US20070244511A1 - Endoscopic device and method of assembly - Google Patents
Endoscopic device and method of assembly Download PDFInfo
- Publication number
- US20070244511A1 US20070244511A1 US11/404,796 US40479606A US2007244511A1 US 20070244511 A1 US20070244511 A1 US 20070244511A1 US 40479606 A US40479606 A US 40479606A US 2007244511 A1 US2007244511 A1 US 2007244511A1
- Authority
- US
- United States
- Prior art keywords
- clevis
- jaws
- barrel
- jaw
- set forth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B10/00—Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
- A61B10/02—Instruments for taking cell samples or for biopsy
- A61B10/06—Biopsy forceps, e.g. with cup-shaped jaws
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/28—Surgical forceps
- A61B17/29—Forceps for use in minimally invasive surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/00234—Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
- A61B2017/00292—Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/00234—Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
- A61B2017/00349—Needle-like instruments having hook or barb-like gripping means, e.g. for grasping suture or tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/00234—Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
- A61B2017/00362—Packages or dispensers for MIS instruments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00477—Coupling
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/28—Surgical forceps
- A61B17/29—Forceps for use in minimally invasive surgery
- A61B2017/2901—Details of shaft
- A61B2017/2905—Details of shaft flexible
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/28—Surgical forceps
- A61B17/29—Forceps for use in minimally invasive surgery
- A61B2017/2926—Details of heads or jaws
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B2017/320064—Surgical cutting instruments with tissue or sample retaining means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B50/00—Containers, covers, furniture or holders specially adapted for surgical or diagnostic appliances or instruments, e.g. sterile covers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/50—Supports for surgical instruments, e.g. articulated arms
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T74/00—Machine element or mechanism
- Y10T74/20—Control lever and linkage systems
- Y10T74/20396—Hand operated
- Y10T74/20402—Flexible transmitter [e.g., Bowden cable]
- Y10T74/20462—Specific cable connector or guide
Definitions
- the present invention generally relates to endoscopic instruments, and more particularly to biopsy forceps and other endoscopic end effectors.
- Endoscopic biopsy forceps are a medical instrument used in combination with an endoscope for removing tissue samples from inside a patient's body for analysis. These instruments typically include an elongate flexible member having a biopsy jaw assembly mounted on one end.
- the jaw assembly includes a clevis holding pivotally mounted jaws adapted for removing tissue for analysis.
- An actuator comprising an actuator handle and an actuator member extending from the handle to the pivoting jaws of the jaw assembly moves the jaws between an open position in which the ends of the jaws are spaced and a closed position in which the ends of the jaws contact each other to obtain the tissue sample.
- some aspects of the present invention relate to other types of endoscopic end effectors such as a flexible grasper, a dissector, or scissors.
- Biopsy forceps frequently have teeth along the mating edges of the jaws to improve grasping of the tissue.
- the teeth extending along each side of the jaw and those extending across the end of the jaw interact differently with the tissue. In the past, these differences in interaction have not been taken into account when selecting tooth profiles for the different portions of the jaw.
- a fundamental function of biopsy forceps is to pinch tissue in order to tear a sample free. The teeth, particularly those at the end of the jaw, are believed to have a significant impact on sample depth and weight.
- the jaw assembly includes a clevis
- certain obstacles are presented during assembly. If the clevis and axle pin are inseparably assembled before the jaws are installed, the arms of the clevis must be spread when the jaws are being assembled with the clevis. If the clevis and axle pin are separate, the jaws must be inserted between the clevis arms and aligned with the axle pin. Either process has a potential for increasing assembly cost. Still further, connecting the actuator members to the jaw assembly is difficult to achieve using conventional devises because the clevis blocks clear access to these components.
- the jaw assembly has portions (e.g., distal portions) that are susceptible to higher stresses and wear.
- portions of the jaw can be thicker or made from different materials.
- a large jaw size is desired to obtain a large tissue sample.
- a small jaw size is desirable so that the forceps can travel through smaller radius turns.
- the jaw size is limited by turning radius.
- biopsy forceps and end effectors generally is that these instruments are very long and flexible, making packaging, storage and handling difficult.
- the instruments are frequently coiled when packaged. When the packaging is opened, the instruments can spontaneously uncoil, become unmanageable, potentially falling on the floor, and becoming contaminated or being damaged.
- the present invention includes an endoscopic device comprising an elongate member having opposite ends, and a clevis attached to one end of the opposite ends.
- the clevis includes a barrel having at least one slot longitudinally extending completely through the barrel.
- the device includes a pair of jaws mounted on the clevis for pivotal movement. Each of the jaws has an end opposite the elongate member.
- the device comprises an actuator member operatively connected to the pair of jaws for moving the jaws between a closed position in which the end of the corresponding jaw is positioned adjacent the other jaw and an open position in which an end of the jaw is spaced from the other jaw.
- the invention includes a method of assembling an endoscopic device including a clevis, a pair of opposing jaws, a pivot member and an actuator member.
- the method comprises positioning the clevis in a fixture, positioning the jaws between arms of the clevis, and installing the pivot member through the clevis and the jaws.
- the method further includes adjusting a distance between the arms of the clevis to provide a predetermined stack gap, and connecting the actuator member to the jaws.
- the invention also includes an elongate surgical instrument comprising an elongate member having opposite ends and a generally uniform outer diameter, and a clevis attached to one end of the opposite ends.
- the clevis includes a barrel having an inner diameter conforming to the outer diameter of the elongate member.
- the instrument also includes a jaw assembly mounted on the clevis for pivotal movement, and an actuator member operatively connected to the jaw assembly for moving the jaw assembly between a closed position and an open position.
- the invention includes a method of assembling an endoscopic device including a clevis, an end effector, a pivot member and an actuator member.
- the method comprises positioning the clevis in a fixture, positioning the end effector in the clevis, and installing the pivot member through a hole in the clevis and a hole in the end effector.
- the method further comprises biasing the pivot member to a side of the hole in the clevis, and joining the pivot member to the side of the clevis hole.
- FIG. 1 is a side elevation of biopsy forceps of the present invention
- FIG. 2 is a partially disassembled side elevation of a handle assembly of the biopsy forceps
- FIG. 3 is a perspective of biopsy forceps of the present invention.
- FIG. 4 is a perspective of a portion of the handle assembly of the biopsy forceps
- FIG. 5 is a detail in partial section of the handle assembly of the biopsy forceps
- FIG. 6 is a cross section of a jaw assembly of the biopsy forceps showing jaws in an open position
- FIG. 7 is a cross section of the jaw assembly showing jaws in a closed position
- FIG. 8 is a perspective of the jaw assembly of the biopsy forceps showing jaws in an open position
- FIG. 9 is a perspective of a jaw of the jaw assembly
- FIG. 10 is a perspective of a first alternative clevis
- FIG. 11 is a perspective of a second alternative clevis
- FIG. 12 is a perspective of a third alternative clevis
- FIG. 13 is a perspective of a fourth alternative clevis
- FIG. 14 is a perspective of a first alternative jaw
- FIG. 15 is a top plan of a second alternative jaw
- FIGS. 16A and 16B are top plans of first and second alternative actuator members, respectively;
- FIG. 17 is a perspective of a second alternative actuator member and jaw
- FIG. 18 is a top plan of a third alternative jaw
- FIG. 19 is a perspective of a fourth alternative jaw
- FIG. 20 is an alternate perspective of the fourth alternative jaw.
- FIGS. 21 A-E illustrate a sequence of movements used to prepare the instrument for packaging using one method.
- a surgical instrument of the present invention is designated in its entirety by the reference numeral 30 .
- the surgical instrument 30 illustrated in FIG. 1 is a pair of biopsy forceps, in some embodiments of the present invention the surgical instrument may be a different type of endoscopic end effector such as a flexible grasper, a dissector or scissors.
- the surgical instrument 30 is used to sample tissue (not shown) of a patient during surgery or endoscopy.
- the instrument 30 generally comprises an elongate member, generally designated by 32 , having opposite ends 34 , 36 .
- a jaw assembly, generally designated by 40 is mounted on the elongate member 32 adjacent its end 34 .
- the jaw assembly 40 includes jaws 42 mounted for independent pivotal movement relative to each other between a closed position ( FIG. 7 ) for grasping tissue and an open position ( FIG. 6 showing a partially open position) for releasing tissue.
- the instrument 30 comprises an actuator assembly, generally designated by 44 , including an actuator member 46 operatively connected to the jaw assembly 40 for moving the jaws 42 between the open and closed positions, and a handle assembly, generally designated by 50 , operatively connected to the actuator member.
- the actuator member 46 may be made of other materials without departing from the scope of the present invention, in one embodiment the member 46 is a tube having an inner diameter of between about 0.020 inch and about 0.030 inch crimped to hold a pair of wires having outer diameters of between about 0.010 inch and about 0.012 inch.
- the tube and wires may be made of other materials without departing from the scope of the present invention, in one embodiment they are made from 304 stainless steel.
- the tube may have other dimensions without departing from the scope of the present invention, in one embodiment the tube has an overall length of between about two inches and about three inches and an outer diameter of between about 0.030 inch and about 0.040 inch.
- the handle assembly 50 includes a hollow shank 52 having an elongate slot 54 extending partially along its length.
- a spool, generally designated by 56 is slidably mounted on the shank 52 and a thumb ring 58 is provided at an end of the shank opposite the elongate member 32 for receiving a surgeon's thumb during use.
- a C-clip fastener 60 is provided on the thumb ring 58 for releasably connecting the elongate member 32 to the handle assembly 50 during storage and packaging as illustrated in FIG. 3 .
- the fastener is a C-clip integrally molded on a proximal end of the thumb ring.
- the spool 56 is formed in two halves joined by press pins 62 as shown in FIG. 2 .
- each press pin 62 has a circular cross section and is positioned in a hexagonal hole.
- the spool 56 is held together with adhesives, with screws or with detent fasteners.
- the spool 56 When assembled, the spool 56 includes an annular groove 64 formed between circumferentially extending ribs 66 , 68 . In use, the surgeon holds the spool 56 between his/her index finger and middle finger so that the fingers are positioned in the annular groove 64 . The surgeon's thumb is inserted in the thumb ring 58 .
- the spool 56 may be moved toward and away from the thumb ring 58 by pulling or pushing the fingers against the ribs 66 , 68 , respectively.
- shank 52 and spool 56 may be made from other materials without departing from the scope of the present invention, in one embodiment the shank and spool are made from a polymer such as polycarbonate, polypropylene or ABS.
- a retainer 70 is captured in a recess 72 formed in the spool 56 halves.
- the retainer 70 includes a slot 74 for receiving a bent end 76 of the tube portion of the actuator member 46 .
- the tubing 78 reinforces the actuator member 46 .
- the retainer 70 may be made of other materials without departing from the scope of the present invention, in one embodiment the retainer is made of 400 series stainless steel.
- the shank 52 of the handle assembly 50 includes a connector portion, generally designated by 80 .
- the connector portion 80 includes a bore 82 .
- the ferrule 84 is crimped around the elongate member 32 .
- the ferrule 84 includes barbs (not shown) that prevent the member from being withdrawn from the bore 82 . Accordingly, the elongate member 32 is firmly connected to the handle assembly 50 so they form an inseparable assembly.
- the ferrule 84 may be made of other materials without departing from the scope of the present invention, in one embodiment the ferrule is made of brass.
- the ferrule 84 may have other dimensions without departing from the scope of the present invention, in one embodiment the ferrule has an overall length of between about 0.75 inch and about 1.25 inches, an undeformed inner diameter of between about 0.075 inch and about 0.095 inch, and an undeformed outer diameter of between about 0.100 inch and about 0.150 inch.
- the elongate member 32 comprises a coil 90 having an outer cover 92 and a inner lumen 94 .
- the coil 90 may be made of other materials, in one embodiment the coil is made from 302 stainless steel.
- the coil may have other maximum outer diameters without departing from the scope of the present invention, in one embodiment the coil has a maximum outer diameter of between about 0.070 inch and about 0.080 inch. In one particular embodiment, the coil has a maximum outer diameter of about 0.074 inch.
- the coil 90 may have other configurations without departing from the scope of the present invention, in one embodiment the coil has a generally circular cross section and a generally uniform outer diameter. So the coil 90 has sufficient stiffness, the coil may be made so it has compressive preload.
- the coil 90 may have other compressive preloads without departing from the scope of the present invention, in one embodiment the coil has a compressive preload of between 0.75 pound and about 1.5 pounds. In other words, a tensile load of between about 0.75 pound and about 1.5 pounds is required to separate windings of the coil 90 . In one particular embodiment, the coil 90 has a compressive preload of about 1.3 pounds.
- the outer cover 92 may be made of other materials without departing from the scope of the present invention, in one embodiment the outer cover is made from polyolefin.
- the inner lumen 94 may be made of other materials without departing from the scope of the present invention, in one embodiment the inner lumen is made from high density polyethylene.
- the coil 90 may have other dimensions without departing from the scope of the present invention, in one embodiment the coil has an overall length of between about 220 centimeters and about 260 centimeters, an outer diameter of between about 0.070 inch and about 0.080 inch, and an inner diameter of between about 0.035 inch and about 0.040 inch.
- the coil 90 is made from wire stock having a diameter of between about 0.015 inch and about 0.020 inch.
- outer cover 92 may have other outer diameters without departing from the scope of the present invention, in one embodiment the outer cover has an outer diameter of between about 0.085 inch and about 0.92 inch.
- inner lumen 94 may have other inner diameters without departing from the scope of the present invention, in one embodiment the inner lumen has an inner diameter of between about 0.020 inch and about 0.035 inch. As the elongate member 32 is generally conventional, it will not be described in further detail.
- the jaw assembly 40 includes a clevis, generally designated by 100 , mounted on the end 34 of the elongate member 32 .
- the clevis includes two arms 102 extending generally parallel to each other from a barrel 104 .
- Each of the arms 102 includes a pivot hole for receiving an axle pin 106 therein so that the axle pin extends between the arms.
- the axle pin 106 pivotally connects the jaws 42 of the jaw assembly 40 to the clevis 100 .
- the axle pin 106 may connect a central needle 110 to the clevis 100 .
- the needle 110 includes a sharp point 112 for penetrating tissue (not shown). As shown in FIG.
- the needle 110 also includes an opening 114 for receiving the axle pin 106 .
- the needle 110 also includes a lobe 116 opposite the point 112 for engaging the jaws 42 to hold the needle in a centered position between the jaws as will be explained in further detail below.
- the clevis 100 may be made of other materials without departing from the scope of the present invention, in one embodiment the clevis is made from 17-7 PH stainless steel.
- the axle pin 106 may be made of other materials without departing from the scope of the present invention, in one embodiment the axle pin is made from 304 stainless steel.
- the needle 110 may be made of other materials without departing from the scope of the present invention, in one embodiment the needle is made from 302 stainless steel.
- the clevis 100 is positioned in a fixture (not shown).
- the jaws 42 and the needle 110 are positioned between the arms 102 of the clevis 100 and the axle pin 106 is inserted through the holes in the clevis, jaws and needle.
- the axle pin 106 is biased toward one side of the holes in the clevis 100 and joined to the clevis using a conventional method such as welding, swaging or riveting.
- each of the jaws 42 includes a cup 120 having opposite side walls 122 extending longitudinally along the respective jaw and an end wall 124 extending across corresponding forward ends of the side walls.
- the side walls 122 and end wall 124 extend generally perpendicular to a central land 126 of the cup 120 .
- each jaw 42 includes a hinge extension 130 extending from one of the side walls 122 .
- the jaw 42 may have other configurations without departing from the scope of the present invention, in one embodiment the other side wall 122 opposite that having the hinge extension 130 is substantially free of extensions.
- the hinge extension 130 extends to a pivot hole or opening 132 adapted for receiving the axle pin 106 extending between the arms 102 of the clevis 100 .
- the jaws 42 may have differing configurations without departing from the scope of the present invention, in one embodiment both jaws 42 are identical to reduce manufacturing costs.
- the hinge extension 130 includes an inner face 134 surrounding the opening 132 . Further, in one embodiment with the central needle 110 , the inner face 134 is offset from an imaginary median plane of the jaws 42 by a distance equal to half a thickness of the central needle. In an alternate embodiment (not shown) that does not include a central needle, the inner face is positioned on the imaginary median plane of the jaws.
- the jaw 42 also includes an outer face 136 positioned to abut the clevis 100 when assembled in the biopsy forceps 30 .
- the side walls 122 have a common tooth profile and the end 124 wall has a tooth profile different from the side wall tooth profile.
- each jaw is stamped from sheet metal and formed to shape.
- the jaws 42 may be made of other materials without departing from the scope of the present invention, in one embodiment the jaws are made from 17-7 PH stainless steel.
- the hinge extension 130 includes a folded portion forming the inner face 134 extending along the median plane and the outer face 136 positioned to abut the clevis 100 when assembled in the biopsy forceps 30 .
- hinge extension 130 may be folded in other ways without departing from the scope of the present invention, in one embodiment the extension is folded along a substantially straight fold extending parallel to a longitudinal axis of the jaw.
- Each jaw 42 also includes a control arm 140 for pivoting the respective jaw about the axle pin 106 .
- the control arm 140 may have other configurations, in one embodiment the control arm is integrally formed as part of the hinge extension 130 .
- the control arm 140 includes an actuation hole or opening 142 for receiving the actuator member 46 .
- each cup 120 includes an opening 144 allowing the respective cup to drain.
- FIG. 10 An alternative embodiment of the clevis is generally designated by the reference number 200 in FIG. 10 .
- the clevis 200 is formed in two pieces 202 . Each piece includes a barrel portion 204 for engaging the end 34 of the elongate member 32 .
- Each clevis half 202 further includes an arm 206 . Each arm 206 includes a hole 208 for receiving the axle pin 106 therein.
- To assemble the jaw assembly 40 using the alternate clevis embodiment shown in FIG. 10 one of the clevis halves 202 is joined to an axle pin 106 to form a master clevis piece. The master clevis piece is held in position against the end 34 of the elongate member 32 and the jaws 42 and needle 110 are mounted on the axle pin 106 .
- the second half of the clevis 202 is placed over the first half and the axle pin 106 is laser welded to the corresponding hole 208 in the clevis arm 206 .
- the barrels 204 of the clevis halves 202 are simultaneously welded (e.g., laser welded) to the end 32 of the elongate member 32 . It is envisioned that this assembly method would simplify the assembly process even when additional components (not shown) such as spacers and spring washers are added to the assembly. Because the clevis 200 is split, component tolerances may be larger. As other features of the clevis 200 are identical to those described above, they will not be described in further detail.
- FIG. 11 shows a second alternative embodiment of a clevis generally designated by the referenced number 210 .
- This embodiment of the clevis 210 is identical to the first alternative embodiment of the clevis 200 described above except that one clevis half 212 includes protrusions such as rectangular tabs 214 extending from its barrel 216 .
- the barrel 218 of the other half includes recesses such as rectangular notches 220 for accommodating the tabs 214 .
- This second alternative embodiment allows for one clevis half to extend more than half way around the end 34 of the elongate member 32 to aid in holding the clevis half in place during assembly.
- the tabs 214 and notches 220 also constitute alignment features that aid in locating the second clevis half.
- a notch or other locating feature may be included on the barrel of the clevis 210 for aligning the clevis with the end 34 of the elongate member 32 . Because other features of the clevis 210 are identical to those described above, they will not be described in further detail.
- a first clevis half is positioned in a fixture (not shown).
- the jaws are positioned on the first clevis half and if a central needle is used it is positioned between the jaws.
- a second clevis half is positioned on the jaw assembly.
- the stacked components are squeezed together by the fixture and then the fixture is relaxed so that a total accumulated stack gap between the components is within a tolerance selected to assure proper operation of the jaws.
- the accumulated gap is between about 0.0005 inch and about 0.003 inch.
- a pivot member or pivot pin is inserted through the components and fastened in place.
- the actuator member may be connected to the jaws at a convenient time during the assembly.
- a third alternative embodiment is generally designated by the reference number 230 in FIG. 12 .
- This third alternative embodiment of the clevis 230 is identical to the first alternative embodiment 200 illustrated in FIG. 10 except that the clevis halves are joined on one side, leaving a slot 232 along one side.
- the jaw assembly 42 is assembled without assembling the clevis 230 to the end 34 of the elongate member 32 .
- This jaw assembly 42 may be manufactured remote from the overall instrument.
- the slot 232 has an advantage of aiding in inserting the actuation member 46 during assembly.
- Other features of the clevis 230 are identical to those described above and will not be described in further detail.
- FIG. 13 illustrates a fourth alternative embodiment generally designated by the reference number 234 .
- the fourth alternative embodiment of the clevis 234 is identical to the third alternative embodiment 230 except that the clevis includes arms 236 having folded portion 238 .
- Other features of the clevis 234 are identical to those described above and will not be described in further detail.
- clevises described above having joined halves are assembled similarly to the previously described method except that the first and second clevis halves are simultaneously positioned on the fixture and the jaws and needle are inserted between the arms of the clevis during assembly rather than stacked in sequence.
- Other aspects of the assembly method are identical and will not be described in further detail.
- FIG. 14 illustrates an alternative embodiment of a jaw 240 .
- the jaw 240 is identical to the previously discussed jaw 42 except that the end wall 242 has a sinusoidal tooth profile and the drain hole 144 is omitted.
- the side walls 122 ( FIG. 9 ) of this embodiment have a tooth profile that is generally uniform and repeating.
- the side wall tooth profile has generally saw tooth shape.
- the spacing of tooth profile of the end wall 242 is longer than that of the tooth profile of the side walls 122 .
- FIG. 15 discloses a second alternative embodiment of the jaws, generally designated 250 .
- the second alternative embodiment of the jaw 250 is similar to the first embodiment of the jaw 42 described above except that the folded portion of the hinge extension 130 is replaced with an embossed portion 252 .
- This embossed portion 252 is positioned longitudinally between two other portions 254 , 256 .
- the embossed portion 252 includes an inner face extending along the median plane.
- the other portions 254 , 256 include the outer face positioned to abut the clevis 100 when assembled in the biopsy forceps 30 . Because other features of the jaws are identical to those described above, they will not be described in further detail.
- FIG. 16A illustrates a partial jaw assembly and an alternative embodiment of an actuator member 270 .
- the actuator member 270 comprises an actuator wire having a helical portion 272 for connecting the actuator member to the control arm 140 of the jaw 42 .
- the helical portion 272 of the actuation wire 270 permits the wire to be easily threaded into the opening 142 in the control arm 140 of the jaw 42 to save assembly time and eliminate other processes for connecting the wire to the control arm (e.g., heading).
- FIG. 16B illustrates a partial jaw assembly and a second alternative embodiment of an actuator member 270 .
- the actuator member 270 comprises an actuator wire having a helical portion 274 similar to that of the previously described embodiment except that the helical portion of the second alternative embodiment is wound about a lateral axis rather than a longitudinal axis.
- the actuation wire 276 includes a bent end 278 .
- a U-shaped tang 280 formed on the jaw 282 adjacent the control arm opening 142 retains the actuation wire 276 in position in the control arm opening.
- the bent end 278 of the wire 276 is inserted in the opening 142 and then the jaw 282 is rotated relative to the wire so the tang 280 engages the wire to prevent removal of the bent portion of the wire from the opening.
- FIG. 18 illustrates an alternative embodiment of a jaw, generally designated by 290 .
- the jaw 290 of this alternative embodiment is made from separate pieces.
- the jaw has a cup 292 with a pair of hinge connectors 294 extending from it for joining a hinge extension 296 to the cup.
- the hinge extension 296 maybe connected to the hinge connector 294 by any suitable means such as laser welding or adhesives.
- the jaw cup 292 of the alternative embodiment has a different shape than those disclosed above.
- the primary difference between the jaw cup 292 shown in FIG. 18 and those previously disclosed is that the side walls are spaced farther from the median plane at a position between the front end and the back end than at the front end and at the back end.
- the jaw cup of this embodiment permits a larger volume of tissue to be removed while maintaining the same minimal bend radius. Cups having other shapes are also envisioned as being within the scope of this embodiment. For example, rather than having an oval shape as shown, the cup may have an hourglass shape or a tapered shape.
- FIG. 19 illustrates a second alternative embodiment of a jaw 300 that maximizes tissue volume removed.
- the end wall 302 has a substantially plainer portion so the cup encompasses a generally rectilinear volume.
- FIG. 20 illustrates an alternate view of the jaw illustrated in FIG. 19 .
- the jaw 300 maybe formed in two pieces, a cup 304 and a hinge extension 306 .
- the cup 304 maybe formed from sheet metal and the hinge extension 306 maybe formed of a polymer such as glass filled nylon.
- the hinge extension 306 may have molded features (e.g., bushing 308 ) rather than a substantially constant thickness. This provides additional material where stresses are higher or where wear is likely to occur.
- the cup 304 and hinge extension 306 may be joined by any conventional means.
- the cup 304 and hinge extension 306 may be joined by heating the hinge extension so that it is molded into holes 310 formed in the cup to mechanically join the components.
- the instrument described above may be wound in a conventional manner prior to packaging.
- One method of preparing the instrument for packaging is particularly advantageous because it reduces the likelihood of the instrument becoming tangled and/or springing apart so it is damaged to contaminated.
- the effector assembly is fastened to the to the fastener on the handle to form a first loop as illustrated in FIG. 21 a .
- the loop is grasped at opposite ends and one end is twisted relative to the other through an angle of about 180 degrees to move the loop into a figure-8 configuration as illustrated in FIG. 21 b .
- Opposite ends of the figure-8 configuration are moved together into an overlapped loop configuration shown in FIG. 21 c .
- the overlapping loop is grasped at opposite ends and one end is twisted relative to the other through an angle of about 180 degrees to move the loop into a double figure-8 configuration as illustrated in FIG. 21 d .
- the ends of the overlapped loop are twisted in a direction opposite to that which the loop was previously twisted as shown by the arrows in FIGS. 21 b and 21 d .
- opposite ends of the double figure-8 configuration are folded together to move the double figure-8 configuration into a quadruple overlapped loop configuration as illustrated in FIG. 21 e .
- the instrument in this final configuration may be packaged in a conventional sterile packaging.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Veterinary Medicine (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Public Health (AREA)
- Medical Informatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Biodiversity & Conservation Biology (AREA)
- Pathology (AREA)
- Ophthalmology & Optometry (AREA)
- Surgical Instruments (AREA)
- Endoscopes (AREA)
Abstract
An endoscopic device including an elongate member having opposite ends, and a clevis attached to one end of the opposite ends. The clevis includes a barrel having at least one slot longitudinally extending completely through the barrel. The device includes a pair of jaws mounted on the clevis for pivotal movement. Each of the jaws has an end opposite the elongate member. The device includes an actuator member operatively connected to the pair of jaws for moving the jaws between a closed position in which the end of the corresponding jaw is positioned adjacent the other jaw and an open position in which an end of the jaw is spaced from the other jaw.
Description
- The present invention generally relates to endoscopic instruments, and more particularly to biopsy forceps and other endoscopic end effectors.
- Endoscopic biopsy forceps are a medical instrument used in combination with an endoscope for removing tissue samples from inside a patient's body for analysis. These instruments typically include an elongate flexible member having a biopsy jaw assembly mounted on one end. The jaw assembly includes a clevis holding pivotally mounted jaws adapted for removing tissue for analysis. An actuator comprising an actuator handle and an actuator member extending from the handle to the pivoting jaws of the jaw assembly moves the jaws between an open position in which the ends of the jaws are spaced and a closed position in which the ends of the jaws contact each other to obtain the tissue sample. In addition to biopsy forceps, some aspects of the present invention relate to other types of endoscopic end effectors such as a flexible grasper, a dissector, or scissors.
- Biopsy forceps frequently have teeth along the mating edges of the jaws to improve grasping of the tissue. As will be appreciated by those skilled in the art, the teeth extending along each side of the jaw and those extending across the end of the jaw interact differently with the tissue. In the past, these differences in interaction have not been taken into account when selecting tooth profiles for the different portions of the jaw. A fundamental function of biopsy forceps is to pinch tissue in order to tear a sample free. The teeth, particularly those at the end of the jaw, are believed to have a significant impact on sample depth and weight.
- Many conventional jaws have been made so that each jaw in the assembly has a different configuration. When a single jaw assembly uses two different jaw configurations, the different jaws must be manufactured, stored and handled during assembly. This situation results in manufacturing inefficiency and a cost increase. In addition, many conventional jaws are cast or molded. Jaws designed to be manufactured using other less expensive processes have the potential for reducing overall assembly cost.
- Because the jaw assembly includes a clevis, certain obstacles are presented during assembly. If the clevis and axle pin are inseparably assembled before the jaws are installed, the arms of the clevis must be spread when the jaws are being assembled with the clevis. If the clevis and axle pin are separate, the jaws must be inserted between the clevis arms and aligned with the axle pin. Either process has a potential for increasing assembly cost. Still further, connecting the actuator members to the jaw assembly is difficult to achieve using conventional devises because the clevis blocks clear access to these components.
- Once assembled, the jaw assembly has portions (e.g., distal portions) that are susceptible to higher stresses and wear. In order to optimize the jaw, some portions of the jaw can be thicker or made from different materials. Although producing a jaw cup by stamping has economic advantages, conventional jaw assemblies have been unable to take advantage of a stamped jaw cup while having thicker portions or portions made from different materials.
- During use, a large jaw size is desired to obtain a large tissue sample. However, when the forceps are being pushed into position, a small jaw size is desirable so that the forceps can travel through smaller radius turns. Using conventional jaw shapes, the jaw size is limited by turning radius.
- Among the problems common to known biopsy forceps and end effectors generally is that these instruments are very long and flexible, making packaging, storage and handling difficult. The instruments are frequently coiled when packaged. When the packaging is opened, the instruments can spontaneously uncoil, become unmanageable, potentially falling on the floor, and becoming contaminated or being damaged. Thus, there is a need for a feature that retains these types of instruments in a coiled configuration when unpackaged.
- Briefly, the present invention includes an endoscopic device comprising an elongate member having opposite ends, and a clevis attached to one end of the opposite ends. The clevis includes a barrel having at least one slot longitudinally extending completely through the barrel. Further, the device includes a pair of jaws mounted on the clevis for pivotal movement. Each of the jaws has an end opposite the elongate member. In addition, the device comprises an actuator member operatively connected to the pair of jaws for moving the jaws between a closed position in which the end of the corresponding jaw is positioned adjacent the other jaw and an open position in which an end of the jaw is spaced from the other jaw.
- In yet another aspect, the invention includes a method of assembling an endoscopic device including a clevis, a pair of opposing jaws, a pivot member and an actuator member. The method comprises positioning the clevis in a fixture, positioning the jaws between arms of the clevis, and installing the pivot member through the clevis and the jaws. The method further includes adjusting a distance between the arms of the clevis to provide a predetermined stack gap, and connecting the actuator member to the jaws.
- The invention also includes an elongate surgical instrument comprising an elongate member having opposite ends and a generally uniform outer diameter, and a clevis attached to one end of the opposite ends. The clevis includes a barrel having an inner diameter conforming to the outer diameter of the elongate member. The instrument also includes a jaw assembly mounted on the clevis for pivotal movement, and an actuator member operatively connected to the jaw assembly for moving the jaw assembly between a closed position and an open position.
- In addition, the invention includes a method of assembling an endoscopic device including a clevis, an end effector, a pivot member and an actuator member. The method comprises positioning the clevis in a fixture, positioning the end effector in the clevis, and installing the pivot member through a hole in the clevis and a hole in the end effector. The method further comprises biasing the pivot member to a side of the hole in the clevis, and joining the pivot member to the side of the clevis hole.
- Other features of the present invention will be in part apparent and in part pointed out hereinafter.
-
FIG. 1 is a side elevation of biopsy forceps of the present invention; -
FIG. 2 is a partially disassembled side elevation of a handle assembly of the biopsy forceps; -
FIG. 3 is a perspective of biopsy forceps of the present invention; -
FIG. 4 is a perspective of a portion of the handle assembly of the biopsy forceps; -
FIG. 5 is a detail in partial section of the handle assembly of the biopsy forceps; -
FIG. 6 is a cross section of a jaw assembly of the biopsy forceps showing jaws in an open position; -
FIG. 7 is a cross section of the jaw assembly showing jaws in a closed position; -
FIG. 8 is a perspective of the jaw assembly of the biopsy forceps showing jaws in an open position; -
FIG. 9 is a perspective of a jaw of the jaw assembly; -
FIG. 10 is a perspective of a first alternative clevis; -
FIG. 11 is a perspective of a second alternative clevis; -
FIG. 12 is a perspective of a third alternative clevis; -
FIG. 13 is a perspective of a fourth alternative clevis -
FIG. 14 is a perspective of a first alternative jaw; -
FIG. 15 is a top plan of a second alternative jaw; -
FIGS. 16A and 16B are top plans of first and second alternative actuator members, respectively; -
FIG. 17 is a perspective of a second alternative actuator member and jaw; -
FIG. 18 is a top plan of a third alternative jaw; -
FIG. 19 is a perspective of a fourth alternative jaw; -
FIG. 20 is an alternate perspective of the fourth alternative jaw; and. - FIGS. 21A-E illustrate a sequence of movements used to prepare the instrument for packaging using one method.
- Corresponding reference characters indicate corresponding parts throughout the several views of the drawings.
- Referring now to the drawings and in particular to
FIG. 1 , a surgical instrument of the present invention is designated in its entirety by thereference numeral 30. Although thesurgical instrument 30 illustrated inFIG. 1 is a pair of biopsy forceps, in some embodiments of the present invention the surgical instrument may be a different type of endoscopic end effector such as a flexible grasper, a dissector or scissors. In the case of the biopsy forceps embodiment, thesurgical instrument 30 is used to sample tissue (not shown) of a patient during surgery or endoscopy. Theinstrument 30 generally comprises an elongate member, generally designated by 32, having opposite ends 34, 36. A jaw assembly, generally designated by 40, is mounted on theelongate member 32 adjacent itsend 34. Thejaw assembly 40 includesjaws 42 mounted for independent pivotal movement relative to each other between a closed position (FIG. 7 ) for grasping tissue and an open position (FIG. 6 showing a partially open position) for releasing tissue. As further shown inFIG. 1 , theinstrument 30 comprises an actuator assembly, generally designated by 44, including anactuator member 46 operatively connected to thejaw assembly 40 for moving thejaws 42 between the open and closed positions, and a handle assembly, generally designated by 50, operatively connected to the actuator member. Although theactuator member 46 may be made of other materials without departing from the scope of the present invention, in one embodiment themember 46 is a tube having an inner diameter of between about 0.020 inch and about 0.030 inch crimped to hold a pair of wires having outer diameters of between about 0.010 inch and about 0.012 inch. Although the tube and wires may be made of other materials without departing from the scope of the present invention, in one embodiment they are made from 304 stainless steel. Although the tube may have other dimensions without departing from the scope of the present invention, in one embodiment the tube has an overall length of between about two inches and about three inches and an outer diameter of between about 0.030 inch and about 0.040 inch. - As illustrated in
FIG. 2 , thehandle assembly 50 includes ahollow shank 52 having anelongate slot 54 extending partially along its length. A spool, generally designated by 56, is slidably mounted on theshank 52 and athumb ring 58 is provided at an end of the shank opposite theelongate member 32 for receiving a surgeon's thumb during use. A C-clip fastener 60 is provided on thethumb ring 58 for releasably connecting theelongate member 32 to thehandle assembly 50 during storage and packaging as illustrated inFIG. 3 . Although other fastener types may be used without departing from the scope of the present invention, in one embodiment the fastener is a C-clip integrally molded on a proximal end of the thumb ring. Thespool 56 is formed in two halves joined by press pins 62 as shown inFIG. 2 . In one particular embodiment, eachpress pin 62 has a circular cross section and is positioned in a hexagonal hole. In an alternative embodiment, thespool 56 is held together with adhesives, with screws or with detent fasteners. When assembled, thespool 56 includes anannular groove 64 formed between circumferentially extendingribs spool 56 between his/her index finger and middle finger so that the fingers are positioned in theannular groove 64. The surgeon's thumb is inserted in thethumb ring 58. Thespool 56 may be moved toward and away from thethumb ring 58 by pulling or pushing the fingers against theribs shank 52 andspool 56 may be made from other materials without departing from the scope of the present invention, in one embodiment the shank and spool are made from a polymer such as polycarbonate, polypropylene or ABS. - As illustrated in
FIG. 4 , aretainer 70 is captured in arecess 72 formed in thespool 56 halves. Theretainer 70 includes aslot 74 for receiving abent end 76 of the tube portion of theactuator member 46. Thetubing 78 reinforces theactuator member 46. Thus, as thespool 56 is moved back and forth relative to theshank 52, theactuator member 46 slides back and forth in theelongate member 32 of theinstrument 30. Although theretainer 70 may be made of other materials without departing from the scope of the present invention, in one embodiment the retainer is made of 400 series stainless steel. - As illustrated in
FIG. 5 , theshank 52 of thehandle assembly 50 includes a connector portion, generally designated by 80. Theconnector portion 80 includes abore 82. During assembly, theend 36 of theelongate member 32 is inserted in thebore 82. Aferrule 84 is crimped around theelongate member 32. Theferrule 84 includes barbs (not shown) that prevent the member from being withdrawn from thebore 82. Accordingly, theelongate member 32 is firmly connected to thehandle assembly 50 so they form an inseparable assembly. Although theferrule 84 may be made of other materials without departing from the scope of the present invention, in one embodiment the ferrule is made of brass. Further, although theferrule 84 may have other dimensions without departing from the scope of the present invention, in one embodiment the ferrule has an overall length of between about 0.75 inch and about 1.25 inches, an undeformed inner diameter of between about 0.075 inch and about 0.095 inch, and an undeformed outer diameter of between about 0.100 inch and about 0.150 inch. - As shown in
FIG. 6 , theelongate member 32 comprises acoil 90 having anouter cover 92 and ainner lumen 94. Although thecoil 90 may be made of other materials, in one embodiment the coil is made from 302 stainless steel. Although the coil may have other maximum outer diameters without departing from the scope of the present invention, in one embodiment the coil has a maximum outer diameter of between about 0.070 inch and about 0.080 inch. In one particular embodiment, the coil has a maximum outer diameter of about 0.074 inch. Although thecoil 90 may have other configurations without departing from the scope of the present invention, in one embodiment the coil has a generally circular cross section and a generally uniform outer diameter. So thecoil 90 has sufficient stiffness, the coil may be made so it has compressive preload. Although thecoil 90 may have other compressive preloads without departing from the scope of the present invention, in one embodiment the coil has a compressive preload of between 0.75 pound and about 1.5 pounds. In other words, a tensile load of between about 0.75 pound and about 1.5 pounds is required to separate windings of thecoil 90. In one particular embodiment, thecoil 90 has a compressive preload of about 1.3 pounds. - Likewise, although the
outer cover 92 may be made of other materials without departing from the scope of the present invention, in one embodiment the outer cover is made from polyolefin. Although theinner lumen 94 may be made of other materials without departing from the scope of the present invention, in one embodiment the inner lumen is made from high density polyethylene. Although thecoil 90 may have other dimensions without departing from the scope of the present invention, in one embodiment the coil has an overall length of between about 220 centimeters and about 260 centimeters, an outer diameter of between about 0.070 inch and about 0.080 inch, and an inner diameter of between about 0.035 inch and about 0.040 inch. Thecoil 90 is made from wire stock having a diameter of between about 0.015 inch and about 0.020 inch. Further, although theouter cover 92 may have other outer diameters without departing from the scope of the present invention, in one embodiment the outer cover has an outer diameter of between about 0.085 inch and about 0.92 inch. Although theinner lumen 94 may have other inner diameters without departing from the scope of the present invention, in one embodiment the inner lumen has an inner diameter of between about 0.020 inch and about 0.035 inch. As theelongate member 32 is generally conventional, it will not be described in further detail. - As further illustrated in
FIG. 6 as well as inFIG. 7 , thejaw assembly 40 includes a clevis, generally designated by 100, mounted on theend 34 of theelongate member 32. As shown inFIG. 8 , the clevis includes twoarms 102 extending generally parallel to each other from abarrel 104. Each of thearms 102 includes a pivot hole for receiving anaxle pin 106 therein so that the axle pin extends between the arms. Theaxle pin 106 pivotally connects thejaws 42 of thejaw assembly 40 to theclevis 100. In addition, theaxle pin 106 may connect acentral needle 110 to theclevis 100. Theneedle 110 includes asharp point 112 for penetrating tissue (not shown). As shown inFIG. 6 , theneedle 110 also includes anopening 114 for receiving theaxle pin 106. Theneedle 110 also includes alobe 116 opposite thepoint 112 for engaging thejaws 42 to hold the needle in a centered position between the jaws as will be explained in further detail below. Although theclevis 100 may be made of other materials without departing from the scope of the present invention, in one embodiment the clevis is made from 17-7 PH stainless steel. Although theaxle pin 106 may be made of other materials without departing from the scope of the present invention, in one embodiment the axle pin is made from 304 stainless steel. Although theneedle 110 may be made of other materials without departing from the scope of the present invention, in one embodiment the needle is made from 302 stainless steel. - Using one assembly method, the
clevis 100 is positioned in a fixture (not shown). Thejaws 42 and theneedle 110 are positioned between thearms 102 of theclevis 100 and theaxle pin 106 is inserted through the holes in the clevis, jaws and needle. Theaxle pin 106 is biased toward one side of the holes in theclevis 100 and joined to the clevis using a conventional method such as welding, swaging or riveting. - As illustrated in
FIG. 9 , each of thejaws 42 includes acup 120 havingopposite side walls 122 extending longitudinally along the respective jaw and anend wall 124 extending across corresponding forward ends of the side walls. In one embodiment, theside walls 122 andend wall 124 extend generally perpendicular to acentral land 126 of thecup 120. In addition, eachjaw 42 includes ahinge extension 130 extending from one of theside walls 122. Although thejaw 42 may have other configurations without departing from the scope of the present invention, in one embodiment theother side wall 122 opposite that having thehinge extension 130 is substantially free of extensions. Thehinge extension 130 extends to a pivot hole or opening 132 adapted for receiving theaxle pin 106 extending between thearms 102 of theclevis 100. Although thejaws 42 may have differing configurations without departing from the scope of the present invention, in one embodiment bothjaws 42 are identical to reduce manufacturing costs. In one embodiment, thehinge extension 130 includes aninner face 134 surrounding theopening 132. Further, in one embodiment with thecentral needle 110, theinner face 134 is offset from an imaginary median plane of thejaws 42 by a distance equal to half a thickness of the central needle. In an alternate embodiment (not shown) that does not include a central needle, the inner face is positioned on the imaginary median plane of the jaws. - The
jaw 42 also includes anouter face 136 positioned to abut theclevis 100 when assembled in thebiopsy forceps 30. Theside walls 122 have a common tooth profile and theend 124 wall has a tooth profile different from the side wall tooth profile. Although thejaw 42 maybe formed in other ways, in one embodiment, each jaw is stamped from sheet metal and formed to shape. Although thejaws 42 may be made of other materials without departing from the scope of the present invention, in one embodiment the jaws are made from 17-7 PH stainless steel. In one particular embodiment, thehinge extension 130 includes a folded portion forming theinner face 134 extending along the median plane and theouter face 136 positioned to abut theclevis 100 when assembled in thebiopsy forceps 30. Althoughhinge extension 130 may be folded in other ways without departing from the scope of the present invention, in one embodiment the extension is folded along a substantially straight fold extending parallel to a longitudinal axis of the jaw. Eachjaw 42 also includes acontrol arm 140 for pivoting the respective jaw about theaxle pin 106. Although thecontrol arm 140 may have other configurations, in one embodiment the control arm is integrally formed as part of thehinge extension 130. Thecontrol arm 140 includes an actuation hole or opening 142 for receiving theactuator member 46. In one embodiment, eachcup 120 includes anopening 144 allowing the respective cup to drain. - An alternative embodiment of the clevis is generally designated by the
reference number 200 inFIG. 10 . Theclevis 200 is formed in twopieces 202. Each piece includes abarrel portion 204 for engaging theend 34 of theelongate member 32. Eachclevis half 202 further includes anarm 206. Eacharm 206 includes ahole 208 for receiving theaxle pin 106 therein. To assemble thejaw assembly 40 using the alternate clevis embodiment shown inFIG. 10 , one of the clevis halves 202 is joined to anaxle pin 106 to form a master clevis piece. The master clevis piece is held in position against theend 34 of theelongate member 32 and thejaws 42 andneedle 110 are mounted on theaxle pin 106. The second half of theclevis 202 is placed over the first half and theaxle pin 106 is laser welded to thecorresponding hole 208 in theclevis arm 206. Thebarrels 204 of the clevis halves 202 are simultaneously welded (e.g., laser welded) to theend 32 of theelongate member 32. It is envisioned that this assembly method would simplify the assembly process even when additional components (not shown) such as spacers and spring washers are added to the assembly. Because theclevis 200 is split, component tolerances may be larger. As other features of theclevis 200 are identical to those described above, they will not be described in further detail. -
FIG. 11 shows a second alternative embodiment of a clevis generally designated by the referencednumber 210. This embodiment of theclevis 210 is identical to the first alternative embodiment of theclevis 200 described above except that oneclevis half 212 includes protrusions such asrectangular tabs 214 extending from itsbarrel 216. Thebarrel 218 of the other half includes recesses such asrectangular notches 220 for accommodating thetabs 214. This second alternative embodiment allows for one clevis half to extend more than half way around theend 34 of theelongate member 32 to aid in holding the clevis half in place during assembly. Thetabs 214 andnotches 220 also constitute alignment features that aid in locating the second clevis half. In a variation on this alternative embodiment, a notch or other locating feature may be included on the barrel of theclevis 210 for aligning the clevis with theend 34 of theelongate member 32. Because other features of theclevis 210 are identical to those described above, they will not be described in further detail. - Both of the devises described above are assembled using a similar method. A first clevis half is positioned in a fixture (not shown). The jaws are positioned on the first clevis half and if a central needle is used it is positioned between the jaws. A second clevis half is positioned on the jaw assembly. The stacked components are squeezed together by the fixture and then the fixture is relaxed so that a total accumulated stack gap between the components is within a tolerance selected to assure proper operation of the jaws. Although other accumulated gaps may be used without departing from the scope of the present invention, in one embodiment the accumulated gap is between about 0.0005 inch and about 0.003 inch. After the stack gap is adjusted, a pivot member or pivot pin is inserted through the components and fastened in place. The actuator member may be connected to the jaws at a convenient time during the assembly.
- A third alternative embodiment is generally designated by the
reference number 230 inFIG. 12 . This third alternative embodiment of theclevis 230 is identical to the firstalternative embodiment 200 illustrated inFIG. 10 except that the clevis halves are joined on one side, leaving aslot 232 along one side. In one embodiment of the thirdalternative clevis 230, thejaw assembly 42 is assembled without assembling theclevis 230 to theend 34 of theelongate member 32. Thisjaw assembly 42 may be manufactured remote from the overall instrument. Theslot 232 has an advantage of aiding in inserting theactuation member 46 during assembly. Other features of theclevis 230 are identical to those described above and will not be described in further detail. -
FIG. 13 illustrates a fourth alternative embodiment generally designated by thereference number 234. The fourth alternative embodiment of theclevis 234 is identical to the thirdalternative embodiment 230 except that the clevis includes arms 236 having foldedportion 238. Other features of theclevis 234 are identical to those described above and will not be described in further detail. - The clevises described above having joined halves are assembled similarly to the previously described method except that the first and second clevis halves are simultaneously positioned on the fixture and the jaws and needle are inserted between the arms of the clevis during assembly rather than stacked in sequence. Other aspects of the assembly method are identical and will not be described in further detail.
-
FIG. 14 illustrates an alternative embodiment of ajaw 240. Thejaw 240 is identical to the previously discussedjaw 42 except that theend wall 242 has a sinusoidal tooth profile and thedrain hole 144 is omitted. The side walls 122 (FIG. 9 ) of this embodiment have a tooth profile that is generally uniform and repeating. For example, the side wall tooth profile has generally saw tooth shape. Further, as will be appreciated by examiningFIG. 14 , the spacing of tooth profile of theend wall 242 is longer than that of the tooth profile of theside walls 122.FIG. 15 discloses a second alternative embodiment of the jaws, generally designated 250. The second alternative embodiment of thejaw 250 is similar to the first embodiment of thejaw 42 described above except that the folded portion of thehinge extension 130 is replaced with an embossedportion 252. Thisembossed portion 252 is positioned longitudinally between twoother portions portion 252 includes an inner face extending along the median plane. Theother portions clevis 100 when assembled in thebiopsy forceps 30. Because other features of the jaws are identical to those described above, they will not be described in further detail. -
FIG. 16A illustrates a partial jaw assembly and an alternative embodiment of anactuator member 270. Theactuator member 270 comprises an actuator wire having ahelical portion 272 for connecting the actuator member to thecontrol arm 140 of thejaw 42. Thehelical portion 272 of theactuation wire 270 permits the wire to be easily threaded into theopening 142 in thecontrol arm 140 of thejaw 42 to save assembly time and eliminate other processes for connecting the wire to the control arm (e.g., heading).FIG. 16B illustrates a partial jaw assembly and a second alternative embodiment of anactuator member 270. Theactuator member 270 comprises an actuator wire having ahelical portion 274 similar to that of the previously described embodiment except that the helical portion of the second alternative embodiment is wound about a lateral axis rather than a longitudinal axis. In a third alternative embodiment illustrated inFIG. 17 , theactuation wire 276 includes abent end 278. AU-shaped tang 280 formed on thejaw 282 adjacent thecontrol arm opening 142 retains theactuation wire 276 in position in the control arm opening. To assemble theactuation wire 276 of the second alternative embodiment, thebent end 278 of thewire 276 is inserted in theopening 142 and then thejaw 282 is rotated relative to the wire so thetang 280 engages the wire to prevent removal of the bent portion of the wire from the opening. As other features of the actuator members and jaws of these embodiments are identical to those described above, they will not be described in further detail. -
FIG. 18 illustrates an alternative embodiment of a jaw, generally designated by 290. Rather than having an integral cup and hinge extension, thejaw 290 of this alternative embodiment is made from separate pieces. The jaw has acup 292 with a pair ofhinge connectors 294 extending from it for joining ahinge extension 296 to the cup. Thehinge extension 296 maybe connected to thehinge connector 294 by any suitable means such as laser welding or adhesives. As will be apparent to those skilled in the art, thejaw cup 292 of the alternative embodiment has a different shape than those disclosed above. The primary difference between thejaw cup 292 shown inFIG. 18 and those previously disclosed is that the side walls are spaced farther from the median plane at a position between the front end and the back end than at the front end and at the back end. This configuration permits the end effector to travel through tighter radiuses without binding. The jaw cup of this embodiment permits a larger volume of tissue to be removed while maintaining the same minimal bend radius. Cups having other shapes are also envisioned as being within the scope of this embodiment. For example, rather than having an oval shape as shown, the cup may have an hourglass shape or a tapered shape. -
FIG. 19 illustrates a second alternative embodiment of ajaw 300 that maximizes tissue volume removed. In this embodiment, theend wall 302 has a substantially plainer portion so the cup encompasses a generally rectilinear volume.FIG. 20 illustrates an alternate view of the jaw illustrated inFIG. 19 . Thejaw 300 maybe formed in two pieces, acup 304 and ahinge extension 306. Thecup 304 maybe formed from sheet metal and thehinge extension 306 maybe formed of a polymer such as glass filled nylon. One benefit of this design is that thehinge extension 306 may have molded features (e.g., bushing 308) rather than a substantially constant thickness. This provides additional material where stresses are higher or where wear is likely to occur. In addition, the two piece design permits the use of different materials in different parts of thejaw 300 to optimize the design. Thecup 304 andhinge extension 306 may be joined by any conventional means. For example, thecup 304 andhinge extension 306 may be joined by heating the hinge extension so that it is molded intoholes 310 formed in the cup to mechanically join the components. - The instrument described above may be wound in a conventional manner prior to packaging. One method of preparing the instrument for packaging is particularly advantageous because it reduces the likelihood of the instrument becoming tangled and/or springing apart so it is damaged to contaminated. The effector assembly is fastened to the to the fastener on the handle to form a first loop as illustrated in
FIG. 21 a. The loop is grasped at opposite ends and one end is twisted relative to the other through an angle of about 180 degrees to move the loop into a figure-8 configuration as illustrated inFIG. 21 b. Opposite ends of the figure-8 configuration are moved together into an overlapped loop configuration shown inFIG. 21 c. The overlapping loop is grasped at opposite ends and one end is twisted relative to the other through an angle of about 180 degrees to move the loop into a double figure-8 configuration as illustrated inFIG. 21 d. In one embodiment, the ends of the overlapped loop are twisted in a direction opposite to that which the loop was previously twisted as shown by the arrows inFIGS. 21 b and 21 d. Lastly, opposite ends of the double figure-8 configuration are folded together to move the double figure-8 configuration into a quadruple overlapped loop configuration as illustrated inFIG. 21 e. The instrument in this final configuration may be packaged in a conventional sterile packaging. - When introducing elements of the present invention or the preferred embodiment(s) thereof, the articles “a”, “an”, “the” and “said” are intended to mean that there are one or more of the elements. The terms “comprising”, “including” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements.
- As various changes could be made in the above constructions without departing from the scope of the invention, it is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
Claims (15)
1. An endoscopic device comprising:
an elongate member having opposite ends;
a clevis attached to one end of said opposite ends, said clevis including a barrel having at least one slot longitudinally extending completely through the barrel;
a pair of jaws mounted on the clevis for pivotal movement, each of said jaws having an end opposite the elongate member; and
an actuator member operatively connected to said pair of jaws for moving the jaws between a closed position in which the end of the corresponding jaw is positioned adjacent said other jaw and an open position in which an end of the jaw is spaced from the other jaw.
2. An endoscopic device as set forth in claim 1 wherein the barrel of the clevis has at least two slots longitudinally extending completely through the barrel so the barrel comprises at least two separate pieces.
3. An endoscopic device as set forth in claim 1 wherein the barrel of the clevis has two slots longitudinally extending completely through the barrel so the barrel comprises two separate pieces.
4. An endoscopic device as set forth in claim 3 wherein at least one barrel piece includes a protrusion and the other barrel piece includes a recess sized and positioned for receiving the protrusion to align the barrel pieces.
5. An endoscopic device as set forth in claim 4 wherein the barrel piece protrusion comprises a rectangular tab.
6. An endoscopic device as set forth in claim 5 wherein the barrel piece recess comprises a rectangular notch sized and positioned for receiving the rectangular tab.
7. An endoscopic device as set forth in claim 4 wherein the barrel piece recess comprises a rectangular notch.
8. An endoscopic device as set forth in claim 3 wherein at least one barrel piece includes a protrusion and the other barrel piece includes a recess sized and positioned for receiving the protrusion to align the barrel pieces.
9. An endoscopic device as set forth in claim 3 wherein at least one barrel piece includes an alignment feature that aligns the barrel pieces
10. A method of assembling an endoscopic device including a clevis, a pair of opposing jaws, a pivot member and an actuator member, said method comprising:
positioning the clevis in a fixture;
positioning the jaws between arms of the clevis;
installing the pivot member through the clevis and the jaws;
adjusting a distance between the arms of the clevis to provide a predetermined stack gap; and
connecting the actuator member to the jaws.
11. A method of assembling forceps as set forth in claim 10 wherein the distance between the arms of the clevis is adjusted to provide a stack gap of between about 0.0005 inch and about 0.003 inch.
12. A method of assembling forceps as set forth in claim 10 wherein the clevis is formed in two halves and a first of said two halves is positioned in the fixture and the jaws are stacked on the first of said halves before a second of said halves is stacked on the jaws to position the jaws between arms of the clevis.
13. An elongate surgical instrument comprising:
an elongate member having opposite ends and a generally uniform outer diameter;
a clevis attached to one end of said opposite ends, said clevis including a barrel having an inner diameter conforming to the outer diameter of the elongate member;
a jaw assembly mounted on the clevis for pivotal movement; and
an actuator member operatively connected to said jaw assembly for moving the jaw assembly between a closed position and an open position.
14. An instrument as set forth in claim 13 wherein the elongate member comprises a coil having a maximum outer diameter between about 0.070 inch and about 0.080 inch and a compressive preload between about 1 pound and about 1.5 pounds.
15. A method of assembling an endoscopic device including a clevis, an end effector, a pivot member and an actuator member, said method comprising:
positioning the clevis in a fixture;
positioning the end effector in the clevis;
installing the pivot member through a hole in the clevis and a hole in the end effector;
biasing the pivot member to a side of the hole in the clevis; and
joining the pivot member to the side of the clevis hole.
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/404,736 US20070244509A1 (en) | 2006-04-14 | 2006-04-14 | Endoscopic device |
US11/404,796 US20070244511A1 (en) | 2006-04-14 | 2006-04-14 | Endoscopic device and method of assembly |
US11/404,217 US8740853B2 (en) | 2006-04-14 | 2006-04-14 | Endoscopic device and method of packaging |
US11/404,737 US20070244510A1 (en) | 2006-04-14 | 2006-04-14 | Endoscopic device |
US11/404,307 US8313500B2 (en) | 2006-04-14 | 2006-04-14 | Endoscopic device |
PCT/US2007/009109 WO2007120813A2 (en) | 2006-04-14 | 2007-04-13 | Endoscopic device |
EP07755393A EP2010064A2 (en) | 2006-04-14 | 2007-04-13 | Endoscopic device |
JP2009505496A JP5165673B2 (en) | 2006-04-14 | 2007-04-13 | Endoscope device |
BRPI0709979A BRPI0709979B8 (en) | 2006-04-14 | 2007-04-13 | method for wrapping a flexible executing end |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/404,736 US20070244509A1 (en) | 2006-04-14 | 2006-04-14 | Endoscopic device |
US11/404,989 US7998167B2 (en) | 2006-04-14 | 2006-04-14 | End effector and method of manufacture |
US11/404,988 US20070244513A1 (en) | 2006-04-14 | 2006-04-14 | Endoscopic device |
US11/404,796 US20070244511A1 (en) | 2006-04-14 | 2006-04-14 | Endoscopic device and method of assembly |
US11/404,217 US8740853B2 (en) | 2006-04-14 | 2006-04-14 | Endoscopic device and method of packaging |
US11/404,737 US20070244510A1 (en) | 2006-04-14 | 2006-04-14 | Endoscopic device |
US11/404,969 US7857827B2 (en) | 2006-04-14 | 2006-04-14 | Endoscopic device |
US11/404,307 US8313500B2 (en) | 2006-04-14 | 2006-04-14 | Endoscopic device |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070244511A1 true US20070244511A1 (en) | 2007-10-18 |
Family
ID=38610200
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/404,307 Active 2030-04-26 US8313500B2 (en) | 2006-04-14 | 2006-04-14 | Endoscopic device |
US11/404,737 Abandoned US20070244510A1 (en) | 2006-04-14 | 2006-04-14 | Endoscopic device |
US11/404,736 Abandoned US20070244509A1 (en) | 2006-04-14 | 2006-04-14 | Endoscopic device |
US11/404,796 Abandoned US20070244511A1 (en) | 2006-04-14 | 2006-04-14 | Endoscopic device and method of assembly |
US11/404,217 Active 2033-04-20 US8740853B2 (en) | 2006-04-14 | 2006-04-14 | Endoscopic device and method of packaging |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/404,307 Active 2030-04-26 US8313500B2 (en) | 2006-04-14 | 2006-04-14 | Endoscopic device |
US11/404,737 Abandoned US20070244510A1 (en) | 2006-04-14 | 2006-04-14 | Endoscopic device |
US11/404,736 Abandoned US20070244509A1 (en) | 2006-04-14 | 2006-04-14 | Endoscopic device |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/404,217 Active 2033-04-20 US8740853B2 (en) | 2006-04-14 | 2006-04-14 | Endoscopic device and method of packaging |
Country Status (5)
Country | Link |
---|---|
US (5) | US8313500B2 (en) |
EP (1) | EP2010064A2 (en) |
JP (1) | JP5165673B2 (en) |
BR (1) | BRPI0709979B8 (en) |
WO (1) | WO2007120813A2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050043758A1 (en) * | 2003-08-18 | 2005-02-24 | Scimed Life Systems, Inc. | Endoscopic medical instrument and related methods of use |
US20110172737A1 (en) * | 2010-01-08 | 2011-07-14 | Medtronic, Inc. | Programming therapy delivered by implantable medical device |
US20110172744A1 (en) * | 2010-01-08 | 2011-07-14 | Medtronic, Inc. | Presentation of information associated with medical device therapy |
US20110184458A1 (en) * | 2008-06-11 | 2011-07-28 | Ovesco Endoscopy Ag | Medical Gripping Device |
US8317726B2 (en) | 2005-05-13 | 2012-11-27 | Boston Scientific Scimed, Inc. | Biopsy forceps assemblies |
US8469993B2 (en) | 2003-06-18 | 2013-06-25 | Boston Scientific Scimed, Inc. | Endoscopic instruments |
US20160324588A1 (en) * | 2011-05-31 | 2016-11-10 | Intuitive Surgical Operations, Inc. | Surgical instrument with control for detected fault condition |
US9681857B2 (en) | 2003-06-18 | 2017-06-20 | Boston Scientific Scimed, Inc. | Endoscopic instruments and methods of manufacture |
US11076885B2 (en) * | 2017-10-30 | 2021-08-03 | Ocean Medical, Llc | Catheter removal instruments and methods |
US20220079570A1 (en) * | 2019-07-08 | 2022-03-17 | Olympus Corporation | Endoscope treatment tool |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2395059B (en) * | 2002-11-05 | 2005-03-16 | Imp College Innovations Ltd | Structured silicon anode |
AU2008341062B2 (en) | 2007-12-21 | 2014-12-18 | Smith & Nephew, Inc. | Multiple portal guide |
US9826992B2 (en) | 2007-12-21 | 2017-11-28 | Smith & Nephew, Inc. | Multiple portal guide |
EP4101394B1 (en) | 2009-09-25 | 2024-08-28 | Boston Scientific Scimed, Inc. | Devices for approximating tissue |
EP2563245B1 (en) * | 2010-04-30 | 2020-09-16 | Smith & Nephew, Inc. | Guide for drilling an irregular-shaped body |
MX2013003496A (en) | 2010-09-27 | 2013-12-02 | Smith & Nephew Inc | Device and methods for use during arthroscopic surgery. |
US10219812B2 (en) | 2010-11-03 | 2019-03-05 | Smith & Nephew, Inc. | Drill guide |
WO2013039860A1 (en) * | 2011-09-13 | 2013-03-21 | Interplex Industries, Inc. | Single piece biopsy forceps |
DE102013203166B4 (en) * | 2013-02-26 | 2020-01-30 | Kiekert Ag | Bowden |
US9987071B2 (en) | 2013-12-02 | 2018-06-05 | Covidien Lp | Surgical instrument with end-effector assembly including three jaw members |
US9987075B2 (en) | 2013-12-02 | 2018-06-05 | Covidien Lp | Surgical instrument with end-effector assembly including three jaw members |
US9987035B2 (en) | 2013-12-02 | 2018-06-05 | Covidien Lp | Surgical instrument with end-effector assembly including three jaw members and methods of cutting tissue using same |
US9993233B2 (en) * | 2014-05-03 | 2018-06-12 | Endochoice, Inc. | Large capacity biopsy forceps |
US20160361051A1 (en) * | 2015-06-09 | 2016-12-15 | Boston Scientific Scimed, Inc. | System for the parallel delivery of an element into the esophageal mucosa |
WO2019164616A1 (en) * | 2018-02-22 | 2019-08-29 | Boston Scientific Limited | Biopsy forceps with cam mechanism |
US11589851B2 (en) | 2018-03-19 | 2023-02-28 | Boston Scientific Limited | Biopsy forceps with serrated cutting jaws |
CN109498149B (en) * | 2018-12-27 | 2024-03-29 | 北京术锐机器人股份有限公司 | Surgical tool |
CN111035433A (en) * | 2019-12-23 | 2020-04-21 | 广东省人民医院(广东省医学科学院) | Medical forceps |
CN114746026A (en) | 2020-02-03 | 2022-07-12 | 波士顿科学有限公司 | Biopsy forceps with tissue piercing member |
JP7491720B2 (en) | 2020-04-10 | 2024-05-28 | 清明 本間 | Endoscopic treatment tools |
CN114947995A (en) * | 2021-02-22 | 2022-08-30 | 常州朗合医疗器械有限公司 | Biopsy forceps |
Citations (90)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US534570A (en) * | 1895-02-19 | Chopping-knife | ||
US2034785A (en) * | 1935-07-12 | 1936-03-24 | Wappler Frederick Charles | Endoscopic forceps |
US3521620A (en) * | 1967-10-30 | 1970-07-28 | William A Cook | Vascular coil spring guide with bendable tip |
US3739784A (en) * | 1971-12-01 | 1973-06-19 | Olympus Optical Co | Surgical instrument |
US3791387A (en) * | 1970-12-05 | 1974-02-12 | Olympus Optical Co | Forceps |
US3895636A (en) * | 1973-09-24 | 1975-07-22 | William Schmidt | Flexible forceps |
US3949747A (en) * | 1974-10-03 | 1976-04-13 | Hevesy William K | Biopsy set |
US4080706A (en) * | 1975-04-22 | 1978-03-28 | Medrad, Inc. | Method of manufacturing catheter guidewire |
US4427014A (en) * | 1981-05-06 | 1984-01-24 | Metallisations Et Traitements Optiques M.T.O. | Biopsy forceps |
US4592341A (en) * | 1984-05-23 | 1986-06-03 | Olympus Optical Co., Ltd. | Method and apparatus for guiding prosthesis |
US4597385A (en) * | 1983-04-29 | 1986-07-01 | Watson Trevor F | Biopsy instrument |
US4633871A (en) * | 1984-06-18 | 1987-01-06 | Olympus Optical Company, Ltd. | Basket forceps assembly |
US4634042A (en) * | 1984-04-10 | 1987-01-06 | Cordis Corporation | Method of joining refractory metals to lower melting dissimilar metals |
US4646751A (en) * | 1984-05-18 | 1987-03-03 | Diener Verwaltungs-und Beteiligungsgesellschaft m.b.H. | Biopsy forceps |
US4653477A (en) * | 1984-09-13 | 1987-03-31 | Olympus Optical Co., Ltd. | Endoscope forceps stopcock |
US4669471A (en) * | 1983-11-10 | 1987-06-02 | Olympus Optical Co., Ltd. | Forceps device for use in an endoscope |
US4682599A (en) * | 1984-04-25 | 1987-07-28 | Olympus Optical Co., Ltd. | Basket forceps assembly for endoscope |
US4721116A (en) * | 1985-06-04 | 1988-01-26 | Schintgen Jean Marie | Retractable needle biopsy forceps and improved control cable therefor |
US4815476A (en) * | 1988-03-28 | 1989-03-28 | Cordis Corporation | Biopsy forceps with locking handle |
US4817630A (en) * | 1985-06-04 | 1989-04-04 | Schintgen Jean Marie | Control cable for a biopsy forceps |
US4909789A (en) * | 1986-03-28 | 1990-03-20 | Olympus Optical Co., Ltd. | Observation assisting forceps |
US4982727A (en) * | 1989-04-13 | 1991-01-08 | Olympus Optical Co., Ltd. | Endoscopic treating instrument |
US4994079A (en) * | 1989-07-28 | 1991-02-19 | C. R. Bard, Inc. | Grasping forceps |
US5084054A (en) * | 1990-03-05 | 1992-01-28 | C.R. Bard, Inc. | Surgical gripping instrument |
US5094247A (en) * | 1990-08-31 | 1992-03-10 | Cordis Corporation | Biopsy forceps with handle having a flexible coupling |
US5097728A (en) * | 1990-09-21 | 1992-03-24 | Dennis Cox | Biopsy forceps jaw and method for making it |
US5100430A (en) * | 1990-08-31 | 1992-03-31 | Cordis Corporation | Biopsy forceps device having a ball and socket flexible coupling |
US5133727A (en) * | 1990-05-10 | 1992-07-28 | Symbiosis Corporation | Radial jaw biopsy forceps |
US5133735A (en) * | 1990-05-10 | 1992-07-28 | Symbiosis Corporation | Thumb-activated actuating member for imparting reciprocal motion to push rod of a disposable laparoscopic surgical instrument |
US5133736A (en) * | 1990-05-10 | 1992-07-28 | Symbiosis Corporation | Investment cast end effectors for disposable laparoscopic surgical instrument |
US5184625A (en) * | 1992-04-16 | 1993-02-09 | Cordis Corporation | Biopsy forceps device having improved handle |
US5203785A (en) * | 1990-05-10 | 1993-04-20 | Symbrosis Corporation | Laparoscopic hook scissors |
US5215101A (en) * | 1990-05-10 | 1993-06-01 | Symbiosis Corporation | Sharply angled kelly (Jacobs's) clamp |
US5228451A (en) * | 1990-05-10 | 1993-07-20 | Symbiosis Corporation | Biopsy forceps device having stiff distal end |
US5312332A (en) * | 1992-10-09 | 1994-05-17 | Symbiosis Corporation | Endoscopic surgical methods utilizing a suction-irrigation instrument with a port for endoscopic manipulating instruments |
US5324301A (en) * | 1992-09-28 | 1994-06-28 | Smith & Nephew Dyonics, Inc. | Surgical cutting instrument with tin-nickle alloy coating as an elongate bearing surface |
US5331971A (en) * | 1990-05-10 | 1994-07-26 | Symbiosis Corporation | Endoscopic surgical instruments |
US5383471A (en) * | 1992-04-10 | 1995-01-24 | Funnell; David M. | Surgical biopsy instrument |
US5395369A (en) * | 1993-06-10 | 1995-03-07 | Symbiosis Corporation | Endoscopic bipolar electrocautery instruments |
US5394885A (en) * | 1994-01-05 | 1995-03-07 | Symbiosis Corporation | Endoscopic biopsy forceps jaws and instrument incorporating same |
US5396900A (en) * | 1991-04-04 | 1995-03-14 | Symbiosis Corporation | Endoscopic end effectors constructed from a combination of conductive and non-conductive materials and useful for selective endoscopic cautery |
US5419339A (en) * | 1992-04-09 | 1995-05-30 | Symbiosis Corporation | Flexible microsurgical instrument having ground distal coil portion |
US5419220A (en) * | 1993-05-28 | 1995-05-30 | Cox; James E. | Method for making a jaw for a biopsy forceps |
US5431645A (en) * | 1990-05-10 | 1995-07-11 | Symbiosis Corporation | Remotely activated endoscopic tools such as endoscopic biopsy forceps |
US5482054A (en) * | 1990-05-10 | 1996-01-09 | Symbiosis Corporation | Edoscopic biopsy forceps devices with selective bipolar cautery |
US5490861A (en) * | 1994-07-14 | 1996-02-13 | Symbiosis Corporation | Track guided end effector assembly for use with endoscopic instruments |
US5491881A (en) * | 1994-03-28 | 1996-02-20 | Collins; Stuart | Process for forming roller guide frames for a fishing line |
US5496317A (en) * | 1993-05-04 | 1996-03-05 | Gyrus Medical Limited | Laparoscopic surgical instrument |
US5507297A (en) * | 1991-04-04 | 1996-04-16 | Symbiosis Corporation | Endoscopic instruments having detachable proximal handle and distal portions |
US5535754A (en) * | 1994-03-04 | 1996-07-16 | Doherty; Thomas E. | Endoscopic biopsy forceps - disposable |
US5591202A (en) * | 1994-04-28 | 1997-01-07 | Symbiosis Corporation | Endoscopic instruments having low friction sheath |
US5601585A (en) * | 1994-02-08 | 1997-02-11 | Boston Scientific Corporation | Multi-motion side-cutting biopsy sampling device |
US5613499A (en) * | 1990-05-10 | 1997-03-25 | Symbiosis Corporation | Endoscopic biopsy forceps jaws and instruments incorporating same |
US5636639A (en) * | 1992-02-18 | 1997-06-10 | Symbiosis Corporation | Endoscopic multiple sample bioptome with enhanced biting action |
US5638827A (en) * | 1994-02-01 | 1997-06-17 | Symbiosis Corporation | Super-elastic flexible jaws assembly for an endoscopic multiple sample bioptome |
US5640874A (en) * | 1995-06-02 | 1997-06-24 | United States Surgical Corporation | Progressive die/carrier apparatus and method of forming surgical needles and/or incision members |
US5706824A (en) * | 1996-05-20 | 1998-01-13 | Symbiosis Corporation | Endoscopic biopsy forceps instrument having a constant force spring biasing the jaws closed |
US5707392A (en) * | 1995-09-29 | 1998-01-13 | Symbiosis Corporation | Hermaphroditic stamped forceps jaw for disposable endoscopic biopsy forceps and method of making the same |
US5716374A (en) * | 1995-10-10 | 1998-02-10 | Symbiosis Corporation | Stamped clevis for endoscopic instruments and method of making the same |
US5715832A (en) * | 1995-02-28 | 1998-02-10 | Boston Scientific Corporation | Deflectable biopsy catheter |
US5722422A (en) * | 1997-02-12 | 1998-03-03 | Symbiosis Corporation | Endoscopic biopsy forceps handle with removable sample removal pick |
US5722421A (en) * | 1995-09-15 | 1998-03-03 | Symbiosis Corporation | Clevis having deflection limiting stops for use in an endoscopic biopsy forceps instrument |
US5730086A (en) * | 1997-04-02 | 1998-03-24 | Truebe; Jonathan | Apparatus for a fish deterrent and guide |
US5741285A (en) * | 1993-07-13 | 1998-04-21 | Symbiosis Corporation | Endoscopic instrument having non-bonded, non-welded rotating actuator handle and method for assembling the same |
US5746740A (en) * | 1992-09-23 | 1998-05-05 | United States Surgical Corporation | Surgical biopsy forceps apparatus |
US5762070A (en) * | 1995-04-28 | 1998-06-09 | Olympus Optical Co., Ltd. | Treatment tool for endoscope, having openable and closable treatment members and guide means therefore |
US5766184A (en) * | 1994-11-02 | 1998-06-16 | Olympus Optical Co., Ltd. | Endoscopic treatment tool |
US5865724A (en) * | 1996-01-11 | 1999-02-02 | Symbiosis Corp. | Flexible microsurgical instruments incorporating a sheath having tactile and visual position indicators |
US5871453A (en) * | 1994-02-08 | 1999-02-16 | Boston Scientific Corporation | Moveable sample tube multiple biopsy sampling device |
US5893846A (en) * | 1996-05-15 | 1999-04-13 | Symbiosis Corp. | Ceramic coated endoscopic scissor blades and a method of making the same |
US5893876A (en) * | 1994-12-13 | 1999-04-13 | Symbiosis Corporation | Colposcopic biopsy punch with removable multiple sample basket |
US5895361A (en) * | 1997-02-14 | 1999-04-20 | Symbiosis Corporation | Esophageal biopsy jaw assembly and endoscopic instrument incorporating the same |
US5897507A (en) * | 1996-11-25 | 1999-04-27 | Symbiosis Corporation | Biopsy forceps instrument having irrigation and aspiration capabilities |
US5906630A (en) * | 1998-06-30 | 1999-05-25 | Boston Scientific Limited | Eccentric surgical forceps |
US6019758A (en) * | 1996-01-11 | 2000-02-01 | Symbiosis Corporation | Endoscopic bipolar multiple sample bioptome |
US6038150A (en) * | 1997-07-23 | 2000-03-14 | Yee; Hsian-Pei | Transistorized rectifier for a multiple output converter |
US6036656A (en) * | 1996-07-03 | 2000-03-14 | Symbiosis Corporation | Jaw assembly having progressively larger teeth and endoscopic biopsy forceps instrument incorporating same |
US6063103A (en) * | 1998-07-24 | 2000-05-16 | Olympus Optical Co., Ltd. | Endoscope forceps |
US6066102A (en) * | 1998-03-09 | 2000-05-23 | Spectrascience, Inc. | Optical biopsy forceps system and method of diagnosing tissue |
US6074408A (en) * | 1998-10-13 | 2000-06-13 | Freeman; Kenneth V. | Modular medical instrument and method of using same |
US6193718B1 (en) * | 1998-06-10 | 2001-02-27 | Scimed Life Systems, Inc. | Endoscopic electrocautery instrument |
US6375650B1 (en) * | 1999-06-03 | 2002-04-23 | Asahi Kogaku Kogyo Kabushiki Kaisha | Treating instrument for endoscope |
US6378351B1 (en) * | 1999-09-30 | 2002-04-30 | Asahi Kogaku Kogyo Kabushiki Kaisha | Method for manufacturing endoscopic biopsy forceps cup |
US6514197B1 (en) * | 1999-10-18 | 2003-02-04 | Pentax Corporation | Treatment tool support device for endoscope |
US6514269B2 (en) * | 2000-06-13 | 2003-02-04 | Olympus Optical Co., Ltd. | Endoscopic treating instrument |
US6544194B1 (en) * | 1996-11-25 | 2003-04-08 | Symbiosis Corporation | Proximal actuation handle for a biopsy forceps instrument having irrigation and aspiration capabilities |
US6554850B1 (en) * | 1999-09-03 | 2003-04-29 | Pentax Corporation | Endoscopic biopsy forceps |
US6689122B2 (en) * | 2000-05-17 | 2004-02-10 | Olympus Corporation | Endoscopic instrument |
US6743185B2 (en) * | 2000-09-26 | 2004-06-01 | Scimed Life Systems, Inc. | Handle assembly for surgical instrument and method of making the assembly |
US20050054946A1 (en) * | 2003-09-04 | 2005-03-10 | Jacek Krzyzanowski | Variations of biopsy jaw and clevis and method of manufacture |
Family Cites Families (107)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1515000A (en) | 1920-07-20 | 1924-11-11 | William J Thompson | Snuff dipper |
US3461708A (en) | 1967-11-02 | 1969-08-19 | Arc Co Inc | Method of forming conduit clamps |
US3608539A (en) | 1968-11-06 | 1971-09-28 | Daniel G Miller | Method for the biopsy of subcutaneous masses |
US3627071A (en) * | 1970-01-12 | 1971-12-14 | Walter H Haupt | Tethering device for self-propelled machines |
US3687131A (en) | 1970-10-28 | 1972-08-29 | Mark Rayport | Biopsy clamp |
JPS552966Y2 (en) | 1974-02-08 | 1980-01-24 | ||
JPS5176120A (en) | 1974-12-27 | 1976-07-01 | Showa Aluminium Co Ltd | |
US3973556A (en) | 1975-06-20 | 1976-08-10 | Lake Region Manufacturing Company, Inc. | Smoothened coil spring wire guide |
US4244238A (en) * | 1976-12-17 | 1981-01-13 | Toyota Jidosha Kogyo Kabushiki Kaisha | Remote control wire apparatus |
US4174715A (en) | 1977-03-28 | 1979-11-20 | Hasson Harrith M | Multi-pronged laparoscopy forceps |
US6264617B1 (en) | 1977-09-12 | 2001-07-24 | Symbiosis Corporation | Radial jaw biopsy forceps |
JPS637218Y2 (en) | 1984-09-28 | 1988-03-01 | ||
JPS6173116U (en) * | 1984-10-19 | 1986-05-17 | ||
US4638871A (en) * | 1985-02-21 | 1987-01-27 | Central Mine Equipment Company | Earth drill rig |
US4763668A (en) | 1985-10-28 | 1988-08-16 | Mill Rose Laboratories | Partible forceps instrument for endoscopy |
US4763669A (en) | 1986-01-09 | 1988-08-16 | Jaeger John C | Surgical instrument with adjustable angle of operation |
US4945920A (en) | 1988-03-28 | 1990-08-07 | Cordis Corporation | Torqueable and formable biopsy forceps |
US4887612A (en) | 1988-04-27 | 1989-12-19 | Esco Precision, Inc. | Endoscopic biopsy forceps |
US4971067A (en) | 1988-05-05 | 1990-11-20 | Lee Bolduc | Biopsy instrument with a disposable cutting blade |
JPH0429606Y2 (en) * | 1988-05-09 | 1992-07-17 | ||
US4880015A (en) | 1988-06-03 | 1989-11-14 | Nierman David M | Biopsy forceps |
US5172700A (en) | 1989-01-31 | 1992-12-22 | C. R. Bard, Inc. | Disposable biopsy forceps |
US5052402A (en) | 1989-01-31 | 1991-10-01 | C.R. Bard, Inc. | Disposable biopsy forceps |
US5171256A (en) | 1990-05-10 | 1992-12-15 | Symbiosis Corporation | Single acting disposable laparoscopic scissors |
US5454378A (en) | 1993-02-11 | 1995-10-03 | Symbiosis Corporation | Biopsy forceps having a detachable proximal handle and distal jaws |
US5241968A (en) | 1990-05-10 | 1993-09-07 | Symbiosis Corporation | Single acting endoscopic instruments |
US5439478A (en) | 1990-05-10 | 1995-08-08 | Symbiosis Corporation | Steerable flexible microsurgical instrument with rotatable clevis |
US5156633A (en) | 1990-05-10 | 1992-10-20 | Symbiosis Corporation | Maryland dissector laparoscopic instrument |
US5170800A (en) | 1991-04-04 | 1992-12-15 | Symbiosis Corporation | Hermaphroditic endoscopic claw extractors |
US5147380A (en) | 1991-10-03 | 1992-09-15 | Cordis Corporation | Biopsy forceps device having improved locking means |
US5542432A (en) | 1992-02-18 | 1996-08-06 | Symbiosis Corporation | Endoscopic multiple sample bioptome |
US5645075A (en) | 1992-02-18 | 1997-07-08 | Symbiosis Corporation | Jaw assembly for an endoscopic instrument |
US5251638A (en) | 1992-04-16 | 1993-10-12 | Cordis Corporation | Biopsy forceps device having improved handle assembly |
US5238002A (en) | 1992-06-08 | 1993-08-24 | C. R. Bard, Inc. | Disposable biopsy forceps |
US5250073A (en) | 1992-06-10 | 1993-10-05 | Cordis Corporation | Torqueable and formable biopsy forceps |
US5360432A (en) | 1992-10-16 | 1994-11-01 | Shturman Cardiology Systems, Inc. | Abrasive drive shaft device for directional rotational atherectomy |
US5553624A (en) | 1993-02-11 | 1996-09-10 | Symbiosis Corporation | Endoscopic biopsy forceps jaws and instruments incorporating same |
CA2163025C (en) | 1993-05-17 | 1999-09-14 | Michael S.H. Chu | Instrument for collecting multiple biopsy specimens |
US5352223A (en) | 1993-07-13 | 1994-10-04 | Symbiosis Corporation | Endoscopic instruments having distally extending lever mechanisms |
CA2113769A1 (en) * | 1993-08-16 | 1995-02-17 | Robert C. Klinger | Mouse cord control device |
EP0722286B1 (en) | 1993-09-20 | 2002-08-21 | Boston Scientific Corporation | Multiple biopsy sampling device |
US5573008A (en) | 1993-10-29 | 1996-11-12 | Boston Scientific Corporation | Multiple biopsy sampling coring device |
US5840044A (en) | 1993-09-30 | 1998-11-24 | Boston Scientific Corporation | Multiple biopsy sampling forceps |
US5471992A (en) | 1994-02-08 | 1995-12-05 | Boston Scientific Corporation | Multi-motion cutter multiple biopsy sampling device |
US5782749A (en) | 1994-05-10 | 1998-07-21 | Riza; Erol D. | Laparoscopic surgical instrument with adjustable grip |
DE69523680T2 (en) | 1994-08-02 | 2002-08-14 | Olympus Optical Co., Ltd. | Endoscopic grasping device |
US5571136A (en) | 1994-08-15 | 1996-11-05 | Medical Innovations Corporation | Forceps with guide wire |
JPH0856951A (en) | 1994-08-25 | 1996-03-05 | Olympus Optical Co Ltd | Clamping forceps for endoscope |
US5476099A (en) | 1994-08-31 | 1995-12-19 | Boston Scientific Corporation | High velocity tissue sample cutter |
US6447511B1 (en) | 1994-12-13 | 2002-09-10 | Symbiosis Corporation | Bipolar endoscopic surgical scissor blades and instrument incorporating the same |
US5846240A (en) | 1994-12-13 | 1998-12-08 | Symbiosis Corporation | Ceramic insulator for a bipolar push rod assembly for a bipolar endoscopic surgical instrument |
US5976130A (en) | 1994-12-13 | 1999-11-02 | Symbiosis Corporation | Bipolar push rod assembly for a bipolar endoscopic surgical instrument and instruments incorporating the same |
US5558100A (en) | 1994-12-19 | 1996-09-24 | Ballard Medical Products | Biopsy forceps for obtaining tissue specimen and optionally for coagulation |
US5578056A (en) | 1994-12-21 | 1996-11-26 | Ballard Medical Products | Separable economically partially disposable flexible biopsy forceps |
US5683412A (en) | 1994-12-23 | 1997-11-04 | Symbiosis Corporation | Force-limiting control member for endoscopic instruments and endoscopic instruments incorporating same |
US5702080A (en) | 1995-01-18 | 1997-12-30 | Symbiosis Corporation | Combination end cap and clip for biopsy forceps instrument |
US5569299A (en) | 1995-03-01 | 1996-10-29 | Symbiosis Corporation | Endoscopic urological biopsy forceps |
WO1996029945A1 (en) | 1995-03-31 | 1996-10-03 | Boston Scientific Corporation | Biopsy sampler |
US5779701A (en) | 1995-04-27 | 1998-07-14 | Symbiosis Corporation | Bipolar endoscopic surgical scissor blades and instrument incorporating the same |
US6090108A (en) | 1995-04-27 | 2000-07-18 | Symbiosis Corporation | Bipolar endoscopic surgical scissor blades and instrument incorporating the same |
US5586990A (en) | 1995-05-08 | 1996-12-24 | Symbiosis Corporation | Endosurgical instrument with a radially movable end effector |
US5571129A (en) | 1995-05-15 | 1996-11-05 | Portlyn Corporation | Surgical cutting instrument with improved cleaning capability and ease of use |
US5697949A (en) | 1995-05-18 | 1997-12-16 | Symbiosis Corporation | Small diameter endoscopic instruments |
DE19521257C2 (en) | 1995-06-10 | 1999-01-28 | Winter & Ibe Olympus | Surgical forceps |
US5683385A (en) | 1995-09-19 | 1997-11-04 | Symbiosis Corporation | Electrocautery connector for a bipolar push rod assembly |
US5810876A (en) | 1995-10-03 | 1998-09-22 | Akos Biomedical, Inc. | Flexible forceps device |
US5797957A (en) | 1996-05-02 | 1998-08-25 | Symbiosis Corporation | Endoscopic bioptome with a hard stop to control biting force |
US5762613A (en) | 1996-05-07 | 1998-06-09 | Spectrascience, Inc. | Optical biopsy forceps |
US5782748A (en) | 1996-07-10 | 1998-07-21 | Symbiosis Corporation | Endoscopic surgical instruments having detachable proximal and distal portions |
US5776075A (en) | 1996-08-09 | 1998-07-07 | Symbiosis Corporation | Endoscopic bioptome jaw assembly having three or more jaws and an endoscopic instrument incorporating same |
US6331165B1 (en) | 1996-11-25 | 2001-12-18 | Scimed Life Systems, Inc. | Biopsy instrument having irrigation and aspiration capabilities |
US5964717A (en) | 1997-01-06 | 1999-10-12 | Symbiosis Corporation | Biopsy forceps having detachable handle and distal jaws |
US6096037A (en) | 1997-07-29 | 2000-08-01 | Medtronic, Inc. | Tissue sealing electrosurgery device and methods of sealing tissue |
US6494881B1 (en) | 1997-09-30 | 2002-12-17 | Scimed Life Systems, Inc. | Apparatus and method for electrode-surgical tissue removal having a selectively insulated electrode |
US5971940A (en) | 1998-02-20 | 1999-10-26 | Scimed Life Systems, Inc. | Surgical instrument with locking feature, split distal housing, and sharpened jaws |
US5967997A (en) | 1998-04-30 | 1999-10-19 | Symbiosis Corporation | Endoscopic surgical instrument with deflectable and rotatable distal end |
US6159162A (en) | 1998-05-04 | 2000-12-12 | Lsvp International, Inc. | Biopsy apparatus |
US6106543A (en) | 1998-05-15 | 2000-08-22 | Esser; Theodor | Medical instrument driving member and end effector connection |
US6149607A (en) | 1998-08-04 | 2000-11-21 | Endonetics, Inc. | Multiple sample biopsy device |
US6139508A (en) | 1998-08-04 | 2000-10-31 | Endonetics, Inc. | Articulated medical device |
JP2000175928A (en) | 1998-10-08 | 2000-06-27 | Olympus Optical Co Ltd | Treating implement for endoscope |
JP2000210294A (en) | 1998-11-20 | 2000-08-02 | Asahi Optical Co Ltd | Biopsy forceps for endoscope |
US6083150A (en) | 1999-03-12 | 2000-07-04 | C. R. Bard, Inc. | Endoscopic multiple sample biopsy forceps |
JP3434472B2 (en) * | 1999-07-12 | 2003-08-11 | 古河電気工業株式会社 | Optical fiber core wire connection section storage tray and storage method |
US7887535B2 (en) * | 1999-10-18 | 2011-02-15 | Covidien Ag | Vessel sealing wave jaw |
JP3694202B2 (en) | 1999-11-18 | 2005-09-14 | ペンタックス株式会社 | Method for manufacturing tip support member of endoscope treatment instrument |
DK200100367A (en) * | 2000-03-07 | 2001-09-08 | Asahi Optical Co Ltd | Endoscopic treatment instrument |
US6428539B1 (en) | 2000-03-09 | 2002-08-06 | Origin Medsystems, Inc. | Apparatus and method for minimally invasive surgery using rotational cutting tool |
JP2001269346A (en) * | 2000-03-27 | 2001-10-02 | Fuji Photo Optical Co Ltd | Forcep for endoscope and its manufacturing method |
EP1303221A2 (en) * | 2000-07-21 | 2003-04-23 | Atropos Limited | A surgical instrument |
JP2002143174A (en) * | 2000-11-09 | 2002-05-21 | Olympus Optical Co Ltd | Instrument for medical treatment for endoscope |
US6551315B2 (en) * | 2000-12-06 | 2003-04-22 | Syntheon, Llc | Methods and apparatus for the treatment of gastric ulcers |
US7341564B2 (en) | 2001-05-03 | 2008-03-11 | Boston Scientific Scimed, Inc. | Biopsy forceps device with transparent outer sheath |
US6440085B1 (en) | 2001-06-12 | 2002-08-27 | Jacek Krzyzanowski | Method of assembling a non-metallic biopsy forceps jaw and a non-metallic biopsy forceps jaw |
JP4131011B2 (en) | 2002-04-09 | 2008-08-13 | Hoya株式会社 | Endoscopic sputum treatment device |
US6863528B2 (en) * | 2002-10-03 | 2005-03-08 | Fu Yi Lin | Orthodontic pin |
US7837631B2 (en) | 2003-03-14 | 2010-11-23 | Boston Scientific Scimed Inc. | Biopsy forceps with removable jaw segments |
WO2004103190A1 (en) | 2003-05-16 | 2004-12-02 | Wilson-Cook Medical, Inc. | Medical instrument handle |
US20040260337A1 (en) | 2003-06-18 | 2004-12-23 | Scimed Life Systems, Inc. | Endoscopic instruments and methods of manufacture |
US8469993B2 (en) | 2003-06-18 | 2013-06-25 | Boston Scientific Scimed, Inc. | Endoscopic instruments |
US8647362B2 (en) * | 2003-10-10 | 2014-02-11 | Boston Scientific Scimed, Inc. | Device with deflectable distal end and related methods of use |
US7534253B2 (en) | 2003-12-10 | 2009-05-19 | Boston Scientific Scimed, Inc. | Clevis assemblies for medical instruments and methods of manufacture of same |
JP2005198882A (en) * | 2004-01-16 | 2005-07-28 | Olympus Corp | Endo-therapy accessory for endoscope |
US7753932B2 (en) * | 2004-03-25 | 2010-07-13 | Boston Scientific Scimed, Inc. | Medical device and related methods of packaging |
US7171839B2 (en) | 2004-04-27 | 2007-02-06 | Jacek Krzyzanowski | Method of manufacturing a stamped biopsy forceps jaw |
US20070198043A1 (en) * | 2006-02-22 | 2007-08-23 | Cox Daniel L | Bone marrow aspiration device |
US7815652B2 (en) * | 2006-03-21 | 2010-10-19 | Ethicon Endo-Surgery, Inc. | Surgical fastener and instrument |
-
2006
- 2006-04-14 US US11/404,307 patent/US8313500B2/en active Active
- 2006-04-14 US US11/404,737 patent/US20070244510A1/en not_active Abandoned
- 2006-04-14 US US11/404,736 patent/US20070244509A1/en not_active Abandoned
- 2006-04-14 US US11/404,796 patent/US20070244511A1/en not_active Abandoned
- 2006-04-14 US US11/404,217 patent/US8740853B2/en active Active
-
2007
- 2007-04-13 BR BRPI0709979A patent/BRPI0709979B8/en active IP Right Grant
- 2007-04-13 EP EP07755393A patent/EP2010064A2/en not_active Withdrawn
- 2007-04-13 WO PCT/US2007/009109 patent/WO2007120813A2/en active Application Filing
- 2007-04-13 JP JP2009505496A patent/JP5165673B2/en not_active Expired - Fee Related
Patent Citations (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US534570A (en) * | 1895-02-19 | Chopping-knife | ||
US2034785A (en) * | 1935-07-12 | 1936-03-24 | Wappler Frederick Charles | Endoscopic forceps |
US3521620A (en) * | 1967-10-30 | 1970-07-28 | William A Cook | Vascular coil spring guide with bendable tip |
US3791387A (en) * | 1970-12-05 | 1974-02-12 | Olympus Optical Co | Forceps |
US3739784A (en) * | 1971-12-01 | 1973-06-19 | Olympus Optical Co | Surgical instrument |
US3895636A (en) * | 1973-09-24 | 1975-07-22 | William Schmidt | Flexible forceps |
US3949747A (en) * | 1974-10-03 | 1976-04-13 | Hevesy William K | Biopsy set |
US4080706A (en) * | 1975-04-22 | 1978-03-28 | Medrad, Inc. | Method of manufacturing catheter guidewire |
US4427014A (en) * | 1981-05-06 | 1984-01-24 | Metallisations Et Traitements Optiques M.T.O. | Biopsy forceps |
US4597385A (en) * | 1983-04-29 | 1986-07-01 | Watson Trevor F | Biopsy instrument |
US4669471A (en) * | 1983-11-10 | 1987-06-02 | Olympus Optical Co., Ltd. | Forceps device for use in an endoscope |
US4634042A (en) * | 1984-04-10 | 1987-01-06 | Cordis Corporation | Method of joining refractory metals to lower melting dissimilar metals |
US4682599A (en) * | 1984-04-25 | 1987-07-28 | Olympus Optical Co., Ltd. | Basket forceps assembly for endoscope |
US4646751A (en) * | 1984-05-18 | 1987-03-03 | Diener Verwaltungs-und Beteiligungsgesellschaft m.b.H. | Biopsy forceps |
US4592341A (en) * | 1984-05-23 | 1986-06-03 | Olympus Optical Co., Ltd. | Method and apparatus for guiding prosthesis |
US4633871A (en) * | 1984-06-18 | 1987-01-06 | Olympus Optical Company, Ltd. | Basket forceps assembly |
US4653477A (en) * | 1984-09-13 | 1987-03-31 | Olympus Optical Co., Ltd. | Endoscope forceps stopcock |
US4721116A (en) * | 1985-06-04 | 1988-01-26 | Schintgen Jean Marie | Retractable needle biopsy forceps and improved control cable therefor |
US4817630A (en) * | 1985-06-04 | 1989-04-04 | Schintgen Jean Marie | Control cable for a biopsy forceps |
US4909789A (en) * | 1986-03-28 | 1990-03-20 | Olympus Optical Co., Ltd. | Observation assisting forceps |
US4815476A (en) * | 1988-03-28 | 1989-03-28 | Cordis Corporation | Biopsy forceps with locking handle |
US4982727A (en) * | 1989-04-13 | 1991-01-08 | Olympus Optical Co., Ltd. | Endoscopic treating instrument |
US4994079A (en) * | 1989-07-28 | 1991-02-19 | C. R. Bard, Inc. | Grasping forceps |
US5084054A (en) * | 1990-03-05 | 1992-01-28 | C.R. Bard, Inc. | Surgical gripping instrument |
US5507296A (en) * | 1990-05-10 | 1996-04-16 | Symbiosis Corporation | Radial jaw biopsy forceps |
US5331971A (en) * | 1990-05-10 | 1994-07-26 | Symbiosis Corporation | Endoscopic surgical instruments |
US5613499A (en) * | 1990-05-10 | 1997-03-25 | Symbiosis Corporation | Endoscopic biopsy forceps jaws and instruments incorporating same |
US5133727A (en) * | 1990-05-10 | 1992-07-28 | Symbiosis Corporation | Radial jaw biopsy forceps |
US5133735A (en) * | 1990-05-10 | 1992-07-28 | Symbiosis Corporation | Thumb-activated actuating member for imparting reciprocal motion to push rod of a disposable laparoscopic surgical instrument |
US5133736A (en) * | 1990-05-10 | 1992-07-28 | Symbiosis Corporation | Investment cast end effectors for disposable laparoscopic surgical instrument |
US5482054A (en) * | 1990-05-10 | 1996-01-09 | Symbiosis Corporation | Edoscopic biopsy forceps devices with selective bipolar cautery |
US5192298A (en) * | 1990-05-10 | 1993-03-09 | Symbiosis Corporation | Disposable laparoscopic surgical instruments |
US5203785A (en) * | 1990-05-10 | 1993-04-20 | Symbrosis Corporation | Laparoscopic hook scissors |
US5215101A (en) * | 1990-05-10 | 1993-06-01 | Symbiosis Corporation | Sharply angled kelly (Jacobs's) clamp |
US5228451A (en) * | 1990-05-10 | 1993-07-20 | Symbiosis Corporation | Biopsy forceps device having stiff distal end |
US5431645A (en) * | 1990-05-10 | 1995-07-11 | Symbiosis Corporation | Remotely activated endoscopic tools such as endoscopic biopsy forceps |
US6024708A (en) * | 1990-05-10 | 2000-02-15 | Symbiosis Corporation | Radial jaw biopsy forceps |
US5094247A (en) * | 1990-08-31 | 1992-03-10 | Cordis Corporation | Biopsy forceps with handle having a flexible coupling |
US5100430A (en) * | 1990-08-31 | 1992-03-31 | Cordis Corporation | Biopsy forceps device having a ball and socket flexible coupling |
US5097728A (en) * | 1990-09-21 | 1992-03-24 | Dennis Cox | Biopsy forceps jaw and method for making it |
US6041679A (en) * | 1991-04-04 | 2000-03-28 | Symbiosis Corporation | Endoscopic end effectors constructed from a combination of conductive and non-conductive materials and useful for selective endoscopic cautery |
US5396900A (en) * | 1991-04-04 | 1995-03-14 | Symbiosis Corporation | Endoscopic end effectors constructed from a combination of conductive and non-conductive materials and useful for selective endoscopic cautery |
US5507297A (en) * | 1991-04-04 | 1996-04-16 | Symbiosis Corporation | Endoscopic instruments having detachable proximal handle and distal portions |
US5636639A (en) * | 1992-02-18 | 1997-06-10 | Symbiosis Corporation | Endoscopic multiple sample bioptome with enhanced biting action |
US5419339A (en) * | 1992-04-09 | 1995-05-30 | Symbiosis Corporation | Flexible microsurgical instrument having ground distal coil portion |
US5383471A (en) * | 1992-04-10 | 1995-01-24 | Funnell; David M. | Surgical biopsy instrument |
US5184625A (en) * | 1992-04-16 | 1993-02-09 | Cordis Corporation | Biopsy forceps device having improved handle |
US5746740A (en) * | 1992-09-23 | 1998-05-05 | United States Surgical Corporation | Surgical biopsy forceps apparatus |
US5324301A (en) * | 1992-09-28 | 1994-06-28 | Smith & Nephew Dyonics, Inc. | Surgical cutting instrument with tin-nickle alloy coating as an elongate bearing surface |
US5312332A (en) * | 1992-10-09 | 1994-05-17 | Symbiosis Corporation | Endoscopic surgical methods utilizing a suction-irrigation instrument with a port for endoscopic manipulating instruments |
US5496317A (en) * | 1993-05-04 | 1996-03-05 | Gyrus Medical Limited | Laparoscopic surgical instrument |
US5419220A (en) * | 1993-05-28 | 1995-05-30 | Cox; James E. | Method for making a jaw for a biopsy forceps |
US5395369A (en) * | 1993-06-10 | 1995-03-07 | Symbiosis Corporation | Endoscopic bipolar electrocautery instruments |
US5741285A (en) * | 1993-07-13 | 1998-04-21 | Symbiosis Corporation | Endoscopic instrument having non-bonded, non-welded rotating actuator handle and method for assembling the same |
US5394885A (en) * | 1994-01-05 | 1995-03-07 | Symbiosis Corporation | Endoscopic biopsy forceps jaws and instrument incorporating same |
US5638827A (en) * | 1994-02-01 | 1997-06-17 | Symbiosis Corporation | Super-elastic flexible jaws assembly for an endoscopic multiple sample bioptome |
US6193671B1 (en) * | 1994-02-01 | 2001-02-27 | Symbiosis Corporation | Endoscopic multiple sample bioptome with enhanced biting action |
US5746216A (en) * | 1994-02-01 | 1998-05-05 | Symbiosis Corporation | Endoscopic multiple sample bioptome with enhanced biting action |
US6561988B1 (en) * | 1994-02-01 | 2003-05-13 | Symbiosis Corporation | Endoscopic multiple sample bioptome with enhanced biting action |
US5601585A (en) * | 1994-02-08 | 1997-02-11 | Boston Scientific Corporation | Multi-motion side-cutting biopsy sampling device |
US5871453A (en) * | 1994-02-08 | 1999-02-16 | Boston Scientific Corporation | Moveable sample tube multiple biopsy sampling device |
US5535754A (en) * | 1994-03-04 | 1996-07-16 | Doherty; Thomas E. | Endoscopic biopsy forceps - disposable |
US5491881A (en) * | 1994-03-28 | 1996-02-20 | Collins; Stuart | Process for forming roller guide frames for a fishing line |
US5591202A (en) * | 1994-04-28 | 1997-01-07 | Symbiosis Corporation | Endoscopic instruments having low friction sheath |
US5490861A (en) * | 1994-07-14 | 1996-02-13 | Symbiosis Corporation | Track guided end effector assembly for use with endoscopic instruments |
US5766184A (en) * | 1994-11-02 | 1998-06-16 | Olympus Optical Co., Ltd. | Endoscopic treatment tool |
US5893876A (en) * | 1994-12-13 | 1999-04-13 | Symbiosis Corporation | Colposcopic biopsy punch with removable multiple sample basket |
US5715832A (en) * | 1995-02-28 | 1998-02-10 | Boston Scientific Corporation | Deflectable biopsy catheter |
US5762070A (en) * | 1995-04-28 | 1998-06-09 | Olympus Optical Co., Ltd. | Treatment tool for endoscope, having openable and closable treatment members and guide means therefore |
US6190399B1 (en) * | 1995-05-12 | 2001-02-20 | Scimed Life Systems, Inc. | Super-elastic flexible jaw assembly |
US5640874A (en) * | 1995-06-02 | 1997-06-24 | United States Surgical Corporation | Progressive die/carrier apparatus and method of forming surgical needles and/or incision members |
US5722421A (en) * | 1995-09-15 | 1998-03-03 | Symbiosis Corporation | Clevis having deflection limiting stops for use in an endoscopic biopsy forceps instrument |
US5707392A (en) * | 1995-09-29 | 1998-01-13 | Symbiosis Corporation | Hermaphroditic stamped forceps jaw for disposable endoscopic biopsy forceps and method of making the same |
US5716374A (en) * | 1995-10-10 | 1998-02-10 | Symbiosis Corporation | Stamped clevis for endoscopic instruments and method of making the same |
US5865724A (en) * | 1996-01-11 | 1999-02-02 | Symbiosis Corp. | Flexible microsurgical instruments incorporating a sheath having tactile and visual position indicators |
US6019758A (en) * | 1996-01-11 | 2000-02-01 | Symbiosis Corporation | Endoscopic bipolar multiple sample bioptome |
US5893846A (en) * | 1996-05-15 | 1999-04-13 | Symbiosis Corp. | Ceramic coated endoscopic scissor blades and a method of making the same |
US5706824A (en) * | 1996-05-20 | 1998-01-13 | Symbiosis Corporation | Endoscopic biopsy forceps instrument having a constant force spring biasing the jaws closed |
US6036656A (en) * | 1996-07-03 | 2000-03-14 | Symbiosis Corporation | Jaw assembly having progressively larger teeth and endoscopic biopsy forceps instrument incorporating same |
US6544194B1 (en) * | 1996-11-25 | 2003-04-08 | Symbiosis Corporation | Proximal actuation handle for a biopsy forceps instrument having irrigation and aspiration capabilities |
US6174292B1 (en) * | 1996-11-25 | 2001-01-16 | Symbiosis Corporation | Biopsy forceps instrument having irrigation and aspiration capabilities |
US5897507A (en) * | 1996-11-25 | 1999-04-27 | Symbiosis Corporation | Biopsy forceps instrument having irrigation and aspiration capabilities |
US5722422A (en) * | 1997-02-12 | 1998-03-03 | Symbiosis Corporation | Endoscopic biopsy forceps handle with removable sample removal pick |
US5895361A (en) * | 1997-02-14 | 1999-04-20 | Symbiosis Corporation | Esophageal biopsy jaw assembly and endoscopic instrument incorporating the same |
US5730086A (en) * | 1997-04-02 | 1998-03-24 | Truebe; Jonathan | Apparatus for a fish deterrent and guide |
US6038150A (en) * | 1997-07-23 | 2000-03-14 | Yee; Hsian-Pei | Transistorized rectifier for a multiple output converter |
US6066102A (en) * | 1998-03-09 | 2000-05-23 | Spectrascience, Inc. | Optical biopsy forceps system and method of diagnosing tissue |
US6193718B1 (en) * | 1998-06-10 | 2001-02-27 | Scimed Life Systems, Inc. | Endoscopic electrocautery instrument |
US5906630A (en) * | 1998-06-30 | 1999-05-25 | Boston Scientific Limited | Eccentric surgical forceps |
US6063103A (en) * | 1998-07-24 | 2000-05-16 | Olympus Optical Co., Ltd. | Endoscope forceps |
US6074408A (en) * | 1998-10-13 | 2000-06-13 | Freeman; Kenneth V. | Modular medical instrument and method of using same |
US6375650B1 (en) * | 1999-06-03 | 2002-04-23 | Asahi Kogaku Kogyo Kabushiki Kaisha | Treating instrument for endoscope |
US6554850B1 (en) * | 1999-09-03 | 2003-04-29 | Pentax Corporation | Endoscopic biopsy forceps |
US6378351B1 (en) * | 1999-09-30 | 2002-04-30 | Asahi Kogaku Kogyo Kabushiki Kaisha | Method for manufacturing endoscopic biopsy forceps cup |
US6514197B1 (en) * | 1999-10-18 | 2003-02-04 | Pentax Corporation | Treatment tool support device for endoscope |
US6689122B2 (en) * | 2000-05-17 | 2004-02-10 | Olympus Corporation | Endoscopic instrument |
US6514269B2 (en) * | 2000-06-13 | 2003-02-04 | Olympus Optical Co., Ltd. | Endoscopic treating instrument |
US6743185B2 (en) * | 2000-09-26 | 2004-06-01 | Scimed Life Systems, Inc. | Handle assembly for surgical instrument and method of making the assembly |
US20050054946A1 (en) * | 2003-09-04 | 2005-03-10 | Jacek Krzyzanowski | Variations of biopsy jaw and clevis and method of manufacture |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8469993B2 (en) | 2003-06-18 | 2013-06-25 | Boston Scientific Scimed, Inc. | Endoscopic instruments |
US9681857B2 (en) | 2003-06-18 | 2017-06-20 | Boston Scientific Scimed, Inc. | Endoscopic instruments and methods of manufacture |
US7951165B2 (en) | 2003-08-18 | 2011-05-31 | Boston Scientific Scimed, Inc. | Endoscopic medical instrument and related methods of use |
US20050043758A1 (en) * | 2003-08-18 | 2005-02-24 | Scimed Life Systems, Inc. | Endoscopic medical instrument and related methods of use |
US8672859B2 (en) | 2005-05-13 | 2014-03-18 | Boston Scientific Scimed, Inc. | Biopsy forceps assemblies |
US8317726B2 (en) | 2005-05-13 | 2012-11-27 | Boston Scientific Scimed, Inc. | Biopsy forceps assemblies |
US20110184458A1 (en) * | 2008-06-11 | 2011-07-28 | Ovesco Endoscopy Ag | Medical Gripping Device |
US9603614B2 (en) * | 2008-06-11 | 2017-03-28 | Ovesco Endoscopy Ag | Medical gripping device |
US8352039B2 (en) | 2010-01-08 | 2013-01-08 | Medtronic, Inc. | Programming therapy delivered by implantable medical device |
US20110172744A1 (en) * | 2010-01-08 | 2011-07-14 | Medtronic, Inc. | Presentation of information associated with medical device therapy |
US20110172737A1 (en) * | 2010-01-08 | 2011-07-14 | Medtronic, Inc. | Programming therapy delivered by implantable medical device |
US9744365B2 (en) | 2010-01-08 | 2017-08-29 | Medtronic, Inc. | Presentation of information associated with medical device therapy |
US20160324588A1 (en) * | 2011-05-31 | 2016-11-10 | Intuitive Surgical Operations, Inc. | Surgical instrument with control for detected fault condition |
US10835332B2 (en) | 2011-05-31 | 2020-11-17 | Intuitive Surgical Operations, Inc. | Surgical instrument with motor |
US11284954B2 (en) * | 2011-05-31 | 2022-03-29 | Intuitive Surgical Operations, Inc. | Surgical instrument with control for detected fault condition |
US11076885B2 (en) * | 2017-10-30 | 2021-08-03 | Ocean Medical, Llc | Catheter removal instruments and methods |
US20220079570A1 (en) * | 2019-07-08 | 2022-03-17 | Olympus Corporation | Endoscope treatment tool |
Also Published As
Publication number | Publication date |
---|---|
BRPI0709979B1 (en) | 2018-12-26 |
JP2009533155A (en) | 2009-09-17 |
US20070244510A1 (en) | 2007-10-18 |
WO2007120813A2 (en) | 2007-10-25 |
EP2010064A2 (en) | 2009-01-07 |
US20070244509A1 (en) | 2007-10-18 |
US8740853B2 (en) | 2014-06-03 |
US20070244508A1 (en) | 2007-10-18 |
WO2007120813A8 (en) | 2008-06-05 |
US8313500B2 (en) | 2012-11-20 |
BRPI0709979B8 (en) | 2021-06-22 |
US20070244507A1 (en) | 2007-10-18 |
JP5165673B2 (en) | 2013-03-21 |
BRPI0709979A2 (en) | 2011-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8313500B2 (en) | Endoscopic device | |
US7857827B2 (en) | Endoscopic device | |
US7998167B2 (en) | End effector and method of manufacture | |
US20070244513A1 (en) | Endoscopic device | |
US10675112B2 (en) | Endoscopic surgical clip applier including counter assembly | |
US5707392A (en) | Hermaphroditic stamped forceps jaw for disposable endoscopic biopsy forceps and method of making the same | |
US6273882B1 (en) | Snap handle assembly for an endoscopic instrument | |
EP2119398A2 (en) | End effector for surgical instrument, surgical instrument, and method for forming the end effector | |
US20090264918A1 (en) | Clevis assemblies for medical instruments and methods of manufacture of same | |
CA2216554A1 (en) | Endoscopic multiple sample bioptome with enhanced biting action | |
EP2432406B1 (en) | Endoscopic instrument | |
JP2012096008A (en) | Self-centering clip and jaw | |
US20120065466A1 (en) | Endoscopic Instrument | |
WO2018235402A1 (en) | Clipping tool | |
CN110769764B (en) | Clamp treatment tool |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ETHICON ENDO-SURGERY, INC., OHIO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WEIZMAN, PATRICK A.;MEASAMER, JOHN P.;EVANS, STEPHEN W.;AND OTHERS;REEL/FRAME:017883/0647;SIGNING DATES FROM 20060607 TO 20060614 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |