020-07-14 | Vocollect, Inc. | Distinguishing user speech from background speech in speech-dense environments |
US10710386B2 (en) | 2017-06-21 | 2020-07-14 | Datamax-O'neil Corporation | Removable printhead |
US10721451B2 (en) | 2016-03-23 | 2020-07-21 | Symbol Technologies, Llc | Arrangement for, and method of, loading freight into a shipping container |
US10726273B2 (en) | 2017-05-01 | 2020-07-28 | Symbol Technologies, Llc | Method and apparatus for shelf feature and object placement detection from shelf images |
US10728445B2 (en) | 2017-10-05 | 2020-07-28 | Hand Held Products Inc. | Methods for constructing a color composite image |
US20200240829A1 (en) * | 2019-01-25 | 2020-07-30 | Panasonic Intellectual Property Management Co., Ltd. | Smart weighing scale and methods related thereto |
US10733401B2 (en) | 2016-07-15 | 2020-08-04 | Hand Held Products, Inc. | Barcode reader with viewing frame |
US10732226B2 (en) | 2017-05-26 | 2020-08-04 | Hand Held Products, Inc. | Methods for estimating a number of workflow cycles able to be completed from a remaining battery capacity |
US10731970B2 (en) | 2018-12-13 | 2020-08-04 | Zebra Technologies Corporation | Method, system and apparatus for support structure detection |
US10731963B2 (en) | 2018-01-09 | 2020-08-04 | Datamax-O'neil Corporation | Apparatus and method of measuring media thickness |
US10733748B2 (en) | 2017-07-24 | 2020-08-04 | Hand Held Products, Inc. | Dual-pattern optical 3D dimensioning |
US10740911B2 (en) | 2018-04-05 | 2020-08-11 | Symbol Technologies, Llc | Method, system and apparatus for correcting translucency artifacts in data representing a support structure |
US10737911B2 (en) | 2017-03-02 | 2020-08-11 | Hand Held Products, Inc. | Electromagnetic pallet and method for adjusting pallet position |
US10740855B2 (en) | 2016-12-14 | 2020-08-11 | Hand Held Products, Inc. | Supply chain tracking of farm produce and crops |
US10749300B2 (en) | 2017-08-11 | 2020-08-18 | Hand Held Products, Inc. | POGO connector based soft power start solution |
US10756900B2 (en) | 2017-09-28 | 2020-08-25 | Hand Held Products, Inc. | Non-repudiation protocol using time-based one-time password (TOTP) |
US10756563B2 (en) | 2017-12-15 | 2020-08-25 | Datamax-O'neil Corporation | Powering devices using low-current power sources |
US10776661B2 (en) | 2016-08-19 | 2020-09-15 | Symbol Technologies, Llc | Methods, systems and apparatus for segmenting and dimensioning objects |
US10778690B2 (en) | 2017-06-30 | 2020-09-15 | Datamax-O'neil Corporation | Managing a fleet of workflow devices and standby devices in a device network |
US10773537B2 (en) | 2017-12-27 | 2020-09-15 | Datamax-O'neil Corporation | Method and apparatus for printing |
US10780721B2 (en) | 2017-03-30 | 2020-09-22 | Datamax-O'neil Corporation | Detecting label stops |
US10798316B2 (en) | 2017-04-04 | 2020-10-06 | Hand Held Products, Inc. | Multi-spectral imaging using longitudinal chromatic aberrations |
US10796119B2 (en) | 2017-07-28 | 2020-10-06 | Hand Held Products, Inc. | Decoding color barcodes |
US10803264B2 (en) | 2018-01-05 | 2020-10-13 | Datamax-O'neil Corporation | Method, apparatus, and system for characterizing an optical system |
US10803267B2 (en) | 2017-08-18 | 2020-10-13 | Hand Held Products, Inc. | Illuminator for a barcode scanner |
US10809078B2 (en) | 2018-04-05 | 2020-10-20 | Symbol Technologies, Llc | Method, system and apparatus for dynamic path generation |
US10809949B2 (en) | 2018-01-26 | 2020-10-20 | Datamax-O'neil Corporation | Removably couplable printer and verifier assembly |
US10810541B2 (en) | 2017-05-03 | 2020-10-20 | Hand Held Products, Inc. | Methods for pick and put location verification |
US10810530B2 (en) | 2014-09-26 | 2020-10-20 | Hand Held Products, Inc. | System and method for workflow management |
US10823572B2 (en) | 2018-04-05 | 2020-11-03 | Symbol Technologies, Llc | Method, system and apparatus for generating navigational data |
US10834283B2 (en) | 2018-01-05 | 2020-11-10 | Datamax-O'neil Corporation | Methods, apparatuses, and systems for detecting printing defects and contaminated components of a printer |
US10832436B2 (en) | 2018-04-05 | 2020-11-10 | Symbol Technologies, Llc | Method, system and apparatus for recovering label positions |
US10860706B2 (en) | 2015-04-24 | 2020-12-08 | Hand Held Products, Inc. | Secure unattended network authentication |
US10867141B2 (en) | 2017-07-12 | 2020-12-15 | Hand Held Products, Inc. | System and method for augmented reality configuration of indicia readers |
US10867145B2 (en) | 2017-03-06 | 2020-12-15 | Datamax-O'neil Corporation | Systems and methods for barcode verification |
US10884059B2 (en) | 2017-10-18 | 2021-01-05 | Hand Held Products, Inc. | Determining the integrity of a computing device |
US10897150B2 (en) | 2018-01-12 | 2021-01-19 | Hand Held Products, Inc. | Indicating charge status |
US10896403B2 (en) | 2016-07-18 | 2021-01-19 | Vocollect, Inc. | Systems and methods for managing dated products |
US10904453B2 (en) | 2016-12-28 | 2021-01-26 | Hand Held Products, Inc. | Method and system for synchronizing illumination timing in a multi-sensor imager |
US10897940B2 (en) | 2015-08-27 | 2021-01-26 | Hand Held Products, Inc. | Gloves having measuring, scanning, and displaying capabilities |
US10909708B2 (en) | 2016-12-09 | 2021-02-02 | Hand Held Products, Inc. | Calibrating a dimensioner using ratios of measurable parameters of optic ally-perceptible geometric elements |
US10909490B2 (en) | 2014-10-15 | 2021-02-02 | Vocollect, Inc. | Systems and methods for worker resource management |
US10949798B2 (en) | 2017-05-01 | 2021-03-16 | Symbol Technologies, Llc | Multimodal localization and mapping for a mobile automation apparatus |
US10956033B2 (en) | 2017-07-13 | 2021-03-23 | Hand Held Products, Inc. | System and method for generating a virtual keyboard with a highlighted area of interest |
US10967660B2 (en) | 2017-05-12 | 2021-04-06 | Datamax-O'neil Corporation | Media replacement process for thermal printers |
US10977594B2 (en) | 2017-06-30 | 2021-04-13 | Datamax-O'neil Corporation | Managing a fleet of devices |
US10984374B2 (en) | 2017-02-10 | 2021-04-20 | Vocollect, Inc. | Method and system for inputting products into an inventory system |
US11003188B2 (en) | 2018-11-13 | 2021-05-11 | Zebra Technologies Corporation | Method, system and apparatus for obstacle handling in navigational path generation |
US11010920B2 (en) | 2018-10-05 | 2021-05-18 | Zebra Technologies Corporation | Method, system and apparatus for object detection in point clouds |
US11015938B2 (en) | 2018-12-12 | 2021-05-25 | Zebra Technologies Corporation | Method, system and apparatus for navigational assistance |
US11029762B2 (en) | 2015-07-16 | 2021-06-08 | Hand Held Products, Inc. | Adjusting dimensioning results using augmented reality |
US11042834B2 (en) | 2017-01-12 | 2021-06-22 | Vocollect, Inc. | Voice-enabled substitutions with customer notification |
US11042161B2 (en) | 2016-11-16 | 2021-06-22 | Symbol Technologies, Llc | Navigation control method and apparatus in a mobile automation system |
US11047672B2 (en) | 2017-03-28 | 2021-06-29 | Hand Held Products, Inc. | System for optically dimensioning |
CN113196005A (en) * | 2018-11-14 | 2021-07-30 | 日本电气株式会社 | Information processing system, information processing method, and recording medium |
US11080566B2 (en) | 2019-06-03 | 2021-08-03 | Zebra Technologies Corporation | Method, system and apparatus for gap detection in support structures with peg regions |
US11079240B2 (en) | 2018-12-07 | 2021-08-03 | Zebra Technologies Corporation | Method, system and apparatus for adaptive particle filter localization |
US11081087B2 (en) | 2015-01-08 | 2021-08-03 | Hand Held Products, Inc. | Multiple primary user interfaces |
US11093896B2 (en) | 2017-05-01 | 2021-08-17 | Symbol Technologies, Llc | Product status detection system |
US11090811B2 (en) | 2018-11-13 | 2021-08-17 | Zebra Technologies Corporation | Method and apparatus for labeling of support structures |
US11100303B2 (en) | 2018-12-10 | 2021-08-24 | Zebra Technologies Corporation | Method, system and apparatus for auxiliary label detection and association |
US11107238B2 (en) | 2019-12-13 | 2021-08-31 | Zebra Technologies Corporation | Method, system and apparatus for detecting item facings |
US11125885B2 (en) | 2016-03-15 | 2021-09-21 | Hand Held Products, Inc. | Monitoring user biometric parameters with nanotechnology in personal locator beacon |
US11151743B2 (en) | 2019-06-03 | 2021-10-19 | Zebra Technologies Corporation | Method, system and apparatus for end of aisle detection |
US11157869B2 (en) | 2016-08-05 | 2021-10-26 | Vocollect, Inc. | Monitoring worker movement in a warehouse setting |
US11200677B2 (en) | 2019-06-03 | 2021-12-14 | Zebra Technologies Corporation | Method, system and apparatus for shelf edge detection |
US11244264B2 (en) | 2014-12-29 | 2022-02-08 | Hand Held Products, Inc. | Interleaving surprise activities in workflow |
US11257143B2 (en) | 2014-12-30 | 2022-02-22 | Hand Held Products, Inc. | Method and device for simulating a virtual out-of-box experience of a packaged product |
US11282515B2 (en) | 2015-08-31 | 2022-03-22 | Hand Held Products, Inc. | Multiple inspector voice inspection |
US11327504B2 (en) | 2018-04-05 | 2022-05-10 | Symbol Technologies, Llc | Method, system and apparatus for mobile automation apparatus localization |
US11328335B2 (en) | 2014-12-29 | 2022-05-10 | Hand Held Products, Inc. | Visual graphic aided location identification |
US11341663B2 (en) | 2019-06-03 | 2022-05-24 | Zebra Technologies Corporation | Method, system and apparatus for detecting support structure obstructions |
US11367092B2 (en) | 2017-05-01 | 2022-06-21 | Symbol Technologies, Llc | Method and apparatus for extracting and processing price text from an image set |
US11392891B2 (en) | 2020-11-03 | 2022-07-19 | Zebra Technologies Corporation | Item placement detection and optimization in material handling systems |
US11402846B2 (en) | 2019-06-03 | 2022-08-02 | Zebra Technologies Corporation | Method, system and apparatus for mitigating data capture light leakage |
US11416000B2 (en) | 2018-12-07 | 2022-08-16 | Zebra Technologies Corporation | Method and apparatus for navigational ray tracing |
US11423348B2 (en) | 2016-01-11 | 2022-08-23 | Hand Held Products, Inc. | System and method for assessing worker performance |
US11449059B2 (en) | 2017-05-01 | 2022-09-20 | Symbol Technologies, Llc | Obstacle detection for a mobile automation apparatus |
US11450024B2 (en) | 2020-07-17 | 2022-09-20 | Zebra Technologies Corporation | Mixed depth object detection |
US11506483B2 (en) | 2018-10-05 | 2022-11-22 | Zebra Technologies Corporation | Method, system and apparatus for support structure depth determination |
US11507103B2 (en) | 2019-12-04 | 2022-11-22 | Zebra Technologies Corporation | Method, system and apparatus for localization-based historical obstacle handling |
WO2023018999A1 (en) * | 2021-08-13 | 2023-02-16 | Beet, Inc. | Process digitization system and method |
US11593915B2 (en) | 2020-10-21 | 2023-02-28 | Zebra Technologies Corporation | Parallax-tolerant panoramic image generation |
US11592826B2 (en) | 2018-12-28 | 2023-02-28 | Zebra Technologies Corporation | Method, system and apparatus for dynamic loop closure in mapping trajectories |
US11600084B2 (en) | 2017-05-05 | 2023-03-07 | Symbol Technologies, Llc | Method and apparatus for detecting and interpreting price label text |
US11639846B2 (en) | 2019-09-27 | 2023-05-02 | Honeywell International Inc. | Dual-pattern optical 3D dimensioning |
US11662739B2 (en) | 2019-06-03 | 2023-05-30 | Zebra Technologies Corporation | Method, system and apparatus for adaptive ceiling-based localization |
US11810545B2 (en) | 2011-05-20 | 2023-11-07 | Vocollect, Inc. | Systems and methods for dynamically improving user intelligibility of synthesized speech in a work environment |
US11822333B2 (en) | 2020-03-30 | 2023-11-21 | Zebra Technologies Corporation | Method, system and apparatus for data capture illumination control |
EP4160532A4 (en) * | 2020-06-03 | 2023-12-06 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Object measurement method and apparatus, virtual object processing method and apparatus, medium and electronic device |
US11847832B2 (en) | 2020-11-11 | 2023-12-19 | Zebra Technologies Corporation | Object classification for autonomous navigation systems |
US11954882B2 (en) | 2021-06-17 | 2024-04-09 | Zebra Technologies Corporation | Feature-based georegistration for mobile computing devices |
US11960286B2 (en) | 2019-06-03 | 2024-04-16 | Zebra Technologies Corporation | Method, system and apparatus for dynamic task sequencing |
US11978011B2 (en) | 2017-05-01 | 2024-05-07 | Symbol Technologies, Llc | Method and apparatus for object status detection |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9081466B2 (en) | 2012-09-10 | 2015-07-14 | Sap Se | Dynamic chart control that triggers dynamic contextual actions |
US10783584B1 (en) | 2012-09-10 | 2020-09-22 | Allstate Insurance Company | Recommendation of insurance products based on an inventory analysis |
US9342900B1 (en) * | 2014-12-23 | 2016-05-17 | Ricoh Co., Ltd. | Distinguishing between stock keeping units using marker based methodology |
US9330474B1 (en) * | 2014-12-23 | 2016-05-03 | Ricoh Co., Ltd. | Distinguishing between stock keeping units using a physical dimension of a region depicted in an image |
US9569859B2 (en) | 2014-12-29 | 2017-02-14 | Dell Products, Lp | System and method for redefining depth-based edge snapping for three-dimensional point selection |
US9792487B2 (en) * | 2014-12-29 | 2017-10-17 | Dell Products, Lp | System and method for determining dimensions of an object in an image |
US10357848B2 (en) * | 2015-01-19 | 2019-07-23 | General Electric Company | Laser machining systems and methods |
US9852500B2 (en) * | 2015-07-15 | 2017-12-26 | GM Global Technology Operations LLC | Guided inspection of an installed component using a handheld inspection device |
AU2015101099A6 (en) * | 2015-08-10 | 2016-03-10 | Wisetech Global Limited | Volumetric estimation methods, devices, & systems |
US9691152B1 (en) * | 2015-08-14 | 2017-06-27 | A9.Com, Inc. | Minimizing variations in camera height to estimate distance to objects |
US10248927B2 (en) * | 2015-10-22 | 2019-04-02 | Rakesh Holdings, LLC | Multifunctional self-service shipping and mail processing system |
JP6564693B2 (en) * | 2015-11-25 | 2019-08-21 | オリンパス株式会社 | Imaging apparatus, imaging apparatus control method, and determination program |
EP3657455B1 (en) | 2016-06-22 | 2024-04-24 | Outsight | Methods and systems for detecting intrusions in a monitored volume |
US20180106597A1 (en) * | 2016-10-13 | 2018-04-19 | Troy A. Reynolds | Safe Measure |
US20190324144A1 (en) * | 2016-10-13 | 2019-10-24 | Troy A. Reynolds | Apparatus for remote measurement of an object |
DE102016120406A1 (en) * | 2016-10-26 | 2018-04-26 | Deutsche Post Ag | A method of determining a charge for sending a shipment |
JP2019015553A (en) * | 2017-07-05 | 2019-01-31 | ソニーセミコンダクタソリューションズ株式会社 | Information processing device, information processing method, and solid-state imaging device |
US10445949B2 (en) * | 2017-08-29 | 2019-10-15 | Ncr Corporation | Package dimension measurement system |
US11321864B1 (en) * | 2017-10-31 | 2022-05-03 | Edge 3 Technologies | User guided mode for measurement purposes |
US10621746B2 (en) | 2017-11-07 | 2020-04-14 | Symbol Technologies, Llc | Methods and apparatus for rapidly dimensioning an object |
CN108009675B (en) * | 2017-11-28 | 2022-05-20 | 上海量明科技发展有限公司 | Goods packing method, device and system |
US11301655B2 (en) | 2017-12-15 | 2022-04-12 | Cognex Corporation | Vision imaging system having a camera and dual aimer assemblies |
US10832023B2 (en) | 2017-12-15 | 2020-11-10 | Cognex Corporation | Dual-imaging vision system camera and method for using the same |
US11257132B1 (en) * | 2018-05-04 | 2022-02-22 | Allstate Insurance Company | Processing systems and methods having a machine learning engine for providing a surface dimension output |
US11436648B1 (en) * | 2018-05-04 | 2022-09-06 | Allstate Insurance Company | Processing system having a machine learning engine for providing a surface dimension output |
US10867275B1 (en) * | 2018-09-17 | 2020-12-15 | Amazon Technologies, Inc. | Optimized package loading |
US10937183B2 (en) | 2019-01-28 | 2021-03-02 | Cognex Corporation | Object dimensioning system and method |
JP6923574B2 (en) * | 2019-02-01 | 2021-08-18 | ファナック株式会社 | 3D shape measurement system and 3D shape measurement method |
CN110398203B (en) * | 2019-08-14 | 2021-06-04 | 东风设备制造有限公司 | Long-distance laser length measuring method and device |
US11618490B2 (en) * | 2019-09-03 | 2023-04-04 | Bob Profit Partners Llc. | Empty bottom shelf of shopping cart monitor and alerting system using distance measuring methods |
KR200495293Y1 (en) * | 2020-01-09 | 2022-04-20 | 주식회사 지테크인터내셔날 | An electronic scale apparatus for measuring weight and volume |
US12024327B2 (en) * | 2020-01-31 | 2024-07-02 | Sparck Technologies B. V. | System and method for assisting error recovery in an automated packaging process and system and method for automatically packaging shipment sets |
CN113763645B (en) * | 2020-09-28 | 2022-12-02 | 北京京东振世信息技术有限公司 | Sending method and sending device |
US12073284B2 (en) * | 2022-06-15 | 2024-08-27 | Hand Held Products, Inc. | Calibration for scanning device decoding based on aimer pattern detection |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060112023A1 (en) * | 2002-04-09 | 2006-05-25 | Cube Logic Systems Proprietary Ltd | Cubing apparatus and methods |
US20090059004A1 (en) * | 2007-08-31 | 2009-03-05 | Speed Trac Technologies, Inc. | System and Method for Monitoring the Handling of a Shipment of Freight |
US20110075936A1 (en) * | 2009-09-30 | 2011-03-31 | Deaver F Scott | Methods for image processing |
US20120162413A1 (en) * | 2007-11-26 | 2012-06-28 | Proiam, Llc | Enrollment apparatus, system, and method |
US20140049635A1 (en) * | 2012-08-20 | 2014-02-20 | Intermec Ip Corp. | Volume dimensioning system calibration systems and methods |
Family Cites Families (1038)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2010701A (en) | 1935-01-10 | 1935-08-06 | Gen Electric | Time delay undervoltage protective system |
US3699245A (en) * | 1970-03-11 | 1972-10-17 | Perkin Elmer Corp | Pictorial systems, having high resolution imagery at all object distances |
US4026031A (en) | 1974-09-24 | 1977-05-31 | The Rank Organisation Limited | Surface measurement instruments |
US3971065A (en) | 1975-03-05 | 1976-07-20 | Eastman Kodak Company | Color imaging array |
SE7804927L (en) | 1978-04-28 | 1979-10-29 | Volvo Ab | DEVICE FOR ORIENTATING, FOR EXAMPLE, A LIFTING RELATION IN RELATION TO A LOAD |
JPS569712A (en) | 1979-07-06 | 1981-01-31 | Olympus Optical Co Ltd | Visual field direction changing optical system for slender image transmission system |
US4495559A (en) | 1981-11-02 | 1985-01-22 | International Business Machines Corporation | Optimization of an organization of many discrete elements |
DE3335760C2 (en) | 1983-10-01 | 1987-01-29 | Sachße, Lothar, 8500 Nürnberg | Installation on a picking system for picking piece goods |
US4634278A (en) | 1984-02-06 | 1987-01-06 | Robotic Vision Systems, Inc. | Method of three-dimensional measurement with few projected patterns |
US4803639A (en) | 1986-02-25 | 1989-02-07 | General Electric Company | X-ray inspection system |
US4730190A (en) | 1986-10-29 | 1988-03-08 | Winlam Company | Hand-held measuring device |
DE3750174T2 (en) | 1986-10-30 | 1994-11-17 | Canon K.K., Tokio/Tokyo | Exposure device. |
US4914460A (en) | 1987-05-29 | 1990-04-03 | Harbor Branch Oceanographic Institution Inc. | Apparatus and methods of determining distance and orientation |
US5220536A (en) | 1989-09-01 | 1993-06-15 | Quantronix, Inc. | Measuring method and apparatus |
US5606534A (en) | 1989-09-01 | 1997-02-25 | Quantronix, Inc. | Laser-based dimensioning system |
US5111325A (en) | 1989-10-16 | 1992-05-05 | Eastman Kodak Company | F-θ lens |
JPH04129902A (en) | 1990-09-20 | 1992-04-30 | Nec Software Ltd | Merchandise picking system |
CH682698A5 (en) | 1990-11-01 | 1993-10-29 | Fisba Optik Ag Bystronic Laser | Method in which several, arranged in one or more rows of radiation sources are imaged and apparatus therefor. |
US5198648A (en) | 1990-12-27 | 1993-03-30 | Eastman Kodak Company | Code sensor with multi-faceted reflector for sensing plural image distances |
IS1666B (en) | 1991-02-19 | 1997-11-14 | Marel Hf | Method and apparatus for determining the volume, shape and weight of fish or other parts |
US20040089482A1 (en) | 1991-04-10 | 2004-05-13 | Uship Intellectual Properties, Llc | Automated package shipping machine |
US5491328A (en) | 1991-09-24 | 1996-02-13 | Spectra-Physics Scanning Systems, Inc. | Checkout counter scanner having multiple scanning surfaces |
US5175601A (en) | 1991-10-15 | 1992-12-29 | Electro-Optical Information Systems | High-speed 3-D surface measurement surface inspection and reverse-CAD system |
US5590060A (en) | 1992-03-20 | 1996-12-31 | Metronics, Inc. | Apparatus and method for an object measurement system |
US5359185A (en) | 1992-05-11 | 1994-10-25 | Norand Corporation | Chromatic ranging method and apparatus for reading optically readable information over a substantial range of distances |
US5384901A (en) | 1992-10-22 | 1995-01-24 | Xerox Corporation | Method of rendering a color image for an output medium from symbolic image data |
US5331118A (en) | 1992-11-27 | 1994-07-19 | Soren Jensen | Package dimensional volume and weight determination system for conveyors |
US5745153A (en) | 1992-12-07 | 1998-04-28 | Eastman Kodak Company | Optical means for using diode laser arrays in laser multibeam printers and recorders |
GB9308952D0 (en) | 1993-04-30 | 1993-06-16 | Philips Electronics Uk Ltd | Tracking objects in video sequences |
US5548707A (en) | 1993-11-09 | 1996-08-20 | Adra Systems, Inc. | Method and system for design and drafting |
US5850490A (en) | 1993-12-22 | 1998-12-15 | Xerox Corporation | Analyzing an image of a document using alternative positionings of a class of segments |
JP3211538B2 (en) | 1994-01-13 | 2001-09-25 | キヤノン株式会社 | Inspection apparatus and semiconductor device manufacturing method using the same |
US7387253B1 (en) | 1996-09-03 | 2008-06-17 | Hand Held Products, Inc. | Optical reader system comprising local host processor and optical reader |
US5561526A (en) | 1994-05-26 | 1996-10-01 | Lockheed Missiles & Space Company, Inc. | Three-dimensional measurement device and system |
JPH07334549A (en) | 1994-06-11 | 1995-12-22 | Rohm Co Ltd | Method and device for automatically entering size in cad system |
JPH10506457A (en) | 1994-07-28 | 1998-06-23 | ジェネラル ナノテクノロジー エルエルシー | Scanning probe microscope equipment |
US5619245A (en) | 1994-07-29 | 1997-04-08 | Eastman Kodak Company | Multi-beam optical system using lenslet arrays in laser multi-beam printers and recorders |
CA2196186A1 (en) | 1994-07-29 | 1996-02-15 | John R. Lewis | Device for optically converting a plurality of beams |
US5477622A (en) | 1994-08-30 | 1995-12-26 | Skalnik; Dennis A. | Electronic hand-held measuring device for obtaining the dimensional weight of a shipment of freight |
US5555090A (en) | 1994-10-24 | 1996-09-10 | Adaptive Optics Associates | System for dimensioning objects |
US8280682B2 (en) | 2000-12-15 | 2012-10-02 | Tvipr, Llc | Device for monitoring movement of shipped goods |
FR2730980B1 (en) | 1995-02-27 | 1997-04-04 | Oreal | ORDER PREPARATION METHOD, COLLECTION TROLLEY FOR IMPLEMENTING THE METHOD AND ORDER PREPARATION SYSTEM |
WO1996035560A1 (en) | 1995-05-08 | 1996-11-14 | The University Of Melbourne | Process of treating wood with preservative |
US5661561A (en) | 1995-06-02 | 1997-08-26 | Accu-Sort Systems, Inc. | Dimensioning system |
US5732147A (en) | 1995-06-07 | 1998-03-24 | Agri-Tech, Inc. | Defective object inspection and separation system using image analysis and curvature transformation |
US6069696A (en) | 1995-06-08 | 2000-05-30 | Psc Scanning, Inc. | Object recognition system and method |
US5636028A (en) | 1995-06-29 | 1997-06-03 | Quantronix, Inc. | In-motion dimensioning system for cuboidal objects |
US6049386A (en) | 1995-06-29 | 2000-04-11 | Quantronix, Inc. | In-motion dimensioning system and method for cuboidal objects |
US6067110A (en) | 1995-07-10 | 2000-05-23 | Honda Giken Kogyo Kabushiki Kaisha | Object recognizing device |
US5699161A (en) | 1995-07-26 | 1997-12-16 | Psc, Inc. | Method and apparatus for measuring dimensions of objects on a conveyor |
GB9515311D0 (en) | 1995-07-26 | 1995-09-20 | 3D Scanners Ltd | Stripe scanners and methods of scanning |
US5737074A (en) | 1995-12-05 | 1998-04-07 | New Creation Co., Ltd. | Surface inspection method and apparatus |
US6457642B1 (en) | 1995-12-18 | 2002-10-01 | Metrologic Instruments, Inc. | Automated system and method for identifying and measuring packages transported through a laser scanning tunnel |
US6705526B1 (en) | 1995-12-18 | 2004-03-16 | Metrologic Instruments, Inc. | Automated method of and system for dimensioning objects transported through a work environment using contour tracing, vertice detection, corner point detection, and corner point reduction methods on two-dimensional range data maps captured by an amplitude modulated laser scanning beam |
US6517004B2 (en) | 1995-12-18 | 2003-02-11 | Metrologic Instruments, Inc. | Automated system for identifying and dimensioning packages transported through a laser scanning tunnel using laser scanning beam indexing techniques |
US20020014533A1 (en) | 1995-12-18 | 2002-02-07 | Xiaxun Zhu | Automated object dimensioning system employing contour tracing, vertice detection, and forner point detection and reduction methods on 2-d range data maps |
US5748199A (en) | 1995-12-20 | 1998-05-05 | Synthonics Incorporated | Method and apparatus for converting a two dimensional motion picture into a three dimensional motion picture |
DE69706964T2 (en) | 1996-03-07 | 2002-04-04 | Accu-Sort Systems, Inc. | DYNAMIC FOCUSING DEVICE FOR OPTICAL IMAGING SYSTEMS |
DE19613386A1 (en) | 1996-04-03 | 1997-10-09 | Fiat Om Carrelli Elevatori | Industrial truck, which can be operated either manually or automatically |
US5831719A (en) | 1996-04-12 | 1998-11-03 | Holometrics, Inc. | Laser scanning system |
US5988862A (en) | 1996-04-24 | 1999-11-23 | Cyra Technologies, Inc. | Integrated system for quickly and accurately imaging and modeling three dimensional objects |
US5808657A (en) | 1996-06-17 | 1998-09-15 | Eastman Kodak Company | Laser printer with low fill modulator array and high pixel fill at a media plane |
US5959568A (en) | 1996-06-26 | 1999-09-28 | Par Goverment Systems Corporation | Measuring distance |
US5870220A (en) | 1996-07-12 | 1999-02-09 | Real-Time Geometry Corporation | Portable 3-D scanning system and method for rapid shape digitizing and adaptive mesh generation |
US6009189A (en) | 1996-08-16 | 1999-12-28 | Schaack; David F. | Apparatus and method for making accurate three-dimensional size measurements of inaccessible objects |
US6064759A (en) | 1996-11-08 | 2000-05-16 | Buckley; B. Shawn | Computer aided inspection machine |
US5734476A (en) | 1996-12-31 | 1998-03-31 | Pitney Bowes Inc. | Method for dimensional weighing with optics |
US5978512A (en) | 1997-01-21 | 1999-11-02 | Daewoo Electronics Co., Ltd | Polygonal approximation method and apparatus for use in a contour encoding system |
US6189223B1 (en) | 1997-03-11 | 2001-02-20 | Werner Haug | Device for measuring volume |
US7304670B1 (en) | 1997-03-28 | 2007-12-04 | Hand Held Products, Inc. | Method and apparatus for compensating for fixed pattern noise in an imaging system |
IT1292544B1 (en) * | 1997-04-10 | 1999-02-08 | Microtec Srl | DEVICE FOR MEASURING THE DIMENSIONS OF A VERY LONGITUDINALLY EXTENDED OBJECT WITH A CURVED CONTOUR CROSS SECTION. |
US5979760A (en) | 1997-06-27 | 1999-11-09 | Accu-Sort Systems, Inc. | Scanner with linear actuator based lens positioning system |
US5900611A (en) | 1997-06-30 | 1999-05-04 | Accu-Sort Systems, Inc. | Laser scanner with integral distance measurement system |
US7028899B2 (en) | 1999-06-07 | 2006-04-18 | Metrologic Instruments, Inc. | Method of speckle-noise pattern reduction and apparatus therefore based on reducing the temporal-coherence of the planar laser illumination beam before it illuminates the target object by applying temporal phase modulation techniques during the transmission of the plib towards the target |
JP3597360B2 (en) | 1997-11-17 | 2004-12-08 | 株式会社リコー | Modeling method and recording medium |
GB2332567B (en) | 1997-12-17 | 2002-09-04 | Marconi Gec Ltd | Magnetic devices |
US6025847A (en) | 1997-12-23 | 2000-02-15 | Auto Desk, Inc. | Three dimensional modeling system with visual feedback |
US6333749B1 (en) | 1998-04-17 | 2001-12-25 | Adobe Systems, Inc. | Method and apparatus for image assisted modeling of three-dimensional scenes |
US6912293B1 (en) | 1998-06-26 | 2005-06-28 | Carl P. Korobkin | Photogrammetry engine for model construction |
US6661521B1 (en) | 1998-09-11 | 2003-12-09 | Robotic Vision Systems, Inc. | Diffuse surface illumination apparatus and methods |
US6781621B1 (en) * | 1998-09-18 | 2004-08-24 | Acushnet Company | Launch monitor system with a calibration fixture and a method for use thereof |
US6336587B1 (en) | 1998-10-19 | 2002-01-08 | Symbol Technologies, Inc. | Optical code reader for producing video displays and measuring physical parameters of objects |
US6857572B2 (en) | 1998-12-03 | 2005-02-22 | Metrologic Instruments, Inc. | Automatically-activated hand-supportable laser scanning bar code symbol reading system with omnidirectional and unidirectional scanning modes in addition to a data transmission activation switch |
EP1169144B1 (en) | 1999-04-07 | 2011-11-30 | Federal Express Corporation | System and method for dimensioning objects |
US6373579B1 (en) | 1999-05-26 | 2002-04-16 | Hand Held Products, Inc. | Portable measurement apparatus for determinging the dimensions of an object and associated method |
JP2000346634A (en) | 1999-06-09 | 2000-12-15 | Minolta Co Ltd | Three-dimensionally inputting device |
WO2000077726A1 (en) | 1999-06-16 | 2000-12-21 | Psc Inc. | Method and apparatus for calibration of an image based verification device |
US6650413B2 (en) | 1999-08-08 | 2003-11-18 | Institut National D'optique | Linear spectrometer |
CA2280531C (en) | 1999-08-19 | 2008-06-10 | Simon Thibault | F-sin (.theta.) lens system and method of use of same |
US7161688B1 (en) | 1999-08-31 | 2007-01-09 | Brett Bonner | Mass scanning and dimensioning system |
US6369401B1 (en) * | 1999-09-10 | 2002-04-09 | Agri-Tech, Inc. | Three-dimensional optical volume measurement for objects to be categorized |
US6535776B1 (en) | 1999-09-20 | 2003-03-18 | Ut-Battelle, Llc | Method for localizing and isolating an errant process step |
US7270274B2 (en) | 1999-10-04 | 2007-09-18 | Hand Held Products, Inc. | Imaging module comprising support post for optical reader |
US6832725B2 (en) | 1999-10-04 | 2004-12-21 | Hand Held Products, Inc. | Optical reader comprising multiple color illumination |
JP2003514234A (en) | 1999-11-12 | 2003-04-15 | ゴー・センサーズ・エルエルシー | Image measuring method and apparatus |
AU1534701A (en) | 1999-11-23 | 2001-06-04 | Canon Kabushiki Kaisha | Image processing apparatus |
JP2001166237A (en) | 1999-12-10 | 2001-06-22 | Canon Inc | Optical scanning optical device |
US6674904B1 (en) | 1999-12-14 | 2004-01-06 | Intel Corporation | Contour tracing and boundary detection for object identification in a digital image |
US6252695B1 (en) | 1999-12-20 | 2001-06-26 | Xerox Corporation | Multiple wobble correction optical elements to reduce height of raster output scanning (ROS) system |
EP1176557A1 (en) | 2000-07-24 | 2002-01-30 | Setrix AG | Method and arrangement for camera calibration |
US6535275B2 (en) | 2000-08-09 | 2003-03-18 | Dialog Semiconductor Gmbh | High resolution 3-D imaging range finder |
US6519550B1 (en) | 2000-09-11 | 2003-02-11 | Intel Corporation ( A Delaware Corporation) | Object scanner |
US7058204B2 (en) | 2000-10-03 | 2006-06-06 | Gesturetek, Inc. | Multiple camera control system |
US7085409B2 (en) | 2000-10-18 | 2006-08-01 | Sarnoff Corporation | Method and apparatus for synthesizing new video and/or still imagery from a collection of real video and/or still imagery |
US6858857B2 (en) | 2000-11-10 | 2005-02-22 | Perceptron, Inc. | Modular non-contact measurement device for quickly and accurately obtaining dimensional measurement data |
US7128266B2 (en) | 2003-11-13 | 2006-10-31 | Metrologic Instruments. Inc. | Hand-supportable digital imaging-based bar code symbol reader supporting narrow-area and wide-area modes of illumination and image capture |
US7708205B2 (en) | 2003-11-13 | 2010-05-04 | Metrologic Instruments, Inc. | Digital image capture and processing system employing multi-layer software-based system architecture permitting modification and/or extension of system features and functions by way of third party code plug-ins |
US20090134221A1 (en) | 2000-11-24 | 2009-05-28 | Xiaoxun Zhu | Tunnel-type digital imaging-based system for use in automated self-checkout and cashier-assisted checkout operations in retail store environments |
US8682077B1 (en) | 2000-11-28 | 2014-03-25 | Hand Held Products, Inc. | Method for omnidirectional processing of 2D images including recognizable characters |
US7171331B2 (en) | 2001-12-17 | 2007-01-30 | Phatrat Technology, Llc | Shoes employing monitoring devices, and associated methods |
KR100422370B1 (en) | 2000-12-27 | 2004-03-18 | 한국전자통신연구원 | An Apparatus and Method to Measuring Dimensions of 3D Object on a Moving Conveyor |
US7268924B2 (en) | 2001-01-22 | 2007-09-11 | Hand Held Products, Inc. | Optical reader having reduced parameter determination delay |
WO2002063543A2 (en) | 2001-01-22 | 2002-08-15 | Hand Held Products, Inc. | Optical reader having partial frame operating mode |
AU2002303082A1 (en) | 2001-01-26 | 2002-09-12 | Zaxel Systems, Inc. | Real-time virtual viewpoint in simulated reality environment |
AU2002226671B2 (en) | 2001-02-01 | 2006-08-31 | Marel Hf. | Method and apparatus for determining a three dimensional image of a moving object by means of light |
DE10104877A1 (en) | 2001-02-03 | 2002-08-14 | Bosch Gmbh Robert | Method and device for determining length, area and volume |
US6704102B2 (en) * | 2001-02-06 | 2004-03-09 | Metronics, Inc. | Calibration artifact and method of using the same |
US6853447B2 (en) | 2001-02-12 | 2005-02-08 | Analytical Spectral Devices, Inc. | System and method for the collection of spectral image data |
JP4012710B2 (en) | 2001-02-14 | 2007-11-21 | 株式会社リコー | Image input device |
DE60235963D1 (en) | 2001-02-16 | 2010-05-27 | Toyoda Automatic Loom Works | CAMERA LIFTING DEVICE AND LOAD HANDLING ARRANGEMENT OF A LIFTING WAGON AND LIFTING WAGON |
DE10212916B4 (en) | 2001-03-25 | 2016-12-22 | Omron Corp. | An optical displacement sensor and method of processing images using an optical displacement sensor |
KR100386090B1 (en) | 2001-04-02 | 2003-06-02 | 한국과학기술원 | Camera calibration system and method using planar concentric circles |
US8897596B1 (en) | 2001-05-04 | 2014-11-25 | Legend3D, Inc. | System and method for rapid image sequence depth enhancement with translucent elements |
US7376234B1 (en) | 2001-05-14 | 2008-05-20 | Hand Held Products, Inc. | Portable keying device and method |
US7111787B2 (en) | 2001-05-15 | 2006-09-26 | Hand Held Products, Inc. | Multimode image capturing and decoding optical reader |
US6804269B2 (en) | 2001-06-19 | 2004-10-12 | Hitachi Via Mechanics, Ltd. | Laser beam delivery system with trepanning module |
US6584339B2 (en) | 2001-06-27 | 2003-06-24 | Vanderbilt University | Method and apparatus for collecting and processing physical space data for use while performing image-guided surgery |
CA2451659A1 (en) | 2001-06-29 | 2003-01-09 | Melvyn Lionel Smith | Overhead dimensioning system and method |
US6834807B2 (en) | 2001-07-13 | 2004-12-28 | Hand Held Products, Inc. | Optical reader having a color imager |
EP1408001B1 (en) | 2001-07-17 | 2014-04-09 | Kabushiki Kaisha Toyota Jidoshokki | Industrial vehicle equipped with material handling work controller |
US6995762B1 (en) | 2001-09-13 | 2006-02-07 | Symbol Technologies, Inc. | Measurement of dimensions of solid objects from two-dimensional image(s) |
GB2381429B (en) | 2001-09-28 | 2005-07-27 | Canon Europa Nv | 3D computer model processing apparatus |
EP1438616A1 (en) | 2001-10-17 | 2004-07-21 | Riso National Laboratory | A system for electromagnetic field conversion |
US7307653B2 (en) | 2001-10-19 | 2007-12-11 | Nokia Corporation | Image stabilizer for a microcamera module of a handheld device, and method for stabilizing a microcamera module of a handheld device |
US7046840B2 (en) | 2001-11-09 | 2006-05-16 | Arcsoft, Inc. | 3-D reconstruction engine |
US6641037B2 (en) | 2001-12-13 | 2003-11-04 | Peter Williams | Method and system for interactively providing product related information on demand and providing personalized transactional benefits at a point of purchase |
US7344082B2 (en) | 2002-01-02 | 2008-03-18 | Metrologic Instruments, Inc. | Automated method of and system for dimensioning objects over a conveyor belt structure by applying contouring tracing, vertice detection, corner point detection, and corner point reduction methods to two-dimensional range data maps of the space above the conveyor belt captured by an amplitude modulated laser scanning beam |
US6773142B2 (en) | 2002-01-07 | 2004-08-10 | Coherent, Inc. | Apparatus for projecting a line of light from a diode-laser array |
US7748620B2 (en) | 2002-01-11 | 2010-07-06 | Hand Held Products, Inc. | Transaction terminal including imaging module |
WO2003062127A1 (en) | 2002-01-23 | 2003-07-31 | Kabushiki Kaisha Toyota Jidoshokki | Position control device and position control method of stevedoring apparatus in industrial vehicle |
US7340077B2 (en) | 2002-02-15 | 2008-03-04 | Canesta, Inc. | Gesture recognition system using depth perceptive sensors |
DE10210813A1 (en) | 2002-03-12 | 2003-10-16 | Sartorius Gmbh | System for determining an object's dimensions uses optical auxiliary devices to detect a three-dimensional image of the object's dimensions. |
JP3704706B2 (en) | 2002-03-13 | 2005-10-12 | オムロン株式会社 | 3D monitoring device |
US7242758B2 (en) | 2002-03-19 | 2007-07-10 | Nuance Communications, Inc | System and method for automatically processing a user's request by an automated assistant |
US6959865B2 (en) | 2002-03-28 | 2005-11-01 | Hand Held Products, Inc. | Customizable optical reader |
US7310431B2 (en) | 2002-04-10 | 2007-12-18 | Canesta, Inc. | Optical methods for remotely measuring objects |
US20030217018A1 (en) * | 2002-05-17 | 2003-11-20 | Groff Jason J. | System and method for conducting a shipping transaction |
US8596542B2 (en) | 2002-06-04 | 2013-12-03 | Hand Held Products, Inc. | Apparatus operative for capture of image data |
US7086596B2 (en) | 2003-01-09 | 2006-08-08 | Hand Held Products, Inc. | Decoder board for an optical reader utilizing a plurality of imaging formats |
CA2388895C (en) | 2002-06-04 | 2008-11-18 | Global Sensor Systems Inc. | A billing system and method for determining transportation charges for packages |
US8313380B2 (en) | 2002-07-27 | 2012-11-20 | Sony Computer Entertainment America Llc | Scheme for translating movements of a hand-held controller into inputs for a system |
US7399220B2 (en) | 2002-08-02 | 2008-07-15 | Kriesel Marshall S | Apparatus and methods for the volumetric and dimensional measurement of livestock |
US6922632B2 (en) | 2002-08-09 | 2005-07-26 | Intersense, Inc. | Tracking, auto-calibration, and map-building system |
US7039220B2 (en) * | 2002-08-14 | 2006-05-02 | C-Scan, L.L.P. | Methods and apparatus for the dimensional measurement of livestock using a single camera |
US20050187886A9 (en) * | 2002-08-29 | 2005-08-25 | Vantresa Stickler | Systems and methods for mid-stream postage adjustment |
US20040155975A1 (en) | 2002-09-17 | 2004-08-12 | Hart Douglas P. | 3-D imaging system |
JP3744002B2 (en) | 2002-10-04 | 2006-02-08 | ソニー株式会社 | Display device, imaging device, and imaging / display system |
US6833811B2 (en) | 2002-10-07 | 2004-12-21 | Harris Corporation | System and method for highly accurate real time tracking and location in three dimensions |
US7103212B2 (en) | 2002-11-22 | 2006-09-05 | Strider Labs, Inc. | Acquisition of three-dimensional images by an active stereo technique using locally unique patterns |
JP2004198265A (en) | 2002-12-18 | 2004-07-15 | Dainippon Printing Co Ltd | Visual inspection/selection method of processed product, and visual inspection/selection system of processed product |
US7066388B2 (en) | 2002-12-18 | 2006-06-27 | Symbol Technologies, Inc. | System and method for verifying RFID reads |
CN1512298A (en) | 2002-12-26 | 2004-07-14 | �ʼҷ����ֵ��ӹɷ�����˾ | Method for three dimension hand writing identification and its system |
DK1443312T3 (en) | 2003-02-01 | 2008-03-17 | Sick Ag | Method for operating an optical sensor |
JP4010254B2 (en) | 2003-02-06 | 2007-11-21 | ソニー株式会社 | Image recording / reproducing apparatus, image photographing apparatus, and chromatic aberration correction method |
US7418016B2 (en) | 2003-02-13 | 2008-08-26 | Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. | Method and apparatus for modifying the spread of a laser beam |
US20040165090A1 (en) | 2003-02-13 | 2004-08-26 | Alex Ning | Auto-focus (AF) lens and process |
US7063256B2 (en) | 2003-03-04 | 2006-06-20 | United Parcel Service Of America | Item tracking and processing systems and methods |
US7949385B2 (en) | 2003-03-11 | 2011-05-24 | Siemens Medical Solutions Usa, Inc. | System and method for reconstruction of the human ear canal from optical coherence tomography scans |
US20040222954A1 (en) | 2003-04-07 | 2004-11-11 | Lueder Ernst H. | Methods and apparatus for a display |
JP3960602B2 (en) | 2003-04-22 | 2007-08-15 | 任天堂株式会社 | GAME DEVICE AND GAME PROGRAM |
US7637430B2 (en) | 2003-05-12 | 2009-12-29 | Hand Held Products, Inc. | Picture taking optical reader |
US8339462B2 (en) | 2008-01-28 | 2012-12-25 | DigitalOptics Corporation Europe Limited | Methods and apparatuses for addressing chromatic abberations and purple fringing |
US7367514B2 (en) | 2003-07-03 | 2008-05-06 | Hand Held Products, Inc. | Reprogramming system including reprogramming symbol |
US7090135B2 (en) | 2003-07-07 | 2006-08-15 | Symbol Technologies, Inc. | Imaging arrangement and barcode imager for imaging an optical code or target at a plurality of focal planes |
US7509529B2 (en) | 2003-07-18 | 2009-03-24 | American Power Conversion Corporation | System and method for performing user recovery of guided procedures for an uninterruptible power supply |
DE10344922B4 (en) | 2003-09-25 | 2008-06-26 | Siemens Audiologische Technik Gmbh | All-scanner |
US7643025B2 (en) | 2003-09-30 | 2010-01-05 | Eric Belk Lange | Method and apparatus for applying stereoscopic imagery to three-dimensionally defined substrates |
US7747067B2 (en) | 2003-10-08 | 2010-06-29 | Purdue Research Foundation | System and method for three dimensional modeling |
EP1711854A4 (en) | 2003-10-17 | 2009-08-19 | Explay Ltd | Optical system and method for use in projection systems |
US9070031B2 (en) | 2003-10-24 | 2015-06-30 | Cognex Technology And Investment Llc | Integrated illumination assembly for symbology reader |
US7841533B2 (en) | 2003-11-13 | 2010-11-30 | Metrologic Instruments, Inc. | Method of capturing and processing digital images of an object within the field of view (FOV) of a hand-supportable digitial image capture and processing system |
US7205526B2 (en) | 2003-12-22 | 2007-04-17 | Micron Technology, Inc. | Methods of fabricating layered lens structures |
US8615487B2 (en) | 2004-01-23 | 2013-12-24 | Garrison Gomez | System and method to store and retrieve identifier associated information content |
FR2865833A1 (en) | 2004-01-30 | 2005-08-05 | Neopost Ind | METHOD AND DEVICE FOR VERIFYING THE FLIGHT OF THE HEIGHT OF A MAIL ARTICLE FOR POSTAGE PURPOSES |
US7366995B2 (en) | 2004-02-03 | 2008-04-29 | Roland Wescott Montague | Combination tool that zooms in, zooms out, pans, rotates, draws, or manipulates during a drag |
GB0405014D0 (en) | 2004-03-05 | 2004-04-07 | Qinetiq Ltd | Movement control system |
WO2005096126A1 (en) | 2004-03-31 | 2005-10-13 | Brother Kogyo Kabushiki Kaisha | Image i/o device |
US7757946B2 (en) | 2004-04-16 | 2010-07-20 | Acme Scale Company, Inc. | Material transport in-motion product dimensioning system and method |
DE102004024109A1 (en) | 2004-05-14 | 2005-12-08 | Garvens Automation Gmbh | Method for weighing a product, weighing system and equipping device |
US7354167B2 (en) | 2004-05-27 | 2008-04-08 | Angstrom, Inc. | Beam focusing and scanning system using micromirror array lens |
WO2006083297A2 (en) | 2004-06-10 | 2006-08-10 | Sarnoff Corporation | Method and apparatus for aligning video to three-dimensional point clouds |
CA2575923C (en) | 2004-08-02 | 2011-10-11 | Michael C. Levine | Security screening system and method |
US20060036556A1 (en) | 2004-08-12 | 2006-02-16 | Peter Knispel | Postal printing apparatus and method |
US20060047704A1 (en) | 2004-08-31 | 2006-03-02 | Kumar Chitra Gopalakrishnan | Method and system for providing information services relevant to visual imagery |
JP2006096457A (en) | 2004-09-28 | 2006-04-13 | Toyota Industries Corp | Forklift work assisting device |
US7715656B2 (en) | 2004-09-28 | 2010-05-11 | Qualcomm Incorporated | Magnification and pinching of two-dimensional images |
US7293712B2 (en) | 2004-10-05 | 2007-11-13 | Hand Held Products, Inc. | System and method to automatically discriminate between a signature and a dataform |
US20060230640A1 (en) | 2004-10-07 | 2006-10-19 | Chen Hsin N | Shoe having physical measuring device |
US7961912B2 (en) | 2004-10-14 | 2011-06-14 | Stevick Glen R | Method and apparatus for dynamic space-time imaging system |
US7219841B2 (en) | 2004-11-05 | 2007-05-22 | Hand Held Products, Inc. | Device and system for verifying quality of bar codes |
US7227469B2 (en) | 2004-11-22 | 2007-06-05 | Sdgi Holdings, Inc. | Surgical instrument tray shipping tote identification system and methods of using same |
US7741575B2 (en) | 2004-11-22 | 2010-06-22 | Bowe Bell + Howell Company | Mail piece consolidation and accountability using advanced tracking methods |
US7086162B2 (en) | 2004-12-23 | 2006-08-08 | Dan Tyroler | Method and apparatus for distance measurement |
US7224540B2 (en) | 2005-01-31 | 2007-05-29 | Datalogic Scanning, Inc. | Extended depth of field imaging system using chromatic aberration |
US8274534B2 (en) | 2005-01-31 | 2012-09-25 | Roland Wescott Montague | Methods for combination tools that zoom, pan, rotate, draw, or manipulate during a drag |
US7827032B2 (en) | 2005-02-04 | 2010-11-02 | Vocollect, Inc. | Methods and systems for adapting a model for a speech recognition system |
US7865362B2 (en) | 2005-02-04 | 2011-01-04 | Vocollect, Inc. | Method and system for considering information about an expected response when performing speech recognition |
US8723804B2 (en) | 2005-02-11 | 2014-05-13 | Hand Held Products, Inc. | Transaction terminal and adaptor therefor |
CN102984448B (en) | 2005-03-07 | 2016-05-25 | 德克索实验室 | Utilize color digital picture to revise the method for controlling to action as acutance |
US7416125B2 (en) | 2005-03-24 | 2008-08-26 | Hand Held Products, Inc. | Synthesis decoding and methods of use thereof |
US7623736B2 (en) | 2005-05-06 | 2009-11-24 | Stereotaxis, Inc. | Registration of three dimensional image data with patient in a projection imaging system |
US8294809B2 (en) | 2005-05-10 | 2012-10-23 | Advanced Scientific Concepts, Inc. | Dimensioning system |
WO2006119583A1 (en) | 2005-05-13 | 2006-11-16 | Dspace Pty Ltd | Method and system for communicating information in a digital signal |
US7849620B2 (en) | 2005-05-31 | 2010-12-14 | Hand Held Products, Inc. | Bar coded wristband |
KR100785594B1 (en) | 2005-06-17 | 2007-12-13 | 오므론 가부시키가이샤 | Image process apparatus |
US7609888B2 (en) | 2005-07-01 | 2009-10-27 | Microsoft Corporation | Separating a video object from a background of a video sequence |
DE102005035605A1 (en) | 2005-07-29 | 2007-02-01 | Robert Bosch Gmbh | Monolithic integrated circuit arrangement, has first temperature sensor and second temperature sensor and has different form of thermal coupling to heat source, evaluation circuit is provided for evaluation of temperature gradient |
GB0515915D0 (en) | 2005-08-02 | 2005-09-07 | Isis Innovation | Method and system for three-dimensional data capture |
US7717342B2 (en) | 2005-08-26 | 2010-05-18 | Hand Held Products, Inc. | Data collection device having dynamic access to multiple wireless networks |
CA2620941A1 (en) * | 2005-09-02 | 2007-03-08 | Neptec | Imaging system and method |
US8039813B2 (en) | 2005-09-06 | 2011-10-18 | Carl Zeiss Smt Gmbh | Charged particle-optical systems, methods and components |
US8625854B2 (en) | 2005-09-09 | 2014-01-07 | Industrial Research Limited | 3D scene scanner and a position and orientation system |
US20070063048A1 (en) | 2005-09-14 | 2007-03-22 | Havens William H | Data reader apparatus having an adaptive lens |
JP4666154B2 (en) | 2005-09-20 | 2011-04-06 | 株式会社豊田自動織機 | Cargo handling support device for forklift |
US7463345B2 (en) | 2005-09-27 | 2008-12-09 | Chemimage Corporation | Method for correlating spectroscopic measurements with digital images of contrast enhanced tissue |
US8061610B2 (en) | 2005-10-24 | 2011-11-22 | Cognex Technology And Investment Corporation | System and method for employing color illumination and color filtration in a symbology reader |
US20070116357A1 (en) | 2005-11-23 | 2007-05-24 | Agfa-Gevaert | Method for point-of-interest attraction in digital images |
US7457730B2 (en) | 2005-12-15 | 2008-11-25 | Degnan Donald A | Method and system for virtual decoration |
US7614563B1 (en) | 2005-12-29 | 2009-11-10 | Cognex Technology And Investment Corporation | System and method for providing diffuse illumination in a symbology reader |
US7934660B2 (en) | 2006-01-05 | 2011-05-03 | Hand Held Products, Inc. | Data collection system having reconfigurable data collection terminal |
US7944465B2 (en) | 2006-01-13 | 2011-05-17 | Zecotek Display Systems Pte. Ltd. | Apparatus and system for reproducing 3-dimensional images |
FI20060045A0 (en) | 2006-01-19 | 2006-01-19 | Markku Matias Rautiola | IP telephone network to constitute a service network in a mobile telephone system |
FI20060046A0 (en) | 2006-01-19 | 2006-01-19 | Markku Matias Rautiola | Connecting a circuit-switched wireless access network to an IP multimedia subsystem |
US8035637B2 (en) | 2006-01-20 | 2011-10-11 | 3M Innovative Properties Company | Three-dimensional scan recovery |
US9275388B2 (en) | 2006-01-31 | 2016-03-01 | Hand Held Products, Inc. | Transaction terminal with signature capture offset correction |
US7885419B2 (en) | 2006-02-06 | 2011-02-08 | Vocollect, Inc. | Headset terminal with speech functionality |
US9159059B2 (en) | 2006-03-03 | 2015-10-13 | Hand Held Products, Inc. | Method of operating a terminal |
CN101957994B (en) | 2006-03-14 | 2014-03-19 | 普莱姆传感有限公司 | Depth-varying light fields for three dimensional sensing |
US8244025B2 (en) | 2006-03-20 | 2012-08-14 | Siemens Energy, Inc. | Method of coalescing information about inspected objects |
US8350959B2 (en) | 2006-03-30 | 2013-01-08 | 1 . . . Limited | Camera lens actuation apparatus |
GB0718706D0 (en) | 2007-09-25 | 2007-11-07 | Creative Physics Ltd | Method and apparatus for reducing laser speckle |
US20070237356A1 (en) | 2006-04-07 | 2007-10-11 | John Dwinell | Parcel imaging system and method |
EP2013117B8 (en) | 2006-05-02 | 2012-07-18 | Habitat Italiana S.R.L. | Apparatus for storing and picking up articles with different dimensions and weight, particularly books |
EP2023794A2 (en) | 2006-05-19 | 2009-02-18 | Avantis Medical Systems, Inc. | System and method for producing and improving images |
US7768527B2 (en) | 2006-05-31 | 2010-08-03 | Beihang University | Hardware-in-the-loop simulation system and method for computer vision |
US7784696B2 (en) | 2006-06-09 | 2010-08-31 | Hand Held Products, Inc. | Indicia reading apparatus having image sensing and processing circuit |
US20070291031A1 (en) | 2006-06-15 | 2007-12-20 | Right Hemisphere Limited | Three dimensional geometric data correction |
US7818084B2 (en) | 2006-06-16 | 2010-10-19 | The Invention Science Fund, I, LLC | Methods and systems for making a blood vessel sleeve |
US7701439B2 (en) | 2006-07-13 | 2010-04-20 | Northrop Grumman Corporation | Gesture recognition simulation system and method |
US9405372B2 (en) | 2006-07-14 | 2016-08-02 | Ailive, Inc. | Self-contained inertial navigation system for interactive control using movable controllers |
US8944332B2 (en) | 2006-08-04 | 2015-02-03 | Intermec Ip Corp. | Testing automatic data collection devices, such as barcode, RFID and/or magnetic stripe readers |
US20080035390A1 (en) | 2006-08-09 | 2008-02-14 | Wurz David A | Dimensioning and weighing system |
US8406562B2 (en) | 2006-08-11 | 2013-03-26 | Geo Semiconductor Inc. | System and method for automated calibration and correction of display geometry and color |
US7839625B2 (en) | 2006-09-04 | 2010-11-23 | Intermec Ip Corp. | Tool belt with smart cell technology |
US20100091104A1 (en) | 2006-09-27 | 2010-04-15 | Georgia Tech Research Corporation | Systems and methods for the measurement of surfaces |
US8310656B2 (en) | 2006-09-28 | 2012-11-13 | Sony Computer Entertainment America Llc | Mapping movements of a hand-held controller to the two-dimensional image plane of a display screen |
US8374498B2 (en) | 2006-09-29 | 2013-02-12 | Microscan Systems, Inc. | Systems and/or devices for camera-based inspections |
US7576871B2 (en) | 2006-10-03 | 2009-08-18 | Storm Thomas W | Apparatus and method for measuring volumes |
DE102006048725A1 (en) | 2006-10-16 | 2008-04-17 | Robert Bosch Gmbh | Method for determining the axis of rotation of a vehicle wheel |
US9891435B2 (en) | 2006-11-02 | 2018-02-13 | Sensics, Inc. | Apparatus, systems and methods for providing motion tracking using a personal viewing device |
US7726206B2 (en) | 2006-11-02 | 2010-06-01 | The Regents Of The University Of California | Foot pressure alert and sensing system |
US20080156619A1 (en) | 2006-12-01 | 2008-07-03 | Mehul Patel | Range finder |
US8027096B2 (en) | 2006-12-15 | 2011-09-27 | Hand Held Products, Inc. | Focus module and components with actuator polymer control |
US7813047B2 (en) | 2006-12-15 | 2010-10-12 | Hand Held Products, Inc. | Apparatus and method comprising deformable lens element |
US7912320B1 (en) * | 2007-01-16 | 2011-03-22 | Paul Minor | Method and apparatus for photographic measurement |
US8072581B1 (en) | 2007-01-19 | 2011-12-06 | Rockwell Collins, Inc. | Laser range finding system using variable field of illumination flash lidar |
US9047359B2 (en) | 2007-02-01 | 2015-06-02 | Hand Held Products, Inc. | Apparatus and methods for monitoring one or more portable data terminals |
JP2008210276A (en) | 2007-02-27 | 2008-09-11 | Canon Inc | Method and device for generating three-dimensional model information |
WO2008104082A1 (en) | 2007-03-01 | 2008-09-04 | Titan Medical Inc. | Methods, systems and devices for threedimensional input, and control methods and systems based thereon |
US8915444B2 (en) | 2007-03-13 | 2014-12-23 | Hand Held Products, Inc. | Imaging module having lead frame supported light source or sources |
US8145677B2 (en) | 2007-03-27 | 2012-03-27 | Faleh Jassem Al-Shameri | Automated generation of metadata for mining image and text data |
US8132728B2 (en) | 2007-04-04 | 2012-03-13 | Sick, Inc. | Parcel dimensioning measurement system and method |
US7616817B2 (en) | 2007-04-12 | 2009-11-10 | The United States Of America As Represented By The Secretary Of The Navy | Three dimensional shape correlator |
US8811692B2 (en) | 2007-04-17 | 2014-08-19 | Francine J. Prokoski | System and method for using three dimensional infrared imaging for libraries of standardized medical imagery |
US7974025B2 (en) | 2007-04-23 | 2011-07-05 | Cambridge Mechatronics Limited | Shape memory alloy actuation apparatus |
US8971346B2 (en) | 2007-04-30 | 2015-03-03 | Hand Held Products, Inc. | System and method for reliable store-and-forward data handling by encoded information reading terminals |
US7463342B2 (en) | 2007-05-02 | 2008-12-09 | Angstrom, Inc. | Optical tracking device using micromirror array lenses |
US8630491B2 (en) | 2007-05-03 | 2014-01-14 | Andrew Longacre, Jr. | System and method to manipulate an image |
DE102007021823A1 (en) | 2007-05-07 | 2008-11-13 | Vistec Semiconductor Systems Gmbh | Improved resolution measurement system for structures on a substrate for semiconductor fabrication and use of apertures in a measurement system |
US8638806B2 (en) | 2007-05-25 | 2014-01-28 | Hand Held Products, Inc. | Wireless mesh point portable data terminal |
US7918398B2 (en) | 2007-06-04 | 2011-04-05 | Hand Held Products, Inc. | Indicia reading terminal having multiple setting imaging lens |
US7961332B2 (en) | 2007-06-07 | 2011-06-14 | Metrolaser, Inc. | Fiber-optic heterodyne imaging vibrometer |
US7988290B2 (en) | 2007-06-27 | 2011-08-02 | AMO Wavefront Sciences LLC. | Systems and methods for measuring the shape and location of an object |
US8496177B2 (en) | 2007-06-28 | 2013-07-30 | Hand Held Products, Inc. | Bar code reading terminal with video capturing mode |
US7780084B2 (en) | 2007-06-29 | 2010-08-24 | Microsoft Corporation | 2-D barcode recognition |
US9329052B2 (en) | 2007-08-07 | 2016-05-03 | Qualcomm Incorporated | Displaying image data and geographic element data |
US20090038182A1 (en) | 2007-08-09 | 2009-02-12 | Lans Maris J | Footwear with built-in scale |
US8635309B2 (en) | 2007-08-09 | 2014-01-21 | Hand Held Products, Inc. | Methods and apparatus to change a feature set on data collection devices |
US7726575B2 (en) | 2007-08-10 | 2010-06-01 | Hand Held Products, Inc. | Indicia reading terminal having spatial measurement functionality |
US7857222B2 (en) | 2007-08-16 | 2010-12-28 | Hand Held Products, Inc. | Data collection system having EIR terminal interface node |
CA2699628A1 (en) | 2007-09-14 | 2009-03-19 | Matthew Bell | Gesture-based user interactions with status indicators for acceptable inputs in volumetric zones |
US9014441B2 (en) | 2007-09-17 | 2015-04-21 | Koninklijke Philips N.V. | Caliper for measuring objects in an image |
US7941244B2 (en) | 2007-09-25 | 2011-05-10 | Amazon Technologies, Inc. | Stow and sortation system |
US8548420B2 (en) | 2007-10-05 | 2013-10-01 | Hand Held Products, Inc. | Panic button for data collection device |
US8371507B2 (en) | 2007-10-08 | 2013-02-12 | Metrologic Instruments, Inc. | Method of selectively projecting scan lines in a multiple-line barcode scanner |
WO2009052143A1 (en) | 2007-10-16 | 2009-04-23 | Accu-Sort Systems, Inc. | Dimensioning and barcode reading system |
US7639722B1 (en) | 2007-10-29 | 2009-12-29 | The United States Of America As Represented By The Secretary Of The Air Force | Multifaceted prism to cause the overlap of beams from a stack of diode laser bars |
GB0721475D0 (en) | 2007-11-01 | 2007-12-12 | Asquith Anthony | Virtual buttons enabled by embedded inertial sensors |
US7874483B2 (en) | 2007-11-14 | 2011-01-25 | Hand Held Products, Inc. | Encoded information reading terminal with wireless path selection capability |
JP5349790B2 (en) | 2007-11-16 | 2013-11-20 | キヤノン株式会社 | Image processing apparatus, image processing method, and program |
US8646689B2 (en) * | 2007-12-28 | 2014-02-11 | Cognex Corporation | Deformable light pattern for machine vision system |
US8933876B2 (en) | 2010-12-13 | 2015-01-13 | Apple Inc. | Three dimensional user interface session control |
CN201139117Y (en) | 2008-01-21 | 2008-10-29 | 赵辉 | Shoes with electronic weighing scale |
US20090189858A1 (en) | 2008-01-30 | 2009-07-30 | Jeff Lev | Gesture Identification Using A Structured Light Pattern |
US11159909B2 (en) | 2008-02-05 | 2021-10-26 | Victor Thomas Anderson | Wireless location establishing device |
US8179859B2 (en) | 2008-02-21 | 2012-05-15 | Wang Ynjiun P | Roaming encoded information reading terminal |
US8107083B2 (en) | 2008-03-05 | 2012-01-31 | General Electric Company | System aspects for a probe system that utilizes structured-light |
US8125481B2 (en) | 2008-03-21 | 2012-02-28 | Google Inc. | Lightweight three-dimensional display |
US8803878B2 (en) | 2008-03-28 | 2014-08-12 | Schlumberger Technology Corporation | Visualizing region growing in three dimensional voxel volumes |
US20090268023A1 (en) | 2008-04-27 | 2009-10-29 | Wen-Hsiung Hsieh | Surveillance camera device with a light source |
US20090273770A1 (en) | 2008-04-30 | 2009-11-05 | Honeywell International Inc. | Systems and methods for safe laser imaging, detection and ranging (lidar) operation |
US8301027B2 (en) | 2008-05-02 | 2012-10-30 | Massachusetts Institute Of Technology | Agile-beam laser array transmitter |
DE502008001155D1 (en) | 2008-05-02 | 2010-09-30 | Leister Process Tech | Method and laser device for machining and / or connecting workpieces by means of laser radiation with power acting and pilot laser and at least one diffractive optical element |
US9361882B2 (en) | 2008-05-06 | 2016-06-07 | Vocollect, Inc. | Supervisor training terminal and monitor for voice-driven applications |
WO2009142758A1 (en) | 2008-05-23 | 2009-11-26 | Spectral Image, Inc. | Systems and methods for hyperspectral medical imaging |
US7788883B2 (en) | 2008-06-19 | 2010-09-07 | Xerox Corporation | Custom packaging solution for arbitrary objects |
US20090323084A1 (en) | 2008-06-25 | 2009-12-31 | Joseph Christen Dunn | Package dimensioner and reader |
US8334900B2 (en) * | 2008-07-21 | 2012-12-18 | The Hong Kong University Of Science And Technology | Apparatus and method of optical imaging for medical diagnosis |
US8255225B2 (en) | 2008-08-07 | 2012-08-28 | Vocollect Healthcare Systems, Inc. | Voice assistant system |
KR20100020115A (en) | 2008-08-12 | 2010-02-22 | 변규석 | Weight-measuring scale equipped-footwear |
US8794520B2 (en) | 2008-09-30 | 2014-08-05 | Hand Held Products, Inc. | Method and apparatus for operating indicia reading terminal including parameter determination |
US8628015B2 (en) | 2008-10-31 | 2014-01-14 | Hand Held Products, Inc. | Indicia reading terminal including frame quality evaluation processing |
US20100118200A1 (en) | 2008-11-10 | 2010-05-13 | Geoffrey Michael Gelman | Signage |
EP2184254B1 (en) | 2008-11-11 | 2013-01-09 | Deutsche Post AG | Forklift truck with a guidance and collision warning device |
US8471895B2 (en) | 2008-11-25 | 2013-06-25 | Paul S. Banks | Systems and methods of high resolution three-dimensional imaging |
US8783573B2 (en) | 2008-12-02 | 2014-07-22 | Hand Held Products, Inc. | Indicia reading terminal having plurality of optical assemblies |
US8194097B2 (en) | 2008-12-12 | 2012-06-05 | Seiko Epson Corporation | Virtual masking using rigid parametric modeling |
US8083148B2 (en) | 2008-12-16 | 2011-12-27 | Hand Held Products, Inc. | Indicia reading terminal including frame processing |
US8463079B2 (en) | 2008-12-16 | 2013-06-11 | Intermec Ip Corp. | Method and apparatus for geometrical measurement using an optical device such as a barcode and/or RFID scanner |
US9020846B2 (en) | 2008-12-19 | 2015-04-28 | United Parcel Service Of America, Inc. | Trailer utilization systems, methods, computer programs embodied on computer-readable media, and apparatuses |
US8908995B2 (en) | 2009-01-12 | 2014-12-09 | Intermec Ip Corp. | Semi-automatic dimensioning with imager on a portable device |
US20100177080A1 (en) | 2009-01-13 | 2010-07-15 | Metrologic Instruments, Inc. | Electronic-ink signage device employing thermal packaging for outdoor weather applications |
US20100177076A1 (en) | 2009-01-13 | 2010-07-15 | Metrologic Instruments, Inc. | Edge-lit electronic-ink display device for use in indoor and outdoor environments |
US8457013B2 (en) | 2009-01-13 | 2013-06-04 | Metrologic Instruments, Inc. | Wireless dual-function network device dynamically switching and reconfiguring from a wireless network router state of operation into a wireless network coordinator state of operation in a wireless communication network |
US20100177749A1 (en) | 2009-01-13 | 2010-07-15 | Metrologic Instruments, Inc. | Methods of and apparatus for programming and managing diverse network components, including electronic-ink based display devices, in a mesh-type wireless communication network |
US20100177707A1 (en) | 2009-01-13 | 2010-07-15 | Metrologic Instruments, Inc. | Method and apparatus for increasing the SNR at the RF antennas of wireless end-devices on a wireless communication network, while minimizing the RF power transmitted by the wireless coordinator and routers |
JP4905541B2 (en) | 2009-02-04 | 2012-03-28 | ソニー株式会社 | Liquid crystal display device and method for manufacturing liquid crystal display device |
EP2394055B1 (en) | 2009-02-09 | 2013-06-05 | Cambridge Mechatronics Limited | Shape memory alloy actuation apparatus |
US8494909B2 (en) | 2009-02-09 | 2013-07-23 | Datalogic ADC, Inc. | Automatic learning in a merchandise checkout system with visual recognition |
US8639455B2 (en) | 2009-02-09 | 2014-01-28 | Alterg, Inc. | Foot pad device and method of obtaining weight data |
EP2216634A1 (en) | 2009-02-10 | 2010-08-11 | Designit A/S | A one ball of the foot scale |
US10244181B2 (en) | 2009-02-17 | 2019-03-26 | Trilumina Corp. | Compact multi-zone infrared laser illuminator |
US8660254B2 (en) | 2009-02-27 | 2014-02-25 | Blackberry Limited | System and method for call management |
US8643717B2 (en) | 2009-03-04 | 2014-02-04 | Hand Held Products, Inc. | System and method for measuring irregular objects with a single camera |
US8004694B2 (en) * | 2009-03-27 | 2011-08-23 | Gll Acquistion LLC | System for indirectly measuring a geometric dimension related to an opening in an apertured exterior surface of a part based on direct measurements of the part when fixtured at a measurement station |
DE102009015594B4 (en) | 2009-03-30 | 2015-07-30 | Carl Zeiss Sms Gmbh | Method and device for subpixel accurate position determination of an edge of a marker structure in a plurality of receiving pixels having recording the marker structure |
US9183425B2 (en) | 2009-04-09 | 2015-11-10 | Hand Held Products, Inc. | Image sensor pixel array having output response curve including logarithmic pattern for image sensor based terminal |
US8424768B2 (en) | 2009-04-09 | 2013-04-23 | Metrologic Instruments, Inc. | Trigger mechanism for hand held devices |
US8212158B2 (en) | 2009-04-13 | 2012-07-03 | Wiest Pieter C | Weight measuring shoe having a retractable scale |
US20100274728A1 (en) | 2009-04-24 | 2010-10-28 | Refinement Services, Llc | Video Shipment Monitoring |
US8149224B1 (en) | 2009-04-28 | 2012-04-03 | Integrated Device Technology, Inc. | Computing system with detachable touch screen device |
JP2010282610A (en) | 2009-05-07 | 2010-12-16 | Canon Inc | Network system and management method therefor |
US8781159B2 (en) * | 2009-05-13 | 2014-07-15 | Applied Vision Corporation | System and method for dimensioning objects using stereoscopic imaging |
US20110040192A1 (en) | 2009-05-21 | 2011-02-17 | Sara Brenner | Method and a system for imaging and analysis for mole evolution tracking |
US9519814B2 (en) | 2009-06-12 | 2016-12-13 | Hand Held Products, Inc. | Portable data terminal |
WO2010147609A1 (en) | 2009-06-16 | 2010-12-23 | Intel Corporation | Camera applications in a handheld device |
US20100315413A1 (en) | 2009-06-16 | 2010-12-16 | Microsoft Corporation | Surface Computer User Interaction |
US8320623B2 (en) | 2009-06-17 | 2012-11-27 | Lc Technologies, Inc. | Systems and methods for 3-D target location |
US8583924B2 (en) | 2009-07-01 | 2013-11-12 | Hand Held Products, Inc. | Location-based feature enablement for mobile terminals |
US8914788B2 (en) | 2009-07-01 | 2014-12-16 | Hand Held Products, Inc. | Universal connectivity for non-universal devices |
RU2496253C1 (en) | 2009-07-21 | 2013-10-20 | Кэнон Кабусики Кайся | Image processing device and image processing method for correcting chromatic aberration |
US8201737B1 (en) | 2009-07-21 | 2012-06-19 | Amazon Technologies, Inc. | Validating item placement |
US8118438B2 (en) | 2009-07-24 | 2012-02-21 | Optimet, Optical Metrology Ltd. | Method and apparatus for real-time projection onto an object of data obtained from 3-D measurement |
US20110025830A1 (en) | 2009-07-31 | 2011-02-03 | 3Dmedia Corporation | Methods, systems, and computer-readable storage media for generating stereoscopic content via depth map creation |
CN101989326B (en) | 2009-07-31 | 2015-04-01 | 三星电子株式会社 | Human posture recognition method and device |
EP2462559B8 (en) | 2009-08-05 | 2017-03-29 | Siemens Industry, Inc. | System and method for three-dimensional parcel monitoring and analysis |
KR101665543B1 (en) | 2009-08-12 | 2016-10-13 | 삼성전자 주식회사 | Tabilization apparatus for humanoid robot and method thereof |
US9418269B2 (en) | 2009-08-12 | 2016-08-16 | Hand Held Products, Inc. | Laser scanning indicia reading terminal having variable lens assembly |
US8256678B2 (en) | 2009-08-12 | 2012-09-04 | Hand Held Products, Inc. | Indicia reading terminal having image sensor and variable lens assembly |
WO2011018654A2 (en) | 2009-08-13 | 2011-02-17 | Bae Systems Plc | Display systems incorporating fourier optics |
KR20110018696A (en) | 2009-08-18 | 2011-02-24 | 주식회사 이턴 | Apparatus and method for processing 3d image |
US8668149B2 (en) | 2009-09-16 | 2014-03-11 | Metrologic Instruments, Inc. | Bar code reader terminal and methods for operating the same having misread detection apparatus |
US8390909B2 (en) | 2009-09-23 | 2013-03-05 | Metrologic Instruments, Inc. | Molded elastomeric flexural elements for use in a laser scanning assemblies and scanners, and methods of manufacturing, tuning and adjusting the same |
US8294969B2 (en) | 2009-09-23 | 2012-10-23 | Metrologic Instruments, Inc. | Scan element for use in scanning light and method of making the same |
WO2011038239A1 (en) | 2009-09-25 | 2011-03-31 | Intermec Ip Corp. | Mobile printer with optional battery accessory |
US8587595B2 (en) | 2009-10-01 | 2013-11-19 | Hand Held Products, Inc. | Low power multi-core decoder system and method |
US8867820B2 (en) | 2009-10-07 | 2014-10-21 | Microsoft Corporation | Systems and methods for removing a background of an image |
US8868802B2 (en) | 2009-10-14 | 2014-10-21 | Hand Held Products, Inc. | Method of programming the default cable interface software in an indicia reading device |
US8596543B2 (en) | 2009-10-20 | 2013-12-03 | Hand Held Products, Inc. | Indicia reading terminal including focus element with expanded range of focus distances |
US10387175B2 (en) | 2009-10-23 | 2019-08-20 | Autodesk, Inc. | Method and system for providing software application end-users with contextual access to text and video instructional information |
US8175617B2 (en) | 2009-10-28 | 2012-05-08 | Digimarc Corporation | Sensor-based mobile search, related methods and systems |
US8819172B2 (en) | 2010-11-04 | 2014-08-26 | Digimarc Corporation | Smartphone-based methods and systems |
US8996384B2 (en) | 2009-10-30 | 2015-03-31 | Vocollect, Inc. | Transforming components of a web page to voice prompts |
JP5637995B2 (en) | 2009-10-30 | 2014-12-10 | 株式会社オプトエレクトロニクス | Optical information reader |
US9497092B2 (en) | 2009-12-08 | 2016-11-15 | Hand Held Products, Inc. | Remote device management interface |
GB0921461D0 (en) | 2009-12-08 | 2010-01-20 | Qinetiq Ltd | Range based sensing |
US8320621B2 (en) | 2009-12-21 | 2012-11-27 | Microsoft Corporation | Depth projector system with integrated VCSEL array |
US8698949B2 (en) | 2010-01-08 | 2014-04-15 | Hand Held Products, Inc. | Terminal having plurality of operating modes |
US8302868B2 (en) | 2010-01-15 | 2012-11-06 | Metrologic Instruments, Inc. | Parallel decoding scheme for an indicia reader |
US8588869B2 (en) | 2010-01-19 | 2013-11-19 | Hand Held Products, Inc. | Power management scheme for portable data collection devices utilizing location and position sensors |
WO2011088590A1 (en) | 2010-01-21 | 2011-07-28 | Metrologic Instruments, Inc. | Indicia reading terminal including optical filter |
US8244003B2 (en) | 2010-01-25 | 2012-08-14 | Apple Inc. | Image preprocessing |
US8781520B2 (en) | 2010-01-26 | 2014-07-15 | Hand Held Products, Inc. | Mobile device having hybrid keypad |
US20110188054A1 (en) | 2010-02-02 | 2011-08-04 | Primesense Ltd | Integrated photonics module for optical projection |
US20110187878A1 (en) | 2010-02-02 | 2011-08-04 | Primesense Ltd. | Synchronization of projected illumination with rolling shutter of image sensor |
US9058526B2 (en) | 2010-02-11 | 2015-06-16 | Hand Held Products, Inc. | Data collection module and system |
US20110202554A1 (en) | 2010-02-18 | 2011-08-18 | Hand Held Products, Inc. | Remote device management system and method |
JP5631025B2 (en) | 2010-03-10 | 2014-11-26 | キヤノン株式会社 | Information processing apparatus, processing method thereof, and program |
DE102010013220A1 (en) | 2010-03-29 | 2011-09-29 | Siemens Aktiengesellschaft | Method and device for transporting an object to be printed |
US20110243432A1 (en) | 2010-03-30 | 2011-10-06 | Mckesson Financial Holdings Limited | Determining the Scale of Images |
US9104934B2 (en) | 2010-03-31 | 2015-08-11 | Hand Held Products, Inc. | Document decoding system and method for improved decoding performance of indicia reading terminal |
US9298964B2 (en) | 2010-03-31 | 2016-03-29 | Hand Held Products, Inc. | Imaging terminal, imaging sensor to determine document orientation based on bar code orientation and methods for operating the same |
EP2375227A1 (en) | 2010-04-09 | 2011-10-12 | Siemens Aktiengesellschaft | Measurement of three-dimensional motion characteristics |
US8368762B1 (en) | 2010-04-12 | 2013-02-05 | Adobe Systems Incorporated | Methods and apparatus for camera calibration based on multiview image geometry |
US8570343B2 (en) | 2010-04-20 | 2013-10-29 | Dassault Systemes | Automatic generation of 3D models from packaged goods product images |
KR101334107B1 (en) | 2010-04-22 | 2013-12-16 | 주식회사 굿소프트웨어랩 | Apparatus and Method of User Interface for Manipulating Multimedia Contents in Vehicle |
US8822806B2 (en) | 2010-05-04 | 2014-09-02 | New Sensor Corp. | Configurable foot-operable electronic control interface apparatus and method |
US20110286628A1 (en) | 2010-05-14 | 2011-11-24 | Goncalves Luis F | Systems and methods for object recognition using a large database |
US9400503B2 (en) | 2010-05-20 | 2016-07-26 | Irobot Corporation | Mobile human interface robot |
US8134717B2 (en) * | 2010-05-21 | 2012-03-13 | LTS Scale Company | Dimensional detection system and associated method |
US8615376B2 (en) | 2010-05-21 | 2013-12-24 | Sure-Shot Medical Device Inc. | Method and apparatus for dimensional measurement |
US9047531B2 (en) | 2010-05-21 | 2015-06-02 | Hand Held Products, Inc. | Interactive user interface for capturing a document in an image signal |
US8600167B2 (en) | 2010-05-21 | 2013-12-03 | Hand Held Products, Inc. | System for capturing a document in an image signal |
US8594425B2 (en) | 2010-05-31 | 2013-11-26 | Primesense Ltd. | Analysis of three-dimensional scenes |
CN103210296B (en) | 2010-06-01 | 2016-08-10 | 阿克莱机械公司 | Inspection system |
US20110301994A1 (en) | 2010-06-07 | 2011-12-08 | Tieman James K | Wireless put-to-light system and method |
US8757490B2 (en) | 2010-06-11 | 2014-06-24 | Josef Bigun | Method and apparatus for encoding and reading optical machine-readable data codes |
US20140142398A1 (en) | 2010-06-13 | 2014-05-22 | Angiometrix Corporation | Multifunctional guidewire assemblies and system for analyzing anatomical and functional parameters |
US20110310227A1 (en) | 2010-06-17 | 2011-12-22 | Qualcomm Incorporated | Mobile device based content mapping for augmented reality environment |
JP5490627B2 (en) | 2010-06-17 | 2014-05-14 | 株式会社ミツトヨ | Image equipment calibration pattern |
US9189669B2 (en) | 2010-06-24 | 2015-11-17 | Metrologic Instruments, Inc. | Distinctive notice for different symbology information |
JP5660432B2 (en) | 2010-06-30 | 2015-01-28 | 独立行政法人理化学研究所 | Area data editing device, area data editing method, program, and recording medium |
US8208704B2 (en) | 2010-07-13 | 2012-06-26 | Carestream Health, Inc. | Dental shade mapping |
US8659397B2 (en) | 2010-07-22 | 2014-02-25 | Vocollect, Inc. | Method and system for correctly identifying specific RFID tags |
JP5042344B2 (en) | 2010-07-22 | 2012-10-03 | 正▲うえ▼精密工業股▲ふん▼有限公司 | Matrix type two-dimensional code identification system and identification method thereof |
US9489782B2 (en) | 2010-07-28 | 2016-11-08 | Hand Held Products, Inc. | Collect vehicle performance with a PDT |
CN103210370B (en) | 2010-08-03 | 2017-02-15 | 派克赛斯有限责任公司 | Creating on-demand packaging based on stored attribute data |
US8910870B2 (en) | 2010-08-06 | 2014-12-16 | Hand Held Products, Inc. | System and method for document processing |
US8381976B2 (en) | 2010-08-10 | 2013-02-26 | Honeywell International Inc. | System and method for object metrology |
US8717494B2 (en) | 2010-08-11 | 2014-05-06 | Hand Held Products, Inc. | Optical reading device with improved gasket |
WO2012026145A1 (en) | 2010-08-27 | 2012-03-01 | コニカミノルタエムジー株式会社 | Diagnosis assistance system and program |
US8757495B2 (en) | 2010-09-03 | 2014-06-24 | Hand Held Products, Inc. | Encoded information reading terminal with multi-band antenna |
US8596823B2 (en) | 2010-09-07 | 2013-12-03 | Coherent, Inc. | Line-projection apparatus for arrays of diode-laser bar stacks |
US9116504B2 (en) | 2010-09-07 | 2015-08-25 | Dai Nippon Printing Co., Ltd. | Scanner device and device for measuring three-dimensional shape of object |
US20120056982A1 (en) | 2010-09-08 | 2012-03-08 | Microsoft Corporation | Depth camera based on structured light and stereo vision |
KR101194289B1 (en) | 2010-09-14 | 2012-10-24 | 삼성메디슨 주식회사 | 3d ultrasound system for 3d modeling of tissue and method for operating 3d ultrasound system |
DE102010037625A1 (en) | 2010-09-17 | 2012-03-22 | B & W Verpackungstechnologie Gmbh | Method and device for filling packages with a padding material in bulk form |
WO2012040209A2 (en) | 2010-09-20 | 2012-03-29 | Lumidigm, Inc. | Machine-readable symbols |
US8565107B2 (en) | 2010-09-24 | 2013-10-22 | Hand Held Products, Inc. | Terminal configurable for use within an unknown regulatory domain |
WO2012044300A1 (en) | 2010-09-30 | 2012-04-05 | Empire Technology Development Llc | Projecting patterns for high resolution texture extraction |
EP2439503A1 (en) | 2010-09-30 | 2012-04-11 | Neopost Technologies | Device for determining the dimensions of a parcel |
US8408469B2 (en) | 2010-10-07 | 2013-04-02 | Metrologic Instruments, Inc. | Laser scanning assembly having an improved scan angle-multiplication factor |
US8760563B2 (en) | 2010-10-19 | 2014-06-24 | Hand Held Products, Inc. | Autofocusing optical imaging device |
JP5861122B2 (en) | 2010-10-19 | 2016-02-16 | パナソニックIpマネジメント株式会社 | Optical multiplexing device and projector |
US9240021B2 (en) | 2010-11-04 | 2016-01-19 | Digimarc Corporation | Smartphone-based methods and systems |
US20120113223A1 (en) | 2010-11-05 | 2012-05-10 | Microsoft Corporation | User Interaction in Augmented Reality |
US8490877B2 (en) | 2010-11-09 | 2013-07-23 | Metrologic Instruments, Inc. | Digital-imaging based code symbol reading system having finger-pointing triggered mode of operation |
US20120111946A1 (en) | 2010-11-09 | 2012-05-10 | Metrologic Instruments, Inc. | Scanning assembly for laser based bar code scanners |
US8517269B2 (en) | 2010-11-09 | 2013-08-27 | Hand Held Products, Inc. | Using a user'S application to configure user scanner |
US8322622B2 (en) | 2010-11-09 | 2012-12-04 | Metrologic Instruments, Inc. | Hand-supportable digital-imaging based code symbol reading system supporting motion blur reduction using an accelerometer sensor |
WO2012064327A1 (en) | 2010-11-11 | 2012-05-18 | Hewlett-Packard Development Company, L.P. | Blemish detection and notification in an image capture device |
US8600158B2 (en) | 2010-11-16 | 2013-12-03 | Hand Held Products, Inc. | Method and system operative to process color image data |
US8571307B2 (en) | 2010-11-16 | 2013-10-29 | Hand Held Products, Inc. | Method and system operative to process monochrome image data |
US8950678B2 (en) | 2010-11-17 | 2015-02-10 | Hand Held Products, Inc. | Barcode reader with edge detection enhancement |
WO2012068353A2 (en) | 2010-11-18 | 2012-05-24 | Sky-Trax, Inc. | Load tracking utilizing load identifying indicia and spatial discrimination |
WO2012066501A1 (en) | 2010-11-19 | 2012-05-24 | Primesense Ltd. | Depth mapping using time-coded illumination |
US9010641B2 (en) | 2010-12-07 | 2015-04-21 | Hand Held Products, Inc. | Multiple platform support system and method |
US8550357B2 (en) | 2010-12-08 | 2013-10-08 | Metrologic Instruments, Inc. | Open air indicia reader stand |
GB2501404A (en) | 2010-12-09 | 2013-10-23 | Metrologic Instr Inc | Indicia encoding system with integrated purchase and payment information |
US8408468B2 (en) | 2010-12-13 | 2013-04-02 | Metrologic Instruments, Inc. | Method of and system for reading visible and/or invisible code symbols in a user-transparent manner using visible/invisible illumination source switching during data capture and processing operations |
US8448863B2 (en) | 2010-12-13 | 2013-05-28 | Metrologic Instruments, Inc. | Bar code symbol reading system supporting visual or/and audible display of product scan speed for throughput optimization in point of sale (POS) environments |
US8500351B2 (en) | 2010-12-21 | 2013-08-06 | Datamax-O'neil Corporation | Compact printer with print frame interlock |
US8939374B2 (en) | 2010-12-30 | 2015-01-27 | Hand Held Products, Inc. | Terminal having illumination and exposure control |
US8996194B2 (en) | 2011-01-03 | 2015-03-31 | Ems Technologies, Inc. | Vehicle mount computer with configurable ignition switch behavior |
US8763909B2 (en) | 2011-01-04 | 2014-07-01 | Hand Held Products, Inc. | Terminal comprising mount for supporting a mechanical component |
TW201228632A (en) | 2011-01-07 | 2012-07-16 | Access Business Group Int Llc | Health monitoring system |
US20120242852A1 (en) | 2011-03-21 | 2012-09-27 | Apple Inc. | Gesture-Based Configuration of Image Processing Techniques |
US8692927B2 (en) | 2011-01-19 | 2014-04-08 | Hand Held Products, Inc. | Imaging terminal having focus control |
JP5905031B2 (en) | 2011-01-28 | 2016-04-20 | インタッチ テクノロジーズ インコーポレイテッド | Interfacing with mobile telepresence robot |
US8678286B2 (en) | 2011-01-31 | 2014-03-25 | Honeywell Scanning & Mobility | Method and apparatus for reading optical indicia using a plurality of data sources |
US8381979B2 (en) | 2011-01-31 | 2013-02-26 | Metrologic Instruments, Inc. | Bar code symbol reading system employing EAS-enabling faceplate bezel |
US8879639B2 (en) | 2011-01-31 | 2014-11-04 | Hand Held Products, Inc. | Adaptive video capture decode system |
US8561903B2 (en) | 2011-01-31 | 2013-10-22 | Hand Held Products, Inc. | System operative to adaptively select an image sensor for decodable indicia reading |
WO2012103608A1 (en) | 2011-01-31 | 2012-08-09 | Pedrao Cassio Monaco | Indicia reading terminal operable for data input on two sides |
US8520080B2 (en) | 2011-01-31 | 2013-08-27 | Hand Held Products, Inc. | Apparatus, system, and method of use of imaging assembly on mobile terminal |
US8798367B2 (en) | 2011-01-31 | 2014-08-05 | Metrologic Instruments, Inc. | Optical imager and method for correlating a medication package with a patient |
US9418270B2 (en) | 2011-01-31 | 2016-08-16 | Hand Held Products, Inc. | Terminal with flicker-corrected aimer and alternating illumination |
US9038915B2 (en) | 2011-01-31 | 2015-05-26 | Metrologic Instruments, Inc. | Pre-paid usage system for encoded information reading terminals |
US20120193423A1 (en) | 2011-01-31 | 2012-08-02 | Metrologic Instruments Inc | Code symbol reading system supporting operator-dependent system configuration parameters |
US8789757B2 (en) | 2011-02-02 | 2014-07-29 | Metrologic Instruments, Inc. | POS-based code symbol reading system with integrated scale base and system housing having an improved produce weight capturing surface design |
US8408464B2 (en) | 2011-02-03 | 2013-04-02 | Metrologic Instruments, Inc. | Auto-exposure method using continuous video frames under controlled illumination |
US8636200B2 (en) | 2011-02-08 | 2014-01-28 | Metrologic Instruments, Inc. | MMS text messaging for hand held indicia reader |
WO2012109143A2 (en) | 2011-02-08 | 2012-08-16 | Quantronix, Inc. | Object dimensioning system and related methods |
US20120203647A1 (en) | 2011-02-09 | 2012-08-09 | Metrologic Instruments, Inc. | Method of and system for uniquely responding to code data captured from products so as to alert the product handler to carry out exception handling procedures |
US20120224060A1 (en) | 2011-02-10 | 2012-09-06 | Integrated Night Vision Systems Inc. | Reducing Driver Distraction Using a Heads-Up Display |
US8550354B2 (en) | 2011-02-17 | 2013-10-08 | Hand Held Products, Inc. | Indicia reader system with wireless communication with a headset |
US20120223141A1 (en) | 2011-03-01 | 2012-09-06 | Metrologic Instruments, Inc. | Digital linear imaging system employing pixel processing techniques to composite single-column linear images on a 2d image detection array |
US8459557B2 (en) | 2011-03-10 | 2013-06-11 | Metrologic Instruments, Inc. | Dual laser scanning code symbol reading system employing automatic object presence detector for automatic laser source selection |
US8988590B2 (en) | 2011-03-28 | 2015-03-24 | Intermec Ip Corp. | Two-dimensional imager with solid-state auto-focus |
US8469272B2 (en) | 2011-03-29 | 2013-06-25 | Metrologic Instruments, Inc. | Hybrid-type bioptical laser scanning and imaging system supporting digital-imaging based bar code symbol reading at the surface of a laser scanning window |
US8411083B2 (en) | 2011-04-06 | 2013-04-02 | General Electric Company | Method and device for displaying an indication of the quality of the three-dimensional data for a surface of a viewed object |
WO2012139575A1 (en) | 2011-04-15 | 2012-10-18 | INS - Europe | A method for estimating volume |
US8824692B2 (en) | 2011-04-20 | 2014-09-02 | Vocollect, Inc. | Self calibrating multi-element dipole microphone |
WO2012155121A2 (en) | 2011-05-11 | 2012-11-15 | University Of Florida Research Foundation, Inc. | Systems and methods for estimating the geographic location at which image data was captured |
US8600194B2 (en) | 2011-05-17 | 2013-12-03 | Apple Inc. | Positional sensor-assisted image registration for panoramic photography |
US9088714B2 (en) | 2011-05-17 | 2015-07-21 | Apple Inc. | Intelligent image blending for panoramic photography |
EP2772676B1 (en) | 2011-05-18 | 2015-07-08 | Sick Ag | 3D camera and method for three dimensional surveillance of a surveillance area |
US8914290B2 (en) | 2011-05-20 | 2014-12-16 | Vocollect, Inc. | Systems and methods for dynamically improving user intelligibility of synthesized speech in a work environment |
US8885877B2 (en) | 2011-05-20 | 2014-11-11 | Eyefluence, Inc. | Systems and methods for identifying gaze tracking scene reference locations |
CA2837155A1 (en) | 2011-05-23 | 2012-11-29 | Datamax-O'neil Corporation | Sensing apparatus for detecting and determining the width of media along a feed path |
US8868519B2 (en) | 2011-05-27 | 2014-10-21 | Vocollect, Inc. | System and method for generating and updating location check digits |
US9547938B2 (en) | 2011-05-27 | 2017-01-17 | A9.Com, Inc. | Augmenting a live view |
CA2838254A1 (en) | 2011-06-06 | 2012-12-13 | Datamax-O'neil Corporation | Printing ribbon security apparatus and method |
US8842163B2 (en) | 2011-06-07 | 2014-09-23 | International Business Machines Corporation | Estimation of object properties in 3D world |
WO2012167400A1 (en) | 2011-06-08 | 2012-12-13 | Metrologic Instruments, Inc. | Indicia decoding device with security lock |
US10018467B2 (en) | 2011-06-09 | 2018-07-10 | Clark Alexander Bendall | System and method for measuring a distance to an object |
US9182221B2 (en) | 2011-06-13 | 2015-11-10 | Canon Kabushiki Kaisha | Information processing apparatus and information processing method |
US8824696B2 (en) | 2011-06-14 | 2014-09-02 | Vocollect, Inc. | Headset signal multiplexing system and method |
US8561905B2 (en) | 2011-06-15 | 2013-10-22 | Metrologic Instruments, Inc. | Hybrid-type bioptical laser scanning and digital imaging system supporting automatic object motion detection at the edges of a 3D scanning volume |
US8998091B2 (en) | 2011-06-15 | 2015-04-07 | Metrologic Instruments, Inc. | Hybrid-type bioptical laser scanning and digital imaging system supporting automatic object motion detection at the edges of a 3D scanning volume |
US8376233B2 (en) | 2011-06-15 | 2013-02-19 | Metrologic Instruments, Inc. | Bar code symbol reading system employing an extremely elongated laser scanning beam capable of reading poor and damaged quality bar code symbols with improved levels of performance |
US8794525B2 (en) | 2011-09-28 | 2014-08-05 | Metologic Insturments, Inc. | Method of and system for detecting produce weighing interferences in a POS-based checkout/scale system |
JP5791976B2 (en) | 2011-06-16 | 2015-10-07 | オリンパス株式会社 | Image processing apparatus, image processing method, and program |
US8628016B2 (en) | 2011-06-17 | 2014-01-14 | Hand Held Products, Inc. | Terminal operative for storing frame of image data |
US8657200B2 (en) | 2011-06-20 | 2014-02-25 | Metrologic Instruments, Inc. | Indicia reading terminal with color frame processing |
EP2538242B1 (en) | 2011-06-24 | 2014-07-02 | Softkinetic Software | Depth measurement quality enhancement. |
US9158340B2 (en) | 2011-06-27 | 2015-10-13 | Hand Held Products, Inc. | Apparatus and method for assembling display of indicia reading terminal |
US8636215B2 (en) | 2011-06-27 | 2014-01-28 | Hand Held Products, Inc. | Decodable indicia reading terminal with optical filter |
US8640960B2 (en) | 2011-06-27 | 2014-02-04 | Honeywell International Inc. | Optical filter for image and barcode scanning |
US8534541B2 (en) | 2011-06-29 | 2013-09-17 | Hand Held Products, Inc. | Devices having an auxiliary electronic paper display for displaying optically scannable indica |
US8985459B2 (en) | 2011-06-30 | 2015-03-24 | Metrologic Instruments, Inc. | Decodable indicia reading terminal with combined illumination |
JP5247854B2 (en) | 2011-07-06 | 2013-07-24 | 株式会社インスピーディア | Collection system and collection method |
US9481186B2 (en) | 2011-07-14 | 2016-11-01 | Datamax-O'neil Corporation | Automatically adjusting printing parameters using media identification |
TWI460606B (en) | 2011-07-15 | 2014-11-11 | Ind Tech Res Inst | Authentication methods and systems of applying captcha |
US20150213590A1 (en) | 2011-07-29 | 2015-07-30 | Google Inc. | Automatic Pose Setting Using Computer Vision Techniques |
DE102011080180B4 (en) | 2011-08-01 | 2013-05-02 | Sirona Dental Systems Gmbh | Method for registering a plurality of three-dimensional recordings of a dental object |
US8749796B2 (en) | 2011-08-09 | 2014-06-10 | Primesense Ltd. | Projectors of structured light |
US8908277B2 (en) | 2011-08-09 | 2014-12-09 | Apple Inc | Lens array projector |
US10054430B2 (en) | 2011-08-09 | 2018-08-21 | Apple Inc. | Overlapping pattern projector |
GB201113715D0 (en) | 2011-08-09 | 2011-09-21 | Renishaw Plc | Method and apparatus for inspecting workpieces |
US20130043312A1 (en) | 2011-08-15 | 2013-02-21 | Metrologic Instruments, Inc. | Code symbol reading system employing dynamically-elongated laser scanning beams for improved levels of performance |
US8779898B2 (en) | 2011-08-17 | 2014-07-15 | Hand Held Products, Inc. | Encoded information reading terminal with micro-electromechanical radio frequency front end |
US8636212B2 (en) | 2011-08-24 | 2014-01-28 | Metrologic Instruments, Inc. | Decodable indicia reading terminal with indicia analysis functionality |
EP2562715A1 (en) | 2011-08-26 | 2013-02-27 | Sony Ericsson Mobile Communications AB | Portable electric equipment and method of processing a series of frames |
US20140058634A1 (en) | 2012-08-24 | 2014-02-27 | Crown Equipment Limited | Method and apparatus for using unique landmarks to locate industrial vehicles at start-up |
EP2751748B1 (en) | 2011-08-30 | 2019-05-08 | Digimarc Corporation | Methods and arrangements for identifying objects |
US9367770B2 (en) | 2011-08-30 | 2016-06-14 | Digimarc Corporation | Methods and arrangements for identifying objects |
US9491441B2 (en) | 2011-08-30 | 2016-11-08 | Microsoft Technology Licensing, Llc | Method to extend laser depth map range |
US9111166B2 (en) | 2011-08-31 | 2015-08-18 | Metrologic Instruments, Inc. | Cluster computing of bar code data |
US8822848B2 (en) | 2011-09-02 | 2014-09-02 | Metrologic Instruments, Inc. | Bioptical point of sale (POS) checkout system employing a retractable weigh platter support subsystem |
US9111159B2 (en) | 2011-09-09 | 2015-08-18 | Metrologic Instruments, Inc. | Imaging based barcode scanner engine with multiple elements supported on a common printed circuit board |
WO2013033866A1 (en) | 2011-09-09 | 2013-03-14 | Metrologic Instruments, Inc. | Terminal having image data format conversion |
US8590789B2 (en) | 2011-09-14 | 2013-11-26 | Metrologic Instruments, Inc. | Scanner with wake-up mode |
US8976368B2 (en) | 2011-09-15 | 2015-03-10 | Intermec Ip Corp. | Optical grid enhancement for improved motor location |
US8844823B2 (en) | 2011-09-15 | 2014-09-30 | Metrologic Instruments, Inc. | Laser scanning system employing an optics module capable of forming a laser beam having an extended depth of focus (DOF) over the laser scanning field |
US8678285B2 (en) | 2011-09-20 | 2014-03-25 | Metrologic Instruments, Inc. | Method of and apparatus for multiplying raster scanning lines by modulating a multi-cavity laser diode |
US9916538B2 (en) | 2012-09-15 | 2018-03-13 | Z Advanced Computing, Inc. | Method and system for feature detection |
US8873813B2 (en) | 2012-09-17 | 2014-10-28 | Z Advanced Computing, Inc. | Application of Z-webs and Z-factors to analytics, search engine, learning, recognition, natural language, and other utilities |
US8556176B2 (en) | 2011-09-26 | 2013-10-15 | Metrologic Instruments, Inc. | Method of and apparatus for managing and redeeming bar-coded coupons displayed from the light emitting display surfaces of information display devices |
WO2013044405A1 (en) | 2011-09-26 | 2013-04-04 | Metrologic Instruments, Inc. | Optical indicia reading terminal with combined illumination |
US8474712B2 (en) | 2011-09-29 | 2013-07-02 | Metrologic Instruments, Inc. | Method of and system for displaying product related information at POS-based retail checkout systems |
US8646692B2 (en) | 2011-09-30 | 2014-02-11 | Hand Held Products, Inc. | Devices and methods employing dual target auto exposure |
US9317037B2 (en) | 2011-10-03 | 2016-04-19 | Vocollect, Inc. | Warehouse vehicle navigation system and method |
US8539123B2 (en) | 2011-10-06 | 2013-09-17 | Honeywell International, Inc. | Device management using a dedicated management interface |
US8621123B2 (en) | 2011-10-06 | 2013-12-31 | Honeywell International Inc. | Device management using virtual interfaces |
US9274812B2 (en) | 2011-10-06 | 2016-03-01 | Hand Held Products, Inc. | Method of configuring mobile computing device |
KR101942972B1 (en) | 2011-10-13 | 2019-01-29 | 삼성전자주식회사 | Spatial light modulator, Apparatus for holography 3-dimensional display and Method for modulating spatial light |
US8608071B2 (en) | 2011-10-17 | 2013-12-17 | Honeywell Scanning And Mobility | Optical indicia reading terminal with two image sensors |
US20130093895A1 (en) | 2011-10-17 | 2013-04-18 | Samuel David Palmer | System for collision prediction and traffic violation detection |
US8718372B2 (en) | 2011-10-19 | 2014-05-06 | Crown Equipment Corporation | Identifying and evaluating possible horizontal and vertical lines intersecting potential pallet features |
US20130101158A1 (en) | 2011-10-21 | 2013-04-25 | Honeywell International Inc. | Determining dimensions associated with an object |
US9411386B2 (en) | 2011-10-31 | 2016-08-09 | Hand Held Products, Inc. | Mobile device with tamper detection |
US9015513B2 (en) | 2011-11-03 | 2015-04-21 | Vocollect, Inc. | Receiving application specific individual battery adjusted battery use profile data upon loading of work application for managing remaining power of a mobile device |
US8629926B2 (en) | 2011-11-04 | 2014-01-14 | Honeywell International, Inc. | Imaging apparatus comprising image sensor array having shared global shutter circuitry |
EP2779620B8 (en) | 2011-11-07 | 2016-09-28 | Sony Interactive Entertainment Inc. | Image generation device, and image generation method |
US9262660B2 (en) | 2011-11-07 | 2016-02-16 | Honeywell Scanning & Mobility | Optical indicia reading terminal with color image sensor |
US9224024B2 (en) | 2011-11-11 | 2015-12-29 | Honeywell International, Inc. | Invariant design image capture device |
US8526720B2 (en) | 2011-11-17 | 2013-09-03 | Honeywell International, Inc. | Imaging terminal operative for decoding |
US8485430B2 (en) | 2011-12-06 | 2013-07-16 | Honeywell International, Inc. | Hand held bar code readers or mobile computers with cloud computing services |
US9248640B2 (en) | 2011-12-07 | 2016-02-02 | Intermec Ip Corp. | Method and apparatus for improving registration and skew end of line checking in production |
US8628013B2 (en) | 2011-12-13 | 2014-01-14 | Honeywell International Inc. | Apparatus comprising image sensor array and illumination control |
US8881983B2 (en) | 2011-12-13 | 2014-11-11 | Honeywell International Inc. | Optical readers and methods employing polarization sensing of light from decodable indicia |
JP6175070B2 (en) | 2011-12-14 | 2017-08-02 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | Real-time feedback to prevent high-dose C-arch geometry |
US8991704B2 (en) | 2011-12-14 | 2015-03-31 | Intermec Ip Corp. | Snap-on module for selectively installing receiving element(s) to a mobile device |
US9093141B2 (en) | 2011-12-16 | 2015-07-28 | Intermec Ip Corp. | Phase change memory devices, method for encoding, and methods for storing data |
US8602308B2 (en) | 2011-12-22 | 2013-12-10 | Symbol Technologies, Inc. | Imaging device having light field sensor |
US8695880B2 (en) | 2011-12-22 | 2014-04-15 | Honeywell International, Inc. | Imaging devices and methods for inhibiting or removing captured aiming pattern |
US8523076B2 (en) | 2012-01-10 | 2013-09-03 | Metrologic Instruments, Inc. | Omnidirectional laser scanning bar code symbol reader generating a laser scanning pattern with a highly non-uniform scan density with respect to line orientation |
US20130175341A1 (en) | 2012-01-10 | 2013-07-11 | Sean Philip Kearney | Hybrid-type bioptical laser scanning and digital imaging system employing digital imager with field of view overlapping field of field of laser scanning subsystem |
US8638989B2 (en) | 2012-01-17 | 2014-01-28 | Leap Motion, Inc. | Systems and methods for capturing motion in three-dimensional space |
WO2013106991A1 (en) | 2012-01-17 | 2013-07-25 | Honeywell International Inc. | Industrial design for consumer device based on scanning and mobility |
WO2013106947A1 (en) | 2012-01-18 | 2013-07-25 | Metrologic Instruments, Inc. | Web-based scan-task enabled system. and method of and apparatus for developing and deploying the same on a client-server network |
US8880426B2 (en) | 2012-01-30 | 2014-11-04 | Honeywell International, Inc. | Methods and systems employing time and/or location data for use in transactions |
US20150009301A1 (en) | 2012-01-31 | 2015-01-08 | 3M Innovative Properties Company | Method and apparatus for measuring the three dimensional structure of a surface |
US8988578B2 (en) | 2012-02-03 | 2015-03-24 | Honeywell International Inc. | Mobile computing device with improved image preview functionality |
US9294754B2 (en) | 2012-02-03 | 2016-03-22 | Lumentum Operations Llc | High dynamic range and depth of field depth camera |
US8915439B2 (en) | 2012-02-06 | 2014-12-23 | Metrologic Instruments, Inc. | Laser scanning modules embodying silicone scan element with torsional hinges |
US8740085B2 (en) | 2012-02-10 | 2014-06-03 | Honeywell International Inc. | System having imaging assembly for use in output of image data |
WO2013120256A1 (en) | 2012-02-15 | 2013-08-22 | Honeywell International Inc | Encoded information reading terminal including http server |
US9501700B2 (en) | 2012-02-15 | 2016-11-22 | Xactware Solutions, Inc. | System and method for construction estimation using aerial images |
US8740082B2 (en) | 2012-02-21 | 2014-06-03 | Metrologic Instruments, Inc. | Laser scanning bar code symbol reading system having intelligent scan sweep angle adjustment capabilities over the working range of the system for optimized bar code symbol reading performance |
US9269263B2 (en) | 2012-02-24 | 2016-02-23 | Magna Electronics Inc. | Vehicle top clearance alert system |
US9366861B1 (en) | 2012-02-29 | 2016-06-14 | Randy E. Johnson | Laser particle projection system |
WO2013127083A1 (en) | 2012-03-01 | 2013-09-06 | Honeywell International Inc. | Method of using camera sensor interface to transfer multiple channels of scan data using image format |
US8550335B2 (en) | 2012-03-09 | 2013-10-08 | Honeywell International, Inc. | Encoded information reading terminal in communication with peripheral point-of-sale devices |
US9378601B2 (en) | 2012-03-14 | 2016-06-28 | Autoconnect Holdings Llc | Providing home automation information via communication with a vehicle |
US8777108B2 (en) | 2012-03-23 | 2014-07-15 | Honeywell International, Inc. | Cell phone reading mode using image timer |
US9064165B2 (en) | 2012-03-28 | 2015-06-23 | Metrologic Instruments, Inc. | Laser scanning system using laser beam sources for producing long and short wavelengths in combination with beam-waist extending optics to extend the depth of field thereof while resolving high resolution bar code symbols having minimum code element widths |
US20130257744A1 (en) | 2012-03-29 | 2013-10-03 | Intermec Technologies Corporation | Piezoelectric tactile interface |
US9383848B2 (en) | 2012-03-29 | 2016-07-05 | Intermec Technologies Corporation | Interleaved piezoelectric tactile interface |
US8976030B2 (en) | 2012-04-24 | 2015-03-10 | Metrologic Instruments, Inc. | Point of sale (POS) based checkout system supporting a customer-transparent two-factor authentication process during product checkout operations |
WO2013159318A1 (en) | 2012-04-27 | 2013-10-31 | Honeywell International Inc. | Method of improving decoding speed on off-the-shelf camera phone |
WO2013163789A1 (en) | 2012-04-30 | 2013-11-07 | Honeywell International Inc. | Hardware-based image data binarization in an indicia reading terminal |
US8608053B2 (en) | 2012-04-30 | 2013-12-17 | Honeywell International Inc. | Mobile communication terminal configured to display multi-symbol decodable indicia |
US9779546B2 (en) | 2012-05-04 | 2017-10-03 | Intermec Ip Corp. | Volume dimensioning systems and methods |
US8752766B2 (en) | 2012-05-07 | 2014-06-17 | Metrologic Instruments, Inc. | Indicia reading system employing digital gain control |
US9007368B2 (en) | 2012-05-07 | 2015-04-14 | Intermec Ip Corp. | Dimensioning system calibration systems and methods |
US9098763B2 (en) | 2012-05-08 | 2015-08-04 | Honeywell International Inc. | Encoded information reading terminal with replaceable imaging assembly |
WO2013170260A1 (en) | 2012-05-11 | 2013-11-14 | Proiam, Llc | Hand held dimension capture apparatus, system, and method |
US9558386B2 (en) | 2012-05-15 | 2017-01-31 | Honeywell International, Inc. | Encoded information reading terminal configured to pre-process images |
US10007858B2 (en) | 2012-05-15 | 2018-06-26 | Honeywell International Inc. | Terminals and methods for dimensioning objects |
US9158954B2 (en) | 2012-05-15 | 2015-10-13 | Intermec Ip, Corp. | Systems and methods to read machine-readable symbols |
KR101967169B1 (en) | 2012-05-16 | 2019-04-09 | 삼성전자주식회사 | Synchronization method and apparatus in device to device network |
US9064254B2 (en) | 2012-05-17 | 2015-06-23 | Honeywell International Inc. | Cloud-based system for reading of decodable indicia |
US8789759B2 (en) | 2012-05-18 | 2014-07-29 | Metrologic Instruments, Inc. | Laser scanning code symbol reading system employing multi-channel scan data signal processing with synchronized digital gain control (SDGC) for full range scanning |
US20130308013A1 (en) | 2012-05-18 | 2013-11-21 | Honeywell International Inc. d/b/a Honeywell Scanning and Mobility | Untouched 3d measurement with range imaging |
US9016576B2 (en) | 2012-05-21 | 2015-04-28 | Metrologic Instruments, Inc. | Laser scanning code symbol reading system providing improved control over the length and intensity characteristics of a laser scan line projected therefrom using laser source blanking control |
US10083496B2 (en) | 2012-05-22 | 2018-09-25 | Cognex Corporation | Machine vision systems and methods with predictive motion control |
US20150327012A1 (en) | 2012-05-23 | 2015-11-12 | Honeywell International Inc. | Portable electronic devices having a separate location trigger unit for use in controlling an application unit |
US9092682B2 (en) | 2012-05-25 | 2015-07-28 | Metrologic Instruments, Inc. | Laser scanning code symbol reading system employing programmable decode time-window filtering |
CA3155221A1 (en) | 2012-05-28 | 2013-11-28 | Tulip.Io Inc. | Order processing systems using picking robots |
US8978983B2 (en) | 2012-06-01 | 2015-03-17 | Honeywell International, Inc. | Indicia reading apparatus having sequential row exposure termination times |
US9367959B2 (en) | 2012-06-05 | 2016-06-14 | Apple Inc. | Mapping application with 3D presentation |
JP5816773B2 (en) | 2012-06-07 | 2015-11-18 | ファロ テクノロジーズ インコーポレーテッド | Coordinate measuring machine with removable accessories |
US20130329012A1 (en) | 2012-06-07 | 2013-12-12 | Liberty Reach Inc. | 3-d imaging and processing system including at least one 3-d or depth sensor which is continually calibrated during use |
US8746563B2 (en) | 2012-06-10 | 2014-06-10 | Metrologic Instruments, Inc. | Laser scanning module with rotatably adjustable laser scanning assembly |
US9270782B2 (en) | 2012-06-12 | 2016-02-23 | Intermec Ip Corp. | System and method for managing network communications between server plug-ins and clients |
US9158000B2 (en) | 2012-06-12 | 2015-10-13 | Honeywell International Inc. | Enhanced location based services |
US8993974B2 (en) | 2012-06-12 | 2015-03-31 | Nikon Corporation | Color time domain integration camera having a single charge coupled device and fringe projection auto-focus system |
US20130332524A1 (en) | 2012-06-12 | 2013-12-12 | Intermec Ip Corp. | Data service on a mobile device |
US9659183B2 (en) | 2012-06-18 | 2017-05-23 | Honeywell International Inc. | Pattern for secure store |
CN104395911B (en) | 2012-06-20 | 2018-06-08 | 计量仪器公司 | The laser scanning code sign of control for controlling to provide the length to projecting the laser scanning line on scanned object using dynamic range related scans angle reads system |
US9501920B2 (en) | 2012-06-22 | 2016-11-22 | K.L. Harring Transportation LLC | Cargo tracking and monitoring system |
US9053380B2 (en) | 2012-06-22 | 2015-06-09 | Honeywell International, Inc. | Removeable scanning module for mobile communication terminal |
US9300841B2 (en) | 2012-06-25 | 2016-03-29 | Yoldas Askan | Method of generating a smooth image from point cloud data |
US8978981B2 (en) | 2012-06-27 | 2015-03-17 | Honeywell International Inc. | Imaging apparatus having imaging lens |
US9245492B2 (en) | 2012-06-28 | 2016-01-26 | Intermec Ip Corp. | Dual screen display for mobile computing device |
US20140001267A1 (en) | 2012-06-29 | 2014-01-02 | Honeywell International Inc. Doing Business As (D.B.A.) Honeywell Scanning & Mobility | Indicia reading terminal with non-uniform magnification |
US8950671B2 (en) | 2012-06-29 | 2015-02-10 | Toshiba Global Commerce Solutions Holdings Corporation | Item scanning in a shopping cart |
US8854633B2 (en) | 2012-06-29 | 2014-10-07 | Intermec Ip Corp. | Volume dimensioning system and method employing time-of-flight camera |
US8944313B2 (en) | 2012-06-29 | 2015-02-03 | Honeywell International Inc. | Computer configured to display multimedia content |
KR102028720B1 (en) | 2012-07-10 | 2019-11-08 | 삼성전자주식회사 | Transparent display apparatus for displaying an information of danger element and method thereof |
US9092683B2 (en) | 2012-07-10 | 2015-07-28 | Honeywell International Inc. | Cloud-based system for processing of decodable indicia |
EP2685421B1 (en) | 2012-07-13 | 2015-10-07 | ABB Research Ltd. | Determining objects present in a process control system |
US9286530B2 (en) | 2012-07-17 | 2016-03-15 | Cognex Corporation | Handheld apparatus for quantifying component features |
US20140031665A1 (en) | 2012-07-25 | 2014-01-30 | Covidien Lp | Telecentric Scale Projection System for Real-Time In-Situ Surgical Metrology |
US9519810B2 (en) | 2012-07-31 | 2016-12-13 | Datalogic ADC, Inc. | Calibration and self-test in automated data reading systems |
US8576390B1 (en) | 2012-07-31 | 2013-11-05 | Cognex Corporation | System and method for determining and controlling focal distance in a vision system camera |
US9262662B2 (en) | 2012-07-31 | 2016-02-16 | Honeywell International, Inc. | Optical reading apparatus having variable settings |
DE102012106989A1 (en) | 2012-07-31 | 2014-02-06 | Linde Material Handling Gmbh | Passenger assistance device and industrial truck with driving assistance device |
US9316890B2 (en) | 2012-08-01 | 2016-04-19 | Ricoh Company, Ltd. | Projector positioning |
US20140039693A1 (en) | 2012-08-02 | 2014-02-06 | Honeywell Scanning & Mobility | Input/output connector contact cleaning |
EP2696162A1 (en) | 2012-08-08 | 2014-02-12 | Hexagon Technology Center GmbH | Handheld measuring Instrument |
US9478983B2 (en) | 2012-08-09 | 2016-10-25 | Honeywell Scanning & Mobility | Current-limiting battery usage within a corded electronic device |
CN104641201B (en) | 2012-08-10 | 2016-12-14 | 公益财团法人地球环境产业技术研究机构 | The change in volume measuring method of object |
US9088281B2 (en) | 2012-08-20 | 2015-07-21 | Intermec Ip Corp. | Trigger device for mobile computing device |
KR101415667B1 (en) | 2012-08-27 | 2014-07-04 | 한국디지털병원수출사업협동조합 | Images from three-dimensional ultrasound scans to determine the devices and methods |
US9074923B2 (en) | 2012-08-30 | 2015-07-07 | Hyer Industries, Inc. | System and methods for belt conveyor weighing based on virtual weigh span |
CN103679073B (en) | 2012-08-31 | 2018-09-14 | 手持产品公司 | The method that wireless scanner is matched by RFID |
CN110889659A (en) | 2012-09-03 | 2020-03-17 | 手持产品公司 | Method for authenticating parcel recipient by using mark decoding device and decoding device |
US9022288B2 (en) | 2012-09-05 | 2015-05-05 | Metrologic Instruments, Inc. | Symbol reading system having predictive diagnostics |
US20140074746A1 (en) | 2012-09-07 | 2014-03-13 | Hand Held Products Inc. doing business as (d.b.a) Honeywell Scanning & Mobility | Package source verification |
CN103679108B (en) | 2012-09-10 | 2018-12-11 | 霍尼韦尔国际公司 | Optical markings reading device with multiple images sensor |
US20140071840A1 (en) | 2012-09-11 | 2014-03-13 | Hand Held Products, Inc., doing business as Honeywell Scanning & Mobility | Mobile computer configured to select wireless communication network |
US8916789B2 (en) | 2012-09-14 | 2014-12-23 | Intermec Ip Corp. | Access door with integrated switch actuator |
WO2014045647A1 (en) | 2012-09-18 | 2014-03-27 | オリンパスメディカルシステムズ株式会社 | Light source device and method for controlling light of light source device |
US9033242B2 (en) | 2012-09-21 | 2015-05-19 | Intermec Ip Corp. | Multiple focusable fields of view, such as a universal bar code symbol scanner |
CN103699861B (en) | 2012-09-27 | 2018-09-28 | 霍尼韦尔国际公司 | Coding information reading terminals with multiple image-forming assemblies |
US8876005B2 (en) | 2012-09-28 | 2014-11-04 | Symbol Technologies, Inc. | Arrangement for and method of managing a soft keyboard on a mobile terminal connected with a handheld electro-optical reader via a bluetooth® paired connection |
US9939259B2 (en) | 2012-10-04 | 2018-04-10 | Hand Held Products, Inc. | Measuring object dimensions using mobile computer |
WO2014053562A1 (en) | 2012-10-04 | 2014-04-10 | Lemoptix Sa | An optical assembly |
US8777109B2 (en) | 2012-10-04 | 2014-07-15 | Hand Held Products, Inc. | Customer facing imaging systems and methods for obtaining images |
US9002641B2 (en) | 2012-10-05 | 2015-04-07 | Hand Held Products, Inc. | Navigation system configured to integrate motion sensing device inputs |
US9286496B2 (en) | 2012-10-08 | 2016-03-15 | Hand Held Products, Inc. | Removable module for mobile communication terminal |
US9410827B2 (en) | 2012-10-09 | 2016-08-09 | Pixameter Corp. | Measurement using a calibration pattern |
US20140098244A1 (en) | 2012-10-09 | 2014-04-10 | Mansoor Ghazizadeh | Calibrated image display |
US20140108010A1 (en) | 2012-10-11 | 2014-04-17 | Intermec Ip Corp. | Voice-enabled documents for facilitating operational procedures |
US20140104413A1 (en) | 2012-10-16 | 2014-04-17 | Hand Held Products, Inc. | Integrated dimensioning and weighing system |
EP2722656A1 (en) | 2012-10-16 | 2014-04-23 | Hand Held Products, Inc. | Integrated dimensioning and weighing system |
US9313377B2 (en) | 2012-10-16 | 2016-04-12 | Hand Held Products, Inc. | Android bound service camera initialization |
US20140104416A1 (en) | 2012-10-16 | 2014-04-17 | Hand Held Products, Inc. | Dimensioning system |
KR102050503B1 (en) | 2012-10-16 | 2019-11-29 | 삼성전자주식회사 | Optically addressed spatial light modulator divided into plurality of segments, and apparatus and method for holography 3-dimensional display |
US9148474B2 (en) | 2012-10-16 | 2015-09-29 | Hand Held Products, Inc. | Replaceable connector |
US20140106725A1 (en) | 2012-10-16 | 2014-04-17 | Hand Held Products, Inc. | Distraction Avoidance System |
US10674135B2 (en) | 2012-10-17 | 2020-06-02 | DotProduct LLC | Handheld portable optical scanner and method of using |
US9235553B2 (en) | 2012-10-19 | 2016-01-12 | Hand Held Products, Inc. | Vehicle computer system with transparent display |
WO2014064690A1 (en) | 2012-10-23 | 2014-05-01 | Sivan Ishay | Real time assessment of picture quality |
CN103780847A (en) | 2012-10-24 | 2014-05-07 | 霍尼韦尔国际公司 | Chip on board-based highly-integrated imager |
US20140121445A1 (en) | 2012-10-28 | 2014-05-01 | PF BioMedical Solutions, LLC | Intracavitary Brachytherapy Device for Insertion in a Body Cavity and Methods of Use Thereof |
US9512052B2 (en) | 2012-10-29 | 2016-12-06 | China Petroleum & Chemical Corporation | Adsorption desulfurization process for hydrocarbons and a reaction apparatus therefor |
US9477312B2 (en) | 2012-11-05 | 2016-10-25 | University Of South Australia | Distance based modelling and manipulation methods for augmented reality systems using ultrasonic gloves |
USD730902S1 (en) | 2012-11-05 | 2015-06-02 | Hand Held Products, Inc. | Electronic device |
US9741071B2 (en) | 2012-11-07 | 2017-08-22 | Hand Held Products, Inc. | Computer-assisted shopping and product location |
JP5549724B2 (en) | 2012-11-12 | 2014-07-16 | 株式会社安川電機 | Robot system |
US9147096B2 (en) | 2012-11-13 | 2015-09-29 | Hand Held Products, Inc. | Imaging apparatus having lens element |
US9465967B2 (en) | 2012-11-14 | 2016-10-11 | Hand Held Products, Inc. | Apparatus comprising light sensing assemblies with range assisted gain control |
US20140136208A1 (en) | 2012-11-14 | 2014-05-15 | Intermec Ip Corp. | Secure multi-mode communication between agents |
US9208367B2 (en) | 2012-11-15 | 2015-12-08 | Hand Held Products | Mobile computer configured to read multiple decodable indicia |
US9064168B2 (en) | 2012-12-14 | 2015-06-23 | Hand Held Products, Inc. | Selective output of decoded message data |
US9709387B2 (en) | 2012-11-21 | 2017-07-18 | Mitsubishi Electric Corporation | Image generation device for acquiring distances of objects present in image space |
US9589326B2 (en) | 2012-11-29 | 2017-03-07 | Korea Institute Of Science And Technology | Depth image processing apparatus and method based on camera pose conversion |
US10386178B2 (en) | 2012-11-29 | 2019-08-20 | Philips Photonics Gmbh | Laser device for projecting a structured light pattern onto a scene |
US8879050B2 (en) | 2012-12-04 | 2014-11-04 | Texas Instruments Incorporated | Method for dynamically adjusting the operating parameters of a TOF camera according to vehicle speed |
US20140152882A1 (en) | 2012-12-04 | 2014-06-05 | Hand Held Products, Inc. | Mobile device having object-identification interface |
US9892289B2 (en) | 2012-12-07 | 2018-02-13 | Hand Held Products, Inc. | Reading RFID tags in defined spatial locations |
US9061527B2 (en) | 2012-12-07 | 2015-06-23 | Datamax-O'neil Corporation | Thermal printer with single latch, adjustable media storage and centering assemblies and print assembly |
DE202012104890U1 (en) | 2012-12-14 | 2013-03-05 | Faro Technologies, Inc. | Device for optically scanning and measuring an environment |
US20140175165A1 (en) | 2012-12-21 | 2014-06-26 | Honeywell Scanning And Mobility | Bar code scanner with integrated surface authentication |
DE112013006324T5 (en) | 2012-12-31 | 2015-10-15 | Iee International Electronics & Engineering S.A. | An optical system for generating a structured light field from a series of light sources through a refractive or reflective light structuring element |
US20140192187A1 (en) | 2013-01-08 | 2014-07-10 | Faro Technologies, Inc. | Non-contact measurement device |
US9107484B2 (en) | 2013-01-08 | 2015-08-18 | Hand Held Products, Inc. | Electronic device enclosure |
US20140191913A1 (en) | 2013-01-09 | 2014-07-10 | Intermec Ip Corp. | Techniques for standardizing antenna architecture |
EP2943859B1 (en) | 2013-01-11 | 2020-10-21 | Hand Held Products, Inc. | System, method, and computer-readable medium for managing edge devices |
USD702237S1 (en) | 2013-01-11 | 2014-04-08 | Hand Held Products, Inc. | Imaging terminal |
US9092681B2 (en) | 2013-01-14 | 2015-07-28 | Hand Held Products, Inc. | Laser scanning module employing a laser scanning assembly having elastomeric wheel hinges |
JP6150532B2 (en) | 2013-01-22 | 2017-06-21 | オリンパス株式会社 | Measuring device and program |
US20140214631A1 (en) | 2013-01-31 | 2014-07-31 | Intermec Technologies Corporation | Inventory assistance device and method |
US10133342B2 (en) | 2013-02-14 | 2018-11-20 | Qualcomm Incorporated | Human-body-gesture-based region and volume selection for HMD |
US9304376B2 (en) | 2013-02-20 | 2016-04-05 | Hand Held Products, Inc. | Optical redirection adapter |
US8978984B2 (en) | 2013-02-28 | 2015-03-17 | Hand Held Products, Inc. | Indicia reading terminals and methods for decoding decodable indicia employing light field imaging |
US9679414B2 (en) | 2013-03-01 | 2017-06-13 | Apple Inc. | Federated mobile device positioning |
US9928652B2 (en) | 2013-03-01 | 2018-03-27 | Apple Inc. | Registration between actual mobile device position and environmental model |
US9142035B1 (en) | 2013-03-05 | 2015-09-22 | Amazon Technologies, Inc. | Item dimension verification at packing |
US9076459B2 (en) | 2013-03-12 | 2015-07-07 | Intermec Ip, Corp. | Apparatus and method to classify sound to detect speech |
US9080856B2 (en) | 2013-03-13 | 2015-07-14 | Intermec Ip Corp. | Systems and methods for enhancing dimensioning, for example volume dimensioning |
US9236050B2 (en) | 2013-03-14 | 2016-01-12 | Vocollect Inc. | System and method for improving speech recognition accuracy in a work environment |
US9384374B2 (en) | 2013-03-14 | 2016-07-05 | Hand Held Products, Inc. | User interface facilitating specification of a desired data format for an indicia reading apparatus |
US9041914B2 (en) | 2013-03-15 | 2015-05-26 | Faro Technologies, Inc. | Three-dimensional coordinate scanner and method of operation |
US9111348B2 (en) | 2013-03-15 | 2015-08-18 | Toyota Motor Engineering & Manufacturing North America, Inc. | Computer-based method and system of dynamic category object recognition |
WO2014149702A1 (en) | 2013-03-15 | 2014-09-25 | Faro Technologies, Inc. | Three-dimensional coordinate scanner and method of operation |
US9978395B2 (en) | 2013-03-15 | 2018-05-22 | Vocollect, Inc. | Method and system for mitigating delay in receiving audio stream during production of sound from audio stream |
US9196084B2 (en) | 2013-03-15 | 2015-11-24 | Urc Ventures Inc. | Determining object volume from mobile device images |
US9301052B2 (en) | 2013-03-15 | 2016-03-29 | Vocollect, Inc. | Headband variable stiffness |
US9100743B2 (en) | 2013-03-15 | 2015-08-04 | Vocollect, Inc. | Method and system for power delivery to a headset |
US9227323B1 (en) | 2013-03-15 | 2016-01-05 | Google Inc. | Methods and systems for recognizing machine-readable information on three-dimensional objects |
US8810779B1 (en) | 2013-03-25 | 2014-08-19 | The United States Of America As Represented By The Secretary Of The Navy | Shape matching automatic recognition methods, systems, and articles of manufacture |
US20140297058A1 (en) | 2013-03-28 | 2014-10-02 | Hand Held Products, Inc. | System and Method for Capturing and Preserving Vehicle Event Data |
US9070032B2 (en) | 2013-04-10 | 2015-06-30 | Hand Held Products, Inc. | Method of programming a symbol reading system |
WO2014169238A1 (en) | 2013-04-11 | 2014-10-16 | Digimarc Corporation | Methods for object recognition and related arrangements |
EP2984624B1 (en) | 2013-04-12 | 2018-08-22 | Thomson Licensing | Superpixel generation with improved spatial coherency |
JP2014210646A (en) | 2013-04-18 | 2014-11-13 | 三菱化学エンジニアリング株式会社 | Commodity check system, commodity check device, and commodity check method |
US20140320605A1 (en) | 2013-04-25 | 2014-10-30 | Philip Martin Johnson | Compound structured light projection system for 3-D surface profiling |
US9916009B2 (en) | 2013-04-26 | 2018-03-13 | Leap Motion, Inc. | Non-tactile interface systems and methods |
US9373017B2 (en) | 2013-04-26 | 2016-06-21 | Datalogic Automation, Inc. | Scanning system |
US9665777B2 (en) | 2013-05-10 | 2017-05-30 | Robert Bosch Gmbh | System and method for object and event identification using multiple cameras |
US9195844B2 (en) | 2013-05-20 | 2015-11-24 | Hand Held Products, Inc. | System and method for securing sensitive data |
JP6104049B2 (en) | 2013-05-21 | 2017-03-29 | オリンパス株式会社 | Image processing apparatus, image processing method, and image processing program |
US9037344B2 (en) | 2013-05-24 | 2015-05-19 | Hand Held Products, Inc. | System and method for display of information using a vehicle-mount computer |
US8918250B2 (en) | 2013-05-24 | 2014-12-23 | Hand Held Products, Inc. | System and method for display of information using a vehicle-mount computer |
US20140347553A1 (en) | 2013-05-24 | 2014-11-27 | Samsung Electronics Co., Ltd. | Imaging devices with light sources for reduced shadow, controllers and methods |
US10949804B2 (en) | 2013-05-24 | 2021-03-16 | Amazon Technologies, Inc. | Tote based item tracking |
US9930142B2 (en) | 2013-05-24 | 2018-03-27 | Hand Held Products, Inc. | System for providing a continuous communication link with a symbol reading device |
US10228452B2 (en) | 2013-06-07 | 2019-03-12 | Hand Held Products, Inc. | Method of error correction for 3D imaging device |
US9141839B2 (en) | 2013-06-07 | 2015-09-22 | Hand Held Products, Inc. | System and method for reading code symbols at long range using source power control |
USD762604S1 (en) | 2013-06-19 | 2016-08-02 | Hand Held Products, Inc. | Electronic device |
US20140374485A1 (en) | 2013-06-20 | 2014-12-25 | Hand Held Products, Inc. | System and Method for Reading Code Symbols Using a Variable Field of View |
US20140379613A1 (en) | 2013-06-21 | 2014-12-25 | Panasonic Corporation | Information processing device, information processing system, information processing method, and computer-readable non-transitory storage medium |
US9104929B2 (en) | 2013-06-26 | 2015-08-11 | Hand Held Products, Inc. | Code symbol reading system having adaptive autofocus |
US8985461B2 (en) | 2013-06-28 | 2015-03-24 | Hand Held Products, Inc. | Mobile device having an improved user interface for reading code symbols |
US9239950B2 (en) * | 2013-07-01 | 2016-01-19 | Hand Held Products, Inc. | Dimensioning system |
US20150009100A1 (en) | 2013-07-02 | 2015-01-08 | Denso Corporation | Projection type image display device |
USD747321S1 (en) | 2013-07-02 | 2016-01-12 | Hand Held Products, Inc. | Electronic device enclosure |
US9250652B2 (en) | 2013-07-02 | 2016-02-02 | Hand Held Products, Inc. | Electronic device case |
USD723560S1 (en) | 2013-07-03 | 2015-03-03 | Hand Held Products, Inc. | Scanner |
USD730357S1 (en) | 2013-07-03 | 2015-05-26 | Hand Held Products, Inc. | Scanner |
US20150260830A1 (en) | 2013-07-12 | 2015-09-17 | Princeton Optronics Inc. | 2-D Planar VCSEL Source for 3-D Imaging |
CA2918478C (en) | 2013-07-16 | 2016-08-23 | Polyrix Inc. | Inspection system for inspecting an object and inspection method for same |
US9773142B2 (en) | 2013-07-22 | 2017-09-26 | Hand Held Products, Inc. | System and method for selectively reading code symbols |
US9297900B2 (en) | 2013-07-25 | 2016-03-29 | Hand Held Products, Inc. | Code symbol reading system having adjustable object detection |
US9305231B2 (en) | 2013-08-01 | 2016-04-05 | Cognex Corporation | Associating a code with an object |
US20150040378A1 (en) | 2013-08-07 | 2015-02-12 | Hand Held Products, Inc. | Method for manufacturing laser scanners |
US20150042791A1 (en) | 2013-08-09 | 2015-02-12 | Postea, Inc. | Apparatus, systems and methods for enrollment of irregular shaped objects |
US9400906B2 (en) | 2013-08-26 | 2016-07-26 | Intermec Ip Corp. | Automatic data collection apparatus and method |
EP2843616A1 (en) | 2013-08-29 | 2015-03-04 | Sick Ag | Optoelectronic device and method for recording rectified images |
US9448689B2 (en) | 2013-08-30 | 2016-09-20 | Paypal, Inc. | Wearable user device enhanced display system |
US9464885B2 (en) | 2013-08-30 | 2016-10-11 | Hand Held Products, Inc. | System and method for package dimensioning |
JP6040897B2 (en) | 2013-09-04 | 2016-12-07 | トヨタ自動車株式会社 | Attention display device and attention display method |
US9082023B2 (en) | 2013-09-05 | 2015-07-14 | Hand Held Products, Inc. | Method for operating a laser scanner |
US9572901B2 (en) | 2013-09-06 | 2017-02-21 | Hand Held Products, Inc. | Device having light source to reduce surface pathogens |
US20150070489A1 (en) | 2013-09-11 | 2015-03-12 | Microsoft Corporation | Optical modules for use with depth cameras |
US8870074B1 (en) | 2013-09-11 | 2014-10-28 | Hand Held Products, Inc | Handheld indicia reader having locking endcap |
US9251411B2 (en) | 2013-09-24 | 2016-02-02 | Hand Held Products, Inc. | Augmented-reality signature capture |
US9171278B1 (en) | 2013-09-25 | 2015-10-27 | Amazon Technologies, Inc. | Item illumination based on image recognition |
USD785636S1 (en) | 2013-09-26 | 2017-05-02 | Hand Held Products, Inc. | Electronic device case |
US9165174B2 (en) | 2013-10-14 | 2015-10-20 | Hand Held Products, Inc. | Indicia reader |
US10275624B2 (en) | 2013-10-29 | 2019-04-30 | Hand Held Products, Inc. | Hybrid system and method for reading indicia |
US9317745B2 (en) | 2013-10-29 | 2016-04-19 | Bank Of America Corporation | Data lifting for exception processing |
US20150134470A1 (en) | 2013-11-08 | 2015-05-14 | Hand Held Products, Inc. | Self-checkout shopping system |
US9800293B2 (en) | 2013-11-08 | 2017-10-24 | Hand Held Products, Inc. | System for configuring indicia readers using NFC technology |
US9470511B2 (en) | 2013-11-12 | 2016-10-18 | Trimble Navigation Limited | Point-to-point measurements using a handheld device |
US20150142492A1 (en) | 2013-11-19 | 2015-05-21 | Hand Held Products, Inc. | Voice-based health monitor including a vocal energy level monitor |
US20150144692A1 (en) | 2013-11-22 | 2015-05-28 | Hand Held Products, Inc. | System and method for indicia reading and verification |
US9530038B2 (en) | 2013-11-25 | 2016-12-27 | Hand Held Products, Inc. | Indicia-reading system |
KR102129968B1 (en) | 2013-11-29 | 2020-07-03 | 에스케이하이닉스 주식회사 | Semiconductor Memory Apparatus and Input / Output Control Circuit Therefor |
USD734339S1 (en) | 2013-12-05 | 2015-07-14 | Hand Held Products, Inc. | Indicia scanner |
KR102163728B1 (en) | 2013-12-05 | 2020-10-08 | 삼성전자주식회사 | Camera for depth image measure and method of measuring depth image using the same |
US20150161429A1 (en) | 2013-12-10 | 2015-06-11 | Hand Held Products, Inc. | High dynamic-range indicia reading system |
CN204009928U (en) | 2013-12-12 | 2014-12-10 | 手持产品公司 | Laser scanner |
KR102192060B1 (en) | 2014-01-02 | 2020-12-16 | 한국전자통신연구원 | Smart shoes and sensor information provide method of smart shoes, smart device and guide program provide method of smart device |
US9373018B2 (en) | 2014-01-08 | 2016-06-21 | Hand Held Products, Inc. | Indicia-reader having unitary-construction |
US9578307B2 (en) | 2014-01-14 | 2017-02-21 | Toyota Motor Engineering & Manufacturing North America, Inc. | Smart necklace with stereo vision and onboard processing |
JP6320051B2 (en) | 2014-01-17 | 2018-05-09 | キヤノン株式会社 | 3D shape measuring device, 3D shape measuring method |
US10139495B2 (en) | 2014-01-24 | 2018-11-27 | Hand Held Products, Inc. | Shelving and package locating systems for delivery vehicles |
US9547079B2 (en) | 2014-02-06 | 2017-01-17 | Fedex Corporate Services, Inc. | Object tracking method and system |
US9667860B2 (en) | 2014-02-13 | 2017-05-30 | Google Inc. | Photo composition and position guidance in a camera or augmented reality system |
US9158953B2 (en) | 2014-02-14 | 2015-10-13 | Intermec Technologies Corproation | Method and apparatus for scanning with controlled spherical aberration |
WO2015123774A1 (en) | 2014-02-18 | 2015-08-27 | Sulon Technologies Inc. | System and method for augmented reality and virtual reality applications |
DE102014102634B4 (en) | 2014-02-27 | 2019-02-21 | Lavision Gmbh | Method for calibrating an optical arrangement, method for displaying a periodic calibration pattern and computer program product |
US9390314B2 (en) | 2014-02-28 | 2016-07-12 | Ncr Corporation | Methods and apparatus for determining dimensions of an item using 3-dimensional triangulation |
US9665757B2 (en) | 2014-03-07 | 2017-05-30 | Hand Held Products, Inc. | Indicia reader for size-limited applications |
JP6217472B2 (en) | 2014-03-13 | 2017-10-25 | 株式会社豊田自動織機 | Forklift work support device |
US9652833B2 (en) | 2014-03-18 | 2017-05-16 | Honeywell International, Inc. | Point spread function estimation for motion invariant images |
US9411999B2 (en) | 2014-03-20 | 2016-08-09 | The Code Corporation | Barcode reader having multiple sets of imaging optics |
US9299013B1 (en) | 2014-03-27 | 2016-03-29 | Amazon Technologies, Inc. | Visual task feedback for workstations in materials handling facilities |
US10247541B2 (en) | 2014-03-31 | 2019-04-02 | Gorilla Technology Inc. | System and method of estimating the three-dimensional size of an object for packaging or storing the object |
US9224027B2 (en) | 2014-04-01 | 2015-12-29 | Hand Held Products, Inc. | Hand-mounted indicia-reading device with finger motion triggering |
US9412242B2 (en) | 2014-04-04 | 2016-08-09 | Hand Held Products, Inc. | Multifunction point of sale system |
GB201406405D0 (en) | 2014-04-09 | 2014-05-21 | Jaguar Land Rover Ltd | Apparatus and method for displaying information |
US9424749B1 (en) | 2014-04-15 | 2016-08-23 | Amanda Reed | Traffic signal system for congested trafficways |
US9258033B2 (en) | 2014-04-21 | 2016-02-09 | Hand Held Products, Inc. | Docking system and method using near field communication |
US9224022B2 (en) | 2014-04-29 | 2015-12-29 | Hand Held Products, Inc. | Autofocus lens system for indicia readers |
US9301427B2 (en) | 2014-05-13 | 2016-03-29 | Hand Held Products, Inc. | Heat-dissipation structure for an indicia reading module |
US9280693B2 (en) | 2014-05-13 | 2016-03-08 | Hand Held Products, Inc. | Indicia-reader housing with an integrated optical structure |
US9277668B2 (en) | 2014-05-13 | 2016-03-01 | Hand Held Products, Inc. | Indicia-reading module with an integrated flexible circuit |
ES2911906T3 (en) | 2014-05-15 | 2022-05-23 | Federal Express Corp | Wearable devices for messaging processing and methods of using same |
US9256944B2 (en) | 2014-05-19 | 2016-02-09 | Rockwell Automation Technologies, Inc. | Integration of optical area monitoring with industrial machine control |
US9399557B1 (en) | 2014-06-13 | 2016-07-26 | Amazon Technologies, Inc. | Sensing conveyor for object characteristic determination |
USD730901S1 (en) | 2014-06-24 | 2015-06-02 | Hand Held Products, Inc. | In-counter barcode scanner |
US9478113B2 (en) | 2014-06-27 | 2016-10-25 | Hand Held Products, Inc. | Cordless indicia reader with a multifunction coil for wireless charging and EAS deactivation |
US9794392B2 (en) | 2014-07-10 | 2017-10-17 | Hand Held Products, Inc. | Mobile-phone adapter for electronic transactions |
US9443123B2 (en) | 2014-07-18 | 2016-09-13 | Hand Held Products, Inc. | System and method for indicia verification |
US9310609B2 (en) | 2014-07-25 | 2016-04-12 | Hand Held Products, Inc. | Axially reinforced flexible scan element |
US9423318B2 (en) | 2014-07-29 | 2016-08-23 | Honeywell International Inc. | Motion detection devices and systems |
US9823059B2 (en) | 2014-08-06 | 2017-11-21 | Hand Held Products, Inc. | Dimensioning system with guided alignment |
US20160042241A1 (en) | 2014-08-06 | 2016-02-11 | Hand Held Products, Inc. | Interactive indicia reader |
DE102014011821A1 (en) | 2014-08-08 | 2016-02-11 | Cargometer Gmbh | Device and method for determining the volume of an object moved by an industrial truck |
JP3194297U (en) | 2014-08-15 | 2014-11-13 | リープ モーション, インコーポレーテッドLeap Motion, Inc. | Motion sensing control device for automobile and industrial use |
US11546428B2 (en) | 2014-08-19 | 2023-01-03 | Hand Held Products, Inc. | Mobile computing device with data cognition software |
US20160063429A1 (en) | 2014-08-28 | 2016-03-03 | Symbol Technologies, Inc. | Apparatus and method for performing an item picking process |
US20160062473A1 (en) | 2014-08-29 | 2016-03-03 | Hand Held Products, Inc. | Gesture-controlled computer system |
CN105372269B (en) | 2014-09-02 | 2019-01-15 | 同方威视技术股份有限公司 | X-ray product quality automatic detection device |
JP6124385B2 (en) | 2014-09-05 | 2017-05-10 | インテル・コーポレーション | Image projector and light assembly |
US9342724B2 (en) | 2014-09-10 | 2016-05-17 | Honeywell International, Inc. | Variable depth of field barcode scanner |
US10313656B2 (en) | 2014-09-22 | 2019-06-04 | Samsung Electronics Company Ltd. | Image stitching for three-dimensional video |
EP3000772B1 (en) | 2014-09-25 | 2017-04-12 | Toyota Material Handling Manufacturing Sweden AB | Fork-lift truck and method for operating a fork-lift truck |
EP3000771B1 (en) | 2014-09-25 | 2017-11-22 | Toyota Material Handling Manufacturing Sweden AB | Fork-lift truck |
US10810530B2 (en) | 2014-09-26 | 2020-10-20 | Hand Held Products, Inc. | System and method for workflow management |
US20160094016A1 (en) | 2014-09-30 | 2016-03-31 | Lawrence Livermore National Security, Llc | Increasing the spatial and spectral brightness of laser diode arrays |
US10810715B2 (en) | 2014-10-10 | 2020-10-20 | Hand Held Products, Inc | System and method for picking validation |
US10775165B2 (en) | 2014-10-10 | 2020-09-15 | Hand Held Products, Inc. | Methods for improving the accuracy of dimensioning-system measurements |
GB2531928B (en) | 2014-10-10 | 2018-12-12 | Hand Held Prod Inc | Image-stitching for dimensioning |
US9779276B2 (en) | 2014-10-10 | 2017-10-03 | Hand Held Products, Inc. | Depth sensor based auto-focus system for an indicia scanner |
US9443222B2 (en) | 2014-10-14 | 2016-09-13 | Hand Held Products, Inc. | Identifying inventory items in a storage facility |
US10909490B2 (en) | 2014-10-15 | 2021-02-02 | Vocollect, Inc. | Systems and methods for worker resource management |
USD760719S1 (en) | 2014-10-20 | 2016-07-05 | Hand Held Products, Inc. | Scanner |
US10060729B2 (en) | 2014-10-21 | 2018-08-28 | Hand Held Products, Inc. | Handheld dimensioner with data-quality indication |
US9897434B2 (en) | 2014-10-21 | 2018-02-20 | Hand Held Products, Inc. | Handheld dimensioning system with measurement-conformance feedback |
US9752864B2 (en) | 2014-10-21 | 2017-09-05 | Hand Held Products, Inc. | Handheld dimensioning system with feedback |
US9762793B2 (en) | 2014-10-21 | 2017-09-12 | Hand Held Products, Inc. | System and method for dimensioning |
US9557166B2 (en) | 2014-10-21 | 2017-01-31 | Hand Held Products, Inc. | Dimensioning system with multipath interference mitigation |
US20160117631A1 (en) | 2014-10-22 | 2016-04-28 | Honeywell International Inc. | Orphaned item identification |
US20170336870A1 (en) | 2014-10-23 | 2017-11-23 | Orpyx Medical Technologies Inc. | Foot gesture-based control device |
US10269342B2 (en) | 2014-10-29 | 2019-04-23 | Hand Held Products, Inc. | Method and system for recognizing speech using wildcards in an expected response |
US9262633B1 (en) | 2014-10-31 | 2016-02-16 | Hand Held Products, Inc. | Barcode reader with security features |
US9924006B2 (en) | 2014-10-31 | 2018-03-20 | Hand Held Products, Inc. | Adaptable interface for a mobile computing device |
CN204256748U (en) | 2014-10-31 | 2015-04-08 | 霍尼韦尔国际公司 | There is the scanner of illuminator |
US10810529B2 (en) | 2014-11-03 | 2020-10-20 | Hand Held Products, Inc. | Directing an inspector through an inspection |
US20160125217A1 (en) | 2014-11-05 | 2016-05-05 | Hand Held Products, Inc. | Barcode scanning system using wearable device with embedded camera |
US9984685B2 (en) | 2014-11-07 | 2018-05-29 | Hand Held Products, Inc. | Concatenated expected responses for speech recognition using expected response boundaries to determine corresponding hypothesis boundaries |
EP3020868B1 (en) | 2014-11-14 | 2020-11-04 | Caterpillar Inc. | Machine of a kind comprising a body and an implement movable relative to the body with a system for assisting a user of the machine |
EP3168373B1 (en) | 2014-11-14 | 2019-07-10 | Caterpillar Inc. | A machine with a system for improving safety |
EP3021178B1 (en) | 2014-11-14 | 2020-02-19 | Caterpillar Inc. | System using radar apparatus for assisting a user of a machine of a kind comprising a body and an implement |
US20160147408A1 (en) | 2014-11-25 | 2016-05-26 | Johnathan Bevis | Virtual measurement tool for a wearable visualization device |
US9767581B2 (en) | 2014-12-12 | 2017-09-19 | Hand Held Products, Inc. | Auto-contrast viewfinder for an indicia reader |
US10509619B2 (en) | 2014-12-15 | 2019-12-17 | Hand Held Products, Inc. | Augmented reality quick-start and user guide |
USD790546S1 (en) | 2014-12-15 | 2017-06-27 | Hand Held Products, Inc. | Indicia reading device |
US10438409B2 (en) | 2014-12-15 | 2019-10-08 | Hand Held Products, Inc. | Augmented reality asset locator |
US10176521B2 (en) | 2014-12-15 | 2019-01-08 | Hand Held Products, Inc. | Augmented reality virtual product for display |
US20160178479A1 (en) | 2014-12-17 | 2016-06-23 | Hand Held Products, Inc. | Dynamic diagnostic indicator generation |
US20160180713A1 (en) | 2014-12-18 | 2016-06-23 | Hand Held Products, Inc. | Collision-avoidance system and method |
US10275088B2 (en) | 2014-12-18 | 2019-04-30 | Hand Held Products, Inc. | Systems and methods for identifying faulty touch panel having intermittent field failures |
US9761096B2 (en) | 2014-12-18 | 2017-09-12 | Hand Held Products, Inc. | Active emergency exit systems for buildings |
US10317474B2 (en) | 2014-12-18 | 2019-06-11 | Hand Held Products, Inc. | Systems and methods for identifying faulty battery in an electronic device |
US9743731B2 (en) | 2014-12-18 | 2017-08-29 | Hand Held Products, Inc. | Wearable sled system for a mobile computer device |
US9678536B2 (en) | 2014-12-18 | 2017-06-13 | Hand Held Products, Inc. | Flip-open wearable computer |
US9454689B2 (en) | 2014-12-19 | 2016-09-27 | Honeywell International, Inc. | Rolling shutter bar code imaging |
US20160179368A1 (en) | 2014-12-19 | 2016-06-23 | Hand Held Products, Inc. | Intelligent small screen layout and pop-up keypads for screen-only devices |
US20160180594A1 (en) | 2014-12-22 | 2016-06-23 | Hand Held Products, Inc. | Augmented display and user input device |
US9564035B2 (en) | 2014-12-22 | 2017-02-07 | Hand Held Products, Inc. | Safety system and method |
US10296259B2 (en) | 2014-12-22 | 2019-05-21 | Hand Held Products, Inc. | Delayed trim of managed NAND flash memory in computing devices |
US9727769B2 (en) | 2014-12-22 | 2017-08-08 | Hand Held Products, Inc. | Conformable hand mount for a mobile scanner |
US10049246B2 (en) | 2014-12-23 | 2018-08-14 | Hand Held Products, Inc. | Mini-barcode reading module with flash memory management |
US9375945B1 (en) | 2014-12-23 | 2016-06-28 | Hand Held Products, Inc. | Media gate for thermal transfer printers |
US10191514B2 (en) | 2014-12-23 | 2019-01-29 | Hand Held Products, Inc. | Tablet computer with interface channels |
US10635876B2 (en) | 2014-12-23 | 2020-04-28 | Hand Held Products, Inc. | Method of barcode templating for enhanced decoding performance |
US9679178B2 (en) | 2014-12-26 | 2017-06-13 | Hand Held Products, Inc. | Scanning improvements for saturated signals using automatic and fixed gain control methods |
US10552786B2 (en) | 2014-12-26 | 2020-02-04 | Hand Held Products, Inc. | Product and location management via voice recognition |
US9774940B2 (en) | 2014-12-27 | 2017-09-26 | Hand Held Products, Inc. | Power configurable headband system and method |
US9652653B2 (en) | 2014-12-27 | 2017-05-16 | Hand Held Products, Inc. | Acceleration-based motion tolerance and predictive coding |
US10621538B2 (en) | 2014-12-28 | 2020-04-14 | Hand Held Products, Inc | Dynamic check digit utilization via electronic tag |
US20160189447A1 (en) | 2014-12-28 | 2016-06-30 | Hand Held Products, Inc. | Remote monitoring of vehicle diagnostic information |
US20160185136A1 (en) | 2014-12-29 | 2016-06-30 | Intermec Technologies Corporation | Thermal printer including heater for pre-heating print media |
US11244264B2 (en) | 2014-12-29 | 2022-02-08 | Hand Held Products, Inc. | Interleaving surprise activities in workflow |
US9843660B2 (en) | 2014-12-29 | 2017-12-12 | Hand Held Products, Inc. | Tag mounted distributed headset with electronics module |
US11443363B2 (en) | 2014-12-29 | 2022-09-13 | Hand Held Products, Inc. | Confirming product location using a subset of a product identifier |
US9230140B1 (en) | 2014-12-30 | 2016-01-05 | Hand Held Products, Inc. | System and method for detecting barcode printing errors |
US9685049B2 (en) | 2014-12-30 | 2017-06-20 | Hand Held Products, Inc. | Method and system for improving barcode scanner performance |
US10108832B2 (en) | 2014-12-30 | 2018-10-23 | Hand Held Products, Inc. | Augmented reality vision barcode scanning system and method |
US9898635B2 (en) | 2014-12-30 | 2018-02-20 | Hand Held Products, Inc. | Point-of-sale (POS) code sensing apparatus |
US9830488B2 (en) | 2014-12-30 | 2017-11-28 | Hand Held Products, Inc. | Real-time adjustable window feature for barcode scanning and process of scanning barcode with adjustable window feature |
US11257143B2 (en) | 2014-12-30 | 2022-02-22 | Hand Held Products, Inc. | Method and device for simulating a virtual out-of-box experience of a packaged product |
US20160189087A1 (en) | 2014-12-30 | 2016-06-30 | Hand Held Products, Inc,. | Cargo Apportionment Techniques |
US10152622B2 (en) | 2014-12-30 | 2018-12-11 | Hand Held Products, Inc. | Visual feedback for code readers |
US10049290B2 (en) | 2014-12-31 | 2018-08-14 | Hand Held Products, Inc. | Industrial vehicle positioning system and method |
US9811650B2 (en) | 2014-12-31 | 2017-11-07 | Hand Held Products, Inc. | User authentication system and method |
US9879823B2 (en) | 2014-12-31 | 2018-01-30 | Hand Held Products, Inc. | Reclosable strap assembly |
CN204706037U (en) | 2014-12-31 | 2015-10-14 | 手持产品公司 | The reconfigurable slide plate of mobile device and mark reading system |
US20160187187A1 (en) | 2014-12-31 | 2016-06-30 | Nate J. Coleman | System and method to measure force or location on an l-beam |
US9734639B2 (en) | 2014-12-31 | 2017-08-15 | Hand Held Products, Inc. | System and method for monitoring an industrial vehicle |
US20160187186A1 (en) | 2014-12-31 | 2016-06-30 | Nate J. Coleman | System and method to measure force or location on an l-beam |
US20160185291A1 (en) | 2014-12-31 | 2016-06-30 | Hand Held Products, Inc. | Speed-limit-compliance system and method |
US20160187210A1 (en) | 2014-12-31 | 2016-06-30 | Nate J. Coleman | System and method to measure force or location on an l-beam |
US10061565B2 (en) | 2015-01-08 | 2018-08-28 | Hand Held Products, Inc. | Application development using mutliple primary user interfaces |
US20160204623A1 (en) | 2015-01-08 | 2016-07-14 | Hand Held Products, Inc. | Charge limit selection for variable power supply configuration |
US10120657B2 (en) | 2015-01-08 | 2018-11-06 | Hand Held Products, Inc. | Facilitating workflow application development |
US11081087B2 (en) | 2015-01-08 | 2021-08-03 | Hand Held Products, Inc. | Multiple primary user interfaces |
US10402038B2 (en) | 2015-01-08 | 2019-09-03 | Hand Held Products, Inc. | Stack handling using multiple primary user interfaces |
US10262660B2 (en) | 2015-01-08 | 2019-04-16 | Hand Held Products, Inc. | Voice mode asset retrieval |
US20160204638A1 (en) | 2015-01-08 | 2016-07-14 | Hand Held Products, Inc. | Charger with an energy storage element |
US9997935B2 (en) | 2015-01-08 | 2018-06-12 | Hand Held Products, Inc. | System and method for charging a barcode scanner |
US20160202951A1 (en) | 2015-01-08 | 2016-07-14 | Hand Held Products, Inc. | Portable dialogue engine |
US20160203429A1 (en) | 2015-01-09 | 2016-07-14 | Honeywell International Inc. | Restocking workflow prioritization |
US9646419B2 (en) | 2015-01-14 | 2017-05-09 | International Business Machines Corporation | Augmented reality device display of image recognition analysis matches |
US20160210780A1 (en) | 2015-01-20 | 2016-07-21 | Jonathan Paulovich | Applying real world scale to virtual content |
US9273846B1 (en) | 2015-01-29 | 2016-03-01 | Heptagon Micro Optics Pte. Ltd. | Apparatus for producing patterned illumination including at least one array of light sources and at least one array of microlenses |
US9861182B2 (en) | 2015-02-05 | 2018-01-09 | Hand Held Products, Inc. | Device for supporting an electronic tool on a user's hand |
USD785617S1 (en) | 2015-02-06 | 2017-05-02 | Hand Held Products, Inc. | Tablet computer |
US10121466B2 (en) | 2015-02-11 | 2018-11-06 | Hand Held Products, Inc. | Methods for training a speech recognition system |
US9390596B1 (en) | 2015-02-23 | 2016-07-12 | Hand Held Products, Inc. | Device, system, and method for determining the status of checkout lanes |
US9250712B1 (en) | 2015-03-20 | 2016-02-02 | Hand Held Products, Inc. | Method and application for scanning a barcode with a smart device while continuously running and displaying an application on the smart device display |
US9486921B1 (en) | 2015-03-26 | 2016-11-08 | Google Inc. | Methods and systems for distributing remote assistance to facilitate robotic object manipulation |
US20160292477A1 (en) | 2015-03-31 | 2016-10-06 | Hand Held Products, Inc. | Aimer for barcode scanning |
US9930050B2 (en) | 2015-04-01 | 2018-03-27 | Hand Held Products, Inc. | Device management proxy for secure devices |
USD777166S1 (en) | 2015-04-07 | 2017-01-24 | Hand Held Products, Inc. | Handle for a tablet computer |
US9852102B2 (en) | 2015-04-15 | 2017-12-26 | Hand Held Products, Inc. | System for exchanging information between wireless peripherals and back-end systems via a peripheral hub |
US9693038B2 (en) | 2015-04-21 | 2017-06-27 | Hand Held Products, Inc. | Systems and methods for imaging |
US9521331B2 (en) | 2015-04-21 | 2016-12-13 | Hand Held Products, Inc. | Capturing a graphic information presentation |
US20160314276A1 (en) | 2015-04-24 | 2016-10-27 | Hand Held Products, Inc. | Medication management system |
US20160314294A1 (en) | 2015-04-24 | 2016-10-27 | Hand Held Products, Inc. | Secure unattended network authentication |
USD783601S1 (en) | 2015-04-27 | 2017-04-11 | Hand Held Products, Inc. | Tablet computer with removable scanning device |
US10038716B2 (en) | 2015-05-01 | 2018-07-31 | Hand Held Products, Inc. | System and method for regulating barcode data injection into a running application on a smart device |
US10401436B2 (en) | 2015-05-04 | 2019-09-03 | Hand Held Products, Inc. | Tracking battery conditions |
US9891612B2 (en) | 2015-05-05 | 2018-02-13 | Hand Held Products, Inc. | Intermediate linear positioning |
US10007112B2 (en) | 2015-05-06 | 2018-06-26 | Hand Held Products, Inc. | Hands-free human machine interface responsive to a driver of a vehicle |
US9954871B2 (en) | 2015-05-06 | 2018-04-24 | Hand Held Products, Inc. | Method and system to protect software-based network-connected devices from advanced persistent threat |
US9978088B2 (en) | 2015-05-08 | 2018-05-22 | Hand Held Products, Inc. | Application independent DEX/UCS interface |
CN107896506A (en) | 2015-05-10 | 2018-04-10 | 魔眼公司 | Range sensor |
US9595038B1 (en) | 2015-05-18 | 2017-03-14 | Amazon Technologies, Inc. | Inventory confirmation |
US20170309108A1 (en) | 2015-05-18 | 2017-10-26 | Alex Sadovsky | Network-implemented methods and systems for authenticating a check |
US9786101B2 (en) | 2015-05-19 | 2017-10-10 | Hand Held Products, Inc. | Evaluating image values |
US10360728B2 (en) | 2015-05-19 | 2019-07-23 | Hand Held Products, Inc. | Augmented reality device, system, and method for safety |
USD771631S1 (en) | 2015-06-02 | 2016-11-15 | Hand Held Products, Inc. | Mobile computer housing |
US9507974B1 (en) | 2015-06-10 | 2016-11-29 | Hand Held Products, Inc. | Indicia-reading systems having an interface with a user's nervous system |
US9235899B1 (en) | 2015-06-12 | 2016-01-12 | Google Inc. | Simulating an infrared emitter array in a video monitoring camera to construct a lookup table for depth determination |
US10354449B2 (en) | 2015-06-12 | 2019-07-16 | Hand Held Products, Inc. | Augmented reality lighting effects |
US9892876B2 (en) | 2015-06-16 | 2018-02-13 | Hand Held Products, Inc. | Tactile switch for a mobile electronic device |
US10066982B2 (en) | 2015-06-16 | 2018-09-04 | Hand Held Products, Inc. | Calibrating a volume dimensioner |
US9949005B2 (en) | 2015-06-18 | 2018-04-17 | Hand Held Products, Inc. | Customizable headset |
USD790505S1 (en) | 2015-06-18 | 2017-06-27 | Hand Held Products, Inc. | Wireless audio headset |
US20160377414A1 (en) | 2015-06-23 | 2016-12-29 | Hand Held Products, Inc. | Optical pattern projector |
US9857167B2 (en) | 2015-06-23 | 2018-01-02 | Hand Held Products, Inc. | Dual-projector three-dimensional scanner |
US20170010780A1 (en) | 2015-07-06 | 2017-01-12 | Hand Held Products, Inc. | Programmable touchscreen zone for mobile devices |
US9835486B2 (en) | 2015-07-07 | 2017-12-05 | Hand Held Products, Inc. | Mobile dimensioner apparatus for use in commerce |
US10345383B2 (en) | 2015-07-07 | 2019-07-09 | Hand Held Products, Inc. | Useful battery capacity / state of health gauge |
EP3118576B1 (en) | 2015-07-15 | 2018-09-12 | Hand Held Products, Inc. | Mobile dimensioning device with dynamic accuracy compatible with nist standard |
US10094650B2 (en) | 2015-07-16 | 2018-10-09 | Hand Held Products, Inc. | Dimensioning and imaging items |
US9488986B1 (en) | 2015-07-31 | 2016-11-08 | Hand Held Products, Inc. | System and method for tracking an item on a pallet in a warehouse |
US10467513B2 (en) | 2015-08-12 | 2019-11-05 | Datamax-O'neil Corporation | Verification of a printed image on media |
US9853575B2 (en) | 2015-08-12 | 2017-12-26 | Hand Held Products, Inc. | Angular motor shaft with rotational attenuation |
US9911023B2 (en) | 2015-08-17 | 2018-03-06 | Hand Held Products, Inc. | Indicia reader having a filtered multifunction image sensor |
US10410629B2 (en) | 2015-08-19 | 2019-09-10 | Hand Held Products, Inc. | Auto-complete methods for spoken complete value entries |
CN205910700U (en) | 2015-08-21 | 2017-01-25 | 手持产品公司 | A equipment that is used for camera that has that accelerated bar code scanning read |
US9781681B2 (en) | 2015-08-26 | 2017-10-03 | Hand Held Products, Inc. | Fleet power management through information storage sharing |
CN206006056U (en) | 2015-08-27 | 2017-03-15 | 手持产品公司 | There are the gloves of measurement, scanning and display capabilities |
US9798413B2 (en) | 2015-08-27 | 2017-10-24 | Hand Held Products, Inc. | Interactive display |
US11282515B2 (en) | 2015-08-31 | 2022-03-22 | Hand Held Products, Inc. | Multiple inspector voice inspection |
US9490540B1 (en) | 2015-09-02 | 2016-11-08 | Hand Held Products, Inc. | Patch antenna |
US9659198B2 (en) | 2015-09-10 | 2017-05-23 | Hand Held Products, Inc. | System and method of determining if a surface is printed or a mobile device screen |
US9606581B1 (en) | 2015-09-11 | 2017-03-28 | Hand Held Products, Inc. | Automated contact cleaning system for docking stations |
US9652648B2 (en) | 2015-09-11 | 2017-05-16 | Hand Held Products, Inc. | Positioning an object with respect to a target location |
CN205091752U (en) | 2015-09-18 | 2016-03-16 | 手持产品公司 | Eliminate environment light flicker noise's bar code scanning apparatus and noise elimination circuit |
US9646191B2 (en) | 2015-09-23 | 2017-05-09 | Intermec Technologies Corporation | Evaluating images |
US10373143B2 (en) | 2015-09-24 | 2019-08-06 | Hand Held Products, Inc. | Product identification using electroencephalography |
US20170091706A1 (en) | 2015-09-25 | 2017-03-30 | Hand Held Products, Inc. | System for monitoring the condition of packages throughout transit |
US10134112B2 (en) | 2015-09-25 | 2018-11-20 | Hand Held Products, Inc. | System and process for displaying information from a mobile computer in a vehicle |
US10312483B2 (en) | 2015-09-30 | 2019-06-04 | Hand Held Products, Inc. | Double locking mechanism on a battery latch |
US20170094238A1 (en) | 2015-09-30 | 2017-03-30 | Hand Held Products, Inc. | Self-calibrating projection apparatus and process |
US9767337B2 (en) | 2015-09-30 | 2017-09-19 | Hand Held Products, Inc. | Indicia reader safety |
US20170098947A1 (en) | 2015-10-02 | 2017-04-06 | Hand Held Products, Inc. | Battery handling apparatus |
US9844956B2 (en) | 2015-10-07 | 2017-12-19 | Intermec Technologies Corporation | Print position correction |
US9656487B2 (en) | 2015-10-13 | 2017-05-23 | Intermec Technologies Corporation | Magnetic media holder for printer |
US10146194B2 (en) | 2015-10-14 | 2018-12-04 | Hand Held Products, Inc. | Building lighting and temperature control with an augmented reality system |
US9727083B2 (en) | 2015-10-19 | 2017-08-08 | Hand Held Products, Inc. | Quick release dock system and method |
JP7145073B2 (en) | 2015-10-21 | 2022-09-30 | プリンストン・オプトロニクス・インコーポレイテッド | Coded pattern projector |
US20170116462A1 (en) | 2015-10-22 | 2017-04-27 | Canon Kabushiki Kaisha | Measurement apparatus and method, program, article manufacturing method, calibration mark member, processing apparatus, and processing system |
TWI578022B (en) | 2015-10-23 | 2017-04-11 | 中強光電股份有限公司 | Head-mounted displays |
US10416454B2 (en) | 2015-10-25 | 2019-09-17 | Facebook Technologies, Llc | Combination prism array for focusing light |
US9876923B2 (en) | 2015-10-27 | 2018-01-23 | Intermec Technologies Corporation | Media width sensing |
US20170123598A1 (en) | 2015-10-29 | 2017-05-04 | Hand Held Products, Inc. | System and method for focus on touch with a touch sensitive screen display |
US10395116B2 (en) | 2015-10-29 | 2019-08-27 | Hand Held Products, Inc. | Dynamically created and updated indoor positioning map |
US9684809B2 (en) | 2015-10-29 | 2017-06-20 | Hand Held Products, Inc. | Scanner assembly with removable shock mount |
US10249030B2 (en) | 2015-10-30 | 2019-04-02 | Hand Held Products, Inc. | Image transformation for indicia reading |
US10397388B2 (en) | 2015-11-02 | 2019-08-27 | Hand Held Products, Inc. | Extended features for network communication |
US10129414B2 (en) | 2015-11-04 | 2018-11-13 | Intermec Technologies Corporation | Systems and methods for detecting transparent media in printers |
US10026377B2 (en) | 2015-11-12 | 2018-07-17 | Hand Held Products, Inc. | IRDA converter tag |
US20170139012A1 (en) | 2015-11-16 | 2017-05-18 | Hand Held Products, Inc. | Expected battery life notification |
US9680282B2 (en) | 2015-11-17 | 2017-06-13 | Hand Held Products, Inc. | Laser aiming for mobile devices |
US10192194B2 (en) | 2015-11-18 | 2019-01-29 | Hand Held Products, Inc. | In-vehicle package location identification at load and delivery times |
US10225544B2 (en) | 2015-11-19 | 2019-03-05 | Hand Held Products, Inc. | High resolution dot pattern |
US10546446B2 (en) | 2015-11-23 | 2020-01-28 | Igt Canada Solutions Ulc | Three-dimensional display for wagering gaming systems with distortion compensation |
US9697401B2 (en) | 2015-11-24 | 2017-07-04 | Hand Held Products, Inc. | Add-on device with configurable optics for an image scanner for scanning barcodes |
US9864891B2 (en) | 2015-11-24 | 2018-01-09 | Intermec Technologies Corporation | Automatic print speed control for indicia printer |
US10064005B2 (en) | 2015-12-09 | 2018-08-28 | Hand Held Products, Inc. | Mobile device with configurable communication technology modes and geofences |
US20170171803A1 (en) | 2015-12-09 | 2017-06-15 | Hand Held Products, Inc. | Mobile device with configurable communication technology modes |
US10282526B2 (en) | 2015-12-09 | 2019-05-07 | Hand Held Products, Inc. | Generation of randomized passwords for one-time usage |
US20170171035A1 (en) | 2015-12-14 | 2017-06-15 | Hand Held Products, Inc. | Easy wi-fi connection system and method |
US9935946B2 (en) | 2015-12-16 | 2018-04-03 | Hand Held Products, Inc. | Method and system for tracking an electronic device at an electronic device docking station |
CN106899713B (en) | 2015-12-18 | 2020-10-16 | 霍尼韦尔国际公司 | Battery cover locking mechanism of mobile terminal and manufacturing method thereof |
US9729744B2 (en) | 2015-12-21 | 2017-08-08 | Hand Held Products, Inc. | System and method of border detection on a document and for producing an image of the document |
US10325436B2 (en) | 2015-12-31 | 2019-06-18 | Hand Held Products, Inc. | Devices, systems, and methods for optical validation |
US9727840B2 (en) | 2016-01-04 | 2017-08-08 | Hand Held Products, Inc. | Package physical characteristic identification system and method in supply chain management |
US20170190192A1 (en) | 2016-01-05 | 2017-07-06 | Intermec Technologies Corporation | Rolled-in media door |
US9805343B2 (en) | 2016-01-05 | 2017-10-31 | Intermec Technologies Corporation | System and method for guided printer servicing |
US11423348B2 (en) | 2016-01-11 | 2022-08-23 | Hand Held Products, Inc. | System and method for assessing worker performance |
US10026187B2 (en) | 2016-01-12 | 2018-07-17 | Hand Held Products, Inc. | Using image data to calculate an object's weight |
WO2017120660A1 (en) | 2016-01-12 | 2017-07-20 | Esight Corp. | Language element vision augmentation methods and devices |
US20180018627A1 (en) | 2016-07-15 | 2018-01-18 | Alitheon, Inc. | Database records and processes to identify and track physical objects during transportation |
US9701140B1 (en) | 2016-09-20 | 2017-07-11 | Datamax-O'neil Corporation | Method and system to calculate line feed error in labels on a printer |
-
2013
- 2013-03-05 US US13/784,933 patent/US20140104413A1/en not_active Abandoned
- 2013-03-05 US US13/785,177 patent/US9841311B2/en active Active
- 2013-09-25 EP EP16152477.2A patent/EP3035011A1/en not_active Withdrawn
-
2017
- 2017-11-20 US US15/817,840 patent/US10908013B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060112023A1 (en) * | 2002-04-09 | 2006-05-25 | Cube Logic Systems Proprietary Ltd | Cubing apparatus and methods |
US20090059004A1 (en) * | 2007-08-31 | 2009-03-05 | Speed Trac Technologies, Inc. | System and Method for Monitoring the Handling of a Shipment of Freight |
US20120162413A1 (en) * | 2007-11-26 | 2012-06-28 | Proiam, Llc | Enrollment apparatus, system, and method |
US20110075936A1 (en) * | 2009-09-30 | 2011-03-31 | Deaver F Scott | Methods for image processing |
US20140049635A1 (en) * | 2012-08-20 | 2014-02-20 | Intermec Ip Corp. | Volume dimensioning system calibration systems and methods |
Cited By (665)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10140724B2 (en) | 2009-01-12 | 2018-11-27 | Intermec Ip Corporation | Semi-automatic dimensioning with imager on a portable device |
US10845184B2 (en) | 2009-01-12 | 2020-11-24 | Intermec Ip Corporation | Semi-automatic dimensioning with imager on a portable device |
US11810545B2 (en) | 2011-05-20 | 2023-11-07 | Vocollect, Inc. | Systems and methods for dynamically improving user intelligibility of synthesized speech in a work environment |
US11817078B2 (en) | 2011-05-20 | 2023-11-14 | Vocollect, Inc. | Systems and methods for dynamically improving user intelligibility of synthesized speech in a work environment |
US9779546B2 (en) | 2012-05-04 | 2017-10-03 | Intermec Ip Corp. | Volume dimensioning systems and methods |
US10467806B2 (en) | 2012-05-04 | 2019-11-05 | Intermec Ip Corp. | Volume dimensioning systems and methods |
US9007368B2 (en) | 2012-05-07 | 2015-04-14 | Intermec Ip Corp. | Dimensioning system calibration systems and methods |
US9292969B2 (en) | 2012-05-07 | 2016-03-22 | Intermec Ip Corp. | Dimensioning system calibration systems and methods |
US10635922B2 (en) | 2012-05-15 | 2020-04-28 | Hand Held Products, Inc. | Terminals and methods for dimensioning objects |
US10007858B2 (en) | 2012-05-15 | 2018-06-26 | Honeywell International Inc. | Terminals and methods for dimensioning objects |
US10049245B2 (en) | 2012-06-20 | 2018-08-14 | Metrologic Instruments, Inc. | Laser scanning code symbol reading system providing control over length of laser scan line projected onto a scanned object using dynamic range-dependent scan angle control |
US10805603B2 (en) | 2012-08-20 | 2020-10-13 | Intermec Ip Corp. | Volume dimensioning system calibration systems and methods |
US10321127B2 (en) | 2012-08-20 | 2019-06-11 | Intermec Ip Corp. | Volume dimensioning system calibration systems and methods |
US9939259B2 (en) | 2012-10-04 | 2018-04-10 | Hand Held Products, Inc. | Measuring object dimensions using mobile computer |
US9841311B2 (en) | 2012-10-16 | 2017-12-12 | Hand Held Products, Inc. | Dimensioning system |
US10908013B2 (en) | 2012-10-16 | 2021-02-02 | Hand Held Products, Inc. | Dimensioning system |
US9424454B2 (en) | 2012-10-24 | 2016-08-23 | Honeywell International, Inc. | Chip on board based highly integrated imager |
US10769393B2 (en) | 2012-10-24 | 2020-09-08 | Honeywell International Inc. | Chip on board based highly integrated imager |
US9953296B2 (en) | 2013-01-11 | 2018-04-24 | Hand Held Products, Inc. | System, method, and computer-readable medium for managing edge devices |
US9080856B2 (en) * | 2013-03-13 | 2015-07-14 | Intermec Ip Corp. | Systems and methods for enhancing dimensioning, for example volume dimensioning |
US20140267609A1 (en) * | 2013-03-13 | 2014-09-18 | Intermec Ip Corp. | Systems and methods for enhancing dimensioning, for example volume dimensioning |
US9784566B2 (en) * | 2013-03-13 | 2017-10-10 | Intermec Ip Corp. | Systems and methods for enhancing dimensioning |
US20150308816A1 (en) * | 2013-03-13 | 2015-10-29 | Intermec Ip Corp. | Systems and methods for enhancing dimensioning |
US9070032B2 (en) | 2013-04-10 | 2015-06-30 | Hand Held Products, Inc. | Method of programming a symbol reading system |
US9682625B2 (en) | 2013-05-24 | 2017-06-20 | Hand Held Products, Inc. | System and method for display of information using a vehicle-mount computer |
US9616749B2 (en) | 2013-05-24 | 2017-04-11 | Hand Held Products, Inc. | System and method for display of information using a vehicle-mount computer |
US9930142B2 (en) | 2013-05-24 | 2018-03-27 | Hand Held Products, Inc. | System for providing a continuous communication link with a symbol reading device |
US9037344B2 (en) | 2013-05-24 | 2015-05-19 | Hand Held Products, Inc. | System and method for display of information using a vehicle-mount computer |
US10272784B2 (en) | 2013-05-24 | 2019-04-30 | Hand Held Products, Inc. | System and method for display of information using a vehicle-mount computer |
US10863002B2 (en) | 2013-05-24 | 2020-12-08 | Hand Held Products, Inc. | System for providing a continuous communication link with a symbol reading device |
US9141839B2 (en) | 2013-06-07 | 2015-09-22 | Hand Held Products, Inc. | System and method for reading code symbols at long range using source power control |
US10228452B2 (en) | 2013-06-07 | 2019-03-12 | Hand Held Products, Inc. | Method of error correction for 3D imaging device |
US10203402B2 (en) | 2013-06-07 | 2019-02-12 | Hand Held Products, Inc. | Method of error correction for 3D imaging device |
US20140379613A1 (en) * | 2013-06-21 | 2014-12-25 | Panasonic Corporation | Information processing device, information processing system, information processing method, and computer-readable non-transitory storage medium |
US10013591B2 (en) | 2013-06-26 | 2018-07-03 | Hand Held Products, Inc. | Code symbol reading system having adaptive autofocus |
US9582698B2 (en) | 2013-06-26 | 2017-02-28 | Hand Held Products, Inc. | Code symbol reading system having adaptive autofocus |
US9104929B2 (en) | 2013-06-26 | 2015-08-11 | Hand Held Products, Inc. | Code symbol reading system having adaptive autofocus |
US8985461B2 (en) | 2013-06-28 | 2015-03-24 | Hand Held Products, Inc. | Mobile device having an improved user interface for reading code symbols |
US9235737B2 (en) | 2013-06-28 | 2016-01-12 | Hand Held Products, Inc. | System having an improved user interface for reading code symbols |
US9239950B2 (en) | 2013-07-01 | 2016-01-19 | Hand Held Products, Inc. | Dimensioning system |
US9250652B2 (en) | 2013-07-02 | 2016-02-02 | Hand Held Products, Inc. | Electronic device case |
US9773142B2 (en) | 2013-07-22 | 2017-09-26 | Hand Held Products, Inc. | System and method for selectively reading code symbols |
US9297900B2 (en) | 2013-07-25 | 2016-03-29 | Hand Held Products, Inc. | Code symbol reading system having adjustable object detection |
US9672398B2 (en) | 2013-08-26 | 2017-06-06 | Intermec Ip Corporation | Aiming imagers |
US9464885B2 (en) | 2013-08-30 | 2016-10-11 | Hand Held Products, Inc. | System and method for package dimensioning |
US9082023B2 (en) | 2013-09-05 | 2015-07-14 | Hand Held Products, Inc. | Method for operating a laser scanner |
US10372952B2 (en) | 2013-09-06 | 2019-08-06 | Hand Held Products, Inc. | Device having light source to reduce surface pathogens |
US9572901B2 (en) | 2013-09-06 | 2017-02-21 | Hand Held Products, Inc. | Device having light source to reduce surface pathogens |
US10002274B2 (en) | 2013-09-11 | 2018-06-19 | Hand Held Products, Inc. | Handheld indicia reader having locking endcap |
US9183426B2 (en) | 2013-09-11 | 2015-11-10 | Hand Held Products, Inc. | Handheld indicia reader having locking endcap |
US9251411B2 (en) | 2013-09-24 | 2016-02-02 | Hand Held Products, Inc. | Augmented-reality signature capture |
US9165174B2 (en) | 2013-10-14 | 2015-10-20 | Hand Held Products, Inc. | Indicia reader |
US11763112B2 (en) | 2013-10-29 | 2023-09-19 | Hand Held Products, Inc. | Hybrid system and method for reading indicia |
US10275624B2 (en) | 2013-10-29 | 2019-04-30 | Hand Held Products, Inc. | Hybrid system and method for reading indicia |
US9800293B2 (en) | 2013-11-08 | 2017-10-24 | Hand Held Products, Inc. | System for configuring indicia readers using NFC technology |
US9530038B2 (en) | 2013-11-25 | 2016-12-27 | Hand Held Products, Inc. | Indicia-reading system |
US9053378B1 (en) | 2013-12-12 | 2015-06-09 | Hand Held Products, Inc. | Laser barcode scanner |
US20150170378A1 (en) * | 2013-12-16 | 2015-06-18 | Symbol Technologies, Inc. | Method and apparatus for dimensioning box object |
US9741134B2 (en) * | 2013-12-16 | 2017-08-22 | Symbol Technologies, Llc | Method and apparatus for dimensioning box object |
US9984267B2 (en) | 2014-01-08 | 2018-05-29 | Hand Held Products, Inc. | Indicia reader having unitary-construction |
US9697403B2 (en) | 2014-01-08 | 2017-07-04 | Hand Held Products, Inc. | Indicia-reader having unitary-construction |
US9373018B2 (en) | 2014-01-08 | 2016-06-21 | Hand Held Products, Inc. | Indicia-reader having unitary-construction |
US10139495B2 (en) | 2014-01-24 | 2018-11-27 | Hand Held Products, Inc. | Shelving and package locating systems for delivery vehicles |
US11531825B2 (en) | 2014-03-07 | 2022-12-20 | Hand Held Products, Inc. | Indicia reader for size-limited applications |
US10789435B2 (en) | 2014-03-07 | 2020-09-29 | Hand Held Products, Inc. | Indicia reader for size-limited applications |
US9665757B2 (en) | 2014-03-07 | 2017-05-30 | Hand Held Products, Inc. | Indicia reader for size-limited applications |
US9224027B2 (en) | 2014-04-01 | 2015-12-29 | Hand Held Products, Inc. | Hand-mounted indicia-reading device with finger motion triggering |
US9412242B2 (en) | 2014-04-04 | 2016-08-09 | Hand Held Products, Inc. | Multifunction point of sale system |
US9672507B2 (en) | 2014-04-04 | 2017-06-06 | Hand Held Products, Inc. | Multifunction point of sale system |
US10185945B2 (en) | 2014-04-04 | 2019-01-22 | Hand Held Products, Inc. | Multifunction point of sale system |
US10366380B2 (en) | 2014-04-04 | 2019-07-30 | Hand Held Products, Inc. | Multifunction point of sale system |
EP2927840A1 (en) | 2014-04-04 | 2015-10-07 | Hand Held Products, Inc. | Multifunction point of sale system |
US9258033B2 (en) | 2014-04-21 | 2016-02-09 | Hand Held Products, Inc. | Docking system and method using near field communication |
US9510140B2 (en) | 2014-04-21 | 2016-11-29 | Hand Held Products, Inc. | Docking system and method using near field communication |
US9224022B2 (en) | 2014-04-29 | 2015-12-29 | Hand Held Products, Inc. | Autofocus lens system for indicia readers |
US10073197B2 (en) | 2014-04-29 | 2018-09-11 | Hand Held Products, Inc. | Autofocus lens system |
US10222514B2 (en) | 2014-04-29 | 2019-03-05 | Hand Held Products, Inc. | Autofocus lens system |
US9581809B2 (en) | 2014-04-29 | 2017-02-28 | Hand Held Products, Inc. | Autofocus lens system |
US9280693B2 (en) | 2014-05-13 | 2016-03-08 | Hand Held Products, Inc. | Indicia-reader housing with an integrated optical structure |
US9277668B2 (en) | 2014-05-13 | 2016-03-01 | Hand Held Products, Inc. | Indicia-reading module with an integrated flexible circuit |
US9301427B2 (en) | 2014-05-13 | 2016-03-29 | Hand Held Products, Inc. | Heat-dissipation structure for an indicia reading module |
US9911295B2 (en) | 2014-06-27 | 2018-03-06 | Hand Held Products, Inc. | Cordless indicia reader with a multifunction coil for wireless charging and EAS deactivation |
US9478113B2 (en) | 2014-06-27 | 2016-10-25 | Hand Held Products, Inc. | Cordless indicia reader with a multifunction coil for wireless charging and EAS deactivation |
US9794392B2 (en) | 2014-07-10 | 2017-10-17 | Hand Held Products, Inc. | Mobile-phone adapter for electronic transactions |
US9443123B2 (en) | 2014-07-18 | 2016-09-13 | Hand Held Products, Inc. | System and method for indicia verification |
US9310609B2 (en) | 2014-07-25 | 2016-04-12 | Hand Held Products, Inc. | Axially reinforced flexible scan element |
US9823059B2 (en) | 2014-08-06 | 2017-11-21 | Hand Held Products, Inc. | Dimensioning system with guided alignment |
US9976848B2 (en) | 2014-08-06 | 2018-05-22 | Hand Held Products, Inc. | Dimensioning system with guided alignment |
US10240914B2 (en) | 2014-08-06 | 2019-03-26 | Hand Held Products, Inc. | Dimensioning system with guided alignment |
US12003584B2 (en) | 2014-08-19 | 2024-06-04 | Hand Held Products, Inc. | Mobile computing device with data cognition software |
EP4345680A2 (en) | 2014-08-19 | 2024-04-03 | Hand Held Products, Inc. | Mobile computing device with data cognition software |
US11546428B2 (en) | 2014-08-19 | 2023-01-03 | Hand Held Products, Inc. | Mobile computing device with data cognition software |
EP2988209A1 (en) | 2014-08-19 | 2016-02-24 | Hand Held Products, Inc. | Mobile computing device with data cognition software |
EP2990911A1 (en) | 2014-08-29 | 2016-03-02 | Hand Held Products, Inc. | Gesture-controlled computer system |
EP3001368A1 (en) | 2014-09-26 | 2016-03-30 | Honeywell International Inc. | System and method for workflow management |
US11449816B2 (en) | 2014-09-26 | 2022-09-20 | Hand Held Products, Inc. | System and method for workflow management |
US10810530B2 (en) | 2014-09-26 | 2020-10-20 | Hand Held Products, Inc. | System and method for workflow management |
US10402956B2 (en) | 2014-10-10 | 2019-09-03 | Hand Held Products, Inc. | Image-stitching for dimensioning |
EP3006893A1 (en) | 2014-10-10 | 2016-04-13 | Hand Held Products, Inc. | Methods for improving the accuracy of dimensioning-system measurements |
US10810715B2 (en) | 2014-10-10 | 2020-10-20 | Hand Held Products, Inc | System and method for picking validation |
US10121039B2 (en) | 2014-10-10 | 2018-11-06 | Hand Held Products, Inc. | Depth sensor based auto-focus system for an indicia scanner |
US10859375B2 (en) | 2014-10-10 | 2020-12-08 | Hand Held Products, Inc. | Methods for improving the accuracy of dimensioning-system measurements |
US10775165B2 (en) | 2014-10-10 | 2020-09-15 | Hand Held Products, Inc. | Methods for improving the accuracy of dimensioning-system measurements |
EP3007096A1 (en) | 2014-10-10 | 2016-04-13 | Hand Held Products, Inc. | Depth sensor based auto-focus system for an indicia scanner |
US10134120B2 (en) | 2014-10-10 | 2018-11-20 | Hand Held Products, Inc. | Image-stitching for dimensioning |
US9779276B2 (en) | 2014-10-10 | 2017-10-03 | Hand Held Products, Inc. | Depth sensor based auto-focus system for an indicia scanner |
US9443222B2 (en) | 2014-10-14 | 2016-09-13 | Hand Held Products, Inc. | Identifying inventory items in a storage facility |
US9792582B2 (en) | 2014-10-14 | 2017-10-17 | Hand Held Products, Inc. | Identifying inventory items in a storage facility |
EP3009968A1 (en) | 2014-10-15 | 2016-04-20 | Vocollect, Inc. | Systems and methods for worker resource management |
US10909490B2 (en) | 2014-10-15 | 2021-02-02 | Vocollect, Inc. | Systems and methods for worker resource management |
US10393508B2 (en) | 2014-10-21 | 2019-08-27 | Hand Held Products, Inc. | Handheld dimensioning system with measurement-conformance feedback |
US9826220B2 (en) | 2014-10-21 | 2017-11-21 | Hand Held Products, Inc. | Dimensioning system with feedback |
US9897434B2 (en) | 2014-10-21 | 2018-02-20 | Hand Held Products, Inc. | Handheld dimensioning system with measurement-conformance feedback |
US9762793B2 (en) | 2014-10-21 | 2017-09-12 | Hand Held Products, Inc. | System and method for dimensioning |
US9752864B2 (en) | 2014-10-21 | 2017-09-05 | Hand Held Products, Inc. | Handheld dimensioning system with feedback |
US9557166B2 (en) | 2014-10-21 | 2017-01-31 | Hand Held Products, Inc. | Dimensioning system with multipath interference mitigation |
US10060729B2 (en) | 2014-10-21 | 2018-08-28 | Hand Held Products, Inc. | Handheld dimensioner with data-quality indication |
US10218964B2 (en) | 2014-10-21 | 2019-02-26 | Hand Held Products, Inc. | Dimensioning system with feedback |
EP3012579A1 (en) | 2014-10-21 | 2016-04-27 | Hand Held Products, Inc. | System and method for dimensioning |
EP3012601A1 (en) | 2014-10-21 | 2016-04-27 | Hand Held Products, Inc. | Handheld dimensioning system with measurement-conformance feedback |
US10269342B2 (en) | 2014-10-29 | 2019-04-23 | Hand Held Products, Inc. | Method and system for recognizing speech using wildcards in an expected response |
EP3023979A1 (en) | 2014-10-29 | 2016-05-25 | Hand Held Products, Inc. | Method and system for recognizing speech using wildcards in an expected response |
EP3016023A1 (en) | 2014-10-31 | 2016-05-04 | Honeywell International Inc. | Scanner with illumination system |
US9646189B2 (en) | 2014-10-31 | 2017-05-09 | Honeywell International, Inc. | Scanner with illumination system |
US9924006B2 (en) | 2014-10-31 | 2018-03-20 | Hand Held Products, Inc. | Adaptable interface for a mobile computing device |
US10810529B2 (en) | 2014-11-03 | 2020-10-20 | Hand Held Products, Inc. | Directing an inspector through an inspection |
EP3016046A1 (en) | 2014-11-03 | 2016-05-04 | Hand Held Products, Inc. | Directing an inspector through an inspection |
EP3018557A1 (en) | 2014-11-05 | 2016-05-11 | Hand Held Products, Inc. | Barcode scanning system using wearable device with embedded camera |
US9600892B2 (en) * | 2014-11-06 | 2017-03-21 | Symbol Technologies, Llc | Non-parametric method of and system for estimating dimensions of objects of arbitrary shape |
US20160133026A1 (en) * | 2014-11-06 | 2016-05-12 | Symbol Technologies, Inc. | Non-parametric method of and system for estimating dimensions of objects of arbitrary shape |
EP3023980A1 (en) | 2014-11-07 | 2016-05-25 | Hand Held Products, Inc. | Concatenated expected responses for speech recognition |
US9984685B2 (en) | 2014-11-07 | 2018-05-29 | Hand Held Products, Inc. | Concatenated expected responses for speech recognition using expected response boundaries to determine corresponding hypothesis boundaries |
JP2016099306A (en) * | 2014-11-26 | 2016-05-30 | 株式会社ミツトヨ | Image measuring device and measuring device |
US10140725B2 (en) | 2014-12-05 | 2018-11-27 | Symbol Technologies, Llc | Apparatus for and method of estimating dimensions of an object associated with a code in automatic response to reading the code |
US9396554B2 (en) | 2014-12-05 | 2016-07-19 | Symbol Technologies, Llc | Apparatus for and method of estimating dimensions of an object associated with a code in automatic response to reading the code |
GB2547390B (en) * | 2014-12-05 | 2019-12-04 | Symbol Technologies Llc | Apparatus for and method of estimating dimensions of an object associated with a code in automatic response to reading the code |
WO2016089483A1 (en) * | 2014-12-05 | 2016-06-09 | Symbol Technologies, Llc | Apparatus for and method of estimating dimensions of an object associated with a code in automatic response to reading the code |
GB2547390A (en) * | 2014-12-05 | 2017-08-16 | Symbol Technologies Llc | Apparatus for and method of estimating dimensions of an object associated with a code in automatic response to reading the code |
US9767581B2 (en) | 2014-12-12 | 2017-09-19 | Hand Held Products, Inc. | Auto-contrast viewfinder for an indicia reader |
US11704085B2 (en) | 2014-12-15 | 2023-07-18 | Hand Held Products, Inc. | Augmented reality quick-start and user guide |
US10866780B2 (en) | 2014-12-15 | 2020-12-15 | Hand Held Products, Inc. | Augmented reality quick-start and user guide |
US10509619B2 (en) | 2014-12-15 | 2019-12-17 | Hand Held Products, Inc. | Augmented reality quick-start and user guide |
US11321044B2 (en) | 2014-12-15 | 2022-05-03 | Hand Held Products, Inc. | Augmented reality quick-start and user guide |
US10176521B2 (en) | 2014-12-15 | 2019-01-08 | Hand Held Products, Inc. | Augmented reality virtual product for display |
US10438409B2 (en) | 2014-12-15 | 2019-10-08 | Hand Held Products, Inc. | Augmented reality asset locator |
US10136715B2 (en) | 2014-12-18 | 2018-11-27 | Hand Held Products, Inc. | Wearable sled system for a mobile computer device |
US9761096B2 (en) | 2014-12-18 | 2017-09-12 | Hand Held Products, Inc. | Active emergency exit systems for buildings |
US10317474B2 (en) | 2014-12-18 | 2019-06-11 | Hand Held Products, Inc. | Systems and methods for identifying faulty battery in an electronic device |
EP3035151A1 (en) | 2014-12-18 | 2016-06-22 | Hand Held Products, Inc. | Wearable sled system for a mobile computer device |
US10275088B2 (en) | 2014-12-18 | 2019-04-30 | Hand Held Products, Inc. | Systems and methods for identifying faulty touch panel having intermittent field failures |
US10134247B2 (en) | 2014-12-18 | 2018-11-20 | Hand Held Products, Inc. | Active emergency exit systems for buildings |
EP3035074A1 (en) | 2014-12-18 | 2016-06-22 | Hand Held Products, Inc. | Collision-avoidance system and method |
US10915204B2 (en) | 2014-12-18 | 2021-02-09 | Hand Held Products, Inc. | Systems and methods for identifying faulty touch panel having intermittent field failures |
US9678536B2 (en) | 2014-12-18 | 2017-06-13 | Hand Held Products, Inc. | Flip-open wearable computer |
US9743731B2 (en) | 2014-12-18 | 2017-08-29 | Hand Held Products, Inc. | Wearable sled system for a mobile computer device |
US9564035B2 (en) | 2014-12-22 | 2017-02-07 | Hand Held Products, Inc. | Safety system and method |
US9741135B2 (en) * | 2014-12-22 | 2017-08-22 | Baidu Online Networks Technology (Beijing) Co., Ltd. | Method for measuring object and smart device |
US9727769B2 (en) | 2014-12-22 | 2017-08-08 | Hand Held Products, Inc. | Conformable hand mount for a mobile scanner |
US10296259B2 (en) | 2014-12-22 | 2019-05-21 | Hand Held Products, Inc. | Delayed trim of managed NAND flash memory in computing devices |
EP3037951A1 (en) | 2014-12-22 | 2016-06-29 | Hand Held Products, Inc. | Delayed trim of managed nand flash memory in computing devices |
EP3038068A2 (en) | 2014-12-22 | 2016-06-29 | Hand Held Products, Inc. | Barcode-based safety system and method |
EP3037924A1 (en) | 2014-12-22 | 2016-06-29 | Hand Held Products, Inc. | Augmented display and glove with markers as us user input device |
US11409979B2 (en) | 2014-12-23 | 2022-08-09 | Hand Held Products, Inc. | Method of barcode templating for enhanced decoding performance |
EP3038009A1 (en) | 2014-12-23 | 2016-06-29 | Hand Held Products, Inc. | Method of barcode templating for enhanced decoding performance |
EP3037912A1 (en) | 2014-12-23 | 2016-06-29 | Hand Held Products, Inc. | Tablet computer with interface channels |
US10049246B2 (en) | 2014-12-23 | 2018-08-14 | Hand Held Products, Inc. | Mini-barcode reading module with flash memory management |
EP3038010A1 (en) | 2014-12-23 | 2016-06-29 | Hand Held Products, Inc. | Mini-barcode reading module with flash memory management |
US10191514B2 (en) | 2014-12-23 | 2019-01-29 | Hand Held Products, Inc. | Tablet computer with interface channels |
US10635876B2 (en) | 2014-12-23 | 2020-04-28 | Hand Held Products, Inc. | Method of barcode templating for enhanced decoding performance |
US10552786B2 (en) | 2014-12-26 | 2020-02-04 | Hand Held Products, Inc. | Product and location management via voice recognition |
US9679178B2 (en) | 2014-12-26 | 2017-06-13 | Hand Held Products, Inc. | Scanning improvements for saturated signals using automatic and fixed gain control methods |
EP3038029A1 (en) | 2014-12-26 | 2016-06-29 | Hand Held Products, Inc. | Product and location management via voice recognition |
US9652653B2 (en) | 2014-12-27 | 2017-05-16 | Hand Held Products, Inc. | Acceleration-based motion tolerance and predictive coding |
EP3040907A2 (en) | 2014-12-27 | 2016-07-06 | Hand Held Products, Inc. | Acceleration-based motion tolerance and predictive coding |
US9774940B2 (en) | 2014-12-27 | 2017-09-26 | Hand Held Products, Inc. | Power configurable headband system and method |
EP3046032A2 (en) | 2014-12-28 | 2016-07-20 | Hand Held Products, Inc. | Remote monitoring of vehicle diagnostic information |
US10621538B2 (en) | 2014-12-28 | 2020-04-14 | Hand Held Products, Inc | Dynamic check digit utilization via electronic tag |
EP3038030A1 (en) | 2014-12-28 | 2016-06-29 | Hand Held Products, Inc. | Dynamic check digit utilization via electronic tag |
US11244264B2 (en) | 2014-12-29 | 2022-02-08 | Hand Held Products, Inc. | Interleaving surprise activities in workflow |
EP3040921A1 (en) | 2014-12-29 | 2016-07-06 | Hand Held Products, Inc. | Confirming product location using a subset of a product identifier |
US11328335B2 (en) | 2014-12-29 | 2022-05-10 | Hand Held Products, Inc. | Visual graphic aided location identification |
US9843660B2 (en) | 2014-12-29 | 2017-12-12 | Hand Held Products, Inc. | Tag mounted distributed headset with electronics module |
US11443363B2 (en) | 2014-12-29 | 2022-09-13 | Hand Held Products, Inc. | Confirming product location using a subset of a product identifier |
US9830488B2 (en) | 2014-12-30 | 2017-11-28 | Hand Held Products, Inc. | Real-time adjustable window feature for barcode scanning and process of scanning barcode with adjustable window feature |
DE202015010006U1 (en) | 2014-12-30 | 2023-01-19 | Hand Held Products, Inc. | Real-time adjustable window feature for scanning barcodes |
US10108832B2 (en) | 2014-12-30 | 2018-10-23 | Hand Held Products, Inc. | Augmented reality vision barcode scanning system and method |
EP4446935A2 (en) | 2014-12-30 | 2024-10-16 | Hand Held Products, Inc. | Real-time adjustable window feature for barcode scanning and process of scanning barcode with adjustable window feature |
EP3040903A1 (en) | 2014-12-30 | 2016-07-06 | Hand Held Products, Inc. | System and method for detecting barcode printing errors |
US9826106B2 (en) | 2014-12-30 | 2017-11-21 | Hand Held Products, Inc. | System and method for detecting barcode printing errors |
US9685049B2 (en) | 2014-12-30 | 2017-06-20 | Hand Held Products, Inc. | Method and system for improving barcode scanner performance |
EP3040906A1 (en) | 2014-12-30 | 2016-07-06 | Hand Held Products, Inc. | Visual feedback for code readers |
EP3040954A1 (en) | 2014-12-30 | 2016-07-06 | Hand Held Products, Inc. | Point of sale (pos) code sensing apparatus |
EP3045953A1 (en) | 2014-12-30 | 2016-07-20 | Hand Held Products, Inc. | Augmented reality vision barcode scanning system and method |
EP3629225A1 (en) | 2014-12-30 | 2020-04-01 | Hand Held Products, Inc. | Real-time adjustable window feature for barcode scanning and process of scanning barcode with adjustable window feature |
US11257143B2 (en) | 2014-12-30 | 2022-02-22 | Hand Held Products, Inc. | Method and device for simulating a virtual out-of-box experience of a packaged product |
US9898635B2 (en) | 2014-12-30 | 2018-02-20 | Hand Held Products, Inc. | Point-of-sale (POS) code sensing apparatus |
US10152622B2 (en) | 2014-12-30 | 2018-12-11 | Hand Held Products, Inc. | Visual feedback for code readers |
EP4163816A1 (en) | 2014-12-30 | 2023-04-12 | Hand Held Products, Inc. | Real-time adjustable window feature for barcode scanning and process of scanning barcode with adjustable window feature |
EP3040908A1 (en) | 2014-12-30 | 2016-07-06 | Hand Held Products, Inc. | Real-time adjustable window feature for barcode scanning and process of scanning barcode with adjustable window feature |
EP3043235A2 (en) | 2014-12-31 | 2016-07-13 | Hand Held Products, Inc. | Reconfigurable sled for a mobile device |
US11084698B2 (en) | 2014-12-31 | 2021-08-10 | Hand Held Products, Inc. | System and method for monitoring an industrial vehicle |
US9734639B2 (en) | 2014-12-31 | 2017-08-15 | Hand Held Products, Inc. | System and method for monitoring an industrial vehicle |
US9879823B2 (en) | 2014-12-31 | 2018-01-30 | Hand Held Products, Inc. | Reclosable strap assembly |
US10140487B2 (en) | 2014-12-31 | 2018-11-27 | Hand Held Products, Inc. | Reconfigurable sled for a mobile device |
US9721132B2 (en) | 2014-12-31 | 2017-08-01 | Hand Held Products, Inc. | Reconfigurable sled for a mobile device |
US9811650B2 (en) | 2014-12-31 | 2017-11-07 | Hand Held Products, Inc. | User authentication system and method |
US10259694B2 (en) | 2014-12-31 | 2019-04-16 | Hand Held Products, Inc. | System and method for monitoring an industrial vehicle |
US10049290B2 (en) | 2014-12-31 | 2018-08-14 | Hand Held Products, Inc. | Industrial vehicle positioning system and method |
US10804718B2 (en) | 2015-01-08 | 2020-10-13 | Hand Held Products, Inc. | System and method for charging a barcode scanner |
US9997935B2 (en) | 2015-01-08 | 2018-06-12 | Hand Held Products, Inc. | System and method for charging a barcode scanner |
EP3043443A1 (en) | 2015-01-08 | 2016-07-13 | Hand Held Products, Inc. | Charge limit selection for variable power supply configuration |
US11081087B2 (en) | 2015-01-08 | 2021-08-03 | Hand Held Products, Inc. | Multiple primary user interfaces |
US10061565B2 (en) | 2015-01-08 | 2018-08-28 | Hand Held Products, Inc. | Application development using mutliple primary user interfaces |
US11010139B2 (en) | 2015-01-08 | 2021-05-18 | Hand Held Products, Inc. | Application development using multiple primary user interfaces |
US11489352B2 (en) | 2015-01-08 | 2022-11-01 | Hand Held Products, Inc. | System and method for charging a barcode scanner |
US10402038B2 (en) | 2015-01-08 | 2019-09-03 | Hand Held Products, Inc. | Stack handling using multiple primary user interfaces |
US10262660B2 (en) | 2015-01-08 | 2019-04-16 | Hand Held Products, Inc. | Voice mode asset retrieval |
US10120657B2 (en) | 2015-01-08 | 2018-11-06 | Hand Held Products, Inc. | Facilitating workflow application development |
EP3043300A1 (en) | 2015-01-09 | 2016-07-13 | Honeywell International Inc. | Restocking workflow prioritization |
US9861182B2 (en) | 2015-02-05 | 2018-01-09 | Hand Held Products, Inc. | Device for supporting an electronic tool on a user's hand |
EP3057092A1 (en) | 2015-02-11 | 2016-08-17 | Hand Held Products, Inc. | Methods for training a speech recognition system |
US10121466B2 (en) | 2015-02-11 | 2018-11-06 | Hand Held Products, Inc. | Methods for training a speech recognition system |
US9390596B1 (en) | 2015-02-23 | 2016-07-12 | Hand Held Products, Inc. | Device, system, and method for determining the status of checkout lanes |
US10097949B2 (en) | 2015-02-23 | 2018-10-09 | Hand Held Products, Inc. | Device, system, and method for determining the status of lanes |
US10051446B2 (en) | 2015-03-06 | 2018-08-14 | Hand Held Products, Inc. | Power reports in wireless scanner systems |
EP4224296A2 (en) | 2015-03-20 | 2023-08-09 | Hand Held Products, Inc. | Method and application for scanning a barcode with a smart device while continuously running and displaying an application on the same device display |
EP3070587A1 (en) | 2015-03-20 | 2016-09-21 | Hand Held Products, Inc. | Method and apparatus for scanning a barcode with a smart device while displaying an application on the smart device |
EP3637239A1 (en) | 2015-03-20 | 2020-04-15 | Hand Held Products, Inc. | Method and apparatus for scanning a barcode with a smart device while continuously running and displaying an application on the smart device display |
DE202016009146U1 (en) | 2015-03-20 | 2023-01-13 | Hand Held Products, Inc. | Device for scanning a bar code with an intelligent device in continuous operation |
EP3076330A1 (en) | 2015-03-31 | 2016-10-05 | Hand Held Products, Inc. | Aimer for barcode scanning |
US10972480B2 (en) | 2015-04-01 | 2021-04-06 | Hand Held Products, Inc. | Device management proxy for secure devices |
US9930050B2 (en) | 2015-04-01 | 2018-03-27 | Hand Held Products, Inc. | Device management proxy for secure devices |
US10331609B2 (en) | 2015-04-15 | 2019-06-25 | Hand Held Products, Inc. | System for exchanging information between wireless peripherals and back-end systems via a peripheral hub |
US9852102B2 (en) | 2015-04-15 | 2017-12-26 | Hand Held Products, Inc. | System for exchanging information between wireless peripherals and back-end systems via a peripheral hub |
EP3086281A1 (en) | 2015-04-21 | 2016-10-26 | Hand Held Products, Inc. | Systems and methods for imaging |
US9693038B2 (en) | 2015-04-21 | 2017-06-27 | Hand Held Products, Inc. | Systems and methods for imaging |
EP4027263A1 (en) | 2015-04-21 | 2022-07-13 | Hand Held Products, Inc. | Capturing a graphic information presentation |
US9521331B2 (en) | 2015-04-21 | 2016-12-13 | Hand Held Products, Inc. | Capturing a graphic information presentation |
EP3629223A1 (en) | 2015-04-21 | 2020-04-01 | Hand Held Products, Inc. | Capturing a graphic information presentation |
EP3086259A1 (en) | 2015-04-21 | 2016-10-26 | Hand Held Products, Inc. | Capturing a graphic information presentation |
US10860706B2 (en) | 2015-04-24 | 2020-12-08 | Hand Held Products, Inc. | Secure unattended network authentication |
US10038716B2 (en) | 2015-05-01 | 2018-07-31 | Hand Held Products, Inc. | System and method for regulating barcode data injection into a running application on a smart device |
US10401436B2 (en) | 2015-05-04 | 2019-09-03 | Hand Held Products, Inc. | Tracking battery conditions |
US9891612B2 (en) | 2015-05-05 | 2018-02-13 | Hand Held Products, Inc. | Intermediate linear positioning |
US10007112B2 (en) | 2015-05-06 | 2018-06-26 | Hand Held Products, Inc. | Hands-free human machine interface responsive to a driver of a vehicle |
US10333955B2 (en) | 2015-05-06 | 2019-06-25 | Hand Held Products, Inc. | Method and system to protect software-based network-connected devices from advanced persistent threat |
US9954871B2 (en) | 2015-05-06 | 2018-04-24 | Hand Held Products, Inc. | Method and system to protect software-based network-connected devices from advanced persistent threat |
US10621634B2 (en) | 2015-05-08 | 2020-04-14 | Hand Held Products, Inc. | Application independent DEX/UCS interface |
US9978088B2 (en) | 2015-05-08 | 2018-05-22 | Hand Held Products, Inc. | Application independent DEX/UCS interface |
US10593130B2 (en) | 2015-05-19 | 2020-03-17 | Hand Held Products, Inc. | Evaluating image values |
EP3096293A1 (en) | 2015-05-19 | 2016-11-23 | Hand Held Products, Inc. | Methods for improving the accuracy of dimensioning-system measurements |
US10360728B2 (en) | 2015-05-19 | 2019-07-23 | Hand Held Products, Inc. | Augmented reality device, system, and method for safety |
CN106169185A (en) * | 2015-05-19 | 2016-11-30 | 手持产品公司 | Evaluation image value |
US9786101B2 (en) | 2015-05-19 | 2017-10-10 | Hand Held Products, Inc. | Evaluating image values |
US11403887B2 (en) | 2015-05-19 | 2022-08-02 | Hand Held Products, Inc. | Evaluating image values |
US11906280B2 (en) | 2015-05-19 | 2024-02-20 | Hand Held Products, Inc. | Evaluating image values |
USD792407S1 (en) | 2015-06-02 | 2017-07-18 | Hand Held Products, Inc. | Mobile computer housing |
US9507974B1 (en) | 2015-06-10 | 2016-11-29 | Hand Held Products, Inc. | Indicia-reading systems having an interface with a user's nervous system |
US10303258B2 (en) | 2015-06-10 | 2019-05-28 | Hand Held Products, Inc. | Indicia-reading systems having an interface with a user's nervous system |
US10867450B2 (en) | 2015-06-12 | 2020-12-15 | Hand Held Products, Inc. | Augmented reality lighting effects |
US11488366B2 (en) | 2015-06-12 | 2022-11-01 | Hand Held Products, Inc. | Augmented reality lighting effects |
US10354449B2 (en) | 2015-06-12 | 2019-07-16 | Hand Held Products, Inc. | Augmented reality lighting effects |
US9892876B2 (en) | 2015-06-16 | 2018-02-13 | Hand Held Products, Inc. | Tactile switch for a mobile electronic device |
US10066982B2 (en) | 2015-06-16 | 2018-09-04 | Hand Held Products, Inc. | Calibrating a volume dimensioner |
US10741347B2 (en) | 2015-06-16 | 2020-08-11 | Hand Held Products, Inc. | Tactile switch for a mobile electronic device |
US9949005B2 (en) | 2015-06-18 | 2018-04-17 | Hand Held Products, Inc. | Customizable headset |
US9857167B2 (en) | 2015-06-23 | 2018-01-02 | Hand Held Products, Inc. | Dual-projector three-dimensional scanner |
US10247547B2 (en) | 2015-06-23 | 2019-04-02 | Hand Held Products, Inc. | Optical pattern projector |
US10345383B2 (en) | 2015-07-07 | 2019-07-09 | Hand Held Products, Inc. | Useful battery capacity / state of health gauge |
US9835486B2 (en) | 2015-07-07 | 2017-12-05 | Hand Held Products, Inc. | Mobile dimensioner apparatus for use in commerce |
US9955522B2 (en) | 2015-07-07 | 2018-04-24 | Hand Held Products, Inc. | WiFi enable based on cell signals |
US10612958B2 (en) | 2015-07-07 | 2020-04-07 | Hand Held Products, Inc. | Mobile dimensioner apparatus to mitigate unfair charging practices in commerce |
US10393506B2 (en) | 2015-07-15 | 2019-08-27 | Hand Held Products, Inc. | Method for a mobile dimensioning device to use a dynamic accuracy compatible with NIST standard |
EP3118576A1 (en) | 2015-07-15 | 2017-01-18 | Hand Held Products, Inc. | Mobile dimensioning device with dynamic accuracy compatible with nist standard |
US11353319B2 (en) | 2015-07-15 | 2022-06-07 | Hand Held Products, Inc. | Method for a mobile dimensioning device to use a dynamic accuracy compatible with NIST standard |
US11029762B2 (en) | 2015-07-16 | 2021-06-08 | Hand Held Products, Inc. | Adjusting dimensioning results using augmented reality |
EP3118573A1 (en) | 2015-07-16 | 2017-01-18 | Hand Held Products, Inc. | Dimensioning and imaging items |
US10094650B2 (en) | 2015-07-16 | 2018-10-09 | Hand Held Products, Inc. | Dimensioning and imaging items |
US20170030766A1 (en) * | 2015-07-28 | 2017-02-02 | Wal-Mart Stores, Inc. | Systems and methods for determining measurement data of an item |
US10318976B2 (en) * | 2015-07-28 | 2019-06-11 | Walmart Apollo, Llc | Methods for determining measurement data of an item |
US9488986B1 (en) | 2015-07-31 | 2016-11-08 | Hand Held Products, Inc. | System and method for tracking an item on a pallet in a warehouse |
US10740663B2 (en) | 2015-08-12 | 2020-08-11 | Hand Held Products, Inc. | Verification of a printed image on media |
EP3131196A1 (en) | 2015-08-12 | 2017-02-15 | Hand Held Products, Inc. | Faceted actuator shaft with rotation prevention |
US10467513B2 (en) | 2015-08-12 | 2019-11-05 | Datamax-O'neil Corporation | Verification of a printed image on media |
US9853575B2 (en) | 2015-08-12 | 2017-12-26 | Hand Held Products, Inc. | Angular motor shaft with rotational attenuation |
US9911023B2 (en) | 2015-08-17 | 2018-03-06 | Hand Held Products, Inc. | Indicia reader having a filtered multifunction image sensor |
EP4016383A1 (en) | 2015-08-17 | 2022-06-22 | Hand Held Products, Inc. | Indicia reader having a filtered multifunction image sensor |
US10896304B2 (en) | 2015-08-17 | 2021-01-19 | Hand Held Products, Inc. | Indicia reader having a filtered multifunction image sensor |
US10410629B2 (en) | 2015-08-19 | 2019-09-10 | Hand Held Products, Inc. | Auto-complete methods for spoken complete value entries |
US10529335B2 (en) | 2015-08-19 | 2020-01-07 | Hand Held Products, Inc. | Auto-complete methods for spoken complete value entries |
US10506516B2 (en) | 2015-08-26 | 2019-12-10 | Hand Held Products, Inc. | Fleet power management through information storage sharing |
US9781681B2 (en) | 2015-08-26 | 2017-10-03 | Hand Held Products, Inc. | Fleet power management through information storage sharing |
US9798413B2 (en) | 2015-08-27 | 2017-10-24 | Hand Held Products, Inc. | Interactive display |
EP3136219A1 (en) | 2015-08-27 | 2017-03-01 | Hand Held Products, Inc. | Interactive display |
US10897940B2 (en) | 2015-08-27 | 2021-01-26 | Hand Held Products, Inc. | Gloves having measuring, scanning, and displaying capabilities |
US11282515B2 (en) | 2015-08-31 | 2022-03-22 | Hand Held Products, Inc. | Multiple inspector voice inspection |
US11646028B2 (en) | 2015-08-31 | 2023-05-09 | Hand Held Products, Inc. | Multiple inspector voice inspection |
US10424842B2 (en) | 2015-09-02 | 2019-09-24 | Hand Held Products, Inc. | Patch antenna |
US9490540B1 (en) | 2015-09-02 | 2016-11-08 | Hand Held Products, Inc. | Patch antenna |
US9781502B2 (en) | 2015-09-09 | 2017-10-03 | Hand Held Products, Inc. | Process and system for sending headset control information from a mobile device to a wireless headset |
US10753802B2 (en) | 2015-09-10 | 2020-08-25 | Hand Held Products, Inc. | System and method of determining if a surface is printed or a device screen |
US9659198B2 (en) | 2015-09-10 | 2017-05-23 | Hand Held Products, Inc. | System and method of determining if a surface is printed or a mobile device screen |
US10197446B2 (en) | 2015-09-10 | 2019-02-05 | Hand Held Products, Inc. | System and method of determining if a surface is printed or a device screen |
US10083331B2 (en) | 2015-09-11 | 2018-09-25 | Hand Held Products, Inc. | Positioning an object with respect to a target location |
US9652648B2 (en) | 2015-09-11 | 2017-05-16 | Hand Held Products, Inc. | Positioning an object with respect to a target location |
US9805237B2 (en) | 2015-09-18 | 2017-10-31 | Hand Held Products, Inc. | Cancelling noise caused by the flicker of ambient lights |
US9646191B2 (en) | 2015-09-23 | 2017-05-09 | Intermec Technologies Corporation | Evaluating images |
US9916488B2 (en) | 2015-09-23 | 2018-03-13 | Intermec Technologies Corporation | Evaluating images |
US10185860B2 (en) | 2015-09-23 | 2019-01-22 | Intermec Technologies Corporation | Evaluating images |
US10373143B2 (en) | 2015-09-24 | 2019-08-06 | Hand Held Products, Inc. | Product identification using electroencephalography |
US10134112B2 (en) | 2015-09-25 | 2018-11-20 | Hand Held Products, Inc. | System and process for displaying information from a mobile computer in a vehicle |
EP3147151A1 (en) | 2015-09-25 | 2017-03-29 | Hand Held Products, Inc. | A system and process for displaying information from a mobile computer in a vehicle |
US10438186B2 (en) * | 2015-09-28 | 2019-10-08 | Walmart Apollo, Llc | Produce weigh station and method of use |
US9767337B2 (en) | 2015-09-30 | 2017-09-19 | Hand Held Products, Inc. | Indicia reader safety |
EP3151553A1 (en) | 2015-09-30 | 2017-04-05 | Hand Held Products, Inc. | A self-calibrating projection apparatus and process |
US10312483B2 (en) | 2015-09-30 | 2019-06-04 | Hand Held Products, Inc. | Double locking mechanism on a battery latch |
US10049249B2 (en) | 2015-09-30 | 2018-08-14 | Hand Held Products, Inc. | Indicia reader safety |
US9844956B2 (en) | 2015-10-07 | 2017-12-19 | Intermec Technologies Corporation | Print position correction |
US10894431B2 (en) | 2015-10-07 | 2021-01-19 | Intermec Technologies Corporation | Print position correction |
US9656487B2 (en) | 2015-10-13 | 2017-05-23 | Intermec Technologies Corporation | Magnetic media holder for printer |
US9975324B2 (en) | 2015-10-13 | 2018-05-22 | Intermec Technologies Corporation | Magnetic media holder for printer |
US10308009B2 (en) | 2015-10-13 | 2019-06-04 | Intermec Ip Corp. | Magnetic media holder for printer |
US10146194B2 (en) | 2015-10-14 | 2018-12-04 | Hand Held Products, Inc. | Building lighting and temperature control with an augmented reality system |
EP3159770A1 (en) | 2015-10-19 | 2017-04-26 | Hand Held Products, Inc. | Quick release dock system and method |
US9727083B2 (en) | 2015-10-19 | 2017-08-08 | Hand Held Products, Inc. | Quick release dock system and method |
US9883063B2 (en) | 2015-10-27 | 2018-01-30 | Intermec Technologies Corporation | Media width sensing |
US9876923B2 (en) | 2015-10-27 | 2018-01-23 | Intermec Technologies Corporation | Media width sensing |
US10057442B2 (en) | 2015-10-27 | 2018-08-21 | Intermec Technologies Corporation | Media width sensing |
US10248822B2 (en) | 2015-10-29 | 2019-04-02 | Hand Held Products, Inc. | Scanner assembly with removable shock mount |
US9684809B2 (en) | 2015-10-29 | 2017-06-20 | Hand Held Products, Inc. | Scanner assembly with removable shock mount |
US10395116B2 (en) | 2015-10-29 | 2019-08-27 | Hand Held Products, Inc. | Dynamically created and updated indoor positioning map |
EP3165939A1 (en) | 2015-10-29 | 2017-05-10 | Hand Held Products, Inc. | Dynamically created and updated indoor positioning map |
US10249030B2 (en) | 2015-10-30 | 2019-04-02 | Hand Held Products, Inc. | Image transformation for indicia reading |
US10397388B2 (en) | 2015-11-02 | 2019-08-27 | Hand Held Products, Inc. | Extended features for network communication |
US10129414B2 (en) | 2015-11-04 | 2018-11-13 | Intermec Technologies Corporation | Systems and methods for detecting transparent media in printers |
US10026377B2 (en) | 2015-11-12 | 2018-07-17 | Hand Held Products, Inc. | IRDA converter tag |
US9680282B2 (en) | 2015-11-17 | 2017-06-13 | Hand Held Products, Inc. | Laser aiming for mobile devices |
US10192194B2 (en) | 2015-11-18 | 2019-01-29 | Hand Held Products, Inc. | In-vehicle package location identification at load and delivery times |
US10225544B2 (en) | 2015-11-19 | 2019-03-05 | Hand Held Products, Inc. | High resolution dot pattern |
US9864891B2 (en) | 2015-11-24 | 2018-01-09 | Intermec Technologies Corporation | Automatic print speed control for indicia printer |
US9697401B2 (en) | 2015-11-24 | 2017-07-04 | Hand Held Products, Inc. | Add-on device with configurable optics for an image scanner for scanning barcodes |
EP3173980A1 (en) | 2015-11-24 | 2017-05-31 | Intermec Technologies Corporation | Automatic print speed control for indicia printer |
US10303909B2 (en) | 2015-11-24 | 2019-05-28 | Hand Held Products, Inc. | Add-on device with configurable optics for an image scanner for scanning barcodes |
US10064005B2 (en) | 2015-12-09 | 2018-08-28 | Hand Held Products, Inc. | Mobile device with configurable communication technology modes and geofences |
US10282526B2 (en) | 2015-12-09 | 2019-05-07 | Hand Held Products, Inc. | Generation of randomized passwords for one-time usage |
US10313340B2 (en) | 2015-12-16 | 2019-06-04 | Hand Held Products, Inc. | Method and system for tracking an electronic device at an electronic device docking station |
US9935946B2 (en) | 2015-12-16 | 2018-04-03 | Hand Held Products, Inc. | Method and system for tracking an electronic device at an electronic device docking station |
US9844158B2 (en) | 2015-12-18 | 2017-12-12 | Honeywell International, Inc. | Battery cover locking mechanism of a mobile terminal and method of manufacturing the same |
US9729744B2 (en) | 2015-12-21 | 2017-08-08 | Hand Held Products, Inc. | System and method of border detection on a document and for producing an image of the document |
US10275735B2 (en) * | 2015-12-28 | 2019-04-30 | Toshiba Tec Kabushiki Kaisha | Sales data processing apparatus and method for executing data processing of article |
US20170185960A1 (en) * | 2015-12-28 | 2017-06-29 | Toshiba Tec Kabushiki Kaisha | Sales data processing apparatus and method for executing data processing of article |
US10325436B2 (en) | 2015-12-31 | 2019-06-18 | Hand Held Products, Inc. | Devices, systems, and methods for optical validation |
US11854333B2 (en) | 2015-12-31 | 2023-12-26 | Hand Held Products, Inc. | Devices, systems, and methods for optical validation |
US11282323B2 (en) | 2015-12-31 | 2022-03-22 | Hand Held Products, Inc. | Devices, systems, and methods for optical validation |
US9727840B2 (en) | 2016-01-04 | 2017-08-08 | Hand Held Products, Inc. | Package physical characteristic identification system and method in supply chain management |
US10217089B2 (en) | 2016-01-05 | 2019-02-26 | Intermec Technologies Corporation | System and method for guided printer servicing |
US9805343B2 (en) | 2016-01-05 | 2017-10-31 | Intermec Technologies Corporation | System and method for guided printer servicing |
US11423348B2 (en) | 2016-01-11 | 2022-08-23 | Hand Held Products, Inc. | System and method for assessing worker performance |
EP3193188A1 (en) | 2016-01-12 | 2017-07-19 | Hand Held Products, Inc. | Programmable reference beacons |
US10859667B2 (en) | 2016-01-12 | 2020-12-08 | Hand Held Products, Inc. | Programmable reference beacons |
US10026187B2 (en) | 2016-01-12 | 2018-07-17 | Hand Held Products, Inc. | Using image data to calculate an object's weight |
EP3193146A1 (en) | 2016-01-14 | 2017-07-19 | Hand Held Products, Inc. | Multi-spectral imaging using longitudinal chromatic aberrations |
US9945777B2 (en) | 2016-01-14 | 2018-04-17 | Hand Held Products, Inc. | Multi-spectral imaging using longitudinal chromatic aberrations |
EP4325394A2 (en) | 2016-01-26 | 2024-02-21 | Hand Held Products, Inc. | Enhanced matrix symbol error correction method |
US11449700B2 (en) | 2016-01-26 | 2022-09-20 | Hand Held Products, Inc. | Enhanced matrix symbol error correction method |
US11727232B2 (en) | 2016-01-26 | 2023-08-15 | Hand Held Products, Inc. | Enhanced matrix symbol error correction method |
EP3200120A1 (en) | 2016-01-26 | 2017-08-02 | Hand Held Products, Inc. | Enhanced matrix symbol error correction method |
US10846498B2 (en) | 2016-01-26 | 2020-11-24 | Hand Held Products, Inc. | Enhanced matrix symbol error correction method |
US10235547B2 (en) | 2016-01-26 | 2019-03-19 | Hand Held Products, Inc. | Enhanced matrix symbol error correction method |
EP3933662A1 (en) | 2016-01-26 | 2022-01-05 | Hand Held Products, Inc. | Enhanced matrix symbol error correction method |
US10025314B2 (en) | 2016-01-27 | 2018-07-17 | Hand Held Products, Inc. | Vehicle positioning and object avoidance |
US10747227B2 (en) | 2016-01-27 | 2020-08-18 | Hand Held Products, Inc. | Vehicle positioning and object avoidance |
US10352689B2 (en) | 2016-01-28 | 2019-07-16 | Symbol Technologies, Llc | Methods and systems for high precision locationing with depth values |
US10145955B2 (en) | 2016-02-04 | 2018-12-04 | Symbol Technologies, Llc | Methods and systems for processing point-cloud data with a line scanner |
US10061118B2 (en) | 2016-02-04 | 2018-08-28 | Hand Held Products, Inc. | Beam shaping system and scanner |
US9990784B2 (en) | 2016-02-05 | 2018-06-05 | Hand Held Products, Inc. | Dynamic identification badge |
EP3217353A1 (en) | 2016-03-09 | 2017-09-13 | Hand Held Products, Inc. | An imaging device for producing high resolution images using subpixel shifts and method of using same |
US9674430B1 (en) | 2016-03-09 | 2017-06-06 | Hand Held Products, Inc. | Imaging device for producing high resolution images using subpixel shifts and method of using same |
US9955072B2 (en) | 2016-03-09 | 2018-04-24 | Hand Held Products, Inc. | Imaging device for producing high resolution images using subpixel shifts and method of using same |
US20170264880A1 (en) * | 2016-03-14 | 2017-09-14 | Symbol Technologies, Llc | Device and method of dimensioning using digital images and depth data |
US10587858B2 (en) * | 2016-03-14 | 2020-03-10 | Symbol Technologies, Llc | Device and method of dimensioning using digital images and depth data |
US11125885B2 (en) | 2016-03-15 | 2021-09-21 | Hand Held Products, Inc. | Monitoring user biometric parameters with nanotechnology in personal locator beacon |
US10721451B2 (en) | 2016-03-23 | 2020-07-21 | Symbol Technologies, Llc | Arrangement for, and method of, loading freight into a shipping container |
US10394316B2 (en) | 2016-04-07 | 2019-08-27 | Hand Held Products, Inc. | Multiple display modes on a mobile device |
EP3239891A1 (en) | 2016-04-14 | 2017-11-01 | Hand Held Products, Inc. | Customizable aimer system for indicia reading terminal |
US10055625B2 (en) | 2016-04-15 | 2018-08-21 | Hand Held Products, Inc. | Imaging barcode reader with color-separated aimer and illuminator |
EP3232367A1 (en) | 2016-04-15 | 2017-10-18 | Hand Held Products, Inc. | Imaging barcode reader with color separated aimer and illuminator |
EP4006769A1 (en) | 2016-04-15 | 2022-06-01 | Hand Held Products, Inc. | Imaging barcode reader with color-separated aimer and illuminator |
US9805240B1 (en) | 2016-04-18 | 2017-10-31 | Symbol Technologies, Llc | Barcode scanning and dimensioning |
EP3660727A1 (en) | 2016-04-26 | 2020-06-03 | Hand Held Products, Inc. | Indicia reading device and methods for decoding decodable indicia employing stereoscopic imaging |
EP4036789A1 (en) | 2016-04-26 | 2022-08-03 | Hand Held Products, Inc. | Indicia reading device and methods for decoding decodable indicia employing stereoscopic imaging |
US10755154B2 (en) | 2016-04-26 | 2020-08-25 | Hand Held Products, Inc. | Indicia reading device and methods for decoding decodable indicia employing stereoscopic imaging |
US10185906B2 (en) | 2016-04-26 | 2019-01-22 | Hand Held Products, Inc. | Indicia reading device and methods for decoding decodable indicia employing stereoscopic imaging |
EP3239892A1 (en) | 2016-04-26 | 2017-11-01 | Hand Held Products, Inc. | Indicia reading device and methods for decoding decodable indicia employing stereoscopic imaging |
US9727841B1 (en) | 2016-05-20 | 2017-08-08 | Vocollect, Inc. | Systems and methods for reducing picking operation errors |
EP3246863A1 (en) | 2016-05-20 | 2017-11-22 | Vocollect, Inc. | Systems and methods for reducing picking operation errors |
US10019837B2 (en) | 2016-05-31 | 2018-07-10 | Microsoft Technology Licensing, Llc | Visualization alignment for three-dimensional scanning |
WO2017209996A1 (en) * | 2016-05-31 | 2017-12-07 | Microsoft Technology Licensing, Llc | Visualization alignment for three-dimensional scanning |
US10183500B2 (en) | 2016-06-01 | 2019-01-22 | Datamax-O'neil Corporation | Thermal printhead temperature control |
US10872214B2 (en) | 2016-06-03 | 2020-12-22 | Hand Held Products, Inc. | Wearable metrological apparatus |
EP3252703A1 (en) | 2016-06-03 | 2017-12-06 | Hand Held Products, Inc. | Wearable metrological apparatus |
US10339352B2 (en) | 2016-06-03 | 2019-07-02 | Hand Held Products, Inc. | Wearable metrological apparatus |
US9940721B2 (en) | 2016-06-10 | 2018-04-10 | Hand Held Products, Inc. | Scene change detection in a dimensioner |
EP3255376A1 (en) | 2016-06-10 | 2017-12-13 | Hand Held Products, Inc. | Scene change detection in a dimensioner |
US10097681B2 (en) | 2016-06-14 | 2018-10-09 | Hand Held Products, Inc. | Managing energy usage in mobile devices |
US10306051B2 (en) | 2016-06-14 | 2019-05-28 | Hand Held Products, Inc. | Managing energy usage in mobile devices |
US10791213B2 (en) | 2016-06-14 | 2020-09-29 | Hand Held Products, Inc. | Managing energy usage in mobile devices |
US10417769B2 (en) | 2016-06-15 | 2019-09-17 | Hand Held Products, Inc. | Automatic mode switching in a volume dimensioner |
US10163216B2 (en) | 2016-06-15 | 2018-12-25 | Hand Held Products, Inc. | Automatic mode switching in a volume dimensioner |
EP3258210A1 (en) | 2016-06-15 | 2017-12-20 | Hand Held Products, Inc. | Automatic mode switching in a volume dimensioner |
US9990524B2 (en) | 2016-06-16 | 2018-06-05 | Hand Held Products, Inc. | Eye gaze detection controlled indicia scanning system and method |
US10733406B2 (en) | 2016-06-16 | 2020-08-04 | Hand Held Products, Inc. | Eye gaze detection controlled indicia scanning system and method |
US10268858B2 (en) | 2016-06-16 | 2019-04-23 | Hand Held Products, Inc. | Eye gaze detection controlled indicia scanning system and method |
US9955099B2 (en) | 2016-06-21 | 2018-04-24 | Hand Held Products, Inc. | Minimum height CMOS image sensor |
US9876957B2 (en) | 2016-06-21 | 2018-01-23 | Hand Held Products, Inc. | Dual mode image sensor and method of using same |
US9864887B1 (en) | 2016-07-07 | 2018-01-09 | Hand Held Products, Inc. | Energizing scanners |
US10085101B2 (en) | 2016-07-13 | 2018-09-25 | Hand Held Products, Inc. | Systems and methods for determining microphone position |
US10313811B2 (en) | 2016-07-13 | 2019-06-04 | Hand Held Products, Inc. | Systems and methods for determining microphone position |
US9662900B1 (en) | 2016-07-14 | 2017-05-30 | Datamax-O'neil Corporation | Wireless thermal printhead system and method |
US10286681B2 (en) | 2016-07-14 | 2019-05-14 | Intermec Technologies Corporation | Wireless thermal printhead system and method |
US10733401B2 (en) | 2016-07-15 | 2020-08-04 | Hand Held Products, Inc. | Barcode reader with viewing frame |
US10210366B2 (en) | 2016-07-15 | 2019-02-19 | Hand Held Products, Inc. | Imaging scanner with positioning and display |
US10896403B2 (en) | 2016-07-18 | 2021-01-19 | Vocollect, Inc. | Systems and methods for managing dated products |
US11837253B2 (en) | 2016-07-27 | 2023-12-05 | Vocollect, Inc. | Distinguishing user speech from background speech in speech-dense environments |
US11158336B2 (en) | 2016-07-27 | 2021-10-26 | Vocollect, Inc. | Distinguishing user speech from background speech in speech-dense environments |
US10714121B2 (en) | 2016-07-27 | 2020-07-14 | Vocollect, Inc. | Distinguishing user speech from background speech in speech-dense environments |
US10183506B2 (en) | 2016-08-02 | 2019-01-22 | Datamas-O'neil Corporation | Thermal printer having real-time force feedback on printhead pressure and method of using same |
US9902175B1 (en) | 2016-08-02 | 2018-02-27 | Datamax-O'neil Corporation | Thermal printer having real-time force feedback on printhead pressure and method of using same |
US10220643B2 (en) | 2016-08-04 | 2019-03-05 | Datamax-O'neil Corporation | System and method for active printing consistency control and damage protection |
US9919547B2 (en) | 2016-08-04 | 2018-03-20 | Datamax-O'neil Corporation | System and method for active printing consistency control and damage protection |
US10640325B2 (en) | 2016-08-05 | 2020-05-05 | Datamax-O'neil Corporation | Rigid yet flexible spindle for rolled material |
US11157869B2 (en) | 2016-08-05 | 2021-10-26 | Vocollect, Inc. | Monitoring worker movement in a warehouse setting |
US9940497B2 (en) | 2016-08-16 | 2018-04-10 | Hand Held Products, Inc. | Minimizing laser persistence on two-dimensional image sensors |
US10372954B2 (en) | 2016-08-16 | 2019-08-06 | Hand Held Products, Inc. | Method for reading indicia off a display of a mobile device |
US10685665B2 (en) | 2016-08-17 | 2020-06-16 | Vocollect, Inc. | Method and apparatus to improve speech recognition in a high audio noise environment |
US10384462B2 (en) | 2016-08-17 | 2019-08-20 | Datamax-O'neil Corporation | Easy replacement of thermal print head and simple adjustment on print pressure |
US10776661B2 (en) | 2016-08-19 | 2020-09-15 | Symbol Technologies, Llc | Methods, systems and apparatus for segmenting and dimensioning objects |
US10158834B2 (en) | 2016-08-30 | 2018-12-18 | Hand Held Products, Inc. | Corrected projection perspective distortion |
US10042593B2 (en) | 2016-09-02 | 2018-08-07 | Datamax-O'neil Corporation | Printer smart folders using USB mass storage profile |
US10286694B2 (en) | 2016-09-02 | 2019-05-14 | Datamax-O'neil Corporation | Ultra compact printer |
US9805257B1 (en) | 2016-09-07 | 2017-10-31 | Datamax-O'neil Corporation | Printer method and apparatus |
US10484847B2 (en) | 2016-09-13 | 2019-11-19 | Hand Held Products, Inc. | Methods for provisioning a wireless beacon |
US9946962B2 (en) | 2016-09-13 | 2018-04-17 | Datamax-O'neil Corporation | Print precision improvement over long print jobs |
US10331930B2 (en) | 2016-09-19 | 2019-06-25 | Hand Held Products, Inc. | Dot peen mark image acquisition |
US9881194B1 (en) | 2016-09-19 | 2018-01-30 | Hand Held Products, Inc. | Dot peen mark image acquisition |
US10464349B2 (en) | 2016-09-20 | 2019-11-05 | Datamax-O'neil Corporation | Method and system to calculate line feed error in labels on a printer |
US9701140B1 (en) | 2016-09-20 | 2017-07-11 | Datamax-O'neil Corporation | Method and system to calculate line feed error in labels on a printer |
US10375473B2 (en) | 2016-09-20 | 2019-08-06 | Vocollect, Inc. | Distributed environmental microphones to minimize noise during speech recognition |
US10268859B2 (en) | 2016-09-23 | 2019-04-23 | Hand Held Products, Inc. | Three dimensional aimer for barcode scanning |
US9931867B1 (en) | 2016-09-23 | 2018-04-03 | Datamax-O'neil Corporation | Method and system of determining a width of a printer ribbon |
US9785814B1 (en) | 2016-09-23 | 2017-10-10 | Hand Held Products, Inc. | Three dimensional aimer for barcode scanning |
US10181321B2 (en) | 2016-09-27 | 2019-01-15 | Vocollect, Inc. | Utilization of location and environment to improve recognition |
EP3220369A1 (en) | 2016-09-29 | 2017-09-20 | Hand Held Products, Inc. | Monitoring user biometric parameters with nanotechnology in personal locator beacon |
US9936278B1 (en) | 2016-10-03 | 2018-04-03 | Vocollect, Inc. | Communication headsets and systems for mobile application control and power savings |
US10694277B2 (en) | 2016-10-03 | 2020-06-23 | Vocollect, Inc. | Communication headsets and systems for mobile application control and power savings |
US10152664B2 (en) | 2016-10-27 | 2018-12-11 | Hand Held Products, Inc. | Backlit display detection and radio signature recognition |
US9892356B1 (en) | 2016-10-27 | 2018-02-13 | Hand Held Products, Inc. | Backlit display detection and radio signature recognition |
US11042161B2 (en) | 2016-11-16 | 2021-06-22 | Symbol Technologies, Llc | Navigation control method and apparatus in a mobile automation system |
US10311274B2 (en) | 2016-11-16 | 2019-06-04 | Hand Held Products, Inc. | Reader for optical indicia presented under two or more imaging conditions within a single frame time |
US10114997B2 (en) | 2016-11-16 | 2018-10-30 | Hand Held Products, Inc. | Reader for optical indicia presented under two or more imaging conditions within a single frame time |
US10451405B2 (en) | 2016-11-22 | 2019-10-22 | Symbol Technologies, Llc | Dimensioning system for, and method of, dimensioning freight in motion along an unconstrained path in a venue |
US10022993B2 (en) | 2016-12-02 | 2018-07-17 | Datamax-O'neil Corporation | Media guides for use in printers and methods for using the same |
US10909708B2 (en) | 2016-12-09 | 2021-02-02 | Hand Held Products, Inc. | Calibrating a dimensioner using ratios of measurable parameters of optic ally-perceptible geometric elements |
US10698470B2 (en) | 2016-12-09 | 2020-06-30 | Hand Held Products, Inc. | Smart battery balance system and method |
US10395081B2 (en) | 2016-12-09 | 2019-08-27 | Hand Held Products, Inc. | Encoding document capture bounds with barcodes |
US10976797B2 (en) | 2016-12-09 | 2021-04-13 | Hand Held Products, Inc. | Smart battery balance system and method |
US10740855B2 (en) | 2016-12-14 | 2020-08-11 | Hand Held Products, Inc. | Supply chain tracking of farm produce and crops |
US10163044B2 (en) | 2016-12-15 | 2018-12-25 | Datamax-O'neil Corporation | Auto-adjusted print location on center-tracked printers |
US10044880B2 (en) | 2016-12-16 | 2018-08-07 | Datamax-O'neil Corporation | Comparing printer models |
US11430100B2 (en) | 2016-12-19 | 2022-08-30 | Datamax-O'neil Corporation | Printer-verifiers and systems and methods for verifying printed indicia |
US12033011B2 (en) | 2016-12-19 | 2024-07-09 | Hand Held Products, Inc. | Printer-verifiers and systems and methods for verifying printed indicia |
US10304174B2 (en) | 2016-12-19 | 2019-05-28 | Datamax-O'neil Corporation | Printer-verifiers and systems and methods for verifying printed indicia |
US10559075B2 (en) | 2016-12-19 | 2020-02-11 | Datamax-O'neil Corporation | Printer-verifiers and systems and methods for verifying printed indicia |
US10354411B2 (en) | 2016-12-20 | 2019-07-16 | Symbol Technologies, Llc | Methods, systems and apparatus for segmenting objects |
US10237421B2 (en) | 2016-12-22 | 2019-03-19 | Datamax-O'neil Corporation | Printers and methods for identifying a source of a problem therein |
US10360424B2 (en) | 2016-12-28 | 2019-07-23 | Hand Held Products, Inc. | Illuminator for DPM scanner |
US10904453B2 (en) | 2016-12-28 | 2021-01-26 | Hand Held Products, Inc. | Method and system for synchronizing illumination timing in a multi-sensor imager |
US9827796B1 (en) | 2017-01-03 | 2017-11-28 | Datamax-O'neil Corporation | Automatic thermal printhead cleaning system |
US10652403B2 (en) | 2017-01-10 | 2020-05-12 | Datamax-O'neil Corporation | Printer script autocorrect |
US10911610B2 (en) | 2017-01-10 | 2021-02-02 | Datamax-O'neil Corporation | Printer script autocorrect |
US11042834B2 (en) | 2017-01-12 | 2021-06-22 | Vocollect, Inc. | Voice-enabled substitutions with customer notification |
US10387699B2 (en) | 2017-01-12 | 2019-08-20 | Hand Held Products, Inc. | Waking system in barcode scanner |
US10468015B2 (en) | 2017-01-12 | 2019-11-05 | Vocollect, Inc. | Automated TTS self correction system |
US10480931B2 (en) * | 2017-01-13 | 2019-11-19 | Optoelectronics Co., Ltd. | Dimension measuring apparatus, information reading apparatus having measuring function, and dimension measuring method |
US10263443B2 (en) | 2017-01-13 | 2019-04-16 | Hand Held Products, Inc. | Power capacity indicator |
US20180202797A1 (en) * | 2017-01-13 | 2018-07-19 | Optoelectronics Co., Ltd. | Dimension measuring apparatus, information reading apparatus having measuring function, and dimension measuring method |
US10797498B2 (en) | 2017-01-13 | 2020-10-06 | Hand Held Products, Inc. | Power capacity indicator |
US11139665B2 (en) | 2017-01-13 | 2021-10-05 | Hand Held Products, Inc. | Power capacity indicator |
US10071575B2 (en) | 2017-01-18 | 2018-09-11 | Datamax-O'neil Corporation | Printers and methods for detecting print media thickness therein |
US9802427B1 (en) | 2017-01-18 | 2017-10-31 | Datamax-O'neil Corporation | Printers and methods for detecting print media thickness therein |
US10350905B2 (en) | 2017-01-26 | 2019-07-16 | Datamax-O'neil Corporation | Detecting printing ribbon orientation |
US9849691B1 (en) | 2017-01-26 | 2017-12-26 | Datamax-O'neil Corporation | Detecting printing ribbon orientation |
US10276009B2 (en) | 2017-01-26 | 2019-04-30 | Hand Held Products, Inc. | Method of reading a barcode and deactivating an electronic article surveillance tag |
US10158612B2 (en) | 2017-02-07 | 2018-12-18 | Hand Held Products, Inc. | Imaging-based automatic data extraction with security scheme |
US10984374B2 (en) | 2017-02-10 | 2021-04-20 | Vocollect, Inc. | Method and system for inputting products into an inventory system |
US10252874B2 (en) | 2017-02-20 | 2019-04-09 | Datamax-O'neil Corporation | Clutch bearing to keep media tension for better sensing accuracy |
US10336112B2 (en) | 2017-02-27 | 2019-07-02 | Datamax-O'neil Corporation | Segmented enclosure |
US9908351B1 (en) | 2017-02-27 | 2018-03-06 | Datamax-O'neil Corporation | Segmented enclosure |
US10737911B2 (en) | 2017-03-02 | 2020-08-11 | Hand Held Products, Inc. | Electromagnetic pallet and method for adjusting pallet position |
US10195880B2 (en) | 2017-03-02 | 2019-02-05 | Datamax-O'neil Corporation | Automatic width detection |
US10710375B2 (en) | 2017-03-03 | 2020-07-14 | Datamax-O'neil Corporation | Region-of-interest based print quality optimization |
US11014374B2 (en) | 2017-03-03 | 2021-05-25 | Datamax-O'neil Corporation | Region-of-interest based print quality optimization |
US11745516B2 (en) | 2017-03-03 | 2023-09-05 | Hand Held Products, Inc. | Region-of-interest based print quality optimization |
US10105963B2 (en) | 2017-03-03 | 2018-10-23 | Datamax-O'neil Corporation | Region-of-interest based print quality optimization |
US10867145B2 (en) | 2017-03-06 | 2020-12-15 | Datamax-O'neil Corporation | Systems and methods for barcode verification |
US11047672B2 (en) | 2017-03-28 | 2021-06-29 | Hand Held Products, Inc. | System for optically dimensioning |
US10780721B2 (en) | 2017-03-30 | 2020-09-22 | Datamax-O'neil Corporation | Detecting label stops |
US10953672B2 (en) | 2017-03-30 | 2021-03-23 | Datamax-O'neil Corporation | Detecting label stops |
US10798316B2 (en) | 2017-04-04 | 2020-10-06 | Hand Held Products, Inc. | Multi-spectral imaging using longitudinal chromatic aberrations |
US10896361B2 (en) | 2017-04-19 | 2021-01-19 | Hand Held Products, Inc. | High ambient light electronic screen communication method |
US10223626B2 (en) | 2017-04-19 | 2019-03-05 | Hand Held Products, Inc. | High ambient light electronic screen communication method |
US10189285B2 (en) | 2017-04-20 | 2019-01-29 | Datamax-O'neil Corporation | Self-strip media module |
US9937735B1 (en) | 2017-04-20 | 2018-04-10 | Datamax—O'Neil Corporation | Self-strip media module |
US10463140B2 (en) | 2017-04-28 | 2019-11-05 | Hand Held Products, Inc. | Attachment apparatus for electronic device |
US10949798B2 (en) | 2017-05-01 | 2021-03-16 | Symbol Technologies, Llc | Multimodal localization and mapping for a mobile automation apparatus |
US11449059B2 (en) | 2017-05-01 | 2022-09-20 | Symbol Technologies, Llc | Obstacle detection for a mobile automation apparatus |
US10591918B2 (en) | 2017-05-01 | 2020-03-17 | Symbol Technologies, Llc | Fixed segmented lattice planning for a mobile automation apparatus |
US10726273B2 (en) | 2017-05-01 | 2020-07-28 | Symbol Technologies, Llc | Method and apparatus for shelf feature and object placement detection from shelf images |
US11093896B2 (en) | 2017-05-01 | 2021-08-17 | Symbol Technologies, Llc | Product status detection system |
US11367092B2 (en) | 2017-05-01 | 2022-06-21 | Symbol Technologies, Llc | Method and apparatus for extracting and processing price text from an image set |
US11978011B2 (en) | 2017-05-01 | 2024-05-07 | Symbol Technologies, Llc | Method and apparatus for object status detection |
US10663590B2 (en) | 2017-05-01 | 2020-05-26 | Symbol Technologies, Llc | Device and method for merging lidar data |
US10810541B2 (en) | 2017-05-03 | 2020-10-20 | Hand Held Products, Inc. | Methods for pick and put location verification |
US10549561B2 (en) | 2017-05-04 | 2020-02-04 | Datamax-O'neil Corporation | Apparatus for sealing an enclosure |
US11600084B2 (en) | 2017-05-05 | 2023-03-07 | Symbol Technologies, Llc | Method and apparatus for detecting and interpreting price label text |
US10967660B2 (en) | 2017-05-12 | 2021-04-06 | Datamax-O'neil Corporation | Media replacement process for thermal printers |
US10438098B2 (en) | 2017-05-19 | 2019-10-08 | Hand Held Products, Inc. | High-speed OCR decode using depleted centerlines |
US11295182B2 (en) | 2017-05-19 | 2022-04-05 | Hand Held Products, Inc. | High-speed OCR decode using depleted centerlines |
US10523038B2 (en) | 2017-05-23 | 2019-12-31 | Hand Held Products, Inc. | System and method for wireless charging of a beacon and/or sensor device |
US10732226B2 (en) | 2017-05-26 | 2020-08-04 | Hand Held Products, Inc. | Methods for estimating a number of workflow cycles able to be completed from a remaining battery capacity |
US11428744B2 (en) | 2017-05-26 | 2022-08-30 | Hand Held Products, Inc. | Methods for estimating a number of workflow cycles able to be completed from a remaining battery capacity |
US12085621B2 (en) | 2017-05-26 | 2024-09-10 | Hand Held Products, Inc. | Methods for estimating a number of workflow cycles able to be completed from a remaining battery capacity |
US10592536B2 (en) | 2017-05-30 | 2020-03-17 | Hand Held Products, Inc. | Systems and methods for determining a location of a user when using an imaging device in an indoor facility |
US10332099B2 (en) | 2017-06-09 | 2019-06-25 | Hand Held Products, Inc. | Secure paper-free bills in workflow applications |
US9984366B1 (en) | 2017-06-09 | 2018-05-29 | Hand Held Products, Inc. | Secure paper-free bills in workflow applications |
US10710386B2 (en) | 2017-06-21 | 2020-07-14 | Datamax-O'neil Corporation | Removable printhead |
US10035367B1 (en) | 2017-06-21 | 2018-07-31 | Datamax-O'neil Corporation | Single motor dynamic ribbon feedback system for a printer |
US10778690B2 (en) | 2017-06-30 | 2020-09-15 | Datamax-O'neil Corporation | Managing a fleet of workflow devices and standby devices in a device network |
US11868918B2 (en) | 2017-06-30 | 2024-01-09 | Hand Held Products, Inc. | Managing a fleet of devices |
US11496484B2 (en) | 2017-06-30 | 2022-11-08 | Datamax-O'neil Corporation | Managing a fleet of workflow devices and standby devices in a device network |
US10977594B2 (en) | 2017-06-30 | 2021-04-13 | Datamax-O'neil Corporation | Managing a fleet of devices |
US10644944B2 (en) | 2017-06-30 | 2020-05-05 | Datamax-O'neil Corporation | Managing a fleet of devices |
US11178008B2 (en) | 2017-06-30 | 2021-11-16 | Datamax-O'neil Corporation | Managing a fleet of devices |
US11962464B2 (en) | 2017-06-30 | 2024-04-16 | Hand Held Products, Inc. | Managing a fleet of devices |
US10747975B2 (en) | 2017-07-06 | 2020-08-18 | Hand Held Products, Inc. | Methods for changing a configuration of a device for reading machine-readable code |
US10127423B1 (en) | 2017-07-06 | 2018-11-13 | Hand Held Products, Inc. | Methods for changing a configuration of a device for reading machine-readable code |
US10216969B2 (en) | 2017-07-10 | 2019-02-26 | Hand Held Products, Inc. | Illuminator for directly providing dark field and bright field illumination |
US10264165B2 (en) | 2017-07-11 | 2019-04-16 | Hand Held Products, Inc. | Optical bar assemblies for optical systems and isolation damping systems including the same |
US10867141B2 (en) | 2017-07-12 | 2020-12-15 | Hand Held Products, Inc. | System and method for augmented reality configuration of indicia readers |
US10956033B2 (en) | 2017-07-13 | 2021-03-23 | Hand Held Products, Inc. | System and method for generating a virtual keyboard with a highlighted area of interest |
US10733748B2 (en) | 2017-07-24 | 2020-08-04 | Hand Held Products, Inc. | Dual-pattern optical 3D dimensioning |
US10255469B2 (en) | 2017-07-28 | 2019-04-09 | Hand Held Products, Inc. | Illumination apparatus for a barcode reader |
US10650631B2 (en) | 2017-07-28 | 2020-05-12 | Hand Held Products, Inc. | Systems and methods for processing a distorted image |
US11587387B2 (en) | 2017-07-28 | 2023-02-21 | Hand Held Products, Inc. | Systems and methods for processing a distorted image |
US10796119B2 (en) | 2017-07-28 | 2020-10-06 | Hand Held Products, Inc. | Decoding color barcodes |
US11120238B2 (en) | 2017-07-28 | 2021-09-14 | Hand Held Products, Inc. | Decoding color barcodes |
US10099485B1 (en) | 2017-07-31 | 2018-10-16 | Datamax-O'neil Corporation | Thermal print heads and printers including the same |
US10373032B2 (en) | 2017-08-01 | 2019-08-06 | Datamax-O'neil Corporation | Cryptographic printhead |
US11373051B2 (en) | 2017-08-04 | 2022-06-28 | Hand Held Products, Inc. | Indicia reader acoustic for multiple mounting positions |
US10956695B2 (en) | 2017-08-04 | 2021-03-23 | Hand Held Products, Inc. | Indicia reader acoustic for multiple mounting positions |
US10635871B2 (en) | 2017-08-04 | 2020-04-28 | Hand Held Products, Inc. | Indicia reader acoustic for multiple mounting positions |
US11790196B2 (en) | 2017-08-04 | 2023-10-17 | Hand Held Products, Inc. | Indicia reader acoustic for multiple mounting positions |
US10749300B2 (en) | 2017-08-11 | 2020-08-18 | Hand Held Products, Inc. | POGO connector based soft power start solution |
US10803267B2 (en) | 2017-08-18 | 2020-10-13 | Hand Held Products, Inc. | Illuminator for a barcode scanner |
US10960681B2 (en) | 2017-09-06 | 2021-03-30 | Datamax-O'neil Corporation | Autocorrection for uneven print pressure on print media |
US10399359B2 (en) | 2017-09-06 | 2019-09-03 | Vocollect, Inc. | Autocorrection for uneven print pressure on print media |
US10521914B2 (en) | 2017-09-07 | 2019-12-31 | Symbol Technologies, Llc | Multi-sensor object recognition system and method |
US10572763B2 (en) | 2017-09-07 | 2020-02-25 | Symbol Technologies, Llc | Method and apparatus for support surface edge detection |
US10372389B2 (en) | 2017-09-22 | 2019-08-06 | Datamax-O'neil Corporation | Systems and methods for printer maintenance operations |
US10756900B2 (en) | 2017-09-28 | 2020-08-25 | Hand Held Products, Inc. | Non-repudiation protocol using time-based one-time password (TOTP) |
US11475655B2 (en) | 2017-09-29 | 2022-10-18 | Datamax-O'neil Corporation | Methods for optical character recognition (OCR) |
US10621470B2 (en) | 2017-09-29 | 2020-04-14 | Datamax-O'neil Corporation | Methods for optical character recognition (OCR) |
US10245861B1 (en) | 2017-10-04 | 2019-04-02 | Datamax-O'neil Corporation | Printers, printer spindle assemblies, and methods for determining media width for controlling media tension |
US10728445B2 (en) | 2017-10-05 | 2020-07-28 | Hand Held Products Inc. | Methods for constructing a color composite image |
US10868958B2 (en) | 2017-10-05 | 2020-12-15 | Hand Held Products, Inc. | Methods for constructing a color composite image |
US10884059B2 (en) | 2017-10-18 | 2021-01-05 | Hand Held Products, Inc. | Determining the integrity of a computing device |
US10654287B2 (en) | 2017-10-19 | 2020-05-19 | Datamax-O'neil Corporation | Print quality setup using banks in parallel |
US10084556B1 (en) | 2017-10-20 | 2018-09-25 | Hand Held Products, Inc. | Identifying and transmitting invisible fence signals with a mobile data terminal |
US10399369B2 (en) | 2017-10-23 | 2019-09-03 | Datamax-O'neil Corporation | Smart media hanger with media width detection |
US10293624B2 (en) | 2017-10-23 | 2019-05-21 | Datamax-O'neil Corporation | Smart media hanger with media width detection |
US11593591B2 (en) | 2017-10-25 | 2023-02-28 | Hand Held Products, Inc. | Optical character recognition systems and methods |
US10679101B2 (en) | 2017-10-25 | 2020-06-09 | Hand Held Products, Inc. | Optical character recognition systems and methods |
US10210364B1 (en) | 2017-10-31 | 2019-02-19 | Hand Held Products, Inc. | Direct part marking scanners including dome diffusers with edge illumination assemblies |
US10427424B2 (en) | 2017-11-01 | 2019-10-01 | Datamax-O'neil Corporation | Estimating a remaining amount of a consumable resource based on a center of mass calculation |
US10181896B1 (en) | 2017-11-01 | 2019-01-15 | Hand Held Products, Inc. | Systems and methods for reducing power consumption in a satellite communication device |
US10369823B2 (en) | 2017-11-06 | 2019-08-06 | Datamax-O'neil Corporation | Print head pressure detection and adjustment |
US10369804B2 (en) | 2017-11-10 | 2019-08-06 | Datamax-O'neil Corporation | Secure thermal print head |
US10399361B2 (en) | 2017-11-21 | 2019-09-03 | Datamax-O'neil Corporation | Printer, system and method for programming RFID tags on media labels |
US10654697B2 (en) | 2017-12-01 | 2020-05-19 | Hand Held Products, Inc. | Gyroscopically stabilized vehicle system |
US10232628B1 (en) | 2017-12-08 | 2019-03-19 | Datamax-O'neil Corporation | Removably retaining a print head assembly on a printer |
US10703112B2 (en) | 2017-12-13 | 2020-07-07 | Datamax-O'neil Corporation | Image to script converter |
US11155102B2 (en) | 2017-12-13 | 2021-10-26 | Datamax-O'neil Corporation | Image to script converter |
US11152812B2 (en) | 2017-12-15 | 2021-10-19 | Datamax-O'neil Corporation | Powering devices using low-current power sources |
US11710980B2 (en) | 2017-12-15 | 2023-07-25 | Hand Held Products, Inc. | Powering devices using low-current power sources |
US10756563B2 (en) | 2017-12-15 | 2020-08-25 | Datamax-O'neil Corporation | Powering devices using low-current power sources |
US10323929B1 (en) | 2017-12-19 | 2019-06-18 | Datamax-O'neil Corporation | Width detecting media hanger |
US11117407B2 (en) | 2017-12-27 | 2021-09-14 | Datamax-O'neil Corporation | Method and apparatus for printing |
US10773537B2 (en) | 2017-12-27 | 2020-09-15 | Datamax-O'neil Corporation | Method and apparatus for printing |
US11660895B2 (en) | 2017-12-27 | 2023-05-30 | Datamax O'neil Corporation | Method and apparatus for printing |
US10803264B2 (en) | 2018-01-05 | 2020-10-13 | Datamax-O'neil Corporation | Method, apparatus, and system for characterizing an optical system |
US12073282B2 (en) | 2018-01-05 | 2024-08-27 | Datamax-O'neil Corporation | Method, apparatus, and system for characterizing an optical system |
US10546160B2 (en) | 2018-01-05 | 2020-01-28 | Datamax-O'neil Corporation | Methods, apparatuses, and systems for providing print quality feedback and controlling print quality of machine-readable indicia |
US11301646B2 (en) | 2018-01-05 | 2022-04-12 | Datamax-O'neil Corporation | Methods, apparatuses, and systems for providing print quality feedback and controlling print quality of machine readable indicia |
EP4266254A2 (en) | 2018-01-05 | 2023-10-25 | Hand Held Products, Inc. | Methods, apparatuses, and systems for detecting printing defects and contaminated components of a printer |
US10795618B2 (en) | 2018-01-05 | 2020-10-06 | Datamax-O'neil Corporation | Methods, apparatuses, and systems for verifying printed image and improving print quality |
US11157217B2 (en) | 2018-01-05 | 2021-10-26 | Datamax-O'neil Corporation | Methods, apparatuses, and systems for verifying printed image and improving print quality |
US11893449B2 (en) | 2018-01-05 | 2024-02-06 | Datamax-O'neil Corporation | Method, apparatus, and system for characterizing an optical system |
US11900201B2 (en) | 2018-01-05 | 2024-02-13 | Hand Held Products, Inc. | Methods, apparatuses, and systems for providing print quality feedback and controlling print quality of machine readable indicia |
US11210483B2 (en) | 2018-01-05 | 2021-12-28 | Datamax-O'neil Corporation | Method, apparatus, and system for characterizing an optical system |
US10999460B2 (en) | 2018-01-05 | 2021-05-04 | Datamax-O'neil Corporation | Methods, apparatuses, and systems for detecting printing defects and contaminated components of a printer |
EP4030743A1 (en) | 2018-01-05 | 2022-07-20 | Datamax-O'Neil Corporation | Methods, apparatuses, and systems for providing print quality feedback and controlling print quality of machine-readable indicia |
US11570321B2 (en) | 2018-01-05 | 2023-01-31 | Datamax-O'neil Corporation | Methods, apparatuses, and systems for detecting printing defects and contaminated components of a printer |
US10834283B2 (en) | 2018-01-05 | 2020-11-10 | Datamax-O'neil Corporation | Methods, apparatuses, and systems for detecting printing defects and contaminated components of a printer |
US11943406B2 (en) | 2018-01-05 | 2024-03-26 | Hand Held Products, Inc. | Methods, apparatuses, and systems for detecting printing defects and contaminated components of a printer |
US11625203B2 (en) | 2018-01-05 | 2023-04-11 | Hand Held Products, Inc. | Methods, apparatuses, and systems for scanning pre-printed print media to verify printed image and improving print quality |
US20190212955A1 (en) | 2018-01-05 | 2019-07-11 | Datamax-O'neil Corporation | Methods, apparatuses, and systems for verifying printed image and improving print quality |
US11941307B2 (en) | 2018-01-05 | 2024-03-26 | Hand Held Products, Inc. | Methods, apparatuses, and systems captures image of pre-printed print media information for generating validation image by comparing post-printed image with pre-printed image and improving print quality |
US10731963B2 (en) | 2018-01-09 | 2020-08-04 | Datamax-O'neil Corporation | Apparatus and method of measuring media thickness |
US11894705B2 (en) | 2018-01-12 | 2024-02-06 | Hand Held Products, Inc. | Indicating charge status |
US10897150B2 (en) | 2018-01-12 | 2021-01-19 | Hand Held Products, Inc. | Indicating charge status |
US10809949B2 (en) | 2018-01-26 | 2020-10-20 | Datamax-O'neil Corporation | Removably couplable printer and verifier assembly |
US11126384B2 (en) | 2018-01-26 | 2021-09-21 | Datamax-O'neil Corporation | Removably couplable printer and verifier assembly |
US10809078B2 (en) | 2018-04-05 | 2020-10-20 | Symbol Technologies, Llc | Method, system and apparatus for dynamic path generation |
US10740911B2 (en) | 2018-04-05 | 2020-08-11 | Symbol Technologies, Llc | Method, system and apparatus for correcting translucency artifacts in data representing a support structure |
US10832436B2 (en) | 2018-04-05 | 2020-11-10 | Symbol Technologies, Llc | Method, system and apparatus for recovering label positions |
US10823572B2 (en) | 2018-04-05 | 2020-11-03 | Symbol Technologies, Llc | Method, system and apparatus for generating navigational data |
US11327504B2 (en) | 2018-04-05 | 2022-05-10 | Symbol Technologies, Llc | Method, system and apparatus for mobile automation apparatus localization |
US10584962B2 (en) | 2018-05-01 | 2020-03-10 | Hand Held Products, Inc | System and method for validating physical-item security |
EP3564880A1 (en) | 2018-05-01 | 2019-11-06 | Honeywell International Inc. | System and method for validating physical-item security |
US10434800B1 (en) | 2018-05-17 | 2019-10-08 | Datamax-O'neil Corporation | Printer roll feed mechanism |
US11130626B2 (en) | 2018-07-20 | 2021-09-28 | Spacemaptech, Llc | Systems and processes for space management of three dimensional containers including weight measurements |
US11001438B2 (en) | 2018-07-20 | 2021-05-11 | Spacemaptech, Llc | Systems and processes for space management of three dimensional containers |
US10661982B2 (en) * | 2018-07-20 | 2020-05-26 | Spacemaptech, Llc | Systems and processes for space management of three dimensional containers |
US11325777B2 (en) | 2018-07-20 | 2022-05-10 | Spacemaptech, Llc | Systems and processes for space management of three dimensional containers including biological measurements |
US11506483B2 (en) | 2018-10-05 | 2022-11-22 | Zebra Technologies Corporation | Method, system and apparatus for support structure depth determination |
US11010920B2 (en) | 2018-10-05 | 2021-05-18 | Zebra Technologies Corporation | Method, system and apparatus for object detection in point clouds |
US11003188B2 (en) | 2018-11-13 | 2021-05-11 | Zebra Technologies Corporation | Method, system and apparatus for obstacle handling in navigational path generation |
US11090811B2 (en) | 2018-11-13 | 2021-08-17 | Zebra Technologies Corporation | Method and apparatus for labeling of support structures |
CN113196005A (en) * | 2018-11-14 | 2021-07-30 | 日本电气株式会社 | Information processing system, information processing method, and recording medium |
US11079240B2 (en) | 2018-12-07 | 2021-08-03 | Zebra Technologies Corporation | Method, system and apparatus for adaptive particle filter localization |
US11416000B2 (en) | 2018-12-07 | 2022-08-16 | Zebra Technologies Corporation | Method and apparatus for navigational ray tracing |
US11100303B2 (en) | 2018-12-10 | 2021-08-24 | Zebra Technologies Corporation | Method, system and apparatus for auxiliary label detection and association |
US11015938B2 (en) | 2018-12-12 | 2021-05-25 | Zebra Technologies Corporation | Method, system and apparatus for navigational assistance |
US10731970B2 (en) | 2018-12-13 | 2020-08-04 | Zebra Technologies Corporation | Method, system and apparatus for support structure detection |
US11592826B2 (en) | 2018-12-28 | 2023-02-28 | Zebra Technologies Corporation | Method, system and apparatus for dynamic loop closure in mapping trajectories |
US20200240829A1 (en) * | 2019-01-25 | 2020-07-30 | Panasonic Intellectual Property Management Co., Ltd. | Smart weighing scale and methods related thereto |
CN110188472A (en) * | 2019-05-30 | 2019-08-30 | 小耳朵(广东)电子科技股份有限公司 | Intelligent weight measuring method and mobile phone check weighing management system based on AI operation management |
US11402846B2 (en) | 2019-06-03 | 2022-08-02 | Zebra Technologies Corporation | Method, system and apparatus for mitigating data capture light leakage |
US11662739B2 (en) | 2019-06-03 | 2023-05-30 | Zebra Technologies Corporation | Method, system and apparatus for adaptive ceiling-based localization |
US11080566B2 (en) | 2019-06-03 | 2021-08-03 | Zebra Technologies Corporation | Method, system and apparatus for gap detection in support structures with peg regions |
US11151743B2 (en) | 2019-06-03 | 2021-10-19 | Zebra Technologies Corporation | Method, system and apparatus for end of aisle detection |
US11200677B2 (en) | 2019-06-03 | 2021-12-14 | Zebra Technologies Corporation | Method, system and apparatus for shelf edge detection |
US11341663B2 (en) | 2019-06-03 | 2022-05-24 | Zebra Technologies Corporation | Method, system and apparatus for detecting support structure obstructions |
US11960286B2 (en) | 2019-06-03 | 2024-04-16 | Zebra Technologies Corporation | Method, system and apparatus for dynamic task sequencing |
US11639846B2 (en) | 2019-09-27 | 2023-05-02 | Honeywell International Inc. | Dual-pattern optical 3D dimensioning |
US11507103B2 (en) | 2019-12-04 | 2022-11-22 | Zebra Technologies Corporation | Method, system and apparatus for localization-based historical obstacle handling |
US11107238B2 (en) | 2019-12-13 | 2021-08-31 | Zebra Technologies Corporation | Method, system and apparatus for detecting item facings |
US11822333B2 (en) | 2020-03-30 | 2023-11-21 | Zebra Technologies Corporation | Method, system and apparatus for data capture illumination control |
EP4160532A4 (en) * | 2020-06-03 | 2023-12-06 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Object measurement method and apparatus, virtual object processing method and apparatus, medium and electronic device |
US11450024B2 (en) | 2020-07-17 | 2022-09-20 | Zebra Technologies Corporation | Mixed depth object detection |
US11593915B2 (en) | 2020-10-21 | 2023-02-28 | Zebra Technologies Corporation | Parallax-tolerant panoramic image generation |
US11392891B2 (en) | 2020-11-03 | 2022-07-19 | Zebra Technologies Corporation | Item placement detection and optimization in material handling systems |
US11847832B2 (en) | 2020-11-11 | 2023-12-19 | Zebra Technologies Corporation | Object classification for autonomous navigation systems |
US11954882B2 (en) | 2021-06-17 | 2024-04-09 | Zebra Technologies Corporation | Feature-based georegistration for mobile computing devices |
WO2023018999A1 (en) * | 2021-08-13 | 2023-02-16 | Beet, Inc. | Process digitization system and method |
Also Published As
Publication number | Publication date |
---|---|
US9841311B2 (en) | 2017-12-12 |
US20140104414A1 (en) | 2014-04-17 |
EP3035011A1 (en) | 2016-06-22 |
US10908013B2 (en) | 2021-02-02 |
US20180073914A1 (en) | 2018-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10908013B2 (en) | Dimensioning system | |
US20140104416A1 (en) | Dimensioning system | |
EP2722656A1 (en) | Integrated dimensioning and weighing system | |
US10635922B2 (en) | Terminals and methods for dimensioning objects | |
US11889046B2 (en) | Compact, low cost VCSEL projector for high performance stereodepth camera | |
US10247547B2 (en) | Optical pattern projector | |
US10134120B2 (en) | Image-stitching for dimensioning | |
CN101305262B (en) | Surveying instrument and method of providing survey data using a surveying instrument | |
US9557166B2 (en) | Dimensioning system with multipath interference mitigation | |
US10417769B2 (en) | Automatic mode switching in a volume dimensioner | |
CN106352790A (en) | Dimensioning and imaging items | |
US10733748B2 (en) | Dual-pattern optical 3D dimensioning | |
US11385385B2 (en) | System and method for reduction of drift in a vision system variable lens | |
US20190188432A1 (en) | Dual-imaging vision system camera and method for using the same | |
US8922817B2 (en) | Mobile Printing device | |
CN115151945A (en) | Converting coordinate system of three-dimensional camera into incident point of two-dimensional camera | |
EP3591568A2 (en) | Methods, systems, and apparatuses for scanning and decoding direct part marking indicia |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HAND HELD PRODUCTS, INC., SOUTH CAROLINA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MCCLOSKEY, SCOTT;LLOYD, RYAN ANDREW;WANG, YNJIUN PAUL;AND OTHERS;SIGNING DATES FROM 20130318 TO 20140523;REEL/FRAME:033398/0623 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |