US20130346332A1 - Multi-Modal Automation for Human Interactive Skill Assessment - Google Patents

Multi-Modal Automation for Human Interactive Skill Assessment Download PDF

Info

Publication number
US20130346332A1
US20130346332A1 US13/965,658 US201313965658A US2013346332A1 US 20130346332 A1 US20130346332 A1 US 20130346332A1 US 201313965658 A US201313965658 A US 201313965658A US 2013346332 A1 US2013346332 A1 US 2013346332A1
Authority
US
United States
Prior art keywords
candidate
recorded
audio session
screening
initiating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/965,658
Inventor
Thomas Barton Schalk
Jimmy Lee Stovall
Walter Phillip Brooks
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sirius XM Connected Vehicle Services Inc
Original Assignee
Sirius XM Connected Vehicle Services Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sirius XM Connected Vehicle Services Inc filed Critical Sirius XM Connected Vehicle Services Inc
Priority to US13/965,658 priority Critical patent/US20130346332A1/en
Assigned to AGERO CONNECTED SERVICES, INC. reassignment AGERO CONNECTED SERVICES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BROOKS, WALTER PHILLIP, STOVALL, JIMMY LEE, SCHALK, THOMAS BARTON
Publication of US20130346332A1 publication Critical patent/US20130346332A1/en
Assigned to SIRIUS XM CONNECTED VEHICLE SERVICES INC. reassignment SIRIUS XM CONNECTED VEHICLE SERVICES INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: AGERO CONNECTED SERVICES, INC.
Assigned to JPMORGAN CHASE BANK, N.A. reassignment JPMORGAN CHASE BANK, N.A. PATENT SECURITY AGREEMENT Assignors: SIRIUS XM CONNECTED VEHICLE SERVICES INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/10Office automation; Time management
    • G06Q10/105Human resources
    • G06Q10/1053Employment or hiring
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/10Office automation; Time management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/10Office automation; Time management
    • G06Q10/105Human resources
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/01Social networking

Definitions

  • the present invention lies in the field of off-site customer support, in particular, in the field of identifying qualified human agents for providing enhanced customer support.
  • the method can be used, particularly, as a tool to assist in separating hirable agents from unhirable agents.
  • Customer-support centers rely on trained human agents who possess skills that are suited for the type of service that is being delivered. There are several skill requirements that are common across call centers. One example of such desirable skills is good speech intelligibility, for a specific language, when speaking over a telephone to a customer. Another desirable skill is the ability to interact with web tools that utilize screen monitors, keyboards, and other control devices. For customers receiving assistance over the telephone, an ideal experience can be delivered by a human agent that speaks the language well, performs the proper tasks, delivers the right information, and sounds beloved while serving the customer in a timely manner.
  • the invention provides multi-modal automation for human interactive skill assessment that overcomes the herein-mentioned disadvantages of the heretofore-known devices and methods of this general type and that, in the context of identifying qualified human agents, measures one's ability to combine speaking skills and web interaction to produce a positive customer experience during telephone support scenarios, assesses a person's creativity and ability to express that creativity verbally, predicts who is able to deliver peaceful experiences to customers seeking assistance, and determines if that agent has aptitude in certain areas of specialization.
  • the present invention does so by helping automate the identification of human agents possessing these qualities.
  • the present inventive process can automatically pre-screen call center applicants based on pre-defined speech tasks.
  • the application is multimodal and requires simultaneous telephone and Internet web page access by the applicants.
  • applicants can read web-based scripted information into the telephone handset.
  • the telephone speech can be recorded and analyzed in a variety of ways, including subjective human assessment and automated assessment provided by a speech recognizer.
  • Figures, pictures, or any other form of graphics can also provide the basis for a speech task. For example, a map with a highlighted route could be displayed on a web page and the speech task for the interviewee could include speaking driving directions over the telephone. Individual driving instructions would need to be accurate (“head east on” instead of “head west on”) and the street names would need to be pronounced correctly.
  • the present invention is an automated screening application that identifies speech clarity, basic thought process, and experience.
  • the invention accomplishes tasks normally performed by call center recruiters or supervisors of call center personnel and, thereby reduces the work load and/or personnel for interviewing potential candidates—employees who are, typically, highly compensated (at least when compared to the potential candidates).
  • the present invention has the many valuable characteristics not present by any previous automated method for interviewing qualified candidates, including, for example:
  • the inventive process is highly customizable and can be optimized for almost any customer service environment.
  • customer service environments include computer technical support, concierges, airline reservations, utilities, telemarketing, car rentals, vacation planning, roadside assistance, and home security.
  • the type of dialogue that is recorded can be directly correlated to the line of business. In a later discussion, examples will serve to illustrate the various types of dialogue that are recorded.
  • the application is highly automated and consumes a minimum amount of applicant time and analysis time by human resource personnel. Using multi-modal automation, speech tasks, closely tied to audio and visual cues, are recorded and analyzed to evaluate candidates. Although the examples provided in this document are in English, the application can be made available in any language and in various combinations of languages where such skills are also being evaluated.
  • the inventive process is automated and available electronically, e.g., over the Internet, the program is accessible by applicants at any time, and from any location, as long as Internet and telephone access exist. There is no scheduling required and the application can run stand alone without human supervision. From the human resources side, applicant data can be reviewed at any time after being stored and can be configured to only require appropriate World Wide Web access including the ability to listen to recorded audio, e.g., through an audio wave file player.
  • a method for screening applicants by a screening entity that includes the steps of remotely accessing a screening entity's online web page by a potential candidate using an Internet-accessible computer available to the candidate, using the web page, requesting the candidate to input responses to a set of queries into the computer that are tailored to the screening entity, storing the candidate's responses to the queries in a candidate profile, in response to at least one of the candidate's responses, automatically initiating an interactive audio session, commencing an interactive information gathering process with the candidate using both the interactive audio session and the computer by generating prompts to the candidate via at least one of the interactive audio session and the web page, recording the candidate's verbal responses to the prompts via the interactive audio session, automatically determining a confidence scoring of the recorded verbal responses of the candidate with a computerized speech recognition device by automation, and storing the recorded verbal responses in the candidate profile, storing the candidate profile in a database for later access and analysis in a skill assessment of the candidate by
  • a method for screening candidates by a screening entity that includes the steps of initiating a job application procedure by having a candidate remotely connect to a secured online web page of a screening entity using an Internet-accessible computer, using the secured online web page, querying the candidate to enter candidate-specific personal identification data using the computer, securely confirming the identification data, initiating an interactive audio session to the candidate after the identification data is confirmed and, while the candidate is still communicating with the web page and during the interactive audio session, carrying out at least one of the following exercise steps initiating a dictation clarity exercise by instructing candidate to read a script sent to a particular web page viewable by the candidate on the computer and, when finished recording speech from the candidate for subsequent off-line analysis and automatically determining a confidence scoring of the recorded speech of the candidate with a computerized speech recognition device by automation, and initiating a graphic comprehension exercise to screen the candidate's ability to respond to a provided graphic by displaying a graphic to the candidate on the computer, requiring the candidate to answer at least one
  • the automatic initiation of the interactive audio session is carried out by Voice Over Internet Protocol (VOIP).
  • VOIP Voice Over Internet Protocol
  • the web page is hosted with an external server and an internal server that hosts an internal web page of the screening entity is accessed.
  • the automatic initiation of the interactive audio session step is carried out by simultaneously initiating a voice call to the candidate or by initiating the voice call to the candidate after the candidate has completed responding to the queries.
  • the interactive audio session to the candidate is initiated with a voice server through a private branch exchange over the telephone network.
  • the candidate's identity is confirmed through a set of identification questions and responses via one of the interactive audio session and the web page.
  • the candidate profile storing step is carried out by storing the profile of the candidate during the information gathering process or after the information gathering process is complete.
  • the profile storing step is carried out by storing the profile of the candidate through an entity-secure intranet link.
  • the automatic initiation of the interactive audio session step is carried out by initiating the interactive audio session only with outbound calls from the screening entity to, thereby, control access to the information gathering process.
  • the information gathering step is carried out by controlling a number and kind of questions presented to the candidate to simulate a real call-center seat.
  • the storing steps are carried out selectively or continually.
  • the computerized speech recognition device is programmed to parse a particular response into individual words and to either compare the parsed response to a desired responses or to transcribe the parsed response for later use and access by the screening entity.
  • the automated confidence scoring step is carried out by judging at least an accuracy and an intelligibility of the candidate's speech utilizing a target phrase represented in a speech recognition grammar.
  • the identification data is securely confirmed.
  • the secure confirming step is carried out by one of directly with the candidate and indirectly through an email sent to the candidate's email address that requires a response from the candidate.
  • the interactive audio session initiating step is carried out with a voice server immediately after the identification data is confirmed.
  • At least one of the following exercise steps is carried out initiating a voice quality exercise over the interactive audio session by asking the candidate to repeat spoken phrases over the telephone, recording the candidate's speech for each phrase for subsequent off-line analysis, and automatically scoring each recorded phrase with a confidence level correlated with how well the recorded phrase matches an expected pronunciation, initiating a question-answer exercise by transmitting specific multiple-choice questions over the interactive audio session, prompting the candidate to answer each question after it is presented, recording the candidate's speech for each answer, and automatically scoring each recorded answer with a confidence level correlated to how well the recorded phrase matches an expected pronunciation, initiating a service knowledge exercise to determine the candidate's ability to comprehend an example of what good customer service is and whether the candidate can intelligently describe such an experience by having the candidate give a speech regarding such an experience, recording the speech for subsequent off-line analysis, and applying a subjective confidence scoring to the recorded speech, and initiating a speaking satisfaction exercise with the candidate to evaluate the kind of experience that a potential customer will have after speaking to
  • the exercise step is carried out by storing the candidate's recorded speech for subsequent off-line analysis.
  • the confidence scoring is carried out at least one of automatically and with human judgment.
  • the question-answer exercise step is carried out by transmitting the multiple-choice questions by at least one of a human voice and a machine voice.
  • the graphic comprehension exercise step is carried out by storing the recorded spoken answers for subsequent off-line analysis.
  • the graphic comprehension exercise step is carried out by providing a map as the graphic and screening the candidate's ability to give driving directions.
  • the speaking satisfaction exercise step is carried out by storing the conversation for subsequent off-line analysis.
  • the candidate is provided with at least one of a timeframe for hearing from the screening entity and a call number and a date for checking on the candidate's application.
  • FIG. 1 is a block diagram of high-level components of an exemplary system architecture for carrying out the method according to the invention
  • FIG. 2 is a process flow diagram of one exemplary process for carrying out the method according to the invention.
  • FIG. 3 is a diagrammatic representation of an exemplary web interface for receiving applicant information in the method according to the invention.
  • FIG. 4 is a diagrammatic representation of an exemplary web interface for carrying out verbal-applicant-screening exercises in the method according to the invention
  • FIG. 5 is a diagrammatic representation of an exemplary web interface for carrying out graphic-applicant-screening exercises in the method according to the invention
  • FIG. 6 is a list of an exemplary output queue of applicants to be reviewed by screening entities in the method according to the invention.
  • FIG. 7 is a diagrammatic representation of an exemplary web interface for reviewing an applicant's screening results in the method according to the invention.
  • FIG. 1 there is shown an illustration of high-level components of an exemplary system architecture for carrying out the present invention.
  • a potential candidate 1 by operating a computer 3 , accesses a link through the Internet 11 , also known as the “World Wide Web,” to a server 4 that hosts an external web page.
  • a server 4 that hosts an external web page.
  • an internal server 9 that hosts a web site internal to the applicant screening entity 10 is accessed.
  • the pre-screening web site in the internal server 9 requests the applicant 1 to input responses to various queries tailored to the screening entity 10 .
  • the responses are stored for later use or, as a course of record keeping, in a database 8 , for example.
  • the candidate 1 is called on a telephone 2 through a private branch exchange (“PBX”) 6 over a telephone network 5 .
  • a voice server 13 initiates this call 14 to the applicant 1 automatically in response to the candidate's response.
  • the candidate's identity can be confirmed (or not) through a set of identification questions and responses.
  • an interactive process begins with the potential candidate 1 .
  • the process includes both the telephone 2 and the computer 3 having access to the Internet 11 .
  • the voice server 13 generates audio prompts to the candidate 1 and records the applicant's verbal responses.
  • a profile is stored in a database 8 for later access and analyzing by the Human Resource Department of the screening entity 10 , for example, via access through an entity-secure intranet link 12 .
  • the analysis of the recorded responses assists the screening entity 10 to make quality judgments about the candidate 1 .
  • Internet security can be applied to applicant's access to the external server 4 , and an outbound calling strategy also can control access to the screening process.
  • control of the number and kind of questions presented on the applicant's computer 3 and of the phone calls made to the applicant's phone 2 screens the applicant's 1 individual ability to follow instructions and to interact in a multi-modal environment, which simulates a real call-center seat. Speech is recorded selectively throughout the process (or continually) and is stored for subsequent evaluation.
  • step 200 An exemplary applicant evaluation process is explained below with reference to the process flow chart of FIG. 2 illustrating one exemplary embodiment of the present invention.
  • the flow starts at step 200 and moves directly to step 202 where the applicant 1 connects to a secured web page and initiates the application procedure.
  • applicant 1 can, for example, read an overview, accept terms of use, and select a ⁇ continue> option to advance to the next step in the procedure.
  • step 204 the applicant enters their personal identification data, for example, name, address, email address, and/or current telephone number. It is noted that this data can be confirmed directly or indirectly through a response-requiring email sent to the applicant's email address.
  • An exemplary web-provided screen for receiving this information is illustrated in FIG. 3 .
  • step 206 the voice server 13 immediately initiates a phone call to applicant 1 , while applicant 1 is still logged on to the web application.
  • step 208 a voice quality exercise is initiated.
  • the applicant 1 is asked to repeat spoken phrases over his/her telephone 2 . More specifically, specific phrases of a human or machine voice are transmitted over the phone line to applicant 1 and applicant 1 repeats these phrases/words shortly after each phrase is played.
  • the applicant's speech is recorded and end-pointed for off-line analysis.
  • Each recorded phrase is automatically scored with a confidence level that is correlated with how well the recorded phrase matches the expected pronunciation, as represented in a speech recognition grammar with highly tuned pronunciation lexicons. With such voice recognition grammar, strong accents and mispronunciations, for example, will map into low-confidence scores. Conversely, clearly spoken words with proper inflections and pronunciations will map into high-confidence scores.
  • a dictation clarity exercise is carried out.
  • the applicant 1 can be instructed to continue by either selecting specific web link buttons (visual) or by pressing keys on the telephone keypad.
  • applicant 1 is required to read a script, which is sent to a particular web page viewable by the applicant 1 .
  • the applicant 1 can be given time to read and study the script before speaking the script into the telephone 2 .
  • the applicant 1 will press a key on the telephone keypad (a web button can also be used with the appropriate architecture) and then dictate the provided script.
  • the applicant 1 can be asked to press a telephone key or web button.
  • Speech from the applicant is stored for subsequent off-line processing.
  • confidence scoring can be applied, additional human judgment can by used because tone, volume and other acoustical characteristics are more subjective than objective and, possibly, can be best analyzed by a trained employee. In this way, the employee can score any and all aspects of how well the script was spoken by the applicant 1 .
  • a question-answer exercise is initiated.
  • Reference is made to “Exercise 3 ” in FIG. 4 which is a sample instruction to an applicant 1 .
  • Specific multiple-choice questions are transmitted over the telephone 2 by a human or machine voice and the applicant 1 is prompted to answer each question after it occurs.
  • the applicant's speech is recorded and is end-pointed for off-line analysis.
  • Each recorded phrase is automatically scored with a confidence level that is correlated to how well the recorded phrase matches the expected pronunciation, as represented in a speech recognition grammar with highly tuned pronunciation lexicons.
  • strong accents and mispronunciations map into low confidence scores. If an incorrect answer is spoken, a pre-defined low confidence score will most likely be assigned. Alternatively, if a correct answer is spoken, a pre-defined high confidence score will most likely be assigned.
  • a service knowledge exercise is initiated. This speaking exercise is aimed at discovering whether the applicant 1 can understand what good customer service is and whether he/she can intelligently describe such an experience. More specifically, as show in “Exercise 4 ” in FIG. 4 , the applicant 1 is asked, for instance, to describe a beloved service that he/she has experienced. The applicant is allowed time to think of the experience and how he/she would like to describe the experience to the screening entity within a certain time limit (such as 2 minutes). It should be noted that any questions can be presented to the applicant 1 for the purpose of screening the applicant's ability to speak and respond and the present invention is not limited to only those questions related to customer-support experiences.
  • the applicant 1 then, speaks over the telephone (or Internet) after pressing a key, for example, on the telephone keypad (a web button can also be used). Upon completion, the applicant 1 indicates that he/she is finished by pressing a telephone key or web button.
  • the speech presented by the applicant can be stored for subsequent off-line processing.
  • confidence scoring can be applied to the spoken words and sentences, here, human judgment can be given greater weight because the content of the speech will not be known ahead of time.
  • human judgment can be used to evaluate the applicant's persona and how well the applicant's voice will sound to a customer.
  • human judgment can be used to score the applicant's grammar, intonation, and general talent in the area of servicing customers.
  • human subjectivity is well suited for scoring the content and quality of what was spoken.
  • a graphic comprehension exercise is initiated. This exercise screens the applicant's ability to respond to a provided graphic. For example, an image, representing the evaluation material, is displayed on a web page that is visible to the applicant 1 . Instead of reading a script, repeating a phrase, answering a spoken question, or describing an experience, the applicant 1 is required to deduce answers to questions from the provided image and to speak their answers over the telephone upon being prompted to do so. For each answer, the applicant's speech is recorded and is end-pointed for off-line analysis. Each recorded phrase is automatically scored with a confidence level that is correlated with how well the recorded phrase matches the expected pronunciation, for instance, as represented in a speech recognition grammar with highly tuned pronunciation lexicons. As before, strong accents and mispronunciations map into low confidence scores. In this exercise, a word spoken incorrectly significantly reduces the confidence score, which may be even further reduced when other confidence-lowering factors are present, such as improper microphone placement, for example.
  • An exemplary graphic comprehension exercise is illustrated as “Exercise 5 ” in FIG. 5 .
  • This example screens an applicant's ability to give driving directions.
  • the map graphic is displayed to the applicant 1 .
  • the applicant 1 is asked to give turn-by-turn driving directions and, if desired, a list of possible driving instructions. These instructions can be listed in random order (as shown) or they can be listed in order from start to destination (however, this latter approach removes the deductive reasoning and cartographic analyses that can be performed with this exercise). In the most difficult case, the applicant 1 will not be provided with instructions and will be asked to guide a virtual driver from the starting point to the destination.
  • a speaking satisfaction exercise is initiated.
  • This speaking exercise is aimed at determining the kind of experience that a customer will have after speaking to the applicant 1 (such as delight, satisfied, displeasure, honor), the experience type can be referred to as a “pleasantry factor.”
  • the applicant is given one of a series of random situations in which they will be required to role-play an operator answering a call from a driver (random and/or coordinated selection is desired where an applicant 2 can enter the application process more than once and it is insured that a different scenario is role-played every subsequent time). It is desirable to not give the applicant 1 time to think and prepare because a “real-time” operator assistance experience is the desired output.
  • the applicant 1 can be allowed to listen to a driver, for example, one who has just witnessed an accident, who has been involved in an accident, who has locked their child in a car, and many other scenarios, and then be asked to counsel and assist the driver.
  • the conversation between the applicant 1 and the virtual driver is stored for subsequent off-line processing.
  • only limited automatic confidence scoring can be applied to show use of grammar and pronunciation, for example. In this case, subjective human judgment is most important to score how well the potential operator dealt with the supplied situation.
  • any number of other kinds of additional exercises can be performed as desired in step 220 . Once all exercises are complete, the applicant 1 is informed that the application process is done and the data is ready for analysis. If desired, the applicant 1 can be given a timeframe for hearing from the screening entity or given a call number and a date for checking on his/her application. The above exercises are all not necessary or required. These exercises can occur in any order and in any combination, some of which can be eliminated if desired.
  • the process of the present invention now allows HR personnel 10 to review applicant's stored data 8 , step 224 , at any time, whether through a web access 9 or after it has been stored internally, in step 222 , at the screening entity's selected data storage location.
  • the process ends at step 226 .
  • screening entities can be allowed to access their own or any other entity's screening data. For example, where an applicant is determined to be less suitable for one kind of employment opportunity, that person's performance may be suitable for another opportunity and having the data available may be beneficial if different entities agree to share the screening exercises and recorded results.
  • an administrative web page 9 can be accessed from an intranet link 12 or from any resource connected to the Internet 11 , provided that sufficient and/or desired security requirements are met.
  • measures for playing recorded audio such as audio wave files, to the human resources [or else define it] personnel 10 are needed.
  • an audio profile (e.g., a web page audio profile) is automatically created, specific to that applicant 1 .
  • applicant-specific identification data can be placed into a queue, as illustrated in FIG. 6 , for example, for convenient access and processing by human resources personnel, such as over the World Wide Web.
  • a “score applicant” link can be selected.
  • Phone numbers in FIG. 6 can be 4-digit internal extensions as well as 10-digit external phone numbers.
  • any information can be displayed. For example, a task description, corresponding recorded audio data, and corresponding confidence scoring 13 can be displayed for each of the exercises.
  • wave files for example
  • the reviewing agent can subjectively score each wave file on a scale of 1 to 100, for example. Accents, speaking skills, and perceived personality are readily detected by a reviewing agent trained to screen such candidates based on how they sound.
  • a subjective score is entered into the applicant's audio-web profile for future processing. In the example of FIG. 7 , subjective scores are shown to be 100, 80, and 80, respectively, for each of three evaluated items.
  • a confidence score can serve multiple purposes, for example, a likelihood of correctness and a likelihood of correct pronunciation. For such questions, high scores are only possible when the correct answer is given and the pronunciation matches the recognizer's expected pronunciation rules, which are represented in a voice-recognition lexicon that can be optimized for specific desired pronunciations.
  • servers 4 , 9 , 13 are mentioned herein. Mentioning them separately is not a requirement to being physically separated servers. Accordingly, a single physical server can host the functions described herein as servers 4 , 9 , 13 .

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Marketing (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Economics (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Computing Systems (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Electrically Operated Instructional Devices (AREA)
  • Telephonic Communication Services (AREA)
  • Information Transfer Between Computers (AREA)

Abstract

A method for screening candidates by a screening entity that includes remotely accessing a screening entity's online web page by a candidate. The candidate inputs responses to a set of queries tailored to the screening entity. The responses thereto are stored in a candidate profile. An interactive audio session is initiated and an interactive information gathering process with the candidate occurs using both the audio session and the computer. Prompts are generated via the audio session and web page. Verbal responses are recorded and confidence scores are automatically calculated. The verbal responses are stored with the candidate profile for later access and analysis by the screening entity. The stored information is analyzed by the screening entity to make quality and criteria judgments about the candidate to determine a hiring potential of the candidate.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is:
      • a divisional application U.S. patent application Ser. No. 13/102,719, filed May 6, 2011; and
      • a divisional application of U.S. patent application Ser. No. 12/116,433, filed May 7, 2008, now U.S. Pat. No. 7,966,265 (which application claims the priority, under 35 U.S.C. §119, of U.S. Provisional Patent Application No. 60/928,895 filed May 11, 2007),
        the entire disclosures of which are hereby incorporated herein by reference in their entireties.
    STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
  • n/a
  • FIELD OF THE INVENTION
  • The present invention lies in the field of off-site customer support, in particular, in the field of identifying qualified human agents for providing enhanced customer support. The method can be used, particularly, as a tool to assist in separating hirable agents from unhirable agents.
  • BACKGROUND OF THE INVENTION
  • Customer-support centers rely on trained human agents who possess skills that are suited for the type of service that is being delivered. There are several skill requirements that are common across call centers. One example of such desirable skills is good speech intelligibility, for a specific language, when speaking over a telephone to a customer. Another desirable skill is the ability to interact with web tools that utilize screen monitors, keyboards, and other control devices. For customers receiving assistance over the telephone, an ideal experience can be delivered by a human agent that speaks the language well, performs the proper tasks, delivers the right information, and sounds delightful while serving the customer in a timely manner.
  • In the context of identifying qualified human agents, it is desirable to find efficient methods for measuring one's ability to combine speaking skills and web interaction to produce good customer experience during telephone support scenarios. It is also desirable to find efficient methods for assessing a person's creativity and ability to express that creativity verbally. It is particularly desirable to find efficient ways to predict that one will deliver delightful experiences to customers seeking assistance. It is further desirable to determine if an agent has aptitude in certain areas of specialization.
  • BRIEF SUMMARY OF THE INVENTION
  • The invention provides multi-modal automation for human interactive skill assessment that overcomes the herein-mentioned disadvantages of the heretofore-known devices and methods of this general type and that, in the context of identifying qualified human agents, measures one's ability to combine speaking skills and web interaction to produce a positive customer experience during telephone support scenarios, assesses a person's creativity and ability to express that creativity verbally, predicts who is able to deliver delightful experiences to customers seeking assistance, and determines if that agent has aptitude in certain areas of specialization.
  • The present invention does so by helping automate the identification of human agents possessing these qualities.
  • The present inventive process can automatically pre-screen call center applicants based on pre-defined speech tasks. The application is multimodal and requires simultaneous telephone and Internet web page access by the applicants. There are critical benefits that become realized when telephone interaction is coupled with visual information provided through web access. In particular, applicants can read web-based scripted information into the telephone handset. The telephone speech can be recorded and analyzed in a variety of ways, including subjective human assessment and automated assessment provided by a speech recognizer. Figures, pictures, or any other form of graphics can also provide the basis for a speech task. For example, a map with a highlighted route could be displayed on a web page and the speech task for the interviewee could include speaking driving directions over the telephone. Individual driving instructions would need to be accurate (“head east on” instead of “head west on”) and the street names would need to be pronounced correctly.
  • The present invention is an automated screening application that identifies speech clarity, basic thought process, and experience. The invention accomplishes tasks normally performed by call center recruiters or supervisors of call center personnel and, thereby reduces the work load and/or personnel for interviewing potential candidates—employees who are, typically, highly compensated (at least when compared to the potential candidates).
  • The present invention has the many valuable characteristics not present by any previous automated method for interviewing qualified candidates, including, for example:
      • 1. Highly customizable
      • 2. Highly automated
      • 3. Highly efficient
      • 4. Universal access, any language
      • 5. Content flexibility
      • 6. Adjustable acceptance criteria
      • 7. Remote access, any location
  • The inventive process is highly customizable and can be optimized for almost any customer service environment. Examples of customer service environments include computer technical support, concierges, airline reservations, utilities, telemarketing, car rentals, vacation planning, roadside assistance, and home security. The type of dialogue that is recorded can be directly correlated to the line of business. In a later discussion, examples will serve to illustrate the various types of dialogue that are recorded.
  • The application is highly automated and consumes a minimum amount of applicant time and analysis time by human resource personnel. Using multi-modal automation, speech tasks, closely tied to audio and visual cues, are recorded and analyzed to evaluate candidates. Although the examples provided in this document are in English, the application can be made available in any language and in various combinations of languages where such skills are also being evaluated.
  • Because the inventive process is automated and available electronically, e.g., over the Internet, the program is accessible by applicants at any time, and from any location, as long as Internet and telephone access exist. There is no scheduling required and the application can run stand alone without human supervision. From the human resources side, applicant data can be reviewed at any time after being stored and can be configured to only require appropriate World Wide Web access including the ability to listen to recorded audio, e.g., through an audio wave file player.
  • With the foregoing and other objects in view, there is provided, in accordance with the invention, a method for screening applicants by a screening entity that includes the steps of remotely accessing a screening entity's online web page by a potential candidate using an Internet-accessible computer available to the candidate, using the web page, requesting the candidate to input responses to a set of queries into the computer that are tailored to the screening entity, storing the candidate's responses to the queries in a candidate profile, in response to at least one of the candidate's responses, automatically initiating an interactive audio session, commencing an interactive information gathering process with the candidate using both the interactive audio session and the computer by generating prompts to the candidate via at least one of the interactive audio session and the web page, recording the candidate's verbal responses to the prompts via the interactive audio session, automatically determining a confidence scoring of the recorded verbal responses of the candidate with a computerized speech recognition device by automation, and storing the recorded verbal responses in the candidate profile, storing the candidate profile in a database for later access and analysis in a skill assessment of the candidate by the screening entity, and analyzing at least one of the candidate profile, the confidence scoring, and the recorded verbal responses by the screening entity to make quality and criteria judgments about the candidate and determine a hiring potential of the candidate.
  • With the objects of the invention in view, there is also provided a method for screening candidates by a screening entity that includes the steps of initiating a job application procedure by having a candidate remotely connect to a secured online web page of a screening entity using an Internet-accessible computer, using the secured online web page, querying the candidate to enter candidate-specific personal identification data using the computer, securely confirming the identification data, initiating an interactive audio session to the candidate after the identification data is confirmed and, while the candidate is still communicating with the web page and during the interactive audio session, carrying out at least one of the following exercise steps initiating a dictation clarity exercise by instructing candidate to read a script sent to a particular web page viewable by the candidate on the computer and, when finished recording speech from the candidate for subsequent off-line analysis and automatically determining a confidence scoring of the recorded speech of the candidate with a computerized speech recognition device by automation, and initiating a graphic comprehension exercise to screen the candidate's ability to respond to a provided graphic by displaying a graphic to the candidate on the computer, requiring the candidate to answer at least one question regarding the graphic, recording the spoken answers over the interactive audio session, and automatically determining a confidence scoring of each of the spoken answers correlated with how well the recorded phrase matches the expected pronunciation with a computerized speech recognition device by automation, after a given number of exercises are complete, storing data recorded for later analysis in a skill assessment of the candidate by the screening entity and informing the candidate that an application process is complete, and analyzing at least one of the confidence scoring and the recorded responses by the screening entity to make quality and criteria judgments about the candidate and determine the hiring potential of the candidate.
  • In accordance with another mode of the invention, the automatic initiation of the interactive audio session is carried out by Voice Over Internet Protocol (VOIP).
  • In accordance with a further mode of the invention, the web page is hosted with an external server and an internal server that hosts an internal web page of the screening entity is accessed.
  • In accordance with an added mode of the invention, the automatic initiation of the interactive audio session step is carried out by simultaneously initiating a voice call to the candidate or by initiating the voice call to the candidate after the candidate has completed responding to the queries.
  • In accordance with an additional mode of the invention, the interactive audio session to the candidate is initiated with a voice server through a private branch exchange over the telephone network.
  • In accordance with yet another mode of the invention, the candidate's identity is confirmed through a set of identification questions and responses via one of the interactive audio session and the web page.
  • In accordance with yet a further mode of the invention, the candidate profile storing step is carried out by storing the profile of the candidate during the information gathering process or after the information gathering process is complete.
  • In accordance with yet an added mode of the invention, the profile storing step is carried out by storing the profile of the candidate through an entity-secure intranet link.
  • In accordance with yet an additional mode of the invention, the automatic initiation of the interactive audio session step is carried out by initiating the interactive audio session only with outbound calls from the screening entity to, thereby, control access to the information gathering process.
  • In accordance with again another mode of the invention, the information gathering step is carried out by controlling a number and kind of questions presented to the candidate to simulate a real call-center seat.
  • In accordance with again a further mode of the invention, the storing steps are carried out selectively or continually.
  • In accordance with again an added mode of the invention, the computerized speech recognition device is programmed to parse a particular response into individual words and to either compare the parsed response to a desired responses or to transcribe the parsed response for later use and access by the screening entity.
  • In accordance with again an additional mode of the invention, the automated confidence scoring step is carried out by judging at least an accuracy and an intelligibility of the candidate's speech utilizing a target phrase represented in a speech recognition grammar.
  • In accordance with still another mode of the invention, the identification data is securely confirmed.
  • In accordance with still a further mode of the invention, the secure confirming step is carried out by one of directly with the candidate and indirectly through an email sent to the candidate's email address that requires a response from the candidate.
  • In accordance with still an added mode of the invention, the interactive audio session initiating step is carried out with a voice server immediately after the identification data is confirmed.
  • In accordance with still an additional mode of the invention, at least one of the following exercise steps is carried out initiating a voice quality exercise over the interactive audio session by asking the candidate to repeat spoken phrases over the telephone, recording the candidate's speech for each phrase for subsequent off-line analysis, and automatically scoring each recorded phrase with a confidence level correlated with how well the recorded phrase matches an expected pronunciation, initiating a question-answer exercise by transmitting specific multiple-choice questions over the interactive audio session, prompting the candidate to answer each question after it is presented, recording the candidate's speech for each answer, and automatically scoring each recorded answer with a confidence level correlated to how well the recorded phrase matches an expected pronunciation, initiating a service knowledge exercise to determine the candidate's ability to comprehend an example of what good customer service is and whether the candidate can intelligently describe such an experience by having the candidate give a speech regarding such an experience, recording the speech for subsequent off-line analysis, and applying a subjective confidence scoring to the recorded speech, and initiating a speaking satisfaction exercise with the candidate to evaluate the kind of experience that a potential customer will have after speaking to the candidate by giving the candidate a random one of a series of predefined situations in which candidate is required to role-play an operator answering in real-time a call from a virtual customer, recording the conversation between the candidate and the virtual customer for subsequent off-line analysis, and applying a subjective confidence scoring to the recorded conversation.
  • In accordance with yet a further mode of the invention, the exercise step is carried out by storing the candidate's recorded speech for subsequent off-line analysis.
  • In accordance with yet an added mode of the invention, the confidence scoring is carried out at least one of automatically and with human judgment.
  • In accordance with yet an additional mode of the invention, the question-answer exercise step is carried out by transmitting the multiple-choice questions by at least one of a human voice and a machine voice.
  • In accordance with again another mode of the invention, the graphic comprehension exercise step is carried out by storing the recorded spoken answers for subsequent off-line analysis.
  • In accordance with again a further mode of the invention, the graphic comprehension exercise step is carried out by providing a map as the graphic and screening the candidate's ability to give driving directions.
  • In accordance with again an added mode of the invention, the speaking satisfaction exercise step is carried out by storing the conversation for subsequent off-line analysis.
  • In accordance with a concomitant mode of the invention, the candidate is provided with at least one of a timeframe for hearing from the screening entity and a call number and a date for checking on the candidate's application.
  • Other features that are considered as characteristic for the invention are set forth in the appended claims.
  • Although the invention is illustrated and described herein as embodied in multi-modal automation for human interactive skill assessment, it is, nevertheless, not intended to be limited to the details shown because various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims.
  • The construction and method of operation of the invention, however, together with additional objects and advantages thereof, will be best understood from the following description of specific embodiments when read in connection with the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Advantages of embodiments of the present invention will be apparent from the following detailed description of the preferred embodiments thereof, which description should be considered in conjunction with the accompanying drawings in which:
  • FIG. 1 is a block diagram of high-level components of an exemplary system architecture for carrying out the method according to the invention;
  • FIG. 2 is a process flow diagram of one exemplary process for carrying out the method according to the invention;
  • FIG. 3 is a diagrammatic representation of an exemplary web interface for receiving applicant information in the method according to the invention;
  • FIG. 4 is a diagrammatic representation of an exemplary web interface for carrying out verbal-applicant-screening exercises in the method according to the invention;
  • FIG. 5 is a diagrammatic representation of an exemplary web interface for carrying out graphic-applicant-screening exercises in the method according to the invention;
  • FIG. 6 is a list of an exemplary output queue of applicants to be reviewed by screening entities in the method according to the invention; and
  • FIG. 7 is a diagrammatic representation of an exemplary web interface for reviewing an applicant's screening results in the method according to the invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Aspects of the invention are disclosed in the following description and related drawings directed to specific embodiments of the invention. Alternate embodiments may be devised without departing from the spirit or the scope of the invention. Additionally, well-known elements of exemplary embodiments of the invention will not be described in detail or will be omitted so as not to obscure the relevant details of the invention.
  • Before the present invention is disclosed and described, it is to be understood that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. It must be noted that, as used in the specification and the appended claims, the singular forms “a,” “an,” and “the” include plural references unless the context clearly dictates otherwise.
  • While the specification concludes with claims defining the features of the invention that are regarded as novel, it is believed that the invention will be better understood from a consideration of the following description in conjunction with the drawing figures, in which like reference numerals are carried forward. The figures of the drawings are not drawn to scale.
  • Referring now to the figures of the drawings in detail and first, particularly to FIG. 1 thereof, there is shown an illustration of high-level components of an exemplary system architecture for carrying out the present invention. During an applicant screening process, a potential candidate 1, by operating a computer 3, accesses a link through the Internet 11, also known as the “World Wide Web,” to a server 4 that hosts an external web page. From the external web page hosted by the external server 4, an internal server 9 that hosts a web site internal to the applicant screening entity 10 is accessed. The pre-screening web site in the internal server 9 requests the applicant 1 to input responses to various queries tailored to the screening entity 10. The responses are stored for later use or, as a course of record keeping, in a database 8, for example.
  • Either simultaneously or thereafter, the candidate 1 is called on a telephone 2 through a private branch exchange (“PBX”) 6 over a telephone network 5. A voice server 13 initiates this call 14 to the applicant 1 automatically in response to the candidate's response. The candidate's identity can be confirmed (or not) through a set of identification questions and responses. After confirmation, an interactive process begins with the potential candidate 1. The process includes both the telephone 2 and the computer 3 having access to the Internet 11. The voice server 13 generates audio prompts to the candidate 1 and records the applicant's verbal responses. After the candidate 1 completes the exercises, a profile is stored in a database 8 for later access and analyzing by the Human Resource Department of the screening entity 10, for example, via access through an entity-secure intranet link 12. The analysis of the recorded responses assists the screening entity 10 to make quality judgments about the candidate 1.
  • As with other Human Resource issues, it is desirable to control access to this screening process. Internet security can be applied to applicant's access to the external server 4, and an outbound calling strategy also can control access to the screening process. During the applicant screening process, control of the number and kind of questions presented on the applicant's computer 3 and of the phone calls made to the applicant's phone 2 screens the applicant's 1 individual ability to follow instructions and to interact in a multi-modal environment, which simulates a real call-center seat. Speech is recorded selectively throughout the process (or continually) and is stored for subsequent evaluation. It is important, to every extent possible, to automate the evaluation using a confidence scoring produced by a speech recognition device; in other words, with a sufficiently sophisticated speech-recognition process, the responses can be parsed into individual words and compared to desired responses or transcribed for later use and fast access by the entity's evaluation staff. As phrases are pronounced, the voice server 13, which is able to recognize speech, judges at least two characteristics of the applicant's speech: accuracy and intelligibility. This automated confidence scoring quantitatively measures pronunciation quality, for example, for a target phrase that is represented in a speech recognition grammar.
  • An exemplary applicant evaluation process is explained below with reference to the process flow chart of FIG. 2 illustrating one exemplary embodiment of the present invention. The flow starts at step 200 and moves directly to step 202 where the applicant 1 connects to a secured web page and initiates the application procedure. As part of the initiation, applicant 1 can, for example, read an overview, accept terms of use, and select a <continue> option to advance to the next step in the procedure. In step 204, the applicant enters their personal identification data, for example, name, address, email address, and/or current telephone number. It is noted that this data can be confirmed directly or indirectly through a response-requiring email sent to the applicant's email address. An exemplary web-provided screen for receiving this information is illustrated in FIG. 3.
  • In step 206, the voice server 13 immediately initiates a phone call to applicant 1, while applicant 1 is still logged on to the web application. In step 208, a voice quality exercise is initiated. The applicant 1 is asked to repeat spoken phrases over his/her telephone 2. More specifically, specific phrases of a human or machine voice are transmitted over the phone line to applicant 1 and applicant 1 repeats these phrases/words shortly after each phrase is played. For each phrase, the applicant's speech is recorded and end-pointed for off-line analysis. Each recorded phrase is automatically scored with a confidence level that is correlated with how well the recorded phrase matches the expected pronunciation, as represented in a speech recognition grammar with highly tuned pronunciation lexicons. With such voice recognition grammar, strong accents and mispronunciations, for example, will map into low-confidence scores. Conversely, clearly spoken words with proper inflections and pronunciations will map into high-confidence scores.
  • In step 210, a dictation clarity exercise is carried out. To start this exercise, the applicant 1 can be instructed to continue by either selecting specific web link buttons (visual) or by pressing keys on the telephone keypad. To detect clarity of dictation, applicant 1 is required to read a script, which is sent to a particular web page viewable by the applicant 1. The applicant 1 can be given time to read and study the script before speaking the script into the telephone 2. To allow for this study time (which can be limited if desired by the screening entity), the applicant 1 will press a key on the telephone keypad (a web button can also be used with the appropriate architecture) and then dictate the provided script. Upon completion, the applicant 1 can be asked to press a telephone key or web button. Speech from the applicant is stored for subsequent off-line processing. Although confidence scoring can be applied, additional human judgment can by used because tone, volume and other acoustical characteristics are more subjective than objective and, possibly, can be best analyzed by a trained employee. In this way, the employee can score any and all aspects of how well the script was spoken by the applicant 1.
  • In step 212, a question-answer exercise is initiated. Reference is made to “Exercise 3” in FIG. 4, which is a sample instruction to an applicant 1. Specific multiple-choice questions are transmitted over the telephone 2 by a human or machine voice and the applicant 1 is prompted to answer each question after it occurs. For each answer, the applicant's speech is recorded and is end-pointed for off-line analysis. Each recorded phrase is automatically scored with a confidence level that is correlated to how well the recorded phrase matches the expected pronunciation, as represented in a speech recognition grammar with highly tuned pronunciation lexicons. As set forth above, strong accents and mispronunciations map into low confidence scores. If an incorrect answer is spoken, a pre-defined low confidence score will most likely be assigned. Alternatively, if a correct answer is spoken, a pre-defined high confidence score will most likely be assigned.
  • In step 214, a service knowledge exercise is initiated. This speaking exercise is aimed at discovering whether the applicant 1 can understand what good customer service is and whether he/she can intelligently describe such an experience. More specifically, as show in “Exercise 4” in FIG. 4, the applicant 1 is asked, for instance, to describe a delightful service that he/she has experienced. The applicant is allowed time to think of the experience and how he/she would like to describe the experience to the screening entity within a certain time limit (such as 2 minutes). It should be noted that any questions can be presented to the applicant 1 for the purpose of screening the applicant's ability to speak and respond and the present invention is not limited to only those questions related to customer-support experiences. The applicant 1, then, speaks over the telephone (or Internet) after pressing a key, for example, on the telephone keypad (a web button can also be used). Upon completion, the applicant 1 indicates that he/she is finished by pressing a telephone key or web button. The speech presented by the applicant can be stored for subsequent off-line processing. Although confidence scoring can be applied to the spoken words and sentences, here, human judgment can be given greater weight because the content of the speech will not be known ahead of time. In particular, human judgment can be used to evaluate the applicant's persona and how well the applicant's voice will sound to a customer. Additionally, human judgment can be used to score the applicant's grammar, intonation, and general talent in the area of servicing customers. Thus, human subjectivity is well suited for scoring the content and quality of what was spoken.
  • In step 216, a graphic comprehension exercise is initiated. This exercise screens the applicant's ability to respond to a provided graphic. For example, an image, representing the evaluation material, is displayed on a web page that is visible to the applicant 1. Instead of reading a script, repeating a phrase, answering a spoken question, or describing an experience, the applicant 1 is required to deduce answers to questions from the provided image and to speak their answers over the telephone upon being prompted to do so. For each answer, the applicant's speech is recorded and is end-pointed for off-line analysis. Each recorded phrase is automatically scored with a confidence level that is correlated with how well the recorded phrase matches the expected pronunciation, for instance, as represented in a speech recognition grammar with highly tuned pronunciation lexicons. As before, strong accents and mispronunciations map into low confidence scores. In this exercise, a word spoken incorrectly significantly reduces the confidence score, which may be even further reduced when other confidence-lowering factors are present, such as improper microphone placement, for example.
  • An exemplary graphic comprehension exercise is illustrated as “Exercise 5” in FIG. 5. This example screens an applicant's ability to give driving directions. The map graphic is displayed to the applicant 1. The applicant 1 is asked to give turn-by-turn driving directions and, if desired, a list of possible driving instructions. These instructions can be listed in random order (as shown) or they can be listed in order from start to destination (however, this latter approach removes the deductive reasoning and cartographic analyses that can be performed with this exercise). In the most difficult case, the applicant 1 will not be provided with instructions and will be asked to guide a virtual driver from the starting point to the destination.
  • In step 218, a speaking satisfaction exercise is initiated. This speaking exercise is aimed at determining the kind of experience that a customer will have after speaking to the applicant 1 (such as delight, satisfied, displeasure, honor), the experience type can be referred to as a “pleasantry factor.” The applicant is given one of a series of random situations in which they will be required to role-play an operator answering a call from a driver (random and/or coordinated selection is desired where an applicant 2 can enter the application process more than once and it is insured that a different scenario is role-played every subsequent time). It is desirable to not give the applicant 1 time to think and prepare because a “real-time” operator assistance experience is the desired output. The applicant 1 can be allowed to listen to a driver, for example, one who has just witnessed an accident, who has been involved in an accident, who has locked their child in a car, and many other scenarios, and then be asked to counsel and assist the driver. The conversation between the applicant 1 and the virtual driver is stored for subsequent off-line processing. Like step 216, only limited automatic confidence scoring can be applied to show use of grammar and pronunciation, for example. In this case, subjective human judgment is most important to score how well the potential operator dealt with the supplied situation.
  • Any number of other kinds of additional exercises can be performed as desired in step 220. Once all exercises are complete, the applicant 1 is informed that the application process is done and the data is ready for analysis. If desired, the applicant 1 can be given a timeframe for hearing from the screening entity or given a call number and a date for checking on his/her application. The above exercises are all not necessary or required. These exercises can occur in any order and in any combination, some of which can be eliminated if desired.
  • The process of the present invention now allows HR personnel 10 to review applicant's stored data 8, step 224, at any time, whether through a web access 9 or after it has been stored internally, in step 222, at the screening entity's selected data storage location. The process ends at step 226.
  • Many different screening entities can be allowed to access their own or any other entity's screening data. For example, where an applicant is determined to be less suitable for one kind of employment opportunity, that person's performance may be suitable for another opportunity and having the data available may be beneficial if different entities agree to share the screening exercises and recorded results. As such, an administrative web page 9 can be accessed from an intranet link 12 or from any resource connected to the Internet 11, provided that sufficient and/or desired security requirements are met. In order to review the recorded data, measures for playing recorded audio, such as audio wave files, to the human resources [or else define it] personnel 10 are needed.
  • After an applicant 1 completes the set of exercises, an audio profile (e.g., a web page audio profile) is automatically created, specific to that applicant 1. For automated and first-in-first-out processing of all applications received by the screening entity, applicant-specific identification data can be placed into a queue, as illustrated in FIG. 6, for example, for convenient access and processing by human resources personnel, such as over the World Wide Web. To access data regarding a specific applicant 1, a “score applicant” link can be selected. Phone numbers in FIG. 6 can be 4-digit internal extensions as well as 10-digit external phone numbers.
  • Upon selecting a specific applicant 1 from the queue, any information can be displayed. For example, a task description, corresponding recorded audio data, and corresponding confidence scoring 13 can be displayed for each of the exercises. For each task within an exercise, wave files (for example) are available for listening by the reviewing agent. Displayed with the wave files are associated confidence scores that range from 0.9999 to 0.0000, with the higher confidence score indicating that the pronunciation is more likely correct than not. In addition to automated scoring with confidence measures, the reviewing agent can subjectively score each wave file on a scale of 1 to 100, for example. Accents, speaking skills, and perceived personality are readily detected by a reviewing agent trained to screen such candidates based on how they sound. After listening to each wave file, a subjective score (between 1 and 100) is entered into the applicant's audio-web profile for future processing. In the example of FIG. 7, subjective scores are shown to be 100, 80, and 80, respectively, for each of three evaluated items.
  • For questions that require correct answers (as opposed to repeating phrases or reading text), a confidence score can serve multiple purposes, for example, a likelihood of correctness and a likelihood of correct pronunciation. For such questions, high scores are only possible when the correct answer is given and the pronunciation matches the recognizer's expected pronunciation rules, which are represented in a voice-recognition lexicon that can be optimized for specific desired pronunciations.
  • For most audio wave files that are recorded by the application, meaningful automated scoring is achieved by applying confidence scoring, which is important to the invention and is described, for example, in “Recognition Confidence Scoring for Use in Speech Understanding Systems” Hazen et al. 2000 (https://citeseer.ist.psu.edu/hazen00recognition.html), which is hereby incorporated herein by reference in its entirety. In fact, a completely automated screening process can be used to filter out a high percentage of applicants without human intervention. A standard of acceptance can be adjustable. Performance criteria can be completely objective. For example, just by looking at the queue of applicants, the aggregate confidence score (without human intervention) can be displayed and the applicants can be rank-ordered automatically before any human analysis of the applicant's audio data is performed. Perhaps only the top 25% of the applicants that complete the screening application will be considered for further evaluation by human intervention in one exemplary screening method.
  • There are several types of applicant-related tasks that can be automatically scored by applying confidence measures, including, for example:
      • 1) repeating phrases through prompting.
      • 2) speaking (or reading out loud) displayed text.
      • 3) speaking answers to prompted questions; and
      • 4) speaking answers related to image information.
        It is noted that several types of cognitive processing are required to complete all of the applicant tasks successfully. These include, but are not limited to, reading, listening, speaking, knowledge of a language, analyzing images, understanding instructions, being creative, manual dexterity, and possessing relevant knowledge to answer questions. It is through the combination of applying various skills that high-confidence scoring is achieved. With appropriate pre-preparation, the process according to the present invention is capable of simulating an actual working environment. In fact, an applicant may be qualified to be a virtual agent (qualified to work remotely) by scoring high enough from “his or her” calling environment, which must include appropriate telephone and web access.
  • Various servers 4, 9, 13 are mentioned herein. Mentioning them separately is not a requirement to being physically separated servers. Accordingly, a single physical server can host the functions described herein as servers 4, 9, 13.
  • The foregoing description and accompanying drawings illustrate the principles, preferred embodiments and modes of operation of the invention. However, the invention should not be construed as being limited to the particular embodiments discussed above. Additional variations of the embodiments discussed above will be appreciated by those skilled in the art.
  • Therefore, the above-described embodiments should be regarded as illustrative rather than restrictive. Accordingly, it should be appreciated that variations to those embodiments can be made by those skilled in the art without departing from the scope of the invention as defined by the following claims.

Claims (25)

We claim:
1. A method for screening candidates by a screening entity, which comprises:
remotely accessing a screening entity's online web page by a potential candidate using an Internet-accessible computer available to the candidate;
using the web page, requesting the candidate to input responses to a set of queries into the computer that are tailored to the screening entity;
storing the candidate's responses to the queries in a candidate profile;
in response to at least one of the candidate's responses, automatically initiating an interactive audio session;
commencing an interactive information gathering process with the candidate using both the interactive audio session and the computer by:
generating prompts to the candidate via at least one of the interactive audio session and the web page;
recording the candidate's verbal responses to the prompts via the interactive audio session;
automatically determining a confidence scoring of the recorded verbal responses of the candidate with a computerized speech recognition device by automation; and
storing the recorded verbal responses in the candidate profile;
storing the candidate profile in a database for later access and analysis in a skill assessment of the candidate by the screening entity; and
analyzing at least one of the candidate profile, the confidence scoring, and the recorded verbal responses by the screening entity to make quality and criteria judgments about the candidate and determine a hiring potential of the candidate.
2. The method according to claim 1, which further comprises carrying out the automatic initiation of the interactive audio session by Voice Over Internet Protocol (VOIP).
3. The method according to claim 1, which further comprises:
hosting the web page with an external server; and
accessing an internal server that hosts an internal web page of the screening entity.
4. The method according to claim 1, which further comprises one of:
carrying out the automatic initiation of the interactive audio session step by simultaneously initiating a voice call to the candidate; and
carrying out the automatic initiation of the interactive audio session step by initiating the voice call to the candidate after the candidate has completed responding to the queries.
5. The method according to claim 1, which further comprises initiating the interactive audio session to the candidate with a voice server through a private branch exchange over the telephone network.
6. The method according to claim 1, which further comprises confirming the candidate's identity through a set of identification questions and responses via one of the interactive audio session and the web page.
7. The method according to claim 1, which further comprises carrying out the candidate profile storing step by storing the profile of the candidate one of:
during the information gathering process; and
after the information gathering process is complete.
8. The method according to claim 1, which further comprises carrying out the profile storing step by storing the profile of the candidate through an entity-secure intranet link.
9. The method according to claim 1, which further comprises carrying out the automatic initiation of the interactive audio session step by initiating the interactive audio session only with outbound calls from the screening entity to, thereby, control access to the information gathering process.
10. The method according to claim 1, which further comprises carrying out the information gathering step by controlling a number and kind of questions presented to the candidate to simulate a real call-center seat.
11. The method according to claim 1, which further comprises carrying out the storing steps one of selectively and continually.
12. The method according to claim 1, wherein the computerized speech recognition device is programmed to parse a particular response into individual words and to either compare the parsed response to a desired responses or to transcribe the parsed response for later use and access by the screening entity.
13. The method according to claim 12, which further comprises carrying out the automated confidence scoring step by judging at least an accuracy and an intelligibility of the candidate's speech utilizing a target phrase represented in a speech recognition grammar.
14. A method for screening candidates by a screening entity, which comprises:
initiating a job application procedure by having a candidate remotely connect to a secured online web page of a screening entity using an Internet-accessible computer;
using the secured online web page, querying the candidate to enter candidate-specific personal identification data using the computer;
securely confirming the identification data;
initiating an interactive audio session to the candidate after the identification data is confirmed and, while the candidate is still communicating with the web page and during the interactive audio session, carrying out at least one of the following exercise steps:
initiating a dictation clarity exercise by instructing candidate to read a script sent to a particular web page viewable by the candidate on the computer and, when finished:
recording speech from the candidate for subsequent off-line analysis; and
automatically determining a confidence scoring of the recorded speech of the candidate with a computerized speech recognition device by automation; and
initiating a graphic comprehension exercise to screen the candidate's ability to respond to a provided graphic by:
displaying a graphic to the candidate on the computer;
requiring the candidate to answer at least one question regarding the graphic;
recording the spoken answers over the interactive audio session; and
automatically determining a confidence scoring of each of the spoken answers correlated with how well the recorded phrase matches the expected pronunciation with a computerized speech recognition device by automation;
after a given number of exercises are complete, storing data recorded for later analysis in a skill assessment of the candidate by the screening entity and informing the candidate that an application process is complete; and
analyzing at least one of the confidence scoring and the recorded responses by the screening entity to make quality and criteria judgments about the candidate and determine the hiring potential of the candidate.
15. The method according to claim 14, which further comprises securely confirming the identification data.
16. The method according to claim 14, which further comprises carrying out the secure confirming step by one of directly with the candidate and indirectly through an email sent to the candidate's email address that requires a response from the candidate.
17. The method according to claim 14, which further comprises carrying out the interactive audio session initiating step with a voice server immediately after the identification data is confirmed.
18. The method according to claim 14, which further comprises carrying out at least one of the following exercise steps:
initiating a voice quality exercise over the interactive audio session by asking the candidate to repeat spoken phrases over the interactive audio session, recording the candidate's speech for each phrase for subsequent off-line analysis, and automatically scoring each recorded phrase with a confidence level correlated with how well the recorded phrase matches an expected pronunciation;
initiating a question-answer exercise by transmitting specific multiple-choice questions over the interactive audio session, prompting the candidate to answer each question after it is presented, recording the candidate's speech for each answer, and automatically scoring each recorded answer with a confidence level correlated to how well the recorded phrase matches an expected pronunciation;
initiating a service knowledge exercise to determine the candidate's ability to comprehend an example of what good customer service is and whether the candidate can intelligently describe such an experience by having the candidate give a speech regarding such an experience, recording the speech for subsequent off-line analysis, and applying a subjective confidence scoring to the recorded speech; and
initiating a speaking satisfaction exercise with the candidate to evaluate the kind of experience that a potential customer will have after speaking to the candidate by giving the candidate a random one of a series of predefined situations in which candidate is required to role-play an operator answering in real-time a call from a virtual customer, recording the conversation between the candidate and the virtual customer for subsequent off-line analysis, and applying a subjective confidence scoring to the recorded conversation.
19. The method according to claim 18, which further comprises carrying out the exercise step by storing the candidate's recorded speech for subsequent off-line analysis.
20. The method according to claim 18, which further comprises carrying out the confidence scoring at least one of automatically and with human judgment.
21. The method according to claim 18, which further comprises carrying out the question-answer exercise step by transmitting the multiple-choice questions by at least one of a human voice and a machine voice.
22. The method according to claim 14, which further comprises carrying out the graphic comprehension exercise step by storing the recorded spoken answers for subsequent off-line analysis.
23. The method according to claim 14, which further comprises carrying out the graphic comprehension exercise step by providing a map as the graphic and screening the candidate's ability to give driving directions.
24. The method according to claim 18, which further comprises carrying out the speaking satisfaction exercise step by storing the conversation for subsequent off-line analysis.
25. The method according to claim 14, which further comprises providing the candidate with at least one of:
a timeframe for hearing from the screening entity; and
a call number and a date for checking on the candidate's application.
US13/965,658 2007-05-11 2013-08-13 Multi-Modal Automation for Human Interactive Skill Assessment Abandoned US20130346332A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/965,658 US20130346332A1 (en) 2007-05-11 2013-08-13 Multi-Modal Automation for Human Interactive Skill Assessment

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US92889507P 2007-05-11 2007-05-11
US12/116,433 US7966265B2 (en) 2007-05-11 2008-05-07 Multi-modal automation for human interactive skill assessment
US13/102,719 US20110213726A1 (en) 2007-05-11 2011-05-06 Multi-Modal Automation for Human Interactive Skill Assessment
US13/965,658 US20130346332A1 (en) 2007-05-11 2013-08-13 Multi-Modal Automation for Human Interactive Skill Assessment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/102,719 Division US20110213726A1 (en) 2007-05-11 2011-05-06 Multi-Modal Automation for Human Interactive Skill Assessment

Publications (1)

Publication Number Publication Date
US20130346332A1 true US20130346332A1 (en) 2013-12-26

Family

ID=39970340

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/116,433 Active 2028-09-03 US7966265B2 (en) 2007-05-11 2008-05-07 Multi-modal automation for human interactive skill assessment
US13/102,719 Abandoned US20110213726A1 (en) 2007-05-11 2011-05-06 Multi-Modal Automation for Human Interactive Skill Assessment
US13/965,658 Abandoned US20130346332A1 (en) 2007-05-11 2013-08-13 Multi-Modal Automation for Human Interactive Skill Assessment

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US12/116,433 Active 2028-09-03 US7966265B2 (en) 2007-05-11 2008-05-07 Multi-modal automation for human interactive skill assessment
US13/102,719 Abandoned US20110213726A1 (en) 2007-05-11 2011-05-06 Multi-Modal Automation for Human Interactive Skill Assessment

Country Status (3)

Country Link
US (3) US7966265B2 (en)
CA (1) CA2687111C (en)
WO (1) WO2008141116A2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107230171A (en) * 2017-05-31 2017-10-03 中南大学 A kind of student, which chooses a job, is orientated evaluation method and system
CN107239897A (en) * 2017-05-31 2017-10-10 中南大学 A kind of personality occupation type method of testing and system
CN107256455A (en) * 2017-05-31 2017-10-17 中南大学 A kind of career planning method of testing and system
CN107292496A (en) * 2017-05-31 2017-10-24 中南大学 A kind of work values cognitive system and method
US20180089627A1 (en) * 2016-09-29 2018-03-29 American Express Travel Related Services Company, Inc. System and method for advanced candidate screening
US10339960B2 (en) * 2016-10-13 2019-07-02 International Business Machines Corporation Personal device for hearing degradation monitoring
US10733491B2 (en) 2017-05-03 2020-08-04 Amazon Technologies, Inc. Fingerprint-based experience generation
US10965391B1 (en) * 2018-01-29 2021-03-30 Amazon Technologies, Inc. Content streaming with bi-directional communication
EP3861427A4 (en) * 2018-10-03 2022-09-07 Bongo Learn, Inc. Presentation assessment and valuation system
US11562329B1 (en) * 2022-03-09 2023-01-24 My Job Matcher, Inc. Apparatus and methods for screening users

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10121153B1 (en) 2007-10-15 2018-11-06 Elance, Inc. Online escrow service
US20110055098A1 (en) * 2008-04-30 2011-03-03 Stewart Jeffrey A Automated employment information exchange and method for employment compatibility verification
US10204074B1 (en) 2008-06-12 2019-02-12 Elance, Inc. Online professional services storefront
US10346803B2 (en) * 2008-06-17 2019-07-09 Vmock, Inc. Internet-based method and apparatus for career and professional development via structured feedback loop
US10635412B1 (en) 2009-05-28 2020-04-28 ELANCE, Inc . Online professional badge
US10650332B1 (en) 2009-06-01 2020-05-12 Elance, Inc. Buyer-provider matching algorithm
US20110131146A1 (en) * 2009-12-02 2011-06-02 Anthony John Skutnik Employment management system
US9940594B1 (en) 2010-02-19 2018-04-10 Elance, Inc. Digital workroom
WO2012061252A2 (en) 2010-11-04 2012-05-10 Dw Associates, Llc. Methods and systems for identifying, quantifying, analyzing, and optimizing the level of engagement of components within a defined ecosystem or context
US8996359B2 (en) 2011-05-18 2015-03-31 Dw Associates, Llc Taxonomy and application of language analysis and processing
AU2012272977A1 (en) * 2011-06-20 2014-01-16 Tandemseven, Inc. System and method for building and managing user experience for computer software interfaces
US8952796B1 (en) 2011-06-28 2015-02-10 Dw Associates, Llc Enactive perception device
US9269353B1 (en) 2011-12-07 2016-02-23 Manu Rehani Methods and systems for measuring semantics in communications
US8924545B2 (en) * 2012-01-13 2014-12-30 Microsoft Corporation Cross-property identity management
US9020807B2 (en) 2012-01-18 2015-04-28 Dw Associates, Llc Format for displaying text analytics results
US9667513B1 (en) 2012-01-24 2017-05-30 Dw Associates, Llc Real-time autonomous organization
GB2499827A (en) * 2012-03-01 2013-09-04 Do It Solutions Ltd Assessing a person's ability to achieve a pre-determined outcome
US20150046357A1 (en) * 2013-08-09 2015-02-12 Mattersight Corporation Systems and methods for evaluating job candidates
US20150095029A1 (en) * 2013-10-02 2015-04-02 StarTek, Inc. Computer-Implemented System And Method For Quantitatively Assessing Vocal Behavioral Risk
US8787532B1 (en) * 2013-10-07 2014-07-22 Zoom International S.R.O. Semi automated review of contact center agent performance
US20150127567A1 (en) * 2013-11-01 2015-05-07 UV Labs, Inc. Data mining including processing natural language text to infer competencies
US8856000B1 (en) * 2013-12-09 2014-10-07 Hirevue, Inc. Model-driven candidate sorting based on audio cues
US9009045B1 (en) 2013-12-09 2015-04-14 Hirevue, Inc. Model-driven candidate sorting
US10223653B1 (en) * 2014-02-20 2019-03-05 Elance, Inc. Onboarding dashboard and methods and system thereof
SG11201607622SA (en) 2014-03-14 2016-10-28 Pande Salil Career analytics platform
US20150302355A1 (en) * 2014-04-17 2015-10-22 The Boeing Company Systems and methods for managing job candidate information and proposals
US10621535B1 (en) * 2015-04-24 2020-04-14 Mark Lawrence Method and apparatus to onboard resources
US9997155B2 (en) * 2015-09-09 2018-06-12 GM Global Technology Operations LLC Adapting a speech system to user pronunciation
CN107306314A (en) * 2016-04-18 2017-10-31 中兴通讯股份有限公司 A kind of quality detecting method and device of traffic recording
US10642889B2 (en) 2017-02-20 2020-05-05 Gong I.O Ltd. Unsupervised automated topic detection, segmentation and labeling of conversations
US11276407B2 (en) 2018-04-17 2022-03-15 Gong.Io Ltd. Metadata-based diarization of teleconferences
CN117522643B (en) * 2023-12-04 2024-05-10 新励成教育科技股份有限公司 Talent training method, device, equipment and storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7165031B2 (en) * 2002-02-14 2007-01-16 Canon Kabushiki Kaisha Speech processing apparatus and method using confidence scores
US20070105080A1 (en) * 1996-03-27 2007-05-10 Michael Hersh Application of multi-media technology to computer administered vocational personnel assessment
US20090187414A1 (en) * 2006-01-11 2009-07-23 Clara Elena Haskins Methods and apparatus to recruit personnel

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5594791A (en) * 1994-10-05 1997-01-14 Inventions, Inc. Method and apparatus for providing result-oriented customer service
US6175564B1 (en) * 1995-10-25 2001-01-16 Genesys Telecommunications Laboratories, Inc Apparatus and methods for managing multiple internet protocol capable call centers
US6021428A (en) * 1997-09-15 2000-02-01 Genesys Telecommunications Laboratories, Inc. Apparatus and method in improving e-mail routing in an internet protocol network telephony call-in-center
US6029124A (en) * 1997-02-21 2000-02-22 Dragon Systems, Inc. Sequential, nonparametric speech recognition and speaker identification
US6311164B1 (en) * 1997-12-30 2001-10-30 Job Files Corporation Remote job application method and apparatus
US6038544A (en) * 1998-02-26 2000-03-14 Teknekron Infoswitch Corporation System and method for determining the performance of a user responding to a call
US6687877B1 (en) * 1999-02-17 2004-02-03 Siemens Corp. Research Inc. Web-based call center system with web document annotation
US7349843B1 (en) * 2000-01-18 2008-03-25 Rockwell Electronic Commercial Corp. Automatic call distributor with language based routing system and method
EP1275042A2 (en) * 2000-03-06 2003-01-15 Kanisa Inc. A system and method for providing an intelligent multi-step dialog with a user
CA2417863A1 (en) * 2000-08-03 2002-02-14 Unicru, Inc. Electronic employee selection systems and methods
US6978006B1 (en) * 2000-10-12 2005-12-20 Intervoice Limited Partnership Resource management utilizing quantified resource attributes
US7302381B2 (en) * 2000-12-30 2007-11-27 Intel Corporation Specifying arbitrary words in rule-based grammars
US7076427B2 (en) * 2002-10-18 2006-07-11 Ser Solutions, Inc. Methods and apparatus for audio data monitoring and evaluation using speech recognition
US6847714B2 (en) * 2002-11-19 2005-01-25 Avaya Technology Corp. Accent-based matching of a communicant with a call-center agent
US20040107112A1 (en) * 2002-12-02 2004-06-03 Cotter Milton S. Employment center
CN1902658A (en) * 2003-09-11 2007-01-24 特伦德集成有限责任公司 System and method for comparing candidate responses to interview questions
US20050114379A1 (en) * 2003-11-25 2005-05-26 Lee Howard M. Audio/video service quality analysis of customer/agent interaction
US8447027B2 (en) * 2004-01-30 2013-05-21 Hewlett-Packard Development Company, L.P. System and method for language variation guided operator selection
US7142661B2 (en) * 2004-06-23 2006-11-28 Avaya Technology Corp. Method and apparatus for interactive voice processing with visual monitoring channel
US7995717B2 (en) * 2005-05-18 2011-08-09 Mattersight Corporation Method and system for analyzing separated voice data of a telephonic communication between a customer and a contact center by applying a psychological behavioral model thereto
JP5184745B2 (en) * 2005-11-14 2013-04-17 ピーアンドダブリューソリューションズ株式会社 Method for replenishing shortage personnel and computer and program for realizing the method
US8095476B2 (en) * 2006-11-27 2012-01-10 Inquira, Inc. Automated support scheme for electronic forms

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070105080A1 (en) * 1996-03-27 2007-05-10 Michael Hersh Application of multi-media technology to computer administered vocational personnel assessment
US7165031B2 (en) * 2002-02-14 2007-01-16 Canon Kabushiki Kaisha Speech processing apparatus and method using confidence scores
US20090187414A1 (en) * 2006-01-11 2009-07-23 Clara Elena Haskins Methods and apparatus to recruit personnel

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180089627A1 (en) * 2016-09-29 2018-03-29 American Express Travel Related Services Company, Inc. System and method for advanced candidate screening
US10339960B2 (en) * 2016-10-13 2019-07-02 International Business Machines Corporation Personal device for hearing degradation monitoring
US10540994B2 (en) 2016-10-13 2020-01-21 International Business Machines Corporation Personal device for hearing degradation monitoring
US10733491B2 (en) 2017-05-03 2020-08-04 Amazon Technologies, Inc. Fingerprint-based experience generation
CN107230171A (en) * 2017-05-31 2017-10-03 中南大学 A kind of student, which chooses a job, is orientated evaluation method and system
CN107239897A (en) * 2017-05-31 2017-10-10 中南大学 A kind of personality occupation type method of testing and system
CN107256455A (en) * 2017-05-31 2017-10-17 中南大学 A kind of career planning method of testing and system
CN107292496A (en) * 2017-05-31 2017-10-24 中南大学 A kind of work values cognitive system and method
US10965391B1 (en) * 2018-01-29 2021-03-30 Amazon Technologies, Inc. Content streaming with bi-directional communication
EP3861427A4 (en) * 2018-10-03 2022-09-07 Bongo Learn, Inc. Presentation assessment and valuation system
US11562329B1 (en) * 2022-03-09 2023-01-24 My Job Matcher, Inc. Apparatus and methods for screening users
US20230289735A1 (en) * 2022-03-09 2023-09-14 My Job Matcher, Inc. D/B/A Job.Com Apparatus and methods for screening users

Also Published As

Publication number Publication date
US20110213726A1 (en) 2011-09-01
CA2687111A1 (en) 2008-11-20
CA2687111C (en) 2017-11-14
WO2008141116A3 (en) 2009-12-30
US7966265B2 (en) 2011-06-21
WO2008141116A2 (en) 2008-11-20
US20080281620A1 (en) 2008-11-13

Similar Documents

Publication Publication Date Title
US7966265B2 (en) Multi-modal automation for human interactive skill assessment
US10044864B2 (en) Computer-implemented system and method for assigning call agents to callers
US8725518B2 (en) Automatic speech analysis
US20090187414A1 (en) Methods and apparatus to recruit personnel
US9218128B1 (en) Method and system for training users to utilize multimodal user interfaces
US11501656B2 (en) Interactive and automated training system using real interactions
CN108281052A (en) A kind of on-line teaching system and online teaching method
US20040186743A1 (en) System, method and software for individuals to experience an interview simulation and to develop career and interview skills
US20080027731A1 (en) Comprehensive Spoken Language Learning System
US20080300874A1 (en) Speech skills assessment
JP2008533505A (en) System and method for computer-controlled interactive training
JP2001265207A (en) Business system for correspondence course or correspondence course system
US20060216685A1 (en) Interactive speech enabled flash card method and system
US11132913B1 (en) Computer-implemented systems and methods for acquiring and assessing physical-world data indicative of avatar interactions
Karatay Development and validation of spoken dialog system-based oral communication tasks in an ESP context
US7660719B1 (en) Configurable information collection system, method and computer program product utilizing speech recognition
WO2008082110A1 (en) Lesson-type method and system for learning foreign language through internet
CN114817515A (en) Method and device for recommending dialect, electronic equipment and storage medium
JP2010085790A (en) Conversation learning support system, conversation learning support method, and program
JPWO2002103656A1 (en) Conversation test system

Legal Events

Date Code Title Description
AS Assignment

Owner name: AGERO CONNECTED SERVICES, INC., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SCHALK, THOMAS BARTON;STOVALL, JIMMY LEE;BROOKS, WALTER PHILLIP;SIGNING DATES FROM 20130613 TO 20130711;REEL/FRAME:030999/0653

AS Assignment

Owner name: SIRIUS XM CONNECTED VEHICLE SERVICES INC., TEXAS

Free format text: CHANGE OF NAME;ASSIGNOR:AGERO CONNECTED SERVICES, INC.;REEL/FRAME:032815/0373

Effective date: 20131104

AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A., DELAWARE

Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:SIRIUS XM CONNECTED VEHICLE SERVICES INC.;REEL/FRAME:032835/0907

Effective date: 20140506

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION