US20090105802A1 - Stent delivery catheter - Google Patents
Stent delivery catheter Download PDFInfo
- Publication number
- US20090105802A1 US20090105802A1 US12/337,069 US33706908A US2009105802A1 US 20090105802 A1 US20090105802 A1 US 20090105802A1 US 33706908 A US33706908 A US 33706908A US 2009105802 A1 US2009105802 A1 US 2009105802A1
- Authority
- US
- United States
- Prior art keywords
- stent
- sheath
- region
- tapered tip
- fracturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/95—Instruments specially adapted for placement or removal of stents or stent-grafts
- A61F2/962—Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve
- A61F2/97—Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve the outer sleeve being splittable
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/95—Instruments specially adapted for placement or removal of stents or stent-grafts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/95—Instruments specially adapted for placement or removal of stents or stent-grafts
- A61F2/962—Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve
- A61F2/966—Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve with relative longitudinal movement between outer sleeve and prosthesis, e.g. using a push rod
Definitions
- the present invention is related generally to medical devices. More specifically, the present invention is related to catheters.
- the present invention includes stent delivery catheter apparatus with a tapered tip that is fracturable during deployment of a self-expanding stent that has been loaded onto the catheter.
- Atherosclerotic disease is a leading cause of death in the industrialized world, particularly in the United States. Many heart attacks and strokes are caused in part by a narrowed, stenosed blood vessel.
- a medical procedure commonly used to deal with vessel stenosis is angioplasty.
- Angioplasty in particular Percutaneous Transluminal Angioplasty (PTA), includes inserting a balloon catheter into the femoral artery near the groin, and advancing the catheter to the stenosis. The balloon can then be inflated to widen or dilate the narrowed region. The balloon catheter can then be withdrawn. In some cases, the widened vessel rebounds or re-closes, narrowing the vessel over a period of time.
- PTA Percutaneous Transluminal Angioplasty
- Stents have come into increasing use to prevent the widened vessel regions from narrowing after angioplasty.
- a stent typically having a tubular shape, can be put in place in the widened vessel region to hold the vessel walls apart and the lumen open in the event the conditions would otherwise result in re-stenosis.
- One class of stents requires that the stent be forcibly outwardly expanded to put the stent into position against the vessel walls.
- Another class of stents, self-expanding stents can be delivered to a site in a compressed or constrained configuration and released in the vessel region to be supported. The self-expanding stent then expands in place to a configuration having a wide lumen, typically pressing firmly against the vessel walls where released.
- the stent is commonly placed at a recently dilated, stenosed vessel region.
- Self-expanding stents can be delivered to a target site mounted over an inner tube or shaft and constrained within the distal end of an enclosing retractable tube or sleeve.
- the self-expanding stent can be freed from the restraint of the outer sheath by either distally pushing the inner shaft against the stent or proximally pulling the retractable outer sheath from over the stent. Once free of the outer restraint, the self-expanding stent can expand to force itself against the vessel inner walls.
- Self-expanding stents are often elastically biased to assume an original larger shape after being temporarily compressed into a smaller size to more easily be transported through blood vessels to the target site. There is an ongoing need for improvements in catheters that deliver self-expanding stents.
- the present invention relates to a stent delivery device having a tapered tip that is fracturable during deployment or by deploying a self-expanding stent from the stent delivery device.
- a self-expanding stent delivery assembly includes a shaft having a proximal end, a distal end, a distal region, a lumen, and a longitudinal axis.
- a retractable sheath having an outer surface, a proximal end and a distal end is co-axially disposed around the shaft distal region.
- a stent is disposed co-axially between the shaft and the retractable sheath.
- a tubular tapered tip is bonded to the retractable sheath distal end. The tubular tapered tip has an elongate region predisposed to fracturing.
- a method of delivering a self-expanding stent includes placing a stent delivery device at a target site.
- the stent delivery device includes a shaft having a proximal end, a distal end, a distal region, a lumen, and a longitudinal axis; a retractable sheath having a proximal end and a distal end co-axially disposed around the shaft distal region; a stent disposed co-axially between the shaft and the retractable sheath; and a tubular tapered tip bonded to the retractable sheath distal end, the tubular tapered tip having an elongate region predisposed to fracturing.
- the stent is deployed at the target site by retracting the retractable sheath or advancing the stent and fracturing the elongate region predisposed to fracturing.
- the stent delivery device is then removed from the target site.
- FIG. 1 is a partial longitudinal cross-sectional view of a stent delivery device
- FIG. 2 is a cross-sectional view of the stent delivery device of FIG. 1 taken along line 2 - 2 ;
- FIG. 3 is a perspective view of a tapered tip
- FIG. 4 is a perspective view of the tapered tip of FIG. 3 while partially deploying a stent
- FIG. 5 is a perspective view of another embodiment of a tapered tip.
- FIG. 6 is a perspective view of the tapered tip of FIG. 5 while partially deploying a stent.
- the stent delivery device and method for using the stent delivery device of the present invention are believed to be applicable to a variety of applications where delivery of stents is desired, for example, atherosclerotic stent delivery. While the present invention is not so limited, an appreciation of various aspects of the invention will be gained through a discussion of the examples provided below.
- tubular members illustrated in the Figures have generally circular cross sections, this is not a necessary part of the present invention, and the tubular members are merely shown as such for purposes of simplicity in illustration.
- FIG. 1 illustrates a stent delivery device or catheter 30 .
- Catheter assembly 30 includes an inner tube 32 having a lumen 33 therethrough (as shown in FIG. 2 ), a distal region 40 and a distal end 42 .
- Inner tube 32 is preferably formed of a metal, polymeric material, or polymeric/metal composite material suitable for delivering a stent through tortuous vessel passages and in one embodiment, is suitable for receiving a guidewire therethrough.
- One useful material can include a braided polyamide tubing.
- the catheter assembly 30 can be guided to the target site via a guidewire 80 .
- the guidewire 80 can be within the inner tube 32 lumen 33 .
- the guide wire can be any operable diameter such as, for example, 0.01 to 0.04 inch or 0.014 to 0.035 inch, however a guide wire is not required in all embodiments.
- a retractable sheath 34 having a distal region or end 44 is slidably disposed over inner tube 32 , having an annular space 66 sufficient in size to receive a compressed stent between inner tube 32 and retractable sheath 34 .
- the retractable sheath 34 can remain static, and a stent or inner tube 32 can be advancable relative to the retractable sheath 34 .
- Retractable sheath 34 can be formed of a metal, polymeric material, or polymeric/metal composite material preferably sufficiently lubricious to ease in advancing catheter assembly 30 through increasingly smaller blood vessels.
- Sheath 34 can be formed from a variety of materials such as, for example, high density polyethylene, nylon, reinforced nylons, or polyurethanes. Sheath 34 can have an inner layer 31 including a lubricious material such as, for example, polytetrafluoroethylene.
- a stop 35 is affixed to the inner tube 32 proximal of its distal end 42 , about the length of a stent 50 and near the distal end of the catheter 30 .
- the stop 35 functions to hold the stent 50 axially during deployment of the stent 50 relative to the outer tube 34 .
- a distally positioned tapered tip 36 is disposed distal to or adjacent to the inner tube distal region 40 and is affixed to or formed integral with retractable sheath 34 .
- tapered tip 36 can be formed of a shrinkable film material, for example, a heat-shrinkable material such as polyolefin copolymer, nylon, or polytetrafluoroethylene.
- tapered tip 36 can be formed of the same or similar material to the material forming the retractable sheath 34 .
- the tapered tip 36 can be formed from the same layer of material forming at least a portion of the retractable sheath 34 .
- the tapered tip 36 can be secured to retractable sheath 34 using a variety of methods such as, for example, molding, extrusion, heat bonding, adhesives, laser bonding, or solvent welding, using methods well known to those skilled in the art.
- Any type of connection means may be used to affix the tapered tip 36 to the retractable sheath 34 .
- This connection means can include, for example, a lap joint, butt joint or integral molding.
- a mechanical connection such as threads or friction fit could be utilized.
- the tapered tip 36 can include a waist portion 64 and a free portion 60 .
- the tapered tip 36 is formed integrally with retractable sheath 34 and the outer surface of the tapered tip 36 is continuous with the outer surface of the retractable sleeve 34 , thus the connection is smooth and substantially free of transitions.
- Tapered tip 36 is illustrated having an open distal end 70 .
- the tapered tip 36 can have a closed distal end 70 .
- the open distal end 70 can be sized and configured to slidably engage or pass the guide wire 80 .
- a guide wire 80 is not required in all embodiments.
- the waist portion 64 can be disposed to and affixed to the distal end 44 of the retractable sheath 34 .
- the free portion 60 can extend distally beyond the distal end 44 of the retractable sheath 34 .
- the tapered tip 36 can aid in tracking stent delivery device 30 through vessel passages and turns.
- the tapered tip 36 is conically tapered.
- the tapered tip 36 can have an arcuate taper or any arrangement of constant diameters and tapers, as desired.
- the tubular tip 36 has at least one elongate region predisposed to fracturing 90 .
- the tubular tip 36 can have 2, 3, 4, 5, 6, 7, 8, 9, 10 or more elongate regions predisposed to fracturing 90 .
- the elongate region predisposed to fracturing 90 fractures the tapered tip to expand the open distal end 70 and allows the stent 50 to pass through the fractured tapered tip 36 open distal end 70 generally unimpeded.
- the elongate region predisposed to fracturing 90 can be co-planar with a longitudinal axis running along the length of the stent delivery device 30 .
- the elongate region predisposed to fracturing 90 can be formed on the tapered tip 36 before the tapered tip 36 is affixed to the retractable sheath 34 , or formed during the process of affixing the tapered tip 36 to the retractable sheath 34 or integrally forming the tapered tip 36 from the layer of material forming at least a portion of the retractable sheath 34 , or after affixing/integrally forming the tapered tip 36 with the retractable sheath 34 .
- the elongate region predisposed to fracturing 90 can be a line of perforations that extend through a portion of or through the entire tubular tip 36 wall thickness.
- the elongate region predisposed to fracturing 90 can be a score line that extends through a portion of the tubular tip 36 wall thickness where the wall thickness along the score line 90 is less than the thickness along the remaining tubular tip 36 wall.
- the elongate region predisposed to fracturing 90 can be material having a tensile strength that is less than the tensile strength of the remaining tubular tip 36 .
- FIG. 2 is a cross-sectional view of the stent delivery device of FIG. 1 taken along line 2 - 2 .
- An inner lumen 33 is coaxially disposed about a guidewire 80 .
- a self-expanding stent 50 can be placed into annular space 66 between retractable sheath 34 and inner tube 32 .
- the stent 50 can be placed over the inner tube 32 by sliding the stent 50 proximally over the inner tube distal end 42 .
- Stent 50 can be compressed using a suitable tool or jig, to decrease the outer diameter of the stent 50 to a size compatible with the annular space 66 .
- the stent 50 With the stent 50 compressed, the stent 50 can be axially and proximally slid over inner tube 32 and within sleeve distal region 44 , to reside in annular space 66 .
- any restraining tool or jig can be removed from the catheter.
- tubular tip 36 can be affixed to retractable sheath 34 distal end 44 .
- a compressed stent 50 can be placed onto the inner tube 32 and loaded into the catheter 30 from a proximal end of the catheter 30 .
- the inner tube 32 and compressed stent 50 can be moved toward the sleeve distal region 44 .
- the tubular tip 36 can be attached to the retractable sheath 34 prior to loading the compressed stent 50 into the catheter 30 .
- the retractable sheath 34 can be any material as described above such as, for example, a clear medical grade PTFE (polytetrafluoroethylene) extrusion which covers the distal 2-20 cm (depending on stent length) of the stent delivery device 30 .
- the retractable sheath 34 could be made of any suitable material as described above.
- a specific alternative embodiment could utilize a fluoropolymer material which is transparent to visible light to enable the operator to directly view deployment in an endoscopic delivery procedure. Such materials are well known in the art.
- self-expanding nitinol stents of from 1-15 mm or 6-14 mm in diameter and ranging from 1-100 mm or 5-50 mm in length can be accommodated. It should be understood that any type of self-expanding stent could be employed.
- the retractable sheath 34 can be connected to a proximal retraction handle (not shown) by a stainless steel pull-wire.
- the proximal end of retractable sheath 34 slidably seals to elongate shaft 20 , permitting it to slide proximally along elongate shaft when retracted by pull-wire.
- the stent delivery system can include a rapid exchange guide wire system.
- the stent 50 can be compressed at low temperature for loading into delivery system 30 and held in its reduced delivery configuration by retractable sheath 34 .
- the original stent shape can be restored as the nitinol stent self-expands, exerting radial force on the constricted portion of the body lumen to re-establish patency.
- a stent delivery catheter showing the retraction handle is described in U.S. Pat. No. 6,391,051, which is incorporated by reference herein.
- FIG. 3 is a perspective view of a tapered tip 36 prior to deploying a stent 50 .
- a tubular tip 36 can be affixed to the distal end 44 of the retractable sheath 34 .
- the tubular tip 36 includes a waist portion 64 and a tapered portion 60 .
- the waist portion 64 is shown integrally bonded to or integrally formed with the distal region or end 44 of the retractable sheath 34 providing a continuous and/or smooth outer surface across the tubular tip 36 and retractable sheath 34 .
- the tubular tip 36 has an open distal end 70 with an inner diameter that is less than the inner diameter of the waist portion 64 and is sized and configured to engage a guidewire 80 , but this is not required in all embodiments.
- the tubular tip 36 has at least one elongate region 90 predisposed to fracturing as described above.
- FIG. 4 is a perspective view of the tapered tip of FIG. 3 while partially deploying a stent 50 .
- the retractable sheath 34 is moved toward the elongate shaft 20 in the direction D, the elongate region predisposed to fracturing 90 fractures and the tapered tip 36 expands to allow the stent 50 to expand away from the inner tube 32 and onto the target site.
- the stent 50 fractures the tapered tip 36 as the stent 50 passes through the tapered tip 36 substantially unencumbered.
- FIG. 5 is a perspective view of another tapered tip 136 prior to deploying a stent 150 .
- a tubular tip 136 can be affixed to the distal region or end 144 of the retractable sheath 134 .
- the tubular tip 136 includes a waist portion 164 and a tapered free portion 160 .
- the waist portion 164 can be bonded to the distal end 144 of the retractable sheath 134 .
- the tubular tip 136 has a closed distal end 171 with an inner diameter that is less than the inner diameter of the waist portion 164 .
- the tubular tip 136 has at least two elongate regions 190 predisposed to fracturing as described above.
- FIG. 6 is a perspective view of the tapered tip of FIG. 5 while partially deploying a stent 150 .
- the retractable sheath 134 As the retractable sheath 134 is moved toward the elongate shaft in the direction D, the elongate regions predisposed to fracturing 190 , fractures and the tapered tip 136 expands to allow the stent 150 to expand away from the inner tube 132 and onto the target site.
- the stent 150 fractures the tapered tip 136 as the stent 150 passes through the tapered tip 136 substantially unencumbered.
- the stent 150 may be deployed by advancing the inner tube 132 or stent 150 through the tapered tip 136 in an opposite direction to direction D.
- the elongate regions predisposed to fracturing 190 fractures and the tapered tip 136 expands to allow the stent 150 to expand away from the inner tube 132 and onto the target site.
- the stent 150 fractures the tapered tip 136 as the stent 150 passes through the tapered tip 136 substantially unencumbered.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- Materials For Medical Uses (AREA)
Abstract
A self-expanding stent delivery assembly includes a shaft having a proximal end, a distal end, a distal region, a lumen, and a longitudinal axis. A retractable sheath having an outer surface, a proximal end and a distal end is co-axially disposed around the shaft distal region. A stent is disposed co-axially between the shaft and the retractable sheath. A tubular tapered tip is affixed to the retractable sheath distal end. The tubular tapered tip has an elongate region predisposed to fracturing. Methods of delivering a self-expanding stent are also described.
Description
- This application is a continuation of U.S. patent application Ser. No. 10/764,054, filed Jan. 23, 2004, the entire disclosure of which is incorporated herein by reference.
- The present invention is related generally to medical devices. More specifically, the present invention is related to catheters. The present invention includes stent delivery catheter apparatus with a tapered tip that is fracturable during deployment of a self-expanding stent that has been loaded onto the catheter.
- Atherosclerotic disease is a leading cause of death in the industrialized world, particularly in the United States. Many heart attacks and strokes are caused in part by a narrowed, stenosed blood vessel. A medical procedure commonly used to deal with vessel stenosis is angioplasty. Angioplasty, in particular Percutaneous Transluminal Angioplasty (PTA), includes inserting a balloon catheter into the femoral artery near the groin, and advancing the catheter to the stenosis. The balloon can then be inflated to widen or dilate the narrowed region. The balloon catheter can then be withdrawn. In some cases, the widened vessel rebounds or re-closes, narrowing the vessel over a period of time.
- Stents have come into increasing use to prevent the widened vessel regions from narrowing after angioplasty. A stent, typically having a tubular shape, can be put in place in the widened vessel region to hold the vessel walls apart and the lumen open in the event the conditions would otherwise result in re-stenosis. One class of stents requires that the stent be forcibly outwardly expanded to put the stent into position against the vessel walls. Another class of stents, self-expanding stents, can be delivered to a site in a compressed or constrained configuration and released in the vessel region to be supported. The self-expanding stent then expands in place to a configuration having a wide lumen, typically pressing firmly against the vessel walls where released. The stent is commonly placed at a recently dilated, stenosed vessel region.
- Self-expanding stents can be delivered to a target site mounted over an inner tube or shaft and constrained within the distal end of an enclosing retractable tube or sleeve. The self-expanding stent can be freed from the restraint of the outer sheath by either distally pushing the inner shaft against the stent or proximally pulling the retractable outer sheath from over the stent. Once free of the outer restraint, the self-expanding stent can expand to force itself against the vessel inner walls. Self-expanding stents are often elastically biased to assume an original larger shape after being temporarily compressed into a smaller size to more easily be transported through blood vessels to the target site. There is an ongoing need for improvements in catheters that deliver self-expanding stents.
- Generally, the present invention relates to a stent delivery device having a tapered tip that is fracturable during deployment or by deploying a self-expanding stent from the stent delivery device.
- In one embodiment, a self-expanding stent delivery assembly includes a shaft having a proximal end, a distal end, a distal region, a lumen, and a longitudinal axis. A retractable sheath having an outer surface, a proximal end and a distal end is co-axially disposed around the shaft distal region. A stent is disposed co-axially between the shaft and the retractable sheath. A tubular tapered tip is bonded to the retractable sheath distal end. The tubular tapered tip has an elongate region predisposed to fracturing.
- In another embodiment, a method of delivering a self-expanding stent includes placing a stent delivery device at a target site. The stent delivery device includes a shaft having a proximal end, a distal end, a distal region, a lumen, and a longitudinal axis; a retractable sheath having a proximal end and a distal end co-axially disposed around the shaft distal region; a stent disposed co-axially between the shaft and the retractable sheath; and a tubular tapered tip bonded to the retractable sheath distal end, the tubular tapered tip having an elongate region predisposed to fracturing. The stent is deployed at the target site by retracting the retractable sheath or advancing the stent and fracturing the elongate region predisposed to fracturing. The stent delivery device is then removed from the target site.
- The above summary of the present invention is not intended to describe each disclosed embodiment or every implementation of the present invention. The Figures and Detailed Description which follow more particularly exemplify these embodiments.
- The invention may be more completely understood in consideration of the following detailed description of various embodiments of the invention in connection with the accompanying drawings, in which:
-
FIG. 1 is a partial longitudinal cross-sectional view of a stent delivery device; -
FIG. 2 is a cross-sectional view of the stent delivery device ofFIG. 1 taken along line 2-2; -
FIG. 3 is a perspective view of a tapered tip; -
FIG. 4 is a perspective view of the tapered tip ofFIG. 3 while partially deploying a stent; -
FIG. 5 is a perspective view of another embodiment of a tapered tip; and -
FIG. 6 is a perspective view of the tapered tip ofFIG. 5 while partially deploying a stent. - While the invention is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the invention to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention.
- The stent delivery device and method for using the stent delivery device of the present invention are believed to be applicable to a variety of applications where delivery of stents is desired, for example, atherosclerotic stent delivery. While the present invention is not so limited, an appreciation of various aspects of the invention will be gained through a discussion of the examples provided below.
- The recitation of numerical ranges by endpoints includes all numbers subsumed within that range (e.g., 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5).
- As used in this specification and the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the content clearly dictates otherwise. Thus, for example, reference to “an elongate region” includes two or more elongate regions. As used in this specification and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.
- Also, while the tubular members illustrated in the Figures have generally circular cross sections, this is not a necessary part of the present invention, and the tubular members are merely shown as such for purposes of simplicity in illustration.
-
FIG. 1 illustrates a stent delivery device orcatheter 30.Catheter assembly 30 includes aninner tube 32 having alumen 33 therethrough (as shown inFIG. 2 ), adistal region 40 and adistal end 42.Inner tube 32 is preferably formed of a metal, polymeric material, or polymeric/metal composite material suitable for delivering a stent through tortuous vessel passages and in one embodiment, is suitable for receiving a guidewire therethrough. One useful material can include a braided polyamide tubing. In an illustrative embodiment, thecatheter assembly 30 can be guided to the target site via aguidewire 80. In the illustrative embodiment, theguidewire 80 can be within theinner tube 32lumen 33. The guide wire can be any operable diameter such as, for example, 0.01 to 0.04 inch or 0.014 to 0.035 inch, however a guide wire is not required in all embodiments. - In an illustrative embodiment, a
retractable sheath 34 having a distal region or end 44 is slidably disposed overinner tube 32, having anannular space 66 sufficient in size to receive a compressed stent betweeninner tube 32 andretractable sheath 34. Alternatively or in addition, theretractable sheath 34 can remain static, and a stent orinner tube 32 can be advancable relative to theretractable sheath 34.Retractable sheath 34 can be formed of a metal, polymeric material, or polymeric/metal composite material preferably sufficiently lubricious to ease in advancingcatheter assembly 30 through increasingly smaller blood vessels.Sheath 34 can be formed from a variety of materials such as, for example, high density polyethylene, nylon, reinforced nylons, or polyurethanes.Sheath 34 can have aninner layer 31 including a lubricious material such as, for example, polytetrafluoroethylene. - In an illustrative embodiment, a
stop 35 is affixed to theinner tube 32 proximal of itsdistal end 42, about the length of astent 50 and near the distal end of thecatheter 30. Thestop 35 functions to hold thestent 50 axially during deployment of thestent 50 relative to theouter tube 34. - A distally positioned tapered
tip 36 is disposed distal to or adjacent to the inner tubedistal region 40 and is affixed to or formed integral withretractable sheath 34. In one embodiment, taperedtip 36 can be formed of a shrinkable film material, for example, a heat-shrinkable material such as polyolefin copolymer, nylon, or polytetrafluoroethylene. In another embodiment, taperedtip 36 can be formed of the same or similar material to the material forming theretractable sheath 34. In another embodiment, the taperedtip 36 can be formed from the same layer of material forming at least a portion of theretractable sheath 34. If necessary, the taperedtip 36 can be secured toretractable sheath 34 using a variety of methods such as, for example, molding, extrusion, heat bonding, adhesives, laser bonding, or solvent welding, using methods well known to those skilled in the art. Any type of connection means may be used to affix the taperedtip 36 to theretractable sheath 34. This connection means can include, for example, a lap joint, butt joint or integral molding. Alternatively or in addition, a mechanical connection such as threads or friction fit could be utilized. In an illustrative embodiment, the taperedtip 36 can include awaist portion 64 and afree portion 60. In the illustrative embodiment shown, the taperedtip 36 is formed integrally withretractable sheath 34 and the outer surface of the taperedtip 36 is continuous with the outer surface of theretractable sleeve 34, thus the connection is smooth and substantially free of transitions. -
Tapered tip 36 is illustrated having an opendistal end 70. However, the taperedtip 36 can have a closeddistal end 70. The opendistal end 70 can be sized and configured to slidably engage or pass theguide wire 80. However, aguide wire 80 is not required in all embodiments. In the illustrative embodiment, thewaist portion 64 can be disposed to and affixed to thedistal end 44 of theretractable sheath 34. Thefree portion 60 can extend distally beyond thedistal end 44 of theretractable sheath 34. - The tapered
tip 36 can aid in trackingstent delivery device 30 through vessel passages and turns. In an illustrative embodiment, the taperedtip 36 is conically tapered. However, the taperedtip 36 can have an arcuate taper or any arrangement of constant diameters and tapers, as desired. - As depicted in
FIG. 3 , thetubular tip 36 has at least one elongate region predisposed to fracturing 90. Thetubular tip 36 can have 2, 3, 4, 5, 6, 7, 8, 9, 10 or more elongate regions predisposed to fracturing 90. The elongate region predisposed to fracturing 90 fractures the tapered tip to expand the opendistal end 70 and allows thestent 50 to pass through the fractured taperedtip 36 opendistal end 70 generally unimpeded. In an illustrative embodiment, the elongate region predisposed to fracturing 90 can be co-planar with a longitudinal axis running along the length of thestent delivery device 30. The elongate region predisposed to fracturing 90 can be formed on the taperedtip 36 before the taperedtip 36 is affixed to theretractable sheath 34, or formed during the process of affixing the taperedtip 36 to theretractable sheath 34 or integrally forming the taperedtip 36 from the layer of material forming at least a portion of theretractable sheath 34, or after affixing/integrally forming the taperedtip 36 with theretractable sheath 34. - In an illustrative embodiment, the elongate region predisposed to fracturing 90 can be a line of perforations that extend through a portion of or through the entire
tubular tip 36 wall thickness. The elongate region predisposed to fracturing 90 can be a score line that extends through a portion of thetubular tip 36 wall thickness where the wall thickness along thescore line 90 is less than the thickness along the remainingtubular tip 36 wall. Alternatively or in addition, the elongate region predisposed to fracturing 90 can be material having a tensile strength that is less than the tensile strength of the remainingtubular tip 36. -
FIG. 2 is a cross-sectional view of the stent delivery device ofFIG. 1 taken along line 2-2. Aninner lumen 33 is coaxially disposed about aguidewire 80. A self-expandingstent 50 can be placed intoannular space 66 betweenretractable sheath 34 andinner tube 32. - In an illustrative embodiment, the
stent 50 can be placed over theinner tube 32 by sliding thestent 50 proximally over the inner tubedistal end 42.Stent 50 can be compressed using a suitable tool or jig, to decrease the outer diameter of thestent 50 to a size compatible with theannular space 66. With thestent 50 compressed, thestent 50 can be axially and proximally slid overinner tube 32 and within sleevedistal region 44, to reside inannular space 66. With thestent 50 constrained byretractable sleeve 34, any restraining tool or jig can be removed from the catheter. Withstent 50 in position,tubular tip 36 can be affixed toretractable sheath 34distal end 44. - In another illustrative embodiment, a
compressed stent 50 can be placed onto theinner tube 32 and loaded into thecatheter 30 from a proximal end of thecatheter 30. Theinner tube 32 andcompressed stent 50 can be moved toward the sleevedistal region 44. Thetubular tip 36 can be attached to theretractable sheath 34 prior to loading thecompressed stent 50 into thecatheter 30. - In an illustrative embodiment, the
retractable sheath 34 can be any material as described above such as, for example, a clear medical grade PTFE (polytetrafluoroethylene) extrusion which covers the distal 2-20 cm (depending on stent length) of thestent delivery device 30. However, theretractable sheath 34 could be made of any suitable material as described above. A specific alternative embodiment could utilize a fluoropolymer material which is transparent to visible light to enable the operator to directly view deployment in an endoscopic delivery procedure. Such materials are well known in the art. In an illustrative embodiment, self-expanding nitinol stents of from 1-15 mm or 6-14 mm in diameter and ranging from 1-100 mm or 5-50 mm in length can be accommodated. It should be understood that any type of self-expanding stent could be employed. In an illustrative embodiment, theretractable sheath 34 can be connected to a proximal retraction handle (not shown) by a stainless steel pull-wire. In this embodiment, the proximal end ofretractable sheath 34 slidably seals to elongateshaft 20, permitting it to slide proximally along elongate shaft when retracted by pull-wire. In another illustrative embodiment, the stent delivery system can include a rapid exchange guide wire system. - The
stent 50 can be compressed at low temperature for loading intodelivery system 30 and held in its reduced delivery configuration byretractable sheath 34. Upon deployment in vivo at body temperature, the original stent shape can be restored as the nitinol stent self-expands, exerting radial force on the constricted portion of the body lumen to re-establish patency. A stent delivery catheter showing the retraction handle is described in U.S. Pat. No. 6,391,051, which is incorporated by reference herein. -
FIG. 3 is a perspective view of a taperedtip 36 prior to deploying astent 50. As described above, atubular tip 36 can be affixed to thedistal end 44 of theretractable sheath 34. In the illustrative embodiment, thetubular tip 36 includes awaist portion 64 and a taperedportion 60. Thewaist portion 64 is shown integrally bonded to or integrally formed with the distal region or end 44 of theretractable sheath 34 providing a continuous and/or smooth outer surface across thetubular tip 36 andretractable sheath 34. In the illustrative embodiment, thetubular tip 36 has an opendistal end 70 with an inner diameter that is less than the inner diameter of thewaist portion 64 and is sized and configured to engage aguidewire 80, but this is not required in all embodiments. Thetubular tip 36 has at least oneelongate region 90 predisposed to fracturing as described above. -
FIG. 4 is a perspective view of the tapered tip ofFIG. 3 while partially deploying astent 50. As theretractable sheath 34 is moved toward theelongate shaft 20 in the direction D, the elongate region predisposed to fracturing 90 fractures and the taperedtip 36 expands to allow thestent 50 to expand away from theinner tube 32 and onto the target site. Thestent 50 fractures the taperedtip 36 as thestent 50 passes through the taperedtip 36 substantially unencumbered. -
FIG. 5 is a perspective view of another taperedtip 136 prior to deploying astent 150. As described above, atubular tip 136 can be affixed to the distal region or end 144 of theretractable sheath 134. Thetubular tip 136 includes awaist portion 164 and a taperedfree portion 160. Thewaist portion 164 can be bonded to thedistal end 144 of theretractable sheath 134. Thetubular tip 136 has a closeddistal end 171 with an inner diameter that is less than the inner diameter of thewaist portion 164. Thetubular tip 136 has at least twoelongate regions 190 predisposed to fracturing as described above. -
FIG. 6 is a perspective view of the tapered tip ofFIG. 5 while partially deploying astent 150. As theretractable sheath 134 is moved toward the elongate shaft in the direction D, the elongate regions predisposed to fracturing 190, fractures and the taperedtip 136 expands to allow thestent 150 to expand away from theinner tube 132 and onto the target site. Thestent 150 fractures the taperedtip 136 as thestent 150 passes through the taperedtip 136 substantially unencumbered. - Alternatively in some embodiments, the
stent 150 may be deployed by advancing theinner tube 132 orstent 150 through the taperedtip 136 in an opposite direction to direction D. Similarly to above, the elongate regions predisposed to fracturing 190, fractures and the taperedtip 136 expands to allow thestent 150 to expand away from theinner tube 132 and onto the target site. Thestent 150 fractures the taperedtip 136 as thestent 150 passes through the taperedtip 136 substantially unencumbered. - Numerous advantages of the invention covered by this document have been set forth in the foregoing description. It will be understood, however, that this disclosure is, in many respects, only illustrative. Changes may be made in details, particularly in matters of shape, size, and arrangement of parts without exceeding the scope of the invention. The invention's scope is, of course, defined in the language in which the appended claims are expressed.
Claims (20)
1. A stent delivery assembly comprising:
a shaft having a proximal region and a distal region;
a self-expanding stent disposed about at least a portion of the distal region of the shaft;
a sheath having a proximal end and a distal end, the sheath disposed around at least the distal region of the shaft and the self-expanding stent, wherein the sheath is configured to be retracted from the self-expanding stent to deploy the self-expanding stent; and
a tubular tapered tip coupled to the distal end of the sheath, the tubular tapered tip having a region predisposed to fracturing.
2. The stent delivery assembly of claim 1 , wherein the region predisposed to fracturing is configured to fracture when the sheath is retracted from the stent.
3. The stent delivery assembly of claim 1 , further comprising a stop member coupled to the shaft and positioned proximally of the self-expanding stent.
4. The stent delivery assembly of claim 1 , wherein the tubular tapered tip has a plurality of elongate regions predisposed to fracturing, wherein each elongate region predisposed to fracturing are co-planar.
5. The stent delivery assembly of claim 1 , wherein the elongate region predisposed to fracturing includes a line of perforations.
6. The stent delivery assembly of claim 1 , wherein the tubular tapered tip has a first thickness and the elongate region predisposed to fracturing has a second thickness that is less than the first thickness.
7. The stent delivery assembly of claim 1 , wherein the tubular tapered tip is formed of a first material having a first tensile strength and the elongate region predisposed to fracturing is formed of a second material having a second tensile strength that is less than the first tensile strength.
8. The stent delivery assembly of claim 1 , further comprising a guidewire disposed within the shaft lumen.
9. The stent delivery assembly of claim 8 , wherein the tubular tapered tip has a distal end defining a tip opening, the tip opening sized and configured to surround the guidewire.
10. A stent delivery assembly comprising:
a shaft having a proximal region and a distal region;
a stent disposed about at least a portion of the distal region of the shaft;
a sheath having a proximal end and a distal end, the sheath moveable between at least a first position and a second position, when in the first position, the sheath is disposed around the distal region of the shaft and the self-expanding stent, when the sheath is in the second position, the sheath is disposed around the distal region of the shaft with the distal end of the shaft being proximal of a proximal end of the stent, wherein the movement of the sheath between the first position and the second position deploys the stent; and
a tubular tapered tip coupled to the distal end of the sheath, the tubular tapered tip having a region predisposed to fracturing, wherein moving the sheath from the first position to the second position causes the region predisposed to fracturing to fracture.
11. The stent delivery assembly of claim 10 , wherein the stent is a self-expanding stent.
12. The stent delivery assembly of claim 10 , further comprising a stop member coupled to the shaft and positioned proximally of the stent.
13. The stent delivery assembly of claim 10 , wherein the elongate region predisposed to fracturing includes a line of perforations.
14. The stent delivery assembly of claim 10 , wherein the tubular tapered tip has a first thickness and the elongate region predisposed to fracturing has a second thickness that is less than the first thickness.
15. The stent delivery assembly of claim 10 , wherein the tubular tapered tip is formed of a first material having a first tensile strength and the elongate region predisposed to fracturing is formed of a second material having a second tensile strength that is less than the first tensile strength.
16. The stent delivery assembly of claim 10 , further comprising a guidewire disposed within the shaft lumen.
17. The stent delivery assembly of claim 16 , wherein the tubular tapered tip has a distal end defining a tip opening, the tip opening sized and configured to surround the guidewire.
18. A method of delivering a self-expanding stent to a target site in a vessel, the method comprising:
positioning a stent delivery device at the target site in the vessel, the stent delivery device comprising:
a self-expanding stent disposed about at least a portion of the distal region of the shaft;
a sheath having a proximal end and a distal end, the sheath disposed around at least the distal region of the shaft and the self-expanding stent, wherein the sheath is configured to be retracted from the self-expanding stent to deploy the self-expanding stent; and
a tubular tapered tip coupled to the distal end of the sheath, the tubular tapered tip having a region predisposed to fracturing; and
retracting the sheath from the stent to deploy the stent at the target site, wherein the retracting causes the region predisposed to fracturing to fracture.
19. The method of claim 18 , wherein the self-expanding stent expands when the sheath is retracted from the self-expanding stent.
20. The method of claim 18 , further comprising placing a guidewire across the target site prior to placing the stent delivery device at the target site, wherein the tubular tapered tip has a distal end defining a tip opening, the tip opening sized and configured to pass the guidewire therethrough.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/337,069 US20090105802A1 (en) | 2004-01-23 | 2008-12-17 | Stent delivery catheter |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/764,054 US7468070B2 (en) | 2004-01-23 | 2004-01-23 | Stent delivery catheter |
US12/337,069 US20090105802A1 (en) | 2004-01-23 | 2008-12-17 | Stent delivery catheter |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/764,054 Continuation US7468070B2 (en) | 2004-01-23 | 2004-01-23 | Stent delivery catheter |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090105802A1 true US20090105802A1 (en) | 2009-04-23 |
Family
ID=34795196
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/764,054 Expired - Fee Related US7468070B2 (en) | 2004-01-23 | 2004-01-23 | Stent delivery catheter |
US12/337,069 Abandoned US20090105802A1 (en) | 2004-01-23 | 2008-12-17 | Stent delivery catheter |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/764,054 Expired - Fee Related US7468070B2 (en) | 2004-01-23 | 2004-01-23 | Stent delivery catheter |
Country Status (5)
Country | Link |
---|---|
US (2) | US7468070B2 (en) |
EP (1) | EP1706065A1 (en) |
JP (1) | JP4857125B2 (en) |
CA (1) | CA2553529A1 (en) |
WO (1) | WO2005072650A1 (en) |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060206200A1 (en) * | 2004-05-25 | 2006-09-14 | Chestnut Medical Technologies, Inc. | Flexible vascular occluding device |
US8147534B2 (en) | 2005-05-25 | 2012-04-03 | Tyco Healthcare Group Lp | System and method for delivering and deploying an occluding device within a vessel |
US8267985B2 (en) | 2005-05-25 | 2012-09-18 | Tyco Healthcare Group Lp | System and method for delivering and deploying an occluding device within a vessel |
US8273101B2 (en) | 2005-05-25 | 2012-09-25 | Tyco Healthcare Group Lp | System and method for delivering and deploying an occluding device within a vessel |
US8394119B2 (en) | 2006-02-22 | 2013-03-12 | Covidien Lp | Stents having radiopaque mesh |
US8398701B2 (en) | 2004-05-25 | 2013-03-19 | Covidien Lp | Flexible vascular occluding device |
US8617234B2 (en) | 2004-05-25 | 2013-12-31 | Covidien Lp | Flexible vascular occluding device |
US8623067B2 (en) | 2004-05-25 | 2014-01-07 | Covidien Lp | Methods and apparatus for luminal stenting |
US20140025150A1 (en) * | 2012-07-20 | 2014-01-23 | Tyco Healthcare Group Lp | Resheathable stent delivery system |
US9072624B2 (en) | 2012-02-23 | 2015-07-07 | Covidien Lp | Luminal stenting |
US9078659B2 (en) | 2012-04-23 | 2015-07-14 | Covidien Lp | Delivery system with hooks for resheathability |
US9114001B2 (en) | 2012-10-30 | 2015-08-25 | Covidien Lp | Systems for attaining a predetermined porosity of a vascular device |
US9157174B2 (en) | 2013-02-05 | 2015-10-13 | Covidien Lp | Vascular device for aneurysm treatment and providing blood flow into a perforator vessel |
US9155647B2 (en) | 2012-07-18 | 2015-10-13 | Covidien Lp | Methods and apparatus for luminal stenting |
US9192498B2 (en) | 2012-02-23 | 2015-11-24 | Covidien Lp | Luminal stenting |
US9452070B2 (en) | 2012-10-31 | 2016-09-27 | Covidien Lp | Methods and systems for increasing a density of a region of a vascular device |
US9474639B2 (en) | 2013-08-27 | 2016-10-25 | Covidien Lp | Delivery of medical devices |
WO2017004209A1 (en) * | 2015-06-29 | 2017-01-05 | 480 Biomedical, Inc. | Scaffold loading and delivery systems |
US9675482B2 (en) | 2008-05-13 | 2017-06-13 | Covidien Lp | Braid implant delivery systems |
US9750625B2 (en) | 2008-06-11 | 2017-09-05 | C.R. Bard, Inc. | Catheter delivery device |
US9782186B2 (en) | 2013-08-27 | 2017-10-10 | Covidien Lp | Vascular intervention system |
WO2017180401A1 (en) * | 2016-04-11 | 2017-10-19 | Idev Technologies, Inc. | Stent delivery system having anisotropic sheath |
US9849014B2 (en) | 2002-03-12 | 2017-12-26 | Covidien Lp | Medical device delivery |
US9943427B2 (en) | 2012-11-06 | 2018-04-17 | Covidien Lp | Shaped occluding devices and methods of using the same |
US10004618B2 (en) | 2004-05-25 | 2018-06-26 | Covidien Lp | Methods and apparatus for luminal stenting |
US10130500B2 (en) | 2013-07-25 | 2018-11-20 | Covidien Lp | Methods and apparatus for luminal stenting |
US10376396B2 (en) | 2017-01-19 | 2019-08-13 | Covidien Lp | Coupling units for medical device delivery systems |
US10786377B2 (en) | 2018-04-12 | 2020-09-29 | Covidien Lp | Medical device delivery |
US11071637B2 (en) | 2018-04-12 | 2021-07-27 | Covidien Lp | Medical device delivery |
US11123209B2 (en) | 2018-04-12 | 2021-09-21 | Covidien Lp | Medical device delivery |
US11413174B2 (en) | 2019-06-26 | 2022-08-16 | Covidien Lp | Core assembly for medical device delivery systems |
US11413176B2 (en) | 2018-04-12 | 2022-08-16 | Covidien Lp | Medical device delivery |
US11931276B2 (en) | 2008-06-11 | 2024-03-19 | C. R. Bard, Inc. | Catheter delivery device |
US11944558B2 (en) | 2021-08-05 | 2024-04-02 | Covidien Lp | Medical device delivery devices, systems, and methods |
US12042413B2 (en) | 2021-04-07 | 2024-07-23 | Covidien Lp | Delivery of medical devices |
US12109137B2 (en) | 2021-07-30 | 2024-10-08 | Covidien Lp | Medical device delivery |
Families Citing this family (166)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004506469A (en) | 2000-08-18 | 2004-03-04 | アトリテック, インコーポレイテッド | Expandable implantable device for filtering blood flow from the atrial appendage |
US8075606B2 (en) | 2001-07-06 | 2011-12-13 | Angiomed Gmbh & Co. Medizintechnik Kg | Delivery system having a rapid pusher assembly for self-expanding stent, and stent exchange configuration |
GB0123633D0 (en) | 2001-10-02 | 2001-11-21 | Angiomed Ag | Stent delivery system |
US7965719B2 (en) * | 2002-12-11 | 2011-06-21 | Broadcom Corporation | Media exchange network supporting multiple broadband network and service provider infrastructures |
GB0327306D0 (en) * | 2003-11-24 | 2003-12-24 | Angiomed Gmbh & Co | Catheter device |
MXPA05007537A (en) | 2003-01-15 | 2005-09-21 | Angiomed Ag | Trans-luminal surgical device. |
GB0310715D0 (en) | 2003-05-09 | 2003-06-11 | Angiomed Ag | Strain management in stent delivery system |
US7381219B2 (en) | 2003-12-23 | 2008-06-03 | Sadra Medical, Inc. | Low profile heart valve and delivery system |
US7748389B2 (en) | 2003-12-23 | 2010-07-06 | Sadra Medical, Inc. | Leaflet engagement elements and methods for use thereof |
US7824443B2 (en) | 2003-12-23 | 2010-11-02 | Sadra Medical, Inc. | Medical implant delivery and deployment tool |
US7824442B2 (en) | 2003-12-23 | 2010-11-02 | Sadra Medical, Inc. | Methods and apparatus for endovascularly replacing a heart valve |
US20050137687A1 (en) | 2003-12-23 | 2005-06-23 | Sadra Medical | Heart valve anchor and method |
US8579962B2 (en) | 2003-12-23 | 2013-11-12 | Sadra Medical, Inc. | Methods and apparatus for performing valvuloplasty |
US9005273B2 (en) | 2003-12-23 | 2015-04-14 | Sadra Medical, Inc. | Assessing the location and performance of replacement heart valves |
US20050137686A1 (en) * | 2003-12-23 | 2005-06-23 | Sadra Medical, A Delaware Corporation | Externally expandable heart valve anchor and method |
EP2529699B1 (en) | 2003-12-23 | 2014-01-29 | Sadra Medical, Inc. | Repositionable heart valve |
US20120041550A1 (en) | 2003-12-23 | 2012-02-16 | Sadra Medical, Inc. | Methods and Apparatus for Endovascular Heart Valve Replacement Comprising Tissue Grasping Elements |
US11278398B2 (en) | 2003-12-23 | 2022-03-22 | Boston Scientific Scimed, Inc. | Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements |
US8182528B2 (en) | 2003-12-23 | 2012-05-22 | Sadra Medical, Inc. | Locking heart valve anchor |
US7329279B2 (en) | 2003-12-23 | 2008-02-12 | Sadra Medical, Inc. | Methods and apparatus for endovascularly replacing a patient's heart valve |
US8840663B2 (en) | 2003-12-23 | 2014-09-23 | Sadra Medical, Inc. | Repositionable heart valve method |
US8287584B2 (en) | 2005-11-14 | 2012-10-16 | Sadra Medical, Inc. | Medical implant deployment tool |
US7959666B2 (en) | 2003-12-23 | 2011-06-14 | Sadra Medical, Inc. | Methods and apparatus for endovascularly replacing a heart valve |
US7780725B2 (en) | 2004-06-16 | 2010-08-24 | Sadra Medical, Inc. | Everting heart valve |
US8603160B2 (en) | 2003-12-23 | 2013-12-10 | Sadra Medical, Inc. | Method of using a retrievable heart valve anchor with a sheath |
US20050137694A1 (en) | 2003-12-23 | 2005-06-23 | Haug Ulrich R. | Methods and apparatus for endovascularly replacing a patient's heart valve |
US7445631B2 (en) | 2003-12-23 | 2008-11-04 | Sadra Medical, Inc. | Methods and apparatus for endovascularly replacing a patient's heart valve |
US8343213B2 (en) | 2003-12-23 | 2013-01-01 | Sadra Medical, Inc. | Leaflet engagement elements and methods for use thereof |
US9526609B2 (en) | 2003-12-23 | 2016-12-27 | Boston Scientific Scimed, Inc. | Methods and apparatus for endovascularly replacing a patient's heart valve |
US8828078B2 (en) | 2003-12-23 | 2014-09-09 | Sadra Medical, Inc. | Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements |
DE102005003632A1 (en) | 2005-01-20 | 2006-08-17 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Catheter for the transvascular implantation of heart valve prostheses |
US7962208B2 (en) | 2005-04-25 | 2011-06-14 | Cardiac Pacemakers, Inc. | Method and apparatus for pacing during revascularization |
US20060287668A1 (en) * | 2005-06-16 | 2006-12-21 | Fawzi Natalie V | Apparatus and methods for intravascular embolic protection |
US7712606B2 (en) | 2005-09-13 | 2010-05-11 | Sadra Medical, Inc. | Two-part package for medical implant |
JP5027135B2 (en) * | 2005-09-16 | 2012-09-19 | クック メディカル テクノロジーズ エルエルシー | Double metal stent introducer |
US8020275B2 (en) * | 2005-11-17 | 2011-09-20 | The Cleveland Clinic Foundation | Method for compressing intraluminal prostheses |
ATE446064T1 (en) * | 2005-11-17 | 2009-11-15 | Cleveland Clinic Foundation | DEVICE AND METHOD FOR DELIVERING A LINED INTRALUMINAL PROSTHESIS |
US20070213813A1 (en) | 2005-12-22 | 2007-09-13 | Symetis Sa | Stent-valves for valve replacement and associated methods and systems for surgery |
WO2007097983A2 (en) | 2006-02-14 | 2007-08-30 | Sadra Medical, Inc. | Systems and methods for delivering a medical implant |
WO2008085470A1 (en) * | 2006-12-26 | 2008-07-17 | William Cook Europe Aps | Delivery system and sheath for endoluminal prosthesis |
ATE525484T1 (en) | 2007-01-08 | 2011-10-15 | Us Gov Health & Human Serv | SLCO1B3 GENOTYPE |
US7896915B2 (en) | 2007-04-13 | 2011-03-01 | Jenavalve Technology, Inc. | Medical device for treating a heart valve insufficiency |
WO2009050265A1 (en) | 2007-10-17 | 2009-04-23 | Angiomed Gmbh & Co. Medizintechnik Kg | Delivery system for a self-expanding device for placement in a bodily lumen |
US9044318B2 (en) | 2008-02-26 | 2015-06-02 | Jenavalve Technology Gmbh | Stent for the positioning and anchoring of a valvular prosthesis |
BR112012021347A2 (en) | 2008-02-26 | 2019-09-24 | Jenavalve Tecnology Inc | stent for positioning and anchoring a valve prosthesis at an implantation site in a patient's heart |
US8882821B2 (en) * | 2008-05-02 | 2014-11-11 | Cook Medical Technologies Llc | Cartridge delivery system for delivery of medical devices |
GB0815339D0 (en) | 2008-08-21 | 2008-10-01 | Angiomed Ag | Method of loading a stent into a sheath |
CA2720466A1 (en) | 2008-05-09 | 2009-11-12 | Juergen Dorn | Method of loading a stent into a sheath |
US20090319019A1 (en) * | 2008-06-23 | 2009-12-24 | Cook Incorporated | Expandable Tip Delivery System For Endoluminal Prosthesis |
US8678008B2 (en) * | 2008-07-30 | 2014-03-25 | Ethicon, Inc | Methods and devices for forming an auxiliary airway for treating obstructive sleep apnea |
US8556797B2 (en) * | 2008-07-31 | 2013-10-15 | Ethicon, Inc. | Magnetic implants for treating obstructive sleep apnea and methods therefor |
US8413661B2 (en) * | 2008-08-14 | 2013-04-09 | Ethicon, Inc. | Methods and devices for treatment of obstructive sleep apnea |
ES2627860T3 (en) | 2008-10-10 | 2017-07-31 | Boston Scientific Scimed, Inc. | Medical devices and placement systems for placing medical devices |
US8561616B2 (en) * | 2008-10-24 | 2013-10-22 | Ethicon, Inc. | Methods and devices for the indirect displacement of the hyoid bone for treating obstructive sleep apnea |
US8561617B2 (en) * | 2008-10-30 | 2013-10-22 | Ethicon, Inc. | Implant systems and methods for treating obstructive sleep apnea |
US20100121424A1 (en) * | 2008-11-12 | 2010-05-13 | Petr Kubena | Stent compression tool |
US8800567B2 (en) | 2008-12-01 | 2014-08-12 | Ethicon, Inc. | Implant systems and methods for treating obstructive sleep apnea |
US8783258B2 (en) | 2008-12-01 | 2014-07-22 | Ethicon, Inc. | Implant systems and methods for treating obstructive sleep apnea |
GB0823716D0 (en) | 2008-12-31 | 2009-02-04 | Angiomed Ag | Stent delivery device with rolling stent retaining sheath |
US8371308B2 (en) | 2009-02-17 | 2013-02-12 | Ethicon, Inc. | Magnetic implants and methods for treating an oropharyngeal condition |
US9326886B2 (en) | 2009-10-29 | 2016-05-03 | Ethicon, Inc. | Fluid filled implants for treating obstructive sleep apnea |
US9877862B2 (en) * | 2009-10-29 | 2018-01-30 | Ethicon, Inc. | Tongue suspension system with hyoid-extender for treating obstructive sleep apnea |
US9974683B2 (en) * | 2009-10-30 | 2018-05-22 | Ethicon, Inc. | Flexible implants having internal volume shifting capabilities for treating obstructive sleep apnea |
GB0921236D0 (en) | 2009-12-03 | 2010-01-20 | Angiomed Ag | Stent device delivery system and method of making such |
GB0921237D0 (en) | 2009-12-03 | 2010-01-20 | Angiomed Ag | Stent device delivery system and method of making such |
GB0921238D0 (en) | 2009-12-03 | 2010-01-20 | Angiomed Ag | Stent device delivery system and method of making such |
GB0921240D0 (en) | 2009-12-03 | 2010-01-20 | Angiomed Ag | Stent device delivery system and method of making such |
US8632488B2 (en) * | 2009-12-15 | 2014-01-21 | Ethicon, Inc. | Fluid filled implants for treating medical conditions |
US8540669B2 (en) | 2010-04-30 | 2013-09-24 | Abbott Cardiovascular Systems Inc. | Catheter system providing step reduction for postconditioning |
US8708996B2 (en) | 2010-04-30 | 2014-04-29 | Abbott Cardiovascular Systems, Inc. | Methods and device for synergistic mitigation of reperfusion injury after an ischemic event |
US8480650B2 (en) | 2010-04-30 | 2013-07-09 | Abbott Cardiovascular Systems Inc. | Method for increased uptake of beneficial agent and ejection fraction by postconditioning procedures |
US9155869B2 (en) | 2010-04-30 | 2015-10-13 | Abbott Cardiovascular Systems Inc. | Catheter having inflation and deflation lumen useful for preventing or reducing reperfusion injury |
US9168361B2 (en) | 2010-04-30 | 2015-10-27 | Abbott Cardiovascular Systems Inc. | Balloon catheter exhibiting rapid inflation and deflation |
AU2011257298B2 (en) | 2010-05-25 | 2014-07-31 | Jenavalve Technology Inc. | Prosthetic heart valve and transcatheter delivered endoprosthesis comprising a prosthetic heart valve and a stent |
US8979824B2 (en) | 2010-06-21 | 2015-03-17 | Boston Scientific Scimed, Inc. | Stent delivery system having retention structure |
US8808348B2 (en) * | 2010-06-23 | 2014-08-19 | Boston Scientific Scimed, Inc. | Delivery system having stent retention structure |
JP5664040B2 (en) * | 2010-09-08 | 2015-02-04 | 株式会社カネカ | Stent delivery catheter, outer shaft manufacturing method, and stent delivery catheter manufacturing method |
EP3342377B1 (en) | 2010-09-10 | 2022-06-15 | Boston Scientific Limited | Valve replacement devices, delivery device for a valve replacement device and method of production of a valve replacement device |
JP2012061062A (en) * | 2010-09-14 | 2012-03-29 | Kaneka Corp | Catheter for delivering self-expanding prosthesis |
GB201020373D0 (en) | 2010-12-01 | 2011-01-12 | Angiomed Ag | Device to release a self-expanding implant |
EP2688516B1 (en) | 2011-03-21 | 2022-08-17 | Cephea Valve Technologies, Inc. | Disk-based valve apparatus |
US9533124B2 (en) | 2011-04-14 | 2017-01-03 | Abbott Cardiovascular Systems Inc. | Reperfusion injury devices |
EP2520251A1 (en) | 2011-05-05 | 2012-11-07 | Symetis SA | Method and Apparatus for Compressing Stent-Valves |
WO2013009975A1 (en) | 2011-07-12 | 2013-01-17 | Boston Scientific Scimed, Inc. | Coupling system for medical devices |
US10213329B2 (en) | 2011-08-12 | 2019-02-26 | W. L. Gore & Associates, Inc. | Evertable sheath devices, systems, and methods |
US8905033B2 (en) | 2011-09-28 | 2014-12-09 | Ethicon, Inc. | Modular tissue securement systems |
US9161855B2 (en) | 2011-10-24 | 2015-10-20 | Ethicon, Inc. | Tissue supporting device and method |
US9131926B2 (en) | 2011-11-10 | 2015-09-15 | Boston Scientific Scimed, Inc. | Direct connect flush system |
US8940014B2 (en) | 2011-11-15 | 2015-01-27 | Boston Scientific Scimed, Inc. | Bond between components of a medical device |
US8973582B2 (en) | 2011-11-30 | 2015-03-10 | Ethicon, Inc. | Tongue suspension device and method |
US8951243B2 (en) | 2011-12-03 | 2015-02-10 | Boston Scientific Scimed, Inc. | Medical device handle |
US10470760B2 (en) | 2011-12-08 | 2019-11-12 | Ethicon, Inc. | Modified tissue securement fibers |
US9510945B2 (en) | 2011-12-20 | 2016-12-06 | Boston Scientific Scimed Inc. | Medical device handle |
US9277993B2 (en) | 2011-12-20 | 2016-03-08 | Boston Scientific Scimed, Inc. | Medical device delivery systems |
US10172708B2 (en) | 2012-01-25 | 2019-01-08 | Boston Scientific Scimed, Inc. | Valve assembly with a bioabsorbable gasket and a replaceable valve implant |
US9277990B2 (en) | 2012-05-04 | 2016-03-08 | St. Jude Medical, Cardiology Division, Inc. | Hypotube shaft with articulation mechanism |
US9532871B2 (en) * | 2012-05-04 | 2017-01-03 | St. Jude Medical, Cardiology Division, Inc. | Delivery system deflection mechanism |
US9173766B2 (en) | 2012-06-01 | 2015-11-03 | Ethicon, Inc. | Systems and methods to treat upper pharyngeal airway of obstructive sleep apnea patients |
US9883941B2 (en) | 2012-06-19 | 2018-02-06 | Boston Scientific Scimed, Inc. | Replacement heart valve |
EP2958520B1 (en) | 2013-02-21 | 2018-12-19 | St. Jude Medical, Cardiology Division, Inc. | Transapical delivery system |
US9763819B1 (en) | 2013-03-05 | 2017-09-19 | W. L. Gore & Associates, Inc. | Tapered sleeve |
US10172734B2 (en) * | 2013-03-13 | 2019-01-08 | DePuy Synthes Products, Inc. | Capture tube mechanism for delivering and releasing a stent |
MX2015015276A (en) | 2013-05-03 | 2016-02-18 | Bard Inc C R | Peelable protective sheath. |
US9844383B2 (en) | 2013-05-08 | 2017-12-19 | Embolx, Inc. | Devices and methods for low pressure tumor embolization |
EP2994188A4 (en) | 2013-05-08 | 2017-03-29 | Embolx, Inc. | Device and methods for transvascular tumor embolization with integrated flow regulation |
US9561103B2 (en) | 2013-07-17 | 2017-02-07 | Cephea Valve Technologies, Inc. | System and method for cardiac valve repair and replacement |
US9867694B2 (en) | 2013-08-30 | 2018-01-16 | Jenavalve Technology Inc. | Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame |
US9566153B2 (en) | 2013-09-12 | 2017-02-14 | St. Jude Medical, Cardiology Division, Inc. | Alignment of an implantable medical device |
US9907641B2 (en) | 2014-01-10 | 2018-03-06 | W. L. Gore & Associates, Inc. | Implantable intraluminal device |
US10966850B2 (en) * | 2014-03-06 | 2021-04-06 | W. L. Gore & Associates, Inc. | Implantable medical device constraint and deployment apparatus |
US10016292B2 (en) | 2014-04-18 | 2018-07-10 | Covidien Lp | Stent delivery system |
EP2995339B1 (en) * | 2014-09-15 | 2020-01-08 | Biotronik AG | Balloon catheter |
US10039658B2 (en) | 2014-10-17 | 2018-08-07 | Cook Medical Technologies Llc | Expanding sheath tip |
US9901445B2 (en) | 2014-11-21 | 2018-02-27 | Boston Scientific Scimed, Inc. | Valve locking mechanism |
EP4306080A3 (en) | 2014-12-09 | 2024-04-10 | Cephea Valve Technologies, Inc. | Replacement cardiac valves and method of manufacture |
US10449043B2 (en) | 2015-01-16 | 2019-10-22 | Boston Scientific Scimed, Inc. | Displacement based lock and release mechanism |
US9861477B2 (en) | 2015-01-26 | 2018-01-09 | Boston Scientific Scimed Inc. | Prosthetic heart valve square leaflet-leaflet stitch |
US10201417B2 (en) | 2015-02-03 | 2019-02-12 | Boston Scientific Scimed Inc. | Prosthetic heart valve having tubular seal |
US9788942B2 (en) | 2015-02-03 | 2017-10-17 | Boston Scientific Scimed Inc. | Prosthetic heart valve having tubular seal |
US10426617B2 (en) | 2015-03-06 | 2019-10-01 | Boston Scientific Scimed, Inc. | Low profile valve locking mechanism and commissure assembly |
US10285809B2 (en) | 2015-03-06 | 2019-05-14 | Boston Scientific Scimed Inc. | TAVI anchoring assist device |
US10080652B2 (en) | 2015-03-13 | 2018-09-25 | Boston Scientific Scimed, Inc. | Prosthetic heart valve having an improved tubular seal |
US12121461B2 (en) | 2015-03-20 | 2024-10-22 | Jenavalve Technology, Inc. | Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath |
US10709555B2 (en) | 2015-05-01 | 2020-07-14 | Jenavalve Technology, Inc. | Device and method with reduced pacemaker rate in heart valve replacement |
AU2016262564B2 (en) | 2015-05-14 | 2020-11-05 | Cephea Valve Technologies, Inc. | Replacement mitral valves |
WO2016183523A1 (en) | 2015-05-14 | 2016-11-17 | Cephea Valve Technologies, Inc. | Cardiac valve delivery devices and systems |
WO2017004377A1 (en) | 2015-07-02 | 2017-01-05 | Boston Scientific Scimed, Inc. | Adjustable nosecone |
US10195392B2 (en) | 2015-07-02 | 2019-02-05 | Boston Scientific Scimed, Inc. | Clip-on catheter |
US10251764B2 (en) * | 2015-07-19 | 2019-04-09 | Sanford Health | Universal catheter tip and methods for use |
US10179041B2 (en) | 2015-08-12 | 2019-01-15 | Boston Scientific Scimed Icn. | Pinless release mechanism |
US10136991B2 (en) | 2015-08-12 | 2018-11-27 | Boston Scientific Scimed Inc. | Replacement heart valve implant |
US10779940B2 (en) | 2015-09-03 | 2020-09-22 | Boston Scientific Scimed, Inc. | Medical device handle |
US10342660B2 (en) | 2016-02-02 | 2019-07-09 | Boston Scientific Inc. | Tensioned sheathing aids |
US10350382B1 (en) | 2018-06-08 | 2019-07-16 | Embolx, Inc. | High torque catheter and methods of manufacture |
US11464948B2 (en) | 2016-02-16 | 2022-10-11 | Embolx, Inc. | Balloon catheters and methods of manufacture and use |
US9550046B1 (en) | 2016-02-16 | 2017-01-24 | Embolx, Inc. | Balloon catheter and methods of fabrication and use |
WO2017176553A1 (en) | 2016-04-05 | 2017-10-12 | Boston Scientific Scimed, Inc. | Stent delivery device |
US10583005B2 (en) | 2016-05-13 | 2020-03-10 | Boston Scientific Scimed, Inc. | Medical device handle |
WO2017195125A1 (en) | 2016-05-13 | 2017-11-16 | Jenavalve Technology, Inc. | Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath and loading system |
US10245136B2 (en) | 2016-05-13 | 2019-04-02 | Boston Scientific Scimed Inc. | Containment vessel with implant sheathing guide |
US10201416B2 (en) | 2016-05-16 | 2019-02-12 | Boston Scientific Scimed, Inc. | Replacement heart valve implant with invertible leaflets |
EP3471665B1 (en) | 2016-06-17 | 2023-10-11 | Cephea Valve Technologies, Inc. | Cardiac valve delivery devices |
WO2018093884A1 (en) * | 2016-11-17 | 2018-05-24 | Boston Scientific Scimed, Inc. | Medical device release system |
US10463517B2 (en) * | 2017-01-16 | 2019-11-05 | Cook Medical Technologies Llc | Controlled expansion stent graft delivery system |
JP7046078B2 (en) | 2017-01-23 | 2022-04-01 | セフィア・バルブ・テクノロジーズ,インコーポレイテッド | Replacement mitral valve |
AU2018203053B2 (en) | 2017-01-23 | 2020-03-05 | Cephea Valve Technologies, Inc. | Replacement mitral valves |
WO2018138658A1 (en) | 2017-01-27 | 2018-08-02 | Jenavalve Technology, Inc. | Heart valve mimicry |
JP2018126221A (en) * | 2017-02-06 | 2018-08-16 | 川澄化学工業株式会社 | Catheter for delivery and device for delivering intravascular retainer |
US11744692B2 (en) | 2017-02-23 | 2023-09-05 | Boston Scientific Scimed, Inc. | Medical drain device |
JP6949546B2 (en) * | 2017-04-28 | 2021-10-13 | 川澄化学工業株式会社 | Transport catheter and intravascular indwelling device transport device |
US10828154B2 (en) | 2017-06-08 | 2020-11-10 | Boston Scientific Scimed, Inc. | Heart valve implant commissure support structure |
EP3661458A1 (en) | 2017-08-01 | 2020-06-10 | Boston Scientific Scimed, Inc. | Medical implant locking mechanism |
WO2019035966A1 (en) | 2017-08-16 | 2019-02-21 | Boston Scientific Scimed, Inc. | Replacement heart valve commissure assembly |
EP4252721A3 (en) | 2017-10-11 | 2023-11-22 | W. L. Gore & Associates, Inc. | Implantable medical device constraint and deployment apparatus |
EP3740170A1 (en) | 2018-01-19 | 2020-11-25 | Boston Scientific Scimed, Inc. | Medical device delivery system with feedback loop |
EP3740160A2 (en) | 2018-01-19 | 2020-11-25 | Boston Scientific Scimed Inc. | Inductance mode deployment sensors for transcatheter valve system |
WO2019157156A1 (en) | 2018-02-07 | 2019-08-15 | Boston Scientific Scimed, Inc. | Medical device delivery system with alignment feature |
EP3758651B1 (en) | 2018-02-26 | 2022-12-07 | Boston Scientific Scimed, Inc. | Embedded radiopaque marker in adaptive seal |
CN112399836B (en) | 2018-05-15 | 2024-10-15 | 波士顿科学国际有限公司 | Replacement heart valve commissure assembly |
US11241310B2 (en) | 2018-06-13 | 2022-02-08 | Boston Scientific Scimed, Inc. | Replacement heart valve delivery device |
US11389627B1 (en) | 2018-10-02 | 2022-07-19 | Lutonix Inc. | Balloon protectors, balloon-catheter assemblies, and methods thereof |
US12090072B2 (en) | 2018-11-13 | 2024-09-17 | Icad Endovascular Llc | Systems and methods for delivery retrievable stents |
US10390982B1 (en) | 2018-11-13 | 2019-08-27 | Icad Endovascular Llc | Systems and methods for delivery retrievable stents |
CN109350319B (en) * | 2018-12-06 | 2024-05-14 | 南京法迈特科技发展有限公司 | Implant device with packing support structure |
WO2020123486A1 (en) | 2018-12-10 | 2020-06-18 | Boston Scientific Scimed, Inc. | Medical device delivery system including a resistance member |
US11439504B2 (en) | 2019-05-10 | 2022-09-13 | Boston Scientific Scimed, Inc. | Replacement heart valve with improved cusp washout and reduced loading |
Citations (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4547194A (en) * | 1984-03-16 | 1985-10-15 | Moorehead Harvey R | Hub assemblies and extensions for indwelling catheter tubes and method |
US4572186A (en) * | 1983-12-07 | 1986-02-25 | Cordis Corporation | Vessel dilation |
US4655771A (en) * | 1982-04-30 | 1987-04-07 | Shepherd Patents S.A. | Prosthesis comprising an expansible or contractile tubular body |
US4732152A (en) * | 1984-12-05 | 1988-03-22 | Medinvent S.A. | Device for implantation and a method of implantation in a vessel using such device |
US4848343A (en) * | 1986-10-31 | 1989-07-18 | Medinvent S.A. | Device for transluminal implantation |
US4921479A (en) * | 1987-10-02 | 1990-05-01 | Joseph Grayzel | Catheter sheath with longitudinal seam |
US4990151A (en) * | 1988-09-28 | 1991-02-05 | Medinvent S.A. | Device for transluminal implantation or extraction |
US5026377A (en) * | 1989-07-13 | 1991-06-25 | American Medical Systems, Inc. | Stent placement instrument and method |
US5129887A (en) * | 1988-12-07 | 1992-07-14 | Scimed Life Systems, Inc. | Adjustable manifold for dilatation catheter |
US5201757A (en) * | 1992-04-03 | 1993-04-13 | Schneider (Usa) Inc. | Medial region deployment of radially self-expanding stents |
US5290248A (en) * | 1989-07-24 | 1994-03-01 | Steven F. Bierman | Sideport connector for catherization system |
US5324269A (en) * | 1991-09-19 | 1994-06-28 | Baxter International Inc. | Fully exchangeable dual lumen over-the-wire dilatation catheter with rip seam |
US5360401A (en) * | 1993-02-18 | 1994-11-01 | Advanced Cardiovascular Systems, Inc. | Catheter for stent delivery |
US5389087A (en) * | 1991-09-19 | 1995-02-14 | Baxter International Inc. | Fully exchangeable over-the-wire catheter with rip seam and gated side port |
US5391172A (en) * | 1993-05-24 | 1995-02-21 | Advanced Cardiovascular Systems, Inc. | Stent delivery system with coaxial catheter handle |
US5409495A (en) * | 1993-08-24 | 1995-04-25 | Advanced Cardiovascular Systems, Inc. | Apparatus for uniformly implanting a stent |
US5453090A (en) * | 1994-03-01 | 1995-09-26 | Cordis Corporation | Method of stent delivery through an elongate softenable sheath |
US5458605A (en) * | 1994-04-04 | 1995-10-17 | Advanced Cardiovascular Systems, Inc. | Coiled reinforced retractable sleeve for stent delivery catheter |
US5458615A (en) * | 1993-07-06 | 1995-10-17 | Advanced Cardiovascular Systems, Inc. | Stent delivery system |
US5484444A (en) * | 1992-10-31 | 1996-01-16 | Schneider (Europe) A.G. | Device for the implantation of self-expanding endoprostheses |
US5507768A (en) * | 1991-01-28 | 1996-04-16 | Advanced Cardiovascular Systems, Inc. | Stent delivery system |
US5534007A (en) * | 1995-05-18 | 1996-07-09 | Scimed Life Systems, Inc. | Stent deployment catheter with collapsible sheath |
US5533968A (en) * | 1991-05-15 | 1996-07-09 | Advanced Cardiovascular Systems, Inc. | Low profile catheter with expandable outer tubular member |
US5558101A (en) * | 1994-10-14 | 1996-09-24 | Advanced Cardiovascular System, Inc. | Method and system for holding the position of a guiding member |
US5571168A (en) * | 1995-04-05 | 1996-11-05 | Scimed Lifesystems Inc | Pull back stent delivery system |
US5579780A (en) * | 1994-10-11 | 1996-12-03 | Zadini; Filiberto P. | Manual guidewire placement device |
US5591172A (en) * | 1991-06-14 | 1997-01-07 | Ams Medinvent S.A. | Transluminal implantation device |
US5690644A (en) * | 1992-12-30 | 1997-11-25 | Schneider (Usa) Inc. | Apparatus for deploying body implantable stent |
US5690645A (en) * | 1995-06-28 | 1997-11-25 | Cordis Corporation | Device for moving a catheter in a controlled manner |
US5709703A (en) * | 1995-11-14 | 1998-01-20 | Schneider (Europe) A.G. | Stent delivery device and method for manufacturing same |
US5743874A (en) * | 1994-08-29 | 1998-04-28 | Fischell; Robert E. | Integrated catheter for balloon angioplasty and stent delivery |
US5772669A (en) * | 1996-09-27 | 1998-06-30 | Scimed Life Systems, Inc. | Stent deployment catheter with retractable sheath |
US5776142A (en) * | 1996-12-19 | 1998-07-07 | Medtronic, Inc. | Controllable stent delivery system and method |
US5807327A (en) * | 1995-12-08 | 1998-09-15 | Ethicon, Inc. | Catheter assembly |
US5843028A (en) * | 1992-05-11 | 1998-12-01 | Medical Innovations Corporation | Multi-lumen endoscopic catheter |
US5921968A (en) * | 1997-11-25 | 1999-07-13 | Merit Medical Systems, Inc. | Valve apparatus with adjustable quick-release mechanism |
US5921971A (en) * | 1996-09-13 | 1999-07-13 | Boston Scientific Corporation | Single operator exchange biliary catheter |
US5957974A (en) * | 1997-01-23 | 1999-09-28 | Schneider (Usa) Inc | Stent graft with braided polymeric sleeve |
US5964730A (en) * | 1996-08-15 | 1999-10-12 | Advanced Cardiovascular Systems, Inc. | Protective sheath for catheter balloons |
US5980532A (en) * | 1995-03-02 | 1999-11-09 | Scimed Life Systems, Inc. | Stent installation method using balloon catheter having stepped compliance curve |
US5980533A (en) * | 1998-06-09 | 1999-11-09 | Scimed Life Systems, Inc. | Stent delivery system |
US5989280A (en) * | 1993-10-22 | 1999-11-23 | Scimed Lifesystems, Inc | Stent delivery apparatus and method |
US6007522A (en) * | 1996-09-13 | 1999-12-28 | Boston Scientific Corporation | Single operator exchange biliary catheter |
US6007543A (en) * | 1996-08-23 | 1999-12-28 | Scimed Life Systems, Inc. | Stent delivery system with stent securement means |
US6019778A (en) * | 1998-03-13 | 2000-02-01 | Cordis Corporation | Delivery apparatus for a self-expanding stent |
US6059752A (en) * | 1994-12-09 | 2000-05-09 | Segal; Jerome | Mechanical apparatus and method for dilating and irradiating a site of treatment |
US6074398A (en) * | 1998-01-13 | 2000-06-13 | Datascope Investment Corp. | Reduced diameter stent/graft deployment catheter |
US6077295A (en) * | 1996-07-15 | 2000-06-20 | Advanced Cardiovascular Systems, Inc. | Self-expanding stent delivery system |
US6117140A (en) * | 1998-06-26 | 2000-09-12 | Scimed Life Systems, Inc. | Stent delivery device |
US6120522A (en) * | 1998-08-27 | 2000-09-19 | Scimed Life Systems, Inc. | Self-expanding stent delivery catheter |
US20020193863A1 (en) * | 2000-09-18 | 2002-12-19 | Endotex Interventional Systems, Inc. | Apparatus for delivering endoluminal prosthesis and methods for preparing such apparatus for delivery |
US6592569B2 (en) * | 1999-11-09 | 2003-07-15 | Advanced Cardiovascular Systems, Inc. | Protective sheath for catheters |
US7074213B2 (en) * | 2001-01-09 | 2006-07-11 | Rex Medical, L.P. | Dialysis catheter |
Family Cites Families (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4863442A (en) | 1987-08-14 | 1989-09-05 | C. R. Bard, Inc. | Soft tip catheter |
US5480423A (en) | 1993-05-20 | 1996-01-02 | Boston Scientific Corporation | Prosthesis delivery |
DE59308805D1 (en) | 1993-06-02 | 1998-08-27 | Schneider Europ Ag | Device for releasing a self-expanding endoprosthesis |
US5683451A (en) | 1994-06-08 | 1997-11-04 | Cardiovascular Concepts, Inc. | Apparatus and methods for deployment release of intraluminal prostheses |
US5788707A (en) | 1995-06-07 | 1998-08-04 | Scimed Life Systems, Inc. | Pull back sleeve system with compression resistant inner shaft |
CA2263492C (en) | 1996-08-23 | 2006-10-17 | Scimed Life Systems, Inc. | Stent delivery system having stent securement apparatus |
US5980530A (en) | 1996-08-23 | 1999-11-09 | Scimed Life Systems Inc | Stent delivery system |
ATE254434T1 (en) | 1996-09-18 | 2003-12-15 | Micro Therapeutics Inc | INTRACRANIAL STENT |
US5968052A (en) | 1996-11-27 | 1999-10-19 | Scimed Life Systems Inc. | Pull back stent delivery system with pistol grip retraction handle |
US6248100B1 (en) | 1997-08-14 | 2001-06-19 | Scimed Life Systems, Inc. | Drainage catheter delivery system |
US6235051B1 (en) | 1997-12-16 | 2001-05-22 | Timothy P. Murphy | Method of stent-graft system delivery |
US6533807B2 (en) | 1998-02-05 | 2003-03-18 | Medtronic, Inc. | Radially-expandable stent and delivery system |
US6425898B1 (en) | 1998-03-13 | 2002-07-30 | Cordis Corporation | Delivery apparatus for a self-expanding stent |
AU3342399A (en) | 1998-03-31 | 1999-10-18 | Salviac Limited | A delivery catheter |
US6132458A (en) | 1998-05-15 | 2000-10-17 | American Medical Systems, Inc. | Method and device for loading a stent |
ES2237168T3 (en) | 1998-09-30 | 2005-07-16 | Bard Peripheral Vascular, Inc. | SUPPLY MECHANISM FOR IMPLANTABLE STENT. |
US6146415A (en) | 1999-05-07 | 2000-11-14 | Advanced Cardiovascular Systems, Inc. | Stent delivery system |
EP1180003B1 (en) | 1999-05-20 | 2008-01-16 | Boston Scientific Limited | Stent delivery system with nested stabilizer |
US6478814B2 (en) | 1999-06-14 | 2002-11-12 | Scimed Life Systems, Inc. | Stent securement sleeves and optional coatings and methods of use |
US6398802B1 (en) | 1999-06-21 | 2002-06-04 | Scimed Life Systems, Inc. | Low profile delivery system for stent and graft deployment |
US6287329B1 (en) | 1999-06-28 | 2001-09-11 | Nitinol Development Corporation | Stent keeper for a self-expanding stent delivery system |
US6494889B1 (en) | 1999-09-01 | 2002-12-17 | Converge Medical, Inc. | Additional sutureless anastomosis embodiments |
US6613075B1 (en) | 1999-10-27 | 2003-09-02 | Cordis Corporation | Rapid exchange self-expanding stent delivery catheter system |
EP1227771B1 (en) | 1999-11-11 | 2007-08-01 | Angiomed GmbH & Co. Medizintechnik KG | Implant delivery device |
US6322586B1 (en) | 2000-01-10 | 2001-11-27 | Scimed Life Systems, Inc. | Catheter tip designs and method of manufacture |
US6554848B2 (en) | 2000-06-02 | 2003-04-29 | Advanced Cardiovascular Systems, Inc. | Marker device for rotationally orienting a stent delivery system prior to deploying a curved self-expanding stent |
SE522805C2 (en) | 2000-06-22 | 2004-03-09 | Jan Otto Solem | Stent Application System |
US6527779B1 (en) | 2000-07-10 | 2003-03-04 | Endotex Interventional Systems, Inc. | Stent delivery device |
US6383344B1 (en) | 2000-07-19 | 2002-05-07 | Genzyme Corporation | Molecular weight reduction of polymer using irradiation treatment |
US6428566B1 (en) | 2000-10-31 | 2002-08-06 | Advanced Cardiovascular Systems, Inc. | Flexible hoop and link sheath for a stent delivery system |
US6582460B1 (en) | 2000-11-20 | 2003-06-24 | Advanced Cardiovascular Systems, Inc. | System and method for accurately deploying a stent |
US6623491B2 (en) | 2001-01-18 | 2003-09-23 | Ev3 Peripheral, Inc. | Stent delivery system with spacer member |
US6899727B2 (en) * | 2001-01-22 | 2005-05-31 | Gore Enterprise Holdings, Inc. | Deployment system for intraluminal devices |
US6743210B2 (en) | 2001-02-15 | 2004-06-01 | Scimed Life Systems, Inc. | Stent delivery catheter positioning device |
US6623518B2 (en) | 2001-02-26 | 2003-09-23 | Ev3 Peripheral, Inc. | Implant delivery system with interlock |
US6592549B2 (en) | 2001-03-14 | 2003-07-15 | Scimed Life Systems, Inc. | Rapid exchange stent delivery system and associated components |
-
2004
- 2004-01-23 US US10/764,054 patent/US7468070B2/en not_active Expired - Fee Related
-
2005
- 2005-01-05 EP EP05704976A patent/EP1706065A1/en not_active Withdrawn
- 2005-01-05 WO PCT/US2005/000150 patent/WO2005072650A1/en active Application Filing
- 2005-01-05 JP JP2006551106A patent/JP4857125B2/en not_active Expired - Fee Related
- 2005-01-05 CA CA002553529A patent/CA2553529A1/en not_active Abandoned
-
2008
- 2008-12-17 US US12/337,069 patent/US20090105802A1/en not_active Abandoned
Patent Citations (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4655771B1 (en) * | 1982-04-30 | 1996-09-10 | Medinvent Ams Sa | Prosthesis comprising an expansible or contractile tubular body |
US4655771A (en) * | 1982-04-30 | 1987-04-07 | Shepherd Patents S.A. | Prosthesis comprising an expansible or contractile tubular body |
US4572186A (en) * | 1983-12-07 | 1986-02-25 | Cordis Corporation | Vessel dilation |
US4547194A (en) * | 1984-03-16 | 1985-10-15 | Moorehead Harvey R | Hub assemblies and extensions for indwelling catheter tubes and method |
US4732152A (en) * | 1984-12-05 | 1988-03-22 | Medinvent S.A. | Device for implantation and a method of implantation in a vessel using such device |
US4848343A (en) * | 1986-10-31 | 1989-07-18 | Medinvent S.A. | Device for transluminal implantation |
US4921479A (en) * | 1987-10-02 | 1990-05-01 | Joseph Grayzel | Catheter sheath with longitudinal seam |
US4990151A (en) * | 1988-09-28 | 1991-02-05 | Medinvent S.A. | Device for transluminal implantation or extraction |
US5129887A (en) * | 1988-12-07 | 1992-07-14 | Scimed Life Systems, Inc. | Adjustable manifold for dilatation catheter |
US5026377A (en) * | 1989-07-13 | 1991-06-25 | American Medical Systems, Inc. | Stent placement instrument and method |
US5290248A (en) * | 1989-07-24 | 1994-03-01 | Steven F. Bierman | Sideport connector for catherization system |
US6113607A (en) * | 1991-01-28 | 2000-09-05 | Advanced Cardiovascular Systems, Inc. | Method of delivering a stent |
US5782855A (en) * | 1991-01-28 | 1998-07-21 | Advanced Cardiovascular Systems, Inc. | Stent delivery system |
US5507768A (en) * | 1991-01-28 | 1996-04-16 | Advanced Cardiovascular Systems, Inc. | Stent delivery system |
US5533968A (en) * | 1991-05-15 | 1996-07-09 | Advanced Cardiovascular Systems, Inc. | Low profile catheter with expandable outer tubular member |
US5591172A (en) * | 1991-06-14 | 1997-01-07 | Ams Medinvent S.A. | Transluminal implantation device |
US5324269A (en) * | 1991-09-19 | 1994-06-28 | Baxter International Inc. | Fully exchangeable dual lumen over-the-wire dilatation catheter with rip seam |
US5389087A (en) * | 1991-09-19 | 1995-02-14 | Baxter International Inc. | Fully exchangeable over-the-wire catheter with rip seam and gated side port |
US5201757A (en) * | 1992-04-03 | 1993-04-13 | Schneider (Usa) Inc. | Medial region deployment of radially self-expanding stents |
US5843028A (en) * | 1992-05-11 | 1998-12-01 | Medical Innovations Corporation | Multi-lumen endoscopic catheter |
US5484444A (en) * | 1992-10-31 | 1996-01-16 | Schneider (Europe) A.G. | Device for the implantation of self-expanding endoprostheses |
US5690644A (en) * | 1992-12-30 | 1997-11-25 | Schneider (Usa) Inc. | Apparatus for deploying body implantable stent |
US5360401A (en) * | 1993-02-18 | 1994-11-01 | Advanced Cardiovascular Systems, Inc. | Catheter for stent delivery |
US5391172A (en) * | 1993-05-24 | 1995-02-21 | Advanced Cardiovascular Systems, Inc. | Stent delivery system with coaxial catheter handle |
US5458615A (en) * | 1993-07-06 | 1995-10-17 | Advanced Cardiovascular Systems, Inc. | Stent delivery system |
US5409495A (en) * | 1993-08-24 | 1995-04-25 | Advanced Cardiovascular Systems, Inc. | Apparatus for uniformly implanting a stent |
US5989280A (en) * | 1993-10-22 | 1999-11-23 | Scimed Lifesystems, Inc | Stent delivery apparatus and method |
US5593412A (en) * | 1994-03-01 | 1997-01-14 | Cordis Corporation | Stent delivery method and apparatus |
US5453090A (en) * | 1994-03-01 | 1995-09-26 | Cordis Corporation | Method of stent delivery through an elongate softenable sheath |
US5458605A (en) * | 1994-04-04 | 1995-10-17 | Advanced Cardiovascular Systems, Inc. | Coiled reinforced retractable sleeve for stent delivery catheter |
US5743874A (en) * | 1994-08-29 | 1998-04-28 | Fischell; Robert E. | Integrated catheter for balloon angioplasty and stent delivery |
US5579780A (en) * | 1994-10-11 | 1996-12-03 | Zadini; Filiberto P. | Manual guidewire placement device |
US5558101A (en) * | 1994-10-14 | 1996-09-24 | Advanced Cardiovascular System, Inc. | Method and system for holding the position of a guiding member |
US6059752A (en) * | 1994-12-09 | 2000-05-09 | Segal; Jerome | Mechanical apparatus and method for dilating and irradiating a site of treatment |
US5980532A (en) * | 1995-03-02 | 1999-11-09 | Scimed Life Systems, Inc. | Stent installation method using balloon catheter having stepped compliance curve |
US5571168A (en) * | 1995-04-05 | 1996-11-05 | Scimed Lifesystems Inc | Pull back stent delivery system |
US5534007A (en) * | 1995-05-18 | 1996-07-09 | Scimed Life Systems, Inc. | Stent deployment catheter with collapsible sheath |
US5690645A (en) * | 1995-06-28 | 1997-11-25 | Cordis Corporation | Device for moving a catheter in a controlled manner |
US5709703A (en) * | 1995-11-14 | 1998-01-20 | Schneider (Europe) A.G. | Stent delivery device and method for manufacturing same |
US5807327A (en) * | 1995-12-08 | 1998-09-15 | Ethicon, Inc. | Catheter assembly |
US6077295A (en) * | 1996-07-15 | 2000-06-20 | Advanced Cardiovascular Systems, Inc. | Self-expanding stent delivery system |
US5964730A (en) * | 1996-08-15 | 1999-10-12 | Advanced Cardiovascular Systems, Inc. | Protective sheath for catheter balloons |
US6007543A (en) * | 1996-08-23 | 1999-12-28 | Scimed Life Systems, Inc. | Stent delivery system with stent securement means |
US5921971A (en) * | 1996-09-13 | 1999-07-13 | Boston Scientific Corporation | Single operator exchange biliary catheter |
US6007522A (en) * | 1996-09-13 | 1999-12-28 | Boston Scientific Corporation | Single operator exchange biliary catheter |
US5772669A (en) * | 1996-09-27 | 1998-06-30 | Scimed Life Systems, Inc. | Stent deployment catheter with retractable sheath |
US5776142A (en) * | 1996-12-19 | 1998-07-07 | Medtronic, Inc. | Controllable stent delivery system and method |
US5957974A (en) * | 1997-01-23 | 1999-09-28 | Schneider (Usa) Inc | Stent graft with braided polymeric sleeve |
US5921968A (en) * | 1997-11-25 | 1999-07-13 | Merit Medical Systems, Inc. | Valve apparatus with adjustable quick-release mechanism |
US6074398A (en) * | 1998-01-13 | 2000-06-13 | Datascope Investment Corp. | Reduced diameter stent/graft deployment catheter |
US6019778A (en) * | 1998-03-13 | 2000-02-01 | Cordis Corporation | Delivery apparatus for a self-expanding stent |
US5980533A (en) * | 1998-06-09 | 1999-11-09 | Scimed Life Systems, Inc. | Stent delivery system |
US6117140A (en) * | 1998-06-26 | 2000-09-12 | Scimed Life Systems, Inc. | Stent delivery device |
US6120522A (en) * | 1998-08-27 | 2000-09-19 | Scimed Life Systems, Inc. | Self-expanding stent delivery catheter |
US6592569B2 (en) * | 1999-11-09 | 2003-07-15 | Advanced Cardiovascular Systems, Inc. | Protective sheath for catheters |
US20020193863A1 (en) * | 2000-09-18 | 2002-12-19 | Endotex Interventional Systems, Inc. | Apparatus for delivering endoluminal prosthesis and methods for preparing such apparatus for delivery |
US7074213B2 (en) * | 2001-01-09 | 2006-07-11 | Rex Medical, L.P. | Dialysis catheter |
Cited By (90)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9849014B2 (en) | 2002-03-12 | 2017-12-26 | Covidien Lp | Medical device delivery |
US9393021B2 (en) | 2004-05-25 | 2016-07-19 | Covidien Lp | Flexible vascular occluding device |
US20060206200A1 (en) * | 2004-05-25 | 2006-09-14 | Chestnut Medical Technologies, Inc. | Flexible vascular occluding device |
US9855047B2 (en) | 2004-05-25 | 2018-01-02 | Covidien Lp | Flexible vascular occluding device |
US10004618B2 (en) | 2004-05-25 | 2018-06-26 | Covidien Lp | Methods and apparatus for luminal stenting |
US9801744B2 (en) | 2004-05-25 | 2017-10-31 | Covidien Lp | Methods and apparatus for luminal stenting |
US8382825B2 (en) | 2004-05-25 | 2013-02-26 | Covidien Lp | Flexible vascular occluding device |
US9125659B2 (en) | 2004-05-25 | 2015-09-08 | Covidien Lp | Flexible vascular occluding device |
US8398701B2 (en) | 2004-05-25 | 2013-03-19 | Covidien Lp | Flexible vascular occluding device |
US8617234B2 (en) | 2004-05-25 | 2013-12-31 | Covidien Lp | Flexible vascular occluding device |
US8623067B2 (en) | 2004-05-25 | 2014-01-07 | Covidien Lp | Methods and apparatus for luminal stenting |
US8628564B2 (en) | 2004-05-25 | 2014-01-14 | Covidien Lp | Methods and apparatus for luminal stenting |
US12042411B2 (en) | 2004-05-25 | 2024-07-23 | Covidien Lp | Methods and apparatus for luminal stenting |
US10765542B2 (en) | 2004-05-25 | 2020-09-08 | Covidien Lp | Methods and apparatus for luminal stenting |
US9050205B2 (en) | 2004-05-25 | 2015-06-09 | Covidien Lp | Methods and apparatus for luminal stenting |
US10918389B2 (en) | 2004-05-25 | 2021-02-16 | Covidien Lp | Flexible vascular occluding device |
US11771433B2 (en) | 2004-05-25 | 2023-10-03 | Covidien Lp | Flexible vascular occluding device |
US9295568B2 (en) | 2004-05-25 | 2016-03-29 | Covidien Lp | Methods and apparatus for luminal stenting |
US9381104B2 (en) | 2005-05-25 | 2016-07-05 | Covidien Lp | System and method for delivering and deploying an occluding device within a vessel |
US8236042B2 (en) | 2005-05-25 | 2012-08-07 | Tyco Healthcare Group Lp | System and method for delivering and deploying an occluding device within a vessel |
US8147534B2 (en) | 2005-05-25 | 2012-04-03 | Tyco Healthcare Group Lp | System and method for delivering and deploying an occluding device within a vessel |
US8257421B2 (en) | 2005-05-25 | 2012-09-04 | Tyco Healthcare Group Lp | System and method for delivering and deploying an occluding device within a vessel |
US8267985B2 (en) | 2005-05-25 | 2012-09-18 | Tyco Healthcare Group Lp | System and method for delivering and deploying an occluding device within a vessel |
US9198666B2 (en) | 2005-05-25 | 2015-12-01 | Covidien Lp | System and method for delivering and deploying an occluding device within a vessel |
US9204983B2 (en) | 2005-05-25 | 2015-12-08 | Covidien Lp | System and method for delivering and deploying an occluding device within a vessel |
US9095343B2 (en) | 2005-05-25 | 2015-08-04 | Covidien Lp | System and method for delivering and deploying an occluding device within a vessel |
US10064747B2 (en) | 2005-05-25 | 2018-09-04 | Covidien Lp | System and method for delivering and deploying an occluding device within a vessel |
US10322018B2 (en) | 2005-05-25 | 2019-06-18 | Covidien Lp | System and method for delivering and deploying an occluding device within a vessel |
US8273101B2 (en) | 2005-05-25 | 2012-09-25 | Tyco Healthcare Group Lp | System and method for delivering and deploying an occluding device within a vessel |
US8394119B2 (en) | 2006-02-22 | 2013-03-12 | Covidien Lp | Stents having radiopaque mesh |
US9320590B2 (en) | 2006-02-22 | 2016-04-26 | Covidien Lp | Stents having radiopaque mesh |
US10433988B2 (en) | 2006-02-22 | 2019-10-08 | Covidien Lp | Stents having radiopaque mesh |
US11382777B2 (en) | 2006-02-22 | 2022-07-12 | Covidien Lp | Stents having radiopaque mesh |
US9610181B2 (en) | 2006-02-22 | 2017-04-04 | Covidien Lp | Stents having radiopaque mesh |
US10610389B2 (en) | 2008-05-13 | 2020-04-07 | Covidien Lp | Braid implant delivery systems |
US9675482B2 (en) | 2008-05-13 | 2017-06-13 | Covidien Lp | Braid implant delivery systems |
US11707371B2 (en) | 2008-05-13 | 2023-07-25 | Covidien Lp | Braid implant delivery systems |
US11931276B2 (en) | 2008-06-11 | 2024-03-19 | C. R. Bard, Inc. | Catheter delivery device |
US11109990B2 (en) | 2008-06-11 | 2021-09-07 | C. R. Bard, Inc. | Catheter delivery device |
US9750625B2 (en) | 2008-06-11 | 2017-09-05 | C.R. Bard, Inc. | Catheter delivery device |
US8636760B2 (en) | 2009-04-20 | 2014-01-28 | Covidien Lp | System and method for delivering and deploying an occluding device within a vessel |
US9192498B2 (en) | 2012-02-23 | 2015-11-24 | Covidien Lp | Luminal stenting |
US9308110B2 (en) | 2012-02-23 | 2016-04-12 | Covidien Lp | Luminal stenting |
US9072624B2 (en) | 2012-02-23 | 2015-07-07 | Covidien Lp | Luminal stenting |
US10537452B2 (en) | 2012-02-23 | 2020-01-21 | Covidien Lp | Luminal stenting |
US11259946B2 (en) | 2012-02-23 | 2022-03-01 | Covidien Lp | Luminal stenting |
US9724221B2 (en) | 2012-02-23 | 2017-08-08 | Covidien Lp | Luminal stenting |
US9675488B2 (en) | 2012-02-23 | 2017-06-13 | Covidien Lp | Luminal stenting |
US9949853B2 (en) | 2012-04-23 | 2018-04-24 | Covidien Lp | Delivery system with hooks for resheathability |
US9078659B2 (en) | 2012-04-23 | 2015-07-14 | Covidien Lp | Delivery system with hooks for resheathability |
US9155647B2 (en) | 2012-07-18 | 2015-10-13 | Covidien Lp | Methods and apparatus for luminal stenting |
US9877856B2 (en) | 2012-07-18 | 2018-01-30 | Covidien Lp | Methods and apparatus for luminal stenting |
US20140025150A1 (en) * | 2012-07-20 | 2014-01-23 | Tyco Healthcare Group Lp | Resheathable stent delivery system |
US9724222B2 (en) * | 2012-07-20 | 2017-08-08 | Covidien Lp | Resheathable stent delivery system |
US9114001B2 (en) | 2012-10-30 | 2015-08-25 | Covidien Lp | Systems for attaining a predetermined porosity of a vascular device |
US9907643B2 (en) | 2012-10-30 | 2018-03-06 | Covidien Lp | Systems for attaining a predetermined porosity of a vascular device |
US9301831B2 (en) | 2012-10-30 | 2016-04-05 | Covidien Lp | Methods for attaining a predetermined porosity of a vascular device |
US10952878B2 (en) | 2012-10-31 | 2021-03-23 | Covidien Lp | Methods and systems for increasing a density of a region of a vascular device |
US10206798B2 (en) | 2012-10-31 | 2019-02-19 | Covidien Lp | Methods and systems for increasing a density of a region of a vascular device |
US9452070B2 (en) | 2012-10-31 | 2016-09-27 | Covidien Lp | Methods and systems for increasing a density of a region of a vascular device |
US9943427B2 (en) | 2012-11-06 | 2018-04-17 | Covidien Lp | Shaped occluding devices and methods of using the same |
US9561122B2 (en) | 2013-02-05 | 2017-02-07 | Covidien Lp | Vascular device for aneurysm treatment and providing blood flow into a perforator vessel |
US9157174B2 (en) | 2013-02-05 | 2015-10-13 | Covidien Lp | Vascular device for aneurysm treatment and providing blood flow into a perforator vessel |
US10130500B2 (en) | 2013-07-25 | 2018-11-20 | Covidien Lp | Methods and apparatus for luminal stenting |
US10695204B2 (en) | 2013-08-27 | 2020-06-30 | Covidien Lp | Delivery of medical devices |
US10045867B2 (en) | 2013-08-27 | 2018-08-14 | Covidien Lp | Delivery of medical devices |
US9782186B2 (en) | 2013-08-27 | 2017-10-10 | Covidien Lp | Vascular intervention system |
US9775733B2 (en) | 2013-08-27 | 2017-10-03 | Covidien Lp | Delivery of medical devices |
US9827126B2 (en) | 2013-08-27 | 2017-11-28 | Covidien Lp | Delivery of medical devices |
US9474639B2 (en) | 2013-08-27 | 2016-10-25 | Covidien Lp | Delivery of medical devices |
US10092431B2 (en) | 2013-08-27 | 2018-10-09 | Covidien Lp | Delivery of medical devices |
US10265207B2 (en) | 2013-08-27 | 2019-04-23 | Covidien Lp | Delivery of medical devices |
US11103374B2 (en) | 2013-08-27 | 2021-08-31 | Covidien Lp | Delivery of medical devices |
US11076972B2 (en) | 2013-08-27 | 2021-08-03 | Covidien Lp | Delivery of medical devices |
WO2017004209A1 (en) * | 2015-06-29 | 2017-01-05 | 480 Biomedical, Inc. | Scaffold loading and delivery systems |
WO2017180401A1 (en) * | 2016-04-11 | 2017-10-19 | Idev Technologies, Inc. | Stent delivery system having anisotropic sheath |
US10022255B2 (en) | 2016-04-11 | 2018-07-17 | Idev Technologies, Inc. | Stent delivery system having anisotropic sheath |
CN107280832A (en) * | 2016-04-11 | 2017-10-24 | Idev科技公司 | The stent delivery system of sheath is protected with anisotropy |
US10376396B2 (en) | 2017-01-19 | 2019-08-13 | Covidien Lp | Coupling units for medical device delivery systems |
US10945867B2 (en) | 2017-01-19 | 2021-03-16 | Covidien Lp | Coupling units for medical device delivery systems |
US11833069B2 (en) | 2017-01-19 | 2023-12-05 | Covidien Lp | Coupling units for medical device delivery systems |
US10786377B2 (en) | 2018-04-12 | 2020-09-29 | Covidien Lp | Medical device delivery |
US11071637B2 (en) | 2018-04-12 | 2021-07-27 | Covidien Lp | Medical device delivery |
US11648140B2 (en) | 2018-04-12 | 2023-05-16 | Covidien Lp | Medical device delivery |
US11413176B2 (en) | 2018-04-12 | 2022-08-16 | Covidien Lp | Medical device delivery |
US11123209B2 (en) | 2018-04-12 | 2021-09-21 | Covidien Lp | Medical device delivery |
US11413174B2 (en) | 2019-06-26 | 2022-08-16 | Covidien Lp | Core assembly for medical device delivery systems |
US12042413B2 (en) | 2021-04-07 | 2024-07-23 | Covidien Lp | Delivery of medical devices |
US12109137B2 (en) | 2021-07-30 | 2024-10-08 | Covidien Lp | Medical device delivery |
US11944558B2 (en) | 2021-08-05 | 2024-04-02 | Covidien Lp | Medical device delivery devices, systems, and methods |
Also Published As
Publication number | Publication date |
---|---|
CA2553529A1 (en) | 2005-08-11 |
US20050165352A1 (en) | 2005-07-28 |
JP4857125B2 (en) | 2012-01-18 |
WO2005072650A1 (en) | 2005-08-11 |
JP2007518518A (en) | 2007-07-12 |
EP1706065A1 (en) | 2006-10-04 |
US7468070B2 (en) | 2008-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7468070B2 (en) | Stent delivery catheter | |
US7887574B2 (en) | Stent delivery catheter | |
AU736076B2 (en) | A delivery apparatus for a self-expanding stent | |
US6027509A (en) | Stent retrieval device | |
US6368344B1 (en) | Stent deployment system with reinforced inner member | |
US6241758B1 (en) | Self-expanding stent delivery system and method of use | |
JP5046458B2 (en) | Implant delivery device | |
US6425898B1 (en) | Delivery apparatus for a self-expanding stent | |
US8177832B2 (en) | Endoluminal expansion system | |
EP1129674B1 (en) | Stent delivery system having delivery catheter member with a clear transition zone | |
US6620191B1 (en) | System for releasably securing a stent on a catheter assembly and method of use | |
US8182522B2 (en) | Apparatus and method for delivering lined intraluminal prostheses | |
EP1946725A1 (en) | System for the controlled delivery of stents and grafts | |
US20100087908A1 (en) | Apparatus and methods for stent delivery with embolic protection | |
JP2002102357A (en) | Feeder for self-expanding stent | |
US20120065644A1 (en) | Stent deployment system with retractable shealth |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |