US20060074040A1 - Synergistic stimulation of the immune system using immunostimulatory oligonucleotides and/or immunomer compounds in conjunction with cytokines and/or chemotherapeutic agents or radiation therapy - Google Patents
Synergistic stimulation of the immune system using immunostimulatory oligonucleotides and/or immunomer compounds in conjunction with cytokines and/or chemotherapeutic agents or radiation therapy Download PDFInfo
- Publication number
- US20060074040A1 US20060074040A1 US10/892,550 US89255004A US2006074040A1 US 20060074040 A1 US20060074040 A1 US 20060074040A1 US 89255004 A US89255004 A US 89255004A US 2006074040 A1 US2006074040 A1 US 2006074040A1
- Authority
- US
- United States
- Prior art keywords
- immunostimulatory
- immunomer
- ifn
- patient
- therapeutically effective
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 108091034117 Oligonucleotide Proteins 0.000 title claims abstract description 220
- 230000003308 immunostimulating effect Effects 0.000 title claims abstract description 204
- 150000001875 compounds Chemical class 0.000 title claims abstract description 151
- 102000004127 Cytokines Human genes 0.000 title claims abstract description 44
- 108090000695 Cytokines Proteins 0.000 title claims abstract description 44
- 230000002195 synergetic effect Effects 0.000 title claims description 43
- 238000001959 radiotherapy Methods 0.000 title claims description 3
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 title abstract description 97
- 239000002246 antineoplastic agent Substances 0.000 title abstract description 27
- 229940127089 cytotoxic agent Drugs 0.000 title abstract description 24
- 210000000987 immune system Anatomy 0.000 title description 12
- 230000000638 stimulation Effects 0.000 title description 5
- 238000000034 method Methods 0.000 claims abstract description 77
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 55
- 201000011510 cancer Diseases 0.000 claims abstract description 39
- 239000000203 mixture Substances 0.000 claims abstract description 26
- 230000028993 immune response Effects 0.000 claims abstract description 18
- 208000035473 Communicable disease Diseases 0.000 claims abstract description 10
- 230000005855 radiation Effects 0.000 claims abstract description 3
- 239000000427 antigen Substances 0.000 claims description 56
- 108091007433 antigens Proteins 0.000 claims description 56
- 102000036639 antigens Human genes 0.000 claims description 56
- 108010002350 Interleukin-2 Proteins 0.000 claims description 55
- 108010065805 Interleukin-12 Proteins 0.000 claims description 35
- 102000013462 Interleukin-12 Human genes 0.000 claims description 35
- 108010074328 Interferon-gamma Proteins 0.000 claims description 30
- NYHBQMYGNKIUIF-UUOKFMHZSA-N Guanosine Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O NYHBQMYGNKIUIF-UUOKFMHZSA-N 0.000 claims description 23
- 102100037850 Interferon gamma Human genes 0.000 claims description 23
- 238000004519 manufacturing process Methods 0.000 claims description 22
- 108010047761 Interferon-alpha Proteins 0.000 claims description 15
- 102000006992 Interferon-alpha Human genes 0.000 claims description 15
- OHDXDNUPVVYWOV-UHFFFAOYSA-N n-methyl-1-(2-naphthalen-1-ylsulfanylphenyl)methanamine Chemical compound CNCC1=CC=CC=C1SC1=CC=CC2=CC=CC=C12 OHDXDNUPVVYWOV-UHFFFAOYSA-N 0.000 claims description 14
- 102100026720 Interferon beta Human genes 0.000 claims description 13
- 108090000467 Interferon-beta Proteins 0.000 claims description 13
- 230000004936 stimulating effect Effects 0.000 claims description 13
- 241001465754 Metazoa Species 0.000 claims description 10
- 206010020751 Hypersensitivity Diseases 0.000 claims description 9
- 230000007815 allergy Effects 0.000 claims description 9
- 208000015181 infectious disease Diseases 0.000 claims description 9
- YKBGVTZYEHREMT-KVQBGUIXSA-N 2'-deoxyguanosine Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@H]1C[C@H](O)[C@@H](CO)O1 YKBGVTZYEHREMT-KVQBGUIXSA-N 0.000 claims description 8
- MIKUYHXYGGJMLM-GIMIYPNGSA-N Crotonoside Natural products C1=NC2=C(N)NC(=O)N=C2N1[C@H]1O[C@@H](CO)[C@H](O)[C@@H]1O MIKUYHXYGGJMLM-GIMIYPNGSA-N 0.000 claims description 8
- NYHBQMYGNKIUIF-UHFFFAOYSA-N D-guanosine Natural products C1=2NC(N)=NC(=O)C=2N=CN1C1OC(CO)C(O)C1O NYHBQMYGNKIUIF-UHFFFAOYSA-N 0.000 claims description 8
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 claims description 8
- 229940029575 guanosine Drugs 0.000 claims description 8
- 241000124008 Mammalia Species 0.000 claims description 7
- 208000026935 allergic disease Diseases 0.000 claims description 6
- 108091029430 CpG site Proteins 0.000 claims description 5
- 230000005865 ionizing radiation Effects 0.000 claims description 5
- 229940104302 cytosine Drugs 0.000 claims description 4
- WKKCYLSCLQVWFD-UHFFFAOYSA-N 1,2-dihydropyrimidin-4-amine Chemical compound N=C1NCNC=C1 WKKCYLSCLQVWFD-UHFFFAOYSA-N 0.000 claims description 3
- 239000002773 nucleotide Substances 0.000 claims description 3
- 125000003729 nucleotide group Chemical group 0.000 claims description 3
- 238000011282 treatment Methods 0.000 abstract description 25
- 230000001225 therapeutic effect Effects 0.000 abstract description 21
- 201000010099 disease Diseases 0.000 abstract description 16
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 abstract description 16
- 238000009169 immunotherapy Methods 0.000 abstract description 11
- 230000002708 enhancing effect Effects 0.000 abstract description 5
- 208000006673 asthma Diseases 0.000 abstract description 4
- 208000023275 Autoimmune disease Diseases 0.000 abstract description 2
- 208000004262 Food Hypersensitivity Diseases 0.000 abstract description 2
- 208000028004 allergic respiratory disease Diseases 0.000 abstract description 2
- 235000020932 food allergy Nutrition 0.000 abstract description 2
- 201000004335 respiratory allergy Diseases 0.000 abstract description 2
- 125000005647 linker group Chemical group 0.000 description 58
- 239000002777 nucleoside Substances 0.000 description 57
- -1 C*pG Chemical compound 0.000 description 53
- 102000000588 Interleukin-2 Human genes 0.000 description 47
- 125000003835 nucleoside group Chemical group 0.000 description 34
- 235000000346 sugar Nutrition 0.000 description 31
- 102000039446 nucleic acids Human genes 0.000 description 29
- 108020004707 nucleic acids Proteins 0.000 description 29
- 150000007523 nucleic acids Chemical class 0.000 description 29
- 230000015572 biosynthetic process Effects 0.000 description 26
- 229910052739 hydrogen Inorganic materials 0.000 description 25
- 239000001257 hydrogen Substances 0.000 description 25
- 238000003786 synthesis reaction Methods 0.000 description 25
- CTMZLDSMFCVUNX-VMIOUTBZSA-N cytidylyl-(3'->5')-guanosine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@H](OP(O)(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C3=C(C(N=C(N)N3)=O)N=C2)O)[C@@H](CO)O1 CTMZLDSMFCVUNX-VMIOUTBZSA-N 0.000 description 24
- 102000004889 Interleukin-6 Human genes 0.000 description 23
- 108090001005 Interleukin-6 Proteins 0.000 description 23
- 150000003833 nucleoside derivatives Chemical class 0.000 description 23
- 210000004027 cell Anatomy 0.000 description 22
- 230000000694 effects Effects 0.000 description 22
- 238000004113 cell culture Methods 0.000 description 21
- 239000005549 deoxyribonucleoside Substances 0.000 description 21
- 238000011725 BALB/c mouse Methods 0.000 description 20
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 20
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 description 20
- SDUQYLNIPVEERB-QPPQHZFASA-N gemcitabine Chemical compound O=C1N=C(N)C=CN1[C@H]1C(F)(F)[C@H](O)[C@@H](CO)O1 SDUQYLNIPVEERB-QPPQHZFASA-N 0.000 description 18
- 150000004713 phosphodiesters Chemical class 0.000 description 18
- 239000002342 ribonucleoside Substances 0.000 description 18
- 210000004989 spleen cell Anatomy 0.000 description 18
- PFEOZHBOMNWTJB-UHFFFAOYSA-N CCC(C)CC Chemical compound CCC(C)CC PFEOZHBOMNWTJB-UHFFFAOYSA-N 0.000 description 17
- YACKEPLHDIMKIO-UHFFFAOYSA-N methylphosphonic acid Chemical compound CP(O)(O)=O YACKEPLHDIMKIO-UHFFFAOYSA-N 0.000 description 17
- UQZUAOWSRWSMOC-UHFFFAOYSA-N C.C.CCC(C)CC Chemical compound C.C.CCC(C)CC UQZUAOWSRWSMOC-UHFFFAOYSA-N 0.000 description 16
- 229960005277 gemcitabine Drugs 0.000 description 16
- 230000004048 modification Effects 0.000 description 16
- 238000012986 modification Methods 0.000 description 16
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 15
- NHBKXEKEPDILRR-UHFFFAOYSA-N 2,3-bis(butanoylsulfanyl)propyl butanoate Chemical compound CCCC(=O)OCC(SC(=O)CCC)CSC(=O)CCC NHBKXEKEPDILRR-UHFFFAOYSA-N 0.000 description 14
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 14
- 230000006698 induction Effects 0.000 description 14
- PEDCQBHIVMGVHV-UHFFFAOYSA-N glycerol group Chemical group OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 13
- 229960001592 paclitaxel Drugs 0.000 description 13
- 239000002718 pyrimidine nucleoside Substances 0.000 description 13
- UHDGCWIWMRVCDJ-CCXZUQQUSA-N Cytarabine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 UHDGCWIWMRVCDJ-CCXZUQQUSA-N 0.000 description 12
- 108090000623 proteins and genes Proteins 0.000 description 12
- 125000006850 spacer group Chemical group 0.000 description 12
- 229930012538 Paclitaxel Natural products 0.000 description 11
- 125000001369 canonical nucleoside group Chemical group 0.000 description 11
- 0 *C1=C([2H])C(C)=CC(C)=C1=C Chemical compound *C1=C([2H])C(C)=CC(C)=C1=C 0.000 description 10
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 description 10
- 230000000295 complement effect Effects 0.000 description 10
- VGONTNSXDCQUGY-UHFFFAOYSA-N desoxyinosine Natural products C1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 VGONTNSXDCQUGY-UHFFFAOYSA-N 0.000 description 10
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 10
- 229960004679 doxorubicin Drugs 0.000 description 10
- MRWXACSTFXYYMV-FDDDBJFASA-N nebularine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC=C2N=C1 MRWXACSTFXYYMV-FDDDBJFASA-N 0.000 description 10
- 239000002953 phosphate buffered saline Substances 0.000 description 10
- 229920001223 polyethylene glycol Polymers 0.000 description 10
- 239000002212 purine nucleoside Substances 0.000 description 10
- 208000035657 Abasia Diseases 0.000 description 9
- 229910052799 carbon Inorganic materials 0.000 description 9
- NAGJZTKCGNOGPW-UHFFFAOYSA-K dioxido-sulfanylidene-sulfido-$l^{5}-phosphane Chemical compound [O-]P([O-])([S-])=S NAGJZTKCGNOGPW-UHFFFAOYSA-K 0.000 description 9
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 8
- 102000003814 Interleukin-10 Human genes 0.000 description 8
- 108090000174 Interleukin-10 Proteins 0.000 description 8
- 241000700605 Viruses Species 0.000 description 8
- 230000037396 body weight Effects 0.000 description 8
- 230000004663 cell proliferation Effects 0.000 description 8
- MXWHMTNPTTVWDM-NXOFHUPFSA-N mitoguazone Chemical compound NC(N)=N\N=C(/C)\C=N\N=C(N)N MXWHMTNPTTVWDM-NXOFHUPFSA-N 0.000 description 8
- 150000008300 phosphoramidites Chemical class 0.000 description 8
- 150000003384 small molecules Chemical group 0.000 description 8
- 229940063683 taxotere Drugs 0.000 description 8
- NRUKOCRGYNPUPR-QBPJDGROSA-N teniposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@@H](OC[C@H]4O3)C=3SC=CC=3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 NRUKOCRGYNPUPR-QBPJDGROSA-N 0.000 description 8
- WYWHKKSPHMUBEB-UHFFFAOYSA-N tioguanine Chemical compound N1C(N)=NC(=S)C2=C1N=CN2 WYWHKKSPHMUBEB-UHFFFAOYSA-N 0.000 description 8
- IQFYYKKMVGJFEH-BIIVOSGPSA-N 2'-deoxythymidine Natural products O=C1NC(=O)C(C)=CN1[C@@H]1O[C@@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-BIIVOSGPSA-N 0.000 description 7
- PFCLMNDDPTZJHQ-XLPZGREQSA-N 2-amino-7-[(2r,4s,5r)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-1h-pyrrolo[2,3-d]pyrimidin-4-one Chemical compound C1=CC=2C(=O)NC(N)=NC=2N1[C@H]1C[C@H](O)[C@@H](CO)O1 PFCLMNDDPTZJHQ-XLPZGREQSA-N 0.000 description 7
- 102000008070 Interferon-gamma Human genes 0.000 description 7
- 241000699670 Mus sp. Species 0.000 description 7
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 7
- 239000013566 allergen Substances 0.000 description 7
- 239000002215 arabinonucleoside Substances 0.000 description 7
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 7
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 7
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 7
- 239000013604 expression vector Substances 0.000 description 7
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 7
- 229960005486 vaccine Drugs 0.000 description 7
- CKZJTNZSBMVFSU-UBKIQSJTSA-N 4-amino-5-hydroxy-1-[(2r,4s,5r)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]pyrimidin-2-one Chemical compound C1=C(O)C(N)=NC(=O)N1[C@@H]1O[C@H](CO)[C@@H](O)C1 CKZJTNZSBMVFSU-UBKIQSJTSA-N 0.000 description 6
- HLFSDGLLUJUHTE-SNVBAGLBSA-N Levamisole Chemical compound C1([C@H]2CN3CCSC3=N2)=CC=CC=C1 HLFSDGLLUJUHTE-SNVBAGLBSA-N 0.000 description 6
- 108091093037 Peptide nucleic acid Proteins 0.000 description 6
- 239000000370 acceptor Substances 0.000 description 6
- VSRXQHXAPYXROS-UHFFFAOYSA-N azanide;cyclobutane-1,1-dicarboxylic acid;platinum(2+) Chemical compound [NH2-].[NH2-].[Pt+2].OC(=O)C1(C(O)=O)CCC1 VSRXQHXAPYXROS-UHFFFAOYSA-N 0.000 description 6
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 6
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 6
- 229960004316 cisplatin Drugs 0.000 description 6
- 229960002949 fluorouracil Drugs 0.000 description 6
- UWKQSNNFCGGAFS-XIFFEERXSA-N irinotecan Chemical compound C1=C2C(CC)=C3CN(C(C4=C([C@@](C(=O)OC4)(O)CC)C=4)=O)C=4C3=NC2=CC=C1OC(=O)N(CC1)CCC1N1CCCCC1 UWKQSNNFCGGAFS-XIFFEERXSA-N 0.000 description 6
- 230000000670 limiting effect Effects 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- ZOCKGBMQLCSHFP-KQRAQHLDSA-N valrubicin Chemical compound O([C@H]1C[C@](CC2=C(O)C=3C(=O)C4=CC=CC(OC)=C4C(=O)C=3C(O)=C21)(O)C(=O)COC(=O)CCCC)[C@H]1C[C@H](NC(=O)C(F)(F)F)[C@H](O)[C@H](C)O1 ZOCKGBMQLCSHFP-KQRAQHLDSA-N 0.000 description 6
- 239000013598 vector Substances 0.000 description 6
- PHNDUXLWAVSUAL-SHYZEUOFSA-N 1-[(2r,4s,5r)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-4-sulfanylidenepyrimidin-2-one Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=S)C=C1 PHNDUXLWAVSUAL-SHYZEUOFSA-N 0.000 description 5
- MXHRCPNRJAMMIM-ULQXZJNLSA-N 1-[(2r,4s,5r)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-tritiopyrimidine-2,4-dione Chemical compound O=C1NC(=O)C([3H])=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 MXHRCPNRJAMMIM-ULQXZJNLSA-N 0.000 description 5
- UHDGCWIWMRVCDJ-UHFFFAOYSA-N 1-beta-D-Xylofuranosyl-NH-Cytosine Natural products O=C1N=C(N)C=CN1C1C(O)C(O)C(CO)O1 UHDGCWIWMRVCDJ-UHFFFAOYSA-N 0.000 description 5
- YKBGVTZYEHREMT-UHFFFAOYSA-N 2'-deoxyguanosine Natural products C1=2NC(N)=NC(=O)C=2N=CN1C1CC(O)C(CO)O1 YKBGVTZYEHREMT-UHFFFAOYSA-N 0.000 description 5
- VGONTNSXDCQUGY-RRKCRQDMSA-N 2'-deoxyinosine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(N=CNC2=O)=C2N=C1 VGONTNSXDCQUGY-RRKCRQDMSA-N 0.000 description 5
- CKTSBUTUHBMZGZ-SHYZEUOFSA-N 2'‐deoxycytidine Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 CKTSBUTUHBMZGZ-SHYZEUOFSA-N 0.000 description 5
- SCVJRXQHFJXZFZ-KVQBGUIXSA-N 2-amino-9-[(2r,4s,5r)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-3h-purine-6-thione Chemical compound C1=2NC(N)=NC(=S)C=2N=CN1[C@H]1C[C@H](O)[C@@H](CO)O1 SCVJRXQHFJXZFZ-KVQBGUIXSA-N 0.000 description 5
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 5
- 108090000994 Catalytic RNA Proteins 0.000 description 5
- 102000053642 Catalytic RNA Human genes 0.000 description 5
- UHDGCWIWMRVCDJ-PSQAKQOGSA-N Cytidine Natural products O=C1N=C(N)C=CN1[C@@H]1[C@@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-PSQAKQOGSA-N 0.000 description 5
- CKTSBUTUHBMZGZ-UHFFFAOYSA-N Deoxycytidine Natural products O=C1N=C(N)C=CN1C1OC(CO)C(O)C1 CKTSBUTUHBMZGZ-UHFFFAOYSA-N 0.000 description 5
- 206010060862 Prostate cancer Diseases 0.000 description 5
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 5
- 102000002689 Toll-like receptor Human genes 0.000 description 5
- 108020000411 Toll-like receptor Proteins 0.000 description 5
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 5
- 102100040247 Tumor necrosis factor Human genes 0.000 description 5
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical group NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 5
- 125000000217 alkyl group Chemical group 0.000 description 5
- 230000001093 anti-cancer Effects 0.000 description 5
- 125000004432 carbon atom Chemical group C* 0.000 description 5
- 239000012228 culture supernatant Substances 0.000 description 5
- UHDGCWIWMRVCDJ-ZAKLUEHWSA-N cytidine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-ZAKLUEHWSA-N 0.000 description 5
- 238000001727 in vivo Methods 0.000 description 5
- 229960003130 interferon gamma Drugs 0.000 description 5
- 230000019734 interleukin-12 production Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000008194 pharmaceutical composition Substances 0.000 description 5
- 108090000765 processed proteins & peptides Proteins 0.000 description 5
- 108091092562 ribozyme Proteins 0.000 description 5
- 230000004614 tumor growth Effects 0.000 description 5
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 4
- FPVKHBSQESCIEP-UHFFFAOYSA-N (8S)-3-(2-deoxy-beta-D-erythro-pentofuranosyl)-3,6,7,8-tetrahydroimidazo[4,5-d][1,3]diazepin-8-ol Natural products C1C(O)C(CO)OC1N1C(NC=NCC2O)=C2N=C1 FPVKHBSQESCIEP-UHFFFAOYSA-N 0.000 description 4
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 4
- AOJJSUZBOXZQNB-VTZDEGQISA-N 4'-epidoxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-VTZDEGQISA-N 0.000 description 4
- 125000002103 4,4'-dimethoxytriphenylmethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)(C1=C([H])C([H])=C(OC([H])([H])[H])C([H])=C1[H])C1=C([H])C([H])=C(OC([H])([H])[H])C([H])=C1[H] 0.000 description 4
- RYVNIFSIEDRLSJ-UHFFFAOYSA-N 5-(hydroxymethyl)cytosine Chemical compound NC=1NC(=O)N=CC=1CO RYVNIFSIEDRLSJ-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical group N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 4
- PTOAARAWEBMLNO-KVQBGUIXSA-N Cladribine Chemical compound C1=NC=2C(N)=NC(Cl)=NC=2N1[C@H]1C[C@H](O)[C@@H](CO)O1 PTOAARAWEBMLNO-KVQBGUIXSA-N 0.000 description 4
- 108020004414 DNA Proteins 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical group CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- VSNHCAURESNICA-UHFFFAOYSA-N Hydroxyurea Chemical compound NC(=O)NO VSNHCAURESNICA-UHFFFAOYSA-N 0.000 description 4
- GQYIWUVLTXOXAJ-UHFFFAOYSA-N Lomustine Chemical compound ClCCN(N=O)C(=O)NC1CCCCC1 GQYIWUVLTXOXAJ-UHFFFAOYSA-N 0.000 description 4
- XOGTZOOQQBDUSI-UHFFFAOYSA-M Mesna Chemical compound [Na+].[O-]S(=O)(=O)CCS XOGTZOOQQBDUSI-UHFFFAOYSA-M 0.000 description 4
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 4
- YJDYDFNKCBANTM-QCWCSKBGSA-N SDZ PSC 833 Chemical compound C\C=C\C[C@@H](C)C(=O)[C@@H]1N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C(=O)[C@H](C(C)C)NC1=O YJDYDFNKCBANTM-QCWCSKBGSA-N 0.000 description 4
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- BPEGJWRSRHCHSN-UHFFFAOYSA-N Temozolomide Chemical compound O=C1N(C)N=NC2=C(C(N)=O)N=CN21 BPEGJWRSRHCHSN-UHFFFAOYSA-N 0.000 description 4
- 229940123468 Transferase inhibitor Drugs 0.000 description 4
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 4
- RJURFGZVJUQBHK-UHFFFAOYSA-N actinomycin D Natural products CC1OC(=O)C(C(C)C)N(C)C(=O)CN(C)C(=O)C2CCCN2C(=O)C(C(C)C)NC(=O)C1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)NC4C(=O)NC(C(N5CCCC5C(=O)N(C)CC(=O)N(C)C(C(C)C)C(=O)OC4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-UHFFFAOYSA-N 0.000 description 4
- ORILYTVJVMAKLC-UHFFFAOYSA-N adamantane Chemical compound C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 description 4
- 125000005600 alkyl phosphonate group Chemical group 0.000 description 4
- 229960000473 altretamine Drugs 0.000 description 4
- 229950010817 alvocidib Drugs 0.000 description 4
- BIIVYFLTOXDAOV-YVEFUNNKSA-N alvocidib Chemical compound O[C@@H]1CN(C)CC[C@@H]1C1=C(O)C=C(O)C2=C1OC(C=1C(=CC=CC=1)Cl)=CC2=O BIIVYFLTOXDAOV-YVEFUNNKSA-N 0.000 description 4
- XCPGHVQEEXUHNC-UHFFFAOYSA-N amsacrine Chemical compound COC1=CC(NS(C)(=O)=O)=CC=C1NC1=C(C=CC=C2)C2=NC2=CC=CC=C12 XCPGHVQEEXUHNC-UHFFFAOYSA-N 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- CGVWPQOFHSAKRR-NDEPHWFRSA-N biricodar Chemical compound COC1=C(OC)C(OC)=CC(C(=O)C(=O)N2[C@@H](CCCC2)C(=O)OC(CCCC=2C=NC=CC=2)CCCC=2C=NC=CC=2)=C1 CGVWPQOFHSAKRR-NDEPHWFRSA-N 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 229960004562 carboplatin Drugs 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 229960002436 cladribine Drugs 0.000 description 4
- 239000003085 diluting agent Substances 0.000 description 4
- NAGJZTKCGNOGPW-UHFFFAOYSA-N dithiophosphoric acid Chemical group OP(O)(S)=S NAGJZTKCGNOGPW-UHFFFAOYSA-N 0.000 description 4
- 229950005454 doxifluridine Drugs 0.000 description 4
- ZWAOHEXOSAUJHY-ZIYNGMLESA-N doxifluridine Chemical compound O[C@@H]1[C@H](O)[C@@H](C)O[C@H]1N1C(=O)NC(=O)C(F)=C1 ZWAOHEXOSAUJHY-ZIYNGMLESA-N 0.000 description 4
- JOZGNYDSEBIJDH-UHFFFAOYSA-N eniluracil Chemical compound O=C1NC=C(C#C)C(=O)N1 JOZGNYDSEBIJDH-UHFFFAOYSA-N 0.000 description 4
- 229960001904 epirubicin Drugs 0.000 description 4
- 229960005420 etoposide Drugs 0.000 description 4
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 description 4
- 239000012091 fetal bovine serum Substances 0.000 description 4
- GIUYCYHIANZCFB-FJFJXFQQSA-N fludarabine phosphate Chemical compound C1=NC=2C(N)=NC(F)=NC=2N1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@@H]1O GIUYCYHIANZCFB-FJFJXFQQSA-N 0.000 description 4
- UUVWYPNAQBNQJQ-UHFFFAOYSA-N hexamethylmelamine Chemical compound CN(C)C1=NC(N(C)C)=NC(N(C)C)=N1 UUVWYPNAQBNQJQ-UHFFFAOYSA-N 0.000 description 4
- 150000002402 hexoses Chemical class 0.000 description 4
- 229960001330 hydroxycarbamide Drugs 0.000 description 4
- 230000002163 immunogen Effects 0.000 description 4
- 230000017306 interleukin-6 production Effects 0.000 description 4
- 229960001614 levamisole Drugs 0.000 description 4
- 150000002632 lipids Chemical class 0.000 description 4
- OCSMOTCMPXTDND-OUAUKWLOSA-N marimastat Chemical compound CNC(=O)[C@H](C(C)(C)C)NC(=O)[C@H](CC(C)C)[C@H](O)C(=O)NO OCSMOTCMPXTDND-OUAUKWLOSA-N 0.000 description 4
- KKZJGLLVHKMTCM-UHFFFAOYSA-N mitoxantrone Chemical compound O=C1C2=C(O)C=CC(O)=C2C(=O)C2=C1C(NCCNCCO)=CC=C2NCCNCCO KKZJGLLVHKMTCM-UHFFFAOYSA-N 0.000 description 4
- FPVKHBSQESCIEP-JQCXWYLXSA-N pentostatin Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(N=CNC[C@H]2O)=C2N=C1 FPVKHBSQESCIEP-JQCXWYLXSA-N 0.000 description 4
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 4
- 235000020030 perry Nutrition 0.000 description 4
- 239000000546 pharmaceutical excipient Substances 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 102000004196 processed proteins & peptides Human genes 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 230000028327 secretion Effects 0.000 description 4
- 210000000952 spleen Anatomy 0.000 description 4
- 210000004988 splenocyte Anatomy 0.000 description 4
- FIAFUQMPZJWCLV-UHFFFAOYSA-N suramin Chemical compound OS(=O)(=O)C1=CC(S(O)(=O)=O)=C2C(NC(=O)C3=CC=C(C(=C3)NC(=O)C=3C=C(NC(=O)NC=4C=C(C=CC=4)C(=O)NC=4C(=CC=C(C=4)C(=O)NC=4C5=C(C=C(C=C5C(=CC=4)S(O)(=O)=O)S(O)(=O)=O)S(O)(=O)=O)C)C=CC=3)C)=CC=C(S(O)(=O)=O)C2=C1 FIAFUQMPZJWCLV-UHFFFAOYSA-N 0.000 description 4
- 229960005314 suramin Drugs 0.000 description 4
- 229960004964 temozolomide Drugs 0.000 description 4
- 229960001278 teniposide Drugs 0.000 description 4
- 150000003568 thioethers Chemical class 0.000 description 4
- 229960003087 tioguanine Drugs 0.000 description 4
- UCFGDBYHRUNTLO-QHCPKHFHSA-N topotecan Chemical compound C1=C(O)C(CN(C)C)=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 UCFGDBYHRUNTLO-QHCPKHFHSA-N 0.000 description 4
- 239000003558 transferase inhibitor Substances 0.000 description 4
- 229960000653 valrubicin Drugs 0.000 description 4
- 229950010938 valspodar Drugs 0.000 description 4
- 108010082372 valspodar Proteins 0.000 description 4
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 3
- OTMSDBZUPAUEDD-UHFFFAOYSA-N CC Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 3
- BFFZLRCIQYBYEW-UHFFFAOYSA-M COCC1OC(N2C=C(O)C(N)=NC2=O)CC1OP(=O)([S-])OC Chemical compound COCC1OC(N2C=C(O)C(N)=NC2=O)CC1OP(=O)([S-])OC BFFZLRCIQYBYEW-UHFFFAOYSA-M 0.000 description 3
- WYMAHUIIBGODQV-UHFFFAOYSA-M COCC1OC(N2C=CC3=C2N=C(N)NC3=O)CC1OP(=O)([S-])OC Chemical compound COCC1OC(N2C=CC3=C2N=C(N)NC3=O)CC1OP(=O)([S-])OC WYMAHUIIBGODQV-UHFFFAOYSA-M 0.000 description 3
- 108010041986 DNA Vaccines Proteins 0.000 description 3
- 229940021995 DNA vaccine Drugs 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 3
- 150000001479 arabinose derivatives Chemical class 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 235000012000 cholesterol Nutrition 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 239000003937 drug carrier Substances 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 125000000623 heterocyclic group Chemical group 0.000 description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 230000004073 interleukin-2 production Effects 0.000 description 3
- 239000003446 ligand Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 125000004573 morpholin-4-yl group Chemical group N1(CCOCC1)* 0.000 description 3
- 229910052757 nitrogen Chemical group 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 150000002972 pentoses Chemical group 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- 150000008298 phosphoramidates Chemical class 0.000 description 3
- 239000013612 plasmid Substances 0.000 description 3
- 229940002612 prodrug Drugs 0.000 description 3
- 239000000651 prodrug Substances 0.000 description 3
- 230000035755 proliferation Effects 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 239000002336 ribonucleotide Substances 0.000 description 3
- 238000003118 sandwich ELISA Methods 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- IEJSCSAMMLUINT-NRFANRHFSA-N (2s)-2-[[4-[(2,7-dimethyl-4-oxo-1h-quinazolin-6-yl)methyl-prop-2-ynylamino]-2-fluorobenzoyl]amino]-4-(2h-tetrazol-5-yl)butanoic acid Chemical compound C([C@H](NC(=O)C1=CC=C(C=C1F)N(CC#C)CC=1C=C2C(=O)N=C(NC2=CC=1C)C)C(O)=O)CC=1N=NNN=1 IEJSCSAMMLUINT-NRFANRHFSA-N 0.000 description 2
- DEQANNDTNATYII-OULOTJBUSA-N (4r,7s,10s,13r,16s,19r)-10-(4-aminobutyl)-19-[[(2r)-2-amino-3-phenylpropanoyl]amino]-16-benzyl-n-[(2r,3r)-1,3-dihydroxybutan-2-yl]-7-[(1r)-1-hydroxyethyl]-13-(1h-indol-3-ylmethyl)-6,9,12,15,18-pentaoxo-1,2-dithia-5,8,11,14,17-pentazacycloicosane-4-carboxa Chemical compound C([C@@H](N)C(=O)N[C@H]1CSSC[C@H](NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](CC=2C3=CC=CC=C3NC=2)NC(=O)[C@H](CC=2C=CC=CC=2)NC1=O)C(=O)N[C@H](CO)[C@H](O)C)C1=CC=CC=C1 DEQANNDTNATYII-OULOTJBUSA-N 0.000 description 2
- FDKXTQMXEQVLRF-ZHACJKMWSA-N (E)-dacarbazine Chemical compound CN(C)\N=N\c1[nH]cnc1C(N)=O FDKXTQMXEQVLRF-ZHACJKMWSA-N 0.000 description 2
- MPCAJMNYNOGXPB-UHFFFAOYSA-N 1,5-anhydrohexitol Chemical class OCC1OCC(O)C(O)C1O MPCAJMNYNOGXPB-UHFFFAOYSA-N 0.000 description 2
- 125000001731 2-cyanoethyl group Chemical group [H]C([H])(*)C([H])([H])C#N 0.000 description 2
- KCURWTAZOZXKSJ-JBMRGDGGSA-N 4-amino-1-[(2r,3s,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]pyrimidin-2-one;hydron;chloride Chemical compound Cl.O=C1N=C(N)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 KCURWTAZOZXKSJ-JBMRGDGGSA-N 0.000 description 2
- OVONXEQGWXGFJD-UHFFFAOYSA-N 4-sulfanylidene-1h-pyrimidin-2-one Chemical compound SC=1C=CNC(=O)N=1 OVONXEQGWXGFJD-UHFFFAOYSA-N 0.000 description 2
- QYICDXXLKSTPLF-UHFFFAOYSA-N 5-aminoheptane-1,3-diol Chemical group CCC(N)CC(O)CCO QYICDXXLKSTPLF-UHFFFAOYSA-N 0.000 description 2
- NMUSYJAQQFHJEW-KVTDHHQDSA-N 5-azacytidine Chemical compound O=C1N=C(N)N=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 NMUSYJAQQFHJEW-KVTDHHQDSA-N 0.000 description 2
- DHMYGZIEILLVNR-UHFFFAOYSA-N 5-fluoro-1-(oxolan-2-yl)pyrimidine-2,4-dione;1h-pyrimidine-2,4-dione Chemical compound O=C1C=CNC(=O)N1.O=C1NC(=O)C(F)=CN1C1OCCC1 DHMYGZIEILLVNR-UHFFFAOYSA-N 0.000 description 2
- TVICROIWXBFQEL-UHFFFAOYSA-N 6-(ethylamino)-1h-pyrimidin-2-one Chemical compound CCNC1=CC=NC(=O)N1 TVICROIWXBFQEL-UHFFFAOYSA-N 0.000 description 2
- NLLCDONDZDHLCI-UHFFFAOYSA-N 6-amino-5-hydroxy-1h-pyrimidin-2-one Chemical compound NC=1NC(=O)N=CC=1O NLLCDONDZDHLCI-UHFFFAOYSA-N 0.000 description 2
- KABRXLINDSPGDF-UHFFFAOYSA-N 7-bromoisoquinoline Chemical compound C1=CN=CC2=CC(Br)=CC=C21 KABRXLINDSPGDF-UHFFFAOYSA-N 0.000 description 2
- LOSIULRWFAEMFL-UHFFFAOYSA-N 7-deazaguanine Chemical compound O=C1NC(N)=NC2=C1CC=N2 LOSIULRWFAEMFL-UHFFFAOYSA-N 0.000 description 2
- XGWFJBFNAQHLEF-UHFFFAOYSA-N 9-anthroic acid Chemical compound C1=CC=C2C(C(=O)O)=C(C=CC=C3)C3=CC2=C1 XGWFJBFNAQHLEF-UHFFFAOYSA-N 0.000 description 2
- NYHBQMYGNKIUIF-FJFJXFQQSA-N 9-beta-D-arabinofuranosylguanine Chemical compound C12=NC(N)=NC(O)=C2N=CN1[C@@H]1O[C@H](CO)[C@@H](O)[C@@H]1O NYHBQMYGNKIUIF-FJFJXFQQSA-N 0.000 description 2
- 241000219496 Alnus Species 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- 235000003261 Artemisia vulgaris Nutrition 0.000 description 2
- 240000006891 Artemisia vulgaris Species 0.000 description 2
- 102000015790 Asparaginase Human genes 0.000 description 2
- 108010024976 Asparaginase Proteins 0.000 description 2
- 244000075850 Avena orientalis Species 0.000 description 2
- 108010006654 Bleomycin Proteins 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- 206010006187 Breast cancer Diseases 0.000 description 2
- 208000026310 Breast neoplasm Diseases 0.000 description 2
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 2
- HSTWITGURKFUIC-UHFFFAOYSA-N C=O.CNCC(C)CNC(C)=O Chemical compound C=O.CNCC(C)CNC(C)=O HSTWITGURKFUIC-UHFFFAOYSA-N 0.000 description 2
- XZVVZKLCXQRLDN-UHFFFAOYSA-N CCC.COCC(O)COC.COCC1OC(N2C=CC3=C2N=C(N)NC3=O)CC1OC Chemical compound CCC.COCC(O)COC.COCC1OC(N2C=CC3=C2N=C(N)NC3=O)CC1OC XZVVZKLCXQRLDN-UHFFFAOYSA-N 0.000 description 2
- FVLVBPDQNARYJU-XAHDHGMMSA-N C[C@H]1CCC(CC1)NC(=O)N(CCCl)N=O Chemical compound C[C@H]1CCC(CC1)NC(=O)N(CCCl)N=O FVLVBPDQNARYJU-XAHDHGMMSA-N 0.000 description 2
- 241000282472 Canis lupus familiaris Species 0.000 description 2
- GAGWJHPBXLXJQN-UORFTKCHSA-N Capecitabine Chemical compound C1=C(F)C(NC(=O)OCCCCC)=NC(=O)N1[C@H]1[C@H](O)[C@H](O)[C@@H](C)O1 GAGWJHPBXLXJQN-UORFTKCHSA-N 0.000 description 2
- GAGWJHPBXLXJQN-UHFFFAOYSA-N Capecitabine Natural products C1=C(F)C(NC(=O)OCCCCC)=NC(=O)N1C1C(O)C(O)C(C)O1 GAGWJHPBXLXJQN-UHFFFAOYSA-N 0.000 description 2
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- 108010022366 Carcinoembryonic Antigen Proteins 0.000 description 2
- 102100025475 Carcinoembryonic antigen-related cell adhesion molecule 5 Human genes 0.000 description 2
- 201000009030 Carcinoma Diseases 0.000 description 2
- 244000281762 Chenopodium ambrosioides Species 0.000 description 2
- 235000000509 Chenopodium ambrosioides Nutrition 0.000 description 2
- 235000005490 Chenopodium botrys Nutrition 0.000 description 2
- JWBOIMRXGHLCPP-UHFFFAOYSA-N Chloditan Chemical compound C=1C=CC=C(Cl)C=1C(C(Cl)Cl)C1=CC=C(Cl)C=C1 JWBOIMRXGHLCPP-UHFFFAOYSA-N 0.000 description 2
- WTEVQBCEXWBHNA-UHFFFAOYSA-N Citral Natural products CC(C)=CCCC(C)=CC=O WTEVQBCEXWBHNA-UHFFFAOYSA-N 0.000 description 2
- 206010009944 Colon cancer Diseases 0.000 description 2
- 240000005109 Cryptomeria japonica Species 0.000 description 2
- 108010024986 Cyclin-Dependent Kinase 2 Proteins 0.000 description 2
- 108010025464 Cyclin-Dependent Kinase 4 Proteins 0.000 description 2
- 102100021906 Cyclin-O Human genes 0.000 description 2
- 102100036239 Cyclin-dependent kinase 2 Human genes 0.000 description 2
- 102100036252 Cyclin-dependent kinase 4 Human genes 0.000 description 2
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 2
- 241000701022 Cytomegalovirus Species 0.000 description 2
- 108010092160 Dactinomycin Proteins 0.000 description 2
- GUGHGUXZJWAIAS-QQYBVWGSSA-N Daunorubicin hydrochloride Chemical compound Cl.O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 GUGHGUXZJWAIAS-QQYBVWGSSA-N 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- 241000709661 Enterovirus Species 0.000 description 2
- HTIJFSOGRVMCQR-UHFFFAOYSA-N Epirubicin Natural products COc1cccc2C(=O)c3c(O)c4CC(O)(CC(OC5CC(N)C(=O)C(C)O5)c4c(O)c3C(=O)c12)C(=O)CO HTIJFSOGRVMCQR-UHFFFAOYSA-N 0.000 description 2
- 241000282326 Felis catus Species 0.000 description 2
- 241000856850 Goose coronavirus Species 0.000 description 2
- 241000700721 Hepatitis B virus Species 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 101000897441 Homo sapiens Cyclin-O Proteins 0.000 description 2
- 101000623901 Homo sapiens Mucin-16 Proteins 0.000 description 2
- 101000904173 Homo sapiens Progonadoliberin-1 Proteins 0.000 description 2
- 108010078049 Interferon alpha-2 Proteins 0.000 description 2
- 241000721662 Juniperus Species 0.000 description 2
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 2
- 108010000817 Leuprolide Proteins 0.000 description 2
- 102100034256 Mucin-1 Human genes 0.000 description 2
- 102100023123 Mucin-16 Human genes 0.000 description 2
- 241000699666 Mus <mouse, genus> Species 0.000 description 2
- MSHZHSPISPJWHW-UHFFFAOYSA-N O-(chloroacetylcarbamoyl)fumagillol Chemical compound O1C(CC=C(C)C)C1(C)C1C(OC)C(OC(=O)NC(=O)CCl)CCC21CO2 MSHZHSPISPJWHW-UHFFFAOYSA-N 0.000 description 2
- 108010016076 Octreotide Proteins 0.000 description 2
- 241000795633 Olea <sea slug> Species 0.000 description 2
- 229940123282 Oncogene inhibitor Drugs 0.000 description 2
- 206010033128 Ovarian cancer Diseases 0.000 description 2
- 206010061535 Ovarian neoplasm Diseases 0.000 description 2
- 239000012661 PARP inhibitor Substances 0.000 description 2
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 2
- 101150071746 Pbsn gene Proteins 0.000 description 2
- 229930182555 Penicillin Natural products 0.000 description 2
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 2
- 102000003992 Peroxidases Human genes 0.000 description 2
- 229940121906 Poly ADP ribose polymerase inhibitor Drugs 0.000 description 2
- 229920001213 Polysorbate 20 Polymers 0.000 description 2
- 102100024028 Progonadoliberin-1 Human genes 0.000 description 2
- 102000007066 Prostate-Specific Antigen Human genes 0.000 description 2
- 108010072866 Prostate-Specific Antigen Proteins 0.000 description 2
- 102100035703 Prostatic acid phosphatase Human genes 0.000 description 2
- 241000711798 Rabies lyssavirus Species 0.000 description 2
- 108020004511 Recombinant DNA Proteins 0.000 description 2
- 108091028664 Ribonucleotide Proteins 0.000 description 2
- 206010039491 Sarcoma Diseases 0.000 description 2
- 244000062793 Sorghum vulgare Species 0.000 description 2
- 206010041660 Splenomegaly Diseases 0.000 description 2
- 208000005718 Stomach Neoplasms Diseases 0.000 description 2
- 101000996723 Sus scrofa Gonadotropin-releasing hormone receptor Proteins 0.000 description 2
- 210000001744 T-lymphocyte Anatomy 0.000 description 2
- JXAGDPXECXQWBC-LJQANCHMSA-N Tanomastat Chemical compound C([C@H](C(=O)O)CC(=O)C=1C=CC(=CC=1)C=1C=CC(Cl)=CC=1)SC1=CC=CC=C1 JXAGDPXECXQWBC-LJQANCHMSA-N 0.000 description 2
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical class OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 2
- FOCVUCIESVLUNU-UHFFFAOYSA-N Thiotepa Chemical compound C1CN1P(N1CC1)(=S)N1CC1 FOCVUCIESVLUNU-UHFFFAOYSA-N 0.000 description 2
- 241000218636 Thuja Species 0.000 description 2
- 241000711975 Vesicular stomatitis virus Species 0.000 description 2
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 description 2
- RJURFGZVJUQBHK-IIXSONLDSA-N actinomycin D Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)N[C@@H]4C(=O)N[C@@H](C(N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-IIXSONLDSA-N 0.000 description 2
- 229940009456 adriamycin Drugs 0.000 description 2
- 239000000443 aerosol Substances 0.000 description 2
- 229940100198 alkylating agent Drugs 0.000 description 2
- 239000002168 alkylating agent Substances 0.000 description 2
- 150000001408 amides Chemical group 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- ROBVIMPUHSLWNV-UHFFFAOYSA-N aminoglutethimide Chemical compound C=1C=C(N)C=CC=1C1(CC)CCC(=O)NC1=O ROBVIMPUHSLWNV-UHFFFAOYSA-N 0.000 description 2
- 229960003437 aminoglutethimide Drugs 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- 229960001220 amsacrine Drugs 0.000 description 2
- 229940045719 antineoplastic alkylating agent nitrosoureas Drugs 0.000 description 2
- 229960003272 asparaginase Drugs 0.000 description 2
- DCXYFEDJOCDNAF-UHFFFAOYSA-M asparaginate Chemical compound [O-]C(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-M 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 229960002756 azacitidine Drugs 0.000 description 2
- XFILPEOLDIKJHX-QYZOEREBSA-N batimastat Chemical compound C([C@@H](C(=O)NC)NC(=O)[C@H](CC(C)C)[C@H](CSC=1SC=CC=1)C(=O)NO)C1=CC=CC=C1 XFILPEOLDIKJHX-QYZOEREBSA-N 0.000 description 2
- 229950001858 batimastat Drugs 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229960001561 bleomycin Drugs 0.000 description 2
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 2
- 230000036765 blood level Effects 0.000 description 2
- 229960002092 busulfan Drugs 0.000 description 2
- 229940088954 camptosar Drugs 0.000 description 2
- 229940022399 cancer vaccine Drugs 0.000 description 2
- 238000009566 cancer vaccine Methods 0.000 description 2
- 229960004117 capecitabine Drugs 0.000 description 2
- 239000004202 carbamide Chemical group 0.000 description 2
- 150000001720 carbohydrates Chemical group 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000007385 chemical modification Methods 0.000 description 2
- 239000012916 chromogenic reagent Substances 0.000 description 2
- 238000011284 combination treatment Methods 0.000 description 2
- 229960004397 cyclophosphamide Drugs 0.000 description 2
- 229960003901 dacarbazine Drugs 0.000 description 2
- 229960000640 dactinomycin Drugs 0.000 description 2
- 229960000975 daunorubicin Drugs 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 229940070968 depocyt Drugs 0.000 description 2
- 239000007933 dermal patch Substances 0.000 description 2
- 229960003668 docetaxel Drugs 0.000 description 2
- 231100000673 dose–response relationship Toxicity 0.000 description 2
- 229940115080 doxil Drugs 0.000 description 2
- 125000006575 electron-withdrawing group Chemical group 0.000 description 2
- 239000002158 endotoxin Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000003623 enhancer Substances 0.000 description 2
- 229950010213 eniluracil Drugs 0.000 description 2
- 102000052116 epidermal growth factor receptor activity proteins Human genes 0.000 description 2
- 108700015053 epidermal growth factor receptor activity proteins Proteins 0.000 description 2
- 150000002148 esters Chemical group 0.000 description 2
- 229960001766 estramustine phosphate sodium Drugs 0.000 description 2
- IIUMCNJTGSMNRO-VVSKJQCTSA-L estramustine sodium phosphate Chemical compound [Na+].[Na+].ClCCN(CCCl)C(=O)OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)OP([O-])([O-])=O)[C@@H]4[C@@H]3CCC2=C1 IIUMCNJTGSMNRO-VVSKJQCTSA-L 0.000 description 2
- AEOCXXJPGCBFJA-UHFFFAOYSA-N ethionamide Chemical group CCC1=CC(C(N)=S)=CC=N1 AEOCXXJPGCBFJA-UHFFFAOYSA-N 0.000 description 2
- LIQODXNTTZAGID-OCBXBXKTSA-N etoposide phosphate Chemical compound COC1=C(OP(O)(O)=O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 LIQODXNTTZAGID-OCBXBXKTSA-N 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000003889 eye drop Substances 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 229960000961 floxuridine Drugs 0.000 description 2
- ODKNJVUHOIMIIZ-RRKCRQDMSA-N floxuridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(F)=C1 ODKNJVUHOIMIIZ-RRKCRQDMSA-N 0.000 description 2
- 229960000390 fludarabine Drugs 0.000 description 2
- 229960005304 fludarabine phosphate Drugs 0.000 description 2
- MKXKFYHWDHIYRV-UHFFFAOYSA-N flutamide Chemical compound CC(C)C(=O)NC1=CC=C([N+]([O-])=O)C(C(F)(F)F)=C1 MKXKFYHWDHIYRV-UHFFFAOYSA-N 0.000 description 2
- 229960002074 flutamide Drugs 0.000 description 2
- OVBPIULPVIDEAO-LBPRGKRZSA-N folic acid Chemical compound C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-LBPRGKRZSA-N 0.000 description 2
- 150000002270 gangliosides Chemical class 0.000 description 2
- 206010017758 gastric cancer Diseases 0.000 description 2
- XGALLCVXEZPNRQ-UHFFFAOYSA-N gefitinib Chemical compound C=12C=C(OCCCN3CCOCC3)C(OC)=CC2=NC=NC=1NC1=CC=C(F)C(Cl)=C1 XGALLCVXEZPNRQ-UHFFFAOYSA-N 0.000 description 2
- 229960002584 gefitinib Drugs 0.000 description 2
- 229940020967 gemzar Drugs 0.000 description 2
- 210000004602 germ cell Anatomy 0.000 description 2
- XLXSAKCOAKORKW-UHFFFAOYSA-N gonadorelin Chemical compound C1CCC(C(=O)NCC(N)=O)N1C(=O)C(CCCN=C(N)N)NC(=O)C(CC(C)C)NC(=O)CNC(=O)C(NC(=O)C(CO)NC(=O)C(CC=1C2=CC=CC=C2NC=1)NC(=O)C(CC=1NC=NC=1)NC(=O)C1NC(=O)CC1)CC1=CC=C(O)C=C1 XLXSAKCOAKORKW-UHFFFAOYSA-N 0.000 description 2
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 2
- 125000005843 halogen group Chemical group 0.000 description 2
- 230000004727 humoral immunity Effects 0.000 description 2
- 238000009396 hybridization Methods 0.000 description 2
- 229940088013 hycamtin Drugs 0.000 description 2
- 125000001165 hydrophobic group Chemical group 0.000 description 2
- 229960001101 ifosfamide Drugs 0.000 description 2
- HOMGKSMUEGBAAB-UHFFFAOYSA-N ifosfamide Chemical compound ClCCNP1(=O)OCCCN1CCCl HOMGKSMUEGBAAB-UHFFFAOYSA-N 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- SETFNECMODOHTO-UHFFFAOYSA-N indisulam Chemical compound C1=CC(S(=O)(=O)N)=CC=C1S(=O)(=O)NC1=CC=CC2=C1NC=C2Cl SETFNECMODOHTO-UHFFFAOYSA-N 0.000 description 2
- 239000000411 inducer Substances 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 229960003521 interferon alfa-2a Drugs 0.000 description 2
- 229960004768 irinotecan Drugs 0.000 description 2
- GFIJNRVAKGFPGQ-LIJARHBVSA-N leuprolide Chemical compound CCNC(=O)[C@@H]1CCCN1C(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H]1NC(=O)CC1)CC1=CC=C(O)C=C1 GFIJNRVAKGFPGQ-LIJARHBVSA-N 0.000 description 2
- 229960004338 leuprorelin Drugs 0.000 description 2
- 229920006008 lipopolysaccharide Polymers 0.000 description 2
- 239000002502 liposome Substances 0.000 description 2
- 229960002247 lomustine Drugs 0.000 description 2
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 2
- 229960004961 mechlorethamine Drugs 0.000 description 2
- HAWPXGHAZFHHAD-UHFFFAOYSA-N mechlorethamine Chemical class ClCCN(C)CCCl HAWPXGHAZFHHAD-UHFFFAOYSA-N 0.000 description 2
- QZIQJVCYUQZDIR-UHFFFAOYSA-N mechlorethamine hydrochloride Chemical compound Cl.ClCCN(C)CCCl QZIQJVCYUQZDIR-UHFFFAOYSA-N 0.000 description 2
- GLVAUDGFNGKCSF-UHFFFAOYSA-N mercaptopurine Chemical compound S=C1NC=NC2=C1NC=N2 GLVAUDGFNGKCSF-UHFFFAOYSA-N 0.000 description 2
- 229960001428 mercaptopurine Drugs 0.000 description 2
- 229960004635 mesna Drugs 0.000 description 2
- 229940101533 mesnex Drugs 0.000 description 2
- 229960000485 methotrexate Drugs 0.000 description 2
- 229950010895 midostaurin Drugs 0.000 description 2
- BMGQWWVMWDBQGC-IIFHNQTCSA-N midostaurin Chemical compound CN([C@H]1[C@H]([C@]2(C)O[C@@H](N3C4=CC=CC=C4C4=C5C(=O)NCC5=C5C6=CC=CC=C6N2C5=C43)C1)OC)C(=O)C1=CC=CC=C1 BMGQWWVMWDBQGC-IIFHNQTCSA-N 0.000 description 2
- CFCUWKMKBJTWLW-BKHRDMLASA-N mithramycin Chemical compound O([C@@H]1C[C@@H](O[C@H](C)[C@H]1O)OC=1C=C2C=C3C[C@H]([C@@H](C(=O)C3=C(O)C2=C(O)C=1C)O[C@@H]1O[C@H](C)[C@@H](O)[C@H](O[C@@H]2O[C@H](C)[C@H](O)[C@H](O[C@@H]3O[C@H](C)[C@@H](O)[C@@](C)(O)C3)C2)C1)[C@H](OC)C(=O)[C@@H](O)[C@@H](C)O)[C@H]1C[C@@H](O)[C@H](O)[C@@H](C)O1 CFCUWKMKBJTWLW-BKHRDMLASA-N 0.000 description 2
- 229960003539 mitoguazone Drugs 0.000 description 2
- 229960004857 mitomycin Drugs 0.000 description 2
- 229960000350 mitotane Drugs 0.000 description 2
- 229960001156 mitoxantrone Drugs 0.000 description 2
- 239000002324 mouth wash Substances 0.000 description 2
- 229940051866 mouthwash Drugs 0.000 description 2
- YOHYSYJDKVYCJI-UHFFFAOYSA-N n-[3-[[6-[3-(trifluoromethyl)anilino]pyrimidin-4-yl]amino]phenyl]cyclopropanecarboxamide Chemical compound FC(F)(F)C1=CC=CC(NC=2N=CN=C(NC=3C=C(NC(=O)C4CC4)C=CC=3)C=2)=C1 YOHYSYJDKVYCJI-UHFFFAOYSA-N 0.000 description 2
- BSIZUMJRKYHEBR-QGZVFWFLSA-N n-hydroxy-2(r)-[[(4-methoxyphenyl)sulfonyl](3-picolyl)amino]-3-methylbutanamide hydrochloride Chemical compound C1=CC(OC)=CC=C1S(=O)(=O)N([C@H](C(C)C)C(=O)NO)CC1=CC=CN=C1 BSIZUMJRKYHEBR-QGZVFWFLSA-N 0.000 description 2
- WTEVQBCEXWBHNA-YFHOEESVSA-N neral Chemical compound CC(C)=CCC\C(C)=C/C=O WTEVQBCEXWBHNA-YFHOEESVSA-N 0.000 description 2
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- 238000011580 nude mouse model Methods 0.000 description 2
- 229960002700 octreotide Drugs 0.000 description 2
- 201000002528 pancreatic cancer Diseases 0.000 description 2
- 208000008443 pancreatic carcinoma Diseases 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 229940049954 penicillin Drugs 0.000 description 2
- 229960002340 pentostatin Drugs 0.000 description 2
- 108040007629 peroxidase activity proteins Proteins 0.000 description 2
- PTMHPRAIXMAOOB-UHFFFAOYSA-L phosphoramidate Chemical compound NP([O-])([O-])=O PTMHPRAIXMAOOB-UHFFFAOYSA-L 0.000 description 2
- 239000002504 physiological saline solution Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229960003171 plicamycin Drugs 0.000 description 2
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 2
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- YKPYIPVDTNNYCN-INIZCTEOSA-N prinomastat Chemical compound ONC(=O)[C@H]1C(C)(C)SCCN1S(=O)(=O)C(C=C1)=CC=C1OC1=CC=NC=C1 YKPYIPVDTNNYCN-INIZCTEOSA-N 0.000 description 2
- 229960000624 procarbazine Drugs 0.000 description 2
- CPTBDICYNRMXFX-UHFFFAOYSA-N procarbazine Chemical compound CNNCC1=CC=C(C(=O)NC(C)C)C=C1 CPTBDICYNRMXFX-UHFFFAOYSA-N 0.000 description 2
- 108010043671 prostatic acid phosphatase Proteins 0.000 description 2
- 150000003834 purine nucleoside derivatives Chemical class 0.000 description 2
- 108700042226 ras Genes Proteins 0.000 description 2
- 239000003488 releasing hormone Substances 0.000 description 2
- 229950010550 resiquimod Drugs 0.000 description 2
- 238000004007 reversed phase HPLC Methods 0.000 description 2
- 125000002652 ribonucleotide group Chemical group 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- LBGFKUUHOPIEMA-PEARBKPGSA-N sapacitabine Chemical compound O=C1N=C(NC(=O)CCCCCCCCCCCCCCC)C=CN1[C@H]1[C@@H](C#N)[C@H](O)[C@@H](CO)O1 LBGFKUUHOPIEMA-PEARBKPGSA-N 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229960003440 semustine Drugs 0.000 description 2
- 230000001235 sensitizing effect Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 230000000707 stereoselective effect Effects 0.000 description 2
- 201000011549 stomach cancer Diseases 0.000 description 2
- 239000012089 stop solution Substances 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 229960005322 streptomycin Drugs 0.000 description 2
- 229960001052 streptozocin Drugs 0.000 description 2
- ZSJLQEPLLKMAKR-GKHCUFPYSA-N streptozocin Chemical compound O=NN(C)C(=O)N[C@H]1[C@@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O ZSJLQEPLLKMAKR-GKHCUFPYSA-N 0.000 description 2
- AHBGXTDRMVNFER-FCHARDOESA-L strontium-89(2+);dichloride Chemical class [Cl-].[Cl-].[89Sr+2] AHBGXTDRMVNFER-FCHARDOESA-L 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 150000003457 sulfones Chemical class 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- VAZAPHZUAVEOMC-UHFFFAOYSA-N tacedinaline Chemical compound C1=CC(NC(=O)C)=CC=C1C(=O)NC1=CC=CC=C1N VAZAPHZUAVEOMC-UHFFFAOYSA-N 0.000 description 2
- FQZYTYWMLGAPFJ-OQKDUQJOSA-N tamoxifen citrate Chemical compound [H+].[H+].[H+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 FQZYTYWMLGAPFJ-OQKDUQJOSA-N 0.000 description 2
- 229960003454 tamoxifen citrate Drugs 0.000 description 2
- DKPFODGZWDEEBT-QFIAKTPHSA-N taxane Chemical class C([C@]1(C)CCC[C@@H](C)[C@H]1C1)C[C@H]2[C@H](C)CC[C@@H]1C2(C)C DKPFODGZWDEEBT-QFIAKTPHSA-N 0.000 description 2
- 229940061532 tegafur / uracil Drugs 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 150000003573 thiols Chemical group 0.000 description 2
- 229960001196 thiotepa Drugs 0.000 description 2
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical group NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- 229960000303 topotecan Drugs 0.000 description 2
- RXRGZNYSEHTMHC-BQBZGAKWSA-N troxacitabine Chemical compound O=C1N=C(N)C=CN1[C@H]1O[C@@H](CO)OC1 RXRGZNYSEHTMHC-BQBZGAKWSA-N 0.000 description 2
- 241000712461 unidentified influenza virus Species 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- KDQAABAKXDWYSZ-PNYVAJAMSA-N vinblastine sulfate Chemical compound OS(O)(=O)=O.C([C@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 KDQAABAKXDWYSZ-PNYVAJAMSA-N 0.000 description 2
- 229960004982 vinblastine sulfate Drugs 0.000 description 2
- 229960004528 vincristine Drugs 0.000 description 2
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 description 2
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 2
- 229960005212 vindesine sulfate Drugs 0.000 description 2
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 1
- NJYXSKVOTDPOAT-LMVFSUKVSA-N (2r,3r,4r)-2-fluoro-3,4,5-trihydroxypentanal Chemical compound OC[C@@H](O)[C@@H](O)[C@@H](F)C=O NJYXSKVOTDPOAT-LMVFSUKVSA-N 0.000 description 1
- LOGFVTREOLYCPF-KXNHARMFSA-N (2s,3r)-2-[[(2r)-1-[(2s)-2,6-diaminohexanoyl]pyrrolidine-2-carbonyl]amino]-3-hydroxybutanoic acid Chemical compound C[C@@H](O)[C@@H](C(O)=O)NC(=O)[C@H]1CCCN1C(=O)[C@@H](N)CCCCN LOGFVTREOLYCPF-KXNHARMFSA-N 0.000 description 1
- STGXGJRRAJKJRG-JDJSBBGDSA-N (3r,4r,5r)-5-(hydroxymethyl)-3-methoxyoxolane-2,4-diol Chemical class CO[C@H]1C(O)O[C@H](CO)[C@H]1O STGXGJRRAJKJRG-JDJSBBGDSA-N 0.000 description 1
- DBBLJACMRYRHEL-UHFFFAOYSA-N 1,3-bis[[6,6-bis(4-methoxyphenyl)-6-phenylhexyl]amino]propan-2-yloxyphosphonamidous acid Chemical compound COC1=CC=C(C=C1)C(CCCCCNCC(CNCCCCCC(C2=CC=CC=C2)(C3=CC=C(C=C3)OC)C4=CC=C(C=C4)OC)OP(N)O)(C5=CC=CC=C5)C6=CC=C(C=C6)OC DBBLJACMRYRHEL-UHFFFAOYSA-N 0.000 description 1
- UYBWIEGTWASWSR-UHFFFAOYSA-N 1,3-diaminopropan-2-ol Chemical group NCC(O)CN UYBWIEGTWASWSR-UHFFFAOYSA-N 0.000 description 1
- RTQWWZBSTRGEAV-PKHIMPSTSA-N 2-[[(2s)-2-[bis(carboxymethyl)amino]-3-[4-(methylcarbamoylamino)phenyl]propyl]-[2-[bis(carboxymethyl)amino]propyl]amino]acetic acid Chemical compound CNC(=O)NC1=CC=C(C[C@@H](CN(CC(C)N(CC(O)=O)CC(O)=O)CC(O)=O)N(CC(O)=O)CC(O)=O)C=C1 RTQWWZBSTRGEAV-PKHIMPSTSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- FTBBGQKRYUTLMP-UHFFFAOYSA-N 2-nitro-1h-pyrrole Chemical compound [O-][N+](=O)C1=CC=CN1 FTBBGQKRYUTLMP-UHFFFAOYSA-N 0.000 description 1
- 108020005029 5' Flanking Region Proteins 0.000 description 1
- LMEHJKJEPRYEEB-UHFFFAOYSA-N 5-prop-1-ynylpyrimidine Chemical compound CC#CC1=CN=CN=C1 LMEHJKJEPRYEEB-UHFFFAOYSA-N 0.000 description 1
- CQHICVVJQQDUJD-UHFFFAOYSA-N 7-aminoheptane-1,3-diol;aminophosphonous acid Chemical compound NP(O)O.NCCCCC(O)CCO CQHICVVJQQDUJD-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- VKKXEIQIGGPMHT-UHFFFAOYSA-N 7h-purine-2,8-diamine Chemical class NC1=NC=C2NC(N)=NC2=N1 VKKXEIQIGGPMHT-UHFFFAOYSA-N 0.000 description 1
- MSSXOMSJDRHRMC-UHFFFAOYSA-N 9H-purine-2,6-diamine Chemical compound NC1=NC(N)=C2NC=NC2=N1 MSSXOMSJDRHRMC-UHFFFAOYSA-N 0.000 description 1
- DLFVBJFMPXGRIB-UHFFFAOYSA-N Acetamide Chemical compound CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 241000701242 Adenoviridae Species 0.000 description 1
- 241000701386 African swine fever virus Species 0.000 description 1
- 241000209136 Agropyron Species 0.000 description 1
- 241000743339 Agrostis Species 0.000 description 1
- 240000005611 Agrostis gigantea Species 0.000 description 1
- 241000223602 Alternaria alternata Species 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- 241000743857 Anthoxanthum Species 0.000 description 1
- 240000004178 Anthoxanthum odoratum Species 0.000 description 1
- 235000014251 Anthoxanthum odoratum Nutrition 0.000 description 1
- 108020000948 Antisense Oligonucleotides Proteins 0.000 description 1
- 241000712892 Arenaviridae Species 0.000 description 1
- 241000508787 Arrhenatherum Species 0.000 description 1
- 241000508786 Arrhenatherum elatius Species 0.000 description 1
- 235000003826 Artemisia Nutrition 0.000 description 1
- 235000004355 Artemisia lactiflora Nutrition 0.000 description 1
- 235000005781 Avena Nutrition 0.000 description 1
- 235000007319 Avena orientalis Nutrition 0.000 description 1
- WHKXHGXKBBOCAN-UHFFFAOYSA-N B.B.C.C.CC.CC.CC Chemical compound B.B.C.C.CC.CC.CC WHKXHGXKBBOCAN-UHFFFAOYSA-N 0.000 description 1
- 102100023994 Beta-1,3-galactosyltransferase 6 Human genes 0.000 description 1
- 241000219429 Betula Species 0.000 description 1
- 235000003932 Betula Nutrition 0.000 description 1
- 241000219430 Betula pendula Species 0.000 description 1
- 235000009109 Betula pendula Nutrition 0.000 description 1
- 241000219495 Betulaceae Species 0.000 description 1
- 206010004593 Bile duct cancer Diseases 0.000 description 1
- 241000702628 Birnaviridae Species 0.000 description 1
- 241000238658 Blattella Species 0.000 description 1
- 241000238657 Blattella germanica Species 0.000 description 1
- 208000003174 Brain Neoplasms Diseases 0.000 description 1
- 241000209200 Bromus Species 0.000 description 1
- 241000743756 Bromus inermis Species 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N C Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- GPYZFEJMUWDKFY-UHFFFAOYSA-N CCCCCC(=O)NCC(C)CNC(=O)CCCCC Chemical compound CCCCCC(=O)NCC(C)CNC(=O)CCCCC GPYZFEJMUWDKFY-UHFFFAOYSA-N 0.000 description 1
- 210000004366 CD4-positive T-lymphocyte Anatomy 0.000 description 1
- RXDAPJJFRLSRPX-UHFFFAOYSA-N COCC(CO)OC Chemical compound COCC(CO)OC RXDAPJJFRLSRPX-UHFFFAOYSA-N 0.000 description 1
- AZVYOIKZSOECGY-UHFFFAOYSA-N COCC(O)COP(=O)(S)OC Chemical compound COCC(O)COP(=O)(S)OC AZVYOIKZSOECGY-UHFFFAOYSA-N 0.000 description 1
- ZPVAATZJYMSWGG-UHFFFAOYSA-H COCC1OC(N2C=CC(N)=NC2=O)C(O)C1OP(=O)([S-])OC.COCC1OC(N2C=CC3=C2N=C(N)NC3=O)CC1OP(=O)([S-])OC.COCC1OC(N2C=NC3=C2N=C(N)NC3=O)C(O)C1OP(=O)([S-])OC.COCCCOP(=O)([S-])OC.COP(=O)([S-])OCC(O)COP(=O)([S-])OC Chemical compound COCC1OC(N2C=CC(N)=NC2=O)C(O)C1OP(=O)([S-])OC.COCC1OC(N2C=CC3=C2N=C(N)NC3=O)CC1OP(=O)([S-])OC.COCC1OC(N2C=NC3=C2N=C(N)NC3=O)C(O)C1OP(=O)([S-])OC.COCCCOP(=O)([S-])OC.COP(=O)([S-])OCC(O)COP(=O)([S-])OC ZPVAATZJYMSWGG-UHFFFAOYSA-H 0.000 description 1
- VLHDGHRVYFAXKW-UHFFFAOYSA-N COCC1OCCC1OC Chemical compound COCC1OCCC1OC VLHDGHRVYFAXKW-UHFFFAOYSA-N 0.000 description 1
- CFUFEIWWICPJOZ-UHFFFAOYSA-N COCCCCCCCCCCCCOC Chemical compound COCCCCCCCCCCCCOC CFUFEIWWICPJOZ-UHFFFAOYSA-N 0.000 description 1
- HMCUNLUHTBHKTB-UHFFFAOYSA-N COCCCCOC Chemical compound COCCCCOC HMCUNLUHTBHKTB-UHFFFAOYSA-N 0.000 description 1
- UUAMLBIYJDPGFU-UHFFFAOYSA-N COCCCOC Chemical compound COCCCOC UUAMLBIYJDPGFU-UHFFFAOYSA-N 0.000 description 1
- IIOWGDUJZVOTAL-UHFFFAOYSA-N COCCCOP(=O)(S)OC Chemical compound COCCCOP(=O)(S)OC IIOWGDUJZVOTAL-UHFFFAOYSA-N 0.000 description 1
- XTHFKEDIFFGKHM-UHFFFAOYSA-N COCCOC Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 1
- XQWBPSRZLFDQFR-UHFFFAOYSA-N COCNCC(C)CNCOC Chemical compound COCNCC(C)CNCOC XQWBPSRZLFDQFR-UHFFFAOYSA-N 0.000 description 1
- 241000282465 Canis Species 0.000 description 1
- 208000009458 Carcinoma in Situ Diseases 0.000 description 1
- 206010008342 Cervix carcinoma Diseases 0.000 description 1
- 241000723437 Chamaecyparis Species 0.000 description 1
- 102000019034 Chemokines Human genes 0.000 description 1
- 108010012236 Chemokines Proteins 0.000 description 1
- 208000006332 Choriocarcinoma Diseases 0.000 description 1
- 102000007644 Colony-Stimulating Factors Human genes 0.000 description 1
- 108010071942 Colony-Stimulating Factors Proteins 0.000 description 1
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 1
- 108010060123 Conjugate Vaccines Proteins 0.000 description 1
- 241000759568 Corixa Species 0.000 description 1
- 241000711573 Coronaviridae Species 0.000 description 1
- 241000709687 Coxsackievirus Species 0.000 description 1
- 241000723198 Cupressus Species 0.000 description 1
- 244000301850 Cupressus sempervirens Species 0.000 description 1
- 229920000858 Cyclodextrin Polymers 0.000 description 1
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 241000209210 Dactylis Species 0.000 description 1
- 240000004585 Dactylis glomerata Species 0.000 description 1
- 241000710829 Dengue virus group Species 0.000 description 1
- 241000238710 Dermatophagoides Species 0.000 description 1
- 241000238713 Dermatophagoides farinae Species 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 238000012286 ELISA Assay Methods 0.000 description 1
- 101150029707 ERBB2 gene Proteins 0.000 description 1
- 241001115402 Ebolavirus Species 0.000 description 1
- 241001466953 Echovirus Species 0.000 description 1
- 241000508725 Elymus repens Species 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 206010014733 Endometrial cancer Diseases 0.000 description 1
- 206010014759 Endometrial neoplasm Diseases 0.000 description 1
- 241000991587 Enterovirus C Species 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 208000000832 Equine Encephalomyelitis Diseases 0.000 description 1
- 102000003951 Erythropoietin Human genes 0.000 description 1
- 108090000394 Erythropoietin Proteins 0.000 description 1
- 208000000461 Esophageal Neoplasms Diseases 0.000 description 1
- 241000282324 Felis Species 0.000 description 1
- 241000234642 Festuca Species 0.000 description 1
- 241000234645 Festuca pratensis Species 0.000 description 1
- 241000711950 Filoviridae Species 0.000 description 1
- 108010040721 Flagellin Proteins 0.000 description 1
- 108060003306 Galactosyltransferase Proteins 0.000 description 1
- 102000030902 Galactosyltransferase Human genes 0.000 description 1
- 108010066371 Galactosylxylosylprotein 3-beta-galactosyltransferase Proteins 0.000 description 1
- 208000005577 Gastroenteritis Diseases 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 241001506229 Goose reovirus Species 0.000 description 1
- 108010017080 Granulocyte Colony-Stimulating Factor Proteins 0.000 description 1
- 102000004269 Granulocyte Colony-Stimulating Factor Human genes 0.000 description 1
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 102000004457 Granulocyte-Macrophage Colony-Stimulating Factor Human genes 0.000 description 1
- 241000057766 Gymnostoma chamaecyparis Species 0.000 description 1
- 206010061192 Haemorrhagic fever Diseases 0.000 description 1
- 241000150562 Hantaan orthohantavirus Species 0.000 description 1
- 102000002812 Heat-Shock Proteins Human genes 0.000 description 1
- 108010004889 Heat-Shock Proteins Proteins 0.000 description 1
- 241000700739 Hepadnaviridae Species 0.000 description 1
- 208000005176 Hepatitis C Diseases 0.000 description 1
- 208000005331 Hepatitis D Diseases 0.000 description 1
- 241000709721 Hepatovirus A Species 0.000 description 1
- 241000700586 Herpesviridae Species 0.000 description 1
- 241000226709 Hesperocyparis arizonica Species 0.000 description 1
- 241001290232 Hesperocyparis macrocarpa Species 0.000 description 1
- 241000744855 Holcus Species 0.000 description 1
- 240000003857 Holcus lanatus Species 0.000 description 1
- 101001002657 Homo sapiens Interleukin-2 Proteins 0.000 description 1
- 101000831496 Homo sapiens Toll-like receptor 3 Proteins 0.000 description 1
- 101000669447 Homo sapiens Toll-like receptor 4 Proteins 0.000 description 1
- 101000669402 Homo sapiens Toll-like receptor 7 Proteins 0.000 description 1
- 101000611183 Homo sapiens Tumor necrosis factor Proteins 0.000 description 1
- 241000701085 Human alphaherpesvirus 3 Species 0.000 description 1
- 241000725303 Human immunodeficiency virus Species 0.000 description 1
- 241000713772 Human immunodeficiency virus 1 Species 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 229930010555 Inosine Natural products 0.000 description 1
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 description 1
- 102000014150 Interferons Human genes 0.000 description 1
- 108010050904 Interferons Proteins 0.000 description 1
- 108010002352 Interleukin-1 Proteins 0.000 description 1
- 102000000589 Interleukin-1 Human genes 0.000 description 1
- 102000003777 Interleukin-1 beta Human genes 0.000 description 1
- 108090000193 Interleukin-1 beta Proteins 0.000 description 1
- 102000019223 Interleukin-1 receptor Human genes 0.000 description 1
- 108050006617 Interleukin-1 receptor Proteins 0.000 description 1
- 108010002386 Interleukin-3 Proteins 0.000 description 1
- 102000000646 Interleukin-3 Human genes 0.000 description 1
- 108090000978 Interleukin-4 Proteins 0.000 description 1
- 108010002616 Interleukin-5 Proteins 0.000 description 1
- 102000015696 Interleukins Human genes 0.000 description 1
- 108010063738 Interleukins Proteins 0.000 description 1
- 241000701377 Iridoviridae Species 0.000 description 1
- 108010044467 Isoenzymes Proteins 0.000 description 1
- 241000721668 Juniperus ashei Species 0.000 description 1
- 241000592238 Juniperus communis Species 0.000 description 1
- 208000008839 Kidney Neoplasms Diseases 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- 229930182816 L-glutamine Natural products 0.000 description 1
- 102000004895 Lipoproteins Human genes 0.000 description 1
- 108090001030 Lipoproteins Proteins 0.000 description 1
- 241000209082 Lolium Species 0.000 description 1
- 244000100545 Lolium multiflorum Species 0.000 description 1
- 240000004296 Lolium perenne Species 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 206010025323 Lymphomas Diseases 0.000 description 1
- 108010046938 Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 102000007651 Macrophage Colony-Stimulating Factor Human genes 0.000 description 1
- 241000712079 Measles morbillivirus Species 0.000 description 1
- WXJXBKBJAKPJRN-UHFFFAOYSA-N Methanephosphonothioic acid Chemical class CP(O)(O)=S WXJXBKBJAKPJRN-UHFFFAOYSA-N 0.000 description 1
- 208000003445 Mouth Neoplasms Diseases 0.000 description 1
- 108010008707 Mucin-1 Proteins 0.000 description 1
- 241000711386 Mumps virus Species 0.000 description 1
- MSFSPUZXLOGKHJ-UHFFFAOYSA-N Muraminsaeure Natural products OC(=O)C(C)OC1C(N)C(O)OC(CO)C1O MSFSPUZXLOGKHJ-UHFFFAOYSA-N 0.000 description 1
- 241000699660 Mus musculus Species 0.000 description 1
- 101000641826 Mycobacterium phage L5 Gene 75 protein Proteins 0.000 description 1
- 102000010168 Myeloid Differentiation Factor 88 Human genes 0.000 description 1
- 108010077432 Myeloid Differentiation Factor 88 Proteins 0.000 description 1
- OVBPIULPVIDEAO-UHFFFAOYSA-N N-Pteroyl-L-glutaminsaeure Natural products C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)NC(CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-UHFFFAOYSA-N 0.000 description 1
- 206010029260 Neuroblastoma Diseases 0.000 description 1
- GARRUFMCCSERLK-UHFFFAOYSA-N O=P(=O)OS Chemical compound O=P(=O)OS GARRUFMCCSERLK-UHFFFAOYSA-N 0.000 description 1
- TTZMPOZCBFTTPR-UHFFFAOYSA-N O=P1OCO1 Chemical compound O=P1OCO1 TTZMPOZCBFTTPR-UHFFFAOYSA-N 0.000 description 1
- 206010030155 Oesophageal carcinoma Diseases 0.000 description 1
- 241000712464 Orthomyxoviridae Species 0.000 description 1
- 241000150218 Orthonairovirus Species 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 241001631646 Papillomaviridae Species 0.000 description 1
- 241000711504 Paramyxoviridae Species 0.000 description 1
- 208000002606 Paramyxoviridae Infections Diseases 0.000 description 1
- 241001465379 Parietaria judaica Species 0.000 description 1
- 241000721464 Parietaria officinalis Species 0.000 description 1
- 241001330453 Paspalum Species 0.000 description 1
- 241001330451 Paspalum notatum Species 0.000 description 1
- 108010013639 Peptidoglycan Proteins 0.000 description 1
- 241000238661 Periplaneta Species 0.000 description 1
- 241000238675 Periplaneta americana Species 0.000 description 1
- 241000745991 Phalaris Species 0.000 description 1
- 244000081757 Phalaris arundinacea Species 0.000 description 1
- 241000713137 Phlebovirus Species 0.000 description 1
- 241000746981 Phleum Species 0.000 description 1
- 241000746983 Phleum pratense Species 0.000 description 1
- 241000709664 Picornaviridae Species 0.000 description 1
- 241001127637 Plantago Species 0.000 description 1
- 244000239204 Plantago lanceolata Species 0.000 description 1
- 235000010503 Plantago lanceolata Nutrition 0.000 description 1
- 241000209048 Poa Species 0.000 description 1
- 241000136254 Poa compressa Species 0.000 description 1
- 241000209049 Poa pratensis Species 0.000 description 1
- 241001505332 Polyomavirus sp. Species 0.000 description 1
- 241000700625 Poxviridae Species 0.000 description 1
- 208000024777 Prion disease Diseases 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 241000125945 Protoparvovirus Species 0.000 description 1
- 241000219492 Quercus Species 0.000 description 1
- 244000274906 Quercus alba Species 0.000 description 1
- 235000009137 Quercus alba Nutrition 0.000 description 1
- 239000012980 RPMI-1640 medium Substances 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 208000015634 Rectal Neoplasms Diseases 0.000 description 1
- 206010038389 Renal cancer Diseases 0.000 description 1
- 241000702247 Reoviridae Species 0.000 description 1
- 241000725643 Respiratory syncytial virus Species 0.000 description 1
- 241000712907 Retroviridae Species 0.000 description 1
- 241000711931 Rhabdoviridae Species 0.000 description 1
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 1
- 241000702670 Rotavirus Species 0.000 description 1
- 241000710799 Rubella virus Species 0.000 description 1
- 244000004774 Sabina virginiana Species 0.000 description 1
- 235000008691 Sabina virginiana Nutrition 0.000 description 1
- 241000209056 Secale Species 0.000 description 1
- 244000082988 Secale cereale Species 0.000 description 1
- 235000007238 Secale cereale Nutrition 0.000 description 1
- 241000700584 Simplexvirus Species 0.000 description 1
- 208000000453 Skin Neoplasms Diseases 0.000 description 1
- 235000011684 Sorghum saccharatum Nutrition 0.000 description 1
- 240000006694 Stellaria media Species 0.000 description 1
- 108010090804 Streptavidin Proteins 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 108010008038 Synthetic Vaccines Proteins 0.000 description 1
- 230000024932 T cell mediated immunity Effects 0.000 description 1
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 1
- 108010092262 T-Cell Antigen Receptors Proteins 0.000 description 1
- 208000024313 Testicular Neoplasms Diseases 0.000 description 1
- 206010057644 Testis cancer Diseases 0.000 description 1
- 208000024770 Thyroid neoplasm Diseases 0.000 description 1
- 241000710924 Togaviridae Species 0.000 description 1
- 102100024324 Toll-like receptor 3 Human genes 0.000 description 1
- 102100039360 Toll-like receptor 4 Human genes 0.000 description 1
- 102100039390 Toll-like receptor 7 Human genes 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 102000006747 Transforming Growth Factor alpha Human genes 0.000 description 1
- 102000009618 Transforming Growth Factors Human genes 0.000 description 1
- 108010009583 Transforming Growth Factors Proteins 0.000 description 1
- 101800004564 Transforming growth factor alpha Proteins 0.000 description 1
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 1
- 239000007984 Tris EDTA buffer Substances 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 241000209140 Triticum Species 0.000 description 1
- 244000098338 Triticum aestivum Species 0.000 description 1
- 102000018594 Tumour necrosis factor Human genes 0.000 description 1
- 108050007852 Tumour necrosis factor Proteins 0.000 description 1
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 1
- 241000700618 Vaccinia virus Species 0.000 description 1
- 241000700647 Variola virus Species 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- 208000021017 Weight Gain Diseases 0.000 description 1
- 241000120645 Yellow fever virus group Species 0.000 description 1
- 229920000392 Zymosan Polymers 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 125000002015 acyclic group Chemical group 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 125000004423 acyloxy group Chemical group 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 108700010877 adenoviridae proteins Proteins 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 230000000172 allergic effect Effects 0.000 description 1
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 1
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 1
- 102000013529 alpha-Fetoproteins Human genes 0.000 description 1
- 108010026331 alpha-Fetoproteins Proteins 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000003302 anti-idiotype Effects 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 239000000074 antisense oligonucleotide Substances 0.000 description 1
- 238000012230 antisense oligonucleotides Methods 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 235000009052 artemisia Nutrition 0.000 description 1
- 244000309743 astrovirus Species 0.000 description 1
- 238000011717 athymic nude mouse Methods 0.000 description 1
- 208000010668 atopic eczema Diseases 0.000 description 1
- 229940120638 avastin Drugs 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 229960000190 bacillus calmette–guérin vaccine Drugs 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 210000002469 basement membrane Anatomy 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 208000026900 bile duct neoplasm Diseases 0.000 description 1
- 201000009036 biliary tract cancer Diseases 0.000 description 1
- 208000020790 biliary tract neoplasm Diseases 0.000 description 1
- 229920002988 biodegradable polymer Polymers 0.000 description 1
- 239000004621 biodegradable polymer Substances 0.000 description 1
- 229940112129 campath Drugs 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 230000007969 cellular immunity Effects 0.000 description 1
- 230000004700 cellular uptake Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 201000010881 cervical cancer Diseases 0.000 description 1
- 208000006990 cholangiocarcinoma Diseases 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 229940047120 colony stimulating factors Drugs 0.000 description 1
- 238000002648 combination therapy Methods 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 229940031670 conjugate vaccine Drugs 0.000 description 1
- 239000005289 controlled pore glass Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 229940097362 cyclodextrins Drugs 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000004665 defense response Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 210000004443 dendritic cell Anatomy 0.000 description 1
- 238000000432 density-gradient centrifugation Methods 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- MXHRCPNRJAMMIM-UHFFFAOYSA-N desoxyuridine Natural products C1C(O)C(CO)OC1N1C(=O)NC(=O)C=C1 MXHRCPNRJAMMIM-UHFFFAOYSA-N 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 230000006806 disease prevention Effects 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 230000002222 downregulating effect Effects 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- GVGYEFKIHJTNQZ-RFQIPJPRSA-N ecgonine benzoate Chemical compound O([C@@H]1[C@@H]([C@H]2CC[C@@H](C1)N2C)C(O)=O)C(=O)C1=CC=CC=C1 GVGYEFKIHJTNQZ-RFQIPJPRSA-N 0.000 description 1
- 230000009881 electrostatic interaction Effects 0.000 description 1
- 206010014599 encephalitis Diseases 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000008029 eradication Effects 0.000 description 1
- 229940082789 erbitux Drugs 0.000 description 1
- 229940105423 erythropoietin Drugs 0.000 description 1
- 201000004101 esophageal cancer Diseases 0.000 description 1
- NNYBQONXHNTVIJ-UHFFFAOYSA-N etodolac Chemical compound C1COC(CC)(CC(O)=O)C2=C1C(C=CC=C1CC)=C1N2 NNYBQONXHNTVIJ-UHFFFAOYSA-N 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000012997 ficoll-paque Substances 0.000 description 1
- 229960000304 folic acid Drugs 0.000 description 1
- 235000019152 folic acid Nutrition 0.000 description 1
- 239000011724 folic acid Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 229940044627 gamma-interferon Drugs 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 229960003297 gemtuzumab ozogamicin Drugs 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 230000003394 haemopoietic effect Effects 0.000 description 1
- 208000006454 hepatitis Diseases 0.000 description 1
- 231100000283 hepatitis Toxicity 0.000 description 1
- 208000002672 hepatitis B Diseases 0.000 description 1
- 208000029570 hepatitis D virus infection Diseases 0.000 description 1
- 229940022353 herceptin Drugs 0.000 description 1
- IVVMYMCCLPZNRL-UHFFFAOYSA-N hydrazinylphosphonic acid Chemical class NNP(O)(O)=O IVVMYMCCLPZNRL-UHFFFAOYSA-N 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 229960001001 ibritumomab tiuxetan Drugs 0.000 description 1
- 229960002751 imiquimod Drugs 0.000 description 1
- DOUYETYNHWVLEO-UHFFFAOYSA-N imiquimod Chemical compound C1=CC=CC2=C3N(CC(C)C)C=NC3=C(N)N=C21 DOUYETYNHWVLEO-UHFFFAOYSA-N 0.000 description 1
- 230000002519 immonomodulatory effect Effects 0.000 description 1
- 210000002865 immune cell Anatomy 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 229960003786 inosine Drugs 0.000 description 1
- 239000002919 insect venom Substances 0.000 description 1
- 239000000138 intercalating agent Substances 0.000 description 1
- 229940047124 interferons Drugs 0.000 description 1
- 229940047122 interleukins Drugs 0.000 description 1
- 230000004068 intracellular signaling Effects 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 201000010982 kidney cancer Diseases 0.000 description 1
- 208000012987 lip and oral cavity carcinoma Diseases 0.000 description 1
- 201000007270 liver cancer Diseases 0.000 description 1
- 208000014018 liver neoplasm Diseases 0.000 description 1
- 229940063718 lodine Drugs 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 108010082117 matrigel Proteins 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000001840 matrix-assisted laser desorption--ionisation time-of-flight mass spectrometry Methods 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- 229940115256 melanoma vaccine Drugs 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 238000004264 monolayer culture Methods 0.000 description 1
- 210000005087 mononuclear cell Anatomy 0.000 description 1
- CPQCSJYYDADLCZ-UHFFFAOYSA-N n-methylhydroxylamine Chemical compound CNO CPQCSJYYDADLCZ-UHFFFAOYSA-N 0.000 description 1
- 230000031942 natural killer cell mediated cytotoxicity Effects 0.000 description 1
- 210000005170 neoplastic cell Anatomy 0.000 description 1
- 229920001542 oligosaccharide Polymers 0.000 description 1
- 150000002482 oligosaccharides Chemical class 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical group 0.000 description 1
- 238000001394 phosphorus-31 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 1
- 206010038038 rectal cancer Diseases 0.000 description 1
- 201000001275 rectum cancer Diseases 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- BXNMTOQRYBFHNZ-UHFFFAOYSA-N resiquimod Chemical compound C1=CC=CC2=C(N(C(COCC)=N3)CC(C)(C)O)C3=C(N)N=C21 BXNMTOQRYBFHNZ-UHFFFAOYSA-N 0.000 description 1
- 229960004641 rituximab Drugs 0.000 description 1
- 201000000849 skin cancer Diseases 0.000 description 1
- 159000000000 sodium salts Chemical group 0.000 description 1
- 108010068698 spleen exonuclease Proteins 0.000 description 1
- 238000012453 sprague-dawley rat model Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- IIACRCGMVDHOTQ-UHFFFAOYSA-N sulfamic acid Chemical class NS(O)(=O)=O IIACRCGMVDHOTQ-UHFFFAOYSA-N 0.000 description 1
- 229940124530 sulfonamide Drugs 0.000 description 1
- 150000003456 sulfonamides Chemical class 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 201000003120 testicular cancer Diseases 0.000 description 1
- 229940110675 theracys Drugs 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 201000002510 thyroid cancer Diseases 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 229940100611 topical cream Drugs 0.000 description 1
- 229960005267 tositumomab Drugs 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 230000005758 transcription activity Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 150000005691 triesters Chemical class 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- 102000003390 tumor necrosis factor Human genes 0.000 description 1
- 241000724775 unclassified viruses Species 0.000 description 1
- 241000701161 unidentified adenovirus Species 0.000 description 1
- 241001529453 unidentified herpesvirus Species 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 231100000611 venom Toxicity 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 235000019786 weight gain Nutrition 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/39—Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H21/00—Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
- C07H21/04—Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with deoxyribosyl as saccharide radical
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/19—Cytokines; Lymphokines; Interferons
- A61K38/20—Interleukins [IL]
- A61K38/2013—IL-2
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/04—Immunostimulants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/08—Antiallergic agents
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/111—General methods applicable to biologically active non-coding nucleic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/117—Nucleic acids having immunomodulatory properties, e.g. containing CpG-motifs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55511—Organic adjuvants
- A61K2039/55522—Cytokines; Lymphokines; Interferons
- A61K2039/55527—Interleukins
- A61K2039/55533—IL-2
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55511—Organic adjuvants
- A61K2039/55561—CpG containing adjuvants; Oligonucleotide containing adjuvants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N2005/1092—Details
- A61N2005/1098—Enhancing the effect of the particle by an injected agent or implanted device
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/17—Immunomodulatory nucleic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2320/00—Applications; Uses
- C12N2320/30—Special therapeutic applications
- C12N2320/31—Combination therapy
Definitions
- the invention relates to the use of immunomer compounds and immunostimulatory oligonucleotides as therapeutic agents.
- oligonucleotides as immunostimulatory agents in immunotherapy applications.
- the observation that phosphodiester and phosphorothioate oligonucleotides can induce immune stimulation has created interest in developing these compounds as a therapeutic tool.
- These efforts have focused on phosphorothioate oligonucleotides containing the natural dinucleotide CpG. Kuramoto et al., Jpn. J. Cancer Res. 83:1128-1131 (1992) teaches that phosphodiester oligonucleotides containing a palindrome that includes a CpG dinucleotide can induce interferon-alpha and gamma synthesis and enhance natural killer activity.
- CpG-containing phosphorothioate oligonucleotides can also affect their ability to act as modulators of immune response. See, e.g., Zhao et al., Biochem. Pharmacol. (1996) 51:173-182; Zhao et al., Biochem Pharmacol . (1996) 52:1537-1544; Zhao et al., Antisense Nucleic Acid Drug Dev . (1997) 7:495-502; Zhao et al., Bioorg. Med. Chem. Lett . (1999) 9:3453-3458; Zhao et al., Bioorg. Med. Chem. Lett . (2000) 10:1051-1054; Yu et al., Bioorg. Med. Chem.
- cytokines are soluble molecules that cells of the immune system produce to control reactions between other cells. Thus, cytokines are regulators of humoral and cellular immunity.
- An understanding of how T cells mediate the immune response is critical in order to modulate the response.
- CD4+ T helper (Th) cells differentiate along either the Th1 or Th2 pathway.
- the Th1 pathway is important for the generation of cell-mediated immunity and is characterized by the production of, for example, ⁇ -interferon and interleukin-2 (IL-2).
- the Th2 response is important for the generation of humoral immunity and is characterized by the production of, for example, IL-4 and IL-5.
- the Th1 response is known to be critical for immune system defense against infections, e.g., viral infections, and immune system surveillance of the body for the removal of neoplastic cells.
- the invention provides optimized methods, compositions and treatment regimens for enhancing the immune response caused by immunostimulatory compounds used for the treatment of disease such as, but not limited to, treatment of cancer, autoimmune disorders, asthma, respiratory allergies, food allergies and infectious diseases in a patient.
- the optimized methods according to the invention provide synergy between the therapeutic effects of immunostimulatory oligonucleotides in accordance with the invention, and the therapeutic effect of cytokine immunotherapy and/or chemotherapeutic agents. Modification of an immunostimulatory oligonucleotide to optimally present 5′ ends dramatically enhances its anti-cancer activity.
- Such an oligonucleotide is referred to herein as an “immunomer”, which may contain one or more immunostimulatory oligonucleotide.
- the invention provides methods for treating cancer in a cancer patient comprising administering to the patient an immunostimulatory oligonucleotide and/or immunomer compound in combination with a chemotherapeutic agent, wherein the immunostimulatory oligonucleotide and/or immunomer compound and the chemotherapeutic agent create a synergistic therapeutic effect.
- the invention provides a method for synergistically stimulating an immune response in a patient.
- the method comprises administering to a patient a combination of a therapeutically effective synergistic amount of at least one immunomer compound or immunostimulatory oligonucleotide in accordance with the invention and a therapeutically effective synergistic amount of IL-2 (and/or an agent that induces IL-2 production in situ, such as a DNA vaccine or expression vector expressing IL-2), wherein administration of said combination synergistically stimulates the production of cytokines in a patient.
- Preferred cytokines that are synergistically stimulated in accordance with the invention are selected from the group consisting of, IL-12 and interferon- ⁇ (IFN- ⁇ ), IFN- ⁇ , IFN- ⁇ or combinations thereof.
- an “immunomer” refers to any compound comprising at least two oligonucleotides linked directly at their 3′ ends, or directly via internucleoside linkages, or directly at a functionalized nucleobase or sugar, or that are indirectly linked together via a non-nucleotidic linker, wherein at least one of the oligonucleotides, in the context of the immunomer compound, is an immunostimulatory oligonucleotide having an accessible 5′ end.
- an immunostimulatory oligonucleotide is an oligonucleotide that comprises at least one of an immunostimulatory CpG dinucleotide, an immunostimulatory domain, or other immunostimulatory moiety.
- the term “accessible 5′ end” means that the 5′ end of the oligonucleotide is sufficiently available such that the factors that recognize and bind to immunomer compounds or immunostimulatory oligonucleotides and stimulate the immune system have access to the 5′ end.
- Such immunostimulatory oligonucleotides may include secondary structures, provided that the 5′ end remains accessible.
- the immunostimulatory oligonucleotide and/or immunomer compound used in the method according to the invention comprises an immunostimulatory dinucleotide selected from the group consisting of CpG, C*pG, CpG*, and C*pG*, wherein C is cytidine or 2′-deoxycytidine, C* is 2′-deoxythymidine.arabinocytidine, 2′-deoxy-2′-substituted arabinocytidine, 2′-O-substitutedarabinocytidine, 2′-deoxy-5-hydroxycytidine, 2′-deoxy-N4-alkyl-cytidine, 2′-deoxy-4-thiouridine, other non-natural pyrimidine nucleosides, or 1-(2′-deoxy- ⁇ -D-ribofuranosyl)-2-oxo-7-deaza-8-methyl-purine; G is guanosine or 2′-deoxygua
- the immunostimulatory oligonucleotide and/or immunomer compound used in the method according to the invention comprises an immunostimulatory domain of formula (III): 5′-Nn-N1-Y-Z-N1-Nn-3′ (III)
- Y is cytidine, 2′-deoxythymidine, 2′-deoxycytidine, arabinocytidine, 2′-deoxy-2′-substitutedarabinocytidine, 2′-O-substitutedarabinocytidine, 2′-deoxy-5-hydroxycytidine, 2′-deoxy-N4-alkyl-cytidine, 2′-deoxy-4-thiouridine, other non-natural pyrimidine nucleosides, or 1-(2′-deoxy- ⁇ -D-ribofuranosyl)-2-oxo-7-deaza-8-methyl-purine;
- Z is guanosine or 2′-deoxyguanosine, is 2′ deoxy-7-deazaguanosine, 2′-deoxy-6-thioguanosine, arabinoguanosine, 2′-deoxy-2′substituted-arabinoguanosine, 2′-O-substituted-arabinoguanosine, 2′-deoxyinosine, or other non-natural purine nucleoside
- N1 is preferably a naturally occurring or a synthetic nucleoside or an immunostimulatory moiety selected from the group consisting of abasic nucleosides, arabinonucleosides, 2′-deoxyuridine, ⁇ -deoxyribonucleosides, ⁇ -L-deoxyribonucleosides, and nucleosides linked by a phosphodiester or modified internucleoside linkage to the adjacent nucleoside on the 3′ side, the modified internucleotide linkage being selected from, without limitation, a linker having a length of from about 2 angstroms to about 200 angstroms, C2-C18 alkyl linker, poly(ethylene glycol) linker, 2-aminobutyl-1,3-propanediol linker, glyceryl linker, 2′-5′ internucleoside linkage, and phosphorothioate, phosphorodithioate, or methylphosphonate internucle
- Nn is independently a naturally occurring nucleoside or an immunostimulatory moiety, preferably selected from the group consisting of abasic nucleosides, arabinonucleosides, 2′-deoxyuridine, ⁇ -deoxyribonucleosides, 2′-O-substituted ribonucleosides, and nucleosides linked by a modified internucleoside linkage to the adjacent nucleoside on the 3′ side, the modified internucleotide linkage being selected from the group consisting of amino linker, C2-C18 alkyl linker, poly(ethylene glycol) linker, 2-aminobutyl-1,3-propanediol linker, glyceryl linker, 2′-5′ internucleoside linkage, and methylphosphonate internucleoside linkage;
- N1 or Nn is an immunostimulatory moiety
- n is a number from 0-30;
- 3′nucleoside is optionally linked directly or via a non-nucleotidic linker to another oligonucleotide, which may or may not be immunostimulatory.
- the invention provides a method for treating cancer in a cancer patient comprising administering an immunostimulatory oligonucleotide and/or immunomer conjugate, which comprises an immunostimulatory oligonucleotide and/or immunomer compound, as described above, and a cancer antigen conjugated to the immunostimulatory oligonucleotide and/or immunomer compound at a position other than the accessible 5′ end, in combination with a chemotherapeutic agent.
- an immunostimulatory oligonucleotide and/or immunomer conjugate which comprises an immunostimulatory oligonucleotide and/or immunomer compound, as described above, and a cancer antigen conjugated to the immunostimulatory oligonucleotide and/or immunomer compound at a position other than the accessible 5′ end, in combination with a chemotherapeutic agent.
- the invention provides pharmaceutical formulations comprising an immunostimulatory oligonucleotide or immunostimulatory oligonucleotide conjugate and/or an immunomer compound or immunomer conjugate according to the invention, a chemotherapeutic agent and a physiologically acceptable carrier.
- the invention provides a method for sensitizing cancer cells to ionizing radiation.
- the method according to this aspect of the invention comprises administering to a mammal an immunostimulatory oligonucleotide or an immunomer compound according to the invention and treating the animal with ionizing radiation.
- the invention provides a method for synergistically stimulating an immune response in a patient comprising administering to a patient a therapeutically effective synergistic amount of at least one immunomer compound or immunostimulatory oligonucleotide in combination with a therapeutically effective synergistic amount of IL-2, (and optionally an antigen), wherein administration of said combination synergistically stimulates the production cytokines in a patient.
- Preferred cytokines that are synergistically stimulated in accordance with the invention are selected from the group consisting of IL-12 and interferon- ⁇ , IFN- ⁇ , IFN- ⁇ or combinations thereof.
- the antigen is operationally associated with the immunomer compound at a position other than the accessible 5′ end.
- At least one immunostimulatory oligonucleotide that is not an immunomer compound is used in combination with a therapeutically effective amount of IL-2 to selectively and synergistically stimulate the production cytokines in a patient.
- Preferred cytokines that are synergistically stimulated in accordance with the invention are selected from the group consisting of IL-12 and IFN- ⁇ , IFN- ⁇ , IFN- ⁇ or combinations thereof.
- preferred immunostimulatory oligonucleotides that are not immunomer compounds include those containing at least one immunostimulatory CpG dinucleotide wherein C is not cytosine or deoxycytosine and/or G is not guanosine or 2-deoxyguanosine.
- Other preferred immunostimulatory oligonucleotides of the invention that are not immunomer compounds are those that include alternative immunostimulatory moieties that are not CpG. Examples of such alternative immunostimulatory moieties include but are not limited to nucleosides comprising non-naturally occurring bases and/or sugar and secondary structures of the oligonucleotide itself such as hairpin structures that stabilize the oligonucleotide.
- the invention provides therapeutic compositions comprising a therapeutically effective synergistic amount of at least one immunomer compound, or immmunostimulatory oligonucleotide, a therapeutically effective synergistic amount of IL-2 (and/or an agent that induces IL-2 production in situ, such as a DNA vaccine or expression vector expressing IL-2) and optionally an antigen wherein administration of said combination synergistically stimulates the production of cytokines in a patient.
- Preferred cytokines that are synergistically stimulated in accordance with the invention are selected from the group consisting of IL-12 and IFN- ⁇ , IFN- ⁇ , IFN- ⁇ or combinations thereof.
- compositions according to all aspects of the invention are useful in therapeutic approaches to human or veterinary diseases involving immune system modulation and immune-based therapies.
- Particularly preferred disease targets include cancer, infectious diseases, asthma and allergies.
- FIG. 1 is a schematic representation of representative immunomer compounds of the invention.
- FIG. 2 depicts several representative immunomer compounds of the invention.
- FIG. 3 depicts a group of representative small molecule linkers suitable for linear synthesis of immunomers of the invention.
- FIG. 4 depicts a group of representative small molecule linkers suitable for parallel synthesis of immunomer compounds of the invention.
- FIG. 5 is a synthetic scheme for the linear synthesis of immunomer compounds of the invention.
- FIG. 6 is a synthetic scheme for the parallel synthesis of immunomer compounds of the invention.
- FIG. 7A is a graphic representation of the induction of IL-12 by Oligonucleotide (Oligo) 1 and Immunomers 2-3 in BALB/c mouse spleen cell cultures.
- FIG. 7B is a graphic representation of the induction of IL-6 (top to bottom, respectively) by Oligo 1 and Immunomers 2-3 in BALB/c mouse spleen cells cultures.
- FIG. 7C is a graphic representation of the induction of IL-10 by Oligo 1 and Immunomers 2-3 (top to bottom, respectively) in BALB/c mouse spleen cell cultures.
- FIG. 8A is a graphic representation of the induction of BALB/c mouse spleen cell proliferation in cell cultures by different concentrations of Immunomers 5 and 6, which have inaccessible and accessible 5′-ends, respectively.
- FIG. 8B is a graphic representation of BALB/c mouse spleen enlargement by Oligo 4 and Immunomers 5-6, which have an immunogenic chemical modification in the 5′-flanking sequence of the CpG motif.
- the immunomer compound which has accessible 5′-ends (6), has a greater ability to increase spleen enlargement compared with Immunomer 5, which does not have accessible 5′-end and with monomeric Oligo 4.
- FIG. 9A is a graphic representation of induction of IL-12 by different concentrations of Oligo 4 and Immunomers 7 and 8 in BALB/c mouse spleen cell cultures.
- FIG. 9B is a graphic representation of induction of IL-6 by different concentrations of Oligo 4 and Immunomers 7 and 8 in BALB/c mouse spleen cell cultures.
- FIG. 9C is a graphic representation of induction of IL-10 by different concentrations of Oligo 4 and Immunomers 7 and 8 in BALB/c mouse spleen cell cultures.
- FIG. 10A is a graphic representation of the induction of cell proliferation by Immunomers 14, 15, and 16 in BALB/c mouse spleen cell cultures.
- FIG. 10B is a graphic representation of the induction of cell proliferation by IL-12 by different concentrations of Immunomers 14 and 16 in BALB/c mouse spleen cell cultures.
- FIG. 10C is a graphic representation of the induction of cell proliferation by IL-6 by different concentrations of Immunomers 14 and 16 in BALB/c mouse spleen cell cultures.
- FIG. 11A is a graphic representation of the induction of cell proliferation by Oligo 4 and 17 and Immunomers 19 and 20 in BALB/c mouse spleen cell cultures.
- FIG. 11B is a graphic representation of the induction of cell proliferation IL-12 by different concentrations of Oligo 4 and 17 and Immunomers 19 and 20 in BALB/c mouse spleen cell cultures.
- FIG. 11C is a graphic representation of the induction of cell proliferation IL-6 by different concentrations of Oligo 4 and 17 and Immunomers 19 and 20 in BALB/c mouse spleen cell cultures.
- FIG. 12 is a graphic representation of BALB/c mouse spleen enlargement using Oligo 4 and Immunomers 14, 23, and 24.
- FIG. 13 shows the effect of a method according to the invention on tumor growth in a nude mouse model for prostate cancer.
- FIG. 14 shows the effect of a method according to the invention on body weight of the mice used in the study.
- FIG. 15A is a graphic representation demonstrating the synergistic effect on IL-12 production after BALB/c spleenocytes were treated with Oligo 1 and IL-2.
- FIG. 15B is a graphic representation demonstrating the synergistic effect on IL-12 production after BALB/c spleenocytes were treated with Oligo 2 and IL-2.
- FIG. 15C is a graphic representation demonstrating the synergistic effect on IL-12 production after BALB/c spleenocytes were treated with Oligo 3 and IL-2.
- FIG. 15D is a graphic representation demonstrating the synergistic effect on IL-12 production after BALB/c spleenocytes were treated with Oligo 4 and IL-2.
- FIG. 16A is a graphic representation demonstrating the effect on IL-6 production after BALB/c spleenocytes were treated with Oligo 1 and IL-2.
- FIG. 16B is a graphic representation demonstrating the effect on IL-6 production after BALB/c spleenocytes were treated with Oligo 2 and IL-2.
- FIG. 16C is a graphic representation demonstrating the effect on IL-6 production after BALB/c spleenocytes were treated with Oligo 3 and IL-2.
- FIG. 16D is a graphic representation demonstrating the effect on IL-6 production after BALB/c spleenocytes were treated with Oligo 4 and IL-2.
- FIG. 17 is a graphic representation demonstrating the synergistic effect on IL-12 production after BALB/c spleenocytes were treated with Oligo 5 and IL-2.
- FIG. 18A is a graphic representation demonstrating the effect on IFN- ⁇ production after BALB/c spleenocytes were treated with Oligo 1 and IL-2.
- FIG. 18B is a graphic representation demonstrating the effect on IFN- ⁇ production after BALB/c spleenocytes were treated with Oligo 2 and IL-2.
- FIG. 18C is a graphic representation demonstrating the effect on IFN- ⁇ production after BALB/c spleenocytes were treated with Oligo 3 and IL-2.
- FIG. 18D is a graphic representation demonstrating the effect on IFN- ⁇ production after BALB/c spleenocytes were treated with Oligo 4 and IL-2.
- FIG. 19 is a graphic representation demonstrating the effect on IFN- ⁇ production after BALB/c spleenocytes were treated with Oligo 5 and IL-2.
- the invention relates to optimized methods and compositions for enhancing the immune response caused by immunostimulatory compounds used in immune-based therapies.
- the optimized methods according to the invention result in synergy between the therapeutic effect of immunostimulatory compounds such as immunostimulatory oligonucleotides and immunomer compounds and the therapeutic effect of cytokine immunotherapy and/or chemotherapeutic agents.
- immunostimulatory compounds such as immunostimulatory oligonucleotides and immunomer compounds
- cytokine immunotherapy and/or chemotherapeutic agents are chemotherapeutic agents.
- the invention provides methods for enhancing the anti-cancer effect caused by immunostimulatory compounds used for immunotherapy applications for the treatment of cancer.
- immunostimulatory oligonucleotides and/or immunomer compounds provide a synergistic therapeutic effect when use in combination with chemotherapeutic agents. This result is surprising in view of the fact that immunostimulatory oligonucleotides and immunomer compounds cause cell division of immune system cells, whereas chemotherapeutic agents normally kill actively dividing cells.
- the 5′ OH can be linked to a phosphate, phosphorothioate, or phosphorodithioate moiety, an aromatic or aliphatic linker, cholesterol, or another entity which does not interfere with accessibility.
- Immunostimulatory oligonucleotides and immunomer compounds induce an immune response when administered to a vertebrate. When used in combination with chemotherapeutic agents, a synergistic therapeutic effect is obtained.
- Preferred chemotherapeutic agents used in the method according to the invention include, without limitation Gemcitabine, methotrexate, vincristine, adriamycin, cisplatin, non-sugar containing chloroethylnitrosoureas, 5-fluorouracil, mitomycin C, bleomycin, doxorubicin, dacarbazine, taxol, fragyline, Meglamine GLA, valrubicin, carmustaine and poliferposan, MMI270, BAY 12-9566, RAS famesyl transferase inhibitor, famesyl transferase inhibitor, MMP, MTA/LY231514, LY264618/Lometexol, Glamolec, CI-994, TNP-470, Hycamtin/Topotecan, PKC412, Valspodar/PSC833, Novantrone/Mitroxantrone, Metaret/Suramin, Batimastat, E7070, BCH-
- administration of immunostimulatory oligonucleotides and/or immunomer compounds can be by any suitable route, including, without limitation, parenteral, oral, sublingual, transdermal, topical, intranasal, aerosol, intraocular, intratracheal, intrarectal, vaginal, by gene gun, dermal patch or topical cream or in eye drop or mouthwash form.
- Administration of the therapeutic compositions of immunostimulatory oligonucleotides and/or immunomer compounds can be carried out using known procedures at dosages and for periods of time effective to reduce symptoms or surrogate markers of the disease.
- the therapeutic composition When administered systemically, the therapeutic composition is preferably administered at a sufficient dosage to attain a blood level of immunostimulatory oligonucleotide and/or immunomer compound from about 0.0001 micromolar to about 10 micromolar. For localized administration, much lower concentrations than this may be effective, and much higher concentrations may be tolerated.
- a total dosage of immunostimulatory oligonucleotide and/or immunomer compound ranges from about 0.0001 mg per patient per day to about 200 mg per kg body weight per day. It may be desirable to administer simultaneously, or sequentially a therapeutically effective amount of one or more of the therapeutic compositions of the invention to an individual as a single treatment episode.
- the term “in combination with” means in the course of treating the same disease in the same patient, and includes administering the immunostimulatory oligonucleotide and/or immunomer compound and/or the chemotherapeutic agent in any order, including simultaneous administration, as well as temporally spaced order of up to several days apart.
- Such combination treatment may also include more than a single administration of the immunostimulatory oligonucleotide and/or immunomer compound, and/or independently the chemotherapeutic agent.
- the administration of the immunostimulatory oligonucleotide and/or immunomer compound and/or chemotherapeutic agent may be by the same or different routes.
- the immunomer compound used in the method according to the invention comprises two or more immunostimulatory oligonucleotides, (in the context of the immunomer) which may be the same or different.
- each such immunostimulatory oligonucleotide has at least one accessible 5′ end.
- the immunomer compound in addition to the immunostimulatory oligonucleotide(s), also comprises at least one oligonucleotide that is complementary to a gene.
- the term “complementary to” means that the oligonucleotide hybridizes under physiological conditions to a region of the gene.
- the oligonucleotide downregulates expression of a gene.
- Such downregulatory oligonucleotides preferably are selected from the group consisting of antisense oligonucleotides, ribozyme oligonucleotides, small inhibitory RNAs and decoy oligonucleotides.
- the term “downregulate a gene” means to inhibit the transcription of a gene or translation of a gene product.
- the immunomer compounds used in the method according to the invention can be used to target one or more specific disease targets, while also stimulating the immune system.
- the immunostimulatory oligonucleotide and/or immunomer compound used in the method according to the invention includes a ribozyme or a decoy oligonucleotide.
- ribozyme refers to an oligonucleotide that possesses catalytic activity.
- the ribozyme binds to a specific nucleic acid target and cleaves the target.
- decoy oligonucleotide refers to an oligonucleotide that binds to a transcription factor in a sequence-specific manner and arrests transcription activity.
- the ribozyme or decoy oligonucleotide exhibits secondary structure, including, without limitation, stem-loop or hairpin structures.
- at least one oligonucleotide comprises poly(I)-poly(dC).
- at least one set of Nn includes a string of 3 to 10 dGs and/or Gs or 2′-substituted ribo or arabino Gs.
- oligonucleotide refers to a polynucleoside formed from a plurality of linked nucleoside units. Such oligonucleotides can be obtained from existing nucleic acid sources, including genomic or cDNA, but are preferably produced by synthetic methods.
- each nucleoside unit includes a heterocyclic base and a pentofuranosyl, trehalose, arabinose, 2′-deoxy-2′-substituted arabinose, 2′-O-substituted arabinose or hexose sugar group.
- the nucleoside residues can be coupled to each other by any of the numerous known internucleoside linkages.
- internucleoside linkages include, without limitation, phosphodiester, phosphorothioate, phosphorodithioate, alkylphosphonate, alkylphosphonothioate, phosphotriester, phosphoramidate, siloxane, carbonate, carboalkoxy, acetamidate, carbamate, morpholino, borano, thioether, bridged phosphoramidate, bridged methylene phosphonate, bridged phosphorothioate, and sulfone internucleoside linkages.
- oligonucleotide also encompasses polynucleosides having one or more stereospecific internucleoside linkage (e.g., (R P )- or (S P )-phosphorothioate, alkylphosphonate, or phosphotriester linkages).
- the terms “oligonucleotide” and “dinucleotide” are expressly intended to include polynucleosides and dinucleosides having any such internucleoside linkage, whether or not the linkage comprises a phosphate group.
- these internucleoside linkages may be phosphodiester, phosphorothioate, phosphorodithioate, methylphosphonate linkages, or combinations thereof.
- the number of nucleoside residues in the oligonucleotides is not critical, and oligonucleotides having one or two fewer nucleoside residues, or from one to several additional nucleoside residues are contemplated as equivalents of each of the embodiments described above, for purposes of this invention. In some embodiments, one or more of the oligonucleotides have 11 nucleotides.
- oligonucleotide also encompasses polynucleosides having additional substituents including, without limitation, protein groups, lipophilic groups, intercalating agents, diamines, folic acid, cholesterol and adamantane.
- oligonucleotide also encompasses any other nucleobase containing polymer, including, without limitation, peptide nucleic acids (PNA), peptide nucleic acids with phosphate groups (PHONA), locked nucleic acids (LNA), morpholino-backbone oligonucleotides, and oligonucleotides having backbone sections with alkyl linkers or amino linkers.
- PNA peptide nucleic acids
- PONA peptide nucleic acids with phosphate groups
- LNA locked nucleic acids
- morpholino-backbone oligonucleotides oligonucleotides having backbone sections with alkyl linkers or amino linkers.
- the immunostimulatory oligonucleotides and/or immunomer compounds used in the method according to the invention can include naturally occurring nucleosides, modified nucleosides, or mixtures thereof.
- modified nucleoside is a nucleoside that includes a modified heterocyclic base, a modified sugar moiety, or a combination thereof.
- the modified nucleoside is a non-natural pyrimidine or purine nucleoside, as herein described.
- the modified nucleoside is a 2′-substituted ribonucleoside an arabinonucleoside or a 2′-deoxy-2′-fluoroarabinoside.
- 2′-substituted ribonucleoside includes ribonucleosides in which the hydroxyl group at the 2′ position of the pentose moiety is substituted to produce a 2′-O-substituted ribonucleoside.
- substitution is with a lower alkyl group containing 1-6 saturated or unsaturated carbon atoms, or with an aryl group having 6-10 carbon atoms, wherein such alkyl, or aryl group may be unsubstituted or may be substituted, e.g., with halo, hydroxy, trifluoromethyl, cyano, nitro, acyl, acyloxy, alkoxy, carboxyl, carboalkoxy, or amino groups.
- 2′-O-substituted ribonucleosides include, without limitation 2′-O-methylribonucleosides and 2′-O-methoxyethylribonucleosides.
- 2′-substituted ribonucleoside also includes ribonucleosides in which the 2′-hydroxyl group is replaced with a lower alkyl group containing 1-6 saturated or unsaturated carbon atoms, or with an amino or halo group.
- Examples of such 2′-substituted ribonucleosides include, without limitation, 2′-amino, 2′-fluoro, 2′-allyl, and 2′-propargyl ribonucleosides.
- oligonucleotide includes hybrid and chimeric oligonucleotides.
- a “chimeric oligonucleotide” is an oligonucleotide having more than one type of internucleoside linkage.
- One preferred example of such a chimeric oligonucleotide is a chimeric oligonucleotide comprising a phosphorothioate, phosphodiester or phosphorodithioate region and non-ionic linkages such as alkylphosphonate or alkylphosphonothioate linkages (see e.g., Pederson et al. U.S. Pat. Nos. 5,635,377 and 5,366,878).
- hybrid oligonucleotide is an oligonucleotide having more than one type of nucleoside.
- One preferred example of such a hybrid oligonucleotide comprises a ribonucleotide or 2′-substituted ribonucleotide region, and a deoxyribonucleotide region (see, e.g., Metelev and Agrawal, U.S. Pat. Nos. 5,652,355, 6,346,614 and 6,143,881).
- the term “immunostimulatory oligonucleotide” refers to an oligonucleotide as described above that induces an immune response when administered to a vertebrate, such as a fish, bird, or mammal.
- a vertebrate such as a fish, bird, or mammal.
- the term “mammal” includes, without limitation rats, mice, cats, dogs, horses, cattle, cows, pigs, rabbits, non-human primates, and humans.
- Useful immunostimulatory oligonucleotides can be found described in Agrawal et al., WO 98/49288, published Nov. 5, 1998; WO 01/12804, published Feb. 22, 2001; WO 01/55370, published Aug.
- the immunostimulatory oligonucleotide comprises at least one phosphodiester, phosphorothioate, methylphosphonate, or phosphordithioate internucleoside linkage.
- the invention provides a method for synergistically stimulating an immune response in a patient.
- the method comprises administering to a patient, a combination of a therapeutically effective synergistic amount of at least one immunomer compound or immunostimulatory oligonucleotide in accordance with the invention and a therapeutically effective synergistic amount of IL-2 (and/or an agent that induces IL-2 production in situ, such as a DNA vaccine or expression vector expressing IL-2), wherein administration of said combination synergistically stimulates the production of cytokines in a patient.
- the cytokines that are synergistically stimulated in accordance with the invention are selected from the group consisting of, IL-12 and interferon- ⁇ (IFN- ⁇ ), IFN- ⁇ , IFN- ⁇ or combinations thereof.
- an effective synergistic amount is used herein to denote known concentrations of immunomer compound or immunostimulatory oligonucleotide and of IL-2 administered for an effective period of time such that the combined stimulatory effect of the immunomer compound or immunostimulatory oligonucleotide and IL-2 are more than additive, i.e. the combined stimulatory effect is greater than the expected total stimulatory effect calculated on the basis of the sum of the individual stimulatory effects.
- cytokine refers to any of many soluble molecules that cells of the immune system produce to control reactions between other cells.
- the term “cytokine” includes, for example, interleukins (e.g., IL-1, IL-2, IL-3, IL-6, IL-10, IL12, etc.), interferons (e.g., IFN-.alpha., IFN-.beta., IFN-.gamma.), chemokines, hematopoietic growth factors (e.g. erythropoietin), tumor necrosis factors, colony stimulating factors (e.g., G-CSF, M-CSF, GM-CSF) and transforming growth factors (TGF-alpha).
- interleukins e.g., IL-1, IL-2, IL-3, IL-6, IL-10, IL12, etc.
- interferons e.g., IFN-.alpha., IFN-.beta.,
- an “immunomer” refers to any compound comprising at least two oligonucleotides linked directly at their 3′ ends, or directly via internucleoside linkages, or directly at a functionalized nucleobase or sugar, or that are indirectly linked together via a non-nucleotidic linker, wherein at least one of the oligonucleotides, in the context of the immunomer compound, is an immunostimulatory oligonucleotide having an accessible 5′ end.
- an immunostimulatory oligonucleotide is an oligonucleotide that comprises at least one of an immunostimulatory “CpG” dinucleotide, an immunostimulatory domain, or other immunostimulatory moiety.
- accessible 5′ end means that the 5′ end of the oligonucleotide is sufficiently available such that the factors that recognize and bind to immunomer compounds and immunostimulatory oligonucleotides and stimulate the immune system have access to the 5′ end.
- At least one immunostimulatory oligonucleotide of the immunomer compound comprises an immunostimulatory dinucleotide of formula 5′-Pyr-Pur-3′, wherein Pyr is a natural or synthetic pyrimidine nucleoside and Pur is a natural or synthetic purine nucleoside.
- pyrimidine nucleoside refers to a nucleoside wherein the base component of the nucleoside is a pyrimidine base.
- purine nucleoside refers to a nucleoside wherein the base component of the nucleoside is a purine base.
- a “synthetic” pyrimidine or purine nucleoside includes a non-naturally occurring pyrimidine or purine base, a non-naturally occurring sugar moiety, or a combination thereof.
- Preferred pyrimidine nucleosides in the immunostimulatory oligonucleotides and/or immunomer compounds used in the method according to the invention have the structure (I): wherein:
- D is a hydrogen bond donor
- D′ is selected from the group consisting of hydrogen, hydrogen bond donor, hydrogen bond acceptor, hydrophilic group, hydrophobic group, electron withdrawing group and electron donating group;
- A is a hydrogen bond acceptor or a hydrophilic group
- A′ is selected from the group consisting of hydrogen bond acceptor, hydrophilic group, hydrophobic group, electron withdrawing group and electron donating group;
- X is carbon or nitrogen
- S′ is a pentose or hexose sugar ring, or a non-naturally occurring sugar.
- the sugar ring is derivatized with a phosphate moiety, modified phosphate moiety, or other linker moiety suitable for linking the pyrimidine nucleoside to another nucleoside or nucleoside analog.
- the base moiety in (I) is a non-naturally occurring pyrimidine base.
- preferred non-naturally occurring pyrimidine bases include, without limitation, 5-hydroxycytosine, 5-hydroxymethylcytosine, N4-alkylcytosine, preferably N4-ethylcytosine, and 4-thiouracil.
- the sugar moiety S′ in (I) is a non-naturally occurring sugar moiety.
- a “naturally occurring sugar moiety” is a sugar moiety that occurs naturally as part of nucleic acid, e.g., ribose and 2′-deoxyribose
- a “non-naturally occurring sugar moiety” is any sugar that does not occur naturally as part of a nucleic acid, but which can be used in the backbone for an oligonucleotide, e.g, hexose.
- Arabinose and arabinose derivatives are examples of preferred sugar moieties.
- Preferred purine nucleoside analogs in immunostimulatory oligonucleotides and/or immunomer compounds used in the method according to the invention have the structure (II):
- D is a hydrogen bond donor
- D′ is selected from the group consisting of hydrogen, hydrogen bond donor, and hydrophilic group
- A is a hydrogen bond acceptor or a hydrophilic group
- X is carbon or nitrogen
- each L is independently selected from the group consisting of C, O, N and S;
- S′ is a pentose or hexose sugar ring, or a non-naturally occurring sugar.
- the sugar ring is derivatized with a phosphate moiety, modified phosphate moiety, or other linker moiety suitable for linking the pyrimidine nucleoside to another nucleoside or nucleoside analog.
- Preferred hydrogen bond donors include, without limitation, —NH—, —NH 2 , —SH and —OH.
- Preferred hydrogen bond acceptors include, without limitation, C ⁇ O, C ⁇ S, —NO 2 and the ring nitrogen atoms of an aromatic heterocycle, e.g., N1 of guanine.
- the base moiety in (II) is a non-naturally occurring purine base.
- examples of preferred non-naturally occurring purine bases include, without limitation, 6-thioguanine and 7-deazaguanine.
- the sugar moiety S′ in (II) is a naturally occurring sugar moiety, as described above for structure (I).
- the immunostimulatory dinucleotide in the immunostimulatory oligonucleotides and/or immunomer compound used in the method according to the invention is selected from the group consisting of CpG, C*pG, CpG*, and C*pG*, wherein C is cytidine or 2′-deoxycytidine, C* is 2′-deoxythymidine, arabinocytidine, 2′-deoxythymidine, 2′-deoxy-2′-substitutedarabinocytidine, 2′-O-substitutedarabinocytidine, 2′-deoxy-5-hydroxycytidine, 2′-deoxy-N4-alkyl-cytidine, 2′-deoxy-4-thiouridine, other non-natural pyrimidine nucleosides, or 1-(2′-deoxy- ⁇ -D-ribofuranosyl)-2-oxo-7-deaza-8-methyl-purine; G is gua
- the immunostimulatory oligonucleotides may include immunostimulatory moieties on one or both sides of the immunostimulatory dinucleotide.
- the immunostimulatory oligonucleotide comprises an immunostimulatory domain of structure (III):
- Y is cytidine, 2′deoxythymidine, 2′ deoxycytidine arabinocytidine, 2′-deoxy-2′-substitutedarabinocytidine, 2′-deoxythymidine, 2′-O-substitutedarabinocytidine, 2′-deoxy-5-hydroxycytidine, 2′-deoxy-N4-alkyl-cytidine, 2′-deoxy-4-thiouridine, other non-natural pyrimidine nucleosides, or 1-(2′-deoxy- ⁇ -D-ribofuranosyl)-2-oxo-7-deaza-8-methyl-purine;
- Z is guanosine or 2′-deoxyguanosine, 2′ deoxy-7-deazaguanosine, 2′-deoxy-6-thioguanosine, arabinoguanosine, 2′-deoxy-2′substituted-arabinoguanosine, 2′-O-substituted-arabinoguanosine, 2′deoxyinosine, or other non-natural purine nucleoside;
- N1 is preferably a naturally occurring or a synthetic nucleoside or an immunostimulatory moiety selected from the group consisting of abasic nucleosides, arabinonucleosides, 2′-deoxyuridine, ⁇ -deoxyribonucleosides, ⁇ -L-deoxyribonucleosides, and nucleosides linked by a phosphodiester or modified internucleoside linkage to the adjacent nucleoside on the 3′ side, the modified internucleotide linkage being selected from, without limitation, a linker having a length of from about 2 angstroms to about 200 angstroms, C2-C18 alkyl linker, poly(ethylene glycol) linker, 2-aminobutyl-1,3-propanediol linker, glyceryl linker, 2′-5′ internucleoside linkage, and phosphorothioate, phosphorodithioate, or methylphosphonate internucle
- Nn is preferably a naturally occurring nucleoside or an immunostimulatory moiety selected from the group consisting of abasic nucleosides, arabinonucleosides, 2′-deoxyuridine, ⁇ -deoxyribonucleosides, 2′-O-substituted ribonucleosides, and nucleosides linked by a modified internucleoside linkage to the adjacent nucleoside on the 3′ side, the modified internucleoside linkage preferably being selected from the group consisting of amino linker, C2-C18 alkyl linker, poly(ethylene glycol) linker, 2-aminobutyl-1,3-propanediol linker, glyceryl linker, 2′-5′ internucleoside linkage, and methylphosphonate internucleoside linkage;
- N1 or Nn is an immunostimulatory moiety
- n is independently a number from 0 to 30;
- the 3′end is linked directly or via a non-nucleotidic linker to another oligonucleotide, which may or may not be immunostimulatory.
- YZ is arabinocytidine or 2′-deoxy-2′-substituted arabinocytidine and arabinoguanosine or 2′deoxy-2′-substituted arabinoguanosine.
- Preferred immunostimulatory moieties include modifications in the phosphate backbones, including, without limitation, methylphosphonates, methylphosphonothioates, phosphotriesters, phosphothiotriesters, phosphorothioates, phosphorodithioates, triester prodrugs, sulfones, sulfonamides, sulfamates, formacetal, N-methylhydroxylamine, carbonate, carbamate, morpholino, boranophosphonate, phosphoramidates, especially primary amino-phosphoramidates, N3 phosphoramidates and N5 phosphoramidates, and stereospecific linkages (e.g., (R P )- or (S P )-phosphorothioate, alkylphosphonate, or phosphotriester linkages).
- modifications in the phosphate backbones including, without limitation, methylphosphonates, methylphosphonothioates, phosphotriesters, phosphothiotriesters, phosphorot
- Preferred immunostimulatory moieties according to the invention further include nucleosides having sugar modifications, including, without limitation, 2′-substituted pentose sugars including, without limitation, 2′-O-methylribose, 2′-O-methoxyethylribose, 2′-O-propargylribose, and 2′-deoxy-2′-fluororibose; 3′-substituted pentose sugars, including, without limitation, 3′-O-methylribose; 1′,2′-dideoxyribose; arabinose; substituted arabinose sugars, including, without limitation, 1′-methylarabinose, 3′-hydroxymethylarabinose, 4′-hydroxymethyl-arabinose, and 2′-substituted arabinose sugars; hexose sugars, including, without limitation, 1,5-anhydrohexitol; and alpha-anomers.
- the immunostimulatory moiety is attached to the adjacent nucleoside by way of a 2′-5′ internucleoside linkage.
- Preferred immunostimulatory moieties in immunostimulatory oligonucleotides and/or immunomer compounds used in the method according to the invention further include oligonucleotides having other carbohydrate backbone modifications and replacements, including peptide nucleic acids (PNA), peptide nucleic acids with phosphate groups (PHONA), locked nucleic acids (LNA), morpholino backbone oligonucleotides, and oligonucleotides having backbone linker sections having a length of from about 2 angstroms to about 200 angstroms, including without limitation, alkyl linkers or amino linkers.
- PNA peptide nucleic acids
- PONA peptide nucleic acids with phosphate groups
- LNA locked nucleic acids
- morpholino backbone oligonucleotides oligonucleotides having backbone linker sections having a length of from about 2 angstroms to about 200 angstroms, including without limitation, alkyl
- the alkyl linker may be branched or unbranched, substituted or unsubstituted, and chirally pure or a racemic mixture. Most preferably, such alkyl linkers have from about 2 to about 18 carbon atoms. In some preferred embodiments such alkyl linkers have from about 3 to about 9 carbon atoms.
- Preferred immunostimulatory moieties in immunostimulatory oligonucleotides and/or immunomer compounds used in the method according to the invention further include DNA isoforms, including, without limitation, ⁇ -L-deoxyribonucleosides and ⁇ -deoxyribonucleosides.
- Preferred immunostimulatory moieties incorporate 3′ modifications, and further include nucleosides having unnatural internucleoside linkage positions, including, without limitation, 2′-5′, 2′-2′, 3′-3′ and 5′-5′ linkages.
- Preferred immunostimulatory moieties in immunostimulatory oligonucleotides and/or immunomer compounds used in the method according to the invention further include nucleosides having modified heterocyclic bases, including, without limitation, 5-hydroxycytosine, 5-hydroxymethylcytosine, N4-alkylcytosine, preferably N4-ethylcytosine, 4-thiouracil, 6-thioguanine, 7-deazaguanine, inosine, nitropyrrole, C5-propynylpyrimidine, and diaminopurines, including, without limitation, 2,6-diaminopurine.
- nucleosides having modified heterocyclic bases including, without limitation, 5-hydroxycytosine, 5-hydroxymethylcytosine, N4-alkylcytosine, preferably N4-ethylcytosine, 4-thiouracil, 6-thioguanine, 7-deazaguanine, inosine, nitropyrrole, C5-propynylpyr
- a methylphosphonate internucleoside linkage at position N1 or Nn is an immunostimulatory moiety
- a linker having a length of from about 2 angstroms to about 200 angstroms C2-C18 alkyl linker at position X1 is an immunostimulatory moiety
- a ⁇ -L-deoxyribonucleoside at position X1 is an immunostimulatory moiety. See Table 1 below for representative positions and structures of immunostimulatory moieties.
- reference to a linker as the immunostimulatory moiety at a specified position means that the nucleoside residue at that position is substituted at its 3′-hydroxyl with the indicated linker, thereby creating a modified internucleoside linkage between that nucleoside residue and the adjacent nucleoside on the 3′ side.
- reference to a modified internucleoside linkage as the immunostimulatory moiety at a specified position means that the nucleoside residue at that position is linked to the adjacent nucleoside on the 3′ side by way of the recited linkage.
- N1 Naturally-occurring nucleosides, abasic nucleoside, arabino- nucleoside, 2′-deoxyuridine, ⁇ -L-deoxyribonucleoside C2-C18 alkyl linker, poly(ethylene glycol) linkage, 2-aminobutyl-1,3- propanediol linker (amino linker), 2′-5′ internucleoside linkage, methylphosphonate internucleoside linkage Nn Naturally-occurring nucleosides, abasic nucleoside, arabino- nucleosides, 2′-deoxyuridine, 2′-O-substituted ribonucleoside, 2′-5′ internucleoside linkage, methylphosphonate internucleoside linkage, provided that N1 and N2 cannot both be abasic linkages
- Table 2 shows representative positions and structures of immunostimulatory moieties within an immunostimulatory oligonucleotide having an upstream potentiation domain.
- the term “Spacer 9” refers to a poly(ethylene glycol) linker of formula —O—(CH 2 CH 2 —O) n —, wherein n is 3.
- the term “Spacer 18” refers to a poly(ethylene glycol) linker of formula —O—(CH 2 CH 2 —O) n —, wherein n is 6.
- the term “C2-C18 alkyl linker refers to a linker of formula —O—(CH 2 ) q —O—, where q is an integer from 2 to 18.
- C3-linker and “C3-alkyl linker” refer to a linker of formula —O—(CH 2 ) 3 —O—.
- the linker is connected to the adjacent nucleosides by way of phosphodiester, phosphorothioate, phosphorodithioate or methylphosphonate linkages.
- Table 3 shows representative positions and structures of immunostimulatory moieties within an immunostimulatory oligonucleotide having a downstream potentiation domain.
- the immunomer compounds used in the method according to the invention comprise at least two oligonucleotides linked directly or via a non-nucleotidic linker.
- a “non-nucleotidic linker” is any moiety that can be linked to the oligonucleotides by way of covalent or non-covalent linkages.
- linker is from about 2 angstroms to about 200 angstroms in length.
- Non-covalent linkages include, but are not limited to, electrostatic interaction, hydrophobic interactions, ⁇ -stacking interactions, and hydrogen bonding.
- non-nucleotidic linker is not meant to refer to an internucleoside linkage, as described above, e.g., a phosphodiester, phosphorothioate, or phosphorodithioate functional group, that directly connects the 3′-hydroxyl groups of two nucleosides.
- a direct 3′-3′ linkage is considered to be a “nucleotidic linkage.”
- the non-nucleotidic linker is a metal, including, without limitation, gold particles. In some other embodiments, the non-nucleotidic linker is a soluble or insoluble biodegradable polymer bead.
- the non-nucleotidic linker is an organic moiety having functional groups that permit attachment to the oligonucleotide. Such attachment preferably is by any stable covalent linkage.
- the non-nucleotidic linker is a biomolecule, including, without limitation, polypeptides, antibodies, lipids, antigens, allergens, and oligosaccharides.
- the non-nucleotidic linker is a small molecule.
- a small molecule is an organic moiety having a molecular weight of less than 1,000 Da. In some embodiments, the small molecule has a molecular weight of less than 750 Da.
- the small molecule is an aliphatic or aromatic hydrocarbon, either of which optionally can include, either in the linear chain connecting the oligonucleotides or appended to it, one or more functional groups selected from the group consisting of hydroxy, amino, thiol, thioether, ether, amide, thioamide, ester, urea, and thiourea.
- the small molecule can be cyclic or acyclic.
- Examples of small molecule linkers include, but are not limited to, amino acids, carbohydrates, cyclodextrins, adamantane, cholesterol, haptens and antibiotics. However, for purposes of describing the non-nucleotidic linker, the term “small molecule” is not intended to include a nucleoside.
- the small molecule linker is glycerol or a glycerol homolog of the formula HO—(CH 2 ) o —CH(OH)—(CH 2 ) p —OH, wherein o and p independently are integers from 1 to about 6, from 1 to about 4, or from 1 to about 3.
- the small molecule linker is a derivative of 1,3-diamino-2-hydroxypropane.
- Some such derivatives have the formula HO—(CH 2 ) m —C(O)NH—CH 2 —CH(OH)—CH 2 —NHC(O)—(CH 2 ) m —OH, wherein m is an integer from 0 to about 10, from 0 to about 6, from 2 to about 6, or from 2 to about 4.
- Some non-nucleotidic linkers in immunomer compounds used in the method according to the invention permit attachment of more than two oligonucleotides, as schematically depicted in FIG. 1 .
- the small molecule linker glycerol has three hydroxyl groups to which oligonucleotides may be covalently attached.
- Some immunomer compounds according to the invention therefore, comprise more than two oligonucleotides linked at their 3′ ends to a non-nucleotidic linker.
- Some such immunomer compounds comprise at least two immunostimulatory oligonucleotides, each having an accessible 5′ end.
- the immunostimulatory oligonucleotides and/or immunomer compounds used in the method according to the invention may conveniently be synthesized using an automated synthesizer and phosphoramidite approach as schematically depicted in FIGS. 5 and 6 , and further described in the Examples.
- the immunostimulatory oligonucleotides and/or immunomer compounds are synthesized by a linear synthesis approach (see FIG. 5 ).
- linear synthesis refers to a synthesis that starts at one end of the immunomer compound and progresses linearly to the other end. Linear synthesis permits incorporation of either identical or un-identical (in terms of length, base composition and/or chemical modifications incorporated) monomeric units into the immunostimulatory oligonucleotides and/or immunomer compounds.
- An alternative mode of synthesis for immunomer compounds is “parallel synthesis”, in which synthesis proceeds outward from a central linker moiety (see FIG. 6 ).
- a solid support attached linker can be used for parallel synthesis, as is described in U.S. Pat. No. 5,912,332.
- a universal solid support such as phosphate attached to controlled pore glass support, can be used.
- Parallel synthesis of immunomer compounds has several advantages over linear synthesis: (1) parallel synthesis permits the incorporation of identical monomeric units; (2) unlike in linear synthesis, both (or all) the monomeric units are synthesized at the same time, thereby the number of synthetic steps and the time required for the synthesis is the same as that of a monomeric unit; and (3) the reduction in synthetic steps improves purity and yield of the final immunomer product.
- the immunostimulatory oligonucleotides or immunomer compounds used in the method according to the invention may conveniently be deprotected with concentrated ammonia solution or as recommended by the phosphoramidite supplier, if a modified nucleoside is incorporated.
- the product immunostimulatory oligonucleotides and/or immunomer compound is preferably purified by reversed phase HPLC, detritylated, desalted and dialyzed.
- Immunostimulatory oligonucleotides suitable for use as a component of an immunomer compound, or in accordance with the fourth aspect of the invention are described in the following U.S. patents and pending U.S. patent applications and are incorporated herein by reference: U.S. Pat. Nos. 6,426,334 and 6,476,000; and U.S. patent application Ser. Nos. 09/770,602, 09/845,623, 09/965,116, 60/440,587, 10/361,111, 60/471,247, 60/477.
- Preferred immunostimulatory oligonucleotides and immunomer compounds of the invention are described in pending U.S. patent application Ser. No. 10/279,684.
- Table 4 shows representative immunomer compounds used in the method according to the invention. Additional immunomer compounds are found described in the Examples and in U.S. patent application Ser. No. 10/279,684. TABLE 4 Examples of Immunomer Sequences Oligo or Im- muno- mer No.
- a further aspect of the invention provides an immunostimulatory nucleic acid comprising at least two oligonucleotides, wherein the immunostimulatory nucleic acid has a secondary structure.
- the immunostimulatory nucleic acid has a 3′-end stem loop secondary structure by way of hydrogen bonding with a complementary sequence.
- the nucleic acid that has reduced immunostimulatory activity forms a 5′-end stem loop secondary structure by way of hydrogen bonding with a complementary sequence.
- immunostimulatory nucleic acid comprises a structure as detailed in formula (I). Domain A-Domain B-Domain C (I)
- Domains may be from about 2 to about 12 nucleotides in length.
- Domain A may be 5′-3′ or 3′-5′ or 2′-5′ DNA, RNA, RNA-DNA, DNA-RNA having or not having a palindromic or self-complementary domain containing or not containing at least one dinucleotide selected from the group consisting of CpG, C*pG, C*pG* and CpG*, wherein C is cytidine or 2′-deoxycytidine, G is guanosine or 2′-deoxyguanosine, C* is 2′-deoxythymidine, 1-(2′-deoxy- ⁇ -D-ribofuranosyl)-2-oxo-7-deaza-8-methyl-purine, 2′-dideoxy-5-halocytosine, 2′-deoxy-5-nitrocytosine, arabinocytidine, 2′-deoxy-2′-substitutedarabinocytidine, 2′-O-sub
- Domain A will have more than one dinucleotide selected from the group consisting of CpG, C*pG, C*pG* and CpG*.
- Domain B is a linker joining Domains A and C that may be a 3’-‘5’ linkage, a 2’-5’ linkage, a 3’-3’ linkage, a phosphate group, a nucleoside, or a non-nucleoside linker that may be aliphatic, aromatic, aryl, cyclic, chiral, achiral, a peptide, a carbohydrate, a lipid, a fatty acid, mono- tri- or hexapolyethylene glycol, or a heterocyclic moiety.
- Domain C may be 5′-3′ or 3′-5′, 2′-5′ DNA, RNA, RNA-DNA, DNA-RNA Poly I-Poly C having or not having a palindromic or self-complementary sequence, which can or cannot have a dinucleotide selected from the group consisting of CpG, C*pG, C*pG*, CpG*, wherein C is cytidine or 2′-deoxycytidine, G is guanosine or 2′-deoxyguanosine, C* is 2′-deoxythymidine, 1-(2′-deoxy- ⁇ -D-ribofuranosyl)-2-oxo-7-deaza-8-methyl-purine, 2′dideoxy-5-halocytosine, 2′-deoxy-5-halocytosine, arabinocytidine, 2′-deoxy-2′-substituted arabinocytidine, 2′-O-substituted arabinocytidine, 2′-
- the immunostimulatory dinucleotide is not CpG.
- Domain B is preferably a non-nucloetidic linker connecting oligonucleotides of Domain A and Domain C, which are referred to as “immunomers.”
- Domain C does not have the dinucleotide CpG, C*pG, C*pG* or CpG*.
- the immunostimulatory nucleic acid will have a structure as detailed in formula (II).
- the immunostimulatory nucleic acid will have a structure as detailed in formula (III)
- the structure depicted in formula (III) is referred to herein as a “terminal dimmer,” since the ends of the two molecules are blocked because the sequences of the two ends are complementary allowing for intermolecular hydrogen bonding.
- domains A and A′ may or may not be identical
- domains B and B′ may or may not be identical
- domains C and C′ may or may not be identical.
- the immunostimulatory nucleic acid will have a structure as detailed in formula (IV).
- the terminal end of the depicted molecule has a secondary structure because the complementary sequence of its end is hydrogen bonded to this region.
- a molecule such as a ligand may be attached to the terminal end in order to facilitate cellular uptake or improve stability of the molecule.
- Non-limiting examples of some nucleic acid molecules of the invention are presented in Table 5.
- Table 5 SEQ ID NO: Sequence* Structure 91 5′- CTGTCTGACGITCT CTG-3′ 92 5′- CTGTCTGACGTTCT CTG-GAA-CAGAG-3′ 93 5′- CTGTCTGACGTTCT CTG-GAA- CAGAGAACGTC-3′ 94 5′- CTGTCTGACGTTCT CTG-GAA- CAGAGAACGTCAG ACAG-3′ 95 5′-GACAG-GAA- CTGTCTGACGTTCT CTG-3′ 96 5′-AACGTCAGACAG- GAA- CTGTCTGACGTTCT CTG-3′ 97 5′-CAGAGAACGTCAG ACAG-GAA- CTGTCTGACGTTCT CTG-3′ 98 5′-CTATCTGACGTTCT CTGT-3′ 99 5′-CTATCTGACGTTCT CTGT-gtgatcac-3′ 100 5′-gtgatcac- CTATCTGA
- nucleic acid molecule of the invention can be two immunomers linked by way of a non-nucleotidic linker.
- Non-limiting representative examples of these molecules are presented in Table 6.
- Table 6 SEQ ID NO: Sequence* Structure 129 5′-TCGTCGTT-X- GTCTCGAGAC-5′ 130 5′-TCGTCGTT-XX- GTCTCGAGAC-5′ 131 5′-TCGTCGTT-XXX- GTCTCGAGAC-5′ 132 5′-TCGTCGTT-Y- GTCTCGAGAC-5′ 133 5′-TCGTCGTT-Z- GTCTCGAGAC-5′ 134 5′-TCGTCGTT-XXX- GUCUCGAGAC -5′ 135 5′-TC G TC G TT-XXX- GTCTCGAGAC-5′ 136 5′-TTGTGCTT-XXX- GTCTCGAGAC-5′ 137 5′-TCGTCGTT-XXX- GTCTCCACAC-5′ 138 5′-TCGTCG
- Another aspect of the invention provides an immunostimulatory nucleic acid wherein the sequence of the immunostimulatory oligonucleotide and/or immunomer is at least partially self-complementary.
- a self-complementary sequence as used herein prefers to a base sequence which, upon suitable alignment, may form intramolecular or, more typically, intermolecular basepairing between G-C, A-T, A-U and/or G-U wobble pairs.
- the extent of self-complementarity is at least 50 percent.
- an 8-mer that is at least 50 percent self-complementary may have a sequence capable of forming 4, 5, 6, 7, or 8 G-C, A-T, A-U and/or G-U wobble basepairs.
- Such basepairs may but need not necessarily involve bases located at either end of the self-complementary immunostimulatory oligonucleotide and/or immunomer.
- nucleic acid stabilization may be important to the immunostimulatory oligonucleotide and/or immunomer, it may be advantageous to “clamp” together one or both ends of a double-stranded nucleic acid, either by basepairing or by any other suitable means.
- the degree of self-complementarity may depend on the alignment between immunostimulatory oligonucleotide and/or immunomer, and such alignment may or may not include single- or multiple-nucleoside overhangs. In other embodiments, the degree of self-complementarity is at least 60 percent, at least 70 percent, at least 80 percent, at least 90 percent, or even 100 percent.
- the immunostimulatory nucleic acid will have a structure as detailed in formula (V)
- the depicted immunomer compounds have secondary structure because the sequences of the domains are complementary allowing for intermolecular hydrogen bonding.
- Domains A and A′ may or may not be identical
- domains A and C′ may or may not be identical
- domains A′ and C may or may not be identical
- domains A′ and C′ may or may not be identical
- domains B and B′ may or may not be identical
- domains C and C′ may or may not be identical.
- additional immunomers can bind through intermolecular hydrogen bonding thereby creating a chain, or multimers, of immunomers according to the invention.
- n can be any number of continuous self complementary immunomer compounds.
- complementary means having the ability to hybridize to a nucleic acid. Such hybridization is ordinarily the result of hydrogen bonding between complementary strands, preferably to form Watson-Crick or Hoogsteen base pairs, although other modes of hydrogen bonding, as well as base stacking can also lead to hybridization.
- secondary structure refers to intermolecular hydrogen bonding. Intermolecular hydrogen bonding results in the formation of a duplexed nucleic acid molecule.
- Non-limiting representative nucleic acid molecules are presented in Table 8. TABLE 8 173 5′-TCG 1 AACG 1 TTCG 1 -X-G 1 CTTG 1 CAAG 1 CT-5′ 174 5′-TCG 1 AACG 1 TTCG-X-GCTTG 1 CAAG 1 CT-5′ 175 5′-TCTCACCTTCT-X-TCTTCCACTCT-5′ 176 5′-TCG 2 AACG 2 TTCG 2 -X-G 2 CTTG 2 CAAG 2 CT-5′ 177 5′-TCG 2 AACG 2 TTCG-X-GCTTG 2 CAAG 2 CT-5′ 178 5′-TCG 1 TCG 1 AACG 1 TTCG 1 AGATGAT-3′ 179 5′-TCG 2 TCG 2 AACG 2 TTCG 2 AGATGAT-3′ 180 5′-TCG 3 TCG 3 AACG 3 TTCG 3 AGATGAT-3′ 181 5′-TC 1 GTC 1 GAAC 1 GTTC 1 GAGATGAT-3′ 182 5
- a particularly preferred immunomer compound for use in the methods of the invention has the following structure.
- compositions according to all aspects of the invention are useful in therapeutic approaches to treating diseases wherein the treatment involves immune system modulation and immune-based therapies.
- Particularly preferred disease targets include cancer, infectious diseases and allergies.
- the therapeutic method is for the treatment of cancer.
- Cancers or tumors include but are not limited to biliary tract cancer; brain cancer; breast cancer; cervical cancer; choriocarcinoma; colon cancer; endometrial cancer; esophageal cancer; gastric cancer; intraepithelial neoplasms; lymphomas; liver cancer; lung cancer (e.g. small cell and non-small cell); melanoma; neuroblastomas; oral cancer; ovarian cancer; pancreatic cancer; prostate cancer; rectal cancer; sarcomas; skin cancer; testicular cancer; thyroid cancer; and renal cancer, as well as other carcinomas and sarcomas.
- the therapeutic method is for the treatment of an infection.
- viruses that have been found to infect humans include but are not limited to: Retroviridae (e.g. human immunodeficiency viruses, such as HIV-1 (also referred to as HTLV-III, LAV or HTLV-III/LAV, or HIV-III), and other isolates, such as HIV-LP; Picornaviridae (e.g. polio viruses, hepatitis A virus; enteroviruses, human Coxsackie viruses, rhinoviruses, echoviruses); Calciviridae (e.g. strains that cause gastroenteritis); Togaviridae (e.g.
- Flaviridae e.g. dengue viruses, encephalitis viruses, yellow fever viruses
- Coronoviridae e.g. coronaviruses
- Rhabdoviradae e.g. vesicular stomatitis viruses, rabies viruses
- Coronaviridae e.g. coronaviruses
- Rhabdoviridae e.g. vesicular stomatitis viruses, rabies viruses
- Filoviridae e.g. ebola viruses
- Paramyxoviridae e.g.
- Orthomyxoviridae e.g influenza viruses
- Bungaviridae e.g. Hantaan viruses, bunga viruses, phleboviruses and Nairo viruses
- Arena viridae hemorrhagic fever viruses
- Reoviridae e.g.
- reoviruses reoviruses, orbiviurses and rotaviruses
- Birnaviridae Hepadnaviridae (Hepatitis B virus); Parvovirida (parvoviruses); Papovaviridae (papilloma viruses, polyoma viruses); Adenoviridae (most adenoviruses); Herpesviridae (herpes simplex virus (HSV) 1 and 2, varicella zoster virus, cytomegalovirus (CMV), herpes virus; Poxviridae (variola viruses, vaccinia viruses, pox viruses); and Iridoviridae (e.g. African swine fever virus); and unclassified viruses (e.g.
- therapeutic methods of the invention are directed to the treatment of an allergy.
- An “allergen” refers to a substance (antigen) that can induce an allergic or asthmatic response in a susceptible subject.
- the list of allergens is enormous and can include pollens, insect venoms, animal dander dust, fungal spores and drugs (e.g. penicillin).
- Examples of natural, animal and plant allergens include but are not limited to proteins specific to the following genuses: Canine ( Canis familiaris ); Dermatophagoides (e.g. Dermatophagoides farinae ); Felis ( Felis domesticus ); Ambrosia ( Ambrosia artemiisfolia ); Lolium (e.g.
- Lolium perenne or Lolium multiflorum Cryptomeria ( Cryptomeria japonica ); Altemaria ( Alternaria alternata ); Alder; Alnus ( Alnus gultinoasa ); Betula ( Betula verrucosa ); Quercus ( Quercus alba ); Olea ( Olea europa ); Artemisia ( Artemisia vulgaris ); Plantago (e.g. Plantago lanceolata ); Parietaria (e.g. Parietaria officinalis or Parietaria judaica ); Blattella (e.g. Blattella germanica ); Apis (e.g. Apis multiflorum ); Cupressus (e.g.
- Juniperus e.g. Juniperus sabinoides, Juniperus virginiana, Juniperus communis and Juniperus ashei ); Thuya (e.g. Thuya orientalis ); Chamaecyparis (e.g. Chamaecyparis obtusa ); Periplaneta (e.g. Periplaneta americana ); Agropyron (e.g. Agropyron repens ); Secale (e.g. Secale cereale ); Triticum (e.g. Triticum aestivum ); Dactylis (e.g. Juniperus sabinoides, Juniperus virginiana, Juniperus communis and Juniperus ashei ); Thuya (e.g. Thuya orientalis ); Chamaecyparis (e.g. Chamaecyparis obtusa ); Periplaneta (e.g. Periplaneta americana
- Sorghum e.g. Sorghum halepensis
- Bromus e.g. Bromus inermis
- Specific allergens may be purchased commercially (e.g., INDOOR Biotechnologies Inc., Charlottesville, Va. 22903).
- the invention provides a method for treating cancer in a cancer patient comprising administering to the patient a chemotherapeutic agent in combination with an immunostimulatory oligonucleotide and/or immunomer conjugate, which comprises an immunostimulatory oligonucleotide and/or immunomer compound, as described above, and an antigen conjugated to the immunostimulatory oligonucleotide and/or immunomer compound at a position other than the accessible 5′ end.
- the non-nucleotidic linker comprises an antigen associated with cancer, which is conjugated to the oligonucleotide.
- the antigen is conjugated to the oligonucleotide at a position other than its 3′ end. In some embodiments, the antigen produces a vaccine effect.
- the term “associated with” means that the antigen is present when the cancer, is present, but either is not present, or is present in reduced amounts, when the cancer is absent.
- the immunostimulatory oligonucleotides and/or immunomer compound is covalently linked to the antigen, or it is otherwise operatively associated with the antigen.
- the term “operatively associated with” refers to any association that maintains the activity of both immunostimulatory oligonucleotide and/or immunomer compound and antigen. Nonlimiting examples of such operative associations include being part of the same liposome or other such delivery vehicle or reagent.
- a nucleic acid molecule encoding the antigen can be cloned into an expression vector and administered in combination with the immunostimulatory oligonucleotide and/or immunomer compound.
- vector refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked.
- Preferred vectors are those capable of autonomous replication and expression of nucleic acids to which they are linked (e.g., an episome).
- Vectors capable of directing the expression of genes to which they are operatively linked are referred to herein as “expression vectors.”
- expression vectors of utility in recombinant DNA techniques are often in the form of “plasmids” which refer generally to circular double stranded DNA loops which, in their vector form, are not bound to the chromosome.
- plasmid and vector are used interchangeably as the plasmid is the most commonly used form of vector.
- the invention is intended to include such other forms of expression vectors which serve equivalent functions and which become known in the art subsequently hereto.
- such covalent linkage preferably is at any position on the immunostimulatory oligonucleotide and/or immunomer compound other than an accessible 5′ end of an immunostimulatory oligonucleotide.
- the antigen may be attached at an internucleoside linkage or may be attached to the non-nucleotidic linker. Alternatively, the antigen may itself be the non-nucleotidic linker.
- the invention provides pharmaceutical formulations comprising an immunostimulatory oligonucleotide and/or immunostimulatory oligonucleotide conjugate and/or immunomer compound or immunomer conjugate according to the invention, a chemotherapeutic agent and a physiologically acceptable carrier.
- physiologically acceptable refers to a material that does not interfere with the effectiveness of the immunomer compound and is compatible with a biological system such as a cell, cell culture, tissue, or organism.
- the biological system is a living organism, such as a vertebrate.
- Preferred chemotherapeutic agents include, without limitation Gemcitabine methotrexate, vincristine, adriamycin, cisplatin, non-sugar containing chloroethylnitrosoureas, 5-fluorouracil, mitomycin C, bleomycin, doxorubicin, dacarbazine, taxol, fragyline, Meglamine GLA, valrubicin, carmustaine and poliferposan, MMI270, BAY 12-9566, RAS famesyl transferase inhibitor, famesyl transferase inhibitor, MMP, MTA/LY231514, LY264618/Lometexol, Glamolec, CI-994, TNP-470, Hycamtin/Topotecan, PKC412, Valspodar/PSC833, Novantrone/Mitroxantrone, Metaret/Suramin, Batimastat, E7070, BCH-4556, CS-682, 9
- the formulations include a cancer vaccine selected from the group consisting of EFG, Anti-idiotypic cancer vaccines, Gp75 antigen, GMK melanoma vaccine, MGV ganglioside conjugate vaccine, Her2/new, Ovarex, M-Vax, O-Vax, L-Vax, STn-KHL theratope, BLP25 (MUC-1), liposomal idiotypic vaccine, Melacine, peptide antigen vaccines, toxin/antigen vaccines, MVA-vased vaccine, PACIS, BCG vaccine, TA-HPV, TA-CIN, DISC-virus and ImmunCyst/TheraCys.
- a cancer vaccine selected from the group consisting of EFG, Anti-idiotypic cancer vaccines, Gp75 antigen, GMK melanoma vaccine, MGV ganglioside conjugate vaccine, Her2/new, Ovarex, M-Vax, O-Vax, L-Vax, STn-
- the invention provides a method for treating cancer in a cancer patient comprising administering to the patient a monoclonal antibody in combination with an immunostimulatory oligonucleotide and/or immunomer compound, as described herein.
- Passive immunotherapy in the form of antibodies, and particularly monoclonal antibodies has been the subject of considerable research and development as anti-cancer agents.
- the term “monoclonal antibody” as used herein refers to an antibody molecule of single molecular composition.
- a monoclonal antibody composition displays a single binding specificity and affinity for a particular epitope.
- the term “human monoclonal antibody” refers to antibodies displaying a single binding specificity which have variable and constant regions derived from human germline immunoglobulin sequences.
- anti-cancer agents include, but are not limited to, Panorex (Glaxo-Welcome), Rituxan (IDEC/Genentech/Hoffman la Roche), Mylotarg (Wyeth), Campath (Millennium), Zevalin (IDEC and Schering AG), Bexxar (Corixa/GSK), Erbitux (Imclone/BMS), Avastin (Genentech) and Herceptin (Genentech/Hoffman la Roche).
- Antibodies may also be employed in active immunotherapy utilising anti-idiotype antibodies which appear to mimic (in an immunological sense) cancer antigens.
- Monoclonal antibodies can be generated by methods known to those skilled in the art of recombinant DNA technology.
- carrier encompasses any excipient, diluent, filler, salt, buffer, stabilizer, solubilizer, lipid, or other material well known in the art for use in pharmaceutical formulations. It will be understood that the characteristics of the carrier, excipient, or diluent will depend on the route of administration for a particular application. The preparation of pharmaceutically acceptable formulations containing these materials is described in, e.g., Remington's Pharmaceutical Sciences, 18th Edition, ed. A. Gennaro, Mack Publishing Co., Easton, Pa., 1990.
- TLRs Toll-like receptors
- PAMPs pathogen-associated molecular patterns
- TLRs Upon recognizing conserved pathogen-associated molecular products, TLRs activate host defense responses through their intracellular signalling domain, the Toll/interleukin-1 receptor (TIR) domain, and the downstream adaptor protein MyD88.
- TLR Toll-like receptor
- cytokines for example, interleukin-1 ⁇ ; IL-6 and tumour necrosis factor, TNF
- TLR ligands include, but are not limited to, lipoproteins; peptidoglycan, zymosan (TLR2), double-stranded RNA, polyI:polyC (TLR3), lipopolysaccharide, heat shock proteins, taxol (TLR4), flagellin (TLR5), and imidazoquinolines- R848, resiquimod, imiquimod; ssRNA (TLR7/8).
- the invention provides a method for sensitizing cancer cells to ionizing radiation.
- the method according to this aspect of the invention comprises administering to a mammal an immunostimulatory oligonucleotide or an immunomer compound according to the invention and treating the animal with ionizing radiation.
- ⁇ -Irradiation is administered at 1.56 Gy/min.
- radiation therapy is administered from about 0.1 to about 10.0 Gy, preferably from about 0.25 to about 8.0 Gy, more preferably from about 0.5 to about 5.0 Gy, or as 3.0 Gy of radiation either twice for one week, four times for one week, or three times on Days 2, 4, and 9.
- pre-treatment with an immunostimulatory oligonucleotide or an immunomer compound is from about 2 to about 6 h prior to ⁇ -irradiation.
- the invention provides a method for synergistically stimulating an immune response in a patient comprising administering to a patient a therapeutically effective synergistic amount of an immunomer compound in combination with a therapeutically effective synergistic amount of IL-2, and an antigen, wherein administration of said combination synergistically stimulates the production of cytokines in a patient.
- cytokines stimulated in accordance with the invention include but are not limited to one or more of, IL-12, interferon- ⁇ , IFN- ⁇ and IFN- ⁇ .
- the method is for the treatment of cancer and the antigen is one specific to or associated with a cancer. In some embodiments, the method is for the treatment of an infection and the antigen is an antigen associated with the infection. In certain embodiments, the method is for the treatment of an allergy and the antigen is associated with the allergy.
- the term “associated with” means that the antigen is present when the cancer, allergen or infectious disease is present, but either is not present, or is present in reduced amounts, when the cancer, allergen or infectious disease is absent.
- the term “antigen” means a substance that is recognized and bound specifically by an antibody or by a T cell antigen receptor.
- Antigens can include peptides, proteins, glycoproteins, polysaccharides, gangliosides and lipids; portions thereof and combinations thereof. The antigens can be those found in nature or can be synthetic. Haptens are included within the scope of “antigen.”
- a hapten is a low molecular weight compound that is not immunogenic by itself but is rendered immunogenic when conjugated with an immunogenic molecule containing antigenic determinants.
- antigens useful in methods and compositions of the invention are tumor-associated and/or tumor-specific antigens.
- Non-limiting examples include: Prostate Specific Antigen (PSA) and Prostatic Acid Phosphatase (PAP), which are markers normally present in the blood in small amounts that can be elevated in the presence of prostate cancer; Cancer Antigen 125 (CA-125), which is at elevated levels in patients with ovarian cancer and is sometimes elevated in the presence of other cancers; CA 15-3 and CA 27-29, which are useful in following the course of breast cancer and its response to treatment; CA 19-9, which is commonly used as a check for the spread of pancreatic cancer and is also elevated in patients with colorectal, stomach and bile duct cancer; Carcinoembryonic Antigen (CEA), which is normally present in small amounts but can be elevated in the blood of patients with a wide variety of cancers; Alpha-Fetoprotein, which is a marker for hepatocellular and germ cell (nonseminoma) carcinoma; and Gala
- tumor-associated and tumor-specific antigens are available commercially. Also contemplated by the invention are those antigens that can be made by recombinant nucleic acid technologies and/or synthetic antigens, e.g., peptides produced by methods known in the art.
- the invention provides a method for treating cancer in a cancer patient comprising administering to the patient a therapeutically effective synergistic amount of IL-2 in combination with an immunomer conjugate, which comprises an immunomer compound, as described above, and an antigen.
- an immunomer conjugate which comprises an immunomer compound, as described above, and an antigen.
- the antigen is conjugated to the immunomer compound at a position other than the accessible 5′ end.
- the non-nucleotidic linker of the immunomer compound comprises an antigen associated with cancer.
- the antigen is conjugated to the immunomer compound at a position other than its 5′ end.
- the antigen produces a vaccine effect.
- the term “associated with” means that the antigen is present when the cancer is present, but either is not present, or is present in reduced amounts, when the cancer is absent.
- the immunomer compound is covalently linked to the antigen, or it is otherwise operatively associated with the antigen.
- the term “operatively associated with” refers to any association that maintains the activity of the immunomer compound and antigen. Nonlimiting examples of such operative associations include being part of the same liposome or other such delivery vehicle or reagent.
- such covalent linkage preferably is at any position on the immunomer compound other than at an accessible 5′ end of the immunomer compound.
- the antigen may be attached at an internucleoside linkage or may be attached to the non-nucleotidic linker. Alternatively, the antigen may itself be the non-nucleotidic linker.
- At least one immunostimulatory oligonucleotide that is not an immunomer compound is used in combination with a therapeutically effective amount of IL-2 to selectively and synergistically stimulate the production of cytokines in a patient.
- Preferred cytokines synergistically stimulated in accordance with the invention are selected from the group consisting of, IL-12 and IFN- ⁇ , IFN- ⁇ , IFN- ⁇ or combinations thereof.
- preferred immunostimulatory oligonucleotides that are not immunomer compounds include those containing at least one immunostimulatory CpG dinucleotide wherein C is not cytosine or deoxycytosine and/or G is not guanosine or 2-deoxyguanosine.
- Other preferred immunostimulatory oligonucleotides of the invention that are not immunomer compounds are those that include alternative immunostimulatory moieties that are not CpG.
- immunostimulatory moieties include but are not limited to nucleosides comprising non-naturally occurring bases and/or sugar and secondary structures of the oligonucleotide itself such as hairpin structures that stabilize the oligonucleotide, as described in the following U.S. patents and pending U.S. patent applications and are incorporated herein by reference: U.S. Pat. Nos. 6,426,334 and 6,476,000; and U.S. patent application Ser. Nos. 09/770,602, 09/845,623, 09/965,116, 60/440,587, 10/361,111, 60/471,247, 60/477,608.
- each of the immunomer compound or immunostimulatory oligonucleotide and IL-2 is admixed with a pharmaceutically acceptable carrier prior to administration to the patient.
- the immunomer compound or immunostimulatory oligonucleotide are mixed together with a pharmaceutically acceptable carrier prior to administration, or combined as part of a pharmaceutical composition as described in the fourth aspect of the invention.
- carrier encompasses any excipient, diluent, filler, salt, buffer, stabilizer, solubilizer, lipid, or other material well known in the art for use in pharmaceutical formulations.
- the invention provides therapeutic compositions comprising a pharmaceutically acceptable carrier, a therapeutically effective synergistic amount of an immunomer compound or immunostimulotory oligonucleotide, a therapeutically effective synergistic amount of IL-2 and optionally, an antigen, wherein administration of said therapeutic composition synergistically stimulates the production of cytokines in a patient.
- cytokines that are synergistically stimulated in accordance with the invention are selected from the group consisting of IL-12 and interferon- ⁇ , IFN- ⁇ , IFN- ⁇ or combinations thereof.
- treating or “treatment” of disease includes: prevention of disease; dimunition or eradication of signs or symptoms of disease after onset; and prevention of relapse of disease.
- administration of an immunomer compound or immmumostimulatory oligonucleotide in combination with IL-2 can be by any suitable route including, without limitation, parenteral, oral, sublingual, transdermal, topical, intranasal, aerosol, intraocular, intratracheal, intrarectal, vaginal, by gene gun, dermal patch or in eye drop or mouthwash form.
- Administration of immunomer compounds, immunostimulatory oligonucleotides, IL-2 or therapeutic compositions thereof can be carried out using known procedures using therapeutically effective synergistic amounts and for periods of time effective to treat disease.
- combination with means in the course of treating the same disease in the same patient, and includes administering the immunomer compound and/or immunostimulatory oligonucleotide and/or IL-2 in any order, including simultaneous administration, as well as temporally spaced order of up to several days apart.
- Such combination treatment may also include more than a single administration of the immunomer compound and/or immunostimulatory oligonucleotide, and/or IL-2, independently.
- the administration of the immunomer compound and IL-2 may be by the same or different routes.
- the immunomer compound When administered systemically, the immunomer compound is preferably administered at a sufficient dosage to attain a blood level of immunomer compound from about 0.0001 micromolar to about 10 micromolar. For localized administration, much lower concentrations than this may be effective, and much higher concentrations may be tolerated.
- a total dosage of immunostimulatory oligonucleotide and/or immunomer compound ranges from about 0.0001 mg per patient per day to about 200 mg per kg body weight per day. It may be desirable to administer simultaneously, or sequentially, a therapeutically effective synergistic amount of each of the immunomer compound or IL-2 to an individual as a single treatment episode.
- IL-2 is administered in an amount of about 750 to about 75,000 units.
- the invention provides a kit comprising a cytokine and/or chemotherapeutic agent, and immunostimulatory oligonucleotides and/or immunomer compounds, the latter comprising at least two oligonucleotides linked together, such that the immunomer compound has more than one accessible 5′ end, wherein at least one of the oligonucleotides is an immunostimulatory oligonucleotide.
- the kit comprises an immunostimulatory oligonucleotide and/or immunostimulatory oligonucleotide conjugate and/or immunomer compound or immunomer conjugate according to the invention, a cytokine and/or chemotherapeutic agent and a physiologically acceptable carrier.
- the kit will generally also include a set of instructions for use.
- Oligonucleotides were synthesized on a 1 ⁇ mol scale using an automated DNA synthesizer (Expedite 8909; PerSeptive Biosystems, Framingham, Mass.), following the linear synthesis or parallel synthesis procedures outlined in FIGS. 5 and 6 .
- Deoxyribonucleoside phosphoramidites were obtained from Applied Biosystems (Foster City, Calif.). 1′,2′-dideoxyribose phosphoramidite, propyl-1-phosphoramidite, 2-deoxyuridine phosphoramidite, 1,3-bis-[5-(4,4′-dimethoxytrityl)pentylamidyl]-2-propanol phosphoramidite and methyl phosponamidite were obtained from Glen Research (Sterling, Va.).
- ⁇ -L-2′-deoxyribonucleoside phosphoramidite, ⁇ -2′-deoxyribonucleoside phosphoramidite, mono-DMT-glycerol phosphoramidite and di-DMT-glycerol phosphoramidite were obtained from ChemGenes (Ashland, Mass.). (4-Aminobutyl)-1,3-propanediol phosphoramidite was obtained from Clontech (Palo Alto, Calif.). Arabinocytidine phosphoramidite, arabinoguanosine, arabinothymidine and arabinouridine were obtained from Reliable Pharmaceutical (St. Louis, Mo.).
- Arabinoguanosine phosphoramidite, arabinothymidine phosphoramidite and arabinouridine phosphoramidite were synthesized at Hybridon, Inc. (Cambridge, Mass.) (Noronha et al. (2000) Biochem., 39:7050-7062).
- nucleoside phosphoramidites were characterized by 31 P and 1 H NMR spectra. Modified nucleosides were incorporated at specific sites using normal coupling cycles. After synthesis, oligonucleotides were deprotected using concentrated ammonium hydroxide and purified by reverse phase HPLC, followed by dialysis. Purified oligonucleotides as sodium salt form were lyophilized prior to use. Purity was tested by CGE and MALDI-TOF MS.
- mice were administered to mice and the degree of splenomegaly was measured as an indicator of the level of immunostimulatory activity.
- a single dose of 5 mg/kg was administered to BALB/c mice (female, 4-6 weeks old, Harlan Sprague Dawley Inc, Baltic, Conn.) intraperitoneally. The mice were sacrificed 72 hours after oligonucleotide administration, and spleens were harvested and weighed. The results are shown in FIG. 8B . These results demonstrate that Immunomer 6, having two accessible 5′ ends, has a far greater immunostimulatory effect than do Oligonucleotide 4 or Immunomer 5.
- IL-12 and IL-6 in vertebrate cells preferably BALB/c mouse spleen cells or human PBMC
- the required reagents including cytokine antibodies and cytokine standards were purchased form PharMingen, San Diego, Calif.
- ELISA plates (Costar) were incubated with appropriate antibodies at 5 ⁇ g/mL in PBSN buffer (PBS/0.05% sodium azide, pH 9.6) overnight at 4° C. and then blocked with PBS/1% BSA at 37° C. for 30 minutes.
- Cell culture supernatants and cytokine standards were appropriately diluted with PBS/10% FBS, added to the plates in triplicate, and incubated at 25° C. for 2 hours.
- PBMCs Human peripheral blood mononuclear cells
- the resulting cell pellet was then resuspended in RPMI 1640 medium containing L-glutamine (MediaTech, Inc., Herndon, Va.) and supplemented with 10% heat inactivated FCS and penicillin-streptomycin (100 U/ml).
- Cells were cultured in 24 well plates for different time periods at 1 ⁇ 10 6 cells/ml/well in the presence or absence of oligonucleotides. At the end of the. incubation period, supernatants were harvested and stored frozen at ⁇ 70° C.
- cytokines including IL-6 (BD Pharmingen, San Diego, Calif.), IL-10 (BD Pharmingen), IL-12 (BioSource International, Camarillo, Calif.), IFN- ⁇ (BioSource International) and ⁇ (BD Pharmingen) and TNF- ⁇ (BD Pharmingen) by sandwich ELISA.
- IL-6 BD Pharmingen, San Diego, Calif.
- IL-10 BD Pharmingen
- IL-12 BioSource International, Camarillo, Calif.
- IFN- ⁇ BioSource International
- ⁇ BD Pharmingen
- TNF- ⁇ BD Pharmingen
- the levels of IL-12 and IL-6 in the cell culture supernatants were calculated from the standard curve constructed under the same experimental conditions for IL-12 and IL-6, respectively.
- the levels of IL-10, IFN-gamma and TNF- ⁇ in the cell culture supernatants were calculated from the standard curve constructed under the same experimental conditions for IL-10, IFN-gamma and TNF- ⁇ , respectively.
- D1and D2 are donors 1 and 2. TABLE 9A Immunomer Structure and Immunostimulatory Activity in BALB/c Mouse Spleen Cell Cultures Oligo Oligo Length/ IL-12 (pg/mL) IL-6 (pg/mL) No.
- FIGS. 7 A-C demonstrate that Immunomer 2, with two accessible 5′ ends elevates IL-12 and IL-6, but not IL-10 at lower concentrations than Oligonucleotide 1 or Immunomer 3, with one or zero accessible 5′ ends, respectively.
- immunostimulatory oligonucleotides that contain natural phosphodiester backbones are less immunostimulatory than are the same length oligonucleotides with a phosphorothioate backbones.
- This lower degree of immunostimulatory activity could be due in part to the rapid degradation of phosphodiester oligonucleotides under experimental conditions.
- Degradation of oligonucleotides is primarily the result of 3′-exonucleases, which digest the oligonucleotides from the 3′ end.
- the immunomer compounds of this example do not contain a free 3′ end.
- immunomer compounds with phosphodiester backbones should have a longer half life under experimental conditions than the corresponding monomeric oligonucleotides, and should therefore exhibit improved immunostimulatory activity.
- the results presented in Table 14 demonstrate this effect, with Immunomers 84 and 85 exhibiting immunostimulatory activity as determined by cytokine induction in BALB/c mouse spleen cell cultures. TABLE 14 Immunomer Structure and Immunostimulatory Activity Oligo Length/or IL-12 (pg/mL) IL-6 (pg/mL) No.
- PC3 cells were cultured in 90% Ham's, F12K Medium with 10% Fetal Bovine Serum (FBS), in presence of 100 U/ml Penicillin and 100 ⁇ g/ml Streptomycin to establish the Human Prostate cancer model (PC3).
- PC3 cells were harvested from the monolayer cultures, washed twice with Ham's, F12K Medium (10% FBS), resuspended in FBS-free Ham's, F12K Medium: Matrigel basement membrane matrix (Becton Dickinson Labware, Bedford, Ma.) (5:1; V/V), and injected subcutaneously (5 ⁇ 10 6 cells, total volume 0.2 ml) into the left inguinal area of each of the mice. The animals were monitored by general clinical observation, body weight, and tumor growth. Tumor growth was monitored by the measurement, with calipers, of two perpendicular diameters of the implant.
- Tumor mass (weight in grams) was calculated by the formula, 1/2a ⁇ b 2 , where ‘a’ is the long diameter (cm) and ‘b’ is the short diameter (cm).
- the control group received sterile physiological saline (0.9% NaCl) only.
- Gemcitabine HCl (Eli Lilly and Company, Indianapolis, Ind.) was given twice by intraperitoneal injection at 160 mg/kg on Day 0 and 3.
- the detailed treatment schedule is shown as follows.
- G2 Gemcitabine (160 mg/kg/day, IP, Day 0 and 3)
- G3 26 (1.0 mg/kg/day, SC, 3 doses /week, for 6 weeks)
- G4 26 (0.5 mg/kg/day, SC, 3 doses /week, for 6 weeks)
- G5 194 (1.0 mg/kg/day, SC, 3 doses /week, for 6 weeks)
- G6 194 (0.5 mg/kg/day, SC, 3 doses /week, for 6 weeks)
- G7 26 (0.5 mg/kg/day, SC, 3 doses /week, for 6 weeks)+Gemcitabine (160 mg/kg/day, Day 0 and 3)
- G8 194 (0.5 mg/kg/day, SC, 3 doses /week, for 6 weeks)+Gemcitabine (160 mg/kg/day, Day 0 and 3)
- 26 and 194 significantly inhibited tumor growth in nude mice bearing human prostate cancer PC3 xenografts with no significant side effects.
- each compound significantly increased the therapeutic effect of Gemcitabine without changes in side effect profiles.
- Example 8 The experiment of Example 8 was repeated using taxotere instead of Gemcitabine. Taxotere was administered on days 0 and 7. 165 was administered 5 days per week. 26 and 194 were administered on days 0, 2, 4, 7, 9 and 11. The results are shown in Table 17 below. These results clearly demonstrate synergy between the immunomer compounds and taxotere.
- Splenocytes were isolated from BALB/c mice as described above and were plated in 24-well dishes at a density of 5 ⁇ 10 6 cells/mL.
- CpG oligonucleotides were dissolved in TE buffer (10 mM Tris-HCl, pH 7.5, 1 mM EDTA) was added to a final concentration of 0.03, 0.1, 0.3, 1.0, 3.0, or 10.0 ⁇ g/mL to mouse spleen cell cultures.
- recombinant human IL-2 (Sigma) was added at a concentration of 10 U/ml at the start of the experiment.
- the cells were then incubated at 37° C. for 4, 8, 24 and 48 h in the presence of test oligonucleotides and the supernatants were collected for ELISA assays. Untreated cells (only IL-2 addition) were taken as controls.
- ELISA sandwich ELISA
- the required regents, including cytokine antibodies and standards were purchases from PharMingen.
- ELISA plates (Costar) were incubated with appropriate capture antibodies in PBSN (PBS/0.05% sodium azide, pH 9.6) buffer overnight at 4° C. and then blocked with PBS/1% BSA at 37° C. for 30 min.
- Cell culture supernatants and cytokine standards were appropriately diluted with PBS/1% BSA, added to the plates in triplicate, and incubated at 25° C. for 2 h. Plates were washed and incubated with the appropriate biotinylated antibody and incubated at 25° C. for 1.5 h.
- the plates were washed extensively with PBS/0.05% Tween 20 and then further incubated at 25° C. for 1.5 h. after addition of streptavidine-conjugated peroxidase (Sigma). Plates were developed with Sure BlueTM (Kirkegaard and Perry) chromogenic reagent and the reaction was terminated by adding Stop Solution (Kirkegaard and Perry). The color change was measured on a Ceres 900 HDI Spectrophotometer (Bio-Tek Instruments) at 450 nm. The levels of IL-12, IL6 and IFN- ⁇ in the cell culture supernatants were calculated from the standard curve constructed under the same experimental conditions for IL-12, IL-6 and IFN- ⁇ respectively.
- results are shown in FIGS. 15-19 . Not shown is an assay indicating that the use of SEQ ID NOs 86-90 alone stimulate IFN- ⁇ production only negligibly. The results demonstrate synergy between SEQ ID NOs 86-90 and IL-2 in generating secretion of IL-6, IL-12 and IFN- ⁇ .
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Zoology (AREA)
- General Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Epidemiology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Plant Pathology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Mycology (AREA)
- Gastroenterology & Hepatology (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Pulmonology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Radiation-Therapy Devices (AREA)
Abstract
Description
- This application claims the benefit of U.S. Provisional Application No. 60/487,529, filed Jul. 15, 2003, and U.S. Provisional Application No. 60/503,242, Sep. 15, 2003, which are incorporated by reference in their entirety.
- 1. Field of the Invention
- The invention relates to the use of immunomer compounds and immunostimulatory oligonucleotides as therapeutic agents.
- 2. Summary of the Related Art
- Recently, several researchers have demonstrated the validity of the use of oligonucleotides as immunostimulatory agents in immunotherapy applications. The observation that phosphodiester and phosphorothioate oligonucleotides can induce immune stimulation has created interest in developing these compounds as a therapeutic tool. These efforts have focused on phosphorothioate oligonucleotides containing the natural dinucleotide CpG. Kuramoto et al., Jpn. J. Cancer Res. 83:1128-1131 (1992) teaches that phosphodiester oligonucleotides containing a palindrome that includes a CpG dinucleotide can induce interferon-alpha and gamma synthesis and enhance natural killer activity. Krieg et al., Nature 371:546-549 (1995) discloses that phosphorothioate CpG-containing oligonucleotides are immunostimulatory. Liang et al., J. Clin. Invest. 98:1119-1129 (1996) discloses that such oligonucleotides activate human B cells. Moldoveanu et al., Vaccine 16:1216-124 (1998) teaches that CpG-containing phosphorothioate oligonucleotides enhance immune response against influenza virus. McCluskie and Davis, J. Immunol. 161:4463-4466 (1998) teaches that CpG-containing oligonucleotides act as potent adjuvants, enhancing immune response against hepatitis B surface antigen.
- Other modifications of CpG-containing phosphorothioate oligonucleotides can also affect their ability to act as modulators of immune response. See, e.g., Zhao et al., Biochem. Pharmacol. (1996) 51:173-182; Zhao et al., Biochem Pharmacol. (1996) 52:1537-1544; Zhao et al., Antisense Nucleic Acid Drug Dev. (1997) 7:495-502; Zhao et al., Bioorg. Med. Chem. Lett. (1999) 9:3453-3458; Zhao et al., Bioorg. Med. Chem. Lett. (2000) 10:1051-1054; Yu et al., Bioorg. Med. Chem. Lett. (2000) 10:2585-2588; Yu et al., Bioorg. Med Chem. Lett. (2001) 11:2263-2267; and Kandimalla et al., Bioorg. Med Chem. (2001) 9:807-813. U.S. Pat. No. 6,426,334 shows the promise of these compounds as anti-cancer agents.
- Another means by which an immune response may be modulated is through the therapeutic use of cytokines. Cytokines are soluble molecules that cells of the immune system produce to control reactions between other cells. Thus, cytokines are regulators of humoral and cellular immunity. An understanding of how T cells mediate the immune response is critical in order to modulate the response. CD4+ T helper (Th) cells differentiate along either the Th1 or Th2 pathway. The Th1 pathway is important for the generation of cell-mediated immunity and is characterized by the production of, for example, γ-interferon and interleukin-2 (IL-2). The Th2 response is important for the generation of humoral immunity and is characterized by the production of, for example, IL-4 and IL-5. The Th1 response is known to be critical for immune system defense against infections, e.g., viral infections, and immune system surveillance of the body for the removal of neoplastic cells.
- Krieg, A., M. et al. (U.S. Pat. No. 6,429,199) and Krieg, A., M. et al. (U.S. Pat. No. 6,218,371) purport to teach the co-administration of immunostimulatory CpG oligonucleotides and cytokines, particularly GM-CSF. Decker et al. (Experimental Hematology 28:558-565 (2000)), demonstrate that the co-adminstration of IL-2 with CpG oligonucleotides increases TNF-α and IL-6 production in B-chronic lymphocytic (B-CLL) cells but not in normal B-cells.
- These reports make clear that there remains a need to be able to further optimize the therapeutic effectiveness of immunostimulatory oligonucleotides for the treatment of disease and enhance the anticancer activity of immunostimulatory oligonucleotides.
- The invention provides optimized methods, compositions and treatment regimens for enhancing the immune response caused by immunostimulatory compounds used for the treatment of disease such as, but not limited to, treatment of cancer, autoimmune disorders, asthma, respiratory allergies, food allergies and infectious diseases in a patient. The optimized methods according to the invention provide synergy between the therapeutic effects of immunostimulatory oligonucleotides in accordance with the invention, and the therapeutic effect of cytokine immunotherapy and/or chemotherapeutic agents. Modification of an immunostimulatory oligonucleotide to optimally present 5′ ends dramatically enhances its anti-cancer activity. Such an oligonucleotide is referred to herein as an “immunomer”, which may contain one or more immunostimulatory oligonucleotide.
- In a first aspect, therefore, the invention provides methods for treating cancer in a cancer patient comprising administering to the patient an immunostimulatory oligonucleotide and/or immunomer compound in combination with a chemotherapeutic agent, wherein the immunostimulatory oligonucleotide and/or immunomer compound and the chemotherapeutic agent create a synergistic therapeutic effect.
- In a further aspect, the invention provides a method for synergistically stimulating an immune response in a patient. The method comprises administering to a patient a combination of a therapeutically effective synergistic amount of at least one immunomer compound or immunostimulatory oligonucleotide in accordance with the invention and a therapeutically effective synergistic amount of IL-2 (and/or an agent that induces IL-2 production in situ, such as a DNA vaccine or expression vector expressing IL-2), wherein administration of said combination synergistically stimulates the production of cytokines in a patient. Preferred cytokines that are synergistically stimulated in accordance with the invention are selected from the group consisting of, IL-12 and interferon-γ (IFN-γ), IFN-α, IFN-β or combinations thereof.
- In accordance with the invention, an “immunomer” refers to any compound comprising at least two oligonucleotides linked directly at their 3′ ends, or directly via internucleoside linkages, or directly at a functionalized nucleobase or sugar, or that are indirectly linked together via a non-nucleotidic linker, wherein at least one of the oligonucleotides, in the context of the immunomer compound, is an immunostimulatory oligonucleotide having an accessible 5′ end. In the context of the invention, an immunostimulatory oligonucleotide is an oligonucleotide that comprises at least one of an immunostimulatory CpG dinucleotide, an immunostimulatory domain, or other immunostimulatory moiety. As used herein, the term “accessible 5′ end” means that the 5′ end of the oligonucleotide is sufficiently available such that the factors that recognize and bind to immunomer compounds or immunostimulatory oligonucleotides and stimulate the immune system have access to the 5′ end. Such immunostimulatory oligonucleotides may include secondary structures, provided that the 5′ end remains accessible.
- In some embodiments, the immunostimulatory oligonucleotide and/or immunomer compound used in the method according to the invention comprises an immunostimulatory dinucleotide selected from the group consisting of CpG, C*pG, CpG*, and C*pG*, wherein C is cytidine or 2′-deoxycytidine, C* is 2′-deoxythymidine.arabinocytidine, 2′-deoxy-2′-substituted arabinocytidine, 2′-O-substitutedarabinocytidine, 2′-deoxy-5-hydroxycytidine, 2′-deoxy-N4-alkyl-cytidine, 2′-deoxy-4-thiouridine, other non-natural pyrimidine nucleosides, or 1-(2′-deoxy-β-D-ribofuranosyl)-2-oxo-7-deaza-8-methyl-purine; G is guanosine or 2′-deoxyguanosine, G* is 2′ deoxy-7-deazaguanosine, 2′-deoxy-6-thioguanosine, arabinoguanosine, 2′-deoxy-2′substituted-arabinoguanosine, 2′-O-substituted-arabinoguanosine, or other non-natural purine nucleoside, and p is an internucleoside linkage selected from the group consisting of phosphodiester, phosphorothioate, and phosphorodithioate. In certain preferred embodiments, the immunostimulatory dinucleotide is not CpG.
- In some embodiments, the immunostimulatory oligonucleotide and/or immunomer compound used in the method according to the invention comprises an immunostimulatory domain of formula (III):
5′-Nn-N1-Y-Z-N1-Nn-3′ (III) - wherein:
- Y is cytidine, 2′-deoxythymidine, 2′-deoxycytidine, arabinocytidine, 2′-deoxy-2′-substitutedarabinocytidine, 2′-O-substitutedarabinocytidine, 2′-deoxy-5-hydroxycytidine, 2′-deoxy-N4-alkyl-cytidine, 2′-deoxy-4-thiouridine, other non-natural pyrimidine nucleosides, or 1-(2′-deoxy-β-D-ribofuranosyl)-2-oxo-7-deaza-8-methyl-purine;
- Z is guanosine or 2′-deoxyguanosine, is 2′ deoxy-7-deazaguanosine, 2′-deoxy-6-thioguanosine, arabinoguanosine, 2′-deoxy-2′substituted-arabinoguanosine, 2′-O-substituted-arabinoguanosine, 2′-deoxyinosine, or other non-natural purine nucleoside
- N1, at each occurrence, is preferably a naturally occurring or a synthetic nucleoside or an immunostimulatory moiety selected from the group consisting of abasic nucleosides, arabinonucleosides, 2′-deoxyuridine, α-deoxyribonucleosides, β-L-deoxyribonucleosides, and nucleosides linked by a phosphodiester or modified internucleoside linkage to the adjacent nucleoside on the 3′ side, the modified internucleotide linkage being selected from, without limitation, a linker having a length of from about 2 angstroms to about 200 angstroms, C2-C18 alkyl linker, poly(ethylene glycol) linker, 2-aminobutyl-1,3-propanediol linker, glyceryl linker, 2′-5′ internucleoside linkage, and phosphorothioate, phosphorodithioate, or methylphosphonate internucleoside linkage;
- Nn, at each occurrence, is independently a naturally occurring nucleoside or an immunostimulatory moiety, preferably selected from the group consisting of abasic nucleosides, arabinonucleosides, 2′-deoxyuridine, α-deoxyribonucleosides, 2′-O-substituted ribonucleosides, and nucleosides linked by a modified internucleoside linkage to the adjacent nucleoside on the 3′ side, the modified internucleotide linkage being selected from the group consisting of amino linker, C2-C18 alkyl linker, poly(ethylene glycol) linker, 2-aminobutyl-1,3-propanediol linker, glyceryl linker, 2′-5′ internucleoside linkage, and methylphosphonate internucleoside linkage;
- provided that at least one N1 or Nn is an immunostimulatory moiety;
- wherein n is a number from 0-30;
- wherein the 3′nucleoside is optionally linked directly or via a non-nucleotidic linker to another oligonucleotide, which may or may not be immunostimulatory.
- In a second aspect, the invention provides a method for treating cancer in a cancer patient comprising administering an immunostimulatory oligonucleotide and/or immunomer conjugate, which comprises an immunostimulatory oligonucleotide and/or immunomer compound, as described above, and a cancer antigen conjugated to the immunostimulatory oligonucleotide and/or immunomer compound at a position other than the accessible 5′ end, in combination with a chemotherapeutic agent.
- In a third aspect, the invention provides pharmaceutical formulations comprising an immunostimulatory oligonucleotide or immunostimulatory oligonucleotide conjugate and/or an immunomer compound or immunomer conjugate according to the invention, a chemotherapeutic agent and a physiologically acceptable carrier.
- In a fourth aspect, the invention provides a method for sensitizing cancer cells to ionizing radiation. The method according to this aspect of the invention comprises administering to a mammal an immunostimulatory oligonucleotide or an immunomer compound according to the invention and treating the animal with ionizing radiation.
- In a fifth aspect, the invention provides a method for synergistically stimulating an immune response in a patient comprising administering to a patient a therapeutically effective synergistic amount of at least one immunomer compound or immunostimulatory oligonucleotide in combination with a therapeutically effective synergistic amount of IL-2, (and optionally an antigen), wherein administration of said combination synergistically stimulates the production cytokines in a patient. Preferred cytokines that are synergistically stimulated in accordance with the invention are selected from the group consisting of IL-12 and interferon-γ, IFN-α, IFN-β or combinations thereof. In certain embodiments of this second aspect of the invention, the antigen is operationally associated with the immunomer compound at a position other than the accessible 5′ end.
- In a sixth aspect of the invention, at least one immunostimulatory oligonucleotide that is not an immunomer compound is used in combination with a therapeutically effective amount of IL-2 to selectively and synergistically stimulate the production cytokines in a patient. Preferred cytokines that are synergistically stimulated in accordance with the invention are selected from the group consisting of IL-12 and IFN-γ, IFN-α, IFN-β or combinations thereof. In accordance with the present invention, preferred immunostimulatory oligonucleotides that are not immunomer compounds include those containing at least one immunostimulatory CpG dinucleotide wherein C is not cytosine or deoxycytosine and/or G is not guanosine or 2-deoxyguanosine. Other preferred immunostimulatory oligonucleotides of the invention that are not immunomer compounds are those that include alternative immunostimulatory moieties that are not CpG. Examples of such alternative immunostimulatory moieties include but are not limited to nucleosides comprising non-naturally occurring bases and/or sugar and secondary structures of the oligonucleotide itself such as hairpin structures that stabilize the oligonucleotide.
- In a seventh aspect, the invention provides therapeutic compositions comprising a therapeutically effective synergistic amount of at least one immunomer compound, or immmunostimulatory oligonucleotide, a therapeutically effective synergistic amount of IL-2 (and/or an agent that induces IL-2 production in situ, such as a DNA vaccine or expression vector expressing IL-2) and optionally an antigen wherein administration of said combination synergistically stimulates the production of cytokines in a patient. Preferred cytokines that are synergistically stimulated in accordance with the invention are selected from the group consisting of IL-12 and IFN-γ, IFN-α, IFN-β or combinations thereof.
- The methods and compositions according to all aspects of the invention are useful in therapeutic approaches to human or veterinary diseases involving immune system modulation and immune-based therapies. Particularly preferred disease targets include cancer, infectious diseases, asthma and allergies.
-
FIG. 1 is a schematic representation of representative immunomer compounds of the invention. -
FIG. 2 depicts several representative immunomer compounds of the invention. -
FIG. 3 depicts a group of representative small molecule linkers suitable for linear synthesis of immunomers of the invention. -
FIG. 4 depicts a group of representative small molecule linkers suitable for parallel synthesis of immunomer compounds of the invention. -
FIG. 5 is a synthetic scheme for the linear synthesis of immunomer compounds of the invention. DMTr=4,4′-dimethoxytrityl; CE=cyanoethyl. -
FIG. 6 is a synthetic scheme for the parallel synthesis of immunomer compounds of the invention. DMTr=4,4′-dimethoxytrityl; CE=cyanoethyl. -
FIG. 7A is a graphic representation of the induction of IL-12 by Oligonucleotide (Oligo) 1 and Immunomers 2-3 in BALB/c mouse spleen cell cultures. These data suggest thatImmunomer 2, which has accessible 5′-ends, is a stronger inducer of IL-12 thanmonomeric Oligo 1, and thatImmunomer 3, which does not have accessible 5′-ends, has equal or weaker ability to produce immune stimulation compared withOligo 1. -
FIG. 7B is a graphic representation of the induction of IL-6 (top to bottom, respectively) byOligo 1 and Immunomers 2-3 in BALB/c mouse spleen cells cultures. These data suggest thatImmunomer 2, which has accessible 5′-ends, is a stronger inducer of IL-6 thanmonomeric Oligo 1, and thatImmunomer 3, which does not have accessible 5′-ends, has equal or weaker ability to induce immune stimulation compared withOligo 1. -
FIG. 7C is a graphic representation of the induction of IL-10 byOligo 1 and Immunomers 2-3 (top to bottom, respectively) in BALB/c mouse spleen cell cultures. -
FIG. 8A is a graphic representation of the induction of BALB/c mouse spleen cell proliferation in cell cultures by different concentrations ofImmunomers -
FIG. 8B is a graphic representation of BALB/c mouse spleen enlargement byOligo 4 and Immunomers 5-6, which have an immunogenic chemical modification in the 5′-flanking sequence of the CpG motif. Again, the immunomer compound, which has accessible 5′-ends (6), has a greater ability to increase spleen enlargement compared withImmunomer 5, which does not have accessible 5′-end and withmonomeric Oligo 4. -
FIG. 9A is a graphic representation of induction of IL-12 by different concentrations ofOligo 4 and Immunomers 7 and 8 in BALB/c mouse spleen cell cultures. -
FIG. 9B is a graphic representation of induction of IL-6 by different concentrations ofOligo 4 and Immunomers 7 and 8 in BALB/c mouse spleen cell cultures. -
FIG. 9C is a graphic representation of induction of IL-10 by different concentrations ofOligo 4 and Immunomers 7 and 8 in BALB/c mouse spleen cell cultures. -
FIG. 10A is a graphic representation of the induction of cell proliferation byImmunomers -
FIG. 10B is a graphic representation of the induction of cell proliferation by IL-12 by different concentrations ofImmunomers -
FIG. 10C is a graphic representation of the induction of cell proliferation by IL-6 by different concentrations ofImmunomers -
FIG. 11A is a graphic representation of the induction of cell proliferation byOligo -
FIG. 11B is a graphic representation of the induction of cell proliferation IL-12 by different concentrations ofOligo -
FIG. 11C is a graphic representation of the induction of cell proliferation IL-6 by different concentrations ofOligo -
FIG. 12 is a graphic representation of BALB/c mouse spleenenlargement using Oligo 4 andImmunomers -
FIG. 13 shows the effect of a method according to the invention on tumor growth in a nude mouse model for prostate cancer. -
FIG. 14 shows the effect of a method according to the invention on body weight of the mice used in the study. -
FIG. 15A is a graphic representation demonstrating the synergistic effect on IL-12 production after BALB/c spleenocytes were treated withOligo 1 and IL-2. -
FIG. 15B is a graphic representation demonstrating the synergistic effect on IL-12 production after BALB/c spleenocytes were treated withOligo 2 and IL-2. -
FIG. 15C is a graphic representation demonstrating the synergistic effect on IL-12 production after BALB/c spleenocytes were treated withOligo 3 and IL-2. -
FIG. 15D is a graphic representation demonstrating the synergistic effect on IL-12 production after BALB/c spleenocytes were treated withOligo 4 and IL-2. -
FIG. 16A is a graphic representation demonstrating the effect on IL-6 production after BALB/c spleenocytes were treated withOligo 1 and IL-2. -
FIG. 16B is a graphic representation demonstrating the effect on IL-6 production after BALB/c spleenocytes were treated withOligo 2 and IL-2. -
FIG. 16C is a graphic representation demonstrating the effect on IL-6 production after BALB/c spleenocytes were treated withOligo 3 and IL-2. -
FIG. 16D is a graphic representation demonstrating the effect on IL-6 production after BALB/c spleenocytes were treated withOligo 4 and IL-2. -
FIG. 17 is a graphic representation demonstrating the synergistic effect on IL-12 production after BALB/c spleenocytes were treated withOligo 5 and IL-2. -
FIG. 18A is a graphic representation demonstrating the effect on IFN-γ production after BALB/c spleenocytes were treated withOligo 1 and IL-2. -
FIG. 18B is a graphic representation demonstrating the effect on IFN-γ production after BALB/c spleenocytes were treated withOligo 2 and IL-2. -
FIG. 18C is a graphic representation demonstrating the effect on IFN-γ production after BALB/c spleenocytes were treated withOligo 3 and IL-2. -
FIG. 18D is a graphic representation demonstrating the effect on IFN-γ production after BALB/c spleenocytes were treated withOligo 4 and IL-2. -
FIG. 19 is a graphic representation demonstrating the effect on IFN-γ production after BALB/c spleenocytes were treated withOligo 5 and IL-2. - The invention relates to optimized methods and compositions for enhancing the immune response caused by immunostimulatory compounds used in immune-based therapies. The optimized methods according to the invention result in synergy between the therapeutic effect of immunostimulatory compounds such as immunostimulatory oligonucleotides and immunomer compounds and the therapeutic effect of cytokine immunotherapy and/or chemotherapeutic agents. The issued patents, patent applications, and references that are cited herein are hereby incorporated by reference to the same extent as if each was specifically and individually indicated to be incorporated by reference. In the event of inconsistencies between any teaching of any reference cited herein and the present specification, the latter shall prevail for purposes of the invention.
- The invention provides methods for enhancing the anti-cancer effect caused by immunostimulatory compounds used for immunotherapy applications for the treatment of cancer. In the methods according to the invention, immunostimulatory oligonucleotides and/or immunomer compounds provide a synergistic therapeutic effect when use in combination with chemotherapeutic agents. This result is surprising in view of the fact that immunostimulatory oligonucleotides and immunomer compounds cause cell division of immune system cells, whereas chemotherapeutic agents normally kill actively dividing cells.
- In a first aspect, the invention provides a method for treating cancer in a cancer patient comprising administering, in combination with chemotherapeutic agents, immunostimulatory oligonucleotides and/or immunomer compounds, the latter comprising at least two oligonucleotides linked together, such that the immunomer compound has more than one accessible 5′ end, wherein at least one of the oligonucleotides is an immunostimulatory oligonucleotide. As used herein, the term “accessible 5′ end” means that the 5′ end of the oligonucleotide is sufficiently available such that the factors that recognize and bind to immunomer compounds and stimulate the immune system have access to it. Optionally, the 5′ OH can be linked to a phosphate, phosphorothioate, or phosphorodithioate moiety, an aromatic or aliphatic linker, cholesterol, or another entity which does not interfere with accessibility. Immunostimulatory oligonucleotides and immunomer compounds induce an immune response when administered to a vertebrate. When used in combination with chemotherapeutic agents, a synergistic therapeutic effect is obtained.
- Preferred chemotherapeutic agents used in the method according to the invention include, without limitation Gemcitabine, methotrexate, vincristine, adriamycin, cisplatin, non-sugar containing chloroethylnitrosoureas, 5-fluorouracil, mitomycin C, bleomycin, doxorubicin, dacarbazine, taxol, fragyline, Meglamine GLA, valrubicin, carmustaine and poliferposan, MMI270, BAY 12-9566, RAS famesyl transferase inhibitor, famesyl transferase inhibitor, MMP, MTA/LY231514, LY264618/Lometexol, Glamolec, CI-994, TNP-470, Hycamtin/Topotecan, PKC412, Valspodar/PSC833, Novantrone/Mitroxantrone, Metaret/Suramin, Batimastat, E7070, BCH-4556, CS-682, 9-AC, AG3340, AG3433, Incel/VX-710, VX-853, ZD0101, ISI641, ODN 698, TA 2516/Marmistat, BB2516/Marmistat, CDP 845, D2163, PD183805, DX8951f, Lemonal DP 2202, FK 317, Picibanil/OK-432, AD 32/Valrubicin, Metastron/strontium derivative, Temodal/Temozolomide, Evacet/liposomal doxorubicin, Yewtaxan/Placlitaxel, Taxol/Paclitaxel, Xeload/Capecitabine, Furtulon/Doxifluridine, Cyclopax/oral paclitaxel, Oral Taxoid, SPU-077/Cisplatin, HMR 1275/Flavopiridol, CP-358 (774)/EGFR, CP-609 (754)/RAS oncogene inhibitor, BMS-182751/oral platinum, UFT(Tegafur/Uracil), Ergamisol/Levamisole, Eniluracil/776C85/5FU enhancer, Campto/Levamisole, Camptosar/Irinotecan, Tumodex/Ralitrexed, Leustatin/Cladribine, Paxex/Paclitaxel, Doxil/liposomal doxorubicin, Caelyx/liposomal doxorubicin, Fludara/Fludarabine, Pharmarubicin/Epirubicin, DepoCyt, ZD1839, LU 79553/Bis-Naphtalimide, LU 103793/Dolastain, Caetyx/liposomal doxorubicin, Gemzar/Gemcitabine, ZD 0473/Anormed, YM 116, lodine seeds, CDK4 and CDK2 inhibitors, PARP inhibitors, D4809/Dexifosamide, Ifes/Mesnex/Ifosamide, Vumon/Teniposide, Paraplatin/Carboplatin, Plantinol/cisplatin, Vepeside/Etoposide, ZD 9331, Taxotere/Docetaxel, prodrug of guanine arabinoside, Taxane Analog, nitrosoureas, alkylating agents such as melphelan and cyclophosphamide, Aminoglutethimide, Asparaginase, Busulfan, Carboplatin, Chlorombucil, Cytarabine HCl, Dactinomycin, Daunorubicin HCl, Estramustine phosphate sodium, Etoposide (VP16-213), Floxuridine, Fluorouracil (5-FU), Flutamide, Hydroxyurea (hydroxycarbamide), Ifosfamide, Interferon Alfa-2a, Alfa-2b, Leuprolide acetate (LHRH-releasing factor analogue), Lomustine (CCNU), Mechlorethamine HCl (nitrogen mustard), Mercaptopurine, Mesna, Mitotane (o.p′-DDD), Mitoxantrone HCl, Octreotide, Plicamycin, Procarbazine HCl, Streptozocin, Tamoxifen citrate, Thioguanine, Thiotepa, Vinblastine sulfate, Amsacrine (m-AMSA), Azacitidine, Erthropoietin, Hexamethylmelamine (HMM), Interleukin 2, Mitoguazone (methyl-GAG; methyl glyoxal bis-guanylhydrazone; MGBG), Pentostatin (2′deoxycoformycin), Semustine (methyl-CCNU), Teniposide (VM-26) and Vindesine sulfate.
- In the methods according to this aspect of the invention, administration of immunostimulatory oligonucleotides and/or immunomer compounds can be by any suitable route, including, without limitation, parenteral, oral, sublingual, transdermal, topical, intranasal, aerosol, intraocular, intratracheal, intrarectal, vaginal, by gene gun, dermal patch or topical cream or in eye drop or mouthwash form. Administration of the therapeutic compositions of immunostimulatory oligonucleotides and/or immunomer compounds can be carried out using known procedures at dosages and for periods of time effective to reduce symptoms or surrogate markers of the disease. When administered systemically, the therapeutic composition is preferably administered at a sufficient dosage to attain a blood level of immunostimulatory oligonucleotide and/or immunomer compound from about 0.0001 micromolar to about 10 micromolar. For localized administration, much lower concentrations than this may be effective, and much higher concentrations may be tolerated. Preferably, a total dosage of immunostimulatory oligonucleotide and/or immunomer compound ranges from about 0.0001 mg per patient per day to about 200 mg per kg body weight per day. It may be desirable to administer simultaneously, or sequentially a therapeutically effective amount of one or more of the therapeutic compositions of the invention to an individual as a single treatment episode.
- For purposes of this aspect of the invention, the term “in combination with” means in the course of treating the same disease in the same patient, and includes administering the immunostimulatory oligonucleotide and/or immunomer compound and/or the chemotherapeutic agent in any order, including simultaneous administration, as well as temporally spaced order of up to several days apart. Such combination treatment may also include more than a single administration of the immunostimulatory oligonucleotide and/or immunomer compound, and/or independently the chemotherapeutic agent. The administration of the immunostimulatory oligonucleotide and/or immunomer compound and/or chemotherapeutic agent may be by the same or different routes.
- In some embodiments, the immunomer compound used in the method according to the invention comprises two or more immunostimulatory oligonucleotides, (in the context of the immunomer) which may be the same or different. Preferably, each such immunostimulatory oligonucleotide has at least one accessible 5′ end.
- In certain embodiments of the method according to the invention, in addition to the immunostimulatory oligonucleotide(s), the immunomer compound also comprises at least one oligonucleotide that is complementary to a gene. As used herein, the term “complementary to” means that the oligonucleotide hybridizes under physiological conditions to a region of the gene. In some embodiments, the oligonucleotide downregulates expression of a gene. Such downregulatory oligonucleotides preferably are selected from the group consisting of antisense oligonucleotides, ribozyme oligonucleotides, small inhibitory RNAs and decoy oligonucleotides. As used herein, the term “downregulate a gene” means to inhibit the transcription of a gene or translation of a gene product. Thus, the immunomer compounds used in the method according to the invention can be used to target one or more specific disease targets, while also stimulating the immune system.
- In certain embodiments, the immunostimulatory oligonucleotide and/or immunomer compound used in the method according to the invention includes a ribozyme or a decoy oligonucleotide. As used herein, the term “ribozyme” refers to an oligonucleotide that possesses catalytic activity. Preferably, the ribozyme binds to a specific nucleic acid target and cleaves the target. As used herein, the term “decoy oligonucleotide” refers to an oligonucleotide that binds to a transcription factor in a sequence-specific manner and arrests transcription activity. Preferably, the ribozyme or decoy oligonucleotide exhibits secondary structure, including, without limitation, stem-loop or hairpin structures. In certain embodiments, at least one oligonucleotide comprises poly(I)-poly(dC). In certain embodiments, at least one set of Nn includes a string of 3 to 10 dGs and/or Gs or 2′-substituted ribo or arabino Gs.
- For purposes of the invention, the term “oligonucleotide” refers to a polynucleoside formed from a plurality of linked nucleoside units. Such oligonucleotides can be obtained from existing nucleic acid sources, including genomic or cDNA, but are preferably produced by synthetic methods. In preferred embodiments each nucleoside unit includes a heterocyclic base and a pentofuranosyl, trehalose, arabinose, 2′-deoxy-2′-substituted arabinose, 2′-O-substituted arabinose or hexose sugar group. The nucleoside residues can be coupled to each other by any of the numerous known internucleoside linkages. Such internucleoside linkages include, without limitation, phosphodiester, phosphorothioate, phosphorodithioate, alkylphosphonate, alkylphosphonothioate, phosphotriester, phosphoramidate, siloxane, carbonate, carboalkoxy, acetamidate, carbamate, morpholino, borano, thioether, bridged phosphoramidate, bridged methylene phosphonate, bridged phosphorothioate, and sulfone internucleoside linkages. The term “oligonucleotide” also encompasses polynucleosides having one or more stereospecific internucleoside linkage (e.g., (RP)- or (SP)-phosphorothioate, alkylphosphonate, or phosphotriester linkages). As used herein, the terms “oligonucleotide” and “dinucleotide” are expressly intended to include polynucleosides and dinucleosides having any such internucleoside linkage, whether or not the linkage comprises a phosphate group. In certain preferred embodiments, these internucleoside linkages may be phosphodiester, phosphorothioate, phosphorodithioate, methylphosphonate linkages, or combinations thereof.
- In some embodiments, the immunomer compound comprises oligonucleotides each having from about 3 to about 35 nucleoside residues, preferably from about 4 to about 30 nucleoside residues, more preferably from about 4 to about 20 nucleoside residues. In some embodiments, the oligonucleotides have from about 5 or 6 to about 18, or from about 5 or 6 to about 14, nucleoside residues. As used herein, the term “about” implies that the exact number is not critical. Thus, the number of nucleoside residues in the oligonucleotides is not critical, and oligonucleotides having one or two fewer nucleoside residues, or from one to several additional nucleoside residues are contemplated as equivalents of each of the embodiments described above, for purposes of this invention. In some embodiments, one or more of the oligonucleotides have 11 nucleotides.
- The term “oligonucleotide” also encompasses polynucleosides having additional substituents including, without limitation, protein groups, lipophilic groups, intercalating agents, diamines, folic acid, cholesterol and adamantane. The term “oligonucleotide” also encompasses any other nucleobase containing polymer, including, without limitation, peptide nucleic acids (PNA), peptide nucleic acids with phosphate groups (PHONA), locked nucleic acids (LNA), morpholino-backbone oligonucleotides, and oligonucleotides having backbone sections with alkyl linkers or amino linkers.
- The immunostimulatory oligonucleotides and/or immunomer compounds used in the method according to the invention can include naturally occurring nucleosides, modified nucleosides, or mixtures thereof. As used herein, the term “modified nucleoside” is a nucleoside that includes a modified heterocyclic base, a modified sugar moiety, or a combination thereof. In some embodiments, the modified nucleoside is a non-natural pyrimidine or purine nucleoside, as herein described. In some embodiments, the modified nucleoside is a 2′-substituted ribonucleoside an arabinonucleoside or a 2′-deoxy-2′-fluoroarabinoside.
- For purposes of the invention, the term “2′-substituted ribonucleoside” includes ribonucleosides in which the hydroxyl group at the 2′ position of the pentose moiety is substituted to produce a 2′-O-substituted ribonucleoside. Preferably, such substitution is with a lower alkyl group containing 1-6 saturated or unsaturated carbon atoms, or with an aryl group having 6-10 carbon atoms, wherein such alkyl, or aryl group may be unsubstituted or may be substituted, e.g., with halo, hydroxy, trifluoromethyl, cyano, nitro, acyl, acyloxy, alkoxy, carboxyl, carboalkoxy, or amino groups. Examples of such 2′-O-substituted ribonucleosides include, without
limitation 2′-O-methylribonucleosides and 2′-O-methoxyethylribonucleosides. - The term “2′-substituted ribonucleoside” also includes ribonucleosides in which the 2′-hydroxyl group is replaced with a lower alkyl group containing 1-6 saturated or unsaturated carbon atoms, or with an amino or halo group. Examples of such 2′-substituted ribonucleosides include, without limitation, 2′-amino, 2′-fluoro, 2′-allyl, and 2′-propargyl ribonucleosides.
- The term “oligonucleotide” includes hybrid and chimeric oligonucleotides. A “chimeric oligonucleotide” is an oligonucleotide having more than one type of internucleoside linkage. One preferred example of such a chimeric oligonucleotide is a chimeric oligonucleotide comprising a phosphorothioate, phosphodiester or phosphorodithioate region and non-ionic linkages such as alkylphosphonate or alkylphosphonothioate linkages (see e.g., Pederson et al. U.S. Pat. Nos. 5,635,377 and 5,366,878).
- A “hybrid oligonucleotide” is an oligonucleotide having more than one type of nucleoside. One preferred example of such a hybrid oligonucleotide comprises a ribonucleotide or 2′-substituted ribonucleotide region, and a deoxyribonucleotide region (see, e.g., Metelev and Agrawal, U.S. Pat. Nos. 5,652,355, 6,346,614 and 6,143,881).
- For purposes of the invention, the term “immunostimulatory oligonucleotide” refers to an oligonucleotide as described above that induces an immune response when administered to a vertebrate, such as a fish, bird, or mammal. As used herein, the term “mammal” includes, without limitation rats, mice, cats, dogs, horses, cattle, cows, pigs, rabbits, non-human primates, and humans. Useful immunostimulatory oligonucleotides can be found described in Agrawal et al., WO 98/49288, published Nov. 5, 1998; WO 01/12804, published Feb. 22, 2001; WO 01/55370, published Aug. 2, 2001; PCT/US01/13682, filed Apr. 30, 2001; and PCT/US01/30137, filed Sep. 26, 2001. Preferably, the immunostimulatory oligonucleotide comprises at least one phosphodiester, phosphorothioate, methylphosphonate, or phosphordithioate internucleoside linkage.
- In a further aspect, the invention provides a method for synergistically stimulating an immune response in a patient. The method comprises administering to a patient, a combination of a therapeutically effective synergistic amount of at least one immunomer compound or immunostimulatory oligonucleotide in accordance with the invention and a therapeutically effective synergistic amount of IL-2 (and/or an agent that induces IL-2 production in situ, such as a DNA vaccine or expression vector expressing IL-2), wherein administration of said combination synergistically stimulates the production of cytokines in a patient. Preferably, the cytokines that are synergistically stimulated in accordance with the invention are selected from the group consisting of, IL-12 and interferon-γ (IFN-γ), IFN-α, IFN-β or combinations thereof.
- The term “effective synergistic amount” is used herein to denote known concentrations of immunomer compound or immunostimulatory oligonucleotide and of IL-2 administered for an effective period of time such that the combined stimulatory effect of the immunomer compound or immunostimulatory oligonucleotide and IL-2 are more than additive, i.e. the combined stimulatory effect is greater than the expected total stimulatory effect calculated on the basis of the sum of the individual stimulatory effects.
- As used herein, the term “cytokine” refers to any of many soluble molecules that cells of the immune system produce to control reactions between other cells. The term “cytokine” includes, for example, interleukins (e.g., IL-1, IL-2, IL-3, IL-6, IL-10, IL12, etc.), interferons (e.g., IFN-.alpha., IFN-.beta., IFN-.gamma.), chemokines, hematopoietic growth factors (e.g. erythropoietin), tumor necrosis factors, colony stimulating factors (e.g., G-CSF, M-CSF, GM-CSF) and transforming growth factors (TGF-alpha).
- In accordance with the invention, an “immunomer” refers to any compound comprising at least two oligonucleotides linked directly at their 3′ ends, or directly via internucleoside linkages, or directly at a functionalized nucleobase or sugar, or that are indirectly linked together via a non-nucleotidic linker, wherein at least one of the oligonucleotides, in the context of the immunomer compound, is an immunostimulatory oligonucleotide having an accessible 5′ end. In the context of the invention, an immunostimulatory oligonucleotide is an oligonucleotide that comprises at least one of an immunostimulatory “CpG” dinucleotide, an immunostimulatory domain, or other immunostimulatory moiety. As used herein, the term “accessible 5′ end” means that the 5′ end of the oligonucleotide is sufficiently available such that the factors that recognize and bind to immunomer compounds and immunostimulatory oligonucleotides and stimulate the immune system have access to the 5′ end.
- In some embodiments, at least one immunostimulatory oligonucleotide of the immunomer compound comprises an immunostimulatory dinucleotide of
formula 5′-Pyr-Pur-3′, wherein Pyr is a natural or synthetic pyrimidine nucleoside and Pur is a natural or synthetic purine nucleoside. As used herein, the term “pyrimidine nucleoside” refers to a nucleoside wherein the base component of the nucleoside is a pyrimidine base. Similarly, the term “purine nucleoside” refers to a nucleoside wherein the base component of the nucleoside is a purine base. For purposes of the invention, a “synthetic” pyrimidine or purine nucleoside includes a non-naturally occurring pyrimidine or purine base, a non-naturally occurring sugar moiety, or a combination thereof. -
- D is a hydrogen bond donor;
- D′ is selected from the group consisting of hydrogen, hydrogen bond donor, hydrogen bond acceptor, hydrophilic group, hydrophobic group, electron withdrawing group and electron donating group;
- A is a hydrogen bond acceptor or a hydrophilic group;
- A′ is selected from the group consisting of hydrogen bond acceptor, hydrophilic group, hydrophobic group, electron withdrawing group and electron donating group;
- X is carbon or nitrogen; and
- S′ is a pentose or hexose sugar ring, or a non-naturally occurring sugar.
- Preferably, the sugar ring is derivatized with a phosphate moiety, modified phosphate moiety, or other linker moiety suitable for linking the pyrimidine nucleoside to another nucleoside or nucleoside analog.
- Preferred hydrogen bond donors include, without limitation, —NH—, —NH2, —SH and —OH. Preferred hydrogen bond acceptors include, without limitation, C═O, C═S, and the ring nitrogen atoms of an aromatic heterocycle, e.g., N3 of cytosine.
- In some embodiments, the base moiety in (I) is a non-naturally occurring pyrimidine base. Examples of preferred non-naturally occurring pyrimidine bases include, without limitation, 5-hydroxycytosine, 5-hydroxymethylcytosine, N4-alkylcytosine, preferably N4-ethylcytosine, and 4-thiouracil. In some embodiments, the sugar moiety S′ in (I) is a non-naturally occurring sugar moiety. For purposes of the present invention, a “naturally occurring sugar moiety” is a sugar moiety that occurs naturally as part of nucleic acid, e.g., ribose and 2′-deoxyribose, and a “non-naturally occurring sugar moiety” is any sugar that does not occur naturally as part of a nucleic acid, but which can be used in the backbone for an oligonucleotide, e.g, hexose. Arabinose and arabinose derivatives are examples of preferred sugar moieties.
-
- wherein:
- D is a hydrogen bond donor;
- D′ is selected from the group consisting of hydrogen, hydrogen bond donor, and hydrophilic group;
- A is a hydrogen bond acceptor or a hydrophilic group;
- X is carbon or nitrogen;
- each L is independently selected from the group consisting of C, O, N and S; and
- S′ is a pentose or hexose sugar ring, or a non-naturally occurring sugar.
- Preferably, the sugar ring is derivatized with a phosphate moiety, modified phosphate moiety, or other linker moiety suitable for linking the pyrimidine nucleoside to another nucleoside or nucleoside analog.
- Preferred hydrogen bond donors include, without limitation, —NH—, —NH2, —SH and —OH. Preferred hydrogen bond acceptors include, without limitation, C═O, C═S, —NO2 and the ring nitrogen atoms of an aromatic heterocycle, e.g., N1 of guanine.
- In some embodiments, the base moiety in (II) is a non-naturally occurring purine base. Examples of preferred non-naturally occurring purine bases include, without limitation, 6-thioguanine and 7-deazaguanine. In some embodiments, the sugar moiety S′ in (II) is a naturally occurring sugar moiety, as described above for structure (I).
- In preferred embodiments, the immunostimulatory dinucleotide in the immunostimulatory oligonucleotides and/or immunomer compound used in the method according to the invention is selected from the group consisting of CpG, C*pG, CpG*, and C*pG*, wherein C is cytidine or 2′-deoxycytidine, C* is 2′-deoxythymidine, arabinocytidine, 2′-deoxythymidine, 2′-deoxy-2′-substitutedarabinocytidine, 2′-O-substitutedarabinocytidine, 2′-deoxy-5-hydroxycytidine, 2′-deoxy-N4-alkyl-cytidine, 2′-deoxy-4-thiouridine, other non-natural pyrimidine nucleosides, or 1-(2′-deoxy-β-D-ribofuranosyl)-2-oxo-7-deaza-8-methyl-purine; G is guanosine or 2′-deoxyguanosine, G* is 2′ deoxy-7-deazaguanosine, 2′-deoxy-6-thioguanosine, arabinoguanosine, 2′-deoxy-2′substituted-arabinoguanosine, 2′-O-substituted-arabinoguanosine, 2′-deoxyinosine, or other non-natural purine nucleoside, and p is an internucleoside linkage selected from the group consisting of phosphodiester, phosphorothioate, and phosphorodithioate. In certain preferred embodiments, the immunostimulatory dinucleotide is not CpG.
- The immunostimulatory oligonucleotides may include immunostimulatory moieties on one or both sides of the immunostimulatory dinucleotide. Thus, in some embodiments, the immunostimulatory oligonucleotide comprises an immunostimulatory domain of structure (III):
- 5′-Nn-N1-Y-Z-N1-Nn-3′ (III)
- wherein:
- Y is cytidine, 2′deoxythymidine, 2′ deoxycytidine arabinocytidine, 2′-deoxy-2′-substitutedarabinocytidine, 2′-deoxythymidine, 2′-O-substitutedarabinocytidine, 2′-deoxy-5-hydroxycytidine, 2′-deoxy-N4-alkyl-cytidine, 2′-deoxy-4-thiouridine, other non-natural pyrimidine nucleosides, or 1-(2′-deoxy-β-D-ribofuranosyl)-2-oxo-7-deaza-8-methyl-purine;
- Z is guanosine or 2′-deoxyguanosine, 2′ deoxy-7-deazaguanosine, 2′-deoxy-6-thioguanosine, arabinoguanosine, 2′-deoxy-2′substituted-arabinoguanosine, 2′-O-substituted-arabinoguanosine, 2′deoxyinosine, or other non-natural purine nucleoside;
- N1, at each occurrence, is preferably a naturally occurring or a synthetic nucleoside or an immunostimulatory moiety selected from the group consisting of abasic nucleosides, arabinonucleosides, 2′-deoxyuridine, α-deoxyribonucleosides, β-L-deoxyribonucleosides, and nucleosides linked by a phosphodiester or modified internucleoside linkage to the adjacent nucleoside on the 3′ side, the modified internucleotide linkage being selected from, without limitation, a linker having a length of from about 2 angstroms to about 200 angstroms, C2-C18 alkyl linker, poly(ethylene glycol) linker, 2-aminobutyl-1,3-propanediol linker, glyceryl linker, 2′-5′ internucleoside linkage, and phosphorothioate, phosphorodithioate, or methylphosphonate internucleoside linkage;
- Nn, at each occurrence, is preferably a naturally occurring nucleoside or an immunostimulatory moiety selected from the group consisting of abasic nucleosides, arabinonucleosides, 2′-deoxyuridine, α-deoxyribonucleosides, 2′-O-substituted ribonucleosides, and nucleosides linked by a modified internucleoside linkage to the adjacent nucleoside on the 3′ side, the modified internucleoside linkage preferably being selected from the group consisting of amino linker, C2-C18 alkyl linker, poly(ethylene glycol) linker, 2-aminobutyl-1,3-propanediol linker, glyceryl linker, 2′-5′ internucleoside linkage, and methylphosphonate internucleoside linkage;
- provided that at least one N1 or Nn is an immunostimulatory moiety;
- wherein each n is independently a number from 0 to 30; and
- wherein, in the case of an immunomer compound, the 3′end is linked directly or via a non-nucleotidic linker to another oligonucleotide, which may or may not be immunostimulatory.
- In some preferred embodiments, YZ is arabinocytidine or 2′-deoxy-2′-substituted arabinocytidine and arabinoguanosine or 2′deoxy-2′-substituted arabinoguanosine. Preferred immunostimulatory moieties include modifications in the phosphate backbones, including, without limitation, methylphosphonates, methylphosphonothioates, phosphotriesters, phosphothiotriesters, phosphorothioates, phosphorodithioates, triester prodrugs, sulfones, sulfonamides, sulfamates, formacetal, N-methylhydroxylamine, carbonate, carbamate, morpholino, boranophosphonate, phosphoramidates, especially primary amino-phosphoramidates, N3 phosphoramidates and N5 phosphoramidates, and stereospecific linkages (e.g., (RP)- or (SP)-phosphorothioate, alkylphosphonate, or phosphotriester linkages).
- Preferred immunostimulatory moieties according to the invention further include nucleosides having sugar modifications, including, without limitation, 2′-substituted pentose sugars including, without limitation, 2′-O-methylribose, 2′-O-methoxyethylribose, 2′-O-propargylribose, and 2′-deoxy-2′-fluororibose; 3′-substituted pentose sugars, including, without limitation, 3′-O-methylribose; 1′,2′-dideoxyribose; arabinose; substituted arabinose sugars, including, without limitation, 1′-methylarabinose, 3′-hydroxymethylarabinose, 4′-hydroxymethyl-arabinose, and 2′-substituted arabinose sugars; hexose sugars, including, without limitation, 1,5-anhydrohexitol; and alpha-anomers. In embodiments in which the modified sugar is a 3′-deoxyribonucleoside or a 3′-O-substituted ribonucleoside, the immunostimulatory moiety is attached to the adjacent nucleoside by way of a 2′-5′ internucleoside linkage.
- Preferred immunostimulatory moieties in immunostimulatory oligonucleotides and/or immunomer compounds used in the method according to the invention further include oligonucleotides having other carbohydrate backbone modifications and replacements, including peptide nucleic acids (PNA), peptide nucleic acids with phosphate groups (PHONA), locked nucleic acids (LNA), morpholino backbone oligonucleotides, and oligonucleotides having backbone linker sections having a length of from about 2 angstroms to about 200 angstroms, including without limitation, alkyl linkers or amino linkers. The alkyl linker may be branched or unbranched, substituted or unsubstituted, and chirally pure or a racemic mixture. Most preferably, such alkyl linkers have from about 2 to about 18 carbon atoms. In some preferred embodiments such alkyl linkers have from about 3 to about 9 carbon atoms. Some alkyl linkers include one or more functional groups selected from the group consisting of hydroxy, amino, thiol, thioether, ether, amide, thioamide, ester, urea, and thioether. Some such functionalized alkyl linkers are poly(ethylene glycol) linkers of formula —O—(CH2—CH2—O—)n (n=1-9). Some other functionalized alkyl linkers are peptides or amino acids.
- Preferred immunostimulatory moieties in immunostimulatory oligonucleotides and/or immunomer compounds used in the method according to the invention further include DNA isoforms, including, without limitation, β-L-deoxyribonucleosides and α-deoxyribonucleosides. Preferred immunostimulatory moieties incorporate 3′ modifications, and further include nucleosides having unnatural internucleoside linkage positions, including, without limitation, 2′-5′, 2′-2′, 3′-3′ and 5′-5′ linkages.
- Preferred immunostimulatory moieties in immunostimulatory oligonucleotides and/or immunomer compounds used in the method according to the invention further include nucleosides having modified heterocyclic bases, including, without limitation, 5-hydroxycytosine, 5-hydroxymethylcytosine, N4-alkylcytosine, preferably N4-ethylcytosine, 4-thiouracil, 6-thioguanine, 7-deazaguanine, inosine, nitropyrrole, C5-propynylpyrimidine, and diaminopurines, including, without limitation, 2,6-diaminopurine.
- By way of specific illustration and not by way of limitation, for example, in the immunostimulatory domain of structure (III), a methylphosphonate internucleoside linkage at position N1 or Nn is an immunostimulatory moiety, a linker having a length of from about 2 angstroms to about 200 angstroms, C2-C18 alkyl linker at position X1 is an immunostimulatory moiety, and a β-L-deoxyribonucleoside at position X1 is an immunostimulatory moiety. See Table 1 below for representative positions and structures of immunostimulatory moieties. It is to be understood that reference to a linker as the immunostimulatory moiety at a specified position means that the nucleoside residue at that position is substituted at its 3′-hydroxyl with the indicated linker, thereby creating a modified internucleoside linkage between that nucleoside residue and the adjacent nucleoside on the 3′ side. Similarly, reference to a modified internucleoside linkage as the immunostimulatory moiety at a specified position means that the nucleoside residue at that position is linked to the adjacent nucleoside on the 3′ side by way of the recited linkage.
TABLE 1 Position TYPICAL IMMUNOSTIMULATORY MOIETIES N1 Naturally-occurring nucleosides, abasic nucleoside, arabino- nucleoside, 2′-deoxyuridine, β-L-deoxyribonucleoside C2-C18 alkyl linker, poly(ethylene glycol) linkage, 2-aminobutyl-1,3- propanediol linker (amino linker), 2′-5′ internucleoside linkage, methylphosphonate internucleoside linkage Nn Naturally-occurring nucleosides, abasic nucleoside, arabino- nucleosides, 2′-deoxyuridine, 2′-O-substituted ribonucleoside, 2′-5′ internucleoside linkage, methylphosphonate internucleoside linkage, provided that N1 and N2 cannot both be abasic linkages - Table 2 shows representative positions and structures of immunostimulatory moieties within an immunostimulatory oligonucleotide having an upstream potentiation domain. As used herein, the term “
Spacer 9” refers to a poly(ethylene glycol) linker of formula —O—(CH2CH2—O)n—, wherein n is 3. The term “Spacer 18” refers to a poly(ethylene glycol) linker of formula —O—(CH2CH2—O)n—, wherein n is 6. As used herein, the term “C2-C18 alkyl linker refers to a linker of formula —O—(CH2)q—O—, where q is an integer from 2 to 18. Accordingly, the terms “C3-linker” and “C3-alkyl linker” refer to a linker of formula —O—(CH2)3—O—. For each ofSpacer 9,Spacer 18, and C2-C18 alkyl linker, the linker is connected to the adjacent nucleosides by way of phosphodiester, phosphorothioate, phosphorodithioate or methylphosphonate linkages.TABLE 2 Position TYPICAL IMMUNOSTIMULATORY MOIETY 5′ N2 Naturally-occurring nucleosides, 2-aminobutyl-1,3-propanediol linker 5′ N1 Naturally-occurring nucleosides, β-L-deoxyribonucleoside, C2-C18 alkyl linker, poly(ethylene glycol), abasic linker, 2- aminobutyl-1,3-propanediol linker 3′ N1 Naturally-occurring nucleosides, 1′,2′-dideoxyribose, 2′-O- methyl-ribonucleoside, C2-C18 alkyl linker, Spacer 9, Spacer 18 3′ N2 Naturally-occurring nucleosides, 1′,2′-dideoxyribose, 3′- deoxyribonucleoside, β-L-deoxyribonucleoside, 2′-O-propargyl- ribonucleoside, C2-C18 alkyl linker, Spacer 9, Spacer 18, methylphosphonate internucleoside linkage 3′ N 3 Naturally-occurring nucleosides, 1′,2′-dideoxyribose, C2-C18 alkyl linker, Spacer 9, Spacer 18, methylphosphonate inter- nucleoside linkage, 2′-5′ internucleoside linkage, d(G)n, polyI- polydC 3′N 2 + 1′,2′-dideoxyribose, β-L-deoxyribonucleoside, C2-C18 alkyl 3′N 3 linker, d(G)n, polyl-polydC 3′N3+ 2′-O-methoxyethyl-ribonucleoside, methylphosphonate inter- 3′ N 4 nucleoside linkage, d(G)n, polyl-polydC 3′N5+ 1′,2′-dideoxyribose, C2-C18 alkyl linker, d(G)n, polyl-polydC 3′ N 6 5′N1+ 1′,2′-dideoxyribose, d(G)n, polyI-polydC 3′ N 3 - Table 3 shows representative positions and structures of immunostimulatory moieties within an immunostimulatory oligonucleotide having a downstream potentiation domain.
TABLE 3 Position TYPICAL IMMUNOSTIMULATORY MOIETY 5′ N2 methylphosphonate internucleoside linkage 5′ N1 methylphasphonate internucleoside linkage 3′ N1 1′,2′-dideoxyribose, methylphosphonate internucleoside linkage, 2′-O- methyl 3′ N2 1′,2′-dideoxyribose, β-L-deoxyribonucleoside, C2-C18 alkyl linker, Spacer 9,Spacer 18, 2-aminobutyl-1,3-propanediollinker, methylphosphonate internucleoside linkage, 2′-O- methyl 3′ N3 3′-deoxyribonucleoside, 3′-O-substituted ribonucleoside, 2′- O-propargyl- ribonucleoside 3′ N2 + 1′,2′-dideoxyribose, β-L- deoxyribonucleoside 3′ N3 - The immunomer compounds used in the method according to the invention comprise at least two oligonucleotides linked directly or via a non-nucleotidic linker. For purposes of the invention, a “non-nucleotidic linker” is any moiety that can be linked to the oligonucleotides by way of covalent or non-covalent linkages. Preferably such linker is from about 2 angstroms to about 200 angstroms in length. Several examples of preferred linkers are set forth below. Non-covalent linkages include, but are not limited to, electrostatic interaction, hydrophobic interactions, π-stacking interactions, and hydrogen bonding. The term “non-nucleotidic linker” is not meant to refer to an internucleoside linkage, as described above, e.g., a phosphodiester, phosphorothioate, or phosphorodithioate functional group, that directly connects the 3′-hydroxyl groups of two nucleosides. For purposes of this invention, such a direct 3′-3′ linkage is considered to be a “nucleotidic linkage.”
- In some embodiments, the non-nucleotidic linker is a metal, including, without limitation, gold particles. In some other embodiments, the non-nucleotidic linker is a soluble or insoluble biodegradable polymer bead.
- In yet other embodiments, the non-nucleotidic linker is an organic moiety having functional groups that permit attachment to the oligonucleotide. Such attachment preferably is by any stable covalent linkage.
- In some embodiments, the non-nucleotidic linker is a biomolecule, including, without limitation, polypeptides, antibodies, lipids, antigens, allergens, and oligosaccharides. In some other embodiments, the non-nucleotidic linker is a small molecule. For purposes of the invention, a small molecule is an organic moiety having a molecular weight of less than 1,000 Da. In some embodiments, the small molecule has a molecular weight of less than 750 Da.
- In some embodiments, the small molecule is an aliphatic or aromatic hydrocarbon, either of which optionally can include, either in the linear chain connecting the oligonucleotides or appended to it, one or more functional groups selected from the group consisting of hydroxy, amino, thiol, thioether, ether, amide, thioamide, ester, urea, and thiourea. The small molecule can be cyclic or acyclic. Examples of small molecule linkers include, but are not limited to, amino acids, carbohydrates, cyclodextrins, adamantane, cholesterol, haptens and antibiotics. However, for purposes of describing the non-nucleotidic linker, the term “small molecule” is not intended to include a nucleoside.
- In some embodiments, the small molecule linker is glycerol or a glycerol homolog of the formula HO—(CH2)o—CH(OH)—(CH2)p—OH, wherein o and p independently are integers from 1 to about 6, from 1 to about 4, or from 1 to about 3. In some other embodiments, the small molecule linker is a derivative of 1,3-diamino-2-hydroxypropane. Some such derivatives have the formula HO—(CH2)m—C(O)NH—CH2—CH(OH)—CH2—NHC(O)—(CH2)m—OH, wherein m is an integer from 0 to about 10, from 0 to about 6, from 2 to about 6, or from 2 to about 4.
- Some non-nucleotidic linkers in immunomer compounds used in the method according to the invention permit attachment of more than two oligonucleotides, as schematically depicted in
FIG. 1 . For example, the small molecule linker glycerol has three hydroxyl groups to which oligonucleotides may be covalently attached. Some immunomer compounds according to the invention, therefore, comprise more than two oligonucleotides linked at their 3′ ends to a non-nucleotidic linker. Some such immunomer compounds comprise at least two immunostimulatory oligonucleotides, each having an accessible 5′ end. - The immunostimulatory oligonucleotides and/or immunomer compounds used in the method according to the invention may conveniently be synthesized using an automated synthesizer and phosphoramidite approach as schematically depicted in
FIGS. 5 and 6 , and further described in the Examples. In some embodiments, the immunostimulatory oligonucleotides and/or immunomer compounds are synthesized by a linear synthesis approach (seeFIG. 5 ). As used herein, the term “linear synthesis” refers to a synthesis that starts at one end of the immunomer compound and progresses linearly to the other end. Linear synthesis permits incorporation of either identical or un-identical (in terms of length, base composition and/or chemical modifications incorporated) monomeric units into the immunostimulatory oligonucleotides and/or immunomer compounds. - An alternative mode of synthesis for immunomer compounds is “parallel synthesis”, in which synthesis proceeds outward from a central linker moiety (see
FIG. 6 ). A solid support attached linker can be used for parallel synthesis, as is described in U.S. Pat. No. 5,912,332. Alternatively, a universal solid support, such as phosphate attached to controlled pore glass support, can be used. - Parallel synthesis of immunomer compounds has several advantages over linear synthesis: (1) parallel synthesis permits the incorporation of identical monomeric units; (2) unlike in linear synthesis, both (or all) the monomeric units are synthesized at the same time, thereby the number of synthetic steps and the time required for the synthesis is the same as that of a monomeric unit; and (3) the reduction in synthetic steps improves purity and yield of the final immunomer product.
- At the end of the synthesis by either linear synthesis or parallel synthesis protocols, the immunostimulatory oligonucleotides or immunomer compounds used in the method according to the invention may conveniently be deprotected with concentrated ammonia solution or as recommended by the phosphoramidite supplier, if a modified nucleoside is incorporated. The product immunostimulatory oligonucleotides and/or immunomer compound is preferably purified by reversed phase HPLC, detritylated, desalted and dialyzed.
- Immunostimulatory oligonucleotides suitable for use as a component of an immunomer compound, or in accordance with the fourth aspect of the invention, are described in the following U.S. patents and pending U.S. patent applications and are incorporated herein by reference: U.S. Pat. Nos. 6,426,334 and 6,476,000; and U.S. patent application Ser. Nos. 09/770,602, 09/845,623, 09/965,116, 60/440,587, 10/361,111, 60/471,247, 60/477. Preferred immunostimulatory oligonucleotides and immunomer compounds of the invention are described in pending U.S. patent application Ser. No. 10/279,684. Table 4 shows representative immunomer compounds used in the method according to the invention. Additional immunomer compounds are found described in the Examples and in U.S. patent application Ser. No. 10/279,684.
TABLE 4 Examples of Immunomer Sequences Oligo or Im- muno- mer No. Sequences and Modification (5′-3′) 1 5′-GAGAACGCTCGACCTT-3′ 2 5′-GAGAACGCTCGACCTT-3′-3′-TTCCAGCTCGCAAGAG-5′ 3 3′-TTCCAGCTCGCAAGAG-5′-5′-GAGAACGCTCGACCTT-3′ 4 5′-CTATCTGACGTTCTCTGT-3′ 5 6 7 8 9 10 11 12 13 5′-CTGACGTTCTCTGT-3′ 14 15 16 17 5′-XXTGACGTTCTCTGT-3′ 18 19 20 21 5′-TCTGACGTTCT-3′ 22 23 24 191 192 5′-TCRTCRTTG-X 1-GTTRCTRCT-5′ 193 5′-TCRTCRTTCTG-X 1-GTCTTRCTRCT-5′ 194 5′-TCGTTG-Y1-X2-Y1-GTTGCT-5′ 195 5′-TCGTT-Y1-X2-Y1-TTGCT-5′ L = C3-alkyl linker; X = 1′,2′-dideoxyriboside; Y = 50H dC; R = 7-deaza-dG R = arabinoguanosine; X1 = glycerol linker; - A further aspect of the invention provides an immunostimulatory nucleic acid comprising at least two oligonucleotides, wherein the immunostimulatory nucleic acid has a secondary structure. In certain embodiments, the immunostimulatory nucleic acid has a 3′-end stem loop secondary structure by way of hydrogen bonding with a complementary sequence. In certain embodiments the nucleic acid that has reduced immunostimulatory activity forms a 5′-end stem loop secondary structure by way of hydrogen bonding with a complementary sequence. In this aspect, immunostimulatory nucleic acid comprises a structure as detailed in formula (I).
Domain A-Domain B-Domain C (I) - Domains may be from about 2 to about 12 nucleotides in length. Domain A may be 5′-3′ or 3′-5′ or 2′-5′ DNA, RNA, RNA-DNA, DNA-RNA having or not having a palindromic or self-complementary domain containing or not containing at least one dinucleotide selected from the group consisting of CpG, C*pG, C*pG* and CpG*, wherein C is cytidine or 2′-deoxycytidine, G is guanosine or 2′-deoxyguanosine, C* is 2′-deoxythymidine, 1-(2′-deoxy-β-D-ribofuranosyl)-2-oxo-7-deaza-8-methyl-purine, 2′-dideoxy-5-halocytosine, 2′-deoxy-5-nitrocytosine, arabinocytidine, 2′-deoxy-2′-substitutedarabinocytidine, 2′-O-substituted arabinocytidine, 2′-deoxy-5-hydroxycytidine, 2′-deoxy-N4-alkyl-cytidine, 2′-deoxy-4-thiouridine, or other pyrimidine nucleoside analogs, G* is 2′-deoxy-7-deazaguanosine, 2′-deoxy-6-thioguanosine, arabinoguanosine, 2′-deoxy-2′substituted-arabinoguanosine, 2′-O-substituted-arabinoguanosine, 2′-deoxyinosine, or other purine nucleoside analogs, and p is an internucleoside linkage selected from the group consisting of phosphodiester, phosphorothioate, and phosphorodithioate. In certain preferred embodiments, the immunostimulatory dinucleotide is not CpG.
- In certain embodiments, Domain A will have more than one dinucleotide selected from the group consisting of CpG, C*pG, C*pG* and CpG*.
- Domain B, as depicted by an “X” below, is a linker joining Domains A and C that may be a 3’-‘5’ linkage, a 2’-5’ linkage, a 3’-3’ linkage, a phosphate group, a nucleoside, or a non-nucleoside linker that may be aliphatic, aromatic, aryl, cyclic, chiral, achiral, a peptide, a carbohydrate, a lipid, a fatty acid, mono- tri- or hexapolyethylene glycol, or a heterocyclic moiety.
- Domain C may be 5′-3′ or 3′-5′, 2′-5′ DNA, RNA, RNA-DNA, DNA-RNA Poly I-Poly C having or not having a palindromic or self-complementary sequence, which can or cannot have a dinucleotide selected from the group consisting of CpG, C*pG, C*pG*, CpG*, wherein C is cytidine or 2′-deoxycytidine, G is guanosine or 2′-deoxyguanosine, C* is 2′-deoxythymidine, 1-(2′-deoxy-β-D-ribofuranosyl)-2-oxo-7-deaza-8-methyl-purine, 2′dideoxy-5-halocytosine, 2′-deoxy-5-halocytosine, arabinocytidine, 2′-deoxy-2′-substituted arabinocytidine, 2′-O-substituted arabinocytidine, 2′-deoxy-5-hydroxycytidine, 2′-deoxy-N4-alkyl-cytidine, 2′-deoxy-4-thiouridine, other pyrimidine nucleoside analogs, G* is 2′-deoxy-7-deazaguanosine, 2′-deoxy-6-thioguanosine, arabinoguanosine, 2′-deoxy-2′substituted-arabinoguanosine, 2′-O-substituted-arabinoguanosine, 2′-deoxyinosine, or other purine nucleoside analogs, and p is an internucleoside linkage selected from the group consisting of phosphodiester, phosphorothioate, and phosphorodithioate. In certain preferred embodiments, the immunostimulatory dinucleotide is not CpG. In some embodiments, Domain B is preferably a non-nucloetidic linker connecting oligonucleotides of Domain A and Domain C, which are referred to as “immunomers.” In certain preferred embodiments, Domain C does not have the dinucleotide CpG, C*pG, C*pG* or CpG*.
-
- As one skilled in the art would recognize, there is a secondary structure element in the terminal end of the molecule in the form of an intramolecular stem-loop.
- By way of non-limiting example, in certain embodiments of this aspect the immunostimulatory nucleic acid will have a structure as detailed in formula (III)
The structure depicted in formula (III) is referred to herein as a “terminal dimmer,” since the ends of the two molecules are blocked because the sequences of the two ends are complementary allowing for intermolecular hydrogen bonding. In addition, domains A and A′ may or may not be identical, domains B and B′ may or may not be identical and domains C and C′ may or may not be identical. -
- As would be recognized by one skilled in the art, the terminal end of the depicted molecule has a secondary structure because the complementary sequence of its end is hydrogen bonded to this region. In certain embodiments, a molecule such as a ligand may be attached to the terminal end in order to facilitate cellular uptake or improve stability of the molecule.
- Non-limiting examples of some nucleic acid molecules of the invention are presented in Table 5.
TABLE 5 SEQ ID NO: Sequence* Structure 91 5′- CTGTCTGACGITCT CTG-3′ 92 5′- CTGTCTGACGTTCT CTG-GAA-CAGAG-3′ 93 5′- CTGTCTGACGTTCT CTG-GAA- CAGAGAACGTC-3′ 94 5′- CTGTCTGACGTTCT CTG-GAA- CAGAGAACGTCAG ACAG-3′ 95 5′-GACAG-GAA- CTGTCTGACGTTCT CTG-3′ 96 5′-AACGTCAGACAG- GAA- CTGTCTGACGTTCT CTG-3′ 97 5′-CAGAGAACGTCAG ACAG-GAA- CTGTCTGACGTTCT CTG-3′ 98 5′-CTATCTGACGTTCT CTGT-3′ 99 5′-CTATCTGACGTTCT CTGT-gtgatcac-3′ 100 5′-gtgatcac- CTATCTGACGTTCT CTGT-3′ 101 5′-CTGTCTGTCGTTCT CTG-3′ 102 5′-CTGTCTGTCGTTCT CTG-GAA-CAGAG-3′ 103 5′-CTGTCTGTCGTTCT CTG-GAA- CAGAGAACGAC-3′ 104 5′-CTGTCTGTCGTTCT CTG-GAA- CAGAGAACGACAG ACAG-3′ 105 5′-GACAGGAA- CTGTCTGTCGTTCT CTG-3′ 106 5′-AACGACAGACAG- GAA- CTGTCTGACGTTCT CTG-3′ 107 5′-CAGAGAACGACAG ACAG-GAA- CTGTCTGTCGTTCT CTG-3′ 108 5′-TCGTCGTT- GAGCTCT-GAA- AGAGCTC-3′ 109 5′-TCGTCGTT- GTGAGCTCTGT- GAA- ACAGAGCTCAC-3′ 110 5′-TCGTCGTT- GCACAGAGCTCTG CT-GAA- AGCAGAGCTCTGT GC-3′ 111 5′-TCGTCGTT- GCTGACAGAGCTC TGCTAT-GAA- ATAGCAGAGCTCT GTCAGC-3′ 112 5′-TCGTCGTT- GTGCTCT-GAA- CTTGCTC-3′ 113 5′-TCGTCGTT- GTGTGCTCTGT- GAA- CATCAGTCTAC-3′ 114 5′-TCGTCGTT- gagctct-GAA-agagctc-3′ 115 5′-TCGTCGTT- gtgagctctgt-GAA- acagagctcac-3′ 116 5′-TCGTCGTT- GAGCTCT-GAA- AGAGCTC-3′ 117 5′-TCGTCGTT- GTGAGCTCTGT- GAA- ACAGAGCTCAC-3′ 118 5′-TCGTCGTT- GAGCTCT-GAA- AGAGCTC-3′ 119 120 5′TGCTGCTT- GAGCTCT-GAA- AGAGCTC-3′ 121 5′-TCTTGACGTTCTCT CT-3′ 122 5′-TCTTGACGTTCTCT CT-GAA-AGAGAG-3′ 123 5′-TCTTGACGTTCTCT CT-GAA-agagag-3′ 124 5′-tcttgacgttctctct- GAA-AGAGAG-3′ 125 5′-tcttgacgttctctct- GAA-agagag-3′ 126 5′-tcttgacgttctctct-gaa- agagag-3′ 127 5′-TCTTGACGTTCTCT CT-X-AGAGAG-3′ 128 5′-tcttgacgttctctct-X- agagag-3′ *upper case-PS; lower case-PO; Bold-2′-O-methyl-ribonucleotides (in 116 and 117); G-2′-deoxy-7-deaza-G (in 118); - Alternatively, the nucleic acid molecule of the invention can be two immunomers linked by way of a non-nucleotidic linker. Non-limiting representative examples of these molecules are presented in Table 6.
TABLE 6 SEQ ID NO: Sequence* Structure 129 5′-TCGTCGTT-X- GTCTCGAGAC-5′ 130 5′-TCGTCGTT-XX- GTCTCGAGAC-5′ 131 5′-TCGTCGTT-XXX- GTCTCGAGAC-5′ 132 5′-TCGTCGTT-Y- GTCTCGAGAC-5′ 133 5′-TCGTCGTT-Z- GTCTCGAGAC-5′ 134 5′-TCGTCGTT-XXX- GUCUCGAGAC-5′ 135 5′-TCGTCGTT-XXX- GTCTCGAGAC-5′ 136 5′-TTGTGCTT-XXX- GTCTCGAGAC-5′ 137 5′-TCGTCGTT-XXX- GTCTCCACAC-5′ 138 5′-TCGTCGTT′- XXX-ccgtagctacGG-5′ 139 5′-TCGTCGTT-XX- ccgtagctacGG-5′ 140 5′-TCGTCGIT-X- ccgtagctacGG-5′ 141 5′-TCGTCGTT-3′- 3′-ccgtagctacGG-5′ 142 5′-TCGTCGTT-Y- ccgtagctacGG-5′ 143 5′-TCGTCGTT-Z- ccgtagctacGG-5′ 144 5′-TCGTCGTT- XXX-ctcgag-5′ 145 5′-TCGTCGTT- XXX-ctgtctcgagacag-5′ 146 5′-TCGTCGTT- XXX- cgactgtctcgagacagtcg-5′ 147 5′-TCGTCGTT-XXX- gucucgagac-5′ 148 5′-TCGTCGTTG-X- tgcatcgatgca-3′-X-3′- GTTGCTGCT-5′ 149 5′-TCGTCGTTG-3′- X-3′-tgcatcgatgca-X- GTTGCTGCT-5′ 150 5′-TCGTCGTTG-X- TGCATCGATGCA- 3′-X-3′-GTTGCTGCT-5′ 151 5′-TCGTCGTTG-3′- X-3′-TGCATCGATGCA-X- GTTGCTGCT-5′ 152 5′-tcgtcgttg-X- TGCATCGATGCA- 3′-X-3′-gttgctgct-5′ 153 5′-tcgtcgttg-3′-X-3′- TGCATCGATGCA-X- gttgctgct-5′ 154 5′-tcgtcgtt-XXX- gtctcgagac-5′ 155 5′-TCGTCGTT- XXX-gtctcgagac-5′ 156 5′-TCGTCGTTG-X- tgcatcgatgca-3′ 157 5′-TCGTCGTTGtgcatcg atgca-3′ 158 5′-tcgtcgttgTGCATCG ATGCA-3′
*Upper case-PS; lower case-PO, X-C3-linker; Y-tetraethyleneglycol linker; Z-hexaethyleneglycol linker, bold-2′-0-methylribonucleotides (in 134 and 147); G-2′-deoxy-7-deaza-G (in 135).
- Alternatively, further, non-limiting, representatives are presented in Table 7.
TABLE 7 159 160 161 162 163 164 165 5′-TCRTCRTT-XXX-GTCTCGAGAC-5′ 166 5′-TCRTCRTT-XXX-GUCUCGAGAC-5′ 167 168 5′-TCG1TCG1TT-XXX-GTCTCCACTC-5′ 169 5′-TCG1TCG1TT-XXX-GUCUCCACUC-5′ 170 171 172 TCGTCGTT-gtgagctctgtg-GAA-acagagcucac
Italic phase represents a phosphodiester linkage, other linkages are phosphorothioate unless otherwise indicated
Underline = 2′-OMe-nucleoside; X = C3 linker
R = 2′-deoxy-7-deazaguanosine G1 = 2′-deoxy-7-deazaguanoise
- Another aspect of the invention provides an immunostimulatory nucleic acid wherein the sequence of the immunostimulatory oligonucleotide and/or immunomer is at least partially self-complementary. A self-complementary sequence as used herein prefers to a base sequence which, upon suitable alignment, may form intramolecular or, more typically, intermolecular basepairing between G-C, A-T, A-U and/or G-U wobble pairs. In one embodiment the extent of self-complementarity is at least 50 percent. For example an 8-mer that is at least 50 percent self-complementary may have a sequence capable of forming 4, 5, 6, 7, or 8 G-C, A-T, A-U and/or G-U wobble basepairs. Such basepairs may but need not necessarily involve bases located at either end of the self-complementary immunostimulatory oligonucleotide and/or immunomer. Where nucleic acid stabilization may be important to the immunostimulatory oligonucleotide and/or immunomer, it may be advantageous to “clamp” together one or both ends of a double-stranded nucleic acid, either by basepairing or by any other suitable means. The degree of self-complementarity may depend on the alignment between immunostimulatory oligonucleotide and/or immunomer, and such alignment may or may not include single- or multiple-nucleoside overhangs. In other embodiments, the degree of self-complementarity is at least 60 percent, at least 70 percent, at least 80 percent, at least 90 percent, or even 100 percent.
- By way of non-limiting example, in certain embodiments of this aspect the immunostimulatory nucleic acid will have a structure as detailed in formula (V)
As would be recognized by one skilled in the art, the depicted immunomer compounds have secondary structure because the sequences of the domains are complementary allowing for intermolecular hydrogen bonding. Domains A and A′ may or may not be identical, domains A and C may or may not be identical, domains A and C′ may or may not be identical, domains A′ and C may or may not be identical, domains A′ and C′ may or may not be identical, domains B and B′ may or may not be identical and domains C and C′ may or may not be identical. Moreover, additional immunomers can bind through intermolecular hydrogen bonding thereby creating a chain, or multimers, of immunomers according to the invention. n can be any number of continuous self complementary immunomer compounds. - As used herein, the term “complementary” means having the ability to hybridize to a nucleic acid. Such hybridization is ordinarily the result of hydrogen bonding between complementary strands, preferably to form Watson-Crick or Hoogsteen base pairs, although other modes of hydrogen bonding, as well as base stacking can also lead to hybridization.
- As used herein, the term “secondary structure” refers to intermolecular hydrogen bonding. Intermolecular hydrogen bonding results in the formation of a duplexed nucleic acid molecule.
- Non-limiting representative nucleic acid molecules are presented in Table 8.
TABLE 8 173 5′-TCG1AACG1TTCG1-X-G1CTTG1CAAG1CT-5′ 174 5′-TCG1AACG1TTCG-X-GCTTG1CAAG1CT-5′ 175 5′-TCTCACCTTCT-X-TCTTCCACTCT-5′ 176 5′-TCG2AACG2TTCG2-X-G2CTTG2CAAG2CT-5′ 177 5′-TCG2AACG2TTCG-X-GCTTG2CAAG2CT-5′ 178 5′-TCG1TCG1AACG1TTCG1AGATGAT-3′ 179 5′-TCG2TCG2AACG2TTCG2AGATGAT-3′ 180 5′-TCG3TCG3AACG3TTCG3AGATGAT-3′ 181 5′-TC1GTC1GAAC1GTTC1GAGATGAT-3′ 182 5′-TC2GTC2GAAC2GTTC2GAGATGAT-3′ 183 5′-TC3GTC3GAAC3GTTC3GAGATGAT-3′ 184 5′-TCG1AACG1TTC-X-CTTG1CAAG1CT-5′ 185 5′-TCG1TTCG1AACG1-X-G1CAAG1CTTG1CT-5′ 186 5′-TCCAACCTTCG-X-GCTTCCAACCT-5′ 187 5′-TCG1TTG1CAACG1-X-G1CAACG1TTG1CT-5′ 188 5′-TCG2AACG2TTCT-X-TCTTG2CAAG2CT-5 189 5′-TCG1AACG2TTCG1-X-G1CTTG2CAAG1CT-5′ 190 5′-TCG1AAC1GTTCG1-X-G1CTTGC1AAG1CT-5′
Normal phase represents a phosphorothioate linkage
G1 = 2′-deoxy-7-deazaguanosine
G2 = Arabinoguanosine
G3 = 2′-deoxyinosine
C1 = 1-(2′-deoxy-β-D-ribofuranosyl)-2-oxo-7-deaza-8-methylpurine
C2 = Arabinocytidine
C3 = 2′-deoxy-5-hydroxycytidine
X = C3 Linker
-
- The methods and compositions according to all aspects of the invention are useful in therapeutic approaches to treating diseases wherein the treatment involves immune system modulation and immune-based therapies. Particularly preferred disease targets include cancer, infectious diseases and allergies.
- In certain embodiments, the therapeutic method is for the treatment of cancer. Cancers or tumors include but are not limited to biliary tract cancer; brain cancer; breast cancer; cervical cancer; choriocarcinoma; colon cancer; endometrial cancer; esophageal cancer; gastric cancer; intraepithelial neoplasms; lymphomas; liver cancer; lung cancer (e.g. small cell and non-small cell); melanoma; neuroblastomas; oral cancer; ovarian cancer; pancreatic cancer; prostate cancer; rectal cancer; sarcomas; skin cancer; testicular cancer; thyroid cancer; and renal cancer, as well as other carcinomas and sarcomas.
- In some embodiments, the therapeutic method is for the treatment of an infection. By way of non-limiting example, viruses that have been found to infect humans include but are not limited to: Retroviridae (e.g. human immunodeficiency viruses, such as HIV-1 (also referred to as HTLV-III, LAV or HTLV-III/LAV, or HIV-III), and other isolates, such as HIV-LP; Picornaviridae (e.g. polio viruses, hepatitis A virus; enteroviruses, human Coxsackie viruses, rhinoviruses, echoviruses); Calciviridae (e.g. strains that cause gastroenteritis); Togaviridae (e.g. equine encephalitis viruses, rubella viruses); Flaviridae (e.g. dengue viruses, encephalitis viruses, yellow fever viruses); Coronoviridae (e.g. coronaviruses); Rhabdoviradae (e.g. vesicular stomatitis viruses, rabies viruses); Coronaviridae (e.g. coronaviruses); Rhabdoviridae (e.g. vesicular stomatitis viruses, rabies viruses); Filoviridae (e.g. ebola viruses); Paramyxoviridae (e.g. parainfluenza viruses, mumps virus, measles virus, respiratory syncytial virus); Orthomyxoviridae (e.g influenza viruses); Bungaviridae (e.g. Hantaan viruses, bunga viruses, phleboviruses and Nairo viruses); Arena viridae (hemorrhagic fever viruses); Reoviridae (e.g. reoviruses, orbiviurses and rotaviruses); Birnaviridae; Hepadnaviridae (Hepatitis B virus); Parvovirida (parvoviruses); Papovaviridae (papilloma viruses, polyoma viruses); Adenoviridae (most adenoviruses); Herpesviridae (herpes simplex virus (HSV) 1 and 2, varicella zoster virus, cytomegalovirus (CMV), herpes virus; Poxviridae (variola viruses, vaccinia viruses, pox viruses); and Iridoviridae (e.g. African swine fever virus); and unclassified viruses (e.g. the etiological agents of Spongiform encephalopathies, the agent of delta hepatitis (thought to be a defective satellite of hepatitis B virus), the agents of non-A, non-B hepatitis (class 1=internally transmitted; class 2=parenterally transmitted (i.e. Hepatitis C); Norwalk and related viruses, and astroviruses).
- In certain embodiments, therapeutic methods of the invention are directed to the treatment of an allergy. An “allergen” refers to a substance (antigen) that can induce an allergic or asthmatic response in a susceptible subject. The list of allergens is enormous and can include pollens, insect venoms, animal dander dust, fungal spores and drugs (e.g. penicillin). Examples of natural, animal and plant allergens include but are not limited to proteins specific to the following genuses: Canine (Canis familiaris); Dermatophagoides (e.g. Dermatophagoides farinae); Felis (Felis domesticus); Ambrosia (Ambrosia artemiisfolia); Lolium (e.g. Lolium perenne or Lolium multiflorum); Cryptomeria (Cryptomeria japonica); Altemaria (Alternaria alternata); Alder; Alnus (Alnus gultinoasa); Betula (Betula verrucosa); Quercus (Quercus alba); Olea (Olea europa); Artemisia (Artemisia vulgaris); Plantago (e.g. Plantago lanceolata); Parietaria (e.g. Parietaria officinalis or Parietaria judaica); Blattella (e.g. Blattella germanica); Apis (e.g. Apis multiflorum); Cupressus (e.g. Cupressus sempervirens, Cupressus arizonica and Cupressus macrocarpa); Juniperus (e.g. Juniperus sabinoides, Juniperus virginiana, Juniperus communis and Juniperus ashei); Thuya (e.g. Thuya orientalis); Chamaecyparis (e.g. Chamaecyparis obtusa); Periplaneta (e.g. Periplaneta americana); Agropyron (e.g. Agropyron repens); Secale (e.g. Secale cereale); Triticum (e.g. Triticum aestivum); Dactylis (e.g. Dactylis glomerata); Festuca (e.g. Festuca elatior); Poa (e.g. Poa pratensis or Poa compressa); Avena (e.g. Avena sativa); Holcus (e.g. Holcus lanatus); Anthoxanthum (e.g. Anthoxanthum odoratum); Arrhenatherum (e.g. Arrhenatherum elatius); Agrostis (e.g. Agrostis alba); Phleum (e.g. Phleum pratense); Phalaris (e.g. Phalaris arundinacea); Paspalum (e.g. Paspalum notatum); Sorghum (e.g. Sorghum halepensis); and Bromus (e.g. Bromus inermis). Specific allergens may be purchased commercially (e.g., INDOOR Biotechnologies Inc., Charlottesville, Va. 22903).
- In a second aspect, the invention provides a method for treating cancer in a cancer patient comprising administering to the patient a chemotherapeutic agent in combination with an immunostimulatory oligonucleotide and/or immunomer conjugate, which comprises an immunostimulatory oligonucleotide and/or immunomer compound, as described above, and an antigen conjugated to the immunostimulatory oligonucleotide and/or immunomer compound at a position other than the accessible 5′ end. In some embodiments, the non-nucleotidic linker comprises an antigen associated with cancer, which is conjugated to the oligonucleotide. In some other embodiments, the antigen is conjugated to the oligonucleotide at a position other than its 3′ end. In some embodiments, the antigen produces a vaccine effect. For purposes of the invention, the term “associated with” means that the antigen is present when the cancer, is present, but either is not present, or is present in reduced amounts, when the cancer is absent.
- The immunostimulatory oligonucleotides and/or immunomer compound is covalently linked to the antigen, or it is otherwise operatively associated with the antigen. As used herein, the term “operatively associated with” refers to any association that maintains the activity of both immunostimulatory oligonucleotide and/or immunomer compound and antigen. Nonlimiting examples of such operative associations include being part of the same liposome or other such delivery vehicle or reagent. Additionally, a nucleic acid molecule encoding the antigen can be cloned into an expression vector and administered in combination with the immunostimulatory oligonucleotide and/or immunomer compound. As used herein, the term “vector” refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. Preferred vectors are those capable of autonomous replication and expression of nucleic acids to which they are linked (e.g., an episome). Vectors capable of directing the expression of genes to which they are operatively linked are referred to herein as “expression vectors.” In general, expression vectors of utility in recombinant DNA techniques are often in the form of “plasmids” which refer generally to circular double stranded DNA loops which, in their vector form, are not bound to the chromosome. In the present specification, “plasmid” and “vector” are used interchangeably as the plasmid is the most commonly used form of vector. However, the invention is intended to include such other forms of expression vectors which serve equivalent functions and which become known in the art subsequently hereto.
- In embodiments wherein the immunostimulatory oligonucleotide and/or immunomer compound is covalently linked to the antigen, such covalent linkage preferably is at any position on the immunostimulatory oligonucleotide and/or immunomer compound other than an accessible 5′ end of an immunostimulatory oligonucleotide. For example, the antigen may be attached at an internucleoside linkage or may be attached to the non-nucleotidic linker. Alternatively, the antigen may itself be the non-nucleotidic linker.
- In a third aspect, the invention provides pharmaceutical formulations comprising an immunostimulatory oligonucleotide and/or immunostimulatory oligonucleotide conjugate and/or immunomer compound or immunomer conjugate according to the invention, a chemotherapeutic agent and a physiologically acceptable carrier. As used herein, the term “physiologically acceptable” refers to a material that does not interfere with the effectiveness of the immunomer compound and is compatible with a biological system such as a cell, cell culture, tissue, or organism. Preferably, the biological system is a living organism, such as a vertebrate. Preferred chemotherapeutic agents include, without limitation Gemcitabine methotrexate, vincristine, adriamycin, cisplatin, non-sugar containing chloroethylnitrosoureas, 5-fluorouracil, mitomycin C, bleomycin, doxorubicin, dacarbazine, taxol, fragyline, Meglamine GLA, valrubicin, carmustaine and poliferposan, MMI270, BAY 12-9566, RAS famesyl transferase inhibitor, famesyl transferase inhibitor, MMP, MTA/LY231514, LY264618/Lometexol, Glamolec, CI-994, TNP-470, Hycamtin/Topotecan, PKC412, Valspodar/PSC833, Novantrone/Mitroxantrone, Metaret/Suramin, Batimastat, E7070, BCH-4556, CS-682, 9-AC, AG3340, AG3433, Incel/VX-710, VX-853, ZD0101, ISI641, ODN 698, TA 2516/Marmistat, BB2516/Marmistat, CDP 845, D2163, PD183805, DX8951f, Lemonal DP 2202, FK 317, Picibanil/OK-432, AD 32/Valrubicin, Metastron/strontium derivative, Temodal/Temozolomide, Evacet/liposomal doxorubicin, Yewtaxan/Placlitaxel, Taxol/Paclitaxel, Xeload/Capecitabine, Furtulon/Doxifluridine, Cyclopax/oral paclitaxel, Oral Taxoid, SPU-077/Cisplatin, HMR 1275/Flavopiridol, CP-358 (774)/EGFR, CP-609 (754)/RAS oncogene inhibitor, BMS-182751/oral platinum, UFT(Tegafur/Uracil), Ergamisol/Levamisole, Eniluracil/776C85/5FU enhancer, Campto/Levamisole, Camptosar/Irinotecan, Tumodex/Ralitrexed, Leustatin/Cladribine, Paxex/Paclitaxel, Doxil/liposomal doxorubicin, Caelyx/liposomal doxorubicin, Fludara/Fludarabine, Pharmarubicin/Epirubicin, DepoCyt, ZD1839, LU 79553/Bis-Naphtalimide, LU 103793/Dolastain, Caetyx/liposomal doxorubicin, Gemzar/Gemcitabine, ZD 0473/Anormed, YM 116, Iodine seeds, CDK4 and CDK2 inhibitors, PARP inhibitors, D4809/Dexifosamide, Ifes/Mesnex/Ifosamide, Vumon/Teniposide, Paraplatin/Carboplatin, Plantinol/cisplatin, Vepeside/Etoposide, ZD 9331, Taxotere/Docetaxel, prodrug of guanine arabinoside, Taxane Analog, nitrosoureas, alkylating agents such as melphelan and cyclophosphamide, Aminoglutethimide, Asparaginase, Busulfan, Carboplatin, Chlorombucil, Cytarabine HCl, Dactinomycin, Daunorubicin HCl, Estramustine phosphate sodium, Etoposide (VP16-213), Floxuridine, Fluorouracil (5-FU), Flutamide, Hydroxyurea (hydroxycarbamide), Ifosfamide, Interferon Alfa-2a, Alfa-2b, Leuprolide acetate (LHRH-releasing factor analogue), Lomustine (CCNU), Mechlorethamine HCl (nitrogen mustard), Mercaptopurine, Mesna, Mitotane (o.p′-DDD), Mitoxantrone HCl, Octreotide, Plicamycin, Procarbazine HCl, Streptozocin, Tamoxifen citrate, Thioguanine, Thiotepa, Vinblastine sulfate, Amsacrine (m-AMSA), Azacitidine, Erthropoietin, Hexamethylmelamine (HMM), Interleukin 2, Mitoguazone (methyl-GAG; methyl glyoxal bis-guanylhydrazone; MGBG), Pentostatin (2′deoxycoformycin), Semustine (methyl-CCNU), Teniposide (VM-26) and Vindesine sulfate.
- In yet another embodiment, the formulations include a cancer vaccine selected from the group consisting of EFG, Anti-idiotypic cancer vaccines, Gp75 antigen, GMK melanoma vaccine, MGV ganglioside conjugate vaccine, Her2/new, Ovarex, M-Vax, O-Vax, L-Vax, STn-KHL theratope, BLP25 (MUC-1), liposomal idiotypic vaccine, Melacine, peptide antigen vaccines, toxin/antigen vaccines, MVA-vased vaccine, PACIS, BCG vaccine, TA-HPV, TA-CIN, DISC-virus and ImmunCyst/TheraCys.
- In a further aspect, the invention provides a method for treating cancer in a cancer patient comprising administering to the patient a monoclonal antibody in combination with an immunostimulatory oligonucleotide and/or immunomer compound, as described herein. Passive immunotherapy in the form of antibodies, and particularly monoclonal antibodies, has been the subject of considerable research and development as anti-cancer agents. The term “monoclonal antibody” as used herein refers to an antibody molecule of single molecular composition. A monoclonal antibody composition displays a single binding specificity and affinity for a particular epitope. Accordingly, the term “human monoclonal antibody” refers to antibodies displaying a single binding specificity which have variable and constant regions derived from human germline immunoglobulin sequences. Examples of anti-cancer agents include, but are not limited to, Panorex (Glaxo-Welcome), Rituxan (IDEC/Genentech/Hoffman la Roche), Mylotarg (Wyeth), Campath (Millennium), Zevalin (IDEC and Schering AG), Bexxar (Corixa/GSK), Erbitux (Imclone/BMS), Avastin (Genentech) and Herceptin (Genentech/Hoffman la Roche). Antibodies may also be employed in active immunotherapy utilising anti-idiotype antibodies which appear to mimic (in an immunological sense) cancer antigens. Monoclonal antibodies can be generated by methods known to those skilled in the art of recombinant DNA technology.
- As used herein, the term “carrier” encompasses any excipient, diluent, filler, salt, buffer, stabilizer, solubilizer, lipid, or other material well known in the art for use in pharmaceutical formulations. It will be understood that the characteristics of the carrier, excipient, or diluent will depend on the route of administration for a particular application. The preparation of pharmaceutically acceptable formulations containing these materials is described in, e.g., Remington's Pharmaceutical Sciences, 18th Edition, ed. A. Gennaro, Mack Publishing Co., Easton, Pa., 1990.
- Toll-like receptors (TLRs) function as sensors of infection and induce the activation of innate and adaptive immune responses. TLRs recognize a wide variety of ligands, called pathogen-associated molecular patterns (PAMPs). Upon recognizing conserved pathogen-associated molecular products, TLRs activate host defense responses through their intracellular signalling domain, the Toll/interleukin-1 receptor (TIR) domain, and the downstream adaptor protein MyD88. Dendritic cells and macrophages normally respond to Toll-like receptor (TLR) ligands and cytokines (for example, interleukin-1β; IL-6 and tumour necrosis factor, TNF), which they also produce; natural killer (NK) cells and T cells are also involved. After TLR stimulation by bacterial compounds, innate immune cells release a range of cytokines. Some examples of TLR ligands include, but are not limited to, lipoproteins; peptidoglycan, zymosan (TLR2), double-stranded RNA, polyI:polyC (TLR3), lipopolysaccharide, heat shock proteins, taxol (TLR4), flagellin (TLR5), and imidazoquinolines- R848, resiquimod, imiquimod; ssRNA (TLR7/8).
- In a fourth aspect, the invention provides a method for sensitizing cancer cells to ionizing radiation. The method according to this aspect of the invention comprises administering to a mammal an immunostimulatory oligonucleotide or an immunomer compound according to the invention and treating the animal with ionizing radiation. In certain preferred embodiments, γ-Irradiation is administered at 1.56 Gy/min. In certain preferred embodiments, radiation therapy is administered from about 0.1 to about 10.0 Gy, preferably from about 0.25 to about 8.0 Gy, more preferably from about 0.5 to about 5.0 Gy, or as 3.0 Gy of radiation either twice for one week, four times for one week, or three times on
Days - In a fifth aspect, the invention provides a method for synergistically stimulating an immune response in a patient comprising administering to a patient a therapeutically effective synergistic amount of an immunomer compound in combination with a therapeutically effective synergistic amount of IL-2, and an antigen, wherein administration of said combination synergistically stimulates the production of cytokines in a patient. Preferred cytokines stimulated in accordance with the invention include but are not limited to one or more of, IL-12, interferon-γ, IFN-α and IFN-β.
- In certain embodiments, the method is for the treatment of cancer and the antigen is one specific to or associated with a cancer. In some embodiments, the method is for the treatment of an infection and the antigen is an antigen associated with the infection. In certain embodiments, the method is for the treatment of an allergy and the antigen is associated with the allergy. As used herein, the term “associated with” means that the antigen is present when the cancer, allergen or infectious disease is present, but either is not present, or is present in reduced amounts, when the cancer, allergen or infectious disease is absent.
- As used herein, the term “antigen” means a substance that is recognized and bound specifically by an antibody or by a T cell antigen receptor. Antigens can include peptides, proteins, glycoproteins, polysaccharides, gangliosides and lipids; portions thereof and combinations thereof. The antigens can be those found in nature or can be synthetic. Haptens are included within the scope of “antigen.” A hapten is a low molecular weight compound that is not immunogenic by itself but is rendered immunogenic when conjugated with an immunogenic molecule containing antigenic determinants.
- In certain embodiments, antigens useful in methods and compositions of the invention are tumor-associated and/or tumor-specific antigens. Non-limiting examples include: Prostate Specific Antigen (PSA) and Prostatic Acid Phosphatase (PAP), which are markers normally present in the blood in small amounts that can be elevated in the presence of prostate cancer; Cancer Antigen 125 (CA-125), which is at elevated levels in patients with ovarian cancer and is sometimes elevated in the presence of other cancers; CA 15-3 and CA 27-29, which are useful in following the course of breast cancer and its response to treatment; CA 19-9, which is commonly used as a check for the spread of pancreatic cancer and is also elevated in patients with colorectal, stomach and bile duct cancer; Carcinoembryonic Antigen (CEA), which is normally present in small amounts but can be elevated in the blood of patients with a wide variety of cancers; Alpha-Fetoprotein, which is a marker for hepatocellular and germ cell (nonseminoma) carcinoma; and Galactosyl Transferase II, an isozyme of galactosyl transferase, that has been shown to be elevated in a variety of malignancies, predominantly gastrointestinal. As known by one skilled in the art, tumor-associated and tumor-specific antigens are available commercially. Also contemplated by the invention are those antigens that can be made by recombinant nucleic acid technologies and/or synthetic antigens, e.g., peptides produced by methods known in the art.
- In certain embodiments of the fifth aspect of the invention, the invention provides a method for treating cancer in a cancer patient comprising administering to the patient a therapeutically effective synergistic amount of IL-2 in combination with an immunomer conjugate, which comprises an immunomer compound, as described above, and an antigen. In certain embodiments, the antigen is conjugated to the immunomer compound at a position other than the accessible 5′ end. In some embodiments, the non-nucleotidic linker of the immunomer compound comprises an antigen associated with cancer. In some embodiments, the antigen is conjugated to the immunomer compound at a position other than its 5′ end. In some embodiments, the antigen produces a vaccine effect. For purposes of the invention, the term “associated with” means that the antigen is present when the cancer is present, but either is not present, or is present in reduced amounts, when the cancer is absent.
- In some embodiments of the fifth aspect of the invention, the immunomer compound is covalently linked to the antigen, or it is otherwise operatively associated with the antigen. As used herein, the term “operatively associated with” refers to any association that maintains the activity of the immunomer compound and antigen. Nonlimiting examples of such operative associations include being part of the same liposome or other such delivery vehicle or reagent. In embodiments wherein the immunomer compound is covalently linked to the antigen, such covalent linkage preferably is at any position on the immunomer compound other than at an accessible 5′ end of the immunomer compound. For example, the antigen may be attached at an internucleoside linkage or may be attached to the non-nucleotidic linker. Alternatively, the antigen may itself be the non-nucleotidic linker.
- In a sixth aspect of the invention, at least one immunostimulatory oligonucleotide that is not an immunomer compound is used in combination with a therapeutically effective amount of IL-2 to selectively and synergistically stimulate the production of cytokines in a patient. Preferred cytokines synergistically stimulated in accordance with the invention are selected from the group consisting of, IL-12 and IFN-γ, IFN-α, IFN-β or combinations thereof. In accordance with the present invention, preferred immunostimulatory oligonucleotides that are not immunomer compounds include those containing at least one immunostimulatory CpG dinucleotide wherein C is not cytosine or deoxycytosine and/or G is not guanosine or 2-deoxyguanosine. Other preferred immunostimulatory oligonucleotides of the invention that are not immunomer compounds are those that include alternative immunostimulatory moieties that are not CpG. Examples of such alternative immunostimulatory moieties include but are not limited to nucleosides comprising non-naturally occurring bases and/or sugar and secondary structures of the oligonucleotide itself such as hairpin structures that stabilize the oligonucleotide, as described in the following U.S. patents and pending U.S. patent applications and are incorporated herein by reference: U.S. Pat. Nos. 6,426,334 and 6,476,000; and U.S. patent application Ser. Nos. 09/770,602, 09/845,623, 09/965,116, 60/440,587, 10/361,111, 60/471,247, 60/477,608.
- In certain embodiments of the invention, each of the immunomer compound or immunostimulatory oligonucleotide and IL-2 is admixed with a pharmaceutically acceptable carrier prior to administration to the patient. In certain embodiments, the immunomer compound or immunostimulatory oligonucleotide are mixed together with a pharmaceutically acceptable carrier prior to administration, or combined as part of a pharmaceutical composition as described in the fourth aspect of the invention. As used herein, the term “carrier” encompasses any excipient, diluent, filler, salt, buffer, stabilizer, solubilizer, lipid, or other material well known in the art for use in pharmaceutical formulations. It will be understood that the characteristics of the carrier, excipient, or diluent will depend on the route of administration for a particular application. The preparation of pharmaceutically acceptable formulations containing these materials is described in, e.g., Remington: The Science and Practice of Pharmacy, 20th Edition, ed. A. L. Gennaro, Lippincott Williams & Wilkins Publishing Co., Philadelphia, Pa., 19106 (ISBN: 0683306472).
- In a seventh aspect, the invention provides therapeutic compositions comprising a pharmaceutically acceptable carrier, a therapeutically effective synergistic amount of an immunomer compound or immunostimulotory oligonucleotide, a therapeutically effective synergistic amount of IL-2 and optionally, an antigen, wherein administration of said therapeutic composition synergistically stimulates the production of cytokines in a patient. Preferred cytokines that are synergistically stimulated in accordance with the invention are selected from the group consisting of IL-12 and interferon-γ, IFN-α, IFN-β or combinations thereof.
- All aspects of the invention are useful in the treatment of disease, and are particularly useful in immune-based therapies for treating cancer, infectious diseases and allergies. As used herein the term “treating” or “treatment” of disease includes: prevention of disease; dimunition or eradication of signs or symptoms of disease after onset; and prevention of relapse of disease.
- In the methods according to the invention, administration of an immunomer compound or immmumostimulatory oligonucleotide in combination with IL-2 can be by any suitable route including, without limitation, parenteral, oral, sublingual, transdermal, topical, intranasal, aerosol, intraocular, intratracheal, intrarectal, vaginal, by gene gun, dermal patch or in eye drop or mouthwash form. Administration of immunomer compounds, immunostimulatory oligonucleotides, IL-2 or therapeutic compositions thereof can be carried out using known procedures using therapeutically effective synergistic amounts and for periods of time effective to treat disease.
- The term “in combination with” means in the course of treating the same disease in the same patient, and includes administering the immunomer compound and/or immunostimulatory oligonucleotide and/or IL-2 in any order, including simultaneous administration, as well as temporally spaced order of up to several days apart. Such combination treatment may also include more than a single administration of the immunomer compound and/or immunostimulatory oligonucleotide, and/or IL-2, independently. The administration of the immunomer compound and IL-2 may be by the same or different routes.
- One of skill in the art will appreciate that such synergistic effect of either the immunomer compound or immunostimulatory oligonucleotide, IL-2 or both may vary considerably depending on the tissue, organ, the particular disease or the patient to be treated in accordance with the invention. Furthermore, one of skill in the art will appreciate that the therapeutically effective synergistic amount of either the immunomer compound or immunostimulatory oligonucleotide or IL-2 may be lowered or increased by fine tuning and altering the amount of the other component.
- When administered systemically, the immunomer compound is preferably administered at a sufficient dosage to attain a blood level of immunomer compound from about 0.0001 micromolar to about 10 micromolar. For localized administration, much lower concentrations than this may be effective, and much higher concentrations may be tolerated. Preferably, a total dosage of immunostimulatory oligonucleotide and/or immunomer compound ranges from about 0.0001 mg per patient per day to about 200 mg per kg body weight per day. It may be desirable to administer simultaneously, or sequentially, a therapeutically effective synergistic amount of each of the immunomer compound or IL-2 to an individual as a single treatment episode. Preferably, IL-2 is administered in an amount of about 750 to about 75,000 units.
- The invention provides a kit comprising a cytokine and/or chemotherapeutic agent, and immunostimulatory oligonucleotides and/or immunomer compounds, the latter comprising at least two oligonucleotides linked together, such that the immunomer compound has more than one accessible 5′ end, wherein at least one of the oligonucleotides is an immunostimulatory oligonucleotide. In another aspect, the kit comprises an immunostimulatory oligonucleotide and/or immunostimulatory oligonucleotide conjugate and/or immunomer compound or immunomer conjugate according to the invention, a cytokine and/or chemotherapeutic agent and a physiologically acceptable carrier. The kit will generally also include a set of instructions for use.
- The examples below are intended to further illustrate certain preferred embodiments of the invention, and are not intended to limit the scope of the invention.
- Oligonucleotides were synthesized on a 1 μmol scale using an automated DNA synthesizer (Expedite 8909; PerSeptive Biosystems, Framingham, Mass.), following the linear synthesis or parallel synthesis procedures outlined in
FIGS. 5 and 6 . - Deoxyribonucleoside phosphoramidites were obtained from Applied Biosystems (Foster City, Calif.). 1′,2′-dideoxyribose phosphoramidite, propyl-1-phosphoramidite, 2-deoxyuridine phosphoramidite, 1,3-bis-[5-(4,4′-dimethoxytrityl)pentylamidyl]-2-propanol phosphoramidite and methyl phosponamidite were obtained from Glen Research (Sterling, Va.). β-L-2′-deoxyribonucleoside phosphoramidite, α-2′-deoxyribonucleoside phosphoramidite, mono-DMT-glycerol phosphoramidite and di-DMT-glycerol phosphoramidite were obtained from ChemGenes (Ashland, Mass.). (4-Aminobutyl)-1,3-propanediol phosphoramidite was obtained from Clontech (Palo Alto, Calif.). Arabinocytidine phosphoramidite, arabinoguanosine, arabinothymidine and arabinouridine were obtained from Reliable Pharmaceutical (St. Louis, Mo.). Arabinoguanosine phosphoramidite, arabinothymidine phosphoramidite and arabinouridine phosphoramidite were synthesized at Hybridon, Inc. (Cambridge, Mass.) (Noronha et al. (2000) Biochem., 39:7050-7062).
- All nucleoside phosphoramidites were characterized by 31P and 1H NMR spectra. Modified nucleosides were incorporated at specific sites using normal coupling cycles. After synthesis, oligonucleotides were deprotected using concentrated ammonium hydroxide and purified by reverse phase HPLC, followed by dialysis. Purified oligonucleotides as sodium salt form were lyophilized prior to use. Purity was tested by CGE and MALDI-TOF MS.
- In vitro analysis of splenocyte proliferation was carried out using standard procedures as described previously (see, e.g., Zhao et al., Biochem Pharma 51:173-182 (1996)). The results are shown in
FIG. 8A . These results demonstrate that at the higher concentrations,Immunomer 6, having two accessible 5′ ends results in greater splenocyte proliferation than doesImmunomer 5, having no accessible 5′ end orOligonucleotide 4, with a single accessible 5′ end.Immunomer 6 also causes greater splenocyte proliferation than the LPS positive control. - To test the applicability of the in vitro results to an in vivo model, selected oligonucleotides were administered to mice and the degree of splenomegaly was measured as an indicator of the level of immunostimulatory activity. A single dose of 5 mg/kg was administered to BALB/c mice (female, 4-6 weeks old, Harlan Sprague Dawley Inc, Baltic, Conn.) intraperitoneally. The mice were sacrificed 72 hours after oligonucleotide administration, and spleens were harvested and weighed. The results are shown in
FIG. 8B . These results demonstrate thatImmunomer 6, having two accessible 5′ ends, has a far greater immunostimulatory effect than do Oligonucleotide 4 orImmunomer 5. - The secretion of IL-12 and IL-6 in vertebrate cells, preferably BALB/c mouse spleen cells or human PBMC, was measured by sandwich ELISA. The required reagents including cytokine antibodies and cytokine standards were purchased form PharMingen, San Diego, Calif. ELISA plates (Costar) were incubated with appropriate antibodies at 5 μg/mL in PBSN buffer (PBS/0.05% sodium azide, pH 9.6) overnight at 4° C. and then blocked with PBS/1% BSA at 37° C. for 30 minutes. Cell culture supernatants and cytokine standards were appropriately diluted with PBS/10% FBS, added to the plates in triplicate, and incubated at 25° C. for 2 hours. Plates were overlaid with 1 μg/mL appropriate biotinylated antibody and incubated at 25° C. for 1.5 hours. The plates were then washed extensively with PBS-T Buffer (PBS/0.05% Tween 20) and further incubated at 25° C. for 1.5 hours after adding streptavidin conjugated peroxidase (Sigma, St. Louis, Mo.). The plates were developed with Sure Blue™ (Kirkegaard and Perry) chromogenic reagent and the reaction was terminated by adding Stop Solution (Kirkegaard and Perry). The color change was measured on a Ceres 900 HDI Spectrophotometer (Bio-Tek Instruments). The results are shown in Table 5A below.
- Human peripheral blood mononuclear cells (PBMCs) were isolated from peripheral blood of healthy volunteers by Ficoll-Paque density gradient centrifugation (Histopaque-1077, Sigma, St. Louis, Mo.). Briefly, heparinized blood was layered onto the Histopaque-1077 (equal volume) in a conical centrifuge and centrifuged at 400×g for 30 minutes at room temperature. The buffy coat, containing the mononuclear cells, was removed carefully and washed twice with isotonic phosphate buffered saline (PBS) by centrifugation at 250×g for 10 minutes. The resulting cell pellet was then resuspended in RPMI 1640 medium containing L-glutamine (MediaTech, Inc., Herndon, Va.) and supplemented with 10% heat inactivated FCS and penicillin-streptomycin (100 U/ml). Cells were cultured in 24 well plates for different time periods at 1×106 cells/ml/well in the presence or absence of oligonucleotides. At the end of the. incubation period, supernatants were harvested and stored frozen at −70° C. until assayed for various cytokines including IL-6 (BD Pharmingen, San Diego, Calif.), IL-10 (BD Pharmingen), IL-12 (BioSource International, Camarillo, Calif.), IFN-α (BioSource International) and −γ (BD Pharmingen) and TNF-α (BD Pharmingen) by sandwich ELISA. The results are shown in Tables 9 and 9A below.
- In all instances, the levels of IL-12 and IL-6 in the cell culture supernatants were calculated from the standard curve constructed under the same experimental conditions for IL-12 and IL-6, respectively. The levels of IL-10, IFN-gamma and TNF-α in the cell culture supernatants were calculated from the standard curve constructed under the same experimental conditions for IL-10, IFN-gamma and TNF-α, respectively.
TABLE 9 Immunomer Structure and Immunostimulatory Activity in Human PBMC Cultures Oligo Oligo Length/ IL-12 (pg/mL) IL-6 (pg/mL) No. Sequences and Modification (5′-3′) or Each Chain D1 D2 D1 D2 25 5′-CTATCTGTCGTTCTCTGT-3′ 18mer (PS) 184 332 3077 5369 26 11mer (PS) 237 352 3724 4892 Oligo Oligo Length/ IL-10 (pg/mL) IFN-γ (pg/mL) No. Sequences and Modification (5′-3′) or Each Chain D1 D2 D1 D2 25 5′-CTATCTGTCGTTCTCTGT-3′ 18mer (PS) 37 88 125 84 26 11mer (PS) 48 139 251 40 Oligo Oligo Length/ TNF-α (pg/mL) No. Sequences and Modification (5′-3′) or Each Chain D1 D2 25 5′-CTATCTGTCGTTCTCTGT-3′ 18mer (PS) 537 nt 26 11mer (PS) 681 nt - D1and D2 are
donors TABLE 9A Immunomer Structure and Immunostimulatory Activity in BALB/c Mouse Spleen Cell Cultures Oligo Oligo Length/ IL-12 (pg/mL) IL-6 (pg/mL) No. Sequences and Modification (5′-3′) or Each Chain 3 μg/ mL 10 μg/mL 26 11mer (PS) 870 10670 27 11mer (PS) 1441 7664 28 11mer (PS) 1208 1021 29 11mer (PS) 162 1013 30 14mer (PO) 264 251 31 14mer (PO) 149 119 32 11mer (PS) 2520 9699 33 11mer (PS) 2214 16881 34 11mer PS) 3945 10766 35 11mer (PS) 2573 19411 36 14mer (PO) 2699 408 37 14mer (PO) 839 85 38 14mer (PO) 143 160
Italic phase represents a phosphodiester linkage. - In addition, the results shown in FIGS. 7A-C demonstrate that
Immunomer 2, with two accessible 5′ ends elevates IL-12 and IL-6, but not IL-10 at lower concentrations thanOligonucleotide 1 orImmunomer 3, with one or zero accessible 5′ ends, respectively. - As shown in Tables 10-12, immunostimulatory activity was maintained for immunomer compounds of various lengths having a non-natural pyrimidine nucleoside or non-natural purine nucleoside in the immunostimulatory dinucleotide motif.
TABLE 10 Immunomer Structure and Immunostimulatory Activity Oligo Length/ IL-12 (pg/mL) IL-6 (pg/mL) No. Sequences and Modification (5′-3′) or Each Chain @ 3 μg/mL @ 3 μg/mL 51 5′-CTCACTTTCGTTCTCTGT-3′ 18mer 404 348 57 11mer 591 365 58 11mer 303 283 59 8mer 55 66 60 8mer 242 143 -
-
TABLE 12 Immunomer Structure and Immunostimulatory Activity Oligo Length/ IL-12 (pg/mL) IL-6 (pg/mL) No. Sequences and Modification (5′-3′) or Each Chain 3 μg/ mL 3 μg/ mL 4 5′-CTATCTGACGTTCTCTGT-3′ 18mer 1176 1892 65 18mer 443 192 66 18mer 627 464 67 14mer 548 152 68 14mer 1052 1020 69 11mer 2050 2724 70 11mer 1780 1741 71 8mer 189 55 72 8mer 397 212 - In order to examine the effect of the length of the linker connecting the two oligonucleotides, immunomer compounds that contained the same oligonucleotides, but different linkers were synthesized and tested for immunostimulatory activity. The results shown in Table 13 suggest that linker length plays a role in the immunostimulatory activity of immunomer compounds. The best immunostimulatory effect was achieved with C3- to C6-alkyl linkers or abasic linkers having interspersed phosphate charges.
TABLE 13 Immunomer Structure and Immunostimulatory Activity Oligo Length/ IL-12 (pg/mL) IL-6 (pg/mL) No. Sequences and Modification (5′-3′) or Each Chain 0.3 μg/ mL 1 μg/ mL 4 5′-CTATCTGACGTTCTCTGT-3′ 18mer 257 635 73 10mer 697 1454 74 10mer 1162 669 75 10mer 1074 1375 76 10mer 563 705 77 10mer 264 543 78 10mer 1750 2258 79 10mer 2255 2034 80 10mer 1493 1197 81 10mer 3625 2642 82 10mer 4248 2988 83 10mer 1241 1964 - In general, immunostimulatory oligonucleotides that contain natural phosphodiester backbones are less immunostimulatory than are the same length oligonucleotides with a phosphorothioate backbones. This lower degree of immunostimulatory activity could be due in part to the rapid degradation of phosphodiester oligonucleotides under experimental conditions. Degradation of oligonucleotides is primarily the result of 3′-exonucleases, which digest the oligonucleotides from the 3′ end. The immunomer compounds of this example do not contain a free 3′ end. Thus, immunomer compounds with phosphodiester backbones should have a longer half life under experimental conditions than the corresponding monomeric oligonucleotides, and should therefore exhibit improved immunostimulatory activity. The results presented in Table 14 demonstrate this effect, with Immunomers 84 and 85 exhibiting immunostimulatory activity as determined by cytokine induction in BALB/c mouse spleen cell cultures.
TABLE 14 Immunomer Structure and Immunostimulatory Activity Oligo Length/or IL-12 (pg/mL) IL-6 (pg/mL) No. Sequences and Modification (5′-3′) Each Chain 0.3 μg/ mL 1 μg/ mL 4 5′-CTATCTGACGTTCTCTGT-3′ 18mer 225 1462 84 14mer 1551 159 85 14mer 466 467
L=C3-Linker - PC3 cells were cultured in 90% Ham's, F12K Medium with 10% Fetal Bovine Serum (FBS), in presence of 100 U/ml Penicillin and 100 μg/ml Streptomycin to establish the Human Prostate cancer model (PC3). Male athymic nude mice, 4-6 weeks old (Frederick Cancer Research and Development Center, Frederick, Md.), were accommodated for 6 days for environmental adjustment prior to the study. Cultured PC3 cells were harvested from the monolayer cultures, washed twice with Ham's, F12K Medium (10% FBS), resuspended in FBS-free Ham's, F12K Medium: Matrigel basement membrane matrix (Becton Dickinson Labware, Bedford, Ma.) (5:1; V/V), and injected subcutaneously (5×106 cells, total volume 0.2 ml) into the left inguinal area of each of the mice. The animals were monitored by general clinical observation, body weight, and tumor growth. Tumor growth was monitored by the measurement, with calipers, of two perpendicular diameters of the implant. Tumor mass (weight in grams) was calculated by the formula, 1/2a×b2, where ‘a’ is the long diameter (cm) and ‘b’ is the short diameter (cm). When the mean tumor sizes reached ˜80 mg, the animals bearing human cancer xenografts were randomly divided into the treatment and control groups (5 animals/group). The control group received sterile physiological saline (0.9% NaCl) only. Immunomers 26 or 194, aseptically dissolved in physiological saline, was administered by subcutaneously injection at dose of 0.5 or 1.0 mg/kg/day, 3 doses/week. Gemcitabine HCl (Eli Lilly and Company, Indianapolis, Ind.) was given twice by intraperitoneal injection at 160 mg/kg on
Day - G1: Saline
- G2: Gemcitabine (160 mg/kg/day, IP,
Day 0 and 3) - G3: 26 (1.0 mg/kg/day, SC, 3 doses /week, for 6 weeks)
- G4: 26 (0.5 mg/kg/day, SC, 3 doses /week, for 6 weeks)
- G5: 194 (1.0 mg/kg/day, SC, 3 doses /week, for 6 weeks)
- G6: 194 (0.5 mg/kg/day, SC, 3 doses /week, for 6 weeks)
- G7: 26 (0.5 mg/kg/day, SC, 3 doses /week, for 6 weeks)+Gemcitabine (160 mg/kg/day,
Day 0 and 3) - G8: 194 (0.5 mg/kg/day, SC, 3 doses /week, for 6 weeks)+Gemcitabine (160 mg/kg/day,
Day 0 and 3) - The tumor measurements after various treatments are presented in Table 15 and
FIG. 13 . The tumor growth in all Immunomer 26 and 194 treated animals was remarkably inhibited compared with saline control (p<0.5). There was a tendency of dose-response relationship in these treatment groups (FIG. 13 ). There was no significant difference between 26 and 194 (Table 15).TABLE 15 Tumor mass of tumor-bearing mice following treatment of 26, 194, Gemcitabine or combination therapy Gemcitabine 26 26 Day Saline SD SE 160 mg/kg SD SE 1 mg/kg SD SE 0.5 mg/kg SD SE 0 82.7 16.7 7.5 82.6 15.7 7.0 80.1 10.6 4.7 80.4 10.5 4.7 3 81.9 13.3 5.9 73.0 3.4 1.5 67.5 8.1 3.6 54.3 8.4 3.7 6 80.5 11.5 5.2 50.4 11.7 5.2 50.4 9.0 4.0 45.3 5.5 2.5 9 87.7 8.2 3.7 35.7 6.3 2.8 40.9 5.1 2.3 43.9 9.3 4.2 12 97.6 18.6 8.3 36.2 3.3 1.5 41.3 6.2 2.8 46.5 3.8 1.7 15 112.0 21.5 9.6 31.7 4.1 1.8 42.8 12.8 5.7 50.0 14.1 6.3 18 126.3 17.3 7.7 40.8 8.4 3.7 54.9 7.6 3.4 59.3 6.7 3.0 21 152.5 25.5 11.4 47.4 9.8 4.4 62.5 10.4 4.6 71.0 16.7 7.5 24 187.0 29.2 13.1 56.5 5.2 2.3 79.5 24.1 10.8 100.1 9.7 4.3 27 245.2 24.1 10.8 68.0 14.8 6.6 94.1 28.9 12.9 124.5 21.1 9.5 30 343.6 63.9 28.6 89.4 11.1 5.0 119.8 18.7 8.3 162.4 37.5 16.8 33 438.5 107.1 47.9 106.5 14.1 6.3 176.6 43.8 19.6 213.6 66.7 29.8 36 614.4 185.1 82.8 144.2 48.2 21.6 248.7 47.0 21.0 325.3 106.2 47.5 39 866.8 237.4 106.2 175.3 61.4 27.5 320.1 64.2 28.7 416.8 154.5 69.1 42 1136.9 205.9 92.1 269.1 78.8 35.2 417.8 78.7 35.2 546.9 139.1 62.2 45 383.8 146.4 65.5 550.8 134.2 60.0 667.6 284.9 127.4 48 538.6 260.1 116.3 736.0 197.3 88.2 852.8 399.3 178.6 194 194 26+GEM 194+GEM Day 1 mg/kg SD SE 0.5 mg/kg SD SE 0.5/160 mg/kg SD SE 0.5/160 mg/kg SD SE 0 80.4 11.0 4.9 79.9 10.3 4.6 79.4 10.1 4.5 78.7 12.0 5.4 3 52.3 9.3 4.2 64.7 9.0 4.0 45.1 8.2 3.7 44.6 8.7 3.9 6 38.8 4.6 2.1 46.9 14.7 6.6 31.2 5.9 2.6 34.7 4.4 2.0 9 34.5 9.5 4.3 43.5 13.6 6.1 22.1 4.8 2.1 23.0 3.2 1.5 12 35.8 9.4 4.2 43.0 15.9 7.1 15.0 3.8 1.7 11.9 2.2 1.0 15 36.6 8.7 3.9 48.6 15.4 6.9 18.0 3.1 1.4 12.4 3.5 1.6 18 45.1 14.6 6.5 62.0 20.2 9.0 17.9 3.1 1.4 15.5 1.7 0.8 21 53.5 12.3 5.5 73.6 20.5 9.2 18.3 2.8 1.2 14.8 2.1 1.0 24 72.6 22.7 10.1 93.6 23.0 10.3 23.6 4.5 2.0 23.0 1.5 0.7 27 86.5 13.7 6.1 119.3 17.3 7.8 27.8 4.1 1.8 25.9 3.7 1.7 30 114.5 22.8 10.2 157.1 49.0 21.9 33.6 5.0 2.2 36.9 6.5 2.9 33 161.4 44.1 19.7 218.1 81.2 36.3 43.8 10.9 4.9 47.7 16.1 7.2 36 198.3 43.5 19.4 313.2 104.6 46.8 50.3 13.6 6.1 46.4 16.4 7.3 39 249.8 77.9 34.9 420.2 199.4 89.2 67.3 29.4 13.2 59.4 28.7 12.9 42 366.5 110.5 49.4 527.5 219.0 98.0 77.2 28.0 12.5 82.1 29.1 13.0 45 490.2 122.2 54.7 620.3 258.1 115.4 104.9 57.9 25.9 110.7 46.3 20.7 48 683.4 144.6 64.7 759.1 223.0 99.7 128.2 77.7 34.7 133.4 62.6 28.0 51 177.9 109.6 49.0 177.3 68.0 30.4 54 233.1 143.5 64.2 224.0 79.8 35.7 57 297.7 190.7 85.3 289.7 121.9 54.5 - The body weight measurements after treatments at various times are presented in Table 16 and
FIG. 14 . There was no significant difference in body weight gains among 26 or 194 alone compared with controls. Gemcitabine treated animals had body weight loss in the first week and recovered in a week afterwards. Combination with 26 or 194 did not change the side effect profiles of Gemcitabine. No other clinical abnormality or death was observed in all the groups.TABLE 16 Body weights of tumor-bearing mice following treatment of 26, 194 or saline. Gemcitabine 26 26 Dry Saline SD SE 160 mg/ kg SD SE 1 mg/kg SD SE 0.5 mg/ kg SD SE 0 24.1 2.5 1.1 23.5 0.9 0.4 23.2 1.4 0.6 23.0 2.4 1.1 7 25.8 3.0 1.3 20.7 4.4 2.0 25.2 2.4 1.1 24.8 2.8 1.2 14 26.8 3.2 1.4 25.2 4.0 1.8 26.3 2.0 0.9 26.0 2.9 1.3 21 28.2 3.3 1.5 27.1 3.9 1.7 27.8 2.0 0.9 27.6 2.8 1.2 28 29.4 3.5 1.6 28.1 4.3 1.9 28.6 2.6 1.1 28.0 2.7 1.2 35 30.6 3.7 1.6 29.4 2.9 1.3 29.5 2.3 1.0 28.6 2.8 1.3 42 31.1 3.7 1.7 30.3 3.0 1.4 30.2 2.3 1.0 29.4 3.9 1.7 26+GEM 194+GEM 194 194 0.5/160 0.5/160 Day 1 mg/kg SD SE 0.5 mg/kg SD SE mg/kg SD SE mg/ kg SD SE 0 22.5 1.3 0.6 24.1 1.6 0.7 21.9 1.7 0.7 23.0 0.8 0.4 7 24.3 0.9 0.4 25.6 2.0 0.9 19.1 2.0 0.9 22.3 3.3 1.5 14 25.1 1.3 0.6 27.0 2.1 0.9 24.6 1.6 0.7 25.9 2.7 1.2 21 26.1 1.3 0.6 27.8 1.5 0.7 26.8 1.6 0.7 27.1 2.6 1.2 28 27.2 1.5 0.7 28.3 2.2 1.0 27.2 1.6 0.7 27.7 3.2 1.4 35 28.0 1.4 0.6 29.1 2.3 1.0 27.7 2.1 1.0 28.0 2.4 1.1 42 28.9 1.5 0.7 29.8 2.2 1.0 28.4 2.8 1.2 28.1 3.4 1.5 - In summary, 26 and 194 significantly inhibited tumor growth in nude mice bearing human prostate cancer PC3 xenografts with no significant side effects. When 26 or 194 was given in combination with Gemcitabine, each compound significantly increased the therapeutic effect of Gemcitabine without changes in side effect profiles. In addition, there was a tendency in dose dependent response of 26 or 194 treatment.
- The experiment of Example 8 was repeated using taxotere instead of Gemcitabine. Taxotere was administered on
days days TABLE 17 In vivo anti-cancer activity of immunomer compounds in combination with other chemotherapeutic agents Taxotere 165 26 Day Saline SD SE (15 mg/kg) SD SE (20 mg/kg) SD SE (1 mg/kg) SD SE 0.00 56.93 7.92 3.54 56.64 7.94 3.55 57.93 5.56 2.49 56.74 7.79 3.48 3.00 196.42 22.48 10.05 128.51 20.83 9.32 95.79 16.04 7.18 87.12 6.64 2.97 6.00 708.85 32.64 14.60 320.63 136.80 61.18 285.71 68.70 30.72 250.36 52.58 23.51 9.00 1370.95 239.99 107.33 598.69 196.60 87.92 534.93 225.19 100.71 450.46 92.25 41.26 12.00 2222.96 300.65 134.45 924.91 297.89 133.22 994.10 474.89 212.38 814.21 197.16 88.17 15.00 3303.04 672.86 300.91 1589.08 578.38 258.66 1601.73 576.19 257.68 1465.87 348.37 155.80 Taxotere + Taxotere + 194 Day 165 SD SE 26 (mg/kg) SD SE (1 mg/kg) SD SE 0.00 55.51 9.55 4.27 56.59 8.91 3.99 55.28 10.89 4.87 3.00 78.47 21.79 9.74 80.14 21.59 9.65 91.01 23.60 10.55 6.00 211.52 88.59 39.62 216.85 89.40 39.98 303.00 61.33 27.43 9.00 302.66 178.36 79.76 307.53 184.05 82.31 512.30 110.16 49.26 12.00 496.20 342.69 153.25 510.18 351.16 157.04 884.12 308.22 137.84 15.00 686.47 385.97 172.61 703.50 394.65 176.49 1479.21 416.64 186.33 - Splenocytes were isolated from BALB/c mice as described above and were plated in 24-well dishes at a density of 5×106 cells/mL. CpG oligonucleotides were dissolved in TE buffer (10 mM Tris-HCl, pH 7.5, 1 mM EDTA) was added to a final concentration of 0.03, 0.1, 0.3, 1.0, 3.0, or 10.0 μg/mL to mouse spleen cell cultures. In order to study the role of IL-2 in CpG oligonucleotide-induced time-dependent cytokine secretion, recombinant human IL-2 (Sigma) was added at a concentration of 10 U/ml at the start of the experiment. The cells were then incubated at 37° C. for 4, 8, 24 and 48 h in the presence of test oligonucleotides and the supernatants were collected for ELISA assays. Untreated cells (only IL-2 addition) were taken as controls.
- The secretion of mouse IL-12, IL-6 and IFN-γ was measured by sandwich ELISA. The required regents, including cytokine antibodies and standards were purchases from PharMingen. ELISA plates (Costar) were incubated with appropriate capture antibodies in PBSN (PBS/0.05% sodium azide, pH 9.6) buffer overnight at 4° C. and then blocked with PBS/1% BSA at 37° C. for 30 min. Cell culture supernatants and cytokine standards were appropriately diluted with PBS/1% BSA, added to the plates in triplicate, and incubated at 25° C. for 2 h. Plates were washed and incubated with the appropriate biotinylated antibody and incubated at 25° C. for 1.5 h. The plates were washed extensively with PBS/0.05
% Tween 20 and then further incubated at 25° C. for 1.5 h. after addition of streptavidine-conjugated peroxidase (Sigma). Plates were developed with Sure Blue™ (Kirkegaard and Perry) chromogenic reagent and the reaction was terminated by adding Stop Solution (Kirkegaard and Perry). The color change was measured on a Ceres 900 HDI Spectrophotometer (Bio-Tek Instruments) at 450 nm. The levels of IL-12, IL6 and IFN-γ in the cell culture supernatants were calculated from the standard curve constructed under the same experimental conditions for IL-12, IL-6 and IFN-γ respectively. - The oligonucleotides used in this study are presented in Table 18.
TABLE 18 SEQ ID NO: Sequence Chemistry 86 5′-CTATCTGACGTTCTCTGT-3′ PS-oligo 87 (5′-TCTGACRTTCT)2S R = 7-deaza-dG, PS- oligo 88 (5′-TCTGACGTTTCT)2S PS-oligo 89 (5′-XXCTGACGTTCTCTGT)2S PO-oligo 90 (5′-TCTGAYGTTCT)2S Y = R*, PS-oligo - The results are shown in
FIGS. 15-19 . Not shown is an assay indicating that the use of SEQ ID NOs 86-90 alone stimulate IFN-γ production only negligibly. The results demonstrate synergy between SEQ ID NOs 86-90 and IL-2 in generating secretion of IL-6, IL-12 and IFN-γ. - While the foregoing invention has been described in some detail for purposes of clarity and understanding, it will be appreciated by one skilled in the art from a reading of this disclosure that various changes in form and detail can be made without departing from the true scope of the invention and appended claims.
Claims (18)
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/892,550 US20060074040A1 (en) | 2003-07-15 | 2004-07-15 | Synergistic stimulation of the immune system using immunostimulatory oligonucleotides and/or immunomer compounds in conjunction with cytokines and/or chemotherapeutic agents or radiation therapy |
US11/153,054 US20060014713A1 (en) | 2004-06-15 | 2005-06-15 | Immunostimulatory oligonucleotide multimers |
US11/173,983 US7709617B2 (en) | 2003-07-15 | 2005-07-01 | Synergistic stimulation of the immune system using immunostimulatory oligonucleotides and/or immunomer compounds in conjunction with cytokines and/or chemotherapeutic agents or radiation therapy |
US11/174,448 US7498425B2 (en) | 2004-06-15 | 2005-07-01 | Immunostimulatory oligonucleotide multimers |
US11/174,282 US7427405B2 (en) | 2004-06-15 | 2005-07-01 | Immunostimulatory oligonucleotide multimers |
US11/234,074 US7498426B2 (en) | 2004-06-15 | 2005-09-22 | Immunostimulatory oligonucleotide multimers |
US11/234,396 US7405285B2 (en) | 2004-06-15 | 2005-09-22 | Immunostimulatory oligonucleotide multimers |
US11/234,075 US7566702B2 (en) | 2004-06-15 | 2005-09-22 | Immunostimulatory oligonucleotide multimers |
US11/876,913 US20080193437A1 (en) | 2004-06-15 | 2007-10-23 | Immunostimulatory oligonucleotide multimers |
US12/565,151 US8420615B2 (en) | 2004-06-15 | 2009-09-23 | Immunostimulatory oligonucleotide multimers |
US12/757,425 US20110158937A1 (en) | 2003-07-15 | 2010-04-09 | Synergistic stimulation of the immune system using immunostimulatory oligonucleotides and/or immunomer compounds in conjunction with cytokines and/or chemotherapeutic agents or radiation therapy |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US48752903P | 2003-07-15 | 2003-07-15 | |
US50324203P | 2003-09-15 | 2003-09-15 | |
US10/892,550 US20060074040A1 (en) | 2003-07-15 | 2004-07-15 | Synergistic stimulation of the immune system using immunostimulatory oligonucleotides and/or immunomer compounds in conjunction with cytokines and/or chemotherapeutic agents or radiation therapy |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/153,054 Continuation US20060014713A1 (en) | 2004-06-15 | 2005-06-15 | Immunostimulatory oligonucleotide multimers |
Related Child Applications (9)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/153,054 Continuation-In-Part US20060014713A1 (en) | 2004-06-15 | 2005-06-15 | Immunostimulatory oligonucleotide multimers |
US11/153,054 Continuation US20060014713A1 (en) | 2004-06-15 | 2005-06-15 | Immunostimulatory oligonucleotide multimers |
US11/174,448 Continuation US7498425B2 (en) | 2004-06-15 | 2005-07-01 | Immunostimulatory oligonucleotide multimers |
US11/173,983 Continuation US7709617B2 (en) | 2003-07-15 | 2005-07-01 | Synergistic stimulation of the immune system using immunostimulatory oligonucleotides and/or immunomer compounds in conjunction with cytokines and/or chemotherapeutic agents or radiation therapy |
US11/174,282 Continuation US7427405B2 (en) | 2004-06-15 | 2005-07-01 | Immunostimulatory oligonucleotide multimers |
US11/234,074 Continuation US7498426B2 (en) | 2004-06-15 | 2005-09-22 | Immunostimulatory oligonucleotide multimers |
US11/234,075 Continuation US7566702B2 (en) | 2004-06-15 | 2005-09-22 | Immunostimulatory oligonucleotide multimers |
US11/876,913 Continuation-In-Part US20080193437A1 (en) | 2004-06-15 | 2007-10-23 | Immunostimulatory oligonucleotide multimers |
US12/757,425 Continuation US20110158937A1 (en) | 2003-07-15 | 2010-04-09 | Synergistic stimulation of the immune system using immunostimulatory oligonucleotides and/or immunomer compounds in conjunction with cytokines and/or chemotherapeutic agents or radiation therapy |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060074040A1 true US20060074040A1 (en) | 2006-04-06 |
Family
ID=34107742
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/892,550 Abandoned US20060074040A1 (en) | 2003-07-15 | 2004-07-15 | Synergistic stimulation of the immune system using immunostimulatory oligonucleotides and/or immunomer compounds in conjunction with cytokines and/or chemotherapeutic agents or radiation therapy |
US11/173,983 Expired - Fee Related US7709617B2 (en) | 2003-07-15 | 2005-07-01 | Synergistic stimulation of the immune system using immunostimulatory oligonucleotides and/or immunomer compounds in conjunction with cytokines and/or chemotherapeutic agents or radiation therapy |
US12/757,425 Abandoned US20110158937A1 (en) | 2003-07-15 | 2010-04-09 | Synergistic stimulation of the immune system using immunostimulatory oligonucleotides and/or immunomer compounds in conjunction with cytokines and/or chemotherapeutic agents or radiation therapy |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/173,983 Expired - Fee Related US7709617B2 (en) | 2003-07-15 | 2005-07-01 | Synergistic stimulation of the immune system using immunostimulatory oligonucleotides and/or immunomer compounds in conjunction with cytokines and/or chemotherapeutic agents or radiation therapy |
US12/757,425 Abandoned US20110158937A1 (en) | 2003-07-15 | 2010-04-09 | Synergistic stimulation of the immune system using immunostimulatory oligonucleotides and/or immunomer compounds in conjunction with cytokines and/or chemotherapeutic agents or radiation therapy |
Country Status (8)
Country | Link |
---|---|
US (3) | US20060074040A1 (en) |
EP (2) | EP2363141A1 (en) |
JP (1) | JP2007531699A (en) |
KR (1) | KR101126030B1 (en) |
AU (1) | AU2004259204B2 (en) |
CA (1) | CA2532926A1 (en) |
MX (1) | MXPA06000619A (en) |
WO (1) | WO2005009355A2 (en) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030199466A1 (en) * | 2001-06-21 | 2003-10-23 | Fearon Karen L. | Chimeric immunomodulatory compounds and methods of using the same - ll |
US20030225016A1 (en) * | 2001-06-21 | 2003-12-04 | Fearon Karen L. | Chimeric immunomodulatory compounds and methods of using the same - III |
US20040097719A1 (en) * | 2002-10-24 | 2004-05-20 | Hybridon, Inc. | Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5' ends |
US20040143112A1 (en) * | 1994-07-15 | 2004-07-22 | Krieg Arthur M. | Immunomodulatory oligonucleotides |
US20040157791A1 (en) * | 1998-06-25 | 2004-08-12 | Dow Steven W. | Systemic immune activation method using nucleic acid-lipid complexes |
US20050059619A1 (en) * | 2002-08-19 | 2005-03-17 | Coley Pharmaceutical Group, Inc. | Immunostimulatory nucleic acids |
US20050130911A1 (en) * | 2003-09-25 | 2005-06-16 | Coley Pharmaceutical Group, Inc. | Nucleic acid-lipophilic conjugates |
US20060140875A1 (en) * | 2004-10-20 | 2006-06-29 | Coley Pharmaceutical Group, Inc. | Semi-soft C-class immunostimulatory oligonucleotides |
US20060211644A1 (en) * | 2005-02-24 | 2006-09-21 | Coley Pharmaceutical Group, Inc. | Immunostimulatory oligonucleotides |
US20070009710A1 (en) * | 2000-08-04 | 2007-01-11 | Toyo Boseki Kabushiki Kaisha | Flexible metal-clad laminate and method for producing the same |
US20070253979A1 (en) * | 2003-08-28 | 2007-11-01 | Moss Ronald B | Immunogenic Hiv Compositions and Related Methods |
US20080045473A1 (en) * | 2006-02-15 | 2008-02-21 | Coley Pharmaceutical Gmbh | Compositions and methods for oligonucleotide formulations |
US20090010938A1 (en) * | 2003-02-07 | 2009-01-08 | Idera Pharmaceuticals, Inc. | Short immunomodulatory oligonucleotides |
WO2009022216A2 (en) * | 2007-08-13 | 2009-02-19 | Coley Pharmaceutical Gmbh | Rna sequence motifs in the context of defined internucleotide linkages inducing specific immune modulatory profiles |
US20090060898A1 (en) * | 2005-10-12 | 2009-03-05 | Idera Pharmaceuticals, Inc. | Immune regulatory oligonucleotide (IRO) compounds to modulate toll-like receptor based immune response |
US20090098063A1 (en) * | 2005-10-12 | 2009-04-16 | Idera Pharmaceuticals, Inc. | Immune regulatory oligonucleotide (iro) compounds to modulate toll-like receptor based immune response |
US20100098685A1 (en) * | 2008-10-06 | 2010-04-22 | Idera Pharmaceuticals, Inc. | Use of Inhibitors of Toll-Like Receptors in the Prevention and Treatment of Hypercholesterolemia and Hyperlipidemia and Diseases Related Thereto |
US7723500B2 (en) | 1994-07-15 | 2010-05-25 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules |
US7741300B2 (en) | 1998-06-25 | 2010-06-22 | National Jewish Medical And Research Center | Methods of using nucleic acid vector-lipid complexes |
US8580268B2 (en) | 2006-09-27 | 2013-11-12 | Coley Pharmaceutical Gmbh | CpG oligonucleotide analogs containing hydrophobic T analogs with enhanced immunostimulatory activity |
US20160101128A1 (en) * | 2014-10-10 | 2016-04-14 | Idera Pharmaceuticals, Inc. | Treatment of cancer using tlr9 agonist with checkpoint inhibitors |
US10463686B2 (en) | 2016-09-15 | 2019-11-05 | Idera Pharmaceuticals, Inc. | Immune modulation with TLR9 agonists for cancer treatment |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100894767B1 (en) * | 2000-09-26 | 2009-04-24 | 이데라 파마슈티칼즈, 인코포레이티드 | Modulation of immunostimulatory activity of immunostimulatory oligonucleotide analogs by positional chemical changes |
JP2006512927A (en) | 2002-12-11 | 2006-04-20 | コーリー ファーマシューティカル グループ,インコーポレイテッド | 5 'CPG nucleic acids and methods of use thereof |
MXPA05012421A (en) * | 2003-05-16 | 2006-02-22 | Hybridon Inc | Synergistic treatment of cancer using immunomers in conjunction with chemotherapeutic agents. |
CA2532926A1 (en) * | 2003-07-15 | 2005-02-03 | Hybridon, Inc. | Combined use of immunostimulatory oligonucleotides and cytokines or radiation |
EP1753453A2 (en) * | 2004-06-08 | 2007-02-21 | Coley Pharmaceutical GmbH | Abasic oligonucleotide as carrier platform for antigen and immunostimulatory agonist and antagonist |
RU2007101039A (en) * | 2004-06-15 | 2008-07-20 | Айдера Фармасьютикалз | IMMUNITIES MULATING OLIGONUCLEOTIDE MULTIMERS |
US7470674B2 (en) * | 2005-11-07 | 2008-12-30 | Idera Pharmaceuticals, Inc. | Immunostimulatory properties of oligonucleotide-based compounds comprising modified immunostimulatory dinucleotides |
AU2010229835B2 (en) | 2009-03-25 | 2015-01-15 | The Board Of Regents Of The University Of Texas System | Compositions for stimulation of mammalian innate immune resistance to pathogens |
KR100998365B1 (en) * | 2009-06-29 | 2010-12-06 | 압타바이오 주식회사 | Novel guanosine rich modified oligonucleotides and antiproliferative activity thereof |
DE102009034779A1 (en) | 2009-07-25 | 2011-02-03 | Emc Microcollections Gmbh | Synthetic analogues of bacterial lipopeptides and their application for the therapy and prophylaxis of allergic diseases |
CA2772352A1 (en) * | 2009-08-27 | 2011-03-17 | Idera Pharmaceuticals, Inc. | Compositions for inhibiting gene expression and uses thereof |
KR101225378B1 (en) * | 2010-11-12 | 2013-01-22 | 한국수력원자력 주식회사 | Regulation of cytokine secretion by chronic low-dose ionizing radiation |
JP6385957B2 (en) * | 2013-01-08 | 2018-09-05 | イデラ ファーマシューティカルズ インコーポレイテッドIdera Pharmaceuticals, Inc. | Immunomodulatory oligonucleotide (IRO) compounds for modulating immune responses based on toll-like receptors |
JP6697384B2 (en) | 2013-07-25 | 2020-05-20 | イグジキュア, インコーポレーテッドExicure, Inc. | Spherical nucleic acid-based constructs as immunostimulants for prophylactic and therapeutic use |
JP6581604B2 (en) | 2014-06-04 | 2019-09-25 | イグジキュア, インコーポレーテッドExicure, Inc. | Multivalent delivery of immunomodulators with liposomal globular nucleic acids for prophylactic or therapeutic applications |
US10286065B2 (en) | 2014-09-19 | 2019-05-14 | Board Of Regents, The University Of Texas System | Compositions and methods for treating viral infections through stimulated innate immunity in combination with antiviral compounds |
WO2016081911A2 (en) | 2014-11-21 | 2016-05-26 | Northwestern University | The sequence-specific cellular uptake of spherical nucleic acid nanoparticle conjugates |
ES2938087T3 (en) * | 2014-12-25 | 2023-04-04 | Nat Inst Biomedical Innovation Health & Nutrition | Non-Aggregating Immunostimulatory Oligonucleotides |
US11364304B2 (en) | 2016-08-25 | 2022-06-21 | Northwestern University | Crosslinked micellar spherical nucleic acids |
WO2018209270A1 (en) | 2017-05-11 | 2018-11-15 | Northwestern University | Adoptive cell therapy using spherical nucleic acids (snas) |
KR102357566B1 (en) * | 2019-03-29 | 2022-02-04 | 한국수력원자력 주식회사 | Therapeutic effect of rheumatoid arthritis by low-dose inoizing radiation |
KR102289054B1 (en) * | 2019-03-29 | 2021-08-19 | 한국수력원자력 주식회사 | Prevention of rheumatoid arthritis by low-dose ionizing radiation |
WO2024026474A1 (en) | 2022-07-29 | 2024-02-01 | Regeneron Pharmaceuticals, Inc. | Compositions and methods for transferrin receptor (tfr)-mediated delivery to the brain and muscle |
WO2024098002A1 (en) | 2022-11-04 | 2024-05-10 | Regeneron Pharmaceuticals, Inc. | Calcium voltage-gated channel auxiliary subunit gamma 1 (cacng1) binding proteins and cacng1-mediated delivery to skeletal muscle |
WO2024107765A2 (en) | 2022-11-14 | 2024-05-23 | Regeneron Pharmaceuticals, Inc. | Compositions and methods for fibroblast growth factor receptor 3-mediated delivery to astrocytes |
WO2024159071A1 (en) | 2023-01-27 | 2024-08-02 | Regeneron Pharmaceuticals, Inc. | Modified rhabdovirus glycoproteins and uses thereof |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5366878A (en) * | 1990-02-15 | 1994-11-22 | The Worcester Foundation For Experimental Biology | Method of site-specific alteration of RNA and production of encoded polypeptides |
US5652355A (en) * | 1992-07-23 | 1997-07-29 | Worcester Foundation For Experimental Biology | Hybrid oligonucleotide phosphorothioates |
US5912332A (en) * | 1996-07-26 | 1999-06-15 | Hybridon, Inc. | Affinity-based purification of oligonucleotides using soluble multimeric oligonucleotides |
US6218371B1 (en) * | 1998-04-03 | 2001-04-17 | University Of Iowa Research Foundation | Methods and products for stimulating the immune system using immunotherapeutic oligonucleotides and cytokines |
US6346614B1 (en) * | 1992-07-23 | 2002-02-12 | Hybridon, Inc. | Hybrid oligonucleotide phosphorothioates |
US6426334B1 (en) * | 1997-04-30 | 2002-07-30 | Hybridon, Inc. | Oligonucleotide mediated specific cytokine induction and reduction of tumor growth in a mammal |
US6429199B1 (en) * | 1994-07-15 | 2002-08-06 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules for activating dendritic cells |
US6476000B1 (en) * | 1999-08-13 | 2002-11-05 | Hybridon, Inc. | Modulation of oligonucleotide CpG-mediated immune stimulation by positional modification of nucleosides |
US7276489B2 (en) * | 2002-10-24 | 2007-10-02 | Idera Pharmaceuticals, Inc. | Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5′ ends |
US7498425B2 (en) * | 2004-06-15 | 2009-03-03 | Idera Pharmaceuticals, Inc. | Immunostimulatory oligonucleotide multimers |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US621837A (en) * | 1899-03-28 | And gordon c | ||
TW244371B (en) | 1992-07-23 | 1995-04-01 | Tri Clover Inc | |
IL139646A0 (en) * | 1998-05-14 | 2002-02-10 | Coley Pharm Group Inc | Methods for regulating hematopoiesis using cpg-oligonucleotides |
JP4443810B2 (en) | 2000-01-26 | 2010-03-31 | イデラ ファーマシューティカルズ インコーポレイテッド | Regulation of oligonucleotide CpG-induced immune stimulation by positional modification of nucleosides |
US20020156033A1 (en) * | 2000-03-03 | 2002-10-24 | Bratzler Robert L. | Immunostimulatory nucleic acids and cancer medicament combination therapy for the treatment of cancer |
ATE292638T1 (en) | 2000-05-01 | 2005-04-15 | Hybridon Inc | MODULATION OF OLIGONUCLEOTIDE CPG-MEDIATED IMMUNE STIMULATION BY MODIFICATION OF NUCLEOSIDES |
KR100894767B1 (en) | 2000-09-26 | 2009-04-24 | 이데라 파마슈티칼즈, 인코포레이티드 | Modulation of immunostimulatory activity of immunostimulatory oligonucleotide analogs by positional chemical changes |
US20020153033A1 (en) * | 2001-04-23 | 2002-10-24 | Miller Stephen F. | Collapsible structural frame strut with pop-in connector |
WO2003035836A2 (en) * | 2001-10-24 | 2003-05-01 | Hybridon Inc. | Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5' ends |
JP4726630B2 (en) * | 2003-01-16 | 2011-07-20 | イデラ ファーマシューティカルズ インコーポレイテッド | Modulating the immunostimulatory properties of oligonucleotide-based compounds by using modified immunostimulatory dinucleotides |
MXPA05012421A (en) * | 2003-05-16 | 2006-02-22 | Hybridon Inc | Synergistic treatment of cancer using immunomers in conjunction with chemotherapeutic agents. |
ES2569927T3 (en) * | 2003-06-11 | 2016-05-13 | Idera Pharmaceuticals, Inc. | Stabilized immunomodulatory oligonucleotides |
CA2532926A1 (en) * | 2003-07-15 | 2005-02-03 | Hybridon, Inc. | Combined use of immunostimulatory oligonucleotides and cytokines or radiation |
CN101094594B (en) * | 2003-12-08 | 2012-08-15 | 海布里顿公司 | Modulation of immunostimulatory properties by small oligonucleotide-based compounds |
RU2007101039A (en) * | 2004-06-15 | 2008-07-20 | Айдера Фармасьютикалз | IMMUNITIES MULATING OLIGONUCLEOTIDE MULTIMERS |
US7470674B2 (en) * | 2005-11-07 | 2008-12-30 | Idera Pharmaceuticals, Inc. | Immunostimulatory properties of oligonucleotide-based compounds comprising modified immunostimulatory dinucleotides |
EP1962909A4 (en) * | 2005-12-20 | 2012-04-18 | Idera Pharmaceuticals Inc | Immunostimulatory activity of palindromic immune modulatory oligonucleotides (imo tm) contiaining different lengths of palindromic segments |
EP2021008B1 (en) * | 2006-04-07 | 2015-12-02 | Idera Pharmaceuticals, Inc. | Stabilized immune modulatory rna (simra) compounds for tlr7 and tlr8 |
EP2079305A4 (en) * | 2006-12-12 | 2010-01-27 | Idera Pharmaceuticals Inc | Synthetic agonists of tlr9 |
EP2178567A4 (en) * | 2007-07-09 | 2010-11-03 | Idera Pharmaceuticals Inc | Stabilized immune modulatory rna (simra) compounds |
EP2650369B1 (en) * | 2007-08-01 | 2015-04-29 | Idera Pharmaceuticals, Inc. | Novel synthetic agonists of TLR9 |
-
2004
- 2004-07-15 CA CA002532926A patent/CA2532926A1/en not_active Abandoned
- 2004-07-15 AU AU2004259204A patent/AU2004259204B2/en not_active Ceased
- 2004-07-15 JP JP2006520344A patent/JP2007531699A/en not_active Ceased
- 2004-07-15 KR KR1020067000891A patent/KR101126030B1/en not_active IP Right Cessation
- 2004-07-15 EP EP11000717A patent/EP2363141A1/en not_active Withdrawn
- 2004-07-15 WO PCT/US2004/022797 patent/WO2005009355A2/en active Application Filing
- 2004-07-15 EP EP04778343A patent/EP1648913A4/en not_active Withdrawn
- 2004-07-15 MX MXPA06000619A patent/MXPA06000619A/en unknown
- 2004-07-15 US US10/892,550 patent/US20060074040A1/en not_active Abandoned
-
2005
- 2005-07-01 US US11/173,983 patent/US7709617B2/en not_active Expired - Fee Related
-
2010
- 2010-04-09 US US12/757,425 patent/US20110158937A1/en not_active Abandoned
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5366878A (en) * | 1990-02-15 | 1994-11-22 | The Worcester Foundation For Experimental Biology | Method of site-specific alteration of RNA and production of encoded polypeptides |
US5635377A (en) * | 1990-02-15 | 1997-06-03 | Worcester Foundation For Experimental Biology, Inc. | Method of site-specific alteration of RNA and production of encoded polypeptides |
US5652355A (en) * | 1992-07-23 | 1997-07-29 | Worcester Foundation For Experimental Biology | Hybrid oligonucleotide phosphorothioates |
US6346614B1 (en) * | 1992-07-23 | 2002-02-12 | Hybridon, Inc. | Hybrid oligonucleotide phosphorothioates |
US6429199B1 (en) * | 1994-07-15 | 2002-08-06 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules for activating dendritic cells |
US5912332A (en) * | 1996-07-26 | 1999-06-15 | Hybridon, Inc. | Affinity-based purification of oligonucleotides using soluble multimeric oligonucleotides |
US6426334B1 (en) * | 1997-04-30 | 2002-07-30 | Hybridon, Inc. | Oligonucleotide mediated specific cytokine induction and reduction of tumor growth in a mammal |
US6218371B1 (en) * | 1998-04-03 | 2001-04-17 | University Of Iowa Research Foundation | Methods and products for stimulating the immune system using immunotherapeutic oligonucleotides and cytokines |
US6476000B1 (en) * | 1999-08-13 | 2002-11-05 | Hybridon, Inc. | Modulation of oligonucleotide CpG-mediated immune stimulation by positional modification of nucleosides |
US7407944B2 (en) * | 2001-10-24 | 2008-08-05 | Idera Pharmaceuticals, Inc. | Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5′ ends |
US7517862B2 (en) * | 2001-10-24 | 2009-04-14 | Idera Pharmaceuticals, Inc. | Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5′ ends |
US7276489B2 (en) * | 2002-10-24 | 2007-10-02 | Idera Pharmaceuticals, Inc. | Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5′ ends |
US7498425B2 (en) * | 2004-06-15 | 2009-03-03 | Idera Pharmaceuticals, Inc. | Immunostimulatory oligonucleotide multimers |
US7498426B2 (en) * | 2004-06-15 | 2009-03-03 | Idera Pharmaceuticals, Inc. | Immunostimulatory oligonucleotide multimers |
Cited By (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7723500B2 (en) | 1994-07-15 | 2010-05-25 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules |
US20040143112A1 (en) * | 1994-07-15 | 2004-07-22 | Krieg Arthur M. | Immunomodulatory oligonucleotides |
US7741300B2 (en) | 1998-06-25 | 2010-06-22 | National Jewish Medical And Research Center | Methods of using nucleic acid vector-lipid complexes |
US20040157791A1 (en) * | 1998-06-25 | 2004-08-12 | Dow Steven W. | Systemic immune activation method using nucleic acid-lipid complexes |
US20070009710A1 (en) * | 2000-08-04 | 2007-01-11 | Toyo Boseki Kabushiki Kaisha | Flexible metal-clad laminate and method for producing the same |
US20080181909A1 (en) * | 2001-06-21 | 2008-07-31 | Fearon Karen L | Chimeric immunomodulatory compounds and methods of using the same |
US8222398B2 (en) | 2001-06-21 | 2012-07-17 | Dynavax Technologies Corporation | Chimeric immunomodulatory compounds and methods of using the same-II |
US9028845B2 (en) | 2001-06-21 | 2015-05-12 | Dynavax Technologies Corporation | Chimeric immunomodulatory compounds and methods of using the same-IV |
US7785610B2 (en) | 2001-06-21 | 2010-08-31 | Dynavax Technologies Corporation | Chimeric immunomodulatory compounds and methods of using the same—III |
US20070049550A1 (en) * | 2001-06-21 | 2007-03-01 | Dynavax Technologies Corporation | Chimeric immunomodulatory compounds and methods of using the same - IV |
US20030225016A1 (en) * | 2001-06-21 | 2003-12-04 | Fearon Karen L. | Chimeric immunomodulatory compounds and methods of using the same - III |
US8003115B2 (en) | 2001-06-21 | 2011-08-23 | Dynavax Technologies Corporation | Chimeric immunomodulatory compounds and methods of using the same |
US20030199466A1 (en) * | 2001-06-21 | 2003-10-23 | Fearon Karen L. | Chimeric immunomodulatory compounds and methods of using the same - ll |
US8597665B2 (en) | 2001-06-21 | 2013-12-03 | Dynavax Technologies Corporation | Chimeric immunomodulatory compounds and methods of using the same-IV |
US20090317480A1 (en) * | 2001-06-21 | 2009-12-24 | Fearon Karen L | Chimeric immunomodulatory compounds and methods of using the same-ii |
US8114418B2 (en) | 2001-06-21 | 2012-02-14 | Dynavax Technologies Corporation | Chimeric immunomodulatory compounds and methods of using the same—IV |
US7812000B2 (en) * | 2001-10-24 | 2010-10-12 | Idera Pharmaceuticals, Inc. | Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5′ ends |
US20080152662A1 (en) * | 2001-10-24 | 2008-06-26 | Idera Pharmaceuticals, Inc. | Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5' ends |
US8304396B2 (en) | 2002-08-19 | 2012-11-06 | Coley Pharmaceutical Group, Inc. | Immunostimulatory nucleic acids |
US8283328B2 (en) | 2002-08-19 | 2012-10-09 | Coley Pharmaceutical Group, Inc. | Immunostimulatory nucleic acids |
US20050059619A1 (en) * | 2002-08-19 | 2005-03-17 | Coley Pharmaceutical Group, Inc. | Immunostimulatory nucleic acids |
US20040097719A1 (en) * | 2002-10-24 | 2004-05-20 | Hybridon, Inc. | Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5' ends |
US7276489B2 (en) * | 2002-10-24 | 2007-10-02 | Idera Pharmaceuticals, Inc. | Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5′ ends |
US20090010938A1 (en) * | 2003-02-07 | 2009-01-08 | Idera Pharmaceuticals, Inc. | Short immunomodulatory oligonucleotides |
US7851454B2 (en) * | 2003-02-07 | 2010-12-14 | Idera Pharmaceutials, Inc. | Short immunomodulatory oligonucleotides |
US20070253979A1 (en) * | 2003-08-28 | 2007-11-01 | Moss Ronald B | Immunogenic Hiv Compositions and Related Methods |
US20100183639A1 (en) * | 2003-09-25 | 2010-07-22 | Coley Pharmaceutical Group, Inc. | Nucleic acid-lipophilic conjugates |
US20050130911A1 (en) * | 2003-09-25 | 2005-06-16 | Coley Pharmaceutical Group, Inc. | Nucleic acid-lipophilic conjugates |
US20090137519A1 (en) * | 2004-10-20 | 2009-05-28 | Coley Pharmaceutical Group, Inc. | Semi-soft c-class immunostimulatory oligonucleotides |
US7795235B2 (en) | 2004-10-20 | 2010-09-14 | Coley Pharmaceutical Gmbh | Semi-soft c-class immunostimulatory oligonucleotides |
US20060140875A1 (en) * | 2004-10-20 | 2006-06-29 | Coley Pharmaceutical Group, Inc. | Semi-soft C-class immunostimulatory oligonucleotides |
US20110201672A1 (en) * | 2004-10-20 | 2011-08-18 | Krieg Arthur M | Semi-soft c-class immunostimulatory oligonucleotides |
US20080009455A9 (en) * | 2005-02-24 | 2008-01-10 | Coley Pharmaceutical Group, Inc. | Immunostimulatory oligonucleotides |
US20060211644A1 (en) * | 2005-02-24 | 2006-09-21 | Coley Pharmaceutical Group, Inc. | Immunostimulatory oligonucleotides |
US20090060898A1 (en) * | 2005-10-12 | 2009-03-05 | Idera Pharmaceuticals, Inc. | Immune regulatory oligonucleotide (IRO) compounds to modulate toll-like receptor based immune response |
US9206430B2 (en) | 2005-10-12 | 2015-12-08 | Idera Pharmaceuticals, Inc. | Immune regulatory oligonucleotide (IRO) compounds to modulate toll-like receptor based immune response |
US8399423B2 (en) * | 2005-10-12 | 2013-03-19 | Idera Pharmaceuticals, Inc. | Immune regulatory oligonucleotide (IRO) compounds to modulate toll-like receptor based immune response |
US20090098063A1 (en) * | 2005-10-12 | 2009-04-16 | Idera Pharmaceuticals, Inc. | Immune regulatory oligonucleotide (iro) compounds to modulate toll-like receptor based immune response |
US8357665B2 (en) * | 2005-10-12 | 2013-01-22 | Idera Pharmaceuticals, Inc. | Immune regulatory oligonucleotide (IRO) compounds to modulate toll-like receptor based immune response |
US20080045473A1 (en) * | 2006-02-15 | 2008-02-21 | Coley Pharmaceutical Gmbh | Compositions and methods for oligonucleotide formulations |
US9382545B2 (en) | 2006-09-27 | 2016-07-05 | Coley Pharmaceutical Gmbh | CpG oligonucleotide analogs containing hydrophobic T analogs with enhanced immunostimulatory activity |
US8580268B2 (en) | 2006-09-27 | 2013-11-12 | Coley Pharmaceutical Gmbh | CpG oligonucleotide analogs containing hydrophobic T analogs with enhanced immunostimulatory activity |
US10260071B2 (en) | 2006-09-27 | 2019-04-16 | Coley Pharmaceutical Gmbh | CpG oligonucleotide analogs containing hydrophobic T analogs with enhanced immunostimulatory activity |
US20100272785A1 (en) * | 2007-08-13 | 2010-10-28 | Coley Pharmaceutical Gmbh | Rna sequence motifs in the context of defined internucleotide linkages inducing specific immune modulatory profiles |
US8227447B2 (en) | 2007-08-13 | 2012-07-24 | Coley Pharmaceutical Gmbh | RNA sequence motifs in the context of defined internucleotide linkages inducing specific immune modulatory profiles |
US8128944B2 (en) | 2007-08-13 | 2012-03-06 | Coley Pharmaceutical Gmbh | RNA sequence motifs in the context of defined internucleotide linkages inducing specific immune modulatory profiles |
US8466124B2 (en) | 2007-08-13 | 2013-06-18 | Coley Pharmaceutical Gmbh | RNA sequence motifs in the context of defined internucleotide linkages inducing specific immune modulatory profiles |
WO2009022216A3 (en) * | 2007-08-13 | 2009-06-04 | Coley Pharm Gmbh | Rna sequence motifs in the context of defined internucleotide linkages inducing specific immune modulatory profiles |
AU2008288241B2 (en) * | 2007-08-13 | 2011-12-01 | Zoetis Belgium S.A. | RNA sequence motifs in the context of defined internucleotide linkages inducing specific immune modulatory profiles |
WO2009022216A2 (en) * | 2007-08-13 | 2009-02-19 | Coley Pharmaceutical Gmbh | Rna sequence motifs in the context of defined internucleotide linkages inducing specific immune modulatory profiles |
US20100098685A1 (en) * | 2008-10-06 | 2010-04-22 | Idera Pharmaceuticals, Inc. | Use of Inhibitors of Toll-Like Receptors in the Prevention and Treatment of Hypercholesterolemia and Hyperlipidemia and Diseases Related Thereto |
US8853177B2 (en) | 2008-10-06 | 2014-10-07 | Idera Pharmaceuticals, Inc. | Use of inhibitors of toll-like receptors in the prevention and treatment of hypercholesterolemia and hyperlipidemia and diseases related thereto |
US20160101128A1 (en) * | 2014-10-10 | 2016-04-14 | Idera Pharmaceuticals, Inc. | Treatment of cancer using tlr9 agonist with checkpoint inhibitors |
US10463686B2 (en) | 2016-09-15 | 2019-11-05 | Idera Pharmaceuticals, Inc. | Immune modulation with TLR9 agonists for cancer treatment |
US10772907B2 (en) | 2016-09-15 | 2020-09-15 | Idera Pharmaceuticals, Inc. | Immune modulation with TLR9 agonists for cancer treatment |
US10835550B2 (en) | 2016-09-15 | 2020-11-17 | Idera Pharmaceuticals, Inc. | Immune modulation with TLR9 agonists for cancer treatment |
US11224611B2 (en) | 2016-09-15 | 2022-01-18 | Idera Pharmaceuticals, Inc. | Immune modulation with TLR9 agonists for cancer treatment |
Also Published As
Publication number | Publication date |
---|---|
EP1648913A2 (en) | 2006-04-26 |
AU2004259204B2 (en) | 2010-08-19 |
JP2007531699A (en) | 2007-11-08 |
KR20060033911A (en) | 2006-04-20 |
US7709617B2 (en) | 2010-05-04 |
CA2532926A1 (en) | 2005-02-03 |
WO2005009355A2 (en) | 2005-02-03 |
EP2363141A1 (en) | 2011-09-07 |
AU2004259204A1 (en) | 2005-02-03 |
WO2005009355A3 (en) | 2005-03-31 |
US20110158937A1 (en) | 2011-06-30 |
KR101126030B1 (en) | 2012-03-19 |
EP1648913A4 (en) | 2008-09-10 |
US20060217328A1 (en) | 2006-09-28 |
MXPA06000619A (en) | 2006-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7709617B2 (en) | Synergistic stimulation of the immune system using immunostimulatory oligonucleotides and/or immunomer compounds in conjunction with cytokines and/or chemotherapeutic agents or radiation therapy | |
US7786089B2 (en) | Immunostimulatory activity of immune modulatory oligonucleotides (IMO™) containing different lengths of palindromic segments | |
AU2008282172B2 (en) | Novel synthetic agonists of TLR9 | |
US7875594B2 (en) | Synergistic treatment of cancer using immunomers in conjunction with chemotherapeutic agents | |
US20110293565A1 (en) | Novel synthetic agonists of tlr9 | |
US20080279785A1 (en) | Novel synthetic agonists of toll-like receptors containing CG dinucleotide modifications | |
AU2014203624B2 (en) | Novel synthetic agonists of TLR9 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HYBRIDON, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KANDIMALLA, EKAMBAR R.;AGRAWAL, SUDHIR;REEL/FRAME:015719/0915;SIGNING DATES FROM 20040726 TO 20040802 |
|
AS | Assignment |
Owner name: IDERA PHARMACEUTICALS, INC,MASSACHUSETTS Free format text: MERGER AND CHANGE OF NAME;ASSIGNOR:HYBRIDON, INC;REEL/FRAME:017240/0865 Effective date: 20050912 Owner name: IDERA PHARMACEUTICALS, INC, MASSACHUSETTS Free format text: MERGER AND CHANGE OF NAME;ASSIGNOR:HYBRIDON, INC;REEL/FRAME:017240/0865 Effective date: 20050912 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |