US20080225505A1 - Method of producing a MEMS device - Google Patents
Method of producing a MEMS device Download PDFInfo
- Publication number
- US20080225505A1 US20080225505A1 US12/129,283 US12928308A US2008225505A1 US 20080225505 A1 US20080225505 A1 US 20080225505A1 US 12928308 A US12928308 A US 12928308A US 2008225505 A1 US2008225505 A1 US 2008225505A1
- Authority
- US
- United States
- Prior art keywords
- wafer
- mems
- bottom side
- device wafer
- initial bottom
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
- B81C1/00865—Multistep processes for the separation of wafers into individual elements
- B81C1/00896—Temporary protection during separation into individual elements
Definitions
- the invention generally relates to microelectromechanical systems (MEMS) and, more particularly, the invention relates to methods of producing MEMS devices.
- MEMS microelectromechanical systems
- MEMS Microelectromechanical systems
- MEMS are a specific type of integrated circuit used in a growing number of applications.
- MEMS currently are implemented as gyroscopes to detect pitch angles of airplanes, and as accelerometers to selectively deploy air bags in automobiles.
- MEMS devices typically have a very fragile movable structure suspended above a substrate, and associated circuitry (on chip or off chip) that both senses movement of the suspended structure and delivers the sensed movement data to one or more external devices (e.g., an external computer).
- the external device processes the sensed data to calculate the property being measured (e.g., pitch angle or acceleration).
- ASICs application specific integrated circuits
- a reduction in the ASIC profile desirably can lead to a corresponding reduction in the overall size of the cell phone.
- substrate thinning processes e.g., backgrinding processes
- prior art substrate thinning techniques may damage the fragile MEMS movable structure.
- prior art backgrinding processes commonly used for integrated circuits without structure
- the top side of a MEMS device however, has the fragile MEMS structure. Accordingly, the MEMS structure would be crushed if backgrinding were used to thin the substrate of a MEMS device.
- a method of producing a MEMS device removes the bottom side of a device wafer after its movable structure is formed. To that end, the method provides the device wafer, which has an initial bottom side. Next, the method forms the movable structure on the device wafer, and then removes substantially the entire initial bottom side of the device wafer. Removal of the entire initial bottom side effectively forms a final bottom side.
- the initial bottom side may be formed by a number of methods, such as by using backgrinding processes.
- a chemical may be used to chemically etch the initial bottom side.
- the structure is sealed from the chemical.
- the movable structure may be formed on or by the top surface of the device wafer.
- the device wafer is fixed to a protective film having a clearance hole that seals the structure. Consequently, the structure may remain protected from debris or other external objects that could adversely impact its operation.
- the method also may couple a cap wafer to the device wafer, thus encapsulating the structure.
- the method singulates the cap wafer before removing the initial bottom side. In alternative embodiments, the method singulates the cap wafer after removing the initial bottom side.
- a method of producing a MEMS device provides a device wafer having an initial bottom side and movable structure. Next, the method removes substantially the entire initial bottom side of the device wafer to form a final bottom side. The operation of the movable structure is substantially unaffected by removal of substantially the entire initial bottom side of the device wafer.
- a method of producing a MEMS device provides a device wafer having an initial bottom side and movable structure, and fixes the device wafer to a protective film having a clearance hole.
- the device wafer is fixed to the protective film in a manner that seals the movable structure within the clearance hole.
- the method removes substantially the entire initial bottom side of the device wafer to form a final bottom side.
- substantially the entire initial bottom side of the device may be removed by backgrinding or chemically etching processes.
- the film may be removed. It then may be coupled with a cap wafer to form a substantially completed MEMS device.
- FIG. 1 schematically shows a MEMS device that may be produced in accordance with illustrative embodiments of the invention.
- FIG. 2 shows a generic process for thinning a MEMS wafer in accordance with illustrative embodiments of the invention.
- FIG. 3 schematically shows a plan view of a working surface that may secure a wafer having MEMS devices during thinning processes.
- FIG. 4 schematically shows a plan view of a film frame that may be used by illustrative embodiments of the invention to in part form the working surface shown in FIG. 3 .
- FIG. 5 schematically shows a plan view of the film frame of FIG. 4 having a layer of film for securing a MEMS device.
- FIG. 6 shows a more specific process for thinning a MEMS wafer having a diced cap wafer.
- FIG. 7 schematically shows a cross-sectional view of a MEMS wafer with a diced cap wafer on a frame with pierced film as shown in FIG. 5 .
- FIG. 8 shows a more specific process for thinning a MEMS wafer having an undiced cap wafer.
- a method of producing a MEMS device thins the MEMS substrate after MEMS structure is formed.
- the method can be used with either capped or uncapped MEMS devices.
- the method may use a chemical etch or backgrinding processes to thin the substrate. Details of various embodiments are discussed below.
- FIG. 1 schematically shows a generic MEMS device 10 that may be produced in accordance with illustrative embodiments of the invention.
- the MEMS device 10 shown includes a device wafer 11 having movable structure (not shown herein but shown in incorporated patents, noted below) suspended over a substrate.
- movable structure (not shown herein but shown in incorporated patents, noted below) suspended over a substrate.
- Conventional processes may be employed to form the movable structure.
- the structure may be formed by conventional surface micromachining (“SMM”) techniques.
- SMM surface micromachining
- surface micromachining techniques build material layers on top of a substrate using additive and subtractive processes.
- the MEMS structure may be considered to be formed slightly above or on the top surface 12 of a silicon wafer.
- the structure may be formed by etching material from the top wafer of a silicon-on-insulator wafer (“SOI wafer,” not shown).
- SOI wafer silicon-on-insulator wafer
- the MEMS structure may be considered to be formed substantially flush with or below the top surface 12 of a silicon wafer.
- other types of processes may be employed to form the MEMS structure.
- the device wafer 11 is considered to have a top surface 12 and a bottom surface 14 .
- the top surface 12 may be considered to include a flat surface and the MEMS structure (e.g., movable mass and supporting structure), while the bottom surface 14 may be the bottom surface of the substrate.
- the bottom surface 14 (also referred to as “final bottom surface 14 ”) is formed by thinning the original bottom surface of the device wafer 11 .
- the bottom surface 14 of the finished MEMS device 10 schematically shown in FIG. 1 is formed by removing substantially the entire bottom surface 14 of the substrate above which the structure originally was formed. Details of the thinning process are discussed below with reference to FIGS. 2-8 .
- the MEMS device 10 also has a cap 16 secured to the device wafer 11 via a glass bonding layer.
- the cap 16 hermetically seals the structure (i.e., the cap 16 encapsulates the structure) from the environment.
- conventional processes also may mount the entire MEMS device 10 within a package.
- the MEMS device 10 may omit the cap 16 .
- the MEMS device 10 preferably is within a package that can sufficiently protect the MEMS structure from environmental contaminants, such as dust and moisture. Accordingly, discussion of a MEMS device 10 with a cap 16 is illustrative for some embodiments only.
- the MEMS device 10 may include on-chip circuitry to control and/or monitor the structure.
- the circuitry has interconnects (not shown) to electrically communicate with an external device, such as a computer.
- the MEMS device 10 may have structure only. In such case, the structure may communicate with off-chip circuitry for the noted purposes.
- Illustrative embodiments implement the MEMS device 10 as an inertial sensor, such as an accelerometer or a gyroscope.
- the structure When implemented as an accelerometer, the structure includes a normally stable (movable) mass suspended above the substrate, and circuitry (not shown but noted above) for detecting mass movement.
- Exemplary MEMS accelerometers include those distributed and patented by Analog Devices, Inc. of Norwood, Mass. Among others, see U.S. Pat. No. 5,939,633, the disclosure of which is incorporated herein, in its entirety, by reference.
- the MEMS device 10 When implemented as a gyroscope, the MEMS device 10 has an oscillating mass suspended above the substrate, and circuitry (not shown but noted above) for actuating and detecting mass movement.
- Exemplary MEMS gyroscopes include those distributed and patented by Analog Devices, Inc. of Norwood, Mass. Among others, see U.S. Pat. No. 6,505,511, the disclosure of which is incorporated herein, in its entirety, by reference.
- FIG. 2 schematically shows a process of thinning a device wafer 11 (also referred to as a “MEMS wafer”) in accordance with one embodiment of the invention.
- the MEMS wafer has MEMS structure and/or circuitry produced in accordance with conventional processes.
- the process begins at step 200 , in which a working surface 18 (see FIG. 3 ) is prepared to secure the MEMS wafer. More specifically, as a preliminary production step, a single silicon wafer (i.e., the MEMS wafer) often is processed to have an array of individual MEMS devices. It should be noted, however, that principles of the invention also apply MEMS wafers with a single MEMS device 10 .
- Illustrative embodiments thin the entire bottom surface 14 of the wafer before the wafer is singulated. Accordingly, the method prepares a surface upon which the top face of the MEMS wafer may be secured (i.e., the “working surface 18 ).
- the working surface 18 uses the working surface 18 shown in FIG. 3 , which has a plurality of openings 20 to receive the MEMS structure. If each MEMS device 10 includes both structure and circuitry, then some embodiments may position/encapsulate only the structure through the openings 20 . Alternatively, both the circuitry and structure may be encapsulated within the openings 20 .
- FIG. 4 is a plan view of an exemplary film frame 22 that may be used to produce the working surface 18 .
- the frame 22 may be constructed from thin metal or plastic to define a generally circular opening having a perimeter.
- a thin plastic film 24 subsequently is mounted to the frame 22 as illustrated in FIG. 5 .
- the film 24 acts as a carrier for the MEMS wafer throughout the discussed MEMS production/thinning processes discussed below.
- the film 24 may be a “Mylar” film having a thickness of approximately 5 mils.
- the film 24 is coated with an adhesive on one side, thus enabling the film 24 to adhere to the surface of the film frame 22 and to the MEMS wafer.
- the film frame 22 may be placed on a pallet in a film carrier station.
- the film carrier station has a roller of film 24 positioned in a manner that permits the film 24 to be easily rolled onto the film frame 22 . Accordingly, the film 24 is rolled off the roller and placed flat onto surface of the film frame 22 .
- a rubber rolling pin may be used to apply pressure to the film 24 , thus forcing it to make good contact and adhere to the film frame surface.
- a knife can then cut around the perimeter of film frame 22 to remove excess film 24 .
- the film frame 22 with the film 24 is considered to be a “film frame assembly 26 .”
- the film frame assembly 26 may be transported to a hole punch station where it is placed on a pallet having an opening generally corresponding to the opening in the film frame 22 .
- the punching station comprises a punch assembly for punching holes/openings 20 in the film 24 as shown in FIG. 3 .
- the punching station is programmed to punch holes/openings 20 in the film 24 in a programmable predetermined pattern corresponding to the relative positions of the microstructures on the wafer.
- the punch is selected to punch holes/openings 20 sized slightly larger than the individual microstructures.
- step 202 in which the MEMS wafer (i.e., having pre-formed MEMS structure) is secured to the working surface 18 .
- the film frame assembly 26 is returned to the film carrier station and a second layer of film 28 (see FIG. 7 ), preferably a 3 mil thick “Mylar” film, is adhered to the first layer of film.
- the second layer of film has no openings 20 and, therefore, seals one end of the openings 20 .
- the second layer of film can be added after the wafer is mounted to the film frame assembly 26 .
- the MEMS wafer then is fixed to the opposite side of the first layer of film (i.e., the side where the openings 20 are still exposed).
- the MEMS structure of each MEMS device 10 on the wafer may protrude from the top surface 12 of the MEMS wafer and thus, extend into the openings 20 .
- the MEMS structure may be substantially flush with or below the top surface 12 of the MEMS wafer.
- the MEMS wafer may be placed on a chuck in a precision aligning and mounting station with the side having the MEMS structure facing upwardly.
- a pair of cameras positioned above the chuck obtains images of different areas of the wafer placed on the chuck.
- the images are transferred to a pair of video screens or a split screen on a single monitor.
- An operator observes the video images and aligns the wafer in the desired position.
- the video monitor may have cross hairs that can be used for alignment purposes.
- the film frame assembly 26 then is inserted in a slot above the chuck with one surface of the film frame assembly 26 facing downwardly. This mounting causes the side of the first layer of film where the openings 20 are still exposed to face downwardly toward the MEMS side of the MEMS wafer.
- the aligning station may be computer controlled and include pattern recognition software that automatically aligns the openings 20 in the film frame assembly 26 with the MEMS wafer.
- the aligning and mounting station is designed so that it can be sealed and evacuated to form a vacuum.
- the chuck containing the wafer then can be brought into contact with the film so that the film readily adheres to the MEMS wafer.
- the chamber may be re-pressurized to atmospheric pressure, thus exerting a compressive force between the film and wafer. Such a compressive force should ensure adequate adhesion between the MEMS side of the MEMS wafer and the film.
- step 204 in which its initial bottom surface is substantially entirely removed to produce a final, substantially planar, bottom surface 14 .
- the overall profile of the MEMS wafer is thinner.
- the top surface 12 of the MEMS wafer is fixedly secured to the working surface 18 .
- Standard processes then may be applied to the bottom surface of the MEMS wafer to produce the final bottom surface 14 .
- mechanical thinning may be applied with a conventional backgrinding device, such as a diamond grinding wheel.
- the initial bottom surface may be chemically removed by conventional techniques, such as chemical etching processes.
- exemplary chemicals that may be used in this process include potassium hydroxide or tetra methyl ammonium hydroxide.
- the MEMS structure is sufficiently sealed within the openings 20 in the film frame assembly 26 .
- Such a seal should prevent debris from damaging the fragile MEMS structure on the MEMS wafer. Accordingly, the seal should prevent silicon dust penetration (e.g., when using a mechanical thinning process), chemical penetration (e.g., when using the chemical processes) or both.
- silicon dust penetration e.g., when using a mechanical thinning process
- chemical penetration e.g., when using the chemical processes
- mounting the MEMS structure within the openings 20 also ensures that the fragile MEMS structure does not become crushed during the thinning processes.
- post-thinning processes may include polishing the final bottom surface 14 to remove surface imperfections, and dicing the wafer to produce a plurality of individual MEMS devices.
- a saw tape may be adhered to the final bottom surface 14 to further protect the wafer/individual MEMS devices when handled during subsequent steps.
- the film 24 and assembly 26 also may be removed by conventional processes. For example, a tape or clip may be used to peel off the layers of film. It should be noted that the order of these post-thinning steps can vary. Each resulting MEMS device 10 can then be mounted in a package assembly, on a board, or in some other conventional manner.
- FIG. 6 schematically shows one process for thinning a MEMS wafer coupled with a cap wafer.
- the cap 16 may further protect the MEMS structure during a thinning step from chemicals and/or silicon debris.
- FIG. 6 shows a first exemplary process of thinning/producing a capped MEMS wafer in accordance with illustrative embodiments of the invention.
- the process begins at step 600 , in which the working surface 18 is prepared.
- the working surface 18 illustratively is prepared in substantially the same manner as discussed above with regard to step 200 of FIG. 2 .
- the cap wafer may be diced (after it is secured to the MEMS wafer) in accordance with conventional processes (step 202 ). This dicing step, however, does not dice the underlying MEMS wafer—it dices the cap wafer only. As a result, the cap wafer effectively forms a plurality of individual caps 16 on the MEMS wafer.
- U.S. patent publication number 2003/0075794A1 the disclosure of which is incorporated herein, in its entirety, by reference.
- FIG. 7 schematically shows a cross-sectional view of the MEMS wafer after it is secured to the working surface 18 .
- the caps 16 fit within openings 20 formed by the pierced film.
- the top film 28 and pierced film 24 together seal the cap 16 to protect it and its underlying MEMS structure from debris.
- the circuitry may be within the openings 20 or beneath the film. In either case, the circuitry should be protected from environmental debris.
- the process concludes in the same way as noted above with regard to the process in FIG. 2 by removing the initial bottom surface (step 606 ) and performing post-thinning processes (step 608 ). Accordingly, the noted post-thinning processes may be conducted to complete the MEMS production process.
- the inventors directed a test of the process of FIG. 6 .
- the semi-auto mode of the Okamoto GNX-200 backgrinder was used to grind the MEMS wafer to a desired thickness.
- Two six-inch wafers were prepared for backgrinding to 13 and 19 mils, respectively.
- the initial and final thickness for a six-inch wafer was adjusted.
- the standard thickness using such a wafer is about 33 mils (i.e., 28 mils plus 5 mils tape/film). This was modified to 48 mils (28 mils plus 15 mils for the cap 16 plus 5 mils for the film) to accommodate the capped wafers.
- the wafers were successfully background to the desired final thickness.
- FIG. 8 shows another process for thinning a capped wafer in accordance with illustrative embodiments.
- the process begins at step 800 , in which the working surface 18 is prepared in a similar manner as discussed above. In this case, however, there is no need to pierce the film to form the openings 20 .
- the cap wafer is secured to the working surface 18 (step 802 ) and the initial bottom surface of the MEMS wafer is removed in a manner similar to the methods discussed above (step 804 ).
- the cap wafer is diced in a conventional manner (step 806 ). This involves removing the cap wafer from its contact with the working surface 18 and positioning the MEMS wafer on a saw device capable of performing singulating processes. Post-thinning processes then may be performed (step 808 ), thus completing the process.
- a MEMS wafer having pre-formed MEMS structure can be thinned to comply with the continuing need to reduce MEMS sizes.
- Such illustrative processes adequately protect the fragile underlying MEMS structure, thus facilitating the overall process.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Micromachines (AREA)
- Dicing (AREA)
Abstract
A method of producing a MEMS device removes the bottom side of a device wafer after its movable structure is formed. To that end, the method provides the device wafer, which has an initial bottom side. Next, the method forms the movable structure on the device wafer, and then removes substantially the entire initial bottom side of the device wafer. Removal of the entire initial bottom side effectively forms a final bottom side.
Description
- The present application is a continuation application of U.S. application Ser. No. 10/914,576 filed on Aug. 9, 2004, the disclosure of which is incorporated herein, in its entirety, by reference.
- This patent application is related to co-pending U.S. patent application Ser. No. 10/914,575, entitled, “MEMS DEVICE WITH NON-STANDARD PROFILE”, filed on Aug. 9, 2004, published as U.S. Patent Application Publication No. 2006-0027885 and owned by Analog Devices, Inc., the disclosure of which is incorporated herein, in its entirety, by reference.
- The invention generally relates to microelectromechanical systems (MEMS) and, more particularly, the invention relates to methods of producing MEMS devices.
- Microelectromechanical systems (“MEMS,” also referred to as “MEMS devices”) are a specific type of integrated circuit used in a growing number of applications. For example, MEMS currently are implemented as gyroscopes to detect pitch angles of airplanes, and as accelerometers to selectively deploy air bags in automobiles. In simplified terms, such MEMS devices typically have a very fragile movable structure suspended above a substrate, and associated circuitry (on chip or off chip) that both senses movement of the suspended structure and delivers the sensed movement data to one or more external devices (e.g., an external computer). The external device processes the sensed data to calculate the property being measured (e.g., pitch angle or acceleration).
- Although they are relatively small, there still is a continuing need to reduce the size of MEMS devices and other types of integrated circuits. For example, in the cell phone industry, engineers often attempt to reduce the profile of internal application specific integrated circuits (ASICs) that have circuitry only. A reduction in the ASIC profile desirably can lead to a corresponding reduction in the overall size of the cell phone. To those ends, many in that field use conventional substrate thinning processes (e.g., backgrinding processes) to thin the substrates of many types of ASICs.
- Undesirably, the prior art does not appear to have a similar solution for MEMS devices. Specifically, prior art substrate thinning techniques may damage the fragile MEMS movable structure. For example, prior art backgrinding processes (commonly used for integrated circuits without structure) require that the top side of the ASIC be secured to a supporting surface so that the bottom side may be exposed for backgrinding processes. The top side of a MEMS device, however, has the fragile MEMS structure. Accordingly, the MEMS structure would be crushed if backgrinding were used to thin the substrate of a MEMS device.
- In accordance with one aspect of the invention, a method of producing a MEMS device removes the bottom side of a device wafer after its movable structure is formed. To that end, the method provides the device wafer, which has an initial bottom side. Next, the method forms the movable structure on the device wafer, and then removes substantially the entire initial bottom side of the device wafer. Removal of the entire initial bottom side effectively forms a final bottom side.
- The initial bottom side may be formed by a number of methods, such as by using backgrinding processes. Alternatively, a chemical may be used to chemically etch the initial bottom side. In that case, the structure is sealed from the chemical. Moreover, the movable structure may be formed on or by the top surface of the device wafer. In some embodiments, the device wafer is fixed to a protective film having a clearance hole that seals the structure. Consequently, the structure may remain protected from debris or other external objects that could adversely impact its operation.
- The method also may couple a cap wafer to the device wafer, thus encapsulating the structure. In some embodiments, the method singulates the cap wafer before removing the initial bottom side. In alternative embodiments, the method singulates the cap wafer after removing the initial bottom side.
- In accordance with another aspect of the invention, a method of producing a MEMS device provides a device wafer having an initial bottom side and movable structure. Next, the method removes substantially the entire initial bottom side of the device wafer to form a final bottom side. The operation of the movable structure is substantially unaffected by removal of substantially the entire initial bottom side of the device wafer.
- In accordance with another aspect of the invention, a method of producing a MEMS device provides a device wafer having an initial bottom side and movable structure, and fixes the device wafer to a protective film having a clearance hole. The device wafer is fixed to the protective film in a manner that seals the movable structure within the clearance hole. After the device wafer is fixed to the protective film, the method removes substantially the entire initial bottom side of the device wafer to form a final bottom side. Among other ways, substantially the entire initial bottom side of the device may be removed by backgrinding or chemically etching processes.
- After the final bottom side is formed, the film may be removed. It then may be coupled with a cap wafer to form a substantially completed MEMS device.
- The foregoing and advantages of the invention will be appreciated more fully from the following further description thereof with reference to the accompanying drawings wherein:
-
FIG. 1 schematically shows a MEMS device that may be produced in accordance with illustrative embodiments of the invention. -
FIG. 2 shows a generic process for thinning a MEMS wafer in accordance with illustrative embodiments of the invention. -
FIG. 3 schematically shows a plan view of a working surface that may secure a wafer having MEMS devices during thinning processes. -
FIG. 4 schematically shows a plan view of a film frame that may be used by illustrative embodiments of the invention to in part form the working surface shown inFIG. 3 . -
FIG. 5 schematically shows a plan view of the film frame ofFIG. 4 having a layer of film for securing a MEMS device. -
FIG. 6 shows a more specific process for thinning a MEMS wafer having a diced cap wafer. -
FIG. 7 schematically shows a cross-sectional view of a MEMS wafer with a diced cap wafer on a frame with pierced film as shown inFIG. 5 . -
FIG. 8 shows a more specific process for thinning a MEMS wafer having an undiced cap wafer. - In illustrative embodiments, a method of producing a MEMS device thins the MEMS substrate after MEMS structure is formed. In fact, the method can be used with either capped or uncapped MEMS devices. Among other ways, the method may use a chemical etch or backgrinding processes to thin the substrate. Details of various embodiments are discussed below.
-
FIG. 1 schematically shows ageneric MEMS device 10 that may be produced in accordance with illustrative embodiments of the invention. Specifically, theMEMS device 10 shown includes adevice wafer 11 having movable structure (not shown herein but shown in incorporated patents, noted below) suspended over a substrate. Conventional processes may be employed to form the movable structure. For example, the structure may be formed by conventional surface micromachining (“SMM”) techniques. As known by those skilled in the art, surface micromachining techniques build material layers on top of a substrate using additive and subtractive processes. In such cases, the MEMS structure may be considered to be formed slightly above or on thetop surface 12 of a silicon wafer. - As a further example, the structure may be formed by etching material from the top wafer of a silicon-on-insulator wafer (“SOI wafer,” not shown). In such case, the MEMS structure may be considered to be formed substantially flush with or below the
top surface 12 of a silicon wafer. Of course, other types of processes may be employed to form the MEMS structure. - In illustrative embodiments, the
device wafer 11 is considered to have atop surface 12 and abottom surface 14. Thetop surface 12 may be considered to include a flat surface and the MEMS structure (e.g., movable mass and supporting structure), while thebottom surface 14 may be the bottom surface of the substrate. As noted above, during the MEMS production process, the bottom surface 14 (also referred to as “final bottom surface 14”) is formed by thinning the original bottom surface of thedevice wafer 11. In other words, thebottom surface 14 of thefinished MEMS device 10 schematically shown inFIG. 1 is formed by removing substantially theentire bottom surface 14 of the substrate above which the structure originally was formed. Details of the thinning process are discussed below with reference toFIGS. 2-8 . - To protect the fragile MEMS structure, the
MEMS device 10 also has acap 16 secured to thedevice wafer 11 via a glass bonding layer. In illustrative embodiments, thecap 16 hermetically seals the structure (i.e., thecap 16 encapsulates the structure) from the environment. As further environmental protection, conventional processes also may mount theentire MEMS device 10 within a package. As noted above, however, theMEMS device 10 may omit thecap 16. In that case, theMEMS device 10 preferably is within a package that can sufficiently protect the MEMS structure from environmental contaminants, such as dust and moisture. Accordingly, discussion of aMEMS device 10 with acap 16 is illustrative for some embodiments only. - The
MEMS device 10 may include on-chip circuitry to control and/or monitor the structure. The circuitry has interconnects (not shown) to electrically communicate with an external device, such as a computer. Alternatively, theMEMS device 10 may have structure only. In such case, the structure may communicate with off-chip circuitry for the noted purposes. - Illustrative embodiments implement the
MEMS device 10 as an inertial sensor, such as an accelerometer or a gyroscope. When implemented as an accelerometer, the structure includes a normally stable (movable) mass suspended above the substrate, and circuitry (not shown but noted above) for detecting mass movement. Exemplary MEMS accelerometers include those distributed and patented by Analog Devices, Inc. of Norwood, Mass. Among others, see U.S. Pat. No. 5,939,633, the disclosure of which is incorporated herein, in its entirety, by reference. - When implemented as a gyroscope, the
MEMS device 10 has an oscillating mass suspended above the substrate, and circuitry (not shown but noted above) for actuating and detecting mass movement. Exemplary MEMS gyroscopes include those distributed and patented by Analog Devices, Inc. of Norwood, Mass. Among others, see U.S. Pat. No. 6,505,511, the disclosure of which is incorporated herein, in its entirety, by reference. - Discussion of an inertial sensor, however, is exemplary and thus, not intended to limit various embodiments of the invention. Accordingly, principles of various embodiments may apply to methods of producing other types of MEMS devices, such as piezoelectric devices.
-
FIG. 2 schematically shows a process of thinning a device wafer 11 (also referred to as a “MEMS wafer”) in accordance with one embodiment of the invention. The MEMS wafer has MEMS structure and/or circuitry produced in accordance with conventional processes. The process begins atstep 200, in which a working surface 18 (seeFIG. 3 ) is prepared to secure the MEMS wafer. More specifically, as a preliminary production step, a single silicon wafer (i.e., the MEMS wafer) often is processed to have an array of individual MEMS devices. It should be noted, however, that principles of the invention also apply MEMS wafers with asingle MEMS device 10. - Illustrative embodiments thin the
entire bottom surface 14 of the wafer before the wafer is singulated. Accordingly, the method prepares a surface upon which the top face of the MEMS wafer may be secured (i.e., the “working surface 18). Various embodiments use the workingsurface 18 shown inFIG. 3 , which has a plurality ofopenings 20 to receive the MEMS structure. If eachMEMS device 10 includes both structure and circuitry, then some embodiments may position/encapsulate only the structure through theopenings 20. Alternatively, both the circuitry and structure may be encapsulated within theopenings 20. -
FIG. 4 is a plan view of anexemplary film frame 22 that may be used to produce the workingsurface 18. Theframe 22 may be constructed from thin metal or plastic to define a generally circular opening having a perimeter. Athin plastic film 24 subsequently is mounted to theframe 22 as illustrated inFIG. 5 . As discussed below, thefilm 24 acts as a carrier for the MEMS wafer throughout the discussed MEMS production/thinning processes discussed below. Among other things, thefilm 24 may be a “Mylar” film having a thickness of approximately 5 mils. In illustrative embodiments, thefilm 24 is coated with an adhesive on one side, thus enabling thefilm 24 to adhere to the surface of thefilm frame 22 and to the MEMS wafer. - To add the
film 24, thefilm frame 22 may be placed on a pallet in a film carrier station. The film carrier station has a roller offilm 24 positioned in a manner that permits thefilm 24 to be easily rolled onto thefilm frame 22. Accordingly, thefilm 24 is rolled off the roller and placed flat onto surface of thefilm frame 22. A rubber rolling pin may be used to apply pressure to thefilm 24, thus forcing it to make good contact and adhere to the film frame surface. A knife can then cut around the perimeter offilm frame 22 to removeexcess film 24. Thefilm frame 22 with thefilm 24 is considered to be a “film frame assembly 26.” - After it is formed, the film frame assembly 26 may be transported to a hole punch station where it is placed on a pallet having an opening generally corresponding to the opening in the
film frame 22. The punching station comprises a punch assembly for punching holes/openings 20 in thefilm 24 as shown inFIG. 3 . The punching station is programmed to punch holes/openings 20 in thefilm 24 in a programmable predetermined pattern corresponding to the relative positions of the microstructures on the wafer. The punch is selected to punch holes/openings 20 sized slightly larger than the individual microstructures. - After the working
surface 18 is prepared, the method continues to step 202, in which the MEMS wafer (i.e., having pre-formed MEMS structure) is secured to the workingsurface 18. At this step, it is important to align the wafer with the holes/openings 20 so that the holes/openings 20 match up with the microstructures. To those ends, the film frame assembly 26 is returned to the film carrier station and a second layer of film 28 (seeFIG. 7 ), preferably a 3 mil thick “Mylar” film, is adhered to the first layer of film. The second layer of film has noopenings 20 and, therefore, seals one end of theopenings 20. Alternately, the second layer of film can be added after the wafer is mounted to the film frame assembly 26. - The MEMS wafer then is fixed to the opposite side of the first layer of film (i.e., the side where the
openings 20 are still exposed). In some instances, the MEMS structure of eachMEMS device 10 on the wafer may protrude from thetop surface 12 of the MEMS wafer and thus, extend into theopenings 20. In other embodiments, the MEMS structure may be substantially flush with or below thetop surface 12 of the MEMS wafer. - More specifically, to execute this step, the MEMS wafer may be placed on a chuck in a precision aligning and mounting station with the side having the MEMS structure facing upwardly. A pair of cameras positioned above the chuck obtains images of different areas of the wafer placed on the chuck. The images are transferred to a pair of video screens or a split screen on a single monitor. An operator observes the video images and aligns the wafer in the desired position. For instance, the video monitor may have cross hairs that can be used for alignment purposes. The film frame assembly 26 then is inserted in a slot above the chuck with one surface of the film frame assembly 26 facing downwardly. This mounting causes the side of the first layer of film where the
openings 20 are still exposed to face downwardly toward the MEMS side of the MEMS wafer. - When the film frame assembly 26 is inserted into the machine, the cameras obtain images of the
openings 20 in the film. The operator then observes the new images of theopenings 20 and aligns them in a proper orientation with respect to the MEMS wafer. In another embodiment of the invention, however, the aligning station may be computer controlled and include pattern recognition software that automatically aligns theopenings 20 in the film frame assembly 26 with the MEMS wafer. - A rolling pin illustratively is not used to adhere the film to the wafer since rolling pin action could disturb the alignment or damage the microstructure. Accordingly, in some embodiments of the invention, the aligning and mounting station is designed so that it can be sealed and evacuated to form a vacuum. The chuck containing the wafer then can be brought into contact with the film so that the film readily adheres to the MEMS wafer. In fact, in some embodiments, after evacuation and contact between the film and the MEMS wafer, the chamber may be re-pressurized to atmospheric pressure, thus exerting a compressive force between the film and wafer. Such a compressive force should ensure adequate adhesion between the MEMS side of the MEMS wafer and the film.
- In illustrative embodiments, there are no
excess openings 20 outside of the MEMS wafer outline. Suchexcess openings 20 on the wafer edge could inadvertently cause silicon slurry seep-in between the wafer and tape during thinning steps. Undesirably, such seep-in could lead to wafer cracking. - For more information relating to
steps - After the MEMS wafer is secured to the working
surface 18, the process continues to step 204, in which its initial bottom surface is substantially entirely removed to produce a final, substantially planar,bottom surface 14. As a result of this step, the overall profile of the MEMS wafer is thinner. To that end, at this point in the process, thetop surface 12 of the MEMS wafer is fixedly secured to the workingsurface 18. Standard processes then may be applied to the bottom surface of the MEMS wafer to produce thefinal bottom surface 14. In some embodiments, mechanical thinning may be applied with a conventional backgrinding device, such as a diamond grinding wheel. - In other embodiments, the initial bottom surface may be chemically removed by conventional techniques, such as chemical etching processes. Exemplary chemicals that may be used in this process include potassium hydroxide or tetra methyl ammonium hydroxide.
- When using such surface removal processes (i.e., either or both mechanical and chemical processes), it is important to ensure that the MEMS structure is sufficiently sealed within the
openings 20 in the film frame assembly 26. Such a seal should prevent debris from damaging the fragile MEMS structure on the MEMS wafer. Accordingly, the seal should prevent silicon dust penetration (e.g., when using a mechanical thinning process), chemical penetration (e.g., when using the chemical processes) or both. Of course, as noted above, mounting the MEMS structure within theopenings 20 also ensures that the fragile MEMS structure does not become crushed during the thinning processes. - After the initial bottom surface is removed, the process may continue to step 206, in which post-thinning processes may be performed. Among others, such post-thinning processes may include polishing the
final bottom surface 14 to remove surface imperfections, and dicing the wafer to produce a plurality of individual MEMS devices. In addition, a saw tape may be adhered to thefinal bottom surface 14 to further protect the wafer/individual MEMS devices when handled during subsequent steps. Thefilm 24 and assembly 26 also may be removed by conventional processes. For example, a tape or clip may be used to peel off the layers of film. It should be noted that the order of these post-thinning steps can vary. Each resultingMEMS device 10 can then be mounted in a package assembly, on a board, or in some other conventional manner. - Various embodiments noted above thin the MEMS wafer before capping because, among other reasons, it may reduce bond-line stresses arising from wafer bow. Notwithstanding this consideration, other embodiments may thin the MEMS wafer after a cap wafer is secured to the MEMS wafer.
FIG. 6 schematically shows one process for thinning a MEMS wafer coupled with a cap wafer. Among other benefits, thecap 16 may further protect the MEMS structure during a thinning step from chemicals and/or silicon debris. -
FIG. 6 shows a first exemplary process of thinning/producing a capped MEMS wafer in accordance with illustrative embodiments of the invention. The process begins atstep 600, in which the workingsurface 18 is prepared. The workingsurface 18 illustratively is prepared in substantially the same manner as discussed above with regard to step 200 ofFIG. 2 . Before, during, or afterstep 200, the cap wafer may be diced (after it is secured to the MEMS wafer) in accordance with conventional processes (step 202). This dicing step, however, does not dice the underlying MEMS wafer—it dices the cap wafer only. As a result, the cap wafer effectively forms a plurality ofindividual caps 16 on the MEMS wafer. For more information relating to capping, see U.S. patent publication number 2003/0075794A1, the disclosure of which is incorporated herein, in its entirety, by reference. - The MEMS wafer then is secured to the working
surface 18 in a similar manner as discussed above with regard to step 202 ofFIG. 2 (step 604). To that end, as shown inFIG. 7 , thecaps 16 each fit within oneopening 20 of the film frame assembly 26. More specifically,FIG. 7 schematically shows a cross-sectional view of the MEMS wafer after it is secured to the workingsurface 18. As shown, thecaps 16 fit withinopenings 20 formed by the pierced film. Thetop film 28 and piercedfilm 24 together seal thecap 16 to protect it and its underlying MEMS structure from debris. In a manner similar to other embodiments, if the MEMS wafer includes both structure and circuitry, then the circuitry may be within theopenings 20 or beneath the film. In either case, the circuitry should be protected from environmental debris. - The process concludes in the same way as noted above with regard to the process in
FIG. 2 by removing the initial bottom surface (step 606) and performing post-thinning processes (step 608). Accordingly, the noted post-thinning processes may be conducted to complete the MEMS production process. - The inventors directed a test of the process of
FIG. 6 . To that end, the semi-auto mode of the Okamoto GNX-200 backgrinder was used to grind the MEMS wafer to a desired thickness. Two six-inch wafers were prepared for backgrinding to 13 and 19 mils, respectively. For this process, the initial and final thickness for a six-inch wafer was adjusted. Specifically, the standard thickness using such a wafer is about 33 mils (i.e., 28 mils plus 5 mils tape/film). This was modified to 48 mils (28 mils plus 15 mils for thecap 16 plus 5 mils for the film) to accommodate the capped wafers. The wafers were successfully background to the desired final thickness. -
FIG. 8 shows another process for thinning a capped wafer in accordance with illustrative embodiments. The process begins atstep 800, in which the workingsurface 18 is prepared in a similar manner as discussed above. In this case, however, there is no need to pierce the film to form theopenings 20. Next, the cap wafer is secured to the working surface 18 (step 802) and the initial bottom surface of the MEMS wafer is removed in a manner similar to the methods discussed above (step 804). After the MEMS wafer is thinned, the cap wafer is diced in a conventional manner (step 806). This involves removing the cap wafer from its contact with the workingsurface 18 and positioning the MEMS wafer on a saw device capable of performing singulating processes. Post-thinning processes then may be performed (step 808), thus completing the process. - Accordingly, as noted above, contrary to conventional knowledge, a MEMS wafer having pre-formed MEMS structure can be thinned to comply with the continuing need to reduce MEMS sizes. Such illustrative processes adequately protect the fragile underlying MEMS structure, thus facilitating the overall process.
- Although the above discussion discloses various exemplary embodiments of the invention, it should be apparent that those skilled in the art can make various modifications that will achieve some of the advantages of the invention without departing from the true scope of the invention.
Claims (14)
1. A method of producing a MEMS device, the method comprising:
providing a device wafer having an initial bottom side and a top side;
forming movable structure on top of the device wafer;
coupling a cap wafer to the device wafer, the cap wafer encapsulating the moveable structure; and
removing substantially the entire initial bottom side of the device wafer after the movable structure is formed on the device wafer, removing forming a final bottom side;
after removing substantially the entire initial bottom side of the device wafer, singulating the cap wafer to form individual caps on the device wafer; and
dicing the device wafer into individual MEMS devices.
2. The method as defined by claim 1 wherein removing includes backgrinding the initial bottom side.
3. The method as defined by claim 1 wherein removing includes using a chemical to chemically etch the initial bottom side, the structure being sealed from the chemical.
4. The MEMS device as defined by claim 1 wherein removing is performed before coupling.
5. A method of producing a MEMS device, the method comprising:
providing a device wafer having an initial bottom side, a top side, a movable structure, and a cap wafer encapsulating the moveable structure;
removing substantially the entire initial bottom side of the device wafer to form a final bottom side, the operation of the movable structure being substantially unaffected by removal of substantially the entire initial bottom side of the device wafer,
after removing substantially the entire initial bottom side, singulating the cap wafer to form individual caps on the device wafer; and
dicing the device wafer into individual MEMS devices.
6. The method as defined by claim 5 wherein removing includes backgrinding the initial bottom side.
7. The method as defined by claim 5 wherein removing includes using a chemical to chemically etch the initial bottom side, the structure being sealed from the chemical.
8. The MEMS device produced in accordance with the method of claim 5 .
9. A method of producing a MEMS device, the method comprising:
providing a device wafer having an initial bottom side and movable structure;
fixing the device wafer to a protective plastic film having a clearance hole, the movable structure being sealed within the clearance hole; and
after the device wafer is fixed to the protective plastic film, removing substantially the entire initial bottom side of the device wafer to form a final bottom side, removing including at least one of backgrinding and chemically etching the initial bottom side.
10. The method as defined by claim 9 further including:
removing the plastic film; and
coupling a cap wafer to the device wafer.
11. The method as defined by claim 10 further comprising:
singulating the cap wafer before removing the initial bottom side.
12. The method as defined by claim 10 further comprising:
singulating the cap wafer after removing the initial bottom side.
13. The method as defined by claim 12 further comprising:
after singulating the cap wafer, dicing the device wafer into individual MEMS devices.
14. The MEMS device produced in accordance with the method of claim 9 .
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/129,283 US20080225505A1 (en) | 2004-08-09 | 2008-05-29 | Method of producing a MEMS device |
US13/182,924 US8343369B2 (en) | 2004-08-09 | 2011-07-14 | Method of producing a MEMS device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/914,576 US7416984B2 (en) | 2004-08-09 | 2004-08-09 | Method of producing a MEMS device |
US12/129,283 US20080225505A1 (en) | 2004-08-09 | 2008-05-29 | Method of producing a MEMS device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/914,576 Continuation US7416984B2 (en) | 2004-08-09 | 2004-08-09 | Method of producing a MEMS device |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/182,924 Continuation US8343369B2 (en) | 2004-08-09 | 2011-07-14 | Method of producing a MEMS device |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080225505A1 true US20080225505A1 (en) | 2008-09-18 |
Family
ID=34971495
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/914,576 Active 2025-05-12 US7416984B2 (en) | 2004-08-09 | 2004-08-09 | Method of producing a MEMS device |
US12/129,283 Abandoned US20080225505A1 (en) | 2004-08-09 | 2008-05-29 | Method of producing a MEMS device |
US13/182,924 Expired - Lifetime US8343369B2 (en) | 2004-08-09 | 2011-07-14 | Method of producing a MEMS device |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/914,576 Active 2025-05-12 US7416984B2 (en) | 2004-08-09 | 2004-08-09 | Method of producing a MEMS device |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/182,924 Expired - Lifetime US8343369B2 (en) | 2004-08-09 | 2011-07-14 | Method of producing a MEMS device |
Country Status (6)
Country | Link |
---|---|
US (3) | US7416984B2 (en) |
EP (1) | EP1776313B1 (en) |
JP (1) | JP4809838B2 (en) |
DE (1) | DE602005020148D1 (en) |
TW (1) | TWI311981B (en) |
WO (1) | WO2006022957A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110148096A1 (en) * | 2009-12-23 | 2011-06-23 | GE Global Patent Operation | Device for measuring fluid properties in caustic environments |
US20180177561A1 (en) * | 2016-12-28 | 2018-06-28 | Auris Surgical Robotics, Inc. | Endolumenal object sizing |
US11534250B2 (en) | 2014-09-30 | 2022-12-27 | Auris Health, Inc. | Configurable robotic surgical system with virtual rail and flexible endoscope |
US11701192B2 (en) | 2016-08-26 | 2023-07-18 | Auris Health, Inc. | Steerable catheter with shaft load distributions |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7416984B2 (en) * | 2004-08-09 | 2008-08-26 | Analog Devices, Inc. | Method of producing a MEMS device |
WO2006127814A2 (en) | 2005-05-25 | 2006-11-30 | Northrop Grumman Corporation | Method for optimizing direct wafer bond line width for reduction of parasitic capacitance in mems accelerometers |
EP1860418A1 (en) * | 2006-05-23 | 2007-11-28 | Sensirion AG | A method for fabricating a pressure sensor using SOI wafers |
EP1860417B1 (en) * | 2006-05-23 | 2011-05-25 | Sensirion Holding AG | A pressure sensor having a chamber and a method for fabricating the same |
CN101605509B (en) * | 2006-12-15 | 2012-09-19 | 生物传感器国际集团有限公司 | Stent systems |
US8215151B2 (en) * | 2008-06-26 | 2012-07-10 | Analog Devices, Inc. | MEMS stiction testing apparatus and method |
US8421481B2 (en) * | 2009-10-20 | 2013-04-16 | Analog Devices, Inc. | Detection and mitigation of particle contaminants in MEMS devices |
TWI452006B (en) * | 2009-11-13 | 2014-09-11 | United Microelectronics Corp | Mems structure and method for making the same |
JP2014229635A (en) * | 2013-05-17 | 2014-12-08 | 株式会社東芝 | Semiconductor inspection method and semiconductor inspection device |
EP2871455B1 (en) | 2013-11-06 | 2020-03-04 | Invensense, Inc. | Pressure sensor |
EP2871456B1 (en) | 2013-11-06 | 2018-10-10 | Invensense, Inc. | Pressure sensor and method for manufacturing a pressure sensor |
EP3076146B1 (en) | 2015-04-02 | 2020-05-06 | Invensense, Inc. | Pressure sensor |
US11225409B2 (en) | 2018-09-17 | 2022-01-18 | Invensense, Inc. | Sensor with integrated heater |
CN113785178A (en) | 2019-05-17 | 2021-12-10 | 应美盛股份有限公司 | Pressure sensor with improved gas tightness |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5362681A (en) * | 1992-07-22 | 1994-11-08 | Anaglog Devices, Inc. | Method for separating circuit dies from a wafer |
US5445559A (en) * | 1993-06-24 | 1995-08-29 | Texas Instruments Incorporated | Wafer-like processing after sawing DMDs |
US5668033A (en) * | 1995-05-18 | 1997-09-16 | Nippondenso Co., Ltd. | Method for manufacturing a semiconductor acceleration sensor device |
US5939633A (en) * | 1997-06-18 | 1999-08-17 | Analog Devices, Inc. | Apparatus and method for multi-axis capacitive sensing |
US20020115234A1 (en) * | 2001-02-22 | 2002-08-22 | Oleg Siniaguine | Devices having substrates with opening passing through the substrates and conductors in the openings, and methods of manufacture |
US20030006502A1 (en) * | 2000-04-10 | 2003-01-09 | Maurice Karpman | Hermetically sealed microstructure package |
US6505511B1 (en) * | 1997-09-02 | 2003-01-14 | Analog Devices, Inc. | Micromachined gyros |
US20030075794A1 (en) * | 2001-10-23 | 2003-04-24 | Felton Lawrence E. | MEMS capping method and apparatus |
US20040002215A1 (en) * | 2001-12-21 | 2004-01-01 | Dewa Andrew S. | Whole wafer MEMS release process |
US20040195638A1 (en) * | 2001-02-03 | 2004-10-07 | Frank Fischer | Micromechanical component as well as a method for producing a micromechanical component |
US6894358B2 (en) * | 2001-08-24 | 2005-05-17 | Schott Glas | Process for producing microelectromechanical components and a housed microelectromechanical component |
US6904930B2 (en) * | 2001-11-28 | 2005-06-14 | Kenneth Susko | On-board fuel inerting system |
US6946326B2 (en) * | 2000-12-05 | 2005-09-20 | Analog Devices, Inc. | Method and device for protecting micro electromechanical systems structures during dicing of a wafer |
US6956268B2 (en) * | 2001-05-18 | 2005-10-18 | Reveo, Inc. | MEMS and method of manufacturing MEMS |
US6958295B1 (en) * | 1998-01-20 | 2005-10-25 | Tegal Corporation | Method for using a hard mask for critical dimension growth containment |
US7416984B2 (en) * | 2004-08-09 | 2008-08-26 | Analog Devices, Inc. | Method of producing a MEMS device |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100377033B1 (en) | 1996-10-29 | 2003-03-26 | 트러시 테크날러지스 엘엘시 | Integrated circuits and methods for their fabrication |
US6379988B1 (en) * | 2000-05-16 | 2002-04-30 | Sandia Corporation | Pre-release plastic packaging of MEMS and IMEMS devices |
JP4265083B2 (en) * | 2000-05-25 | 2009-05-20 | パナソニック電工株式会社 | Manufacturing method of semiconductor pressure sensor |
WO2003054927A2 (en) | 2001-11-07 | 2003-07-03 | The Board Of Trustees Of The University Of Arkansas | Structure and process for packaging rf mems and other devices |
US6673697B2 (en) * | 2002-04-03 | 2004-01-06 | Intel Corporation | Packaging microelectromechanical structures |
US7098117B2 (en) | 2002-10-18 | 2006-08-29 | The Regents Of The University Of Michigan | Method of fabricating a package with substantially vertical feedthroughs for micromachined or MEMS devices |
US7335972B2 (en) * | 2003-11-13 | 2008-02-26 | Sandia Corporation | Heterogeneously integrated microsystem-on-a-chip |
-
2004
- 2004-08-09 US US10/914,576 patent/US7416984B2/en active Active
-
2005
- 2005-05-31 WO PCT/US2005/018898 patent/WO2006022957A1/en active Application Filing
- 2005-05-31 EP EP05755272A patent/EP1776313B1/en not_active Ceased
- 2005-05-31 DE DE602005020148T patent/DE602005020148D1/en active Active
- 2005-05-31 JP JP2007524796A patent/JP4809838B2/en not_active Expired - Fee Related
- 2005-06-24 TW TW094121069A patent/TWI311981B/en not_active IP Right Cessation
-
2008
- 2008-05-29 US US12/129,283 patent/US20080225505A1/en not_active Abandoned
-
2011
- 2011-07-14 US US13/182,924 patent/US8343369B2/en not_active Expired - Lifetime
Patent Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5362681A (en) * | 1992-07-22 | 1994-11-08 | Anaglog Devices, Inc. | Method for separating circuit dies from a wafer |
US5445559A (en) * | 1993-06-24 | 1995-08-29 | Texas Instruments Incorporated | Wafer-like processing after sawing DMDs |
US5605489A (en) * | 1993-06-24 | 1997-02-25 | Texas Instruments Incorporated | Method of protecting micromechanical devices during wafer separation |
US5668033A (en) * | 1995-05-18 | 1997-09-16 | Nippondenso Co., Ltd. | Method for manufacturing a semiconductor acceleration sensor device |
US5939633A (en) * | 1997-06-18 | 1999-08-17 | Analog Devices, Inc. | Apparatus and method for multi-axis capacitive sensing |
US6505511B1 (en) * | 1997-09-02 | 2003-01-14 | Analog Devices, Inc. | Micromachined gyros |
US6958295B1 (en) * | 1998-01-20 | 2005-10-25 | Tegal Corporation | Method for using a hard mask for critical dimension growth containment |
US20030006502A1 (en) * | 2000-04-10 | 2003-01-09 | Maurice Karpman | Hermetically sealed microstructure package |
US6946326B2 (en) * | 2000-12-05 | 2005-09-20 | Analog Devices, Inc. | Method and device for protecting micro electromechanical systems structures during dicing of a wafer |
US20040195638A1 (en) * | 2001-02-03 | 2004-10-07 | Frank Fischer | Micromechanical component as well as a method for producing a micromechanical component |
US20020115234A1 (en) * | 2001-02-22 | 2002-08-22 | Oleg Siniaguine | Devices having substrates with opening passing through the substrates and conductors in the openings, and methods of manufacture |
US6956268B2 (en) * | 2001-05-18 | 2005-10-18 | Reveo, Inc. | MEMS and method of manufacturing MEMS |
US6894358B2 (en) * | 2001-08-24 | 2005-05-17 | Schott Glas | Process for producing microelectromechanical components and a housed microelectromechanical component |
US6893574B2 (en) * | 2001-10-23 | 2005-05-17 | Analog Devices Inc | MEMS capping method and apparatus |
US20030075794A1 (en) * | 2001-10-23 | 2003-04-24 | Felton Lawrence E. | MEMS capping method and apparatus |
US6904930B2 (en) * | 2001-11-28 | 2005-06-14 | Kenneth Susko | On-board fuel inerting system |
US20040002215A1 (en) * | 2001-12-21 | 2004-01-01 | Dewa Andrew S. | Whole wafer MEMS release process |
US7416984B2 (en) * | 2004-08-09 | 2008-08-26 | Analog Devices, Inc. | Method of producing a MEMS device |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110148096A1 (en) * | 2009-12-23 | 2011-06-23 | GE Global Patent Operation | Device for measuring fluid properties in caustic environments |
US8002315B2 (en) | 2009-12-23 | 2011-08-23 | General Electric Corporation | Device for measuring fluid properties in caustic environments |
US11534250B2 (en) | 2014-09-30 | 2022-12-27 | Auris Health, Inc. | Configurable robotic surgical system with virtual rail and flexible endoscope |
US11701192B2 (en) | 2016-08-26 | 2023-07-18 | Auris Health, Inc. | Steerable catheter with shaft load distributions |
US20180177561A1 (en) * | 2016-12-28 | 2018-06-28 | Auris Surgical Robotics, Inc. | Endolumenal object sizing |
US10136959B2 (en) * | 2016-12-28 | 2018-11-27 | Auris Health, Inc. | Endolumenal object sizing |
US11337602B2 (en) | 2016-12-28 | 2022-05-24 | Auris Health, Inc. | Endolumenal object sizing |
US11911011B2 (en) | 2016-12-28 | 2024-02-27 | Auris Health, Inc. | Endolumenal object sizing |
Also Published As
Publication number | Publication date |
---|---|
TWI311981B (en) | 2009-07-11 |
DE602005020148D1 (en) | 2010-05-06 |
JP4809838B2 (en) | 2011-11-09 |
US7416984B2 (en) | 2008-08-26 |
EP1776313A1 (en) | 2007-04-25 |
US20110266639A1 (en) | 2011-11-03 |
WO2006022957A1 (en) | 2006-03-02 |
US20060027522A1 (en) | 2006-02-09 |
US8343369B2 (en) | 2013-01-01 |
JP2008508110A (en) | 2008-03-21 |
TW200613214A (en) | 2006-05-01 |
EP1776313B1 (en) | 2010-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8343369B2 (en) | Method of producing a MEMS device | |
US5604160A (en) | Method for packaging semiconductor devices | |
US7422962B2 (en) | Method of singulating electronic devices | |
US6946366B2 (en) | Method and device for protecting micro electromechanical systems structures during dicing of a wafer | |
US20060228831A1 (en) | Method and system of releasing a MEMS structure | |
US9150408B2 (en) | Method of etching a wafer | |
US6933211B2 (en) | Semiconductor device whose semiconductor chip has chamfered backside surface edges and method of manufacturing the same | |
US9346671B2 (en) | Shielding MEMS structures during wafer dicing | |
US7598125B2 (en) | Method for wafer level packaging and fabricating cap structures | |
US12060266B2 (en) | Method with mechanical dicing process for producing MEMS components | |
US8470631B2 (en) | Method for manufacturing capped MEMS components | |
US10183862B2 (en) | Method of strain gauge fabrication using a transfer substrate | |
US6368885B1 (en) | Method for manufacturing a micromechanical component | |
US7361284B2 (en) | Method for wafer-level package | |
US7566574B2 (en) | Method of performing a double-sided process | |
US7323355B2 (en) | Method of forming a microelectronic device | |
CN100530572C (en) | Method of chip grade packaging | |
US11905170B2 (en) | MEMS tab removal process | |
Lacsamana et al. | Wafer thinning solution for wafer-level-capped MEMS devices | |
KR20210126662A (en) | Micromechanical sensor devices and corresponding manufacturing methods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ANALOG DEVICES, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MARTIN, JOHN R.;FELTON, LAWRENCE E.;WEBSTER, WILLIAM A.;AND OTHERS;REEL/FRAME:021023/0425;SIGNING DATES FROM 20040730 TO 20040805 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |