US20130297035A1 - Systems and methods for installing ankle replacement prostheses - Google Patents

Systems and methods for installing ankle replacement prostheses Download PDF

Info

Publication number
US20130297035A1
US20130297035A1 US13/939,936 US201313939936A US2013297035A1 US 20130297035 A1 US20130297035 A1 US 20130297035A1 US 201313939936 A US201313939936 A US 201313939936A US 2013297035 A1 US2013297035 A1 US 2013297035A1
Authority
US
United States
Prior art keywords
talar
talus
component
implant
tibia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/939,936
Other versions
US20170156875A9 (en
Inventor
Mark A. Reiley
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inbone Technologies Inc
Original Assignee
Inbone Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/694,100 external-priority patent/US6663669B1/en
Priority claimed from US09/935,479 external-priority patent/US6673116B2/en
Application filed by Inbone Technologies Inc filed Critical Inbone Technologies Inc
Priority to US13/939,936 priority Critical patent/US20170156875A9/en
Publication of US20130297035A1 publication Critical patent/US20130297035A1/en
Priority to US15/489,129 priority patent/US10743999B2/en
Publication of US20170156875A9 publication Critical patent/US20170156875A9/en
Priority to US16/924,716 priority patent/US11951013B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/42Joints for wrists or ankles; for hands, e.g. fingers; for feet, e.g. toes
    • A61F2/4202Joints for wrists or ankles; for hands, e.g. fingers; for feet, e.g. toes for ankles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/17Guides or aligning means for drills, mills, pins or wires
    • A61B17/1739Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body
    • A61B17/1775Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body for the foot or ankle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/72Intramedullary pins, nails or other devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4603Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof
    • A61F2/4606Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof of wrists or ankles; of hands, e.g. fingers; of feet, e.g. toes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/17Guides or aligning means for drills, mills, pins or wires
    • A61B17/1717Guides or aligning means for drills, mills, pins or wires for applying intramedullary nails or pins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/72Intramedullary pins, nails or other devices
    • A61B17/7233Intramedullary pins, nails or other devices with special means of locking the nail to the bone
    • A61B17/7258Intramedullary pins, nails or other devices with special means of locking the nail to the bone with laterally expanding parts, e.g. for gripping the bone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30331Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementarily-shaped recess, e.g. held by friction fit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30331Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementarily-shaped recess, e.g. held by friction fit
    • A61F2002/30332Conically- or frustoconically-shaped protrusion and recess
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30604Special structural features of bone or joint prostheses not otherwise provided for modular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30604Special structural features of bone or joint prostheses not otherwise provided for modular
    • A61F2002/30607Kits of prosthetic parts to be assembled in various combinations for forming different prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/42Joints for wrists or ankles; for hands, e.g. fingers; for feet, e.g. toes
    • A61F2/4202Joints for wrists or ankles; for hands, e.g. fingers; for feet, e.g. toes for ankles
    • A61F2002/4205Tibial components
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/42Joints for wrists or ankles; for hands, e.g. fingers; for feet, e.g. toes
    • A61F2/4202Joints for wrists or ankles; for hands, e.g. fingers; for feet, e.g. toes for ankles
    • A61F2002/4207Talar components
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/42Joints for wrists or ankles; for hands, e.g. fingers; for feet, e.g. toes
    • A61F2/4202Joints for wrists or ankles; for hands, e.g. fingers; for feet, e.g. toes for ankles
    • A61F2002/4212Tarsal bones
    • A61F2002/4215Lateral row of tarsal bones
    • A61F2002/4217Calcaneum or calcaneus or heel bone

Definitions

  • the invention relates to ankle replacement prostheses, systems, and associated surgical procedures.
  • ankle arthroscopy endoscopic examination of the joint
  • ankle arthrotomy cutting into the joint to expose the interior
  • debridement opening the joint and removing bone spurs
  • osteotomy cutting the bone to realign the joint
  • ankle fusion removing the joint and making it stiff
  • total ankle arthroplasty removing the ankle joint and replacing it with an artificial substitute
  • Previous ankle replacement systems typically include a talar member, fixed to the talus, as one of their main functioning components.
  • the talus is relatively small, providing a small area of bone for fixation.
  • the talar component is cemented to the talus. The combination of fixation with bone cement to a small fixation area allows for erosion of the cement from the fixation area and an increase in compliance due to formation of a soft tissue capsule over time. This contributes to aseptic loosening and migration of the device.
  • Previous ankle replacement systems are typically installed through incisions made at or near the ankle and make use of extramedullary alignment and guidance techniques.
  • Such surgical procedures require making large incisions at the ankle, moving the tendons and other soft tissue aside; and separating the tibia and fibula from the talus—essentially detaching the foot from the leg—to install the device.
  • Such procedures subsequently require complicated extramedullary realignment and reattachment of the foot. These procedures commonly result in infection and extended healing time with possible replacement failure from improper extramedullary realignment.
  • the surgery also has increased risks associated with cutting or damaging neighboring nerves and tendons which may lead to further complications.
  • the invention provides an implant for use in ankle arthroplasty which overcomes the problems and disadvantages associated with current strategies and systems in total ankle replacement (TAR).
  • the present invention may include a first member anchored to the tibia and a second member anchored to the talus and operable associated with the first member.
  • the invention may also include a third member which is rigidly removably connected to the second member.
  • the third member may include a portion for attachment to the calcaneous.
  • the third member may be adapted to be in a first position in the calcaneous when the third member is in a first relative position with respect to the second member, and to provide for a second position in the calcaneous when the third member is in a second relative position with respect to the second member.
  • the present invention may also include a fourth member which is rigidly removably connected to the second member.
  • the fourth member may have at least one dimension which is different than a dimension of the third member, such that the fourth and third members are interchangeable.
  • the method may include providing a prosthesis kit including a tibial component, a bearing component, a talar articulating component, a first talar mounting component, and a second talar mounting component.
  • the second talar mounting component has at least one dimension different than the first talar mounting component.
  • the method may further include preparing the talar cavity and the tibia cavity.
  • the method may further include implanting the tibial component into the tibial cavity.
  • the method may further include selecting either the first talar mounting component or the second talar mounting component and implanting the selected talar mounting component into the talar cavity.
  • the method may further include positioning the bearing component between the tibial component and the selected talar mounting component.
  • FIG. 1 is a view of the lower leg and foot skeleton.
  • FIG. 2 is a lateral view of a human foot and lower leg skeleton with the fibula shown in an assembly format and having a planarly resected tibia and talus.
  • FIG. 2 a is a posterior view of a human foot and lower leg skeleton with the fibula not shown and planar cuts of the tibia and talus are depicted.
  • FIG. 3 shows an intramedullary guidance system for providing intramedullary alignment of the tibial and/or talar cuts, one end of the system being oriented toward the tibia and the other end oriented toward the talus.
  • FIG. 4 is a lateral view of a lower leg and foot demonstrating the intramedullary insertion of a guide pin through the superior part of the tibia and terminating in the talus.
  • FIG. 5 is a lateral view of a lower leg and foot demonstrating the intramedullary insertion of a guide pin through the plantar surface of the calcaneus, passing through the talus and terminating in the tibia at variable lengths.
  • FIG. 5 a is a sectional view of a foot and depicts the insertion and removal of a guide pin through the plantar surface of the calcaneus, passing through the talus and terminating in the tibia, to produce an intramedullary channel, which may be made of various dimensions by using the guide pin to also direct the course of intramedullary reamers.
  • FIG. 6 is a lateral sectional view of the lower leg and foot showing the guide pin surrounded by the reaming instrument creating the intramedullary passage.
  • FIG. 7 is a lateral view and partial cross section of the human lower leg and foot showing the intramedullary channel and a resected portion of the anterior lower tibia to allow easier insertion of an intramedullary cutting guide.
  • FIG. 8 is a posterior section of the lower leg and foot with the fibula not shown and depicting the insertion of the intramedullary cutting guide between the tibia and the talus.
  • FIG. 9 is a perspective view of a talo-calcaneal reaming jig.
  • FIG. 9 a is a lateral/partial sectional view depicting the insertion of the reaming tool in the talo-calcaneal reaming jig for the posteriorly directed inferior stem to help support the talar component (the drill hole and stem can be only in the talus or extend into the calcaneus for increased stability, and the anterior-posterior position of the talar support stem can be variable).
  • FIG. 9 b is a cross-sectional view of the talo calcaneal jig and channel as positioned on the talus.
  • FIG. 9 c is a sectional view of resultant channel after the jig is removed, also showing the talar support stem.
  • FIG. 10 is a lateral cross-sectional view of the upper prosthetic body, showing the tibial stem and tibial component.
  • FIG. 10 a is a side view of an alternative embodiment of an upper prosthetic body with a shorter tibial stem than shown in FIG. 10 .
  • FIG. 11 shows the insertion of a tibial stem through the calcaneus and talus, and (if needed) through an anti-rotational sleeve.
  • FIG. 12 is a perspective view of the optional anti-rotational sleeve for the tibial stem.
  • FIG. 13 is a lateral cross sectional view of the tibial stem in the lower tibia and fixed with screws and (optionally) with the anti-rotational sleeve.
  • FIG. 14 shows a lateral cross sectional view of a lower prosthetic body in the foot, including the talar component with posterior fixation blade (if needed), talar fixation stem (extending into the calcaneus), and anterior talo-calcaneal fixation screws.
  • FIG. 15 shows both the upper and lower prosthetic bodies.
  • FIG. 16 shows an alternative lower prosthetic unit, with talar fixation stem at various angles.
  • FIG. 17 shows another alternative lower prosthetic unit, with talar fixation stem at various angles.
  • the foot comprises fourteen phalanges or toe bones 11 connected to the metatarsus bones 13 .
  • There are also seven tarsal bones 14 of which the talus 15 supports the tibia 16 and the fibula 18 , and the heel bone or calcaneus 17 .
  • the talus 15 and the calcaneus 17 are the largest and are adjacent to each other.
  • the other tarsal bones include the navicular 19 , three cuneiforms 21 , and the cuboid 23 .
  • FIG. 2 and FIG. 2 a shows (in FIG. 2 a , the tibia 16 and talus 15 have been resected with the removed portions shown in phantom lines, leaving two planar surfaces 25 ).
  • a planar surface increases the amount of bone available for the fixation of a selected prosthetic base. This provides greater stability and less stress absorption. This also decreases the probability of prosthesis loosening and subsidence.
  • FIG. 3 shows the components of an intramedullary guidance system 10 for providing a desired alignment of the tibia and talar before and while the tibial and/or talar cuts shown in FIG. 2 are made.
  • the system 10 includes an intramedullary guide pin 27 .
  • the intramedullary guide pin is made, e.g., of an inert material used in the surgical arts, such as surgical steel.
  • the guide pin 27 may possess a range of desired diameters 29 , depending upon the function or functions it is intended to perform.
  • the diameter 29 may be relatively small, e.g., about 2 mm to 4 mm, if the pin 27 is to be used principally to form an intramedullary void, as will be described later.
  • the diameter 29 can be made larger, e.g., upwards to about 10 mm, if the pin 27 is to be used to guide passage of a surgical instrument, such as an intramedullary reamer or drill, to form an enlarged intramedullary void, as will also be described later.
  • the guide pin 27 may be introduced through the tibia (as FIG. 4 shows) or through the calcaneus (as FIG. 5 shows). Before the guide pin 27 is introduced, the foot and ankle are first aligned in an acceptable position. One skilled in the art will recognize that this may require surgically opening the ankle joint to loosen contractures (permanent contraction of muscles, ligaments, tendons) and scarring.
  • a minimal exposure 200 is made at the tibial tubercle with an awl. Once the exposure has been made, the exposure may be kept open under distraction, pulling of the skin, or any other method common in the surgical arts.
  • Non invasive visualization of the procedure can be accomplished through fluoroscopy or real time MRI, as well as through other means well known to those skilled in the art. Alternatively, or in conjunction with such less invasive means of visualization, open visualization may be used for part and/or all of the procedure.
  • the guide pin 27 passed through the tibia 16 , the tibial plafond, and enters the talus.
  • the guide pin 27 When introduced through the calcaneus (see FIG. 5 ), the guide pin 27 is placed retrograde through a minimal exposure in the calcaneus 17 .
  • the exposure may be kept open under any method common in the surgical arts and previously discussed.
  • non invasive visualization of the calcaneus approach can be accomplished through fluoroscopy or real time MRI, as well as through other means well known to those skilled in the art.
  • open visualization may be used for part and/or all of the procedure.
  • the guide pin 27 passes through the calcaneus, through the talus 15 , through the tibial plafond, and into the tibial shaft.
  • FIG. 5 a shows, upon removal, the guide pin 27 leaves behind an intramedullary guide void or passage 28 through the region where the tibia adjoins the talus.
  • the passage 28 is sized according to the diameter 29 of the guide pin 27 , or with a reamer to an appropriate size consistent with the size of the bones (the calcaneus, the talus, and the tibia).
  • an anterior section S of the tibia 16 can be removed by cutting, to expose the anterior portion of the ankle joint and the guide passage 28 .
  • the system 10 also includes an intramedullary cutting guide 31 , which is introduced into the ankle through an anterior surgical approach.
  • the intramedullary cutting guide 31 functions to guide the saw blade used to create the planar surfaces 25 on the tibia and/or talus, as shown in FIG. 2 .
  • the cutting guide includes one or more cutting slots 33 , through which the saw blade passes.
  • the cutting guide 31 also includes an intramedullary locating feature, which in the illustrated embodiment takes the form of an intramedullary locating post 35 (see FIG. 3 ).
  • the intramedullary cutting guide 31 may be inserted anteriorly into the ankle joint after the resection of a small amount of bone from the anterior “lip” of the tibia.
  • the alignment post 35 fits into the intramedullary guide passage 28 in both the talus and tibia.
  • the intramedullary post 35 aligns the cutting guide 31 in the desired orientation with the talus 15 and tibia 16 .
  • Intramedullary guidance enables the surgeon to produce bony cuts that more closely approximate the mechanical axis of the leg, which extramedullary guides, cannot do.
  • the upper slot 33 of the cutting guide 31 is aligned with the tibial shaft.
  • the lower slot 33 is aligned in the same direction into the dome of the talus.
  • the intramedullary post 35 maintains alignment as a bone saw is passed through the slots 33 , across the end regions of talus and tibia.
  • the aligned planar surfaces 25 are thereby formed with intramedullary guidance. Removal of the cutting guide 31 exposes these planar surfaces 25 , as FIG. 2 and FIG. 2 a show.
  • intramedullary guidance the cuts are superior to cuts using extramedullary guidance.
  • Extramedullary guidance systems rely on surface bony prominences and visualization of the anterior ankle joint. These landmarks are inconsistent and can misdirect bony cuts by the surgeon.
  • the intramedullary guidance system 10 can be conveniently used with various surgical instruments or prosthetic parts. Because extramedullary alignment is avoided, more precise alignment can be made.
  • the guide pin 27 can serve an additional function, namely, to guide the passage of an intramedullary reaming device or a cannulated drill 30 .
  • the guide pin 27 is used to direct the reaming device 30 over it. A minimally larger exposure will be required on the bottom of the foot to allow the passage of the reaming device or drill bit over the guide pin 27 .
  • the reaming device 30 can be guided by the intramedullary guide pin 27 , either along a superior path, through the tibia and into the talus (as FIG. 4 shows), or along an inferior path, through the calcaneus and talus and into the tibia (as FIG. 5 shows). Guided by the pin 27 , the reaming device 30 leaves behind an enlarged intramedullary void or passage 28 .
  • the guide pin 27 and reaming device 30 may be placed through the tibia or calcaneus simultaneously, or a reaming rod may be placed through the tibia or calcaneus without a guide pin 27 , although it is preferable to use a guide pin.
  • the reamer device 30 is preferably 5, 6, 7, 8, 9, or 10 mm wide, depending on the size of the patient's tibia 16 .
  • the alignment post 35 of the cutting guide 31 is sized to fit into the enlarged reamed intramedullary passage 28 .
  • the post 35 aligns the cutting guide 31 in the desired orientation with the talus and tibia for forming the end cuts, as well maintain the alignment of the reamed intramedullary passage 28 .
  • the size of the alignment post 35 of the cutting guide 31 depends upon how the intramedullary channel is formed. For example, if just a guide pin is used to form the channel, the post 35 will be sized smaller than if an intramedullary reamer is used in forming the channel. If just the guide pin is used to form the channel, straightforward, minimally invasive percutaneous access can be used to insert the guide pin into the calcaneus, into the talus and tibia, thereby forming the relatively small diameter intramedullary channel.
  • An upper prosthesis body may be fixed directly to planar cut of the tibia with or without a tibial stem.
  • a lower prosthesis body of the talus may likewise be fixed directly to the planar cut of the talus, or with a fixation stem into the talus or into both the talus and the calcaneus.
  • the upper and lower prosthesis bodies may be used in combination or singly.
  • stemmed upper or lower prostheses may be located on the planar cuts, either individually or in combination.
  • the reamed intramedullary passage 28 formed in the tibia using the intramedullary guidance system 10 can, e.g., serve to accept a stemmed upper prosthetic body 170 , as FIG. 10 shows.
  • the stemmed upper prosthetic body can take various forms. Certain representative embodiments are found in U.S. patent application Ser. No. 09/694,100, now U.S. Pat. No. 6,663,669, filed Oct. 20, 2000, entitled “Ankle Replacement System,” which is incorporated herein by reference.
  • the upper prosthetic body 170 comprises an elongated tibial stem 150 .
  • the tibial stem 150 may be made of any total joint material or materials commonly used in the prosthetic arts, including, but not limited to, metals, ceramics, titanium, titanium alloys, tantalum, chrome cobalt, surgical steel, or any other total joint replacement metal and/or ceramic, bony in-growth surface, sintered glass, artificial bone, any uncemented metal or ceramic surface, or a combination thereof.
  • the tibial stem 150 may further be covered with one or more coatings such as antimicrobial, antithrombotic, and osteoinductive agents, or a combination thereof. These agents may further be carried in a biodegradable carrier material with which the pores of tibial stem 150 may be impregnated. See U.S. Pat. No. 5,947,893.
  • the tibial stem 150 may be variable lengths, e.g., from 2 cm to 30 cm and variable widths, e.g., from 6 to 12 mm. In the preferred embodiment, the tibial stem 150 is preferably approximately 6 inches in length. Of course, it should be understood that the disclosed tibial stem could be of virtually any length, depending upon the size of the patient, his or her bone dimensions, and the anticipated future mobility of the patient.
  • the upper prosthetic body 170 ′ can comprises a shorter tibial stem 150 ′ having a diameter generally the same size (or slightly larger) than the guide pin that forms the passage 28 .
  • the body 170 ′ can also include several short, spaced apart derotation pegs 171 .
  • the tibial stem 150 may be inserted into the reamed intramedullary passage 28 either superiorly (through the tibia), or inferiorly (through the calcaneus and talus and into the tibia), depending upon the path along which the guide pin 27 and reaming device 30 have followed.
  • the tibial stem 150 when the passage 28 is made by the pin 27 and reaming device 30 superiorly through the tibia, the tibial stem 150 is inserted in a superior path through the tibia.
  • the tibial stem 150 when the passage 28 is made by the pin 27 and reaming device 30 retrograde through the calcaneus, the tibial stem 150 may be introduced inferiorly through the retrograde passage 28 through the calcaneus and talus into the tibia ( FIG. 11 ).
  • the stem 150 is fixed in the lower tibia ( FIG. 13 ).
  • the tibial stem 150 may be fixed in the tibia 16 with poly(methylmethacrylate) bone cement, hydroxyapatite, a ground bone composition, screws, or a combination thereof, or any other fixation materials common to one of skill in the art of prosthetic surgery.
  • An anti-rotational sleeve 406 (see FIG. 12 ) can also be used alone or in combination with other fixation devices.
  • the tibial stem 150 is fixed to the tibia 16 with screws 125 a and 125 b. If screws are used, they can extend anteriorly, posteriorly, medially, laterally and/or at oblique angles, or any combination thereof.
  • a sleeve 406 may be placed about the stem 150 , e.g., as the stem is passed between the talus and tibia.
  • the sleeve 406 engages bone along the passage 28 .
  • the sleeve 406 imparts an anti-rotational feature, including, e.g., outwardly extending fins.
  • the sleeve 406 may be used in combination with the screws or alone without the screws.
  • the distal end of the tibial stem 150 may additionally have interlocking components, common to those of skill in the art, at its lower surface to allow other components of the upper prosthesis body to lock into the tibial stem.
  • the tibial stem 150 has a Morse Taper 115 b at its lower surface to which a concave dome 155 is attached.
  • the dome 155 can be made of a plastic, ceramic, or metal.
  • the dome 115 articulates with the lower ankle joint surface, which can be the talus bone itself or a lower prosthetic body fixed to the talus, as will now be described.
  • a lower prosthetic body can be supported on the talus, either alone or in association with an upper prosthetic body mounted in the tibia.
  • the upper prosthetic body may be stemmed, as just described, or affixed directly to the tibia without use of a stem.
  • the lower prosthetic body may be stemmed or affixed directed to the talus.
  • the stem for the talar component does not extend beyond the inferior surface of the talar.
  • a subtalar joint i.e., the joint formed between talus and calcaneus
  • the subtalar joint may be fused using any method common to those of skill in the surgical arts including, but not limited to, fusion with, for example, poly (methylmethacrylate) bone cement, hydroxyapatite, ground bone and marrow composition, plates, and screws, or a combination thereof.
  • FIG. 14 shows one method of fusing the talus 15 to the calcaneus 17 using a stem 110 , a plate 130 , and screws 133 a, 133 b.
  • the talo-calcaneal stem 110 is shown with a Morse Taper 115 a protruding from the stem 110 and extending beyond the proximal (top) surface of the talus 15 .
  • the Morse Taper could extend down from the talar component into the stem.
  • FIG. 14 also shows an arrangement in which the lower end of the tibia has not been cut and does not carry a prosthesis.
  • the talo-calcaneal stem 110 may be made of various materials commonly used in the prosthetic arts including, but not limited to, titanium, titanium alloys, tantalum, chrome cobalt, surgical steel, or any other total joint replacement metal and/or ceramic, bony in-growth surface, sintered glass, artificial bone, any uncemented metal or ceramic surface, or a combination thereof.
  • the talo-calcaneal stem 110 may further be covered with various coatings such as antimicrobial, antithrombotic, and osteoinductive agents, or a combination thereof. These agents may further be carried in a biodegradable carrier material with which the pores of the surface of the talo-calcaneal stem 110 may be impregnated. See U.S. Pat. No.
  • the talo-calcaneal stem may be coated and/or formed from a material allowing bony in-growth, such as a porous mesh, hydroxyapetite, or other porous surface.
  • the talo-calcaneal stem 110 may be any size or shape deemed appropriate to fuse the subtalar joint of a patient and is desirably selected by the physician taking into account the morphology and geometry of the site to be treated.
  • the stem 110 may be of variable lengths, from 2 cm to 12 cm, and variable widths, from 4 to 14 mm.
  • the talo-calcaneal stem 110 is approximately 65 to 75 mm in length and approximately 7 to 10 mm wide. While in the disclosed embodiment the stem 110 has a circular cross-section, it should be understood that the stem could formed in various other cross-sectional geometries, including, but not limited to, elliptical, polygonal, irregular, or some combination thereof.
  • the stem could be arced to reduce and/or prevent rotation, and could be of constant or varying cross-sectional widths.
  • the physician is desirably able to select the desired size and/or shape based upon prior analysis of the morphology of the target bone(s) using, for example, plain film x-ray, fluoroscopic x-ray, or MRI or CT scanning.
  • the size and/or shape is selected to optimize support and/or bonding of the stem to the surrounding bone(s).
  • the talo-calcaneal stem 110 can be passed from the top of the talus 15 into the distal calcaneus 17 through a cavity 601 that is drilled through the talus 15 and calcaneus 17 .
  • the cavity 601 is preferably drilled after the surface of the talus 15 has cut and flattened, and after the location of the upper prosthesis body.
  • a suitable jig 600 may be placed in the joint to assist with locating and placing the cavity 601 .
  • Certain representative embodiments are found in U.S. patent application Ser. No. 09/694,100, now U.S. Pat. No. 6,663,669, filed Oct. 20, 2000, entitled “Ankle Replacement System,” which is incorporated herein by reference.
  • the jig 600 includes a drill guide 620 and a post 610 that, in use, rests in the intramedullary passage 28 (see FIGS. 9 a and 9 b ).
  • the drill guide 620 can extend from posterior to anterior (as FIG. 9 shows), or alternatively, from anterior to posterior.
  • the drill bit 603 for the jig 600 (see FIG. 9 a ) is preferably about 1 ⁇ 2 mm wider than the width of the talo-calcaneal stem 110 .
  • the talo-calcaneal stem 110 may be further adapted so that the talo-calcaneal stem 110 is inserted as the cavity is being drilled or so that the talo-calcaneal stem itself is used to drill the hole.
  • any easily accessed cartilage from the talo-calcaneal joint may be scraped, e.g., using a small angled curet or any other instrument commonly used in the surgical arts.
  • the subtalar joint can then be fused by passing a talo-calcaneal stem 110 down the cavity 601 .
  • the cavity 601 may be partially filled with a bone cement prior to the installation of the talo-calcaneal stem 110 to help fix the talo-calcaneal stem 110 to the subtalar joint.
  • the stem 110 incorporates screw holes or other openings to accommodate interlocking hardware, such as screws, to increase fixation and minimize rotation.
  • the stem 110 desirably includes a Morse Taper 115 a.
  • a cap 160 a fits on the Morse Taper 115 a to form an articulating joint surface with the upper prosthesis.
  • the upper surface of the cap 160 can be designed to fit the particular needs and walking requirements anticipated by the physician and patient.
  • a low demand surface such as for an individual of advanced years having a less-active lifestyle, could comprise a simple smooth arc, without the “peaks and valleys” of the talus 15 that run from anterior to posterior.
  • a low demand surface may not require a difference in the anterior to posterior talar width, which in an adult male can be approximately 4 to 5 mm wider in its anterior portion than its posterior portion.
  • a higher demand surface, for a more active individual may incorporate the trochlea (valley) in the talus as well as various other anatomical features found on the talus.
  • the stem 110 a extends downward from the cap 160 a, forming an angle ⁇ 0 relative to the vertical axis—taken relative to the longitudinal axis of cap 160 a (front to rear of the foot).
  • the angle ⁇ 0 will range from 105° to 205°, depending upon the size and orientation of the calcaneus 17 as well as the position of the lower prosthesis body.
  • the stem may form an angle ⁇ 0 relative to the vertical axis—taken relative to the transverse axis of the cap 160 b (medial to lateral side of the foot).
  • the angle ⁇ 0 will range from 155° (on the medial side of the foot) to 240° (on the lateral side of the foot), depending upon the size and orientation of the calcaneus 17 as well as the position of the lower prosthesis body. Desirably, the lower portion of the stem of the implant will not extend outside of the calcaneus.
  • a plate 130 may be fixed to the top of the talus 15 .
  • the plate 130 can have an overhang portion 131 which allows the plate 130 to overlap both the talus 15 and part of the calcaneus 17 .
  • the plate 130 and overhang portion 131 may be made of various materials commonly used in the prosthetic arts including, but not limited to, polyethylene, biologic type polymers, hydroxyapetite, rubber, titanium, titanium alloys, tantalum, chrome cobalt, surgical steel, or any other total joint replacement metal and/or ceramic, bony in-growth surface, sintered glass, artificial bone, any porous metal coat, metal meshes and trabeculations, metal screens, uncemented metal or ceramic surface, other bio-compatible materials, or any combination thereof.
  • the plate 130 and overhang portion 131 may further be covered with various coatings such as antimicrobial, antithrombogenic, and osteoinductive agents, or a combination thereof. See U.S. Pat. No. 5,866,113 to Hendriks, et al, incorporated herein by reference. These agents may further be carried in a biodegradable carrier material with which the pores of the plate 130 and overhang portion 131 may be impregnated.
  • the tray comprises a metal-backed polyethylene component.
  • the plate 130 and/or the overhang portion 131 may be fixed to the subtalar joint 90 with poly(methylmethacrylate) bone cement, hydroxyapatite, a ground bone and marrow composition, screws, or a combination thereof, or any other fixation materials common to one of skill in the art of joint replacement surgery.
  • the plate 130 and overhang portion 131 are fitted over the Morse Taper 115 a of the talo-calcaneal stem 110 and fixed to the talus 15 and calcaneus 17 with screws 133 a and 133 b.
  • the posterior overhang portion 131 can be eliminated.
  • the lower prosthesis body may be formed in a single unit or, as illustrated, as a multi-component prosthesis.
  • the upper prosthesis body may additionally comprise a fibular prosthesis of any variety known in the art of joint replacement.
  • the fibular prosthesis would replace the inferior end of the fibula, especially when this prosthesis is used to revise a total ankle replacement system that has removed the distal end of the fibula.
  • either the lower prosthesis body, upper prosthesis body, or both, as described above may be fixed into strengthened or fortified bone.
  • the bones of the subtalar joint, tibia, or fibula may be strengthened prior to or during fixation of the prosthesis using the methods described in U.S. Pat. No. 5,827,289 to Reiley. This type of bone strengthening procedure is particularly suggested for osteoporotic patients who wish to have a total ankle replacement.
  • installed prosthetic system need not include a calcaneal stem.
  • the system would only include the tibial stem, the tibial component and the talar component.
  • the installed prosthetic system need not include a tibial stem component.
  • the system would include the tibial component without the Morse Taper attachments on its superior surface, the talar component, and the calcaneal stem component.
  • the installed prosthetic system need not include any stemmed component being utilized.
  • the intramedullary guidance system 10 deployed either superiorly from the tibia, or inferiorly from the calcaneus, would still provide intramedullary alignment of the tibial and talar cuts.
  • the tibial component and the talar component would be utilized, without Morse Taper stems or holes on either implant, but the intramedullary guidance system would still be used to insure properly aligned cuts in the talus and tibia.
  • the devices and methods of the present invention could be used as an index (initial) total ankle replacement, as well as a revision ankle replacement. If used as a revision device, only a portion of the disclosed methods and devices may be necessary in conjunction with such a procedure.

Landscapes

  • Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Dentistry (AREA)
  • Neurology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Prostheses (AREA)

Abstract

An ankle implant for use in ankle arthroplasty in total ankle replacement is provided. The implant includes an upper prosthesis anchored to the tibia and a lower prosthesis anchored to the talus. The lower prosthesis is operable associated with the upper prosthesis. The implant also includes a stem which is rigidly removably connected to the second member. The stem includes a portion for attachment to the calcaneous. The stem is be adapted to be in a first position in the calcaneous when the stem is in a first relative position with respect to the lower prosthesis, and to provide for a second position in the calcaneous when the stem is in a second relative position with respect to the lower prosthesis.

Description

    RELATED APPLICATIONS
  • This application is a division of co-pending U.S. patent application Ser. No. 11/038,803, filed Jan. 19, 2005, which is a division of U.S. patent application Ser. No. 10/699,999, filed Nov. 3, 2003 (now U.S. Pat. No. 6,875,236), which is a division of U.S. patent application Ser. No. 09/935,479, filed Aug. 23, 2001 (now U.S. Pat. No. 6,673,116), which is a continuation-in-part of U.S. patent application Ser. No. 09/694,100, filed Oct. 20, 2000 (now U.S. Pat. No. 6,663,669), which claims the benefit of U.S. Provisional Patent Application Ser. No. 60/160,892, filed Oct. 22, 1999, all of which are incorporated herein by reference.
  • FIELD OF THE INVENTION
  • The invention relates to ankle replacement prostheses, systems, and associated surgical procedures.
  • BACKGROUND OF THE INVENTION
  • Until the early to mid 1970's, patients with injured or diseased ankle joints commonly resulting from osteoarthritis (age-related wear of the joints), or rheumatoid arthritis (generalized joint inflammation causing destructive changes), or traumatic arthritis (damage to a joint from a direct injury), had few satisfactory options when their ankle joints failed. Non-surgical options included weight loss, activity modification, medication, injections, braces and therapeutic shoes. The available surgical techniques included ankle arthroscopy (endoscopic examination of the joint), ankle arthrotomy (cutting into the joint to expose the interior) and debridement (opening the joint and removing bone spurs), osteotomy (cutting the bone to realign the joint), ankle fusion (removing the joint and making it stiff), and total ankle arthroplasty (removing the ankle joint and replacing it with an artificial substitute).
  • Many of the prior art surgical procedures were riddled with problems for the patient. While early success was realized, there was a high long-term term failure rate due to complications such as infection, loosening, and collapse, which lead to additional extensive surgical procedures.
  • Previous ankle replacement systems typically include a talar member, fixed to the talus, as one of their main functioning components. The talus, however, is relatively small, providing a small area of bone for fixation. Also, in most of these ankle replacement systems, the talar component is cemented to the talus. The combination of fixation with bone cement to a small fixation area allows for erosion of the cement from the fixation area and an increase in compliance due to formation of a soft tissue capsule over time. This contributes to aseptic loosening and migration of the device.
  • Previous ankle replacement systems are typically installed through incisions made at or near the ankle and make use of extramedullary alignment and guidance techniques. Such surgical procedures require making large incisions at the ankle, moving the tendons and other soft tissue aside; and separating the tibia and fibula from the talus—essentially detaching the foot from the leg—to install the device. Such procedures subsequently require complicated extramedullary realignment and reattachment of the foot. These procedures commonly result in infection and extended healing time with possible replacement failure from improper extramedullary realignment. The surgery also has increased risks associated with cutting or damaging neighboring nerves and tendons which may lead to further complications.
  • There remains a need for a total ankle replacement system that reduces the occurrence of subsidence and aseptic loosening while retaining the majority of the foot's natural motion.
  • SUMMARY OF THE INVENTION
  • The invention provides an implant for use in ankle arthroplasty which overcomes the problems and disadvantages associated with current strategies and systems in total ankle replacement (TAR).
  • The present invention may include a first member anchored to the tibia and a second member anchored to the talus and operable associated with the first member. The invention may also include a third member which is rigidly removably connected to the second member. The third member may include a portion for attachment to the calcaneous. The third member may be adapted to be in a first position in the calcaneous when the third member is in a first relative position with respect to the second member, and to provide for a second position in the calcaneous when the third member is in a second relative position with respect to the second member.
  • The present invention may also include a fourth member which is rigidly removably connected to the second member. The fourth member may have at least one dimension which is different than a dimension of the third member, such that the fourth and third members are interchangeable.
  • Another object of the invention is to provide a method or providing ankle arthroplasty. The method may include providing a prosthesis kit including a tibial component, a bearing component, a talar articulating component, a first talar mounting component, and a second talar mounting component. The second talar mounting component has at least one dimension different than the first talar mounting component. The method may further include preparing the talar cavity and the tibia cavity. The method may further include implanting the tibial component into the tibial cavity. The method may further include selecting either the first talar mounting component or the second talar mounting component and implanting the selected talar mounting component into the talar cavity. The method may further include positioning the bearing component between the tibial component and the selected talar mounting component.
  • Other objects, advantages, and embodiments of the invention are set forth in part in the description which follows, and in part, will be obvious from this description, or may be learned from the practice of the invention.
  • DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a view of the lower leg and foot skeleton.
  • FIG. 2 is a lateral view of a human foot and lower leg skeleton with the fibula shown in an assembly format and having a planarly resected tibia and talus.
  • FIG. 2 a is a posterior view of a human foot and lower leg skeleton with the fibula not shown and planar cuts of the tibia and talus are depicted.
  • FIG. 3 shows an intramedullary guidance system for providing intramedullary alignment of the tibial and/or talar cuts, one end of the system being oriented toward the tibia and the other end oriented toward the talus.
  • FIG. 4 is a lateral view of a lower leg and foot demonstrating the intramedullary insertion of a guide pin through the superior part of the tibia and terminating in the talus.
  • FIG. 5 is a lateral view of a lower leg and foot demonstrating the intramedullary insertion of a guide pin through the plantar surface of the calcaneus, passing through the talus and terminating in the tibia at variable lengths.
  • FIG. 5 a is a sectional view of a foot and depicts the insertion and removal of a guide pin through the plantar surface of the calcaneus, passing through the talus and terminating in the tibia, to produce an intramedullary channel, which may be made of various dimensions by using the guide pin to also direct the course of intramedullary reamers.
  • FIG. 6 is a lateral sectional view of the lower leg and foot showing the guide pin surrounded by the reaming instrument creating the intramedullary passage.
  • FIG. 7 is a lateral view and partial cross section of the human lower leg and foot showing the intramedullary channel and a resected portion of the anterior lower tibia to allow easier insertion of an intramedullary cutting guide.
  • FIG. 8 is a posterior section of the lower leg and foot with the fibula not shown and depicting the insertion of the intramedullary cutting guide between the tibia and the talus.
  • FIG. 9 is a perspective view of a talo-calcaneal reaming jig.
  • FIG. 9 a is a lateral/partial sectional view depicting the insertion of the reaming tool in the talo-calcaneal reaming jig for the posteriorly directed inferior stem to help support the talar component (the drill hole and stem can be only in the talus or extend into the calcaneus for increased stability, and the anterior-posterior position of the talar support stem can be variable).
  • FIG. 9 b is a cross-sectional view of the talo calcaneal jig and channel as positioned on the talus.
  • FIG. 9 c is a sectional view of resultant channel after the jig is removed, also showing the talar support stem.
  • FIG. 10 is a lateral cross-sectional view of the upper prosthetic body, showing the tibial stem and tibial component.
  • FIG. 10 a is a side view of an alternative embodiment of an upper prosthetic body with a shorter tibial stem than shown in FIG. 10.
  • FIG. 11 shows the insertion of a tibial stem through the calcaneus and talus, and (if needed) through an anti-rotational sleeve.
  • FIG. 12 is a perspective view of the optional anti-rotational sleeve for the tibial stem.
  • FIG. 13 is a lateral cross sectional view of the tibial stem in the lower tibia and fixed with screws and (optionally) with the anti-rotational sleeve.
  • FIG. 14 shows a lateral cross sectional view of a lower prosthetic body in the foot, including the talar component with posterior fixation blade (if needed), talar fixation stem (extending into the calcaneus), and anterior talo-calcaneal fixation screws.
  • FIG. 15 shows both the upper and lower prosthetic bodies.
  • FIG. 16 shows an alternative lower prosthetic unit, with talar fixation stem at various angles.
  • FIG. 17 shows another alternative lower prosthetic unit, with talar fixation stem at various angles.
  • DESCRIPTION OF THE INVENTION I. Anatomy of the Ankle
  • Referring to FIG. 1, the foot comprises fourteen phalanges or toe bones 11 connected to the metatarsus bones 13. There are also seven tarsal bones 14, of which the talus 15 supports the tibia 16 and the fibula 18, and the heel bone or calcaneus 17. Of the tarsal bones, the talus 15 and the calcaneus 17 are the largest and are adjacent to each other. The other tarsal bones include the navicular 19, three cuneiforms 21, and the cuboid 23.
  • II. Intramedullary Guidance System
  • In performing a total ankle replacement procedure, it is desirable to cut away bone on the inferior end of the tibia 16 and/or the superior end of the talus 15, to thereby form a planar surface or surfaces 25, as FIG. 2 and FIG. 2 a shows (in FIG. 2 a, the tibia 16 and talus 15 have been resected with the removed portions shown in phantom lines, leaving two planar surfaces 25).
  • A planar surface increases the amount of bone available for the fixation of a selected prosthetic base. This provides greater stability and less stress absorption. This also decreases the probability of prosthesis loosening and subsidence.
  • FIG. 3 shows the components of an intramedullary guidance system 10 for providing a desired alignment of the tibia and talar before and while the tibial and/or talar cuts shown in FIG. 2 are made.
  • As shown in FIG. 3, the system 10 includes an intramedullary guide pin 27. The intramedullary guide pin is made, e.g., of an inert material used in the surgical arts, such as surgical steel. The guide pin 27 may possess a range of desired diameters 29, depending upon the function or functions it is intended to perform.
  • For example, the diameter 29 may be relatively small, e.g., about 2 mm to 4 mm, if the pin 27 is to be used principally to form an intramedullary void, as will be described later. The diameter 29 can be made larger, e.g., upwards to about 10 mm, if the pin 27 is to be used to guide passage of a surgical instrument, such as an intramedullary reamer or drill, to form an enlarged intramedullary void, as will also be described later.
  • In use, the guide pin 27 may be introduced through the tibia (as FIG. 4 shows) or through the calcaneus (as FIG. 5 shows). Before the guide pin 27 is introduced, the foot and ankle are first aligned in an acceptable position. One skilled in the art will recognize that this may require surgically opening the ankle joint to loosen contractures (permanent contraction of muscles, ligaments, tendons) and scarring.
  • When introduced through the tibia (see FIG. 4), a minimal exposure 200 is made at the tibial tubercle with an awl. Once the exposure has been made, the exposure may be kept open under distraction, pulling of the skin, or any other method common in the surgical arts. Non invasive visualization of the procedure can be accomplished through fluoroscopy or real time MRI, as well as through other means well known to those skilled in the art. Alternatively, or in conjunction with such less invasive means of visualization, open visualization may be used for part and/or all of the procedure.
  • In this approach, the guide pin 27 passed through the tibia 16, the tibial plafond, and enters the talus.
  • When introduced through the calcaneus (see FIG. 5), the guide pin 27 is placed retrograde through a minimal exposure in the calcaneus 17. The exposure may be kept open under any method common in the surgical arts and previously discussed. As with the tibial approach, non invasive visualization of the calcaneus approach can be accomplished through fluoroscopy or real time MRI, as well as through other means well known to those skilled in the art. Alternatively, or in conjunction with such less invasive means of visualization, open visualization may be used for part and/or all of the procedure.
  • In this approach, the guide pin 27 passes through the calcaneus, through the talus 15, through the tibial plafond, and into the tibial shaft.
  • As FIG. 5 a shows, upon removal, the guide pin 27 leaves behind an intramedullary guide void or passage 28 through the region where the tibia adjoins the talus. The passage 28 is sized according to the diameter 29 of the guide pin 27, or with a reamer to an appropriate size consistent with the size of the bones (the calcaneus, the talus, and the tibia).
  • As FIG. 7 shows, once the passage 28 is formed, an anterior section S of the tibia 16 can be removed by cutting, to expose the anterior portion of the ankle joint and the guide passage 28.
  • As shown in FIG. 3, the system 10 also includes an intramedullary cutting guide 31, which is introduced into the ankle through an anterior surgical approach. In use, the intramedullary cutting guide 31 functions to guide the saw blade used to create the planar surfaces 25 on the tibia and/or talus, as shown in FIG. 2. For this purpose, the cutting guide includes one or more cutting slots 33, through which the saw blade passes. As shown in FIG. 3, the cutting guide 31 also includes an intramedullary locating feature, which in the illustrated embodiment takes the form of an intramedullary locating post 35 (see FIG. 3).
  • In use (see FIG. 8), the intramedullary cutting guide 31 may be inserted anteriorly into the ankle joint after the resection of a small amount of bone from the anterior “lip” of the tibia. The alignment post 35 fits into the intramedullary guide passage 28 in both the talus and tibia. The intramedullary post 35 aligns the cutting guide 31 in the desired orientation with the talus 15 and tibia 16. Intramedullary guidance enables the surgeon to produce bony cuts that more closely approximate the mechanical axis of the leg, which extramedullary guides, cannot do.
  • Oriented by the intramedullary post 35, the upper slot 33 of the cutting guide 31 is aligned with the tibial shaft. The lower slot 33 is aligned in the same direction into the dome of the talus. The intramedullary post 35 maintains alignment as a bone saw is passed through the slots 33, across the end regions of talus and tibia. The aligned planar surfaces 25 are thereby formed with intramedullary guidance. Removal of the cutting guide 31 exposes these planar surfaces 25, as FIG. 2 and FIG. 2 a show. With intramedullary guidance, the cuts are superior to cuts using extramedullary guidance. Extramedullary guidance systems rely on surface bony prominences and visualization of the anterior ankle joint. These landmarks are inconsistent and can misdirect bony cuts by the surgeon.
  • The intramedullary guidance system 10 can be conveniently used with various surgical instruments or prosthetic parts. Because extramedullary alignment is avoided, more precise alignment can be made.
  • For example, as shown in FIG. 6, prior to removal of the guide pin 27 and the use of the cutting guide 31 to form the tibial and talar cuts, the guide pin 27 can serve an additional function, namely, to guide the passage of an intramedullary reaming device or a cannulated drill 30. In this arrangement, the guide pin 27 is used to direct the reaming device 30 over it. A minimally larger exposure will be required on the bottom of the foot to allow the passage of the reaming device or drill bit over the guide pin 27.
  • Depending upon the manner in which the guide pin 27 is inserted, the reaming device 30 can be guided by the intramedullary guide pin 27, either along a superior path, through the tibia and into the talus (as FIG. 4 shows), or along an inferior path, through the calcaneus and talus and into the tibia (as FIG. 5 shows). Guided by the pin 27, the reaming device 30 leaves behind an enlarged intramedullary void or passage 28.
  • Alternatively, the guide pin 27 and reaming device 30 may be placed through the tibia or calcaneus simultaneously, or a reaming rod may be placed through the tibia or calcaneus without a guide pin 27, although it is preferable to use a guide pin. The reamer device 30 is preferably 5, 6, 7, 8, 9, or 10 mm wide, depending on the size of the patient's tibia 16.
  • In this arrangement, the alignment post 35 of the cutting guide 31 is sized to fit into the enlarged reamed intramedullary passage 28. As before described, the post 35 aligns the cutting guide 31 in the desired orientation with the talus and tibia for forming the end cuts, as well maintain the alignment of the reamed intramedullary passage 28.
  • The size of the alignment post 35 of the cutting guide 31 depends upon how the intramedullary channel is formed. For example, if just a guide pin is used to form the channel, the post 35 will be sized smaller than if an intramedullary reamer is used in forming the channel. If just the guide pin is used to form the channel, straightforward, minimally invasive percutaneous access can be used to insert the guide pin into the calcaneus, into the talus and tibia, thereby forming the relatively small diameter intramedullary channel.
  • An upper prosthesis body may be fixed directly to planar cut of the tibia with or without a tibial stem. A lower prosthesis body of the talus may likewise be fixed directly to the planar cut of the talus, or with a fixation stem into the talus or into both the talus and the calcaneus. The upper and lower prosthesis bodies may be used in combination or singly. As will now be described in greater detail later, stemmed upper or lower prostheses may be located on the planar cuts, either individually or in combination.
  • III. Stemmed Upper Prosthetic Device
  • The reamed intramedullary passage 28 formed in the tibia using the intramedullary guidance system 10 can, e.g., serve to accept a stemmed upper prosthetic body 170, as FIG. 10 shows. The stemmed upper prosthetic body can take various forms. Certain representative embodiments are found in U.S. patent application Ser. No. 09/694,100, now U.S. Pat. No. 6,663,669, filed Oct. 20, 2000, entitled “Ankle Replacement System,” which is incorporated herein by reference.
  • In one embodiment (FIG. 10), the upper prosthetic body 170 comprises an elongated tibial stem 150. The tibial stem 150 may be made of any total joint material or materials commonly used in the prosthetic arts, including, but not limited to, metals, ceramics, titanium, titanium alloys, tantalum, chrome cobalt, surgical steel, or any other total joint replacement metal and/or ceramic, bony in-growth surface, sintered glass, artificial bone, any uncemented metal or ceramic surface, or a combination thereof. The tibial stem 150 may further be covered with one or more coatings such as antimicrobial, antithrombotic, and osteoinductive agents, or a combination thereof. These agents may further be carried in a biodegradable carrier material with which the pores of tibial stem 150 may be impregnated. See U.S. Pat. No. 5,947,893.
  • The tibial stem 150 may be variable lengths, e.g., from 2 cm to 30 cm and variable widths, e.g., from 6 to 12 mm. In the preferred embodiment, the tibial stem 150 is preferably approximately 6 inches in length. Of course, it should be understood that the disclosed tibial stem could be of virtually any length, depending upon the size of the patient, his or her bone dimensions, and the anticipated future mobility of the patient. For example, as FIG. 10 a shows, the upper prosthetic body 170′ can comprises a shorter tibial stem 150′ having a diameter generally the same size (or slightly larger) than the guide pin that forms the passage 28. The body 170′ can also include several short, spaced apart derotation pegs 171.
  • The tibial stem 150 may be inserted into the reamed intramedullary passage 28 either superiorly (through the tibia), or inferiorly (through the calcaneus and talus and into the tibia), depending upon the path along which the guide pin 27 and reaming device 30 have followed.
  • For example, as depicted in FIG. 4, when the passage 28 is made by the pin 27 and reaming device 30 superiorly through the tibia, the tibial stem 150 is inserted in a superior path through the tibia. Alternately, as depicted in FIGS. 11 to 13, when the passage 28 is made by the pin 27 and reaming device 30 retrograde through the calcaneus, the tibial stem 150 may be introduced inferiorly through the retrograde passage 28 through the calcaneus and talus into the tibia (FIG. 11).
  • The stem 150 is fixed in the lower tibia (FIG. 13). The tibial stem 150 may be fixed in the tibia 16 with poly(methylmethacrylate) bone cement, hydroxyapatite, a ground bone composition, screws, or a combination thereof, or any other fixation materials common to one of skill in the art of prosthetic surgery. An anti-rotational sleeve 406 (see FIG. 12) can also be used alone or in combination with other fixation devices.
  • In a preferred embodiment, the tibial stem 150 is fixed to the tibia 16 with screws 125 a and 125 b. If screws are used, they can extend anteriorly, posteriorly, medially, laterally and/or at oblique angles, or any combination thereof.
  • Optionally, a sleeve 406 (see FIGS. 11 and 12) may be placed about the stem 150, e.g., as the stem is passed between the talus and tibia. The sleeve 406 engages bone along the passage 28. The sleeve 406 imparts an anti-rotational feature, including, e.g., outwardly extending fins. The sleeve 406 may be used in combination with the screws or alone without the screws.
  • The distal end of the tibial stem 150 may additionally have interlocking components, common to those of skill in the art, at its lower surface to allow other components of the upper prosthesis body to lock into the tibial stem. In a preferred embodiment, the tibial stem 150 has a Morse Taper 115 b at its lower surface to which a concave dome 155 is attached. The dome 155 can be made of a plastic, ceramic, or metal. The dome 115 articulates with the lower ankle joint surface, which can be the talus bone itself or a lower prosthetic body fixed to the talus, as will now be described.
  • IV. Stemmed Lower Prosthesis Body
  • A lower prosthetic body can be supported on the talus, either alone or in association with an upper prosthetic body mounted in the tibia. The upper prosthetic body may be stemmed, as just described, or affixed directly to the tibia without use of a stem. Likewise, the lower prosthetic body may be stemmed or affixed directed to the talus. Certain representative embodiments are found in U.S. patent application Ser. No. 09/694,100, now U.S. Pat. No. 6,663,669, filed Oct. 20, 2000, entitled “Ankle Replacement System,” which is incorporated herein by reference.
  • In one embodiment, the stem for the talar component does not extend beyond the inferior surface of the talar. In another embodiment, a subtalar joint (i.e., the joint formed between talus and calcaneus) is fused to allow fixation of the lower prosthesis body to both the talus and calcaneus. The subtalar joint may be fused using any method common to those of skill in the surgical arts including, but not limited to, fusion with, for example, poly (methylmethacrylate) bone cement, hydroxyapatite, ground bone and marrow composition, plates, and screws, or a combination thereof.
  • FIG. 14 shows one method of fusing the talus 15 to the calcaneus 17 using a stem 110, a plate 130, and screws 133 a, 133 b. The talo-calcaneal stem 110 is shown with a Morse Taper 115 a protruding from the stem 110 and extending beyond the proximal (top) surface of the talus 15. In another embodiment, the Morse Taper could extend down from the talar component into the stem. FIG. 14 also shows an arrangement in which the lower end of the tibia has not been cut and does not carry a prosthesis.
  • The talo-calcaneal stem 110 may be made of various materials commonly used in the prosthetic arts including, but not limited to, titanium, titanium alloys, tantalum, chrome cobalt, surgical steel, or any other total joint replacement metal and/or ceramic, bony in-growth surface, sintered glass, artificial bone, any uncemented metal or ceramic surface, or a combination thereof. The talo-calcaneal stem 110 may further be covered with various coatings such as antimicrobial, antithrombotic, and osteoinductive agents, or a combination thereof. These agents may further be carried in a biodegradable carrier material with which the pores of the surface of the talo-calcaneal stem 110 may be impregnated. See U.S. Pat. No. 5,947,893, which is incorporated herein by reference. If desired, the talo-calcaneal stem may be coated and/or formed from a material allowing bony in-growth, such as a porous mesh, hydroxyapetite, or other porous surface.
  • The talo-calcaneal stem 110 may be any size or shape deemed appropriate to fuse the subtalar joint of a patient and is desirably selected by the physician taking into account the morphology and geometry of the site to be treated. For example, the stem 110 may be of variable lengths, from 2 cm to 12 cm, and variable widths, from 4 to 14 mm. In a preferred embodiment, the talo-calcaneal stem 110 is approximately 65 to 75 mm in length and approximately 7 to 10 mm wide. While in the disclosed embodiment the stem 110 has a circular cross-section, it should be understood that the stem could formed in various other cross-sectional geometries, including, but not limited to, elliptical, polygonal, irregular, or some combination thereof. In addition, the stem could be arced to reduce and/or prevent rotation, and could be of constant or varying cross-sectional widths.
  • The physician is desirably able to select the desired size and/or shape based upon prior analysis of the morphology of the target bone(s) using, for example, plain film x-ray, fluoroscopic x-ray, or MRI or CT scanning. The size and/or shape is selected to optimize support and/or bonding of the stem to the surrounding bone(s).
  • As FIGS. 9 a to 9 c show, the talo-calcaneal stem 110 can be passed from the top of the talus 15 into the distal calcaneus 17 through a cavity 601 that is drilled through the talus 15 and calcaneus 17. The cavity 601 is preferably drilled after the surface of the talus 15 has cut and flattened, and after the location of the upper prosthesis body.
  • A suitable jig 600 (see FIG. 9) may be placed in the joint to assist with locating and placing the cavity 601. Certain representative embodiments are found in U.S. patent application Ser. No. 09/694,100, now U.S. Pat. No. 6,663,669, filed Oct. 20, 2000, entitled “Ankle Replacement System,” which is incorporated herein by reference. The jig 600 includes a drill guide 620 and a post 610 that, in use, rests in the intramedullary passage 28 (see FIGS. 9 a and 9 b). The drill guide 620 can extend from posterior to anterior (as FIG. 9 shows), or alternatively, from anterior to posterior.
  • The drill bit 603 for the jig 600 (see FIG. 9 a) is preferably about ½ mm wider than the width of the talo-calcaneal stem 110. The talo-calcaneal stem 110 may be further adapted so that the talo-calcaneal stem 110 is inserted as the cavity is being drilled or so that the talo-calcaneal stem itself is used to drill the hole.
  • Once the cavity 601 is formed, any easily accessed cartilage from the talo-calcaneal joint may be scraped, e.g., using a small angled curet or any other instrument commonly used in the surgical arts. The subtalar joint can then be fused by passing a talo-calcaneal stem 110 down the cavity 601. The cavity 601 may be partially filled with a bone cement prior to the installation of the talo-calcaneal stem 110 to help fix the talo-calcaneal stem 110 to the subtalar joint. Desirably, the stem 110 incorporates screw holes or other openings to accommodate interlocking hardware, such as screws, to increase fixation and minimize rotation.
  • The stem 110 desirably includes a Morse Taper 115 a. A cap 160 a fits on the Morse Taper 115 a to form an articulating joint surface with the upper prosthesis. The upper surface of the cap 160 can be designed to fit the particular needs and walking requirements anticipated by the physician and patient. For example, a low demand surface, such as for an individual of advanced years having a less-active lifestyle, could comprise a simple smooth arc, without the “peaks and valleys” of the talus 15 that run from anterior to posterior. In addition, a low demand surface may not require a difference in the anterior to posterior talar width, which in an adult male can be approximately 4 to 5 mm wider in its anterior portion than its posterior portion. A higher demand surface, for a more active individual, may incorporate the trochlea (valley) in the talus as well as various other anatomical features found on the talus.
  • Desirably, as best seen in FIG. 16, the stem 110 a extends downward from the cap 160 a, forming an angle α0 relative to the vertical axis—taken relative to the longitudinal axis of cap 160 a (front to rear of the foot). In one embodiment, the angle α0 will range from 105° to 205°, depending upon the size and orientation of the calcaneus 17 as well as the position of the lower prosthesis body. Moreover, as best seen in FIG. 17, the stem may form an angle β0 relative to the vertical axis—taken relative to the transverse axis of the cap 160 b (medial to lateral side of the foot). In a preferred embodiment, the angle β0 will range from 155° (on the medial side of the foot) to 240° (on the lateral side of the foot), depending upon the size and orientation of the calcaneus 17 as well as the position of the lower prosthesis body. Desirably, the lower portion of the stem of the implant will not extend outside of the calcaneus.
  • As shown in FIG. 14, a plate 130 may be fixed to the top of the talus 15. The plate 130 can have an overhang portion 131 which allows the plate 130 to overlap both the talus 15 and part of the calcaneus 17. The plate 130 and overhang portion 131 may be made of various materials commonly used in the prosthetic arts including, but not limited to, polyethylene, biologic type polymers, hydroxyapetite, rubber, titanium, titanium alloys, tantalum, chrome cobalt, surgical steel, or any other total joint replacement metal and/or ceramic, bony in-growth surface, sintered glass, artificial bone, any porous metal coat, metal meshes and trabeculations, metal screens, uncemented metal or ceramic surface, other bio-compatible materials, or any combination thereof. The plate 130 and overhang portion 131 may further be covered with various coatings such as antimicrobial, antithrombogenic, and osteoinductive agents, or a combination thereof. See U.S. Pat. No. 5,866,113 to Hendriks, et al, incorporated herein by reference. These agents may further be carried in a biodegradable carrier material with which the pores of the plate 130 and overhang portion 131 may be impregnated. In one preferred embodiment, the tray comprises a metal-backed polyethylene component.
  • The plate 130 and/or the overhang portion 131 may be fixed to the subtalar joint 90 with poly(methylmethacrylate) bone cement, hydroxyapatite, a ground bone and marrow composition, screws, or a combination thereof, or any other fixation materials common to one of skill in the art of joint replacement surgery. In a preferred embodiment, the plate 130 and overhang portion 131 are fitted over the Morse Taper 115 a of the talo-calcaneal stem 110 and fixed to the talus 15 and calcaneus 17 with screws 133 a and 133 b. In another embodiment, the posterior overhang portion 131 can be eliminated.
  • The lower prosthesis body may be formed in a single unit or, as illustrated, as a multi-component prosthesis.
  • In other embodiments, the upper prosthesis body may additionally comprise a fibular prosthesis of any variety known in the art of joint replacement. The fibular prosthesis would replace the inferior end of the fibula, especially when this prosthesis is used to revise a total ankle replacement system that has removed the distal end of the fibula. In still further embodiments, either the lower prosthesis body, upper prosthesis body, or both, as described above, may be fixed into strengthened or fortified bone. The bones of the subtalar joint, tibia, or fibula may be strengthened prior to or during fixation of the prosthesis using the methods described in U.S. Pat. No. 5,827,289 to Reiley. This type of bone strengthening procedure is particularly suggested for osteoporotic patients who wish to have a total ankle replacement.
  • It should be appreciated that installed prosthetic system need not include a calcaneal stem. Thus, the system would only include the tibial stem, the tibial component and the talar component. In this case there would be not Morse Taper holes or stems on the under surface of the talar component, just a flat or minimally stem component with or without screw holes for screw fixation.
  • Likewise, the installed prosthetic system need not include a tibial stem component. In this case, the system would include the tibial component without the Morse Taper attachments on its superior surface, the talar component, and the calcaneal stem component.
  • Furthermore, the installed prosthetic system need not include any stemmed component being utilized. However, the intramedullary guidance system 10, deployed either superiorly from the tibia, or inferiorly from the calcaneus, would still provide intramedullary alignment of the tibial and talar cuts. In this arrangement, the tibial component and the talar component would be utilized, without Morse Taper stems or holes on either implant, but the intramedullary guidance system would still be used to insure properly aligned cuts in the talus and tibia.
  • It should be understood that the devices and methods of the present invention could be used as an index (initial) total ankle replacement, as well as a revision ankle replacement. If used as a revision device, only a portion of the disclosed methods and devices may be necessary in conjunction with such a procedure.
  • Other embodiments and uses of the inventions described herein will be apparent to those skilled in the art from consideration of the specification and practice of the inventions disclosed. All documents referenced herein are specifically and entirely incorporated by reference. The specification should be considered exemplary only with the true scope and spirit of the invention indicated by the following claims. As will be easily understood by those of ordinary skill in the art, variations and modifications of each of the disclosed embodiments can be easily made within the scope of this invention as defined by the following claims.

Claims (23)

I claim:
1. An implant for use in ankle arthroplasty comprising: a first member for cooperation with the tibia; a second member for cooperation with the talus and operably associated with the first member; and a third member rigidly removably connectable to said second member, said third member including a portion thereof for attachment to the calcaneous, said third member adapted to provide for a first position in the calcaneous when said third member is in a first relative position with respect to said second member and to provide for a second position in the calcaneous when said third member is in a second relative position with respect to said second member.
2. The implant of claim 1, wherein one of said second member and said third member comprises a protrusion and wherein the other of said second member and said third member defines a cavity for receiving the protrusion.
3. The implant of claim 2, wherein the protrusion has a periphery a portion of which is conofrustrical.
4. The implant of claim 1, further comprising a bearing member positioned between said first member and said second member, said bearing member moveably associated with said first member and with said second member.
5. The implant of claim 1, wherein said second member comprises a first portion operably associated with said first member and a second portion removably attached to said first portion, said second portion for cooperation with the talus.
6. The implant of claim 5, wherein said second portion has an enlarged surface area to provide additional support for the implant on the talus.
7. The implant of claim 1, further comprising a fastener to connect said third member to said second member.
8. A kit for use in assembling an implant for use in ankle arthroplasty comprising: a first member for cooperation with the tibia; a second member operably associated with the first member; a third member rigidly removably connectable to said second member, said third member including a portion thereof for attachment to the talus; and a fourth member rigidly removably connectable to said second member, said fourth member including a portion thereof for attachment to the talus, the fourth member having at least one dimension different that a dimension of said third member.
9. The kit of claim 8, wherein one of said second member and said third member comprises a protrusion and wherein the other of said second member and said third member defines a cavity for receiving the protrusion.
10. The kit of claim 9, wherein the protrusion has a periphery a portion of which is conofrustrical.
11. The kit of claim 8, further comprising a bearing member positioned between said first member and said second member, said bearing member moveably associated with said first member and with said second member.
12. The kit of claim 8, further comprising a tibia connecting member operably associated with the first member.
13. The kit of claim 8, wherein said fourth member includes a portion thereof for attachment to the calcaneus.
14. The kit of claim 8, wherein said second member comprises a first portion operably associated with said first member and a second portion removably attached to said first portion, said second portion for cooperation with the talus.
15. The kit of claim 14, wherein said second portion has an enlarged surface area to provide additional support for the implant on the talus.
16. The kit of claim 8, further comprising a fastener to connect said third member to said second member.
17. A talar component for use in an implant for use in ankle arthroplasty comprising: a first member for cooperation with the talus; and a second member rigidly removably connectable to said first member, said second member including a portion thereof for attachment to the calcaneous, said second member adapted to provide for a first position in the calcaneous when said second member is in a first relative position with respect to said first member and to provide for a second position in the calcaneous when said second member is in a second relative position with respect to said first member.
18. The talar component of claim 17, wherein one of said first member and said second member comprises a protrusion and wherein the other of said first member and said second member defines a cavity for receiving the protrusion.
19. The talar component of claim 18, wherein said protrusion has a periphery a portion of which is conofrustrical.
20. The talar component of claim 17, wherein said first member comprises a first portion and a second portion removably attached to said first portion, said second portion for cooperation with the talus.
21. The talar component of claim 20, wherein said second portion has an enlarged surface area to provide additional support for the implant on the talus.
22. The talar component of claim 17, further comprising a fastener to connect said second member to said first member.
23. A method for providing ankle arthroplasty comprising: providing an ankle prosthesis kit including an tibial component, a bearing component, a talar articulating component, a first talar mounting component, and a second talar mounting component having at least one dimension different than the first talar mounting component; cutting an incision in the patient; Preparing the talar cavity and the tibia cavity; implanting the tibial component into the tibial cavity; selecting one of the first talar mounting component and the second talar mounting component; implanting the selected one of the first talar mounting component and the second talar mounting component into the talar cavity; and positioning the bearing component between the tibial component and the selected one of the first talar mounting component and the second talar mounting component.
US13/939,936 1999-10-22 2013-07-11 Systems and methods for installing ankle replacement prostheses Abandoned US20170156875A9 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/939,936 US20170156875A9 (en) 1999-10-22 2013-07-11 Systems and methods for installing ankle replacement prostheses
US15/489,129 US10743999B2 (en) 1999-10-22 2017-04-17 Systems and methods for installing ankle replacement prostheses
US16/924,716 US11951013B2 (en) 1999-10-22 2020-07-09 Systems and methods for installing ankle replacement prostheses

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US16089299P 1999-10-22 1999-10-22
US09/694,100 US6663669B1 (en) 1999-10-22 2000-10-20 Ankle replacement system
US09/935,479 US6673116B2 (en) 1999-10-22 2001-08-23 Intramedullary guidance systems and methods for installing ankle replacement prostheses
US10/699,999 US6875236B2 (en) 1999-10-22 2003-11-03 Intramedullary guidance systems and methods for installing ankle replacement prostheses
US11/038,803 US7314488B2 (en) 1999-10-22 2005-01-19 Intramedullary guidance systems and methods for installing ankle replacement prostheses
US11/648,042 US8034114B2 (en) 1999-10-22 2006-12-29 Systems and methods for installing ankle replacement prostheses
US13/233,693 US8496712B2 (en) 1999-10-22 2011-09-15 Systems and methods for installing ankle replacement prostheses
US13/939,936 US20170156875A9 (en) 1999-10-22 2013-07-11 Systems and methods for installing ankle replacement prostheses

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/233,693 Continuation US8496712B2 (en) 1999-10-22 2011-09-15 Systems and methods for installing ankle replacement prostheses

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/489,129 Continuation US10743999B2 (en) 1999-10-22 2017-04-17 Systems and methods for installing ankle replacement prostheses

Publications (2)

Publication Number Publication Date
US20130297035A1 true US20130297035A1 (en) 2013-11-07
US20170156875A9 US20170156875A9 (en) 2017-06-08

Family

ID=38041929

Family Applications (4)

Application Number Title Priority Date Filing Date
US13/233,693 Expired - Lifetime US8496712B2 (en) 1999-10-22 2011-09-15 Systems and methods for installing ankle replacement prostheses
US13/939,936 Abandoned US20170156875A9 (en) 1999-10-22 2013-07-11 Systems and methods for installing ankle replacement prostheses
US15/489,129 Expired - Fee Related US10743999B2 (en) 1999-10-22 2017-04-17 Systems and methods for installing ankle replacement prostheses
US16/924,716 Expired - Lifetime US11951013B2 (en) 1999-10-22 2020-07-09 Systems and methods for installing ankle replacement prostheses

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/233,693 Expired - Lifetime US8496712B2 (en) 1999-10-22 2011-09-15 Systems and methods for installing ankle replacement prostheses

Family Applications After (2)

Application Number Title Priority Date Filing Date
US15/489,129 Expired - Fee Related US10743999B2 (en) 1999-10-22 2017-04-17 Systems and methods for installing ankle replacement prostheses
US16/924,716 Expired - Lifetime US11951013B2 (en) 1999-10-22 2020-07-09 Systems and methods for installing ankle replacement prostheses

Country Status (1)

Country Link
US (4) US8496712B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8979928B2 (en) 2010-01-13 2015-03-17 Jcbd, Llc Sacroiliac joint fixation fusion system
US9333090B2 (en) 2010-01-13 2016-05-10 Jcbd, Llc Systems for and methods of fusing a sacroiliac joint
US9381045B2 (en) 2010-01-13 2016-07-05 Jcbd, Llc Sacroiliac joint implant and sacroiliac joint instrument for fusing a sacroiliac joint
US9421109B2 (en) 2010-01-13 2016-08-23 Jcbd, Llc Systems and methods of fusing a sacroiliac joint
US9554909B2 (en) 2012-07-20 2017-01-31 Jcbd, Llc Orthopedic anchoring system and methods
US9700356B2 (en) 2013-07-30 2017-07-11 Jcbd, Llc Systems for and methods of fusing a sacroiliac joint
US9717539B2 (en) 2013-07-30 2017-08-01 Jcbd, Llc Implants, systems, and methods for fusing a sacroiliac joint
US9757154B2 (en) 2010-01-13 2017-09-12 Jcbd, Llc Systems and methods for fusing a sacroiliac joint and anchoring an orthopedic appliance
US9788961B2 (en) 2010-01-13 2017-10-17 Jcbd, Llc Sacroiliac joint implant system
US9801546B2 (en) 2014-05-27 2017-10-31 Jcbd, Llc Systems for and methods of diagnosing and treating a sacroiliac joint disorder
US9826986B2 (en) 2013-07-30 2017-11-28 Jcbd, Llc Systems for and methods of preparing a sacroiliac joint for fusion
US10136929B2 (en) 2015-07-13 2018-11-27 IntraFuse, LLC Flexible bone implant
US10154863B2 (en) 2015-07-13 2018-12-18 IntraFuse, LLC Flexible bone screw
US10245087B2 (en) 2013-03-15 2019-04-02 Jcbd, Llc Systems and methods for fusing a sacroiliac joint and anchoring an orthopedic appliance
CN109620476A (en) * 2019-02-25 2019-04-16 无锡市人民医院 Tibia middle and far section tumor type prosthesis and preparation equipment and preparation method thereof
US10485595B2 (en) 2015-07-13 2019-11-26 IntraFuse, LLC Flexible bone screw
US10499960B2 (en) 2015-07-13 2019-12-10 IntraFuse, LLC Method of bone fixation
US10603055B2 (en) 2017-09-15 2020-03-31 Jcbd, Llc Systems for and methods of preparing and fusing a sacroiliac joint
WO2023183793A3 (en) * 2022-03-21 2023-11-02 Arthrex, Inc. Patient specific total talus for total ankle arthroplasty

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8496712B2 (en) 1999-10-22 2013-07-30 Inbone Technologies, Inc. Systems and methods for installing ankle replacement prostheses
AU2003268050A1 (en) 2002-08-10 2004-02-25 H. Simon William Method and apparatus for repairing the mid-food region via an intermedullary nail
EP1686932B1 (en) 2003-06-27 2010-01-06 ABS Corporation System for ankle arthroplasty
DE202012103384U1 (en) 2012-09-05 2012-09-24 Signus Medizintechnik Gmbh Pelvic ring implant
US9125695B2 (en) * 2012-10-18 2015-09-08 Bespa, Inc. Ankle fusion nail apparatus and method
WO2014206498A1 (en) * 2013-06-28 2014-12-31 Episurf Ip-Management Ab Guide tool for cartilage and/or bone repair or joint remodeling
EP3016604B1 (en) * 2013-07-02 2018-10-10 Cmarr Enterprises Curved tibiotalar fusion nail
US9132018B1 (en) * 2013-08-27 2015-09-15 Mohammed A. Hajianpour Total ankle replacement
US9554916B2 (en) * 2014-06-04 2017-01-31 Sarah Miller Apparatus and method for replacement of a metatarsophalangeal joint with interphalangeal fusion
US20170049575A1 (en) * 2015-08-18 2017-02-23 Wright Medical Technology, Inc. Modular talar fixation method and system
AU2016398429B2 (en) 2016-03-23 2019-09-12 Wright Medical Technology, Inc Fixation apparatus and method for total ankle replacement
US20170340450A1 (en) * 2016-05-25 2017-11-30 Arbelaez Jose Bernardo Toro Reverse Ankle Replacement System
US10136998B2 (en) * 2016-08-30 2018-11-27 Wright Medical Technology, Inc. Revision total ankle implants
US11033303B2 (en) * 2017-03-13 2021-06-15 Extremity Medical, Llc Calcaneal cross medullary plate
EP3459501B8 (en) 2017-09-22 2021-01-20 Stryker European Operations Holdings LLC Talar ankle implant
EP3501432A1 (en) 2017-12-20 2019-06-26 Stryker European Holdings I, LLC Joint instrumentation
US10966735B1 (en) * 2018-10-27 2021-04-06 Eric M. Larsen Surgical device and method for performing arthrodesis
AU2020283377B2 (en) 2019-05-29 2022-08-04 Wright Medical Technology, Inc. Preparing a tibia for receiving tibial implant component of a replacement ankle
WO2021137914A1 (en) 2020-01-03 2021-07-08 Wright Medical Technology, Inc. Ankle prostheses
WO2022182430A1 (en) * 2021-02-24 2022-09-01 Wright Medical Technology, Inc. Preparing a tibia for receiving tibial implant component of a replacement ankle
CN113797000A (en) * 2021-10-09 2021-12-17 北京大学人民医院 Talus fusion surface type artificial ankle joint prosthesis
US20230346566A1 (en) * 2022-04-27 2023-11-02 Kamran Syed Hamid Prosthesis, and Associated Methods of Implanting A Joint Replacement and Implanting A Prosthetic Bone Joint Replacement as For Ankle Replacement With Press-Fit Tibia Component, Spherical Articulation and Method of Implantation

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4021864A (en) * 1976-04-14 1977-05-10 The Regents Of The University Of California Ankle prosthesis
US5766259A (en) * 1995-03-14 1998-06-16 Sammarco; Giacomo J. Total ankle prosthesis and method
US5824106A (en) * 1996-04-11 1998-10-20 Tornier Sa Ankle prosthesis
US6197029B1 (en) * 1994-02-10 2001-03-06 Juhro Fujimori Intramedullary nail
US20020055744A1 (en) * 1999-10-22 2002-05-09 Reiley Mark A. Intramedullary guidance systems and methods for installing ankle replacement prostheses
US6579293B1 (en) * 2000-08-02 2003-06-17 Rama E. Chandran Intramedullary rod with interlocking oblique screw for tibio-calcaneal arthrodesis
US6663669B1 (en) * 1999-10-22 2003-12-16 Mark A Reiley Ankle replacement system
US6939380B2 (en) * 2002-12-23 2005-09-06 Depuy Products, Inc. Mobile talar component for total ankle replacement implant
US20060229730A1 (en) * 2005-03-14 2006-10-12 Topez Orthopedics, Inc. Ankle replacement system
US7323012B1 (en) * 2004-03-17 2008-01-29 Biomet Manufacturing Corp. Ankle implant
US20120010719A1 (en) * 1999-10-22 2012-01-12 Inbone Technologies, Inc. Systems and Methods for Installing Ankle Replacement Prostheses

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1090881A (en) 1913-10-13 1914-03-24 James F Rowley Ankle-joint for artificial limbs.
US3488779A (en) * 1967-09-27 1970-01-13 Robert W Christensen Orthopedic prosthetic appliances for attachment to bone
DE2236141B2 (en) 1972-07-22 1976-07-08 Fa. Waldemar Link, 2000 Hamburg PARTIAL DENTURE FOR A HUMAN ANKLE
FR2220235A1 (en) 1973-03-09 1974-10-04 Anvar Arthroplastic pin prosthesis - has front feet fitting in cavities in ankle bone and rear one in calcaneum
US3872519A (en) * 1974-04-04 1975-03-25 Nicholas J Giannestras Total ankle prosthesis
US3886599A (en) 1974-07-25 1975-06-03 Schlein Louis Charles Surgically implantable total ankle prosthesis
US3987500A (en) * 1976-01-28 1976-10-26 Schlein Allen P Surgically implantable total ankle prosthesis
US4069518A (en) 1976-08-31 1978-01-24 Groth Jr Harry E Total ankle prosthesis
US4149277A (en) * 1977-06-22 1979-04-17 General Atomic Company Artificial tendon prostheses
US4470158A (en) 1978-03-10 1984-09-11 Biomedical Engineering Corp. Joint endoprosthesis
US4450591A (en) 1981-12-10 1984-05-29 Rappaport Mark J Internal anti-proratory plug assembly and process of installing the same
US4467801A (en) 1983-03-09 1984-08-28 Wright Manufacturing Company Method and apparatus for shaping a proximal tibial surface
US4474177A (en) 1983-03-09 1984-10-02 Wright Manufacturing Company Method and apparatus for shaping a distal femoral surface
FR2543821A3 (en) 1983-04-08 1984-10-12 Viladot Perice Antonio Endo-orthesis for flat feet
US4840632A (en) 1984-03-16 1989-06-20 Kampner Stanley L Hip prosthesis
US4644943A (en) * 1984-07-20 1987-02-24 Regents Of The University Of Minnesota Bone fixation device
FR2615726A1 (en) 1987-06-01 1988-12-02 Landos Applic Orthopediques Fs Prosthetic fixation element with anchoring stud
US4968316A (en) 1988-12-12 1990-11-06 Hergenroeder Patrick T Arthroscopic ankle joint distraction method
US5019083A (en) * 1989-01-31 1991-05-28 Advanced Osseous Technologies, Inc. Implanting and removal of orthopedic prostheses
FR2680968B1 (en) 1991-09-05 1993-12-17 Procom Sa IMPLANT FOR SUB-ASTRAGALIAN ARTHRORISA.
IT228979Y1 (en) * 1992-03-09 1998-06-05 Giannini Sandro BIODEGRADABLE PROSTHESIS FOR READY FOOT CORRECTION.
US5207712A (en) 1992-05-07 1993-05-04 Michael Cohen Absorbable joint implants for the lesser digits and metatarsal phalangeal joints in the surgical correction of the foot
US5342368A (en) 1992-07-08 1994-08-30 Petersen Thomas D Intramedullary universal proximal tibial resector guide
FR2700462B1 (en) 1993-01-19 1995-04-21 Medimplant Apparatus for implanting a joint prosthesis.
NZ279442A (en) 1994-01-26 1998-02-26 Mark A Reiley Bone treatment device; inflatable balloon for insertion into a bone; balloon details
US5522843A (en) * 1994-02-23 1996-06-04 Orthopaedic Biosystems Limited, Inc. Apparatus for attaching soft tissue to bone
US5947893A (en) 1994-04-27 1999-09-07 Board Of Regents, The University Of Texas System Method of making a porous prothesis with biodegradable coatings
US5582189A (en) 1994-10-24 1996-12-10 Pannozzo; Anthony N. Method for diagnosing the subluxation of a skeletal articulation
US5811151A (en) 1996-05-31 1998-09-22 Medtronic, Inc. Method of modifying the surface of a medical device
FR2760353B1 (en) 1997-03-10 1999-07-02 Tornier Sa ANKLE PROSTHESIS
US6228121B1 (en) 1999-06-21 2001-05-08 Depuy Othopedics, Inc. Prosthesis system and method of implanting
US6589281B2 (en) 2001-01-16 2003-07-08 Edward R. Hyde, Jr. Transosseous core approach and instrumentation for joint replacement and repair
US6572620B1 (en) * 2001-11-16 2003-06-03 Lew C. Schon Modular, blade-rod, intramedullary fixation device
US7985255B2 (en) 2003-04-21 2011-07-26 Rsb Spine Llc Implant subsidence control
US20050107791A1 (en) 2003-11-14 2005-05-19 Manderson Easton L. Intramedullary locked compression screw for stabiliziation and union of complex ankle and subtalar deformities
US20050288792A1 (en) 2004-06-23 2005-12-29 Landes Mark D Modular ankle prosthesis and associated method
US20060200151A1 (en) 2005-01-28 2006-09-07 Dustin Ducharme Orthopedic screw for use in repairing small bones
US7410488B2 (en) * 2005-02-18 2008-08-12 Smith & Nephew, Inc. Hindfoot nail
HRP20050295B1 (en) 2005-03-29 2010-11-30 Roth Sandor The canulated titanium implant for correcting flat feet in children
FR2885513B1 (en) 2005-05-13 2007-08-10 Newdeal S A S Soc Par Actions ARTHRODESIS APPARATUS FOR ARTICULATION, OF THE GENUS ARTICULATION OF THE ANKLE, AND NAIL OF ATHRODESE FOR USE IN SUCH AN APPARATUS
US8628582B2 (en) 2005-08-22 2014-01-14 Vilex In Tennessee, Inc. Subtalar implant and methods of use thereof
US8075634B2 (en) 2006-04-11 2011-12-13 Eli Hurowitz Orthopedic device
WO2007133643A2 (en) * 2006-05-10 2007-11-22 Concepts In Medicine, Llc Modular, blade-rod, intramedullary fixation device
ATE439094T1 (en) 2006-05-24 2009-08-15 Munoz Felipe Lopez-Oliva DEVICE WITH A LOCKING NAIL FOR TREATING CALCANEOUS FRACTURES
US8808336B2 (en) * 2009-07-14 2014-08-19 Neil Duggal Joint arthrodesis and arthroplasty
US8876821B2 (en) * 2010-11-24 2014-11-04 Kyle Kinmon Intramedullary nail, system, and method with dynamic compression
WO2016028313A1 (en) * 2014-08-22 2016-02-25 Wright Medical Technology, Inc. Revision implant augments, systems, and methods
BR112017000522A2 (en) * 2015-01-12 2017-11-14 Wright Medical Tech Inc implant, drill guide and method for attaching an implant to a bone

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4021864A (en) * 1976-04-14 1977-05-10 The Regents Of The University Of California Ankle prosthesis
US6197029B1 (en) * 1994-02-10 2001-03-06 Juhro Fujimori Intramedullary nail
US5766259A (en) * 1995-03-14 1998-06-16 Sammarco; Giacomo J. Total ankle prosthesis and method
US5824106A (en) * 1996-04-11 1998-10-20 Tornier Sa Ankle prosthesis
US20020055744A1 (en) * 1999-10-22 2002-05-09 Reiley Mark A. Intramedullary guidance systems and methods for installing ankle replacement prostheses
US6663669B1 (en) * 1999-10-22 2003-12-16 Mark A Reiley Ankle replacement system
US20120010719A1 (en) * 1999-10-22 2012-01-12 Inbone Technologies, Inc. Systems and Methods for Installing Ankle Replacement Prostheses
US6579293B1 (en) * 2000-08-02 2003-06-17 Rama E. Chandran Intramedullary rod with interlocking oblique screw for tibio-calcaneal arthrodesis
US6939380B2 (en) * 2002-12-23 2005-09-06 Depuy Products, Inc. Mobile talar component for total ankle replacement implant
US7323012B1 (en) * 2004-03-17 2008-01-29 Biomet Manufacturing Corp. Ankle implant
US20060229730A1 (en) * 2005-03-14 2006-10-12 Topez Orthopedics, Inc. Ankle replacement system

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9788961B2 (en) 2010-01-13 2017-10-17 Jcbd, Llc Sacroiliac joint implant system
US9017407B2 (en) 2010-01-13 2015-04-28 Jcbd, Llc Systems for and methods of fusing a sacroiliac joint
US9333090B2 (en) 2010-01-13 2016-05-10 Jcbd, Llc Systems for and methods of fusing a sacroiliac joint
US9381045B2 (en) 2010-01-13 2016-07-05 Jcbd, Llc Sacroiliac joint implant and sacroiliac joint instrument for fusing a sacroiliac joint
US9421109B2 (en) 2010-01-13 2016-08-23 Jcbd, Llc Systems and methods of fusing a sacroiliac joint
US8979928B2 (en) 2010-01-13 2015-03-17 Jcbd, Llc Sacroiliac joint fixation fusion system
US10034676B2 (en) 2010-01-13 2018-07-31 Jcbd, Llc Systems for and methods of fusing a sacroiliac joint
US9757154B2 (en) 2010-01-13 2017-09-12 Jcbd, Llc Systems and methods for fusing a sacroiliac joint and anchoring an orthopedic appliance
US9554909B2 (en) 2012-07-20 2017-01-31 Jcbd, Llc Orthopedic anchoring system and methods
US10245087B2 (en) 2013-03-15 2019-04-02 Jcbd, Llc Systems and methods for fusing a sacroiliac joint and anchoring an orthopedic appliance
US9826986B2 (en) 2013-07-30 2017-11-28 Jcbd, Llc Systems for and methods of preparing a sacroiliac joint for fusion
US9717539B2 (en) 2013-07-30 2017-08-01 Jcbd, Llc Implants, systems, and methods for fusing a sacroiliac joint
US9700356B2 (en) 2013-07-30 2017-07-11 Jcbd, Llc Systems for and methods of fusing a sacroiliac joint
US9801546B2 (en) 2014-05-27 2017-10-31 Jcbd, Llc Systems for and methods of diagnosing and treating a sacroiliac joint disorder
US10136929B2 (en) 2015-07-13 2018-11-27 IntraFuse, LLC Flexible bone implant
US10154863B2 (en) 2015-07-13 2018-12-18 IntraFuse, LLC Flexible bone screw
US10485595B2 (en) 2015-07-13 2019-11-26 IntraFuse, LLC Flexible bone screw
US10492838B2 (en) 2015-07-13 2019-12-03 IntraFuse, LLC Flexible bone implant
US10499960B2 (en) 2015-07-13 2019-12-10 IntraFuse, LLC Method of bone fixation
US10603055B2 (en) 2017-09-15 2020-03-31 Jcbd, Llc Systems for and methods of preparing and fusing a sacroiliac joint
CN109620476A (en) * 2019-02-25 2019-04-16 无锡市人民医院 Tibia middle and far section tumor type prosthesis and preparation equipment and preparation method thereof
WO2023183793A3 (en) * 2022-03-21 2023-11-02 Arthrex, Inc. Patient specific total talus for total ankle arthroplasty

Also Published As

Publication number Publication date
US20200337850A1 (en) 2020-10-29
US8496712B2 (en) 2013-07-30
US20170216042A1 (en) 2017-08-03
US10743999B2 (en) 2020-08-18
US20120010719A1 (en) 2012-01-12
US11951013B2 (en) 2024-04-09
US20170156875A9 (en) 2017-06-08

Similar Documents

Publication Publication Date Title
US11951013B2 (en) Systems and methods for installing ankle replacement prostheses
US8034114B2 (en) Systems and methods for installing ankle replacement prostheses
US9629730B2 (en) Ankle replacement system
US20220387181A1 (en) Ankle replacement system
AU2002331634A1 (en) Intramedullary guidance systems for ankle replacements
AU2008201665B2 (en) Intramedullary guidance systems for ankle replacement prostheses

Legal Events

Date Code Title Description
AS Assignment

Owner name: MIDCAP FINANCIAL TRUST, AS AGENT, MARYLAND

Free format text: SECURITY INTEREST;ASSIGNOR:INBONE TECHNOLOGIES, INC.;REEL/FRAME:040853/0922

Effective date: 20161223

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION