US20130096442A1 - Medical event logbook system and method - Google Patents
Medical event logbook system and method Download PDFInfo
- Publication number
- US20130096442A1 US20130096442A1 US13/692,767 US201213692767A US2013096442A1 US 20130096442 A1 US20130096442 A1 US 20130096442A1 US 201213692767 A US201213692767 A US 201213692767A US 2013096442 A1 US2013096442 A1 US 2013096442A1
- Authority
- US
- United States
- Prior art keywords
- respiratory
- event
- patient
- information
- medical information
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims description 51
- 230000029058 respiratory gaseous exchange Effects 0.000 claims abstract description 219
- 230000000241 respiratory effect Effects 0.000 claims abstract description 215
- 238000001514 detection method Methods 0.000 claims abstract description 60
- 230000000747 cardiac effect Effects 0.000 claims description 39
- 230000033764 rhythmic process Effects 0.000 claims description 33
- 230000002685 pulmonary effect Effects 0.000 claims description 11
- 230000004962 physiological condition Effects 0.000 claims description 10
- 230000000977 initiatory effect Effects 0.000 claims description 6
- 238000001727 in vivo Methods 0.000 claims 2
- 238000013459 approach Methods 0.000 abstract description 10
- 230000007958 sleep Effects 0.000 description 39
- 208000019693 Lung disease Diseases 0.000 description 38
- 210000002216 heart Anatomy 0.000 description 38
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 33
- 208000008784 apnea Diseases 0.000 description 32
- 230000006854 communication Effects 0.000 description 20
- 238000004891 communication Methods 0.000 description 20
- 201000010099 disease Diseases 0.000 description 19
- 230000000694 effects Effects 0.000 description 18
- 238000012544 monitoring process Methods 0.000 description 17
- 238000002560 therapeutic procedure Methods 0.000 description 17
- 206010021079 Hypopnoea Diseases 0.000 description 16
- 230000000414 obstructive effect Effects 0.000 description 16
- 238000007920 subcutaneous administration Methods 0.000 description 16
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 14
- 238000010586 diagram Methods 0.000 description 14
- 208000035475 disorder Diseases 0.000 description 14
- 230000006870 function Effects 0.000 description 14
- 238000007726 management method Methods 0.000 description 13
- 239000008280 blood Substances 0.000 description 12
- 210000004369 blood Anatomy 0.000 description 12
- 206010019280 Heart failures Diseases 0.000 description 11
- 230000037007 arousal Effects 0.000 description 11
- 230000004044 response Effects 0.000 description 11
- 208000024891 symptom Diseases 0.000 description 11
- 208000003417 Central Sleep Apnea Diseases 0.000 description 10
- 206010008501 Cheyne-Stokes respiration Diseases 0.000 description 10
- 230000033001 locomotion Effects 0.000 description 10
- 206010041235 Snoring Diseases 0.000 description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 9
- 229940079593 drug Drugs 0.000 description 9
- 239000003814 drug Substances 0.000 description 9
- 208000001797 obstructive sleep apnea Diseases 0.000 description 9
- 239000001301 oxygen Substances 0.000 description 9
- 229910052760 oxygen Inorganic materials 0.000 description 9
- 230000004913 activation Effects 0.000 description 8
- 230000036772 blood pressure Effects 0.000 description 8
- 239000000872 buffer Substances 0.000 description 8
- 230000007787 long-term memory Effects 0.000 description 8
- 210000003205 muscle Anatomy 0.000 description 8
- 210000002345 respiratory system Anatomy 0.000 description 8
- UCTWMZQNUQWSLP-UHFFFAOYSA-N Adrenaline Natural products CNCC(O)C1=CC=C(O)C(O)=C1 UCTWMZQNUQWSLP-UHFFFAOYSA-N 0.000 description 7
- 206010037368 Pulmonary congestion Diseases 0.000 description 7
- 229910002092 carbon dioxide Inorganic materials 0.000 description 7
- 238000013480 data collection Methods 0.000 description 7
- 230000007613 environmental effect Effects 0.000 description 7
- 230000000638 stimulation Effects 0.000 description 7
- UCTWMZQNUQWSLP-VIFPVBQESA-N (R)-adrenaline Chemical compound CNC[C@H](O)C1=CC=C(O)C(O)=C1 UCTWMZQNUQWSLP-VIFPVBQESA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 206010003119 arrhythmia Diseases 0.000 description 6
- 208000006673 asthma Diseases 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 238000003745 diagnosis Methods 0.000 description 6
- 208000000122 hyperventilation Diseases 0.000 description 6
- 210000001519 tissue Anatomy 0.000 description 6
- 230000001960 triggered effect Effects 0.000 description 6
- 206010021118 Hypotonia Diseases 0.000 description 5
- 210000000038 chest Anatomy 0.000 description 5
- 230000000870 hyperventilation Effects 0.000 description 5
- 230000007774 longterm Effects 0.000 description 5
- 210000004072 lung Anatomy 0.000 description 5
- 230000015654 memory Effects 0.000 description 5
- 230000000737 periodic effect Effects 0.000 description 5
- 239000002243 precursor Substances 0.000 description 5
- 230000008667 sleep stage Effects 0.000 description 5
- 230000002861 ventricular Effects 0.000 description 5
- 101800000407 Brain natriuretic peptide 32 Proteins 0.000 description 4
- 102400000667 Brain natriuretic peptide 32 Human genes 0.000 description 4
- 101800002247 Brain natriuretic peptide 45 Proteins 0.000 description 4
- 206010007559 Cardiac failure congestive Diseases 0.000 description 4
- 208000006545 Chronic Obstructive Pulmonary Disease Diseases 0.000 description 4
- 230000000712 assembly Effects 0.000 description 4
- 238000000429 assembly Methods 0.000 description 4
- 210000000748 cardiovascular system Anatomy 0.000 description 4
- 230000002526 effect on cardiovascular system Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 210000000653 nervous system Anatomy 0.000 description 4
- 230000008452 non REM sleep Effects 0.000 description 4
- 201000002859 sleep apnea Diseases 0.000 description 4
- 230000002889 sympathetic effect Effects 0.000 description 4
- 230000001225 therapeutic effect Effects 0.000 description 4
- 210000005166 vasculature Anatomy 0.000 description 4
- 238000009423 ventilation Methods 0.000 description 4
- 108010074051 C-Reactive Protein Proteins 0.000 description 3
- 102100032752 C-reactive protein Human genes 0.000 description 3
- 206010011224 Cough Diseases 0.000 description 3
- 241000208125 Nicotiana Species 0.000 description 3
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 3
- 208000002151 Pleural effusion Diseases 0.000 description 3
- 206010037423 Pulmonary oedema Diseases 0.000 description 3
- 208000030934 Restrictive pulmonary disease Diseases 0.000 description 3
- 230000003213 activating effect Effects 0.000 description 3
- 229940102884 adrenalin Drugs 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 230000007175 bidirectional communication Effects 0.000 description 3
- 206010006451 bronchitis Diseases 0.000 description 3
- 238000013194 cardioversion Methods 0.000 description 3
- 210000003169 central nervous system Anatomy 0.000 description 3
- 230000000875 corresponding effect Effects 0.000 description 3
- 230000007812 deficiency Effects 0.000 description 3
- 230000004424 eye movement Effects 0.000 description 3
- 208000015181 infectious disease Diseases 0.000 description 3
- 230000002452 interceptive effect Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000008035 nerve activity Effects 0.000 description 3
- 230000010355 oscillation Effects 0.000 description 3
- 230000008447 perception Effects 0.000 description 3
- 210000003281 pleural cavity Anatomy 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 208000005333 pulmonary edema Diseases 0.000 description 3
- 230000036385 rapid eye movement (rem) sleep Effects 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 230000003860 sleep quality Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 208000011580 syndromic disease Diseases 0.000 description 3
- 206010006458 Bronchitis chronic Diseases 0.000 description 2
- 206010061818 Disease progression Diseases 0.000 description 2
- 208000007590 Disorders of Excessive Somnolence Diseases 0.000 description 2
- 206010013975 Dyspnoeas Diseases 0.000 description 2
- 206010014561 Emphysema Diseases 0.000 description 2
- 206010020772 Hypertension Diseases 0.000 description 2
- 206010021143 Hypoxia Diseases 0.000 description 2
- 206010061218 Inflammation Diseases 0.000 description 2
- 208000011623 Obstructive Lung disease Diseases 0.000 description 2
- 206010041349 Somnolence Diseases 0.000 description 2
- 208000001871 Tachycardia Diseases 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 2
- 230000006793 arrhythmia Effects 0.000 description 2
- 230000002567 autonomic effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000036471 bradycardia Effects 0.000 description 2
- 208000006218 bradycardia Diseases 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 210000005242 cardiac chamber Anatomy 0.000 description 2
- 229940030602 cardiac therapy drug Drugs 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 208000007451 chronic bronchitis Diseases 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 230000005750 disease progression Effects 0.000 description 2
- 230000007954 hypoxia Effects 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000002503 metabolic effect Effects 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 230000011514 reflex Effects 0.000 description 2
- 201000000306 sarcoidosis Diseases 0.000 description 2
- 238000010187 selection method Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 230000004622 sleep time Effects 0.000 description 2
- 230000000391 smoking effect Effects 0.000 description 2
- 208000008203 tachypnea Diseases 0.000 description 2
- 206010043089 tachypnoea Diseases 0.000 description 2
- 210000000779 thoracic wall Anatomy 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 201000008827 tuberculosis Diseases 0.000 description 2
- SNICXCGAKADSCV-JTQLQIEISA-N (-)-Nicotine Chemical compound CN1CCC[C@H]1C1=CC=CN=C1 SNICXCGAKADSCV-JTQLQIEISA-N 0.000 description 1
- 208000000884 Airway Obstruction Diseases 0.000 description 1
- 206010002383 Angina Pectoris Diseases 0.000 description 1
- 101000588924 Anthopleura elegantissima Delta-actitoxin-Ael1a Proteins 0.000 description 1
- 208000035143 Bacterial infection Diseases 0.000 description 1
- 206010006448 Bronchiolitis Diseases 0.000 description 1
- 208000000059 Dyspnea Diseases 0.000 description 1
- 241000288140 Gruiformes Species 0.000 description 1
- 206010019027 Haemothorax Diseases 0.000 description 1
- 206010020565 Hyperaemia Diseases 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 206010035664 Pneumonia Diseases 0.000 description 1
- 208000010378 Pulmonary Embolism Diseases 0.000 description 1
- 208000037656 Respiratory Sounds Diseases 0.000 description 1
- 208000006011 Stroke Diseases 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- 230000003187 abdominal effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000002547 anomalous effect Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 208000022362 bacterial infectious disease Diseases 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 238000004159 blood analysis Methods 0.000 description 1
- 230000007177 brain activity Effects 0.000 description 1
- 201000009267 bronchiectasis Diseases 0.000 description 1
- 210000004903 cardiac system Anatomy 0.000 description 1
- 230000002612 cardiopulmonary effect Effects 0.000 description 1
- 230000001364 causal effect Effects 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 235000019504 cigarettes Nutrition 0.000 description 1
- 208000035850 clinical syndrome Diseases 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 208000029078 coronary artery disease Diseases 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 208000037765 diseases and disorders Diseases 0.000 description 1
- 239000002934 diuretic Substances 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 210000000613 ear canal Anatomy 0.000 description 1
- 238000013399 early diagnosis Methods 0.000 description 1
- 230000002996 emotional effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 210000002837 heart atrium Anatomy 0.000 description 1
- 230000004217 heart function Effects 0.000 description 1
- 230000000004 hemodynamic effect Effects 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 230000003434 inspiratory effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000003601 intercostal effect Effects 0.000 description 1
- 239000002085 irritant Substances 0.000 description 1
- 231100000021 irritant Toxicity 0.000 description 1
- 210000005246 left atrium Anatomy 0.000 description 1
- 210000005240 left ventricle Anatomy 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 210000003097 mucus Anatomy 0.000 description 1
- 230000009250 muscle sympathetic nerve activity Effects 0.000 description 1
- 208000010125 myocardial infarction Diseases 0.000 description 1
- 208000031225 myocardial ischemia Diseases 0.000 description 1
- 210000003928 nasal cavity Anatomy 0.000 description 1
- 230000001452 natriuretic effect Effects 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- HPNRHPKXQZSDFX-OAQDCNSJSA-N nesiritide Chemical compound C([C@H]1C(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CSSC[C@@H](C(=O)N1)NC(=O)CNC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](CCSC)NC(=O)[C@H](CCCCN)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](N)CO)C(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1N=CNC=1)C(O)=O)=O)[C@@H](C)CC)C1=CC=CC=C1 HPNRHPKXQZSDFX-OAQDCNSJSA-N 0.000 description 1
- 230000008904 neural response Effects 0.000 description 1
- 229960002715 nicotine Drugs 0.000 description 1
- SNICXCGAKADSCV-UHFFFAOYSA-N nicotine Natural products CN1CCCC1C1=CC=CN=C1 SNICXCGAKADSCV-UHFFFAOYSA-N 0.000 description 1
- 238000002640 oxygen therapy Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 206010035653 pneumoconiosis Diseases 0.000 description 1
- 201000003144 pneumothorax Diseases 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000135 prohibitive effect Effects 0.000 description 1
- 210000001147 pulmonary artery Anatomy 0.000 description 1
- 208000005069 pulmonary fibrosis Diseases 0.000 description 1
- 208000002815 pulmonary hypertension Diseases 0.000 description 1
- 206010037833 rales Diseases 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 210000003019 respiratory muscle Anatomy 0.000 description 1
- 230000036387 respiratory rate Effects 0.000 description 1
- 230000001020 rhythmical effect Effects 0.000 description 1
- 210000005245 right atrium Anatomy 0.000 description 1
- 210000005241 right ventricle Anatomy 0.000 description 1
- 230000006403 short-term memory Effects 0.000 description 1
- 208000019116 sleep disease Diseases 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 239000012536 storage buffer Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 208000037905 systemic hypertension Diseases 0.000 description 1
- 230000006794 tachycardia Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 208000019553 vascular disease Diseases 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 210000001835 viscera Anatomy 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/08—Detecting, measuring or recording devices for evaluating the respiratory organs
- A61B5/0803—Recording apparatus specially adapted therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/024—Detecting, measuring or recording pulse rate or heart rate
- A61B5/02405—Determining heart rate variability
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/3601—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of respiratory organs
Definitions
- the present invention relates to acquiring and organizing information related to medical events affecting the patient.
- the human body functions through a number of interdependent physiological systems controlled through various mechanical, electrical, and chemical processes.
- the metabolic state of the body is constantly changing. For example, as exercise level increases, the body consumes more oxygen and gives off more carbon dioxide.
- the cardiac and pulmonary systems maintain appropriate blood gas levels by making adjustments that bring more oxygen into the system and dispel more carbon dioxide.
- the cardiovascular system transports blood gases to and from the body tissues.
- the respiratory system through the breathing mechanism, performs the function of exchanging these gases with the external environment. Together, the cardiac and respiratory systems form a larger anatomical and functional unit denoted the cardiopulmonary system.
- Heart failure is a clinical syndrome that impacts a number of physiological processes.
- Heart failure is an abnormality of cardiac function that causes cardiac output to fall below a level adequate to meet the metabolic demand of peripheral tissues and internal organs.
- Heart failure is often referred to as congestive heart failure (CHF) due to the accompanying venous and pulmonary congestion.
- CHF congestive heart failure
- Congestive heart failure may have a variety of underlying causes, including ischemic heart disease (coronary artery disease), hypertension (high blood pressure), and diabetes, among others.
- Emphysema and chronic bronchitis are grouped together and are known as chronic obstructive pulmonary disease (COPD).
- COPD chronic obstructive pulmonary disease
- Pulmonary system disease also includes tuberculosis, sarcoidosis, lung cancer, occupation-related lung disease, bacterial and viral infections, and other conditions.
- Chronic obstructive pulmonary disease generally develops over many years, typically from exposure to cigarette smoke, pollution, or other irritants. Over time, the elasticity of the lung tissue is lost, and the lungs become distended, unable to expand and contract normally. As the disease progresses, breathing becomes labored, and the patient grows progressively weaker.
- Other types of non-rhythm related pulmonary diseases or disorders include restrictive pulmonary diseases, infections pulmonary diseases, diseases of the pleural cavity, and pulmonary vasculature, for example.
- Breathing disorders include various forms of rhythm-related disorders such as sleep apnea and hypopnea, among other forms.
- Disordered breathing is a respiratory system condition that affects a significant percentage of patients between 30 and 60 years.
- Disordered breathing including apnea and hypopnea, may be caused, for example, by an obstructed airway, or by derangement of the signals from the brain controlling respiration.
- Disordered breathing occurs when a patient experiences insufficient respiration with or without respiratory effort.
- Disordered breathing can originate from a deficiency in the central nervous system (central disordered breathing) or from an obstructed airway (obstructive disordered breathing). Lack of respiratory effort may result from a disruption of signals from the central nervous system to the respiratory muscles.
- Central disordered breathing events are characterized by insufficient respiration and a concurrent lack of respiratory effort. Because the central nervous system signals that control breathing are interrupted, the patient's natural breathing reflex is not triggered. The patient makes no effort to breath or the respiratory effort is otherwise disrupted. Respiration ceases or is insufficient during the disordered breathing event.
- An obstructive disordered breathing event may occur due to an obstruction of a patient's airway. For example, the patient's tongue or other soft tissue of the throat may collapse into the patient's airway. The breathing reflex is triggered, but respiration is disrupted because of the occluded airway.
- Disordered breathing events may include central disordered breathing events, obstructive disordered breathing events, or mixed disordered breathing events that are a combination of obstructive and central types.
- Sleep disordered breathing is particularly prevalent and is associated with excessive daytime sleepiness, systemic hypertension, increased risk of stroke, angina and myocardial infarction. Disordered breathing can be particularly serious for patients concurrently suffering from cardiovascular deficiencies.
- apnea interrupted breathing
- hypopnea short breathing
- tachypnea tachypnea
- hyperpnea hyperpnea
- dyspnea labored breathing
- Combinations of the respiratory cycles described above may be observed, including, for example, periodic breathing and Cheyne-Stokes respiration (CSR).
- Cheyne-Stokes respiration is particularly prevalent among heart failure patients, and may contribute to the progression of heart failure.
- the present invention fulfills these and other needs, and addresses other deficiencies of prior art implementations and techniques
- Embodiments of the invention relate to acquiring and organizing information related to medical events affecting the patient.
- One embodiment of the invention involves a method for organizing medical information. The method involves detecting or predicting a respiratory event of a patient. Responsive to the detection or prediction of the respiratory event, collection of medical information associated with the respiratory event is initiated. The medical information is collected and organized as a respiratory event log entry. At least one of detecting or predicting the respiratory event, collecting the medical information and organizing the medical information is performed implantably.
- a method for accessing medical information involves collecting medical information associated with respiratory events.
- the collection of medical information associated with respiratory events includes initiating, responsive to the detection or prediction of the respiratory event, collection of medical information associated with each respiratory event.
- the medical information is collected and organized a respiratory logbook.
- a user interface is provided for accessing the respiratory logbook. At least one of detecting or predicting the respiratory event, collecting the medical information and organizing the medical information is performed implantably.
- Another embodiment of the invention involves a method for organizing respiratory information associated with medical events. Responsive to the detection and/or prediction of a medical event, the system initiates collection of respiratory information associated with the medical event. The respiratory information is collected and organized as a medical event log entry. At least one of detecting or predicting the medical event, collecting the respiratory information and organizing the respiratory information is performed implantably.
- a method for accessing respiratory information associated with medical events of a patent involves collecting and organizing respiratory information associated with medical events. Collection of the respiratory information is implemented by initiating, responsive to the detection or prediction of a medical event, collection of respiratory information associated with each medical event. The respiratory information is collected and organized in a medical event logbook. A user interface provides access to the medical event logbook. At least one of detecting or predicting the medical event, collecting the respiratory information and organizing the respiratory information is performed implantably.
- a medical event logbook system includes an event detector configured to detect or predict a medical event.
- a data acquisition unit is coupled to the event detector and is configured to collect, responsive to the detection or prediction of the medical event, respiratory information associated with the medical event.
- the system also includes a processor configured to organize the acquired respiratory information as a medical event log entry. At least one of the event detector, the data acquisition unit, and the processor includes an implantable component.
- a respiratory event logbook system includes an event detector configured to detect or predict a respiratory event affecting the patient.
- a data acquisition unit is coupled to the event detector and is configured to collect medical information associated with the respiratory event responsive to the detection or prediction of the respiratory event.
- the system includes a processor configured to organize the collected medical information associated with the respiratory event as a respiratory event log entry. At least one of the event detector, the data acquisition unit, and the processor includes an implantable component.
- FIGS. 1A-1C are flowcharts of methods for acquiring and organizing information as event log entries in accordance with embodiments of the invention
- FIG. 2 is a block diagram of a respiratory logbook system in accordance with embodiments of the invention.
- FIG. 3 illustrates an exemplary depiction of a user interface display that may be used with a respiratory logbook system in accordance with embodiments of the invention
- FIG. 4 is a block diagram of a medical system that may be used to implement a respiratory logbook system in accordance with embodiments of the invention
- FIG. 5 is a partial view of an implantable device that may include circuitry for implementing a respiratory logbook in accordance with embodiments of the invention
- FIG. 6 is a graph illustrating a respiration waveform that may be acquired and organized as a portion of a respiratory log entry in accordance with embodiments of the invention
- FIG. 7 is a diagram illustrating an implantable transthoracic cardiac device that may be used in connection with acquiring and organizing data for a respiratory logbook in accordance with embodiments of the invention
- FIG. 8 is a block diagram illustrating a medical system including a patient-internal device cooperating with a patient-external device to acquire and organize information in a respiratory logbook in accordance with embodiments of the invention
- FIG. 9A provides a timing diagram illustrating the acquisition of respiration logbook information for a detected event affecting respiration in accordance with embodiments of the invention.
- FIG. 9B provides a timing diagram illustrating the acquisition of respiratory logbook information for a predicted event affecting respiration in accordance with embodiments of the invention.
- FIG. 10A illustrates a marked respiratory waveform in accordance with embodiments of the invention.
- FIG. 10B illustrates a marked respiration waveform that is time aligned with an electrocardiogram (ECG) graph in accordance with embodiments of the invention.
- ECG electrocardiogram
- Early detection and diagnosis of various types of diseases and syndromes may enhance the likelihood of successful treatment. However, the onset of some types of medical disorders may be very gradual and/or occur in discrete episodes, or at times that are inconvenient for collecting data, making early detection more difficult. Early diagnosis may depend on the recognition of changes in various physiological conditions that may not be apparent during yearly or even monthly check-ups.
- breathing rhythm disorders often are present only while the patient is asleep.
- Sleep disordered breathing assessments depend upon acquiring data while the patient is asleep. Diagnosis of sleep disorders typically involves the use of a polysomnographic sleep study performed at a dedicated sleep facility. However, such studies are costly, inconvenient to the patient, and may not accurately represent the patient's typical sleep behavior.
- the patient In a polysomnographic sleep study, the patient is instrumented for data acquisition and observed by trained personnel. Assessment of sleep disordered breathing in a laboratory setting presents a number of obstacles to acquiring an accurate picture of events occurring during sleep. For example, spending a night in a sleep laboratory typically causes a patient to experience a condition known as “first night syndrome,” involving disrupted sleep during the first few nights in an unfamiliar location. In addition, sleeping while instrumented and observed may not result in a realistic perspective of the patient's normal sleep patterns.
- Periodic monitoring of patient information may not be the most effective way to collect data related to discrete events. Due to the transient nature of events, collecting a snapshot of patient information on a daily or weekly basis, or according to another time schedule, may not always capture event information. Continuous monitoring allows detection of aperiodic or infrequent events. However, the amount of memory required for storing patient information on a substantially continuous basis may be prohibitive.
- Embodiments of the invention are directed to an event-based approach to storing and organizing information associated with medical and/or respiratory events.
- a logbook entry includes information, e.g., respiratory and/or medical information, acquired during time intervals surrounding an event.
- respiratory information collected in response to a medical event is organized as a medical event log entry.
- medical information collected in response to a respiratory event is organized as a respiratory event log entry.
- a number of logbook entries form a logbook that may be accessed by the user through a user interface.
- the processes described herein enhance the ability to acquire and store information about discrete events.
- the event logbook format provides an intuitive approach for organizing and presenting the information to patients or physicians.
- FIG. 1A is a flowchart illustrating a method of acquiring and organizing respiratory information collected in response to a medical event.
- the medical event may involve various types of events affecting one or more of the respiratory system, cardiovascular system, nervous system, muscle systems, and/or other physiological systems or combinations of physiological systems of the patient.
- the system implementing the method may be programmable to detect or predict a particular type of event, for example, a cardiac event, such as cardiac arrhythmia or an ectopic beat.
- the system may collect information about one or more respiratory parameters during, before and/or after the medical event.
- collection 114 of respiratory information for the medical event logbook entry is initiated.
- the respiratory information is collected 116 during the event.
- the respiratory information is collected 116 during the event and during a time period proximate to the event.
- Information may be collected during the event, during a period of time preceding the event, and/or during a period of time following the event. In some embodiments, the information may be collected prior to the prediction or detection of the event.
- respiratory conditions may be monitored, e.g., on a continuous or periodic basis, and stored in a temporary buffer.
- Temporary storage is required to provide information prior to the event prediction or detection, e.g., onset data.
- the size of the temporary storage buffer may vary according to the medical events for which onset data is desired. Due to the varied nature of onset data requirements and the reality of limited storage in the system, the system may allow different onset data lengths and different sampling rates for the temporarily stored data. In the preferred embodiment, the system would use a circular buffer to store the temporary data such that the oldest data is replaced by the newest data.
- collection of respiratory information may be performed on a substantially continuous basis, or it may be performed periodically.
- Long term storage of data acquired periodically may be beneficial when the event is relatively prolonged, such an in the case of a disease or disorder that may linger for several days or weeks.
- the type of data collected, data collection frequency, and/or data collection intervals may be selectable by the user.
- the system may be programmable to use different data collection regimens under different conditions over the course of the event. For example, the system may be programmable to collect data more frequently during sleep or during particular stages of the disease progression.
- the system may be programmed to collect data on a continuous basis during some time intervals, and periodically during other time intervals, for example.
- Collecting information preceding the event facilitates enhanced identification of conditions that may be used to detect or predict the occurrence of future events. For example, acquiring information preceding a medical event allows for the identification and assessment of physiological conditions present immediately before and leading up to the medical event. The identification of precursor conditions for medical events may facilitate increased sensitivity and/or accuracy in detecting or predicting occurrences of the future events.
- the acquired respiratory information is organized 118 as a medical event log entry.
- a medical event logbook may comprise a number of entries, each entry corresponding to a separate medical event.
- the medical events represented in the medical event logbook may comprise, for example, cardiovascular system events, nervous system events, respiratory system events, or any other medical events affecting the patient.
- the event entries included in the medical event log may be organized according to various categories, including for example, event type, event time/date, order of occurrence of the event, therapy provided to treat the event, among other categories.
- the selection of categories used to organize the information may be programmable by the user.
- the organized information may be stored in long term memory, displayed, printed, and/or transmitted to a separate device.
- the medical event comprises a cardiac event. Respiratory information collected before, during and/or after the cardiac event may be stored as a log entry in a cardiac arrhythmia logbook, for example.
- the collected information for the events is optionally accessible 120 through an interactive user interface. Selection of events to be accessed may involve a hierarchical selection menu, or other selection method, for example.
- the user may select a log entry from the menu by activating an input mechanism. Upon selection of the log entry, the user interface may provide graphical or textual depictions of the collected respiratory information associated with the medical event.
- FIG. 1B is a flow chart for an embodiment involving collecting medical information associated with a respiratory event.
- the respiratory event may be detected or predicted 122 .
- the event may include any detectable or predictable respiratory event, such as disordered breathing (apnea, hypopnea, tachypnea), coughing and/or breathing irregularities associated with pulmonary diseases and disorders such as asthma, pulmonary edema, chronic obstructive pulmonary disease, and/or pleural effusion, among others.
- collection 124 of medical information for the respiratory event logbook entry is initiated.
- the medical information may be collected 124 during the event and/or during a time period proximate to the event.
- Information may be collected during the event, during a period of time preceding the event, and/or during a period of time following the event. In some embodiments, the information may be collected prior to the prediction or detection of the respiratory event.
- the medical information may be monitored, e.g., on a continuous or periodic basis, and stored in a temporary buffer.
- Temporary storage is required to provide information prior to the event prediction or detection, e.g., onset data.
- the duration of the temporary storage may vary according to the respiratory events for which onset data is desired. For example, temporary storage of about one minute may be sufficient to understand onset conditions for an obstructive apnea event, whereas temporary storage of about one day may be required to understand onset conditions for an asthma event.
- the system may allow different onset data lengths and different sampling rates for the temporarily stored data.
- the system uses a circular buffer to store the temporary data such that the oldest data is replaced by the newest data.
- collection of respiratory information may be performed on a substantially continuous basis, or it may be performed during discrete intervals.
- Long term collection of data on a periodic basis may be beneficial when the event is relatively prolonged, such an in the case of a disease or disorder that may linger for several days or weeks.
- Various collection parameters such as the type of data collected, data collection frequency, and/or data collection intervals may be selectable by the user.
- the system may be programmable to use different data collection regimens under different conditions over the course of the event. For example, the system may be programmed to collect data more frequently during sleep or during particular stages of the disease progression. The system may be programmed to collect data on a substantially continuous basis during some time intervals, and periodically during other time intervals, for example.
- Collecting medical information preceding the respiratory event facilitates enhanced identification of conditions that may be used to detect or predict the occurrence of future events. For example, acquiring information preceding the event affecting patient respiration allows for the identification and assessment of physiological conditions present immediately before and leading up to the event. In one scenario, the patient may experience a period of hyperventilation prior to an apnea event. Collecting respiratory information prior to the apnea event allows the identification of hyperventilation as a precursor condition. The identification of precursor conditions for apnea facilitates increased sensitivity and/or accuracy in detecting or predicting future occurrences of apnea.
- medical information preceding the respiratory event may provide insight into conditions that predispose the patient to certain respiratory events. Acquiring information preceding the event may allow identification of the triggering or causal factors of the event. For example, an asthma attack may be induced by increased exercise or a sudden change in ambient temperature, e.g., the patient moving from a warmer location to a colder location. Collection of medical information preceding the asthma attack allows the factors that precipitate the respiratory event to be identified. Such information may be used to enhance the detection and/or prediction of future events.
- Information collected following the event may be used to assess the acute effects of the event.
- Episodes of disordered breathing may be associated with acute physiological effects, including negative intrathoracic pressure, hypoxia, and arousal from sleep. Such effects may be detectable for a period of time following the respiratory event.
- obstructive sleep apneas are typically terminated by arousal from sleep that occurs several seconds after the apneic peak, allowing the resumption of airflow.
- arousal from sleep and continuing for some period of time after termination of the event, surges in sympathetic nerve activity, blood pressure, and heart rate occur.
- obstructive apnea the effort to generate airflow increases. Attempted inspiration in the presence of an occluded airway results in an abrupt reduction in intrathoracic pressure.
- the repeated futile inspiratory efforts associated with obstructive sleep apnea may trigger a series of secondary responses, including mechanical, hemodynamic, chemical, neural, and inflammatory responses.
- Collection of data following obstructive sleep apnea events may be used to determine the presence and/or severity of the secondary responses to obstructive apnea events.
- the post-event information enhances the ability to evaluate the impact of the secondary responses upon the patient.
- obstructive sleep apnea events are typically terminated by arousal from sleep.
- arousals are not usually required for the resumption of breathing in central sleep apnea events.
- the arousals follow the initiation of breathing.
- Arousals following central apnea events may facilitate the development of oscillations in ventilation by recurrently stimulating hyperventilation and reducing PaCO 2 below the apneic threshold.
- the pattern of alternating hyperventilation and apnea may be sustained by the combination of increased respiratory drive, pulmonary congestion, arousals, and apnea-induced hypoxia causing PaCO 2 oscillations above and below the apneic threshold. Shifts in the patient's state of consciousness, particularly with repeated arousals, may further destabilize breathing. Collecting information during central apnea events and before and/or after the occurrence of the events may allow identification of the oscillations associated with central apnea.
- the collected medical information which may be stored in long term memory, transmitted, printed and/or displayed, is organized as a respiratory logbook entry 128 .
- the medical information may include various physiological and non-physiological data.
- respiratory system data cardiovascular system data, nervous system data, posture, activity, medical history data, environmental data (temperature, altitude, air quality) and other types of medical information may be organized as a respiratory logbook entry.
- the respiratory logbook entry may be stored, transmitted, printed and/or displayed.
- a respiratory event logbook may comprise a number of entries, each entry corresponding to a separate respiratory event.
- the event entries included in a medical event log may be organized according to various categories, including for example, event type, event time/date, order of occurrence of the event, therapy provided to treat the event, among other categories.
- the selection of categories used to organize the information may be programmable by the user.
- the organized information may be stored in long term memory, displayed, printed, and/or transmitted to a separate device.
- the collected information for the events may be optionally accessible 130 through an interactive user interface.
- the interactive user interface may provide access to one or more log entries through activation of a selection process, involving a hierarchical selection menu, or other selection method, for example.
- the user may select a log entry from the menu by activating an input mechanism.
- the user interface may provide graphical or textual depictions of the collected respiratory information associated with the medical event.
- the event information of the logbook may be stored in long term memory using various storage methodologies.
- the logbook may utilize a flat file system, hierarchical database, relational database, or distributed database.
- Data for a group of events may be analyzed and/or summarized in various formats.
- Graphical and/or textual summary information may be displayed on the user interface and/or otherwise communicated to the user. For example, histograms, trend graphs, and/or other analytical tools or formats may be generated based on the logbook event entries.
- a logbook display may have the ability to display trends of the patient's apnea/hypopnea index, histograms of number of apneas/hypopneas and/or obstructive/central events per night, sleep stage diagram (shows the stage of sleep for each night), heart rate trend during the night, oxygen saturation trend during the night.
- FIG. 1C is a flowchart illustrating an embodiment of the invention involving collecting medical information responsive to prediction and detection of a medical event.
- a medical event is predicted 132 , initiating collection of information 134 .
- medical conditions affecting the patient may be monitored continuously or during discrete intervals and stored in a temporary buffer.
- Information contained in the temporary buffer represents information occurring before the prediction and may be collected for the medical event log entry.
- information may be collected after the prediction and before the detection of the event. If the event is detected 135 , information may be collected during 136 and after the detected event. The collected information is organized 138 as an event log entry.
- FIG. 2 is a block diagram of a logbook system 200 in accordance with embodiments of the invention.
- the respiratory logbook system 200 implements an event-driven method of collecting and organizing data related to events affecting patient respiration.
- Various patient conditions may be monitored through sensors 222 , patient input devices 223 , and/or information systems 224 .
- Data associated with patient conditions may be stored in short term memory 240 .
- One or more of the patient conditions may be used by event detection circuitry 236 to detect or predict the occurrence of an event affecting respiration. Detection or prediction of an event affecting respiration initiates the long term storage of information associated with the event by the event information processor 232 into the long term memory 260 .
- the event information processor 232 may collect information supplied by one or more of the sensors 222 , patient input devices 223 , and information systems 224 before, during, and/or after the detection and/or prediction of the event.
- the collected information associated with each event is organized as a respiratory logbook entry in the respiratory logbook.
- the respiratory logbook, or portions thereof, may be stored in long term memory 260 , transmitted to a remote device 255 , and/or displayed on a display device 270 .
- the embodiment illustrated in FIG. 2 includes a respiration sensor 245 that senses a physiological condition modulated by patient respiration.
- the respiration sensor may comprise a transthoracic impedance sensor.
- Other methods of sensing respiration are also possible. Such methods may include, for example, the use of patient-external respiratory bands, respiration flowmeter measurements, implantable or patient-external breath sound detection, blood oxygen levels, and/or other processes.
- the respiration sensor 245 may be used, for example, to acquire a respiration waveform before, during, and/or after an event affecting the patient respiration.
- the respiration waveform may be a component of the respiratory log entry for the event.
- Information about various conditions affecting the patient and associated with the event may be acquired using sensors 222 , patient input devices 223 and/or other information systems 224 .
- the sensors 222 may comprise patient-internal and/or patient-external sensors coupled through leads or wirelessly to the interface 231 of the respiratory logbook system 200 .
- the sensors may sense various physiological and/or non-physiological conditions affecting patient respiration or other physiological systems.
- the patient input device 223 allows the patient to input information relevant to conditions affecting the patient that may be useful in generating a respiratory event log.
- the patient input device 223 may be particularly useful for acquiring information known to the patient, such as information related to patient smoking, drug use, recent exercise level, and/or other patient activities, perceptions and/or symptoms.
- the information provided by the patient-input device may include patient-known information relevant to the event affecting respiration that is not automatically sensed or detected by the respiratory logbook system 200 .
- the respiratory logbook system 200 may also include one or more information systems 224 such as a remote computing device and/or a network-based server.
- the event information processor 232 may access the information systems 224 to acquire information from databases and/or other information sources stored on or generated by the remote computing devices and/or servers.
- the information acquired from the information systems 224 may be recorded in the respiratory logbook along with other information relevant to the event affecting respiration.
- the respiratory logbook system 200 may access an internet connected air quality server to collect data related to environmental conditions, such as an ambient pollution index.
- the respiratory logbook system 200 may access the patient's medical history through a patient information server.
- the sensors 222 , patient input devices 223 , and information systems 224 are coupled to other components of the respiratory logbook system 200 through interface circuitry 231 .
- the interface 231 may include circuitry for energizing the sensors 222 and/or for detecting and/or processing signals generated by the sensors.
- the interface 231 may include, for example, driver circuitry, amplifiers, filters, sampling circuitry, and/or A/D converter circuitry for conditioning the signals generated by the sensors.
- the interface 231 may also include circuitry 250 for communicating with the patient input device 223 , information systems 224 , a device programmer 255 , an APM system (not shown), or other remote devices. Communication with the patient input device 223 , information systems 224 and/or a remote device programmer 255 and/or other remote devices may be implemented using a wired connection or through a wireless communication link, such as a Bluetooth or other wireless link.
- the communication circuitry 250 may also provide the capability to wirelessly communicate with various sensors, including implantable, subcutaneous, cutaneous, and/or non-implanted sensors.
- the respiratory logbook system 200 may optionally be implemented as a component of a medical device that includes a therapy system, such as a cardiac rhythm management system 201 .
- the cardiac rhythm management system 201 may include cardiac electrodes 225 electrically coupled to the patient's heart.
- Cardiac signals sensed by cardiac sense circuitry 220 may be used in the detection and treatment of various anomalies of the heart rhythm.
- Anomalous heart rhythms may include, for example, a rhythm that is too slow (bradycardia), a heart rhythm that is too fast (tachycardia), and/or a heart rhythm that involves insufficiently synchronized contractions of the atria and/or ventricles, a symptom of congestive heart failure.
- a cardiac therapy circuit 215 may deliver cardiac therapy to the heart in the form of electrical stimulation pulses, such as pacing and/or cardioversion/defibrillation pulses.
- the cardiac signals and/or cardiac conditions, e.g., arrhythmia conditions, derived or detected through the use of the cardiac signals may be associated with an event affecting respiration.
- the cardiac information associated with the event may be acquired and organized by the respiratory logbook system 200 .
- FIG. 3 illustrates an exemplary depiction of a user interface display 300 .
- An area 305 of the display may be used to provide textual or graphical information about respiratory events.
- a menu 310 of respiratory events may be presented and may enable the user to access additional information related to the respiratory event.
- the menu 310 may provide a summary of parameters associated with the events contained in the respiratory logbook. As illustrated in FIG.
- one or more summary parameter headings such as episode number 321 , date/time 322 , type 323 , duration 324 , sleep stage 325 , and/or environment 326 , among other parameter headings, may be presented at the top of the menu 310 or in another convenient location.
- the summary parameter headings 321 - 326 may be programmable, and additional or alternative parameter headings to those depicted in FIG. 3 may be selected, for example.
- the type parameter 323 may contain abbreviations for various respiratory events.
- AP-C and AP-O may abbreviate central and obstructive apneas respectively, HP abbreviates a hypopnea, CS abbreviates Cheyne-Stokes respiration and RSB abbreviates rapid-shallow breathing.
- the respiratory events displayed as menu items in the menu 310 may be selected by a user according to episode number, date/time, duration, type, number, or by other criteria.
- the menu items may be selected for display based on various criteria ranges and/or thresholds. For example, in the example screen illustrated in FIG. 3 , different groups of events selected as menu items may be selected by activating the modify query button 331 .
- the modify query button 331 and other buttons illustrated on the display may be voice activated, activated through touching the display screen, or by operating a keyboard or pointing device, for example.
- activation of the modify query button 331 initiates a dialog session that allows the user to select respiratory events to be presented in the menu according various criteria such as by date/time, duration, type, number, or by other criteria ranges or thresholds.
- the user may select all apnea events to be presented as menu items.
- the user may select all events that occurred between a first date and a second date.
- the user may select all events that occurred while the patient experienced certain environmental conditions, e.g., ambient temperature range and/or humidity range.
- the user may choose to select all events of the respiratory logbook.
- the selection criteria may be displayed in an episode query selection area 332 of the display.
- the episode query selection area 332 in the depiction of a respiratory logbook display shown in FIG. 3 indicates that all episodes have been selected to be displayed as menu items.
- the menu 310 allows the user to choose respiratory events for which additional textual and/or graphical information is displayed.
- the additional information provides more detailed information about the selected events beyond the summary information presented in the menu 310 .
- the selections are indicated by check marks 307 beside the selected respiratory events.
- the display may include a select all button 351 and/or a select none button 352 . Activation of the select all button 351 causes all events in the menu 310 to be selected. Activation of the select none button 352 causes all events in the menu 310 to be deselected.
- activation of the detail button 342 causes detailed textual information associated with a selected event to be presented on the display screen.
- the detail information may be displayed in the area of the screen 305 previously occupied by the menu 310 , for example.
- the user may scroll back and forth through the textual information for the one or more selected events using the prev button 341 and the next button 343 .
- the textual information may be printed upon activation of the print button 344 , or may be saved to a disk, or other storage medium, through activation of the save to disk button 355 .
- a respiration waveform acquired during, before and/or after a selected event may be displayed in the area 305 of the display previously used for the menu 310 .
- Waveforms of other parameters, e.g., cardiac rhythm, patient activity may additionally or alternatively be displayed.
- a marked waveform may be displayed.
- a marked respiration waveform may include the respiration waveform acquired before, during, and after the event, along with one or more symbols aligned with the respiration waveform to indicate the occurrence of one or more conditions.
- the symbol may provide a numerical value or a textual description associated with the respiration characteristic, e.g., average respiration rate, expiratory slope, etc.
- various characteristics of disordered breathing events including quantifiable characteristics, such as episode duration, blood oxygen saturation, disordered breathing type, and/or other detected characteristics may also be displayed along with the respiration waveform.
- quantifiable characteristics such as episode duration, blood oxygen saturation, disordered breathing type, and/or other detected characteristics may also be displayed along with the respiration waveform.
- a user may scroll through the waveforms associated with the selected events using the prev and next buttons 341 , 343 .
- FIG. 4 is a block diagram of a medical system that may be used to implement a respiratory logbook system in accordance with embodiments of the invention.
- the medical system may include, for example, one or more patient-internal medical devices 420 and one or more patient-external medical devices 430 .
- Each of the patient-internal 420 and patient-external 430 medical devices may include one or more of a patient monitoring unit 427 , 437 , a diagnostics unit 429 , 439 , and/or a therapy unit 428 , 438 .
- Respiratory logbook circuitry 411 as described more fully in connection with FIG.
- an external device interface including an external device interface, event detector/predictor, event information processor and/or memory, for example, can be housed in a patient internal medical device 420 , a patient external medical device 430 , a remote system such as advanced patient medical (APM) system 440 or in any combination of the above-mentioned devices 420 , 430 , 440 .
- APM advanced patient medical
- the patient-internal medical device 420 may be a fully or partially implantable device that performs monitoring, diagnosis, and/or therapy functions.
- the patient-external medical device 430 may perform monitoring, diagnosis and/or therapy functions external to the patient (i.e., not invasively implanted within the patient's body).
- the patient-external medical device 430 may be positioned on the patient, near the patient, or in any location external to the patient. It is understood that a portion of a patient-external medical device 430 may be positioned within an orifice of the body, such as the nasal cavity or mouth, yet can be considered external to the patient (e.g., mouth pieces/appliances, tubes/appliances for nostrils, or temperature sensors positioned in the ear canal).
- the patient-internal and patient-external medical devices 420 , 430 may be coupled to one or more sensors 421 , 422 , 431 , 432 , patient input devices 424 , 434 and/or other information acquisition devices 426 , 436 .
- the sensors 421 , 422 , 431 , 432 , patient input devices 424 , 434 , and/or other information acquisition devices 426 , 436 may be employed to detect conditions relevant to the monitoring, diagnostic, and/or therapeutic functions of the patient-internal and patient-external medical devices 420 , 430 .
- the medical devices 420 , 430 may each be coupled to one or more patient-internal sensors 421 , 431 that are fully or partially implantable within the patient.
- the medical devices 420 , 430 may also be coupled to patient-external sensors 422 , 432 positioned on the patient, near the patient, or in a remote location with respect to the patient.
- the patient-internal 421 , 431 and patient-external 422 , 432 sensors may be used to sense conditions, such as physiological or environmental conditions, that affect the patient.
- the patient-internal sensors 421 may be coupled to the patient-internal medical device 420 through implanted leads.
- an internal endocardial lead system is used to couple sensing electrodes to an implantable pacemaker or other cardiac rhythm management device.
- One or more of the patient-internal sensors 421 , 431 may be equipped with transceiver circuitry to support wireless communication between the one or more patient-internal sensors 421 , 431 and the patient-internal medical device 420 and/or the patient-external medical device 430 .
- the patient-external sensors 422 , 432 may be coupled to the patient-internal medical device 410 and/or the patient-external medical device 420 through leads or through wireless connections.
- Patient-external sensors 422 preferably communicate with the patient-internal medical device 420 wirelessly.
- Patient-external sensors 432 may be coupled to the patient-external medical device 430 through leads or through a wireless link.
- the medical devices 420 , 430 may be coupled to one or more patient-input devices 424 , 434 .
- the patient-input devices 424 , 434 facilitate manual transfer of information to the medical devices 420 , 430 by the patient.
- the patient input devices 424 , 434 may be particularly useful for inputting information concerning patient perceptions, such as how well the patient feels, and patient-known information such as patient smoking, drug use, or other activities that are not automatically sensed or detected by the medical devices 420 , 430 .
- a device programmer may be used to facilitate patient input to a medical device 420 , 430 .
- the medical devices 420 , 430 may be connected to one or more information systems 426 , 436 , for example, a database that stores information useful in connection with the monitoring, diagnostic, or therapy functions of the medical devices 420 , 430 .
- one or more of the medical devices 420 , 430 may be coupled through a network to an information system server that provides information about environmental conditions affecting the patient, e.g., the pollution index for the patient's location.
- the patient-internal medical device 420 and the patient-external medical device 430 may communicate through a wireless link between the medical devices 420 , 430 .
- the patient-internal and patient-external devices 420 , 430 may be coupled through a short-range radio link, such as Bluetooth or a wireless link.
- the communications link may facilitate uni-directional or bi-directional communication between the patient-internal 420 and patient-external 430 medical devices.
- Data and/or control signals may be transmitted between the patient-internal 420 and patient-external 430 medical devices to coordinate the functions of the medical devices 420 , 430 .
- the patient-internal and patient-external medical devices 420 , 430 may be used within the structure of an advanced patient management system.
- Advanced patient management systems involve a system of medical devices that are accessible through various communications technologies.
- patient data may be downloaded from one or more of the medical devices periodically or on command, and stored at a patient information server.
- the physician and/or the patient may communicate with the medical devices and the patient information server, for example, to acquire patient data or to initiate, terminate or modify therapy.
- the patient-internal medical device 420 and the patient-external medical device 430 may be coupled through a wireless or wired communications link to a patient information server that is part of an advanced patient management system 440 .
- the APM patient information server 440 may be used to download and store data collected by the patient-internal and patient-external medical devices 420 , 430 .
- the data stored on the APM patient information server 440 may be accessible by the patient and the patient's physician through terminals 450 , e.g., remote computers located in the patient's home or the physician's office.
- the APM patient information server 440 may be used to communicate to one or more of the patient-internal and patient-external medical devices 420 , 430 to effect remote control of the monitoring, diagnosis, and/or therapy functions of the medical devices 420 , 430 .
- the patient's physician may access patient data transmitted from the medical devices 420 , 430 to the APM patient information server 440 .
- the patient's physician may communicate with one or more of the patient-internal or patient-external devices 420 , 430 through the APM system 440 to initiate, terminate, or modify the monitoring, diagnostic, and/or therapy functions of the patient-internal and/or patient-external medical systems 420 , 430 .
- Systems and methods involving advanced patient management techniques are further described in the previously incorporated U.S. Pat. Nos. 6,336,903; 6,312,378; 6,270,457; and 6,398,728.
- the patient-internal and patient-external medical devices 420 , 430 may not communicate directly with each other, but may communicate indirectly through the APM system 440 .
- the APM system 440 may operate as an intermediary between two or more of the medical devices 420 , 430 .
- data and/or control information may be transferred from one of the medical devices 420 , 430 to the APM system 440 .
- the APM system 440 may transfer the data and/or control information to another of the medical devices 420 , 430 .
- respiratory logbook circuitry 411 including an external device interface, event detector/predictor, event information processor and memory, for example, can be housed in a patient internal medical device 420 , a patient external medical device 430 , an advanced patient medical (APM) system 440 or in any combination of the above-mentioned devices.
- APM advanced patient medical
- the respiratory logbook circuitry 411 is described as being housed within the patient internal medical device 420 .
- the patient internal medical device 420 is coupled to various sensors, 421 , 422 , patient input devices 424 , and/or other information systems 426 . These sensing and detection devices may be used to detect conditions relevant to events affecting respiration.
- One or more patient input devices 424 allow the patient to enter information associated with the events into the medical device 420 .
- information systems 426 may be accessible by the patient-internal medical device 420 , including, for example, network or internet-based information systems.
- the information systems 426 may provide event-related information such as local pollution levels, local temperature, humidity, etc.
- the conditions associated with events affecting respiration may be any of the conditions referred to in Tables 1-3, or other conditions.
- the respiratory logbook circuitry 411 may comprise circuitry configured to evaluate one or more patient conditions to detect or predict the occurrence of an event affecting patient respiration. In response to the detection or prediction of such an event, the respiratory logbook circuitry initiates the collection of information related to the event. In one scenario, the respiratory logbook circuitry may initiate collection of information from sensors 421 , 431 , 422 , 432 or other input devices 424 , 434 , 426 , 436 coupled to any combination of the patient internal medical device 420 , patient external medical device 430 and a remote device, such as the APM server 440 . The respiratory logbook circuitry may initiate collection of information associated with any of the patient conditions listed in Tables 1-3.
- Information associated with the event affecting respiration may be acquired before, during and/or after the respiratory event. Information may be acquired for a time period beginning a short time, e.g., up to about 5 minutes, prior to the prediction and/or detection of a respiratory event and/or ending a short time, e.g., up to about 2 minutes, following the termination of the respiratory event.
- acquired information related to the event affecting respiration may be immediately transmitted to a separate computing device 430 , 440 , 450 .
- the acquired information may be stored in the patient-internal device 420 .
- the information may be organized and displayed on a display unit 452 as discussed in connection with FIG. 3 .
- the patient-internal sensors 421 , 431 , patient-external sensors 422 , 432 , patient input devices 424 , 434 , and/or information systems 426 , 436 may be used to acquire a variety of information related to respiratory logbook events.
- the acquired information may include both physiological and non-physiological contextual conditions affecting the patient.
- Physiological conditions may include a broad category of conditions associated with the internal functioning of the patient's physiological systems, including the cardiovascular, respiratory, nervous, muscle and other systems. Examples of physiological conditions include blood chemistry, patient posture, patient activity, respiration quality, sleep quality, among others.
- Contextual conditions generally encompass non-physiological, patient-external or background conditions.
- Contextual conditions may be broadly defined to include, for example, present environmental conditions, such as patient location, ambient temperature, humidity, air pollution index.
- Contextual conditions may also include historical/background conditions relating to the patient, including the patient's normal sleep time and the patient's medical history, for example.
- Table 1 provides a list of representative patient conditions that may be used in connection with a respiratory logbook in accordance with embodiments of the invention.
- Table 1 presents representative physiological and non-physiological patient conditions that may be acquired and used in connection with a respiratory logbook.
- Table 1 also presents illustrative sensing methods that may be employed to sense the conditions. It will be appreciated that information and detection methods other than those provided in Table 1 may be used in connection with a respiratory logbook and are considered to be within the scope of the invention.
- Physiological Cardiovascular System Heart rate EGM, ECG Heart rate variability QT interval Ventricular filling pressure Intracardiac pressure sensor Blood pressure Blood pressure sensor Respiratory System Snoring Accelerometer Microphone Respiration pattern (Tidal Transthoracic impedance volume Minute ventilation sensor (AC) Respiratory rate) Patency of upper airway Intrathoracic impedance sensor Pulmonary congestion Transthoracic impedance sensor (DC) Nervous System Sympathetic nerve activity Muscle sympathetic nerve Activity sensor Brain activity EEG Blood Chemistry CO2 saturation Blood analysis O2 saturation Blood alcohol content Adrenalin Brain Natriuretic Peptide (BNP) C-Reactive Protein Drug/Medication/Tobacco use Muscle System Muscle atonia EMG Eye movement EOG Patient activity Accelerometer, MV, etc.
- long term storage of respiratory logbook information may be initiated by detection or prediction of various types of events affecting the respiration of the patient.
- the triggering event may comprise, for example, a disordered breathing event, a cardiac arrhythmia episode, an event related to a pulmonary disease or disorder such as asthma, pulmonary edema, chronic obstructive pulmonary disease, and/or pleural effusion, an episode of coughing and/or other breathing irregularities, or an event related to the normal activity of the patient, such as sleep or exercise, among other events.
- the event may also be triggered by the patient using, for example, the patient input device 424 , 434 .
- Detection of various pulmonary diseases/disorders may initiate long term storage of data for a respiratory logbook entry.
- Pulmonary diseases/disorders may be organized into broad categories encompassing disorders of breathing rhythm and non-rhythm pulmonary diseases and/or disorders.
- Breathing rhythm disorders include various syndromes characterized by patterns of disordered breathing that produce insufficient respiration, for example, sleep apnea, hypopnea, and Cheyne-Stokes Respiration (CSR), among others. Breathing rhythm disorders are not necessarily accompanied by alteration of pulmonary structures.
- Non-rhythm pulmonary diseases or disorders typically involve physical changes to lung structures, such as loss of elasticity of the lung tissue, obstruction of airways with mucus, limitation of the expansion of the chest wall during inhalation, fibrous tissue within the lung, excessive pressure in the pulmonary arteries, and/or other characteristics.
- Pulmonary diseases or disorders that are not rhythm related are referred to herein as non-rhythm pulmonary diseases and may include obstructive pulmonary diseases, restrictive pulmonary diseases, infectious pulmonary diseases, pulmonary vasculature disorders, and pleural cavity disorders, for example.
- acquisition of information may be triggered by detection of a presence of a non-rhythm related pulmonary disease/disorder. Detection of a presence of the pulmonary disease/disorder may be based on a predetermined level of physiological changes and/or disease symptoms associated with the disease or disorder.
- obstructive pulmonary diseases e.g., chronic bronchitis, emphysema, asthma
- restrictive pulmonary diseases e.g., sarcoidosis, pulmonary fibrosis, pneumo
- the presence of a non-rhythm pulmonary disease may be assessed by evaluating conditions indicative of the non-rhythm pulmonary disease.
- the presence of a non-rhythm pulmonary disease may be assessed by comparing conditions indicative of physiological changes or symptoms caused by the disease to threshold criteria. If the conditions indicative of physiological changes or symptoms caused by the disease are consistent with threshold levels, the system may determine that the non-rhythm pulmonary disease or disorder is present.
- assessment of disease presence may be based on relative changes in one or more conditions indicative of physiological changes or symptoms caused by the disease.
- diagnosis of a non-rhythm pulmonary disease may be effected by evaluating the changes in conditions indicative of physiological changes or symptoms caused by the disease. The changes in the one or more conditions may be compared to threshold criteria. If changes in the conditions indicative of physiological changes or symptoms caused by the disease are consistent with threshold levels, the non-rhythm pulmonary disease or disorder may be present.
- the threshold criteria may involve relationships between the conditions indicative of physiological changes or symptoms caused by the disease.
- the presence of a non-rhythm pulmonary disease may be assessed by evaluating relationships between conditions indicative of physiological changes or symptoms caused by the disease. For example, assessment of a disease may involve the determination that levels or amounts of two or more conditions have a certain relationship with one another. If relationships between the conditions indicative of physiological changes or symptoms caused by the disease are consistent with threshold relationship criteria, the non-rhythm pulmonary disease or disorder may be present.
- detection of a rhythm related pulmonary event triggers the acquisition of information associated with respiration.
- a disordered breathing event may be detected by sensing and analyzing various conditions indicative of disordered breathing.
- Table 2 presents examples of how a representative subset of the physiological and non-physiological (contextual) conditions provided in Table 1 may be used in connection with disordered breathing detection.
- Heart rate variability Disordered breathing causes heart rate variability to decrease. Changes in HRV associated with sleep disordered breathing may be observed while the patient is awake or asleep. Ventricular filling May be used to identify/predict pulmonary pressure congestion associated with respiratory disturbance. Blood pressure Swings in on-line blood pressure measures are associated with apnea. Disordered breathing generally increases blood pressure variability - these changes may be observed while the patient is awake or asleep.
- Snoring Snoring is associated with a higher incidence of obstructive sleep apnea and may be used to detect disordered breathing. Snoring indicates the patient is asleep. Respiration Respiration patterns including, e.g., respiration rate, pattern/rate may be used to detect disordered breathing episodes. Respiration patterns may be used to determine the type of disordered breathing. Respiration patterns may be used to detect that the patient is asleep. Patency of upper Patency of upper airway is related to obstructive airway sleep apnea and may be used to detect episodes of obstructive sleep apnea. Pulmonary Pulmonary congestion is associated with respiratory congestion disturbances. Sympathetic nerve End of apnea associated with a spike in SNA.
- CO2 Low CO2 levels initiate central apnea. May be used to predict central apnea risk. O2 O2 desaturation occurs during severe apnea/hypopnea episodes. May be used to evaluate presence and severity of sleep disordered breathing event. Blood alcohol Alcohol tends to increase incidence of snoring & content obstructive apnea. Adrenalin End of apnea associated with a spike in blood adrenaline.
- Brain Natriuretic A marker of heart failure status which is associated Peptide (BNP) with Cheyne-Stokes Respiration C-Reactive Protein A measure of inflammation that may be related to apnea.
- Drug/Medication/Tobacco These substances may affect the incidence of both use central & obstructive apnea. Muscle atonia Eye Muscle atonia may be used to discriminate REM movement from non-REM sleep. Eye movement may be used to detect REM and non- REM sleep.
- Non- Temperature Ambient temperature may be a condition physiological/ predisposing the patient to episodes of disordered Contextual breathing and may be useful in disordered breathing detection.
- Humidity Humidity may be a condition predisposing the patient to episodes of disordered breathing and may be useful in disordered breathing detection.
- Pollution Pollution may be a condition predisposing the patient to episodes of disordered breathing and may be useful in disordered breathing detection.
- Posture Posture may be used to confirm or determine the patient is asleep.
- Activity Patient activity may be used in relation to sleep detection.
- Location Patient location may used to determine if the patient is in bed as a part of sleep detection. Altitude Lower oxygen concentrations at higher altitudes tends to cause more central apnea
- the acquisition of information may be triggered by a prediction that a disordered breathing event is likely to occur.
- an occurrence of disordered breathing may be predicted based on one or more sensed conditions, such one or more of the physiological and/or non-physiological conditions listed in Table 1.
- the conditions listed in Table 1 may serve a variety of purposes in predicting disordered breathing.
- a first subset of the conditions listed in Table 1 may comprise conditions predisposing the patient to disordered breathing.
- Another subset, possibly overlapping the first subset may comprise precursor conditions indicating an imminent occurrence of a disordered breathing event.
- Another subset of the conditions may be employed to verify that the predicted disordered breathing event occurred and/or to classify the disordered breathing episode as to origin, e.g., central or obstructive, and/or as to type, e.g., apnea, hypopnea, Cheyne-Stokes Respiration (CSR).
- Heart rate Decrease in heart rate may indicate disordered breathing episode. Decrease in heart rate may indicate the patient is asleep. Increase in heart rate may indicate autonomic arousal from disordered breathing. Heart rate variability May be used to determine sleep state Ventricular filling pressure May be used to identify/predict pulmonary congestion associated with respiratory disturbance. Blood pressure Swings in on-line blood pressure measures are associated with apnea. Snoring Snoring is associated with a higher incidence of obstructive sleep apnea and may be used to detect disordered breathing. Respiration Respiration patterns may be used to detect disordered signals/respiration patterns breathing episodes. Respiration patterns may be used to determine the type of disordered breathing.
- Respiration patterns may be used to detect that the patient is asleep. Hyperventilation may be used to predict disordered breathing. Previous episodes of disordered breathing may be used to predict further episodes. One form of disordered breathing may be used to predict another form of disordered breathing Patency of upper airway Patency of upper airway is related to obstructive sleep apnea and may be used to detect episodes of obstructive sleep apnea.
- Pulmonary congestion Pulmonary congestion is associated with respiratory disturbances. Sympathetic nerve activity End of apnea associated with a spike in SNA CO2 saturation Low CO2 levels initiate central apnea. O2 saturation O2 desaturation occurs during severe apnea/hypopnea episodes.
- Blood alcohol content Alcohol tends to increase incidence of snoring & obstructive apnea.
- Adrenalin End of apnea associated with a spike in blood adrenaline.
- BNP A marker of heart failure status which is associated with Cheyne-Stokes Respiration C-Reactive Protein A measure of inflammation that may be related to apnea.
- Drug/Medication/Tobacco These substances may affect incidence of both central & use obstructive apnea.
- Muscle atonia Eye Muscle atonia may be used to detect REM and non-REM movement sleep. Eye movement may be used to detect REM and non-REM sleep.
- Temperature Ambient temperature may be a condition predisposing the patient to episodes of disordered breathing.
- Humidity Humidity may be a condition predisposing the patient to episodes of disordered breathing.
- Pollution Pollution may be a condition predisposing the patient to episodes of disordered breathing.
- Posture Posture may be used to determine if the patient is asleep.
- Posture may be a condition predisposing the patient to episodes of disordered breathing.
- Activity Patient activity may be used in relation to sleep detection. Sleep stage NREM sleep is associated with a higher incidence of DB episodes
- Location Patient location may used to determine if the patient is in bed as a part of sleep detection. Altitude Lower oxygen concentration associated with high altitudes predisposes patients to more central apnea
- Detection or prediction of disordered breathing may involve comparing one condition or multiple conditions to one or more thresholds or other indices indicative or predictive of disordered breathing.
- a threshold or other index indicative or predictive of disordered breathing may comprise a predetermined level of a particular condition, e.g., blood oxygen level less than a predetermined amount.
- a threshold or other index indicative or predictive of disordered breathing may involve a change in a level of a particular condition, e.g., heart rate decreasing from a sleep rate to a lower rate within a predetermined time interval.
- the relationships between the conditions may be indicative or predictive of disordered breathing.
- disordered breathing detection or prediction may be based on the existence and relative values associated with two or more conditions. For example, if condition A is present at a level of x, then condition B must also be present at a level of f(x) before disordered breathing is detection or predicted.
- the thresholds and/or relationships indicative or predictive of disordered breathing may be highly patient specific.
- the thresholds and/or relationships indicative of disordered breathing may be determined on a case-by-case basis by monitoring conditions affecting the patient and monitoring disordered breathing episodes.
- the analysis may involve determining levels of the monitored conditions and/or relationships between the monitored conditions associated, e.g., statistically correlated, with disordered breathing episodes.
- the thresholds and/or relationships used in disordered breathing detection or prediction may be updated periodically to track changes in the patient's response to disordered breathing.
- disordered breathing events may be detected through analysis of the patient's respiration patterns.
- Methods and systems of disordered breathing detection based on respiration patterns that may be utilized in a respiratory logbook system are further described in commonly owned U.S. Pat. No. 7,252,640, which is incorporated herein by reference.
- Prediction of disordered breathing may involve analysis of conditions predisposing the patient to disordered breathing. Additionally, or alternatively, prediction of disordered breathing may be based on the detection of precursor conditions that indicate a likelihood that one or more episodes of disordered breathing will occur during the next time period, such as over the course of the night. Methods and systems for predicting disordered breathing that may be implemented in a respiratory logbook system are further described in commonly owned U.S. Pat. No. 7,396,333, which is incorporated herein by reference.
- Respiratory events may be more likely to occur during sleep. For example, episodes of disordered breathing can occur when the patient is awake, however, most disordered breathing events occur during sleep.
- the onset and termination or sleep, sleep state, and/or stage of sleep may comprise events that initiate acquisition of information organized in a respiratory logbook. Methods and systems for detecting sleep that may be implemented in the context of a respiratory logbook are described in commonly owned U.S. Pat. No. 7,189,204, which is incorporated herein by reference.
- Information collected in accordance with the invention may involve information related to sleep and/or sleep quality.
- Methods and systems related to collection, assessment, and organization of sleep-related information are described in commonly owned U.S. Pat. Nos. 8,002,553 and 7,572,225, and U.S. Patent Publication No. 2005/0076908, all of which are incorporated herein by reference.
- FIG. 5 is a partial view of an implantable device that may include circuitry for implementing a respiratory logbook in accordance with embodiments of the invention.
- the implantable device comprises a cardiac rhythm management device (CRM) 500 including an implantable pulse generator 505 electrically and physically coupled to an intracardiac lead system 510 .
- CCM cardiac rhythm management device
- the respiratory logbook system may alternatively be implemented in a variety of implantable monitoring, diagnostic, and/or therapeutic devices, such as an implantable cardiac monitoring device, an implantable drug delivery device, or an implantable neurostimulation device, for example.
- the intracardiac lead system 510 includes one or more electrodes configured to sense electrical cardiac activity of the heart, deliver electrical stimulation to the heart, sense the patient's transthoracic impedance, and/or sense other physiological parameters, e.g., cardiac chamber pressure or temperature. Portions of the housing 501 of the pulse generator 505 may optionally serve as a can electrode.
- Communications circuitry is disposed within the housing 501 for facilitating communication between the pulse generator 505 and an external communication device, such as a portable or bed-side communication station, patient carried/worn communication station, or external programmer, for example.
- the communications circuitry can also facilitate unidirectional or bidirectional communication with one or more implanted, external, cutaneous, or subcutaneous physiologic or non-physiologic sensors, patient-input devices and/or information systems.
- the pulse generator 505 may optionally incorporate a motion detector 520 that may be used to sense various respiration-related conditions.
- the motion detector 520 may be optionally configured to sense snoring, activity level, and/or chest wall movements associated with respiratory effort.
- the motion detector 520 may be implemented as an accelerometer positioned in or on the housing 501 of the pulse generator 505 . If the motion sensor is implemented as an accelerometer, the motion sensor may also provide respiratory, e.g. rales, coughing, and cardiac, e.g. S1-S4 heart sounds, murmurs, and other acoustic information.
- the lead system 510 of the CRM 500 may incorporate one or more transthoracic impedance sensors that may be used to acquire the patient's respiration waveform, or other respiration-related information.
- the transthoracic impedance sensor may include, for example, one or more intracardiac electrodes 541 , 542 , 551 - 555 , 563 positioned in one or more chambers of the heart 590 .
- the intracardiac electrodes 541 , 542 , 551 - 555 , 563 may be coupled to impedance drive/sense circuitry 530 positioned within the housing of the pulse generator 505 .
- impedance drive/sense circuitry 530 generates a current that flows through the tissue between an impedance drive electrode 551 and a can electrode on the housing 501 of the pulse generator 505 .
- the voltage at an impedance sense electrode 552 relative to the can electrode changes as the patient's transthoracic impedance changes.
- the voltage signal developed between the impedance sense electrode 552 and the can electrode is detected by the impedance sense circuitry 530 .
- Other locations and/or combinations of impedance sense and drive electrodes are also possible.
- the voltage signal developed at the impedance sense electrode 552 is proportional to the patient's transthoracic impedance and represents the patient's respiration waveform.
- the transthoracic impedance increases during respiratory inspiration 610 and decreases during respiratory expiration 620 .
- the peak-to-peak transition of the transthoracic impedance is proportional to the amount of air moved in one breath, denoted the tidal volume.
- the amount of air moved per minute is denoted the minute ventilation.
- a normal “at rest” respiration pattern e.g., during non-REM sleep, includes regular, rhythmic inspiration-expiration cycles without substantial interruptions, as indicated in FIG. 6 .
- the lead system 510 may include one or more cardiac pace/sense electrodes 551 - 555 positioned in, on, or about one or more heart chambers for sensing electrical signals from the patient's heart 590 and/or delivering pacing pulses to the heart 590 .
- the intracardiac sense/pace electrodes 551 - 555 such as those illustrated in FIG. 5 , may be used to sense and/or pace one or more chambers of the heart, including the left ventricle, the right ventricle, the left atrium and/or the right atrium.
- the lead system 510 may include one or more defibrillation electrodes 541 , 542 for delivering defibrillation/cardioversion shocks to the heart.
- the pulse generator 505 may include circuitry for detecting cardiac arrhythmias and/or for controlling pacing or defibrillation therapy in the form of electrical stimulation pulses or shocks delivered to the heart through the lead system 510 .
- Circuitry for implementing a respiratory logbook 535 including interface circuitry, an event detector, an event processor, and/or memory circuitry, as described in connection with FIG. 2 , may be housed within the pulse generator 505 .
- the respiratory logbook circuitry may be coupled to various sensors, patient input devices, and/or information systems through leads or through wireless communication links.
- FIG. 7 is a diagram illustrating an implantable transthoracic cardiac device that may be used in connection with acquiring and organizing data for a respiratory logbook in accordance with embodiments of the invention.
- the implantable device illustrated in FIG. 7 is an implantable transthoracic cardiac sensing and/or stimulation (ITCS) device that may be implanted under the skin in the chest region of a patient.
- ITCS implantable transthoracic cardiac sensing and/or stimulation
- the ITCS device may, for example, be implanted subcutaneously such that all or selected elements of the device are positioned on the patient's front, back, side, or other body locations suitable for sensing cardiac activity and delivering cardiac stimulation therapy.
- elements of the ITCS device may be located at several different body locations, such as in the chest, abdominal, or subclavian region with electrode elements respectively positioned at different regions near, around, in, or on the heart.
- Circuitry for implementing a respiratory logbook system may be positioned within the primary housing of the ITCS device.
- the primary housing (e.g., the active or non-active can) of the ITCS device may be configured for positioning outside of the rib cage at an intercostal or subcostal location, within the abdomen, or in the upper chest region (e.g., subclavian location, such as above the third rib).
- one or more electrodes may be located on the primary housing and/or at other locations about, but not in direct contact with, the heart, great vessel or coronary vasculature.
- one or more electrodes may be located in direct contact with the heart, great vessel or coronary vasculature, such as via one or more leads implanted by use of conventional transvenous delivery approaches.
- one or more subcutaneous electrode subsystems or electrode arrays may be used to sense cardiac activity and deliver cardiac stimulation energy in an ITCS device configuration employing an active can or a configuration employing a non-active can. Electrodes may be situated at anterior and/or posterior locations relative to the heart.
- a subcutaneous electrode assembly 707 can be positioned under the skin in the chest region and situated distal from the housing 702 .
- the subcutaneous and, if applicable, housing electrode(s) can be positioned about the heart at various locations and orientations, such as at various anterior and/or posterior locations relative to the heart.
- the subcutaneous electrode assembly 707 is coupled to circuitry within the housing 702 via a lead assembly 706 .
- One or more conductors e.g., coils or cables
- the lead assembly 706 are provided within the lead assembly 706 and electrically couple the subcutaneous electrode assembly 707 with circuitry in the housing 702 .
- One or more sense, sense/pace or defibrillation electrodes can be situated on the elongated structure of the electrode support, the housing 702 , and/or the distal electrode assembly (shown as subcutaneous electrode assembly 707 in the configuration shown in FIG. 7 ).
- the electrode and the lead assemblies 707 , 706 can be configured to assume a variety of shapes.
- the lead assembly 706 can have a wedge, chevron, flattened oval, or a ribbon shape
- the subcutaneous electrode assembly 707 can comprise a number of spaced electrodes, such as an array or band of electrodes.
- two or more subcutaneous electrode assemblies 707 can be mounted to multiple electrode support assemblies 706 to achieve a desired spaced relationship amongst subcutaneous electrode assemblies 707 .
- the ITCS device may perform functions traditionally performed by cardiac rhythm management devices, such as providing various cardiac monitoring, pacing and/or cardioversion/defibrillation functions.
- cardiac rhythm management devices such as providing various cardiac monitoring, pacing and/or cardioversion/defibrillation functions.
- Exemplary pacemaker circuitry, structures and functionality, aspects of which can be incorporated in an ITCS device of a type that may benefit from multi-parameter sensing configurations, are disclosed in commonly owned U.S. Pat. Nos. 4,562,841; 5,284,136; 5,376,476; 5,036,849; 5,540,727; 5,836,987; 6,044,298; and 6,055,454, which are hereby incorporated herein by reference in their respective entireties.
- ITCS device configurations can provide for non-physiologic pacing support in addition to, or to the exclusion of, bradycardia and/or anti-tachycardia pacing therapies.
- Exemplary cardiac monitoring circuitry, structures and functionality, aspects of which can be incorporated in an ITCS of the present invention, are disclosed in commonly owned U.S. Pat. Nos. 5,313,953; 5,388,578; and 5,411,031, which are hereby incorporated herein by reference in their respective entireties.
- An ITCS device can incorporate circuitry, structures and functionality of the subcutaneous implantable medical devices disclosed in commonly owned U.S. Pat. Nos. 5,203,348; 5,230,337; 5,360,442; 5,366,496; 5,397,342; 5,391,200; 5,545,202; 5,603,732; 5,916,243; and 7,570,997; and commonly owned U.S. Patent Publication Nos. 2004/0230229; 2004/0230230; and 2004/0215240; and U.S. Provisional Application Ser. No. 60/462,272; all of which are incorporated herein by reference.
- the housing of the ITCS device may incorporate components of a respiratory logbook system 705 , including a memory, interface, event processor and/or event detector circuitry.
- the respiratory logbook circuitry may be coupled to one or more sensors, patient input devices, and/or information systems as described in connection with FIG. 2 .
- the ITCS device may include an impedance sensor configured to sense the patient's transthoracic impedance.
- the impedance sensor may include the impedance drive/sense circuitry incorporated with the housing 702 of the ITCS device and coupled to impedance electrodes positioned on the can or at other locations of the ITCS device, such as on the subcutaneous electrode assembly 707 and/or lead assembly 706 .
- the impedance drive circuitry generates a current that flows between a subcutaneous impedance drive electrode and a can electrode on the primary housing of the ITCS device.
- the voltage at a subcutaneous impedance sense electrode relative to the can electrode changes as the patient's transthoracic impedance changes.
- the voltage signal developed between the impedance sense electrode and the can electrode is sensed by the impedance drive/sense circuitry.
- Communications circuitry is disposed within the housing 702 for facilitating communication between the ITCS device and an external communication device, such as a portable or bed-side communication station, patient-carried/worn communication station, or external programmer, for example.
- the communications circuitry can also facilitate uni-directional or bi-directional communication with one or more external, cutaneous, or subcutaneous physiologic or non-physiologic sensors.
- FIG. 8 is a block diagram illustrating a medical system 800 including a patient-internal device 810 that cooperates with a patient-external device 820 to acquire and organize information in a respiratory logbook in accordance with embodiments of the invention.
- the respiratory logbook is displayed on a display device 860 coupled to the patient-external device 820 .
- the display device 860 could be coupled to the patient-internal device 810 .
- the patient-internal device 810 may comprise, for example, an implantable cardiac rhythm management system (CRM) such as a pacemaker, defibrillator, cardiac resynchronizer, or the like.
- CCM cardiac rhythm management system
- the patient-internal device 810 may comprise, for example, an implantable transthoracic cardiac sensing and/or stimulation device (ITCS) as described in connection with FIG. 7 .
- the patient-external device 820 may comprise an external breathing therapy device such as a continuous positive airway pressure device (CPAP), bi-level positive airway pressure device (bi-PAP) or other positive airway pressure device, generically referred to herein as xPAP devices.
- CPAP continuous positive airway pressure device
- bi-PAP bi-level positive airway pressure device
- xPAP devices positive airway pressure device
- a typical CPAP device delivers air pressure through a nasal mask worn by the patient.
- the application of continuous positive airway pressure keeps the patient's throat open, reducing or eliminating the obstruction causing apnea.
- Positive airway pressure devices may be used to provide a variety of respiration therapies, including, for example, continuous positive airway pressure (CPAP), bi-level positive airway pressure (bi-level PAP), proportional positive airway pressure (PPAP), auto-titrating positive airway pressure, ventilation, gas or oxygen therapies.
- Some positive airway pressure devices may also be configured to provide both positive and negative pressure, such that negative pressure is selectively used (and de-activated) when necessary, such as when treating Cheyne-Stokes breathing, for example.
- xPAP will be used herein as a generic term for any device using forms of positive airway pressure (and negative pressure when necessary), whether continuous or otherwise.
- An xPAP device 820 develops a positive air pressure that is delivered to the patient's airway through tubing 832 and mask 854 connected to the xPAP device 820 .
- Positive airway pressure devices are often used to treat disordered breathing.
- the positive airway pressure provided by the xPAP device 820 acts as a pneumatic splint keeping the patient's airway open and reducing the severity and/or number of occurrences of disordered breathing due to airway obstruction.
- the xPAP device 820 may provide a number of monitoring and/or diagnostic functions in relation to the respiratory system.
- the xPAP device 820 may sense respiration using an oxygen sensor, a microphone, a flow meter, and/or other respiration sensing methods.
- Components used in connection with acquiring and organizing respiratory logbook information may be implemented by the patient-internal CRM 810 device, by the patient-external xPAP 820 device, or by both devices. Further, the CRM and the xPAP devices may be coupled to a remote computing device such as a patient management server using a wireless or wired link.
- the CRM 810 may provide a first set of monitoring, diagnostic, and/or therapeutic functions to the patient.
- the xPAP device 820 may provide a second set of monitoring, diagnostic, and/or therapeutic functions to the patient.
- the CRM device 810 , the xPAP device 820 , or both may include sensors for sensing conditions associated with events affecting respiration such as those identified in Tables 1-3.
- sensors coupled to the CRM device 810 may sense a first set of conditions associated with events affecting respiration.
- the sensed information may be transmitted to respiratory logbook circuitry incorporated in the xPAP device 820 .
- Sensors coupled to the xPAP device 820 may sense a second set of conditions associated with events affecting respiration.
- the information sensed by the xPAP device and the CRM device may be organized by circuitry in the xPAP device into respiratory logbook format.
- sensors coupled to the xPAP device 820 may sense a first set of information associated with events affecting respiration and transmit the information to the CRM device.
- Circuitry in the CRM device may combine the information acquired by the xPAP device sensors with information acquired by sensors coupled to the CRM device to generate the respiratory logbook.
- FIG. 9A provides a timing diagram illustrating the acquisition of respiratory logbook information for a detected event affecting respiration in accordance with embodiments of the invention.
- the respiratory logbook system senses and stores in a temporary buffer a sliding scale window 910 of one or more patient conditions, such as those listed in Tables 1-3.
- the selection of information that is sensed and stored may be programmable by the physician.
- the selection of the information to be acquired may be based on the patient's medical history. For example, if the patient suffers from sleep apnea, or another form of disordered breathing, the respiratory logbook would preferably be programmed to sense conditions associated with disordered breathing. Conversely, if the patient suffers from chronic obstructive pulmonary disorder, a different set of conditions from those used for disordered breathing could be sensed.
- pre-event information 930 acquired prior to the event is stored.
- Information 940 is collected and stored during the event.
- post-event information 950 is collected and stored for a period of time after the termination of the event.
- the event and post-event information 940 , 950 may be acquired on a continuous basis, or the information may be acquired during discrete intervals.
- the acquired information 930 , 940 , 950 is organized as a logbook entry. The respiratory logbook system begins sensing for the next event.
- FIG. 9B provides a timing diagram illustrating the acquisition of respiratory logbook information for a predicted event affecting respiration in accordance with embodiments of the invention.
- the respiratory logbook system senses and stores in a temporary buffer a sliding scale window 910 of one or more patient conditions, such as those listed in Tables 1-3.
- the conditions that are sensed and stored are programmable and may be selected based on the patient's medical history. For example, the information sensed and stored may include information that has been effectively used to predict the one or more types of events affecting the patient's respiration. If an event affecting respiration is predicted 912 , then pre-prediction information 920 is acquired and stored. When the event affecting respiration is detected 915 , then pre-event information 930 acquired prior to the event is stored.
- Information 940 is collected and stored during the event. Upon detection that the event has terminated 945 , information 950 is collected and stored for a period of time after the termination of the event.
- the pre-event, event and post-event information 930 , 940 , 950 may be acquired on a continuous basis, or the information may be acquired during discrete intervals.
- the acquired information 920 , 930 , 940 , 950 is organized as a logbook entry. The respiratory logbook begins sensing for the next event.
- the respiratory logbook display may include information presented in graphical format.
- the user may choose to view a marked respiration waveform, for example.
- FIGS. 10A and 10B provide examples of marked respiration waveforms that may be acquired and organized in a respiratory logbook.
- FIG. 10A illustrates a marked respiration waveform in accordance with embodiments of the invention.
- information related to a marked respiration waveform may be acquired continuously as a moving snapshot of respiration-related conditions.
- the information related to the marked respiration waveform may be acquired in response to one or more triggering events.
- the triggering event may comprise an instruction from a physician or through an advanced patient management system to begin data collection.
- the triggering event may comprise detection of various respiration conditions, such as detection of the disordered breathing, or the detection of sleep.
- the triggering event may initiate the collection of respiration-related data during an interval of time that may include time periods prior to, during, and/or following the disordered breathing event.
- the marked respiration waveform 1010 may comprise respiration symbols positioned at locations relative to the respiration waveform to indicate when respiratory events occur or the time when characteristics are calculated.
- the respiration waveform 1010 is marked with respiration symbols 1020 denoting the time between peaks on the waveform and hypopnea symbols denoting when an hypopnea is detected 1030 and when an hypopnea ends 1035 after 22 seconds.
- other symbols indicating respiration characteristics and/or disordered breathing characteristics described above may be superimposed on the respiration waveform.
- the marked respiration waveform may be displayed on a display device to allow the patient's physician to view respiratory disturbances and/or other characteristics.
- the display may show other measurements and/or other waveforms.
- an electrocardiogram (ECG) 1050 is shown above respiration waveform 1010 .
- the ECG 1050 is time-aligned with respiration waveform 1010 and can be marked with indicators corresponding to the occurrence of breathing and/or cardiac events, for example.
- Markers 1060 indicating sensed ventricular events (Vs) and paced ventricular events (Vp) are displayed above the ECG in FIG. 10B . Displaying marked respiration waveforms and other waveforms related to patient conditions allows the patient's physician to verify, for example, that a disordered breathing event was properly detected. This confirmation may be used to guide diagnostics and/or therapy. Symbols annotating cardiac and respiratory events provide further diagnostic information for physicians.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Cardiology (AREA)
- Medical Informatics (AREA)
- Surgery (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Physiology (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pulmonology (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
An event-based approach to collecting and organizing information associated with events affecting respiration is presented. The detection or prediction of an event affecting the respiration of a patient initiates acquisition of information associated with the event. The respiratory logbook system acquires information associated with the event during the event and during intervals proximate in time to the event. The information is organized as a respiratory log entry. The user can access the information by operating a user interface. The information may be presented in textual or graphical form.
Description
- This application is a continuation of U.S. application Ser. No. 12/403,880, filed Mar. 13, 2009, now U.S. Pat. No. ______, which is a continuation of pending U.S. application Ser. No. 10/920,568, filed Aug. 17, 2004, now abandoned, which claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Application Ser. No. 60/504,749, filed on Sep. 18, 2003, both of the foregoing applications being incorporated herein by reference in their entireties. U.S. application Ser. No. 12/403,880 is also a continuation-in-part of U.S. application Ser. No. 11/236,192, filed Sep. 27, 2005, now U.S. Pat. No. 7,578,794, which is a divisional of U.S. application Ser. No. 10/331,175, filed Dec. 27, 2002, now U.S. Pat. No. 6,949,075, the entire disclosures of which are incorporated herein by reference. This application claims priority to all of the foregoing applications as indicated.
- The present invention relates to acquiring and organizing information related to medical events affecting the patient.
- The human body functions through a number of interdependent physiological systems controlled through various mechanical, electrical, and chemical processes. The metabolic state of the body is constantly changing. For example, as exercise level increases, the body consumes more oxygen and gives off more carbon dioxide. The cardiac and pulmonary systems maintain appropriate blood gas levels by making adjustments that bring more oxygen into the system and dispel more carbon dioxide. The cardiovascular system transports blood gases to and from the body tissues. The respiratory system, through the breathing mechanism, performs the function of exchanging these gases with the external environment. Together, the cardiac and respiratory systems form a larger anatomical and functional unit denoted the cardiopulmonary system.
- Various disorders may affect the cardiovascular, respiratory, and other physiological systems. For example, heart failure is a clinical syndrome that impacts a number of physiological processes. Heart failure is an abnormality of cardiac function that causes cardiac output to fall below a level adequate to meet the metabolic demand of peripheral tissues and internal organs. Heart failure is often referred to as congestive heart failure (CHF) due to the accompanying venous and pulmonary congestion. Congestive heart failure may have a variety of underlying causes, including ischemic heart disease (coronary artery disease), hypertension (high blood pressure), and diabetes, among others.
- There are a number of diseases and disorders that primarily affect respiration, but also impact other physiological systems. Emphysema and chronic bronchitis are grouped together and are known as chronic obstructive pulmonary disease (COPD). Pulmonary system disease also includes tuberculosis, sarcoidosis, lung cancer, occupation-related lung disease, bacterial and viral infections, and other conditions.
- Chronic obstructive pulmonary disease generally develops over many years, typically from exposure to cigarette smoke, pollution, or other irritants. Over time, the elasticity of the lung tissue is lost, and the lungs become distended, unable to expand and contract normally. As the disease progresses, breathing becomes labored, and the patient grows progressively weaker. Other types of non-rhythm related pulmonary diseases or disorders include restrictive pulmonary diseases, infections pulmonary diseases, diseases of the pleural cavity, and pulmonary vasculature, for example.
- Breathing disorders include various forms of rhythm-related disorders such as sleep apnea and hypopnea, among other forms. Disordered breathing is a respiratory system condition that affects a significant percentage of patients between 30 and 60 years. Disordered breathing, including apnea and hypopnea, may be caused, for example, by an obstructed airway, or by derangement of the signals from the brain controlling respiration. Disordered breathing occurs when a patient experiences insufficient respiration with or without respiratory effort. Disordered breathing can originate from a deficiency in the central nervous system (central disordered breathing) or from an obstructed airway (obstructive disordered breathing). Lack of respiratory effort may result from a disruption of signals from the central nervous system to the respiratory muscles.
- Central disordered breathing events are characterized by insufficient respiration and a concurrent lack of respiratory effort. Because the central nervous system signals that control breathing are interrupted, the patient's natural breathing reflex is not triggered. The patient makes no effort to breath or the respiratory effort is otherwise disrupted. Respiration ceases or is insufficient during the disordered breathing event.
- An obstructive disordered breathing event may occur due to an obstruction of a patient's airway. For example, the patient's tongue or other soft tissue of the throat may collapse into the patient's airway. The breathing reflex is triggered, but respiration is disrupted because of the occluded airway. Disordered breathing events may include central disordered breathing events, obstructive disordered breathing events, or mixed disordered breathing events that are a combination of obstructive and central types.
- Sleep disordered breathing is particularly prevalent and is associated with excessive daytime sleepiness, systemic hypertension, increased risk of stroke, angina and myocardial infarction. Disordered breathing can be particularly serious for patients concurrently suffering from cardiovascular deficiencies.
- Various types of disordered respiration have been identified, including, apnea (interrupted breathing), hypopnea (shallow breathing), tachypnea (rapid breathing), hyperpnea (heavy breathing), and dyspnea (labored breathing). Combinations of the respiratory cycles described above may be observed, including, for example, periodic breathing and Cheyne-Stokes respiration (CSR). Cheyne-Stokes respiration is particularly prevalent among heart failure patients, and may contribute to the progression of heart failure.
- Because of the complex interactions between the cardiovascular, pulmonary, and other physiological systems as well as the need for early detection of various disorders, an effective approach to acquiring and organizing information related to respiratory events is desired. The present invention fulfills these and other needs, and addresses other deficiencies of prior art implementations and techniques
- Embodiments of the invention relate to acquiring and organizing information related to medical events affecting the patient. One embodiment of the invention involves a method for organizing medical information. The method involves detecting or predicting a respiratory event of a patient. Responsive to the detection or prediction of the respiratory event, collection of medical information associated with the respiratory event is initiated. The medical information is collected and organized as a respiratory event log entry. At least one of detecting or predicting the respiratory event, collecting the medical information and organizing the medical information is performed implantably.
- In accordance with another embodiment of the invention, a method for accessing medical information involves collecting medical information associated with respiratory events. The collection of medical information associated with respiratory events includes initiating, responsive to the detection or prediction of the respiratory event, collection of medical information associated with each respiratory event. The medical information is collected and organized a respiratory logbook. A user interface is provided for accessing the respiratory logbook. At least one of detecting or predicting the respiratory event, collecting the medical information and organizing the medical information is performed implantably.
- Another embodiment of the invention involves a method for organizing respiratory information associated with medical events. Responsive to the detection and/or prediction of a medical event, the system initiates collection of respiratory information associated with the medical event. The respiratory information is collected and organized as a medical event log entry. At least one of detecting or predicting the medical event, collecting the respiratory information and organizing the respiratory information is performed implantably.
- In accordance with a further embodiment of the invention, a method for accessing respiratory information associated with medical events of a patent involves collecting and organizing respiratory information associated with medical events. Collection of the respiratory information is implemented by initiating, responsive to the detection or prediction of a medical event, collection of respiratory information associated with each medical event. The respiratory information is collected and organized in a medical event logbook. A user interface provides access to the medical event logbook. At least one of detecting or predicting the medical event, collecting the respiratory information and organizing the respiratory information is performed implantably.
- Yet another embodiment involves a method for organizing medical event information. According to this method, a medical event is predicted. The system collects information associated with conditions affecting the patient prior to the occurrence of the medical event. The medical event is detected, and the system collects information during the medical event. The collected information is organized as a medical event log entry. At least one of detecting the medical event, predicting the medical event, collecting the respiratory information and organizing the respiratory information is performed implantably. In accordance with another embodiment of the invention, a medical event logbook system includes an event detector configured to detect or predict a medical event. A data acquisition unit is coupled to the event detector and is configured to collect, responsive to the detection or prediction of the medical event, respiratory information associated with the medical event. The system also includes a processor configured to organize the acquired respiratory information as a medical event log entry. At least one of the event detector, the data acquisition unit, and the processor includes an implantable component.
- In accordance with a further embodiment, a respiratory event logbook system includes an event detector configured to detect or predict a respiratory event affecting the patient. A data acquisition unit is coupled to the event detector and is configured to collect medical information associated with the respiratory event responsive to the detection or prediction of the respiratory event. The system includes a processor configured to organize the collected medical information associated with the respiratory event as a respiratory event log entry. At least one of the event detector, the data acquisition unit, and the processor includes an implantable component.
-
FIGS. 1A-1C are flowcharts of methods for acquiring and organizing information as event log entries in accordance with embodiments of the invention; -
FIG. 2 is a block diagram of a respiratory logbook system in accordance with embodiments of the invention; -
FIG. 3 illustrates an exemplary depiction of a user interface display that may be used with a respiratory logbook system in accordance with embodiments of the invention; -
FIG. 4 is a block diagram of a medical system that may be used to implement a respiratory logbook system in accordance with embodiments of the invention; -
FIG. 5 is a partial view of an implantable device that may include circuitry for implementing a respiratory logbook in accordance with embodiments of the invention; -
FIG. 6 is a graph illustrating a respiration waveform that may be acquired and organized as a portion of a respiratory log entry in accordance with embodiments of the invention; -
FIG. 7 is a diagram illustrating an implantable transthoracic cardiac device that may be used in connection with acquiring and organizing data for a respiratory logbook in accordance with embodiments of the invention; -
FIG. 8 is a block diagram illustrating a medical system including a patient-internal device cooperating with a patient-external device to acquire and organize information in a respiratory logbook in accordance with embodiments of the invention; -
FIG. 9A provides a timing diagram illustrating the acquisition of respiration logbook information for a detected event affecting respiration in accordance with embodiments of the invention; -
FIG. 9B provides a timing diagram illustrating the acquisition of respiratory logbook information for a predicted event affecting respiration in accordance with embodiments of the invention; -
FIG. 10A illustrates a marked respiratory waveform in accordance with embodiments of the invention; and -
FIG. 10B illustrates a marked respiration waveform that is time aligned with an electrocardiogram (ECG) graph in accordance with embodiments of the invention. - While the invention is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail below. It is to be understood, however, that the intention is not to limit the invention to the particular embodiments described. On the contrary, the invention is intended to cover all modifications, equivalents, and alternatives falling within the scope of the invention as defined by the appended claims.
- In the following description of the illustrated embodiments, references are made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration, various embodiments in which the invention may be practiced. It is to be understood that other embodiments may be utilized and structural and functional changes may be made without departing from the scope of the present invention.
- Early detection and diagnosis of various types of diseases and syndromes may enhance the likelihood of successful treatment. However, the onset of some types of medical disorders may be very gradual and/or occur in discrete episodes, or at times that are inconvenient for collecting data, making early detection more difficult. Early diagnosis may depend on the recognition of changes in various physiological conditions that may not be apparent during yearly or even monthly check-ups.
- In one example, breathing rhythm disorders often are present only while the patient is asleep. Sleep disordered breathing assessments depend upon acquiring data while the patient is asleep. Diagnosis of sleep disorders typically involves the use of a polysomnographic sleep study performed at a dedicated sleep facility. However, such studies are costly, inconvenient to the patient, and may not accurately represent the patient's typical sleep behavior.
- In a polysomnographic sleep study, the patient is instrumented for data acquisition and observed by trained personnel. Assessment of sleep disordered breathing in a laboratory setting presents a number of obstacles to acquiring an accurate picture of events occurring during sleep. For example, spending a night in a sleep laboratory typically causes a patient to experience a condition known as “first night syndrome,” involving disrupted sleep during the first few nights in an unfamiliar location. In addition, sleeping while instrumented and observed may not result in a realistic perspective of the patient's normal sleep patterns.
- Many types of medical events occur in discrete episodes. Periodic monitoring of patient information may not be the most effective way to collect data related to discrete events. Due to the transient nature of events, collecting a snapshot of patient information on a daily or weekly basis, or according to another time schedule, may not always capture event information. Continuous monitoring allows detection of aperiodic or infrequent events. However, the amount of memory required for storing patient information on a substantially continuous basis may be prohibitive.
- Embodiments of the invention are directed to an event-based approach to storing and organizing information associated with medical and/or respiratory events. A logbook entry includes information, e.g., respiratory and/or medical information, acquired during time intervals surrounding an event. In one aspect of the invention, respiratory information collected in response to a medical event is organized as a medical event log entry. In another aspect of the invention, medical information collected in response to a respiratory event is organized as a respiratory event log entry.
- A number of logbook entries form a logbook that may be accessed by the user through a user interface. The processes described herein enhance the ability to acquire and store information about discrete events. Further, the event logbook format provides an intuitive approach for organizing and presenting the information to patients or physicians.
-
FIG. 1A is a flowchart illustrating a method of acquiring and organizing respiratory information collected in response to a medical event. The medical event may involve various types of events affecting one or more of the respiratory system, cardiovascular system, nervous system, muscle systems, and/or other physiological systems or combinations of physiological systems of the patient. The system implementing the method may be programmable to detect or predict a particular type of event, for example, a cardiac event, such as cardiac arrhythmia or an ectopic beat. The system may collect information about one or more respiratory parameters during, before and/or after the medical event. - In response to the detection or
prediction 112 of the medical event,collection 114 of respiratory information for the medical event logbook entry is initiated. In some embodiments, the respiratory information is collected 116 during the event. In other embodiments, the respiratory information is collected 116 during the event and during a time period proximate to the event. Information may be collected during the event, during a period of time preceding the event, and/or during a period of time following the event. In some embodiments, the information may be collected prior to the prediction or detection of the event. - To facilitate collection of respiratory information preceding the prediction or detection of the event, respiratory conditions may be monitored, e.g., on a continuous or periodic basis, and stored in a temporary buffer. Temporary storage is required to provide information prior to the event prediction or detection, e.g., onset data. The size of the temporary storage buffer may vary according to the medical events for which onset data is desired. Due to the varied nature of onset data requirements and the reality of limited storage in the system, the system may allow different onset data lengths and different sampling rates for the temporarily stored data. In the preferred embodiment, the system would use a circular buffer to store the temporary data such that the oldest data is replaced by the newest data.
- Once initiated, collection of respiratory information, which may involve storage of the information in long term memory, may be performed on a substantially continuous basis, or it may be performed periodically. Long term storage of data acquired periodically may be beneficial when the event is relatively prolonged, such an in the case of a disease or disorder that may linger for several days or weeks. The type of data collected, data collection frequency, and/or data collection intervals may be selectable by the user. Further, the system may be programmable to use different data collection regimens under different conditions over the course of the event. For example, the system may be programmable to collect data more frequently during sleep or during particular stages of the disease progression. The system may be programmed to collect data on a continuous basis during some time intervals, and periodically during other time intervals, for example.
- Collecting information preceding the event facilitates enhanced identification of conditions that may be used to detect or predict the occurrence of future events. For example, acquiring information preceding a medical event allows for the identification and assessment of physiological conditions present immediately before and leading up to the medical event. The identification of precursor conditions for medical events may facilitate increased sensitivity and/or accuracy in detecting or predicting occurrences of the future events.
- The acquired respiratory information is organized 118 as a medical event log entry. A medical event logbook may comprise a number of entries, each entry corresponding to a separate medical event. The medical events represented in the medical event logbook may comprise, for example, cardiovascular system events, nervous system events, respiratory system events, or any other medical events affecting the patient. The event entries included in the medical event log may be organized according to various categories, including for example, event type, event time/date, order of occurrence of the event, therapy provided to treat the event, among other categories. The selection of categories used to organize the information may be programmable by the user. The organized information may be stored in long term memory, displayed, printed, and/or transmitted to a separate device. In one approach, the medical event comprises a cardiac event. Respiratory information collected before, during and/or after the cardiac event may be stored as a log entry in a cardiac arrhythmia logbook, for example.
- In one embodiment of the invention, the collected information for the events is optionally accessible 120 through an interactive user interface. Selection of events to be accessed may involve a hierarchical selection menu, or other selection method, for example. In one implementation, the user may select a log entry from the menu by activating an input mechanism. Upon selection of the log entry, the user interface may provide graphical or textual depictions of the collected respiratory information associated with the medical event.
-
FIG. 1B is a flow chart for an embodiment involving collecting medical information associated with a respiratory event. The respiratory event may be detected or predicted 122. The event may include any detectable or predictable respiratory event, such as disordered breathing (apnea, hypopnea, tachypnea), coughing and/or breathing irregularities associated with pulmonary diseases and disorders such as asthma, pulmonary edema, chronic obstructive pulmonary disease, and/or pleural effusion, among others. - In response to the detection or
prediction 122 of the respiratory event,collection 124 of medical information for the respiratory event logbook entry is initiated. The medical information may be collected 124 during the event and/or during a time period proximate to the event. Information may be collected during the event, during a period of time preceding the event, and/or during a period of time following the event. In some embodiments, the information may be collected prior to the prediction or detection of the respiratory event. - To facilitate collection of medical information preceding the prediction or detection of the respiratory event, the medical information may be monitored, e.g., on a continuous or periodic basis, and stored in a temporary buffer. Temporary storage is required to provide information prior to the event prediction or detection, e.g., onset data. The duration of the temporary storage may vary according to the respiratory events for which onset data is desired. For example, temporary storage of about one minute may be sufficient to understand onset conditions for an obstructive apnea event, whereas temporary storage of about one day may be required to understand onset conditions for an asthma event.
- Due to the varied nature of onset data requirements and the reality of limited storage in the system, the system may allow different onset data lengths and different sampling rates for the temporarily stored data. In a preferred embodiment, the system uses a circular buffer to store the temporary data such that the oldest data is replaced by the newest data.
- Once initiated, collection of respiratory information, which may involve storage of the information in long term memory, may be performed on a substantially continuous basis, or it may be performed during discrete intervals. Long term collection of data on a periodic basis may be beneficial when the event is relatively prolonged, such an in the case of a disease or disorder that may linger for several days or weeks. Various collection parameters, such as the type of data collected, data collection frequency, and/or data collection intervals may be selectable by the user. Further, the system may be programmable to use different data collection regimens under different conditions over the course of the event. For example, the system may be programmed to collect data more frequently during sleep or during particular stages of the disease progression. The system may be programmed to collect data on a substantially continuous basis during some time intervals, and periodically during other time intervals, for example.
- Collecting medical information preceding the respiratory event facilitates enhanced identification of conditions that may be used to detect or predict the occurrence of future events. For example, acquiring information preceding the event affecting patient respiration allows for the identification and assessment of physiological conditions present immediately before and leading up to the event. In one scenario, the patient may experience a period of hyperventilation prior to an apnea event. Collecting respiratory information prior to the apnea event allows the identification of hyperventilation as a precursor condition. The identification of precursor conditions for apnea facilitates increased sensitivity and/or accuracy in detecting or predicting future occurrences of apnea.
- Additionally, or alternatively, medical information preceding the respiratory event may provide insight into conditions that predispose the patient to certain respiratory events. Acquiring information preceding the event may allow identification of the triggering or causal factors of the event. For example, an asthma attack may be induced by increased exercise or a sudden change in ambient temperature, e.g., the patient moving from a warmer location to a colder location. Collection of medical information preceding the asthma attack allows the factors that precipitate the respiratory event to be identified. Such information may be used to enhance the detection and/or prediction of future events.
- Information collected following the event may be used to assess the acute effects of the event. Episodes of disordered breathing, for example, may be associated with acute physiological effects, including negative intrathoracic pressure, hypoxia, and arousal from sleep. Such effects may be detectable for a period of time following the respiratory event.
- For example, obstructive sleep apneas are typically terminated by arousal from sleep that occurs several seconds after the apneic peak, allowing the resumption of airflow. Coincident with arousal from sleep, and continuing for some period of time after termination of the event, surges in sympathetic nerve activity, blood pressure, and heart rate occur.
- During obstructive apnea events, the effort to generate airflow increases. Attempted inspiration in the presence of an occluded airway results in an abrupt reduction in intrathoracic pressure. The repeated futile inspiratory efforts associated with obstructive sleep apnea may trigger a series of secondary responses, including mechanical, hemodynamic, chemical, neural, and inflammatory responses. Collection of data following obstructive sleep apnea events may be used to determine the presence and/or severity of the secondary responses to obstructive apnea events. The post-event information enhances the ability to evaluate the impact of the secondary responses upon the patient.
- As previously described, obstructive sleep apnea events are typically terminated by arousal from sleep. However, arousals are not usually required for the resumption of breathing in central sleep apnea events. In the case of central apnea events, the arousals follow the initiation of breathing. Arousals following central apnea events may facilitate the development of oscillations in ventilation by recurrently stimulating hyperventilation and reducing PaCO2 below the apneic threshold. Once triggered, the pattern of alternating hyperventilation and apnea may be sustained by the combination of increased respiratory drive, pulmonary congestion, arousals, and apnea-induced hypoxia causing PaCO2 oscillations above and below the apneic threshold. Shifts in the patient's state of consciousness, particularly with repeated arousals, may further destabilize breathing. Collecting information during central apnea events and before and/or after the occurrence of the events may allow identification of the oscillations associated with central apnea.
- The collected medical information, which may be stored in long term memory, transmitted, printed and/or displayed, is organized as a
respiratory logbook entry 128. The medical information may include various physiological and non-physiological data. For example, respiratory system data, cardiovascular system data, nervous system data, posture, activity, medical history data, environmental data (temperature, altitude, air quality) and other types of medical information may be organized as a respiratory logbook entry. The respiratory logbook entry may be stored, transmitted, printed and/or displayed. - A respiratory event logbook may comprise a number of entries, each entry corresponding to a separate respiratory event. The event entries included in a medical event log may be organized according to various categories, including for example, event type, event time/date, order of occurrence of the event, therapy provided to treat the event, among other categories. The selection of categories used to organize the information may be programmable by the user. The organized information may be stored in long term memory, displayed, printed, and/or transmitted to a separate device.
- The collected information for the events may be optionally accessible 130 through an interactive user interface. The interactive user interface may provide access to one or more log entries through activation of a selection process, involving a hierarchical selection menu, or other selection method, for example. In one implementation, the user may select a log entry from the menu by activating an input mechanism. Upon selection of the log entry, the user interface may provide graphical or textual depictions of the collected respiratory information associated with the medical event.
- Relating to both
FIGS. 1A and 1B , the event information of the logbook may be stored in long term memory using various storage methodologies. For example, the logbook may utilize a flat file system, hierarchical database, relational database, or distributed database. Data for a group of events may be analyzed and/or summarized in various formats. Graphical and/or textual summary information may be displayed on the user interface and/or otherwise communicated to the user. For example, histograms, trend graphs, and/or other analytical tools or formats may be generated based on the logbook event entries. A logbook display may have the ability to display trends of the patient's apnea/hypopnea index, histograms of number of apneas/hypopneas and/or obstructive/central events per night, sleep stage diagram (shows the stage of sleep for each night), heart rate trend during the night, oxygen saturation trend during the night. - In various embodiments, collection of medical information may be initiated responsive to prediction of a medical event. In this scenario, information may be collected prior to the prediction of the medical event, prior to the detection of the medical event, during the event, and/or following the event.
FIG. 1C is a flowchart illustrating an embodiment of the invention involving collecting medical information responsive to prediction and detection of a medical event. In this scenario, a medical event is predicted 132, initiating collection ofinformation 134. Prior to the prediction, medical conditions affecting the patient may be monitored continuously or during discrete intervals and stored in a temporary buffer. Information contained in the temporary buffer represents information occurring before the prediction and may be collected for the medical event log entry. In addition, information may be collected after the prediction and before the detection of the event. If the event is detected 135, information may be collected during 136 and after the detected event. The collected information is organized 138 as an event log entry. - The approaches illustrated and described herein are generally presented in terms of a respiratory logbook system configured to organize medical information associated with respiratory events. Those skilled in the art will recognize that analogous approaches may be used to implement organization of respiratory information associated with medical events in a medical logbook system.
-
FIG. 2 is a block diagram of alogbook system 200 in accordance with embodiments of the invention. Therespiratory logbook system 200 implements an event-driven method of collecting and organizing data related to events affecting patient respiration. - Various patient conditions may be monitored through
sensors 222,patient input devices 223, and/orinformation systems 224. Data associated with patient conditions may be stored in short term memory 240. One or more of the patient conditions may be used byevent detection circuitry 236 to detect or predict the occurrence of an event affecting respiration. Detection or prediction of an event affecting respiration initiates the long term storage of information associated with the event by the event information processor 232 into thelong term memory 260. For example, the event information processor 232 may collect information supplied by one or more of thesensors 222,patient input devices 223, andinformation systems 224 before, during, and/or after the detection and/or prediction of the event. The collected information associated with each event is organized as a respiratory logbook entry in the respiratory logbook. The respiratory logbook, or portions thereof, may be stored inlong term memory 260, transmitted to a remote device 255, and/or displayed on adisplay device 270. - The embodiment illustrated in
FIG. 2 includes arespiration sensor 245 that senses a physiological condition modulated by patient respiration. In one embodiment, the respiration sensor may comprise a transthoracic impedance sensor. Other methods of sensing respiration are also possible. Such methods may include, for example, the use of patient-external respiratory bands, respiration flowmeter measurements, implantable or patient-external breath sound detection, blood oxygen levels, and/or other processes. Therespiration sensor 245 may be used, for example, to acquire a respiration waveform before, during, and/or after an event affecting the patient respiration. The respiration waveform may be a component of the respiratory log entry for the event. - Information about various conditions affecting the patient and associated with the event may be acquired using
sensors 222,patient input devices 223 and/orother information systems 224. Thesensors 222 may comprise patient-internal and/or patient-external sensors coupled through leads or wirelessly to theinterface 231 of therespiratory logbook system 200. The sensors may sense various physiological and/or non-physiological conditions affecting patient respiration or other physiological systems. Thepatient input device 223 allows the patient to input information relevant to conditions affecting the patient that may be useful in generating a respiratory event log. For example, thepatient input device 223 may be particularly useful for acquiring information known to the patient, such as information related to patient smoking, drug use, recent exercise level, and/or other patient activities, perceptions and/or symptoms. The information provided by the patient-input device may include patient-known information relevant to the event affecting respiration that is not automatically sensed or detected by therespiratory logbook system 200. - The
respiratory logbook system 200 may also include one ormore information systems 224 such as a remote computing device and/or a network-based server. The event information processor 232 may access theinformation systems 224 to acquire information from databases and/or other information sources stored on or generated by the remote computing devices and/or servers. The information acquired from theinformation systems 224 may be recorded in the respiratory logbook along with other information relevant to the event affecting respiration. In one exemplary implementation, therespiratory logbook system 200 may access an internet connected air quality server to collect data related to environmental conditions, such as an ambient pollution index. In another implementation, therespiratory logbook system 200 may access the patient's medical history through a patient information server. - The
sensors 222,patient input devices 223, andinformation systems 224 are coupled to other components of therespiratory logbook system 200 throughinterface circuitry 231. Theinterface 231 may include circuitry for energizing thesensors 222 and/or for detecting and/or processing signals generated by the sensors. Theinterface 231 may include, for example, driver circuitry, amplifiers, filters, sampling circuitry, and/or A/D converter circuitry for conditioning the signals generated by the sensors. - The
interface 231 may also includecircuitry 250 for communicating with thepatient input device 223,information systems 224, a device programmer 255, an APM system (not shown), or other remote devices. Communication with thepatient input device 223,information systems 224 and/or a remote device programmer 255 and/or other remote devices may be implemented using a wired connection or through a wireless communication link, such as a Bluetooth or other wireless link. Thecommunication circuitry 250 may also provide the capability to wirelessly communicate with various sensors, including implantable, subcutaneous, cutaneous, and/or non-implanted sensors. - The
respiratory logbook system 200 may optionally be implemented as a component of a medical device that includes a therapy system, such as a cardiacrhythm management system 201. The cardiacrhythm management system 201 may includecardiac electrodes 225 electrically coupled to the patient's heart. Cardiac signals sensed bycardiac sense circuitry 220 may be used in the detection and treatment of various anomalies of the heart rhythm. Anomalous heart rhythms may include, for example, a rhythm that is too slow (bradycardia), a heart rhythm that is too fast (tachycardia), and/or a heart rhythm that involves insufficiently synchronized contractions of the atria and/or ventricles, a symptom of congestive heart failure. - If an arrhythmia is detected by the cardiac rhythm management system, then a
cardiac therapy circuit 215 may deliver cardiac therapy to the heart in the form of electrical stimulation pulses, such as pacing and/or cardioversion/defibrillation pulses. The cardiac signals and/or cardiac conditions, e.g., arrhythmia conditions, derived or detected through the use of the cardiac signals may be associated with an event affecting respiration. The cardiac information associated with the event may be acquired and organized by therespiratory logbook system 200. - A user interface may be used to view and/or access the respiratory logbook information.
FIG. 3 illustrates an exemplary depiction of a user interface display 300. An area 305 of the display may be used to provide textual or graphical information about respiratory events. As illustrated inFIG. 3 , amenu 310 of respiratory events may be presented and may enable the user to access additional information related to the respiratory event. Themenu 310 may provide a summary of parameters associated with the events contained in the respiratory logbook. As illustrated inFIG. 3 , one or more summary parameter headings, such as episode number 321, date/time 322, type 323, duration 324,sleep stage 325, and/orenvironment 326, among other parameter headings, may be presented at the top of themenu 310 or in another convenient location. The summary parameter headings 321-326 may be programmable, and additional or alternative parameter headings to those depicted inFIG. 3 may be selected, for example. - The type parameter 323 may contain abbreviations for various respiratory events. For example AP-C and AP-O may abbreviate central and obstructive apneas respectively, HP abbreviates a hypopnea, CS abbreviates Cheyne-Stokes respiration and RSB abbreviates rapid-shallow breathing.
- The respiratory events displayed as menu items in the
menu 310 may be selected by a user according to episode number, date/time, duration, type, number, or by other criteria. The menu items may be selected for display based on various criteria ranges and/or thresholds. For example, in the example screen illustrated inFIG. 3 , different groups of events selected as menu items may be selected by activating the modifyquery button 331. The modifyquery button 331 and other buttons illustrated on the display may be voice activated, activated through touching the display screen, or by operating a keyboard or pointing device, for example. - In one implementation, activation of the modify
query button 331 initiates a dialog session that allows the user to select respiratory events to be presented in the menu according various criteria such as by date/time, duration, type, number, or by other criteria ranges or thresholds. In one example, the user may select all apnea events to be presented as menu items. In another example, the user may select all events that occurred between a first date and a second date. In yet another example, the user may select all events that occurred while the patient experienced certain environmental conditions, e.g., ambient temperature range and/or humidity range. In yet another example, the user may choose to select all events of the respiratory logbook. The selection criteria may be displayed in an episodequery selection area 332 of the display. The episodequery selection area 332 in the depiction of a respiratory logbook display shown inFIG. 3 indicates that all episodes have been selected to be displayed as menu items. - The
menu 310 allows the user to choose respiratory events for which additional textual and/or graphical information is displayed. The additional information provides more detailed information about the selected events beyond the summary information presented in themenu 310. In the exemplary illustration depicted inFIG. 3 , the selections are indicated bycheck marks 307 beside the selected respiratory events. For convenience, the display may include a select all button 351 and/or a select none button 352. Activation of the select all button 351 causes all events in themenu 310 to be selected. Activation of the select none button 352 causes all events in themenu 310 to be deselected. - Following selection of one or more episodes in the menu, activation of the
detail button 342 causes detailed textual information associated with a selected event to be presented on the display screen. The detail information may be displayed in the area of the screen 305 previously occupied by themenu 310, for example. The user may scroll back and forth through the textual information for the one or more selected events using theprev button 341 and the next button 343. The textual information may be printed upon activation of the print button 344, or may be saved to a disk, or other storage medium, through activation of the save todisk button 355. - Graphical information associated with the selected events may be displayed upon activation of the
signals button 362. In one implementation, a respiration waveform acquired during, before and/or after a selected event may be displayed in the area 305 of the display previously used for themenu 310. Waveforms of other parameters, e.g., cardiac rhythm, patient activity, may additionally or alternatively be displayed. In one implementation, a marked waveform may be displayed. For example, a marked respiration waveform may include the respiration waveform acquired before, during, and after the event, along with one or more symbols aligned with the respiration waveform to indicate the occurrence of one or more conditions. The symbol may provide a numerical value or a textual description associated with the respiration characteristic, e.g., average respiration rate, expiratory slope, etc. In one example, various characteristics of disordered breathing events including quantifiable characteristics, such as episode duration, blood oxygen saturation, disordered breathing type, and/or other detected characteristics may also be displayed along with the respiration waveform. A user may scroll through the waveforms associated with the selected events using the prev andnext buttons 341, 343. -
FIG. 4 is a block diagram of a medical system that may be used to implement a respiratory logbook system in accordance with embodiments of the invention. The medical system may include, for example, one or more patient-internalmedical devices 420 and one or more patient-externalmedical devices 430. Each of the patient-internal 420 and patient-external 430 medical devices may include one or more of apatient monitoring unit diagnostics unit therapy unit 428, 438.Respiratory logbook circuitry 411, as described more fully in connection withFIG. 2 above, including an external device interface, event detector/predictor, event information processor and/or memory, for example, can be housed in a patient internalmedical device 420, a patient externalmedical device 430, a remote system such as advanced patient medical (APM)system 440 or in any combination of the above-mentioneddevices - The patient-internal
medical device 420 may be a fully or partially implantable device that performs monitoring, diagnosis, and/or therapy functions. The patient-externalmedical device 430 may perform monitoring, diagnosis and/or therapy functions external to the patient (i.e., not invasively implanted within the patient's body). The patient-externalmedical device 430 may be positioned on the patient, near the patient, or in any location external to the patient. It is understood that a portion of a patient-externalmedical device 430 may be positioned within an orifice of the body, such as the nasal cavity or mouth, yet can be considered external to the patient (e.g., mouth pieces/appliances, tubes/appliances for nostrils, or temperature sensors positioned in the ear canal). - The patient-internal and patient-external
medical devices more sensors patient input devices information acquisition devices 426, 436. Thesensors patient input devices information acquisition devices 426, 436 may be employed to detect conditions relevant to the monitoring, diagnostic, and/or therapeutic functions of the patient-internal and patient-externalmedical devices - The
medical devices internal sensors medical devices external sensors 422, 432 positioned on the patient, near the patient, or in a remote location with respect to the patient. The patient-internal 421, 431 and patient-external 422, 432 sensors may be used to sense conditions, such as physiological or environmental conditions, that affect the patient. - The patient-
internal sensors 421 may be coupled to the patient-internalmedical device 420 through implanted leads. In one example, an internal endocardial lead system is used to couple sensing electrodes to an implantable pacemaker or other cardiac rhythm management device. One or more of the patient-internal sensors internal sensors medical device 420 and/or the patient-externalmedical device 430. - The patient-
external sensors 422, 432 may be coupled to the patient-internal medical device 410 and/or the patient-externalmedical device 420 through leads or through wireless connections. Patient-external sensors 422 preferably communicate with the patient-internalmedical device 420 wirelessly. Patient-external sensors 432 may be coupled to the patient-externalmedical device 430 through leads or through a wireless link. - The
medical devices input devices input devices medical devices patient input devices medical devices medical device - The
medical devices more information systems 426, 436, for example, a database that stores information useful in connection with the monitoring, diagnostic, or therapy functions of themedical devices medical devices - In one embodiment, the patient-internal
medical device 420 and the patient-externalmedical device 430 may communicate through a wireless link between themedical devices external devices medical devices - In one embodiment, the patient-internal and patient-external
medical devices - The patient-internal
medical device 420 and the patient-externalmedical device 430 may be coupled through a wireless or wired communications link to a patient information server that is part of an advancedpatient management system 440. The APMpatient information server 440 may be used to download and store data collected by the patient-internal and patient-externalmedical devices - The data stored on the APM
patient information server 440 may be accessible by the patient and the patient's physician throughterminals 450, e.g., remote computers located in the patient's home or the physician's office. The APMpatient information server 440 may be used to communicate to one or more of the patient-internal and patient-externalmedical devices medical devices - In one scenario, the patient's physician may access patient data transmitted from the
medical devices patient information server 440. After evaluation of the patient data, the patient's physician may communicate with one or more of the patient-internal or patient-external devices APM system 440 to initiate, terminate, or modify the monitoring, diagnostic, and/or therapy functions of the patient-internal and/or patient-externalmedical systems - In one scenario, the patient-internal and patient-external
medical devices APM system 440. In this embodiment, theAPM system 440 may operate as an intermediary between two or more of themedical devices medical devices APM system 440. TheAPM system 440 may transfer the data and/or control information to another of themedical devices - As previously indicated,
respiratory logbook circuitry 411, including an external device interface, event detector/predictor, event information processor and memory, for example, can be housed in a patient internalmedical device 420, a patient externalmedical device 430, an advanced patient medical (APM)system 440 or in any combination of the above-mentioned devices. For explanatory purposes, in the following discussion, therespiratory logbook circuitry 411 is described as being housed within the patient internalmedical device 420. As previously discussed, the patient internalmedical device 420 is coupled to various sensors, 421, 422,patient input devices 424, and/or other information systems 426. These sensing and detection devices may be used to detect conditions relevant to events affecting respiration. One or morepatient input devices 424 allow the patient to enter information associated with the events into themedical device 420. Further, a variety of information systems 426 may be accessible by the patient-internalmedical device 420, including, for example, network or internet-based information systems. The information systems 426 may provide event-related information such as local pollution levels, local temperature, humidity, etc. For example, the conditions associated with events affecting respiration may be any of the conditions referred to in Tables 1-3, or other conditions. - In accordance with various embodiments of the invention, the
respiratory logbook circuitry 411 may comprise circuitry configured to evaluate one or more patient conditions to detect or predict the occurrence of an event affecting patient respiration. In response to the detection or prediction of such an event, the respiratory logbook circuitry initiates the collection of information related to the event. In one scenario, the respiratory logbook circuitry may initiate collection of information fromsensors other input devices medical device 420, patient externalmedical device 430 and a remote device, such as theAPM server 440. The respiratory logbook circuitry may initiate collection of information associated with any of the patient conditions listed in Tables 1-3. - Information associated with the event affecting respiration may be acquired before, during and/or after the respiratory event. Information may be acquired for a time period beginning a short time, e.g., up to about 5 minutes, prior to the prediction and/or detection of a respiratory event and/or ending a short time, e.g., up to about 2 minutes, following the termination of the respiratory event. In various embodiments of the invention, acquired information related to the event affecting respiration may be immediately transmitted to a
separate computing device internal device 420. The information may be organized and displayed on adisplay unit 452 as discussed in connection withFIG. 3 . - The patient-
internal sensors external sensors 422, 432,patient input devices information systems 426, 436 may be used to acquire a variety of information related to respiratory logbook events. The acquired information may include both physiological and non-physiological contextual conditions affecting the patient. Physiological conditions may include a broad category of conditions associated with the internal functioning of the patient's physiological systems, including the cardiovascular, respiratory, nervous, muscle and other systems. Examples of physiological conditions include blood chemistry, patient posture, patient activity, respiration quality, sleep quality, among others. - Contextual conditions generally encompass non-physiological, patient-external or background conditions. Contextual conditions may be broadly defined to include, for example, present environmental conditions, such as patient location, ambient temperature, humidity, air pollution index. Contextual conditions may also include historical/background conditions relating to the patient, including the patient's normal sleep time and the patient's medical history, for example. Methods and systems for detecting some contextual conditions, including, for example, proximity to bed detection, are described in commonly owned U.S. Pat. No. 7,400,928, which is incorporated by reference herein in its entirety.
- Table 1 provides a list of representative patient conditions that may be used in connection with a respiratory logbook in accordance with embodiments of the invention. Table 1 presents representative physiological and non-physiological patient conditions that may be acquired and used in connection with a respiratory logbook. Table 1 also presents illustrative sensing methods that may be employed to sense the conditions. It will be appreciated that information and detection methods other than those provided in Table 1 may be used in connection with a respiratory logbook and are considered to be within the scope of the invention.
-
TABLE 1 Sensor type or Detection Condition Type Condition method Physiological Cardiovascular System Heart rate EGM, ECG Heart rate variability QT interval Ventricular filling pressure Intracardiac pressure sensor Blood pressure Blood pressure sensor Respiratory System Snoring Accelerometer Microphone Respiration pattern (Tidal Transthoracic impedance volume Minute ventilation sensor (AC) Respiratory rate) Patency of upper airway Intrathoracic impedance sensor Pulmonary congestion Transthoracic impedance sensor (DC) Nervous System Sympathetic nerve activity Muscle sympathetic nerve Activity sensor Brain activity EEG Blood Chemistry CO2 saturation Blood analysis O2 saturation Blood alcohol content Adrenalin Brain Natriuretic Peptide (BNP) C-Reactive Protein Drug/Medication/Tobacco use Muscle System Muscle atonia EMG Eye movement EOG Patient activity Accelerometer, MV, etc. Limb movements Accelerometer, EMG Jaw movements Accelerometer, EMG Posture Multi-axis accelerometer Contextual Environmental Ambient temperature Thermometer Humidity Hygrometer Pollution Air quality website Time Clock Date Clock Barometric pressure Barometer Ambient noise Microphone Ambient light Photodetector Altitude Altimeter Location GPS, proximity sensor Proximity to bed Proximity to bed sensor Historical/Background Historical sleep time Patient input, previously detected sleep onset times Medical history Patient input Age Recent exercise Weight Gender Body mass index Neck size Emotional state Psychological history Daytime sleepiness Patient perception of sleep quality Drug, alcohol, nicotine use - As previously mentioned, long term storage of respiratory logbook information may be initiated by detection or prediction of various types of events affecting the respiration of the patient. The triggering event may comprise, for example, a disordered breathing event, a cardiac arrhythmia episode, an event related to a pulmonary disease or disorder such as asthma, pulmonary edema, chronic obstructive pulmonary disease, and/or pleural effusion, an episode of coughing and/or other breathing irregularities, or an event related to the normal activity of the patient, such as sleep or exercise, among other events. The event may also be triggered by the patient using, for example, the
patient input device - Detection of various pulmonary diseases/disorders may initiate long term storage of data for a respiratory logbook entry. Pulmonary diseases/disorders may be organized into broad categories encompassing disorders of breathing rhythm and non-rhythm pulmonary diseases and/or disorders. Breathing rhythm disorders include various syndromes characterized by patterns of disordered breathing that produce insufficient respiration, for example, sleep apnea, hypopnea, and Cheyne-Stokes Respiration (CSR), among others. Breathing rhythm disorders are not necessarily accompanied by alteration of pulmonary structures.
- Non-rhythm pulmonary diseases or disorders typically involve physical changes to lung structures, such as loss of elasticity of the lung tissue, obstruction of airways with mucus, limitation of the expansion of the chest wall during inhalation, fibrous tissue within the lung, excessive pressure in the pulmonary arteries, and/or other characteristics. Pulmonary diseases or disorders that are not rhythm related are referred to herein as non-rhythm pulmonary diseases and may include obstructive pulmonary diseases, restrictive pulmonary diseases, infectious pulmonary diseases, pulmonary vasculature disorders, and pleural cavity disorders, for example.
- In various embodiments of the invention, acquisition of information may be triggered by detection of a presence of a non-rhythm related pulmonary disease/disorder. Detection of a presence of the pulmonary disease/disorder may be based on a predetermined level of physiological changes and/or disease symptoms associated with the disease or disorder. The presence of various pulmonary diseases that may trigger acquisition of data may include, for example, obstructive pulmonary diseases (e.g., chronic bronchitis, emphysema, asthma), restrictive pulmonary diseases (e.g., sarcoidosis, pulmonary fibrosis, pneumoconiosis), infections pulmonary diseases (e.g., bronchitis, pneumonia, bronchiolitis, tuberculosis, and bronchiectasis), pulmonary vasculature diseases (e.g., pulmonary hypertension, pulmonary edema, pulmonary embolism, atalectasis), and diseases of the pleural cavity (e.g., pleural effusion, pneumothorax, and hemothorax).
- In accordance with various embodiments of the invention, the presence of a non-rhythm pulmonary disease may be assessed by evaluating conditions indicative of the non-rhythm pulmonary disease. In one example, the presence of a non-rhythm pulmonary disease may be assessed by comparing conditions indicative of physiological changes or symptoms caused by the disease to threshold criteria. If the conditions indicative of physiological changes or symptoms caused by the disease are consistent with threshold levels, the system may determine that the non-rhythm pulmonary disease or disorder is present.
- In another example, assessment of disease presence may be based on relative changes in one or more conditions indicative of physiological changes or symptoms caused by the disease. For example, diagnosis of a non-rhythm pulmonary disease may be effected by evaluating the changes in conditions indicative of physiological changes or symptoms caused by the disease. The changes in the one or more conditions may be compared to threshold criteria. If changes in the conditions indicative of physiological changes or symptoms caused by the disease are consistent with threshold levels, the non-rhythm pulmonary disease or disorder may be present.
- In a further example, the threshold criteria may involve relationships between the conditions indicative of physiological changes or symptoms caused by the disease. The presence of a non-rhythm pulmonary disease may be assessed by evaluating relationships between conditions indicative of physiological changes or symptoms caused by the disease. For example, assessment of a disease may involve the determination that levels or amounts of two or more conditions have a certain relationship with one another. If relationships between the conditions indicative of physiological changes or symptoms caused by the disease are consistent with threshold relationship criteria, the non-rhythm pulmonary disease or disorder may be present.
- In another implementation, detection of a rhythm related pulmonary event, e.g., a disordered breathing event, triggers the acquisition of information associated with respiration. A disordered breathing event may be detected by sensing and analyzing various conditions indicative of disordered breathing. Table 2 presents examples of how a representative subset of the physiological and non-physiological (contextual) conditions provided in Table 1 may be used in connection with disordered breathing detection.
-
TABLE 2 Examples of how condition may be used in Condition Type Condition disordered breathing detection Physiological Heart rate Decrease in heart rate may indicate disordered breathing episode. Increase in heart rate may indicate autonomic arousal from a disordered breathing episode. Decrease in heart rate may indicate the patient is asleep. Heart rate variability Disordered breathing causes heart rate variability to decrease. Changes in HRV associated with sleep disordered breathing may be observed while the patient is awake or asleep. Ventricular filling May be used to identify/predict pulmonary pressure congestion associated with respiratory disturbance. Blood pressure Swings in on-line blood pressure measures are associated with apnea. Disordered breathing generally increases blood pressure variability - these changes may be observed while the patient is awake or asleep. Snoring Snoring is associated with a higher incidence of obstructive sleep apnea and may be used to detect disordered breathing. Snoring indicates the patient is asleep. Respiration Respiration patterns including, e.g., respiration rate, pattern/rate may be used to detect disordered breathing episodes. Respiration patterns may be used to determine the type of disordered breathing. Respiration patterns may be used to detect that the patient is asleep. Patency of upper Patency of upper airway is related to obstructive airway sleep apnea and may be used to detect episodes of obstructive sleep apnea. Pulmonary Pulmonary congestion is associated with respiratory congestion disturbances. Sympathetic nerve End of apnea associated with a spike in SNA. activity Changes in SNA observed while the patient is awake or asleep may be associated with sleep disordered breathing. CO2 Low CO2 levels initiate central apnea. May be used to predict central apnea risk. O2 O2 desaturation occurs during severe apnea/hypopnea episodes. May be used to evaluate presence and severity of sleep disordered breathing event. Blood alcohol Alcohol tends to increase incidence of snoring & content obstructive apnea. Adrenalin End of apnea associated with a spike in blood adrenaline. Brain Natriuretic A marker of heart failure status, which is associated Peptide (BNP) with Cheyne-Stokes Respiration C-Reactive Protein A measure of inflammation that may be related to apnea. Drug/Medication/Tobacco These substances may affect the incidence of both use central & obstructive apnea. Muscle atonia Eye Muscle atonia may be used to discriminate REM movement from non-REM sleep. Eye movement may be used to detect REM and non- REM sleep. Non- Temperature Ambient temperature may be a condition physiological/ predisposing the patient to episodes of disordered Contextual breathing and may be useful in disordered breathing detection. Humidity Humidity may be a condition predisposing the patient to episodes of disordered breathing and may be useful in disordered breathing detection. Pollution Pollution may be a condition predisposing the patient to episodes of disordered breathing and may be useful in disordered breathing detection. Posture Posture may be used to confirm or determine the patient is asleep. Activity Patient activity may be used in relation to sleep detection. Location Patient location may used to determine if the patient is in bed as a part of sleep detection. Altitude Lower oxygen concentrations at higher altitudes tends to cause more central apnea - The acquisition of information may be triggered by a prediction that a disordered breathing event is likely to occur. In this implementation, an occurrence of disordered breathing may be predicted based on one or more sensed conditions, such one or more of the physiological and/or non-physiological conditions listed in Table 1. The conditions listed in Table 1 may serve a variety of purposes in predicting disordered breathing. For example, a first subset of the conditions listed in Table 1 may comprise conditions predisposing the patient to disordered breathing. Another subset, possibly overlapping the first subset, may comprise precursor conditions indicating an imminent occurrence of a disordered breathing event. Another subset of the conditions may be employed to verify that the predicted disordered breathing event occurred and/or to classify the disordered breathing episode as to origin, e.g., central or obstructive, and/or as to type, e.g., apnea, hypopnea, Cheyne-Stokes Respiration (CSR). Table 3 provides further examples of how physiological and/or contextual conditions may be used in disordered breathing prediction.
-
TABLE 3 Examples of how condition is used in disordered breathing Condition prediction Heart rate Decrease in heart rate may indicate disordered breathing episode. Decrease in heart rate may indicate the patient is asleep. Increase in heart rate may indicate autonomic arousal from disordered breathing. Heart rate variability May be used to determine sleep state Ventricular filling pressure May be used to identify/predict pulmonary congestion associated with respiratory disturbance. Blood pressure Swings in on-line blood pressure measures are associated with apnea. Snoring Snoring is associated with a higher incidence of obstructive sleep apnea and may be used to detect disordered breathing. Respiration Respiration patterns may be used to detect disordered signals/respiration patterns breathing episodes. Respiration patterns may be used to determine the type of disordered breathing. Respiration patterns may be used to detect that the patient is asleep. Hyperventilation may be used to predict disordered breathing. Previous episodes of disordered breathing may be used to predict further episodes. One form of disordered breathing may be used to predict another form of disordered breathing Patency of upper airway Patency of upper airway is related to obstructive sleep apnea and may be used to detect episodes of obstructive sleep apnea. Pulmonary congestion Pulmonary congestion is associated with respiratory disturbances. Sympathetic nerve activity End of apnea associated with a spike in SNA CO2 saturation Low CO2 levels initiate central apnea. O2 saturation O2 desaturation occurs during severe apnea/hypopnea episodes. Blood alcohol content Alcohol tends to increase incidence of snoring & obstructive apnea. Adrenalin End of apnea associated with a spike in blood adrenaline. BNP A marker of heart failure status, which is associated with Cheyne-Stokes Respiration C-Reactive Protein A measure of inflammation that may be related to apnea. Drug/Medication/Tobacco These substances may affect incidence of both central & use obstructive apnea. Muscle atonia Eye Muscle atonia may be used to detect REM and non-REM movement sleep. Eye movement may be used to detect REM and non-REM sleep. Temperature Ambient temperature may be a condition predisposing the patient to episodes of disordered breathing. Humidity Humidity may be a condition predisposing the patient to episodes of disordered breathing. Pollution Pollution may be a condition predisposing the patient to episodes of disordered breathing. Posture Posture may be used to determine if the patient is asleep. Posture may be a condition predisposing the patient to episodes of disordered breathing. Activity Patient activity may be used in relation to sleep detection. Sleep stage NREM sleep is associated with a higher incidence of DB episodes Location Patient location may used to determine if the patient is in bed as a part of sleep detection. Altitude Lower oxygen concentration associated with high altitudes predisposes patients to more central apnea - Detection or prediction of disordered breathing may involve comparing one condition or multiple conditions to one or more thresholds or other indices indicative or predictive of disordered breathing. A threshold or other index indicative or predictive of disordered breathing may comprise a predetermined level of a particular condition, e.g., blood oxygen level less than a predetermined amount. A threshold or other index indicative or predictive of disordered breathing may involve a change in a level of a particular condition, e.g., heart rate decreasing from a sleep rate to a lower rate within a predetermined time interval.
- In one approach, the relationships between the conditions may be indicative or predictive of disordered breathing. In this embodiment, disordered breathing detection or prediction may be based on the existence and relative values associated with two or more conditions. For example, if condition A is present at a level of x, then condition B must also be present at a level of f(x) before disordered breathing is detection or predicted.
- The thresholds and/or relationships indicative or predictive of disordered breathing may be highly patient specific. The thresholds and/or relationships indicative of disordered breathing may be determined on a case-by-case basis by monitoring conditions affecting the patient and monitoring disordered breathing episodes. The analysis may involve determining levels of the monitored conditions and/or relationships between the monitored conditions associated, e.g., statistically correlated, with disordered breathing episodes. The thresholds and/or relationships used in disordered breathing detection or prediction may be updated periodically to track changes in the patient's response to disordered breathing.
- In various implementations, disordered breathing events may be detected through analysis of the patient's respiration patterns. Methods and systems of disordered breathing detection based on respiration patterns that may be utilized in a respiratory logbook system are further described in commonly owned U.S. Pat. No. 7,252,640, which is incorporated herein by reference.
- Prediction of disordered breathing may involve analysis of conditions predisposing the patient to disordered breathing. Additionally, or alternatively, prediction of disordered breathing may be based on the detection of precursor conditions that indicate a likelihood that one or more episodes of disordered breathing will occur during the next time period, such as over the course of the night. Methods and systems for predicting disordered breathing that may be implemented in a respiratory logbook system are further described in commonly owned U.S. Pat. No. 7,396,333, which is incorporated herein by reference.
- Respiratory events may be more likely to occur during sleep. For example, episodes of disordered breathing can occur when the patient is awake, however, most disordered breathing events occur during sleep. The onset and termination or sleep, sleep state, and/or stage of sleep may comprise events that initiate acquisition of information organized in a respiratory logbook. Methods and systems for detecting sleep that may be implemented in the context of a respiratory logbook are described in commonly owned U.S. Pat. No. 7,189,204, which is incorporated herein by reference.
- Methods and systems for detecting REM sleep and/or other sleep states are described in commonly owned U.S. Pat. No. 8,192,376, which is incorporated herein by reference.
- Information collected in accordance with the invention may involve information related to sleep and/or sleep quality. Methods and systems related to collection, assessment, and organization of sleep-related information are described in commonly owned U.S. Pat. Nos. 8,002,553 and 7,572,225, and U.S. Patent Publication No. 2005/0076908, all of which are incorporated herein by reference.
-
FIG. 5 is a partial view of an implantable device that may include circuitry for implementing a respiratory logbook in accordance with embodiments of the invention. In this example, the implantable device comprises a cardiac rhythm management device (CRM) 500 including animplantable pulse generator 505 electrically and physically coupled to anintracardiac lead system 510. The respiratory logbook system may alternatively be implemented in a variety of implantable monitoring, diagnostic, and/or therapeutic devices, such as an implantable cardiac monitoring device, an implantable drug delivery device, or an implantable neurostimulation device, for example. - Portions of the
intracardiac lead system 510 are inserted into the patient'sheart 590. Theintracardiac lead system 510 includes one or more electrodes configured to sense electrical cardiac activity of the heart, deliver electrical stimulation to the heart, sense the patient's transthoracic impedance, and/or sense other physiological parameters, e.g., cardiac chamber pressure or temperature. Portions of the housing 501 of thepulse generator 505 may optionally serve as a can electrode. - Communications circuitry is disposed within the housing 501 for facilitating communication between the
pulse generator 505 and an external communication device, such as a portable or bed-side communication station, patient carried/worn communication station, or external programmer, for example. The communications circuitry can also facilitate unidirectional or bidirectional communication with one or more implanted, external, cutaneous, or subcutaneous physiologic or non-physiologic sensors, patient-input devices and/or information systems. - The
pulse generator 505 may optionally incorporate a motion detector 520 that may be used to sense various respiration-related conditions. For example, the motion detector 520 may be optionally configured to sense snoring, activity level, and/or chest wall movements associated with respiratory effort. The motion detector 520 may be implemented as an accelerometer positioned in or on the housing 501 of thepulse generator 505. If the motion sensor is implemented as an accelerometer, the motion sensor may also provide respiratory, e.g. rales, coughing, and cardiac, e.g. S1-S4 heart sounds, murmurs, and other acoustic information. - The
lead system 510 of theCRM 500 may incorporate one or more transthoracic impedance sensors that may be used to acquire the patient's respiration waveform, or other respiration-related information. The transthoracic impedance sensor may include, for example, one or moreintracardiac electrodes heart 590. Theintracardiac electrodes sense circuitry 530 positioned within the housing of thepulse generator 505. - In one implementation, impedance drive/
sense circuitry 530 generates a current that flows through the tissue between an impedance drive electrode 551 and a can electrode on the housing 501 of thepulse generator 505. The voltage at animpedance sense electrode 552 relative to the can electrode changes as the patient's transthoracic impedance changes. The voltage signal developed between theimpedance sense electrode 552 and the can electrode is detected by theimpedance sense circuitry 530. Other locations and/or combinations of impedance sense and drive electrodes are also possible. - The voltage signal developed at the
impedance sense electrode 552, illustrated inFIG. 6 , is proportional to the patient's transthoracic impedance and represents the patient's respiration waveform. The transthoracic impedance increases duringrespiratory inspiration 610 and decreases duringrespiratory expiration 620. The peak-to-peak transition of the transthoracic impedance is proportional to the amount of air moved in one breath, denoted the tidal volume. The amount of air moved per minute is denoted the minute ventilation. A normal “at rest” respiration pattern, e.g., during non-REM sleep, includes regular, rhythmic inspiration-expiration cycles without substantial interruptions, as indicated inFIG. 6 . - Returning to
FIG. 5 , thelead system 510 may include one or more cardiac pace/sense electrodes 551-555 positioned in, on, or about one or more heart chambers for sensing electrical signals from the patient'sheart 590 and/or delivering pacing pulses to theheart 590. The intracardiac sense/pace electrodes 551-555, such as those illustrated inFIG. 5 , may be used to sense and/or pace one or more chambers of the heart, including the left ventricle, the right ventricle, the left atrium and/or the right atrium. Thelead system 510 may include one ormore defibrillation electrodes - The
pulse generator 505 may include circuitry for detecting cardiac arrhythmias and/or for controlling pacing or defibrillation therapy in the form of electrical stimulation pulses or shocks delivered to the heart through thelead system 510. Circuitry for implementing a respiratory logbook 535, including interface circuitry, an event detector, an event processor, and/or memory circuitry, as described in connection withFIG. 2 , may be housed within thepulse generator 505. The respiratory logbook circuitry may be coupled to various sensors, patient input devices, and/or information systems through leads or through wireless communication links. -
FIG. 7 is a diagram illustrating an implantable transthoracic cardiac device that may be used in connection with acquiring and organizing data for a respiratory logbook in accordance with embodiments of the invention. The implantable device illustrated inFIG. 7 is an implantable transthoracic cardiac sensing and/or stimulation (ITCS) device that may be implanted under the skin in the chest region of a patient. The ITCS device may, for example, be implanted subcutaneously such that all or selected elements of the device are positioned on the patient's front, back, side, or other body locations suitable for sensing cardiac activity and delivering cardiac stimulation therapy. It is understood that elements of the ITCS device may be located at several different body locations, such as in the chest, abdominal, or subclavian region with electrode elements respectively positioned at different regions near, around, in, or on the heart. - Circuitry for implementing a respiratory logbook system may be positioned within the primary housing of the ITCS device. The primary housing (e.g., the active or non-active can) of the ITCS device, for example, may be configured for positioning outside of the rib cage at an intercostal or subcostal location, within the abdomen, or in the upper chest region (e.g., subclavian location, such as above the third rib). In one implementation, one or more electrodes may be located on the primary housing and/or at other locations about, but not in direct contact with, the heart, great vessel or coronary vasculature.
- In another implementation, one or more electrodes may be located in direct contact with the heart, great vessel or coronary vasculature, such as via one or more leads implanted by use of conventional transvenous delivery approaches. In another implementation, for example, one or more subcutaneous electrode subsystems or electrode arrays may be used to sense cardiac activity and deliver cardiac stimulation energy in an ITCS device configuration employing an active can or a configuration employing a non-active can. Electrodes may be situated at anterior and/or posterior locations relative to the heart.
- In the configuration shown in
FIG. 7 , asubcutaneous electrode assembly 707 can be positioned under the skin in the chest region and situated distal from thehousing 702. The subcutaneous and, if applicable, housing electrode(s) can be positioned about the heart at various locations and orientations, such as at various anterior and/or posterior locations relative to the heart. Thesubcutaneous electrode assembly 707 is coupled to circuitry within thehousing 702 via alead assembly 706. One or more conductors (e.g., coils or cables) are provided within thelead assembly 706 and electrically couple thesubcutaneous electrode assembly 707 with circuitry in thehousing 702. One or more sense, sense/pace or defibrillation electrodes can be situated on the elongated structure of the electrode support, thehousing 702, and/or the distal electrode assembly (shown assubcutaneous electrode assembly 707 in the configuration shown inFIG. 7 ). - It is noted that the electrode and the
lead assemblies lead assembly 706 can have a wedge, chevron, flattened oval, or a ribbon shape, and thesubcutaneous electrode assembly 707 can comprise a number of spaced electrodes, such as an array or band of electrodes. Moreover, two or moresubcutaneous electrode assemblies 707 can be mounted to multipleelectrode support assemblies 706 to achieve a desired spaced relationship amongstsubcutaneous electrode assemblies 707. - In particular configurations, the ITCS device may perform functions traditionally performed by cardiac rhythm management devices, such as providing various cardiac monitoring, pacing and/or cardioversion/defibrillation functions. Exemplary pacemaker circuitry, structures and functionality, aspects of which can be incorporated in an ITCS device of a type that may benefit from multi-parameter sensing configurations, are disclosed in commonly owned U.S. Pat. Nos. 4,562,841; 5,284,136; 5,376,476; 5,036,849; 5,540,727; 5,836,987; 6,044,298; and 6,055,454, which are hereby incorporated herein by reference in their respective entireties. It is understood that ITCS device configurations can provide for non-physiologic pacing support in addition to, or to the exclusion of, bradycardia and/or anti-tachycardia pacing therapies. Exemplary cardiac monitoring circuitry, structures and functionality, aspects of which can be incorporated in an ITCS of the present invention, are disclosed in commonly owned U.S. Pat. Nos. 5,313,953; 5,388,578; and 5,411,031, which are hereby incorporated herein by reference in their respective entireties.
- An ITCS device can incorporate circuitry, structures and functionality of the subcutaneous implantable medical devices disclosed in commonly owned U.S. Pat. Nos. 5,203,348; 5,230,337; 5,360,442; 5,366,496; 5,397,342; 5,391,200; 5,545,202; 5,603,732; 5,916,243; and 7,570,997; and commonly owned U.S. Patent Publication Nos. 2004/0230229; 2004/0230230; and 2004/0215240; and U.S. Provisional Application Ser. No. 60/462,272; all of which are incorporated herein by reference.
- The housing of the ITCS device may incorporate components of a
respiratory logbook system 705, including a memory, interface, event processor and/or event detector circuitry. The respiratory logbook circuitry may be coupled to one or more sensors, patient input devices, and/or information systems as described in connection withFIG. 2 . - In one implementation, the ITCS device may include an impedance sensor configured to sense the patient's transthoracic impedance. The impedance sensor may include the impedance drive/sense circuitry incorporated with the
housing 702 of the ITCS device and coupled to impedance electrodes positioned on the can or at other locations of the ITCS device, such as on thesubcutaneous electrode assembly 707 and/orlead assembly 706. In one configuration, the impedance drive circuitry generates a current that flows between a subcutaneous impedance drive electrode and a can electrode on the primary housing of the ITCS device. The voltage at a subcutaneous impedance sense electrode relative to the can electrode changes as the patient's transthoracic impedance changes. The voltage signal developed between the impedance sense electrode and the can electrode is sensed by the impedance drive/sense circuitry. - Communications circuitry is disposed within the
housing 702 for facilitating communication between the ITCS device and an external communication device, such as a portable or bed-side communication station, patient-carried/worn communication station, or external programmer, for example. The communications circuitry can also facilitate uni-directional or bi-directional communication with one or more external, cutaneous, or subcutaneous physiologic or non-physiologic sensors. -
FIG. 8 is a block diagram illustrating amedical system 800 including a patient-internal device 810 that cooperates with a patient-external device 820 to acquire and organize information in a respiratory logbook in accordance with embodiments of the invention. In this example, the respiratory logbook is displayed on adisplay device 860 coupled to the patient-external device 820. Alternatively, thedisplay device 860 could be coupled to the patient-internal device 810. - In one embodiment, the patient-
internal device 810 may comprise, for example, an implantable cardiac rhythm management system (CRM) such as a pacemaker, defibrillator, cardiac resynchronizer, or the like. In another embodiment, the patient-internal device 810 may comprise, for example, an implantable transthoracic cardiac sensing and/or stimulation device (ITCS) as described in connection withFIG. 7 . The patient-external device 820 may comprise an external breathing therapy device such as a continuous positive airway pressure device (CPAP), bi-level positive airway pressure device (bi-PAP) or other positive airway pressure device, generically referred to herein as xPAP devices. - A typical CPAP device delivers air pressure through a nasal mask worn by the patient. The application of continuous positive airway pressure keeps the patient's throat open, reducing or eliminating the obstruction causing apnea. Positive airway pressure devices may be used to provide a variety of respiration therapies, including, for example, continuous positive airway pressure (CPAP), bi-level positive airway pressure (bi-level PAP), proportional positive airway pressure (PPAP), auto-titrating positive airway pressure, ventilation, gas or oxygen therapies. Some positive airway pressure devices may also be configured to provide both positive and negative pressure, such that negative pressure is selectively used (and de-activated) when necessary, such as when treating Cheyne-Stokes breathing, for example. The term xPAP will be used herein as a generic term for any device using forms of positive airway pressure (and negative pressure when necessary), whether continuous or otherwise.
- An xPAP device 820 develops a positive air pressure that is delivered to the patient's airway through
tubing 832 andmask 854 connected to the xPAP device 820. Positive airway pressure devices are often used to treat disordered breathing. In one configuration, for example, the positive airway pressure provided by the xPAP device 820 acts as a pneumatic splint keeping the patient's airway open and reducing the severity and/or number of occurrences of disordered breathing due to airway obstruction. In addition to delivering breathing therapy, the xPAP device 820 may provide a number of monitoring and/or diagnostic functions in relation to the respiratory system. For example, the xPAP device 820 may sense respiration using an oxygen sensor, a microphone, a flow meter, and/or other respiration sensing methods. - Components used in connection with acquiring and organizing respiratory logbook information may be implemented by the patient-
internal CRM 810 device, by the patient-external xPAP 820 device, or by both devices. Further, the CRM and the xPAP devices may be coupled to a remote computing device such as a patient management server using a wireless or wired link. - The
CRM 810 may provide a first set of monitoring, diagnostic, and/or therapeutic functions to the patient. The xPAP device 820 may provide a second set of monitoring, diagnostic, and/or therapeutic functions to the patient. TheCRM device 810, the xPAP device 820, or both may include sensors for sensing conditions associated with events affecting respiration such as those identified in Tables 1-3. - In one embodiment, sensors coupled to the
CRM device 810 may sense a first set of conditions associated with events affecting respiration. The sensed information may be transmitted to respiratory logbook circuitry incorporated in the xPAP device 820. Sensors coupled to the xPAP device 820 may sense a second set of conditions associated with events affecting respiration. The information sensed by the xPAP device and the CRM device may be organized by circuitry in the xPAP device into respiratory logbook format. - In another embodiment, sensors coupled to the xPAP device 820 may sense a first set of information associated with events affecting respiration and transmit the information to the CRM device. Circuitry in the CRM device may combine the information acquired by the xPAP device sensors with information acquired by sensors coupled to the CRM device to generate the respiratory logbook.
-
FIG. 9A provides a timing diagram illustrating the acquisition of respiratory logbook information for a detected event affecting respiration in accordance with embodiments of the invention. The respiratory logbook system senses and stores in a temporary buffer a slidingscale window 910 of one or more patient conditions, such as those listed in Tables 1-3. The selection of information that is sensed and stored may be programmable by the physician. The selection of the information to be acquired may be based on the patient's medical history. For example, if the patient suffers from sleep apnea, or another form of disordered breathing, the respiratory logbook would preferably be programmed to sense conditions associated with disordered breathing. Conversely, if the patient suffers from chronic obstructive pulmonary disorder, a different set of conditions from those used for disordered breathing could be sensed. - If an event affecting respiration is detected 915, then pre-event
information 930 acquired prior to the event is stored.Information 940 is collected and stored during the event. Upon detection that the event has terminated 945,post-event information 950 is collected and stored for a period of time after the termination of the event. The event andpost-event information post-event information 950 is collected, the acquiredinformation -
FIG. 9B provides a timing diagram illustrating the acquisition of respiratory logbook information for a predicted event affecting respiration in accordance with embodiments of the invention. The respiratory logbook system senses and stores in a temporary buffer a slidingscale window 910 of one or more patient conditions, such as those listed in Tables 1-3. The conditions that are sensed and stored are programmable and may be selected based on the patient's medical history. For example, the information sensed and stored may include information that has been effectively used to predict the one or more types of events affecting the patient's respiration. If an event affecting respiration is predicted 912, then pre-predictioninformation 920 is acquired and stored. When the event affecting respiration is detected 915, then pre-eventinformation 930 acquired prior to the event is stored.Information 940 is collected and stored during the event. Upon detection that the event has terminated 945,information 950 is collected and stored for a period of time after the termination of the event. The pre-event, event andpost-event information post-event information 940 is collected, the acquiredinformation - As previously discussed in connection with
FIG. 3 , the respiratory logbook display may include information presented in graphical format. In one embodiment, the user may choose to view a marked respiration waveform, for example.FIGS. 10A and 10B provide examples of marked respiration waveforms that may be acquired and organized in a respiratory logbook.FIG. 10A illustrates a marked respiration waveform in accordance with embodiments of the invention. In one embodiment, information related to a marked respiration waveform may be acquired continuously as a moving snapshot of respiration-related conditions. In another embodiment, the information related to the marked respiration waveform may be acquired in response to one or more triggering events. For one example, the triggering event may comprise an instruction from a physician or through an advanced patient management system to begin data collection. In another example, the triggering event may comprise detection of various respiration conditions, such as detection of the disordered breathing, or the detection of sleep. In this scenario, the triggering event may initiate the collection of respiration-related data during an interval of time that may include time periods prior to, during, and/or following the disordered breathing event. - As illustrated in
FIG. 10A , the markedrespiration waveform 1010 may comprise respiration symbols positioned at locations relative to the respiration waveform to indicate when respiratory events occur or the time when characteristics are calculated. In this example, therespiration waveform 1010 is marked withrespiration symbols 1020 denoting the time between peaks on the waveform and hypopnea symbols denoting when an hypopnea is detected 1030 and when an hypopnea ends 1035 after 22 seconds. In addition, other symbols indicating respiration characteristics and/or disordered breathing characteristics described above may be superimposed on the respiration waveform. The marked respiration waveform may be displayed on a display device to allow the patient's physician to view respiratory disturbances and/or other characteristics. - In addition to displaying the
respiration waveform 1010, the display may show other measurements and/or other waveforms. InFIG. 10B , an electrocardiogram (ECG) 1050 is shown aboverespiration waveform 1010. The ECG 1050 is time-aligned withrespiration waveform 1010 and can be marked with indicators corresponding to the occurrence of breathing and/or cardiac events, for example.Markers 1060 indicating sensed ventricular events (Vs) and paced ventricular events (Vp) are displayed above the ECG inFIG. 10B . Displaying marked respiration waveforms and other waveforms related to patient conditions allows the patient's physician to verify, for example, that a disordered breathing event was properly detected. This confirmation may be used to guide diagnostics and/or therapy. Symbols annotating cardiac and respiratory events provide further diagnostic information for physicians. - A number of the examples presented herein involve block diagrams illustrating functional blocks used in accordance with embodiments of the present invention. It will be understood by those skilled in the art that there exist many possible configurations in which these functional blocks can be arranged and implemented.
- The examples depicted herein provide examples of possible functional arrangements used to implement the approaches of the invention. The components and functionality depicted as separate or discrete blocks/elements in the figures in general can be implemented in combination with other components and functionality. The depiction of such components and functionality in individual or integral form is for purposes of clarity of explanation, and not of limitation. It is also understood that the components and functionality depicted in the Figures and described herein can be implemented in hardware, software, or a combination of hardware and software. Various modifications and additions can be made to the preferred embodiments discussed hereinabove without departing from the scope of the present invention. Accordingly, the scope of the present invention should not be limited by the particular embodiments described above, but should be defined only by the claims set forth below and equivalents thereof.
Claims (21)
1. A method for organizing medical information, comprising:
detecting or predicting a respiratory event of a patient;
initiating, responsive to the detection or prediction of the respiratory event, collection of medical information associated with the respiratory event;
collecting the medical information associated with the respiratory event;
organizing the medical information as a respiratory event log entry; and
displaying on a display at least part of the organized medical information, including a time associated with the respiratory event that corresponds to the displayed information.
2. The method of claim 1 , wherein at least one of detecting or predicting the respiratory event, initiating the collecting of medical information, collecting the medical information, and organizing the medical information is performed at least in part implantably.
3. The method of claim 1 , wherein collecting the medical information associated with the respiratory event comprises collecting the medical information during the respiratory event.
4. The method of claim 1 , wherein collecting the medical information associated with the respiratory event comprises collecting the medical information proximate in time to the respiratory event.
5. The method of claim 1 , wherein detecting or predicting the respiratory event comprises detecting or predicting the respiratory event based on physiological conditions affecting the patient.
6. The method of claim 1 , wherein detecting or predicting the respiratory event comprises detecting or predicting the respiratory event based on non-physiological conditions affecting the patient.
7. The method of claim 1 , wherein detecting or predicting the respiratory event comprises detecting or predicting a disordered breathing event.
8. The method of claim 1 , wherein detecting or predicting the respiratory event comprises detecting or predicting a presence of a non-rhythm pulmonary event.
9. The method of claim 1 , wherein collecting the medical information associated with the respiratory event comprises collecting respiratory information.
10. The method of claim 1 , wherein collecting the medical information associated with the respiratory event comprises collecting cardiac information.
11. The method of claim 1 , wherein organizing the information as the respiratory event log entry comprises organizing the information as one of a group of respiratory log entries of a respiratory logbook.
12. The method of claim 11 , wherein the group of respiratory log entries are organized chronologically.
13. The method of claim 11 , wherein the group of respiratory log entries are organized by event type.
14. The method of claim 11 , further comprising displaying a menu on the display to aid a user in selecting one or more of the groups of respiratory log entries for display on the display.
15. The method of claim 1 , further comprising storing the organized information.
16. The method of claim 1 , further comprising transmitting at least one of the collected information and the organized information to a remote device.
17. The method of claim 1 , further comprising:
generating summary information associated with one or more of a plurality of detected or predicted respiratory events; and
displaying the summary information on the display.
18. A method for organizing medical information, comprising:
detecting or predicting a respiratory event of a patient;
collecting medical information associated with the respiratory event;
organizing the medical information as a respiratory event log entry, including a time associated with the respiratory event; and
wherein at least one of detecting or predicting the respiratory event, collecting the medical information, and organizing the medical information is performed at least in part in vivo.
19. The method of claim 18 , further comprising displaying on a display at least part of the organized medical information.
20. A method for organizing medical information, comprising:
collecting medical information associated with a plurality of respiratory events;
organizing the medical information as a plurality of respiratory event log entries, wherein each of the plurality of respiratory event log entries includes a time associated with the corresponding respiratory events; and
wherein at least one of collecting the medical information and organizing the medical information is performed at least in part in vivo.
21. The method of claim 20 , further comprising:
displaying on a display medical information associated with at least some of the plurality of respiratory event log entries.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/692,767 US20130096442A1 (en) | 2002-12-27 | 2012-12-03 | Medical event logbook system and method |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/331,175 US6949075B2 (en) | 2002-12-27 | 2002-12-27 | Apparatus and method for detecting lung sounds using an implanted device |
US50474903P | 2003-09-18 | 2003-09-18 | |
US10/920,568 US20050080348A1 (en) | 2003-09-18 | 2004-08-17 | Medical event logbook system and method |
US11/236,192 US7578794B2 (en) | 2002-12-27 | 2005-09-27 | Apparatus and method for detecting lung sounds using an implanted device |
US12/403,880 US8323204B2 (en) | 2002-12-27 | 2009-03-13 | Medical event logbook system and method |
US13/692,767 US20130096442A1 (en) | 2002-12-27 | 2012-12-03 | Medical event logbook system and method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/403,880 Division US8323204B2 (en) | 2002-12-27 | 2009-03-13 | Medical event logbook system and method |
Publications (1)
Publication Number | Publication Date |
---|---|
US20130096442A1 true US20130096442A1 (en) | 2013-04-18 |
Family
ID=34425953
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/920,568 Abandoned US20050080348A1 (en) | 2002-12-27 | 2004-08-17 | Medical event logbook system and method |
US12/403,880 Expired - Fee Related US8323204B2 (en) | 2002-12-27 | 2009-03-13 | Medical event logbook system and method |
US13/692,767 Abandoned US20130096442A1 (en) | 2002-12-27 | 2012-12-03 | Medical event logbook system and method |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/920,568 Abandoned US20050080348A1 (en) | 2002-12-27 | 2004-08-17 | Medical event logbook system and method |
US12/403,880 Expired - Fee Related US8323204B2 (en) | 2002-12-27 | 2009-03-13 | Medical event logbook system and method |
Country Status (1)
Country | Link |
---|---|
US (3) | US20050080348A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102017217301A1 (en) * | 2017-09-28 | 2019-03-28 | Siemens Mobility GmbH | Method and device for the direct and feedback-free transmission of log messages |
US11844605B2 (en) | 2016-11-10 | 2023-12-19 | The Research Foundation For Suny | System, method and biomarkers for airway obstruction |
Families Citing this family (63)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006502781A (en) * | 2002-10-15 | 2006-01-26 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | How to display information about changes in perfusion |
US20050080348A1 (en) * | 2003-09-18 | 2005-04-14 | Stahmann Jeffrey E. | Medical event logbook system and method |
US6949075B2 (en) * | 2002-12-27 | 2005-09-27 | Cardiac Pacemakers, Inc. | Apparatus and method for detecting lung sounds using an implanted device |
US20070135724A1 (en) * | 2003-10-17 | 2007-06-14 | Ujhazy Anthony J | Methods and apparatus for heart failure treatment |
US8396560B2 (en) * | 2004-11-18 | 2013-03-12 | Cardiac Pacemakers, Inc. | System and method for closed-loop neural stimulation |
US7945341B2 (en) * | 2004-11-30 | 2011-05-17 | Alcon, Inc. | Graphical user interface for selecting pulse parameters in a phacoemulsification surgical system |
US9119700B2 (en) | 2004-11-30 | 2015-09-01 | Novartis Ag | Graphical user interface system and method for representing and controlling surgical parameters |
US7577479B2 (en) * | 2005-03-17 | 2009-08-18 | Cardiac Pacemakers, Inc. | Methods and devices for implementing time of day pacing adjustments |
US8036749B2 (en) * | 2005-03-31 | 2011-10-11 | Medtronic, Inc. | System for characterizing chronic physiological data |
US7640057B2 (en) * | 2005-04-25 | 2009-12-29 | Cardiac Pacemakers, Inc. | Methods of providing neural markers for sensed autonomic nervous system activity |
US9555252B2 (en) * | 2005-04-25 | 2017-01-31 | Cardiac Pacemakers, Inc. | Systems for providing neural markers for sensed autonomic nervous system activity |
US20060241725A1 (en) * | 2005-04-25 | 2006-10-26 | Imad Libbus | Method and apparatus for simultaneously presenting cardiac and neural signals |
US7630755B2 (en) * | 2005-05-04 | 2009-12-08 | Cardiac Pacemakers Inc. | Syncope logbook and method of using same |
US7899519B2 (en) * | 2005-06-28 | 2011-03-01 | Cardiac Pacemakers, Inc. | Evaluating a patient condition using autonomic balance information in implatable cardiac devices |
US7731663B2 (en) * | 2005-09-16 | 2010-06-08 | Cardiac Pacemakers, Inc. | System and method for generating a trend parameter based on respiration rate distribution |
US7766840B2 (en) * | 2005-12-01 | 2010-08-03 | Cardiac Pacemakers, Inc. | Method and system for heart failure status evaluation based on a disordered breathing index |
US8523771B2 (en) | 2007-02-12 | 2013-09-03 | Cardiac Pacemakers, Inc. | Cardiovascular pressure annotations and logbook |
EP2152362B1 (en) * | 2007-05-28 | 2015-07-08 | St. Jude Medical AB | Implantable medical device for monitoring lung deficiency |
US20080310662A1 (en) * | 2007-06-15 | 2008-12-18 | Davidson Terence M | Earpiece snoring sound transmitter |
US7530956B2 (en) * | 2007-06-15 | 2009-05-12 | Cardiac Pacemakers, Inc. | Daytime/nighttime respiration rate monitoring |
US9743859B2 (en) * | 2007-06-15 | 2017-08-29 | Cardiac Pacemakers, Inc. | Daytime/nighttime respiration rate monitoring |
US9986926B2 (en) * | 2007-10-26 | 2018-06-05 | Inovise Medical, Inc. | Q-onset ventricular depolarization detection in the presence of a pacemaker |
US8185190B2 (en) * | 2008-01-29 | 2012-05-22 | Inovise Medical, Inc. | Assessment of ischemia, and risk of sudden cardiac death, via heart-functionality parameter and acoustic cardiographic monitoring |
EP2254461A4 (en) * | 2008-03-19 | 2012-12-26 | Ericsson Telefon Ab L M | Nfc communications for implanted medical data acquisition devices |
AU2009293198B2 (en) | 2008-09-19 | 2013-07-04 | Cardiac Pacemakers, Inc. | Indication-based worsening HF alert |
WO2010039853A1 (en) | 2008-10-01 | 2010-04-08 | Inspire Medical Systems, Inc. | Transvenous method of treating sleep apnea |
US8577448B2 (en) * | 2008-10-14 | 2013-11-05 | Inovise Medical, Inc. | Differential apneic detection in aid of diagnosis and treatment |
EP2389224B1 (en) | 2008-11-19 | 2017-03-01 | Inspire Medical Systems, Inc. | Device treating sleep disordered breathing |
EP2198779B1 (en) | 2008-12-22 | 2018-09-19 | Sendsor GmbH | Device and method for early detection of exacerbations |
JP2012521864A (en) | 2009-03-31 | 2012-09-20 | インスパイア・メディカル・システムズ・インコーポレイテッド | Percutaneous access method in a system for treating sleep-related abnormal breathing |
US8409108B2 (en) * | 2009-11-05 | 2013-04-02 | Inovise Medical, Inc. | Multi-axial heart sounds and murmur detection for hemodynamic-condition assessment |
US20110130666A1 (en) * | 2009-11-30 | 2011-06-02 | Yanting Dong | Enhanced reporting of pathological episodes |
US8740792B1 (en) * | 2010-07-12 | 2014-06-03 | Masimo Corporation | Patient monitor capable of accounting for environmental conditions |
US8983572B2 (en) | 2010-10-29 | 2015-03-17 | Inspire Medical Systems, Inc. | System and method for patient selection in treating sleep disordered breathing |
JP6092212B2 (en) | 2011-08-11 | 2017-03-08 | インスパイア・メディカル・システムズ・インコーポレイテッドInspire Medical Systems, Inc. | System for selecting a stimulation protocol based on detection results of respiratory effort |
US8548588B1 (en) | 2012-09-21 | 2013-10-01 | Inovise Medical, Inc. | CRM-device ventricular-pacing blanking control |
EP2934668B1 (en) | 2012-12-19 | 2018-08-22 | VisCardia, Inc. | Hemodynamic performance enhancement through asymptomatic diaphragm stimulation |
US10335592B2 (en) | 2012-12-19 | 2019-07-02 | Viscardia, Inc. | Systems, devices, and methods for improving hemodynamic performance through asymptomatic diaphragm stimulation |
JP6140369B2 (en) | 2013-05-20 | 2017-05-31 | カーディアック ペースメイカーズ, インコーポレイテッド | Device for detecting heart failure |
CN105246397B (en) * | 2013-05-20 | 2018-05-15 | 心脏起搏器股份公司 | Device for risk of heart failure layering |
WO2015020979A1 (en) | 2013-08-05 | 2015-02-12 | Cardiac Pacemakers, Inc. | System and method for detecting worsening of heart failure based on rapid shallow breathing index |
US20150100348A1 (en) * | 2013-10-08 | 2015-04-09 | Ims Health Incorporated | Secure Method for Health Record Transmission to Emergency Service Personnel |
BR112016021622B1 (en) * | 2014-03-20 | 2023-04-18 | Quidel Corporation | SYSTEM FOR COLLECTING AND TRANSMITTING DATA FROM DIAGNOSTIC INSTRUMENTS OR PLURALITY THEREOF AND METHOD FOR GENERATION AND DATA OF REPORTS COMPRISING INFORMATION RELATED TO TEST RESULTS FOR DETECTION OF AN ANALYTE |
US10636104B2 (en) * | 2014-04-16 | 2020-04-28 | Vios Medical, Inc. | Patient care and health information management systems and methods |
US10898709B2 (en) | 2015-03-19 | 2021-01-26 | Inspire Medical Systems, Inc. | Stimulation for treating sleep disordered breathing |
US20160296165A1 (en) * | 2015-04-10 | 2016-10-13 | Dymedix Corporation | Screening system for assessing sleep abnormalities |
US11324950B2 (en) | 2016-04-19 | 2022-05-10 | Inspire Medical Systems, Inc. | Accelerometer-based sensing for sleep disordered breathing (SDB) care |
US10537735B2 (en) | 2016-04-29 | 2020-01-21 | Viscardia, Inc. | Implantable medical devices and methods for real-time or near real-time adjustment of diaphragmatic stimulation parameters to affect pressures within the intrathoracic cavity |
WO2018200470A1 (en) | 2017-04-29 | 2018-11-01 | Cardiac Pacemakers, Inc. | Heart failure event rate assessment |
WO2019060298A1 (en) | 2017-09-19 | 2019-03-28 | Neuroenhancement Lab, LLC | Method and apparatus for neuroenhancement |
US11717686B2 (en) | 2017-12-04 | 2023-08-08 | Neuroenhancement Lab, LLC | Method and apparatus for neuroenhancement to facilitate learning and performance |
US11690559B2 (en) | 2017-12-06 | 2023-07-04 | Cardiac Pacemakers, Inc. | Method and apparatus for monitoring respiratory distress based on autonomic imbalance |
US11925485B2 (en) | 2017-12-06 | 2024-03-12 | Cardiac Pacemakers, Inc. | Non-invasive system for monitoring and treating respiratory distress |
US11318277B2 (en) | 2017-12-31 | 2022-05-03 | Neuroenhancement Lab, LLC | Method and apparatus for neuroenhancement to enhance emotional response |
US11364361B2 (en) | 2018-04-20 | 2022-06-21 | Neuroenhancement Lab, LLC | System and method for inducing sleep by transplanting mental states |
WO2020056418A1 (en) | 2018-09-14 | 2020-03-19 | Neuroenhancement Lab, LLC | System and method of improving sleep |
US11786694B2 (en) | 2019-05-24 | 2023-10-17 | NeuroLight, Inc. | Device, method, and app for facilitating sleep |
US11324954B2 (en) | 2019-06-28 | 2022-05-10 | Covidien Lp | Achieving smooth breathing by modified bilateral phrenic nerve pacing |
EP4003497A1 (en) | 2019-07-25 | 2022-06-01 | Inspire Medical Systems, Inc. | Systems and methods for operating an implantable medical device based upon sensed posture information |
EP4034223A1 (en) | 2019-09-26 | 2022-08-03 | VisCardia, Inc. | Implantable medical systems, devices, and methods for affecting cardiac function through diaphragm stimulation, and for monitoring diaphragmatic health |
US11957914B2 (en) | 2020-03-27 | 2024-04-16 | Viscardia, Inc. | Implantable medical systems, devices and methods for delivering asymptomatic diaphragmatic stimulation |
US11837106B2 (en) | 2020-07-20 | 2023-12-05 | Koninklijke Philips N.V. | System and method to monitor and titrate treatment for high altitude-induced central sleep apnea (CSA) |
DE102020124834A1 (en) | 2020-09-23 | 2022-03-24 | Drägerwerk AG & Co. KGaA | Dispensing device for a ventilator |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5546580A (en) * | 1994-04-15 | 1996-08-13 | Hewlett-Packard Company | Method and apparatus for coordinating concurrent updates to a medical information database |
US5743267A (en) * | 1995-10-19 | 1998-04-28 | Telecom Medical, Inc. | System and method to monitor the heart of a patient |
US5860918A (en) * | 1996-11-22 | 1999-01-19 | Hewlett-Packard Company | Representation of a review of a patent's physiological parameters |
US20020026122A1 (en) * | 1999-07-14 | 2002-02-28 | Medtronic, Inc. | Medical device ECG marker for use in compressed data stream |
US20020165462A1 (en) * | 2000-12-29 | 2002-11-07 | Westbrook Philip R. | Sleep apnea risk evaluation |
US20030158466A1 (en) * | 1997-01-27 | 2003-08-21 | Lynn Lawrence A. | Microprocessor system for the analysis of physiologic and financial datasets |
US6881192B1 (en) * | 2002-06-12 | 2005-04-19 | Pacesetter, Inc. | Measurement of sleep apnea duration and evaluation of response therapies using duration metrics |
Family Cites Families (165)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US585593A (en) * | 1897-06-29 | Folding curtain-stretcher | ||
US4365636A (en) | 1981-06-19 | 1982-12-28 | Medicon, Inc. | Method of monitoring patient respiration and predicting apnea therefrom |
US4562841A (en) * | 1982-08-05 | 1986-01-07 | Cardiac Pacemakers, Inc. | Programmable multi-mode cardiac pacemaker |
US4519395A (en) * | 1982-12-15 | 1985-05-28 | Hrushesky William J M | Medical instrument for noninvasive measurement of cardiovascular characteristics |
US4763663A (en) | 1983-08-11 | 1988-08-16 | Vitacomm, Ltd. | Esophageal stethoscope and vital signs monitor system |
US4702253A (en) | 1985-10-15 | 1987-10-27 | Telectronics N.V. | Metabolic-demand pacemaker and method of using the same to determine minute volume |
DE3604986A1 (en) * | 1986-02-17 | 1987-08-20 | Hellige Gmbh | DEVICE FOR PREVENTING OXYGEN LACK DAMAGE |
US4827935A (en) * | 1986-04-24 | 1989-05-09 | Purdue Research Foundation | Demand electroventilator |
US6375621B1 (en) * | 1987-03-06 | 2002-04-23 | Ocean Laboratories, Inc. | Passive apnea monitor |
US4830008A (en) * | 1987-04-24 | 1989-05-16 | Meer Jeffrey A | Method and system for treatment of sleep apnea |
US5218969A (en) * | 1988-02-04 | 1993-06-15 | Blood Line Technology, Inc. | Intelligent stethoscope |
US4930518A (en) * | 1988-09-26 | 1990-06-05 | Hrushesky William J M | Sinus arrhythmia monitor |
US4928688A (en) * | 1989-01-23 | 1990-05-29 | Mieczyslaw Mirowski | Method and apparatus for treating hemodynamic disfunction |
US5105354A (en) * | 1989-01-23 | 1992-04-14 | Nippon Kayaku Kabushiki Kaisha | Method and apparatus for correlating respiration and heartbeat variability |
US4930517A (en) * | 1989-04-25 | 1990-06-05 | Massachusetts Institute Of Technology | Method and apparatus for physiologic system identification |
JP2794196B2 (en) * | 1989-06-20 | 1998-09-03 | チェスト株式会社 | Apnea prevention stimulator |
US5165417A (en) | 1989-09-12 | 1992-11-24 | Murphy Jr Raymond L H | Lung sound detection system and method |
US5036849A (en) * | 1990-04-04 | 1991-08-06 | Cardiac Pacemakers, Inc. | Variable rate cardiac pacer |
US5284136A (en) * | 1990-04-04 | 1994-02-08 | Cardiac Pacemakers, Inc. | Dual indifferent electrode pacemaker |
US5187657A (en) * | 1990-04-05 | 1993-02-16 | Hewlett-Packard Company | Cardiac analyzer with rem sleep detection |
US5203348A (en) * | 1990-06-06 | 1993-04-20 | Cardiac Pacemakers, Inc. | Subcutaneous defibrillation electrodes |
US5230337A (en) * | 1990-06-06 | 1993-07-27 | Cardiac Pacemakers, Inc. | Process for implanting subcutaneous defibrillation electrodes |
US5123425A (en) * | 1990-09-06 | 1992-06-23 | Edentec | Obstructive sleep apnea collar |
US5211173A (en) * | 1991-01-09 | 1993-05-18 | Medtronic, Inc. | Servo muscle control |
US5146918A (en) | 1991-03-19 | 1992-09-15 | Medtronic, Inc. | Demand apnea control of central and obstructive sleep apnea |
US5215082A (en) * | 1991-04-02 | 1993-06-01 | Medtronic, Inc. | Implantable apnea generator with ramp on generator |
US5335657A (en) * | 1991-05-03 | 1994-08-09 | Cyberonics, Inc. | Therapeutic treatment of sleep disorder by nerve stimulation |
US5233983A (en) * | 1991-09-03 | 1993-08-10 | Medtronic, Inc. | Method and apparatus for apnea patient screening |
US5313953A (en) * | 1992-01-14 | 1994-05-24 | Incontrol, Inc. | Implantable cardiac patient monitor |
US5411525A (en) * | 1992-01-30 | 1995-05-02 | Cardiac Pacemakers, Inc. | Dual capacitor biphasic defibrillator waveform generator employing selective connection of capacitors for each phase |
US5301677A (en) * | 1992-02-06 | 1994-04-12 | Cardiac Pacemakers, Inc. | Arrhythmia detector using delta modulated turning point morphology of the ECG wave |
US5431691A (en) * | 1992-03-02 | 1995-07-11 | Siemens Pacesetter, Inc. | Method and system for recording and displaying a sequential series of pacing events |
IT1259358B (en) * | 1992-03-26 | 1996-03-12 | Sorin Biomedica Spa | IMPLANTABLE DEVICE FOR DETECTION AND CONTROL OF THE SYMPATHIC-VAGAL TONE |
WO1994004071A1 (en) * | 1992-08-19 | 1994-03-03 | Lynn Lawrence A | Apparatus for the diagnosis of sleep apnea |
ATE176404T1 (en) * | 1992-09-30 | 1999-02-15 | Cardiac Pacemakers Inc | HINGED CUSHION ELECTRODE FOR CARDIAC REACH WITH A LADDER-FREE AREA THAT SERVES AS A HINGE |
US5334222A (en) | 1992-11-03 | 1994-08-02 | Cardiac Pacemakers, Inc. | Cardiac stimulating apparatus and method for heart failure therapy |
US5496362A (en) * | 1992-11-24 | 1996-03-05 | Cardiac Pacemakers, Inc. | Implantable conformal coil patch electrode with multiple conductive elements for cardioversion and defibrillation |
US5366496A (en) | 1993-04-01 | 1994-11-22 | Cardiac Pacemakers, Inc. | Subcutaneous shunted coil electrode |
US5397342A (en) * | 1993-06-07 | 1995-03-14 | Cardiac Pacemakers, Inc. | Resilient structurally coupled and electrically independent electrodes |
US5376476A (en) | 1993-08-02 | 1994-12-27 | Eylon; Dan | Battery orientation-indifferent battery receptor |
US5447164A (en) * | 1993-11-08 | 1995-09-05 | Hewlett-Packard Company | Interactive medical information display system and method for displaying user-definable patient events |
DE4338466A1 (en) * | 1993-11-11 | 1995-05-18 | Fraunhofer Ges Forschung | Method and device for the automatic detection of conspicuous breathing noises |
US5411031A (en) * | 1993-11-24 | 1995-05-02 | Incontrol, Inc. | Implantable cardiac patient monitor |
US5738102A (en) * | 1994-03-31 | 1998-04-14 | Lemelson; Jerome H. | Patient monitoring system |
GB9408452D0 (en) * | 1994-04-28 | 1994-06-22 | Barnsley Distr Gen Hosp Nhs | Apparatus |
US6351670B1 (en) * | 1994-05-31 | 2002-02-26 | Galvani, Ltd. | Electrical cardiac assist for an implantable syncope monitor |
US5522862A (en) * | 1994-09-21 | 1996-06-04 | Medtronic, Inc. | Method and apparatus for treating obstructive sleep apnea |
US5549655A (en) * | 1994-09-21 | 1996-08-27 | Medtronic, Inc. | Method and apparatus for synchronized treatment of obstructive sleep apnea |
US5485851A (en) * | 1994-09-21 | 1996-01-23 | Medtronic, Inc. | Method and apparatus for arousal detection |
US5483969A (en) * | 1994-09-21 | 1996-01-16 | Medtronic, Inc. | Method and apparatus for providing a respiratory effort waveform for the treatment of obstructive sleep apnea |
DE4434168B4 (en) | 1994-09-24 | 2004-12-30 | Byk-Gardner Gmbh | Device and method for measuring and evaluating spectral radiation and in particular for measuring and evaluating color properties |
US5466245A (en) | 1994-11-15 | 1995-11-14 | Cardiac Pacemakers, Inc. | Method and apparatus to continuously optimize the A-V delay in a dual chamber pacemaker |
US5540727A (en) * | 1994-11-15 | 1996-07-30 | Cardiac Pacemakers, Inc. | Method and apparatus to automatically optimize the pacing mode and pacing cycle parameters of a dual chamber pacemaker |
NO301210B1 (en) * | 1994-12-14 | 1997-09-29 | Camtech As | Use of sensors to measure an individual's respiration time volume |
US5545186A (en) | 1995-03-30 | 1996-08-13 | Medtronic, Inc. | Prioritized rule based method and apparatus for diagnosis and treatment of arrhythmias |
AUPN236595A0 (en) * | 1995-04-11 | 1995-05-11 | Rescare Limited | Monitoring of apneic arousals |
US5678535A (en) * | 1995-04-21 | 1997-10-21 | Dimarco; Anthony Fortunato | Method and apparatus for electrical stimulation of the respiratory muscles to achieve artificial ventilation in a patient |
DE19538473A1 (en) | 1995-10-16 | 1997-04-17 | Map Gmbh | Device and method for the quantitative analysis of sleep disorders |
AUPN627395A0 (en) * | 1995-10-31 | 1995-11-23 | Compumedics Sleep Pty Ltd | Integrated diagnostic and therapeutic device for gas delivery to patient |
US5836987A (en) | 1995-11-15 | 1998-11-17 | Cardiac Pacemakers, Inc. | Apparatus and method for optimizing cardiac performance by determining the optimal timing interval from an accelerometer signal |
US6006134A (en) * | 1998-04-30 | 1999-12-21 | Medtronic, Inc. | Method and device for electronically controlling the beating of a heart using venous electrical stimulation of nerve fibers |
US6263244B1 (en) * | 1996-05-14 | 2001-07-17 | Pacesetter, Inc. | Implantable stimulation device and method for determining atrial autocapture using PVC response |
US5692497A (en) | 1996-05-16 | 1997-12-02 | Children's Medical Center Corporation | Microprocessor-controlled ventilator system and methods |
US6099479A (en) * | 1996-06-26 | 2000-08-08 | Medtronic, Inc. | Method and apparatus for operating therapy system |
US5944680A (en) * | 1996-06-26 | 1999-08-31 | Medtronic, Inc. | Respiratory effort detection method and apparatus |
US6132384A (en) | 1996-06-26 | 2000-10-17 | Medtronic, Inc. | Sensor, method of sensor implant and system for treatment of respiratory disorders |
SE9602699D0 (en) | 1996-07-08 | 1996-07-08 | Siemens Elema Ab | A method and apparatus for determining when a partially or completely collapsed lung has been opened |
US6168568B1 (en) * | 1996-10-04 | 2001-01-02 | Karmel Medical Acoustic Technologies Ltd. | Phonopneumograph system |
SE9604320D0 (en) * | 1996-11-25 | 1996-11-25 | Pacesetter Ab | Medical device |
US5814087A (en) | 1996-12-18 | 1998-09-29 | Medtronic, Inc. | Rate responsive pacemaker adapted to adjust lower rate limit according to monitored patient blood temperature |
SE9700427D0 (en) | 1997-02-07 | 1997-02-07 | Pacesetter Ab | Ischemia detector |
US5861011A (en) * | 1997-02-14 | 1999-01-19 | Vitatron Medical, B.V. | Pacemaker with automatic lower rate limit drop |
US5888187A (en) * | 1997-03-27 | 1999-03-30 | Symphonix Devices, Inc. | Implantable microphone |
US5974340A (en) | 1997-04-29 | 1999-10-26 | Cardiac Pacemakers, Inc. | Apparatus and method for monitoring respiratory function in heart failure patients to determine efficacy of therapy |
US6141590A (en) | 1997-09-25 | 2000-10-31 | Medtronic, Inc. | System and method for respiration-modulated pacing |
IL122875A0 (en) * | 1998-01-08 | 1998-08-16 | S L P Ltd | An integrated sleep apnea screening system |
JPH11197248A (en) * | 1998-01-19 | 1999-07-27 | Nippon Sanso Kk | Device and method for monitoring gas consumption for respiration |
GB9802382D0 (en) | 1998-02-04 | 1998-04-01 | Medtronic Inc | Apparatus for management of sleep apnea |
US6076015A (en) * | 1998-02-27 | 2000-06-13 | Cardiac Pacemakers, Inc. | Rate adaptive cardiac rhythm management device using transthoracic impedance |
US5964778A (en) | 1998-03-17 | 1999-10-12 | Medtronic, Inc. | Balloon attachment at catheter tip |
US6251126B1 (en) * | 1998-04-23 | 2001-06-26 | Medtronic Inc | Method and apparatus for synchronized treatment of obstructive sleep apnea |
US6269269B1 (en) * | 1998-04-23 | 2001-07-31 | Medtronic Inc. | Method and apparatus for synchronized treatment of obstructive sleep apnea |
US6144880A (en) * | 1998-05-08 | 2000-11-07 | Cardiac Pacemakers, Inc. | Cardiac pacing using adjustable atrio-ventricular delays |
US6045513A (en) * | 1998-05-13 | 2000-04-04 | Medtronic, Inc. | Implantable medical device for tracking patient functional status |
US6026320A (en) * | 1998-06-08 | 2000-02-15 | Cardiac Pacemakers, Inc. | Heart rate variability as an indicator of exercise capacity |
US6128534A (en) | 1998-06-16 | 2000-10-03 | Pacesetter, Inc. | Implantable cardiac stimulation device and method for varying pacing parameters to mimic circadian cycles |
FR2780654B1 (en) * | 1998-07-06 | 2000-12-01 | Ela Medical Sa | ACTIVE IMPLANTABLE MEDICAL DEVICE FOR ELECTROSTIMULATION TREATMENT OF SLEEP APNEA SYNDROME |
US6055454A (en) * | 1998-07-27 | 2000-04-25 | Cardiac Pacemakers, Inc. | Cardiac pacemaker with automatic response optimization of a physiologic sensor based on a second sensor |
US6240316B1 (en) * | 1998-08-14 | 2001-05-29 | Advanced Bionics Corporation | Implantable microstimulation system for treatment of sleep apnea |
US6044298A (en) * | 1998-10-13 | 2000-03-28 | Cardiac Pacemakers, Inc. | Optimization of pacing parameters based on measurement of integrated acoustic noise |
US6026324A (en) * | 1998-10-13 | 2000-02-15 | Cardiac Pacemakers, Inc. | Extraction of hemodynamic pulse pressure from fluid and myocardial accelerations |
US6139505A (en) | 1998-10-14 | 2000-10-31 | Murphy; Raymond L. H. | Method and apparatus for displaying lung sounds and performing diagnosis based on lung sound analysis |
US6142950A (en) * | 1998-12-10 | 2000-11-07 | Individual Monitoring Systems, Inc. | Non-tethered apnea screening device |
EP1156846A1 (en) | 1999-02-03 | 2001-11-28 | University Of Florida | Method and apparatus for nullifying the imposed work of breathing |
US6390091B1 (en) * | 1999-02-03 | 2002-05-21 | University Of Florida | Method and apparatus for controlling a medical ventilator |
US6266554B1 (en) | 1999-02-12 | 2001-07-24 | Cardiac Pacemakers, Inc. | System and method for classifying cardiac complexes |
US6190326B1 (en) * | 1999-04-23 | 2001-02-20 | Medtrac Technologies, Inc. | Method and apparatus for obtaining patient respiratory data |
US6351669B1 (en) * | 1999-05-21 | 2002-02-26 | Cardiac Pacemakers, Inc. | Cardiac rhythm management system promoting atrial pacing |
US6285907B1 (en) | 1999-05-21 | 2001-09-04 | Cardiac Pacemakers, Inc. | System providing ventricular pacing and biventricular coordination |
US6312378B1 (en) * | 1999-06-03 | 2001-11-06 | Cardiac Intelligence Corporation | System and method for automated collection and analysis of patient information retrieved from an implantable medical device for remote patient care |
US6270457B1 (en) | 1999-06-03 | 2001-08-07 | Cardiac Intelligence Corp. | System and method for automated collection and analysis of regularly retrieved patient information for remote patient care |
US6449503B1 (en) | 1999-07-14 | 2002-09-10 | Cardiac Pacemakers, Inc. | Classification of supraventricular and ventricular cardiac rhythms using cross channel timing algorithm |
US6221011B1 (en) | 1999-07-26 | 2001-04-24 | Cardiac Intelligence Corporation | System and method for determining a reference baseline of individual patient status for use in an automated collection and analysis patient care system |
US6415175B1 (en) | 1999-08-20 | 2002-07-02 | Cardiac Pacemakers, Inc. | Interface for a medical device system |
US6449504B1 (en) | 1999-08-20 | 2002-09-10 | Cardiac Pacemakers, Inc. | Arrhythmia display |
US6272377B1 (en) | 1999-10-01 | 2001-08-07 | Cardiac Pacemakers, Inc. | Cardiac rhythm management system with arrhythmia prediction and prevention |
US7127290B2 (en) * | 1999-10-01 | 2006-10-24 | Cardiac Pacemakers, Inc. | Cardiac rhythm management systems and methods predicting congestive heart failure status |
US6275727B1 (en) | 1999-11-04 | 2001-08-14 | Cardiac Pacemakers, Inc. | Implantable cardiac rhythm management device for assessing status of CHF patients |
US6459929B1 (en) | 1999-11-04 | 2002-10-01 | Cardiac Pacemakers, Inc. | Implantable cardiac rhythm management device for assessing status of CHF patients |
US6480733B1 (en) | 1999-11-10 | 2002-11-12 | Pacesetter, Inc. | Method for monitoring heart failure |
US6409675B1 (en) * | 1999-11-10 | 2002-06-25 | Pacesetter, Inc. | Extravascular hemodynamic monitor |
US6398728B1 (en) * | 1999-11-16 | 2002-06-04 | Cardiac Intelligence Corporation | Automated collection and analysis patient care system and method for diagnosing and monitoring respiratory insufficiency and outcomes thereof |
US6336903B1 (en) * | 1999-11-16 | 2002-01-08 | Cardiac Intelligence Corp. | Automated collection and analysis patient care system and method for diagnosing and monitoring congestive heart failure and outcomes thereof |
US6368284B1 (en) * | 1999-11-16 | 2002-04-09 | Cardiac Intelligence Corporation | Automated collection and analysis patient care system and method for diagnosing and monitoring myocardial ischemia and outcomes thereof |
US6440066B1 (en) | 1999-11-16 | 2002-08-27 | Cardiac Intelligence Corporation | Automated collection and analysis patient care system and method for ordering and prioritizing multiple health disorders to identify an index disorder |
US6415183B1 (en) * | 1999-12-09 | 2002-07-02 | Cardiac Pacemakers, Inc. | Method and apparatus for diaphragmatic pacing |
US6438407B1 (en) | 2000-03-20 | 2002-08-20 | Medtronic, Inc. | Method and apparatus for monitoring physiologic parameters conjunction with a treatment |
US6371922B1 (en) * | 2000-04-07 | 2002-04-16 | Cardiac Pacemakers, Inc. | Method for measuring baroreflex sensitivity and therapy optimization in heart failure patients |
US6589188B1 (en) * | 2000-05-05 | 2003-07-08 | Pacesetter, Inc. | Method for monitoring heart failure via respiratory patterns |
DE10031079A1 (en) | 2000-06-30 | 2002-02-07 | Map Gmbh | Measuring patient breathing and state, correlates present respiration signals with prior reference measurements, to adjust CPAP therapy pressure accordingly |
EP1172125B1 (en) | 2000-07-11 | 2005-03-09 | SORIN BIOMEDICA CRM S.r.l. | An implantable heart stimulation system with automatic mode switching controlled by sympatho-vagal balance |
US6424865B1 (en) * | 2000-07-13 | 2002-07-23 | Cardiac Pacemakers, Inc. | Ventricular conduction delay trending system and method |
US6580944B1 (en) * | 2000-11-28 | 2003-06-17 | The United States Of America As Represented By The Secretary Of The Navy | Method and apparatus for diagnosing sleep breathing disorders while a patient in awake |
US6741885B1 (en) * | 2000-12-07 | 2004-05-25 | Pacesetter, Inc. | Implantable cardiac device for managing the progression of heart disease and method |
US6589187B1 (en) * | 2000-12-08 | 2003-07-08 | Medtronic, Inc. | Prioritized dynamic memory allocation of arrhythmia episode detail collection |
US6597951B2 (en) * | 2001-03-16 | 2003-07-22 | Cardiac Pacemakers, Inc. | Automatic selection from multiple cardiac optimization protocols |
US7052466B2 (en) | 2001-04-11 | 2006-05-30 | Cardiac Pacemakers, Inc. | Apparatus and method for outputting heart sounds |
US6668188B2 (en) | 2001-04-25 | 2003-12-23 | Cardiac Pacemakers, Inc. | Determination of long-term condition of cardiac patients |
US6641542B2 (en) * | 2001-04-30 | 2003-11-04 | Medtronic, Inc. | Method and apparatus to detect and treat sleep respiratory events |
US6731984B2 (en) | 2001-06-07 | 2004-05-04 | Medtronic, Inc. | Method for providing a therapy to a patient involving modifying the therapy after detecting an onset of sleep in the patient, and implantable medical device embodying same |
US6595927B2 (en) * | 2001-07-23 | 2003-07-22 | Medtronic, Inc. | Method and system for diagnosing and administering therapy of pulmonary congestion |
US6456256B1 (en) | 2001-08-03 | 2002-09-24 | Cardiac Pacemakers, Inc. | Circumferential antenna for an implantable medical device |
US6959214B2 (en) * | 2001-11-28 | 2005-10-25 | Medtronic, Inc. | Implantable medical device for measuring mechanical heart function |
US6810287B2 (en) * | 2001-12-03 | 2004-10-26 | Cardiac Pacemakers, Inc. | Implantable cardiac disease management device with trigger-stored polysomnogram and phonocardiogram |
FR2833177B1 (en) | 2001-12-07 | 2004-06-04 | Ela Medical Sa | ACTIVE MEDICAL DEVICE INCLUDING ADVANCED MEANS OF DISCRIMINATION IN THE WAKING AND SLEEPING PHASES |
US6895275B2 (en) * | 2002-01-22 | 2005-05-17 | Medtronic, Inc. | Methods and apparatus for detection and treatment of syncope |
US20030199945A1 (en) | 2002-02-11 | 2003-10-23 | James Ciulla | Device and method for treating disordered breathing |
US6904320B2 (en) | 2002-02-14 | 2005-06-07 | Pacesetter, Inc. | Sleep apnea therapy device using dynamic overdrive pacing |
US6999817B2 (en) | 2002-02-14 | 2006-02-14 | Packsetter, Inc. | Cardiac stimulation device including sleep apnea prevention and treatment |
US6928324B2 (en) | 2002-02-14 | 2005-08-09 | Pacesetter, Inc. | Stimulation device for sleep apnea prevention, detection and treatment |
US20040122487A1 (en) * | 2002-12-18 | 2004-06-24 | John Hatlestad | Advanced patient management with composite parameter indices |
US20040122294A1 (en) * | 2002-12-18 | 2004-06-24 | John Hatlestad | Advanced patient management with environmental data |
US20030195571A1 (en) | 2002-04-12 | 2003-10-16 | Burnes John E. | Method and apparatus for the treatment of central sleep apnea using biventricular pacing |
US20030204213A1 (en) | 2002-04-30 | 2003-10-30 | Jensen Donald N. | Method and apparatus to detect and monitor the frequency of obstructive sleep apnea |
US7117036B2 (en) * | 2002-06-27 | 2006-10-03 | Pacesetter, Inc. | Using activity-based rest disturbance as a metric of sleep apnea |
US7092757B2 (en) | 2002-07-12 | 2006-08-15 | Cardiac Pacemakers, Inc. | Minute ventilation sensor with dynamically adjusted excitation current |
US7027871B2 (en) * | 2002-10-31 | 2006-04-11 | Medtronic, Inc. | Aggregation of data from external data sources within an implantable medical device |
US7308311B2 (en) * | 2002-11-22 | 2007-12-11 | Pacesetter, Inc. | Physician programmer system with telemetered sensor waveform |
US7252640B2 (en) * | 2002-12-04 | 2007-08-07 | Cardiac Pacemakers, Inc. | Detection of disordered breathing |
US7065409B2 (en) * | 2002-12-13 | 2006-06-20 | Cardiac Pacemakers, Inc. | Device communications of an implantable medical device and an external system |
US7127300B2 (en) * | 2002-12-23 | 2006-10-24 | Cardiac Pacemakers, Inc. | Method and apparatus for enabling data communication between an implantable medical device and a patient management system |
US6949075B2 (en) * | 2002-12-27 | 2005-09-27 | Cardiac Pacemakers, Inc. | Apparatus and method for detecting lung sounds using an implanted device |
US20040128161A1 (en) * | 2002-12-27 | 2004-07-01 | Mazar Scott T. | System and method for ad hoc communications with an implantable medical device |
US20050080348A1 (en) * | 2003-09-18 | 2005-04-14 | Stahmann Jeffrey E. | Medical event logbook system and method |
US20040133079A1 (en) * | 2003-01-02 | 2004-07-08 | Mazar Scott Thomas | System and method for predicting patient health within a patient management system |
US7025730B2 (en) * | 2003-01-10 | 2006-04-11 | Medtronic, Inc. | System and method for automatically monitoring and delivering therapy for sleep-related disordered breathing |
US6915157B2 (en) * | 2003-02-18 | 2005-07-05 | Medtronic, Inc. | Implantable medical device for assessing heart failure state from Mechanical Pulsus Alternans |
IL155955A0 (en) * | 2003-05-15 | 2003-12-23 | Widemed Ltd | Adaptive prediction of changes of physiological/pathological states using processing of biomedical signal |
US7680537B2 (en) * | 2003-08-18 | 2010-03-16 | Cardiac Pacemakers, Inc. | Therapy triggered by prediction of disordered breathing |
US7572225B2 (en) * | 2003-09-18 | 2009-08-11 | Cardiac Pacemakers, Inc. | Sleep logbook |
US7115097B2 (en) | 2003-10-09 | 2006-10-03 | Johnson Joseph L | Positive airway pressure notification system for treatment of breathing disorders during sleep |
US6964641B2 (en) | 2003-12-24 | 2005-11-15 | Medtronic, Inc. | Implantable medical device with sleep disordered breathing monitoring |
US7314451B2 (en) * | 2005-04-25 | 2008-01-01 | Earlysense Ltd. | Techniques for prediction and monitoring of clinical episodes |
US7155275B2 (en) | 2004-10-18 | 2006-12-26 | Cardiac Pacemakers, Inc. | Method and apparatus for adjusting cardiac event detection threshold based on dynamic noise estimation |
US7359837B2 (en) * | 2006-04-27 | 2008-04-15 | Medtronic, Inc. | Peak data retention of signal data in an implantable medical device |
-
2004
- 2004-08-17 US US10/920,568 patent/US20050080348A1/en not_active Abandoned
-
2009
- 2009-03-13 US US12/403,880 patent/US8323204B2/en not_active Expired - Fee Related
-
2012
- 2012-12-03 US US13/692,767 patent/US20130096442A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5546580A (en) * | 1994-04-15 | 1996-08-13 | Hewlett-Packard Company | Method and apparatus for coordinating concurrent updates to a medical information database |
US5743267A (en) * | 1995-10-19 | 1998-04-28 | Telecom Medical, Inc. | System and method to monitor the heart of a patient |
US5860918A (en) * | 1996-11-22 | 1999-01-19 | Hewlett-Packard Company | Representation of a review of a patent's physiological parameters |
US20030158466A1 (en) * | 1997-01-27 | 2003-08-21 | Lynn Lawrence A. | Microprocessor system for the analysis of physiologic and financial datasets |
US20020026122A1 (en) * | 1999-07-14 | 2002-02-28 | Medtronic, Inc. | Medical device ECG marker for use in compressed data stream |
US20020165462A1 (en) * | 2000-12-29 | 2002-11-07 | Westbrook Philip R. | Sleep apnea risk evaluation |
US6881192B1 (en) * | 2002-06-12 | 2005-04-19 | Pacesetter, Inc. | Measurement of sleep apnea duration and evaluation of response therapies using duration metrics |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11844605B2 (en) | 2016-11-10 | 2023-12-19 | The Research Foundation For Suny | System, method and biomarkers for airway obstruction |
DE102017217301A1 (en) * | 2017-09-28 | 2019-03-28 | Siemens Mobility GmbH | Method and device for the direct and feedback-free transmission of log messages |
US11128551B2 (en) | 2017-09-28 | 2021-09-21 | Siemens Mobility GmbH | Method and apparatus for immediate and reaction-free transmission of log messages |
Also Published As
Publication number | Publication date |
---|---|
US8323204B2 (en) | 2012-12-04 |
US20090177702A1 (en) | 2009-07-09 |
US20050080348A1 (en) | 2005-04-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8323204B2 (en) | Medical event logbook system and method | |
US7678061B2 (en) | System and method for characterizing patient respiration | |
US7572225B2 (en) | Sleep logbook | |
US7630755B2 (en) | Syncope logbook and method of using same | |
EP2008581B1 (en) | Patient monitoring, diagnosis, and/or therapy systems and methods | |
US7610094B2 (en) | Synergistic use of medical devices for detecting medical disorders | |
US7468040B2 (en) | Methods and systems for implantably monitoring external breathing therapy | |
US7510531B2 (en) | System and method for discrimination of central and obstructive disordered breathing events | |
EP1656181B1 (en) | Disordered breathing management system | |
US7469697B2 (en) | Feedback system and method for sleep disordered breathing therapy | |
US8522779B2 (en) | Coordinated use of respiratory and cardiac therapies for sleep disordered breathing | |
US7899519B2 (en) | Evaluating a patient condition using autonomic balance information in implatable cardiac devices | |
US8002553B2 (en) | Sleep quality data collection and evaluation | |
US20070055115A1 (en) | Characterization of sleep disorders using composite patient data |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |