US20080274767A1 - Adaptive Omni-Modal Radio Apparatus and Methods - Google Patents

Adaptive Omni-Modal Radio Apparatus and Methods Download PDF

Info

Publication number
US20080274767A1
US20080274767A1 US12/106,738 US10673808A US2008274767A1 US 20080274767 A1 US20080274767 A1 US 20080274767A1 US 10673808 A US10673808 A US 10673808A US 2008274767 A1 US2008274767 A1 US 2008274767A1
Authority
US
United States
Prior art keywords
data
omni
modal
circuit
network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/106,738
Inventor
Joseph B. Sainton
Charles M. Leedom
Eric J. Robinson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MLR LLC
Original Assignee
MLR LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34841652&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20080274767(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US08/707,262 external-priority patent/US5854985A/en
Application filed by MLR LLC filed Critical MLR LLC
Priority to US12/106,738 priority Critical patent/US20080274767A1/en
Publication of US20080274767A1 publication Critical patent/US20080274767A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/14Charging, metering or billing arrangements for data wireline or wireless communications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M15/00Arrangements for metering, time-control or time indication ; Metering, charging or billing arrangements for voice wireline or wireless communications, e.g. VoIP
    • H04M15/44Augmented, consolidated or itemized billing statement or bill presentation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M15/00Arrangements for metering, time-control or time indication ; Metering, charging or billing arrangements for voice wireline or wireless communications, e.g. VoIP
    • H04M15/55Arrangements for metering, time-control or time indication ; Metering, charging or billing arrangements for voice wireline or wireless communications, e.g. VoIP for hybrid networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M15/00Arrangements for metering, time-control or time indication ; Metering, charging or billing arrangements for voice wireline or wireless communications, e.g. VoIP
    • H04M15/70Administration or customization aspects; Counter-checking correct charges
    • H04M15/745Customizing according to wishes of subscriber, e.g. friends or family
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M15/00Arrangements for metering, time-control or time indication ; Metering, charging or billing arrangements for voice wireline or wireless communications, e.g. VoIP
    • H04M15/70Administration or customization aspects; Counter-checking correct charges
    • H04M15/765Linked or grouped accounts, e.g. of users or devices
    • H04M15/7655Linked or grouped accounts, e.g. of users or devices shared by technologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M15/00Arrangements for metering, time-control or time indication ; Metering, charging or billing arrangements for voice wireline or wireless communications, e.g. VoIP
    • H04M15/70Administration or customization aspects; Counter-checking correct charges
    • H04M15/77Administration or customization aspects; Counter-checking correct charges involving multiple accounts per user
    • H04M15/772Administration or customization aspects; Counter-checking correct charges involving multiple accounts per user per service, e.g. prepay or post-pay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M15/00Arrangements for metering, time-control or time indication ; Metering, charging or billing arrangements for voice wireline or wireless communications, e.g. VoIP
    • H04M15/70Administration or customization aspects; Counter-checking correct charges
    • H04M15/77Administration or customization aspects; Counter-checking correct charges involving multiple accounts per user
    • H04M15/773Administration or customization aspects; Counter-checking correct charges involving multiple accounts per user per technology, e.g. PSTN or wireless
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M15/00Arrangements for metering, time-control or time indication ; Metering, charging or billing arrangements for voice wireline or wireless communications, e.g. VoIP
    • H04M15/88Provision for limiting connection, or expenditure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/06Hybrid resource partitioning, e.g. channel borrowing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/24Accounting or billing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2215/00Metering arrangements; Time controlling arrangements; Time indicating arrangements
    • H04M2215/01Details of billing arrangements
    • H04M2215/0104Augmented, consolidated or itemised billing statement, e.g. additional billing information, bill presentation, layout, format, e-mail, fax, printout, itemised bill per service or per account, cumulative billing, consolidated billing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2215/00Metering arrangements; Time controlling arrangements; Time indicating arrangements
    • H04M2215/01Details of billing arrangements
    • H04M2215/0108Customization according to wishes of subscriber, e.g. customer preferences, friends and family, selecting services or billing options, Personal Communication Systems [PCS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2215/00Metering arrangements; Time controlling arrangements; Time indicating arrangements
    • H04M2215/01Details of billing arrangements
    • H04M2215/0116Provision for limiting expenditure, e.g. limit on call expenses or account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2215/00Metering arrangements; Time controlling arrangements; Time indicating arrangements
    • H04M2215/20Technology dependant metering
    • H04M2215/2026Wireless network, e.g. GSM, PCS, TACS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2215/00Metering arrangements; Time controlling arrangements; Time indicating arrangements
    • H04M2215/20Technology dependant metering
    • H04M2215/2046Hybrid network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2215/00Metering arrangements; Time controlling arrangements; Time indicating arrangements
    • H04M2215/32Involving wireless systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2215/00Metering arrangements; Time controlling arrangements; Time indicating arrangements
    • H04M2215/72Account specifications
    • H04M2215/724Linked accounts
    • H04M2215/725Shared by technologies, e.g. one account for different access technologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2215/00Metering arrangements; Time controlling arrangements; Time indicating arrangements
    • H04M2215/72Account specifications
    • H04M2215/724Linked accounts
    • H04M2215/7254Multiple accounts per user
    • H04M2215/7263Multiple accounts per user per service, e.g. prepay and post-pay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2215/00Metering arrangements; Time controlling arrangements; Time indicating arrangements
    • H04M2215/72Account specifications
    • H04M2215/724Linked accounts
    • H04M2215/7254Multiple accounts per user
    • H04M2215/7268Multiple accounts per user per technology, e.g. PSTN or wireless
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/22Negotiating communication rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/10Access restriction or access information delivery, e.g. discovery data delivery using broadcasted information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation

Definitions

  • This invention relates generally to frequency and protocol agile, wireless communication devices and systems adapted to enable voice and/or data transmission to occur using a variety of different radio frequencies, transmission protocols and radio infrastructures.
  • the wireless communication industry is being fragmented by the emergence of a substantial number of competing technologies and services including digital cellular technologies (e.g. TDMA, E-TDMA, narrow band CDMA, and broadband CDMA), geopositioning services, one way and two-way paging services, packet data services, enhanced specialized mobile radio, personal computing services, two-way satellite systems, cellular digital packet data (CDPD) and others.
  • Fragmenting forces within the wireless communication industry have been further enhanced by regulatory actions of the U.S. government.
  • the U.S. government is preparing to auction off portions of the radio spectrum for use in providing personal communication services (PCS) in a large number of relatively small contiguous regions of the country.
  • PCS personal communication services
  • the U.S. government is also proposing to adopt regulations which will encourage wide latitude among successful bidders for the new radio spectrum to adopt innovative wireless technologies.
  • U.S. Pat. No. 5,127,042 to Gillig et al. which is adapted to operate with either a conventional cordless base station or cellular base station.
  • U.S. Pat. No. 5,179,360 to Suzuki discloses a cellular telephone which is capable of switching between either an analog mode of operation or a digital mode of operation.
  • Yet another approach is disclosed in U.S. Pat. No. 4,985,904 to Ogawara directed to an improved method and apparatus for switching from a failed main radio communication system to a backup communication system.
  • Still another proposal is disclosed in U.S. Pat. No.
  • 5,122,795 directed to a paging receiver which is capable of scanning the frequencies of a plurality of radio common carriers to detect the broadcast of a paging message over one of the carriers serving a given geographic region.
  • a radio receiver which is responsive to an RF signal containing a plurality of channel frequencies, each having broadcast information, and a circuit for producing a wide band version of the received RF signal and a circuit for producing a narrow band version of the received RF signal.
  • a fundamental objective of the subject invention is to overcome the deficiencies of the prior art by providing a truly omni-modal wireless product and method which is adaptive to the selectively variable desires of the end user.
  • Another more specific object of the subject invention in the provision of a product which would be capable of utilizing any one of the wireless data services within a given geographic area based on a user determined criteria such as: (1) the cost of sending a data message, (2) the quality of transmission link (signal strength, interference actual or potential), (3) the potential for being dropped from the system (is service provider at near full capacity), (4) the security of transmission, (5) any special criteria which the user could variably program into his omni-modal wireless product based on the user's desires or (6) any one or more combinations of the above features that are preprogrammed, changed or overridden by the user.
  • a user determined criteria such as: (1) the cost of sending a data message, (2) the quality of transmission link (signal strength, interference actual or potential), (3) the potential for being dropped from the system (is service provider at near full capacity), (4) the security of transmission, (5) any special criteria which the user could variably program into his omni-modal wireless product based on the user's desires or (6) any one or more combinations of the above features that
  • Yet another object of the subject invention is to provide an omni-modal wireless product which would allow for enormous product differentiation.
  • OEM's original equipment manufacturers
  • Each OEM could provide specialized hardware controls appropriate for various user groups.
  • Another object of the subject invention is to provide an omni-modal wireless product which can allow for adaptive service provider selection based on user experience with specific service providers.
  • a more specific object of the subject invention is to provide an omni-modal wireless product which would have the effect of inducing intense competition for customers among various wireless data service providers based on quality of service and price by allowing the user to easily and conveniently identify the service providers that best meet the user's performance requirements.
  • Another object of the invention is to provide a network of omni-modal wireless products and service providers which is designed to provide the most business and profit making potential to the service providers who best meet the varying demands of the greatest number of omni-modal wireless product users.
  • Still another objective of the subject invention is to promote and encourage introduction of innovative technology which will satisfy the desires of end users to receive the best possible quality wireless service at the lowest possible cost by promoting real time adaptive price and service competition among cell service providers.
  • Another objective of the subject invention is to allow wireless service providers to broadcast electronically as part of any “handshaking” procedure with a omni-modal wireless product information such as (1) rate information and (2) information regarding system operating characteristics such as percent of system capacity in use and/or likelihood of being dropped.
  • a omni-modal wireless product information such as (1) rate information and (2) information regarding system operating characteristics such as percent of system capacity in use and/or likelihood of being dropped.
  • Still another objective of the subject invention is to create a user oriented source enrollment and billing service in the wireless data market by establishing uniform standard for “handshakes” to occur between cell service providers and omni-modal wireless products.
  • a more specific object of the invention is to provide a standard chip or chipset including a radio transceiver specifically designed to be used in all types of omni-modal wireless products.
  • a still more specific object of the invention is to provide a standard radio chip or chipset adapted for use in all types of omni-modal wireless products including a variety of operational modes including operation on the U.S. public analog cellular telephone network (AMPS).
  • AMPS public analog cellular telephone network
  • Still another object of the invention is to provide a standard radio chip or chipset for use in all types of omni-modal wireless products including circuitry for both voice and data communications over AMPS.
  • Other supported communications protocols would include CDPD which is a packet data service based on the AMPS network.
  • an omni-modal radio circuit implemented by a standard radio computing chip or chipset which can serve as a computer (special or general purpose), or as an interface to a general purpose personal computer.
  • the chip preferably includes a modem and associated processing circuits. So that it can perform at least basic processing functions such as displaying data, accepting input, etc., the chip may also incorporate at least a basic microprocessor.
  • the processor may provide only predetermined functions, accessible through a standard applications programming interface, or in more advanced designs the processor can run other software or firmware added by the product maker. Exemplary processor functions of the chip include radio network interface control (call placement, call answering), voice connection, data transmission, and data input/output.
  • the chip can be used to implement a variety of omni-modal devices and can provide computing resources to operate fundamental communications programs.
  • FIG. 1 is a block schematic diagram of an omni-modal radio communications circuit according to the present invention
  • FIG. 2 is a block schematic diagram of an advanced cellular telephone implemented using an omni-modal radio communications circuit according to the present invention
  • FIG. 3 is a block schematic diagram of a personal communicator implemented using an omni-modal radio communications circuit according to the present invention
  • FIG. 4A is a plan view of the front of a data transmission and display radiotelephone implemented using an omni-compatible radio communications circuit
  • FIG. 4B is a plan view of the back of a data transmission and display radiotelephone implemented using an omni-compatible radio communications circuit
  • FIG. 5 is a block schematic diagram of a telephone/pager implemented using the present omni-modal radio communications circuit
  • FIG. 6A is a block schematic diagram of a dual mode cellular/cordless landline telephone implemented using the present omni-modal radio communications circuit
  • FIG. 6B is a flowchart showing a method of operation of a dual mode cellular/cordless landline telephone according to the present invention.
  • FIG. 7 is a block schematic diagram of a personal computer incorporating an omni-modal radio communications circuit
  • FIG. 8 is a block schematic diagram of a special purpose radio data transmitting device implemented using an omni-modal radio communications circuit
  • FIG. 9 is a flowchart showing a radio system selection method by which information carriers are selected according to varying specified criteria
  • FIG. 10 is a flowchart showing a method of broadcasting local carrier information to facilitate carrier selection by customers for a particular information transmission task
  • FIG. 11 is a flowchart showing a handshake sequence for arranging information transmission using the omni-modal device of the present invention.
  • FIG. 12 is a plan view of a modular implementation of the omni-modal radio communications circuit of the present invention installed in a cellular telephone;
  • FIG. 13 is a plan view of a modular implementation of the omni-modal radio communications circuit of the present invention installed in a personal computer;
  • FIG. 14 is a block schematic diagram showing a system for relaying paging signals to the omni-modal device of the present invention using a cellular telephone system.
  • FIG. 15 is a flowchart showing a method of relaying paging signals to the omni-modal device of the present invention.
  • FIGS. 1A and 1B A preferred embodiment of a standardized radio processing circuit 1 is shown in FIGS. 1A and 1B .
  • the standardized radio processing circuit 1 shown in FIGS. 1A and 1B taken together, maybe implemented on a single VLSI chip or on a set of VLSI chips making up a chipset. As will be seen, this chip or chipset provides a standard building block which can be used to make a plurality of consumer products that provide data transmission capability. As will be seen later with reference to FIGS. 2 through 8 , by adding minimal external components to the standardized circuit 1 , a wide variety of products can be produced. Also, as will be seen, the standardized circuit 1 can be advantageously implemented on a removable card with a standardized interface connector or connectors, so that it can then be selectively inserted into and removed from a variety of devices to provide the devices with radio information transmission capability.
  • circuit 1 provides a multi-modal or omni-modal communications capability. That is, circuit 1 can be adjusted by the user, or automatically under stored program control, to transfer information over at least two different radio communications networks, and preferably all networks available in a particular area within the frequency range of the transceiver of circuit 1 .
  • radio communications networks examples include commercial paging networks; the U.S. cellular telephone network or Advanced Mobile Phone System (AMPS); alternative cellular telephone network standards such as the European standard; digitally modulated radiotelephone systems operating under various encoding techniques such as TDMA, CDMA, E-TDMA and BCDMA; Cellular Digital Packet Data (CDPD); Enhanced Specialized Mobile Radio (ESMR); ARDIS; Personal Cellular Systems (PCS); RAM; global positioning systems; FM networks which transmit stock prices or other information on subcarriers; satellite-based networks; cordless landline telephones (such as 49 Mhz and particularly 900 Mhz systems); and wireless LAN systems.
  • circuit 1 is also designed to use the landline/public switched telephone network (PSTN).
  • PSTN public switched telephone network
  • the omni-modal circuit 1 may perform local positioning calculations to accurately determine its location by monitoring precisely synchronized timing signals which may be broadcast by cell sites for this purpose. If such timing signals were provided, the omni-modal circuit 1 could receive the signals, determine the relative time delay in receiving at least three such signals from different transmitter locations, and triangulate to determine the distance of the omni-modal circuit to each of the transmitters. If the omni-modal circuit 1 is installed in a vehicle, this information may be used to determine the location of the vehicle.
  • circuit 1 For each system which can be accessed by circuit 1 , appropriate cross connections are provided between the radio circuit or landline interface, as selected, and voice or data sources and destinations.
  • the appropriate cross connections are established under program control and include conversions between digital and analog signal forms at appropriate points in cases where a signal in one form is to be transmitted using a method for which a different signal form is appropriate.
  • the operating parameters of the transceiver may be optimized by a digital signal processor for either voice or data transmission.
  • a library of command, control and data transmission protocols appropriate for each supported system may be included in circuit 1 , and the device can implement the correct protocols by consulting a lookup table during transmissions to obtain the data channel protocols appropriate to the system selected.
  • the library of command, control, and data transmission protocols may be replaced, or supplemented, by information transmitted over the radio frequencies to the device by the carrier, or information downloaded from a hardwired connection to another device. Flash memory, EEPROMs, or non-volatile RAM can be used to store program information, permitting replacement or updating of the operating instructions used by the device.
  • the library functions accessible by the device may include the following: Select RF modulation frequency; select RF modulation protocol; select data formatting/conditioning protocol; transmit data in input stream using selected network and protocol; select output; select input; select data/voice mode; answer call; generate DTMF tones and transmit on selected network; scan for control channels/available systems; obtain cost information for current selected system; obtain cost information for all systems; obtain operating quality information for current system; obtain operating quality information for all systems; request transmission channel in system; obtain signal strength for current channel; obtain signal strength for all active systems; and initiate a transmission on the selected network.
  • FIG. 1A shows a block schematic diagram of a preferred embodiment of an omni-modal radio communication radio frequency (RF) circuit.
  • the RF circuit includes antenna 2 , diplexer 4 , amplifier 6 , transmit mixer 8 , receiver mixer 10 , programmable local oscillator 12 , modulation selector switches 14 and 16 , analog detector-demodulator 18 , digital demodulator 20 , analog modulator 22 , digital modulator 24 , voice grade channel output 26 , digital output 28 , voice grade channel input 30 , and digital input 32 .
  • RF radio frequency
  • Voice grade channel output 26 is connected to analog detector-demodulator 18 and digital output 28 is connected to digital demodulator 20 .
  • Analog detector-demodulator 18 and digital demodulator 20 are selectively connected to receiver mixer 10 through switch 14 .
  • Receiver mixer 10 is connected to both local oscillator 12 and diplexer 4 .
  • Diplexer 4 is connected to antenna 2 . These components provide radio frequency receive circuitry that allows selective reception and demodulation of both analog and digitally modulated radio signals.
  • Voice grade channel input 30 is connected to analog modulator 22 and digital input 32 is connected to digital modulator 24 .
  • Analog modulator 22 and digital modulator 24 are selectively connected to transmit mixer 8 through switch 16 .
  • Transmit mixer 8 is connected to both local oscillator 12 and amplifier 6 .
  • Amplifier 6 is connected to diplexer 4 and diplexer 4 is connected to antenna 2 .
  • These components comprise radio frequency transmit circuitry for selective transmission of analog or digitally modulated radio signals.
  • Antenna 2 serves to both receive and transmit radio signals.
  • Antenna 2 is of a design suitable for the frequency presently being received or transmitted by the RF circuit.
  • antenna 2 may be an antenna suitable for receiving and transmitting in a broad range about 900 Mhz.
  • different antennas may be provided to permit different transceiver ranges, including dipole, yagi, whip, micro-strip, slotted array, parabolic reflector, or born antennas in appropriate cases.
  • Diplexer 4 allows antenna 2 to receive broadcast radio signals and to transmit the received signals to the demodulators 18 and 20 , and to allow modulated radio signals from modulators 22 and 24 to be transmitted over antenna 2 .
  • Diplexer 4 is designed so that signals received from amplifier 6 will be propagated only to antenna 2 , while signals received from antenna 2 will only be propagated to receiver mixer 10 . Diplexer 4 thus prevents powerful signals from amplifier 6 from overloading and destroying receiver mixer 10 and demodulators 18 and 20 .
  • the receive path of the omni-modal RF circuit comprises receiver mixer 10 , which is connected to, and receives an input signal from, diplexer 4 .
  • Receiver mixer 10 also receives a reference frequency from local oscillator 12 .
  • Receiver mixer 10 converts the signal received from diplexer 4 to a lower frequency signal and outputs this intermediate frequency on output line 36 to switch 14 .
  • Switch 14 is connected through control line 38 to a microprocessor (not shown). Control line 38 selectively controls switch 14 to pass the intermediate frequency signal on output line 36 to either analog detector-demodulator 18 or to digital demodulator 20 . This selection is controlled based upon the type of signal currently being received.
  • switch 14 would be connected to analog detector demodulator 18 . If, however, the omni-modal circuit 1 is receiving a digital modulated signal switch 14 would be in a state to allow an intermediate frequency on output line 36 to be transmitted to digital demodulator 20 .
  • Analog detector demodulator 18 receives analog signals through switch 14 from receiver mixer 10 on output line 36 .
  • Analog detector demodulator converts the RF modulated signal received as an intermediate frequency into a voice grade channel or VGC.
  • the voice grade channel may comprise an audio frequency spectrum going from approximately 0 Hz to approximately 4 KHz.
  • Analog detector demodulator 18 is designed for demodulation of analog radio frequency signals. For example, analog detector demodulator would be capable of demodulating a frequency modulated (FM) radio signals. Analog detector demodulator 18 may also be capable of demodulating amplitude modulated (AM) radio signals.
  • FM frequency modulated
  • AM amplitude modulated
  • Digital demodulator 20 is designed to demodulate digital signals received from receiver mixer 10 through switch 14 .
  • Digital demodulator 20 is designed to demodulate digital signals such as, for example, pulse code modulation (PCM), time division multiple access (TDMA), code division multiple access (CDMA), extended time division multiple access (E-TDMA) and broad band code division multiple access (BCDMA) signals.
  • PCM pulse code modulation
  • TDMA time division multiple access
  • CDMA code division multiple access
  • E-TDMA extended time division multiple access
  • BCDMA broad band code division multiple access
  • the output 28 from digital demodulator 20 could consist of a digital bit stream.
  • Analog voice grade channel signals can be received over analog input 30 which is connected to analog modulator 22 .
  • Analog modulator 22 acts to modulate the received voice grade channel onto an intermediate frequency signal carrier.
  • Analog modulator 22 would be capable of modulating frequency modulation (FM) or amplitude modulation (AM) signals, for example.
  • analog modulator 22 is connected to, switch 16 .
  • the intermediate frequency output from analog modulator 22 on output line 42 is sent to switch 16 .
  • Switch 16 is connected to a microprocessor (not shown) in a manner similar to switch 14 described above.
  • Switch 16 is capable of selectively connecting transmit mixer 8 to either analog modulator 22 or digital modulator 24 .
  • analog modulated signals are transmitted to transmit mixer 8 .
  • Digital input can be received by the transmit portion of the RF modulator circuitry through digital input 32 .
  • Digital input 32 is connected to digital modulator 24 which acts to modulate the received digital data onto an intermediate frequency RF carrier.
  • Digital modulator 24 may preferably be capable of modulating the signal into a PCM, TDMA, E-TDMA, CDMA and BCDMA format.
  • the output 44 of digital modulator 24 is connected to switch 16 .
  • Switch 16 can be controlled through control line 40 to select the digital modulated signal on output 44 and to selectively transmit that signal to transmit mixer 8 .
  • Transmit mixer 8 is connected to programmable local oscillator 12 which is capable of generating frequencies that cover the frequency spectrum of the desired communication systems. Transmit mixer 8 operates in a manner well known in the art to convert the intermediate frequency signal received from switch 16 to a radio frequency for transmission over a radio communication system.
  • the output of transmit mixer 8 is connected to amplifier 6 .
  • Amplifier 6 acts to amplify the signal to insure adequate strength for the signal to be transmitted to the remote receiving station.
  • Amplifier 6 may be connected to control circuitry to allow the power output of amplifier 6 to be varied in accordance with control signals received from the control circuitry.
  • the output of amplifier 6 is connected to diplexer 4 and, as described above, to antenna 2 .
  • FIG. 1B is a block schematic diagram of the input and control circuitry of omni-modal circuit 1 .
  • the input and control circuitry comprises speaker 100 , microphone 102 , voice processing circuitry 104 , digital to analog converter 106 , analog to digital converter 108 , first selection switch 122 , microprocessor 110 , memory 112 , data input 114 , data output 116 , data processing circuitry 118 , second selector switch 120 and modem 124 .
  • Microprocessor 110 is connected to memory 112 and operates to control the input circuitry as well as the programmable local oscillator 12 and switches 14 and 16 shown in FIG. 1A
  • Memory 112 can contain both data storage and program information for microprocessor 110 .
  • Microprocessor 110 may be any suitable microprocessor such as an Intel 80 ⁇ 86 or Motorola 680 ⁇ 0 processor.
  • Memory 112 contains a program that allows microprocessor 110 to selectively operate the voice processing circuitry, data processing circuitry and switches to select the appropriate transmission channel for the communication signal currently being processed. In this manner, microprocessor 110 allows omni-modal circuit 1 to selectively operate on a plurality of radio communication systems.
  • an externally provided speaker 100 and microphone 102 are connected to voice processing circuitry 104 .
  • Voice processing circuitry 104 has output 142 and input 144 .
  • Voice processing output 142 is connected to switch 122 .
  • voice processing input 144 is connected to switch 122 .
  • Switch 122 which may be an electronic analog switch, comprises two single pole double throw switches which operate in tandem to selectively connect voice output 142 and voice input 144 to appropriate data lines.
  • Switch 122 is connected through control line 146 to microprocessor 110 .
  • Control line 146 allows microprocessor 110 to selectively operate switch 122 in response to commands received from the user or in response to a program in memory 112 .
  • switch 122 connects voice processing input 144 to voice grade channel output 126 .
  • voice grade output 126 is connected to the output 26 of analog detector demodulator 18 .
  • voice processing circuitry 104 is able to receive demodulated analog voice signals from analog detector demodulator 18 .
  • voice processing output 142 will be connected to voice input 130 .
  • voice input 130 is connected to voice grade channel input 30 of analog modulator 22 . In this manner, voice processing circuitry 104 can transmit voice through the transmit circuitry of FIG. 1A .
  • voice processing input 144 will be connected to digital to analog converter 106 .
  • Digital to analog converter 106 is connected to digital input 128 which, referring to FIG. 1A , is connected to digital output 28 of digital demodulator 20 .
  • Digital to analog converter 106 acts to receive a digital information bit stream on digital input 128 and to convert it to an analog voice grade channel.
  • the analog voice grade channel from digital to analog converter 106 is sent through voice input 144 to voice processing circuitry 104 .
  • Voice processing circuitry 104 can then amplify or alter the voice grade channel signal to the taste of the user and outputs the signal on speaker 100 .
  • Voice processing output 142 is connected to analog to digital converter 108 which in turn is connected to digital output 132 .
  • Digital output 132 is connected in FIG. 1A to digital input 32 and to digital modulator 24 . In this manner, voice processing circuitry 104 is capable of transmitting a voice or other analog voice grade channel signal through a digital modulation system.
  • omni-modal circuit 1 is capable of transmitting data over a plurality of radio frequency communication systems.
  • data input 114 and data output 116 are connected to data processing circuitry 118 .
  • Data input 114 allows the processing circuitry to receive data from any number of user devices.
  • the format of the data received on data input 114 may be variable or standardized depending on the circuitry provided in data processing circuitry 118 .
  • data input 114 may use a standard RS-232 serial interface to receive data from a user device.
  • Data input 114 may also use a parallel twisted pair or HPIB interface as well.
  • Data output 116 similarly transmits data in a format compatible with the equipment being used by the user.
  • Data processing circuitry 118 is connected to microprocessor 110 which acts to control the formatting and conditioning of the data done by data processing circuitry 118 .
  • data processing circuitry 118 may add protocol information or error correction bits to the data being received on data input 114 .
  • data processing circuitry 118 may act to remove overhead bits such as protocol or error correction bits from the data prior to its output on data output 116 .
  • Data processing circuitry 118 is connected to switch 120 through data output 150 and data input 152 .
  • Switch 120 operates in a manner similar to that described with respect to switch 122 above.
  • Switch 120 is connected to microprocessor 110 through control line 148 .
  • Microprocessor 110 operates to control switch 120 to selectively connect the data output 150 to either digital circuit output 140 or to modem input 156 .
  • Modem 124 may be any standard modem used to modulate digital data onto an analog voice grade channel.
  • modem 124 may incorporate a modem chip set manufactured by Rockwell International Corporation that receives digital data and modulates it into a 4 KHz band width for transmission over standard telephone systems.
  • Modem input 156 receives data from data processing circuitry 118 through data input 152 and switch 120 . The data received over modem input 156 is modulated onto a voice grade channel and output on modulated modem output 136 .
  • Modulated modem output 136 is connected to voice grade channel input 30 of analog modulator 22 shown in FIG. 1A .
  • digital modem output 154 receives demodulated baseband signal from modem 124 .
  • the modulated data signal is received by modem 124 from modem input 134 , which is connected to voice grade channel output 26 of analog detector demodulator 18 .
  • Modem 124 acts to demodulate the data received over modem input 134 and outputs a digital data stream on digital modem output 154 .
  • This digital data stream is connected through switch 120 and data input 152 to data processing circuitry 118 .
  • data processing circuitry 118 conditions and formats the data received from the modem and outputs the data to the user on data output 116 . If the user has selected a digital RF transmission system, it is not necessary to use modem 124 .
  • switch 120 is operated so that the digital data output 150 from data processing circuitry 118 is connected through digital output 140 .
  • Digital output 140 is connected to digital input 32 of digital modulator 24 shown in FIG. 1A .
  • data input 152 to data processing circuitry 118 is connected through digital input 138 to digital output 28 of digital demodulator 20 shown in FIG. 1A .
  • FIGS. 1A and 1B together depict a radio frequency communication system that is capable of operating over a plurality of different radio channels and is further capable of transmitting either analog or digital data information signals as well as analog or digital voice signals.
  • the system is also capable of transmitting a 4 Khz voice grade channel having both data and voice simultaneously present.
  • FIG. 1B broadly depicts the operation of the circuit which involves the selection by the microprocessor 110 of either a voice or data call. Once this selection is made, the data is then sent to the RF modulation circuitry shown in FIG. 1A .
  • the RF modulation circuitry is capable of modulating or demodulating either analog or digital signals.
  • Circuit 1 is designed to facilitate product differentiation by companies making use of circuit 1 as a standard building block for radio voice and/or data communications devices. For example, each manufacturer may provide specialized interface features for the user, and specialized hardware controls appropriate for various user groups. Circuit 1 is particularly advantageous in facilitating these goals in that it provides microprocessor 110 and memory 112 that allow manufacturers to customize the operation of the circuit with little or no additional components. Furthermore, circuit 1 could be pre-programmed with a series of primitives that would allow a manufacturer to quickly and easily integrate the complex features of the device into a use friendly consumer product.
  • FIG. 2 a block schematic diagram of an advanced cellular telephone implemented using an omni-modal radio communication circuit 1 shown in FIG. 1 is depicted.
  • the omni-modal radio communication circuit of FIGS. 1A and 1B is shown in outline form as reference number 1 .
  • speaker 100 Also shown in FIG. 2 are speaker 100 , microphone 102 , digital data input 114 , digital data output 116 and universal digital input/output interface 158 .
  • the present radio communications circuit allows a cellular phone to be constructed with the addition of minimal components.
  • the advanced cellular phone of FIG. 2 includes keypad 202 , display 204 and interface connector 206 . Keypad 202 and display 204 are connected to interface connector 206 .
  • Interface connector 206 connects with the universal digital input/output interface 158 which connects to the omni-modal radio communications circuit 1 depicted in more detail in FIGS. 1A and 1B .
  • Keypad 202 may be any keypad used with telephone devices.
  • display 204 can be any display used with standard cellular telephones or other computing devices.
  • display 204 could be a light-emitting diode (LED) or a liquid crystal display (LCD) as commonly used with telephones, calculators and/or watches.
  • LED light-emitting diode
  • LCD liquid crystal display
  • universal digital input/output interface 158 allows the omni-modal circuit 1 to be connected with a variety of electronic devices including keypad 202 and display 204 . It is contemplated that universal digital input/output interface 158 may comprise one connector or a plurality of connectors each having different data protocols transmitted and received therein.
  • universal input/output interface 158 may include a keyboard or keypad interface circuit as well as a display interface circuit.
  • the keypad interface circuit would include necessary circuitry for buffering key strokes and receiving key input data from a keyboard.
  • the display driver circuitry would include a memory and processor necessary for the display of data stored in the display memory.
  • the omni-modal circuit 1 is capable of interacting with many different keypads and display devices.
  • the universal interface connector includes a serial addressable interface wherein the components connected to the serial interface have a unique address byte assigned to each component. This allows the serial interface to communicate with a plurality of devices sequentially. Keypad 202 for example may be assigned an address byte of 001, while display 204 would be assigned address byte of 002.
  • the universal interface desires to communicate from microprocessor 110 shown in FIG. 1B with the keypad or display, the appropriate address would be included in the data sent to the universal interface connector. Keypad 202 and display 204 would monitor the data coming across the universal interface 158 and would respond only to those bytes having an appropriate address corresponding to the selective device.
  • the advanced cellular phone of FIG. 2 includes digital data input 114 and digital data output 116 .
  • This allows the phone to transmit digital computer data without the need of bulky external interface devices. For example, it is often necessary to use a tip and ring interface emulator to communicate over a cellular network from a computer or other data source. With the present invention, however, it is only necessary to connect to the digital data input 114 and to the digital data output 116 .
  • the data protocol used on these may be any protocol suitable for data communication, but in the preferred embodiment would be a RS 232 serial interface.
  • By connecting a computer serial interface port to data input 114 and data output 116 data may be transmitted using the omni-modal circuit 1 .
  • the microprocessor 110 and memory 112 shown in FIG. 1B would configure the internal circuitry of the omni-modal circuit for data transmission.
  • Speaker 100 and microphone 102 may be standard speakers and microphones used on cellular telephones and are adapted to allow the omni-modal circuit 1 to transmit voice communications over a cellular radio network.
  • FIG. 3 is a block schematic diagram of a personal communicator implemented through the use of the omni-modal circuit 1 shown in FIGS. 1A and 1B .
  • the personal communicator includes omni-modal circuit 1 , personal communicator computing circuitry 302 , telephone handset 318 , and interface circuitry comprising data input 114 , data output 116 , and universal interface 158 .
  • the personal communicator computing circuitry 302 includes display 304 , microprocessor 306 , memory 308 , input device 316 , data interface jack 310 and RJ-11 jack 312 .
  • the microprocessor 306 is connected to the display 304 , the memory 308 , the input device 316 and to the data interface jack 310 and RJ-11 jack 312 .
  • the personal communicator computing circuitry 302 acts to allow the user to interface and process data in a manner known to those of skill in the art.
  • display 304 may include an LCD display panel and may be color or black and white.
  • Microprocessor 306 may include an Intel 80 ⁇ 86 microprocessor or any other microprocessor manufactured by Intel or Motorola or other computer processing chip manufacturers.
  • Memory 308 includes random access memory (RAM) and read-only memory (ROM) necessary for the functioning of the computing device.
  • Input device 316 may be a keyboard or a pen-based interface or other interface including voice recognition that allows for data to be input to the personal communicator computing circuitry 302 .
  • Microprocessor 306 is interfaced through data interface jack 310 to data input 114 and data output 116 of the omni-modal circuit.
  • microprocessor 306 is connected through universal interface 158 to microprocessor 110 in the omni-modal circuit 1 . This permits the microprocessors 306 and 110 to exchange control and operating information with each other. Should the microprocessor desire to make a data call, microprocessor 306 can instruct the microprocessor 110 shown in FIG. 1B of the omni-modal circuit 1 to initiate a data call through a designated service provider. In response to such command from microprocessor 306 , microprocessor 110 shown in FIG. 1B may initiate a switching action and configure the omni-modal circuit 1 to transmit data over a selected service provider. To increase the flexibility of the personal communicator computing device, an RJ-11 jack 312 is included. The RJ-11 jack is connected to the data lines from the microprocessor 306 and allows the personal communicator computing device to transmit data over a standard landline telephone.
  • the omni-modal circuit 1 can transmit data over a landline telephone line using RJ-11 jack 312 and modem 124 shown in FIG. 1B .
  • the microprocessor 306 of the personal communicator computing device would transmit data through data interface jack 310 and data input 114 to the omni-modal circuit 1 .
  • the omni-modal circuit 1 would receive the data at the data processing circuitry 118 and transmit the data through data output 150 and modem input 156 to modem 124 shown in FIG. 1B .
  • Modem 124 would then modulate the data onto a voice grade channel and transmit the modulated data signal on modem output 154 through switch 120 and data input 152 to data processing circuitry 118 .
  • the data processing unit may then transmit the data over data output 116 and into microprocessor 306 through interface jack 310 shown in FIG. 3 .
  • the microprocessor 306 may then route the data through auxiliary data output line 314 to RJ-11 jack 312 .
  • the personal communicator computing circuitry 302 is able to send data over standard landline telephone lines without the use of a second additional modem.
  • the modem in the omni-modal circuit 1 serves two functions allowing the personal communicator user to send data through his standard landline wall jack or over a wireless network depending on the availability of each at the time the user desires to send the data.
  • handset 318 Also shown in FIG. 3 is handset 318 .
  • the speaker 100 and microphone 102 would be embodied in a separate handset 318 .
  • This handset 318 would connect to the omni-modal circuit 1 through an appropriate interface connection.
  • FIGS. 4A and 4B depict a communication device 402 employing the omni-modal circuit 1 of the present invention, and having an integrated display device for conveying information to a user.
  • FIG. 4A shows the front of the communication device 402 that could serve as a cellular phone.
  • the device 402 includes speaker 100 , antenna 2 , microphone 102 and key pad buttons 406 .
  • the external features of the device are similar to those of a standard commercially available cellular phone.
  • the device is unique in that it incorporates an expanded display 404 and control buttons 408 , 410 , 412 for the display of information to the user.
  • the display 404 could convey airline flight information to the user while they are connected with an airline representative.
  • the airline representative could transmit flight information to the user's communication device 402 , which would then display this information on the display 404 .
  • the user could then cycle through the information using increment button 408 and decrement button 410 .
  • increment button 408 and decrement button 410 When the user desired to select a given flight, they could indicate assent by pressing the enter button 412 . This information would-then be transmitted digitally to the airline representative's computer.
  • the capabilities of the omni-modal circuit 1 facilitate its use in a device as shown in FIGS. 4A and 4B . Since the device is programmable through the use of microprocessor 110 and memory 112 ( FIG. 1B ), it is capable of switching between voice and data modes of operation. This allows the user to conduct a voice conversation and then to receive data for display on the integrated display device. Alternatively, the omni-modal circuit could access another communication service to receive data for display, or it might receive data over a subchannel during the conversation. This would be particularly advantageous if the user desired to continue a voice call while continuing to receive data information, as in the case of the airline flight selection example given above.
  • FIG. 5 a block schematic diagram of a telephone/pager device using the omni-modal circuit 1 is shown.
  • the telephone/page device includes keypad 502 , display 504 and control circuitry 506 .
  • the keypad 502 is connected to control circuitry 506 .
  • Display 504 is also connected to control circuitry 506 .
  • Control circuitry 506 is further connected through universal digital input/output interface 158 to the microprocessor 110 of the omni-modal circuit shown in FIG. 1B .
  • the combination telephone/pager device shown in FIG. 5 is generally similar in design to the advanced cellular telephone shown in FIG. 2 .
  • One particularly advantageous aspect of the omni-modal circuit 1 is its ability to provide a great degree of flexibility in the design and implementation of communication circuits.
  • the memory 112 shown in FIG. 1B can be reprogrammed to provide different functions through microprocessor 110 for the universal digital interface 158 .
  • the telephone/pager implementation includes control circuitry 506 which receives information through the universal digital interface 158 from microprocessor 110 .
  • the control circuitry can then determine whether or not a page signal has been received by the omni-modal circuit 1 and if so it can display the appropriate information on display 504 . If, however, control circuitry 506 receives information from microprocessor 110 that a telephone call has been received or is being used, then control circuitry 506 can appropriately display the telephone information on display 504 .
  • control circuitry 506 can receive information from keypad 502 and selectively process this information depending on the current mode of operation. For example, if the device shown in FIG. 5 is in pager mode, control circuitry 506 may allow keypad input to cycle through stored paging messages.
  • control circuitry 506 may process the keypad information received from keypad 502 as telephone commands and transmit control signals through interface 158 to microprocessor 110 to cause a telephone call to be placed. Further, control circuitry 506 can actuate alarm 508 which may be a audible alarm such as a beeping or a vibration generator. Alarm 508 serves to notify the user when a telephone call or page is received.
  • alarm 508 may be a audible alarm such as a beeping or a vibration generator. Alarm 508 serves to notify the user when a telephone call or page is received.
  • FIG. 6A is a block schematic diagram of a dual mode cellular/cordless landline telephone is disclosed.
  • the dual mode device includes key pad 602 , optional display 604 , handset 606 , and interface connector 608 .
  • the key pad 602 and optional display 604 are connected to microprocessor 110 ( FIG. 1B ) through interface connector 608 and universal digital interface 158 .
  • Key pad 602 allows a user to provide information to microprocessor 110 for operating the dual mode device. For example, the user may operate the key pad to indicate that a certain call should be made on the cordless telephone network and not on the cellular network. To the contrary, the user may specify that the cellular network was to be used by operating the key pad 602 to so indicate.
  • One particularly preferred embodiment of a dual mode device may be programmed to allow for automatic selection of either a cellular communications network or a cordless telephone landline network.
  • a cordless telephone landline network is often considerably cheaper to access than is a cellular telephone network. Therefore, if the device will automatically access a cordless telephone network whenever one available, and use the cellular network only we absolutely necessary, the user can achieve substantial savings while still having a single, portable, communications unit that operates over a large geographic area. If the user requests service while within his home, for example, the cordless telephone system would be used and the user would be charged a minimal amount. If the user were to place a call while away from his home a greater charge would be incurred. The user, however, would use the same communications equipment regardless of where the service was used, and the service selection would appear transparent to the user.
  • FIG. 6B is a flowchart of one method that may be used to implement this embodiment.
  • the process of FIG. 6B begins 650 by determining if the user has activated the device to request communications services 652 . If the user has not requested communication services, the devices continues to check for a user request. If a user request is detected, the device then determines if it is within range of a cordless telephone landline system 654 . If the device is within range of a cordless telephone landline system, then the device services the user's request using the cordless landline communication system 662 and the process terminates 664 . If the device is not within range of a cordless landline network, then the device determines if it is within the service range of a cellular phone system 656 .
  • the device If the device is within range, the user's request is serviced using the cellular phone system 660 and the process terminates 664 . If the device is not within range of a cellular system, then the device issues an alert to the user to indicate that no service is available 658 and the process terminates 664 .
  • FIG. 6A and the above discussion focus on a dual mode cellular/cordless landline telephone
  • the a device in accordance with the present invention may include the ability to access additional communication systems.
  • it may be desirable to have a device substantially as shown in FIG. 6A but having the ability to access a personal communication service (PCS) network in addition to the cellular and cordless landline systems. This would allow the user to achieve further cost savings while seamlessly moving throughout a given geographic area.
  • PCS personal communication service
  • FIG. 7 a block schematic diagram of a personal computer 702 incorporating an omni-modal circuit 1 is shown.
  • computer 702 includes antennae 2 and an interface port 704 that allows for a integrated circuit card to be inserted into the computer.
  • the interface port 704 has installed therein a removable card 701 comprising an omni-modal circuit 1 .
  • the omni-modal radio communications card 701 includes connector 706 , which may include data input 114 , data output 116 and universal digital interface 158 shown in FIG. 1B . This connector allows the omni-modal radio interface card 701 to communicate with the computer through a corresponding mating connector 708 inside the personal communicator.
  • the omni-modal radio communications card 701 is in the form of a PCMCIA card adapted to interface into a standard slot in a portable or other computing device.
  • FIG. 7 also shows an optional telephone handset 710 which may be interfaced to the radio communication interface card 701 .
  • Optional handset 710 includes speaker 100 and microphone 102 , and serves to allow for voice communication over radio network service providers that provide such capability.
  • the omni-modal radio communication card 701 also has an external RJ-11 data jack 712 .
  • the external RJ-11 data jack 712 allows omni-modal communications card 701 to transmit data over a telephone landline circuit using a common RJ-11 interface cable.
  • Omni-modal communications card 701 includes a modem 124 in FIG. 1B for modulating digital data onto a voice grade channel suitable for transmission over a landline telephone connection.
  • the radio communications card 701 serves as a modem to the personal computer and a separate modem card or external modem is not necessary in order to transmit data over a landline jack.
  • the microprocessor 110 in the omni-modal circuit card 701 allows the circuitry to select either landline transmission via external RJ-11 jack 712 or cellular radio transmission through antennae 2 . This may be accomplished for example through an analog switch circuit as disclosed in U.S. Pat. No. 4,972,457, the disclosure of which is incorporated herein by reference.
  • FIG. 8 is a block schematic diagram of a special purpose radio data transmitting device 801 that is implemented using the omni-modal circuit. It is often desirable to be able to construct a device that will be capable of operating to send data wirelessly. For example, it may be desirable to include such a device in a vending machine or gasoline pump. Device 801 may then relay data at a predetermined time concerning the amount of consumables (e.g. food, beverages, gasoline, etc.) still remaining in stock. In this manner, it is not necessary to have a person physically inspect the device and evaluate the remaining stock, which would be considerably more expensive.
  • consumables e.g. food, beverages, gasoline, etc.
  • the omni-modal circuit 1 of the present invention can be used to implement a system as described above.
  • the omni-modal circuit 1 is connected to a data source 802 through data lines 806 comprising data input line 114 and data output line 116 .
  • microprocessor 110 FIG. 1B
  • the resulting omni-modal device 801 can be programmed to access a selected communications service at a periodic interval and to transmit data from the data source at that time. This function can be included in the library of functions available on circuit 1 .
  • microprocessor 110 may instruct data source 802 using control line 804 to transmit data over data lines 806 .
  • the omni-modal device 801 will have the circuits necessary to use a plurality of different transmission networks.
  • the standard building block circuit 1 may be desirable to use the standard building block circuit 1 to implement limited-purpose devices which will be used with only one or two systems, even though these limited purpose devices will use only a portion of the built-in capabilities of circuit 1 .
  • the library may desirably include other functions which enable desirable computing features. For example, data displaying, electronic mail storage, retrieval, and composition, and other computing functions may be included in the library.
  • the library may be expanded to include substantial operating system functions so that circuit 1 can be used to construct full-fledged personal computers and personal communicators capable of running third party applications programs.
  • circuit 1 will be capable of utilizing any one of the wireless data services within a given geographic area.
  • the selection of the service to be used can be made manually by the user, or can be selected automatically.
  • circuit 1 may have a preprogrammed routine for selecting information carriers based on varying criteria. As shown in FIG. 9 , the criteria for selecting a carrier may be varied by the user.
  • Possible criteria include the cost of sending a data message; quality of transmission link (signal strength, interference actual or potential); available bandwidth on a carrier for data transmission (or transmission speed supported); potential for being bumped off the system or having transmissions delayed (that is, is the service provider at nearly full capacity); security of transmission; or other special criteria which the user or the device may establish based on the user's individual priorities.
  • the length of a data message to be transmitted may be considered as a factor in selecting the carrier. If the length of the proposed message is made known to circuit 1 , this information can be used in conjunction with pricing information to determine the lowest cost route. For example, for very short messages a paging service or cellular digital packet data (CDPD) service might be selected. For longer messages, such as fax or data file transmission, a circuit switched connection with high speed data transfer capacity (such as AMPS cellular) may be more cost-effective.
  • CDPD digital packet data
  • Information about the costs and services offered by carriers in the area will be made available to the omni-modal circuit 1 for use in this competitive selection process, either through pre-programming by the user or selling organization or by transmission of the information in a manner described elsewhere herein.
  • the carrier may be selected by any one of the characteristics of the available competing carriers. For example, a given user may be price sensitive, and wish to always employ the lowest cost transmission method. Another user may have time-critical communications needs (e.g. securities trading or news reporting) and may prefer the most reliable or the highest speed transfer regardless of price.
  • time-critical communications needs e.g. securities trading or news reporting
  • circuit 1 In determining the cost of a particular transmission, circuit 1 preferably first determines the type and quantity of data to be transmitted. For example, if the user has selected a function of transmitting a file or an electronic mail message, circuit 1 will determine the length of the message and file. This information is then used in determining the projected cost of transmitting the data on each system. For example, for a short E-mail message, the expected cost for an AMPS cellular system will be the cost of making a one-minute call. For a packet radio system, the expected cost will be the length of the message divided by the number of characters per packet, times the cost per packet. As long as the basis for carrier charges is provided to circuit 1 , the cost factors relevant for any particular message can be calculated. Thus, circuit 1 can intelligently predict relative costs of transmitting over various networks and can operate with a low-cost preference dependent on characteristics of an individual message. Different low-cost transmission modes are appropriately selected for messages having different characteristics.
  • a more sophisticated approach than pure low-cost selection allows the user to assign weights to different competitive factors (price, signal clarity, transmission speed or other factors) depending on the individual preferences and needs of the user. Based on the assigned weights, the circuit then calculates a “score” for each available system and selects the system with the highest score. As an example, a user may instruct the circuit to select carriers based 60% on the ratio of the lowest price to the price of the particular carrier and 40% on normalized signal strength. If the cost to send the message on System I is $0.50 (signal strength 2 ), the cost on System II is $0.60 (signal strength 4 ), the cost on System III is $0.85 (signal strength 5 ) and the cost on System IV is $0.50 (signal strength 1 ) circuit 1 would calculate scores of:
  • this weighted selection criteria is not limited to, and is not necessarily based on, price and signal strength. Any number of criteria, including these or others, can be considered in a formula to meet the individual user's needs.
  • the criteria for a particular user are stored in a user profile in the memory of circuit 1 .
  • a default user profile corresponding to the preferences of a large number of users is established.
  • the individual user can change his or her user profile to establish different selection parameters and preferences at any time through appropriate input to circuit 1 .
  • Particularly desirable selection algorithms may also take multiple factors into account by employing branching algorithms to select the carrier. For example, one multistage selection process based on multiple criteria would operate as follows. Initially, systems which are incapable of performing the desired function would be eliminated from consideration. For example, if the user wants to place a voice call, data-only systems would not be considered. As another example, if the user wants to send a fax to a customer and a given network has no capability of transmitting fax information to a specified telephone number, that system would not be considered for the proposed task. Next, among the systems available, circuit 1 may predict the lowest cost route based on a formula accounting for the message length and the costs of the available systems, including consideration of any long-distance surcharges implied by the destination of the information transfer.
  • circuit 1 automatically avoid selecting carriers which are suffering performance degradations because of capacity limits, or which have a particularly weak signal at the location of the user. In this way, if the carrier which would otherwise be preferred will not be able to provide a fast, accurate information transfer at the time from the user's location, the carrier that is the “next best” according to the primary programmed selection criteria (cost in this example) may be automatically selected. A tradeoff between signal quality and cost may also be arbitrated by the weighting method described above.
  • any one or combination of the above selection criteria is available in the circuit 1 and the selection criteria can be selected, programmed, changed or overridden by the user.
  • Adaptive service provider selection may be implemented based on user experience. That is, the information transmission track record of circuit 1 with a particular service provider (e.g. error rate, dropped connections, transmission time) can be stored and updated, and this information can be used as a weighted factor in selecting service providers. In this way, service providers providing poor services can be avoided in cases where more desirable alternatives are available.
  • the market and consumer implications of the present invention are substantial, in that the circuits and methods of the present invention tend to introduce intense competition for customers among various wireless carriers.
  • the present invention automatically identifies service providers that best meet the user's performance requirements. In this way, service providers that meet the varying demands of the most user will have a large market share and maintain full usage of their available frequency spectrum.
  • the invention therefore allows the users to drive the market by creating price and service competition among carriers.
  • Circuit 1 can be activated to select a specified channel frequency, but may be activated to use command, control, and data protocols on that channel that are normally appropriate for different channels, if the carrier controlling the frequency has authorized another carrier to temporarily use the first carrier's channel.
  • a local AMPS cellular telephone carrier may have open channels, which may be temporarily “rented” to a Specialized Mobile Radio (SMR) carrier which is experiencing heavy traffic on its assigned channels.
  • SMR Specialized Mobile Radio
  • the SMR carrier may then direct persons requesting SMR service to operate on the “rented” channel but using SMR protocols rather than the AMPS protocols which would normally be appropriate to that channel.
  • This method of operation maximizes the efficient use of available frequencies by allowing carriers to shrink and expand the number of channels available based on current demand.
  • additional channels might be reallocated to AMPS by market forces; that is, the AMPS carrier will rent additional channels from under-utilized carriers to provide the services desired by the public at that time.
  • demand for other systems may increase, and AMPS or other carriers may rent their under-utilized bandwidth to carriers having a substantial demand. This might occur, for example, if a network providing status reporting services from remotely located equipment (vending machines, gas pumps, etc.) is designed to transmit a large volume of data during late night or early morning hours.
  • the status report network can rent channels from other carriers and use multiple channels to service its customers. In this way, economic incentives are established to ensure that airwave channels are assigned to their most productive use at all times, and the anti-competitive effects of carrier monopolies established by FCC channel assignments are reduced.
  • the process begins 902 with the determination by the omni-modal circuit 1 of whether a data of voice service is desired 904 . If a data service is desired, the circuit 1 obtains price information 908 for the available data service providers. If a voice service is desired, the circuit 1 obtains voice pricing information 906 . Once this pricing information is obtained, the circuit 1 evaluates the information to make a service provider selection based on the criteria supplied from the user. Once this selection is made, circuit 1 is configured for accessing the selected service provider 912 and establishes a connection with that provider 914 . Once the user has completed his use of the selected service provider, the process ends 916 .
  • FIG. 10 is a flowchart showing steps useful in a method according to the present invention for “advertising” available carrier services in a geographic area.
  • wireless service providers broadcast electronically, as part of any “handshaking” procedure with an omni-modal product, information such as rate information, information specifying system operating characteristics such as system utilization, the likelihood of being dropped, and other factors noted above which may be desirably considered in carrier selection.
  • This information may be broadcast in each geographical region by a jointly operated or government-operated transmitter operating at a predetermined frequency.
  • Circuit 1 may then be operated to scan the predetermined “service advertising” channel and obtain necessary information for use in selecting carriers.
  • government-collected statistics on the operation of the various carriers in the area may be transmitted as a consumer service to further encourage service competition and assist users in selecting the most appropriate carrier.
  • individual carriers may broadcast pricing information on individual command channels. Pricing can be changed on a dynamic basis to maintain a desired system load level.
  • an automated price negotiation can be performed in which the circuit 1 transmits an indication of the type and amount of information which is to be transmitted, and the carrier responds by quoting a price for the transmission. Such quotes can be obtained from multiple carriers and the lowest cost transmission mode can be selected, or the quoted prices can be factored into an equation that considers other factors in addition to price, as disclosed previously.
  • radio carriers may implement a dynamic demand curve evaluation program in which system load and profitability are constantly monitored. The evaluation program may also monitor the percentage of requested quotes which are not accepted. In this way, the radio carrier's system can dynamically adjust prices to maximize revenue to the carrier at all times, based on a real-time model of the current demand curve for airtime service in the area.
  • FIG. 10 One method in which system information could be distributed to users is shown in FIG. 10 .
  • the process starts 1002 by contacting a selected service provider 1004 .
  • the service provider provides information to a central location as discussed above.
  • the process determines if other service providers exist 1008 . If other providers exist, the process 1004 and 1006 is repeated for each additional service provider.
  • the process compiles and formats the information into a standard reporting form the is understandable to all mobile units 1010 .
  • the process determines the proper modulating frequency and protocol for the desired geographic area 1012 and broadcasts this information to all mobile users on the selected frequency and using the selected protocol 1014 . Once the information has been broadcast to the users, the process ends 1016 .
  • FIG. 11 a flowchart showing a handshake sequence for arranging information transmission using the omni-modal circuit 1 of the present invention is shown.
  • the process begins 1102 with the omni-modal circuit 1 accessing a service provider 1104 and receiving carrier cost information from the service provider 1106 .
  • the omni-modal circuit 1 may also receive additional information from the service provider such as signal quality, system resources, and available bandwidth.
  • the circuit 1 then stores the information received from the service provider 1108 .
  • the circuit determines if other service providers exist 1110 and, if they do, repeats the above steps to acquire cost and availability information for each service within the omni-modal circuit's range.
  • the information is evaluated 1112 .
  • This evaluation could consist of a simple determination based on a single factor, or could include more complex calculations relating to weighting of given factors and qualities.
  • the results of the evaluation are used to select a service provider to process the users pending request for services.
  • a connection is established 1114 on the selected service provider, and the user's request is processed, after which the process ends 1116 .
  • FIG. 12 is a view of a cellular radiotelephone 1200 which is generally of the type and configuration described above with reference to FIG. 2 .
  • radiotelephone 1200 is constructed using a modular omni-modal circuit 1 constructed on a removable card 1204 which is provided With a standardized connector or connector (for example, a PCMCIA connector) 1205 to establish all necessary interface connections to a plurality of receiving devices in the manner described above with reference to FIG. 7 .
  • a standardized connector or connector for example, a PCMCIA connector
  • a telephone shell 1202 containing a battery power supply, microphone, speaker, keypad, and antenna 2 has a receiving slot 1206 for receiving card 1204 carrying circuit 1 .
  • connector 1205 mates with connector 1208 within slot 1206 and the external components of the shell 1202 are operatively combined with card 1204 to create a functional multi-modal cellular telephone.
  • FIG. 13 illustrates the installation of the same card 1204 in a notebook sized computer 1302 , whereby the computer 1302 is provided with complete omni-modal network access.
  • the same card 1204 containing standardized circuit 1 to provide radio network access for various devices the user can avoid maintaining multiple accounts or telephone numbers, yet can communicate by radio using many devices.
  • a receiving slot for card 1204 could be provided in the user's automobile, and insertion of card 1204 upon entering the car would activate cellular communications capability in the car.
  • the same card 1204 can be readily transferred between the car, a portable handset shell as shown in FIG. 12 , and a computer as shown in FIG. 13 for data transmission.
  • the omni-modal circuit of the present invention can perform both page receiving and other functions, such as placing cellular telephone calls. However, since only a single transmitting and receiving circuit is provided, when the device is in use on a non-paging communications network such as an AMPS cellular telephone system, any pages directed to the device may not be received.
  • the present invention provides a solution to this potential problem in which the paging system control is interconnected with other network(s) such as the local AMPS cellular system. It should be understood that while connection of the pager system to the AMPS system is shown as an example, such connections may be provided between any systems used by the omni-modal circuit 1 to achieve similar objectives.
  • FIG. 14 is a block schematic diagram of a paging relay system according to the present invention for use with omni-modal circuits 1 that support pager functions and also a non-pager network function such as cellular telephone operation.
  • FIG. 14 shows a paging system 1400 which is connected in a conventional manner by lines 1406 to a broadcast antenna 1408 which transmits pager signals to pager devices such as the omni-modal circuit 1 shown in the Figure.
  • FIG. 14 shows a cellular telephone network office 1402 which is connected to control the operation of the cellular telephone cell site transmitter 1412 by lines 1410 .
  • the paging system 1400 is connected to the cellular telephone network office 1402 by lines 1404 which permit transfer of operational and control information between the paging system 1400 and cellular telephone network office 1402 . Because of the connection of lines 1404 , the paging system can determine whether the omni-modal device 1 is engaged in a cellular call and will thus be unable to receive a page.
  • FIG. 15 is a flowchart showing a preferred operation of the pager and other (for example AMPS) systems interconnected as described with reference to FIG. 14 .
  • the pager system first determines by reference to stored records whether the pager device which is to be contacted is an omni-modal circuit 1 which may be engaged in data transmission with another system at the time of any given page. If not, the page can be sent by the usual broadcast method in block 1504 . If an omni-modal circuit 1 is involved in the paging operation, the pager system then contacts any connected networks which might be in use by omni-modal device 1 and inquires whether the device is in fact using such networks in block 1506 .
  • the omni-modal device is presumed to be available for receiving a page and control transfers to block 1504 for transmission of the page by conventional methods.
  • the pager system determines whether delivery by the alternate network may be accomplished in block 1508 . This may be determined by appropriate factors, including whether the network (e.g. AMPS) is capable of and willing to deliver the page information to circuit 1 , and whether the user of circuit 1 has subscribed to this service.
  • the network e.g. AMPS
  • the page information is stored, and after some appropriate period of time, control transfers to block 1506 and the pager system again attempts to determine whether the page can be transmitted by conventional means.
  • the page information may be transmitted as a momentary interruption in an ongoing conversation, as information provided on a command channel, as subaudible information (e.g. in a band from 0 to 300 Hz), or by another appropriate method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present invention provides, among other things, a multi-modal device for facilitating wireless communication over any one of a plurality of wireless communication networks operating pursuant to differing transmission protocols and/or over differing radio frequencies.

Description

    BACKGROUND OF THE INVENTION
  • This invention relates generally to frequency and protocol agile, wireless communication devices and systems adapted to enable voice and/or data transmission to occur using a variety of different radio frequencies, transmission protocols and radio infrastructures.
  • Many communication industry experts believe that a personal information revolution has begun that will have as dramatic an impact as did the rise of personal computers in the 1980's. Such experts are predicting that the personal computer will become truly “personal” by allowing virtually instant access to information anytime or anywhere. There exists no consensus, however, on the pace or form of this revolution.
  • For example, the wireless communication industry is being fragmented by the emergence of a substantial number of competing technologies and services including digital cellular technologies (e.g. TDMA, E-TDMA, narrow band CDMA, and broadband CDMA), geopositioning services, one way and two-way paging services, packet data services, enhanced specialized mobile radio, personal computing services, two-way satellite systems, cellular digital packet data (CDPD) and others. Fragmenting forces within the wireless communication industry have been further enhanced by regulatory actions of the U.S. government. In particular, the U.S. government is preparing to auction off portions of the radio spectrum for use in providing personal communication services (PCS) in a large number of relatively small contiguous regions of the country. The U.S. government is also proposing to adopt regulations which will encourage wide latitude among successful bidders for the new radio spectrum to adopt innovative wireless technologies.
  • Until the market for wireless communication has experienced an extended “shake-out” period it is unlikely that a clear winner or group of winners will become apparent. Any portable unit which is capable of interacting with more than one service provider or radio infrastructure would obviously have advantages over a portable unit which is capable of accessing only a single service provider. Still better would be a portable unit which could be reprogrammed to interact with a variety of different service providers. Previous attempts to provide such multi modal units have produced a variety of interesting, but less than ideal, product and method concepts.
  • Among the known multi-modal proposals is a portable telephone, disclosed in U.S. Pat. No. 5,127,042 to Gillig et al., which is adapted to operate with either a conventional cordless base station or cellular base station. U.S. Pat. No. 5,179,360 to Suzuki discloses a cellular telephone which is capable of switching between either an analog mode of operation or a digital mode of operation. Yet another approach is disclosed in U.S. Pat. No. 4,985,904 to Ogawara directed to an improved method and apparatus for switching from a failed main radio communication system to a backup communication system. Still another proposal is disclosed in U.S. Pat. No. 5,122,795 directed to a paging receiver which is capable of scanning the frequencies of a plurality of radio common carriers to detect the broadcast of a paging message over one of the carriers serving a given geographic region. In U.S. Pat. No. 5,239,701 to Ishii there is disclosed a radio receiver which is responsive to an RF signal containing a plurality of channel frequencies, each having broadcast information, and a circuit for producing a wide band version of the received RF signal and a circuit for producing a narrow band version of the received RF signal.
  • While multi-modal in some regard, each of the technologies disclosed in the above listed patents is highly specialized and limited to a specific application. The systems disclosed are clearly non-adaptive and are incapable of being easily reconfigured to adapt to different transmission protocols or different radio infrastructures. Recently, Motorola has announced beta testing of a system called “MoNet” which will allegedly allow users to operate on whatever wireless network happens to be available using protocol and frequency agile radio modems. The MoNet technology will be integrated in both networks and mobile devices and will permit first time users to fill out an electronic application, transmit it, and receive a personal ID to allow the user to operate on any of several mobile networks yet receive just one bill. Another provider of an open system is Racotek of Minneapolis, Minn. which offers client server architecture designed to be portable across different mobile devices, host platforms, and radio infrastructures.
  • While the limited attempts to deal with the fragmentation of the wireless communication industry have had some merits, no one has yet disclosed a truly self adaptive, omni-modal wireless product which enables an end user to access conveniently various wireless services in accordance with a selection process which is sufficiently under the control of the end user.
  • SUMMARY OF THE INVENTION
  • A fundamental objective of the subject invention is to overcome the deficiencies of the prior art by providing a truly omni-modal wireless product and method which is adaptive to the selectively variable desires of the end user.
  • Another more specific object of the subject invention in the provision of a product which would be capable of utilizing any one of the wireless data services within a given geographic area based on a user determined criteria such as: (1) the cost of sending a data message, (2) the quality of transmission link (signal strength, interference actual or potential), (3) the potential for being dropped from the system (is service provider at near full capacity), (4) the security of transmission, (5) any special criteria which the user could variably program into his omni-modal wireless product based on the user's desires or (6) any one or more combinations of the above features that are preprogrammed, changed or overridden by the user.
  • Yet another object of the subject invention is to provide an omni-modal wireless product which would allow for enormous product differentiation. For example original equipment manufacturers (OEM's) could provide specialized interface features for the end user. Each OEM could provide specialized hardware controls appropriate for various user groups.
  • Another object of the subject invention is to provide an omni-modal wireless product which can allow for adaptive service provider selection based on user experience with specific service providers.
  • A more specific object of the subject invention is to provide an omni-modal wireless product which would have the effect of inducing intense competition for customers among various wireless data service providers based on quality of service and price by allowing the user to easily and conveniently identify the service providers that best meet the user's performance requirements.
  • Another object of the invention is to provide a network of omni-modal wireless products and service providers which is designed to provide the most business and profit making potential to the service providers who best meet the varying demands of the greatest number of omni-modal wireless product users.
  • Still another objective of the subject invention is to promote and encourage introduction of innovative technology which will satisfy the desires of end users to receive the best possible quality wireless service at the lowest possible cost by promoting real time adaptive price and service competition among cell service providers.
  • Another objective of the subject invention is to allow wireless service providers to broadcast electronically as part of any “handshaking” procedure with a omni-modal wireless product information such as (1) rate information and (2) information regarding system operating characteristics such as percent of system capacity in use and/or likelihood of being dropped.
  • Still another objective of the subject invention is to create a user oriented source enrollment and billing service in the wireless data market by establishing uniform standard for “handshakes” to occur between cell service providers and omni-modal wireless products.
  • A more specific object of the invention is to provide a standard chip or chipset including a radio transceiver specifically designed to be used in all types of omni-modal wireless products.
  • A still more specific object of the invention is to provide a standard radio chip or chipset adapted for use in all types of omni-modal wireless products including a variety of operational modes including operation on the U.S. public analog cellular telephone network (AMPS).
  • Still another object of the invention is to provide a standard radio chip or chipset for use in all types of omni-modal wireless products including circuitry for both voice and data communications over AMPS. Other supported communications protocols would include CDPD which is a packet data service based on the AMPS network.
  • These objects and others are achieved in the present invention by an omni-modal radio circuit implemented by a standard radio computing chip or chipset which can serve as a computer (special or general purpose), or as an interface to a general purpose personal computer. The chip preferably includes a modem and associated processing circuits. So that it can perform at least basic processing functions such as displaying data, accepting input, etc., the chip may also incorporate at least a basic microprocessor. The processor may provide only predetermined functions, accessible through a standard applications programming interface, or in more advanced designs the processor can run other software or firmware added by the product maker. Exemplary processor functions of the chip include radio network interface control (call placement, call answering), voice connection, data transmission, and data input/output. The chip can be used to implement a variety of omni-modal devices and can provide computing resources to operate fundamental communications programs.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a block schematic diagram of an omni-modal radio communications circuit according to the present invention;
  • FIG. 2 is a block schematic diagram of an advanced cellular telephone implemented using an omni-modal radio communications circuit according to the present invention;
  • FIG. 3 is a block schematic diagram of a personal communicator implemented using an omni-modal radio communications circuit according to the present invention;
  • FIG. 4A is a plan view of the front of a data transmission and display radiotelephone implemented using an omni-compatible radio communications circuit;
  • FIG. 4B is a plan view of the back of a data transmission and display radiotelephone implemented using an omni-compatible radio communications circuit;
  • FIG. 5 is a block schematic diagram of a telephone/pager implemented using the present omni-modal radio communications circuit;
  • FIG. 6A is a block schematic diagram of a dual mode cellular/cordless landline telephone implemented using the present omni-modal radio communications circuit;
  • FIG. 6B is a flowchart showing a method of operation of a dual mode cellular/cordless landline telephone according to the present invention;
  • FIG. 7 is a block schematic diagram of a personal computer incorporating an omni-modal radio communications circuit;
  • FIG. 8 is a block schematic diagram of a special purpose radio data transmitting device implemented using an omni-modal radio communications circuit;
  • FIG. 9 is a flowchart showing a radio system selection method by which information carriers are selected according to varying specified criteria;
  • FIG. 10 is a flowchart showing a method of broadcasting local carrier information to facilitate carrier selection by customers for a particular information transmission task;
  • FIG. 11 is a flowchart showing a handshake sequence for arranging information transmission using the omni-modal device of the present invention;
  • FIG. 12 is a plan view of a modular implementation of the omni-modal radio communications circuit of the present invention installed in a cellular telephone;
  • FIG. 13 is a plan view of a modular implementation of the omni-modal radio communications circuit of the present invention installed in a personal computer;
  • FIG. 14 is a block schematic diagram showing a system for relaying paging signals to the omni-modal device of the present invention using a cellular telephone system; and
  • FIG. 15 is a flowchart showing a method of relaying paging signals to the omni-modal device of the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • A preferred embodiment of a standardized radio processing circuit 1 is shown in FIGS. 1A and 1B. The standardized radio processing circuit 1, shown in FIGS. 1A and 1B taken together, maybe implemented on a single VLSI chip or on a set of VLSI chips making up a chipset. As will be seen, this chip or chipset provides a standard building block which can be used to make a plurality of consumer products that provide data transmission capability. As will be seen later with reference to FIGS. 2 through 8, by adding minimal external components to the standardized circuit 1, a wide variety of products can be produced. Also, as will be seen, the standardized circuit 1 can be advantageously implemented on a removable card with a standardized interface connector or connectors, so that it can then be selectively inserted into and removed from a variety of devices to provide the devices with radio information transmission capability.
  • In terms of the preferred functional and operational characteristics of circuit 1, it is particularly significant that this circuit provides a multi-modal or omni-modal communications capability. That is, circuit 1 can be adjusted by the user, or automatically under stored program control, to transfer information over at least two different radio communications networks, and preferably all networks available in a particular area within the frequency range of the transceiver of circuit 1.
  • Examples of radio communications networks which circuit 1 may be designed to use include commercial paging networks; the U.S. cellular telephone network or Advanced Mobile Phone System (AMPS); alternative cellular telephone network standards such as the European standard; digitally modulated radiotelephone systems operating under various encoding techniques such as TDMA, CDMA, E-TDMA and BCDMA; Cellular Digital Packet Data (CDPD); Enhanced Specialized Mobile Radio (ESMR); ARDIS; Personal Cellular Systems (PCS); RAM; global positioning systems; FM networks which transmit stock prices or other information on subcarriers; satellite-based networks; cordless landline telephones (such as 49 Mhz and particularly 900 Mhz systems); and wireless LAN systems. Preferably, circuit 1 is also designed to use the landline/public switched telephone network (PSTN).
  • As another feature, the omni-modal circuit 1 may perform local positioning calculations to accurately determine its location by monitoring precisely synchronized timing signals which may be broadcast by cell sites for this purpose. If such timing signals were provided, the omni-modal circuit 1 could receive the signals, determine the relative time delay in receiving at least three such signals from different transmitter locations, and triangulate to determine the distance of the omni-modal circuit to each of the transmitters. If the omni-modal circuit 1 is installed in a vehicle, this information may be used to determine the location of the vehicle.
  • As will be seen, for each system which can be accessed by circuit 1, appropriate cross connections are provided between the radio circuit or landline interface, as selected, and voice or data sources and destinations. The appropriate cross connections are established under program control and include conversions between digital and analog signal forms at appropriate points in cases where a signal in one form is to be transmitted using a method for which a different signal form is appropriate. The operating parameters of the transceiver may be optimized by a digital signal processor for either voice or data transmission.
  • In addition, a library of command, control and data transmission protocols appropriate for each supported system may be included in circuit 1, and the device can implement the correct protocols by consulting a lookup table during transmissions to obtain the data channel protocols appropriate to the system selected. In another embodiment, the library of command, control, and data transmission protocols may be replaced, or supplemented, by information transmitted over the radio frequencies to the device by the carrier, or information downloaded from a hardwired connection to another device. Flash memory, EEPROMs, or non-volatile RAM can be used to store program information, permitting replacement or updating of the operating instructions used by the device.
  • As examples, the library functions accessible by the device (and also by external devices which may call the library functions) may include the following: Select RF modulation frequency; select RF modulation protocol; select data formatting/conditioning protocol; transmit data in input stream using selected network and protocol; select output; select input; select data/voice mode; answer call; generate DTMF tones and transmit on selected network; scan for control channels/available systems; obtain cost information for current selected system; obtain cost information for all systems; obtain operating quality information for current system; obtain operating quality information for all systems; request transmission channel in system; obtain signal strength for current channel; obtain signal strength for all active systems; and initiate a transmission on the selected network.
  • FIG. 1A shows a block schematic diagram of a preferred embodiment of an omni-modal radio communication radio frequency (RF) circuit. In the example shown, the RF circuit includes antenna 2, diplexer 4, amplifier 6, transmit mixer 8, receiver mixer 10, programmable local oscillator 12, modulation selector switches 14 and 16, analog detector-demodulator 18, digital demodulator 20, analog modulator 22, digital modulator 24, voice grade channel output 26, digital output 28, voice grade channel input 30, and digital input 32.
  • Voice grade channel output 26 is connected to analog detector-demodulator 18 and digital output 28 is connected to digital demodulator 20. Analog detector-demodulator 18 and digital demodulator 20 are selectively connected to receiver mixer 10 through switch 14. Receiver mixer 10 is connected to both local oscillator 12 and diplexer 4. Diplexer 4 is connected to antenna 2. These components provide radio frequency receive circuitry that allows selective reception and demodulation of both analog and digitally modulated radio signals.
  • Voice grade channel input 30 is connected to analog modulator 22 and digital input 32 is connected to digital modulator 24. Analog modulator 22 and digital modulator 24 are selectively connected to transmit mixer 8 through switch 16. Transmit mixer 8 is connected to both local oscillator 12 and amplifier 6. Amplifier 6 is connected to diplexer 4 and diplexer 4 is connected to antenna 2. These components comprise radio frequency transmit circuitry for selective transmission of analog or digitally modulated radio signals.
  • The operation of the omni-modal radio communication RF circuit shown in FIG. 1A will now be described in more detail. Antenna 2 serves to both receive and transmit radio signals. Antenna 2 is of a design suitable for the frequency presently being received or transmitted by the RF circuit. In the preferred embodiment, antenna 2 may be an antenna suitable for receiving and transmitting in a broad range about 900 Mhz. However, different antennas may be provided to permit different transceiver ranges, including dipole, yagi, whip, micro-strip, slotted array, parabolic reflector, or born antennas in appropriate cases.
  • Diplexer 4 allows antenna 2 to receive broadcast radio signals and to transmit the received signals to the demodulators 18 and 20, and to allow modulated radio signals from modulators 22 and 24 to be transmitted over antenna 2. Diplexer 4 is designed so that signals received from amplifier 6 will be propagated only to antenna 2, while signals received from antenna 2 will only be propagated to receiver mixer 10. Diplexer 4 thus prevents powerful signals from amplifier 6 from overloading and destroying receiver mixer 10 and demodulators 18 and 20.
  • The receive path of the omni-modal RF circuit comprises receiver mixer 10, which is connected to, and receives an input signal from, diplexer 4. Receiver mixer 10 also receives a reference frequency from local oscillator 12. Receiver mixer 10 converts the signal received from diplexer 4 to a lower frequency signal and outputs this intermediate frequency on output line 36 to switch 14. Switch 14 is connected through control line 38 to a microprocessor (not shown). Control line 38 selectively controls switch 14 to pass the intermediate frequency signal on output line 36 to either analog detector-demodulator 18 or to digital demodulator 20. This selection is controlled based upon the type of signal currently being received. For example, if the omni-modal circuit 1 is tuned to an analog communication system, switch 14 would be connected to analog detector demodulator 18. If, however, the omni-modal circuit 1 is receiving a digital modulated signal switch 14 would be in a state to allow an intermediate frequency on output line 36 to be transmitted to digital demodulator 20.
  • Analog detector demodulator 18 receives analog signals through switch 14 from receiver mixer 10 on output line 36. Analog detector demodulator converts the RF modulated signal received as an intermediate frequency into a voice grade channel or VGC. The voice grade channel may comprise an audio frequency spectrum going from approximately 0 Hz to approximately 4 KHz. Analog detector demodulator 18 is designed for demodulation of analog radio frequency signals. For example, analog detector demodulator would be capable of demodulating a frequency modulated (FM) radio signals. Analog detector demodulator 18 may also be capable of demodulating amplitude modulated (AM) radio signals.
  • Digital demodulator 20 is designed to demodulate digital signals received from receiver mixer 10 through switch 14. Digital demodulator 20 is designed to demodulate digital signals such as, for example, pulse code modulation (PCM), time division multiple access (TDMA), code division multiple access (CDMA), extended time division multiple access (E-TDMA) and broad band code division multiple access (BCDMA) signals. The output 28 from digital demodulator 20 could consist of a digital bit stream.
  • The transmit circuitry of the omni-modal RF circuit will now be described in detail. Analog voice grade channel signals can be received over analog input 30 which is connected to analog modulator 22. Analog modulator 22 acts to modulate the received voice grade channel onto an intermediate frequency signal carrier. Analog modulator 22 would be capable of modulating frequency modulation (FM) or amplitude modulation (AM) signals, for example.
  • As can be seen in FIG. 1A, analog modulator 22 is connected to, switch 16. The intermediate frequency output from analog modulator 22 on output line 42 is sent to switch 16. Switch 16 is connected to a microprocessor (not shown) in a manner similar to switch 14 described above. Switch 16 is capable of selectively connecting transmit mixer 8 to either analog modulator 22 or digital modulator 24. When switch 16 is connected to analog modulator 22 through output line 42, analog modulated signals are transmitted to transmit mixer 8.
  • Digital input can be received by the transmit portion of the RF modulator circuitry through digital input 32. Digital input 32 is connected to digital modulator 24 which acts to modulate the received digital data onto an intermediate frequency RF carrier. Digital modulator 24 may preferably be capable of modulating the signal into a PCM, TDMA, E-TDMA, CDMA and BCDMA format. The output 44 of digital modulator 24 is connected to switch 16. Switch 16 can be controlled through control line 40 to select the digital modulated signal on output 44 and to selectively transmit that signal to transmit mixer 8.
  • Transmit mixer 8 is connected to programmable local oscillator 12 which is capable of generating frequencies that cover the frequency spectrum of the desired communication systems. Transmit mixer 8 operates in a manner well known in the art to convert the intermediate frequency signal received from switch 16 to a radio frequency for transmission over a radio communication system. The output of transmit mixer 8 is connected to amplifier 6. Amplifier 6 acts to amplify the signal to insure adequate strength for the signal to be transmitted to the remote receiving station. Amplifier 6 may be connected to control circuitry to allow the power output of amplifier 6 to be varied in accordance with control signals received from the control circuitry. The output of amplifier 6 is connected to diplexer 4 and, as described above, to antenna 2.
  • FIG. 1B is a block schematic diagram of the input and control circuitry of omni-modal circuit 1. As can be seen from FIG. 1B, the input and control circuitry comprises speaker 100, microphone 102, voice processing circuitry 104, digital to analog converter 106, analog to digital converter 108, first selection switch 122, microprocessor 110, memory 112, data input 114, data output 116, data processing circuitry 118, second selector switch 120 and modem 124.
  • Microprocessor 110 is connected to memory 112 and operates to control the input circuitry as well as the programmable local oscillator 12 and switches 14 and 16 shown in FIG. 1A Memory 112 can contain both data storage and program information for microprocessor 110. Microprocessor 110 may be any suitable microprocessor such as an Intel 80×86 or Motorola 680×0 processor. Memory 112 contains a program that allows microprocessor 110 to selectively operate the voice processing circuitry, data processing circuitry and switches to select the appropriate transmission channel for the communication signal currently being processed. In this manner, microprocessor 110 allows omni-modal circuit 1 to selectively operate on a plurality of radio communication systems.
  • As can be seen in FIG. 1B, an externally provided speaker 100 and microphone 102 are connected to voice processing circuitry 104. Voice processing circuitry 104 has output 142 and input 144. Voice processing output 142 is connected to switch 122. Similarly, voice processing input 144 is connected to switch 122. Switch 122, which may be an electronic analog switch, comprises two single pole double throw switches which operate in tandem to selectively connect voice output 142 and voice input 144 to appropriate data lines. Switch 122 is connected through control line 146 to microprocessor 110. Control line 146 allows microprocessor 110 to selectively operate switch 122 in response to commands received from the user or in response to a program in memory 112. In a first position, switch 122 connects voice processing input 144 to voice grade channel output 126. Referring to FIG. 1A, voice grade output 126 is connected to the output 26 of analog detector demodulator 18. In this manner, voice processing circuitry 104 is able to receive demodulated analog voice signals from analog detector demodulator 18. When voice processing input 144 is connected to 126, voice processing output 142 will be connected to voice input 130. As can be seen in FIG. 1A, voice input 130 is connected to voice grade channel input 30 of analog modulator 22. In this manner, voice processing circuitry 104 can transmit voice through the transmit circuitry of FIG. 1A.
  • If switch 122 is changed to its alternate state, voice processing input 144 will be connected to digital to analog converter 106. Digital to analog converter 106 is connected to digital input 128 which, referring to FIG. 1A, is connected to digital output 28 of digital demodulator 20. Digital to analog converter 106 acts to receive a digital information bit stream on digital input 128 and to convert it to an analog voice grade channel. The analog voice grade channel from digital to analog converter 106 is sent through voice input 144 to voice processing circuitry 104. Voice processing circuitry 104 can then amplify or alter the voice grade channel signal to the taste of the user and outputs the signal on speaker 100. Voice processing output 142 is connected to analog to digital converter 108 which in turn is connected to digital output 132. Digital output 132 is connected in FIG. 1A to digital input 32 and to digital modulator 24. In this manner, voice processing circuitry 104 is capable of transmitting a voice or other analog voice grade channel signal through a digital modulation system.
  • As noted above, omni-modal circuit 1 is capable of transmitting data over a plurality of radio frequency communication systems. As can be seen in FIG. 1B, data input 114 and data output 116 are connected to data processing circuitry 118. Data input 114 allows the processing circuitry to receive data from any number of user devices. The format of the data received on data input 114 may be variable or standardized depending on the circuitry provided in data processing circuitry 118. For example, data input 114 may use a standard RS-232 serial interface to receive data from a user device. Data input 114 may also use a parallel twisted pair or HPIB interface as well. Data output 116 similarly transmits data in a format compatible with the equipment being used by the user. Data processing circuitry 118 is connected to microprocessor 110 which acts to control the formatting and conditioning of the data done by data processing circuitry 118. For example, data processing circuitry 118 may add protocol information or error correction bits to the data being received on data input 114. Conversely, data processing circuitry 118 may act to remove overhead bits such as protocol or error correction bits from the data prior to its output on data output 116. Data processing circuitry 118 is connected to switch 120 through data output 150 and data input 152. Switch 120 operates in a manner similar to that described with respect to switch 122 above. Switch 120 is connected to microprocessor 110 through control line 148. Microprocessor 110 operates to control switch 120 to selectively connect the data output 150 to either digital circuit output 140 or to modem input 156. Switch 120 also operates to connect digital data input 152 to either digital input 138 or digital modem output 154. Modem 124 may be any standard modem used to modulate digital data onto an analog voice grade channel. For example, modem 124 may incorporate a modem chip set manufactured by Rockwell International Corporation that receives digital data and modulates it into a 4 KHz band width for transmission over standard telephone systems. Modem input 156 receives data from data processing circuitry 118 through data input 152 and switch 120. The data received over modem input 156 is modulated onto a voice grade channel and output on modulated modem output 136. Modulated modem output 136 is connected to voice grade channel input 30 of analog modulator 22 shown in FIG. 1A. Similarly, digital modem output 154 receives demodulated baseband signal from modem 124. The modulated data signal is received by modem 124 from modem input 134, which is connected to voice grade channel output 26 of analog detector demodulator 18. Modem 124 acts to demodulate the data received over modem input 134 and outputs a digital data stream on digital modem output 154. This digital data stream is connected through switch 120 and data input 152 to data processing circuitry 118. As described above, data processing circuitry 118 conditions and formats the data received from the modem and outputs the data to the user on data output 116. If the user has selected a digital RF transmission system, it is not necessary to use modem 124. In this case, switch 120 is operated so that the digital data output 150 from data processing circuitry 118 is connected through digital output 140. Digital output 140 is connected to digital input 32 of digital modulator 24 shown in FIG. 1A. Similarly, data input 152 to data processing circuitry 118 is connected through digital input 138 to digital output 28 of digital demodulator 20 shown in FIG. 1A.
  • As is readily apparent from the above discussion, FIGS. 1A and 1B together depict a radio frequency communication system that is capable of operating over a plurality of different radio channels and is further capable of transmitting either analog or digital data information signals as well as analog or digital voice signals. The system is also capable of transmitting a 4 Khz voice grade channel having both data and voice simultaneously present.
  • FIG. 1B broadly depicts the operation of the circuit which involves the selection by the microprocessor 110 of either a voice or data call. Once this selection is made, the data is then sent to the RF modulation circuitry shown in FIG. 1A. The RF modulation circuitry is capable of modulating or demodulating either analog or digital signals.
  • Circuit 1 is designed to facilitate product differentiation by companies making use of circuit 1 as a standard building block for radio voice and/or data communications devices. For example, each manufacturer may provide specialized interface features for the user, and specialized hardware controls appropriate for various user groups. Circuit 1 is particularly advantageous in facilitating these goals in that it provides microprocessor 110 and memory 112 that allow manufacturers to customize the operation of the circuit with little or no additional components. Furthermore, circuit 1 could be pre-programmed with a series of primitives that would allow a manufacturer to quickly and easily integrate the complex features of the device into a use friendly consumer product.
  • Referring next to FIG. 2, a block schematic diagram of an advanced cellular telephone implemented using an omni-modal radio communication circuit 1 shown in FIG. 1 is depicted. The omni-modal radio communication circuit of FIGS. 1A and 1B is shown in outline form as reference number 1. Also shown in FIG. 2 are speaker 100, microphone 102, digital data input 114, digital data output 116 and universal digital input/output interface 158. As can be seen from FIG. 2, the present radio communications circuit allows a cellular phone to be constructed with the addition of minimal components. The advanced cellular phone of FIG. 2 includes keypad 202, display 204 and interface connector 206. Keypad 202 and display 204 are connected to interface connector 206. Interface connector 206 connects with the universal digital input/output interface 158 which connects to the omni-modal radio communications circuit 1 depicted in more detail in FIGS. 1A and 1B. Keypad 202 may be any keypad used with telephone devices. Similarly, display 204 can be any display used with standard cellular telephones or other computing devices. For example, display 204 could be a light-emitting diode (LED) or a liquid crystal display (LCD) as commonly used with telephones, calculators and/or watches.
  • As shown in FIG. 2, keypad 202 and display 204 connect through interface connector 206 to universal digital input/output interface 158 of the omni-modal RF circuit. The universal digital input/output interface 158 allows the omni-modal circuit 1 to be connected with a variety of electronic devices including keypad 202 and display 204. It is contemplated that universal digital input/output interface 158 may comprise one connector or a plurality of connectors each having different data protocols transmitted and received therein. For example, universal input/output interface 158 may include a keyboard or keypad interface circuit as well as a display interface circuit. The keypad interface circuit would include necessary circuitry for buffering key strokes and receiving key input data from a keyboard. The display driver circuitry would include a memory and processor necessary for the display of data stored in the display memory. In this manner, the omni-modal circuit 1 is capable of interacting with many different keypads and display devices. In one preferred embodiment, the universal interface connector includes a serial addressable interface wherein the components connected to the serial interface have a unique address byte assigned to each component. This allows the serial interface to communicate with a plurality of devices sequentially. Keypad 202 for example may be assigned an address byte of 001, while display 204 would be assigned address byte of 002. When the universal interface desires to communicate from microprocessor 110 shown in FIG. 1B with the keypad or display, the appropriate address would be included in the data sent to the universal interface connector. Keypad 202 and display 204 would monitor the data coming across the universal interface 158 and would respond only to those bytes having an appropriate address corresponding to the selective device.
  • The advanced cellular phone of FIG. 2 includes digital data input 114 and digital data output 116. This allows the phone to transmit digital computer data without the need of bulky external interface devices. For example, it is often necessary to use a tip and ring interface emulator to communicate over a cellular network from a computer or other data source. With the present invention, however, it is only necessary to connect to the digital data input 114 and to the digital data output 116. The data protocol used on these may be any protocol suitable for data communication, but in the preferred embodiment would be a RS 232 serial interface. By connecting a computer serial interface port to data input 114 and data output 116, data may be transmitted using the omni-modal circuit 1. The microprocessor 110 and memory 112 shown in FIG. 1B would configure the internal circuitry of the omni-modal circuit for data transmission.
  • Also shown in FIG. 2 are speaker 100 and microphone 102. Speaker 100 and microphone 102 may be standard speakers and microphones used on cellular telephones and are adapted to allow the omni-modal circuit 1 to transmit voice communications over a cellular radio network.
  • FIG. 3 is a block schematic diagram of a personal communicator implemented through the use of the omni-modal circuit 1 shown in FIGS. 1A and 1B. As shown in FIG. 3, the personal communicator includes omni-modal circuit 1, personal communicator computing circuitry 302, telephone handset 318, and interface circuitry comprising data input 114, data output 116, and universal interface 158.
  • The personal communicator computing circuitry 302 includes display 304, microprocessor 306, memory 308, input device 316, data interface jack 310 and RJ-11 jack 312. As can be seen in FIG. 3, the microprocessor 306 is connected to the display 304, the memory 308, the input device 316 and to the data interface jack 310 and RJ-11 jack 312.
  • The personal communicator computing circuitry 302 acts to allow the user to interface and process data in a manner known to those of skill in the art. For example, display 304 may include an LCD display panel and may be color or black and white. Microprocessor 306 may include an Intel 80×86 microprocessor or any other microprocessor manufactured by Intel or Motorola or other computer processing chip manufacturers. Memory 308 includes random access memory (RAM) and read-only memory (ROM) necessary for the functioning of the computing device. Input device 316 may be a keyboard or a pen-based interface or other interface including voice recognition that allows for data to be input to the personal communicator computing circuitry 302. Microprocessor 306 is interfaced through data interface jack 310 to data input 114 and data output 116 of the omni-modal circuit. This allows the personal communicator computing circuitry 302 to transmit data using the omni-modal circuit 1. Also, as seen in FIG. 3, microprocessor 306 is connected through universal interface 158 to microprocessor 110 in the omni-modal circuit 1. This permits the microprocessors 306 and 110 to exchange control and operating information with each other. Should the microprocessor desire to make a data call, microprocessor 306 can instruct the microprocessor 110 shown in FIG. 1B of the omni-modal circuit 1 to initiate a data call through a designated service provider. In response to such command from microprocessor 306, microprocessor 110 shown in FIG. 1B may initiate a switching action and configure the omni-modal circuit 1 to transmit data over a selected service provider. To increase the flexibility of the personal communicator computing device, an RJ-11 jack 312 is included. The RJ-11 jack is connected to the data lines from the microprocessor 306 and allows the personal communicator computing device to transmit data over a standard landline telephone.
  • In one particularly preferred embodiment of the invention, the omni-modal circuit 1 can transmit data over a landline telephone line using RJ-11 jack 312 and modem 124 shown in FIG. 1B. The microprocessor 306 of the personal communicator computing device would transmit data through data interface jack 310 and data input 114 to the omni-modal circuit 1. The omni-modal circuit 1, would receive the data at the data processing circuitry 118 and transmit the data through data output 150 and modem input 156 to modem 124 shown in FIG. 1B. Modem 124 would then modulate the data onto a voice grade channel and transmit the modulated data signal on modem output 154 through switch 120 and data input 152 to data processing circuitry 118. The data processing unit may then transmit the data over data output 116 and into microprocessor 306 through interface jack 310 shown in FIG. 3. The microprocessor 306 may then route the data through auxiliary data output line 314 to RJ-11 jack 312. In this manner, the personal communicator computing circuitry 302 is able to send data over standard landline telephone lines without the use of a second additional modem. The modem in the omni-modal circuit 1 serves two functions allowing the personal communicator user to send data through his standard landline wall jack or over a wireless network depending on the availability of each at the time the user desires to send the data.
  • Also shown in FIG. 3 is handset 318. In the preferred embodiment of the personal communicator, the speaker 100 and microphone 102 would be embodied in a separate handset 318. This handset 318 would connect to the omni-modal circuit 1 through an appropriate interface connection.
  • FIGS. 4A and 4B depict a communication device 402 employing the omni-modal circuit 1 of the present invention, and having an integrated display device for conveying information to a user. FIG. 4A shows the front of the communication device 402 that could serve as a cellular phone. The device 402 includes speaker 100, antenna 2, microphone 102 and key pad buttons 406. In this regard, the external features of the device are similar to those of a standard commercially available cellular phone. As shown in FIG. 4B, the device is unique in that it incorporates an expanded display 404 and control buttons 408, 410, 412 for the display of information to the user. For example, the display 404 could convey airline flight information to the user while they are connected with an airline representative. In response to a user request, the airline representative could transmit flight information to the user's communication device 402, which would then display this information on the display 404. The user could then cycle through the information using increment button 408 and decrement button 410. When the user desired to select a given flight, they could indicate assent by pressing the enter button 412. This information would-then be transmitted digitally to the airline representative's computer.
  • The capabilities of the omni-modal circuit 1 facilitate its use in a device as shown in FIGS. 4A and 4B. Since the device is programmable through the use of microprocessor 110 and memory 112 (FIG. 1B), it is capable of switching between voice and data modes of operation. This allows the user to conduct a voice conversation and then to receive data for display on the integrated display device. Alternatively, the omni-modal circuit could access another communication service to receive data for display, or it might receive data over a subchannel during the conversation. This would be particularly advantageous if the user desired to continue a voice call while continuing to receive data information, as in the case of the airline flight selection example given above.
  • Referring next to FIG. 5, a block schematic diagram of a telephone/pager device using the omni-modal circuit 1 is shown. As can be seen from FIG. 5, the telephone/page device includes keypad 502, display 504 and control circuitry 506. The keypad 502 is connected to control circuitry 506. Display 504 is also connected to control circuitry 506. Control circuitry 506 is further connected through universal digital input/output interface 158 to the microprocessor 110 of the omni-modal circuit shown in FIG. 1B.
  • The combination telephone/pager device shown in FIG. 5 is generally similar in design to the advanced cellular telephone shown in FIG. 2. One particularly advantageous aspect of the omni-modal circuit 1 is its ability to provide a great degree of flexibility in the design and implementation of communication circuits. For different implementations external to the omni-modal circuit, the memory 112 shown in FIG. 1B can be reprogrammed to provide different functions through microprocessor 110 for the universal digital interface 158.
  • In FIG. 5, the telephone/pager implementation includes control circuitry 506 which receives information through the universal digital interface 158 from microprocessor 110. The control circuitry can then determine whether or not a page signal has been received by the omni-modal circuit 1 and if so it can display the appropriate information on display 504. If, however, control circuitry 506 receives information from microprocessor 110 that a telephone call has been received or is being used, then control circuitry 506 can appropriately display the telephone information on display 504. Similarly, control circuitry 506 can receive information from keypad 502 and selectively process this information depending on the current mode of operation. For example, if the device shown in FIG. 5 is in pager mode, control circuitry 506 may allow keypad input to cycle through stored paging messages. If however, the device shown in FIG. 5 is in telephone mode, control circuitry 506 may process the keypad information received from keypad 502 as telephone commands and transmit control signals through interface 158 to microprocessor 110 to cause a telephone call to be placed. Further, control circuitry 506 can actuate alarm 508 which may be a audible alarm such as a beeping or a vibration generator. Alarm 508 serves to notify the user when a telephone call or page is received.
  • FIG. 6A is a block schematic diagram of a dual mode cellular/cordless landline telephone is disclosed. The dual mode device includes key pad 602, optional display 604, handset 606, and interface connector 608. The key pad 602 and optional display 604 are connected to microprocessor 110 (FIG. 1B) through interface connector 608 and universal digital interface 158.
  • Key pad 602 allows a user to provide information to microprocessor 110 for operating the dual mode device. For example, the user may operate the key pad to indicate that a certain call should be made on the cordless telephone network and not on the cellular network. To the contrary, the user may specify that the cellular network was to be used by operating the key pad 602 to so indicate.
  • One particularly preferred embodiment of a dual mode device may be programmed to allow for automatic selection of either a cellular communications network or a cordless telephone landline network. This is particularly advantageous in that a cordless telephone landline network is often considerably cheaper to access than is a cellular telephone network. Therefore, if the device will automatically access a cordless telephone network whenever one available, and use the cellular network only we absolutely necessary, the user can achieve substantial savings while still having a single, portable, communications unit that operates over a large geographic area. If the user requests service while within his home, for example, the cordless telephone system would be used and the user would be charged a minimal amount. If the user were to place a call while away from his home a greater charge would be incurred. The user, however, would use the same communications equipment regardless of where the service was used, and the service selection would appear transparent to the user.
  • FIG. 6B is a flowchart of one method that may be used to implement this embodiment. The process of FIG. 6B begins 650 by determining if the user has activated the device to request communications services 652. If the user has not requested communication services, the devices continues to check for a user request. If a user request is detected, the device then determines if it is within range of a cordless telephone landline system 654. If the device is within range of a cordless telephone landline system, then the device services the user's request using the cordless landline communication system 662 and the process terminates 664. If the device is not within range of a cordless landline network, then the device determines if it is within the service range of a cellular phone system 656. If the device is within range, the user's request is serviced using the cellular phone system 660 and the process terminates 664. If the device is not within range of a cellular system, then the device issues an alert to the user to indicate that no service is available 658 and the process terminates 664.
  • Although FIG. 6A and the above discussion focus on a dual mode cellular/cordless landline telephone, it should be understood that the a device in accordance with the present invention may include the ability to access additional communication systems. For example, it may be desirable to have a device substantially as shown in FIG. 6A, but having the ability to access a personal communication service (PCS) network in addition to the cellular and cordless landline systems. This would allow the user to achieve further cost savings while seamlessly moving throughout a given geographic area.
  • Referring next to FIG. 7, a block schematic diagram of a personal computer 702 incorporating an omni-modal circuit 1 is shown. As can be seen in FIG. 7, computer 702 includes antennae 2 and an interface port 704 that allows for a integrated circuit card to be inserted into the computer. As shown in FIG. 7, the interface port 704 has installed therein a removable card 701 comprising an omni-modal circuit 1. The omni-modal radio communications card 701 includes connector 706, which may include data input 114, data output 116 and universal digital interface 158 shown in FIG. 1B. This connector allows the omni-modal radio interface card 701 to communicate with the computer through a corresponding mating connector 708 inside the personal communicator. This allows the microprocessor 110 on the omni-modal radio communications card 701 to communicate with the memory and microprocessor contained in the computer 702. In a preferred embodiment, the omni-modal radio communications card 701 is in the form of a PCMCIA card adapted to interface into a standard slot in a portable or other computing device. FIG. 7 also shows an optional telephone handset 710 which may be interfaced to the radio communication interface card 701. Optional handset 710 includes speaker 100 and microphone 102, and serves to allow for voice communication over radio network service providers that provide such capability.
  • The omni-modal radio communication card 701 also has an external RJ-11 data jack 712. The external RJ-11 data jack 712 allows omni-modal communications card 701 to transmit data over a telephone landline circuit using a common RJ-11 interface cable. Omni-modal communications card 701 includes a modem 124 in FIG. 1B for modulating digital data onto a voice grade channel suitable for transmission over a landline telephone connection.
  • Therefore, the radio communications card 701 serves as a modem to the personal computer and a separate modem card or external modem is not necessary in order to transmit data over a landline jack. The microprocessor 110 in the omni-modal circuit card 701 allows the circuitry to select either landline transmission via external RJ-11 jack 712 or cellular radio transmission through antennae 2. This may be accomplished for example through an analog switch circuit as disclosed in U.S. Pat. No. 4,972,457, the disclosure of which is incorporated herein by reference.
  • FIG. 8 is a block schematic diagram of a special purpose radio data transmitting device 801 that is implemented using the omni-modal circuit. It is often desirable to be able to construct a device that will be capable of operating to send data wirelessly. For example, it may be desirable to include such a device in a vending machine or gasoline pump. Device 801 may then relay data at a predetermined time concerning the amount of consumables (e.g. food, beverages, gasoline, etc.) still remaining in stock. In this manner, it is not necessary to have a person physically inspect the device and evaluate the remaining stock, which would be considerably more expensive.
  • The omni-modal circuit 1 of the present invention can be used to implement a system as described above. Referring to FIG. 8, the omni-modal circuit 1 is connected to a data source 802 through data lines 806 comprising data input line 114 and data output line 116. Additionally, microprocessor 110 (FIG. 1B) is connected to the data source through universal digital interface 158 and control line 804. The resulting omni-modal device 801 can be programmed to access a selected communications service at a periodic interval and to transmit data from the data source at that time. This function can be included in the library of functions available on circuit 1. After accessing the communications service, microprocessor 110 may instruct data source 802 using control line 804 to transmit data over data lines 806. Of course, the omni-modal device 801 will have the circuits necessary to use a plurality of different transmission networks. However, because of mass production and the availability of predetermined designs it may be desirable to use the standard building block circuit 1 to implement limited-purpose devices which will be used with only one or two systems, even though these limited purpose devices will use only a portion of the built-in capabilities of circuit 1.
  • In addition to functions directly related to radio communications and modulation, the library may desirably include other functions which enable desirable computing features. For example, data displaying, electronic mail storage, retrieval, and composition, and other computing functions may be included in the library. In addition, if a high powered processor is provided, the library may be expanded to include substantial operating system functions so that circuit 1 can be used to construct full-fledged personal computers and personal communicators capable of running third party applications programs.
  • As described above, circuit 1 will be capable of utilizing any one of the wireless data services within a given geographic area. The selection of the service to be used can be made manually by the user, or can be selected automatically. Referring to FIG. 9, circuit 1 may have a preprogrammed routine for selecting information carriers based on varying criteria. As shown in FIG. 9, the criteria for selecting a carrier may be varied by the user. Possible criteria include the cost of sending a data message; quality of transmission link (signal strength, interference actual or potential); available bandwidth on a carrier for data transmission (or transmission speed supported); potential for being bumped off the system or having transmissions delayed (that is, is the service provider at nearly full capacity); security of transmission; or other special criteria which the user or the device may establish based on the user's individual priorities. As another example, the length of a data message to be transmitted may be considered as a factor in selecting the carrier. If the length of the proposed message is made known to circuit 1, this information can be used in conjunction with pricing information to determine the lowest cost route. For example, for very short messages a paging service or cellular digital packet data (CDPD) service might be selected. For longer messages, such as fax or data file transmission, a circuit switched connection with high speed data transfer capacity (such as AMPS cellular) may be more cost-effective.
  • Information about the costs and services offered by carriers in the area will be made available to the omni-modal circuit 1 for use in this competitive selection process, either through pre-programming by the user or selling organization or by transmission of the information in a manner described elsewhere herein.
  • The carrier may be selected by any one of the characteristics of the available competing carriers. For example, a given user may be price sensitive, and wish to always employ the lowest cost transmission method. Another user may have time-critical communications needs (e.g. securities trading or news reporting) and may prefer the most reliable or the highest speed transfer regardless of price.
  • In determining the cost of a particular transmission, circuit 1 preferably first determines the type and quantity of data to be transmitted. For example, if the user has selected a function of transmitting a file or an electronic mail message, circuit 1 will determine the length of the message and file. This information is then used in determining the projected cost of transmitting the data on each system. For example, for a short E-mail message, the expected cost for an AMPS cellular system will be the cost of making a one-minute call. For a packet radio system, the expected cost will be the length of the message divided by the number of characters per packet, times the cost per packet. As long as the basis for carrier charges is provided to circuit 1, the cost factors relevant for any particular message can be calculated. Thus, circuit 1 can intelligently predict relative costs of transmitting over various networks and can operate with a low-cost preference dependent on characteristics of an individual message. Different low-cost transmission modes are appropriately selected for messages having different characteristics.
  • A more sophisticated approach than pure low-cost selection allows the user to assign weights to different competitive factors (price, signal clarity, transmission speed or other factors) depending on the individual preferences and needs of the user. Based on the assigned weights, the circuit then calculates a “score” for each available system and selects the system with the highest score. As an example, a user may instruct the circuit to select carriers based 60% on the ratio of the lowest price to the price of the particular carrier and 40% on normalized signal strength. If the cost to send the message on System I is $0.50 (signal strength 2), the cost on System II is $0.60 (signal strength 4), the cost on System III is $0.85 (signal strength 5) and the cost on System IV is $0.50 (signal strength 1) circuit 1 would calculate scores of:
  • System I: 0.60 (0.50/0.50)+0.40 (2/5)=0.76
  • System II: 0.60 (0.50/0.60)+0.40 (4/5)=0.82
  • System III: 0.60 (0.50/0.85)+0.40 (5/5)=0.75
  • System IV: 0.60 (0.50/0.50)+0.40 (1/5)=0.68
  • so System II would be selected. With the same systems available, if the user preferred a selection based 80% on cost and only 20% on signal quality, the scores would be
  • System I: 0.80 (0.50/0.50)+0.20 (2/5)=0.88
  • System II: 0.80 (0.50/0.60)+0.20 (4/5)=0.83
  • System III: 0.80 (0.50/0.85)+0.20 (5/5)=0.67
  • System IV: 0.80 (0.50/0.50)+0.20 (1/5)=0.84
  • and System I would be selected. Of course, the application of this weighted selection criteria is not limited to, and is not necessarily based on, price and signal strength. Any number of criteria, including these or others, can be considered in a formula to meet the individual user's needs. The criteria for a particular user are stored in a user profile in the memory of circuit 1. Preferably, a default user profile corresponding to the preferences of a large number of users is established. Then, the individual user can change his or her user profile to establish different selection parameters and preferences at any time through appropriate input to circuit 1.
  • Particularly desirable selection algorithms may also take multiple factors into account by employing branching algorithms to select the carrier. For example, one multistage selection process based on multiple criteria would operate as follows. Initially, systems which are incapable of performing the desired function would be eliminated from consideration. For example, if the user wants to place a voice call, data-only systems would not be considered. As another example, if the user wants to send a fax to a customer and a given network has no capability of transmitting fax information to a specified telephone number, that system would not be considered for the proposed task. Next, among the systems available, circuit 1 may predict the lowest cost route based on a formula accounting for the message length and the costs of the available systems, including consideration of any long-distance surcharges implied by the destination of the information transfer. Finally, users may also prefer that circuit 1 automatically avoid selecting carriers which are suffering performance degradations because of capacity limits, or which have a particularly weak signal at the location of the user. In this way, if the carrier which would otherwise be preferred will not be able to provide a fast, accurate information transfer at the time from the user's location, the carrier that is the “next best” according to the primary programmed selection criteria (cost in this example) may be automatically selected. A tradeoff between signal quality and cost may also be arbitrated by the weighting method described above.
  • Preferably, any one or combination of the above selection criteria is available in the circuit 1 and the selection criteria can be selected, programmed, changed or overridden by the user. Adaptive service provider selection may be implemented based on user experience. That is, the information transmission track record of circuit 1 with a particular service provider (e.g. error rate, dropped connections, transmission time) can be stored and updated, and this information can be used as a weighted factor in selecting service providers. In this way, service providers providing poor services can be avoided in cases where more desirable alternatives are available.
  • The market and consumer implications of the present invention are substantial, in that the circuits and methods of the present invention tend to introduce intense competition for customers among various wireless carriers. The present invention automatically identifies service providers that best meet the user's performance requirements. In this way, service providers that meet the varying demands of the most user will have a large market share and maintain full usage of their available frequency spectrum. The invention therefore allows the users to drive the market by creating price and service competition among carriers.
  • In addition, the omni-modal capability of the present invention facilitates a free market for the use of frequency spectrum. Circuit 1 can be activated to select a specified channel frequency, but may be activated to use command, control, and data protocols on that channel that are normally appropriate for different channels, if the carrier controlling the frequency has authorized another carrier to temporarily use the first carrier's channel. As an example, a local AMPS cellular telephone carrier may have open channels, which may be temporarily “rented” to a Specialized Mobile Radio (SMR) carrier which is experiencing heavy traffic on its assigned channels. The SMR carrier may then direct persons requesting SMR service to operate on the “rented” channel but using SMR protocols rather than the AMPS protocols which would normally be appropriate to that channel. This method of operation maximizes the efficient use of available frequencies by allowing carriers to shrink and expand the number of channels available based on current demand. During rush hours, when AMPS traffic is high, additional channels might be reallocated to AMPS by market forces; that is, the AMPS carrier will rent additional channels from under-utilized carriers to provide the services desired by the public at that time. At other times, demand for other systems may increase, and AMPS or other carriers may rent their under-utilized bandwidth to carriers having a substantial demand. This might occur, for example, if a network providing status reporting services from remotely located equipment (vending machines, gas pumps, etc.) is designed to transmit a large volume of data during late night or early morning hours. If the remotely located equipment is provided with an omni-tunable device, the status report network can rent channels from other carriers and use multiple channels to service its customers. In this way, economic incentives are established to ensure that airwave channels are assigned to their most productive use at all times, and the anti-competitive effects of carrier monopolies established by FCC channel assignments are reduced.
  • Referring to FIG. 9, one method for evaluating system selection is shown. The process begins 902 with the determination by the omni-modal circuit 1 of whether a data of voice service is desired 904. If a data service is desired, the circuit 1 obtains price information 908 for the available data service providers. If a voice service is desired, the circuit 1 obtains voice pricing information 906. Once this pricing information is obtained, the circuit 1 evaluates the information to make a service provider selection based on the criteria supplied from the user. Once this selection is made, circuit 1 is configured for accessing the selected service provider 912 and establishes a connection with that provider 914. Once the user has completed his use of the selected service provider, the process ends 916.
  • FIG. 10 is a flowchart showing steps useful in a method according to the present invention for “advertising” available carrier services in a geographic area. In this method, wireless service providers broadcast electronically, as part of any “handshaking” procedure with an omni-modal product, information such as rate information, information specifying system operating characteristics such as system utilization, the likelihood of being dropped, and other factors noted above which may be desirably considered in carrier selection. This information may be broadcast in each geographical region by a jointly operated or government-operated transmitter operating at a predetermined frequency. Circuit 1 may then be operated to scan the predetermined “service advertising” channel and obtain necessary information for use in selecting carriers. On a government-operated channel, government-collected statistics on the operation of the various carriers in the area may be transmitted as a consumer service to further encourage service competition and assist users in selecting the most appropriate carrier.
  • Alternatively, individual carriers may broadcast pricing information on individual command channels. Pricing can be changed on a dynamic basis to maintain a desired system load level. In fact, in one preferred embodiment, an automated price negotiation can be performed in which the circuit 1 transmits an indication of the type and amount of information which is to be transmitted, and the carrier responds by quoting a price for the transmission. Such quotes can be obtained from multiple carriers and the lowest cost transmission mode can be selected, or the quoted prices can be factored into an equation that considers other factors in addition to price, as disclosed previously. As part of this scheme, radio carriers may implement a dynamic demand curve evaluation program in which system load and profitability are constantly monitored. The evaluation program may also monitor the percentage of requested quotes which are not accepted. In this way, the radio carrier's system can dynamically adjust prices to maximize revenue to the carrier at all times, based on a real-time model of the current demand curve for airtime service in the area.
  • One method in which system information could be distributed to users is shown in FIG. 10. The process starts 1002 by contacting a selected service provider 1004. The service provider provides information to a central location as discussed above. Once the information for the first selected service provider is complete, the process determines if other service providers exist 1008. If other providers exist, the process 1004 and 1006 is repeated for each additional service provider. When service information is compiled for all service providers, the process compiles and formats the information into a standard reporting form the is understandable to all mobile units 1010. The process then determines the proper modulating frequency and protocol for the desired geographic area 1012 and broadcasts this information to all mobile users on the selected frequency and using the selected protocol 1014. Once the information has been broadcast to the users, the process ends 1016.
  • Referring next to FIG. 11, a flowchart showing a handshake sequence for arranging information transmission using the omni-modal circuit 1 of the present invention is shown. The process begins 1102 with the omni-modal circuit 1 accessing a service provider 1104 and receiving carrier cost information from the service provider 1106. The omni-modal circuit 1 may also receive additional information from the service provider such as signal quality, system resources, and available bandwidth. The circuit 1 then stores the information received from the service provider 1108. The circuit determines if other service providers exist 1110 and, if they do, repeats the above steps to acquire cost and availability information for each service within the omni-modal circuit's range.
  • Once information has been acquired for all available service providers, the information is evaluated 1112. This evaluation could consist of a simple determination based on a single factor, or could include more complex calculations relating to weighting of given factors and qualities. The results of the evaluation are used to select a service provider to process the users pending request for services. A connection is established 1114 on the selected service provider, and the user's request is processed, after which the process ends 1116.
  • FIG. 12 is a view of a cellular radiotelephone 1200 which is generally of the type and configuration described above with reference to FIG. 2. However, radiotelephone 1200 is constructed using a modular omni-modal circuit 1 constructed on a removable card 1204 which is provided With a standardized connector or connector (for example, a PCMCIA connector) 1205 to establish all necessary interface connections to a plurality of receiving devices in the manner described above with reference to FIG. 7.
  • As can be seen in FIG. 12, a telephone shell 1202 containing a battery power supply, microphone, speaker, keypad, and antenna 2 has a receiving slot 1206 for receiving card 1204 carrying circuit 1. When card 1204 is installed in telephone shell 1202, connector 1205 mates with connector 1208 within slot 1206 and the external components of the shell 1202 are operatively combined with card 1204 to create a functional multi-modal cellular telephone.
  • FIG. 13 illustrates the installation of the same card 1204 in a notebook sized computer 1302, whereby the computer 1302 is provided with complete omni-modal network access. By using the same card 1204 containing standardized circuit 1 to provide radio network access for various devices, the user can avoid maintaining multiple accounts or telephone numbers, yet can communicate by radio using many devices. For example, a receiving slot for card 1204 could be provided in the user's automobile, and insertion of card 1204 upon entering the car would activate cellular communications capability in the car. The same card 1204 can be readily transferred between the car, a portable handset shell as shown in FIG. 12, and a computer as shown in FIG. 13 for data transmission.
  • The omni-modal circuit of the present invention can perform both page receiving and other functions, such as placing cellular telephone calls. However, since only a single transmitting and receiving circuit is provided, when the device is in use on a non-paging communications network such as an AMPS cellular telephone system, any pages directed to the device may not be received. The present invention provides a solution to this potential problem in which the paging system control is interconnected with other network(s) such as the local AMPS cellular system. It should be understood that while connection of the pager system to the AMPS system is shown as an example, such connections may be provided between any systems used by the omni-modal circuit 1 to achieve similar objectives.
  • FIG. 14 is a block schematic diagram of a paging relay system according to the present invention for use with omni-modal circuits 1 that support pager functions and also a non-pager network function such as cellular telephone operation. FIG. 14 shows a paging system 1400 which is connected in a conventional manner by lines 1406 to a broadcast antenna 1408 which transmits pager signals to pager devices such as the omni-modal circuit 1 shown in the Figure. In addition, FIG. 14 shows a cellular telephone network office 1402 which is connected to control the operation of the cellular telephone cell site transmitter 1412 by lines 1410.
  • Significantly, the paging system 1400 is connected to the cellular telephone network office 1402 by lines 1404 which permit transfer of operational and control information between the paging system 1400 and cellular telephone network office 1402. Because of the connection of lines 1404, the paging system can determine whether the omni-modal device 1 is engaged in a cellular call and will thus be unable to receive a page.
  • FIG. 15 is a flowchart showing a preferred operation of the pager and other (for example AMPS) systems interconnected as described with reference to FIG. 14. In block 1502, the pager system first determines by reference to stored records whether the pager device which is to be contacted is an omni-modal circuit 1 which may be engaged in data transmission with another system at the time of any given page. If not, the page can be sent by the usual broadcast method in block 1504. If an omni-modal circuit 1 is involved in the paging operation, the pager system then contacts any connected networks which might be in use by omni-modal device 1 and inquires whether the device is in fact using such networks in block 1506. If not, the omni-modal device is presumed to be available for receiving a page and control transfers to block 1504 for transmission of the page by conventional methods. If circuit 1 is in use, the pager system determines whether delivery by the alternate network may be accomplished in block 1508. This may be determined by appropriate factors, including whether the network (e.g. AMPS) is capable of and willing to deliver the page information to circuit 1, and whether the user of circuit 1 has subscribed to this service.
  • If delivery by the alternate network is not available, control transfers to block 1510 which imposes a time delay. The page information is stored, and after some appropriate period of time, control transfers to block 1506 and the pager system again attempts to determine whether the page can be transmitted by conventional means.
  • If the alternative network is able to deliver the page and this service is to be provided, control transfers from block 1508 to block 1512 and the page is transmitted over the alternative system. In the case of the AMPS system, the page information may be transmitted as a momentary interruption in an ongoing conversation, as information provided on a command channel, as subaudible information (e.g. in a band from 0 to 300 Hz), or by another appropriate method.

Claims (11)

1-23. (canceled)
24. An advanced cellular telephone for facilitating voice and data communication over a plurality of wireless communication networks, at least two of which are digital cellular networks using different protocols for communication, comprising
a housing small enough to form a portable handset;
an antenna supported by the housing for transmitting and receiving electromagnetic energy;
a first display, supported by the housing, for displaying information that is visually perceptible to a user including information related to use of the device to establish wireless communication links;
a second display, relatively expanded in size with respect to the first display screen and supported by the housing, for displaying information, that is visually perceptible to a user and that includes information procured, in response to a user request, from a remote computer with which the cellular telephone is linked wirelessly via one of the wireless communication networks;
memory contained within the housing for storing an operating program and data including network information, telephone numbers and text messages;
a touch-sensitive device for receiving user supplied commands and data including said user requests for information;
an omni-modal communication circuit for accessing the wireless communication networks using a communications protocol appropriate to the wireless communication network accessed to establish a communication link for voice or data communication over the accessed network, the omni-modal communication circuit including
a transceiver, electrically connected to the antenna, for sending and receiving radio frequency voice signals and data signals,
digital modulator circuitry for modulating digital voice signals and digital data signals onto a carrier for transmitting by the transceiver in accordance with a communications protocol compatible with the communication network being accessed,
digital demodulator circuitry for demodulating digital voice signals and digital data signals from radio frequency signals received by the transmitter in accordance with the communications protocol compatible with the communication network being accessed, and
a processor for setting up appropriate cross connections between the first and second displays, memory, touch-sensitive device, digital modulator circuitry and digital demodulator circuitry and transceiver to cause the transceiver to access the plurality of wireless communication networks, one or more at a time, for sending and receiving both voice signals and data signals over the accessed network and to receive user commands, to provide information to the first and second displays, to carry out arithmetic calculations, to request information from remote computers and to retrieve data from memory;
wherein the functions of information retrieval from remote computers, data processing and placing or receiving telephone calls may be carried out by selective access, under the control of the processor, to the plurality of wireless communication networks through operation of the omni-modal communication circuit.
25. An advanced cellular telephone as defined in claim 24, wherein said touch sensitive device further includes an incrementing button and a decrementing button to cause the information displayed on said second display to scroll up and scroll down when actuated, respectively, by the user.
26. An advanced cellular telephone as defined in claim 24, wherein said processor includes a microprocessor, operating under the operating program, to selectively set up the cross connections and a data processing circuit for formatting data as required for devices sending data to and receiving data from the omni-modal communication circuit.
27. An advanced cellular telephone as defined in claim 24, wherein said transceiver includes a local oscillator,
a receive mixer connected to the local oscillator, an amplifier,
a transmit mixer connected to the local oscillator and to the amplifier, and
a diplexer connected to the amplifier, to the receive mixer and to the antenna.
28. An advanced cellular telephone for facilitating voice and data communication over a plurality of wireless communication networks, at least one of which is a digital cellular network using a protocol appropriate for communication on a cellular network and at least one other non-cellular wireless communication network operating on a different protocol, comprising
a housing small enough to form a portable handset;
an antenna supported by the housing for transmitting and receiving electromagnetic energy;
a display, supported by the housing, for displaying information that is visually perceptible to a user;
a touch-sensitive device for receiving user supplied commands and data including said user requests for information;
an omni-modal communication circuit for accessing the wireless communication networks using a communications protocol appropriate to the wireless communication network accessed to establish a communication link for either or both of voice and data communication over the accessed network,
the omni-modal communication circuit including a transceiver, electrically connected to the antenna, for sending and receiving radio frequency voice signals and data signals,
a processor for setting up appropriate cross connections between the display, touch-sensitive device, and transceiver to cause the transceiver to access the plurality of wireless communication networks, one or more at a time, for sending and receiving signals over the accessed network, and
a memory, connected with the processor, for storing an operating program including instructions which cause the processor to set up automatically connections to access the non-cellular wireless communication network whenever the advanced cellular telephone is called upon to provide a particular type of communication service and for reverting to the cellular network for access only when the non-cellular wireless communication network is unavailable; and
wherein the functions of information retrieval from remote computers, data processing and placing or receiving telephone calls may be carried out, under the control of the processor, by selective access to the plurality of wireless communication networks through operation of the omni-modal communication circuit with preference given to the non-cellular wireless network over the cellular network whenever one particular type of communication service is desired.
29. An advanced cellular telephone as defined in claim 28, wherein the alternative wireless communication network is a wireless paging network and the type of communication service, that causes the processor to automatically prefer the wireless paging network unless it is unavailable, is a paging service.
30. An advanced cellular telephone as defined in claim 28, wherein said processor includes a microprocessor, operating under the operating program, to selectively set up the cross connections and a data processing circuit for formatting data as required for devices sending data to and receiving data from the omni-modal communication circuit.
31. An advanced cellular telephone as defined in claim 28, wherein said transceiver includes a local oscillator,
a receive mixer connected to the local oscillator, an amplifier,
a transmit mixer connected to the local oscillator and to the amplifier, and
a diplexer connected to the amplifier, to the receive mixer and to the antenna.
32. An advanced cellular telephone as defined in claim 28, wherein said touch sensitive device further includes an incrementing button and a decrementing button to cause the information displayed on said second display to scroll up and scroll down when actuated, respectively, by the user.
33. An advanced cellular telephone as defined in claim 28, wherein said processor includes a microprocessor, operating under the operating program, to selectively set up the cross connections and a data processing circuit for formatting data as required for devices sending data to and receiving data from the omni-modal communication circuit.
US12/106,738 1993-12-15 2008-04-21 Adaptive Omni-Modal Radio Apparatus and Methods Abandoned US20080274767A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/106,738 US20080274767A1 (en) 1993-12-15 2008-04-21 Adaptive Omni-Modal Radio Apparatus and Methods

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US16700393A 1993-12-15 1993-12-15
US08/707,262 US5854985A (en) 1993-12-15 1996-09-04 Adaptive omni-modal radio apparatus and methods
US09/149,292 US6134453A (en) 1993-12-15 1998-09-09 Adaptive omni-modal radio apparatus and methods
US09/670,696 US6934558B1 (en) 1993-12-15 2000-09-28 Adaptive omni-modal radio apparatus and methods
US11/047,665 US7386322B2 (en) 1993-12-15 2005-02-02 Adaptive omni-modal radio apparatus and methods
US12/106,738 US20080274767A1 (en) 1993-12-15 2008-04-21 Adaptive Omni-Modal Radio Apparatus and Methods

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/047,665 Division US7386322B2 (en) 1993-12-15 2005-02-02 Adaptive omni-modal radio apparatus and methods

Publications (1)

Publication Number Publication Date
US20080274767A1 true US20080274767A1 (en) 2008-11-06

Family

ID=34841652

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/670,696 Expired - Fee Related US6934558B1 (en) 1993-12-15 2000-09-28 Adaptive omni-modal radio apparatus and methods
US11/047,665 Expired - Fee Related US7386322B2 (en) 1993-12-15 2005-02-02 Adaptive omni-modal radio apparatus and methods
US12/106,738 Abandoned US20080274767A1 (en) 1993-12-15 2008-04-21 Adaptive Omni-Modal Radio Apparatus and Methods

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/670,696 Expired - Fee Related US6934558B1 (en) 1993-12-15 2000-09-28 Adaptive omni-modal radio apparatus and methods
US11/047,665 Expired - Fee Related US7386322B2 (en) 1993-12-15 2005-02-02 Adaptive omni-modal radio apparatus and methods

Country Status (1)

Country Link
US (3) US6934558B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040165573A1 (en) * 1995-10-05 2004-08-26 Kubler Joseph J. Hierarchical data collection network supporting packetized voice communications among wireless terminals and telephones
US20050083890A1 (en) * 2000-02-03 2005-04-21 Eli Plotnik Communication system utilizing host signal processing
US7657284B1 (en) * 2005-03-07 2010-02-02 At&T Intellectual Property I, L.P. Systems and methods for providing wireless communications for data and voice communications
US20100036855A1 (en) * 2008-08-07 2010-02-11 Brother Kogyo Kabushiki Kaisha Communication Device
US20100131855A1 (en) * 2008-11-27 2010-05-27 Brother Kogyo Kabushiki Kaisha Content Display System
US20120122514A1 (en) * 2008-10-23 2012-05-17 Qualcomm Incorporated Selecting network service providers for multi-mode mobile devices
US8380244B2 (en) * 1999-09-21 2013-02-19 Ipr Licensing, Inc. Dual mode unit for short range, high rate and long range, lower rate data communications

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6654378B1 (en) * 1992-03-18 2003-11-25 Broadcom Corp. Transaction control system including portable data terminal and mobile customer service station
US5761621A (en) 1993-12-15 1998-06-02 Spectrum Information Technologies, Inc. Apparatus and methods for networking omni-modal radio devices
US6934558B1 (en) * 1993-12-15 2005-08-23 Mlr, Llc Adaptive omni-modal radio apparatus and methods
US6418324B1 (en) * 1995-06-01 2002-07-09 Padcom, Incorporated Apparatus and method for transparent wireless communication between a remote device and host system
JP2001025053A (en) * 1999-07-09 2001-01-26 Mitsubishi Electric Corp Memory system for portable telephone
FI120478B (en) * 2000-02-24 2009-10-30 Nokia Corp Method and apparatus for connecting to a telecommunications network
US6961584B2 (en) 2000-03-22 2005-11-01 Mlr, Llc Tiered wireless, multi-modal access system and method
US8041817B2 (en) 2000-06-30 2011-10-18 At&T Intellectual Property I, Lp Anonymous location service for wireless networks
US6505123B1 (en) 2000-07-24 2003-01-07 Weatherbank, Inc. Interactive weather advisory system
US7979057B2 (en) * 2000-10-06 2011-07-12 S.F. Ip Properties 62 Llc Third-party provider method and system
US6961550B2 (en) * 2000-12-12 2005-11-01 International Business Machines Corporation Radio receiver that changes function according to the output of an internal voice-only detector
US7116977B1 (en) 2000-12-19 2006-10-03 Bellsouth Intellectual Property Corporation System and method for using location information to execute an action
US7224978B2 (en) 2000-12-19 2007-05-29 Bellsouth Intellectual Property Corporation Location blocking service from a wireless service provider
US7245925B2 (en) 2000-12-19 2007-07-17 At&T Intellectual Property, Inc. System and method for using location information to execute an action
US7085555B2 (en) 2000-12-19 2006-08-01 Bellsouth Intellectual Property Corporation Location blocking service from a web advertiser
US7428411B2 (en) 2000-12-19 2008-09-23 At&T Delaware Intellectual Property, Inc. Location-based security rules
US7181225B1 (en) 2000-12-19 2007-02-20 Bellsouth Intellectual Property Corporation System and method for surveying wireless device users by location
US7110749B2 (en) 2000-12-19 2006-09-19 Bellsouth Intellectual Property Corporation Identity blocking service from a wireless service provider
US7130630B1 (en) 2000-12-19 2006-10-31 Bellsouth Intellectual Property Corporation Location query service for wireless networks
US8849276B2 (en) 2000-12-29 2014-09-30 At&T Mobility Ii Llc Intelligent network selection based on quality of service and applications over different wireless networks
US20020126707A1 (en) * 2001-03-08 2002-09-12 Marcus Tong System and method for rate adaptation in a wireless communication system
US7181237B2 (en) * 2001-03-15 2007-02-20 Siemens Communications, Inc. Control of a multi-mode, multi-band mobile telephone via a single hardware and software man machine interface
US7103129B2 (en) * 2001-03-15 2006-09-05 Siemens Communications, Inc. System and method for rate adaptation in a wireless communication system
US7292557B2 (en) * 2001-03-15 2007-11-06 Siemens Communications, Inc. Master-slave processor for dual mode mobile telephone
US6950988B1 (en) 2001-06-11 2005-09-27 Handspring, Inc. Multi-context iterative directory filter
US7395089B1 (en) 2001-06-11 2008-07-01 Palm, Inc Integrated personal digital assistant device
US7356361B1 (en) * 2001-06-11 2008-04-08 Palm, Inc. Hand-held device
US6975304B1 (en) 2001-06-11 2005-12-13 Handspring, Inc. Interface for processing of an alternate symbol in a computer device
US6987986B2 (en) * 2001-06-21 2006-01-17 Boesen Peter V Cellular telephone, personal digital assistant with dual lines for simultaneous uses
US8160586B2 (en) * 2001-07-24 2012-04-17 Perdiso Co. Limited Liability Company Mobile link selection method for establishing highly efficient communications between mobile devices
US20030153338A1 (en) 2001-07-24 2003-08-14 Herz Frederick S. M. Autoband
US7665043B2 (en) 2001-12-28 2010-02-16 Palm, Inc. Menu navigation and operation feature for a handheld computer
US7068610B2 (en) 2002-02-26 2006-06-27 Unruh Lincoln J System and method for reliable communications over multiple packet RF networks
GB0213844D0 (en) * 2002-06-15 2002-07-24 Hewlett Packard Co Wireless communication cost prediction for mobile device
FR2842984B1 (en) * 2002-07-25 2004-09-17 Nec Technologies Uk Ltd METHOD AND DEVICE FOR SELECTING TELECOMMUNICATION NETWORKS
US20050014468A1 (en) * 2003-07-18 2005-01-20 Juha Salokannel Scalable bluetooth multi-mode radio module
US20050136897A1 (en) * 2003-12-19 2005-06-23 Praveenkumar Sanigepalli V. Adaptive input/ouput selection of a multimodal system
US7224262B2 (en) * 2004-09-21 2007-05-29 Bayerische Motoren Werke Aktiengesellschaft Wireless vehicle control system and method
US20080268802A1 (en) * 2005-08-04 2008-10-30 International Business Machines Corporation Radio receiver that changes function according to the output of an internal voice-only detector
EP1761089A1 (en) * 2005-09-05 2007-03-07 LG Electronics Inc. Network selection for a multimode terminal
US7590432B2 (en) * 2005-10-06 2009-09-15 Broadcom Corporation Mobile communication device with low power receiver for signal detection
US8532718B2 (en) 2005-10-06 2013-09-10 Broadcom Corporation Mobile communication device with low power signal detector
US8355757B2 (en) * 2005-10-06 2013-01-15 Broadcom Corporation System and method providing low power operation in a multimode communication device
FR2896362B1 (en) * 2006-01-16 2008-04-18 Wavecom Sa RADIO COMMUNICATION MODULE WITH TRANSMISSION MEANS CONTROLLED BY INTERFERENCE DETECTION MEANS, DEVICE AND USE THEREOF
US8229467B2 (en) 2006-01-19 2012-07-24 Locator IP, L.P. Interactive advisory system
US8341397B2 (en) 2006-06-26 2012-12-25 Mlr, Llc Security system for handheld wireless devices using-time variable encryption keys
US20080167033A1 (en) * 2007-01-04 2008-07-10 Telefonaktiebolaget Lm Ericsson (Publ) Method and Apparatus for Cost-Based Network Selection
US7840685B2 (en) * 2007-01-07 2010-11-23 Apple Inc. Handheld computer having dynamic network transport selection according to a media type of a request
US8130734B2 (en) * 2007-01-19 2012-03-06 International Business Machines Corporation Methods, systems and computer program products for managing third party access to a wireless network by a network owner
US8634814B2 (en) * 2007-02-23 2014-01-21 Locator IP, L.P. Interactive advisory system for prioritizing content
US20080207140A1 (en) * 2007-02-26 2008-08-28 Broadcom Corporation, A California Corporation Integrated circuit with contemporaneous transmission and reception of realtime and non-realtime data and methods for use therewith
US8437809B2 (en) * 2007-03-28 2013-05-07 Kyocera Corporation Mobile communication terminal and control method thereof
CN201042060Y (en) * 2007-04-10 2008-03-26 华为技术有限公司 Wireless fixing terminal
US8312310B2 (en) * 2007-05-01 2012-11-13 Canon Kabushiki Kaisha Apparatus and method for changing clock frequency and modulation method based on current state
WO2008142529A2 (en) * 2007-05-22 2008-11-27 Telefonaktiebolaget Lm Ericsson (Publ) Method and system for inter-system interference based radio control
US20080311896A1 (en) * 2007-06-12 2008-12-18 Jeyhan Karaoguz Method and system for a mobile multi-service interface device
US8565816B2 (en) * 2007-06-20 2013-10-22 Kyocera Corporation Mobile communication terminal and control method thereof
EP2328377B1 (en) 2007-10-31 2016-10-05 BlackBerry Limited System and method for selecting a message transport for a multi-mode communication device
US8433278B2 (en) * 2007-10-31 2013-04-30 Research In Motion Limited System and method for selecting a message transport for a multi-mode communication device
US8259075B2 (en) 2009-01-06 2012-09-04 Hewlett-Packard Development Company, L.P. Secondary key group layout for keyboard
US8121633B2 (en) 2009-07-24 2012-02-21 Research In Motion Limited Operator configurable preferred network and radio access technology selection for roaming multi-rat capable devices
US9542203B2 (en) 2010-12-06 2017-01-10 Microsoft Technology Licensing, Llc Universal dock for context sensitive computing device
US8923770B2 (en) 2010-12-09 2014-12-30 Microsoft Corporation Cognitive use of multiple regulatory domains
US8792429B2 (en) 2010-12-14 2014-07-29 Microsoft Corporation Direct connection with side channel control
US9294545B2 (en) 2010-12-16 2016-03-22 Microsoft Technology Licensing, Llc Fast join of peer to peer group with power saving mode
US8948382B2 (en) 2010-12-16 2015-02-03 Microsoft Corporation Secure protocol for peer-to-peer network
US8971841B2 (en) 2010-12-17 2015-03-03 Microsoft Corporation Operating system supporting cost aware applications
US20120158947A1 (en) * 2010-12-17 2012-06-21 Microsoft Corporation Operating system supporting cost aware applications
CN102932296A (en) * 2012-09-19 2013-02-13 中国人民解放军济南军区72465部队 Multi-mode modulation microwave signal generation method
WO2014156956A1 (en) * 2013-03-28 2014-10-02 京セラ株式会社 Radio communication device and signal processing method
JP5753622B1 (en) * 2014-10-20 2015-07-22 株式会社日本ビデオシステム Optical transmission system
US10937443B2 (en) * 2018-09-04 2021-03-02 Babblelabs Llc Data driven radio enhancement

Citations (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US414496A (en) * 1889-11-05 Frank p
US4268722A (en) * 1978-02-13 1981-05-19 Motorola, Inc. Radiotelephone communications system
US4302845A (en) * 1980-02-07 1981-11-24 Motorola, Inc. Phase-encoded data signal demodulator
US4312074A (en) * 1980-02-07 1982-01-19 Motorola, Inc. Method and apparatus for detecting a data signal including repeated data words
US4369520A (en) * 1979-03-22 1983-01-18 Motorola, Inc. Instantaneously acquiring sector antenna combining system
US4371751A (en) * 1980-04-07 1983-02-01 Newart Electronic Sciences, Inc. Automatic telephonic user emergency message transmitting apparatus
US4485486A (en) * 1982-08-03 1984-11-27 Motorola, Inc. Method and apparatus for assigning duplex radio channels and scanning duplex radio channels assigned to mobile and portable radio telephones in a cellular radiotelephone communications system
US4578796A (en) * 1983-11-03 1986-03-25 Bell Telephone Laboratories, Incorporated Programmable multiple type data set
US4654879A (en) * 1985-03-29 1987-03-31 Itt Corporation Cellular mobile radio subscriber location detection
US4741018A (en) * 1987-04-24 1988-04-26 Motorola, Inc. Speakerphone using digitally compressed audio to control voice path gain
US4741049A (en) * 1985-12-09 1988-04-26 U.S. Philips Corp. Automatic channel selecting system using shared duplex channels
US4799253A (en) * 1987-07-20 1989-01-17 Motorola, Inc. Colocated cellular radiotelephone systems
US4811420A (en) * 1987-07-08 1989-03-07 International Mobile Machines Corporation Initialization of communication channel between a subsciber station and a base station in a subscriber communication system
US4833727A (en) * 1984-12-28 1989-05-23 U.S. Philips Corporation Remote-controlled receiver arrangement using a modulated carrier
US4866431A (en) * 1988-02-22 1989-09-12 Telefind Corp. Paging system hub switch
US4905301A (en) * 1988-07-28 1990-02-27 Motorola, Inc. Selective system scan for multizone radiotelephone subscriber units
US4916728A (en) * 1988-07-25 1990-04-10 Gte Mobilnet Incorporated Cellular telephone unit with prioritized frequency acquisition
US4985904A (en) * 1987-09-10 1991-01-15 Fujitsu Limited High speed switching system in a radio-communication system including a plurality of main communication systems and a plurality of stand-by communication systems
US4989230A (en) * 1988-09-23 1991-01-29 Motorola, Inc. Cellular cordless telephone
US5008925A (en) * 1989-12-20 1991-04-16 Motorola, Inc. Cellular telephone responsive to service availability for operating on different cellular telephone systems
US5020092A (en) * 1989-06-23 1991-05-28 Motorola, Inc. Dual-bandwidth cellular telephone
US5020094A (en) * 1987-12-23 1991-05-28 Rash Mark S Cordless telephone network
US5020093A (en) * 1989-06-23 1991-05-28 Motorola, Inc. Cellular telephone operable on different cellular telephone systems
US5034993A (en) * 1989-03-15 1991-07-23 Motorola, Inc. Method for allocating communication resources among RF communications systems
US5119397A (en) * 1990-04-26 1992-06-02 Telefonaktiebolaget L M Ericsson Combined analog and digital cellular telephone system having a secondary set of control channels
US5121115A (en) * 1988-02-22 1992-06-09 Telefind Corporation Method of transmitting information using programmed channels
US5122795A (en) * 1985-08-08 1992-06-16 Metrocast Scanning receiver for nationwide radio paging system
US5127042A (en) * 1988-09-23 1992-06-30 Motorola, Inc. Cellular cordless telephone
US5134709A (en) * 1990-12-14 1992-07-28 At&T Bell Laboratories Process and apparatus for flexible channel assignment in cellular radiotelephone systems
US5159625A (en) * 1990-10-24 1992-10-27 Gte Mobile Communications Service Corp. Method of selecting the cellular system with which a cellular mobile radiotelephone communicates
US5179360A (en) * 1991-03-20 1993-01-12 Sony Corporation Transmitting/receiving apparatus switchable between digital and analog modulation modes
US5201067A (en) * 1991-04-30 1993-04-06 Motorola, Inc. Personal communications device having remote control capability
US5200991A (en) * 1989-06-23 1993-04-06 Kabushiki Kaisha Toshiba Image communication system including a mobile telephone set and a facsimile device
US5239701A (en) * 1989-11-15 1993-08-24 Sanyo Electric Co., Ltd. Radio receiver with improved channel selection and reception
US5249302A (en) * 1987-10-09 1993-09-28 Motorola, Inc. Mixed-mode transceiver system
US5261117A (en) * 1984-12-28 1993-11-09 Motorola, Inc. Method to allow a radio transceiver to automatically select from amongst multiple radio systems
US5260988A (en) * 1992-02-06 1993-11-09 Motorola, Inc. Apparatus and method for alternative radiotelephone system selection
US5276907A (en) * 1991-01-07 1994-01-04 Motorola Inc. Method and apparatus for dynamic distribution of a communication channel load in a cellular radio communication system
US5293628A (en) * 1991-11-04 1994-03-08 Motorola, Inc. Data processing system which generates a waveform with improved pulse width resolution
US5297191A (en) * 1990-09-28 1994-03-22 At&T Bell Laboratories Method and apparatus for remotely programming a wireless telephone set
US5301359A (en) * 1989-04-27 1994-04-05 Motorola, Inc. Bulletin board resource for communication system access
US5309503A (en) * 1991-12-06 1994-05-03 Motorola, Inc. Dynamic channel assignment in a communication system
US5327486A (en) * 1993-03-22 1994-07-05 Bell Communications Research, Inc. Method and system for managing telecommunications such as telephone calls
US5335355A (en) * 1990-07-09 1994-08-02 Kabushiki Kaisha Toshiba Mobile radio communication system utilizing analog and digital modulation
US5343341A (en) * 1992-10-15 1994-08-30 Tandberg Data A/S Method for seeking the center of a recorded data track
US5343513A (en) * 1992-04-20 1994-08-30 Hughes Aircraft Company Channel compression and dynamic repartitioning for dual mode cellular radio
US5354448A (en) * 1992-05-22 1994-10-11 Biomedical Sensors Ltd. Electrochemical sensor
US5365571A (en) * 1993-05-24 1994-11-15 Hughes Aircraft Company Cellular system having frequency plan and cell layout with reduced co-channel interference
US5406615A (en) * 1993-08-04 1995-04-11 At&T Corp. Multi-band wireless radiotelephone operative in a plurality of air interface of differing wireless communications systems
US5442806A (en) * 1993-06-08 1995-08-15 Oki Telecom Preferred carrier selection method for selecting any available cellular carrier frequency when neither home nor preferred cellular carrier frequencies are available
US5491723A (en) * 1993-05-06 1996-02-13 Ncr Corporation Wireless communication system having antenna diversity
US5517491A (en) * 1995-05-03 1996-05-14 Motorola, Inc. Method and apparatus for controlling frequency deviation of a portable transceiver
US5524136A (en) * 1992-04-20 1996-06-04 International Business Machines Corporation Tracking mobile users in wireless networks
US5550895A (en) * 1993-12-02 1996-08-27 Lucent Technologies Inc. Bimodal portable telephone
US5640677A (en) * 1993-07-09 1997-06-17 Telefonaktiebolaget Lm Ericsson Best server selection in layered cellular radio system
US5642353A (en) * 1991-12-12 1997-06-24 Arraycomm, Incorporated Spatial division multiple access wireless communication systems
US5649308A (en) * 1993-04-12 1997-07-15 Trw Inc. Multiformat auto-handoff communications handset
US5657375A (en) * 1993-01-04 1997-08-12 Ameritech Corporation Wireless digital personal communications system having voice/data/image two-way calling and intercell hand off provided through distributed logic
US5734980A (en) * 1995-01-31 1998-03-31 Ericsson Inc. Preferred system selection techniques for mobile terminals
US5745523A (en) * 1992-10-27 1998-04-28 Ericsson Inc. Multi-mode signal processing
US5761621A (en) * 1993-12-15 1998-06-02 Spectrum Information Technologies, Inc. Apparatus and methods for networking omni-modal radio devices
US5778024A (en) * 1996-02-01 1998-07-07 Qualcomm Incorporated Dual-mode communications processor
US5793843A (en) * 1989-10-31 1998-08-11 Intelligence Technology Corporation Method and apparatus for transmission of data and voice
US5796757A (en) * 1995-09-15 1998-08-18 Nokia Mobile Phones Ltd. Methods and apparatus for performing rate determination with a variable rate viterbi decoder
US5802502A (en) * 1993-05-24 1998-09-01 British Telecommunications Public Limited Company System for selective communication connection based on transaction pricing signals
US5805633A (en) * 1995-09-06 1998-09-08 Telefonaktiebolaget L M Ericsson Method and apparatus for frequency planning in a multi-system cellular communication network
US5809395A (en) * 1991-01-15 1998-09-15 Rogers Cable Systems Limited Remote antenna driver for a radio telephony system
US5815525A (en) * 1991-05-13 1998-09-29 Omnipoint Corporation Multi-band, multi-mode spread-spectrum communication system
US5857153A (en) * 1995-10-13 1999-01-05 Telefonaktiebolaget Lm Ericsson (Publ) Cellular telecommunications network having seamless interoperability between exchanges while providing voice, asynchronous data and facsimile services in multiple frequency hyperbands
US5903832A (en) * 1995-12-21 1999-05-11 Nokia Mobile Phones Llimited Mobile terminal having enhanced system selection capability
US5940761A (en) * 1997-01-15 1999-08-17 Qaulcomm Incorporated Method and apparatus for performing mobile assisted hard handoff between communication systems
US5950130A (en) * 1997-03-18 1999-09-07 Sbc Technology Resources, Inc. Mobile station with intelligent roaming and over-the-air programming features
US5966667A (en) * 1997-07-14 1999-10-12 Motorola, Inc. Dual mode communication device and method
US5974319A (en) * 1993-06-25 1999-10-26 Motorola, Inc. Transmission and reception of signals in a communication systems
US6026086A (en) * 1997-01-08 2000-02-15 Motorola, Inc. Apparatus, system and method for a unified circuit switched and packet-based communications system architecture with network interworking functionality
US6035212A (en) * 1996-08-02 2000-03-07 Lsi Logic Corporation Multi-frequency wireless communication device
US6058316A (en) * 1991-02-06 2000-05-02 Mitsubishi Denki Kabushiki Kaisha Dual mode mobile telephone apparatus with user selected analog and digital call modes
US6115608A (en) * 1997-09-10 2000-09-05 Northern Telecom Limited Intersystem handover method and apparatus
US6128490A (en) * 1997-05-08 2000-10-03 Nortel Networks Limited Wireless communication system that supports selection of operation from multiple frequency bands and multiple protocols and method of operation therefor
US6134453A (en) * 1993-12-15 2000-10-17 Charles M. Leedom, Jr. Adaptive omni-modal radio apparatus and methods
US6138010A (en) * 1997-05-08 2000-10-24 Motorola, Inc. Multimode communication device and method for operating a multimode communication device
US6185413B1 (en) * 1997-06-17 2001-02-06 Siemens Aktiengesellschaft Mobile station having a cost-efficient call management method and system
US6192255B1 (en) * 1992-12-15 2001-02-20 Texas Instruments Incorporated Communication system and methods for enhanced information transfer
US6249686B1 (en) * 1998-12-22 2001-06-19 Philips Electronics N.A. Corp. Internal circuit for adaptive mode selection of multi-mode RF integrated circuit
US6298235B1 (en) * 1995-12-12 2001-10-02 At&T Wireless Services, Inc. Powered down selection of a preferable wireless communications service provider in a multi-service provider environment
US6418318B1 (en) * 1995-12-12 2002-07-09 At&T Wireless Services, Inc. Method for selecting a preferable wireless communications service provider in a multi-service provider environment
US6504829B1 (en) * 1999-06-28 2003-01-07 Rockwell Collins, Inc. Method and apparatus for managing communication resources using channelized neighborhoods
US6564071B1 (en) * 1992-01-13 2003-05-13 Microcom Systems, Inc. Transmission of data over a radio frequency channel
US6771961B2 (en) * 1995-12-12 2004-08-03 At&T Wireless Services, Inc. Method for selecting a wireless communications service provider in a multi-service provider environment
US6847822B1 (en) * 1991-12-26 2005-01-25 Sycord Limited Partnership Cellular telephone system that uses position of a mobile unit to make call management decisions
US6934558B1 (en) * 1993-12-15 2005-08-23 Mlr, Llc Adaptive omni-modal radio apparatus and methods
US6954470B2 (en) * 1985-03-20 2005-10-11 Interdigital Technology Corporation Subscriber RF telephone system for providing multiple speech and/or data signals simultaneously over either a single or a plurality of RF channels
USRE39989E1 (en) * 1989-10-31 2008-01-01 Morris Walker C Method and apparatus for transmission of analog and digital
US7343173B2 (en) * 2000-03-22 2008-03-11 Mlr, Llc Tiered wireless, multi-modal access system and method

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4144496A (en) 1976-03-17 1979-03-13 Harris Corporation Mobile communication system and method employing frequency reuse within a geographical service area
US4558453A (en) 1981-12-16 1985-12-10 Harris Corporation Synchronization method and frequency hopping communication system
DE3215292A1 (en) 1982-04-20 1984-02-02 ANT Nachrichtentechnik GmbH, 7150 Backnang RADIO SYSTEM
CA1250900A (en) 1986-11-18 1989-03-07 Northern Telecom Limited Private cellular system
US4887311A (en) 1987-04-17 1989-12-12 General Electric Company Radio with options board
US5210785A (en) 1988-02-29 1993-05-11 Canon Kabushiki Kaisha Wireless communication system
GB2225196A (en) 1988-11-16 1990-05-23 Philips Electronic Associated Cellular radio system
US5657317A (en) 1990-01-18 1997-08-12 Norand Corporation Hierarchical communication system using premises, peripheral and vehicular local area networking
US5077834A (en) 1989-03-28 1991-12-31 Telefind Corporation Paging receiver with continuously tunable antenna and RF amplifier
US6002918A (en) 1989-06-29 1999-12-14 Symbol Technologies, Inc. Power-saving arrangement and method for mobile units in communications network
US4977612A (en) 1989-10-10 1990-12-11 Motorola, Inc. Channel selection in a multi-frequency radio data communication system
US5835857A (en) 1990-03-19 1998-11-10 Celsat America, Inc. Position determination for reducing unauthorized use of a communication system
US5371780A (en) 1990-10-01 1994-12-06 At&T Corp. Communications resource assignment in a wireless telecommunications system
US5703881A (en) 1990-12-06 1997-12-30 Hughes Electronics Multi-subscriber unit for radio communication system and method
GB2253323B (en) 1991-03-01 1995-05-17 Racal Vodafone Ltd Telecommunications networks and methods
US5175867A (en) 1991-03-15 1992-12-29 Telefonaktiebolaget L M Ericsson Neighbor-assisted handoff in a cellular communications system
AU651873B2 (en) 1991-03-18 1994-08-04 Merrell Dow Pharmaceuticals Inc. Method of inhibiting the progressive development of diabetes mellitus
FI89434C (en) 1991-05-30 1993-09-27 Nokia Mobile Phones Ltd AV SKILDA MODULER HOPSAETTBAR RADIO TELEPHONE
US5279521A (en) 1992-02-26 1994-01-18 Motorola, Inc. Dynamic group regrouping method
GB2270235B (en) 1992-02-27 1996-05-29 Ericsson Telefon Ab L M Call priority in a mobile radiotelephone system
US5353331A (en) 1992-03-05 1994-10-04 Bell Atlantic Network Services, Inc. Personal communications service using wireline/wireless integration
CA2106692A1 (en) 1992-10-07 1994-04-08 David Edward Borth Method of registering/reassigning a call in a dual mode communication network
SE470543B (en) 1992-11-30 1994-07-25 Ericsson Telefon Ab L M Radio link network and method for transmitting additional services in a radio link network
US5509035A (en) 1993-04-14 1996-04-16 Qualcomm Incorporated Mobile station operating in an analog mode and for subsequent handoff to another system
US5796727A (en) 1993-04-30 1998-08-18 International Business Machines Corporation Wide-area wireless lan access
WO1995001020A1 (en) 1993-06-25 1995-01-05 Xircom, Incorporated Virtual carrier detection for wireless local area network with distributed control
RU2110154C1 (en) 1993-07-02 1998-04-27 Моторола, Инк. Method and wireless communication system for transfer of wireless call from one servicing cell to another
US5627878A (en) 1993-10-27 1997-05-06 Tcsi Corporation Telecommunication apparatus for receiving, storing and forwarding a plurality of electrical signals to a wireless network, in response to a control signal therefrom
US5812955A (en) 1993-11-04 1998-09-22 Ericsson Inc. Base station which relays cellular verification signals via a telephone wire network to verify a cellular radio telephone
US5734984A (en) 1993-11-30 1998-03-31 Northern Telecom Limited Telephone system for mobile wireless telephone services
US5475735A (en) 1993-12-02 1995-12-12 Motorola, Inc. Method of providing wireless local loop operation with local mobility for a subscribed unit
EP1622409B1 (en) 1993-12-15 2011-11-02 Mlr, Llc Wireless communication system including a plurality of independent wireless service networks
US5905955A (en) * 1995-12-12 1999-05-18 At&T Wireless Services Inc. Method for selecting a wireless service provider in a multi-service provider environment using a geographic database
US6148197A (en) * 1998-03-06 2000-11-14 Sbc Technology Resources, Inc. Intelligent roaming system with over the air programming

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US414496A (en) * 1889-11-05 Frank p
US4268722A (en) * 1978-02-13 1981-05-19 Motorola, Inc. Radiotelephone communications system
US4369520A (en) * 1979-03-22 1983-01-18 Motorola, Inc. Instantaneously acquiring sector antenna combining system
US4302845A (en) * 1980-02-07 1981-11-24 Motorola, Inc. Phase-encoded data signal demodulator
US4312074A (en) * 1980-02-07 1982-01-19 Motorola, Inc. Method and apparatus for detecting a data signal including repeated data words
US4371751A (en) * 1980-04-07 1983-02-01 Newart Electronic Sciences, Inc. Automatic telephonic user emergency message transmitting apparatus
US4485486A (en) * 1982-08-03 1984-11-27 Motorola, Inc. Method and apparatus for assigning duplex radio channels and scanning duplex radio channels assigned to mobile and portable radio telephones in a cellular radiotelephone communications system
US4578796A (en) * 1983-11-03 1986-03-25 Bell Telephone Laboratories, Incorporated Programmable multiple type data set
US4833727A (en) * 1984-12-28 1989-05-23 U.S. Philips Corporation Remote-controlled receiver arrangement using a modulated carrier
US5261117A (en) * 1984-12-28 1993-11-09 Motorola, Inc. Method to allow a radio transceiver to automatically select from amongst multiple radio systems
US6954470B2 (en) * 1985-03-20 2005-10-11 Interdigital Technology Corporation Subscriber RF telephone system for providing multiple speech and/or data signals simultaneously over either a single or a plurality of RF channels
US4654879A (en) * 1985-03-29 1987-03-31 Itt Corporation Cellular mobile radio subscriber location detection
US5122795A (en) * 1985-08-08 1992-06-16 Metrocast Scanning receiver for nationwide radio paging system
US4741049A (en) * 1985-12-09 1988-04-26 U.S. Philips Corp. Automatic channel selecting system using shared duplex channels
US4741018A (en) * 1987-04-24 1988-04-26 Motorola, Inc. Speakerphone using digitally compressed audio to control voice path gain
US4811420A (en) * 1987-07-08 1989-03-07 International Mobile Machines Corporation Initialization of communication channel between a subsciber station and a base station in a subscriber communication system
US4799253A (en) * 1987-07-20 1989-01-17 Motorola, Inc. Colocated cellular radiotelephone systems
US4985904A (en) * 1987-09-10 1991-01-15 Fujitsu Limited High speed switching system in a radio-communication system including a plurality of main communication systems and a plurality of stand-by communication systems
US5249302A (en) * 1987-10-09 1993-09-28 Motorola, Inc. Mixed-mode transceiver system
US5020094A (en) * 1987-12-23 1991-05-28 Rash Mark S Cordless telephone network
US5121115A (en) * 1988-02-22 1992-06-09 Telefind Corporation Method of transmitting information using programmed channels
US4866431A (en) * 1988-02-22 1989-09-12 Telefind Corp. Paging system hub switch
US4916728A (en) * 1988-07-25 1990-04-10 Gte Mobilnet Incorporated Cellular telephone unit with prioritized frequency acquisition
US4905301A (en) * 1988-07-28 1990-02-27 Motorola, Inc. Selective system scan for multizone radiotelephone subscriber units
US4989230A (en) * 1988-09-23 1991-01-29 Motorola, Inc. Cellular cordless telephone
US5127042A (en) * 1988-09-23 1992-06-30 Motorola, Inc. Cellular cordless telephone
US5034993A (en) * 1989-03-15 1991-07-23 Motorola, Inc. Method for allocating communication resources among RF communications systems
US5301359A (en) * 1989-04-27 1994-04-05 Motorola, Inc. Bulletin board resource for communication system access
US5020092A (en) * 1989-06-23 1991-05-28 Motorola, Inc. Dual-bandwidth cellular telephone
US5200991A (en) * 1989-06-23 1993-04-06 Kabushiki Kaisha Toshiba Image communication system including a mobile telephone set and a facsimile device
US5020093A (en) * 1989-06-23 1991-05-28 Motorola, Inc. Cellular telephone operable on different cellular telephone systems
USRE39989E1 (en) * 1989-10-31 2008-01-01 Morris Walker C Method and apparatus for transmission of analog and digital
US5802483A (en) * 1989-10-31 1998-09-01 Morris; Walker C. Method and apparatus for transmission of data and voice
US5793843A (en) * 1989-10-31 1998-08-11 Intelligence Technology Corporation Method and apparatus for transmission of data and voice
US6230010B1 (en) * 1989-10-31 2001-05-08 Walker C. Morris Method and apparatus for transmission of analog and digital
US5239701A (en) * 1989-11-15 1993-08-24 Sanyo Electric Co., Ltd. Radio receiver with improved channel selection and reception
US5008925A (en) * 1989-12-20 1991-04-16 Motorola, Inc. Cellular telephone responsive to service availability for operating on different cellular telephone systems
US5119397A (en) * 1990-04-26 1992-06-02 Telefonaktiebolaget L M Ericsson Combined analog and digital cellular telephone system having a secondary set of control channels
US5335355A (en) * 1990-07-09 1994-08-02 Kabushiki Kaisha Toshiba Mobile radio communication system utilizing analog and digital modulation
US5297191A (en) * 1990-09-28 1994-03-22 At&T Bell Laboratories Method and apparatus for remotely programming a wireless telephone set
US5159625A (en) * 1990-10-24 1992-10-27 Gte Mobile Communications Service Corp. Method of selecting the cellular system with which a cellular mobile radiotelephone communicates
US5134709A (en) * 1990-12-14 1992-07-28 At&T Bell Laboratories Process and apparatus for flexible channel assignment in cellular radiotelephone systems
US5276907A (en) * 1991-01-07 1994-01-04 Motorola Inc. Method and apparatus for dynamic distribution of a communication channel load in a cellular radio communication system
US5809395A (en) * 1991-01-15 1998-09-15 Rogers Cable Systems Limited Remote antenna driver for a radio telephony system
US6058316A (en) * 1991-02-06 2000-05-02 Mitsubishi Denki Kabushiki Kaisha Dual mode mobile telephone apparatus with user selected analog and digital call modes
US5179360A (en) * 1991-03-20 1993-01-12 Sony Corporation Transmitting/receiving apparatus switchable between digital and analog modulation modes
US5201067A (en) * 1991-04-30 1993-04-06 Motorola, Inc. Personal communications device having remote control capability
US5815525A (en) * 1991-05-13 1998-09-29 Omnipoint Corporation Multi-band, multi-mode spread-spectrum communication system
US5293628A (en) * 1991-11-04 1994-03-08 Motorola, Inc. Data processing system which generates a waveform with improved pulse width resolution
US5309503A (en) * 1991-12-06 1994-05-03 Motorola, Inc. Dynamic channel assignment in a communication system
US5642353A (en) * 1991-12-12 1997-06-24 Arraycomm, Incorporated Spatial division multiple access wireless communication systems
US6847822B1 (en) * 1991-12-26 2005-01-25 Sycord Limited Partnership Cellular telephone system that uses position of a mobile unit to make call management decisions
US6564071B1 (en) * 1992-01-13 2003-05-13 Microcom Systems, Inc. Transmission of data over a radio frequency channel
US5260988A (en) * 1992-02-06 1993-11-09 Motorola, Inc. Apparatus and method for alternative radiotelephone system selection
US5524136A (en) * 1992-04-20 1996-06-04 International Business Machines Corporation Tracking mobile users in wireless networks
US5343513A (en) * 1992-04-20 1994-08-30 Hughes Aircraft Company Channel compression and dynamic repartitioning for dual mode cellular radio
US5354448A (en) * 1992-05-22 1994-10-11 Biomedical Sensors Ltd. Electrochemical sensor
US5343341A (en) * 1992-10-15 1994-08-30 Tandberg Data A/S Method for seeking the center of a recorded data track
US5745523A (en) * 1992-10-27 1998-04-28 Ericsson Inc. Multi-mode signal processing
US6192255B1 (en) * 1992-12-15 2001-02-20 Texas Instruments Incorporated Communication system and methods for enhanced information transfer
US5657375A (en) * 1993-01-04 1997-08-12 Ameritech Corporation Wireless digital personal communications system having voice/data/image two-way calling and intercell hand off provided through distributed logic
US5327486A (en) * 1993-03-22 1994-07-05 Bell Communications Research, Inc. Method and system for managing telecommunications such as telephone calls
US5649308A (en) * 1993-04-12 1997-07-15 Trw Inc. Multiformat auto-handoff communications handset
US5491723A (en) * 1993-05-06 1996-02-13 Ncr Corporation Wireless communication system having antenna diversity
US5802502A (en) * 1993-05-24 1998-09-01 British Telecommunications Public Limited Company System for selective communication connection based on transaction pricing signals
US5365571A (en) * 1993-05-24 1994-11-15 Hughes Aircraft Company Cellular system having frequency plan and cell layout with reduced co-channel interference
US5442806A (en) * 1993-06-08 1995-08-15 Oki Telecom Preferred carrier selection method for selecting any available cellular carrier frequency when neither home nor preferred cellular carrier frequencies are available
US5784693A (en) * 1993-06-08 1998-07-21 Oki Telecom, Inc. Cellular carrier selection system incorporating a preferred list of system identification codes (SIDs) corresponding to preferred cellular carriers
US5974319A (en) * 1993-06-25 1999-10-26 Motorola, Inc. Transmission and reception of signals in a communication systems
US5640677A (en) * 1993-07-09 1997-06-17 Telefonaktiebolaget Lm Ericsson Best server selection in layered cellular radio system
US5406615A (en) * 1993-08-04 1995-04-11 At&T Corp. Multi-band wireless radiotelephone operative in a plurality of air interface of differing wireless communications systems
US5550895A (en) * 1993-12-02 1996-08-27 Lucent Technologies Inc. Bimodal portable telephone
US6134453A (en) * 1993-12-15 2000-10-17 Charles M. Leedom, Jr. Adaptive omni-modal radio apparatus and methods
US5761621A (en) * 1993-12-15 1998-06-02 Spectrum Information Technologies, Inc. Apparatus and methods for networking omni-modal radio devices
US6934558B1 (en) * 1993-12-15 2005-08-23 Mlr, Llc Adaptive omni-modal radio apparatus and methods
US7386322B2 (en) * 1993-12-15 2008-06-10 Mlr, Llc Adaptive omni-modal radio apparatus and methods
US5734980A (en) * 1995-01-31 1998-03-31 Ericsson Inc. Preferred system selection techniques for mobile terminals
US5517491A (en) * 1995-05-03 1996-05-14 Motorola, Inc. Method and apparatus for controlling frequency deviation of a portable transceiver
US5805633A (en) * 1995-09-06 1998-09-08 Telefonaktiebolaget L M Ericsson Method and apparatus for frequency planning in a multi-system cellular communication network
US5796757A (en) * 1995-09-15 1998-08-18 Nokia Mobile Phones Ltd. Methods and apparatus for performing rate determination with a variable rate viterbi decoder
US5857153A (en) * 1995-10-13 1999-01-05 Telefonaktiebolaget Lm Ericsson (Publ) Cellular telecommunications network having seamless interoperability between exchanges while providing voice, asynchronous data and facsimile services in multiple frequency hyperbands
US6418318B1 (en) * 1995-12-12 2002-07-09 At&T Wireless Services, Inc. Method for selecting a preferable wireless communications service provider in a multi-service provider environment
US6311064B1 (en) * 1995-12-12 2001-10-30 At&T Wireless Services, Inc. Powered down selection of a preferable wireless communications service provider in a multi-service provider environment
US6771961B2 (en) * 1995-12-12 2004-08-03 At&T Wireless Services, Inc. Method for selecting a wireless communications service provider in a multi-service provider environment
US6298235B1 (en) * 1995-12-12 2001-10-02 At&T Wireless Services, Inc. Powered down selection of a preferable wireless communications service provider in a multi-service provider environment
US5903832A (en) * 1995-12-21 1999-05-11 Nokia Mobile Phones Llimited Mobile terminal having enhanced system selection capability
US5778024A (en) * 1996-02-01 1998-07-07 Qualcomm Incorporated Dual-mode communications processor
US6035212A (en) * 1996-08-02 2000-03-07 Lsi Logic Corporation Multi-frequency wireless communication device
US6026086A (en) * 1997-01-08 2000-02-15 Motorola, Inc. Apparatus, system and method for a unified circuit switched and packet-based communications system architecture with network interworking functionality
US5940761A (en) * 1997-01-15 1999-08-17 Qaulcomm Incorporated Method and apparatus for performing mobile assisted hard handoff between communication systems
US5950130A (en) * 1997-03-18 1999-09-07 Sbc Technology Resources, Inc. Mobile station with intelligent roaming and over-the-air programming features
US6128490A (en) * 1997-05-08 2000-10-03 Nortel Networks Limited Wireless communication system that supports selection of operation from multiple frequency bands and multiple protocols and method of operation therefor
US6138010A (en) * 1997-05-08 2000-10-24 Motorola, Inc. Multimode communication device and method for operating a multimode communication device
US6185413B1 (en) * 1997-06-17 2001-02-06 Siemens Aktiengesellschaft Mobile station having a cost-efficient call management method and system
US5966667A (en) * 1997-07-14 1999-10-12 Motorola, Inc. Dual mode communication device and method
US6115608A (en) * 1997-09-10 2000-09-05 Northern Telecom Limited Intersystem handover method and apparatus
US6249686B1 (en) * 1998-12-22 2001-06-19 Philips Electronics N.A. Corp. Internal circuit for adaptive mode selection of multi-mode RF integrated circuit
US6504829B1 (en) * 1999-06-28 2003-01-07 Rockwell Collins, Inc. Method and apparatus for managing communication resources using channelized neighborhoods
US7343173B2 (en) * 2000-03-22 2008-03-11 Mlr, Llc Tiered wireless, multi-modal access system and method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040165573A1 (en) * 1995-10-05 2004-08-26 Kubler Joseph J. Hierarchical data collection network supporting packetized voice communications among wireless terminals and telephones
US8380244B2 (en) * 1999-09-21 2013-02-19 Ipr Licensing, Inc. Dual mode unit for short range, high rate and long range, lower rate data communications
US20160353508A1 (en) * 1999-09-21 2016-12-01 Ipr Licensing, Inc. Subscriber unit for managing dual wireless communication links
US9420632B2 (en) * 1999-09-21 2016-08-16 Ipr Licensing, Inc. Subscriber unit for managing dual wireless communication links
US9408253B2 (en) * 1999-09-21 2016-08-02 Ipr Licensing, Inc. Subscriber unit for managing dual wireless communication links
US20150133187A1 (en) * 1999-09-21 2015-05-14 Ipr Licensing, Inc. Subscriber unit for managing dual wireless communication links
US20130143551A1 (en) * 1999-09-21 2013-06-06 Ipr Licensing, Inc. Dual mode unit for short range, high rate and long range, lower rate data communications
US20050083890A1 (en) * 2000-02-03 2005-04-21 Eli Plotnik Communication system utilizing host signal processing
US20100103879A1 (en) * 2005-03-07 2010-04-29 Philip Russell Specht Systems and Methods for Providing Wireless Communications for Data and Voice Communications
US8116812B2 (en) 2005-03-07 2012-02-14 At&T Mobility Ii Llc Systems and methods for providing wireless communications for data and voice communications
US20110124370A1 (en) * 2005-03-07 2011-05-26 Philip Russell Specht Systems and Methods for Providing Wireless Communications for Data and Voice Communications
US7890137B2 (en) 2005-03-07 2011-02-15 At&T Mobility Ii Llc Systems and methods for providing wireless communications for data and voice communications
US7657284B1 (en) * 2005-03-07 2010-02-02 At&T Intellectual Property I, L.P. Systems and methods for providing wireless communications for data and voice communications
US9141696B2 (en) * 2008-08-07 2015-09-22 Brother Kogyo Kabushiki Kaisha Communication device
US20100036855A1 (en) * 2008-08-07 2010-02-11 Brother Kogyo Kabushiki Kaisha Communication Device
US20120122514A1 (en) * 2008-10-23 2012-05-17 Qualcomm Incorporated Selecting network service providers for multi-mode mobile devices
US8239770B2 (en) 2008-11-27 2012-08-07 Brother Kogyo Kabushiki Kaisha Content display system
US20100131855A1 (en) * 2008-11-27 2010-05-27 Brother Kogyo Kabushiki Kaisha Content Display System

Also Published As

Publication number Publication date
US7386322B2 (en) 2008-06-10
US6934558B1 (en) 2005-08-23
US20050159179A1 (en) 2005-07-21

Similar Documents

Publication Publication Date Title
US7386322B2 (en) Adaptive omni-modal radio apparatus and methods
US5854985A (en) Adaptive omni-modal radio apparatus and methods
US5761621A (en) Apparatus and methods for networking omni-modal radio devices
EP0734636B1 (en) Adaptive omni-modal radio apparatus and methods for networking the same
USRE38787E1 (en) Apparatus and methods for networking omni-modal radio devices
US5915214A (en) Mobile communication service provider selection system
US8116825B1 (en) Two radio interface for mobile communication device for electronic commerce
KR100418166B1 (en) Method of varying time incremental costs in a wireless communication system
US5684859A (en) Method and apparatus for downloading location specific information to selective call receivers
US5249302A (en) Mixed-mode transceiver system
US6434395B1 (en) Portable communications and data terminal having multiple modes of operation
US8027635B2 (en) Relaying third party wireless communications through a portable wireless system
US20020039892A1 (en) System and method for network and service selection in a mobile communication station
US20060154600A1 (en) Mobile telephone with receive only mode
WO1999027666A1 (en) Local wireless communications system with external communications link
US6430408B1 (en) Allocating antenna-provided communications services
US20030100312A1 (en) Radio communication apparatus
CA2179151C (en) Adaptive omni-modal radio apparatus and methods for networking the same
JP2002535897A (en) Local wireless service
US5987321A (en) Radio data communication system using a plurality of radio communication systems
CA2573184A1 (en) Method of frequency band sharing for wireless communication system
US6006104A (en) Mixed mode transceiver system
KR100662269B1 (en) Synchronization system between mobile communication system and mobile terminal and synchronization method
US20060135146A1 (en) Telecommunications system and a method of operating the system
EP1021054A2 (en) Mobile communication system and mobile communication terminal

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION