US20050031543A1 - Contrast agents - Google Patents
Contrast agents Download PDFInfo
- Publication number
- US20050031543A1 US20050031543A1 US10/820,428 US82042804A US2005031543A1 US 20050031543 A1 US20050031543 A1 US 20050031543A1 US 82042804 A US82042804 A US 82042804A US 2005031543 A1 US2005031543 A1 US 2005031543A1
- Authority
- US
- United States
- Prior art keywords
- surfactant
- contrast
- carbohydrate
- administration
- before use
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000002872 contrast media Substances 0.000 title claims abstract description 25
- 239000004094 surface-active agent Substances 0.000 claims abstract description 31
- 150000001720 carbohydrates Chemical class 0.000 claims abstract description 30
- 238000000034 method Methods 0.000 claims abstract description 29
- 239000011859 microparticle Substances 0.000 claims abstract description 18
- 235000014633 carbohydrates Nutrition 0.000 claims description 28
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 17
- 239000000203 mixture Substances 0.000 claims description 10
- -1 aliphatic alcohols Chemical class 0.000 claims description 7
- 150000003839 salts Chemical class 0.000 claims description 6
- 239000002253 acid Substances 0.000 claims description 5
- 150000007513 acids Chemical class 0.000 claims description 5
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical class OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 claims description 4
- 239000011159 matrix material Substances 0.000 claims description 4
- 150000005846 sugar alcohols Chemical class 0.000 claims description 4
- 238000002604 ultrasonography Methods 0.000 claims description 4
- 229910052783 alkali metal Inorganic materials 0.000 claims description 3
- 229930195733 hydrocarbon Natural products 0.000 claims description 3
- 150000002430 hydrocarbons Chemical class 0.000 claims description 3
- 150000003904 phospholipids Chemical class 0.000 claims description 3
- 230000002685 pulmonary effect Effects 0.000 claims description 3
- JNYAEWCLZODPBN-UHFFFAOYSA-N 2-(1,2-dihydroxyethyl)oxolane-3,4-diol Chemical class OCC(O)C1OCC(O)C1O JNYAEWCLZODPBN-UHFFFAOYSA-N 0.000 claims description 2
- 229930182558 Sterol Natural products 0.000 claims description 2
- 150000002148 esters Chemical class 0.000 claims description 2
- 150000004676 glycans Chemical class 0.000 claims description 2
- 229920001282 polysaccharide Polymers 0.000 claims description 2
- 239000005017 polysaccharide Substances 0.000 claims description 2
- JNYAEWCLZODPBN-CTQIIAAMSA-N sorbitan Chemical class OCC(O)C1OCC(O)[C@@H]1O JNYAEWCLZODPBN-CTQIIAAMSA-N 0.000 claims description 2
- 150000003429 steroid acids Chemical class 0.000 claims description 2
- 150000003432 sterols Chemical class 0.000 claims description 2
- 235000003702 sterols Nutrition 0.000 claims description 2
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 claims description 2
- 239000004215 Carbon black (E152) Substances 0.000 claims 2
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 claims 1
- 230000002708 enhancing effect Effects 0.000 claims 1
- 229920002503 polyoxyethylene-polyoxypropylene Chemical class 0.000 claims 1
- 235000014113 dietary fatty acids Nutrition 0.000 abstract description 9
- 229930195729 fatty acid Natural products 0.000 abstract description 9
- 239000000194 fatty acid Substances 0.000 abstract description 9
- 150000004665 fatty acids Chemical class 0.000 abstract description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 21
- 239000007789 gas Substances 0.000 description 17
- 229960003082 galactose Drugs 0.000 description 16
- 239000000047 product Substances 0.000 description 15
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 13
- 229930182830 galactose Natural products 0.000 description 13
- WQZGKKKJIJFFOK-SVZMEOIVSA-N (+)-Galactose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-SVZMEOIVSA-N 0.000 description 12
- 239000000243 solution Substances 0.000 description 9
- 238000003384 imaging method Methods 0.000 description 8
- 239000002245 particle Substances 0.000 description 7
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 6
- 238000002592 echocardiography Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 235000000346 sugar Nutrition 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 150000002632 lipids Chemical class 0.000 description 5
- 239000002502 liposome Substances 0.000 description 5
- IPCSVZSSVZVIGE-UHFFFAOYSA-N palmitic acid group Chemical group C(CCCCCCCCCCCCCCC)(=O)O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 4
- JTWNPFJEQQORKD-LRQBSHSVSA-N [(2r,3r,4s,5r)-3,4,5,6-tetrahydroxyoxan-2-yl]methyl hexadecanoate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@H]1O JTWNPFJEQQORKD-LRQBSHSVSA-N 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 239000002961 echo contrast media Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 150000008163 sugars Chemical class 0.000 description 4
- PVNIQBQSYATKKL-UHFFFAOYSA-N tripalmitin Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCC PVNIQBQSYATKKL-UHFFFAOYSA-N 0.000 description 4
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 3
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 3
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 3
- 235000012000 cholesterol Nutrition 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- MWRBNPKJOOWZPW-CLFAGFIQSA-N dioleoyl phosphatidylethanolamine Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(COP(O)(=O)OCCN)OC(=O)CCCCCCC\C=C/CCCCCCCC MWRBNPKJOOWZPW-CLFAGFIQSA-N 0.000 description 3
- 150000002016 disaccharides Chemical class 0.000 description 3
- 229940068939 glyceryl monolaurate Drugs 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 239000000787 lecithin Substances 0.000 description 3
- 235000010445 lecithin Nutrition 0.000 description 3
- 229940067606 lecithin Drugs 0.000 description 3
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- XUGISPSHIFXEHZ-UHFFFAOYSA-N 3beta-acetoxy-cholest-5-ene Natural products C1C=C2CC(OC(C)=O)CCC2(C)C2C1C1CCC(C(C)CCCC(C)C)C1(C)CC2 XUGISPSHIFXEHZ-UHFFFAOYSA-N 0.000 description 2
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 239000005148 Cholesterol Benzoate Substances 0.000 description 2
- 229920000858 Cyclodextrin Polymers 0.000 description 2
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 229920002527 Glycogen Polymers 0.000 description 2
- 102000008100 Human Serum Albumin Human genes 0.000 description 2
- 108091006905 Human Serum Albumin Proteins 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 239000005913 Maltodextrin Substances 0.000 description 2
- 229920002774 Maltodextrin Polymers 0.000 description 2
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 2
- 235000021314 Palmitic acid Nutrition 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- 239000004141 Sodium laurylsulphate Substances 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- XUGISPSHIFXEHZ-VEVYEIKRSA-N cholesteryl acetate Chemical compound C1C=C2C[C@@H](OC(C)=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 XUGISPSHIFXEHZ-VEVYEIKRSA-N 0.000 description 2
- UVZUFUGNHDDLRQ-LLHZKFLPSA-N cholesteryl benzoate Chemical compound O([C@@H]1CC2=CC[C@H]3[C@@H]4CC[C@@H]([C@]4(CC[C@@H]3[C@@]2(C)CC1)C)[C@H](C)CCCC(C)C)C(=O)C1=CC=CC=C1 UVZUFUGNHDDLRQ-LLHZKFLPSA-N 0.000 description 2
- 229940039231 contrast media Drugs 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229940097362 cyclodextrins Drugs 0.000 description 2
- 238000002059 diagnostic imaging Methods 0.000 description 2
- HQPMKSGTIOYHJT-UHFFFAOYSA-N ethane-1,2-diol;propane-1,2-diol Chemical compound OCCO.CC(O)CO HQPMKSGTIOYHJT-UHFFFAOYSA-N 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 229940096919 glycogen Drugs 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 2
- QQHJDPROMQRDLA-UHFFFAOYSA-N hexadecanedioic acid Chemical compound OC(=O)CCCCCCCCCCCCCCC(O)=O QQHJDPROMQRDLA-UHFFFAOYSA-N 0.000 description 2
- 239000003978 infusion fluid Substances 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 229940035034 maltodextrin Drugs 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 150000002772 monosaccharides Chemical class 0.000 description 2
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229920001993 poloxamer 188 Polymers 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- ARIWANIATODDMH-UHFFFAOYSA-N rac-1-monolauroylglycerol Chemical compound CCCCCCCCCCCC(=O)OCC(O)CO ARIWANIATODDMH-UHFFFAOYSA-N 0.000 description 2
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000008247 solid mixture Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- HIPAIKSXHJHWJX-PZRMXXKTSA-N (2S,3R,4S,5R,6R)-6-ethyloxane-2,3,4,5-tetrol Chemical compound CC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O HIPAIKSXHJHWJX-PZRMXXKTSA-N 0.000 description 1
- HNSDLXPSAYFUHK-UHFFFAOYSA-N 1,4-bis(2-ethylhexyl) sulfosuccinate Chemical compound CCCCC(CC)COC(=O)CC(S(O)(=O)=O)C(=O)OCC(CC)CCCC HNSDLXPSAYFUHK-UHFFFAOYSA-N 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 1
- OFJWFSNDPCAWDK-UHFFFAOYSA-N 2-phenylbutyric acid Chemical compound CCC(C(O)=O)C1=CC=CC=C1 OFJWFSNDPCAWDK-UHFFFAOYSA-N 0.000 description 1
- 229920001450 Alpha-Cyclodextrin Polymers 0.000 description 1
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 1
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical class OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 229930186217 Glycolipid Natural products 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 1
- NWGKJDSIEKMTRX-AAZCQSIUSA-N Sorbitan monooleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O NWGKJDSIEKMTRX-AAZCQSIUSA-N 0.000 description 1
- PRXRUNOAOLTIEF-ADSICKODSA-N Sorbitan trioleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@@H](OC(=O)CCCCCCC\C=C/CCCCCCCC)[C@H]1OC[C@H](O)[C@H]1OC(=O)CCCCCCC\C=C/CCCCCCCC PRXRUNOAOLTIEF-ADSICKODSA-N 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 150000001266 acyl halides Chemical class 0.000 description 1
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- HFHDHCJBZVLPGP-RWMJIURBSA-N alpha-cyclodextrin Chemical compound OC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)CO)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1CO HFHDHCJBZVLPGP-RWMJIURBSA-N 0.000 description 1
- 229940043377 alpha-cyclodextrin Drugs 0.000 description 1
- DTOSIQBPPRVQHS-PDBXOOCHSA-N alpha-linolenic acid Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCC(O)=O DTOSIQBPPRVQHS-PDBXOOCHSA-N 0.000 description 1
- 235000020661 alpha-linolenic acid Nutrition 0.000 description 1
- JINBYESILADKFW-UHFFFAOYSA-N aminomalonic acid Chemical class OC(=O)C(N)C(O)=O JINBYESILADKFW-UHFFFAOYSA-N 0.000 description 1
- 235000012538 ammonium bicarbonate Nutrition 0.000 description 1
- 239000001099 ammonium carbonate Substances 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000000498 ball milling Methods 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 238000013155 cardiography Methods 0.000 description 1
- 229960000541 cetyl alcohol Drugs 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000008280 chlorinated hydrocarbons Chemical class 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- YHAIUSTWZPMYGG-UHFFFAOYSA-L disodium;2,2-dioctyl-3-sulfobutanedioate Chemical compound [Na+].[Na+].CCCCCCCCC(C([O-])=O)(C(C([O-])=O)S(O)(=O)=O)CCCCCCCC YHAIUSTWZPMYGG-UHFFFAOYSA-L 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- UKMSUNONTOPOIO-UHFFFAOYSA-N docosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCC(O)=O UKMSUNONTOPOIO-UHFFFAOYSA-N 0.000 description 1
- 229940018602 docusate Drugs 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 125000005908 glyceryl ester group Chemical group 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- ARBOVOVUTSQWSS-UHFFFAOYSA-N hexadecanoyl chloride Chemical compound CCCCCCCCCCCCCCCC(Cl)=O ARBOVOVUTSQWSS-UHFFFAOYSA-N 0.000 description 1
- 150000002402 hexoses Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 239000007925 intracardiac injection Substances 0.000 description 1
- 229960004488 linolenic acid Drugs 0.000 description 1
- KQQKGWQCNNTQJW-UHFFFAOYSA-N linolenic acid Natural products CC=CCCC=CCC=CCCCCCCCC(O)=O KQQKGWQCNNTQJW-UHFFFAOYSA-N 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 230000005291 magnetic effect Effects 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- GOQYKNQRPGWPLP-UHFFFAOYSA-N n-heptadecyl alcohol Natural products CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 1
- 239000001272 nitrous oxide Substances 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000005298 paramagnetic effect Effects 0.000 description 1
- 150000002972 pentoses Chemical class 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 229940068965 polysorbates Drugs 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 239000002510 pyrogen Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 235000003441 saturated fatty acids Nutrition 0.000 description 1
- 150000004671 saturated fatty acids Chemical class 0.000 description 1
- UIIMBOGNXHQVGW-UHFFFAOYSA-M sodium bicarbonate Substances [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- APSBXTVYXVQYAB-UHFFFAOYSA-M sodium docusate Chemical compound [Na+].CCCCC(CC)COC(=O)CC(S([O-])(=O)=O)C(=O)OCC(CC)CCCC APSBXTVYXVQYAB-UHFFFAOYSA-M 0.000 description 1
- 239000012265 solid product Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 230000003019 stabilising effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- SFZCNBIFKDRMGX-UHFFFAOYSA-N sulfur hexafluoride Chemical compound FS(F)(F)(F)(F)F SFZCNBIFKDRMGX-UHFFFAOYSA-N 0.000 description 1
- 229960000909 sulfur hexafluoride Drugs 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- VHOCUJPBKOZGJD-UHFFFAOYSA-N triacontanoic acid Chemical class CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC(O)=O VHOCUJPBKOZGJD-UHFFFAOYSA-N 0.000 description 1
- ILWRPSCZWQJDMK-UHFFFAOYSA-N triethylazanium;chloride Chemical compound Cl.CCN(CC)CC ILWRPSCZWQJDMK-UHFFFAOYSA-N 0.000 description 1
- 150000004043 trisaccharides Chemical class 0.000 description 1
- 238000001665 trituration Methods 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 239000008215 water for injection Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/06—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
- A61K49/18—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
- A61K49/1818—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/06—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
- A61K49/18—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
- A61K49/1818—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
- A61K49/1821—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/22—Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations
- A61K49/222—Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations characterised by a special physical form, e.g. emulsions, liposomes
- A61K49/223—Microbubbles, hollow microspheres, free gas bubbles, gas microspheres
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/22—Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations
- A61K49/222—Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations characterised by a special physical form, e.g. emulsions, liposomes
- A61K49/225—Microparticles, microcapsules
Definitions
- This invention relates to novel contrast agents, more particularly to new microparticulate contrast agents of use in diagnostic imaging.
- ultrasonic imaging comprises a potentially valuable diagnostic tool, for example in studies of the vascular system, particularly in cardiography, and of tissue microvasculature.
- a variety of contrast agents has been proposed to enhance the acoustic images so obtained, including suspensions of solid particles, emulsified liquid droplets, gas microbubbles and encapsulated gases or liquids. It is generally accepted that low density contrast agents which are easily compressible are particularly efficient in terms of the acoustic backscatter they generate, and considerable interest has therefore been shown in the preparation of gas-containing and gas-generating systems.
- DE-A-3834705 proposes the use of suspensions containing microparticles of mixtures of at least one C 10-20 fatty acid with at least one non-surface active substance, including sugars such as cyclodextrins, monosaccharides, disaccharides or trisaccharides, as well as other polyols and inorganic and organic salts; in practice only the use of galactose as the non-surface active material and only the use of saturated fatty acids are exemplified.
- the microparticulate materials are typically prepared by coprecipitating the fatty acid and non-surface active substance and comminuting the resulting product, e.g. using an air-jet mill.
- Gas-containing contrast media are also known to be effective in magnetic resonance. (MR) imaging, e.g. as susceptibility contrast agents which will act to reduce MR signal intensity oxygen-containing contrast media also represent potentially useful paramagnetic MR contrast agents.
- MR magnetic resonance.
- gases such as carbon dioxide may be used as negative oral contrast agents.
- a general disadvantage of most of the existing gas-containing/gas-generating particulate contrast agents such as the sugar-based agents discussed above is their relative lack of stability in vivo. This is a particular problem in applications such as echocardiography, where there is a need for improved contrast agents combining sufficient stability and small microbubble size (typically less than about 10 ⁇ m, preferably less than about 7 ⁇ m) to permit passage through the pulmonary capillary bed and so allow enhanced visualisation of the left side of the heart, preferably for more than one passage of circulation. There is accordingly a need for contrast agents which generate microbubble systems exhibiting good stability while still providing an effective level of contrast efficiency.
- contrast agents comprising microparticles of a carbohydrate having a surfactant admixed therewith (but excluding the previously disclosed mixtures of galactose and saturated C 10-20 fatty acids) may be used to generate microbubble systems exhibiting enhanced contrast effect and/or stability relative to previously proposed carbohydrate-based contrast agents.
- this may be demonstrated by, for example, in vitro measurements of initial attenuation levels and the half lives of the attenuative effect; a useful indication of the combined effect of these properties is the integral obtained by determining the area under the curve of a plot of attenuation against time.
- surfactant means any compound having amphiphilic properties capable of modifying surface tension.
- contrast agents comprising microbubble-generating carbohydrate microparticles having a surfactant admixed within the microparticulate structure, with the proviso that the surfactant is not-a saturated C 10-20 fatty acid when the microparticulate carbohydrate is galactose.
- the microparticulate carbohydrate is preferably water soluble, and subject to the foregoing proviso may for example be selected from hexoses such as glucose, fructose or galactose; disaccharides such as sucrose, lactose or maltose; pentoses such as arabinose, xylose or ribose; and polysaccharides such as ⁇ -, ⁇ - and ⁇ -cyclodextrins, maltodextrin and glycogen; the term “carbohydrate” as used herein is also intended to embrace sugar alcohols, e.g. alditols such as mannitol or sorbitol.
- Microparticles of the above carbohydrates will normally have gas present as an inclusion in the voids of their crystal structure and/or adhered to their surface, which gas may generate microbubbles when, for example, the microparticles are suspended or dissolved in an injectable carrier liquid, for example water for injection, an aqueous solution of one or more inorganic salts (e.g. physiological saline-or a physiological buffer solution), an aqueous solution of a monosaccharide (e.g. glucose or galactose) or disaccharide (e.g. lactose), or an aqueous solution of a physiologically tolerable monohydric or polyhydric alcohol (e.g. ethanol, propanol., isopropanol, ethylene glycol, propylene glycol, glycerine or polyethylene glycol).
- an injectable carrier liquid for example water for injection, an aqueous solution of one or more inorganic salts (e.g. physiological saline-or a physiological
- any biocompatible gas may be employed in the contrast agents of the invention, for example nitrogen, oxygen, hydrogen, nitrous oxide, carbon dioxide, helium, argon, sulphur hexafluoride and low molecular weight optionally fluorinated hydrocarbons such as methane, acetylene or carbon tetrafluoride.
- gas as used herein includes any substance in the gaseous form at 37° C. The gas may be contained in the contrast agent in such a way that before use the product is non-contrast giving but becomes-effective on administration, e.g. as a result of the gas forming microbubbles as a soluble carbohydrate matrix dissolves.
- the carbohydrate may incorporate one or more gas precursors, including carbonates and bicarbonates (e.g. sodium or ammonium bicarbonate) and aminomalonate esters.
- gas precursors including carbonates and bicarbonates (e.g. sodium or ammonium bicarbonate) and aminomalonate esters.
- surfactants may be used in the ultrasound contrast agents of the invention; it will of course be appreciated that the surfactant is required to be biocompatible, i.e. that it should be physiologically tolerable in the quantities in which it is to be administered.
- the surfactant is advantageously biodegradable in vivo or otherwise readily eliminable from the system.
- the surfactant may, for example, be an amphiphilic lipid, e.g. selected from fatty acids and salts (e.g. alkali metal salts) thereof, steroid acids, sterols, phospholipids and glycolipids.
- lipids include high molecular weight (e.g. C 10-50 ) straight chain saturated and unsaturated aliphatic acids, such as capric, palmitic, hexadecanedioic, stearic, linolenic, behenic, docosanedioic and melissic acids; aralkanoic acids, e.g. phenyl lower alkanoic acids such as.
- 2-phenylbutyric acid salts of any of the foregoing acids; mono- and di-glycerides, for example glyceryl esters of high molecular weight (e.g. C 10-50 ) aliphatic acids, such as glyceryl monolaurate; cholanic acids such as 50-cholanic acid; cholesterol; sorbitan esters of fatty acids such as Span-type materials; high molecular weight (e.g. C 10-50 ) straight chain aliphatic alcohols such as stearyl alcohol and cetyl alcohol; phospholipids such as phosphatidyl choline (lecithin) and dioleoylphosphatidyl ethanolamine (DOPE); and mixtures thereof.
- mono- and di-glycerides for example glyceryl esters of high molecular weight (e.g. C 10-50 ) aliphatic acids, such as glyceryl monolaurate; cholanic acids such as 50-cholanic acid
- surfactants which may be employed include anionic surfactants, for example alkali metal alkyl sulphates such as sodium lauryl sulphate and sulphonated esters such as sodium dioctyl sulphosuccinate (docusate); and non-ionic surfactants, for example polyoxyethylene-polyoxyproplyene copolymers (e.g. poloxamers such as Pluronic F68) and polyoxyethylated sorbitan esters (e.g. polysorbates such as Tween-type materials).
- the surfactant moiety may if desired be covalently linked to a substrate such as a carbohydrate prior to its admixture with the principal microparticulate carbohydrate.
- a fatty acid such as palmitic acid (preferably in the form of a reactive derivative such as a corresponding acyl halide) may be used to esterify a (preferably appropriately O-protected) sugar such as galactose and the resulting lipophilically modified carbohydrate used as the 0.20 surfactant in accordance with the invention.
- the surfactant may, for example, be present in an amount of 0.01-5.0 wt. %, preferably 0.1-2.0 wt. %, relative to the microparticulate carbohydrate.
- the contrast agents of the invention may be used in a variety of diagnostic imaging techniques, including ultrasound, MR and X-ray imaging. Their uses in diagnostic ultrasonic imaging and MR imaging, e.g. as susceptibility contrast agents, constitute preferred features of the invention.
- contrast agents of the invention may be prepared by any convenient method which leads to physical admixture of the surfactant within the microparticulate structure of the carbohydrate and to production of microparticles of the desired size.
- the carbohydrate and the surfactant are each dissolved in appropriate mutually miscible solvents (e.g. water in the case or the carbohydrate and a lower alkanol such as ethanol in the case of lipid surfactants such as fatty acids), the resulting solutions are mixed, the solvents are removed (e.g. by evaporation under reduced pressure), and the resulting solid mixture is micronised to yield the desired microparticles.
- appropriate mutually miscible solvents e.g. water in the case or the carbohydrate and a lower alkanol such as ethanol in the case of lipid surfactants such as fatty acids
- a (preferably aqueous) solution of the carbohydrate is mixed with a liposome-forming material (e.g. a thin film of a lipid such as lecithin formed on the inner surface of the mixing vessel by evaporating the solvent from a solution of the lipid in an appropriate organic solvent, for example a chlorinated hydrocarbon such as chloroform) so as to form a liposome-containing carbohydrate solution from which the solvent may be removed (e.g. by freeze-drying) to yield a product comprising carbohydrate-containing liposomes; this product may be micronised to given microparticles of the desired size.
- a liposome-forming material e.g. a thin film of a lipid such as lecithin formed on the inner surface of the mixing vessel by evaporating the solvent from a solution of the lipid in an appropriate organic solvent, for example a chlorinated hydrocarbon such as chloroform
- micronisation techniques such as grinding or milling may be employed in processes according to the invention.
- Ball-milling of the solid mixture has been found to be particularly advantageous, permitting the preparation of microparticles in the form of aggregates (for example having an aggregate size of 20-125 micrometres, such as 30-50 micrometres) of particles having a particle size of, for example, 1-50 micrometres, such as 1-10 micrometres.
- aggregates will tend to contain a substantial volume of air adsorbed on their surfaces and entrained in voids such as interparticle cavities or at grain boundaries between the crystallites.
- the particle size may, for example, be selected to be substantially commensurate with the desired microbubble size.
- microbubbles and microparticles having an average size of 0.1-10 ⁇ m e.g. 1-7 ⁇ m
- the use of microparticles of average size 1-4 ⁇ m to generate microbubbles with an average size of 4-7 ⁇ m is generally advantageous.
- Substantially larger bubbles and particles, e.g. with average sizes up to 500 ⁇ m, may however be useful in other applications, for example gastrointestinal imaging.
- Ultrasound contrast agents in the form of microparticles comprising a microbubble-generating carbohydrate in admixture with an amphiphilic organic acid containing in excess of 20 carbon atoms are the subject matter of our international patent application cofiled herewith and claiming priority from British patent application No. 9200387.0.
- D-(+)-galactose (10.0 g) was dissolved in distilled water (14.2 g) at 50° C., sterile filtered and cooled on ice to a temperature of 4-8° C.
- the stated amounts of the surfactants (in % w/w relative to the galactose) listed in Table I were each dissolved in the amount of 96% ethanol (or water in Examples 5 and 6) shown in the Table, at 50-78° C., and the resulting solution was sterile filtered and then aseptically added to the cold aqueous galactose solution under stirring.
- 1,2,3,4-Diisopropylidene-D-galactopyranose (Sigma, 13.4 g, 51.3 mmol) and triethylamine (7.15 ml, 51.3 mmol) were dissolved in methylene chloride (150 ml) and cooled to 0° C. Palmitoyl chloride (Aldrich, 14.1 g, 51.3 mmol) dissolved in methylene chloride (100 ml) was added dropwise with: stirring over 1 h. The cooling bath was removed and the reaction mixture was stirred overnight.
- 6-O-Palmitoyl-1,2,3,4-diisopropylidene-D-galactopyranose (6 g) was dissolved in acetic acid (25 ml) and heated to 100° C. under nitrogen for 6 h. During subsequent cooling to room temperature, the product precipitated from the solvent, and was left at room temperature overnight. The crystals were collected by filtration and dried under vacuum. Yield: 3.3 g.
- the product was characterized by FT-IR:CO-1734 cm ⁇ 1 ; OH-3464 cm 1 .
- phosphatidylcholine 1 ml 100 mg/ml phosphatidylcholine was dissolved in 10 ml chloroform. The mixture was poured into a round bottom flask, and the organic phase was evaporated at 40° C. in such a way that a thin film of the phosphatidylcholine was formed on the inner surface of the flask. 10 ml of a sterile, pyrogen free 40% aqueous D-(+)-galactose solution was then added at 40° C. and the flask was kept rotating for 1 hour.
- aqueous solution containing liposomes and dissolved galactose was then freeze-dried for 24 hours, and the resulting product consisting of freeze-dried-galactose and freeze-0.5 dried galactose-filled liposomes was then ground in a ball-mill to yield a product with a particle size distribution of 1-20 ⁇ m.
Landscapes
- Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Radiology & Medical Imaging (AREA)
- General Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Public Health (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Medicinal Preparation (AREA)
- Materials For Medical Uses (AREA)
- Organic Insulating Materials (AREA)
Abstract
Contrast agents comprising microbubble-generating carbohydrate microparticles having a surfactant admixed within the microparticulate structure, with the proviso that the surfactant is not a C10-20 fatty acid, are disclosed. Processes for preparing contrast agents also are disclosed.
Description
- This invention relates to novel contrast agents, more particularly to new microparticulate contrast agents of use in diagnostic imaging.
- It is well known that ultrasonic imaging comprises a potentially valuable diagnostic tool, for example in studies of the vascular system, particularly in cardiography, and of tissue microvasculature. A variety of contrast agents has been proposed to enhance the acoustic images so obtained, including suspensions of solid particles, emulsified liquid droplets, gas microbubbles and encapsulated gases or liquids. It is generally accepted that low density contrast agents which are easily compressible are particularly efficient in terms of the acoustic backscatter they generate, and considerable interest has therefore been shown in the preparation of gas-containing and gas-generating systems.
- Initial studies involving free gas microbubbles generated in vivo by intracardiac injection of physiologically acceptable substances have demonstrated the potential efficiency of such bubbles as contrast agents in echocardiography; such techniques are severely limited in practice, however, by the short lifetime of the free bubbles. Interest has accordingly been shown in methods of generating and/or stabilising gas microbubbles for echocardiography and other ultrasonic studies, for example using emulsifiers, oils, thickeners or sugars.
- Techniques involving the use of sugars in ultrasound contrast agents are described in, for example, U.S. Pat. No. 4,681,119, U.S. Pat. No. 4,442,843 and U.S. Pat. No. 4,657,756, which disclose the use of particulate solids having a plurality of gas-filled voids and preferably also a plurality, of nuclei for microbubble formation. EP-A-0123235 and EP-A-0122624 suggest ultrasound contrast agents consisting of surfactant-coated or surfactant-containing gas-containing microparticles which may include a variety of sugars. Where surfactant-containing microparticles are described, these are prepared simply by commingling the surfactant with the microparticulate materials, e.g. by trituration.
- DE-A-3834705 proposes the use of suspensions containing microparticles of mixtures of at least one C10-20 fatty acid with at least one non-surface active substance, including sugars such as cyclodextrins, monosaccharides, disaccharides or trisaccharides, as well as other polyols and inorganic and organic salts; in practice only the use of galactose as the non-surface active material and only the use of saturated fatty acids are exemplified. The microparticulate materials are typically prepared by coprecipitating the fatty acid and non-surface active substance and comminuting the resulting product, e.g. using an air-jet mill.
- One material of, the type described in DE-A-3834705, SHU 508 (Levovist 6), is described in the following publications: Schlief, R. et al., Circulation Supplement III (1990) 82, p. 28; Schartl, M. et al., Circulation Supplement III (1990) 82, p. 261; Fritzsch, T. et al., Invest. Radiol. (1990) 25 (Suppl), pp. 160-161; Schlief, R. et al., Echocardiography (1990) 7, pp. 61-64; Loughery, E. J. et al., Echocardiography (1990) 7, pp. 279-292; and Smith, M. D. et al., JACC (1989) 13, pp. 1622-1628.
- Gas-containing contrast media are also known to be effective in magnetic resonance. (MR) imaging, e.g. as susceptibility contrast agents which will act to reduce MR signal intensity oxygen-containing contrast media also represent potentially useful paramagnetic MR contrast agents.
- Furthermore, in the field of X-ray imaging it has been observed that gases such as carbon dioxide may be used as negative oral contrast agents.
- A general disadvantage of most of the existing gas-containing/gas-generating particulate contrast agents such as the sugar-based agents discussed above is their relative lack of stability in vivo. This is a particular problem in applications such as echocardiography, where there is a need for improved contrast agents combining sufficient stability and small microbubble size (typically less than about 10 μm, preferably less than about 7 μm) to permit passage through the pulmonary capillary bed and so allow enhanced visualisation of the left side of the heart, preferably for more than one passage of circulation. There is accordingly a need for contrast agents which generate microbubble systems exhibiting good stability while still providing an effective level of contrast efficiency.
- The present invention is based on our finding that contrast agents comprising microparticles of a carbohydrate having a surfactant admixed therewith (but excluding the previously disclosed mixtures of galactose and saturated C10-20 fatty acids) may be used to generate microbubble systems exhibiting enhanced contrast effect and/or stability relative to previously proposed carbohydrate-based contrast agents. In the ultrasound field this may be demonstrated by, for example, in vitro measurements of initial attenuation levels and the half lives of the attenuative effect; a useful indication of the combined effect of these properties is the integral obtained by determining the area under the curve of a plot of attenuation against time.
- The term “surfactant” as used herein means any compound having amphiphilic properties capable of modifying surface tension.
- Thus, according to one aspect of the present invention, there are provided contrast agents comprising microbubble-generating carbohydrate microparticles having a surfactant admixed within the microparticulate structure, with the proviso that the surfactant is not-a saturated C10-20 fatty acid when the microparticulate carbohydrate is galactose.
- The microparticulate carbohydrate is preferably water soluble, and subject to the foregoing proviso may for example be selected from hexoses such as glucose, fructose or galactose; disaccharides such as sucrose, lactose or maltose; pentoses such as arabinose, xylose or ribose; and polysaccharides such as α-, β- and δ-cyclodextrins, maltodextrin and glycogen; the term “carbohydrate” as used herein is also intended to embrace sugar alcohols, e.g. alditols such as mannitol or sorbitol. Microparticles of the above carbohydrates will normally have gas present as an inclusion in the voids of their crystal structure and/or adhered to their surface, which gas may generate microbubbles when, for example, the microparticles are suspended or dissolved in an injectable carrier liquid, for example water for injection, an aqueous solution of one or more inorganic salts (e.g. physiological saline-or a physiological buffer solution), an aqueous solution of a monosaccharide (e.g. glucose or galactose) or disaccharide (e.g. lactose), or an aqueous solution of a physiologically tolerable monohydric or polyhydric alcohol (e.g. ethanol, propanol., isopropanol, ethylene glycol, propylene glycol, glycerine or polyethylene glycol).
- In addition to or alternatively to air, any biocompatible gas may be employed in the contrast agents of the invention, for example nitrogen, oxygen, hydrogen, nitrous oxide, carbon dioxide, helium, argon, sulphur hexafluoride and low molecular weight optionally fluorinated hydrocarbons such as methane, acetylene or carbon tetrafluoride. The term “gas” as used herein includes any substance in the gaseous form at 37° C. The gas may be contained in the contrast agent in such a way that before use the product is non-contrast giving but becomes-effective on administration, e.g. as a result of the gas forming microbubbles as a soluble carbohydrate matrix dissolves.
- Additionally or alternatively the carbohydrate may incorporate one or more gas precursors, including carbonates and bicarbonates (e.g. sodium or ammonium bicarbonate) and aminomalonate esters.
- Subject to the foregoing proviso a wide variety of surfactants may be used in the ultrasound contrast agents of the invention; it will of course be appreciated that the surfactant is required to be biocompatible, i.e. that it should be physiologically tolerable in the quantities in which it is to be administered. The surfactant is advantageously biodegradable in vivo or otherwise readily eliminable from the system.
- The surfactant may, for example, be an amphiphilic lipid, e.g. selected from fatty acids and salts (e.g. alkali metal salts) thereof, steroid acids, sterols, phospholipids and glycolipids. Such lipids include high molecular weight (e.g. C10-50) straight chain saturated and unsaturated aliphatic acids, such as capric, palmitic, hexadecanedioic, stearic, linolenic, behenic, docosanedioic and melissic acids; aralkanoic acids, e.g. phenyl lower alkanoic acids such as. 2-phenylbutyric acid; salts of any of the foregoing acids; mono- and di-glycerides, for example glyceryl esters of high molecular weight (e.g. C10-50) aliphatic acids, such as glyceryl monolaurate; cholanic acids such as 50-cholanic acid; cholesterol; sorbitan esters of fatty acids such as Span-type materials; high molecular weight (e.g. C10-50) straight chain aliphatic alcohols such as stearyl alcohol and cetyl alcohol; phospholipids such as phosphatidyl choline (lecithin) and dioleoylphosphatidyl ethanolamine (DOPE); and mixtures thereof.
- Other surfactants which may be employed include anionic surfactants, for example alkali metal alkyl sulphates such as sodium lauryl sulphate and sulphonated esters such as sodium dioctyl sulphosuccinate (docusate); and non-ionic surfactants, for example polyoxyethylene-polyoxyproplyene copolymers (e.g. poloxamers such as Pluronic F68) and polyoxyethylated sorbitan esters (e.g. polysorbates such as Tween-type materials).
- The surfactant moiety may if desired be covalently linked to a substrate such as a carbohydrate prior to its admixture with the principal microparticulate carbohydrate. Thus, for example, a fatty acid such as palmitic acid (preferably in the form of a reactive derivative such as a corresponding acyl halide) may be used to esterify a (preferably appropriately O-protected) sugar such as galactose and the resulting lipophilically modified carbohydrate used as the 0.20 surfactant in accordance with the invention.
- The surfactant may, for example, be present in an amount of 0.01-5.0 wt. %, preferably 0.1-2.0 wt. %, relative to the microparticulate carbohydrate.
- The contrast agents of the invention may be used in a variety of diagnostic imaging techniques, including ultrasound, MR and X-ray imaging. Their uses in diagnostic ultrasonic imaging and MR imaging, e.g. as susceptibility contrast agents, constitute preferred features of the invention.
- The contrast agents of the invention may be prepared by any convenient method which leads to physical admixture of the surfactant within the microparticulate structure of the carbohydrate and to production of microparticles of the desired size.
- In one preferred method according to the invention the carbohydrate and the surfactant are each dissolved in appropriate mutually miscible solvents (e.g. water in the case or the carbohydrate and a lower alkanol such as ethanol in the case of lipid surfactants such as fatty acids), the resulting solutions are mixed, the solvents are removed (e.g. by evaporation under reduced pressure), and the resulting solid mixture is micronised to yield the desired microparticles. It will be appreciated that all such operations should be effected under sterile conditions.
- In an alternative method according to the invention a (preferably aqueous) solution of the carbohydrate is mixed with a liposome-forming material (e.g. a thin film of a lipid such as lecithin formed on the inner surface of the mixing vessel by evaporating the solvent from a solution of the lipid in an appropriate organic solvent, for example a chlorinated hydrocarbon such as chloroform) so as to form a liposome-containing carbohydrate solution from which the solvent may be removed (e.g. by freeze-drying) to yield a product comprising carbohydrate-containing liposomes; this product may be micronised to given microparticles of the desired size.
- In general conventional micronisation techniques such as grinding or milling may be employed in processes according to the invention. Ball-milling of the solid mixture has been found to be particularly advantageous, permitting the preparation of microparticles in the form of aggregates (for example having an aggregate size of 20-125 micrometres, such as 30-50 micrometres) of particles having a particle size of, for example, 1-50 micrometres, such as 1-10 micrometres. Such aggregates will tend to contain a substantial volume of air adsorbed on their surfaces and entrained in voids such as interparticle cavities or at grain boundaries between the crystallites. The particle size may, for example, be selected to be substantially commensurate with the desired microbubble size. In ultrasonic applications such as echocardiography, in order to permit free passage through the pulmonary system and to achieve resonance with the preferred imaging frequencies of about 0.1-15 MHz, it may be convenient to employ microbubbles and microparticles having an average size of 0.1-10 μm, e.g. 1-7 μm; the use of microparticles of average size 1-4 μm to generate microbubbles with an average size of 4-7 μm is generally advantageous. Substantially larger bubbles and particles, e.g. with average sizes up to 500 μm, may however be useful in other applications, for example gastrointestinal imaging.
- Ultrasound contrast agents in the form of microparticles comprising a microbubble-generating carbohydrate in admixture with an amphiphilic organic acid containing in excess of 20 carbon atoms are the subject matter of our international patent application cofiled herewith and claiming priority from British patent application No. 9200387.0.
- The following non-limitative Examples serve to illustrate the invention:—
- General Procedure
- D-(+)-galactose (10.0 g) was dissolved in distilled water (14.2 g) at 50° C., sterile filtered and cooled on ice to a temperature of 4-8° C. The stated amounts of the surfactants (in % w/w relative to the galactose) listed in Table I were each dissolved in the amount of 96% ethanol (or water in Examples 5 and 6) shown in the Table, at 50-78° C., and the resulting solution was sterile filtered and then aseptically added to the cold aqueous galactose solution under stirring. The resulting mixture was evaporated to dryness under reduced pressure (10 torr, 40° C.), and the resulting solid product was dried in a desiccator overnight and then ground for 10 minutes under aseptic conditions in a stainless steel ball mill having a 50 ml grinding cup and 3×20 mm balls (fetsch centrifugal ball mill, S1) The ground product was dried in a desiccator for 24 hours.
TABLE I Amount of Amount of ethanol Example Surfactant (or water) No. Surfactant (% w/w) (g) 1 Lecithin 1.0 1.2 2 ″ 0.2 1.2 3 Sodium Lauryl Sulphate 1.0 1.0 (water) 4 ″ 0.1 1.0 (water) 5 Span 80 1.0 1.2 6 ″ 0.1 1.2 7 Span 85 1.0 1.2 8 ″ 0.1 1.2 9 Pluronic F68 1.0 1.2 10 ″ 0.1 1.2 11 Sodium Docusate 1.0 1.2 12 ″ 0.1 1.2 13 DOPE 1.0 1.2 14 ″ 0.1 1.2 15 α-Glyceryl Monolaurate 0.2 3.2 Glyceryl Tripalmitate 0.2 Cholesterol 0.2 Cholesterol Acetate 0.2 Cholesterol Benzoate 0.2 16 α-Glyceryl Monolaurate 0.02 1.2 Glyceryl Tripalmitate 0.02 Cholesterol 0.02 Cholesterol Acetate 0.02 Cholesterol Benzoate 0.02 17 Hexadecanedioic Acid 0.2 1.2 18 Linolenic Acid 1.0 1.2 - The general procedure for Examples 1-18 was repeated except that the D-(+)-galactose was replaced by the carbohydrates listed in Table II, in the amounts and using the quantities of water shown, and that the surfactant used was palmitic acid (0.2% w/w relative to the carbohydrate) dissolved in 96% ethanol (1.2 g).
TABLE II Amount of Amount of Example Microbubble-generating Carbohydrate water No. Carbohydrate (g) (g) 19 Xylose (BDH) 10.0 14.2 20 Maltodextrin 10.0 14.2 21 Glycogen (Merck) 5.0 17.2 22 α-Cyclodextrin (Sigma) 5.0 12.2 - 6-O-Palmitoyl-b-galactopyranose/Galactose Mixtures
- (A) 6-O-Palmitoyl-1,2,3,4-diisopropylidene-D-galactopyranose
- 1,2,3,4-Diisopropylidene-D-galactopyranose (Sigma, 13.4 g, 51.3 mmol) and triethylamine (7.15 ml, 51.3 mmol) were dissolved in methylene chloride (150 ml) and cooled to 0° C. Palmitoyl chloride (Aldrich, 14.1 g, 51.3 mmol) dissolved in methylene chloride (100 ml) was added dropwise with: stirring over 1 h. The cooling bath was removed and the reaction mixture was stirred overnight. Precipitated triethylamine hydrochloride was removed by filtration, the filtrate was transferred to a separating funnel and extracted with water (3×50 ml), dried over MgSO4 and the solvent was removed in vacuo. The residue was a light brownish oil which solidified to waxy crystals. Crude yield: 23 g. The crude product was used without further purification. A small aliquot was recrystallized for characterisation. FT-IR:CO-1734 cm−1. 13C-NMR: CO-ester 172.79. Mp. 124-127° C.
- (B) 6-O-Palmitoyl-D-galactopyranose
- 6-O-Palmitoyl-1,2,3,4-diisopropylidene-D-galactopyranose (6 g) was dissolved in acetic acid (25 ml) and heated to 100° C. under nitrogen for 6 h. During subsequent cooling to room temperature, the product precipitated from the solvent, and was left at room temperature overnight. The crystals were collected by filtration and dried under vacuum. Yield: 3.3 g. The product was characterized by FT-IR:CO-1734 cm−1; OH-3464 cm1.
- (C) 6-O-Palmitoyl-D-galactopyranose/Galactose Mixtures
- (i) D-(+)-galactose (2 g) was dissolved in purified water (2.87 g) and sterile filtered. 6-O-Palmitoyl-D-galactopyranose (0.25 g) prepared as described in (B) above was dissolved in ethanol (3 g) and sterile filtered. The solution of the palmitoyl-galactopyranose was added to the galactose solution under stirring and the whole mixture was taken to dryness under vacuum (10 torr, 50° C.). The product was dried in a desiccator overnight.
- (ii) The procedure of (i) was repeated using 6-O-palmitoyl-D-galactopyranose (0.50 g) dissolved in ethanol (6 g).
- Freeze-Dried Liposomes Containing D-(+)-Galactose Particles
- 1 ml 100 mg/ml phosphatidylcholine was dissolved in 10 ml chloroform. The mixture was poured into a round bottom flask, and the organic phase was evaporated at 40° C. in such a way that a thin film of the phosphatidylcholine was formed on the inner surface of the flask. 10 ml of a sterile, pyrogen free 40% aqueous D-(+)-galactose solution was then added at 40° C. and the flask was kept rotating for 1 hour. The aqueous solution containing liposomes and dissolved galactose was then freeze-dried for 24 hours, and the resulting product consisting of freeze-dried-galactose and freeze-0.5 dried galactose-filled liposomes was then ground in a ball-mill to yield a product with a particle size distribution of 1-20 μm.
- Echogenicity In Vitro
- 10 ml of propylene glycol mixed with 90 ml of 5% dextrose in water was used as a carrier liquid for determining the echogenicity of products according to the Examples. 11.0 g of each product to be tested was dispersed in 3.0 ml of the carrier liquid and shaken for seconds. The resulting mixture was added to 52 ml of 5% human serum albumin infusion solution in the measurement cell and the acoustic effects of the products were investigated by measuring the acoustic transmission through the samples using a 5 MHz broadband transducer in a pulse-reflection technique. The temperature in the measurement cell was stabilised to 37° C. and circulation of the liquid was maintained by means of stirring at a constant rate. Ultrasound transmission through the samples was measured as a function of time over a duration of 390 seconds. Results were normalized to measurements on a reference consisting of 55 ml of 5% human serum albumin infusion solution.
- Results for representative exemplified products and comparative results for unmodified milled D-(+)-galactose are shown in the accompanying drawing as
FIG. 1 it will be apparent that these products exhibit a strong effect on ultrasonic attenuation in vitro, an effect which persisted for several minutes.
Claims (16)
1-13. (canceled).
14. The method of generating an enhanced echocardiographic image of a human or non-human body comprising: administering into the pulmonary system of said body an echocardiographic contrast enhancing amount of a contrast agent comprising gasmicrobubble-generating aggregates of microparticles; applying to a part of said body ultrasound at a frequency of 0.1 to 15 MHZ; and generating said image; said microparticles comprising a water soluble matrix material and a surfactant, the microbubbles generated by said aggregates comprising SF6 or a fluorinated low molecular weight hydrocarbon, said aggregates being 20-125 μm in size and said microparticles having an average size of 0.1 to 50 μm.
15. The method as claimed in claim 14 in which the surfactant is selected from the group consisting of straight chain aliphatic carboxylic acids and salts, sorbitan esters and mono- and di-glycerides thereof; aralkanoic acids and the salts thereof; steroid acids; sterols; straight chain aliphatic alcohols; phospholipids; alkali metal alkyl sulphates and sulphonated esters; polyoxyethylene-polyoxypropylene copolymers; polyoxyethylated sorbitan esters; and mixtures of any of the foregoing.
16. The method as claimed in claim 14 in which the surfactant comprises a lipophilically modified carbohydrate.
17. The method as claimed in claim 14 in which the surfactant is present in an amount of 0.1-2.0% w/w relative to the water soluble matrix.
18. The method as claimed in claim 14 for which the microbubbles generated by said aggregates contain air in admixture with said SF6 or fluorinated hydrocarbon.
19. The method as claimed in claim 14 for which the microbubbles generated by said aggregates comprise carbon tetrafluoride.
20. The method as claimed in claim 14 in which the water soluble matrix is a carbohydrate.
21. The method as claimed in claim 20 in which the carbohydrate is a polysaccharide.
22. The method as claimed in claim 20 in which the carbohydrate is a sugar alcohol.
23. The method as claimed in claim 14 which is non-contrast giving before use, but which becomes effective on administration.
24. The method as claimed in claim 15 which is non-contrast giving before use, but which becomes effective on administration.
25. The method as claimed in claim 16 which is non-contrast giving before use, but which becomes effective on administration.
26. The method as claimed in claim 17 which is non-contrast giving before use, but which becomes effective on administration.
27. The method as claimed in claim 18 which is non-contrast giving before use, but which becomes effective on administration.
28. The method as claimed in claim 19 which is non-contrast giving before use, but which becomes effective on administration.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/820,428 US20050031543A1 (en) | 1992-01-09 | 2004-04-07 | Contrast agents |
US11/055,544 US20050196342A1 (en) | 1992-01-09 | 2005-02-10 | Contrast agents |
Applications Claiming Priority (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB9200388.8 | 1992-01-09 | ||
GB929200388A GB9200388D0 (en) | 1992-01-09 | 1992-01-09 | Improvements in or relating to contrast agents |
US08/256,149 US5558856A (en) | 1992-01-09 | 1993-01-08 | Microbubble-generating contrast agents for ultrasound and magnetic resonance imaging |
US08/478,037 US5827502A (en) | 1992-01-09 | 1995-06-07 | Microparticulate microbubble-generating contrast agents |
US93916597A | 1997-09-29 | 1997-09-29 | |
US23135199A | 1999-01-13 | 1999-01-13 | |
US10/072,655 US20030059373A1 (en) | 1992-01-09 | 2002-02-08 | Contrast agents |
US63541503A | 2003-08-06 | 2003-08-06 | |
US10/820,428 US20050031543A1 (en) | 1992-01-09 | 2004-04-07 | Contrast agents |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US63541503A Continuation | 1992-01-09 | 2003-08-06 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/055,544 Continuation US20050196342A1 (en) | 1992-01-09 | 2005-02-10 | Contrast agents |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050031543A1 true US20050031543A1 (en) | 2005-02-10 |
Family
ID=10708317
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/256,149 Expired - Lifetime US5558856A (en) | 1992-01-09 | 1993-01-08 | Microbubble-generating contrast agents for ultrasound and magnetic resonance imaging |
US08/478,037 Expired - Fee Related US5827502A (en) | 1992-01-09 | 1995-06-07 | Microparticulate microbubble-generating contrast agents |
US10/072,655 Abandoned US20030059373A1 (en) | 1992-01-09 | 2002-02-08 | Contrast agents |
US10/820,428 Abandoned US20050031543A1 (en) | 1992-01-09 | 2004-04-07 | Contrast agents |
US11/055,544 Abandoned US20050196342A1 (en) | 1992-01-09 | 2005-02-10 | Contrast agents |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/256,149 Expired - Lifetime US5558856A (en) | 1992-01-09 | 1993-01-08 | Microbubble-generating contrast agents for ultrasound and magnetic resonance imaging |
US08/478,037 Expired - Fee Related US5827502A (en) | 1992-01-09 | 1995-06-07 | Microparticulate microbubble-generating contrast agents |
US10/072,655 Abandoned US20030059373A1 (en) | 1992-01-09 | 2002-02-08 | Contrast agents |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/055,544 Abandoned US20050196342A1 (en) | 1992-01-09 | 2005-02-10 | Contrast agents |
Country Status (16)
Country | Link |
---|---|
US (5) | US5558856A (en) |
EP (2) | EP0972527A3 (en) |
JP (1) | JPH07505136A (en) |
AT (1) | ATE191646T1 (en) |
AU (2) | AU676147B2 (en) |
CA (1) | CA2127705C (en) |
DE (1) | DE69328354T2 (en) |
DK (1) | DK0620744T3 (en) |
ES (1) | ES2144454T3 (en) |
GB (1) | GB9200388D0 (en) |
GR (1) | GR3033902T3 (en) |
HK (1) | HK1001994A1 (en) |
NO (1) | NO311330B1 (en) |
PT (1) | PT620744E (en) |
SG (1) | SG52338A1 (en) |
WO (1) | WO1993013808A2 (en) |
Families Citing this family (100)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5585112A (en) | 1989-12-22 | 1996-12-17 | Imarx Pharmaceutical Corp. | Method of preparing gas and gaseous precursor-filled microspheres |
US6088613A (en) | 1989-12-22 | 2000-07-11 | Imarx Pharmaceutical Corp. | Method of magnetic resonance focused surgical and therapeutic ultrasound |
US6146657A (en) | 1989-12-22 | 2000-11-14 | Imarx Pharmaceutical Corp. | Gas-filled lipid spheres for use in diagnostic and therapeutic applications |
US5922304A (en) | 1989-12-22 | 1999-07-13 | Imarx Pharmaceutical Corp. | Gaseous precursor filled microspheres as magnetic resonance imaging contrast agents |
US6001335A (en) | 1989-12-22 | 1999-12-14 | Imarx Pharmaceutical Corp. | Contrasting agents for ultrasonic imaging and methods for preparing the same |
US5542935A (en) | 1989-12-22 | 1996-08-06 | Imarx Pharmaceutical Corp. | Therapeutic delivery systems related applications |
US5656211A (en) | 1989-12-22 | 1997-08-12 | Imarx Pharmaceutical Corp. | Apparatus and method for making gas-filled vesicles of optimal size |
US5469854A (en) | 1989-12-22 | 1995-11-28 | Imarx Pharmaceutical Corp. | Methods of preparing gas-filled liposomes |
US6551576B1 (en) | 1989-12-22 | 2003-04-22 | Bristol-Myers Squibb Medical Imaging, Inc. | Container with multi-phase composition for use in diagnostic and therapeutic applications |
US5776429A (en) | 1989-12-22 | 1998-07-07 | Imarx Pharmaceutical Corp. | Method of preparing gas-filled microspheres using a lyophilized lipids |
US6989141B2 (en) * | 1990-05-18 | 2006-01-24 | Bracco International B.V. | Ultrasound contrast agents and methods of making and using them |
US20010024638A1 (en) * | 1992-11-02 | 2001-09-27 | Michel Schneider | Stable microbubble suspensions as enhancement agents for ultrasound echography and dry formulations thereof |
US6613306B1 (en) | 1990-04-02 | 2003-09-02 | Bracco International B.V. | Ultrasound contrast agents and methods of making and using them |
US5578292A (en) | 1991-11-20 | 1996-11-26 | Bracco International B.V. | Long-lasting aqueous dispersions or suspensions of pressure-resistant gas-filled microvesicles and methods for the preparation thereof |
US7083778B2 (en) * | 1991-05-03 | 2006-08-01 | Bracco International B.V. | Ultrasound contrast agents and methods of making and using them |
IN172208B (en) | 1990-04-02 | 1993-05-01 | Sint Sa | |
US20040208826A1 (en) * | 1990-04-02 | 2004-10-21 | Bracco International B.V. | Ultrasound contrast agents and methods of making and using them |
US5445813A (en) * | 1992-11-02 | 1995-08-29 | Bracco International B.V. | Stable microbubble suspensions as enhancement agents for ultrasound echography |
USRE39146E1 (en) | 1990-04-02 | 2006-06-27 | Bracco International B.V. | Long-lasting aqueous dispersions or suspensions of pressure-resistant gas-filled microvesicles and methods for the preparation thereof |
AU636481B2 (en) * | 1990-05-18 | 1993-04-29 | Bracco International B.V. | Polymeric gas or air filled microballoons usable as suspensions in liquid carriers for ultrasonic echography |
US20030194376A1 (en) * | 1990-05-18 | 2003-10-16 | Bracco International B.V. | Ultrasound contrast agents and methods of making and using them |
US5205290A (en) | 1991-04-05 | 1993-04-27 | Unger Evan C | Low density microspheres and their use as contrast agents for computed tomography |
US5874062A (en) | 1991-04-05 | 1999-02-23 | Imarx Pharmaceutical Corp. | Methods of computed tomography using perfluorocarbon gaseous filled microspheres as contrast agents |
US6875420B1 (en) | 1991-09-17 | 2005-04-05 | Amersham Health As | Method of ultrasound imaging |
US6723303B1 (en) | 1991-09-17 | 2004-04-20 | Amersham Health, As | Ultrasound contrast agents including protein stabilized microspheres of perfluoropropane, perfluorobutane or perfluoropentane |
MX9205298A (en) * | 1991-09-17 | 1993-05-01 | Steven Carl Quay | GASEOUS ULTRASOUND CONTRASTING MEDIA AND METHOD FOR SELECTING GASES TO BE USED AS ULTRASOUND CONTRASTING MEDIA |
GB9200388D0 (en) * | 1992-01-09 | 1992-02-26 | Nycomed As | Improvements in or relating to contrast agents |
IL104084A (en) | 1992-01-24 | 1996-09-12 | Bracco Int Bv | Long-lasting aqueous suspensions of pressure-resistant gas-filled microvesicles their preparation and contrast agents consisting of them |
CZ191695A3 (en) * | 1993-01-25 | 1996-05-15 | Sonus Pharma Inc | Biologically compatible contrast agent, process of its preparation and representation method by ultrasound |
IL108416A (en) | 1993-01-25 | 1998-10-30 | Sonus Pharma Inc | Phase shift colloids as ultrasound contrast agents |
US5798091A (en) * | 1993-07-30 | 1998-08-25 | Alliance Pharmaceutical Corp. | Stabilized gas emulsion containing phospholipid for ultrasound contrast enhancement |
DK0711179T3 (en) * | 1993-07-30 | 2005-02-14 | Imcor Pharmaceutical Co | Stabilized ultrasound microbubble compositions |
CZ208995A3 (en) * | 1993-12-15 | 1996-01-17 | Bracco Research Sa | Injectable ultrasound medium, process of its preparation and use |
DE4406474A1 (en) | 1994-02-23 | 1995-08-24 | Schering Ag | Gas-containing microparticles, agents containing them, their use in ultrasound diagnostics, and methods for producing the particles and agents |
US5540909A (en) * | 1994-09-28 | 1996-07-30 | Alliance Pharmaceutical Corp. | Harmonic ultrasound imaging with microbubbles |
WO1998053855A1 (en) * | 1997-05-30 | 1998-12-03 | Alliance Pharmaceutical Corp. | Methods and apparatus for monitoring and quantifying the movement of fluid |
US6743779B1 (en) | 1994-11-29 | 2004-06-01 | Imarx Pharmaceutical Corp. | Methods for delivering compounds into a cell |
US5830430A (en) | 1995-02-21 | 1998-11-03 | Imarx Pharmaceutical Corp. | Cationic lipids and the use thereof |
US5997898A (en) | 1995-06-06 | 1999-12-07 | Imarx Pharmaceutical Corp. | Stabilized compositions of fluorinated amphiphiles for methods of therapeutic delivery |
US6033645A (en) | 1996-06-19 | 2000-03-07 | Unger; Evan C. | Methods for diagnostic imaging by regulating the administration rate of a contrast agent |
US6139819A (en) | 1995-06-07 | 2000-10-31 | Imarx Pharmaceutical Corp. | Targeted contrast agents for diagnostic and therapeutic use |
US6521211B1 (en) | 1995-06-07 | 2003-02-18 | Bristol-Myers Squibb Medical Imaging, Inc. | Methods of imaging and treatment with targeted compositions |
US5804162A (en) | 1995-06-07 | 1998-09-08 | Alliance Pharmaceutical Corp. | Gas emulsions stabilized with fluorinated ethers having low Ostwald coefficients |
US6231834B1 (en) | 1995-06-07 | 2001-05-15 | Imarx Pharmaceutical Corp. | Methods for ultrasound imaging involving the use of a contrast agent and multiple images and processing of same |
DE19602930A1 (en) * | 1996-01-18 | 1997-07-24 | Schering Ag | Porous matrices made of low molecular weight substances for the generation of stable gas bubble suspensions, their use as ultrasound contrast agents and processes for their production |
US5611344A (en) * | 1996-03-05 | 1997-03-18 | Acusphere, Inc. | Microencapsulated fluorinated gases for use as imaging agents |
WO1997040679A1 (en) | 1996-05-01 | 1997-11-06 | Imarx Pharmaceutical Corp. | Methods for delivering compounds into a cell |
DE19626530A1 (en) * | 1996-07-02 | 1998-01-15 | Byk Gulden Lomberg Chem Fab | Aqueous magnetic resonance contrast agent compositions |
US5837221A (en) * | 1996-07-29 | 1998-11-17 | Acusphere, Inc. | Polymer-lipid microencapsulated gases for use as imaging agents |
US6414139B1 (en) | 1996-09-03 | 2002-07-02 | Imarx Therapeutics, Inc. | Silicon amphiphilic compounds and the use thereof |
DK0977597T3 (en) | 1996-09-11 | 2003-05-05 | Imarx Pharmaceutical Corp | Improved methods of diagnostic imaging using a contrast agent and a vasodilator. |
US5846517A (en) | 1996-09-11 | 1998-12-08 | Imarx Pharmaceutical Corp. | Methods for diagnostic imaging using a renal contrast agent and a vasodilator |
US6143276A (en) | 1997-03-21 | 2000-11-07 | Imarx Pharmaceutical Corp. | Methods for delivering bioactive agents to regions of elevated temperatures |
US6537246B1 (en) | 1997-06-18 | 2003-03-25 | Imarx Therapeutics, Inc. | Oxygen delivery agents and uses for the same |
US6090800A (en) | 1997-05-06 | 2000-07-18 | Imarx Pharmaceutical Corp. | Lipid soluble steroid prodrugs |
US6416740B1 (en) | 1997-05-13 | 2002-07-09 | Bristol-Myers Squibb Medical Imaging, Inc. | Acoustically active drug delivery systems |
US6548047B1 (en) | 1997-09-15 | 2003-04-15 | Bristol-Myers Squibb Medical Imaging, Inc. | Thermal preactivation of gaseous precursor filled compositions |
US6123923A (en) | 1997-12-18 | 2000-09-26 | Imarx Pharmaceutical Corp. | Optoacoustic contrast agents and methods for their use |
US20010003580A1 (en) | 1998-01-14 | 2001-06-14 | Poh K. Hui | Preparation of a lipid blend and a phospholipid suspension containing the lipid blend |
DE19805012A1 (en) * | 1998-02-07 | 1999-08-12 | Thomas Gieselmann | Contrast agent for use as a diagnostic agent in imaging processes and its production |
US6444192B1 (en) | 1999-02-05 | 2002-09-03 | The Regents Of The University Of California | Diagnostic imaging of lymph structures |
US6514209B1 (en) | 1999-06-07 | 2003-02-04 | Drexel University | Method of enhancing ultrasonic techniques via measurement of ultraharmonic signals |
CA2401879A1 (en) * | 2000-03-06 | 2001-09-13 | Stephan Mangin | Embolic agents visible under ultrasound |
EP1289565B1 (en) | 2000-06-02 | 2015-04-22 | Bracco Suisse SA | Compounds for targeting endothelial cells |
US8623822B2 (en) | 2002-03-01 | 2014-01-07 | Bracco Suisse Sa | KDR and VEGF/KDR binding peptides and their use in diagnosis and therapy |
US7794693B2 (en) | 2002-03-01 | 2010-09-14 | Bracco International B.V. | Targeting vector-phospholipid conjugates |
US7211240B2 (en) | 2002-03-01 | 2007-05-01 | Bracco International B.V. | Multivalent constructs for therapeutic and diagnostic applications |
EP1587944A4 (en) | 2002-03-01 | 2007-03-21 | Dyax Corp | Kdr and vegf/kdr binding peptides and their use in diagnosis and therapy |
US7261876B2 (en) | 2002-03-01 | 2007-08-28 | Bracco International Bv | Multivalent constructs for therapeutic and diagnostic applications |
EP2014310B8 (en) | 2002-03-01 | 2012-12-26 | Dyax Corp. | KDR and VEGF/KDR binding peptides and their use in diagnosis and therapy |
US7462366B2 (en) | 2002-03-29 | 2008-12-09 | Boston Scientific Scimed, Inc. | Drug delivery particle |
EP1511522B1 (en) | 2002-06-12 | 2011-08-10 | Boston Scientific Limited | Bulking agents |
US7842377B2 (en) | 2003-08-08 | 2010-11-30 | Boston Scientific Scimed, Inc. | Porous polymeric particle comprising polyvinyl alcohol and having interior to surface porosity-gradient |
US8012454B2 (en) | 2002-08-30 | 2011-09-06 | Boston Scientific Scimed, Inc. | Embolization |
US7883490B2 (en) | 2002-10-23 | 2011-02-08 | Boston Scientific Scimed, Inc. | Mixing and delivery of therapeutic compositions |
JP5466350B2 (en) | 2003-03-03 | 2014-04-09 | ダイアックス、コープ | Peptides that specifically bind the HGF receptor (cMet) and uses thereof |
US20040258760A1 (en) * | 2003-03-20 | 2004-12-23 | Wheatley Margaret A. | Isolated nanocapsule populations and surfactant-stabilized microcapsules and nanocapsules for diagnostic imaging and drug delivery and methods for their production |
US7976823B2 (en) | 2003-08-29 | 2011-07-12 | Boston Scientific Scimed, Inc. | Ferromagnetic particles and methods |
US7736671B2 (en) | 2004-03-02 | 2010-06-15 | Boston Scientific Scimed, Inc. | Embolization |
US8173176B2 (en) | 2004-03-30 | 2012-05-08 | Boston Scientific Scimed, Inc. | Embolization |
US7311861B2 (en) | 2004-06-01 | 2007-12-25 | Boston Scientific Scimed, Inc. | Embolization |
US8012457B2 (en) | 2004-06-04 | 2011-09-06 | Acusphere, Inc. | Ultrasound contrast agent dosage formulation |
US8425550B2 (en) | 2004-12-01 | 2013-04-23 | Boston Scientific Scimed, Inc. | Embolic coils |
US20060159712A1 (en) * | 2004-12-14 | 2006-07-20 | Transave, Inc. | Lipid particles comprising bioactive agents, methods of preparing and uses thereof |
US7727555B2 (en) | 2005-03-02 | 2010-06-01 | Boston Scientific Scimed, Inc. | Particles |
US7858183B2 (en) | 2005-03-02 | 2010-12-28 | Boston Scientific Scimed, Inc. | Particles |
US7963287B2 (en) | 2005-04-28 | 2011-06-21 | Boston Scientific Scimed, Inc. | Tissue-treatment methods |
US9463426B2 (en) | 2005-06-24 | 2016-10-11 | Boston Scientific Scimed, Inc. | Methods and systems for coating particles |
US8007509B2 (en) | 2005-10-12 | 2011-08-30 | Boston Scientific Scimed, Inc. | Coil assemblies, components and methods |
US8152839B2 (en) | 2005-12-19 | 2012-04-10 | Boston Scientific Scimed, Inc. | Embolic coils |
US8101197B2 (en) | 2005-12-19 | 2012-01-24 | Stryker Corporation | Forming coils |
US7947368B2 (en) | 2005-12-21 | 2011-05-24 | Boston Scientific Scimed, Inc. | Block copolymer particles |
US9220709B2 (en) * | 2006-05-19 | 2015-12-29 | Drexel University | Drug loaded contrast agents: combining diagnosis and therapy |
US8414927B2 (en) | 2006-11-03 | 2013-04-09 | Boston Scientific Scimed, Inc. | Cross-linked polymer particles |
WO2008101173A2 (en) * | 2007-02-16 | 2008-08-21 | Cornell University | Biodegradable compositions and materials |
JP5196896B2 (en) * | 2007-07-13 | 2013-05-15 | 花王株式会社 | Method for producing fine bubble precursor |
GB0811856D0 (en) * | 2008-06-27 | 2008-07-30 | Ucl Business Plc | Magnetic microbubbles, methods of preparing them and their uses |
DE102011000264B4 (en) | 2011-01-21 | 2019-01-17 | Surflay Nanotec Gmbh | Microbubbles with PVA wall, production and use of such microbubbles |
WO2012136813A2 (en) | 2011-04-07 | 2012-10-11 | Universitetet I Oslo | Agents for medical radar diagnosis |
KR101853948B1 (en) * | 2013-07-05 | 2018-05-02 | 사회복지법인 삼성생명공익재단 | Composition containing x-ray contrast and bubble accelerator and method for producing the same |
Citations (82)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3557294A (en) * | 1967-10-12 | 1971-01-19 | Allied Chem | Fluorinated ethers as inhalation convulsants |
US3650831A (en) * | 1969-03-10 | 1972-03-21 | Armour Dial Inc | Method of cleaning surfaces |
US3663687A (en) * | 1968-06-26 | 1972-05-16 | Minnesota Mining & Mfg | Biodegradable parenteral microspherules |
US3720761A (en) * | 1968-10-14 | 1973-03-13 | W Hunter | Injectable radio-pharmaceutical scanning agent and preparation |
US3832457A (en) * | 1969-06-20 | 1974-08-27 | Rikagaku Kenkyusho | Ferrite contrast media with metallic oxides |
US3900420A (en) * | 1970-05-18 | 1975-08-19 | Felix Sebba | Microgas emulsions and method of forming same |
US3932805A (en) * | 1973-02-02 | 1976-01-13 | Kichizo Niwa | Method of obtaining internal information of a measuring target from the out-side by the application of a nuclear magnetic resonance phenomenon |
US3968203A (en) * | 1965-10-01 | 1976-07-06 | Jerome G. Spitzer | Aerosol astringent composition |
US4101435A (en) * | 1975-06-19 | 1978-07-18 | Meito Sangyo Kabushiki Kaisha | Magnetic iron oxide-dextran complex and process for its production |
US4107288A (en) * | 1974-09-18 | 1978-08-15 | Pharmaceutical Society Of Victoria | Injectable compositions, nanoparticles useful therein, and process of manufacturing same |
US4244179A (en) * | 1977-01-28 | 1981-01-13 | Kainov Gennady P | Annular combustion chamber for gas turbine engines |
US4247406A (en) * | 1979-04-23 | 1981-01-27 | Widder Kenneth J | Intravascularly-administrable, magnetically-localizable biodegradable carrier |
US4265251A (en) * | 1979-06-28 | 1981-05-05 | Rasor Associates, Inc. | Method of determining pressure within liquid containing vessel |
US4276885A (en) * | 1979-05-04 | 1981-07-07 | Rasor Associates, Inc | Ultrasonic image enhancement |
US4316391A (en) * | 1979-11-13 | 1982-02-23 | Ultra Med, Inc. | Flow rate measurement |
US4329332A (en) * | 1978-07-19 | 1982-05-11 | Patrick Couvreur | Biodegradable submicroscopic particles containing a biologically active substance and compositions containing them |
US4331654A (en) * | 1980-06-13 | 1982-05-25 | Eli Lilly And Company | Magnetically-localizable, biodegradable lipid microspheres |
US4335094A (en) * | 1979-01-26 | 1982-06-15 | Mosbach Klaus H | Magnetic polymer particles |
US4371516A (en) * | 1976-10-06 | 1983-02-01 | John Wyeth & Brother Limited | Articles for carrying chemicals |
US4427649A (en) * | 1976-03-19 | 1984-01-24 | Imperial Chemical Industries Limited | Pharmaceutical compositions |
US4442843A (en) * | 1980-11-17 | 1984-04-17 | Schering, Ag | Microbubble precursors and methods for their production and use |
US4452773A (en) * | 1982-04-05 | 1984-06-05 | Canadian Patents And Development Limited | Magnetic iron-dextran microspheres |
US4466442A (en) * | 1981-10-16 | 1984-08-21 | Schering Aktiengesellschaft | Carrier liquid solutions for the production of gas microbubbles, preparation thereof, and use thereof as contrast medium for ultrasonic diagnostics |
US4501726A (en) * | 1981-11-12 | 1985-02-26 | Schroeder Ulf | Intravascularly administrable, magnetically responsive nanosphere or nanoparticle, a process for the production thereof, and the use thereof |
US4572203A (en) * | 1983-01-27 | 1986-02-25 | Feinstein Steven B | Contact agents for ultrasonic imaging |
US4663161A (en) * | 1985-04-22 | 1987-05-05 | Mannino Raphael J | Liposome methods and compositions |
US4675173A (en) * | 1985-05-08 | 1987-06-23 | Molecular Biosystems, Inc. | Method of magnetic resonance imaging of the liver and spleen |
US4681119A (en) * | 1980-11-17 | 1987-07-21 | Schering Aktiengesellschaft | Method of production and use of microbubble precursors |
US4684479A (en) * | 1985-08-14 | 1987-08-04 | Arrigo Joseph S D | Surfactant mixtures, stable gas-in-liquid emulsions, and methods for the production of such emulsions from said mixtures |
US4687748A (en) * | 1982-03-29 | 1987-08-18 | Gambro Lundia Ab | Magnetic carbohydrate particles as carriers for affinity separation purposes |
US4718433A (en) * | 1983-01-27 | 1988-01-12 | Feinstein Steven B | Contrast agents for ultrasonic imaging |
US4731239A (en) * | 1983-01-10 | 1988-03-15 | Gordon Robert T | Method for enhancing NMR imaging; and diagnostic use |
US4767611A (en) * | 1984-07-03 | 1988-08-30 | Gordon Robert T | Method for affecting intracellular and extracellular electric and magnetic dipoles |
US4770183A (en) * | 1986-07-03 | 1988-09-13 | Advanced Magnetics Incorporated | Biologically degradable superparamagnetic particles for use as nuclear magnetic resonance imaging agents |
US4827945A (en) * | 1986-07-03 | 1989-05-09 | Advanced Magnetics, Incorporated | Biologically degradable superparamagnetic materials for use in clinical applications |
US4832941A (en) * | 1985-08-14 | 1989-05-23 | Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V | Contrast medium for ultrasonic examinations and process for its preparation |
US4844882A (en) * | 1987-12-29 | 1989-07-04 | Molecular Biosystems, Inc. | Concentrated stabilized microbubble-type ultrasonic imaging agent |
US4858208A (en) * | 1988-07-11 | 1989-08-15 | Motorola, Inc. | Apparatus and method for testing semiconductor devices |
US4863715A (en) * | 1984-03-29 | 1989-09-05 | Nycomed As | Method of NMK imaging using a contrast agent comprising particles of a ferromagnetic material |
US4900540A (en) * | 1983-06-20 | 1990-02-13 | Trustees Of The University Of Massachusetts | Lipisomes containing gas for ultrasound detection |
US4904479A (en) * | 1986-01-17 | 1990-02-27 | Danbiosyst Uk Limited | Drug delivery system |
US4918065A (en) * | 1982-07-07 | 1990-04-17 | Schering Aktiengesellschaft | Corticoid-containing preparation for topical application |
US4957656A (en) * | 1988-09-14 | 1990-09-18 | Molecular Biosystems, Inc. | Continuous sonication method for preparing protein encapsulated microbubbles |
US4985233A (en) * | 1984-11-01 | 1991-01-15 | Nycomed /As | A diagnostic agent containing a non-radioactive paramagnetic metal species in a macromolecular carrier |
US4986980A (en) * | 1984-11-01 | 1991-01-22 | Nycomed As | Water-soluble, carrier-bound paramagnetic metal containing diagnostic agents |
US5008109A (en) * | 1984-05-25 | 1991-04-16 | Vestar, Inc. | Vesicle stabilization |
US5088499A (en) * | 1989-12-22 | 1992-02-18 | Unger Evan C | Liposomes as contrast agents for ultrasonic imaging and methods for preparing the same |
US5107842A (en) * | 1991-02-22 | 1992-04-28 | Molecular Biosystems, Inc. | Method of ultrasound imaging of the gastrointestinal tract |
US5141738A (en) * | 1983-04-15 | 1992-08-25 | Schering Aktiengesellschaft | Ultrasonic contrast medium comprising gas bubbles and solid lipophilic surfactant-containing microparticles and use thereof |
US5147631A (en) * | 1991-04-30 | 1992-09-15 | Du Pont Merck Pharmaceutical Company | Porous inorganic ultrasound contrast agents |
US5205290A (en) * | 1991-04-05 | 1993-04-27 | Unger Evan C | Low density microspheres and their use as contrast agents for computed tomography |
US5228446A (en) * | 1989-12-22 | 1993-07-20 | Unger Evan C | Gas filled liposomes and their use as ultrasonic contrast agents |
US5310540A (en) * | 1990-10-05 | 1994-05-10 | Sintetica Sa | Method for the preparation of stable suspensions of hollow gas-filled microspheres suitable for ultrasonic echography |
US5334381A (en) * | 1989-12-22 | 1994-08-02 | Unger Evan C | Liposomes as contrast agents for ultrasonic imaging and methods for preparing the same |
US5380519A (en) * | 1990-04-02 | 1995-01-10 | Bracco International B.V. | Stable microbubbles suspensions injectable into living organisms |
US5393524A (en) * | 1991-09-17 | 1995-02-28 | Sonus Pharmaceuticals Inc. | Methods for selecting and using gases as ultrasound contrast media |
US5413774A (en) * | 1992-01-23 | 1995-05-09 | Bracco International B.V. | Long-lasting aqueous dispersions or suspensions of pressure-resistant gas-filled microvesicles and methods for the preparation thereof |
US5425366A (en) * | 1988-02-05 | 1995-06-20 | Schering Aktiengesellschaft | Ultrasonic contrast agents for color Doppler imaging |
US5445813A (en) * | 1992-11-02 | 1995-08-29 | Bracco International B.V. | Stable microbubble suspensions as enhancement agents for ultrasound echography |
US5501863A (en) * | 1990-02-09 | 1996-03-26 | Schering Aktiengesellschaft | Contrast media synthesized from polyaldehydes |
US5508021A (en) * | 1993-03-26 | 1996-04-16 | Vivorx Pharmaceuticals, Inc. | Non-fluorinated polymeric shells for medical imaging |
US5529766A (en) * | 1991-03-28 | 1996-06-25 | Nycomed Imaging As | Contrast agents |
US5536489A (en) * | 1993-06-04 | 1996-07-16 | Molecular Biosystems, Inc. | Emulsions as contrast agents and method of use |
US5536490A (en) * | 1991-03-28 | 1996-07-16 | Nycomed Imaging As | Contrast agents |
US5542935A (en) * | 1989-12-22 | 1996-08-06 | Imarx Pharmaceutical Corp. | Therapeutic delivery systems related applications |
US5599523A (en) * | 1991-01-09 | 1997-02-04 | Byk Gulden Lomberg Chemische Fabrik Gmbh | Echo contrast agent |
US5605673A (en) * | 1993-07-30 | 1997-02-25 | Alliance Pharmaceutical Corp. | Stabilized microbubble compositions for ultrasound |
US5607661A (en) * | 1991-07-05 | 1997-03-04 | Nycomed Imaging As | Aggregates of x-ray microparticles for ultrasound imaging |
US5614169A (en) * | 1992-01-09 | 1997-03-25 | Nycomed Imaging As | Contrast agents, consisting of galactose particles and an amphilic carboxylic acid |
US5618514A (en) * | 1983-12-21 | 1997-04-08 | Nycomed Imaging As | Diagnostic and contrast agent |
US5637564A (en) * | 1992-08-06 | 1997-06-10 | Alliance Pharmaceutical Corp. | Amphiphilic compounds derived from amino acids or peptides, their methods of synthesis and their application as drug delivery systems |
US5639433A (en) * | 1995-12-13 | 1997-06-17 | Cytec Technology Corp. | Extraction of rare earth elements using alkyl phosphinic acid or salt/alkyl or aryl phosphonic acid or ester blends as extractant |
US5639442A (en) * | 1990-06-01 | 1997-06-17 | Imarx Pharmaceutical Corp. | Contrast media for ultrasonic imaging |
US5648062A (en) * | 1992-01-09 | 1997-07-15 | Nycomed Imaging As | Contrast agents consisting of galactose particles |
US5653959A (en) * | 1991-02-15 | 1997-08-05 | Sintetica Sa | Compositions for increasing the image contrast in diagnostic investigations of the digestive tract of patients |
US5705187A (en) * | 1989-12-22 | 1998-01-06 | Imarx Pharmaceutical Corp. | Compositions of lipids and stabilizing materials |
US5711933A (en) * | 1990-05-18 | 1998-01-27 | Bracco International B.V. | Method of making polymeric gas or air filled microballoons for ultrasonic echography |
US5718884A (en) * | 1992-09-16 | 1998-02-17 | Nycomed Imaging As | Microbubble-based contrast agents with crosslinked and reduced proteinaceous shells |
US5720939A (en) * | 1985-08-15 | 1998-02-24 | Nycomed Imaging As | Method of contrast enhanced magnetic resonance imaging using magnetically responsive-particles |
US5730954A (en) * | 1988-08-23 | 1998-03-24 | Schering Aktiengesellschaft | Preparation comprising cavitate- or clathrate-forming host/guest complexes as contrast agent |
US5730955A (en) * | 1994-08-02 | 1998-03-24 | Molecular Biosystems, Inc. | Process for making gas-filled microspheres containing a liquid hydrophobic barrier |
US5733572A (en) * | 1989-12-22 | 1998-03-31 | Imarx Pharmaceutical Corp. | Gas and gaseous precursor filled microspheres as topical and subcutaneous delivery vehicles |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4027007A (en) * | 1970-12-09 | 1977-05-31 | Colgate-Palmolive Company | Antiperspirants formulated with borax |
US4657756A (en) * | 1980-11-17 | 1987-04-14 | Schering Aktiengesellschaft | Microbubble precursors and apparatus for their production and use |
DE3313947A1 (en) * | 1983-04-15 | 1984-10-18 | Schering AG, 1000 Berlin und 4709 Bergkamen | MICROPARTICLES AND GAS BUBBLES CONTAINING ULTRASONIC CONTRASTING AGENTS |
DE3313946A1 (en) * | 1983-04-15 | 1984-10-18 | Schering AG, 1000 Berlin und 4709 Bergkamen | MICROPARTICLES AND GAS BUBBLES CONTAINING ULTRASONIC CONTRASTING AGENTS |
DE3834705A1 (en) * | 1988-10-07 | 1990-04-12 | Schering Ag | ULTRASONIC CONTRASTING AGENTS FROM GAS BUBBLES AND MICROPARTICLES CONTAINING FATTY ACID |
DE3637926C1 (en) * | 1986-11-05 | 1987-11-26 | Schering Ag | Ultrasonic manometry in a liquid using microbubbles |
US5196348A (en) * | 1990-06-11 | 1993-03-23 | Air Products And Chemicals, Inc. | Perfluoro-crown ethers in fluorine magnetic resonance spectroscopy of biopsied tissue |
GB9200388D0 (en) * | 1992-01-09 | 1992-02-26 | Nycomed As | Improvements in or relating to contrast agents |
WO1993017212A1 (en) * | 1992-02-26 | 1993-09-02 | Gardner, John, Richard, Greenough | Closure assemblies for openings |
-
1992
- 1992-01-09 GB GB929200388A patent/GB9200388D0/en active Pending
-
1993
- 1993-01-08 AU AU33484/93A patent/AU676147B2/en not_active Ceased
- 1993-01-08 PT PT93902156T patent/PT620744E/en unknown
- 1993-01-08 DE DE69328354T patent/DE69328354T2/en not_active Expired - Fee Related
- 1993-01-08 ES ES93902156T patent/ES2144454T3/en not_active Expired - Lifetime
- 1993-01-08 AT AT93902156T patent/ATE191646T1/en not_active IP Right Cessation
- 1993-01-08 JP JP5512124A patent/JPH07505136A/en active Pending
- 1993-01-08 SG SG1996003035A patent/SG52338A1/en unknown
- 1993-01-08 EP EP99203253A patent/EP0972527A3/en not_active Withdrawn
- 1993-01-08 WO PCT/EP1993/000027 patent/WO1993013808A2/en not_active Application Discontinuation
- 1993-01-08 DK DK93902156T patent/DK0620744T3/en active
- 1993-01-08 CA CA002127705A patent/CA2127705C/en not_active Expired - Lifetime
- 1993-01-08 EP EP93902156A patent/EP0620744B1/en not_active Revoked
- 1993-01-08 US US08/256,149 patent/US5558856A/en not_active Expired - Lifetime
-
1994
- 1994-07-07 NO NO19942561A patent/NO311330B1/en not_active IP Right Cessation
-
1995
- 1995-06-07 US US08/478,037 patent/US5827502A/en not_active Expired - Fee Related
-
1997
- 1997-06-06 AU AU24763/97A patent/AU2476397A/en not_active Abandoned
-
1998
- 1998-02-05 HK HK98100862A patent/HK1001994A1/en not_active IP Right Cessation
-
2000
- 2000-07-05 GR GR20000401587T patent/GR3033902T3/en not_active IP Right Cessation
-
2002
- 2002-02-08 US US10/072,655 patent/US20030059373A1/en not_active Abandoned
-
2004
- 2004-04-07 US US10/820,428 patent/US20050031543A1/en not_active Abandoned
-
2005
- 2005-02-10 US US11/055,544 patent/US20050196342A1/en not_active Abandoned
Patent Citations (102)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3968203A (en) * | 1965-10-01 | 1976-07-06 | Jerome G. Spitzer | Aerosol astringent composition |
US3557294A (en) * | 1967-10-12 | 1971-01-19 | Allied Chem | Fluorinated ethers as inhalation convulsants |
US3663687A (en) * | 1968-06-26 | 1972-05-16 | Minnesota Mining & Mfg | Biodegradable parenteral microspherules |
US3720761A (en) * | 1968-10-14 | 1973-03-13 | W Hunter | Injectable radio-pharmaceutical scanning agent and preparation |
US3650831A (en) * | 1969-03-10 | 1972-03-21 | Armour Dial Inc | Method of cleaning surfaces |
US3832457A (en) * | 1969-06-20 | 1974-08-27 | Rikagaku Kenkyusho | Ferrite contrast media with metallic oxides |
US3900420A (en) * | 1970-05-18 | 1975-08-19 | Felix Sebba | Microgas emulsions and method of forming same |
US3932805A (en) * | 1973-02-02 | 1976-01-13 | Kichizo Niwa | Method of obtaining internal information of a measuring target from the out-side by the application of a nuclear magnetic resonance phenomenon |
US4107288A (en) * | 1974-09-18 | 1978-08-15 | Pharmaceutical Society Of Victoria | Injectable compositions, nanoparticles useful therein, and process of manufacturing same |
US4101435A (en) * | 1975-06-19 | 1978-07-18 | Meito Sangyo Kabushiki Kaisha | Magnetic iron oxide-dextran complex and process for its production |
US4427649A (en) * | 1976-03-19 | 1984-01-24 | Imperial Chemical Industries Limited | Pharmaceutical compositions |
US4371516A (en) * | 1976-10-06 | 1983-02-01 | John Wyeth & Brother Limited | Articles for carrying chemicals |
US4244179A (en) * | 1977-01-28 | 1981-01-13 | Kainov Gennady P | Annular combustion chamber for gas turbine engines |
US4329332A (en) * | 1978-07-19 | 1982-05-11 | Patrick Couvreur | Biodegradable submicroscopic particles containing a biologically active substance and compositions containing them |
US4335094A (en) * | 1979-01-26 | 1982-06-15 | Mosbach Klaus H | Magnetic polymer particles |
US4247406A (en) * | 1979-04-23 | 1981-01-27 | Widder Kenneth J | Intravascularly-administrable, magnetically-localizable biodegradable carrier |
US4276885A (en) * | 1979-05-04 | 1981-07-07 | Rasor Associates, Inc | Ultrasonic image enhancement |
US4265251A (en) * | 1979-06-28 | 1981-05-05 | Rasor Associates, Inc. | Method of determining pressure within liquid containing vessel |
US4316391A (en) * | 1979-11-13 | 1982-02-23 | Ultra Med, Inc. | Flow rate measurement |
US4331654A (en) * | 1980-06-13 | 1982-05-25 | Eli Lilly And Company | Magnetically-localizable, biodegradable lipid microspheres |
US4442843A (en) * | 1980-11-17 | 1984-04-17 | Schering, Ag | Microbubble precursors and methods for their production and use |
US4681119A (en) * | 1980-11-17 | 1987-07-21 | Schering Aktiengesellschaft | Method of production and use of microbubble precursors |
US4466442A (en) * | 1981-10-16 | 1984-08-21 | Schering Aktiengesellschaft | Carrier liquid solutions for the production of gas microbubbles, preparation thereof, and use thereof as contrast medium for ultrasonic diagnostics |
US4501726A (en) * | 1981-11-12 | 1985-02-26 | Schroeder Ulf | Intravascularly administrable, magnetically responsive nanosphere or nanoparticle, a process for the production thereof, and the use thereof |
US4687748A (en) * | 1982-03-29 | 1987-08-18 | Gambro Lundia Ab | Magnetic carbohydrate particles as carriers for affinity separation purposes |
US4452773A (en) * | 1982-04-05 | 1984-06-05 | Canadian Patents And Development Limited | Magnetic iron-dextran microspheres |
US4918065A (en) * | 1982-07-07 | 1990-04-17 | Schering Aktiengesellschaft | Corticoid-containing preparation for topical application |
US4731239A (en) * | 1983-01-10 | 1988-03-15 | Gordon Robert T | Method for enhancing NMR imaging; and diagnostic use |
US4718433A (en) * | 1983-01-27 | 1988-01-12 | Feinstein Steven B | Contrast agents for ultrasonic imaging |
US4572203A (en) * | 1983-01-27 | 1986-02-25 | Feinstein Steven B | Contact agents for ultrasonic imaging |
US5141738A (en) * | 1983-04-15 | 1992-08-25 | Schering Aktiengesellschaft | Ultrasonic contrast medium comprising gas bubbles and solid lipophilic surfactant-containing microparticles and use thereof |
US4900540A (en) * | 1983-06-20 | 1990-02-13 | Trustees Of The University Of Massachusetts | Lipisomes containing gas for ultrasound detection |
US5618514A (en) * | 1983-12-21 | 1997-04-08 | Nycomed Imaging As | Diagnostic and contrast agent |
US4863715A (en) * | 1984-03-29 | 1989-09-05 | Nycomed As | Method of NMK imaging using a contrast agent comprising particles of a ferromagnetic material |
US5008109A (en) * | 1984-05-25 | 1991-04-16 | Vestar, Inc. | Vesicle stabilization |
US4767611A (en) * | 1984-07-03 | 1988-08-30 | Gordon Robert T | Method for affecting intracellular and extracellular electric and magnetic dipoles |
US4986980A (en) * | 1984-11-01 | 1991-01-22 | Nycomed As | Water-soluble, carrier-bound paramagnetic metal containing diagnostic agents |
US4985233A (en) * | 1984-11-01 | 1991-01-15 | Nycomed /As | A diagnostic agent containing a non-radioactive paramagnetic metal species in a macromolecular carrier |
US4663161A (en) * | 1985-04-22 | 1987-05-05 | Mannino Raphael J | Liposome methods and compositions |
US4675173A (en) * | 1985-05-08 | 1987-06-23 | Molecular Biosystems, Inc. | Method of magnetic resonance imaging of the liver and spleen |
US4684479A (en) * | 1985-08-14 | 1987-08-04 | Arrigo Joseph S D | Surfactant mixtures, stable gas-in-liquid emulsions, and methods for the production of such emulsions from said mixtures |
US4832941A (en) * | 1985-08-14 | 1989-05-23 | Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V | Contrast medium for ultrasonic examinations and process for its preparation |
US5720939A (en) * | 1985-08-15 | 1998-02-24 | Nycomed Imaging As | Method of contrast enhanced magnetic resonance imaging using magnetically responsive-particles |
US4904479A (en) * | 1986-01-17 | 1990-02-27 | Danbiosyst Uk Limited | Drug delivery system |
US4827945A (en) * | 1986-07-03 | 1989-05-09 | Advanced Magnetics, Incorporated | Biologically degradable superparamagnetic materials for use in clinical applications |
US4770183A (en) * | 1986-07-03 | 1988-09-13 | Advanced Magnetics Incorporated | Biologically degradable superparamagnetic particles for use as nuclear magnetic resonance imaging agents |
US4844882A (en) * | 1987-12-29 | 1989-07-04 | Molecular Biosystems, Inc. | Concentrated stabilized microbubble-type ultrasonic imaging agent |
US5425366A (en) * | 1988-02-05 | 1995-06-20 | Schering Aktiengesellschaft | Ultrasonic contrast agents for color Doppler imaging |
US4858208A (en) * | 1988-07-11 | 1989-08-15 | Motorola, Inc. | Apparatus and method for testing semiconductor devices |
US5730954A (en) * | 1988-08-23 | 1998-03-24 | Schering Aktiengesellschaft | Preparation comprising cavitate- or clathrate-forming host/guest complexes as contrast agent |
US4957656A (en) * | 1988-09-14 | 1990-09-18 | Molecular Biosystems, Inc. | Continuous sonication method for preparing protein encapsulated microbubbles |
US5228446A (en) * | 1989-12-22 | 1993-07-20 | Unger Evan C | Gas filled liposomes and their use as ultrasonic contrast agents |
US5088499A (en) * | 1989-12-22 | 1992-02-18 | Unger Evan C | Liposomes as contrast agents for ultrasonic imaging and methods for preparing the same |
US5542935A (en) * | 1989-12-22 | 1996-08-06 | Imarx Pharmaceutical Corp. | Therapeutic delivery systems related applications |
US5334381A (en) * | 1989-12-22 | 1994-08-02 | Unger Evan C | Liposomes as contrast agents for ultrasonic imaging and methods for preparing the same |
US5705187A (en) * | 1989-12-22 | 1998-01-06 | Imarx Pharmaceutical Corp. | Compositions of lipids and stabilizing materials |
US5733572A (en) * | 1989-12-22 | 1998-03-31 | Imarx Pharmaceutical Corp. | Gas and gaseous precursor filled microspheres as topical and subcutaneous delivery vehicles |
US5501863A (en) * | 1990-02-09 | 1996-03-26 | Schering Aktiengesellschaft | Contrast media synthesized from polyaldehydes |
US5380519A (en) * | 1990-04-02 | 1995-01-10 | Bracco International B.V. | Stable microbubbles suspensions injectable into living organisms |
US5531980A (en) * | 1990-04-02 | 1996-07-02 | Bracco International Bv | Stable microbubbles suspensions injectable into living organisms |
US5658551A (en) * | 1990-04-02 | 1997-08-19 | Bracco International B.V. | Stable microbubbles suspensions injectable into living organisms |
US5643553A (en) * | 1990-04-02 | 1997-07-01 | Bracco International B.V. | Stable microbubbles suspensions injectable into living organisms |
US5711933A (en) * | 1990-05-18 | 1998-01-27 | Bracco International B.V. | Method of making polymeric gas or air filled microballoons for ultrasonic echography |
US5863520A (en) * | 1990-05-18 | 1999-01-26 | Bracco International B.V. | Method of echographic imaging using polymeric gas or air filled microballoons |
US5639442A (en) * | 1990-06-01 | 1997-06-17 | Imarx Pharmaceutical Corp. | Contrast media for ultrasonic imaging |
US5714529A (en) * | 1990-06-01 | 1998-02-03 | Imarx Pharmaceutical Corp. | Contrast media for ultrasonic imaging |
US5310540A (en) * | 1990-10-05 | 1994-05-10 | Sintetica Sa | Method for the preparation of stable suspensions of hollow gas-filled microspheres suitable for ultrasonic echography |
US5599523A (en) * | 1991-01-09 | 1997-02-04 | Byk Gulden Lomberg Chemische Fabrik Gmbh | Echo contrast agent |
US5653959A (en) * | 1991-02-15 | 1997-08-05 | Sintetica Sa | Compositions for increasing the image contrast in diagnostic investigations of the digestive tract of patients |
US5107842A (en) * | 1991-02-22 | 1992-04-28 | Molecular Biosystems, Inc. | Method of ultrasound imaging of the gastrointestinal tract |
US5536490A (en) * | 1991-03-28 | 1996-07-16 | Nycomed Imaging As | Contrast agents |
US5529766A (en) * | 1991-03-28 | 1996-06-25 | Nycomed Imaging As | Contrast agents |
US5529766C1 (en) * | 1991-03-28 | 2002-06-04 | Nycomed Imaging As | Contrast agents |
US5205290A (en) * | 1991-04-05 | 1993-04-27 | Unger Evan C | Low density microspheres and their use as contrast agents for computed tomography |
US5527521A (en) * | 1991-04-05 | 1996-06-18 | Imarx Pharmaceutical Corp. | Low density microspheres and suspensions and their use as contrast agents for computed tomography and in other applications |
US5547656A (en) * | 1991-04-05 | 1996-08-20 | Imarx Pharmaceutical Corp. | Low density microspheres and their use as contrast agents for computed tomography, and in other applications |
US5281408A (en) * | 1991-04-05 | 1994-01-25 | Unger Evan C | Low density microspheres and their use as contrast agents for computed tomography |
US5527521B1 (en) * | 1991-04-05 | 1999-11-09 | Imarx Pharmaceutical Corp | Low density microspheres and suspensions and their use as contrast agents for computed tomography and in other applications |
US5547656B1 (en) * | 1991-04-05 | 1999-07-20 | Imarx Pharmaceutical Corp | Low density microspheres and their use as contrast agents for computed tomography and in other applications |
US5147631A (en) * | 1991-04-30 | 1992-09-15 | Du Pont Merck Pharmaceutical Company | Porous inorganic ultrasound contrast agents |
US5772984A (en) * | 1991-07-05 | 1998-06-30 | Nycomed Imaging As | Method of ultrasound imaging using microbubble-forming, solid X-ray contrast agents |
US5607661A (en) * | 1991-07-05 | 1997-03-04 | Nycomed Imaging As | Aggregates of x-ray microparticles for ultrasound imaging |
US5393524A (en) * | 1991-09-17 | 1995-02-28 | Sonus Pharmaceuticals Inc. | Methods for selecting and using gases as ultrasound contrast media |
US5409688A (en) * | 1991-09-17 | 1995-04-25 | Sonus Pharmaceuticals, Inc. | Gaseous ultrasound contrast media |
US5614169A (en) * | 1992-01-09 | 1997-03-25 | Nycomed Imaging As | Contrast agents, consisting of galactose particles and an amphilic carboxylic acid |
US5648062A (en) * | 1992-01-09 | 1997-07-15 | Nycomed Imaging As | Contrast agents consisting of galactose particles |
US5637289A (en) * | 1992-01-09 | 1997-06-10 | Nycomed Imaging As | Contrast agents, consisting of galactose particles |
US5413774A (en) * | 1992-01-23 | 1995-05-09 | Bracco International B.V. | Long-lasting aqueous dispersions or suspensions of pressure-resistant gas-filled microvesicles and methods for the preparation thereof |
US5637564A (en) * | 1992-08-06 | 1997-06-10 | Alliance Pharmaceutical Corp. | Amphiphilic compounds derived from amino acids or peptides, their methods of synthesis and their application as drug delivery systems |
US5718884A (en) * | 1992-09-16 | 1998-02-17 | Nycomed Imaging As | Microbubble-based contrast agents with crosslinked and reduced proteinaceous shells |
US5597549A (en) * | 1992-11-02 | 1997-01-28 | Bracco International B.V. | Stable microbubble suspensions as enhancement agents for ultrasound echography |
US5445813A (en) * | 1992-11-02 | 1995-08-29 | Bracco International B.V. | Stable microbubble suspensions as enhancement agents for ultrasound echography |
US5508021A (en) * | 1993-03-26 | 1996-04-16 | Vivorx Pharmaceuticals, Inc. | Non-fluorinated polymeric shells for medical imaging |
US5512268A (en) * | 1993-03-26 | 1996-04-30 | Vivorx Pharmaceuticals, Inc. | Polymeric shells for medical imaging prepared from synthetic polymers, and methods for the use thereof |
US5716597A (en) * | 1993-06-04 | 1998-02-10 | Molecular Biosystems, Inc. | Emulsions as contrast agents and method of use |
US5536489A (en) * | 1993-06-04 | 1996-07-16 | Molecular Biosystems, Inc. | Emulsions as contrast agents and method of use |
US5720938A (en) * | 1993-07-30 | 1998-02-24 | Alliance Pharmaceutical Corp. | Systems for the formation of microbubbles |
US5639443A (en) * | 1993-07-30 | 1997-06-17 | Alliance Pharmaceutical Corp. | Stabilized microbubble compositions |
US5626833A (en) * | 1993-07-30 | 1997-05-06 | Alliance Pharmaceutical Corp. | Ultrasound imaging method using microbubbles |
US5605673A (en) * | 1993-07-30 | 1997-02-25 | Alliance Pharmaceutical Corp. | Stabilized microbubble compositions for ultrasound |
US5730955A (en) * | 1994-08-02 | 1998-03-24 | Molecular Biosystems, Inc. | Process for making gas-filled microspheres containing a liquid hydrophobic barrier |
US5639433A (en) * | 1995-12-13 | 1997-06-17 | Cytec Technology Corp. | Extraction of rare earth elements using alkyl phosphinic acid or salt/alkyl or aryl phosphonic acid or ester blends as extractant |
Also Published As
Publication number | Publication date |
---|---|
DE69328354D1 (en) | 2000-05-18 |
EP0972527A3 (en) | 2000-08-16 |
HK1001994A1 (en) | 1998-07-24 |
DE69328354T2 (en) | 2000-12-14 |
US20050196342A1 (en) | 2005-09-08 |
NO311330B1 (en) | 2001-11-19 |
EP0620744A1 (en) | 1994-10-26 |
PT620744E (en) | 2000-07-31 |
AU676147B2 (en) | 1997-03-06 |
ATE191646T1 (en) | 2000-04-15 |
WO1993013808A3 (en) | 1993-10-14 |
WO1993013808A2 (en) | 1993-07-22 |
EP0620744B1 (en) | 2000-04-12 |
CA2127705A1 (en) | 1993-07-22 |
NO942561D0 (en) | 1994-07-07 |
EP0972527A2 (en) | 2000-01-19 |
AU2476397A (en) | 1997-08-21 |
US20030059373A1 (en) | 2003-03-27 |
US5558856A (en) | 1996-09-24 |
AU3348493A (en) | 1993-08-03 |
GB9200388D0 (en) | 1992-02-26 |
DK0620744T3 (en) | 2000-09-11 |
NO942561L (en) | 1994-07-07 |
GR3033902T3 (en) | 2000-11-30 |
JPH07505136A (en) | 1995-06-08 |
CA2127705C (en) | 2000-11-21 |
US5827502A (en) | 1998-10-27 |
SG52338A1 (en) | 1998-09-28 |
ES2144454T3 (en) | 2000-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5827502A (en) | Microparticulate microbubble-generating contrast agents | |
EP0620743B1 (en) | Contrast agents consisting of galactose particles and an amphiphilic carboxylic acid | |
US5928626A (en) | Contrast agents, consisting of carbohydrate particles | |
EP0593624B1 (en) | Improvements in or relating to contrast agents | |
TW480176B (en) | Polymer-lipid microencapsulated gases for use as imaging agents | |
US20010010811A1 (en) | Contrast agents | |
US5648062A (en) | Contrast agents consisting of galactose particles | |
US20050025710A1 (en) | Reconstitutable formulation and aqueous suspension of gas-filled microvesicles for diagnostic imaging |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION |