US20080310383A1 - Systems and methods for designing a sequence for code modulation of data and channel estimation - Google Patents
Systems and methods for designing a sequence for code modulation of data and channel estimation Download PDFInfo
- Publication number
- US20080310383A1 US20080310383A1 US11/764,061 US76406107A US2008310383A1 US 20080310383 A1 US20080310383 A1 US 20080310383A1 US 76406107 A US76406107 A US 76406107A US 2008310383 A1 US2008310383 A1 US 2008310383A1
- Authority
- US
- United States
- Prior art keywords
- sequence
- data
- code
- design
- matrices
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J13/00—Code division multiplex systems
- H04J13/10—Code generation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J13/00—Code division multiplex systems
- H04J13/0007—Code type
- H04J13/0055—ZCZ [zero correlation zone]
- H04J13/0059—CAZAC [constant-amplitude and zero auto-correlation]
- H04J13/0062—Zadoff-Chu
Definitions
- the present invention relates generally to wireless communications and wireless communications-related technology. More specifically, the present invention relates to systems and methods that design a sequence for code modulation of data and channel estimation.
- a wireless communication system typically includes a base station in wireless communication with a plurality of user devices (which may also be referred to as mobile stations, subscriber units, access terminals, etc.).
- the base station transmits data to the user devices over a radio frequency (RF) communication channel.
- RF radio frequency
- the term “downlink” refers to transmission from a base station to a user device, while the term “uplink” refers to transmission from a user device to a base station.
- Orthogonal frequency division multiplexing is a modulation and multiple-access technique whereby the transmission band of a communication channel is divided into a number of equally spaced sub-bands. A sub-carrier carrying a portion of the user information is transmitted in each sub-band, and every sub-carrier is orthogonal with every other sub-carrier. Sub-carriers are sometimes referred to as “tones.” OFDM enables the creation of a very flexible system architecture that can be used efficiently for a wide range of services, including voice and data. OFDM is sometimes referred to as discrete multi-tone transmission (DMT).
- DMT discrete multi-tone transmission
- the 3 rd Generation Partnership Project (3GPP) is a collaboration of standards organizations throughout the world.
- the goal of 3GPP is to make a globally applicable third generation (3G) mobile phone system specification within the scope of the IMT-2000 (International Mobile Telecommunications-2000) standard as defined by the International Telecommunication Union.
- the 3GPP Long Term Evolution (“LTE”) Committee is considering OFDM as well as OFDM/OQAM (Orthogonal Frequency Division Multiplexing/Offset Quadrature Amplitude Modulation), as a method for downlink transmission, as well as OFDM transmission on the uplink.
- OFDM Orthogonal Frequency Division Multiplexing/Offset Quadrature Amplitude Modulation
- Wireless communications systems usually calculate an estimation of a channel impulse response between the antennas of a user device and the antennas of a base station for coherent receiving.
- Channel estimation may involve transmitting known reference signals that are multiplexed with the data.
- Reference signals may include a single frequency and are transmitted over the communication systems for supervisory, control, equalization, continuity, synchronization, etc.
- Wireless communication systems may include one or more mobile stations and one or more base stations that each transmits a reference signal.
- wireless communication systems may transmit channel quality information (CQI), acknowledgment reports (ACK) and negative acknowledgment reports (NAK).
- CQI channel quality information
- ACK acknowledgment reports
- NAK negative acknowledgment reports
- the CQI and the ACK/NAK may be modulated (or covered) by a sequence that ideally orthogonalizes the CQI and the ACK/NAK.
- covered CQI and ACK/NAK from other systems may introduce interference.
- benefits may be realized from systems and methods that design a sequence for code modulation of data as well as channel estimation.
- FIG. 1 illustrates an exemplary wireless communication system in which embodiments may be practiced
- FIG. 2 illustrates some characteristics of a transmission band of an RF communication channel in accordance with an OFDM-based system
- FIG. 3 illustrates communication channels that may exist between an OFDM transmitter and an OFDM receiver according to an embodiment
- FIG. 4 is a diagram illustrating one embodiment of covering channel quality information (CQI) and acknowledgement and negative acknowledgement reports (ACK/NAK) in accordance with the present systems and methods;
- CQI channel quality information
- ACK/NAK acknowledgement and negative acknowledgement reports
- FIG. 5 illustrates a block diagram of certain components in an embodiment of a transmitter
- FIG. 6 is a block diagram illustrating one embodiment of components used to design an Optimized Zadoff-Chu Like (OZCL) sequence
- FIG. 7 is a flow diagram illustrating one embodiment of a method for designing an OZCL sequence
- FIG. 8 is a flow diagram illustrating a further embodiment of an algorithm that may be utilized to design an OZCL sequence
- FIG. 9 is a flow diagram illustrating a method of an algorithm that may be utilized to design an OZCL sequence.
- FIG. 10 illustrates various components that may be utilized in a communications device.
- a method for using a numerical method to design a sequence for code modulating data is described.
- An input multiple input multiple output signal is determined.
- a nearest tight frame to one or more given structured vectors is obtained.
- One or more structured vectors is obtained from the nearest tight frame.
- the one or more structured vectors is projected onto the space of circulant matrices.
- One or more classes of matrices that indicates the design of the sequence is outputted.
- Data is code modulated using the designed sequence.
- the data comprises channel quality information.
- the data may comprise acknowledgement reports and negative acknowledgement reports.
- the code modulated data may be orthogonal in a cell.
- the designed sequence is identical to a sequence used for estimation of a channel.
- the data may be code modulated using Code Division Multiple Access (CDMA) implementations.
- a set of sequences may comprise a Peak to Average Power Ratio that approximates the value of one.
- the set of sequences may be recursively generated from a base sequence.
- the code modulated data may be transmitted in a Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing system.
- the designed sequence may be hopped to reduce effects of cross-correlation with one or more additional sequences.
- the designed sequence may comprise a cyclic shift orthogonal sequence.
- a device that is configured to use a numerical method to design a sequence for code modulating data is also described.
- the device comprises a processor and memory in electronic communication with the processor. Instructions are stored in the memory. An input multiple input multiple output signal is determined. A nearest tight frame to one or more given structured vectors is obtained. One or more structured vectors is obtained from the nearest tight frame. The one or more structured vectors is projected onto the space of circulant matrices. One or more classes of matrices that indicates the design of the sequence is outputted. Data is code modulated using the designed sequence.
- a computer-readable medium comprising executable instructions for using a numerical method to design a sequence for code modulating data is also described.
- An input multiple input multiple output signal is determined.
- a nearest tight frame to one or more given structured vectors is obtained.
- One or more structured vectors is obtained from the nearest tight frame.
- the one or more structured vectors is projected onto the space of circulant matrices.
- One or more classes of matrices that indicates the design of the sequence is outputted. Data is code modulated using the designed sequence.
- Such software may include any type of computer instruction or computer executable code located within a memory device and/or transmitted as electronic signals over a system bus or network.
- Software that implements the functionality associated with components described herein may comprise a single instruction, or many instructions, and may be distributed over several different code segments, among different programs, and across several memory devices.
- an embodiment means “one or more (but not necessarily all) embodiments of the disclosed invention(s)”, unless expressly specified otherwise.
- determining (and grammatical variants thereof) is used in an extremely broad sense.
- the term “determining” encompasses a wide variety of actions and therefore “determining” can include calculating, computing, processing, deriving, investigating, looking up (e.g., looking up in a table, a database or another data structure), ascertaining and the like.
- determining can include receiving (e.g., receiving information), accessing (e.g., accessing data in a memory) and the like.
- determining can include resolving, selecting, choosing, establishing and the like.
- channel quality information CQI
- acknowledgment ACK
- NAK negative acknowledgment
- a mobile station i.e., handset, User Equipment (UE), etc.
- UE User Equipment
- a Zadoff-Chu (ZC) sequence or a similar Constant Amplitude Zero Auto Correlation (CAZAC) sequence, may be used to code division modulate the CQI and the ACK/NAK.
- the length of the ZC sequence may be twelve or a multiple of twelve.
- Reference signals may also be used in communication systems. Reference signals may include a single frequency and are transmitted over the communication systems for supervisory, control, equalization, continuity, synchronization, etc. Communication systems may include one or more mobile stations and one or more base stations that each transmits a reference signal. Reference signals may be used to estimate a channel. As such, the ZC sequence may be referred to as a covering sequence while the reference signal may be referred to as a channel estimation sequence.
- all mobile stations may send the CQI and the ACK/NAK in a relatively efficient manner.
- the purpose of the modulation performed by the ZC sequence is to decorrelate (and ideally orthogonalize in a given cell) the CQI and the ACK/NAK information.
- many mobile stations may be transmitting at the same time. In one embodiment, twelve mobile stations may be transmitting at the same time in any one cell. Mobile stations from adjacent cells may introduce interference.
- the present systems and methods describe OZCL sequences that may be used for the purpose of providing an orthogonal cover to CQI and ACK/NACK data.
- sequence hopping occurs to randomize the effects of sequence cross-correlation.
- the covering sequence designed by the present systems and methods is also hopped to randomize the effects of sequence cross-correlation.
- the sequence used for channel estimation such as a reference signal sequence, would also be the same sequence used for CQI and ACK/NAK covering.
- the set may be large enough to cover at least three sectors per cell, with at least two reference signals per sector. In one embodiment, four reference signals per sector are present.
- a further design consideration may be that the set of reference signals may be orthogonal in each sector of a given cell. The set of reference signals may also be orthogonal in all sectors adjacent to a given sector. If the reference signals are orthogonal and the reference signals are known to adjacent sectors, a best minimum mean square receiver may be designed and implemented.
- PAPR Peak to Average Power Ratio
- each element may be a cyclic shift of another element. This property may be useful to provide robust performance if a transmission system which transmits a cyclic prefix for multipath elimination encounters multipath components with a delay spread greater than the cyclic prefix length.
- An additional design consideration is that in a system where multiple bandwidths are employed simultaneously, the set of reference signal sequences may be recursively generated from a base sequence.
- the amount of reference signal space may be exactly large enough.
- the basic unit of bandwidth allocation may allow for 19 or any larger prime number of reference signals available for two reference signals per sector.
- the basic unit of bandwidth allocation may allow for 37 or any larger prime number of reference signals for four reference signals per sector.
- Zadoff-Chu sequences may be taken as the reference sequences as they meet the design considerations previously described.
- resource availability or sequence numerology may not be plausible.
- the present systems and methods provide an algorithm for designing reference signals based on alternating projections when such resources or sequence numerology are not available. These same reference signals may also be used to code modulate (or cover) data such as CQI and ACK/NACK information.
- FIG. 1 illustrates an exemplary wireless communication system 100 in which embodiments may be practiced.
- a base station 102 is in wireless communication with a plurality of user devices 104 (which may also be referred to as mobile stations, subscriber units, access terminals, etc.).
- a first user device 104 a, a second user device 104 b, and an Nth user device 104 n are shown in FIG. 1 .
- the base station 102 transmits data to the user devices 104 over a radio frequency (RF) communication channel 106 .
- RF radio frequency
- OFDM transmitter refers to any component or device that transmits OFDM signals.
- An OFDM transmitter may be implemented in a base station 102 that transmits OFDM signals to one or more user devices 104 .
- an OFDM transmitter may be implemented in a user device 104 that transmits OFDM signals to one or more base stations 102 .
- OFDM receiver refers to any component or device that receives OFDM signals.
- An OFDM receiver may be implemented in a user device 104 that receives OFDM signals from one or more base stations 102 .
- an OFDM receiver may be implemented in a base station 102 that receives OFDM signals from one or more user devices 104 .
- FIG. 2 illustrates some characteristics of a transmission band 208 of an RF communication channel 206 in accordance with an OFDM-based system.
- the transmission band 208 may be divided into a number of equally spaced sub-bands 210 .
- a sub-carrier carrying a portion of the user information is transmitted in each sub-band 210 , and every sub-carrier is orthogonal with every other sub-carrier.
- FIG. 3 illustrates communication channels 306 that may exist between an OFDM transmitter 312 and an OFDM receiver 314 according to an embodiment. As shown, communication from the OFDM transmitter 312 to the OFDM receiver 314 may occur over a first communication channel 306 a. Communication from the OFDM receiver 314 to the OFDM transmitter 312 may occur over a second communication channel 306 b.
- the first communication channel 306 a and the second communication channel 306 b may be separate communication channels 306 .
- the present systems and methods may be implemented with any modulation that utilizes multiple antennas/MIMO transmissions.
- the present systems and methods may be implemented for MIMO Code Division Multiple Access (CDMA) systems, Time Division Multiple Access (TDMA) systems, Discrete Fourier Transform (DFT) Spread OFDM systems, etc.
- CDMA Code Division Multiple Access
- TDMA Time Division Multiple Access
- DFT Discrete Fourier Transform
- FIG. 4 is a diagram 400 illustrating one embodiment of covering channel quality information (CQI) 408 and acknowledgement and negative acknowledgement reports 406 (ACK/NAK).
- CQI 408 provides information relating to the quality of a channel being transmitted and the ACK/NAK reports 406 indicate whether or not a transmission was successfully received.
- the CQI 408 and the ACK/NAK 406 are multiplexed together.
- the multiplexing scheme includes time multiplexing, code multiplexing, superposition multiplexing or some additional multiplexing scheme.
- a multiplexer (MUX) 416 may implement the multiplexing scheme.
- the CQI 408 and the ACK/NAK 406 are covered (code modulated) by an Optimized Zadoff-Chu Like (OZCL) sequence 410 .
- OZCL sequence 410 covers the CQI 408 and the ACK/NAK 406 under the CDMA standard.
- the OZCL sequence 410 code division modulates the CQI 408 and the ACK/NAK 406 .
- An Inverse Fast Fourier Transform (IFFT) 404 may be applied to a covered signal 412 .
- a transformed covered signal 414 may be transmitted.
- the transformed covered signal 414 is transmitted to a base station.
- a reference signal 402 may also be transmitted.
- the reference signal 402 may be a sequence that is used to estimate a channel.
- the OZCL sequence 410 and the reference signal 402 are identical.
- reference signals 402 used as uplink demodulation reference signals to estimate a channel may also be used to code modulate data, such as the CQI 408 and the ACK/NAK 406 . Accordingly, the terms OZCL 410 sequence and reference signal 402 may be used interchangeably.
- Systems and methods for designing OZCL sequences 410 /reference signals 402 are described below.
- the systems and methods described below design orthogonal (or near orthogonal) sequences that may be implemented in DFT-Spread OFDM systems.
- the designed sequences described below may be cyclic shift orthogonal sequences.
- FIG. 5 illustrates a block diagram 500 of certain components in an embodiment of a transmitter 504 .
- Other components that are typically included in the transmitter 504 may not be illustrated for the purpose of focusing on the novel features of the embodiments herein.
- Data symbols may be modulated by a modulation component 514 .
- the modulated data symbols may be analyzed by other subsystems 518 .
- the analyzed data symbols 516 may be provided to a reference processing component 510 .
- the reference processing component 510 may generate a reference signal 508 that may be transmitted with the data symbols.
- the modulated data symbols 512 and the reference signal 508 may be communicated to an end processing component 506 .
- the end processing component 506 may combine the reference signal 508 and the modulated data symbols 512 into a signal.
- the transmitter 504 may receive the signal and transmit the signal to a receiver through an antenna 502 .
- FIG. 6 is a block diagram 600 illustrating one embodiment of components used to design an OZCL sequence 410 used to code modulate data.
- an initial sequence retriever 602 may obtain initial sequences.
- a first sequence projection component 604 may project an obtained sequence set to a nearest tight frame.
- a subsets projection component 606 may be implemented to project subsets of the nearest tight frame to one or more orthogonal matrices.
- a matrices projection component 608 may project the one or more orthogonal matrices to a nearest circulant matrix.
- a second sequence projection component 610 may project each of the obtained sequence sets onto a minimum Peak to Average Power Ratio (PAPR) vector.
- PAPR Peak to Average Power Ratio
- An iterator 612 may be utilized to iterate the steps performed by the first sequence projection component 604 , the subsets projection component 606 , the matrices projection component 608 and the second sequence projection component 610 .
- the iterator 612 may iterate these steps T times.
- a sequence output component 614 may output the sequences after T iterations have been executed.
- FIG. 7 is a flow diagram illustrating one embodiment of a method 700 for designing an OZCL sequence 410 .
- the method 700 may be implemented by the components discussed previously in regards to FIG. 6 .
- the existence of a fixed point of a MIMO signal is verified 702 .
- the Zadoff-Chu sequences may be returned and used as an input to design the OZCL sequence 410 .
- a nearest tight frame to one or more structured vectors may be obtained 704 .
- One or more structured vectors may then be obtained 706 from the previously computed nearest tight frame.
- the one or more structured vectors may be projected 708 onto the space of circulant matrices and one or more classes of matrices may be outputted 710 .
- the outputted matrices may indicate the design of the OZCL sequence 410 used to code modulate 712 data.
- the design of the sequence may indicate that the OZCL sequence 410 be hopped in order to randomize the effects of sequence cross-correlation.
- the data includes the CQI information 408 and the ACK/NAK reports 406 .
- the data may be code modulated 712 following the CDMA standard.
- the code modulated data may be transmitted in a DFT-Spread OFDM system.
- FIG. 8 is a flow diagram 800 illustrating a further embodiment of an algorithm that may be utilized to design a sequence, such as an OZCL sequence 410 or a reference signal.
- a first matrix is provided 802 .
- the first matrix may be on the unit hyper-sphere. Sequences may be on the unit hyper-sphere to ensure a satisfactory constant envelope property initially.
- the first matrix may include zero components if the starting sequence is on the unit hyper-sphere.
- a second matrix may be computed 804 .
- the second matrix may be a nearest tight frame to the first matrix.
- the nearest tight frame may include an estimation of the first matrix.
- a third matrix may be computed 806 .
- the third matrix may be the closest matrix with a minimum peak to average power ratio to the second matrix.
- the third matrix may also be expanded and a fourth matrix may be computed 808 from the expansion.
- a fifth matrix is computed 810 that is a nearest circulant matrix to the fourth matrix.
- the first matrix may be set 812 to the fifth matrix. In other words, the first matrix may be assigned the included in the fifth matrix.
- the fourth matrix and the fifth matrix may be outputted 814 .
- a maximum inner product of the fourth and fifth matrices may also be outputted 814 .
- the fourth matrix and the fifth matrix may indicate the design of a sequence, such as the OZCL sequence 410 .
- Data may be code modulated 816 using the sequence indicated by the fourth matrix and the fifth matrix.
- the data includes the CQI information 408 and the ACK/NAK reports 406 .
- the matrix may be referred to as a frame.
- Each vector may have unit length, without any loss in generality.
- the correlation between vectors may be represented as ⁇ x k , x n > which is the standard inner product in complex Euclidean d-space.
- the Welch Bound is, for any frame, for k ⁇ n:
- a frame that meets or approaches the Welch Bound may be referred to as a tight frame.
- the design considerations previously mentioned imply that for any ⁇ x k , x n > not in the same X i , ⁇ x k , x n > ⁇ , where ⁇ is a constant determined by the Welch Bound provided above. If any matrix Z ⁇ d X N , is provided, the matrix that comes closest in distance (as measured in element-wise or Frobenius norm) may be given by ⁇ (Z Z H ) 1/2 Z. This condition may also enforce an orthnormality condition between rows of X, if an optimal X exists.
- each column in any X i may be orthogonal to any other column in X i .
- the above may be repeated with the role of X above being assumed by X i H .
- a “phase parity check” may be implemented to provide orthogonality between column vectors in X i when there are zero entries in any column of X i .
- the phase of the zero components are chosen such that orthogonality if maintained once each column vector has minimal Peak to Average Power Ratio.
- a matrix Z [z 1 . . . z N ], may be provided, where each z i is a column vector ⁇ N .
- a circulant matrix C [c 0 . . . c N ⁇ 1 ], may be obtained that is closest in Frobenius (element-wise) norm to Z.
- F may be given as the Discrete Fourier Transform (DFT) matrix:
- C F H ⁇ F, where ⁇ is the DFT of the sequence/vector c 0 .
- FIG. 9 is a flow diagram 900 illustrating a method of an algorithm that may be utilized to design an OZCL sequence 410 .
- a matrix Z 0 ⁇ d X N may be provided 902 .
- ⁇ (Z Z H ) 1/2 Z may be computed 904 and assigned to the matrix Y. This may result in the tight frame nearest to Z.
- the following constraints may be implemented. If zero entries exist in column vectors of Y, phases to their related components in Y may be added so that orthogonality is maintained.
- the matrix V [V 1 V 2 . . . V M ] may be assembled.
- the max k ⁇ n ⁇ v k , v n > may be computed.
- a Q matrix may be computed 908 that is a nearest circulant matrix to V and max k ⁇ n ⁇ q k , q n > may also be computed.
- a W matrix may be computed 910 .
- the W matrix may be the closest matrix with minimum PAPR to Y.
- the Z matrix may be assigned 912 as the Q matrix. If a circulant matrix is not desired, the Z matrix may be assigned as the V matrix. In one embodiment, t is updated as t+1.
- the V matrix and the Q matrix may be outputted 914 .
- max k ⁇ n ⁇ v k , v n > and max k ⁇ n ⁇ q k , q n > may also be outputted 914 .
- the V and the Q matrices may indicate the design the OZCL sequence 410 .
- Data may be code modulated 916 using the OZCL sequence 410 indicated by the V matrix and the Q matrix.
- the data includes the CQI information 408 and the ACK/NAK reports 406 .
- FIG. 10 illustrates various components that may be utilized in a communications device 1002 .
- the communications device 1002 may include any type of communications device such as a mobile station, a cell phone, an access terminal, user equipment, a base station transceiver, a base station controller, etc.
- the communications device 1002 includes a processor 1006 which controls operation of the communications device 1002 .
- the processor 1006 may also be referred to as a CPU.
- Memory 1008 which may include both read-only memory (ROM) and random access memory (RAM), provides instructions and data to the processor 1006 .
- a portion of the memory 1008 may also include non-volatile random access memory (NVRAM).
- NVRAM non-volatile random access memory
- the communications device 1002 may also include a housing 1022 that includes a transmitter 1012 and a receiver 1014 to allow transmission and reception of data.
- the transmitter 1012 and receiver 1014 may be combined into a transceiver 1024 .
- An antenna 1026 is attached to the housing 1022 and electrically coupled to the transceiver 1024 . Additional antennas (not shown) may also be used.
- the communications device 1002 may also include a signal detector 1010 used to detect and quantify the level of signals received by the transceiver 1024 .
- the signal detector 1010 detects such signals as total energy, pilot energy, power spectral density, and other signals.
- a state changer 1016 controls the state of the communications device 1002 based on a current state and additional signals received by the transceiver 1024 and detected by the signal detector 1010 .
- the communications device 1002 may be capable of operating in any one of a number of states.
- the various components of the communications device 1002 are coupled together by a bus system 1020 which may include a power bus, a control signal bus, and a status signal bus in addition to a data bus. However, for the sake of clarity, the various buses are illustrated in FIG. 10 as the bus system 1020 .
- the communications device 1002 may also include a digital signal processor (DSP) 1018 for use in processing signals.
- DSP digital signal processor
- the communications device 1002 illustrated in FIG. 10 is a functional block diagram rather than a listing of specific components.
- Information and signals may be represented using any of a variety of different technologies and techniques.
- data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
- DSP digital signal processor
- ASIC application specific integrated circuit
- FPGA field programmable gate array signal
- a general purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
- a processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
- a software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art.
- An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium.
- the storage medium may be integral to the processor.
- the processor and the storage medium may reside in an ASIC.
- the ASIC may reside in a user terminal.
- the processor and the storage medium may reside as discrete components in a user terminal.
- the methods disclosed herein comprise one or more steps or actions for achieving the described method.
- the method steps and/or actions may be interchanged with one another without departing from the scope of the present invention.
- the order and/or use of specific steps and/or actions may be modified without departing from the scope of the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Power Engineering (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
- The present invention relates generally to wireless communications and wireless communications-related technology. More specifically, the present invention relates to systems and methods that design a sequence for code modulation of data and channel estimation.
- A wireless communication system typically includes a base station in wireless communication with a plurality of user devices (which may also be referred to as mobile stations, subscriber units, access terminals, etc.). The base station transmits data to the user devices over a radio frequency (RF) communication channel. The term “downlink” refers to transmission from a base station to a user device, while the term “uplink” refers to transmission from a user device to a base station.
- Orthogonal frequency division multiplexing (OFDM) is a modulation and multiple-access technique whereby the transmission band of a communication channel is divided into a number of equally spaced sub-bands. A sub-carrier carrying a portion of the user information is transmitted in each sub-band, and every sub-carrier is orthogonal with every other sub-carrier. Sub-carriers are sometimes referred to as “tones.” OFDM enables the creation of a very flexible system architecture that can be used efficiently for a wide range of services, including voice and data. OFDM is sometimes referred to as discrete multi-tone transmission (DMT).
- The 3rd Generation Partnership Project (3GPP) is a collaboration of standards organizations throughout the world. The goal of 3GPP is to make a globally applicable third generation (3G) mobile phone system specification within the scope of the IMT-2000 (International Mobile Telecommunications-2000) standard as defined by the International Telecommunication Union. The 3GPP Long Term Evolution (“LTE”) Committee is considering OFDM as well as OFDM/OQAM (Orthogonal Frequency Division Multiplexing/Offset Quadrature Amplitude Modulation), as a method for downlink transmission, as well as OFDM transmission on the uplink.
- Wireless communications systems (e.g., Time Division Multiple Access (TDMA), Orthogonal Frequency-Division Multiplexing (OFDM)) usually calculate an estimation of a channel impulse response between the antennas of a user device and the antennas of a base station for coherent receiving. Channel estimation may involve transmitting known reference signals that are multiplexed with the data. Reference signals may include a single frequency and are transmitted over the communication systems for supervisory, control, equalization, continuity, synchronization, etc. Wireless communication systems may include one or more mobile stations and one or more base stations that each transmits a reference signal. In addition, wireless communication systems may transmit channel quality information (CQI), acknowledgment reports (ACK) and negative acknowledgment reports (NAK). The CQI and the ACK/NAK may be modulated (or covered) by a sequence that ideally orthogonalizes the CQI and the ACK/NAK. However, covered CQI and ACK/NAK from other systems may introduce interference. As such, benefits may be realized from systems and methods that design a sequence for code modulation of data as well as channel estimation.
- Exemplary embodiments of the invention will become more fully apparent from the following description and appended claims, taken in conjunction with the accompanying drawings. Understanding that these drawings depict only exemplary embodiments and are, therefore, not to be considered limiting of the invention's scope, the exemplary embodiments of the invention will be described with additional specificity and detail through use of the accompanying drawings in which:
-
FIG. 1 illustrates an exemplary wireless communication system in which embodiments may be practiced; -
FIG. 2 illustrates some characteristics of a transmission band of an RF communication channel in accordance with an OFDM-based system; -
FIG. 3 illustrates communication channels that may exist between an OFDM transmitter and an OFDM receiver according to an embodiment; -
FIG. 4 is a diagram illustrating one embodiment of covering channel quality information (CQI) and acknowledgement and negative acknowledgement reports (ACK/NAK) in accordance with the present systems and methods; -
FIG. 5 illustrates a block diagram of certain components in an embodiment of a transmitter; -
FIG. 6 is a block diagram illustrating one embodiment of components used to design an Optimized Zadoff-Chu Like (OZCL) sequence; -
FIG. 7 is a flow diagram illustrating one embodiment of a method for designing an OZCL sequence; -
FIG. 8 is a flow diagram illustrating a further embodiment of an algorithm that may be utilized to design an OZCL sequence; -
FIG. 9 is a flow diagram illustrating a method of an algorithm that may be utilized to design an OZCL sequence; and -
FIG. 10 illustrates various components that may be utilized in a communications device. - A method for using a numerical method to design a sequence for code modulating data is described. An input multiple input multiple output signal is determined. A nearest tight frame to one or more given structured vectors is obtained. One or more structured vectors is obtained from the nearest tight frame. The one or more structured vectors is projected onto the space of circulant matrices. One or more classes of matrices that indicates the design of the sequence is outputted. Data is code modulated using the designed sequence.
- In one embodiment, the data comprises channel quality information. The data may comprise acknowledgement reports and negative acknowledgement reports. The code modulated data may be orthogonal in a cell. In one embodiment, the designed sequence is identical to a sequence used for estimation of a channel.
- The data may be code modulated using Code Division Multiple Access (CDMA) implementations. A set of sequences may comprise a Peak to Average Power Ratio that approximates the value of one. The set of sequences may be recursively generated from a base sequence. The code modulated data may be transmitted in a Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing system. The designed sequence may be hopped to reduce effects of cross-correlation with one or more additional sequences. The designed sequence may comprise a cyclic shift orthogonal sequence.
- A device that is configured to use a numerical method to design a sequence for code modulating data is also described. The device comprises a processor and memory in electronic communication with the processor. Instructions are stored in the memory. An input multiple input multiple output signal is determined. A nearest tight frame to one or more given structured vectors is obtained. One or more structured vectors is obtained from the nearest tight frame. The one or more structured vectors is projected onto the space of circulant matrices. One or more classes of matrices that indicates the design of the sequence is outputted. Data is code modulated using the designed sequence.
- A computer-readable medium comprising executable instructions for using a numerical method to design a sequence for code modulating data is also described. An input multiple input multiple output signal is determined. A nearest tight frame to one or more given structured vectors is obtained. One or more structured vectors is obtained from the nearest tight frame. The one or more structured vectors is projected onto the space of circulant matrices. One or more classes of matrices that indicates the design of the sequence is outputted. Data is code modulated using the designed sequence.
- Various embodiments of the invention are now described with reference to the Figures, where like reference numbers indicate identical or functionally similar elements. The embodiments of the present invention, as generally described and illustrated in the Figures herein, could be arranged and designed in a wide variety of different configurations. Thus, the following more detailed description of several exemplary embodiments of the present invention, as represented in the Figures, is not intended to limit the scope of the invention, as claimed, but is merely representative of the embodiments of the invention.
- The word “exemplary” is used exclusively herein to mean “serving as an example, instance, or illustration.” Any embodiment described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments.
- Many features of the embodiments disclosed herein may be implemented as computer software, electronic hardware, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various components will be described generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present invention.
- Where the described functionality is implemented as computer software, such software may include any type of computer instruction or computer executable code located within a memory device and/or transmitted as electronic signals over a system bus or network. Software that implements the functionality associated with components described herein may comprise a single instruction, or many instructions, and may be distributed over several different code segments, among different programs, and across several memory devices.
- As used herein, the terms “an embodiment”, “embodiment”, “embodiments”, “the embodiment”, “the embodiments”, “one or more embodiments”, “some embodiments”, “certain embodiments”, “one embodiment”, “another embodiment” and the like mean “one or more (but not necessarily all) embodiments of the disclosed invention(s)”, unless expressly specified otherwise.
- The term “determining” (and grammatical variants thereof) is used in an extremely broad sense. The term “determining” encompasses a wide variety of actions and therefore “determining” can include calculating, computing, processing, deriving, investigating, looking up (e.g., looking up in a table, a database or another data structure), ascertaining and the like. Also, “determining” can include receiving (e.g., receiving information), accessing (e.g., accessing data in a memory) and the like. Also, “determining” can include resolving, selecting, choosing, establishing and the like.
- The phrase “based on” does not mean “based only on,” unless expressly specified otherwise. In other words, the phrase “based on” describes both “based only on” and “based at least on.”
- In 3GPP Long Term Evolution, channel quality information (CQI), acknowledgment (ACK) reports and negative acknowledgment (NAK) reports may be transmitted from a mobile station (i.e., handset, User Equipment (UE), etc.) to a base station (i.e., node B). A Zadoff-Chu (ZC) sequence, or a similar Constant Amplitude Zero Auto Correlation (CAZAC) sequence, may be used to code division modulate the CQI and the ACK/NAK. The length of the ZC sequence may be twelve or a multiple of twelve.
- Reference signals may also be used in communication systems. Reference signals may include a single frequency and are transmitted over the communication systems for supervisory, control, equalization, continuity, synchronization, etc. Communication systems may include one or more mobile stations and one or more base stations that each transmits a reference signal. Reference signals may be used to estimate a channel. As such, the ZC sequence may be referred to as a covering sequence while the reference signal may be referred to as a channel estimation sequence.
- In a synchronized system, all mobile stations may send the CQI and the ACK/NAK in a relatively efficient manner. For example, the purpose of the modulation performed by the ZC sequence is to decorrelate (and ideally orthogonalize in a given cell) the CQI and the ACK/NAK information. However, in a synchronized system, many mobile stations may be transmitting at the same time. In one embodiment, twelve mobile stations may be transmitting at the same time in any one cell. Mobile stations from adjacent cells may introduce interference.
- If ZC sequences, as described above, are used to cover the CQI and ACK/NAK information, then outside of the shifts of base sequences the only minimally correlated sequences would be those sequences that are relatively prime. For example, if cn M
1 ={ej2pin(n+1)M1 /N}, and cn M2 ={ej2pin(n+1)M2 /N} then <cn M2 , cn M1 > will be minimally correlated with a correlation of 1/N−1/2 if M1 and M2 are relatively prime to each other. In one embodiment, there are only 48 possible sequences with this property. In addition, Walsh signal sequences are limited as well for code modulating this information. - The present systems and methods describe OZCL sequences that may be used for the purpose of providing an orthogonal cover to CQI and ACK/NACK data. In some versions of 3GPP Long Term Evolution, sequence hopping occurs to randomize the effects of sequence cross-correlation. In a similar manner, the covering sequence designed by the present systems and methods is also hopped to randomize the effects of sequence cross-correlation. In one embodiment, the sequence used for channel estimation, such as a reference signal sequence, would also be the same sequence used for CQI and ACK/NAK covering.
- In designing a set of reference signals (or OZCL sequences), certain design considerations may be implemented. For example, the set may be large enough to cover at least three sectors per cell, with at least two reference signals per sector. In one embodiment, four reference signals per sector are present. A further design consideration may be that the set of reference signals may be orthogonal in each sector of a given cell. The set of reference signals may also be orthogonal in all sectors adjacent to a given sector. If the reference signals are orthogonal and the reference signals are known to adjacent sectors, a best minimum mean square receiver may be designed and implemented.
- For those reference signals that are not in adjacent sectors, or which are not orthogonal, another design consideration may be that these reference signal are minimally correlated, with approximately the same correlation, and approach (if not meet) the Welch Bound. Sets of sequences that approach or meet the Welch Bound may denote a tight frame, where each vector possesses a unit norm, i.e., ∥Xn∥2≡1. A further design consideration is the set of reference signals may also have a Peak to Average Power Ratio (PAPR) that approaches (if not equal) to 1. The PAPR may be defined as, for a sequence vector c as:
-
- where ∥c∥∞ 2 denotes the square maximum modulus component of c and where ( )H denotes a conjugate transpose.
- Another example of a design consideration may be that amongst subsets of sequences with orthogonal elements, each element may be a cyclic shift of another element. This property may be useful to provide robust performance if a transmission system which transmits a cyclic prefix for multipath elimination encounters multipath components with a delay spread greater than the cyclic prefix length. An additional design consideration is that in a system where multiple bandwidths are employed simultaneously, the set of reference signal sequences may be recursively generated from a base sequence.
- In one embodiment, the amount of reference signal space (time and frequency resources) may be exactly large enough. For example, the basic unit of bandwidth allocation may allow for 19 or any larger prime number of reference signals available for two reference signals per sector. In a further example, the basic unit of bandwidth allocation may allow for 37 or any larger prime number of reference signals for four reference signals per sector. As in this case, if the amount of reference signal space is exactly large enough, Zadoff-Chu sequences may be taken as the reference sequences as they meet the design considerations previously described. However, such resource availability or sequence numerology may not be plausible. The present systems and methods provide an algorithm for designing reference signals based on alternating projections when such resources or sequence numerology are not available. These same reference signals may also be used to code modulate (or cover) data such as CQI and ACK/NACK information.
-
FIG. 1 illustrates an exemplarywireless communication system 100 in which embodiments may be practiced. Abase station 102 is in wireless communication with a plurality of user devices 104 (which may also be referred to as mobile stations, subscriber units, access terminals, etc.). A first user device 104 a, asecond user device 104 b, and an Nth user device 104 n are shown inFIG. 1 . Thebase station 102 transmits data to the user devices 104 over a radio frequency (RF)communication channel 106. - As used herein, the term “OFDM transmitter” refers to any component or device that transmits OFDM signals. An OFDM transmitter may be implemented in a
base station 102 that transmits OFDM signals to one or more user devices 104. Alternatively, an OFDM transmitter may be implemented in a user device 104 that transmits OFDM signals to one ormore base stations 102. - The term “OFDM receiver” refers to any component or device that receives OFDM signals. An OFDM receiver may be implemented in a user device 104 that receives OFDM signals from one or
more base stations 102. Alternatively, an OFDM receiver may be implemented in abase station 102 that receives OFDM signals from one or more user devices 104. -
FIG. 2 illustrates some characteristics of atransmission band 208 of anRF communication channel 206 in accordance with an OFDM-based system. As shown, thetransmission band 208 may be divided into a number of equally spaced sub-bands 210. As mentioned above, a sub-carrier carrying a portion of the user information is transmitted in each sub-band 210, and every sub-carrier is orthogonal with every other sub-carrier. -
FIG. 3 illustrates communication channels 306 that may exist between anOFDM transmitter 312 and anOFDM receiver 314 according to an embodiment. As shown, communication from theOFDM transmitter 312 to theOFDM receiver 314 may occur over afirst communication channel 306 a. Communication from theOFDM receiver 314 to theOFDM transmitter 312 may occur over asecond communication channel 306 b. - The
first communication channel 306 a and thesecond communication channel 306 b may be separate communication channels 306. For example, there may be no overlap between the transmission band of thefirst communication channel 306 a and the transmission band of thesecond communication channel 306 b. - In addition, the present systems and methods may be implemented with any modulation that utilizes multiple antennas/MIMO transmissions. For example, the present systems and methods may be implemented for MIMO Code Division Multiple Access (CDMA) systems, Time Division Multiple Access (TDMA) systems, Discrete Fourier Transform (DFT) Spread OFDM systems, etc.
-
FIG. 4 is a diagram 400 illustrating one embodiment of covering channel quality information (CQI) 408 and acknowledgement and negative acknowledgement reports 406 (ACK/NAK). TheCQI 408 provides information relating to the quality of a channel being transmitted and the ACK/NAK reports 406 indicate whether or not a transmission was successfully received. As illustrated, theCQI 408 and the ACK/NAK 406 are multiplexed together. In one embodiment, the multiplexing scheme includes time multiplexing, code multiplexing, superposition multiplexing or some additional multiplexing scheme. A multiplexer (MUX) 416 may implement the multiplexing scheme. TheCQI 408 and the ACK/NAK 406 are covered (code modulated) by an Optimized Zadoff-Chu Like (OZCL)sequence 410. In one embodiment, theOZCL sequence 410 covers theCQI 408 and the ACK/NAK 406 under the CDMA standard. In other words, theOZCL sequence 410 code division modulates theCQI 408 and the ACK/NAK 406. - An Inverse Fast Fourier Transform (IFFT) 404 may be applied to a covered
signal 412. A transformed covered signal 414 may be transmitted. In one embodiment, the transformed covered signal 414 is transmitted to a base station. In addition, a reference signal 402 may also be transmitted. The reference signal 402 may be a sequence that is used to estimate a channel. In one embodiment, theOZCL sequence 410 and the reference signal 402 are identical. In other words, reference signals 402 used as uplink demodulation reference signals to estimate a channel may also be used to code modulate data, such as theCQI 408 and the ACK/NAK 406. Accordingly, theterms OZCL 410 sequence and reference signal 402 may be used interchangeably. Systems and methods for designingOZCL sequences 410/reference signals 402 are described below. The systems and methods described below design orthogonal (or near orthogonal) sequences that may be implemented in DFT-Spread OFDM systems. In addition, the designed sequences described below may be cyclic shift orthogonal sequences. -
FIG. 5 illustrates a block diagram 500 of certain components in an embodiment of atransmitter 504. Other components that are typically included in thetransmitter 504 may not be illustrated for the purpose of focusing on the novel features of the embodiments herein. - Data symbols may be modulated by a
modulation component 514. The modulated data symbols may be analyzed byother subsystems 518. The analyzeddata symbols 516 may be provided to areference processing component 510. Thereference processing component 510 may generate areference signal 508 that may be transmitted with the data symbols. The modulateddata symbols 512 and thereference signal 508 may be communicated to anend processing component 506. Theend processing component 506 may combine thereference signal 508 and the modulateddata symbols 512 into a signal. Thetransmitter 504 may receive the signal and transmit the signal to a receiver through anantenna 502. -
FIG. 6 is a block diagram 600 illustrating one embodiment of components used to design anOZCL sequence 410 used to code modulate data. In one embodiment, aninitial sequence retriever 602 may obtain initial sequences. A firstsequence projection component 604 may project an obtained sequence set to a nearest tight frame. Asubsets projection component 606 may be implemented to project subsets of the nearest tight frame to one or more orthogonal matrices. In one embodiment, amatrices projection component 608 may project the one or more orthogonal matrices to a nearest circulant matrix. In one embodiment, a secondsequence projection component 610 may project each of the obtained sequence sets onto a minimum Peak to Average Power Ratio (PAPR) vector. Aniterator 612 may be utilized to iterate the steps performed by the firstsequence projection component 604, thesubsets projection component 606, thematrices projection component 608 and the secondsequence projection component 610. Theiterator 612 may iterate these steps T times. Asequence output component 614 may output the sequences after T iterations have been executed. -
FIG. 7 is a flow diagram illustrating one embodiment of amethod 700 for designing anOZCL sequence 410. Themethod 700 may be implemented by the components discussed previously in regards toFIG. 6 . In one embodiment, the existence of a fixed point of a MIMO signal is verified 702. For example, for a set of Zadoff-Chu sequences of lengths 19 or 37, the Zadoff-Chu sequences may be returned and used as an input to design theOZCL sequence 410. A nearest tight frame to one or more structured vectors may be obtained 704. One or more structured vectors may then be obtained 706 from the previously computed nearest tight frame. The one or more structured vectors may be projected 708 onto the space of circulant matrices and one or more classes of matrices may be outputted 710. The outputted matrices may indicate the design of theOZCL sequence 410 used to code modulate 712 data. The design of the sequence may indicate that theOZCL sequence 410 be hopped in order to randomize the effects of sequence cross-correlation. In one embodiment, the data includes theCQI information 408 and the ACK/NAK reports 406. The data may be code modulated 712 following the CDMA standard. The code modulated data may be transmitted in a DFT-Spread OFDM system. -
FIG. 8 is a flow diagram 800 illustrating a further embodiment of an algorithm that may be utilized to design a sequence, such as anOZCL sequence 410 or a reference signal. As previously mentioned, the reference signal and the OZCL sequence may be identical. In one embodiment, a first matrix is provided 802. The first matrix may be on the unit hyper-sphere. Sequences may be on the unit hyper-sphere to ensure a satisfactory constant envelope property initially. The first matrix may include zero components if the starting sequence is on the unit hyper-sphere. A second matrix may be computed 804. The second matrix may be a nearest tight frame to the first matrix. The nearest tight frame may include an estimation of the first matrix. - In one embodiment, a third matrix may be computed 806. The third matrix may be the closest matrix with a minimum peak to average power ratio to the second matrix. The third matrix may also be expanded and a fourth matrix may be computed 808 from the expansion. In one embodiment, a fifth matrix is computed 810 that is a nearest circulant matrix to the fourth matrix. The first matrix may be set 812 to the fifth matrix. In other words, the first matrix may be assigned the included in the fifth matrix. The fourth matrix and the fifth matrix may be outputted 814. In addition, a maximum inner product of the fourth and fifth matrices may also be outputted 814. The fourth matrix and the fifth matrix may indicate the design of a sequence, such as the
OZCL sequence 410. Data may be code modulated 816 using the sequence indicated by the fourth matrix and the fifth matrix. In one embodiment, the data includes theCQI information 408 and the ACK/NAK reports 406. - The following may represent steps taken to compute a correlated set of matrices that is the closest matrix with a minimum peak to average power ratio. A sequence of N column vectors {xn}n=1 N, xn ε d, d≦N, may be assigned as columns of a matrix X=[x1 x2 . . . xN]. The matrix may be referred to as a frame. Each vector may have unit length, without any loss in generality. Block of K of these vectors may be grouped into a set of matrices, {Xi}i=1 K so that (with MK=N) X=[X1 X2 . . . XM]. The correlation between vectors may be represented as <xk, xn> which is the standard inner product in complex Euclidean d-space.
- The Welch Bound is, for any frame, for k≠n:
-
- A frame that meets or approaches the Welch Bound may be referred to as a tight frame. The design considerations previously mentioned imply that for any <xk, xn> not in the same Xi, <xk, xn>≦α, where α is a constant determined by the Welch Bound provided above. If any matrix Z ε d X N, is provided, the matrix that comes closest in distance (as measured in element-wise or Frobenius norm) may be given by α(Z ZH)1/2 Z. This condition may also enforce an orthnormality condition between rows of X, if an optimal X exists.
- The design considerations previously mentioned also imply that Xi*Xi=IK; (with K≦d). In other words, each column in any Xi may be orthogonal to any other column in Xi. The above may be repeated with the role of X above being assumed by Xi H. Further, if as few as two sequences are required per cell (i.e., per matrix Xi), a “phase parity check” may be implemented to provide orthogonality between column vectors in Xi when there are zero entries in any column of Xi. In other words, the phase of the zero components are chosen such that orthogonality if maintained once each column vector has minimal Peak to Average Power Ratio.
- The following may illustrate steps taken to obtain the circulant matrix nearest to a given matrix. A matrix Z=[z1 . . . zN], may be provided, where each zi is a column vector ε N. A circulant matrix C=[c0 . . . cN−1], may be obtained that is closest in Frobenius (element-wise) norm to Z. In one embodiment, F may be given as the Discrete Fourier Transform (DFT) matrix:
-
- A diagonal “delay” matrix D may be defined as D=diag(1 e−j2π/N e−j2π2/N . . . e−j2π(N−1)/N). For any ciculant matrix C, C=FHΛF, where Λ is the DFT of the sequence/vector c0. In addition, it may be shown that ci+1 mod N=FHDF ci=(FHDF)(i+1) mod N c0. Then
-
- In one embodiment,
-
- to minimize c0, which uniquely determines C, c0 is given by C0=B+ ζ, where B+ is the Moore-Penrose pseudo-inverse of B. In other words, B+=(BHB)−1BH.
- Matrices where the number of column vectors are not equal to the number of row vectors may be referred to as reduced rank matrices (Z has fewer than N columns). Modifications may be implemented to the recurrence relation ci+1 mod N=FHDF ci and the forming of the appropriate matrix B. If only two vectors were required that were cyclic shifted three elements apart, then c1=(FHDF)3 c0 and B may include the matrix elements IN and (FHDF)2.
-
- In one embodiment, α(Z ZH)1/2 Z may be computed 904 and assigned to the matrix Y. This may result in the tight frame nearest to Z. The following constraints may be implemented. If zero entries exist in column vectors of Y, phases to their related components in Y may be added so that orthogonality is maintained. For m=1 to M, (α(Wm HWm)1/2Wm H)H may be computed 906 and assigned to a vector Vm. The matrix V=[V1 V2 . . . VM] may be assembled.
- In one embodiment, the max k≠n<vk, vn> may be computed. Further, a Q matrix may be computed 908 that is a nearest circulant matrix to V and max k≠n<qk, qn> may also be computed. A W matrix may be computed 910. The W matrix may be the closest matrix with minimum PAPR to Y. The W matrix may be expressed as W=[W1 W2 . . . WM]. The Z matrix may be assigned 912 as the Q matrix. If a circulant matrix is not desired, the Z matrix may be assigned as the V matrix. In one embodiment, t is updated as t+1. The V matrix and the Q matrix may be outputted 914. In addition, max k≠n<vk, vn> and max k≠n<qk, qn> may also be outputted 914. The V and the Q matrices may indicate the design the
OZCL sequence 410. Data may be code modulated 916 using theOZCL sequence 410 indicated by the V matrix and the Q matrix. In one embodiment, the data includes theCQI information 408 and the ACK/NAK reports 406. -
FIG. 10 illustrates various components that may be utilized in acommunications device 1002. Thecommunications device 1002 may include any type of communications device such as a mobile station, a cell phone, an access terminal, user equipment, a base station transceiver, a base station controller, etc. Thecommunications device 1002 includes aprocessor 1006 which controls operation of thecommunications device 1002. Theprocessor 1006 may also be referred to as a CPU.Memory 1008, which may include both read-only memory (ROM) and random access memory (RAM), provides instructions and data to theprocessor 1006. A portion of thememory 1008 may also include non-volatile random access memory (NVRAM). - The
communications device 1002 may also include ahousing 1022 that includes atransmitter 1012 and areceiver 1014 to allow transmission and reception of data. Thetransmitter 1012 andreceiver 1014 may be combined into atransceiver 1024. Anantenna 1026 is attached to thehousing 1022 and electrically coupled to thetransceiver 1024. Additional antennas (not shown) may also be used. - The
communications device 1002 may also include asignal detector 1010 used to detect and quantify the level of signals received by thetransceiver 1024. Thesignal detector 1010 detects such signals as total energy, pilot energy, power spectral density, and other signals. - A
state changer 1016 controls the state of thecommunications device 1002 based on a current state and additional signals received by thetransceiver 1024 and detected by thesignal detector 1010. Thecommunications device 1002 may be capable of operating in any one of a number of states. - The various components of the
communications device 1002 are coupled together by abus system 1020 which may include a power bus, a control signal bus, and a status signal bus in addition to a data bus. However, for the sake of clarity, the various buses are illustrated inFIG. 10 as thebus system 1020. Thecommunications device 1002 may also include a digital signal processor (DSP) 1018 for use in processing signals. Thecommunications device 1002 illustrated inFIG. 10 is a functional block diagram rather than a listing of specific components. - Information and signals may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
- The various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the embodiments disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present invention.
- The various illustrative logical blocks, modules, and circuits described in connection with the embodiments disclosed herein may be implemented or performed with a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array signal (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
- The steps of a method or algorithm described in connection with the embodiments disclosed herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an ASIC. The ASIC may reside in a user terminal. In the alternative, the processor and the storage medium may reside as discrete components in a user terminal.
- The methods disclosed herein comprise one or more steps or actions for achieving the described method. The method steps and/or actions may be interchanged with one another without departing from the scope of the present invention. In other words, unless a specific order of steps or actions is required for proper operation of the embodiment, the order and/or use of specific steps and/or actions may be modified without departing from the scope of the present invention.
- While specific embodiments and applications of the present invention have been illustrated and described, it is to be understood that the invention is not limited to the precise configuration and components disclosed herein. Various modifications, changes, and variations which will be apparent to those skilled in the art may be made in the arrangement, operation, and details of the methods and systems of the present invention disclosed herein without departing from the spirit and scope of the invention.
Claims (20)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/764,061 US20080310383A1 (en) | 2007-06-15 | 2007-06-15 | Systems and methods for designing a sequence for code modulation of data and channel estimation |
US12/664,367 US8428178B2 (en) | 2007-06-15 | 2008-06-13 | Systems and methods for designing a sequence for code modulation of data and channel estimation |
EP08777431.1A EP2158688B1 (en) | 2007-06-15 | 2008-06-13 | Device for designing a sequence for code modulation of data and channel estimation |
PCT/JP2008/061286 WO2008153218A1 (en) | 2007-06-15 | 2008-06-13 | Systems and methods for designing a sequence for code modulation of data and channel estimation |
BRPI0812507-4A BRPI0812507A2 (en) | 2007-06-15 | 2008-06-13 | Systems and methods for designing a sequence for channel and data estimation code modulation |
JP2010510990A JP2010529769A (en) | 2007-06-15 | 2008-06-13 | System and method for designing sequences for coded modulation and channel estimation of data |
CN2008800201643A CN101682364B (en) | 2007-06-15 | 2008-06-13 | Systems and methods for designing a sequence for code modulation of data and channel estimation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/764,061 US20080310383A1 (en) | 2007-06-15 | 2007-06-15 | Systems and methods for designing a sequence for code modulation of data and channel estimation |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080310383A1 true US20080310383A1 (en) | 2008-12-18 |
Family
ID=40129813
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/764,061 Abandoned US20080310383A1 (en) | 2007-06-15 | 2007-06-15 | Systems and methods for designing a sequence for code modulation of data and channel estimation |
US12/664,367 Active 2030-04-27 US8428178B2 (en) | 2007-06-15 | 2008-06-13 | Systems and methods for designing a sequence for code modulation of data and channel estimation |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/664,367 Active 2030-04-27 US8428178B2 (en) | 2007-06-15 | 2008-06-13 | Systems and methods for designing a sequence for code modulation of data and channel estimation |
Country Status (6)
Country | Link |
---|---|
US (2) | US20080310383A1 (en) |
EP (1) | EP2158688B1 (en) |
JP (1) | JP2010529769A (en) |
CN (1) | CN101682364B (en) |
BR (1) | BRPI0812507A2 (en) |
WO (1) | WO2008153218A1 (en) |
Cited By (81)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080225688A1 (en) * | 2007-03-14 | 2008-09-18 | Kowalski John M | Systems and methods for improving reference signals for spatially multiplexed cellular systems |
US20090022135A1 (en) * | 2007-07-16 | 2009-01-22 | Samsung Electronics Co., Ltd. | Apparatus and method for transmitting of channel quality indicator and acknowledgement signals in sc-fdma communication systems |
US20090080500A1 (en) * | 2007-09-21 | 2009-03-26 | Tarik Muharemovic | Reference Signal Structure for OFDM Based Transmissions |
US20090092148A1 (en) * | 2007-09-19 | 2009-04-09 | Samsung Electronics Co., Ltd. | Resource remapping and regrouping in a wireless communication system |
US20090110034A1 (en) * | 2007-10-30 | 2009-04-30 | Sharp Laboratories Of America, Inc. | Systems and methods for generating sequences that are nearest to a set of sequences with minimum average cross-correlation |
US20090116587A1 (en) * | 2007-11-01 | 2009-05-07 | Texas Instruments Incorporated | Method, system and apparatus for generating constant amplitude zero autocorrelation sequences |
US20100329196A1 (en) * | 2007-06-20 | 2010-12-30 | Hwan-Joon Kwon | Method and apparatus for transmitting uplink control channel in a mobile communication system |
US20100329401A1 (en) * | 2009-06-26 | 2010-12-30 | Hypres, Inc. | System and method for controlling combined radio signals |
US20110292971A1 (en) * | 2010-05-28 | 2011-12-01 | Ronny Hadani | Communications method employing orthonormal time-frequency shifting and spectral shaping |
US8112041B2 (en) | 2007-03-14 | 2012-02-07 | Sharp Kabushiki Kaisha | Systems and methods for generating sequences that are nearest to a set of sequences with minimum average cross-correlation |
US8428178B2 (en) | 2007-06-15 | 2013-04-23 | Sharp Kabushiki Kaisha | Systems and methods for designing a sequence for code modulation of data and channel estimation |
WO2013148546A1 (en) * | 2012-03-26 | 2013-10-03 | Shlomo Selim Rakib | Signal modulation method resistant to echo reflections and frequency offsets |
US8787873B1 (en) | 2011-11-04 | 2014-07-22 | Plusn Llc | System and method for communicating using bandwidth on demand |
US8855096B2 (en) | 2007-07-16 | 2014-10-07 | Samsung Electronics Co., Ltd | Apparatus and method for transmitting channel quality indicator and acknowledgement signals in SC-FDMA communication systems |
US9031141B2 (en) | 2011-05-26 | 2015-05-12 | Cohere Technologies, Inc. | Modulation and equalization in an orthonormal time-frequency shifting communications system |
US9071285B2 (en) | 2011-05-26 | 2015-06-30 | Cohere Technologies, Inc. | Modulation and equalization in an orthonormal time-frequency shifting communications system |
US9071286B2 (en) | 2011-05-26 | 2015-06-30 | Cohere Technologies, Inc. | Modulation and equalization in an orthonormal time-frequency shifting communications system |
US9130638B2 (en) | 2011-05-26 | 2015-09-08 | Cohere Technologies, Inc. | Modulation and equalization in an orthonormal time-frequency shifting communications system |
US9294315B2 (en) | 2011-05-26 | 2016-03-22 | Cohere Technologies, Inc. | Modulation and equalization in an orthonormal time-frequency shifting communications system |
US9565045B2 (en) | 2009-06-26 | 2017-02-07 | Plusn Llc | System and method for controlling combined radio signals |
US9590779B2 (en) | 2011-05-26 | 2017-03-07 | Cohere Technologies, Inc. | Modulation and equalization in an orthonormal time-frequency shifting communications system |
US9866363B2 (en) | 2015-06-18 | 2018-01-09 | Cohere Technologies, Inc. | System and method for coordinated management of network access points |
US9893922B2 (en) | 2012-06-25 | 2018-02-13 | Cohere Technologies, Inc. | System and method for implementing orthogonal time frequency space communications using OFDM |
US9900048B2 (en) | 2010-05-28 | 2018-02-20 | Cohere Technologies, Inc. | Modulation and equalization in an orthonormal time-frequency shifting communications system |
US9929783B2 (en) | 2012-06-25 | 2018-03-27 | Cohere Technologies, Inc. | Orthogonal time frequency space modulation system |
US9954696B2 (en) | 2013-03-27 | 2018-04-24 | Huawei Technologies Co., Ltd. | Method and apparatus for encoding uplink control information |
US9967758B2 (en) | 2012-06-25 | 2018-05-08 | Cohere Technologies, Inc. | Multiple access in an orthogonal time frequency space communication system |
US10003487B2 (en) | 2013-03-15 | 2018-06-19 | Cohere Technologies, Inc. | Symplectic orthogonal time frequency space modulation system |
US10020854B2 (en) | 2012-06-25 | 2018-07-10 | Cohere Technologies, Inc. | Signal separation in an orthogonal time frequency space communication system using MIMO antenna arrays |
US10063295B2 (en) | 2016-04-01 | 2018-08-28 | Cohere Technologies, Inc. | Tomlinson-Harashima precoding in an OTFS communication system |
US10090973B2 (en) | 2015-05-11 | 2018-10-02 | Cohere Technologies, Inc. | Multiple access in an orthogonal time frequency space communication system |
US10158394B2 (en) | 2015-05-11 | 2018-12-18 | Cohere Technologies, Inc. | Systems and methods for symplectic orthogonal time frequency shifting modulation and transmission of data |
US10334457B2 (en) | 2010-05-28 | 2019-06-25 | Cohere Technologies, Inc. | OTFS methods of data channel characterization and uses thereof |
US10356632B2 (en) | 2017-01-27 | 2019-07-16 | Cohere Technologies, Inc. | Variable beamwidth multiband antenna |
US10355887B2 (en) | 2016-04-01 | 2019-07-16 | Cohere Technologies, Inc. | Iterative two dimensional equalization of orthogonal time frequency space modulated signals |
US10411843B2 (en) | 2012-06-25 | 2019-09-10 | Cohere Technologies, Inc. | Orthogonal time frequency space communication system compatible with OFDM |
US10469215B2 (en) | 2012-06-25 | 2019-11-05 | Cohere Technologies, Inc. | Orthogonal time frequency space modulation system for the Internet of Things |
US10555281B2 (en) | 2016-03-31 | 2020-02-04 | Cohere Technologies, Inc. | Wireless telecommunications system for high-mobility applications |
US10568143B2 (en) | 2017-03-28 | 2020-02-18 | Cohere Technologies, Inc. | Windowed sequence for random access method and apparatus |
US10574317B2 (en) | 2015-06-18 | 2020-02-25 | Cohere Technologies, Inc. | System and method for providing wireless communication services using configurable broadband infrastructure shared among multiple network operators |
US10666479B2 (en) | 2015-12-09 | 2020-05-26 | Cohere Technologies, Inc. | Pilot packing using complex orthogonal functions |
US10666314B2 (en) | 2016-02-25 | 2020-05-26 | Cohere Technologies, Inc. | Reference signal packing for wireless communications |
US10667148B1 (en) | 2010-05-28 | 2020-05-26 | Cohere Technologies, Inc. | Methods of operating and implementing wireless communications systems |
US10681568B1 (en) | 2010-05-28 | 2020-06-09 | Cohere Technologies, Inc. | Methods of data channel characterization and uses thereof |
US10693692B2 (en) | 2016-03-23 | 2020-06-23 | Cohere Technologies, Inc. | Receiver-side processing of orthogonal time frequency space modulated signals |
US10693581B2 (en) | 2015-07-12 | 2020-06-23 | Cohere Technologies, Inc. | Orthogonal time frequency space modulation over a plurality of narrow band subcarriers |
US10749651B2 (en) | 2016-03-31 | 2020-08-18 | Cohere Technologies, Inc. | Channel acquistion using orthogonal time frequency space modulated pilot signal |
US10826728B2 (en) | 2016-08-12 | 2020-11-03 | Cohere Technologies, Inc. | Localized equalization for channels with intercarrier interference |
US10855425B2 (en) | 2017-01-09 | 2020-12-01 | Cohere Technologies, Inc. | Pilot scrambling for channel estimation |
US10873418B2 (en) | 2016-08-12 | 2020-12-22 | Cohere Technologies, Inc. | Iterative multi-level equalization and decoding |
US10892547B2 (en) | 2015-07-07 | 2021-01-12 | Cohere Technologies, Inc. | Inconspicuous multi-directional antenna system configured for multiple polarization modes |
US10917204B2 (en) | 2016-08-12 | 2021-02-09 | Cohere Technologies, Inc. | Multi-user multiplexing of orthogonal time frequency space signals |
US10938602B2 (en) | 2016-05-20 | 2021-03-02 | Cohere Technologies, Inc. | Iterative channel estimation and equalization with superimposed reference signals |
US10938613B2 (en) | 2015-06-27 | 2021-03-02 | Cohere Technologies, Inc. | Orthogonal time frequency space communication system compatible with OFDM |
US10951454B2 (en) | 2017-11-01 | 2021-03-16 | Cohere Technologies, Inc. | Precoding in wireless systems using orthogonal time frequency space multiplexing |
US10965348B2 (en) | 2016-09-30 | 2021-03-30 | Cohere Technologies, Inc. | Uplink user resource allocation for orthogonal time frequency space modulation |
US11025377B2 (en) | 2016-12-05 | 2021-06-01 | Cohere Technologies, Inc. | Fixed wireless access using orthogonal time frequency space modulation |
US11038733B2 (en) | 2015-11-18 | 2021-06-15 | Cohere Technologies, Inc. | Orthogonal time frequency space modulation techniques |
US11063804B2 (en) | 2017-04-24 | 2021-07-13 | Cohere Technologies, Inc. | Digital communication using lattice division multiplexing |
US11070329B2 (en) | 2015-09-07 | 2021-07-20 | Cohere Technologies, Inc. | Multiple access using orthogonal time frequency space modulation |
US11102034B2 (en) | 2017-09-06 | 2021-08-24 | Cohere Technologies, Inc. | Lattice reduction in orthogonal time frequency space modulation |
US11114768B2 (en) | 2017-04-24 | 2021-09-07 | Cohere Technologies, Inc. | Multibeam antenna designs and operation |
US11147087B2 (en) | 2017-04-21 | 2021-10-12 | Cohere Technologies, Inc. | Communication techniques using quasi-static properties of wireless channels |
US11152957B2 (en) | 2017-09-29 | 2021-10-19 | Cohere Technologies, Inc. | Forward error correction using non-binary low density parity check codes |
US20210337604A1 (en) * | 2019-01-09 | 2021-10-28 | Huawei Technologies Co., Ltd. | Client device and network access node for transmitting and receiving a random access preamble |
US11184122B2 (en) | 2017-12-04 | 2021-11-23 | Cohere Technologies, Inc. | Implementation of orthogonal time frequency space modulation for wireless communications |
US11190379B2 (en) | 2017-07-12 | 2021-11-30 | Cohere Technologies, Inc. | Data modulation schemes based on the Zak transform |
US11190308B2 (en) | 2017-09-15 | 2021-11-30 | Cohere Technologies, Inc. | Achieving synchronization in an orthogonal time frequency space signal receiver |
US20210384999A1 (en) * | 2007-03-07 | 2021-12-09 | Huawei Technologies Co., Ltd. | Method and apparatus for allocating and processing sequences in communication system |
US11283561B2 (en) | 2017-09-11 | 2022-03-22 | Cohere Technologies, Inc. | Wireless local area networks using orthogonal time frequency space modulation |
US11310000B2 (en) | 2016-09-29 | 2022-04-19 | Cohere Technologies, Inc. | Transport block segmentation for multi-level codes |
US11324008B2 (en) | 2017-08-14 | 2022-05-03 | Cohere Technologies, Inc. | Transmission resource allocation by splitting physical resource blocks |
US11329848B2 (en) | 2018-06-13 | 2022-05-10 | Cohere Technologies, Inc. | Reciprocal calibration for channel estimation based on second-order statistics |
US11489559B2 (en) | 2018-03-08 | 2022-11-01 | Cohere Technologies, Inc. | Scheduling multi-user MIMO transmissions in fixed wireless access systems |
US11532891B2 (en) | 2017-09-20 | 2022-12-20 | Cohere Technologies, Inc. | Low cost electromagnetic feed network |
US11546068B2 (en) | 2017-08-11 | 2023-01-03 | Cohere Technologies, Inc. | Ray tracing technique for wireless channel measurements |
US11632270B2 (en) | 2018-02-08 | 2023-04-18 | Cohere Technologies, Inc. | Aspects of channel estimation for orthogonal time frequency space modulation for wireless communications |
US11811697B2 (en) | 2006-09-30 | 2023-11-07 | Huawei Technologies Co., Ltd. | Method and apparatus for sequence distributing and sequence processing in communication system |
US11817987B2 (en) | 2017-04-11 | 2023-11-14 | Cohere Technologies, Inc. | Digital communication using dispersed orthogonal time frequency space modulated signals |
US11831391B2 (en) | 2018-08-01 | 2023-11-28 | Cohere Technologies, Inc. | Airborne RF-head system |
US11943089B2 (en) | 2010-05-28 | 2024-03-26 | Cohere Technologies, Inc. | Modulation and equalization in an orthonormal time-shifting communications system |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2512389A (en) * | 2013-03-28 | 2014-10-01 | Airspan Networks Inc | System and method for determining modulation control information and a reference signal design to be used by a transmitter node |
CN106817210B (en) * | 2015-12-02 | 2020-01-31 | 华为技术有限公司 | Transmission method and device of reference signal sequence |
US10790944B2 (en) * | 2016-11-18 | 2020-09-29 | Qualcomm Incorporated | Comb interlacing of DFT-spreaded data and reference signals |
CN116016079B (en) * | 2022-12-05 | 2024-08-20 | 西南交通大学 | Signal transmission method, system, equipment and storage medium |
Citations (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010024449A1 (en) * | 1998-08-31 | 2001-09-27 | Lundby Stein A. | signal splitting method for limiting peak power in a CDMA system |
US20020141367A1 (en) * | 2001-04-03 | 2002-10-03 | Samsung Electronics Co., Ltd. | Method of transmitting control data in CDMA mobile communication system |
US20030086363A1 (en) * | 2001-05-31 | 2003-05-08 | David Hernandez | System and apparatus for block segmentation procedure for reduction of peak-to- average power ratio effects in orthogonal frequency-division multiplexing modulation |
US20040081074A1 (en) * | 2002-08-15 | 2004-04-29 | Kabushiki Kaisha Toshiba | Signal decoding methods and apparatus |
US20040146024A1 (en) * | 2003-01-28 | 2004-07-29 | Navini Networks, Inc. | Method and system for interference reduction in a wireless communication network using a joint detector |
US20040213326A1 (en) * | 2001-06-21 | 2004-10-28 | Vladimir Parizhsky | Method of tone allocation for tone hopping sequences |
US20050201477A1 (en) * | 2004-03-12 | 2005-09-15 | Samsung Electronics Co., Ltd. | Apparatus and method for transmitting a sub-channel signal in a communication system using an orthogonal frequency division multiple access scheme |
US20060009227A1 (en) * | 2004-07-12 | 2006-01-12 | Cudak Mark C | Method and apparatus for reference signal selection in a cellular system |
US20060239336A1 (en) * | 2005-04-21 | 2006-10-26 | Baraniuk Richard G | Method and Apparatus for Compressive Imaging Device |
US20060247898A1 (en) * | 2005-04-20 | 2006-11-02 | Samsung Electronics Co., Ltd. | Apparatus and method for reducing peak-to-average power ratio in a broadband wireless communication system |
US7145940B2 (en) * | 2003-12-05 | 2006-12-05 | Qualcomm Incorporated | Pilot transmission schemes for a multi-antenna system |
US20060274710A1 (en) * | 2005-05-23 | 2006-12-07 | Lim Jae S | Method and apparatus for orthogonal frequency division multiplex |
US20070006794A1 (en) * | 2003-06-20 | 2007-01-11 | Paul Swenson | Halyard system for a flag pole |
US7170926B2 (en) * | 2001-11-29 | 2007-01-30 | Interdigital Technology Corporation | Efficient multiple input multiple output system for multi-path fading channels |
US7173899B1 (en) * | 2000-08-28 | 2007-02-06 | Lucent Technologies Inc. | Training and synchronization sequences for wireless systems with multiple transmit and receive antennas used in CDMA or TDMA systems |
US7173973B2 (en) * | 2003-10-31 | 2007-02-06 | Nokia Corporation | Multiple-antenna partially coherent constellations for multi-carrier systems |
US20070183386A1 (en) * | 2005-08-03 | 2007-08-09 | Texas Instruments Incorporated | Reference Signal Sequences and Multi-User Reference Signal Sequence Allocation |
US20070217530A1 (en) * | 2006-03-17 | 2007-09-20 | Interdigital Technology Corporation | Method and apparatus for channel estimation using time-frequency localized pilots and de-noising techniques |
US20070230600A1 (en) * | 2006-03-27 | 2007-10-04 | Texas Instruments Incorporated | Random access structure for wireless networks |
US20070253476A1 (en) * | 2004-06-18 | 2007-11-01 | Olav Tirkkonen | Reduced Complexity Frequency Domain Equalization of Multiple Input Multiple Output Channels |
US20070297381A1 (en) * | 2006-06-19 | 2007-12-27 | Nec Corporation | Band allocation method and radio communication system |
US20080075184A1 (en) * | 2006-09-22 | 2008-03-27 | Tarik Muharemovic | Transmission of ACK/NACK Bits and their Embedding in the Reference Signal |
US20080129560A1 (en) * | 2005-05-10 | 2008-06-05 | Baraniuk Richard G | Method and Apparatus for Distributed Compressed Sensing |
US20080214198A1 (en) * | 2007-02-09 | 2008-09-04 | Wanshi Chen | Flexible channel quality indicator reporting |
US20080225688A1 (en) * | 2007-03-14 | 2008-09-18 | Kowalski John M | Systems and methods for improving reference signals for spatially multiplexed cellular systems |
US20080232300A1 (en) * | 2007-03-19 | 2008-09-25 | Mccoy James W | Reference signal selection techniques for a wireless communication system |
US20080235314A1 (en) * | 2007-03-16 | 2008-09-25 | Lg Electronics Inc. | Method of generating random access preambles in wireless communication system |
US20090046629A1 (en) * | 2007-08-06 | 2009-02-19 | Jing Jiang | Signaling of Random Access Preamble Sequences in Wireless Networks |
US20090067318A1 (en) * | 2007-09-06 | 2009-03-12 | Sharp Laboratories Of America, Inc. | Systems and methods for designing a reference signal to be transmitted in a multiplexed cellular system |
US20090074098A1 (en) * | 2003-08-11 | 2009-03-19 | Nortel Networks Limited | System and method for embedding OFDM in CDMA systems |
US20090110034A1 (en) * | 2007-10-30 | 2009-04-30 | Sharp Laboratories Of America, Inc. | Systems and methods for generating sequences that are nearest to a set of sequences with minimum average cross-correlation |
US20090123048A1 (en) * | 2007-05-09 | 2009-05-14 | Jean-Daniel Leroux | Image Reconstruction Methods Based on Block Circulant System Matrices |
US7539973B2 (en) * | 1999-06-01 | 2009-05-26 | Bruce Hodge | Object type-declaration prefix syntax |
US20090135791A1 (en) * | 2005-08-23 | 2009-05-28 | Ntt Docomo, Inc. | Base station and communication system |
US20100097922A1 (en) * | 2007-03-14 | 2010-04-22 | Sharp Kabushiki Kaisha | Systems and methods for generating sequences that are nearest to a set of sequences with minimum average cross-correlation |
US20100172439A1 (en) * | 2007-06-15 | 2010-07-08 | Kowalski John M | Systems and methods for designing a sequence for code modulation of data and channel estimation |
US20100183386A1 (en) * | 2005-06-02 | 2010-07-22 | Markus Heinloth | Cutting insert, in particular, for crankshaft machining |
US20100195566A1 (en) * | 2009-02-03 | 2010-08-05 | Krishnamurthy Sandeep H | Apparatus and method for communicating and processing a positioning reference signal based on identifier associated with a base station |
US20100272192A1 (en) * | 2009-04-28 | 2010-10-28 | Badri Varadarajan | OFDM-Lite Architecture for HomePlug |
US7848448B2 (en) * | 2007-09-07 | 2010-12-07 | Lg Electronics Inc. | Method of generating reference signal in wireless communication system |
US8223908B2 (en) * | 2007-05-02 | 2012-07-17 | Qualcomm Incorporated | Selection of acquisition sequences for optimal frequency offset estimation |
US8437416B2 (en) * | 2007-04-30 | 2013-05-07 | Nokia Siemens Networks Oy | Coordinated cyclic shift and sequence hopping for Zadoff-Chu, modified Zadoff-Chu, and block-wise spreading sequences |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE20221616U1 (en) | 1970-02-19 | 2006-10-05 | Samsung Electronics Co., Ltd., Suwon | High-speed packet data transmission method in CDMA mobile communication system, involves spreading high-speed packet data with spreading code in control information transmitted over shared control channel |
JP4617764B2 (en) * | 2004-08-06 | 2011-01-26 | ダイキン工業株式会社 | Expander |
CN1797301A (en) * | 2004-12-30 | 2006-07-05 | 陈沛 | Digital information search method and system |
KR100899749B1 (en) * | 2005-01-13 | 2009-05-27 | 삼성전자주식회사 | Method for transmitting and receiving preamble sequences in an orthogonal frequency division multiplexing communication system using multiple input multiple output scheme |
JP2006295629A (en) | 2005-04-12 | 2006-10-26 | Sony Corp | Radio communication system, radio communication apparatus and radio communication method |
JP4869724B2 (en) | 2005-06-14 | 2012-02-08 | 株式会社エヌ・ティ・ティ・ドコモ | Transmission device, transmission method, reception device, and reception method |
US8149958B2 (en) | 2007-06-20 | 2012-04-03 | Nokia Siemens Networks Oy | Low par zero auto-correlation zone sequences for code sequence modulation |
US7946961B2 (en) * | 2008-05-23 | 2011-05-24 | Yoga Today Llc | Exercise apparatus and methods |
-
2007
- 2007-06-15 US US11/764,061 patent/US20080310383A1/en not_active Abandoned
-
2008
- 2008-06-13 CN CN2008800201643A patent/CN101682364B/en active Active
- 2008-06-13 US US12/664,367 patent/US8428178B2/en active Active
- 2008-06-13 EP EP08777431.1A patent/EP2158688B1/en active Active
- 2008-06-13 BR BRPI0812507-4A patent/BRPI0812507A2/en not_active Application Discontinuation
- 2008-06-13 JP JP2010510990A patent/JP2010529769A/en active Pending
- 2008-06-13 WO PCT/JP2008/061286 patent/WO2008153218A1/en active Application Filing
Patent Citations (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010024449A1 (en) * | 1998-08-31 | 2001-09-27 | Lundby Stein A. | signal splitting method for limiting peak power in a CDMA system |
US7539973B2 (en) * | 1999-06-01 | 2009-05-26 | Bruce Hodge | Object type-declaration prefix syntax |
US7173899B1 (en) * | 2000-08-28 | 2007-02-06 | Lucent Technologies Inc. | Training and synchronization sequences for wireless systems with multiple transmit and receive antennas used in CDMA or TDMA systems |
US20020141367A1 (en) * | 2001-04-03 | 2002-10-03 | Samsung Electronics Co., Ltd. | Method of transmitting control data in CDMA mobile communication system |
US20030086363A1 (en) * | 2001-05-31 | 2003-05-08 | David Hernandez | System and apparatus for block segmentation procedure for reduction of peak-to- average power ratio effects in orthogonal frequency-division multiplexing modulation |
US20040213326A1 (en) * | 2001-06-21 | 2004-10-28 | Vladimir Parizhsky | Method of tone allocation for tone hopping sequences |
US7170926B2 (en) * | 2001-11-29 | 2007-01-30 | Interdigital Technology Corporation | Efficient multiple input multiple output system for multi-path fading channels |
US20040081074A1 (en) * | 2002-08-15 | 2004-04-29 | Kabushiki Kaisha Toshiba | Signal decoding methods and apparatus |
US20040146024A1 (en) * | 2003-01-28 | 2004-07-29 | Navini Networks, Inc. | Method and system for interference reduction in a wireless communication network using a joint detector |
US20070006794A1 (en) * | 2003-06-20 | 2007-01-11 | Paul Swenson | Halyard system for a flag pole |
US20090074098A1 (en) * | 2003-08-11 | 2009-03-19 | Nortel Networks Limited | System and method for embedding OFDM in CDMA systems |
US7173973B2 (en) * | 2003-10-31 | 2007-02-06 | Nokia Corporation | Multiple-antenna partially coherent constellations for multi-carrier systems |
US7145940B2 (en) * | 2003-12-05 | 2006-12-05 | Qualcomm Incorporated | Pilot transmission schemes for a multi-antenna system |
US20110149716A1 (en) * | 2004-03-12 | 2011-06-23 | Samsung Electronics Co., Ltd. | Apparatus and method for transmitting a sub-channel signal in a communication system using an orthogonal frequency division multiple access scheme |
US20050201477A1 (en) * | 2004-03-12 | 2005-09-15 | Samsung Electronics Co., Ltd. | Apparatus and method for transmitting a sub-channel signal in a communication system using an orthogonal frequency division multiple access scheme |
US20080159436A1 (en) * | 2004-03-12 | 2008-07-03 | Samsung Electronics Co., Ltd. | Apparatus and method for transmitting a sub-channel signal in a communication system using an orthogonal frequency division multiple access scheme |
US20070253476A1 (en) * | 2004-06-18 | 2007-11-01 | Olav Tirkkonen | Reduced Complexity Frequency Domain Equalization of Multiple Input Multiple Output Channels |
US20060009227A1 (en) * | 2004-07-12 | 2006-01-12 | Cudak Mark C | Method and apparatus for reference signal selection in a cellular system |
US20060247898A1 (en) * | 2005-04-20 | 2006-11-02 | Samsung Electronics Co., Ltd. | Apparatus and method for reducing peak-to-average power ratio in a broadband wireless communication system |
US20060239336A1 (en) * | 2005-04-21 | 2006-10-26 | Baraniuk Richard G | Method and Apparatus for Compressive Imaging Device |
US20080129560A1 (en) * | 2005-05-10 | 2008-06-05 | Baraniuk Richard G | Method and Apparatus for Distributed Compressed Sensing |
US20060274710A1 (en) * | 2005-05-23 | 2006-12-07 | Lim Jae S | Method and apparatus for orthogonal frequency division multiplex |
US20100183386A1 (en) * | 2005-06-02 | 2010-07-22 | Markus Heinloth | Cutting insert, in particular, for crankshaft machining |
US20070183386A1 (en) * | 2005-08-03 | 2007-08-09 | Texas Instruments Incorporated | Reference Signal Sequences and Multi-User Reference Signal Sequence Allocation |
US20090135791A1 (en) * | 2005-08-23 | 2009-05-28 | Ntt Docomo, Inc. | Base station and communication system |
US20070217530A1 (en) * | 2006-03-17 | 2007-09-20 | Interdigital Technology Corporation | Method and apparatus for channel estimation using time-frequency localized pilots and de-noising techniques |
US20070230600A1 (en) * | 2006-03-27 | 2007-10-04 | Texas Instruments Incorporated | Random access structure for wireless networks |
US20070297381A1 (en) * | 2006-06-19 | 2007-12-27 | Nec Corporation | Band allocation method and radio communication system |
US20080075184A1 (en) * | 2006-09-22 | 2008-03-27 | Tarik Muharemovic | Transmission of ACK/NACK Bits and their Embedding in the Reference Signal |
US20080214198A1 (en) * | 2007-02-09 | 2008-09-04 | Wanshi Chen | Flexible channel quality indicator reporting |
US20080225688A1 (en) * | 2007-03-14 | 2008-09-18 | Kowalski John M | Systems and methods for improving reference signals for spatially multiplexed cellular systems |
US20100177834A1 (en) * | 2007-03-14 | 2010-07-15 | Sharp Kabushiki Kaisha | Systems and methods for improving reference signals for spatially multiplexed cellular systems |
US20100097922A1 (en) * | 2007-03-14 | 2010-04-22 | Sharp Kabushiki Kaisha | Systems and methods for generating sequences that are nearest to a set of sequences with minimum average cross-correlation |
US20080235314A1 (en) * | 2007-03-16 | 2008-09-25 | Lg Electronics Inc. | Method of generating random access preambles in wireless communication system |
US20080232300A1 (en) * | 2007-03-19 | 2008-09-25 | Mccoy James W | Reference signal selection techniques for a wireless communication system |
US8437416B2 (en) * | 2007-04-30 | 2013-05-07 | Nokia Siemens Networks Oy | Coordinated cyclic shift and sequence hopping for Zadoff-Chu, modified Zadoff-Chu, and block-wise spreading sequences |
US8223908B2 (en) * | 2007-05-02 | 2012-07-17 | Qualcomm Incorporated | Selection of acquisition sequences for optimal frequency offset estimation |
US20090123048A1 (en) * | 2007-05-09 | 2009-05-14 | Jean-Daniel Leroux | Image Reconstruction Methods Based on Block Circulant System Matrices |
US20100172439A1 (en) * | 2007-06-15 | 2010-07-08 | Kowalski John M | Systems and methods for designing a sequence for code modulation of data and channel estimation |
US20090046629A1 (en) * | 2007-08-06 | 2009-02-19 | Jing Jiang | Signaling of Random Access Preamble Sequences in Wireless Networks |
US20090067318A1 (en) * | 2007-09-06 | 2009-03-12 | Sharp Laboratories Of America, Inc. | Systems and methods for designing a reference signal to be transmitted in a multiplexed cellular system |
US20100290546A1 (en) * | 2007-09-06 | 2010-11-18 | Sharp Kabushiki Kaisha | Systems and methods for designing a reference signal to be transmitted in a multiplexed cellular system |
US7848448B2 (en) * | 2007-09-07 | 2010-12-07 | Lg Electronics Inc. | Method of generating reference signal in wireless communication system |
US20090110034A1 (en) * | 2007-10-30 | 2009-04-30 | Sharp Laboratories Of America, Inc. | Systems and methods for generating sequences that are nearest to a set of sequences with minimum average cross-correlation |
US20100195566A1 (en) * | 2009-02-03 | 2010-08-05 | Krishnamurthy Sandeep H | Apparatus and method for communicating and processing a positioning reference signal based on identifier associated with a base station |
US20100272192A1 (en) * | 2009-04-28 | 2010-10-28 | Badri Varadarajan | OFDM-Lite Architecture for HomePlug |
Cited By (156)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11811697B2 (en) | 2006-09-30 | 2023-11-07 | Huawei Technologies Co., Ltd. | Method and apparatus for sequence distributing and sequence processing in communication system |
US20210384999A1 (en) * | 2007-03-07 | 2021-12-09 | Huawei Technologies Co., Ltd. | Method and apparatus for allocating and processing sequences in communication system |
US11716120B2 (en) * | 2007-03-07 | 2023-08-01 | Huawei Technologies Co., Ltd. | Method and apparatus for allocating and processing sequences in communication system |
US8116691B2 (en) | 2007-03-14 | 2012-02-14 | Sharp Kabushiki Kaisha | Systems and methods for improving reference signals for spatially multiplexed cellular systems |
US8112041B2 (en) | 2007-03-14 | 2012-02-07 | Sharp Kabushiki Kaisha | Systems and methods for generating sequences that are nearest to a set of sequences with minimum average cross-correlation |
US20100177834A1 (en) * | 2007-03-14 | 2010-07-15 | Sharp Kabushiki Kaisha | Systems and methods for improving reference signals for spatially multiplexed cellular systems |
US20080225688A1 (en) * | 2007-03-14 | 2008-09-18 | Kowalski John M | Systems and methods for improving reference signals for spatially multiplexed cellular systems |
US8428178B2 (en) | 2007-06-15 | 2013-04-23 | Sharp Kabushiki Kaisha | Systems and methods for designing a sequence for code modulation of data and channel estimation |
US20100329196A1 (en) * | 2007-06-20 | 2010-12-30 | Hwan-Joon Kwon | Method and apparatus for transmitting uplink control channel in a mobile communication system |
US8588153B2 (en) * | 2007-06-20 | 2013-11-19 | Samsung Electronics Co., Ltd. | Method and apparatus for transmitting uplink control channel in a mobile communication system |
US20090022135A1 (en) * | 2007-07-16 | 2009-01-22 | Samsung Electronics Co., Ltd. | Apparatus and method for transmitting of channel quality indicator and acknowledgement signals in sc-fdma communication systems |
US9166744B2 (en) | 2007-07-16 | 2015-10-20 | Samsung Electronics Co., Ltd | Apparatus and method for transmitting channel quality indicator and acknowledgement signals in SC-FDMA communication systems |
US9485073B2 (en) | 2007-07-16 | 2016-11-01 | Samsung Electronics Co., Ltd | Apparatus and method for transmitting channel quality indicator and acknowledgement signals in SC-FDMA communication systems |
US9503244B2 (en) | 2007-07-16 | 2016-11-22 | Samsung Electronics Co., Ltd | Apparatus and method for transmitting channel quality indicator and acknowledgement signals in SC-FDMA communication systems |
US20170070333A1 (en) * | 2007-07-16 | 2017-03-09 | Samsung Electronics Co., Ltd. | Apparatus and method for transitting channel quality indicator and acknowledgement signals in sc-fdma communication systems |
US8855096B2 (en) | 2007-07-16 | 2014-10-07 | Samsung Electronics Co., Ltd | Apparatus and method for transmitting channel quality indicator and acknowledgement signals in SC-FDMA communication systems |
US9806869B2 (en) * | 2007-07-16 | 2017-10-31 | Samsung Electronics Co., Ltd | Apparatus and method for transitting channel quality indicator and acknowledgement signals in SC-FDMA communication systems |
US8391268B2 (en) | 2007-07-16 | 2013-03-05 | Samsung Electronics Co., Ltd | Apparatus and method for transmitting of channel quality indicator and acknowledgement signals in SC-FDMA communication systems |
USRE47486E1 (en) | 2007-09-19 | 2019-07-02 | Samsung Electronics Co., Ltd. | Resource remapping and regrouping in a wireless communication system |
USRE47374E1 (en) | 2007-09-19 | 2019-04-30 | Samsung Electronics Co., Ltd. | Resource remapping and regrouping in a wireless communication system |
US8681766B2 (en) | 2007-09-19 | 2014-03-25 | Samsung Electronics Co., Ltd. | Resource remapping and regrouping in a wireless communication system |
US20090092148A1 (en) * | 2007-09-19 | 2009-04-09 | Samsung Electronics Co., Ltd. | Resource remapping and regrouping in a wireless communication system |
US8077693B2 (en) * | 2007-09-19 | 2011-12-13 | Samsung Electronics Co., Ltd. | Resource remapping and regrouping in a wireless communication system |
US20130301538A1 (en) * | 2007-09-21 | 2013-11-14 | Texas Instruments Incorporated | Reference Signal Structure for OFDM Based Transmissions |
US20090080500A1 (en) * | 2007-09-21 | 2009-03-26 | Tarik Muharemovic | Reference Signal Structure for OFDM Based Transmissions |
US8170126B2 (en) * | 2007-09-21 | 2012-05-01 | Texas Instruments Incorporated | Reference signal structure for OFDM based transmissions |
US8611440B2 (en) | 2007-10-30 | 2013-12-17 | Huawei Technologies Co., Ltd. | Systems and methods for generating sequences that are nearest to a set of sequences with minimum average cross-correlation |
US20090110034A1 (en) * | 2007-10-30 | 2009-04-30 | Sharp Laboratories Of America, Inc. | Systems and methods for generating sequences that are nearest to a set of sequences with minimum average cross-correlation |
US7965797B2 (en) * | 2007-11-01 | 2011-06-21 | Texas Instruments Incorporated | Method, system and apparatus for generating constant amplitude zero autocorrelation sequences |
US20090116587A1 (en) * | 2007-11-01 | 2009-05-07 | Texas Instruments Incorporated | Method, system and apparatus for generating constant amplitude zero autocorrelation sequences |
US9641372B2 (en) | 2009-06-26 | 2017-05-02 | Plusn Llc | System and method for controlling combined radio signals |
US9565045B2 (en) | 2009-06-26 | 2017-02-07 | Plusn Llc | System and method for controlling combined radio signals |
US9160593B2 (en) | 2009-06-26 | 2015-10-13 | Plusn Llc | System and method for controlling combined radio signals |
US20100329401A1 (en) * | 2009-06-26 | 2010-12-30 | Hypres, Inc. | System and method for controlling combined radio signals |
US8582687B2 (en) | 2009-06-26 | 2013-11-12 | Plusn, Llc | System and method for controlling combined radio signals |
US10193729B2 (en) | 2009-06-26 | 2019-01-29 | Plusn, Llc | System and method for controlling combined radio signals |
US11943089B2 (en) | 2010-05-28 | 2024-03-26 | Cohere Technologies, Inc. | Modulation and equalization in an orthonormal time-shifting communications system |
US10637697B2 (en) | 2010-05-28 | 2020-04-28 | Cohere Technologies, Inc. | Modulation and equalization in an orthonormal time-frequency shifting communications system |
US10681568B1 (en) | 2010-05-28 | 2020-06-09 | Cohere Technologies, Inc. | Methods of data channel characterization and uses thereof |
US11038636B2 (en) | 2010-05-28 | 2021-06-15 | Cohere Technologies, Inc. | Modulation and equalization in an orthonormal time-frequency shifting communications system |
US10667148B1 (en) | 2010-05-28 | 2020-05-26 | Cohere Technologies, Inc. | Methods of operating and implementing wireless communications systems |
US8879378B2 (en) | 2010-05-28 | 2014-11-04 | Selim Shlomo Rakib | Orthonormal time-frequency shifting and spectral shaping communications method |
US10959114B2 (en) | 2010-05-28 | 2021-03-23 | Cohere Technologies, Inc. | OTFS methods of data channel characterization and uses thereof |
US9660851B2 (en) | 2010-05-28 | 2017-05-23 | Cohere Technologies, Inc. | Modulation and equalization in an orthonormal time-frequency shifting communications system |
US20110292971A1 (en) * | 2010-05-28 | 2011-12-01 | Ronny Hadani | Communications method employing orthonormal time-frequency shifting and spectral shaping |
US9712354B2 (en) | 2010-05-28 | 2017-07-18 | Cohere Technologies, Inc. | Modulation and equalization in an orthonormal time-frequency shifting communications system |
US10567125B2 (en) | 2010-05-28 | 2020-02-18 | Cohere Technologies, Inc. | Modulation and equalization in an orthonormal time-frequency shifting communications system |
US11470485B2 (en) | 2010-05-28 | 2022-10-11 | Cohere Technologies, Inc. | Methods of operating and implementing wireless communications systems |
US12009960B2 (en) | 2010-05-28 | 2024-06-11 | Cohere Technologies, Inc. | Location-assisted channel estimation methods in wireless communications systems |
US11646913B2 (en) | 2010-05-28 | 2023-05-09 | Cohere Technologies, Inc. | Methods of data communication in multipath channels |
US11665041B2 (en) | 2010-05-28 | 2023-05-30 | Cohere Technologies, Inc. | Modulation and equalization in an orthonormal time-frequency shifting communications system |
WO2011150315A3 (en) * | 2010-05-28 | 2012-01-19 | Selim Shlomo Rakib | Orthonormal time-frequency shifting and spectral shaping communications method |
US10341155B2 (en) | 2010-05-28 | 2019-07-02 | Cohere Technologies, Inc. | Modulation and equalization in an orthonormal time-frequency shifting communications system |
US10334457B2 (en) | 2010-05-28 | 2019-06-25 | Cohere Technologies, Inc. | OTFS methods of data channel characterization and uses thereof |
US8547988B2 (en) * | 2010-05-28 | 2013-10-01 | Ronny Hadani | Communications method employing orthonormal time-frequency shifting and spectral shaping |
US9548840B2 (en) | 2010-05-28 | 2017-01-17 | Cohere Technologies, Inc. | Modulation and equalization in an orthonormal time-frequency shifting communications system |
US9900048B2 (en) | 2010-05-28 | 2018-02-20 | Cohere Technologies, Inc. | Modulation and equalization in an orthonormal time-frequency shifting communications system |
US10063354B2 (en) | 2010-05-28 | 2018-08-28 | Cohere Technologies, Inc. | Modulation and equalization in an orthonormal time-frequency shifting communications system |
US9729281B2 (en) | 2011-05-26 | 2017-08-08 | Cohere Technologies, Inc. | Modulation and equalization in an orthonormal time-frequency shifting communications system |
US9031141B2 (en) | 2011-05-26 | 2015-05-12 | Cohere Technologies, Inc. | Modulation and equalization in an orthonormal time-frequency shifting communications system |
US9071286B2 (en) | 2011-05-26 | 2015-06-30 | Cohere Technologies, Inc. | Modulation and equalization in an orthonormal time-frequency shifting communications system |
US9071285B2 (en) | 2011-05-26 | 2015-06-30 | Cohere Technologies, Inc. | Modulation and equalization in an orthonormal time-frequency shifting communications system |
US9294315B2 (en) | 2011-05-26 | 2016-03-22 | Cohere Technologies, Inc. | Modulation and equalization in an orthonormal time-frequency shifting communications system |
US9130638B2 (en) | 2011-05-26 | 2015-09-08 | Cohere Technologies, Inc. | Modulation and equalization in an orthonormal time-frequency shifting communications system |
US9590779B2 (en) | 2011-05-26 | 2017-03-07 | Cohere Technologies, Inc. | Modulation and equalization in an orthonormal time-frequency shifting communications system |
US8787873B1 (en) | 2011-11-04 | 2014-07-22 | Plusn Llc | System and method for communicating using bandwidth on demand |
US9554303B1 (en) | 2011-11-04 | 2017-01-24 | Plusn Llc | System and method for communicating using bandwidth on demand |
WO2013148546A1 (en) * | 2012-03-26 | 2013-10-03 | Shlomo Selim Rakib | Signal modulation method resistant to echo reflections and frequency offsets |
US10469215B2 (en) | 2012-06-25 | 2019-11-05 | Cohere Technologies, Inc. | Orthogonal time frequency space modulation system for the Internet of Things |
US10411843B2 (en) | 2012-06-25 | 2019-09-10 | Cohere Technologies, Inc. | Orthogonal time frequency space communication system compatible with OFDM |
US9967758B2 (en) | 2012-06-25 | 2018-05-08 | Cohere Technologies, Inc. | Multiple access in an orthogonal time frequency space communication system |
US9929783B2 (en) | 2012-06-25 | 2018-03-27 | Cohere Technologies, Inc. | Orthogonal time frequency space modulation system |
US9912507B2 (en) | 2012-06-25 | 2018-03-06 | Cohere Technologies, Inc. | Orthogonal time frequency space communication system compatible with OFDM |
US9893922B2 (en) | 2012-06-25 | 2018-02-13 | Cohere Technologies, Inc. | System and method for implementing orthogonal time frequency space communications using OFDM |
US10476564B2 (en) | 2012-06-25 | 2019-11-12 | Cohere Technologies, Inc. | Variable latency data communication using orthogonal time frequency space modulation |
US10020854B2 (en) | 2012-06-25 | 2018-07-10 | Cohere Technologies, Inc. | Signal separation in an orthogonal time frequency space communication system using MIMO antenna arrays |
US10090972B2 (en) | 2012-06-25 | 2018-10-02 | Cohere Technologies, Inc. | System and method for two-dimensional equalization in an orthogonal time frequency space communication system |
US10003487B2 (en) | 2013-03-15 | 2018-06-19 | Cohere Technologies, Inc. | Symplectic orthogonal time frequency space modulation system |
US9954696B2 (en) | 2013-03-27 | 2018-04-24 | Huawei Technologies Co., Ltd. | Method and apparatus for encoding uplink control information |
US9686112B2 (en) | 2013-11-26 | 2017-06-20 | Plusn Llc | System and method for controlling combined radio signals |
US11095489B2 (en) | 2013-11-26 | 2021-08-17 | Plusn Llc | System and method for controlling combined radio signals |
US10230558B2 (en) | 2013-11-26 | 2019-03-12 | Plusn, Llc | System and method for controlling combined radio signals |
US10158394B2 (en) | 2015-05-11 | 2018-12-18 | Cohere Technologies, Inc. | Systems and methods for symplectic orthogonal time frequency shifting modulation and transmission of data |
US10090973B2 (en) | 2015-05-11 | 2018-10-02 | Cohere Technologies, Inc. | Multiple access in an orthogonal time frequency space communication system |
US10574317B2 (en) | 2015-06-18 | 2020-02-25 | Cohere Technologies, Inc. | System and method for providing wireless communication services using configurable broadband infrastructure shared among multiple network operators |
US9866363B2 (en) | 2015-06-18 | 2018-01-09 | Cohere Technologies, Inc. | System and method for coordinated management of network access points |
US11456908B2 (en) | 2015-06-27 | 2022-09-27 | Cohere Technologies, Inc. | Orthogonal time frequency space communication system compatible with OFDM |
US10938613B2 (en) | 2015-06-27 | 2021-03-02 | Cohere Technologies, Inc. | Orthogonal time frequency space communication system compatible with OFDM |
US10892547B2 (en) | 2015-07-07 | 2021-01-12 | Cohere Technologies, Inc. | Inconspicuous multi-directional antenna system configured for multiple polarization modes |
US10693581B2 (en) | 2015-07-12 | 2020-06-23 | Cohere Technologies, Inc. | Orthogonal time frequency space modulation over a plurality of narrow band subcarriers |
US11601213B2 (en) | 2015-07-12 | 2023-03-07 | Cohere Technologies, Inc. | Orthogonal time frequency space modulation over a plurality of narrow band subcarriers |
US11070329B2 (en) | 2015-09-07 | 2021-07-20 | Cohere Technologies, Inc. | Multiple access using orthogonal time frequency space modulation |
US12068846B2 (en) | 2015-09-07 | 2024-08-20 | Cohere Technologies, Inc. | Multiple access using orthogonal time frequency space modulation |
US11038733B2 (en) | 2015-11-18 | 2021-06-15 | Cohere Technologies, Inc. | Orthogonal time frequency space modulation techniques |
US11894967B2 (en) | 2015-11-18 | 2024-02-06 | Zte Corporation | Orthogonal time frequency space modulation techniques |
US11575557B2 (en) | 2015-11-18 | 2023-02-07 | Cohere Technologies, Inc. | Orthogonal time frequency space modulation techniques |
US10666479B2 (en) | 2015-12-09 | 2020-05-26 | Cohere Technologies, Inc. | Pilot packing using complex orthogonal functions |
US10666314B2 (en) | 2016-02-25 | 2020-05-26 | Cohere Technologies, Inc. | Reference signal packing for wireless communications |
US11362872B2 (en) | 2016-03-23 | 2022-06-14 | Cohere Technologies, Inc. | Receiver-side processing of orthogonal time frequency space modulated signals |
US10693692B2 (en) | 2016-03-23 | 2020-06-23 | Cohere Technologies, Inc. | Receiver-side processing of orthogonal time frequency space modulated signals |
US10749651B2 (en) | 2016-03-31 | 2020-08-18 | Cohere Technologies, Inc. | Channel acquistion using orthogonal time frequency space modulated pilot signal |
US10555281B2 (en) | 2016-03-31 | 2020-02-04 | Cohere Technologies, Inc. | Wireless telecommunications system for high-mobility applications |
US11425693B2 (en) | 2016-03-31 | 2022-08-23 | Cohere Technologies, Inc. | Multiple access in wireless telecommunications system for high-mobility applications |
US11968144B2 (en) | 2016-03-31 | 2024-04-23 | Cohere Technologies, Inc. | Channel acquisition using orthogonal time frequency space modulated pilot signals |
US10716095B2 (en) | 2016-03-31 | 2020-07-14 | Cohere Technologies, Inc. | Multiple access in wireless telecommunications system for high-mobility applications |
US11362786B2 (en) | 2016-03-31 | 2022-06-14 | Cohere Technologies, Inc. | Channel acquisition using orthogonal time frequency space modulated pilot signals |
US10673659B2 (en) | 2016-04-01 | 2020-06-02 | Cohere Technologies, Inc. | Iterative two dimensional equalization of orthogonal time frequency space modulated signals |
US11646844B2 (en) | 2016-04-01 | 2023-05-09 | Cohere Technologies, Inc. | Tomlinson-harashima precoding in an OTFS communication system |
US11018731B2 (en) | 2016-04-01 | 2021-05-25 | Cohere Technologies, Inc. | Tomlinson-harashima precoding in an OTFS communication system |
US10541734B2 (en) | 2016-04-01 | 2020-01-21 | Cohere Technologies, Inc. | Tomlinson-Harashima precoding in an OTFS communication system |
US10355887B2 (en) | 2016-04-01 | 2019-07-16 | Cohere Technologies, Inc. | Iterative two dimensional equalization of orthogonal time frequency space modulated signals |
US10063295B2 (en) | 2016-04-01 | 2018-08-28 | Cohere Technologies, Inc. | Tomlinson-Harashima precoding in an OTFS communication system |
US11362866B2 (en) | 2016-05-20 | 2022-06-14 | Cohere Technologies, Inc. | Iterative channel estimation and equalization with superimposed reference signals |
US10938602B2 (en) | 2016-05-20 | 2021-03-02 | Cohere Technologies, Inc. | Iterative channel estimation and equalization with superimposed reference signals |
US10826728B2 (en) | 2016-08-12 | 2020-11-03 | Cohere Technologies, Inc. | Localized equalization for channels with intercarrier interference |
US10873418B2 (en) | 2016-08-12 | 2020-12-22 | Cohere Technologies, Inc. | Iterative multi-level equalization and decoding |
US10917204B2 (en) | 2016-08-12 | 2021-02-09 | Cohere Technologies, Inc. | Multi-user multiplexing of orthogonal time frequency space signals |
US11451348B2 (en) | 2016-08-12 | 2022-09-20 | Cohere Technologies, Inc. | Multi-user multiplexing of orthogonal time frequency space signals |
US11310000B2 (en) | 2016-09-29 | 2022-04-19 | Cohere Technologies, Inc. | Transport block segmentation for multi-level codes |
US10965348B2 (en) | 2016-09-30 | 2021-03-30 | Cohere Technologies, Inc. | Uplink user resource allocation for orthogonal time frequency space modulation |
US11558157B2 (en) | 2016-12-05 | 2023-01-17 | Cohere Technologies, Inc. | Fixed wireless access using orthogonal time frequency space modulation |
US11843552B2 (en) | 2016-12-05 | 2023-12-12 | Cohere Technologies, Inc. | Fixed wireless access using orthogonal time frequency space modulation |
US11025377B2 (en) | 2016-12-05 | 2021-06-01 | Cohere Technologies, Inc. | Fixed wireless access using orthogonal time frequency space modulation |
US10855425B2 (en) | 2017-01-09 | 2020-12-01 | Cohere Technologies, Inc. | Pilot scrambling for channel estimation |
US10356632B2 (en) | 2017-01-27 | 2019-07-16 | Cohere Technologies, Inc. | Variable beamwidth multiband antenna |
US10568143B2 (en) | 2017-03-28 | 2020-02-18 | Cohere Technologies, Inc. | Windowed sequence for random access method and apparatus |
US11817987B2 (en) | 2017-04-11 | 2023-11-14 | Cohere Technologies, Inc. | Digital communication using dispersed orthogonal time frequency space modulated signals |
US11147087B2 (en) | 2017-04-21 | 2021-10-12 | Cohere Technologies, Inc. | Communication techniques using quasi-static properties of wireless channels |
US11737129B2 (en) | 2017-04-21 | 2023-08-22 | Cohere Technologies, Inc. | Communication techniques using quasi-static properties of wireless channels |
US11991738B2 (en) | 2017-04-21 | 2024-05-21 | Cohere Technologies, Inc. | Communication techniques using quasi-static properties of wireless channels |
US11670863B2 (en) | 2017-04-24 | 2023-06-06 | Cohere Technologies, Inc. | Multibeam antenna designs and operation |
US11114768B2 (en) | 2017-04-24 | 2021-09-07 | Cohere Technologies, Inc. | Multibeam antenna designs and operation |
US11063804B2 (en) | 2017-04-24 | 2021-07-13 | Cohere Technologies, Inc. | Digital communication using lattice division multiplexing |
US11190379B2 (en) | 2017-07-12 | 2021-11-30 | Cohere Technologies, Inc. | Data modulation schemes based on the Zak transform |
US11546068B2 (en) | 2017-08-11 | 2023-01-03 | Cohere Technologies, Inc. | Ray tracing technique for wireless channel measurements |
US11632791B2 (en) | 2017-08-14 | 2023-04-18 | Cohere Technologies, Inc. | Transmission resource allocation by splitting physical resource blocks |
US11324008B2 (en) | 2017-08-14 | 2022-05-03 | Cohere Technologies, Inc. | Transmission resource allocation by splitting physical resource blocks |
US11102034B2 (en) | 2017-09-06 | 2021-08-24 | Cohere Technologies, Inc. | Lattice reduction in orthogonal time frequency space modulation |
US11533203B2 (en) | 2017-09-06 | 2022-12-20 | Cohere Technologies, Inc. | Lattice reduction in wireless communication |
US11283561B2 (en) | 2017-09-11 | 2022-03-22 | Cohere Technologies, Inc. | Wireless local area networks using orthogonal time frequency space modulation |
US11190308B2 (en) | 2017-09-15 | 2021-11-30 | Cohere Technologies, Inc. | Achieving synchronization in an orthogonal time frequency space signal receiver |
US11637663B2 (en) | 2017-09-15 | 2023-04-25 | Cohere Techologies, Inc. | Achieving synchronization in an orthogonal time frequency space signal receiver |
US11532891B2 (en) | 2017-09-20 | 2022-12-20 | Cohere Technologies, Inc. | Low cost electromagnetic feed network |
US11152957B2 (en) | 2017-09-29 | 2021-10-19 | Cohere Technologies, Inc. | Forward error correction using non-binary low density parity check codes |
US11632133B2 (en) | 2017-09-29 | 2023-04-18 | Cohere Technologies, Inc. | Forward error correction using non-binary low density parity check codes |
US10951454B2 (en) | 2017-11-01 | 2021-03-16 | Cohere Technologies, Inc. | Precoding in wireless systems using orthogonal time frequency space multiplexing |
US11296919B2 (en) | 2017-11-01 | 2022-04-05 | Cohere Technologies, Inc. | Precoding in wireless systems using orthogonal time frequency space multiplexing |
US11184122B2 (en) | 2017-12-04 | 2021-11-23 | Cohere Technologies, Inc. | Implementation of orthogonal time frequency space modulation for wireless communications |
US11848810B2 (en) | 2017-12-04 | 2023-12-19 | Cohere Technologies, Inc. | Implementation of orthogonal time frequency space modulation for wireless communications |
US11632270B2 (en) | 2018-02-08 | 2023-04-18 | Cohere Technologies, Inc. | Aspects of channel estimation for orthogonal time frequency space modulation for wireless communications |
US11489559B2 (en) | 2018-03-08 | 2022-11-01 | Cohere Technologies, Inc. | Scheduling multi-user MIMO transmissions in fixed wireless access systems |
US11329848B2 (en) | 2018-06-13 | 2022-05-10 | Cohere Technologies, Inc. | Reciprocal calibration for channel estimation based on second-order statistics |
US11962435B2 (en) | 2018-06-13 | 2024-04-16 | Cohere Technologies, Inc. | Reciprocal calibration for channel estimation based on second-order statistics |
US11831391B2 (en) | 2018-08-01 | 2023-11-28 | Cohere Technologies, Inc. | Airborne RF-head system |
US11956107B2 (en) * | 2019-01-09 | 2024-04-09 | Huawei Technologies Co., Ltd. | Client device and network access node for transmitting and receiving a random access preamble |
US20210337604A1 (en) * | 2019-01-09 | 2021-10-28 | Huawei Technologies Co., Ltd. | Client device and network access node for transmitting and receiving a random access preamble |
Also Published As
Publication number | Publication date |
---|---|
JP2010529769A (en) | 2010-08-26 |
US20100172439A1 (en) | 2010-07-08 |
EP2158688A1 (en) | 2010-03-03 |
US8428178B2 (en) | 2013-04-23 |
EP2158688A4 (en) | 2014-08-13 |
WO2008153218A1 (en) | 2008-12-18 |
CN101682364B (en) | 2013-04-17 |
EP2158688B1 (en) | 2018-07-25 |
CN101682364A (en) | 2010-03-24 |
BRPI0812507A2 (en) | 2015-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8428178B2 (en) | Systems and methods for designing a sequence for code modulation of data and channel estimation | |
US12126432B2 (en) | Integrated circuit for controlling selection of random access preamble sequence | |
US8611440B2 (en) | Systems and methods for generating sequences that are nearest to a set of sequences with minimum average cross-correlation | |
US8391381B2 (en) | Systems and methods for designing a reference signal to be transmitted in a multiplexed cellular system | |
US8116691B2 (en) | Systems and methods for improving reference signals for spatially multiplexed cellular systems | |
US20160020865A1 (en) | Method and apparatus for pilot and data multiplexing in a wireless communication system | |
US20080232486A1 (en) | Systems and methods for extending zadoff-chu sequences to a non-prime number length to minimize average correlation | |
US7961587B2 (en) | Systems and methods for reducing peak to average cross-correlation for sequences designed by alternating projections | |
CN114930781A (en) | First and second communication devices with improved reference signal design | |
US8112041B2 (en) | Systems and methods for generating sequences that are nearest to a set of sequences with minimum average cross-correlation | |
EP2122879B1 (en) | Systems and methods for generating sequences that are nearest to a set of sequences with minimum average cross-correlation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SHARP LABORATORIES OF AMERICA, INC., WASHINGTON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KOWALSKI, JOHN M.;REEL/FRAME:019443/0086 Effective date: 20070615 |
|
AS | Assignment |
Owner name: SHARP KABUSHIKI KAISHA, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SHARP LABORATORIES OF AMERICA, INC.;REEL/FRAME:030447/0215 Effective date: 20130516 |
|
AS | Assignment |
Owner name: HUAWEI TECHNOLOGIES CO., LTD., CHINA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SHARP CORPORATION;REEL/FRAME:030635/0188 Effective date: 20130531 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: HUAWEI TECHNOLOGIES CO., LTD., CHINA Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE CONVEYING PARTY DATA NAME PREVIOUSLY RECORDED AT REEL: 030635 FRAME: 0188. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:SHARP KABUSHIKI KAISHA;REEL/FRAME:035523/0763 Effective date: 20150415 |
|
AS | Assignment |
Owner name: NOKIA TECHNOLOGIES OY, FINLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HUAWEI TECHNOLOGIES CO., LTD.;REEL/FRAME:045337/0001 Effective date: 20171221 |