US20090105802A1 - Stent delivery catheter - Google Patents

Stent delivery catheter Download PDF

Info

Publication number
US20090105802A1
US20090105802A1 US12/337,069 US33706908A US2009105802A1 US 20090105802 A1 US20090105802 A1 US 20090105802A1 US 33706908 A US33706908 A US 33706908A US 2009105802 A1 US2009105802 A1 US 2009105802A1
Authority
US
United States
Prior art keywords
stent
sheath
region
tapered tip
fracturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/337,069
Inventor
William S. Henry
John E. Ortiz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boston Scientific Scimed Inc
Original Assignee
Boston Scientific Scimed Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boston Scientific Scimed Inc filed Critical Boston Scientific Scimed Inc
Priority to US12/337,069 priority Critical patent/US20090105802A1/en
Publication of US20090105802A1 publication Critical patent/US20090105802A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/962Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve
    • A61F2/97Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve the outer sleeve being splittable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/962Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve
    • A61F2/966Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve with relative longitudinal movement between outer sleeve and prosthesis, e.g. using a push rod

Definitions

  • the present invention is related generally to medical devices. More specifically, the present invention is related to catheters.
  • the present invention includes stent delivery catheter apparatus with a tapered tip that is fracturable during deployment of a self-expanding stent that has been loaded onto the catheter.
  • Atherosclerotic disease is a leading cause of death in the industrialized world, particularly in the United States. Many heart attacks and strokes are caused in part by a narrowed, stenosed blood vessel.
  • a medical procedure commonly used to deal with vessel stenosis is angioplasty.
  • Angioplasty in particular Percutaneous Transluminal Angioplasty (PTA), includes inserting a balloon catheter into the femoral artery near the groin, and advancing the catheter to the stenosis. The balloon can then be inflated to widen or dilate the narrowed region. The balloon catheter can then be withdrawn. In some cases, the widened vessel rebounds or re-closes, narrowing the vessel over a period of time.
  • PTA Percutaneous Transluminal Angioplasty
  • Stents have come into increasing use to prevent the widened vessel regions from narrowing after angioplasty.
  • a stent typically having a tubular shape, can be put in place in the widened vessel region to hold the vessel walls apart and the lumen open in the event the conditions would otherwise result in re-stenosis.
  • One class of stents requires that the stent be forcibly outwardly expanded to put the stent into position against the vessel walls.
  • Another class of stents, self-expanding stents can be delivered to a site in a compressed or constrained configuration and released in the vessel region to be supported. The self-expanding stent then expands in place to a configuration having a wide lumen, typically pressing firmly against the vessel walls where released.
  • the stent is commonly placed at a recently dilated, stenosed vessel region.
  • Self-expanding stents can be delivered to a target site mounted over an inner tube or shaft and constrained within the distal end of an enclosing retractable tube or sleeve.
  • the self-expanding stent can be freed from the restraint of the outer sheath by either distally pushing the inner shaft against the stent or proximally pulling the retractable outer sheath from over the stent. Once free of the outer restraint, the self-expanding stent can expand to force itself against the vessel inner walls.
  • Self-expanding stents are often elastically biased to assume an original larger shape after being temporarily compressed into a smaller size to more easily be transported through blood vessels to the target site. There is an ongoing need for improvements in catheters that deliver self-expanding stents.
  • the present invention relates to a stent delivery device having a tapered tip that is fracturable during deployment or by deploying a self-expanding stent from the stent delivery device.
  • a self-expanding stent delivery assembly includes a shaft having a proximal end, a distal end, a distal region, a lumen, and a longitudinal axis.
  • a retractable sheath having an outer surface, a proximal end and a distal end is co-axially disposed around the shaft distal region.
  • a stent is disposed co-axially between the shaft and the retractable sheath.
  • a tubular tapered tip is bonded to the retractable sheath distal end. The tubular tapered tip has an elongate region predisposed to fracturing.
  • a method of delivering a self-expanding stent includes placing a stent delivery device at a target site.
  • the stent delivery device includes a shaft having a proximal end, a distal end, a distal region, a lumen, and a longitudinal axis; a retractable sheath having a proximal end and a distal end co-axially disposed around the shaft distal region; a stent disposed co-axially between the shaft and the retractable sheath; and a tubular tapered tip bonded to the retractable sheath distal end, the tubular tapered tip having an elongate region predisposed to fracturing.
  • the stent is deployed at the target site by retracting the retractable sheath or advancing the stent and fracturing the elongate region predisposed to fracturing.
  • the stent delivery device is then removed from the target site.
  • FIG. 1 is a partial longitudinal cross-sectional view of a stent delivery device
  • FIG. 2 is a cross-sectional view of the stent delivery device of FIG. 1 taken along line 2 - 2 ;
  • FIG. 3 is a perspective view of a tapered tip
  • FIG. 4 is a perspective view of the tapered tip of FIG. 3 while partially deploying a stent
  • FIG. 5 is a perspective view of another embodiment of a tapered tip.
  • FIG. 6 is a perspective view of the tapered tip of FIG. 5 while partially deploying a stent.
  • the stent delivery device and method for using the stent delivery device of the present invention are believed to be applicable to a variety of applications where delivery of stents is desired, for example, atherosclerotic stent delivery. While the present invention is not so limited, an appreciation of various aspects of the invention will be gained through a discussion of the examples provided below.
  • tubular members illustrated in the Figures have generally circular cross sections, this is not a necessary part of the present invention, and the tubular members are merely shown as such for purposes of simplicity in illustration.
  • FIG. 1 illustrates a stent delivery device or catheter 30 .
  • Catheter assembly 30 includes an inner tube 32 having a lumen 33 therethrough (as shown in FIG. 2 ), a distal region 40 and a distal end 42 .
  • Inner tube 32 is preferably formed of a metal, polymeric material, or polymeric/metal composite material suitable for delivering a stent through tortuous vessel passages and in one embodiment, is suitable for receiving a guidewire therethrough.
  • One useful material can include a braided polyamide tubing.
  • the catheter assembly 30 can be guided to the target site via a guidewire 80 .
  • the guidewire 80 can be within the inner tube 32 lumen 33 .
  • the guide wire can be any operable diameter such as, for example, 0.01 to 0.04 inch or 0.014 to 0.035 inch, however a guide wire is not required in all embodiments.
  • a retractable sheath 34 having a distal region or end 44 is slidably disposed over inner tube 32 , having an annular space 66 sufficient in size to receive a compressed stent between inner tube 32 and retractable sheath 34 .
  • the retractable sheath 34 can remain static, and a stent or inner tube 32 can be advancable relative to the retractable sheath 34 .
  • Retractable sheath 34 can be formed of a metal, polymeric material, or polymeric/metal composite material preferably sufficiently lubricious to ease in advancing catheter assembly 30 through increasingly smaller blood vessels.
  • Sheath 34 can be formed from a variety of materials such as, for example, high density polyethylene, nylon, reinforced nylons, or polyurethanes. Sheath 34 can have an inner layer 31 including a lubricious material such as, for example, polytetrafluoroethylene.
  • a stop 35 is affixed to the inner tube 32 proximal of its distal end 42 , about the length of a stent 50 and near the distal end of the catheter 30 .
  • the stop 35 functions to hold the stent 50 axially during deployment of the stent 50 relative to the outer tube 34 .
  • a distally positioned tapered tip 36 is disposed distal to or adjacent to the inner tube distal region 40 and is affixed to or formed integral with retractable sheath 34 .
  • tapered tip 36 can be formed of a shrinkable film material, for example, a heat-shrinkable material such as polyolefin copolymer, nylon, or polytetrafluoroethylene.
  • tapered tip 36 can be formed of the same or similar material to the material forming the retractable sheath 34 .
  • the tapered tip 36 can be formed from the same layer of material forming at least a portion of the retractable sheath 34 .
  • the tapered tip 36 can be secured to retractable sheath 34 using a variety of methods such as, for example, molding, extrusion, heat bonding, adhesives, laser bonding, or solvent welding, using methods well known to those skilled in the art.
  • Any type of connection means may be used to affix the tapered tip 36 to the retractable sheath 34 .
  • This connection means can include, for example, a lap joint, butt joint or integral molding.
  • a mechanical connection such as threads or friction fit could be utilized.
  • the tapered tip 36 can include a waist portion 64 and a free portion 60 .
  • the tapered tip 36 is formed integrally with retractable sheath 34 and the outer surface of the tapered tip 36 is continuous with the outer surface of the retractable sleeve 34 , thus the connection is smooth and substantially free of transitions.
  • Tapered tip 36 is illustrated having an open distal end 70 .
  • the tapered tip 36 can have a closed distal end 70 .
  • the open distal end 70 can be sized and configured to slidably engage or pass the guide wire 80 .
  • a guide wire 80 is not required in all embodiments.
  • the waist portion 64 can be disposed to and affixed to the distal end 44 of the retractable sheath 34 .
  • the free portion 60 can extend distally beyond the distal end 44 of the retractable sheath 34 .
  • the tapered tip 36 can aid in tracking stent delivery device 30 through vessel passages and turns.
  • the tapered tip 36 is conically tapered.
  • the tapered tip 36 can have an arcuate taper or any arrangement of constant diameters and tapers, as desired.
  • the tubular tip 36 has at least one elongate region predisposed to fracturing 90 .
  • the tubular tip 36 can have 2, 3, 4, 5, 6, 7, 8, 9, 10 or more elongate regions predisposed to fracturing 90 .
  • the elongate region predisposed to fracturing 90 fractures the tapered tip to expand the open distal end 70 and allows the stent 50 to pass through the fractured tapered tip 36 open distal end 70 generally unimpeded.
  • the elongate region predisposed to fracturing 90 can be co-planar with a longitudinal axis running along the length of the stent delivery device 30 .
  • the elongate region predisposed to fracturing 90 can be formed on the tapered tip 36 before the tapered tip 36 is affixed to the retractable sheath 34 , or formed during the process of affixing the tapered tip 36 to the retractable sheath 34 or integrally forming the tapered tip 36 from the layer of material forming at least a portion of the retractable sheath 34 , or after affixing/integrally forming the tapered tip 36 with the retractable sheath 34 .
  • the elongate region predisposed to fracturing 90 can be a line of perforations that extend through a portion of or through the entire tubular tip 36 wall thickness.
  • the elongate region predisposed to fracturing 90 can be a score line that extends through a portion of the tubular tip 36 wall thickness where the wall thickness along the score line 90 is less than the thickness along the remaining tubular tip 36 wall.
  • the elongate region predisposed to fracturing 90 can be material having a tensile strength that is less than the tensile strength of the remaining tubular tip 36 .
  • FIG. 2 is a cross-sectional view of the stent delivery device of FIG. 1 taken along line 2 - 2 .
  • An inner lumen 33 is coaxially disposed about a guidewire 80 .
  • a self-expanding stent 50 can be placed into annular space 66 between retractable sheath 34 and inner tube 32 .
  • the stent 50 can be placed over the inner tube 32 by sliding the stent 50 proximally over the inner tube distal end 42 .
  • Stent 50 can be compressed using a suitable tool or jig, to decrease the outer diameter of the stent 50 to a size compatible with the annular space 66 .
  • the stent 50 With the stent 50 compressed, the stent 50 can be axially and proximally slid over inner tube 32 and within sleeve distal region 44 , to reside in annular space 66 .
  • any restraining tool or jig can be removed from the catheter.
  • tubular tip 36 can be affixed to retractable sheath 34 distal end 44 .
  • a compressed stent 50 can be placed onto the inner tube 32 and loaded into the catheter 30 from a proximal end of the catheter 30 .
  • the inner tube 32 and compressed stent 50 can be moved toward the sleeve distal region 44 .
  • the tubular tip 36 can be attached to the retractable sheath 34 prior to loading the compressed stent 50 into the catheter 30 .
  • the retractable sheath 34 can be any material as described above such as, for example, a clear medical grade PTFE (polytetrafluoroethylene) extrusion which covers the distal 2-20 cm (depending on stent length) of the stent delivery device 30 .
  • the retractable sheath 34 could be made of any suitable material as described above.
  • a specific alternative embodiment could utilize a fluoropolymer material which is transparent to visible light to enable the operator to directly view deployment in an endoscopic delivery procedure. Such materials are well known in the art.
  • self-expanding nitinol stents of from 1-15 mm or 6-14 mm in diameter and ranging from 1-100 mm or 5-50 mm in length can be accommodated. It should be understood that any type of self-expanding stent could be employed.
  • the retractable sheath 34 can be connected to a proximal retraction handle (not shown) by a stainless steel pull-wire.
  • the proximal end of retractable sheath 34 slidably seals to elongate shaft 20 , permitting it to slide proximally along elongate shaft when retracted by pull-wire.
  • the stent delivery system can include a rapid exchange guide wire system.
  • the stent 50 can be compressed at low temperature for loading into delivery system 30 and held in its reduced delivery configuration by retractable sheath 34 .
  • the original stent shape can be restored as the nitinol stent self-expands, exerting radial force on the constricted portion of the body lumen to re-establish patency.
  • a stent delivery catheter showing the retraction handle is described in U.S. Pat. No. 6,391,051, which is incorporated by reference herein.
  • FIG. 3 is a perspective view of a tapered tip 36 prior to deploying a stent 50 .
  • a tubular tip 36 can be affixed to the distal end 44 of the retractable sheath 34 .
  • the tubular tip 36 includes a waist portion 64 and a tapered portion 60 .
  • the waist portion 64 is shown integrally bonded to or integrally formed with the distal region or end 44 of the retractable sheath 34 providing a continuous and/or smooth outer surface across the tubular tip 36 and retractable sheath 34 .
  • the tubular tip 36 has an open distal end 70 with an inner diameter that is less than the inner diameter of the waist portion 64 and is sized and configured to engage a guidewire 80 , but this is not required in all embodiments.
  • the tubular tip 36 has at least one elongate region 90 predisposed to fracturing as described above.
  • FIG. 4 is a perspective view of the tapered tip of FIG. 3 while partially deploying a stent 50 .
  • the retractable sheath 34 is moved toward the elongate shaft 20 in the direction D, the elongate region predisposed to fracturing 90 fractures and the tapered tip 36 expands to allow the stent 50 to expand away from the inner tube 32 and onto the target site.
  • the stent 50 fractures the tapered tip 36 as the stent 50 passes through the tapered tip 36 substantially unencumbered.
  • FIG. 5 is a perspective view of another tapered tip 136 prior to deploying a stent 150 .
  • a tubular tip 136 can be affixed to the distal region or end 144 of the retractable sheath 134 .
  • the tubular tip 136 includes a waist portion 164 and a tapered free portion 160 .
  • the waist portion 164 can be bonded to the distal end 144 of the retractable sheath 134 .
  • the tubular tip 136 has a closed distal end 171 with an inner diameter that is less than the inner diameter of the waist portion 164 .
  • the tubular tip 136 has at least two elongate regions 190 predisposed to fracturing as described above.
  • FIG. 6 is a perspective view of the tapered tip of FIG. 5 while partially deploying a stent 150 .
  • the retractable sheath 134 As the retractable sheath 134 is moved toward the elongate shaft in the direction D, the elongate regions predisposed to fracturing 190 , fractures and the tapered tip 136 expands to allow the stent 150 to expand away from the inner tube 132 and onto the target site.
  • the stent 150 fractures the tapered tip 136 as the stent 150 passes through the tapered tip 136 substantially unencumbered.
  • the stent 150 may be deployed by advancing the inner tube 132 or stent 150 through the tapered tip 136 in an opposite direction to direction D.
  • the elongate regions predisposed to fracturing 190 fractures and the tapered tip 136 expands to allow the stent 150 to expand away from the inner tube 132 and onto the target site.
  • the stent 150 fractures the tapered tip 136 as the stent 150 passes through the tapered tip 136 substantially unencumbered.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Materials For Medical Uses (AREA)

Abstract

A self-expanding stent delivery assembly includes a shaft having a proximal end, a distal end, a distal region, a lumen, and a longitudinal axis. A retractable sheath having an outer surface, a proximal end and a distal end is co-axially disposed around the shaft distal region. A stent is disposed co-axially between the shaft and the retractable sheath. A tubular tapered tip is affixed to the retractable sheath distal end. The tubular tapered tip has an elongate region predisposed to fracturing. Methods of delivering a self-expanding stent are also described.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 10/764,054, filed Jan. 23, 2004, the entire disclosure of which is incorporated herein by reference.
  • FIELD OF THE INVENTION
  • The present invention is related generally to medical devices. More specifically, the present invention is related to catheters. The present invention includes stent delivery catheter apparatus with a tapered tip that is fracturable during deployment of a self-expanding stent that has been loaded onto the catheter.
  • BACKGROUND OF THE INVENTION
  • Atherosclerotic disease is a leading cause of death in the industrialized world, particularly in the United States. Many heart attacks and strokes are caused in part by a narrowed, stenosed blood vessel. A medical procedure commonly used to deal with vessel stenosis is angioplasty. Angioplasty, in particular Percutaneous Transluminal Angioplasty (PTA), includes inserting a balloon catheter into the femoral artery near the groin, and advancing the catheter to the stenosis. The balloon can then be inflated to widen or dilate the narrowed region. The balloon catheter can then be withdrawn. In some cases, the widened vessel rebounds or re-closes, narrowing the vessel over a period of time.
  • Stents have come into increasing use to prevent the widened vessel regions from narrowing after angioplasty. A stent, typically having a tubular shape, can be put in place in the widened vessel region to hold the vessel walls apart and the lumen open in the event the conditions would otherwise result in re-stenosis. One class of stents requires that the stent be forcibly outwardly expanded to put the stent into position against the vessel walls. Another class of stents, self-expanding stents, can be delivered to a site in a compressed or constrained configuration and released in the vessel region to be supported. The self-expanding stent then expands in place to a configuration having a wide lumen, typically pressing firmly against the vessel walls where released. The stent is commonly placed at a recently dilated, stenosed vessel region.
  • Self-expanding stents can be delivered to a target site mounted over an inner tube or shaft and constrained within the distal end of an enclosing retractable tube or sleeve. The self-expanding stent can be freed from the restraint of the outer sheath by either distally pushing the inner shaft against the stent or proximally pulling the retractable outer sheath from over the stent. Once free of the outer restraint, the self-expanding stent can expand to force itself against the vessel inner walls. Self-expanding stents are often elastically biased to assume an original larger shape after being temporarily compressed into a smaller size to more easily be transported through blood vessels to the target site. There is an ongoing need for improvements in catheters that deliver self-expanding stents.
  • SUMMARY OF THE INVENTION
  • Generally, the present invention relates to a stent delivery device having a tapered tip that is fracturable during deployment or by deploying a self-expanding stent from the stent delivery device.
  • In one embodiment, a self-expanding stent delivery assembly includes a shaft having a proximal end, a distal end, a distal region, a lumen, and a longitudinal axis. A retractable sheath having an outer surface, a proximal end and a distal end is co-axially disposed around the shaft distal region. A stent is disposed co-axially between the shaft and the retractable sheath. A tubular tapered tip is bonded to the retractable sheath distal end. The tubular tapered tip has an elongate region predisposed to fracturing.
  • In another embodiment, a method of delivering a self-expanding stent includes placing a stent delivery device at a target site. The stent delivery device includes a shaft having a proximal end, a distal end, a distal region, a lumen, and a longitudinal axis; a retractable sheath having a proximal end and a distal end co-axially disposed around the shaft distal region; a stent disposed co-axially between the shaft and the retractable sheath; and a tubular tapered tip bonded to the retractable sheath distal end, the tubular tapered tip having an elongate region predisposed to fracturing. The stent is deployed at the target site by retracting the retractable sheath or advancing the stent and fracturing the elongate region predisposed to fracturing. The stent delivery device is then removed from the target site.
  • The above summary of the present invention is not intended to describe each disclosed embodiment or every implementation of the present invention. The Figures and Detailed Description which follow more particularly exemplify these embodiments.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention may be more completely understood in consideration of the following detailed description of various embodiments of the invention in connection with the accompanying drawings, in which:
  • FIG. 1 is a partial longitudinal cross-sectional view of a stent delivery device;
  • FIG. 2 is a cross-sectional view of the stent delivery device of FIG. 1 taken along line 2-2;
  • FIG. 3 is a perspective view of a tapered tip;
  • FIG. 4 is a perspective view of the tapered tip of FIG. 3 while partially deploying a stent;
  • FIG. 5 is a perspective view of another embodiment of a tapered tip; and
  • FIG. 6 is a perspective view of the tapered tip of FIG. 5 while partially deploying a stent.
  • While the invention is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the invention to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The stent delivery device and method for using the stent delivery device of the present invention are believed to be applicable to a variety of applications where delivery of stents is desired, for example, atherosclerotic stent delivery. While the present invention is not so limited, an appreciation of various aspects of the invention will be gained through a discussion of the examples provided below.
  • The recitation of numerical ranges by endpoints includes all numbers subsumed within that range (e.g., 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5).
  • As used in this specification and the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the content clearly dictates otherwise. Thus, for example, reference to “an elongate region” includes two or more elongate regions. As used in this specification and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.
  • Also, while the tubular members illustrated in the Figures have generally circular cross sections, this is not a necessary part of the present invention, and the tubular members are merely shown as such for purposes of simplicity in illustration.
  • FIG. 1 illustrates a stent delivery device or catheter 30. Catheter assembly 30 includes an inner tube 32 having a lumen 33 therethrough (as shown in FIG. 2), a distal region 40 and a distal end 42. Inner tube 32 is preferably formed of a metal, polymeric material, or polymeric/metal composite material suitable for delivering a stent through tortuous vessel passages and in one embodiment, is suitable for receiving a guidewire therethrough. One useful material can include a braided polyamide tubing. In an illustrative embodiment, the catheter assembly 30 can be guided to the target site via a guidewire 80. In the illustrative embodiment, the guidewire 80 can be within the inner tube 32 lumen 33. The guide wire can be any operable diameter such as, for example, 0.01 to 0.04 inch or 0.014 to 0.035 inch, however a guide wire is not required in all embodiments.
  • In an illustrative embodiment, a retractable sheath 34 having a distal region or end 44 is slidably disposed over inner tube 32, having an annular space 66 sufficient in size to receive a compressed stent between inner tube 32 and retractable sheath 34. Alternatively or in addition, the retractable sheath 34 can remain static, and a stent or inner tube 32 can be advancable relative to the retractable sheath 34. Retractable sheath 34 can be formed of a metal, polymeric material, or polymeric/metal composite material preferably sufficiently lubricious to ease in advancing catheter assembly 30 through increasingly smaller blood vessels. Sheath 34 can be formed from a variety of materials such as, for example, high density polyethylene, nylon, reinforced nylons, or polyurethanes. Sheath 34 can have an inner layer 31 including a lubricious material such as, for example, polytetrafluoroethylene.
  • In an illustrative embodiment, a stop 35 is affixed to the inner tube 32 proximal of its distal end 42, about the length of a stent 50 and near the distal end of the catheter 30. The stop 35 functions to hold the stent 50 axially during deployment of the stent 50 relative to the outer tube 34.
  • A distally positioned tapered tip 36 is disposed distal to or adjacent to the inner tube distal region 40 and is affixed to or formed integral with retractable sheath 34. In one embodiment, tapered tip 36 can be formed of a shrinkable film material, for example, a heat-shrinkable material such as polyolefin copolymer, nylon, or polytetrafluoroethylene. In another embodiment, tapered tip 36 can be formed of the same or similar material to the material forming the retractable sheath 34. In another embodiment, the tapered tip 36 can be formed from the same layer of material forming at least a portion of the retractable sheath 34. If necessary, the tapered tip 36 can be secured to retractable sheath 34 using a variety of methods such as, for example, molding, extrusion, heat bonding, adhesives, laser bonding, or solvent welding, using methods well known to those skilled in the art. Any type of connection means may be used to affix the tapered tip 36 to the retractable sheath 34. This connection means can include, for example, a lap joint, butt joint or integral molding. Alternatively or in addition, a mechanical connection such as threads or friction fit could be utilized. In an illustrative embodiment, the tapered tip 36 can include a waist portion 64 and a free portion 60. In the illustrative embodiment shown, the tapered tip 36 is formed integrally with retractable sheath 34 and the outer surface of the tapered tip 36 is continuous with the outer surface of the retractable sleeve 34, thus the connection is smooth and substantially free of transitions.
  • Tapered tip 36 is illustrated having an open distal end 70. However, the tapered tip 36 can have a closed distal end 70. The open distal end 70 can be sized and configured to slidably engage or pass the guide wire 80. However, a guide wire 80 is not required in all embodiments. In the illustrative embodiment, the waist portion 64 can be disposed to and affixed to the distal end 44 of the retractable sheath 34. The free portion 60 can extend distally beyond the distal end 44 of the retractable sheath 34.
  • The tapered tip 36 can aid in tracking stent delivery device 30 through vessel passages and turns. In an illustrative embodiment, the tapered tip 36 is conically tapered. However, the tapered tip 36 can have an arcuate taper or any arrangement of constant diameters and tapers, as desired.
  • As depicted in FIG. 3, the tubular tip 36 has at least one elongate region predisposed to fracturing 90. The tubular tip 36 can have 2, 3, 4, 5, 6, 7, 8, 9, 10 or more elongate regions predisposed to fracturing 90. The elongate region predisposed to fracturing 90 fractures the tapered tip to expand the open distal end 70 and allows the stent 50 to pass through the fractured tapered tip 36 open distal end 70 generally unimpeded. In an illustrative embodiment, the elongate region predisposed to fracturing 90 can be co-planar with a longitudinal axis running along the length of the stent delivery device 30. The elongate region predisposed to fracturing 90 can be formed on the tapered tip 36 before the tapered tip 36 is affixed to the retractable sheath 34, or formed during the process of affixing the tapered tip 36 to the retractable sheath 34 or integrally forming the tapered tip 36 from the layer of material forming at least a portion of the retractable sheath 34, or after affixing/integrally forming the tapered tip 36 with the retractable sheath 34.
  • In an illustrative embodiment, the elongate region predisposed to fracturing 90 can be a line of perforations that extend through a portion of or through the entire tubular tip 36 wall thickness. The elongate region predisposed to fracturing 90 can be a score line that extends through a portion of the tubular tip 36 wall thickness where the wall thickness along the score line 90 is less than the thickness along the remaining tubular tip 36 wall. Alternatively or in addition, the elongate region predisposed to fracturing 90 can be material having a tensile strength that is less than the tensile strength of the remaining tubular tip 36.
  • FIG. 2 is a cross-sectional view of the stent delivery device of FIG. 1 taken along line 2-2. An inner lumen 33 is coaxially disposed about a guidewire 80. A self-expanding stent 50 can be placed into annular space 66 between retractable sheath 34 and inner tube 32.
  • In an illustrative embodiment, the stent 50 can be placed over the inner tube 32 by sliding the stent 50 proximally over the inner tube distal end 42. Stent 50 can be compressed using a suitable tool or jig, to decrease the outer diameter of the stent 50 to a size compatible with the annular space 66. With the stent 50 compressed, the stent 50 can be axially and proximally slid over inner tube 32 and within sleeve distal region 44, to reside in annular space 66. With the stent 50 constrained by retractable sleeve 34, any restraining tool or jig can be removed from the catheter. With stent 50 in position, tubular tip 36 can be affixed to retractable sheath 34 distal end 44.
  • In another illustrative embodiment, a compressed stent 50 can be placed onto the inner tube 32 and loaded into the catheter 30 from a proximal end of the catheter 30. The inner tube 32 and compressed stent 50 can be moved toward the sleeve distal region 44. The tubular tip 36 can be attached to the retractable sheath 34 prior to loading the compressed stent 50 into the catheter 30.
  • In an illustrative embodiment, the retractable sheath 34 can be any material as described above such as, for example, a clear medical grade PTFE (polytetrafluoroethylene) extrusion which covers the distal 2-20 cm (depending on stent length) of the stent delivery device 30. However, the retractable sheath 34 could be made of any suitable material as described above. A specific alternative embodiment could utilize a fluoropolymer material which is transparent to visible light to enable the operator to directly view deployment in an endoscopic delivery procedure. Such materials are well known in the art. In an illustrative embodiment, self-expanding nitinol stents of from 1-15 mm or 6-14 mm in diameter and ranging from 1-100 mm or 5-50 mm in length can be accommodated. It should be understood that any type of self-expanding stent could be employed. In an illustrative embodiment, the retractable sheath 34 can be connected to a proximal retraction handle (not shown) by a stainless steel pull-wire. In this embodiment, the proximal end of retractable sheath 34 slidably seals to elongate shaft 20, permitting it to slide proximally along elongate shaft when retracted by pull-wire. In another illustrative embodiment, the stent delivery system can include a rapid exchange guide wire system.
  • The stent 50 can be compressed at low temperature for loading into delivery system 30 and held in its reduced delivery configuration by retractable sheath 34. Upon deployment in vivo at body temperature, the original stent shape can be restored as the nitinol stent self-expands, exerting radial force on the constricted portion of the body lumen to re-establish patency. A stent delivery catheter showing the retraction handle is described in U.S. Pat. No. 6,391,051, which is incorporated by reference herein.
  • FIG. 3 is a perspective view of a tapered tip 36 prior to deploying a stent 50. As described above, a tubular tip 36 can be affixed to the distal end 44 of the retractable sheath 34. In the illustrative embodiment, the tubular tip 36 includes a waist portion 64 and a tapered portion 60. The waist portion 64 is shown integrally bonded to or integrally formed with the distal region or end 44 of the retractable sheath 34 providing a continuous and/or smooth outer surface across the tubular tip 36 and retractable sheath 34. In the illustrative embodiment, the tubular tip 36 has an open distal end 70 with an inner diameter that is less than the inner diameter of the waist portion 64 and is sized and configured to engage a guidewire 80, but this is not required in all embodiments. The tubular tip 36 has at least one elongate region 90 predisposed to fracturing as described above.
  • FIG. 4 is a perspective view of the tapered tip of FIG. 3 while partially deploying a stent 50. As the retractable sheath 34 is moved toward the elongate shaft 20 in the direction D, the elongate region predisposed to fracturing 90 fractures and the tapered tip 36 expands to allow the stent 50 to expand away from the inner tube 32 and onto the target site. The stent 50 fractures the tapered tip 36 as the stent 50 passes through the tapered tip 36 substantially unencumbered.
  • FIG. 5 is a perspective view of another tapered tip 136 prior to deploying a stent 150. As described above, a tubular tip 136 can be affixed to the distal region or end 144 of the retractable sheath 134. The tubular tip 136 includes a waist portion 164 and a tapered free portion 160. The waist portion 164 can be bonded to the distal end 144 of the retractable sheath 134. The tubular tip 136 has a closed distal end 171 with an inner diameter that is less than the inner diameter of the waist portion 164. The tubular tip 136 has at least two elongate regions 190 predisposed to fracturing as described above.
  • FIG. 6 is a perspective view of the tapered tip of FIG. 5 while partially deploying a stent 150. As the retractable sheath 134 is moved toward the elongate shaft in the direction D, the elongate regions predisposed to fracturing 190, fractures and the tapered tip 136 expands to allow the stent 150 to expand away from the inner tube 132 and onto the target site. The stent 150 fractures the tapered tip 136 as the stent 150 passes through the tapered tip 136 substantially unencumbered.
  • Alternatively in some embodiments, the stent 150 may be deployed by advancing the inner tube 132 or stent 150 through the tapered tip 136 in an opposite direction to direction D. Similarly to above, the elongate regions predisposed to fracturing 190, fractures and the tapered tip 136 expands to allow the stent 150 to expand away from the inner tube 132 and onto the target site. The stent 150 fractures the tapered tip 136 as the stent 150 passes through the tapered tip 136 substantially unencumbered.
  • Numerous advantages of the invention covered by this document have been set forth in the foregoing description. It will be understood, however, that this disclosure is, in many respects, only illustrative. Changes may be made in details, particularly in matters of shape, size, and arrangement of parts without exceeding the scope of the invention. The invention's scope is, of course, defined in the language in which the appended claims are expressed.

Claims (20)

1. A stent delivery assembly comprising:
a shaft having a proximal region and a distal region;
a self-expanding stent disposed about at least a portion of the distal region of the shaft;
a sheath having a proximal end and a distal end, the sheath disposed around at least the distal region of the shaft and the self-expanding stent, wherein the sheath is configured to be retracted from the self-expanding stent to deploy the self-expanding stent; and
a tubular tapered tip coupled to the distal end of the sheath, the tubular tapered tip having a region predisposed to fracturing.
2. The stent delivery assembly of claim 1, wherein the region predisposed to fracturing is configured to fracture when the sheath is retracted from the stent.
3. The stent delivery assembly of claim 1, further comprising a stop member coupled to the shaft and positioned proximally of the self-expanding stent.
4. The stent delivery assembly of claim 1, wherein the tubular tapered tip has a plurality of elongate regions predisposed to fracturing, wherein each elongate region predisposed to fracturing are co-planar.
5. The stent delivery assembly of claim 1, wherein the elongate region predisposed to fracturing includes a line of perforations.
6. The stent delivery assembly of claim 1, wherein the tubular tapered tip has a first thickness and the elongate region predisposed to fracturing has a second thickness that is less than the first thickness.
7. The stent delivery assembly of claim 1, wherein the tubular tapered tip is formed of a first material having a first tensile strength and the elongate region predisposed to fracturing is formed of a second material having a second tensile strength that is less than the first tensile strength.
8. The stent delivery assembly of claim 1, further comprising a guidewire disposed within the shaft lumen.
9. The stent delivery assembly of claim 8, wherein the tubular tapered tip has a distal end defining a tip opening, the tip opening sized and configured to surround the guidewire.
10. A stent delivery assembly comprising:
a shaft having a proximal region and a distal region;
a stent disposed about at least a portion of the distal region of the shaft;
a sheath having a proximal end and a distal end, the sheath moveable between at least a first position and a second position, when in the first position, the sheath is disposed around the distal region of the shaft and the self-expanding stent, when the sheath is in the second position, the sheath is disposed around the distal region of the shaft with the distal end of the shaft being proximal of a proximal end of the stent, wherein the movement of the sheath between the first position and the second position deploys the stent; and
a tubular tapered tip coupled to the distal end of the sheath, the tubular tapered tip having a region predisposed to fracturing, wherein moving the sheath from the first position to the second position causes the region predisposed to fracturing to fracture.
11. The stent delivery assembly of claim 10, wherein the stent is a self-expanding stent.
12. The stent delivery assembly of claim 10, further comprising a stop member coupled to the shaft and positioned proximally of the stent.
13. The stent delivery assembly of claim 10, wherein the elongate region predisposed to fracturing includes a line of perforations.
14. The stent delivery assembly of claim 10, wherein the tubular tapered tip has a first thickness and the elongate region predisposed to fracturing has a second thickness that is less than the first thickness.
15. The stent delivery assembly of claim 10, wherein the tubular tapered tip is formed of a first material having a first tensile strength and the elongate region predisposed to fracturing is formed of a second material having a second tensile strength that is less than the first tensile strength.
16. The stent delivery assembly of claim 10, further comprising a guidewire disposed within the shaft lumen.
17. The stent delivery assembly of claim 16, wherein the tubular tapered tip has a distal end defining a tip opening, the tip opening sized and configured to surround the guidewire.
18. A method of delivering a self-expanding stent to a target site in a vessel, the method comprising:
positioning a stent delivery device at the target site in the vessel, the stent delivery device comprising:
a self-expanding stent disposed about at least a portion of the distal region of the shaft;
a sheath having a proximal end and a distal end, the sheath disposed around at least the distal region of the shaft and the self-expanding stent, wherein the sheath is configured to be retracted from the self-expanding stent to deploy the self-expanding stent; and
a tubular tapered tip coupled to the distal end of the sheath, the tubular tapered tip having a region predisposed to fracturing; and
retracting the sheath from the stent to deploy the stent at the target site, wherein the retracting causes the region predisposed to fracturing to fracture.
19. The method of claim 18, wherein the self-expanding stent expands when the sheath is retracted from the self-expanding stent.
20. The method of claim 18, further comprising placing a guidewire across the target site prior to placing the stent delivery device at the target site, wherein the tubular tapered tip has a distal end defining a tip opening, the tip opening sized and configured to pass the guidewire therethrough.
US12/337,069 2004-01-23 2008-12-17 Stent delivery catheter Abandoned US20090105802A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/337,069 US20090105802A1 (en) 2004-01-23 2008-12-17 Stent delivery catheter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/764,054 US7468070B2 (en) 2004-01-23 2004-01-23 Stent delivery catheter
US12/337,069 US20090105802A1 (en) 2004-01-23 2008-12-17 Stent delivery catheter

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/764,054 Continuation US7468070B2 (en) 2004-01-23 2004-01-23 Stent delivery catheter

Publications (1)

Publication Number Publication Date
US20090105802A1 true US20090105802A1 (en) 2009-04-23

Family

ID=34795196

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/764,054 Expired - Fee Related US7468070B2 (en) 2004-01-23 2004-01-23 Stent delivery catheter
US12/337,069 Abandoned US20090105802A1 (en) 2004-01-23 2008-12-17 Stent delivery catheter

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/764,054 Expired - Fee Related US7468070B2 (en) 2004-01-23 2004-01-23 Stent delivery catheter

Country Status (5)

Country Link
US (2) US7468070B2 (en)
EP (1) EP1706065A1 (en)
JP (1) JP4857125B2 (en)
CA (1) CA2553529A1 (en)
WO (1) WO2005072650A1 (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060206200A1 (en) * 2004-05-25 2006-09-14 Chestnut Medical Technologies, Inc. Flexible vascular occluding device
US8147534B2 (en) 2005-05-25 2012-04-03 Tyco Healthcare Group Lp System and method for delivering and deploying an occluding device within a vessel
US8267985B2 (en) 2005-05-25 2012-09-18 Tyco Healthcare Group Lp System and method for delivering and deploying an occluding device within a vessel
US8273101B2 (en) 2005-05-25 2012-09-25 Tyco Healthcare Group Lp System and method for delivering and deploying an occluding device within a vessel
US8394119B2 (en) 2006-02-22 2013-03-12 Covidien Lp Stents having radiopaque mesh
US8398701B2 (en) 2004-05-25 2013-03-19 Covidien Lp Flexible vascular occluding device
US8617234B2 (en) 2004-05-25 2013-12-31 Covidien Lp Flexible vascular occluding device
US8623067B2 (en) 2004-05-25 2014-01-07 Covidien Lp Methods and apparatus for luminal stenting
US20140025150A1 (en) * 2012-07-20 2014-01-23 Tyco Healthcare Group Lp Resheathable stent delivery system
US9072624B2 (en) 2012-02-23 2015-07-07 Covidien Lp Luminal stenting
US9078659B2 (en) 2012-04-23 2015-07-14 Covidien Lp Delivery system with hooks for resheathability
US9114001B2 (en) 2012-10-30 2015-08-25 Covidien Lp Systems for attaining a predetermined porosity of a vascular device
US9157174B2 (en) 2013-02-05 2015-10-13 Covidien Lp Vascular device for aneurysm treatment and providing blood flow into a perforator vessel
US9155647B2 (en) 2012-07-18 2015-10-13 Covidien Lp Methods and apparatus for luminal stenting
US9192498B2 (en) 2012-02-23 2015-11-24 Covidien Lp Luminal stenting
US9452070B2 (en) 2012-10-31 2016-09-27 Covidien Lp Methods and systems for increasing a density of a region of a vascular device
US9474639B2 (en) 2013-08-27 2016-10-25 Covidien Lp Delivery of medical devices
WO2017004209A1 (en) * 2015-06-29 2017-01-05 480 Biomedical, Inc. Scaffold loading and delivery systems
US9675482B2 (en) 2008-05-13 2017-06-13 Covidien Lp Braid implant delivery systems
US9750625B2 (en) 2008-06-11 2017-09-05 C.R. Bard, Inc. Catheter delivery device
US9782186B2 (en) 2013-08-27 2017-10-10 Covidien Lp Vascular intervention system
WO2017180401A1 (en) * 2016-04-11 2017-10-19 Idev Technologies, Inc. Stent delivery system having anisotropic sheath
US9849014B2 (en) 2002-03-12 2017-12-26 Covidien Lp Medical device delivery
US9943427B2 (en) 2012-11-06 2018-04-17 Covidien Lp Shaped occluding devices and methods of using the same
US10004618B2 (en) 2004-05-25 2018-06-26 Covidien Lp Methods and apparatus for luminal stenting
US10130500B2 (en) 2013-07-25 2018-11-20 Covidien Lp Methods and apparatus for luminal stenting
US10376396B2 (en) 2017-01-19 2019-08-13 Covidien Lp Coupling units for medical device delivery systems
US10786377B2 (en) 2018-04-12 2020-09-29 Covidien Lp Medical device delivery
US11071637B2 (en) 2018-04-12 2021-07-27 Covidien Lp Medical device delivery
US11123209B2 (en) 2018-04-12 2021-09-21 Covidien Lp Medical device delivery
US11413174B2 (en) 2019-06-26 2022-08-16 Covidien Lp Core assembly for medical device delivery systems
US11413176B2 (en) 2018-04-12 2022-08-16 Covidien Lp Medical device delivery
US11931276B2 (en) 2008-06-11 2024-03-19 C. R. Bard, Inc. Catheter delivery device
US11944558B2 (en) 2021-08-05 2024-04-02 Covidien Lp Medical device delivery devices, systems, and methods
US12042413B2 (en) 2021-04-07 2024-07-23 Covidien Lp Delivery of medical devices
US12109137B2 (en) 2021-07-30 2024-10-08 Covidien Lp Medical device delivery

Families Citing this family (166)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004506469A (en) 2000-08-18 2004-03-04 アトリテック, インコーポレイテッド Expandable implantable device for filtering blood flow from the atrial appendage
US8075606B2 (en) 2001-07-06 2011-12-13 Angiomed Gmbh & Co. Medizintechnik Kg Delivery system having a rapid pusher assembly for self-expanding stent, and stent exchange configuration
GB0123633D0 (en) 2001-10-02 2001-11-21 Angiomed Ag Stent delivery system
US7965719B2 (en) * 2002-12-11 2011-06-21 Broadcom Corporation Media exchange network supporting multiple broadband network and service provider infrastructures
GB0327306D0 (en) * 2003-11-24 2003-12-24 Angiomed Gmbh & Co Catheter device
MXPA05007537A (en) 2003-01-15 2005-09-21 Angiomed Ag Trans-luminal surgical device.
GB0310715D0 (en) 2003-05-09 2003-06-11 Angiomed Ag Strain management in stent delivery system
US7381219B2 (en) 2003-12-23 2008-06-03 Sadra Medical, Inc. Low profile heart valve and delivery system
US7748389B2 (en) 2003-12-23 2010-07-06 Sadra Medical, Inc. Leaflet engagement elements and methods for use thereof
US7824443B2 (en) 2003-12-23 2010-11-02 Sadra Medical, Inc. Medical implant delivery and deployment tool
US7824442B2 (en) 2003-12-23 2010-11-02 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a heart valve
US20050137687A1 (en) 2003-12-23 2005-06-23 Sadra Medical Heart valve anchor and method
US8579962B2 (en) 2003-12-23 2013-11-12 Sadra Medical, Inc. Methods and apparatus for performing valvuloplasty
US9005273B2 (en) 2003-12-23 2015-04-14 Sadra Medical, Inc. Assessing the location and performance of replacement heart valves
US20050137686A1 (en) * 2003-12-23 2005-06-23 Sadra Medical, A Delaware Corporation Externally expandable heart valve anchor and method
EP2529699B1 (en) 2003-12-23 2014-01-29 Sadra Medical, Inc. Repositionable heart valve
US20120041550A1 (en) 2003-12-23 2012-02-16 Sadra Medical, Inc. Methods and Apparatus for Endovascular Heart Valve Replacement Comprising Tissue Grasping Elements
US11278398B2 (en) 2003-12-23 2022-03-22 Boston Scientific Scimed, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US8182528B2 (en) 2003-12-23 2012-05-22 Sadra Medical, Inc. Locking heart valve anchor
US7329279B2 (en) 2003-12-23 2008-02-12 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US8840663B2 (en) 2003-12-23 2014-09-23 Sadra Medical, Inc. Repositionable heart valve method
US8287584B2 (en) 2005-11-14 2012-10-16 Sadra Medical, Inc. Medical implant deployment tool
US7959666B2 (en) 2003-12-23 2011-06-14 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a heart valve
US7780725B2 (en) 2004-06-16 2010-08-24 Sadra Medical, Inc. Everting heart valve
US8603160B2 (en) 2003-12-23 2013-12-10 Sadra Medical, Inc. Method of using a retrievable heart valve anchor with a sheath
US20050137694A1 (en) 2003-12-23 2005-06-23 Haug Ulrich R. Methods and apparatus for endovascularly replacing a patient's heart valve
US7445631B2 (en) 2003-12-23 2008-11-04 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US8343213B2 (en) 2003-12-23 2013-01-01 Sadra Medical, Inc. Leaflet engagement elements and methods for use thereof
US9526609B2 (en) 2003-12-23 2016-12-27 Boston Scientific Scimed, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US8828078B2 (en) 2003-12-23 2014-09-09 Sadra Medical, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
DE102005003632A1 (en) 2005-01-20 2006-08-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Catheter for the transvascular implantation of heart valve prostheses
US7962208B2 (en) 2005-04-25 2011-06-14 Cardiac Pacemakers, Inc. Method and apparatus for pacing during revascularization
US20060287668A1 (en) * 2005-06-16 2006-12-21 Fawzi Natalie V Apparatus and methods for intravascular embolic protection
US7712606B2 (en) 2005-09-13 2010-05-11 Sadra Medical, Inc. Two-part package for medical implant
JP5027135B2 (en) * 2005-09-16 2012-09-19 クック メディカル テクノロジーズ エルエルシー Double metal stent introducer
US8020275B2 (en) * 2005-11-17 2011-09-20 The Cleveland Clinic Foundation Method for compressing intraluminal prostheses
ATE446064T1 (en) * 2005-11-17 2009-11-15 Cleveland Clinic Foundation DEVICE AND METHOD FOR DELIVERING A LINED INTRALUMINAL PROSTHESIS
US20070213813A1 (en) 2005-12-22 2007-09-13 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
WO2007097983A2 (en) 2006-02-14 2007-08-30 Sadra Medical, Inc. Systems and methods for delivering a medical implant
WO2008085470A1 (en) * 2006-12-26 2008-07-17 William Cook Europe Aps Delivery system and sheath for endoluminal prosthesis
ATE525484T1 (en) 2007-01-08 2011-10-15 Us Gov Health & Human Serv SLCO1B3 GENOTYPE
US7896915B2 (en) 2007-04-13 2011-03-01 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
WO2009050265A1 (en) 2007-10-17 2009-04-23 Angiomed Gmbh & Co. Medizintechnik Kg Delivery system for a self-expanding device for placement in a bodily lumen
US9044318B2 (en) 2008-02-26 2015-06-02 Jenavalve Technology Gmbh Stent for the positioning and anchoring of a valvular prosthesis
BR112012021347A2 (en) 2008-02-26 2019-09-24 Jenavalve Tecnology Inc stent for positioning and anchoring a valve prosthesis at an implantation site in a patient's heart
US8882821B2 (en) * 2008-05-02 2014-11-11 Cook Medical Technologies Llc Cartridge delivery system for delivery of medical devices
GB0815339D0 (en) 2008-08-21 2008-10-01 Angiomed Ag Method of loading a stent into a sheath
CA2720466A1 (en) 2008-05-09 2009-11-12 Juergen Dorn Method of loading a stent into a sheath
US20090319019A1 (en) * 2008-06-23 2009-12-24 Cook Incorporated Expandable Tip Delivery System For Endoluminal Prosthesis
US8678008B2 (en) * 2008-07-30 2014-03-25 Ethicon, Inc Methods and devices for forming an auxiliary airway for treating obstructive sleep apnea
US8556797B2 (en) * 2008-07-31 2013-10-15 Ethicon, Inc. Magnetic implants for treating obstructive sleep apnea and methods therefor
US8413661B2 (en) * 2008-08-14 2013-04-09 Ethicon, Inc. Methods and devices for treatment of obstructive sleep apnea
ES2627860T3 (en) 2008-10-10 2017-07-31 Boston Scientific Scimed, Inc. Medical devices and placement systems for placing medical devices
US8561616B2 (en) * 2008-10-24 2013-10-22 Ethicon, Inc. Methods and devices for the indirect displacement of the hyoid bone for treating obstructive sleep apnea
US8561617B2 (en) * 2008-10-30 2013-10-22 Ethicon, Inc. Implant systems and methods for treating obstructive sleep apnea
US20100121424A1 (en) * 2008-11-12 2010-05-13 Petr Kubena Stent compression tool
US8800567B2 (en) 2008-12-01 2014-08-12 Ethicon, Inc. Implant systems and methods for treating obstructive sleep apnea
US8783258B2 (en) 2008-12-01 2014-07-22 Ethicon, Inc. Implant systems and methods for treating obstructive sleep apnea
GB0823716D0 (en) 2008-12-31 2009-02-04 Angiomed Ag Stent delivery device with rolling stent retaining sheath
US8371308B2 (en) 2009-02-17 2013-02-12 Ethicon, Inc. Magnetic implants and methods for treating an oropharyngeal condition
US9326886B2 (en) 2009-10-29 2016-05-03 Ethicon, Inc. Fluid filled implants for treating obstructive sleep apnea
US9877862B2 (en) * 2009-10-29 2018-01-30 Ethicon, Inc. Tongue suspension system with hyoid-extender for treating obstructive sleep apnea
US9974683B2 (en) * 2009-10-30 2018-05-22 Ethicon, Inc. Flexible implants having internal volume shifting capabilities for treating obstructive sleep apnea
GB0921236D0 (en) 2009-12-03 2010-01-20 Angiomed Ag Stent device delivery system and method of making such
GB0921237D0 (en) 2009-12-03 2010-01-20 Angiomed Ag Stent device delivery system and method of making such
GB0921238D0 (en) 2009-12-03 2010-01-20 Angiomed Ag Stent device delivery system and method of making such
GB0921240D0 (en) 2009-12-03 2010-01-20 Angiomed Ag Stent device delivery system and method of making such
US8632488B2 (en) * 2009-12-15 2014-01-21 Ethicon, Inc. Fluid filled implants for treating medical conditions
US8540669B2 (en) 2010-04-30 2013-09-24 Abbott Cardiovascular Systems Inc. Catheter system providing step reduction for postconditioning
US8708996B2 (en) 2010-04-30 2014-04-29 Abbott Cardiovascular Systems, Inc. Methods and device for synergistic mitigation of reperfusion injury after an ischemic event
US8480650B2 (en) 2010-04-30 2013-07-09 Abbott Cardiovascular Systems Inc. Method for increased uptake of beneficial agent and ejection fraction by postconditioning procedures
US9155869B2 (en) 2010-04-30 2015-10-13 Abbott Cardiovascular Systems Inc. Catheter having inflation and deflation lumen useful for preventing or reducing reperfusion injury
US9168361B2 (en) 2010-04-30 2015-10-27 Abbott Cardiovascular Systems Inc. Balloon catheter exhibiting rapid inflation and deflation
AU2011257298B2 (en) 2010-05-25 2014-07-31 Jenavalve Technology Inc. Prosthetic heart valve and transcatheter delivered endoprosthesis comprising a prosthetic heart valve and a stent
US8979824B2 (en) 2010-06-21 2015-03-17 Boston Scientific Scimed, Inc. Stent delivery system having retention structure
US8808348B2 (en) * 2010-06-23 2014-08-19 Boston Scientific Scimed, Inc. Delivery system having stent retention structure
JP5664040B2 (en) * 2010-09-08 2015-02-04 株式会社カネカ Stent delivery catheter, outer shaft manufacturing method, and stent delivery catheter manufacturing method
EP3342377B1 (en) 2010-09-10 2022-06-15 Boston Scientific Limited Valve replacement devices, delivery device for a valve replacement device and method of production of a valve replacement device
JP2012061062A (en) * 2010-09-14 2012-03-29 Kaneka Corp Catheter for delivering self-expanding prosthesis
GB201020373D0 (en) 2010-12-01 2011-01-12 Angiomed Ag Device to release a self-expanding implant
EP2688516B1 (en) 2011-03-21 2022-08-17 Cephea Valve Technologies, Inc. Disk-based valve apparatus
US9533124B2 (en) 2011-04-14 2017-01-03 Abbott Cardiovascular Systems Inc. Reperfusion injury devices
EP2520251A1 (en) 2011-05-05 2012-11-07 Symetis SA Method and Apparatus for Compressing Stent-Valves
WO2013009975A1 (en) 2011-07-12 2013-01-17 Boston Scientific Scimed, Inc. Coupling system for medical devices
US10213329B2 (en) 2011-08-12 2019-02-26 W. L. Gore & Associates, Inc. Evertable sheath devices, systems, and methods
US8905033B2 (en) 2011-09-28 2014-12-09 Ethicon, Inc. Modular tissue securement systems
US9161855B2 (en) 2011-10-24 2015-10-20 Ethicon, Inc. Tissue supporting device and method
US9131926B2 (en) 2011-11-10 2015-09-15 Boston Scientific Scimed, Inc. Direct connect flush system
US8940014B2 (en) 2011-11-15 2015-01-27 Boston Scientific Scimed, Inc. Bond between components of a medical device
US8973582B2 (en) 2011-11-30 2015-03-10 Ethicon, Inc. Tongue suspension device and method
US8951243B2 (en) 2011-12-03 2015-02-10 Boston Scientific Scimed, Inc. Medical device handle
US10470760B2 (en) 2011-12-08 2019-11-12 Ethicon, Inc. Modified tissue securement fibers
US9510945B2 (en) 2011-12-20 2016-12-06 Boston Scientific Scimed Inc. Medical device handle
US9277993B2 (en) 2011-12-20 2016-03-08 Boston Scientific Scimed, Inc. Medical device delivery systems
US10172708B2 (en) 2012-01-25 2019-01-08 Boston Scientific Scimed, Inc. Valve assembly with a bioabsorbable gasket and a replaceable valve implant
US9277990B2 (en) 2012-05-04 2016-03-08 St. Jude Medical, Cardiology Division, Inc. Hypotube shaft with articulation mechanism
US9532871B2 (en) * 2012-05-04 2017-01-03 St. Jude Medical, Cardiology Division, Inc. Delivery system deflection mechanism
US9173766B2 (en) 2012-06-01 2015-11-03 Ethicon, Inc. Systems and methods to treat upper pharyngeal airway of obstructive sleep apnea patients
US9883941B2 (en) 2012-06-19 2018-02-06 Boston Scientific Scimed, Inc. Replacement heart valve
EP2958520B1 (en) 2013-02-21 2018-12-19 St. Jude Medical, Cardiology Division, Inc. Transapical delivery system
US9763819B1 (en) 2013-03-05 2017-09-19 W. L. Gore & Associates, Inc. Tapered sleeve
US10172734B2 (en) * 2013-03-13 2019-01-08 DePuy Synthes Products, Inc. Capture tube mechanism for delivering and releasing a stent
MX2015015276A (en) 2013-05-03 2016-02-18 Bard Inc C R Peelable protective sheath.
US9844383B2 (en) 2013-05-08 2017-12-19 Embolx, Inc. Devices and methods for low pressure tumor embolization
EP2994188A4 (en) 2013-05-08 2017-03-29 Embolx, Inc. Device and methods for transvascular tumor embolization with integrated flow regulation
US9561103B2 (en) 2013-07-17 2017-02-07 Cephea Valve Technologies, Inc. System and method for cardiac valve repair and replacement
US9867694B2 (en) 2013-08-30 2018-01-16 Jenavalve Technology Inc. Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame
US9566153B2 (en) 2013-09-12 2017-02-14 St. Jude Medical, Cardiology Division, Inc. Alignment of an implantable medical device
US9907641B2 (en) 2014-01-10 2018-03-06 W. L. Gore & Associates, Inc. Implantable intraluminal device
US10966850B2 (en) * 2014-03-06 2021-04-06 W. L. Gore & Associates, Inc. Implantable medical device constraint and deployment apparatus
US10016292B2 (en) 2014-04-18 2018-07-10 Covidien Lp Stent delivery system
EP2995339B1 (en) * 2014-09-15 2020-01-08 Biotronik AG Balloon catheter
US10039658B2 (en) 2014-10-17 2018-08-07 Cook Medical Technologies Llc Expanding sheath tip
US9901445B2 (en) 2014-11-21 2018-02-27 Boston Scientific Scimed, Inc. Valve locking mechanism
EP4306080A3 (en) 2014-12-09 2024-04-10 Cephea Valve Technologies, Inc. Replacement cardiac valves and method of manufacture
US10449043B2 (en) 2015-01-16 2019-10-22 Boston Scientific Scimed, Inc. Displacement based lock and release mechanism
US9861477B2 (en) 2015-01-26 2018-01-09 Boston Scientific Scimed Inc. Prosthetic heart valve square leaflet-leaflet stitch
US10201417B2 (en) 2015-02-03 2019-02-12 Boston Scientific Scimed Inc. Prosthetic heart valve having tubular seal
US9788942B2 (en) 2015-02-03 2017-10-17 Boston Scientific Scimed Inc. Prosthetic heart valve having tubular seal
US10426617B2 (en) 2015-03-06 2019-10-01 Boston Scientific Scimed, Inc. Low profile valve locking mechanism and commissure assembly
US10285809B2 (en) 2015-03-06 2019-05-14 Boston Scientific Scimed Inc. TAVI anchoring assist device
US10080652B2 (en) 2015-03-13 2018-09-25 Boston Scientific Scimed, Inc. Prosthetic heart valve having an improved tubular seal
US12121461B2 (en) 2015-03-20 2024-10-22 Jenavalve Technology, Inc. Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath
US10709555B2 (en) 2015-05-01 2020-07-14 Jenavalve Technology, Inc. Device and method with reduced pacemaker rate in heart valve replacement
AU2016262564B2 (en) 2015-05-14 2020-11-05 Cephea Valve Technologies, Inc. Replacement mitral valves
WO2016183523A1 (en) 2015-05-14 2016-11-17 Cephea Valve Technologies, Inc. Cardiac valve delivery devices and systems
WO2017004377A1 (en) 2015-07-02 2017-01-05 Boston Scientific Scimed, Inc. Adjustable nosecone
US10195392B2 (en) 2015-07-02 2019-02-05 Boston Scientific Scimed, Inc. Clip-on catheter
US10251764B2 (en) * 2015-07-19 2019-04-09 Sanford Health Universal catheter tip and methods for use
US10179041B2 (en) 2015-08-12 2019-01-15 Boston Scientific Scimed Icn. Pinless release mechanism
US10136991B2 (en) 2015-08-12 2018-11-27 Boston Scientific Scimed Inc. Replacement heart valve implant
US10779940B2 (en) 2015-09-03 2020-09-22 Boston Scientific Scimed, Inc. Medical device handle
US10342660B2 (en) 2016-02-02 2019-07-09 Boston Scientific Inc. Tensioned sheathing aids
US10350382B1 (en) 2018-06-08 2019-07-16 Embolx, Inc. High torque catheter and methods of manufacture
US11464948B2 (en) 2016-02-16 2022-10-11 Embolx, Inc. Balloon catheters and methods of manufacture and use
US9550046B1 (en) 2016-02-16 2017-01-24 Embolx, Inc. Balloon catheter and methods of fabrication and use
WO2017176553A1 (en) 2016-04-05 2017-10-12 Boston Scientific Scimed, Inc. Stent delivery device
US10583005B2 (en) 2016-05-13 2020-03-10 Boston Scientific Scimed, Inc. Medical device handle
WO2017195125A1 (en) 2016-05-13 2017-11-16 Jenavalve Technology, Inc. Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath and loading system
US10245136B2 (en) 2016-05-13 2019-04-02 Boston Scientific Scimed Inc. Containment vessel with implant sheathing guide
US10201416B2 (en) 2016-05-16 2019-02-12 Boston Scientific Scimed, Inc. Replacement heart valve implant with invertible leaflets
EP3471665B1 (en) 2016-06-17 2023-10-11 Cephea Valve Technologies, Inc. Cardiac valve delivery devices
WO2018093884A1 (en) * 2016-11-17 2018-05-24 Boston Scientific Scimed, Inc. Medical device release system
US10463517B2 (en) * 2017-01-16 2019-11-05 Cook Medical Technologies Llc Controlled expansion stent graft delivery system
JP7046078B2 (en) 2017-01-23 2022-04-01 セフィア・バルブ・テクノロジーズ,インコーポレイテッド Replacement mitral valve
AU2018203053B2 (en) 2017-01-23 2020-03-05 Cephea Valve Technologies, Inc. Replacement mitral valves
WO2018138658A1 (en) 2017-01-27 2018-08-02 Jenavalve Technology, Inc. Heart valve mimicry
JP2018126221A (en) * 2017-02-06 2018-08-16 川澄化学工業株式会社 Catheter for delivery and device for delivering intravascular retainer
US11744692B2 (en) 2017-02-23 2023-09-05 Boston Scientific Scimed, Inc. Medical drain device
JP6949546B2 (en) * 2017-04-28 2021-10-13 川澄化学工業株式会社 Transport catheter and intravascular indwelling device transport device
US10828154B2 (en) 2017-06-08 2020-11-10 Boston Scientific Scimed, Inc. Heart valve implant commissure support structure
EP3661458A1 (en) 2017-08-01 2020-06-10 Boston Scientific Scimed, Inc. Medical implant locking mechanism
WO2019035966A1 (en) 2017-08-16 2019-02-21 Boston Scientific Scimed, Inc. Replacement heart valve commissure assembly
EP4252721A3 (en) 2017-10-11 2023-11-22 W. L. Gore & Associates, Inc. Implantable medical device constraint and deployment apparatus
EP3740170A1 (en) 2018-01-19 2020-11-25 Boston Scientific Scimed, Inc. Medical device delivery system with feedback loop
EP3740160A2 (en) 2018-01-19 2020-11-25 Boston Scientific Scimed Inc. Inductance mode deployment sensors for transcatheter valve system
WO2019157156A1 (en) 2018-02-07 2019-08-15 Boston Scientific Scimed, Inc. Medical device delivery system with alignment feature
EP3758651B1 (en) 2018-02-26 2022-12-07 Boston Scientific Scimed, Inc. Embedded radiopaque marker in adaptive seal
CN112399836B (en) 2018-05-15 2024-10-15 波士顿科学国际有限公司 Replacement heart valve commissure assembly
US11241310B2 (en) 2018-06-13 2022-02-08 Boston Scientific Scimed, Inc. Replacement heart valve delivery device
US11389627B1 (en) 2018-10-02 2022-07-19 Lutonix Inc. Balloon protectors, balloon-catheter assemblies, and methods thereof
US12090072B2 (en) 2018-11-13 2024-09-17 Icad Endovascular Llc Systems and methods for delivery retrievable stents
US10390982B1 (en) 2018-11-13 2019-08-27 Icad Endovascular Llc Systems and methods for delivery retrievable stents
CN109350319B (en) * 2018-12-06 2024-05-14 南京法迈特科技发展有限公司 Implant device with packing support structure
WO2020123486A1 (en) 2018-12-10 2020-06-18 Boston Scientific Scimed, Inc. Medical device delivery system including a resistance member
US11439504B2 (en) 2019-05-10 2022-09-13 Boston Scientific Scimed, Inc. Replacement heart valve with improved cusp washout and reduced loading

Citations (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4547194A (en) * 1984-03-16 1985-10-15 Moorehead Harvey R Hub assemblies and extensions for indwelling catheter tubes and method
US4572186A (en) * 1983-12-07 1986-02-25 Cordis Corporation Vessel dilation
US4655771A (en) * 1982-04-30 1987-04-07 Shepherd Patents S.A. Prosthesis comprising an expansible or contractile tubular body
US4732152A (en) * 1984-12-05 1988-03-22 Medinvent S.A. Device for implantation and a method of implantation in a vessel using such device
US4848343A (en) * 1986-10-31 1989-07-18 Medinvent S.A. Device for transluminal implantation
US4921479A (en) * 1987-10-02 1990-05-01 Joseph Grayzel Catheter sheath with longitudinal seam
US4990151A (en) * 1988-09-28 1991-02-05 Medinvent S.A. Device for transluminal implantation or extraction
US5026377A (en) * 1989-07-13 1991-06-25 American Medical Systems, Inc. Stent placement instrument and method
US5129887A (en) * 1988-12-07 1992-07-14 Scimed Life Systems, Inc. Adjustable manifold for dilatation catheter
US5201757A (en) * 1992-04-03 1993-04-13 Schneider (Usa) Inc. Medial region deployment of radially self-expanding stents
US5290248A (en) * 1989-07-24 1994-03-01 Steven F. Bierman Sideport connector for catherization system
US5324269A (en) * 1991-09-19 1994-06-28 Baxter International Inc. Fully exchangeable dual lumen over-the-wire dilatation catheter with rip seam
US5360401A (en) * 1993-02-18 1994-11-01 Advanced Cardiovascular Systems, Inc. Catheter for stent delivery
US5389087A (en) * 1991-09-19 1995-02-14 Baxter International Inc. Fully exchangeable over-the-wire catheter with rip seam and gated side port
US5391172A (en) * 1993-05-24 1995-02-21 Advanced Cardiovascular Systems, Inc. Stent delivery system with coaxial catheter handle
US5409495A (en) * 1993-08-24 1995-04-25 Advanced Cardiovascular Systems, Inc. Apparatus for uniformly implanting a stent
US5453090A (en) * 1994-03-01 1995-09-26 Cordis Corporation Method of stent delivery through an elongate softenable sheath
US5458605A (en) * 1994-04-04 1995-10-17 Advanced Cardiovascular Systems, Inc. Coiled reinforced retractable sleeve for stent delivery catheter
US5458615A (en) * 1993-07-06 1995-10-17 Advanced Cardiovascular Systems, Inc. Stent delivery system
US5484444A (en) * 1992-10-31 1996-01-16 Schneider (Europe) A.G. Device for the implantation of self-expanding endoprostheses
US5507768A (en) * 1991-01-28 1996-04-16 Advanced Cardiovascular Systems, Inc. Stent delivery system
US5534007A (en) * 1995-05-18 1996-07-09 Scimed Life Systems, Inc. Stent deployment catheter with collapsible sheath
US5533968A (en) * 1991-05-15 1996-07-09 Advanced Cardiovascular Systems, Inc. Low profile catheter with expandable outer tubular member
US5558101A (en) * 1994-10-14 1996-09-24 Advanced Cardiovascular System, Inc. Method and system for holding the position of a guiding member
US5571168A (en) * 1995-04-05 1996-11-05 Scimed Lifesystems Inc Pull back stent delivery system
US5579780A (en) * 1994-10-11 1996-12-03 Zadini; Filiberto P. Manual guidewire placement device
US5591172A (en) * 1991-06-14 1997-01-07 Ams Medinvent S.A. Transluminal implantation device
US5690644A (en) * 1992-12-30 1997-11-25 Schneider (Usa) Inc. Apparatus for deploying body implantable stent
US5690645A (en) * 1995-06-28 1997-11-25 Cordis Corporation Device for moving a catheter in a controlled manner
US5709703A (en) * 1995-11-14 1998-01-20 Schneider (Europe) A.G. Stent delivery device and method for manufacturing same
US5743874A (en) * 1994-08-29 1998-04-28 Fischell; Robert E. Integrated catheter for balloon angioplasty and stent delivery
US5772669A (en) * 1996-09-27 1998-06-30 Scimed Life Systems, Inc. Stent deployment catheter with retractable sheath
US5776142A (en) * 1996-12-19 1998-07-07 Medtronic, Inc. Controllable stent delivery system and method
US5807327A (en) * 1995-12-08 1998-09-15 Ethicon, Inc. Catheter assembly
US5843028A (en) * 1992-05-11 1998-12-01 Medical Innovations Corporation Multi-lumen endoscopic catheter
US5921968A (en) * 1997-11-25 1999-07-13 Merit Medical Systems, Inc. Valve apparatus with adjustable quick-release mechanism
US5921971A (en) * 1996-09-13 1999-07-13 Boston Scientific Corporation Single operator exchange biliary catheter
US5957974A (en) * 1997-01-23 1999-09-28 Schneider (Usa) Inc Stent graft with braided polymeric sleeve
US5964730A (en) * 1996-08-15 1999-10-12 Advanced Cardiovascular Systems, Inc. Protective sheath for catheter balloons
US5980532A (en) * 1995-03-02 1999-11-09 Scimed Life Systems, Inc. Stent installation method using balloon catheter having stepped compliance curve
US5980533A (en) * 1998-06-09 1999-11-09 Scimed Life Systems, Inc. Stent delivery system
US5989280A (en) * 1993-10-22 1999-11-23 Scimed Lifesystems, Inc Stent delivery apparatus and method
US6007522A (en) * 1996-09-13 1999-12-28 Boston Scientific Corporation Single operator exchange biliary catheter
US6007543A (en) * 1996-08-23 1999-12-28 Scimed Life Systems, Inc. Stent delivery system with stent securement means
US6019778A (en) * 1998-03-13 2000-02-01 Cordis Corporation Delivery apparatus for a self-expanding stent
US6059752A (en) * 1994-12-09 2000-05-09 Segal; Jerome Mechanical apparatus and method for dilating and irradiating a site of treatment
US6074398A (en) * 1998-01-13 2000-06-13 Datascope Investment Corp. Reduced diameter stent/graft deployment catheter
US6077295A (en) * 1996-07-15 2000-06-20 Advanced Cardiovascular Systems, Inc. Self-expanding stent delivery system
US6117140A (en) * 1998-06-26 2000-09-12 Scimed Life Systems, Inc. Stent delivery device
US6120522A (en) * 1998-08-27 2000-09-19 Scimed Life Systems, Inc. Self-expanding stent delivery catheter
US20020193863A1 (en) * 2000-09-18 2002-12-19 Endotex Interventional Systems, Inc. Apparatus for delivering endoluminal prosthesis and methods for preparing such apparatus for delivery
US6592569B2 (en) * 1999-11-09 2003-07-15 Advanced Cardiovascular Systems, Inc. Protective sheath for catheters
US7074213B2 (en) * 2001-01-09 2006-07-11 Rex Medical, L.P. Dialysis catheter

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4863442A (en) 1987-08-14 1989-09-05 C. R. Bard, Inc. Soft tip catheter
US5480423A (en) 1993-05-20 1996-01-02 Boston Scientific Corporation Prosthesis delivery
DE59308805D1 (en) 1993-06-02 1998-08-27 Schneider Europ Ag Device for releasing a self-expanding endoprosthesis
US5683451A (en) 1994-06-08 1997-11-04 Cardiovascular Concepts, Inc. Apparatus and methods for deployment release of intraluminal prostheses
US5788707A (en) 1995-06-07 1998-08-04 Scimed Life Systems, Inc. Pull back sleeve system with compression resistant inner shaft
CA2263492C (en) 1996-08-23 2006-10-17 Scimed Life Systems, Inc. Stent delivery system having stent securement apparatus
US5980530A (en) 1996-08-23 1999-11-09 Scimed Life Systems Inc Stent delivery system
ATE254434T1 (en) 1996-09-18 2003-12-15 Micro Therapeutics Inc INTRACRANIAL STENT
US5968052A (en) 1996-11-27 1999-10-19 Scimed Life Systems Inc. Pull back stent delivery system with pistol grip retraction handle
US6248100B1 (en) 1997-08-14 2001-06-19 Scimed Life Systems, Inc. Drainage catheter delivery system
US6235051B1 (en) 1997-12-16 2001-05-22 Timothy P. Murphy Method of stent-graft system delivery
US6533807B2 (en) 1998-02-05 2003-03-18 Medtronic, Inc. Radially-expandable stent and delivery system
US6425898B1 (en) 1998-03-13 2002-07-30 Cordis Corporation Delivery apparatus for a self-expanding stent
AU3342399A (en) 1998-03-31 1999-10-18 Salviac Limited A delivery catheter
US6132458A (en) 1998-05-15 2000-10-17 American Medical Systems, Inc. Method and device for loading a stent
ES2237168T3 (en) 1998-09-30 2005-07-16 Bard Peripheral Vascular, Inc. SUPPLY MECHANISM FOR IMPLANTABLE STENT.
US6146415A (en) 1999-05-07 2000-11-14 Advanced Cardiovascular Systems, Inc. Stent delivery system
EP1180003B1 (en) 1999-05-20 2008-01-16 Boston Scientific Limited Stent delivery system with nested stabilizer
US6478814B2 (en) 1999-06-14 2002-11-12 Scimed Life Systems, Inc. Stent securement sleeves and optional coatings and methods of use
US6398802B1 (en) 1999-06-21 2002-06-04 Scimed Life Systems, Inc. Low profile delivery system for stent and graft deployment
US6287329B1 (en) 1999-06-28 2001-09-11 Nitinol Development Corporation Stent keeper for a self-expanding stent delivery system
US6494889B1 (en) 1999-09-01 2002-12-17 Converge Medical, Inc. Additional sutureless anastomosis embodiments
US6613075B1 (en) 1999-10-27 2003-09-02 Cordis Corporation Rapid exchange self-expanding stent delivery catheter system
EP1227771B1 (en) 1999-11-11 2007-08-01 Angiomed GmbH & Co. Medizintechnik KG Implant delivery device
US6322586B1 (en) 2000-01-10 2001-11-27 Scimed Life Systems, Inc. Catheter tip designs and method of manufacture
US6554848B2 (en) 2000-06-02 2003-04-29 Advanced Cardiovascular Systems, Inc. Marker device for rotationally orienting a stent delivery system prior to deploying a curved self-expanding stent
SE522805C2 (en) 2000-06-22 2004-03-09 Jan Otto Solem Stent Application System
US6527779B1 (en) 2000-07-10 2003-03-04 Endotex Interventional Systems, Inc. Stent delivery device
US6383344B1 (en) 2000-07-19 2002-05-07 Genzyme Corporation Molecular weight reduction of polymer using irradiation treatment
US6428566B1 (en) 2000-10-31 2002-08-06 Advanced Cardiovascular Systems, Inc. Flexible hoop and link sheath for a stent delivery system
US6582460B1 (en) 2000-11-20 2003-06-24 Advanced Cardiovascular Systems, Inc. System and method for accurately deploying a stent
US6623491B2 (en) 2001-01-18 2003-09-23 Ev3 Peripheral, Inc. Stent delivery system with spacer member
US6899727B2 (en) * 2001-01-22 2005-05-31 Gore Enterprise Holdings, Inc. Deployment system for intraluminal devices
US6743210B2 (en) 2001-02-15 2004-06-01 Scimed Life Systems, Inc. Stent delivery catheter positioning device
US6623518B2 (en) 2001-02-26 2003-09-23 Ev3 Peripheral, Inc. Implant delivery system with interlock
US6592549B2 (en) 2001-03-14 2003-07-15 Scimed Life Systems, Inc. Rapid exchange stent delivery system and associated components

Patent Citations (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4655771B1 (en) * 1982-04-30 1996-09-10 Medinvent Ams Sa Prosthesis comprising an expansible or contractile tubular body
US4655771A (en) * 1982-04-30 1987-04-07 Shepherd Patents S.A. Prosthesis comprising an expansible or contractile tubular body
US4572186A (en) * 1983-12-07 1986-02-25 Cordis Corporation Vessel dilation
US4547194A (en) * 1984-03-16 1985-10-15 Moorehead Harvey R Hub assemblies and extensions for indwelling catheter tubes and method
US4732152A (en) * 1984-12-05 1988-03-22 Medinvent S.A. Device for implantation and a method of implantation in a vessel using such device
US4848343A (en) * 1986-10-31 1989-07-18 Medinvent S.A. Device for transluminal implantation
US4921479A (en) * 1987-10-02 1990-05-01 Joseph Grayzel Catheter sheath with longitudinal seam
US4990151A (en) * 1988-09-28 1991-02-05 Medinvent S.A. Device for transluminal implantation or extraction
US5129887A (en) * 1988-12-07 1992-07-14 Scimed Life Systems, Inc. Adjustable manifold for dilatation catheter
US5026377A (en) * 1989-07-13 1991-06-25 American Medical Systems, Inc. Stent placement instrument and method
US5290248A (en) * 1989-07-24 1994-03-01 Steven F. Bierman Sideport connector for catherization system
US6113607A (en) * 1991-01-28 2000-09-05 Advanced Cardiovascular Systems, Inc. Method of delivering a stent
US5782855A (en) * 1991-01-28 1998-07-21 Advanced Cardiovascular Systems, Inc. Stent delivery system
US5507768A (en) * 1991-01-28 1996-04-16 Advanced Cardiovascular Systems, Inc. Stent delivery system
US5533968A (en) * 1991-05-15 1996-07-09 Advanced Cardiovascular Systems, Inc. Low profile catheter with expandable outer tubular member
US5591172A (en) * 1991-06-14 1997-01-07 Ams Medinvent S.A. Transluminal implantation device
US5324269A (en) * 1991-09-19 1994-06-28 Baxter International Inc. Fully exchangeable dual lumen over-the-wire dilatation catheter with rip seam
US5389087A (en) * 1991-09-19 1995-02-14 Baxter International Inc. Fully exchangeable over-the-wire catheter with rip seam and gated side port
US5201757A (en) * 1992-04-03 1993-04-13 Schneider (Usa) Inc. Medial region deployment of radially self-expanding stents
US5843028A (en) * 1992-05-11 1998-12-01 Medical Innovations Corporation Multi-lumen endoscopic catheter
US5484444A (en) * 1992-10-31 1996-01-16 Schneider (Europe) A.G. Device for the implantation of self-expanding endoprostheses
US5690644A (en) * 1992-12-30 1997-11-25 Schneider (Usa) Inc. Apparatus for deploying body implantable stent
US5360401A (en) * 1993-02-18 1994-11-01 Advanced Cardiovascular Systems, Inc. Catheter for stent delivery
US5391172A (en) * 1993-05-24 1995-02-21 Advanced Cardiovascular Systems, Inc. Stent delivery system with coaxial catheter handle
US5458615A (en) * 1993-07-06 1995-10-17 Advanced Cardiovascular Systems, Inc. Stent delivery system
US5409495A (en) * 1993-08-24 1995-04-25 Advanced Cardiovascular Systems, Inc. Apparatus for uniformly implanting a stent
US5989280A (en) * 1993-10-22 1999-11-23 Scimed Lifesystems, Inc Stent delivery apparatus and method
US5593412A (en) * 1994-03-01 1997-01-14 Cordis Corporation Stent delivery method and apparatus
US5453090A (en) * 1994-03-01 1995-09-26 Cordis Corporation Method of stent delivery through an elongate softenable sheath
US5458605A (en) * 1994-04-04 1995-10-17 Advanced Cardiovascular Systems, Inc. Coiled reinforced retractable sleeve for stent delivery catheter
US5743874A (en) * 1994-08-29 1998-04-28 Fischell; Robert E. Integrated catheter for balloon angioplasty and stent delivery
US5579780A (en) * 1994-10-11 1996-12-03 Zadini; Filiberto P. Manual guidewire placement device
US5558101A (en) * 1994-10-14 1996-09-24 Advanced Cardiovascular System, Inc. Method and system for holding the position of a guiding member
US6059752A (en) * 1994-12-09 2000-05-09 Segal; Jerome Mechanical apparatus and method for dilating and irradiating a site of treatment
US5980532A (en) * 1995-03-02 1999-11-09 Scimed Life Systems, Inc. Stent installation method using balloon catheter having stepped compliance curve
US5571168A (en) * 1995-04-05 1996-11-05 Scimed Lifesystems Inc Pull back stent delivery system
US5534007A (en) * 1995-05-18 1996-07-09 Scimed Life Systems, Inc. Stent deployment catheter with collapsible sheath
US5690645A (en) * 1995-06-28 1997-11-25 Cordis Corporation Device for moving a catheter in a controlled manner
US5709703A (en) * 1995-11-14 1998-01-20 Schneider (Europe) A.G. Stent delivery device and method for manufacturing same
US5807327A (en) * 1995-12-08 1998-09-15 Ethicon, Inc. Catheter assembly
US6077295A (en) * 1996-07-15 2000-06-20 Advanced Cardiovascular Systems, Inc. Self-expanding stent delivery system
US5964730A (en) * 1996-08-15 1999-10-12 Advanced Cardiovascular Systems, Inc. Protective sheath for catheter balloons
US6007543A (en) * 1996-08-23 1999-12-28 Scimed Life Systems, Inc. Stent delivery system with stent securement means
US5921971A (en) * 1996-09-13 1999-07-13 Boston Scientific Corporation Single operator exchange biliary catheter
US6007522A (en) * 1996-09-13 1999-12-28 Boston Scientific Corporation Single operator exchange biliary catheter
US5772669A (en) * 1996-09-27 1998-06-30 Scimed Life Systems, Inc. Stent deployment catheter with retractable sheath
US5776142A (en) * 1996-12-19 1998-07-07 Medtronic, Inc. Controllable stent delivery system and method
US5957974A (en) * 1997-01-23 1999-09-28 Schneider (Usa) Inc Stent graft with braided polymeric sleeve
US5921968A (en) * 1997-11-25 1999-07-13 Merit Medical Systems, Inc. Valve apparatus with adjustable quick-release mechanism
US6074398A (en) * 1998-01-13 2000-06-13 Datascope Investment Corp. Reduced diameter stent/graft deployment catheter
US6019778A (en) * 1998-03-13 2000-02-01 Cordis Corporation Delivery apparatus for a self-expanding stent
US5980533A (en) * 1998-06-09 1999-11-09 Scimed Life Systems, Inc. Stent delivery system
US6117140A (en) * 1998-06-26 2000-09-12 Scimed Life Systems, Inc. Stent delivery device
US6120522A (en) * 1998-08-27 2000-09-19 Scimed Life Systems, Inc. Self-expanding stent delivery catheter
US6592569B2 (en) * 1999-11-09 2003-07-15 Advanced Cardiovascular Systems, Inc. Protective sheath for catheters
US20020193863A1 (en) * 2000-09-18 2002-12-19 Endotex Interventional Systems, Inc. Apparatus for delivering endoluminal prosthesis and methods for preparing such apparatus for delivery
US7074213B2 (en) * 2001-01-09 2006-07-11 Rex Medical, L.P. Dialysis catheter

Cited By (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9849014B2 (en) 2002-03-12 2017-12-26 Covidien Lp Medical device delivery
US9393021B2 (en) 2004-05-25 2016-07-19 Covidien Lp Flexible vascular occluding device
US20060206200A1 (en) * 2004-05-25 2006-09-14 Chestnut Medical Technologies, Inc. Flexible vascular occluding device
US9855047B2 (en) 2004-05-25 2018-01-02 Covidien Lp Flexible vascular occluding device
US10004618B2 (en) 2004-05-25 2018-06-26 Covidien Lp Methods and apparatus for luminal stenting
US9801744B2 (en) 2004-05-25 2017-10-31 Covidien Lp Methods and apparatus for luminal stenting
US8382825B2 (en) 2004-05-25 2013-02-26 Covidien Lp Flexible vascular occluding device
US9125659B2 (en) 2004-05-25 2015-09-08 Covidien Lp Flexible vascular occluding device
US8398701B2 (en) 2004-05-25 2013-03-19 Covidien Lp Flexible vascular occluding device
US8617234B2 (en) 2004-05-25 2013-12-31 Covidien Lp Flexible vascular occluding device
US8623067B2 (en) 2004-05-25 2014-01-07 Covidien Lp Methods and apparatus for luminal stenting
US8628564B2 (en) 2004-05-25 2014-01-14 Covidien Lp Methods and apparatus for luminal stenting
US12042411B2 (en) 2004-05-25 2024-07-23 Covidien Lp Methods and apparatus for luminal stenting
US10765542B2 (en) 2004-05-25 2020-09-08 Covidien Lp Methods and apparatus for luminal stenting
US9050205B2 (en) 2004-05-25 2015-06-09 Covidien Lp Methods and apparatus for luminal stenting
US10918389B2 (en) 2004-05-25 2021-02-16 Covidien Lp Flexible vascular occluding device
US11771433B2 (en) 2004-05-25 2023-10-03 Covidien Lp Flexible vascular occluding device
US9295568B2 (en) 2004-05-25 2016-03-29 Covidien Lp Methods and apparatus for luminal stenting
US9381104B2 (en) 2005-05-25 2016-07-05 Covidien Lp System and method for delivering and deploying an occluding device within a vessel
US8236042B2 (en) 2005-05-25 2012-08-07 Tyco Healthcare Group Lp System and method for delivering and deploying an occluding device within a vessel
US8147534B2 (en) 2005-05-25 2012-04-03 Tyco Healthcare Group Lp System and method for delivering and deploying an occluding device within a vessel
US8257421B2 (en) 2005-05-25 2012-09-04 Tyco Healthcare Group Lp System and method for delivering and deploying an occluding device within a vessel
US8267985B2 (en) 2005-05-25 2012-09-18 Tyco Healthcare Group Lp System and method for delivering and deploying an occluding device within a vessel
US9198666B2 (en) 2005-05-25 2015-12-01 Covidien Lp System and method for delivering and deploying an occluding device within a vessel
US9204983B2 (en) 2005-05-25 2015-12-08 Covidien Lp System and method for delivering and deploying an occluding device within a vessel
US9095343B2 (en) 2005-05-25 2015-08-04 Covidien Lp System and method for delivering and deploying an occluding device within a vessel
US10064747B2 (en) 2005-05-25 2018-09-04 Covidien Lp System and method for delivering and deploying an occluding device within a vessel
US10322018B2 (en) 2005-05-25 2019-06-18 Covidien Lp System and method for delivering and deploying an occluding device within a vessel
US8273101B2 (en) 2005-05-25 2012-09-25 Tyco Healthcare Group Lp System and method for delivering and deploying an occluding device within a vessel
US8394119B2 (en) 2006-02-22 2013-03-12 Covidien Lp Stents having radiopaque mesh
US9320590B2 (en) 2006-02-22 2016-04-26 Covidien Lp Stents having radiopaque mesh
US10433988B2 (en) 2006-02-22 2019-10-08 Covidien Lp Stents having radiopaque mesh
US11382777B2 (en) 2006-02-22 2022-07-12 Covidien Lp Stents having radiopaque mesh
US9610181B2 (en) 2006-02-22 2017-04-04 Covidien Lp Stents having radiopaque mesh
US10610389B2 (en) 2008-05-13 2020-04-07 Covidien Lp Braid implant delivery systems
US9675482B2 (en) 2008-05-13 2017-06-13 Covidien Lp Braid implant delivery systems
US11707371B2 (en) 2008-05-13 2023-07-25 Covidien Lp Braid implant delivery systems
US11931276B2 (en) 2008-06-11 2024-03-19 C. R. Bard, Inc. Catheter delivery device
US11109990B2 (en) 2008-06-11 2021-09-07 C. R. Bard, Inc. Catheter delivery device
US9750625B2 (en) 2008-06-11 2017-09-05 C.R. Bard, Inc. Catheter delivery device
US8636760B2 (en) 2009-04-20 2014-01-28 Covidien Lp System and method for delivering and deploying an occluding device within a vessel
US9192498B2 (en) 2012-02-23 2015-11-24 Covidien Lp Luminal stenting
US9308110B2 (en) 2012-02-23 2016-04-12 Covidien Lp Luminal stenting
US9072624B2 (en) 2012-02-23 2015-07-07 Covidien Lp Luminal stenting
US10537452B2 (en) 2012-02-23 2020-01-21 Covidien Lp Luminal stenting
US11259946B2 (en) 2012-02-23 2022-03-01 Covidien Lp Luminal stenting
US9724221B2 (en) 2012-02-23 2017-08-08 Covidien Lp Luminal stenting
US9675488B2 (en) 2012-02-23 2017-06-13 Covidien Lp Luminal stenting
US9949853B2 (en) 2012-04-23 2018-04-24 Covidien Lp Delivery system with hooks for resheathability
US9078659B2 (en) 2012-04-23 2015-07-14 Covidien Lp Delivery system with hooks for resheathability
US9155647B2 (en) 2012-07-18 2015-10-13 Covidien Lp Methods and apparatus for luminal stenting
US9877856B2 (en) 2012-07-18 2018-01-30 Covidien Lp Methods and apparatus for luminal stenting
US20140025150A1 (en) * 2012-07-20 2014-01-23 Tyco Healthcare Group Lp Resheathable stent delivery system
US9724222B2 (en) * 2012-07-20 2017-08-08 Covidien Lp Resheathable stent delivery system
US9114001B2 (en) 2012-10-30 2015-08-25 Covidien Lp Systems for attaining a predetermined porosity of a vascular device
US9907643B2 (en) 2012-10-30 2018-03-06 Covidien Lp Systems for attaining a predetermined porosity of a vascular device
US9301831B2 (en) 2012-10-30 2016-04-05 Covidien Lp Methods for attaining a predetermined porosity of a vascular device
US10952878B2 (en) 2012-10-31 2021-03-23 Covidien Lp Methods and systems for increasing a density of a region of a vascular device
US10206798B2 (en) 2012-10-31 2019-02-19 Covidien Lp Methods and systems for increasing a density of a region of a vascular device
US9452070B2 (en) 2012-10-31 2016-09-27 Covidien Lp Methods and systems for increasing a density of a region of a vascular device
US9943427B2 (en) 2012-11-06 2018-04-17 Covidien Lp Shaped occluding devices and methods of using the same
US9561122B2 (en) 2013-02-05 2017-02-07 Covidien Lp Vascular device for aneurysm treatment and providing blood flow into a perforator vessel
US9157174B2 (en) 2013-02-05 2015-10-13 Covidien Lp Vascular device for aneurysm treatment and providing blood flow into a perforator vessel
US10130500B2 (en) 2013-07-25 2018-11-20 Covidien Lp Methods and apparatus for luminal stenting
US10695204B2 (en) 2013-08-27 2020-06-30 Covidien Lp Delivery of medical devices
US10045867B2 (en) 2013-08-27 2018-08-14 Covidien Lp Delivery of medical devices
US9782186B2 (en) 2013-08-27 2017-10-10 Covidien Lp Vascular intervention system
US9775733B2 (en) 2013-08-27 2017-10-03 Covidien Lp Delivery of medical devices
US9827126B2 (en) 2013-08-27 2017-11-28 Covidien Lp Delivery of medical devices
US9474639B2 (en) 2013-08-27 2016-10-25 Covidien Lp Delivery of medical devices
US10092431B2 (en) 2013-08-27 2018-10-09 Covidien Lp Delivery of medical devices
US10265207B2 (en) 2013-08-27 2019-04-23 Covidien Lp Delivery of medical devices
US11103374B2 (en) 2013-08-27 2021-08-31 Covidien Lp Delivery of medical devices
US11076972B2 (en) 2013-08-27 2021-08-03 Covidien Lp Delivery of medical devices
WO2017004209A1 (en) * 2015-06-29 2017-01-05 480 Biomedical, Inc. Scaffold loading and delivery systems
WO2017180401A1 (en) * 2016-04-11 2017-10-19 Idev Technologies, Inc. Stent delivery system having anisotropic sheath
US10022255B2 (en) 2016-04-11 2018-07-17 Idev Technologies, Inc. Stent delivery system having anisotropic sheath
CN107280832A (en) * 2016-04-11 2017-10-24 Idev科技公司 The stent delivery system of sheath is protected with anisotropy
US10376396B2 (en) 2017-01-19 2019-08-13 Covidien Lp Coupling units for medical device delivery systems
US10945867B2 (en) 2017-01-19 2021-03-16 Covidien Lp Coupling units for medical device delivery systems
US11833069B2 (en) 2017-01-19 2023-12-05 Covidien Lp Coupling units for medical device delivery systems
US10786377B2 (en) 2018-04-12 2020-09-29 Covidien Lp Medical device delivery
US11071637B2 (en) 2018-04-12 2021-07-27 Covidien Lp Medical device delivery
US11648140B2 (en) 2018-04-12 2023-05-16 Covidien Lp Medical device delivery
US11413176B2 (en) 2018-04-12 2022-08-16 Covidien Lp Medical device delivery
US11123209B2 (en) 2018-04-12 2021-09-21 Covidien Lp Medical device delivery
US11413174B2 (en) 2019-06-26 2022-08-16 Covidien Lp Core assembly for medical device delivery systems
US12042413B2 (en) 2021-04-07 2024-07-23 Covidien Lp Delivery of medical devices
US12109137B2 (en) 2021-07-30 2024-10-08 Covidien Lp Medical device delivery
US11944558B2 (en) 2021-08-05 2024-04-02 Covidien Lp Medical device delivery devices, systems, and methods

Also Published As

Publication number Publication date
CA2553529A1 (en) 2005-08-11
US20050165352A1 (en) 2005-07-28
JP4857125B2 (en) 2012-01-18
WO2005072650A1 (en) 2005-08-11
JP2007518518A (en) 2007-07-12
EP1706065A1 (en) 2006-10-04
US7468070B2 (en) 2008-12-23

Similar Documents

Publication Publication Date Title
US7468070B2 (en) Stent delivery catheter
US7887574B2 (en) Stent delivery catheter
AU736076B2 (en) A delivery apparatus for a self-expanding stent
US6027509A (en) Stent retrieval device
US6368344B1 (en) Stent deployment system with reinforced inner member
US6241758B1 (en) Self-expanding stent delivery system and method of use
JP5046458B2 (en) Implant delivery device
US6425898B1 (en) Delivery apparatus for a self-expanding stent
US8177832B2 (en) Endoluminal expansion system
EP1129674B1 (en) Stent delivery system having delivery catheter member with a clear transition zone
US6620191B1 (en) System for releasably securing a stent on a catheter assembly and method of use
US8182522B2 (en) Apparatus and method for delivering lined intraluminal prostheses
EP1946725A1 (en) System for the controlled delivery of stents and grafts
US20100087908A1 (en) Apparatus and methods for stent delivery with embolic protection
JP2002102357A (en) Feeder for self-expanding stent
US20120065644A1 (en) Stent deployment system with retractable shealth

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION