US20040172658A1 - Home network for ordering and delivery of video on demand, telephone and other digital services - Google Patents
Home network for ordering and delivery of video on demand, telephone and other digital services Download PDFInfo
- Publication number
- US20040172658A1 US20040172658A1 US10/731,310 US73131003A US2004172658A1 US 20040172658 A1 US20040172658 A1 US 20040172658A1 US 73131003 A US73131003 A US 73131003A US 2004172658 A1 US2004172658 A1 US 2004172658A1
- Authority
- US
- United States
- Prior art keywords
- data
- video
- local area
- packets
- gateway
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000012384 transportation and delivery Methods 0.000 title claims description 67
- 238000000034 method Methods 0.000 claims abstract description 157
- 230000008569 process Effects 0.000 claims abstract description 154
- 230000008878 coupling Effects 0.000 claims abstract description 12
- 238000010168 coupling process Methods 0.000 claims abstract description 12
- 238000005859 coupling reaction Methods 0.000 claims abstract description 12
- 238000011144 upstream manufacturing Methods 0.000 claims description 85
- 230000006870 function Effects 0.000 claims description 62
- 230000005540 biological transmission Effects 0.000 claims description 54
- 238000007726 management method Methods 0.000 claims description 30
- 238000006243 chemical reaction Methods 0.000 claims description 26
- 239000000835 fiber Substances 0.000 claims description 22
- 230000006837 decompression Effects 0.000 claims description 7
- 238000012545 processing Methods 0.000 claims description 7
- 230000005236 sound signal Effects 0.000 claims description 6
- 239000002131 composite material Substances 0.000 claims description 4
- 238000004886 process control Methods 0.000 claims 3
- 230000002093 peripheral effect Effects 0.000 abstract description 27
- 238000010276 construction Methods 0.000 abstract description 13
- 238000001152 differential interference contrast microscopy Methods 0.000 description 29
- 230000006835 compression Effects 0.000 description 28
- 238000007906 compression Methods 0.000 description 28
- 238000005516 engineering process Methods 0.000 description 25
- 230000032258 transport Effects 0.000 description 21
- 238000009826 distribution Methods 0.000 description 19
- 238000010586 diagram Methods 0.000 description 13
- 238000004891 communication Methods 0.000 description 12
- 238000001514 detection method Methods 0.000 description 11
- 238000002955 isolation Methods 0.000 description 11
- 230000008901 benefit Effects 0.000 description 10
- 239000011159 matrix material Substances 0.000 description 10
- 239000000969 carrier Substances 0.000 description 8
- 238000005538 encapsulation Methods 0.000 description 8
- 238000001228 spectrum Methods 0.000 description 8
- 238000011084 recovery Methods 0.000 description 7
- 230000001360 synchronised effect Effects 0.000 description 7
- 238000012546 transfer Methods 0.000 description 7
- 238000012937 correction Methods 0.000 description 6
- 230000007480 spreading Effects 0.000 description 6
- 238000003892 spreading Methods 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 238000013461 design Methods 0.000 description 5
- 230000002441 reversible effect Effects 0.000 description 5
- 241000894007 species Species 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 230000002860 competitive effect Effects 0.000 description 3
- 239000012141 concentrate Substances 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 230000002452 interceptive effect Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 230000011218 segmentation Effects 0.000 description 3
- 101100172132 Mus musculus Eif3a gene Proteins 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 2
- 230000002457 bidirectional effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000012050 conventional carrier Substances 0.000 description 2
- 238000011143 downstream manufacturing Methods 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 230000006855 networking Effects 0.000 description 2
- 238000013139 quantization Methods 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 230000014616 translation Effects 0.000 description 2
- BPJREJZJPCLZIP-UHFFFAOYSA-N 4-(diazoniomethylidene)-7-(diethylamino)chromen-2-olate Chemical compound [N-]=[N+]=CC1=CC(=O)OC2=CC(N(CC)CC)=CC=C21 BPJREJZJPCLZIP-UHFFFAOYSA-N 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- 241001522296 Erithacus rubecula Species 0.000 description 1
- 108700026140 MAC combination Proteins 0.000 description 1
- 101100005280 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) cat-3 gene Proteins 0.000 description 1
- 101000666901 Oxyuranus scutellatus scutellatus Kunitz-type serine protease inhibitor taicotoxin Proteins 0.000 description 1
- 206010047289 Ventricular extrasystoles Diseases 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 238000012550 audit Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000004656 cell transport Effects 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000013498 data listing Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000003831 deregulation Effects 0.000 description 1
- 235000019800 disodium phosphate Nutrition 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000008570 general process Effects 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- QCAWEPFNJXQPAN-UHFFFAOYSA-N methoxyfenozide Chemical compound COC1=CC=CC(C(=O)NN(C(=O)C=2C=C(C)C=C(C)C=2)C(C)(C)C)=C1C QCAWEPFNJXQPAN-UHFFFAOYSA-N 0.000 description 1
- 108010041420 microbial alkaline proteinase inhibitor Proteins 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/16—Analogue secrecy systems; Analogue subscription systems
- H04N7/173—Analogue secrecy systems; Analogue subscription systems with two-way working, e.g. subscriber sending a programme selection signal
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B13/00—Burglar, theft or intruder alarms
- G08B13/18—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
- G08B13/189—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
- G08B13/194—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems
- G08B13/196—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems using television cameras
- G08B13/19654—Details concerning communication with a camera
- G08B13/19656—Network used to communicate with a camera, e.g. WAN, LAN, Internet
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B13/00—Burglar, theft or intruder alarms
- G08B13/18—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
- G08B13/189—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
- G08B13/194—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems
- G08B13/196—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems using television cameras
- G08B13/19654—Details concerning communication with a camera
- G08B13/19658—Telephone systems used to communicate with a camera, e.g. PSTN, GSM, POTS
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B13/00—Burglar, theft or intruder alarms
- G08B13/18—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
- G08B13/189—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
- G08B13/194—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems
- G08B13/196—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems using television cameras
- G08B13/19665—Details related to the storage of video surveillance data
- G08B13/19667—Details realated to data compression, encryption or encoding, e.g. resolution modes for reducing data volume to lower transmission bandwidth or memory requirements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
- H04B7/18578—Satellite systems for providing broadband data service to individual earth stations
- H04B7/18584—Arrangements for data networking, i.e. for data packet routing, for congestion control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/2801—Broadband local area networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/64—Hybrid switching systems
- H04L12/6418—Hybrid transport
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/66—Arrangements for connecting between networks having differing types of switching systems, e.g. gateways
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L69/00—Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
- H04L69/16—Implementation or adaptation of Internet protocol [IP], of transmission control protocol [TCP] or of user datagram protocol [UDP]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L69/00—Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
- H04L69/16—Implementation or adaptation of Internet protocol [IP], of transmission control protocol [TCP] or of user datagram protocol [UDP]
- H04L69/168—Implementation or adaptation of Internet protocol [IP], of transmission control protocol [TCP] or of user datagram protocol [UDP] specially adapted for link layer protocols, e.g. asynchronous transfer mode [ATM], synchronous optical network [SONET] or point-to-point protocol [PPP]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L69/00—Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
- H04L69/16—Implementation or adaptation of Internet protocol [IP], of transmission control protocol [TCP] or of user datagram protocol [UDP]
- H04L69/169—Special adaptations of TCP, UDP or IP for interworking of IP based networks with other networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/40—Network security protocols
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/20—Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
- H04N21/21—Server components or server architectures
- H04N21/222—Secondary servers, e.g. proxy server, cable television Head-end
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/20—Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
- H04N21/25—Management operations performed by the server for facilitating the content distribution or administrating data related to end-users or client devices, e.g. end-user or client device authentication, learning user preferences for recommending movies
- H04N21/266—Channel or content management, e.g. generation and management of keys and entitlement messages in a conditional access system, merging a VOD unicast channel into a multicast channel
- H04N21/2665—Gathering content from different sources, e.g. Internet and satellite
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/40—Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
- H04N21/43—Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
- H04N21/436—Interfacing a local distribution network, e.g. communicating with another STB or one or more peripheral devices inside the home
- H04N21/43615—Interfacing a Home Network, e.g. for connecting the client to a plurality of peripherals
-
- G—PHYSICS
- G08—SIGNALLING
- G08C—TRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
- G08C2201/00—Transmission systems of control signals via wireless link
- G08C2201/40—Remote control systems using repeaters, converters, gateways
- G08C2201/41—Remote control of gateways
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/64—Hybrid switching systems
- H04L12/6418—Hybrid transport
- H04L2012/6424—Access arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L69/00—Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
- H04L69/08—Protocols for interworking; Protocol conversion
Definitions
- the invention finds applicability in the distribution of digital video on demand services and other digital services throughout a consumer's location.
- ADSL Asymmetrical Digital Subscriber Line
- RADSL Rate Adaptive Digital Subscriber Line
- SDSL Symmetric Digital Subscriber Line
- VDSL Very High Speed DSL
- DBS digital broadcast satellite services
- DirecTV offered by Hughes Electronics and Thomson Multimedia
- Video conferencing via DirectPC service may also soon be provided.
- DirecTV delivers 175 channels of digital-quality programming through an 18 inch dish antenna, a digital set-top decoder box and a remote control.
- An access card allows billing information to be captured by the set-top decoder box and downloaded by the PSTN to a billing center for pay-per view programs ordered by a user.
- DirecPC technology allows high speed (400 KB/sec) internet access to PCs in the customer premises using the DBS dish and coaxial cable distribution network.
- An expansion card couples the PC's I/O bus to the coaxial cable distribution network of the DBS system.
- a modem is used by the PC to make a dial up connection to the internet service provider (ISP) which then sends internet data to the PC via an uplink to the satellite and then down to the user's dish.
- ISP internet service provider
- ADSL routers such as the Remote 810 ADSL Router manufactured by 3Com currently exist. These routers can couple an Ethernet local area network to ADSL lines so that POTS voice conversations can occur simultaneously while searching the internet.
- the Remote 810 ADSL Router has an integrated 4-port 10Base-T hub to couple multiple PCs can share the same ADSL line.
- the router supports up to 16 simultaneous concurrent connections to multiple destinations on the internet and can perform bridging functions.
- 3Com also manufactures SDSL routers like the OfficeConnect Remote 840 SDSL which can support applications that require high bandwidth in both directions such as video conferencing, remote training, Web hosting, e-commerce and other multimedia applications.
- the PathBuilder S700 WAN switch can concentrates, aggregates and switches traffic over wide area networks.
- the PathBuilder S700 WAN can converge voice, video and data applications—including Frame Relay, ATM and SONET—onto a common network. Up to 100 interfaces are supported. Advanced traffic management features such as traffic shaping, priority queuing and multicasting, guarantee the right amount of bandwidth for each application and let you build and manage your WAN infrastructure.
- the switch features a future-proof chassis with a modular construction to protect the initial investment and provide a migration path to accomodate future growth.
- the switch has individual application modules that provide native interfaces to a variety of campus networking technologies such as LANs, muxes, routers, SNA applications, business video and PBXs.
- Each application module adapts communications traffic to the cell-based backplane and transports it across the PathBuilder S700 switch cell bus to the appropriate trunk interface connections which offer a a comprehensive range of campus and wide area interface types.
- a T1/UNI module supports Inverse Multiplexing for ATM at speeds ranging from 1.5 Mbps to 16 Mbps.
- An 18-slot chassis supports migration to T3/E3 or OC-3 services as bandwidth requirements increase.
- Distributed processing implemented by placing a RISC processor on each application module to provide scaleable performance and wire speed communications.
- the 3COM Pathbuilder S700 WAN Switch lacks the capability to interface with ADSL lines, cable modems, satellite dishes, wireless local loops, terrestial microwave links or other subscription network services that may become available in the future such as digital data delivery over the power lines.
- the 3COM Pathbuilder S 700 WAN Switch lacks the capability to interface with ADSL lines, cable modems, satellite dishes, wireless local loops, terrestial microwave links or other subscription network services that may become available in the future such as digital data delivery over the power lines.
- the 3COM Pathbuilder S700 WAN Switch lacks the capability to interface with ADSL lines, cable modems, satellite dishes, wireless local loops, terrestial microwave links or other subscription network services that may become available in the future such as digital data delivery over the power lines.
- the 3COM Pathbuilder S 700 WAN Switch lacks the capability to interface with ADSL lines, cable modems, satellite dishes, wireless local loops, terrestial microwave links or other subscription network services that may become available in the future such as digital data delivery over the power lines.
- 700 WAN Switch is a professional level switch which is not affordable for the average home network consumer.
- no gateways or routers currently exist which can couple a local area network such as an Ethernet to each of the public service telephone network, and which embody and combine the technology of ADSL modems, cable modems, and satellite DirectPC decoder boxes with IP video and IP telephony interfaces and switching, routing and protocol conversion capability.
- VOD video-on-demand
- ADSL does not have sufficient upstream bandwidth if video telephony becomes a popular application whereas cable modems do.
- variable bit-rate MPEG2 and advances in video compression technology might save ADSL if video conferencing becomes big, and High Speed ADSL may be adequate to service this application.
- High Speed ADSL may be adequate to service this application.
- the problem this raises for consumers is that they do not want to invest in technology for their home networks that only interfaces to ADSL or cable modems and then be faced with the prospect of an expensive replacement of their home network equipment in order to interface their LAN with a new subscription service digital data delivery network.
- POTS Plain Old Telephone Service
- ADSL is a point-to-point technology which causes only one customer to lose phone service if her line is broken.
- a related problem is in the area of videoconferencing.
- videophone offered by AT&T have been a commercial failure because of the low picture quality of 2 frames per second deliverable over standard twisted pairs.
- ISDN circuits can be used for videoconferencing and ISDN videophones are available, and their details are hereby incorporated by reference.
- Switched 56/64 Kbps circuits can also be used for video conferencing by bonding or grouping into multiple channels.
- Switched 384 Kbps connectivity can also be provided on the basis of fractional DS1 or through ISDN PRI channels in a channel group known as an HO.
- the cost and availability issues that are slowing ISDN teleconferencing also exist for switched 56/64 and switched 384 Kbps services as well.
- DS-1 facilities support full-motion, high-quality videoconferencing over dedicated networks at rates of up to 2.048 Mbps for E1 and 1.544 Mbps for T1.
- DS-1 facilities are costly and not widely deployed and, although they are affordable for large organizations with DS-1 backbones, they are out of reach for the home network consumer.
- Broadband networks such as ADSL, B-ISDN, HFC and cable modems, satellite etc. are likely to be much more convenient and affordable ways of delivering videoconferencing services via ATM operating at DS-1 or DS-3 or higher speeds.
- a need has arisen for a system which interface to many different subscription service data delivery networks and can distribute digital data throughout a customer premises in an economical fashion to all the peripheral devices that need the data using a uniform protocol and addressing scheme.
- the system will have an economical and reliable local area network on the consumer premises side and have the flexibility to couple to many different subscription service data delivery network media types and translate from whatever packet/cell/frame type and protocols are used by the data delivery network without substantial expense to reconfigure or buy new equipment or software each time a data delivery network option appears that is better, cheaper or more reliable than the consumer's current service provider.
- a home network system within the genus of the invention would have a host bus and host computer programmed to do management and control functions and a routing function, one or more local area network interfaces and one or more external network interfaces.
- An important subgenus within the overal genus would be characterized by a modular, expandable gateway construction which interfaced any one of a number of external networks and subscription services to peripheral devices in a customer premises coupled to the gateway by one or more local area networks.
- a modular gateway species would have as many shared components as possible including a network interface to drive a local area network that communicates digital data of various services and a routing process and possibly an IP packetization process running on the host computer.
- expandability would be provided by interfacing the gateway to one or more external networks using modular plug-in expansion circuits or modules to implement the unique interfaces with various types of data delivery networks.
- Some of the expansion modules are receivers capable of receiving analog signals and digitizing and compressing them and supplying the compressed data to said host computer.
- Others are receivers for receiving and recovering video and other data in digital form which has been modulated onto a dowstream carrier for transmission to said customer premises and supplying the recovered digital data to said host computer.
- Others of the expansion modules are transceivers capable of receiving analog signals and digitizing and compressing them and supplying the compressed data to said host computer or receiving and recovering video and other data in digital form which has been modulated onto a dowstream carrier for transmission to said customer premises and supplying the recovered digital data to said host computer.
- transceivers include an upstream transmitter for receiving digital data from said host computer, preferably as an IP format packet, and transmitting it outbound on an external network to a headend modem, a DSL central office, a server connected to the internet at the locaton of an internet service provider via a dialup connection or to a satellite uplink facility via a dialup or direct connection.
- an upstream transmitter for receiving digital data from said host computer, preferably as an IP format packet, and transmitting it outbound on an external network to a headend modem, a DSL central office, a server connected to the internet at the locaton of an internet service provider via a dialup connection or to a satellite uplink facility via a dialup or direct connection.
- the gateway would have a shared Ethernet Network Interface Card (hereafter NIC) and an Ethernet protocol stack.
- NIC Ethernet Network Interface Card
- This hardware and sofware drives one or more 10BaseT, Fast Ethernet, or 100BaseT local area networks coupled to the gateway that function to distribute downstream data to various devices such as telephones, computers, televisions, FAX machines etc. scattered throughout the customer premises.
- the local area network(s) also collect upstream data from the various peripherals spread throughout the consumer premises and transfer this data to the gateway.
- Other shared functions would include the power supply, bus structure and the host processor and routing process, an IP packetization process, possibly MPEG compression and decompression, possibly DES or other encryption and decryption processes, MAC layer and/or IP address resolution, and, possibly, IP telephony and/or PBX processes to control IP telephony and/or PBX expansion modules.
- IP packetization process possibly MPEG compression and decompression, possibly DES or other encryption and decryption processes
- MAC layer and/or IP address resolution and, possibly, IP telephony and/or PBX processes to control IP telephony and/or PBX expansion modules.
- Some data delivery networks use MPEG compression and others do not and some services use encryption and others do not.
- the expansion module that interfaces the gateway to the external network may include whatever compression/decompression, address resolution and encryption/decryption functions necessary to successfully communicate with those data delivery networks.
- the plug-in external network interface modules that interface to each external network will include all those circuits and software processes such as protocol stack peculiar to communication with that particular external network and a particular subscription service.
- These circuits can include any necessary line coding and decoding, demodulation, detection, demultiplexing, encoding, compression, access control and other circuitry such as decryption and re-encryption circuitry necessary for receiving data from or transmitting data to the particular external network and subscription service the interface is designed to work with.
- One of the advantages of the modular structure is, for example, if a consumer is getting their digital data delivery services by ADSL using one particular ADSL modem line coding, and another service provider with a different line coding provides a better service which the consumer wants to take advantage of, the consumer need only buy an ADSL interface board having the appropriate line coding to switch services and does not need to buy an entirely new gateway.
- the modular construction is not an essential element of the invention.
- teachings of the invention also contemplate a subgenus of simple stand-alone, nonexpandible gateways which only include one or more external network interface circuits which are always present. These types of gateways can be used by customers who know exactly which external networks and subscription services they will use and who have no need or desire to change.
- FIGS. 4A and 4B are supposed to symbolize a species within this subgenus which happens to include external network interfaces to an ADSL line, C-band and Ku band satellite dishes, an HFC drop line and a terrestial TV antenna.
- FIG. 1 is a diagram of a prior art connection between the internet and a home local area network through a cable modem and the HFC of a CATV system.
- FIG. 2 is a diagram of a prior art connection between the internet and a home local area network through an ADSL modem.
- FIG. 3 is a diagram of a home network having a gateway within the genus of the invention which couples any one of a number of different subscriber service data delivery networks which are external to a customer premises to one or more local area networks that deliver digital data from said external networks to one or more devices in said customer premises coupled to said local area networks.
- the gateway does the necessary protocol conversions and translations between the protocols and packet formats of the local area network and the protocols and packet formats of the subscriber service data delivery external networks.
- FIGS. 4A and 4B are a detailed diagram of a gateway having ADSL, satellite, cable and broadcast TV antenna interface circuitry.
- FIG. 5 is a block diagram of a video adapter for coupling a local area network to a television.
- FIGS. 6A-6E are a flowchart of a pull technology video on demand process.
- FIG. 7 is a flowchart of a wideband internet access process.
- FIG. 8 is a block diagram of a modular construction for the gateway.
- FIG. 1 is a diagram of a prior art connection between the internet and a home local area network through a cable modem and the HFC of a CATV system.
- the internet is shown as cloud 11 .
- An IP router 13 in the headend facility 15 of an internet service provider bidirectionally couples IP packets to the internet using the TCP transport protocol.
- An optional local proxy server 17 is coupled to the IP router and provides local content as well as caching certain very popular web pages such as Yahoo or CNN news etc. so that they can be sent to cable modem subscribers with greater speed.
- a control circuit 19 concentrates all IP traffic from the subscribers coupled to the HFC network and sends it to the IP router 13 and distributes packets from the IP router to the various fiber optic links of which line 21 is typical.
- the fiber optic links couple the headend to fiber nodes of which node 23 is typical.
- Each fiber node couples the fiber optic link to a coaxial cable feeder branch of which branch 25 is typical.
- Each feeder branch has at least one bidirectional amplifier, of which amplifier 27 is typical.
- Each feeder branch is coupled to a plurality of drop lines, of which drop 29 is typical, which couples the branch to a cable modem at the subscriber premises.
- Cable modem 31 is typical and can be any of the cable modems identified below.
- the cable modem has a 10Base-T output port which is coupled to an Ethernet LAN 33 which runs throughout the home to peripherals such as TV 39 , telephone 37 and personal computer 35 .
- a typical example of cable modem 31 is the U.S. Robotics Cable Modem CMX. This modem will work on any cable system that complies with the MCNS data-over-cable specification. This cable modem comes with an EtherLink network interface card and is compatible with the Windows and Macintosh operating systems.
- FIG. 2 there is shown a prior art connection between the internet and a local area network in a home via the telephone system using ADSL modems.
- the internet 11 is coupled to IP router 13 via DS 1 (1.544 Mbps supporting 5 or more continuous users or up to 55 users with 10% usage), DS 3 (45 Mbps supporting up to 1500 subscribers) or OC-3 connections.
- Optional proxy server 17 serves the same function is served in the cable modem system of FIG. 1.
- ADSL modems 41 and 43 at the subscriber premises 45 and central office 47 couple to the twisted copper wire pair that was originally used for POTS.
- a POTS splitter not shown, forwards the analog voice transparently to the POTS central office in a frequency below the ADSL domain.
- the ADSL modem 41 connects directly to the Ethernet port of a personal computer or to an Ethernet hub.
- the access switch 53 serves to concentrate access lines from the ADSL modems such as 43 into router ports of IP router 13 .
- Access adapter 53 is likely to include ATM switch fabric.
- the ADSL modem 41 can be the 3Com HomeConnect ADSL Modem Ethernet or any equivalent ADSL modem.
- FIG. 3 there is shown a diagram of a home network having a gateway within the genus of the invention which couples any one of a number of different subscriber service data delivery networks which are external to a customer premises to one or more local area networks that deliver digital data from said external networks to one or more devices in said customer premises coupled to said local area networks.
- the gateway does the necessary protocol conversions and translations between the protocols and packet formats of the local area network and the protocols and packet formats of the subscriber service data delivery external networks.
- the home network is useful for distribution of digital data that encodes video on demand, distance learning, video conferencing, telephone service, internet web pages and FTP download files, e-mail and other digital subscriber services to multipled devices over one or more local area network that runs throughout a customer premises.
- Digital data or analog signals implementing the subscriber service (subscriber service is used loosely to mean all signals whether analog or digital transmitted to the customer premises via an external network of any type including a TV antenna) is transmitted to the customer premises.
- Gateway 14 converts the incoming signals to digital data in Ethernet packets and transmits it to the requesting device coupled to the local area network.
- the gateway 14 functions to do all the physical layer interfacing and protocol conversions necessary to couple one or more local area networks that run through the customer premises to digital data distribution services delivered via the Hybrid Fiber Coax (HFC) of a cable television system, or a digital satellite data distribution network or the phone lines of the public service telephone network.
- HFC Hybrid Fiber Coax
- these digital data delivery networks external to the customer premises will be called the subscription networks or the digital data delivery networks even though some or all of them may also deliver analog signals as well as digital data.
- the cable TV subscription network 16 will deliver analog CATV signals in addition to the digital data carried on its upstream and downstream carriers.
- the satellite dish 56 will deliver broadcast TV signals as well as digital data modulated on the downstream carrier.
- the Public Service Telephone Network (PSTN) telephone lines 58 will also deliver analog telephone signals in addition to digital data modulated onto the upstream and downstream carriers of the ADSL service.
- PSTN Public Service Telephone Network
- the gateway 14 is typically a Pentium or Celeron class personal computer host with protocol conversion and switching control programs that cooperate with the operating system to control the operations of various interface circuits and having one or more network interface circuits that drive the media of the local area network(s).
- the interface circuits can be built on the motherboard with the host microprocessor.
- each interface circuit is a separate expansion card that plugs into the system bus of the host and has a connector suitable to interface with the physical media of the particular digital data delivery service.
- the network interface to the local area network(s) can be an expansion card.
- the circuits and software that are common to all the expansion modules that interface to the various subscription networks are shared by the expansion module interface circuits.
- the host microprocessor, hard disk, RAM, CD-ROM/DVD, power supply, network interface circuits for the LAN(s), display and keyboard are all shared as are the operating system, management sofware and any protocol conversion software layers that are common to all network interface circuits.
- the gateway 14 is going to have a packet switching process and a crossbar switch or other switching circuitry controlled by the switching process to route packets received from the subscription providers to the appropriate LAN and vice versa based upon the IP or other addresses in the headers of the packets.
- the circuits and software that are specific to any particular subscription network such as MPEG compression or decompression, tuning, detection and demodulation, carrier and clock recovery, video decoding, A/D or D/A conversions etc. are located on the expansion module interface card dedicated to that subscription network.
- This preferred modular construction has two significant advantages. First, it protects the subscriber's investment in the gateway by providing flexibility to couple the gateway to any subscriber network that turns out to be the most reliable, least expensive, most flexible or easiest to use or least aggravating subscriber network for supplying any particular digital data based service desired by the user. For example, if ADSL turns out to be the best provider of telephone and video telephony services, but HFC turns out to be the best provider of video on demand or distance learning services, and these are the only services the user is interested in purchasing, the user can simply buy expansion modules to interface with these two subscription services. There is no need to invest in a gateway that has hardware and software to provide high speed internet access as well as these other services since the user is not interested in purchasing high speed internet access.
- This first advantage also extends to the situation where the user later changes her mind and decides that high speed internet access is useful, but determines that satellite delivery by DirectPCTM is the best way of obtaining this service. In such a case, the user does not have to buy an entirely new gateway, but can simply buy an additional modular expansion card for interfacing to a satellite dish.
- the second advantage of the modular construction of the gateway is the property it has of protecting the subscriber's investment in the gateway by decoupling the physical structure and software of the shared components of the gateway from changes in the particular subscription networks.
- these subscription networks evolve, there are likely to be changes in the protocols, physical media, packet structure etc. which are unpredictable in nature. Further, it may evolve over time with competitive forces similar to those acting on the long distance carriers that competition alters the picture as to which subscription network is the best provider of each particular service in which the subscriber is interested.
- ADSL no longer is the best provider of telephony services, and the HFC networks offer a better deal
- the consumer does not have to buy an entirely new gateway, but can simply remove the ADSL interface card and substitute a cable modem card to interface with the HFC network if a cable modem card is not already present.
- ADSL with Carrierless Amplitude/Phase modulation (CAP) give way to Discrete Multitone (DMT) modulation as the new standard
- DMT Discrete Multitone
- gateway 14 The structure of one embodiment of the gateway 14 will be discussed in more detail later. However, the genus of gateways 14 which are within the teachings of the invention is defined by the following characteristics which all will share:
- a programmed host computer with an operating system, and one or more protocol conversion processes and a switching control process that controls a packet switch to route packets between the one or more subscription service networks and the local area network(s) to which the gateway is coupled;
- the common elements of the host that can be shared by all the subscription network interface circuits for all the subscription networks to which the gateway is coupled are shared, with examples of such shared circuits being: the host microprocessor, hard disk, RAM, CD-ROM/DVD, power supply, network interface circuits for the LAN(s), display and keyboard, the operating system, any management sofware and any protocol conversion software layers that are common to
- the gateway 14 will have a cable modem circuit either on a modular expansion card or as part of the subscription network interface circuits board.
- This cable modem circuitry can be any of the cable modems that are known in the prior art which are identified herein or any new cable modem design that surfaces after this application is filed since the details of the cable modem are not believed at the present time to be critical to the invention.
- the gateway 14 will have as part of its interface circuit board or as an expansion card module, an ADSL modem (or SDSL or HDSL modem) to receive incoming digital data modulated onto a downstream carrier and output it as Ethernet packets on LAN(s) 18 and 20 .
- LANs 18 and 20 could be ATM LANs or one could be ATM and the other Ethernet or some other technology such as Fibre Channel Arbitrated Loop with suitable adjustments in the gateway 14 to packetize the data properly and use appropriate circuitry and protocols at all levels from the physical layer, MAC and network or routing layers up to the application layer for the particular LANs in use.
- ATM LAN switches and routers are available in the prior art and the details of their construction are hereby incorporated by reference.
- the ADSL modem receives Ethernet packets with digital data encoding voice, pictures, video etc. and modulates that data onto an upstream carrier.
- ADSL carves up the local loop bandwidth (the bandwidth of the twisted pair telephone line from the consumer premises to the Central Office) into several independent frequency channels suitable for any combination of services inclduign voice, ISDN, VOD programming and interactive gaming. Downstream data rates vary from 1.544 to 6.144 Mbps with upstream rates from 16 to 640 Kbps.
- the gateway ADSL interface circuit will also have a voice splitter if regular analog telephone are to be supported in addition to the LAN-connected video phones 60 and 62 or other data-consuming phones or FAX machines like FAX 64 which receive and transmit voice and pictures or caller ID or other data in digital form.
- Such other data can include such things a background information file on the person identified by caller ID data transmitted by an application on the PC 22 which supports the phones.
- Any conventional ADSL (or SDSL or HDSL) modem design such as the known ADSL modem manufactured by 3COM (specifically identified below and incorporated by reference herein) may be used for the PSTN ADSL interface circuitry or the ADSL expansion module as the details of the ADSL interface circuitry are not believed to be critical to the invention.
- the 3COM ADSL modem couples to a twisted pair carrying ADSL services and has an Ethernet 10Base-T output for coupling to the LAN(s) 18 or 20 through the shared packet switching circuitry of the gateway.
- the gateway 14 also includes as part of its subscription network interface circuit board or as part of its satellite network expansion module a decoder box.
- This satellite decoder box is of known design suitable to receive, demodulate, demultiplex, detect and decompress (if necessary) digital data transmitted on a downlink to satellite dish 56 .
- This digital data may be transmitted via a service such as DirectPC or other satellite-based, digital data delivery services which may become available in the future, and the interface circuitry necessary to receive digital data transmitted to a particular PC via satellite is known in the DirectPC application, and is hereby incorporated by reference.
- satellite interface circuitry includes a tuner, a QPSK demodulator, a transport demultiplexer and a conditional access circuit.
- the satellite circuitry may include circuits to decompress the digitized video back to its original state (or close to its original state if lossy compression such as MPEG is used).
- lossy compression such as MPEG is used
- whether the satellite interface circuitry of the gateway includes decompression circuits depends upon the bandwidth of the local area network(s) coupled to the gateway. If the LAN(s) are 10Base-T or 100Base-T, the video digital data will be left compressed and can be transferred over the LAN(s) with quite acceptable quality at T1 speeds of 1.544 Mbps.
- MPEG compression and decompression is known in the art and is incorporated by reference herein.
- MPEG compression is lossy compression which uses: a 7-tap filter for averaging 7 neighboring pixels or lines; color space conversion; scaling to the presentation resolution before digitization; transforms such as the Discrete Cosine Transform, vector quantization, fractal transform and wavelet compression; and quantization or compaction encoding to reduce the number of bits needed to represent a color pixel such as run-length encoding, Huffman coding, and arithmetic coding; and interframe compression to transmit only the pixels that change between frames.
- the satellite interface circuitry or satellite expansion module should also include a convention telephone modem for making dial up access to the internet via the PSTN for upstream data transmissions through the server of the internet service provider. Downloads from the internet or a video server or some other digital service server are beamed up to the satellite and retransmitted on the downlink addressed to the specific user that requested the downlink. All other decoder boxes coupled to satellite dishes that received the same broadcast reject the packets so received as not addressed to them.
- a convention telephone modem for making dial up access to the internet via the PSTN for upstream data transmissions through the server of the internet service provider. Downloads from the internet or a video server or some other digital service server are beamed up to the satellite and retransmitted on the downlink addressed to the specific user that requested the downlink. All other decoder boxes coupled to satellite dishes that received the same broadcast reject the packets so received as not addressed to them.
- a cable modem 12 is shown externally to the gateway with the output IP or Ethernet packets encapsulating IP packets or ATM cells on bus 16 for coupling into the packet switching process inside the gateway.
- the preferred embodiment is as shown in FIGS. 4A and 4B with the cable modem circuitry inside the gateway as shown at 70 .
- the particular cable modem shown at 70 is labelled as DOCSIS 1.2 compatible, but it can be any known cable modem design as can the external cable modem.
- the gateway 14 can be a standalone circuit with all the interface circuits needed to interface to one or more external networks included as a permanent part thereof with no plug-in expansion capability as opposed to the preferred modular construction shown in FIG. 8 where external network interface circuits may be added as needed.
- digital data services may be delivered by a coaxial cable 10 which represents the drop line in a cable TV HFC network (not shown).
- the cable TV network has a head end modem (not shown) which couples the HFC cable CATV plant to wide area networks such as the internet as well as the public service telephone network (hereafter PSTN) through one or more routers, bridges or gateways (not shown).
- PSTN public service telephone network
- the head end modem may also couple the HFC to local servers such as VOD servers.
- Digital data encoding video signals, telephone service, data being received from the internet etc. is modulated by the head end cable modem onto one or more downstream channels for simultaneous transmission on the HFC cable plant with regular analog cable TV programming.
- the cable TV channels each have their own frequency so as to not conflict with each other.
- the downstream digital services data is modulated onto a carrier that has a frequency that does not conflict with the frequencies of the cable TV programming nor with upstream data which is modulated onto a different upstream carrier frequency.
- Data from different sources is multiplexed on both the downstream and upstream channels by any known means including time division multiplexing, code division multiplexing, synchronous code division multiplexing or frequency division multiplexing.
- Digital data can be delivered over the HFC using Asynchronous Transfer Mode (ATM) or ATM over B-ISDN type services adapted for HFC and the particular type of transmitters, modulation and multiplexing being used.
- ATM and B-ISDN Broadband ISDN
- ITU-T Asynchronous Transfer Mode
- Those standards are: 1.113; 1.121; 1.150; 1.211; 1.311; 1.321; 1.327; 1.361; 1.362; 1.363; 1.413; 1.432; 1.555; and 1.610.
- ATM Forum Implementation Documents of significance that are incorporated by reference herein are: ATM User-Network Interface (UNI) Specification for PVCs; ATM Broadband Intercarrier Interface (B-UNI) Specification and ATM Date Exchange Interface (DXI) Specification; Internet Engineering Task Force Requests for Comment (RFC) that are incorporated by reference are: RFC 1483: Definition of Multiprotocol Encapsulation over AAL5; and RFC 1577: Definition of Internet IP over ATM.
- UNI User-Network Interface
- B-UNI Broadband Intercarrier Interface
- DXI ATM Date Exchange Interface
- RFC 1483 Definition of Multiprotocol Encapsulation over AAL5
- RFC 1577 Definition of Internet IP over ATM.
- ATM is the delivery mechanism of choice since its small 48-octet payload and 5-octet header in each cell lends itself well to video, image, facsimile, voice or data. Further, the fixed cell size gives routers and switches the advantage of predictability, as compared to a variable length frame. These two considerations yield decreased delay as data moves through the switching system and across the transmission links in frequent little blasts. No long frames need to be transmitted tying up switch ports and thereby causing delays for frames from other sources that need to use the same ports. ATM also has the advantage of being able to adjust the amount of bandwidth required to support a session during the session. However, ATM networks do not provide either error detection and correction or protocol conversions. Those functions are left up to the user.
- digital data may be delivered over HFC using Discrete Multi Tone (DMT) technology typically used in ADSL but adapted to HFC and the particular type of transmitters, modulation, multiplexing being used.
- DMT is a new technology developed for ADSL delivered via twisted pairs that uses DSPs to pump more than 6 Mbps of video, data, image and voice signals over todays existing one pair copper wiring, but it could also be used to transmit data over HFC cable plants.
- DMT provide 4 asymmetric “A” channels at 1.5 Mbps each of which can provide an VCR quality signal and which can be ganged together such that two A channels can deliver a “sports” quality video channel and all four A channels operating together can deliver digital Extended Definition TV signals.
- DMT also delivers one “H zero” channel at 384 Kbps to deliver Northern Telecomm's multirate ISDN Dialable Wideband service or equivalent. This channel can also be used for work-at-home telecommuters for high bandwidth access to the corporate LAN using Northern Telecomm's DataSPAN or other frame relay services.
- DMT also delivers one ISDN Basic Rate channel containing two “B” channels at 64 Kbps and one “D” channel at 16 Kbps.
- the Basic Rate channels allow access to a wide range of emerging ISDN services without requiring a dedicated copper pair or the expense of a dedicated NT 1 unit at home. These channels also permits the extension of Northern Telecom's VISIT personal video teleconferencing services to the home at fractional T-1 rates (P ⁇ 64).
- DMT also delivers one signalling and control channel operating at 16 Kbps giving the home user VCR type control over VOD movies and other services including fast-forward, reverse, search and pause functions. Finally, DMT also delivers embedded operations or overhead channels for administration, internal system maintenance, audits etc. All this is delivered without interrupting the POTS service if it is delivered over a copper pair. HFC could also potentially deliver POTS, but without a dedicated pair to each home, such service would be subject to congestion and loss of POTS to entire neighborhoods served by a single cable in case of a failure of the cable.
- digital data on the HFC drop line is recovered by any known cable modem 12 .
- a suitable cable modem using SCDMA upstream multiplexing is given in PCT publication WO 97/08861, published 6 Mar. 1887, which is hereby incorporated by reference.
- One example of software and hardware in the cable modem 12 which is Docsis 1.2 compatible is given in the following U.S. patent applications, all of which are hereby incorporated by reference: Ser. No.
- encoding the 9th bits of each of the first eight “bytes” (byte here is used in the sense of a 9-bit entity); parsing the optimized ATM downstream cells into 9-bit bytes and sending them as a TDM stream to the headend cable modem downstream transmitter for transmission (this transmitter can be any conventional transmitter but preferably is an SCDMA transmitter which divides each 9-bit byte into three tribits and interleaves them into elements of an information vector that correspond to virtual channels assigned to the particular modem to which each 9-bit byte is directed, and spreading the spectrum of the information vector using one or more spreading codes assigned to the one or more assigned virtual channels);
- headend cable modem transmitter encodes the 9-bit bytes and modulates them onto a downstream carrier for transmission over virtual channels from a head end over HFC to a remote unit (RU) cable modem.
- RU remote unit
- the optimized system uses a two level addressing scheme and a mapping between each logical channel and the assigned RU for that channel.
- the two byte header in the downstream optimized ATM cell identifies the single logical channel upon which the data is to be transmitted, and this single logical channel corresponds to a single one of the multiple RUs.
- the Ethernet address of the particular process or peripheral at the RU to which the payload data is to be directed once it arrives at the RU is included as several bytes in the payload data.
- the 9-bit bytes are recovered, reassembled into AAL5 packets and encapsulated into one or more Ethernet packets for transmission over the LAN.
- the RU cable modem carries out the following processing:
- the incoming signals from the cable drop 10 are demodulated, demultiplexed and detected in accordance with whatever multiplexing and modulation schemes that were used by the headend downstream transmitter for the transmission on separate logical channels so as to recover the 9-bit bytes;
- a formatter circuit finds the ATM cell boundaries by examining the 9th bits for the start code and reassembles the 50-byte optimized downstream ATM cell;
- each RU examines the 2-byte header in each ATM cell to determine if the ATM cell is directed to that RU and discards the cell if it is directed to another RU (RU and cable modem at the customer premises) are used interchangeably herein) and forwards it to a segmentation and reassembly circuit (SAR) as a Utopia data stream if the cell is directed to this RU;
- SAR segmentation and reassembly circuit
- the SAR recovers the AAL5 packet boundaries by finding the RFC 1483 bits and the last cell code and reassembles the AAL5 packet and error checks it using CRC bits and stores the corrected AAL5 packet in memory for retrieval by an Ethernet controller and passes a pointer to the packet to the Ethernet controller;
- the Ethernet controller retrieves the AAL5 packet pointed by each pointer and strips off the RFC 1483 bits and sends the remaining bits as an Ethernet packet (after stripping the RFC 1483 bits, the remainder is an Ethernet header followed by an IP header followed by a payload section).
- gateway 14 receives the downstream Ethernet packet on line 16 and simply couples them through a packet switching process on the gateway onto the appropriate LAN subnet (if more than one LAN is used in the customer premises). If only one LAN is used, the Ethernet packets can simply be delivered to an Ethernet Network Interface Card in the gateway for driving out onto the LAN. Likewise, Ethernet packets received from the LAN having IP addresses indicating they are directed to processes coupled to the wide area networks to which cable modem 12 is coupled are routed through the gateway to the cable modem 12 . There, they are transmitted on an upstream channel assigned to cable modem 12 and recovered by the head end modem and coupled to the internet through a router at the head end.
- the local area networks 18 and 20 are 10Base-T phone lines or Cat 3, 4 or 5 UTP (twisted pair) type LANs with any topology. These LANs are inexpensive and there many sources of inexpensive network adapters, hubs and peripherals.
- the physical media of the LAN(s) 18 and 20 can be provisioned as a twisted pair phone line with which the customer premises is already wired or it can be CAT 5 wiring, or an RF or infrared wireless LAN system, or the coax of the cable TV system that runs through the house can be used for a ThickNet (10Base-5) or ThinNet (10Base-2) LAN.
- FIG. 3 shows gateway 14 as coupled to two LANs 18 and 20 one of which is high speed and the other of which is low speed
- the high speed LAN may be 100BaseT and is used to deliver high bandwidth consuming services such as video conferencing, video on demand, high speed internet access.
- the local area networks 18 and 20 also serve the dual purpose of allowing the computers on the network to communicate with each other and share resources such as shared hard disks, printers etc.
- PC 22 which is typically a Windows based personal computer but which may also be a Macintosh or other workstation, can communicate with network computers 24 and 26 to allow files created on the hard disk of PC 22 to be accessed by the network computers or to have documents created on the network computers 24 and 26 stored on the hard disk of PC 22 .
- the gateway 14 and an internal ADSL modem or the cable modem the network computers can also access the internet and download web pages, send e-mail etc.
- Television set 28 is coupled to the local area network 18 via a network adapter 30 which functions to convert the compressed digital data in received Ethernet packets to video signals on line 32 .
- the TV may be used in interactive communications so upstream data can be sent through the use of an infrared or RF wireless keyboard 34 .
- upstream data can be sent through the use of an infrared or RF wireless keyboard 34 .
- Such data might include the title or number of a VOD movie to be ordered or upstream text to be sent in a multimedia interactive presentation.
- an infrared or RF remote control 80 can be used to transmit commands to the network adapter 30 such as play, pause, slow motion, stop, rewind etc. to control video on demand services.
- Information the consumer wishes to send is entered on the keyboard and communicated to the network adapter 30 via infrared or RF transmission from the keyboard 34 and/or remote control 80 .
- the data transmissions are received, demodulated and detected to recover the data and the data is addressed and packetized into IP packets encapsulated inside Ethernet packets by an infrared and/or RF receiver 82 in the network adapter 30 (see FIG. 5 which is a block diagram of the network adapter 30 ).
- the Ethernet packets containing the upstream VOD request data are addressed to the gateway 14 .
- These packets are launched onto the LAN 20 by a network interface card 84 which does the media access control and physical layer protocols of whatever LAN is in use such as CSMA/CD in the case of Ethernet LANs.
- the IP packet encapsulating each VOD request is addressed to the particular video server which will supply the data.
- Standard mouse or touchpad type technology in the infrared keyboard and/or remote control 80 sends pointer information to receiver 82 so that the user can request menus from each video server and point to a video selection from each menu displayed on the TV.
- the remote control 80 or IR keyboard 34 has function keys that may be pushed to request menus of VOD selections from the satellite, HFC and ADSL video servers. When these function keys are pressed, the receiver 82 converts the request into an IP packet addressed to the appropriate video server requesting transmission of the current menu data.
- the menu data listing currently available selections is sent as downstream IP packets addressed to the video adapter having the IP address that was the source address of the menu request packet. These IP packets reach the IP video circuit 242 where they are recognized and routed via bus 87 to the 2/3D Graphics circuit 83 which converts the data into graphics data signals on line 85 which will be used to display the menus.
- this pointing information is transmitted to the receiver 82 and converted to graphics commands which are transmitted via line 81 to optional 2/3D graphics circuit 83 .
- the graphics circuit 83 creates graphics for overlay on the TV display, and the pointer information is converted to a graphics image such as a pointer or hand which the user can move on the displayed menu by use of a mouse or touchpad.
- the menu in which the pointer lies is transmitted via bus 81 to the receiver 82 and the position on that menu where the pointer currently is located is determined by graphics circuit 83 and transmitted to the receiver 82 .
- the menu and current position data so determined are mapped to an IP address of a particular server and a particular VOD selection available from that server.
- the receiver 82 uses the IP address of the video server as a destination address and its own IP address as a source address and the requested selection to create an IP packet bearing the VOD request.
- This packet is then encapsulated into an Ethernet packet addressed to gateway 14 and sent to the gateway via the NIC 84 and the LAN 20 .
- the gateway strips off the Ethernet header and routes the IP packet to the appropriate video server via the appropriate upstream media for that video server.
- the user may simply type in the number of a category of video from a displayed menu of available categories and the number of a video selection on the displayed menu.
- the menu number and program number are then converted into a VOD request IP packet by the receiver 82 and then encapsulated into an Ethernet packet addressed to the gateway 14 .
- the gateway 14 then processes the VOD request as described above.
- the routing circuit 86 When the upstream VOD request packet reaches the gateway 14 , it is processed by the Ethernet (or other LAN protocol) to IP protocol conversion and routing process (hereafter referred to as the routing circuit) carried out by the host computer circuitry and the software processes symbolized by block 86 in FIG. 4A (FIGS. 4A-4B together are a block diagram of one embodiment of the gateway). The routing circuit 86 then routes the VOD request packet to the appropriate subscription service data delivery network for delivery to the process/target device named in the IP destination address.
- the routing circuit 86 is shown as a separate logical block in FIG. 4A from the host microprocessor 128 and its associated peripherals: random access memory 129 , nonvolatile memory 131 to store the bios, hard disk controller 133 and the hard disk 135 it controls, display adapter 137 and display 139 , keyboard interface 141 and keyboard 143 . All of these peripheral devices are conventional.
- the routing circuit 86 is usually the host microprocessor programmed to do the IP to Ethernet and vice versa protocol conversions, routing table construction and packet routing functions along with any other functions necessary for a router including network interfaces and any other functions required of the routing process described in the flowcharts herein.
- the function of the gateway is to provide protocol conversion, packet format conversion, video, voice and data demodulation, detection and demultiplexing services, conditional access control to prevent non subscribers from receiving services they have not subscribed to.
- the gateway 14 performs the functions of a cable modem and a set-top decoder box for a satellite digital data subscription service such as DirectPC and performs the functions of an ADSL modem.
- the gateway performs MPEG encoding services, IP video.
- IP video comprises the process of recovering downstream IP packets and sending them to an input port of a routing process and receiving Ethernet upstream packets and converting them to IP packets and sending them upstream.
- the gateway also performs IP telephony services (similar to the IP video services except for telephony over the internet) as well as switching and routing services. More details about the structure and operation of the gateway will be included below.
- the upstream data transmission process from the peripheral to the internet via the cable modem 12 is as follows assuming the cable modem is of the type defined in PCT publication WO 97/34421 which is incorporated by reference herein:
- the application process that needs to send upstream data outputs one or more Ethernet packets onto the LAN 18 which include the IP address of the entity on the internet to which the data is directed;
- each Ethernet packet gets routed through the gateway 14 to the cable modem 12 if it has an IP address which indicates it is directed to an entity on the internet to which the gateway is coupled through the cable modem 12 ;
- the SAR in the RU cable modem adds pad bits to each Ethernet packet, computes CRC-32 error detection bits, and adds RFC 1483 bits such that the resulting packet is an integer multiple of 48 bytes;
- the SAR parses the packet into multiple 48-byte ATM cell payload sections with no header bytes, adds standard 5-byte ATM cell headers to each payload section using a virtual link identifier which identifies the virtual upstream channel assigned to that RU to construct the VPINCI fields and using last cell, normal cell and idle cell information to construct the PTI field and calculates a HEC field and transmits the resulting ATM cells to a formatter as a Utopia stream;
- the formatter adds a 9th bit to each byte in the cell and encodes the 9th bits with a start code, last cell, normal cell and idle cell codes using the information in the PTI field of each ATM cell header;
- the formatter strips off the 5-byte header of each ATM cell while saving the information and then parses each upstream ATM cell into 9-bit bytes and places one 9-bit byte into each timeslot of an upstream information vector which corresponds to the virtual channel assigned to this RU modem and transmits the information vector to the upstream transmitter in the RU cable modem 12 using the information in the VPI/VCI field of the header to identify which virtual channel in which each 9-bit byte from each ATM cell is to be transmitted;
- the upstream transmitter of the RU modem transmits the upstream data in the appropriate virtual channel such as by spreading the spectrum of the 9-bit bytes using one or more spreading codes assigned to the virtual channel(s) assigned to the RU;
- the spread spectrum data is then transmitted on the upstream carrier;
- the receiver in the headend cable modem receives the upstream transmissions from each RU and demodulates, demultiplexes and detects the transmitted data of each 9-bit byte and places the recovered 9-bit bytes into the timeslots on a TDMA bus which correspond to the logical channel in which the data was received;
- a formatter process in the headend modem demultiplexes the TDMA stream and reassembles the 48-byte optimized upstream ATM cells using the signalling data in the 9th bits and places each ATM cell in a portion of a cell buffer dedicated to storing ATM cells from the RU which generated the data using the timeslot data to determine from which RU each ATM cell arrived;
- a cell output controller process then retrieves each 48-byte ATM cell and generates a standard 5-byte header and transmits the standard 53-byte ATM cell in an OC3 format data stream to a segmentation and reassembly circuit in a router in the headend cable modem;
- the SAR error checks the 53-byte ATM cell using the HEC field and strips off the header bytes while retaining the VPI/VCI and the PTI field information and reconstructs the AAL5 sequence using RFC 1483 bits and the last cell data encoded in the PTI field to find the packet boundaries and by concatenating 48-byte payload sections of the ATM cells and error checks the packet using CRC bits;
- the RFC 1483 bits and the CRC bits and pad bits are stripped off to leave an Ethernet packet header, an IP header and a payload section and the result is sent to a router for routing on the appropriate subnet to get to the destination having the IP address somewhere out on the wide area network.
- the cable modem 12 has the architecture of any of the cable modems described in Azzam, High Speed Cable Modems , suitable modifications to the above described downstream and upstream processes described above can be made, or the upstream and downstream processes used in those modems can be used for delivery of the same digital services they have used in the prior art to deliver.
- any of the cable modem hardware and software structures known in the prior art which have been used in the actual field trials identified in Azzam, High Speed Cable Modems , Chapter 14, Section 14.2, pp. 512-518 (McGraw Hill 1997), ISBN 0-07-006417-2 may be used, and all of these modem designs are hereby incorporated by reference.
- the cable modems whose circuitry and software is incorporated by reference herein include: the LANcity Personal; Hybrid Networks Cable Client Modem 211; Zenith HomeWorks Elite; Motorola CyberSurfr; General Instruments SURFboard SB1000; Hewlett-Packard QuickBurst; Com21 ComPort; Toshiba and any cable modem that conforms to the IEE 802.14 standard.
- the IEEE 802.14 compliant cable modem genus will contain species which have the following characteristics:
- upstream channel assigned band between 5 and 45 MHz;
- upstream channel using QPSK modulation or a combination TDMA and synchronous code division multiple access multiplexing techniques and QAM modulation delivering from 2 to 10 Mbps in each upstream channel;
- MAC protocol which is ATM friendly using the ATM cell transport concept and possibly involving segmentation of ATM cells into smaller segments to improve system performance
- the upstream channel divided into frequency channels that are allocated to individual users or combining two multiplexing methods such as TDMA and Synchronous CDMA or CDMA.
- Cable modems within this genus include circuits and software to achieve time synchronization where frame alignment is necessary for proper demultiplexing.
- the better modems in the genus also include time synchronization coupled with TDMA and CDMA to lower intersymbol inteference as well as power alignment and adaptive equalization to minimize other forms of interference.
- These better modems will also include encryption such as pseudorandom scrambling or DES encryption for privacy and a MAC layer protocol that insures fairness in upstream bandwidth access.
- FIG. 4 there is shown a block diagram of one embodiment of gateway 14 configured as a standalone circuit where interfaces to the satellite, HFC and PSTN networks are all implemented on the circuit board.
- This circuitry may be an expansion card in a personal computer or it may be integrated into the motherboard of a personal computer.
- the other known components of the personal computer are not shown in FIG. 4 for simplicity, but suffice it to say that the host CPU of the PC is coupled to circuitry shown in FIG. 4 by the address, data and control buses of the PC such that the circuits that need control inputs or data from the host CPU may receive it.
- the control and data inputs needed by each circuit will be described when that circuit is described.
- the embodiment of the gateway 14 shown in FIG. 4 includes the entire circuitry of a DOCSIS1.2 cable modem 70 therein.
- HFC drop line 10 is coupled to an upstream and downstream combiner and isolation circuit 90 .
- upstream modulated RF carrier signals on line 92 from upstream isolation amplifier or coupler 94 are coupled onto the cable 10 and downstream modulated RF signals are received from cable 10 and placed on line 96 .
- combiner 90 will include a bandpass filter to prevent upstream RF signals from entering line 96 and may optionally include a termination for line 92 to prevent reflections.
- Isolation circuit 98 typically a buffer amplfier or capacitor or other circuitry such as a lighting arrester protects the internal circuitry of the gateway from any unwanted DC signals or lightning strikes on the HFC.
- Tuner 100 is tuned to one of the conventional CATV analog video channels in NTSC, PAL or SECAM format.
- the total bandwidth of the HFC will be divided up into different frequency bands for CATV FDMA analog video channels, an upstream DOCSIS data and management and control signals band, a digital VOD signals band and a downstream DOCSIS data band.
- the frequency band for upstream data and management and control signals extends from 0 to about 50 MHz. Within this band, upstream DOCSIS data will be modulated onto one carrier frequency and management and control data will be modulated onto another carrier frequency.
- Upstream management and control channels at different frequencies or in different timeslots or on the same frequency with the data of each management and control channel having its spectrum spread with a different spreading code.
- the frequency band from 50 to 500 MHz will be reserved for FDMA 6 MHz wide analog CATV video signals.
- Digital video data such as for VOD or teleconferencing etc. is typically modulated onto one of a plurality of different frequency channels in a band above 500 MHz with each channel being about 6 MHz wide and containing a plurality of video, audio and associated data subchannels separated by TDMA.
- Downstream DOCSIS data such as web pages which are downloaded during high speed internet access is typically modulated onto a carrier having a frequency somewhere above the video on demand carrier frequencies.
- One of the functions of the gateway 14 is to deliver requested services to all the peripherals in the customer premises seemlessly over a shared LAN thereby eliminating the need for separate coaxial cable wiring to deliver CATV analog signals, a digital network to deliver digital data, telephone wires to deliver conventional telephone service. All these services are delivered via a single digital data distribution system comprised of one or more LANs. To that end, even CATV signals that are analog when they arrive are digitized, compressed, turned into IP packets and then into Ethernet packets and transmitted to the various televisions via a LAN.
- Tuner 100 starts this process by receiving control data from microprocessor 128 defining which CATV analog video channel which has been requested. Users request analog CATV broadcast channels via their IR keyboards 34 or remote controls 80 in FIG. 3. These requests are encapsulated into management and control Ethernet packets addressed to host CPU 128 by network adapter 30 . The host CPU receives them and generates a bus packet on bus 156 addressed to tuner 100 telling it which channel to tune.
- the host bus 156 may be a PCI bus in a Windows based personal computer, but high traffic loads may bring such a bus to its knees since only two devices may use the bus to communicate at any particular time.
- a high capacity multiplexed bus like an H.100 standard TDMA bus coupled by suitable bus drivers to the host bus in a computer with sufficient expansion slots for all the necessary expansion modules to implement a flexible gateway may be used.
- a Windows based personal computer with a PCI or ISA bus and one or two expansion slots may be sufficient.
- a PCI or ISA bus and one or two expansion slots may be sufficient.
- the gateway 14 may also take the configuration of one or more personal computers, each with a fast microprocessor and a PCI or some other fast bus, each running one or more of the software processes symbolized by FIG. 8 to divide up the labor.
- These servers would be coupled to the LANs by one or more NICs with their one or more host buses coupled to another expansion module interface circuit board by one or more high capacity buses such as an H.100 TDMA bus, a Firewire or even FDDI or Fibre Channel Arbitrated Loop LAN technology.
- the expansion module interface circuit board would have a plurality of expansion slots interfaced to the high capacity bus(es) or LAN(s) coupling the expansion module interface circuit board to the one or more servers.
- Each expansion slot would be available to couple one of the expansion modules shown in FIG. 8 to the shared software and hardware facilities of the servers.
- all of these various alternative bus or LAN type interconnections between the server(s) and the modules in the expansion slots will be simply referred to as the host bus or the PCI bus 156 .
- the RF output of tuner 100 on bus 134 is then digitized by an analog-to-digital converter in A/D matrix 130 .
- the digital samples on line 136 are input to a video demodulator 138 which functions in the digital domain to demodulate the digitized analog video signal by removing the RF component.
- the video demodulator 138 outputs digital data on line 166 which represents a conventional baseband NTSC, PAL or SECAM format video signal.
- the digital data on line 166 is at too high a bit rate to send over the LAN since uncompressed broadcast video is at 221 Mbps. Therefore, the video data must be compressed.
- MPEG II compression is preferred, but any known form of compression currently known or to be developed in the future will suffice since the form of compression is not critical.
- MPEG II compression circuitry is well known, and is used for MPEG encoder 146 . However, MPEG compression does not compress NTSC, PAL or SECAM format signals. They must first be converted to YUV format luminance and chrominance signals. This conversion is done in video decoder 142 , which is a known type of circuit in any video system that uses MPEG II compression.
- the compressed video data is encapsulated into PCI (or other type) bus packets addressed to IP video circuit 158 .
- the compressed video data is encapsulated into IP packets addressed to the network adapter of the TV where the CATV video channel is to be viewed.
- the IP video circuit 158 determines which IP destination address to use in constructing the IP packets via data received from the host microprocessor 128 .
- the host microprocessor 128 in addition to telling the tuner 100 which channel to tune, also determines from the Ethernet packet source address which TV's network adapter requested the data.
- the IP address of this network adapter is encapsulated into a PCI bus packet and transmitted via host bus 156 to the IP video circuit.
- the IP packets encapsulating the digitized CATV channel are then transmitted via bus 160 to the routing process 86 .
- the routing process 86 is a conventional IP to Ethernet routing process which examines the IP packet destination addresses and looks up the corresponding Ethernet addresses. The IP packets are then encapsulated into Ethernet packets and routed to the appropriate LAN network interface card for LAN 18 or 20 depending upon the Ethernet destination address of each packet. The process works in reverse for incoming Ethernet packets from the LAN(s).
- IP packets When the IP packets reach the network adapter of the TV that requested the CATV channel, they are converted to a video signal that can be displayed by the TV by the circuitry described below in conjunction with the discussion of FIG. 5.
- VOD Voice over IP
- the VOD downstream frequency band has multiple video channels, each at a different carrier frequency.
- Each video channel carries multiple TDMA channels of MPEG II compressed video with its associated audio, and sometimes with one or more additional TDMA subchannels devoted to associated data.
- the tuner 102 is commanded by the host microprocessor 128 to tune to a particular VOD channel.
- the customer will order a particular VOD program using the IR keyboard 34 or remote control 80 .
- the microprocessor 128 receives the order information via management and control Ethernet packets generated by the network adapter 30 and driven onto the LAN 20 .
- management and control Ethernet packets generated by the network adapter 30 and driven onto the LAN 20 .
- IP packets can have their telephone calls digitized into IP packets on digital telephones such as 62 in FIG. 1 with each packet addressed to the IP address corresponding to the telephone number shown on the screen. These packets get encapsulated into Ethernet packets and transmitted on the LAN 18 or 20 to the gateway 14 . There, they are received by the switching process 86 and the Ethernet headers are stripped and the IP packets are sent to DOCSIS modem for transmission on an upstream channel.
- the IP telephony packets are recovered and routed to the IP address where the operators are standing by.
- three callers are calling to buy the item being shown and described.
- the three different operators handling these calls have their speech digitized into IP packets addressed to the digital telephone being used by the caller they are talking to.
- These IP packets addressed to the telephones of the three different callers are QAM modulated by the headend modem modulator transmitting the VOD program and sent downstream as associated data on three different TDMA subchannels associated with the video and audio subchannels of the home shopping presentation.
- the host microprocessor 128 tells tuner 102 which channel in the VOD band to tune to via control data transmitted via data, address and control bus 156 (also referred to as the host bus).
- the RF tuner 102 tunes to that channel and rejects all other signals.
- the RF output of the tuner 102 is digitized by A/D matrix 130 .
- the video, audio and associated values for each video, audio and data QAM modulated constellation point is recovered by the QAM demodulator 146 .
- the recovered data values are then separated by transport demultiplexer 148 into video, audio and associated data streams on lines 150 , 152 and 154 .
- the transport demultiplexer receives control data from the host microprocessor via data, address and control bus 156 which tells it which subchannels to separate out in the demultiplexing process.
- a conventional conditional access circuit 126 then decrypts the recovered data to prevent any unauthorized access thereto.
- the decryption process can be the same process used in current Ku band satellite digital video delivery or any other conventional encryption process. Since VOD subchannels are sent to only particular users, the data can be encrypted by PGP using the public key of the user to which the data is directed. That user then uses her private key to decrypt the data.
- the conditional access circuit has a conventional PCI or other bus interface circuit.
- the gateway is implemented as one or more circuit boards on a personal computer such as a Pentium class or PowerPC Macintosh which has a system bus. Any system bus which is fast enough to carry the worst case system load bit rate will suffice. The worst case system load is based upon the number and type of peripherals in the house.
- a compressed digital video channel can be delivered with good picture quality at 2 Mbps, so if a household has 4 TVs all of which are tuned to a different VOD channel and one video conference going on, 10 Mbps should be adequate.
- PCI buses have maximum bit rates much above 10 Mbps so a PCI bus for system bus 156 is adequate for most applications.
- the conditional access circuit's bus interface packetizes the decrypted video, audio and associated data into PCI bus packets which are addressed to an IP video circuit 158 and placed on bus 156 via line 160 .
- the IP video circuit receives the PCI bus packets and encapsulates the video and audio data into IP packets addressed to the network adapter 30 which ordered the VOD program.
- the associated data is encapsulated into IP packets addressed to telephone 62 (or whatever telephone is being used to converse with the operator).
- the IP packets are then transmitted via line 160 to the routing procss 86 .
- the routing process 86 is a conventional IP to Ethernet routing process which examines the IP packet destination addresses and looks up the corresponding Ethernet addresses. The IP packets are then encapsulated into Ethernet packets and routed to the appropriate LAN network interface card for LAN 18 or 20 depending upon the Ethernet destination address of each packet. The process works in reverse for incoming Ethernet packets from the LAN(s).
- FIGS. 6 A- 6 ? together comprise a flowchart of the preferred embodiment of the processing which occurs in the system to order a VOD selection via either HFC, satellite or ADSL modem.
- a user orders a particular video program via the IR keyboard 34 or remote control 80 acting as a pointing device to point to a displayed menu selection on TV 28 in FIG. 3. That selection is received by the IR or RF receiver 82 in FIG. 5, as symbolized by step 106 in FIG. 6A.
- the video selection along with the IP address of network adapter 30 is encapsulated in an IP packet and then encapsulated in an Ethernet packet by network adapter 30 and launched onto LAN 20 (step 108 ).
- the IP packet has the IP address of network adapter 30 as its source address and the IP address of the VOD server as its destination address.
- the IP address will usually be different depending upon whether the VOD selection has been ordered via HFC, satellite or ADSL since each network probably has its own video server.
- the user typically picks the VOD selection from a menu displayed on her screen for each network, so by pointing to the desired selection on the menu of the ADSL network, for example, the IP address is set to the IP address of the video server for the ADSL network.
- the network adapter encapsulates the IP packet requesting the video selection in an Ethernet packet (step 108 ).
- the Ethernet packet destination address is the routing process 86 in the gateway.
- the IP packet payload message identifies the movie or other video program desired and, in some embodiments, identifies the particular VOD channel and subchannel the gateway's VOD tuner will be tuned to (step 108 ).
- MPEG II compressed video is transmitted on two or more subchannels (one video, one associated data and zero or more associated video subchannels), and this is done regardless of whether the delivery media is HFC, satellite or ADSL.
- Step 108 represents the preferred process wherein the headend of the HFC, satellite network or ADSL central office monitors the channels and subchannels for load and sends downstream load balancing messages indicating which channels and subchannels are free. These load balancing messages are monitored by the gateways, and the channels and subchannels that are available are selected by the gateways for “camping” thereby helping balance the load across the network.
- the video server and/or headend may simply put the requested video selection on any unused subchannels of a channel that is not fully occupied and sends a downstream management and control message to the gateway from which the request originated indicating where the requested video selection will be found.
- the host microprocessor 128 in the gateway then sends data to its circuitry to cause the right channel to be tuned and the right subchannels to be demultiplexed.
- the “subchannel” means the particular timeslots or spreading codes to use in receiving the video data when tuned to the frequency of the “channel”. In embodiments where only one video subchannel per channel is carried, then subchannel and channel mean the same thing.
- the headend modem (or other headend circuitry such as the uplink transmitting center in the case of satellite or the ADSL central office—hereafter these other headend circuits will be referred to as headend modems for brevity) has a plurality of VOD modulators/transmitters (hereafter called modulators), each of which is coupled to the VOD server and each of which receives a plurality of streams of MPEG II compressed video data.
- modulators VOD modulators/transmitters
- Each modulator is structured to transmit one VOD channel downstream with the plurality of MPEG II compressed video/audio/associated data streams being multiplexed therein by TDMA, CDMA or Synchronous CDMA.
- the headend modem keeps track of which subchannels of each downstream VOD channel are in use. It then broadcasts management and control messages to all gateways via the HFC, satellite downlink or ADSL lines of subscribers indicating which VOD channels and subchannels are available and which upstream channels the gateways are to use in sending messages that indicate that a gateway has “camped” on a particular channel and subchannel.
- the meaning of the term “camped” or “camping” is as follows.
- the gateways receive these broadcast load balancing messages and the host CPU of each gateway with a pending VOD request commands their VOD tuners (such as tuners 102 or 180 or a corresponding tuner in ADSL modem 182 in FIG. 4A) to tune to a channel that has an available subchannel, as symbolized by step 108 .
- VOD tuners such as tuners 102 or 180 or a corresponding tuner in ADSL modem 182 in FIG. 4A
- the host CPU then commands the appropriate transport demultiplexer (e.g., demultiplexer 114 for HFC delivery or demultiplexer 184 in the case of satellite or a similar but not shown demultiplexer in the ADSL modem 182 ) to demultiplex and select out only the compressed video and audio data subchannels carrying the requested program as well as the associated data subchannels.
- “Camped” or “Camping” therefore means tuning of the appropriate digital VOD tuners and transport demultiplexers in the gateway to a particular channel and subchannel.
- the channel and subchannel camping information is included by the gateway in the IP packet bearing the upstream video request, or is included within a separate IP packet generated by the gateway that refers to the IP packet bearing the VOD request, also as symbolized by step 108 .
- This camping data aids the video server or router in the headend modem (or the corresponding circuitry in a satellite or ADSL VOD network) to get the requested video data to the correct modulator which is transmitting on the VOD channel to which the gateway coupled to the requesting IP address is tuned.
- the channel and subchannel data included in the upstream message is also used to control that modulator to put the video and associated audio data on the subchannel to which the gateway is tuned.
- the Ethernet packet is received by switching process 86 (after it passes through the network adapter card of the host computer and up through the Ethernet protocol layers where the Ethernet header is stripped off as symbolized by step 110 ).
- the switching process looks up the destination address of the IP packet in a lookup table and determines from the destination address of the IP packet that it is directed to a VOD server coupled to the headend modem driving HFC 10 or the headend circuitry driving the uplink to the satellite or to the ADSL central office (step 112 ).
- Step 116 represents the general process of transmitting the IP packet containing the VOD program request to the appropriate video server over the appropriate transmission media.
- the following paragraphs discuss the various cases individually, and step 116 is to be interpreted as covering each of these individual cases depending upon which video server is addressed by the IP packet.
- the following discussion assumes the gateway is equipped with HFC, satellite and ADSL expansion modules so that VOD can be ordered from any of these three networks.
- the gateway however may have only some subcombination of one or more of the HFC, satellite or ADSL modem expansion cards, so step 116 will only represent routing the IP request packet to one video server or possibly a selected one of two different video servers delivering VOD over two different networks.
- step 116 represents the following subprocess.
- the IP packet gets routed to DOCSIS modem 70 and transmitted on an upstream management and control channel.
- the management and control channel used to transmit the upstream request is the channel designated in a downstream load balancing message from the headend modem indicating which channels and subchannels are available and which upstream channels the gateways are to use in indicating they have camped on one of the available channels and subchannels.
- the IP packet is recovered from the HFC and coupled directly or via the internet to the video server to which it is addressed.
- the video server may be coupled directly to headend modem or indirectly via the internet in which case the IP request packet is sent by a router at the headend over the internet to the video server.
- step 116 represents the following.
- the IP packet get routed to the ADSL modem 182 or the DOCSIS modem 70 for upstream transmission over the phone lines. If routed to the ADSL modem, it transmits the IP packet request message upstream over the PSTN lines to the ADSL central office where it gets routed to the video server coupled to the satellite uplink over a connection to the internet at the CO or a dial-up connection over the PSTN to the video server directly.
- the IP packet addressed to a video server that delivers VOD over the satellite network is routed to the DOCSIS modem, the IP packet gets transmitted over the HFC to the headend DOCFSIS modem. There, the packet gets recovered and reassembled (if necessary) and sent to a router for delivery over the internet or other WAN to the video server to which the packet is addressed.
- the headend DOCSIS modem may make a dial up connection over the PSTN to the video server or use IP telephony to deliver the packet to the video server over the internet via IP telephony circuitry coupled to the internet at the video server.
- step 116 represents the following.
- Routing process 86 routs the IP packet to the ADSL modem 182 where it is transmitted via the ADSL upstream channel to the ADSL modem at the CO.
- the CO then routes the IP VOD request packet to a video server directly coupled to the CO or gives it to a router connected to the internet for routing to a video server coupled to the CO via the internet (the term internet means the internet or any other wide area network currently in existence or which may come into existence in the future).
- the CO may make a dial up connection to the video server over the PSTN and send the IP VOD request packet over the dial up connection or may communicate with another CO where a video server is located by a T1 line or DS1 or other high speed telephone lines.
- a video server is located by a T1 line or DS1 or other high speed telephone lines.
- Step 120 represents the optional step of authentication and/or conditional access gating carried out at the headend prior to routing the IP request packet to the video server.
- the IP packet bearing the VOD request is routed to the video server only if the user making the request is authenticated and/or is an authorized subscriber to the requested service. This is typically by using the source address as a search key to search a lookup table of authorized users.
- the manner in which the requested services such as VOD are monitored so that they are delivered only to authorized subscribers is not critical to the invention, and the lookup function mentioned as part of step 120 can be replaced with any known manner of gating services only to authorized users.
- the gating function can also be done at the gateways after transmission of the VOD data downstream, and the gateway 14 shows conditional access modules 126 and 186 representing these embodiments. In these embodiments where the conditional access gating function is performed at the gateway, step 120 is not needed.
- Processes for performing conditional access gating at the customer premises are well known in C band and Ku band subscription-based analog and digital video broadcasting, and need not be detailed here.
- each gateway has a decryption module ( 126 , 186 and similar circuitry in ADSL modem 182 ) with a key or password stored therein.
- This key or password is used by the video server or other service provider to encrypt the VOD data or other data encoding the requested service using the authorized subscriber's public key. Only that subscriber can decrypt the data using his private key.
- the conditional access modules 126 and 186 in FIG. 4A are intended to symbolize any of these known prior art structures and processes for blocking access by unauthorized persons to services.
- Step 124 is intended to represent one of the following three subprocesses of delivery of the video data bearing IP packets depending upon the video server to which the original IP packet bearing the VOD request was directed and whether the IP video data packets are to be delivered over HFC, via satellite or via a DSL connection. Step 124 is not intended to represent delivery of the VOD data by all three networks. The discussion of each subprocess is labeled by a header, and three different lines of steps are shown in FIGS. 6 A- 6 ? for the three different delivery networks since each delivery network is coupled to different circuitry in the gateway 14 .
- step 124 represents the process of transmitting the IP VOD packets to the modulator in the headend modem which is transmitting downstream on the channel identified in the original request packet.
- Transmission to this modulator can be by a local direct connection, or via the internet or other WAN or by a T1 or DS1 leased line or possibly by other high speed PSTN connection such as DSL.
- the video data is compressed in any known manner and is encrypted before transmission.
- the preferred manner of implementing conditional access is to do the gating function at the video server end of the connection to avoid wasting downstream bandwidth on requests by unauthorized users.
- the compressed video and audio data (and possibly associated data such as IP telephony packets) is transmitted by the headend on the channel and subchannels identified in the camping data given in the original request message and arrives at the gateway 14 via line 10 (step 136 ).
- the video server and headend will cooperate to put the VOD data on unused subchannels of a channel that is not fully utilized and send a downstream management and control message telling the gateway where to find the VOD program it requested (step 136 ).
- the RF downstream signal is coupled through coupler 90 to buffer/isolation circuit 98 and reaches tuners 100 , 102 and 104 .
- Tuners 100 and 104 reject it because they have been instructed by the host CPU 128 of the gateway to listen on the analog video and DOCSIS data carrier frequencies, respectively.
- Tuner 102 however has been instructed by host microprocessor 128 (hereafter, the “host”) to tune to the channel on which the VOD data is modulated.
- the RF signal is received the RF component is removed and, a baseband signal is output on line 190 .
- the tuner 102 outputs an IF signal on line 190 which is digitized in A/D matrix 130 with the IF mixed down to baseband by QAM demodulator 146 prior to demodulation of the constellation points. Also, in some embodiments, conventional carrier recovery and clock recovery is performed in tuner 102 , and the RF component is removed using a local carrier synchronized in frequency and phase with the transmitter's carriers to reduce the RF signal to I and Q baseband signals on lines 190 and 191 .
- the VOD data bearing RF carrier is QAM modulated, so the tuner outputs a complex analog baseband signal on line 190 with an inphase and a quadrature component, each having multiple sample periods each of which defines the I and Q values for one constellation point. Both components are sent to A/D matrix 130 for sampling with one sample per constellation point on each of the I and Q signals.
- the A/D matrix is comprised of either two or three A/D converters depending upon whether the DOCSIS modem 70 has A/D conversion circuitry therein. Typically, it does, so the output of the DOCSIS data tuner 104 on line 132 is shown as passing the baseband signal straight through the matrix 130 without any sampling thereby.
- the samples of the baseband analog I and Q signals on lines 190 and 191 containing VOD data constellation points are output on bus 136 .
- the process of receiving the RF downstream VOD signal and demodulating and digitizing each constellation point's I and Q values is symbolized by step 136 .
- the clock signal embedded in the data (or transmitted on a separate channel in some embodiments) defining the boundaries of each constellation point is recovered by tuner 100 and is made available to any of the other circuits that need it to deal with the video data.
- the digitized, compressed VOD data is typically QAM-64 modulated. This means that the video and audio data is transmitted in the form of constellation points each point transmitted during a different time on the quadrature carriers with video, audio and associated data constellation points transmitted during different timeslots on the same channel. Each vidoe, audio or associated data point takes the form of a complex number having a phase and an amplitude value.
- QAM demodulator 146 determines the complex value of video, audio and corresponding data points of the compressed VOD data that correspond to each constellation point (step 140 ).
- Transport demultiplexer 148 functions to demultiplex the video, audio and associated data points from their respective subchannel timeslots (or codes in embodiments where the subchannels are CDMA multiplexed)as symbolized by step 144 .
- the video demultiplexer receives a control data input from the microprocessor 128 that tells the demultiplexer which subchannel timeslots (or codes) to use in retrieving the requested VOD data.
- the retrieved video, audio and associated data is output in compressed form on buses 150 , 152 and 154 to a conditional access circuit 126 .
- This optional circuit descrambles the data if the user is authorized to receive the program ordered or does other known types of conditional access gating if the conditional access function has not already been done at the headend (step 192 ).
- the video, audio and associated data points are encapsulated into bus packets used on the host bus 156 and sent over the bus to an IP video encapsulation process 158 .
- the host bus is a PCI bus so known PCI bus interface circuits in conditional access circuit 126 encapsulate the VOD data into PCI bus packets addressed to the IP video encapsulation circuitry (step 192 ).
- the IP video circuitry monitors the bus 158 for packets addressed to it and when it finds one, it takes the PCI bus packets that together comprise an IP packet of VOD data and reassembles the VOD data therein into and IP packet payload.
- the VOD video and audio data are assembled into IP packets addressed to the network adapter that requested the VOD program. Any associated data is encapsulated into an IP packet addressed to the appropriate peripheral such as the PC 22 or the telephone 60 in FIG. 3.
- IP destination address to which the video, audio and associated data are bound is included within the data itself, and if an IP packet was broken up into, for example octets or ATM cells for transmission, the original IP source and destination addresses are preserved such as by the methods described previously herein.
- the IP source and destination addresses in the IP packet data within the PCI bus packets are used to assemble an IP packet header upon reassembly of the IP packet.
- the resulting IP packets are transmitted over line 160 to the routing process 86 (step 194 ).
- the host 128 keeps track of where each VOD request came from on the LAN and the addresses of the video server to which each is addressed.
- the host sends data to the IP video circuit 158 telling it the IP address of the network adapter the video and audio data are to be addressed to and the IP address of any other peripheral to which any associated data is to be sent.
- the case where the VOD data is not originally encapsulated into an IP packet could happen where a video server is coupled directly to a headend modem or a satellite uplink facility or an ADSL CO.
- Step 194 is to be also interpreted as covering this alternative case of constructing IP packets using IP addresses supplied from the host 128 which is monitoring all outgoing VOD requests.
- the routing process 86 receives the VOD IP packets and reads the IP destination address and determines that the IP address is mapped to the Ethernet address of network adapter 30 in FIG. 3.
- the IP packets addressed to this network adapter are then encapsulated into Ethernet packets addressed to the network adapter 30 and sent to the appropriate network interface circuit in routing circuitry 86 for launching onto LAN 20 (step 196 ).
- the household might have multiple TV sets, each with its own network adapter. In such a case, the IP destiantion address in the VOD data will be used to determine which network adapter ordered the program and that network adapter's Ethernet address will be used in the Ethernet packet headers of the Ethernet packets into which the VOD data IP packets are encapsulated.
- the routing circuitry will then determine which LAN and NIC to use to get the data to the right TV.
- the IP packets are transmitted from the video server to an ADSL central office within approximately 3 miles of the subscriber by a T1 or DS1 line typically although an ADSL downstream connection might be used if the possible maximum load of VOD data being sent to this particular CO is light enough (step 198 , FIG. 6B).
- the video data IP packets are FDMA multiplexed onto the ADSL downstream carrier and transmitted to the gateway of the requesting subscriber via the appropriate local loop.
- the IP packets arrive on the PSTN local loop 58 and coupled through an isolation buffer 204 to the ADSL modem 182 (step 202 ).
- the ADSL modem 182 is a conventional structure and recovers the IP packets in conventional manner and outputs them on line 188 to the switching process.
- the IP packets bearing VOD data are encapsulated in Ethernet packets addressed to the NIC of network adapter 30 which ordered the video program and sent to the appropriate NIC in routing circuitry 86 which interfaces to the LAN to which the network adapter 30 which ordered the VOD program is coupled (step 206 ).
- an ADLS modem 200 (shown in dashed lines to indicate it is an alternative embodiment) with an Ethernet output interface may be substituted for ADSL modem 182 with the ADSL modem output coupled directly to the LAN.
- the video server for the satellite network delivers the VOD data IP packets to the satellite uplink facility by any suitable means such as a T1 or DS1 leased line or by direct connection to the uplink transmitter if the video server is located at the uplink facility (step 208 ).
- the uplink facility modulates the IP packet data onto the DirecPC uplink carrier or another carrier devoted to VOD applications and transmits it to a geosynchronous satellite (step 210 ).
- a transponder on the satellite then recovers the IP packets and QPSK modulates them (or using some other suitable modulation scheme) onto a DiretPC or VOD downlink carrier and transmits them to all the dishes in its footprint area on the surface of the earth (step 212 ).
- Tuner 180 receives the RF signal and does conventional carrier and clock recovery so that the recovered carrier and clock signals can be used in demodulating, detecting and demultiplexing the signals as was the case for the preferred embodiment of tuner 102 .
- Tuner 180 receives data from host 128 via host bus 156 that tells it which downstream channel to which it should tune, and it tunes out all other RF signals.
- the VOD downlink quadrature carriers are then demodulated and I and Q baseband signals are output on lines 216 and 218 (step 214 ).
- Analog to digital conversion can happen anywhere after the tuner 180 and prior to the IP packetization circuit 158 . However, for parallelism with the HFC case, we will assume that A/D conversion happens in the QPSK demodulator 220 prior to the constellation point demodulation process.
- the recovered clock from the tuner 180 is used to synchronize the demodulation and A/D conversion processes in circuit 220 .
- the I and Q values of the QPSK constellation points are then demodulated to their original analog or digital values to yield a stream of video, audio and associated data points on bus 222 (step 224 ). If they are demodulated to analog values, these analog values for the I and Q values of each constellation point are later digitized.
- the satellite VOD delivery system is much like the HFC system in that video programs are delivered on channels each having a different downlink frequency and each having a plurality of TDMA orCDMA CDAM subchannels. It is the function of transport demultiplexer 184 to receive data from host 128 telling it which subchannels to recover and to demultiplex the video, audio and associated data points from their respective subchannels (step 226 ).
- the transport demultiplexer 184 has any conventional TDMA or CDMA demultiplexing structure that can receive data indicating which subchannels to recover and recover them and can be the same structure as transport demultiplexer 148 .
- the recovered video, audio and any associated data are output to a conditional access circuit 186 via buses 228 , 230 and 232 .
- the optional conditional access circuit 186 functions to decrypt or otherwise gate the VOD data to the subscriber who requested it only if she is a legitimate subscriber and if this gating function was not performed at the satellite uplink facility or the video server (step 234 ).
- the conditional access circuit can have any of the known structures to perform this function.
- the conditional access circuit has a host bus interface circuit (not separately shown) which functions to take the data from the VOD IP packets (usually the IP packets bearing VOD data are broken up for transmission over the channel)and encapsulate the data into bus packets of the type used on the host bus 156 , e.g., PCI bus packets. These packets are addressed to the IP video circuit 158 (step 236 ).
- the IP video circuit functions as previously described. Basically, it takes packet addressed to it off the host bus 156 and either reassembles the IP packet if it was originally an IP packet but was broken up for transmission (such as into ATM cells) or encapsulates the data into an IP packet if it never was in an IP packet format (step 238 ). Presumably, the incoming VOD data includes the IP destination address in it.
- the host 128 will tell the IP video circuit 158 , “If you receive data from conditional access circuit 186 , it is to be addressed to the IP address of network adapter xx which requested it.”
- the IP video circuit 158 assembles an IP packet header for each packet that tells the routing circuitry 86 where the packet is to be sent on the LAN. The resulting IP packets are sent to the routing circuit 86 via bus 160 (step 238 ).
- the routing circuit 86 looks up the Ethernet address bound to the IP address, encapsulates each IP packet into an Ethernet packet and routes it to the appropriate network interface circuitry in router 86 for the LAN to which the network adapter is coupled which ordered the VOD program (step 240 ).
- FIG. 5 A block diagram of a typical network adapter 30 in FIG. 3 is shown in FIG. 5. The function of the network adapter is to pick the appropriate Ethernet packets off the LAN, strip out the video and audio data and convert it to an NTSC or PAL or SECAM signal or to a video signal which can be fed into a video input of a TV.
- Each network adapter has a network interface card 84 which couples the network adapter to the physical media of the LAN.
- Network interface circuits for Ethernets are well known, and will not be described further herein.
- Each NIC on the LANs 18 and 20 has a unique Ethernet address which maps to one or more IP addresses. Thus, when an IP packet addressed to the IP address of network adapter 30 arrives at the gateway, the gateway's routing tables will map this IP address to the Ethernet address of the network adapter. The entire IP packet, header and all, will then be encapsulated into an Ethernet packet with the destination address of the Ethernet packet being that of the network adapter.
- Ethernet packets are received by NIC 84 , but only packets addressed to the network adapter 30 are kept.
- an Ethernet packet addressed to network adapter 30 is received, it is examined to determine if the Ethernet address matches the address of the network adapter, and, if so, the packet is passed through the Ethernet protocol stack where the Ethernet header is stripped off and error detection and correction are done on the packet.
- the resulting IP packet is then passed to the IP video circuit 242 (step 244 ).
- the Ethernet protocol stack in NIC 84 performs the CSMA/CD transmission and collision detection protocol and transmits the packet on the LAN.
- the IP packets from the NIC 84 are examined by the IP video circuit 242 to determine if they are addressed to the network adapter and whether they are graphics data or video data.
- the IP packet header is stripped off and payloads of packets that contain compressed video/audio data are transmitted as a bit stream to MPEG decoder 246 , and packets that contain graphics data are transmitted as a bit stream to 2/3 D graphics circuit 83 (step 248 ).
- the menus will not be sent as separate data but will simply be video frames which are digitized and compressed. In such embodiments, bus 87 is not necessary.
- the MPEG decoder 246 decompresses the compressed video and audio data bits and generates and uncompressed audio bit stream on line 250 and an uncompressed video bit stream on line 252 (step 258 ).
- the audio bit stream is enhanced for stereo and filtered and then converted to an analog signal in any conventional audio processor 254 (step 258 ).
- the uncompressed audio data not processed to enhance it or convert it to stereo or filter it and is simply converted to an audio signal.
- the data output on line 252 is a digitized YUV format video signal.
- Video processor 256 filters the video signal to enhance it (step 258 ).
- the combination of the video processor 256 and the 2/3 D Graphics circuit 83 are commercially available in integrated circuit form from ATI or C 3 .
- the digitized YUV format video signal on line 264 (or 252 if video procesor 256 is not used, is converted by video encoder 260 into an NTSC, PAL, SECAM or composite format video signal which can be displayed on a TV (step 262 ). If the output signal format is composite video, the composite video signal is input to the TV's video inputs via line 266 (step 262 ). Likewise, the audio processor converts the digitized uncompressed audio data into an audio signal on line 270 for coupling into the audio input of a TV (step 272 ). If the output signal from the video encoder 260 is NTSC, PAL or SECAM format, the signal is modulated onto an RF carrier at some locally unused frequency such as channel 3 by a video modulator 276 (step 274 ).
- step 278 the personal computer 22 in FIG. 3 or network computer (hereafter sometimes referred to as NC) 24 or 26 launches its browser and enters a URL of a web page to be viewed.
- NC network computer
- the network computers 24 and 26 do not have any local hard drives, so they execute their browsers from the hard disk of the personal computer via known techniques of executing shared software on a server over the network or over a WAN such as the internet.
- the network computers indicate which program they want to run by double clicking an icon on their desktops.
- This action is converted to a request to download the program from a server on the LAN or WAN into the RAM of the network computer.
- This request is converted by the NIC of the network computer into an Ethernet packet directed to the server on the LAN.
- the server NIC picks up the packet, opens the file, and generates one or more Ethernet packets directed to the network computer which receives the packets and loads the browser program or other application that needs internet access into RAM and begins executing it.
- the step of doubling clicking the icon of the program to be run is converted by TCP/IP protocol software layers in the network computer (typically stored in nonvolatile flash EEPROM or ROM) into an IP packet addressed to the server storing the application program to be run.
- the IP packet is then encapsulated into an Ethernet packet by the NIC of the NC addressed to the gateway 14 .
- the Ethernet packet is received by the NIC and the Ethernet headers are stripped off by the routing process 86 .
- the packet is then routed to the appropriate transmitter for the upstream medium the user has a subscription for or which is cheapest for internet access if the user has DSL, satellite and HFC modules installed—or some combination thereof (least cost routing process).
- the IP packet will be routed to the DOCSIS modem 70 for upstream transmission over the HFC 10 or to the ADSL modem 182 if the DSL service or to conventional modem 280 (which may also be a conventional FAX/Data modem) if satellite downloading service via DirectPC is to be used.
- the IP packet is sent by one of these media to the headend, ADSL CO or by dialup connection to the satellite uplink facility.
- the IP packet is recovered and routed by a router at the destination to the internet server storing the application to be executed.
- the internet server then sends the program to be executed to the network computer by encapsulating the data of the program into IP packets addressed to the NC that reqeusted it. These IP packets arrive at the gateway and are recovered by the DOCSIS modem, ADSL modem or satellite reception circuitry to be described below and sent to the routing process 86 . There, they are encapsulated into Ethernet packets addressed to the NIC of the NC that requested the program and launched on the LAN. The NC receives the packets, strips out the data of the program, stores in its RAM and begins executing it.
- the user then enters the URL of the web site she wants to visit (step 278 ).
- the browser or other application then passes this URL down to TCP/IP protocol software processes in execution on the computer which turn the URL into an IP packet requesting that the web page at that URL be downloaded to the computer that asked for it, as identified by the source address of the IP packet (step 282 ).
- This IP packet is then encapsulated into an Ethernet packet addressed to the gateway 14 by the NIC of the NC or PC (step 284 ).
- the gateway's NIC receives the Ethernet packet, strips off the Ethernet header after error detection and correction and passes the IP packet up to the routing process layers.
- the router looks up the destination address in its routing tables and forwards the packet to one of the upstream transmitters (step 286 ). If the user has only one network interface such as an HFC interface only or an ADSL interface only installed (as determined by either a discovery process carried out by the router or by configuration data), the IP packet is forwarded to that upstream transmitter.
- the router may forward the IP packet to an upstream transmitter based upon any criteria such as user choice as indicated by a management and control packet sent to the gateway or a field in the IP packet, by a random or round robin selection process or by a least cost routing algorithm that automatically picks the cheapest service for widebandwidth internet access.
- Step 286 is intended to represent any of these methods of selecting the upstream transmitter.
- the upstream transmitter is the DOCSIS modem 70
- the IP packet is transmitted upstream over a virtual channel devoted to this gateway or assigned to it on the fly by the headend.
- the virtual channel can be established by TDMA, SCDMA or CDMA or possibly by FDMA.
- the CO modem recovers the IP packet and passes it to a router coupled to the headend (step 288 ).
- the upstream transmitter is the ADSL modem 182
- the IP packet is modulated onto the upstream carrier and transmitted over the PSTN local loop 58 to the ADSL modem at the CO. There, it is recovered and passed to a router coupled to the internet (step 288 ).
- the upstream transmitter is the conventional modem 280 .
- This modem dials a modem at the satellite uplink facility and transmits the IP packet thereto.
- the IP packet is recovered and passed to a router coupled to the internet (step 288 ).
- the router sends the IP packet to the web server at the URL (step 290 ) which opens the web page identified in the URL and begins sending the web page data back to the router as a series of IP packets (step 292 ).
- Step 294 is intended to represent downstream transmission over any of the HFC, DSL or satellite media.
- the downstream transmitter will be the headend modem.
- the headend modem will either broadcast the IP packet on the downstream carrier to all gateways or transmit it on a virtual downstream channel assigned to the gateway at the premises of the PC or NC that requested the web page (step 294 ).
- the router sends the IP packets to the uplink transmitter which transmits them to the satellite.
- a transponder on the satellite receives the packets and re-broadcasts them on the downlink channel (step 294 ).
- the router at the CO sends the IP packets to the ADSL modem at the CO which modulates them onto the downstream carrier (step 294 )
- Step 296 is represents the recovery of the IP packets at the gateway, regardless of the downstream media, transmission to the router, protocol conversion and routing and transmission out on the appropriate LAN. The details of how this happens in the gateway for each different downstream media follows.
- tuner 104 filters out all but the DOCSIS downstream carrier and removes the RF component.
- the resulting baseband signal is passed through the A/D matrix on line 132 to the DOCSIS modem 70 .
- the IP packets are recovered and sent to the routing circuit 86 via bus 300 .
- this is shown as a separate bus, it may actually be the host bus 156 in some embodiments with the IP packets being sent to host microprocessor 128 by encapsulation in PCI bus packets addressed to the host. Likewise for all other buses shown in FIG. 4A going into or coming out of the routing circuit 86 .
- the router 86 looks up the destination address in the IP packets and determines they are addressed to PC 22 or one of NC 24 or 26 . The router then encapsulates the IP packets into Ethernet packets addressed to the appropriate PC or NC and directs them to the NIC for the proper LAN connected to the PC or NC that requested the data (step 296 ).
- tuner 302 in FIG. 4B is directed by host 128 to tune to the DirectPC downstream QPSK modulated carrier.
- the tuner rejects all other signals and recovers the carrier and synchronizes a local oscillator to generate two coherent reference signals which are phase and frequency matched to the two quadrature carriers used to transmit the downstream IP packets.
- These local reference signals supply two correlators in the tuner, one for the inphase channel and one for the quadrature channel.
- Each correlator is comprised of a multiplier and an integrator.
- Digital QPSK transmission and transmitters and receivers therefore as well as other modulation and multiplexing schemes and carrier and clock recovery circuits are described in Haykin, Communication Systems, 3 rd Ed .
- the digital satellite receiver channel is not limited to QPSK modulation, and any modulation and/or multiplexing scheme used today or subsequently for downstream transmissions may be used with suitable adjustments to the gateway satellite digital data receiver.
- the output of receiver 302 is coupled via I and 0 buses 306 and 310 to a QPSK demodulator 304 which functions to recover the IP packet data and encapsulate it into bus packets for the host bus addressed to the routing circuit 86 .
- the QPSK demodulator 304 is typically comprised of a decision device that receives the baseband I and Q channel signals and compares them to decision threshold of zero volts. If the I channel voltage is greater than zero, a decision of logic 1 is made but if its voltage is less than zero, a decision of logic 0 is made. If the Q channel voltage is greater than zero, a decision of logic 1 is made but if its voltage is less than zero, a decision of logic 0 is made.
- the two binary bit sequences defining the IP packets coming out of the decision circuit are recombined in a multiplexer in demodulator 304 and sent to bus interface circuitry in demodulator 304 for encapsulation into bus packets and transmission via bus 312 and the host bus 156 to the router 86 .
- the router receives them, strips off the host bus packet headers, looks up the IP destination address and finds they are addressed to the PC 22 or one of the NCs.
- the IP packets are then encapsulated into Ethernet packets (or whatever other packet format is used on the LANs 18 or 20 ) addressed to the PC or NC that ordered the data and sent to the proper NIC (step 296 ).
- a conventional ADSL modem 182 in FIG. 4A recovers the IP packets and sends them on bus 188 to the router 86 .
- the router receives them, strips off the host bus packet headers (if bus 188 is actually the host bus 156 ), looks up the IP destination address and finds they are addressed to the PC 22 or one of the NCs.
- the IP packets are then encapsulated into Ethernet packets (or whatever other packet format is used on the LANs 18 or 20 ) addressed to the PC or NC that ordered the data and sent to the proper NIC (step 296 ).
- the NIC of the PC or NC that ordered the data receives the Ethernet packets, does error correction and strips off the Ethernet headers.
- the resulting IP packets are passed up the TCP/IP protocol layers where the IP packet headers are stripped off and the TCP protocol makes sure all the packets have been received.
- the payload data is then sent to the application that requested it for display (step 308 ). Processing by the PC or NC of the IP packet data and Ethernet packets is the same as in PCs on a LAN that share modems and dial up connections to the internet through ISPs, and that technology is incorporated by reference.
- gateway 14 may also be used to distribute analog TV broadcasts to TV's throughout the house using the LAN thereby eliminating the need for separate wiring.
- Tuner 314 starts this process by receiving control data from microprocessor 128 defining which C-band analog video channel has been requested by the user.
- Tuner 314 can be any conventional C-band satellite tuner modified so as to accept digital control data from the host 128 to control which satellite and which transponder to tune to as opposed to receiving this information directly from a remote control or front panel switches.
- users request C-band broadcast channels via their IR keyboards 34 or remote controls 80 in FIG. 3. These requests are encapsulated into management and control Ethernet packets addressed to host CPU 128 by network adapter 30 .
- the host CPU receives them and generates a PCI bus packet on bus 156 addressed to tuner 314 telling it which channel to tune, i.e., which satellite to turn the dish to and which transponder or channel in the downlink broadcast to tune to.
- the RF (or IF) output of tuner 314 on bus 134 is then digitized by an analog-to-digital converter 316 .
- the digital samples on line 318 are input to a video demodulator 320 which functions in the digital domain to demodulate the digitized analog video signal by removing the RF component.
- the video demodulator 320 outputs digital data on line 322 which represents a conventional baseband NTSC, PAL or SECAM format video signal.
- the digital data on line 322 is at too high a bit rate to send over the LAN since uncompressed broadcast video consumes about 221 Mbps of bandwidth. Therefore, the video data must be compressed.
- MPEG II compression is preferred, but any known form of compression currently known or to be developed in the future will suffice since the form of compression is not critical.
- MPEG II compression circuitry is well known, and is used for MPEG encoder 326 . However, MPEG compression does not compress NTSC, PAL or SECAM format signals. They must first be converted to YUV format luminance and chrominance signals. This conversion is done in video decoder 324 , which is a known type of circuit in any video system that uses MPEG II compression.
- the compressed video data is encapsulated into PCI (or other type) bus packets addressed to IP video circuit 158 on FIG. 4A.
- the compressed video data is encapsulated into IP packets addressed to the network adapter of the TV where the request originated and the satellite C-band video channel is to be viewed.
- the IP video circuit 158 determines which IP destination address to use in constructing the IP packets via data received from the host microprocessor 128 .
- the host microprocessor 128 in addition to telling the tuner 314 which channel to tune, also determines from the source address of the Ethernet packet bearing the request which TV's network adapter requested the data.
- the IP address of this network adapter is encapsulated into a PCI bus packet and transmitted via host bus 156 to the IP video circuit.
- the IP packets encapsulating the digitized C-band video channel are then transmitted via bus 160 to the routing circuit 86 .
- Bus 160 may simply be the host bus 156 in embodiments where the routing process is carried out in software on the host 128 .
- the routing process 86 is a conventional IP to Ethernet routing process which examines the IP packet destination addresses and looks up the corresponding Ethernet addresses. The IP packets are then encapsulated into Ethernet packets and routed to the appropriate LAN network interface card for LAN 18 or 20 depending upon the Ethernet destination address of each packet. The process works in reverse for incoming Ethernet packets from the LAN(s).
- IP packets When the IP packets reach the network adapter of the TV that requested the CATV channel, they are converted to a video signal that can be displayed by the TV by the circuitry described above in conjunction with the discussion of FIG. 5.
- a standard TV antenna 328 is coupled to the gateway by a coax or twinlead wire 330 .
- a TV tuner 332 tunes the requested channel and outputs the desired channel as an RF or IF signal.
- Tuner 332 can be a conventional TV tuner modified to receive digital control data from the host computer 128 which controls which analog TV broadcast channel the tuner selects.
- A/D converter 334 samples the output RF or IF and feeds the samples to a video demodulator 336 . There the signal is demodulated in the digital domain to remove the RF component. As is the case for all the analog signal receiver circuits for both HFC and satellite, the analog-to-digital conversion can happen anywhere along the line of circuits including just before the MPEG encoder.
- the output 338 is a digitized version of an NTSC or PAL or SECAM signal. It is fed to a video decoder 340 which converts it to a YUV format. The YUV signal is then compressed by MPEG encoder 342 and put into bus packets of the format used on the host bus 156 (typically PCI) and addressed to the IP video circuit 158 .
- the IP video circuit strips off the bus packet headers (and may perform error detection and correction) and encapsulates the compressed video data from the PCI bus packets into IP packets addressed to the network adapter of the TV set where the requested channel is to be viewed.
- the IP packets are then sent to the router 86 where the destination address is looked up and the IP packets are encapsulated into Ethernet packets addressed to the same network adapter and launched onto the appropriate LAN.
- Video is isochronous or stream-oriented.
- traditional LAN traffic is more bursty.
- LANs were not developed to support streaming traffic, and it is therefore possible that a 10 Mbps 10Base-T Ethernet LAN will not have sufficient bandwidth at times to support the load, especially where there are multiple TVs each requesting a different channel along with other simultaneous traffic sharing the 10 Mbps bandwidth.
- Video is highly bandwidth intensive so even 100 Mbps LANs have trouble supporting high quality video intermingled with more traditional LAN data traffic.
- LANs 18 and 20 can be Fast Ethernet, Switched Ethernet, FDDI, ATM and Fibre Channel Arbitrated Loop.
- FDDI Fast Ethernet
- ATM Fibre Channel Arbitrated Loop
- Such LANs are described in Tanenbaum and Horak, supra, and Kembel, Arbitrated Loop , Connectivity Solutions, a division of Northwest Learning Associates, Inc of Arlington, Ariz., (1997) ISBN 0-931836-82-4.
- the gateway will include a bus slot for a module which can receive regularly scheduled DirecTV and other format digital video broadcasts on downlinks from a satellite.
- a tuner 344 serves to receive digital control information from host microprocessor as to which channel on the downlink a user has requested. The tuner then tunes to this channel and rejects all other signals and a QAM demodulator demodulates the signal to recover the transmitted data and outputs a complex baseband signal on line 348 .
- Conventional QAM modulated digital data receivers are taught in Lee & Messerschmitt, Digital Communications, 2 d Ed ., (Kluwer Academic Publishers 1994) ISBN0-7923-9391-0, Section 6.4.3, pp. 203-208 and FIGS.
- the tuner 344 will be comprised of a bandpass filter to tune the desired channel and reject out-of-band signals and doubling as an anti-aliasing filter.
- the signal is then digitized and a phase splitter (a filter that passes only frequency components in the positive half of the Fourier spectrum and rejects Fourier components in the negative half) acts in the discrete time domain to remove the negative half Fourier frequency components of the received spectrum to output an analytic signal.
- the positive half frequency components of the received signals are demodulated, i.e., the RF carrier component is removed by mixing with a local carrier which is synchronized to the transmitted carrier.
- FIG. 6-16 of Lee et al. at p.204 illustrates three different configurations for a QAM tuner.
- the function of the QAM demodulator 346 is to detect the actual symbols sent. This is typically done by sampling and slicing.
- a complete QAM tuner to get the receive signal back to baseband and demodulator to recover the transmitted symbols is shown in FIG. 6-18( b ) of Lee & Messerschmitt for the real valued case and is comprised of two mixers which move the received spectrum back to baseband by multiplying by quadrature shifted local carriers and two receive bandpass filters to reject out of band signals and pass only the positive half Fourier components of inphase and quadrature signals.
- the I and Q signals are then sampled at the symbol rate and passed through a slicer to recover the symbols actually transmitted.
- a more complete representation of a practical QAM receiver including both precursor equalization and postcursor equalization and carrier and timing recovery is shown in FIG. 6-23 of Lee & Messerschmitt. Preferably there will also be an error detection and correction circuit as well (not shown).
- a conventional transport demultiplexer 350 receives digital control input from the host as to which subchannel on which to find the video program which has been ordered and demultiplexes the audio, video and any associated data from those subchannels.
- an optional transcoder 352 is used to translate the bit rate of the compressed video down to a lower rate when necessary because of current loading conditions on the LAN.
- Transcoders are known and were commercially available from Imedia in San Franscisco, Calif. and now from the assignee of the present invention.
- the output data of the transcoder is supplied to a conventional conditional access circuit 354 which decrypts the data if the subscriber is authorized to receive the program.
- the conditional access circuit 354 may function to decrypt the original encrypted data if the user is an authorized subscriber and then re-encrypt the data before transmission on the LAN using the new C 5 encryption standard.
- the re-encrypted data is then packetized into bus packets and transmitted over the host bus 156 to the IP video circuit 158 . There it is encapsulated into IP video packets addressed to the network adapter that requested the program and sent over data path 160 to the routing circuit/process 86 .
- the routing process looks up the destination address and maps it to the LAN address of the network adapter and encapsulates the data into Ethernet packets and sends them to the correct NIC for transmission over the LAN.
- the packets are processed as previosuly described in connection with the description of FIG. 5 to convert the data to NTSC, PAL or SECAM video signals and the corresponding synchronized audio. If C 5 encryption is used, the data remains encrypted at all stages until it is converted to analog video and audio signals.
- a conventional DirecTV receiver modified to receive digital control data telling it which channel and subchannel to tune can be substituted for tuner 344 , QAM demodulator 346 and transport demultiplexer 350 .
- the satellite receiver taught in U.S. Pat. No. 5,983,071 may be used but modified to remove the audio decoder 160 , the D/A converter 164 , the video decoder 170 and the NTSC encoder 174 . Those functions all happen at the network adapter after distribution over the LAN. If the receiver of U.S. Pat. No.
- 5,983,071 is substituted for the tuner 344 , QAM demodulator 346 and transport demultiplexer 158 and the conditional access circuit 354 , the audio and video output stream on lines 162 and 172 of the patent will be supplied to the transcoder 352 .
- the receiver taught in U.S. Pat. No. 5,983,071 may also be used in place of tuner 102 , A/D matrix 130 , QAM demodulator 146 , conditional access circuit 126 and transport demultiplexer 148 . Again, this receiver will be modified to remove the following components taught in the patent: audio decoder 160 , the D/A converter 164 , the video decoder 170 and the NTSC encoder 174 .
- a transcoder may also optionally substituted into the HFC digital video receiver module circuit that includes tuner 102 , and the conditional access circuits 126 and 186 may both be modified as described above to re-encrypt the recovered data under the C 5 standard to prevent digital copies from being made. If the receiver of U.S. Pat. No.
- the gateway 14 can also be used to receive pay per view or free regularly scheduled broadcasts of digital or analog video programs.
- Push technology means a video server at or coupled to the HFC headend, ADSL CO or satellite uplink has a regular schedule of video programs that it outputs at specific times on specific channels.
- a menu displayed on the television set in the manner described elsewhere herein or publication is used by the user to select the program the user wishes to view. The user selects the program she wishes to view at the time the program is supposed to start by entering the program number (the program number can be mapped to the service provider and the video server IP address or that information can be entered manually) on her remote control 80 or keyboard 34 . That program number is encapsulated into an Ethernet request packet and transmitted to the gateway where it is routed to the host.
- the host 128 then sends the appropriate command data over the host bus to tuner 102 , or 100 or 180 or 314 or 344 or 332 or ADSL modem 182 to tune to the appropriate channel, depending upon which medium the program will be arriving.
- the host also sends control packets to the transport demultiplexer 350 or 184 or 148 to control them to demultiplex the compressed video and audio signals off the correct subchannels.
- the host will monitor the monitor the load status of the LAN in any known way and send appropriate control packets to the transcoders over the host bus to control the bit rate of the compressed video transmitted over the LAN so as to not exceed the available bandwidth under varying load conditions.
- POTS service can provide conference calling, call forwarding, caller ID, voice mail and pager notification of voice mail messages as well as other services through facilities such as Centrex provided by the CO switch.
- PBX on a card expansion circuitry to extend the functionality of the host.
- Such telephony circuitry 352 to extend the functionality of DOS and Windows based personal computers to include PBX functionality, voice mail and a host of other features is commercially available as the VS1 and Incline systems from Picazo Communications, Inc. of San Jose, Calif. and from Netphone, Inc. of Marlborough, Mass., and Altigen Communications, Inc., the details of which are hereby incorporated by reference.
- the Netphone PBX on a card technology which can be used to implement circuit 352 is described in U.S. Pat. No. 5,875,234 which is hereby incorporated by reference.
- This patent basically teaches a PBX circuit on an expansion card that is coupled to the host bus of a network server.
- the PBX card can establish and maintain telephone calls and do normal PBX call control functions.
- the PBX card can be controlled from telephony enabled applications on the server/gateway or by telephony enabled applications running on PCs via the LAN connection to the gateway.
- Any known expansion circuitry to add PBX functionality to a LAN server regardless of whether it is implemented one one circuit board or more than one may be used for circuit 352 .
- the circuit 352 will have its own switching circuit for connecting phone calls from extension phones coupled to conventional phone lines to CO trunk lines 58 and vice versa.
- the PBX functionality alone may be sufficient.
- use of the internet for telephony is a growing market, and websites such as www.net 2 phone.com already exist to allow long distance telephone conversations to take place over the internet regardless of distance for 10 cents per minute.
- PCs on LANs 18 and 20 will need to be equipped with microphones and speakers.
- the IP & PBX telephony circuit 352 will include circuitry to digitize analog voice signals arriving from the extension phones via conventional phone lines 354 .
- the IP & PBX telephony circuit 352 may also include packetization circuitry in some embodiments to receive Ethernet packets carrying digitized voice from the PCs on LANs 18 or 20 from router 86 via bus 356 and packetize them into IP packets addressed to the internet server providing the IP telephony services. These IP packets are then sent back over bus 356 to router 86 where they are routed to the server identified in the destination address of the IP packet.
- the routing can be least cost routing if multiple high bandwidth upstream media such as HFC and ADSL upstream high speed internet access modules such as DOCSIS modem 70 and ADSL modem 182 are present in the gateway.
- the PBX expansion module 352 will do call control switching and provide other services between extension lines 354 and the CO trunk lines, and analog telephone signals from the extension phones on line 354 will be digitized and packetized into an IP packet addressed to an IP telephony server on the internet whose IP address is fixed and known to be the IP address to which the telephone data from the conventional POTS telephones is to be directed.
- the IP packet encapsulation will be done at the source.
- PC 22 or NC 24 or phone 60 or FAX 64 at the customer premises wants to send data to an IP telephony server on the internet
- the digital data generated by the source device will be encapsulated by the source device into IP packets addressed to the IP telephony server on the internet. These packets will then be encapsulated into Ethernet packets and sent to the gateway 14 .
- the gateway 14 will then strip off the Ethernet packet headers and rout the enclosed IP packets to the server on the internet to which they are addressed via the DOCSIS modem 70 , the ADSL modem 182 or possibly by the conventional modem 280 in FIG. 4A (although use of the conventional modem would only make sense if higher bandwidth upstream media was not available).
- the gateway 14 may actually be comprised of two or more servers to divide the labor but each coupled to the expansion modules by a bus/LAN structure 156 .
- one server may run only the PBX control software and IP telephony software and another server may run only the management and control and routing process needed for the push and pull video applications and high speed internet access and perform any routing functions needed for IP telephony by the first server.
- the software processes in the host or server run in conjunction with the operating system 358 and use its application programmatic interfaces (API) for message transfers between processes and to send data to the LAN interface or NIC 360 and the host bus 156 .
- API application programmatic interfaces
- the data paths between the various software processes and between the various processes and NICs 362 and 364 and the host bus 156 through the operating system are symbolized by data path 366 .
- This data path represents any of the typical methods and apparatus for transferring data between processes or between processes and circuits in the gateway.
- NIC # 1 362 may receive an Ethernet packet bearing a request for a video-on-demand program that is addressed to the management and control process.
- NIC 362 can transfer that packet to the routing process 86 by writing the data into on-board scratchpad RAM and invoking a software interrupt for the routing process 86 and passing it a pointer to the message in RAM.
- the routing process then executes an interrupt service routine for that interrupt and reads the data from the scratchpad RAM at the address passed with the interrupt or at some preassigned address stored in an interrupt table.
- Processes and circuits can also pass messages by writing them into predetermined locations in shared address space in RAM 129 with the destination circuit or process and then setting an interrupt bit and storing an interrupt number in a register.
- the interrupt bit causes the host to execute a generic interrupt service routine to retrieve the interrupt number and then look up the interrupt number in an interrupt vector table.
- the table would return the address of the beginning of an interrupt service routine for that number.
- Each circuit or process would have an interrupt number and an associated interrupt service routine.
- the service routine pointed to by the vector table would then be executed and retrieve the data and return it to the process or circuit associated with that interrupt.
- Each of the expansion modules could pass data or IP packets to the routing process 86 or the IP video process 158 in that way.
- a management and control process 368 receives video-on-demand and other requests for services and data as described in the detailed descriptions of each module. These other requests can include the numbers of CATV or terrestial channels to tune in or requests for DirecPC or ADSL or HFC high speed internet access. Other data the management and control process will receive in alternative embodiments is LAN available bandwidth status and other network management type data. In response, the management and control process sends out the appropriate control data to the tuners, transport demultiplexers, transcoders, conditional access circuits, IP video process and other circuits or processes to manage retrieving the requested data and distributing it to the right peripheral or to transmit data upstream on particular upstream channels. These upstream channels may be preassigned or assigned by downstream control messages from the headend or ADSL CO or satellite uplink server.
- the routing process 86 translates between IP and Ethernet or other LAN protocols and functions as previously described.
- the IP video process 158 encapsulates data sent to over the host bus into IP packets addressed to the proper peripheral device.
- the IP telephony and other telephony enabled and PBX processes represented by block 370 control the IP and PBX telephony expansion module to implement PBX functions, carry out IP telephony etc.
- IP telephony and other telephony enabled and PBX processes represented by block 370 control the IP and PBX telephony expansion module to implement PBX functions, carry out IP telephony etc.
- One of the processes of block 370 may implement direct inward dialing such that each telephone has its own virtual telephone number which an outsider can dial when, for example, they want to talk to teenager Judy without the inconvenience of accidently talking to her father.
- two extension phones may wish to have a conference call with a phone in some other state.
- the PBX control sofware controls the switch in the PBX module 372 to implement any of these desired PBX functions.
- the IP telephony process carries out IP telephony, by, for example, receiving digital data from conventional POTS phones via telephony module 372 and encapsulates it into IP packets which are passed to router 86 and vice versa. IP packets received from LAN enabled telephones 60 and 62 are just passed directly to the router 86 .
- a database program or word processing program being run on a PC or NC out on the LAN may be telephony enabled.
- a rolodex file made by a word processing program may contain telephone numbers and the user may look up a person by name and then double click on the phone number. This double click will be converted by the telephony enabled application into an Ethernet packet requesting that the telephone number be dialed.
- This Ethernet packet is sent to NIC 362 or 364 and is there passed up to the router 86 .
- the router strips the Ethernet header off and passes the data of the request to a PBX application represented by block 370 .
- the PBX application makes a function call to a library program of the OS 358 through the standard TAPI interface 374 .
- the TAPI interface represents a collection of predefined Windows function calls, each of which invokes a library program from a telephony dynamic linked library of programs.
- the TAPI function calls provide a standard telephony programmatic interface to applications that want to perform telephone functions.
- the basic level of functions allow application programs to carry out basic inbound and outbound voice and data calls by providing programs that can be invoked to initialize and open and close TAPI lines, read and write various parameters that control a line device, handle the details of placing an outbound voice or data call or answer an inbound voice or data call, recognize, translate and or build telephone “addresses” or dialing strings, manipulating call handles etc.
- TAPI libraries provide more advanced functions such as digit or tone generation and detection, call acceptance and rejection, redirection, call forwarding, park, hold, conference, etc. if the These advanced features are called supplemental telephony services and allow multiple telephone handsets or other line devices to share only a single CO trunk line or to share multiple CO trunk lines in a PBX type arrangement.
- the trunk lines can be analog, T1, ISDN or DSL.
- TAPI also supports the logical construct of phone devices
- the NCs and PCs out on the network with TAPI libraries can actually have multi-line virtual telephones implement in code running thereof so that every room with a PC in it can also have a multi-line phone capable of speakerphone, conference, hold, park, call forwarding and other advanced capabilities not normally on standard home telephones.
- TAPI services focus on “line devices” as a means for transporting information from one place to another.
- a line device can be a standard telephone handset, a fax board, a data modem, a telephony card or any physical device coupled to a telephone line.
- the ADSL modem module 378 , conventional modem module 380 and IP and PBX telephony module 372 are all line devices. Because a line device is a logical construct, TAPI can see multiple line devices all coupled to the same physical telephone line.
- a TAPI call control program (dialer.exe) can accept multiple simultaneous TAPI service requests from, for example, the PBX application, the IP telephony application and other telephony enabled applications all represented by block 370 and queue them all for service in order.
- Communications between the application programs and the TAPI library are by the Windows messaging function using predefined TAPI data structures.
- Telephony libraries of other operating system may be substituted for the Window TAPI library and the data structures and and messaging functions of the operating system in use can be substituted.
- the TAPI program executes and makes a function call to the telephone service provider process 376 and passes it the number to be dialed.
- the TSP layer 376 isolates the TAPI library program from needing to know the details of the specific hardware installed and it isolates the particular hardware which is installed from having to be designed for the specific telephony enabled application programs which are present. It is translator between the TAPI world and the harware world. In other words, the TSP layer 376 implements the TSPI fucntions that are used by TAPI implementation. Each TSP then uses whatever interface is appropriate to control the telephony hardware to which it is connected.
- the TSP layer 376 and the PBX card driver layer 378 actually can be combined in some embodiments, and in other embodiments, the TSP layer can be used to interface to other telephony hardware such as a FAX modem expansion module 380 at the gateway by which FAXes may be sent using data received from PCs that do not have FAX modems or connections to telephone lines available at their location on the network.
- a FAX modem expansion module 380 at the gateway by which FAXes may be sent using data received from PCs that do not have FAX modems or connections to telephone lines available at their location on the network.
- TSP 376 or TAPI program 374 then invokes the proper function call of a PBX card driver process 378 and passes it the number to be dialed.
- the PBX card driver speaks the specific language of the IP and PBX telephony module 372 and sends it a properly formatted message to control the switch and other circuitry thereon to seize a CO trunk line and generate the appropriate DTMF tones to dial the requested number when a dial tone is detected.
- the voice is digitized by a codec in the PBX card 372 and and the data is passed back to the PBX card driver which then passes it back up through all the layers to the router.
- the router encapsulates the data into an Ethernet packet addressed to the telephone or other line device that made the call and passes the packets to the appropriate NIC. From the NIC, the packets are transmitted via LAN to the network adapter of the telephone or PC or NC that originated the call. The reverse thing happens for voice going out from the PC, NC or telephone which originated the call to the person who answered the phone.
- the host bus is coupled via bus connectors and expansion slots to one or more expansion modules which implement the transmitter and receiver circuitry and other interface circuitry necessary to interface the gateway to the satellite, HFC, POTS or DSL media or any other media such as the power lines or wireless local loops which may be developed in the future.
- Modules are shown for currently existing technologies only, but newer upstream and downstream media are sure to follow, and the genus of the invention includes expansion modules of whatever type are needed to interface to these newer media.
- the ADSL modem module 378 may be any conventional ADSL modem 182 or SDSL modem or any other modem to interface to any type of digital subscriber line local loop which can be digitally controlled by the host 128 . It will include any connectors and isolation circuitry 204 needed to connect to the DSL CO trunk line.
- the FAX/Data Modem Module 380 can be any conventional FAX/Data modem or simple data modem for coupling via suitable connectors and isolation circuitry 205 to extension phone lines 354 within the customer premises as well as DSL CO trunk lines 58 and which can be digitally controlled by the host 128 .
- the IP & PBX telephony module 372 can be any known or future developed “PBX on a card” including one or more expansion cards which give a conventional personal computer host 128 running any operating system PBX capabilities and which can be digitally controlled by the host 128 . It can include any needed additional known circuitry and software needed to implement IP telephony functions.
- a DOCSIS modem module can be any known or future developed cable modem that conforms to the DOCSIS standard or any new standard for modems that allow high speed data transfers from a customer premises to a headend cable modem and/or the internet over a CATV HFC cable plant, and which can be digitally controlled by the host 128 .
- An HFC digital video module 388 can be any digital video receiver which can be digitally controlled by the host 128 and is compatible with reception of digitized compressed video data transmitted over HFC.
- the HFC digital video module 388 would typically include tuner 108 , an A/D converter included in matrix 130 , QAM demodulator 146 , transport demultiplexer 148 and conditional access circuit 126 to communicate with the shared IP video process 158 running in software on the host. It may also include the upstream and downstream combiner and isolation circuits 90 and 98 although this combiner and isolation circuitry may be shared by all HFC interface modules in some embodiments.
- An HFC analog video module 390 can be any receiver capable of receiving regularly scheduled analog CATV transmissions over HFC which can digitize and compress the data for transmission over the LAN and which can be digitally controlled by the host 128 .
- the module 390 typically would include tuner 100 , an A/D converter from matrix 130 , video demodulator 138 , video decoder 114 and MPEG encoder 147 . It may also include the upstream and downstream combiner and isolation circuits 90 and 98 although this combiner and isolation circuitry may be shared by all HFC interface modules in some embodiments.
- all HFC interface modules such as 386 , 388 and 390 may be combined into one HFC interface module.
- all expansion modules that interface to the PSTN and extension phone lines or all modules that interface with the satellite dish.
- a satellite digital video-on-demand module 392 can be any satellite receiver which can be digitally controlled by the host 128 to tune in and receive a specifically requested compressed digital video-on-demand broadcast from a satellite. In the embodiment of FIGS. 4A and 4B, it includes tuner 180 , QPSK demodulator 220 , transport demultiplexer 184 and conditional access circuit 186 .
- a satellite analog video video module 394 can be any coventional C-band satellite receiver modified to receive tuning commands digitally from the host 128 and modified to digitize and compress the video program for distribution on a LAN. In the embodiment of FIGS. 4A and 4B, it would include tuner 314 , A/D converter 316 , video demodulator 320 , video decoder 324 and MPEG encoder 326 .
- a satellite DirectPC module 396 can be any conventional DirectPC receiver or any equivalent receiver for receiving IP packetized data transmitted from a satellite capable of being digitally controlled by a host computer and send the recovered IP packets to a routing process being run by the host. In the embodiment of FIGS. 4A and 4B, it would include tuner 302 and QPSK demodulator 304 .
- a satellite DirecTV module 398 can be any conventional DirecTV receiver or equivalent digital satellite TV broadcast receiver which can receive regularly-scheduled, compressed, digital TV broadcasts from a satellite but modified to be controlled digitally by the host 128 to tune to a requested broadcast channel.
- this module would include tuner 344 , QAM demodulator 346 , transport demultiplexer 350 , optionally transcoder 352 and conditional access circuit 354 .
- a terrestial analog NTSC or PAL or SECAM module 400 can be any receiver capable of being digitally tuned by the host computer which can receive regularly scheduled analog TV broadcasts via an antenna and digitize and compress them for distribution over a LAN. In the embodiment of FIGS. 4A and 4B, it would include tuner 332 , A/D converter 334 , video demodulator 336 , video decoder 340 and MPEG encoder 342 .
- any of the modules defined above which recover or generate digital data for transmission on the LAN can optionally include a transcoder to translate the original bit rate to a lower bit rate where needed because of network loading.
- any module that recovers digital data that encodes copyrighted materials such as video or audio programs may include a C5 standard encryption circuit to re-encode the digital data before transmission on the LAN to prevent perfect, unauthorized digital copies which could happen if the digital data were to be transmitted in the clear.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Multimedia (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Security & Cryptography (AREA)
- Astronomy & Astrophysics (AREA)
- Computing Systems (AREA)
- Aviation & Aerospace Engineering (AREA)
- Databases & Information Systems (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
- Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
- Types And Forms Of Lifts (AREA)
Abstract
A gateway for coupling a local area network coupled to a plurality of peripheral devices at a customer premises to one or more external networks that deliver analog signals bearing analog video such as regularly scheduled CATV, terrestial or satellite C-band broadcasts, or modulated with digital video-on-demand data, or IP packets bearing IP telephony data or data from the internet. The preferred construction is modular so that single expansion modules to interface only to DSL lines or only to a satellite dish or only to HFC, or some combination thereof may be added as needed. The gateway may be a standalone circuit also with hardwired interfaces to one or more external network types. The incoming analog signals are either digitized, compressed and distributed on the local area network or the digital data thereon is recovered and packetized as an IP packet if not already so packetized and distributed via a router process to the device that requested the data via the local area network.
Description
- The invention finds applicability in the distribution of digital video on demand services and other digital services throughout a consumer's location.
- With the advent of cable modems, there is the ability to deliver digital data at high rates from content providers and the internet over cable TV systems. Many different services will be delivered digitally, one of which is video on demand and high definition TV digital data. Another digital service which is useful at least for business establishments is video conferencing. Other digital services that will be becoming more and more useful in the future are high speed contact with the corporate LAN from home for telecommuters, high speed internet access, distance learning, multimedia presentations to remote and/or dispersed audiences, etc.
- The development of cable modems has enabled the delivery of high speed data over 10 MB/sec channels to customer premises over hybrid fiber coaxial cable TV distribution networks. But once the digital data reaches a customer premises, it still must be distributed and converted to a proper format for use by the user on a TV, a telephone, a video phone, a computer, a network computer a FAX, a DVD recorder and other peripherals that will be developed in the future.
- Concurrently, the telephone companies have developed digital subscriber line technologies such as Asymmetrical Digital Subscriber Line (ADSL), High Bit Rate Digital Subscriber Line technology, ISDN and ISDL, Rate Adaptive Digital Subscriber Line (RADSL), Symmetric Digital Subscriber Line (SDSL), Very High Speed DSL (VDSL). These different technologies are described in Muller,Desktop Encyclopedia of Telecommunications, p. 93-95 (McGraw Hill 1998) ISBN 0-07-044457-9, and Clayton, Illustrated Telecom Dictionary, (McGraw Hill 1998) ISBN 0-07-012063-3, and Horak, Communications Systems and Networks, Voice, Data and Broadband Technologies, (M&T Books, Foster City, Calif. 1997) ISBN 1-55851-485-6, the entirety of all these publications being hereby incorporated by reference. These digital subscriber line technologies will soon be capable of delivering digital voice, data and image information from various servers as well as via high speed internet access to the subscriber premises over standard telephone copper twisted pairs which are already in the ground and which everybody already has. Some of these technologies are fast enough to also deliver video on demand, which typically requires about 2 megabits/sec data rate.
- The also were introduced in 1994, digital broadcast satellite services (DBS) such as DirecTV (offered by Hughes Electronics and Thomson Multimedia). DBS services already can or soon will provide video on demand, internet connectivity and multimedia applications all with the high picture quality that digital technology provides. Video conferencing via DirectPC service may also soon be provided. DirecTV delivers 175 channels of digital-quality programming through an 18 inch dish antenna, a digital set-top decoder box and a remote control. An access card allows billing information to be captured by the set-top decoder box and downloaded by the PSTN to a billing center for pay-per view programs ordered by a user. In addition, DirecPC technology allows high speed (400 KB/sec) internet access to PCs in the customer premises using the DBS dish and coaxial cable distribution network. An expansion card couples the PC's I/O bus to the coaxial cable distribution network of the DBS system. A modem is used by the PC to make a dial up connection to the internet service provider (ISP) which then sends internet data to the PC via an uplink to the satellite and then down to the user's dish.
- One problem that consumers of digital data delivery services will soon face is as follows. There is great uncertainty as to which subscription data delivery services will provide the most reliable, best performing and least expensive version of each type service. Thus, there is a need for a way for a user to be able to couple to all the different subscription service data delivery options available to her and to distribute the data cheaply throughout her premises to all the different peripherals that need it like television sets, computers, telephones, video phones etc. To do this, it will be necessary to have some sort of circuit that can interface with all the different subscription service digital data delivery networks and at least one local area network running throughout the user's home and do any necessary protocol conversions and packet, cell or frame reassembly and encapsulation into packets of the type used on the LAN.
- ADSL routers such as the Remote 810 ADSL Router manufactured by 3Com currently exist. These routers can couple an Ethernet local area network to ADSL lines so that POTS voice conversations can occur simultaneously while searching the internet. The Remote 810 ADSL Router has an integrated 4-port 10Base-T hub to couple multiple PCs can share the same ADSL line. The router supports up to 16 simultaneous concurrent connections to multiple destinations on the internet and can perform bridging functions. 3Com also manufactures SDSL routers like the OfficeConnect Remote 840 SDSL which can support applications that require high bandwidth in both directions such as video conferencing, remote training, Web hosting, e-commerce and other multimedia applications.
- Other prior art, such as the 3Com PathBuilder S700 WAN switch, exists which concentrates, aggregates and switches traffic over wide area networks. The PathBuilder S700 WAN can converge voice, video and data applications—including Frame Relay, ATM and SONET—onto a common network. Up to 100 interfaces are supported. Advanced traffic management features such as traffic shaping, priority queuing and multicasting, guarantee the right amount of bandwidth for each application and let you build and manage your WAN infrastructure. The switch features a future-proof chassis with a modular construction to protect the initial investment and provide a migration path to accomodate future growth. The switch has individual application modules that provide native interfaces to a variety of campus networking technologies such as LANs, muxes, routers, SNA applications, business video and PBXs. Each application module adapts communications traffic to the cell-based backplane and transports it across the PathBuilder S700 switch cell bus to the appropriate trunk interface connections which offer a a comprehensive range of campus and wide area interface types. A T1/UNI module supports Inverse Multiplexing for ATM at speeds ranging from 1.5 Mbps to 16 Mbps. An 18-slot chassis supports migration to T3/E3 or OC-3 services as bandwidth requirements increase. Distributed processing implemented by placing a RISC processor on each application module to provide scaleable performance and wire speed communications.
- However, the 3COM Pathbuilder S700 WAN Switch lacks the capability to interface with ADSL lines, cable modems, satellite dishes, wireless local loops, terrestial microwave links or other subscription network services that may become available in the future such as digital data delivery over the power lines. The 3COM Pathbuilder S
-
- In the current climate of deregulation, fierce competition for provision of telecommunication services to customers has arisen. Many alternative distribution networks for digital data have either already been developed or under development. For example, in the near future, the digital data delivery services just described that are delivered by the PSTN and CATV HFC distribution facilities will also be competing with wireless local loop delivery networks provided by Personal Communication Service (PCS) companies and data delivery services under development by the electric power utilities.
- The problem is that the consumer has no way to know which services will provide the most reliable, highest quality and least expensive delivery mechanism for telephone and FAX service, e-mail, distance learning, video conferencing, high speed world wide web access, video on demand, remote LAN for telecommuters and multimedia services. Further, over time, as each of the subscription networks evolve and competitive pressures force lowering of prices, it is possible that what was once the best provider of, for example, video-on-demand (hereafter VOD), is no longer the best provider but some other technology is. As another example, ADSL does not have sufficient upstream bandwidth if video telephony becomes a popular application whereas cable modems do. However, variable bit-rate MPEG2 and advances in video compression technology might save ADSL if video conferencing becomes big, and High Speed ADSL may be adequate to service this application. The problem this raises for consumers is that they do not want to invest in technology for their home networks that only interfaces to ADSL or cable modems and then be faced with the prospect of an expensive replacement of their home network equipment in order to interface their LAN with a new subscription service digital data delivery network.
- Another example involves supplying Plain Old Telephone Service (POTS) to consumers via cable modem versus ADSL. Cutting of a CATV line in the street or losing an above ground cable during a windstorm will cut service to the entire neighborhood. That means that everybody in the neighborhood who obtains their telephone service via cable modem, will be left without phone service until the break is repaired. In contrast, ADSL is a point-to-point technology which causes only one customer to lose phone service if her line is broken. A well maintained HFC CATV network may obviate some of these problems, but that is unclear because there has not been a great deal of field experience gained yet in POTS over HFC.
- Thus, a consumer will not know whether to buy a gateway that can interface to an ADSL modem or an HDSL modem or a cable modem until the bugs are worked out and competitive factors come into play and make it clear which delivery network provides the best, lowest cost service for this application.
- However, one thing is clear: the above identified services will be in demand, and the consumer would like to be able to take advantage of the best delivery mechanism for each service and be able to switch easily between delivery services as competition forces adjustments in prices.
- Since these services will arrive on many different media, possibly in many different packet formats or using many different protocols, a problem is created for the user in deciding what type of home network data distribution system to buy and install. For example, there may be different packet and cell sizes and different header structures, different type of compression and different protocols will be used. The user only wants to inexpensively and conveniently distribute data encoding each of these services throughout her premises to the various peripherals like digital VCRs, DVD recorders/players, TVs, FAX machines, computers, telephones etc. that need the data without having to have a different gateway and local area network for each type of data delivery service. Further, the user may want to use ADSL for some services and cable modem for other services and wireless local loops or satellite downlinks or some other data delivery network option for other services.
- A related problem is in the area of videoconferencing. Currently, videophone offered by AT&T have been a commercial failure because of the low picture quality of 2 frames per second deliverable over standard twisted pairs. ISDN circuits can be used for videoconferencing and ISDN videophones are available, and their details are hereby incorporated by reference. However, the higher cost of ISDN and its lesser availability to all homes has slowed the acceptance of ISDN videoconferencing. Switched 56/64 Kbps circuits can also be used for video conferencing by bonding or grouping into multiple channels. Switched 384 Kbps connectivity can also be provided on the basis of fractional DS1 or through ISDN PRI channels in a channel group known as an HO. However, the cost and availability issues that are slowing ISDN teleconferencing also exist for switched 56/64 and switched 384 Kbps services as well.
- Likewise, DS-1 facilities support full-motion, high-quality videoconferencing over dedicated networks at rates of up to 2.048 Mbps for E1 and 1.544 Mbps for T1. However, DS-1 facilities are costly and not widely deployed and, although they are affordable for large organizations with DS-1 backbones, they are out of reach for the home network consumer.
- Broadband networks such as ADSL, B-ISDN, HFC and cable modems, satellite etc. are likely to be much more convenient and affordable ways of delivering videoconferencing services via ATM operating at DS-1 or DS-3 or higher speeds.
- Thus, a need has arisen for a system which interface to many different subscription service data delivery networks and can distribute digital data throughout a customer premises in an economical fashion to all the peripheral devices that need the data using a uniform protocol and addressing scheme. Preferably, the system will have an economical and reliable local area network on the consumer premises side and have the flexibility to couple to many different subscription service data delivery network media types and translate from whatever packet/cell/frame type and protocols are used by the data delivery network without substantial expense to reconfigure or buy new equipment or software each time a data delivery network option appears that is better, cheaper or more reliable than the consumer's current service provider.
- A home network system within the genus of the invention would have a host bus and host computer programmed to do management and control functions and a routing function, one or more local area network interfaces and one or more external network interfaces.
- An important subgenus within the overal genus would be characterized by a modular, expandable gateway construction which interfaced any one of a number of external networks and subscription services to peripheral devices in a customer premises coupled to the gateway by one or more local area networks. Such a modular gateway species would have as many shared components as possible including a network interface to drive a local area network that communicates digital data of various services and a routing process and possibly an IP packetization process running on the host computer. However, expandability would be provided by interfacing the gateway to one or more external networks using modular plug-in expansion circuits or modules to implement the unique interfaces with various types of data delivery networks. Some of the expansion modules are receivers capable of receiving analog signals and digitizing and compressing them and supplying the compressed data to said host computer. Others are receivers for receiving and recovering video and other data in digital form which has been modulated onto a dowstream carrier for transmission to said customer premises and supplying the recovered digital data to said host computer. Others of the expansion modules are transceivers capable of receiving analog signals and digitizing and compressing them and supplying the compressed data to said host computer or receiving and recovering video and other data in digital form which has been modulated onto a dowstream carrier for transmission to said customer premises and supplying the recovered digital data to said host computer. These transceivers include an upstream transmitter for receiving digital data from said host computer, preferably as an IP format packet, and transmitting it outbound on an external network to a headend modem, a DSL central office, a server connected to the internet at the locaton of an internet service provider via a dialup connection or to a satellite uplink facility via a dialup or direct connection.
- For example, in a species using an Ethernet local area network, the gateway would have a shared Ethernet Network Interface Card (hereafter NIC) and an Ethernet protocol stack. This hardware and sofware drives one or more 10BaseT, Fast Ethernet, or 100BaseT local area networks coupled to the gateway that function to distribute downstream data to various devices such as telephones, computers, televisions, FAX machines etc. scattered throughout the customer premises. The local area network(s) also collect upstream data from the various peripherals spread throughout the consumer premises and transfer this data to the gateway. Other shared functions would include the power supply, bus structure and the host processor and routing process, an IP packetization process, possibly MPEG compression and decompression, possibly DES or other encryption and decryption processes, MAC layer and/or IP address resolution, and, possibly, IP telephony and/or PBX processes to control IP telephony and/or PBX expansion modules. Some data delivery networks use MPEG compression and others do not and some services use encryption and others do not. Thus, depending upon the external network and subscription or other service involved, the expansion module that interfaces the gateway to the external network may include whatever compression/decompression, address resolution and encryption/decryption functions necessary to successfully communicate with those data delivery networks.
- Generally, the plug-in external network interface modules that interface to each external network will include all those circuits and software processes such as protocol stack peculiar to communication with that particular external network and a particular subscription service. These circuits can include any necessary line coding and decoding, demodulation, detection, demultiplexing, encoding, compression, access control and other circuitry such as decryption and re-encryption circuitry necessary for receiving data from or transmitting data to the particular external network and subscription service the interface is designed to work with.
- One of the advantages of the modular structure is, for example, if a consumer is getting their digital data delivery services by ADSL using one particular ADSL modem line coding, and another service provider with a different line coding provides a better service which the consumer wants to take advantage of, the consumer need only buy an ADSL interface board having the appropriate line coding to switch services and does not need to buy an entirely new gateway.
- However, the modular construction is not an essential element of the invention. For example, the teachings of the invention also contemplate a subgenus of simple stand-alone, nonexpandible gateways which only include one or more external network interface circuits which are always present. These types of gateways can be used by customers who know exactly which external networks and subscription services they will use and who have no need or desire to change. FIGS. 4A and 4B are supposed to symbolize a species within this subgenus which happens to include external network interfaces to an ADSL line, C-band and Ku band satellite dishes, an HFC drop line and a terrestial TV antenna.
- FIG. 1 is a diagram of a prior art connection between the internet and a home local area network through a cable modem and the HFC of a CATV system.
- FIG. 2 is a diagram of a prior art connection between the internet and a home local area network through an ADSL modem.
- FIG. 3 is a diagram of a home network having a gateway within the genus of the invention which couples any one of a number of different subscriber service data delivery networks which are external to a customer premises to one or more local area networks that deliver digital data from said external networks to one or more devices in said customer premises coupled to said local area networks. The gateway does the necessary protocol conversions and translations between the protocols and packet formats of the local area network and the protocols and packet formats of the subscriber service data delivery external networks.
- FIGS. 4A and 4B are a detailed diagram of a gateway having ADSL, satellite, cable and broadcast TV antenna interface circuitry.
- FIG. 5 is a block diagram of a video adapter for coupling a local area network to a television.
- FIGS. 6A-6E are a flowchart of a pull technology video on demand process.
- FIG. 7 is a flowchart of a wideband internet access process.
- FIG. 8 is a block diagram of a modular construction for the gateway.
- FIG. 1 is a diagram of a prior art connection between the internet and a home local area network through a cable modem and the HFC of a CATV system. The internet is shown as
cloud 11. AnIP router 13 in theheadend facility 15 of an internet service provider bidirectionally couples IP packets to the internet using the TCP transport protocol. An optionallocal proxy server 17. The proxy server is coupled to the IP router and provides local content as well as caching certain very popular web pages such as Yahoo or CNN news etc. so that they can be sent to cable modem subscribers with greater speed. Acontrol circuit 19 concentrates all IP traffic from the subscribers coupled to the HFC network and sends it to theIP router 13 and distributes packets from the IP router to the various fiber optic links of whichline 21 is typical. The fiber optic links couple the headend to fiber nodes of whichnode 23 is typical. Each fiber node couples the fiber optic link to a coaxial cable feeder branch of whichbranch 25 is typical. Each feeder branch has at least one bidirectional amplifier, of whichamplifier 27 is typical. Each feeder branch is coupled to a plurality of drop lines, of which drop 29 is typical, which couples the branch to a cable modem at the subscriber premises.Cable modem 31 is typical and can be any of the cable modems identified below. The cable modem has a 10Base-T output port which is coupled to anEthernet LAN 33 which runs throughout the home to peripherals such asTV 39,telephone 37 and personal computer 35. A typical example ofcable modem 31 is the U.S. Robotics Cable Modem CMX. This modem will work on any cable system that complies with the MCNS data-over-cable specification. This cable modem comes with an EtherLink network interface card and is compatible with the Windows and Macintosh operating systems. - Referring to FIG. 2, there is shown a prior art connection between the internet and a local area network in a home via the telephone system using ADSL modems. The
internet 11 is coupled toIP router 13 via DS 1 (1.544 Mbps supporting 5 or more continuous users or up to 55 users with 10% usage), DS 3 (45 Mbps supporting up to 1500 subscribers) or OC-3 connections.Optional proxy server 17 serves the same function is served in the cable modem system of FIG. 1. ADSL modems 41 and 43 at thesubscriber premises 45 andcentral office 47 couple to the twisted copper wire pair that was originally used for POTS. A POTS splitter, not shown, forwards the analog voice transparently to the POTS central office in a frequency below the ADSL domain. TheADSL modem 41 connects directly to the Ethernet port of a personal computer or to an Ethernet hub. Theaccess switch 53 serves to concentrate access lines from the ADSL modems such as 43 into router ports ofIP router 13.Access adapter 53 is likely to include ATM switch fabric. TheADSL modem 41 can be the 3Com HomeConnect ADSL Modem Ethernet or any equivalent ADSL modem. - Referring to FIG. 3, there is shown a diagram of a home network having a gateway within the genus of the invention which couples any one of a number of different subscriber service data delivery networks which are external to a customer premises to one or more local area networks that deliver digital data from said external networks to one or more devices in said customer premises coupled to said local area networks. The gateway does the necessary protocol conversions and translations between the protocols and packet formats of the local area network and the protocols and packet formats of the subscriber service data delivery external networks. The home network is useful for distribution of digital data that encodes video on demand, distance learning, video conferencing, telephone service, internet web pages and FTP download files, e-mail and other digital subscriber services to multipled devices over one or more local area network that runs throughout a customer premises. Digital data or analog signals implementing the subscriber service (subscriber service is used loosely to mean all signals whether analog or digital transmitted to the customer premises via an external network of any type including a TV antenna) is transmitted to the customer premises.
Gateway 14 converts the incoming signals to digital data in Ethernet packets and transmits it to the requesting device coupled to the local area network. - The
gateway 14 functions to do all the physical layer interfacing and protocol conversions necessary to couple one or more local area networks that run through the customer premises to digital data distribution services delivered via the Hybrid Fiber Coax (HFC) of a cable television system, or a digital satellite data distribution network or the phone lines of the public service telephone network. Hereafter, these digital data delivery networks external to the customer premises will be called the subscription networks or the digital data delivery networks even though some or all of them may also deliver analog signals as well as digital data. For example, the cableTV subscription network 16 will deliver analog CATV signals in addition to the digital data carried on its upstream and downstream carriers. Likewise, thesatellite dish 56 will deliver broadcast TV signals as well as digital data modulated on the downstream carrier. The Public Service Telephone Network (PSTN)telephone lines 58 will also deliver analog telephone signals in addition to digital data modulated onto the upstream and downstream carriers of the ADSL service. - The
gateway 14 is typically a Pentium or Celeron class personal computer host with protocol conversion and switching control programs that cooperate with the operating system to control the operations of various interface circuits and having one or more network interface circuits that drive the media of the local area network(s). In some embodiments, the interface circuits can be built on the motherboard with the host microprocessor. However, in the preferred embodiment, each interface circuit is a separate expansion card that plugs into the system bus of the host and has a connector suitable to interface with the physical media of the particular digital data delivery service. Likewise, the network interface to the local area network(s) can be an expansion card. However, it is preferable for the local area network interface circuit to be built into the motherboard so as to not consume an expansion slot. In this modular type construction, the circuits and software that are common to all the expansion modules that interface to the various subscription networks are shared by the expansion module interface circuits. Thus, the host microprocessor, hard disk, RAM, CD-ROM/DVD, power supply, network interface circuits for the LAN(s), display and keyboard are all shared as are the operating system, management sofware and any protocol conversion software layers that are common to all network interface circuits. Likewise, thegateway 14 is going to have a packet switching process and a crossbar switch or other switching circuitry controlled by the switching process to route packets received from the subscription providers to the appropriate LAN and vice versa based upon the IP or other addresses in the headers of the packets. These two elements can also be shared by the expansion module interface cards as the switching services need to be shared by all the subscription network interface cards in the gateway. The circuits and software that are specific to any particular subscription network such as MPEG compression or decompression, tuning, detection and demodulation, carrier and clock recovery, video decoding, A/D or D/A conversions etc. are located on the expansion module interface card dedicated to that subscription network. - This preferred modular construction has two significant advantages. First, it protects the subscriber's investment in the gateway by providing flexibility to couple the gateway to any subscriber network that turns out to be the most reliable, least expensive, most flexible or easiest to use or least aggravating subscriber network for supplying any particular digital data based service desired by the user. For example, if ADSL turns out to be the best provider of telephone and video telephony services, but HFC turns out to be the best provider of video on demand or distance learning services, and these are the only services the user is interested in purchasing, the user can simply buy expansion modules to interface with these two subscription services. There is no need to invest in a gateway that has hardware and software to provide high speed internet access as well as these other services since the user is not interested in purchasing high speed internet access. This first advantage also extends to the situation where the user later changes her mind and decides that high speed internet access is useful, but determines that satellite delivery by DirectPC™ is the best way of obtaining this service. In such a case, the user does not have to buy an entirely new gateway, but can simply buy an additional modular expansion card for interfacing to a satellite dish.
- The second advantage of the modular construction of the gateway is the property it has of protecting the subscriber's investment in the gateway by decoupling the physical structure and software of the shared components of the gateway from changes in the particular subscription networks. As these subscription networks evolve, there are likely to be changes in the protocols, physical media, packet structure etc. which are unpredictable in nature. Further, it may evolve over time with competitive forces similar to those acting on the long distance carriers that competition alters the picture as to which subscription network is the best provider of each particular service in which the subscriber is interested. If ADSL no longer is the best provider of telephony services, and the HFC networks offer a better deal, the consumer does not have to buy an entirely new gateway, but can simply remove the ADSL interface card and substitute a cable modem card to interface with the HFC network if a cable modem card is not already present. Likewise, if ADSL with Carrierless Amplitude/Phase modulation (CAP) give way to Discrete Multitone (DMT) modulation as the new standard, the user can simply swap out the CAP based ADSL expansion module for a DMT based module.
- The structure of one embodiment of the
gateway 14 will be discussed in more detail later. However, the genus ofgateways 14 which are within the teachings of the invention is defined by the following characteristics which all will share: - a programmed host computer with an operating system, and one or more protocol conversion processes and a switching control process that controls a packet switch to route packets between the one or more subscription service networks and the local area network(s) to which the gateway is coupled;
- one or more interface circuit for the particular local area network(s) coupled to the packet switch to drive packets out onto the physical media of the LAN(s);
- either a single interface circuit that can interface to all of HFC, PSTN and satellite digital data delivery networks which is either on the motherboard of the host or separate from the motherboard and coupled to the host system bus, or a plurality of expansion slots for coupling individual subscription network interface modules to the host system bus as desired so that each module can share the common facilities of the host needed to support the module; and
- wherein the common elements of the host that can be shared by all the subscription network interface circuits for all the subscription networks to which the gateway is coupled are shared, with examples of such shared circuits being: the host microprocessor, hard disk, RAM, CD-ROM/DVD, power supply, network interface circuits for the LAN(s), display and keyboard, the operating system, any management sofware and any protocol conversion software layers that are common to
- all network interface circuits and a packet switching process and a crossbar switch or other switching circuitry.
- The
gateway 14 will have a cable modem circuit either on a modular expansion card or as part of the subscription network interface circuits board. This cable modem circuitry can be any of the cable modems that are known in the prior art which are identified herein or any new cable modem design that surfaces after this application is filed since the details of the cable modem are not believed at the present time to be critical to the invention. - Likewise, the
gateway 14 will have as part of its interface circuit board or as an expansion card module, an ADSL modem (or SDSL or HDSL modem) to receive incoming digital data modulated onto a downstream carrier and output it as Ethernet packets on LAN(s) 18 and 20. In some alternative embodiments,LANs gateway 14 to packetize the data properly and use appropriate circuitry and protocols at all levels from the physical layer, MAC and network or routing layers up to the application layer for the particular LANs in use. ATM LAN switches and routers are available in the prior art and the details of their construction are hereby incorporated by reference. - Likewise, the ADSL modem receives Ethernet packets with digital data encoding voice, pictures, video etc. and modulates that data onto an upstream carrier. ADSL carves up the local loop bandwidth (the bandwidth of the twisted pair telephone line from the consumer premises to the Central Office) into several independent frequency channels suitable for any combination of services inclduign voice, ISDN, VOD programming and interactive gaming. Downstream data rates vary from 1.544 to 6.144 Mbps with upstream rates from 16 to 640 Kbps. The gateway ADSL interface circuit will also have a voice splitter if regular analog telephone are to be supported in addition to the LAN-connected
video phones FAX 64 which receive and transmit voice and pictures or caller ID or other data in digital form. Such other data can include such things a background information file on the person identified by caller ID data transmitted by an application on thePC 22 which supports the phones. Any conventional ADSL (or SDSL or HDSL) modem design such as the known ADSL modem manufactured by 3COM (specifically identified below and incorporated by reference herein) may be used for the PSTN ADSL interface circuitry or the ADSL expansion module as the details of the ADSL interface circuitry are not believed to be critical to the invention. The 3COM ADSL modem couples to a twisted pair carrying ADSL services and has an Ethernet 10Base-T output for coupling to the LAN(s) 18 or 20 through the shared packet switching circuitry of the gateway. - The
gateway 14 also includes as part of its subscription network interface circuit board or as part of its satellite network expansion module a decoder box. This satellite decoder box is of known design suitable to receive, demodulate, demultiplex, detect and decompress (if necessary) digital data transmitted on a downlink tosatellite dish 56. This digital data may be transmitted via a service such as DirectPC or other satellite-based, digital data delivery services which may become available in the future, and the interface circuitry necessary to receive digital data transmitted to a particular PC via satellite is known in the DirectPC application, and is hereby incorporated by reference. Typically, such satellite interface circuitry includes a tuner, a QPSK demodulator, a transport demultiplexer and a conditional access circuit. If the satellite interface circuit is being used to receive digital video signals that are compressed, the satellite circuitry may include circuits to decompress the digitized video back to its original state (or close to its original state if lossy compression such as MPEG is used). However, since uncompressed broadcast quality standard NTSC video requires a bit rate of slightly over 221 Mbps, whether the satellite interface circuitry of the gateway includes decompression circuits depends upon the bandwidth of the local area network(s) coupled to the gateway. If the LAN(s) are 10Base-T or 100Base-T, the video digital data will be left compressed and can be transferred over the LAN(s) with quite acceptable quality at T1 speeds of 1.544 Mbps. MPEG compression and decompression is known in the art and is incorporated by reference herein. MPEG compression is lossy compression which uses: a 7-tap filter for averaging 7 neighboring pixels or lines; color space conversion; scaling to the presentation resolution before digitization; transforms such as the Discrete Cosine Transform, vector quantization, fractal transform and wavelet compression; and quantization or compaction encoding to reduce the number of bits needed to represent a color pixel such as run-length encoding, Huffman coding, and arithmetic coding; and interframe compression to transmit only the pixels that change between frames. Many compression standards exist such as Px64, JPEG,MPEG 1 and 2 (MPEG 2 with transmission rates of 4 to 100 Mbps is already in use for digital video transmission via satellite services such as DirecTV) and MPEG 4 (a low bit rate standard intended for videophones and other small screen devices). The compression and decompression circuitry for all these standards is hereby incorporated by reference. - Further, the satellite interface circuitry or satellite expansion module should also include a convention telephone modem for making dial up access to the internet via the PSTN for upstream data transmissions through the server of the internet service provider. Downloads from the internet or a video server or some other digital service server are beamed up to the satellite and retransmitted on the downlink addressed to the specific user that requested the downlink. All other decoder boxes coupled to satellite dishes that received the same broadcast reject the packets so received as not addressed to them.
- In the embodiment shown in FIG. 3, a
cable modem 12 is shown externally to the gateway with the output IP or Ethernet packets encapsulating IP packets or ATM cells onbus 16 for coupling into the packet switching process inside the gateway. The preferred embodiment however is as shown in FIGS. 4A and 4B with the cable modem circuitry inside the gateway as shown at 70. The particular cable modem shown at 70 is labelled as DOCSIS 1.2 compatible, but it can be any known cable modem design as can the external cable modem. - Referring to FIGS. 4A and 4B, we turn now to more specific information about each of the possible subscription services digital data delivery networks and the interface circuitry in the
gateway 14 needed to couple each said external network to the LAN at the customer site. Thegateway 14 can be a standalone circuit with all the interface circuits needed to interface to one or more external networks included as a permanent part thereof with no plug-in expansion capability as opposed to the preferred modular construction shown in FIG. 8 where external network interface circuits may be added as needed. - First, digital data services may be delivered by a
coaxial cable 10 which represents the drop line in a cable TV HFC network (not shown). The cable TV network has a head end modem (not shown) which couples the HFC cable CATV plant to wide area networks such as the internet as well as the public service telephone network (hereafter PSTN) through one or more routers, bridges or gateways (not shown). The head end modem may also couple the HFC to local servers such as VOD servers. - Digital data encoding video signals, telephone service, data being received from the internet etc. is modulated by the head end cable modem onto one or more downstream channels for simultaneous transmission on the HFC cable plant with regular analog cable TV programming. The cable TV channels each have their own frequency so as to not conflict with each other. The downstream digital services data is modulated onto a carrier that has a frequency that does not conflict with the frequencies of the cable TV programming nor with upstream data which is modulated onto a different upstream carrier frequency. Data from different sources is multiplexed on both the downstream and upstream channels by any known means including time division multiplexing, code division multiplexing, synchronous code division multiplexing or frequency division multiplexing.
- Digital data can be delivered over the HFC using Asynchronous Transfer Mode (ATM) or ATM over B-ISDN type services adapted for HFC and the particular type of transmitters, modulation and multiplexing being used. ATM and B-ISDN (Broadband ISDN) are inexorably linked, and there are a plurality of standards set by ITU-T that are in existence which are incorporated by reference herein. Those standards are: 1.113; 1.121; 1.150; 1.211; 1.311; 1.321; 1.327; 1.361; 1.362; 1.363; 1.413; 1.432; 1.555; and 1.610. ATM Forum Implementation Documents of significance that are incorporated by reference herein are: ATM User-Network Interface (UNI) Specification for PVCs; ATM Broadband Intercarrier Interface (B-UNI) Specification and ATM Date Exchange Interface (DXI) Specification; Internet Engineering Task Force Requests for Comment (RFC) that are incorporated by reference are: RFC 1483: Definition of Multiprotocol Encapsulation over AAL5; and RFC 1577: Definition of Internet IP over ATM.
- ATM is the delivery mechanism of choice since its small 48-octet payload and 5-octet header in each cell lends itself well to video, image, facsimile, voice or data. Further, the fixed cell size gives routers and switches the advantage of predictability, as compared to a variable length frame. These two considerations yield decreased delay as data moves through the switching system and across the transmission links in frequent little blasts. No long frames need to be transmitted tying up switch ports and thereby causing delays for frames from other sources that need to use the same ports. ATM also has the advantage of being able to adjust the amount of bandwidth required to support a session during the session. However, ATM networks do not provide either error detection and correction or protocol conversions. Those functions are left up to the user.
- Likewise, digital data may be delivered over HFC using Discrete Multi Tone (DMT) technology typically used in ADSL but adapted to HFC and the particular type of transmitters, modulation, multiplexing being used. DMT is a new technology developed for ADSL delivered via twisted pairs that uses DSPs to pump more than 6 Mbps of video, data, image and voice signals over todays existing one pair copper wiring, but it could also be used to transmit data over HFC cable plants. DMT provide 4 asymmetric “A” channels at 1.5 Mbps each of which can provide an VCR quality signal and which can be ganged together such that two A channels can deliver a “sports” quality video channel and all four A channels operating together can deliver digital Extended Definition TV signals. DMT also delivers one “H zero” channel at 384 Kbps to deliver Northern Telecomm's multirate ISDN Dialable Wideband service or equivalent. This channel can also be used for work-at-home telecommuters for high bandwidth access to the corporate LAN using Northern Telecomm's DataSPAN or other frame relay services. DMT also delivers one ISDN Basic Rate channel containing two “B” channels at 64 Kbps and one “D” channel at 16 Kbps. The Basic Rate channels allow access to a wide range of emerging ISDN services without requiring a dedicated copper pair or the expense of a dedicated NT1 unit at home. These channels also permits the extension of Northern Telecom's VISIT personal video teleconferencing services to the home at fractional T-1 rates (P×64). DMT also delivers one signalling and control channel operating at 16 Kbps giving the home user VCR type control over VOD movies and other services including fast-forward, reverse, search and pause functions. Finally, DMT also delivers embedded operations or overhead channels for administration, internal system maintenance, audits etc. All this is delivered without interrupting the POTS service if it is delivered over a copper pair. HFC could also potentially deliver POTS, but without a dedicated pair to each home, such service would be subject to congestion and loss of POTS to entire neighborhoods served by a single cable in case of a failure of the cable.
- In the embodiment shown in FIG. 3, digital data on the HFC drop line is recovered by any known
cable modem 12. One example of a suitable cable modem using SCDMA upstream multiplexing is given in PCT publication WO 97/08861, published 6 Mar. 1887, which is hereby incorporated by reference. One example of software and hardware in thecable modem 12 which is Docsis 1.2 compatible is given in the following U.S. patent applications, all of which are hereby incorporated by reference: Ser. No. 09/074,036, filed May 6, 1998 entitled APPARATUS AND METHOD FOR SYNCHRONIZING AN SCDMA UPSTREAM OR ANY OTHER TYPE UPSTREAM TO AN MCNS DOWNSTREAM OR ANY OTHER TYPE DOWNSTREAM WITH A DIFFERENT CLOCK RATE THAN THE UPSTREAM; Ser. No. 09/152,645, filed Sep. 14, 1998, entitled METHOD AND APPARATUS OF USING A BANK OF FILTERS FOR EXCISION OF NARROW BAND INTERFERENCE SIGNAL FROM CDMA SIGNAL; Ser. No. 09/152,643, filed Sep. 14, 1998, entitled TWO DIMENSIONAL INTERLEAVE PROCESS FOR CDMA TRANSMISSIONS OF ONE DIMENSIONAL TIMESLOT DATA; Ser. No. 09/337,167, filed Sep. 21, 1999, entitled MIXED DOCSIS 1.0 TDMA BURSTS WITH SCDMA TRANSMISSION ON THE SAME FREQUENCY CHANNEL; Ser. No. 08/760,412, filed Dec. 14, 1996, entitled LOWER OVERHEAD METHOD FOR DATA TRANSMISSION USING ATM AND SCDMA OVER HYBRID FIBER COAX CABLE PLANT published as PCT publication WO 97/34421 on 18 Sep. 1997. The PCT publication WO 97/34421 published on 18 Sep. 1997 explains hardware and software for transmitting IP packets received from the internet over HFC using ATM cells and virtual channels to a remote unit cable modem and distributing the data to peripherals via a local area network. Specifically, WO 97/34421 teaches: - receiving Internet Protocol packets directed to an entity having an IP address out on a LAN at a customer premises and looking up Ethernet source and destination addresses mapped to that IP address and generating an Ethernet header and appending it to the IP packet;
- adding RFC1483 bits and CRC bits and sufficient pad bits to make up an integer number of ATM cell payload section of 48 bytes to result in an AAL5 format packet;
- parsing the resulting AAL5 packet into a plurality of ATM cell payload sections of 48 bytes each;
- adding a standard 5 byte ATM cell header to each ATM cell;
- encoding the PTI field of the ATM cell header with a bit which signals which cell is the last cell in the packet;
- outputting the ATM cells to a formatter circuit in the head end cable modem as an OC3 TDMA stream;
- optimizing ATM cell headers to reduce the size of the headers down to two bytes comprising the 16 least significant bits of the VPI/VCI field and encoding the last cell data into two 9th bits of the two 9-bit sections of the downstream optimized ATM cell header;
- encoding the 9th bits of each of the first eight “bytes” (byte here is used in the sense of a 9-bit entity); parsing the optimized ATM downstream cells into 9-bit bytes and sending them as a TDM stream to the headend cable modem downstream transmitter for transmission (this transmitter can be any conventional transmitter but preferably is an SCDMA transmitter which divides each 9-bit byte into three tribits and interleaves them into elements of an information vector that correspond to virtual channels assigned to the particular modem to which each 9-bit byte is directed, and spreading the spectrum of the information vector using one or more spreading codes assigned to the one or more assigned virtual channels);
- headend cable modem transmitter encodes the 9-bit bytes and modulates them onto a downstream carrier for transmission over virtual channels from a head end over HFC to a remote unit (RU) cable modem.
- The optimized system uses a two level addressing scheme and a mapping between each logical channel and the assigned RU for that channel. The two byte header in the downstream optimized ATM cell identifies the single logical channel upon which the data is to be transmitted, and this single logical channel corresponds to a single one of the multiple RUs. The Ethernet address of the particular process or peripheral at the RU to which the payload data is to be directed once it arrives at the RU is included as several bytes in the payload data.
- At the RU cable modem (12 in FIG. 3 or 70 in FIG. 4A), the 9-bit bytes are recovered, reassembled into AAL5 packets and encapsulated into one or more Ethernet packets for transmission over the LAN. Specifically, the RU cable modem carries out the following processing:
- the incoming signals from the
cable drop 10 are demodulated, demultiplexed and detected in accordance with whatever multiplexing and modulation schemes that were used by the headend downstream transmitter for the transmission on separate logical channels so as to recover the 9-bit bytes; - a formatter circuit finds the ATM cell boundaries by examining the 9th bits for the start code and reassembles the 50-byte optimized downstream ATM cell;
- the formatter in each RU examines the 2-byte header in each ATM cell to determine if the ATM cell is directed to that RU and discards the cell if it is directed to another RU (RU and cable modem at the customer premises) are used interchangeably herein) and forwards it to a segmentation and reassembly circuit (SAR) as a Utopia data stream if the cell is directed to this RU;
- the SAR recovers the AAL5 packet boundaries by finding the RFC 1483 bits and the last cell code and reassembles the AAL5 packet and error checks it using CRC bits and stores the corrected AAL5 packet in memory for retrieval by an Ethernet controller and passes a pointer to the packet to the Ethernet controller;
- the Ethernet controller retrieves the AAL5 packet pointed by each pointer and strips off the RFC 1483 bits and sends the remaining bits as an Ethernet packet (after stripping the RFC 1483 bits, the remainder is an Ethernet header followed by an IP header followed by a payload section).
- In the embodiment of FIG. 3, if the
cable modem 12 has the structure and functionality just described,gateway 14 receives the downstream Ethernet packet online 16 and simply couples them through a packet switching process on the gateway onto the appropriate LAN subnet (if more than one LAN is used in the customer premises). If only one LAN is used, the Ethernet packets can simply be delivered to an Ethernet Network Interface Card in the gateway for driving out onto the LAN. Likewise, Ethernet packets received from the LAN having IP addresses indicating they are directed to processes coupled to the wide area networks to whichcable modem 12 is coupled are routed through the gateway to thecable modem 12. There, they are transmitted on an upstream channel assigned tocable modem 12 and recovered by the head end modem and coupled to the internet through a router at the head end. - Other examples of high speed cable modems which could be used for
cable modem 12 are given in Azzam, High Speed Cable Modems, (McGraw Hill 1997), ISBN 0-07-006417-2, which is hereby incorporated by reference. - Typically, the
local area networks Cat CAT 5 wiring, or an RF or infrared wireless LAN system, or the coax of the cable TV system that runs through the house can be used for a ThickNet (10Base-5) or ThinNet (10Base-2) LAN. The latter case assumes the coax has been disconnected from the standard CATV drop line feed and is coupled to TV set peripherals only indirectly through thecable modem 12. However, it is also possible to maintain the connection of coaxial cable running throughout the premises to theHFC cable drop 10 for delivery of FDMA analog CATV programming channels to various TVs and VCRs in the house and use the 10Base-T or wireless LAN for delivery of digital services to the various peripherals through network adapter circuits. - FIG. 3 shows
gateway 14 as coupled to twoLANs gateway 14 also provides a routing function to get the Ethernet packets onto the appropriate LAN to which the peripheral having the IP address in the packet is coupled. - The
local area networks PC 22, which is typically a Windows based personal computer but which may also be a Macintosh or other workstation, can communicate withnetwork computers PC 22 to be accessed by the network computers or to have documents created on thenetwork computers PC 22. Through thegateway 14 and an internal ADSL modem or the cable modem, the network computers can also access the internet and download web pages, send e-mail etc. -
Television set 28 is coupled to thelocal area network 18 via anetwork adapter 30 which functions to convert the compressed digital data in received Ethernet packets to video signals online 32. The TV may be used in interactive communications so upstream data can be sent through the use of an infrared orRF wireless keyboard 34. Such data might include the title or number of a VOD movie to be ordered or upstream text to be sent in a multimedia interactive presentation. In addition, an infrared or RFremote control 80 can be used to transmit commands to thenetwork adapter 30 such as play, pause, slow motion, stop, rewind etc. to control video on demand services. Information the consumer wishes to send is entered on the keyboard and communicated to thenetwork adapter 30 via infrared or RF transmission from thekeyboard 34 and/orremote control 80. The data transmissions are received, demodulated and detected to recover the data and the data is addressed and packetized into IP packets encapsulated inside Ethernet packets by an infrared and/orRF receiver 82 in the network adapter 30 (see FIG. 5 which is a block diagram of the network adapter 30). The Ethernet packets containing the upstream VOD request data are addressed to thegateway 14. These packets are launched onto theLAN 20 by anetwork interface card 84 which does the media access control and physical layer protocols of whatever LAN is in use such as CSMA/CD in the case of Ethernet LANs. - The IP packet encapsulating each VOD request is addressed to the particular video server which will supply the data. Standard mouse or touchpad type technology in the infrared keyboard and/or
remote control 80 sends pointer information toreceiver 82 so that the user can request menus from each video server and point to a video selection from each menu displayed on the TV. In one embodiment, theremote control 80 orIR keyboard 34 has function keys that may be pushed to request menus of VOD selections from the satellite, HFC and ADSL video servers. When these function keys are pressed, thereceiver 82 converts the request into an IP packet addressed to the appropriate video server requesting transmission of the current menu data. The menu data listing currently available selections is sent as downstream IP packets addressed to the video adapter having the IP address that was the source address of the menu request packet. These IP packets reach theIP video circuit 242 where they are recognized and routed viabus 87 to the 2/3D Graphics circuit 83 which converts the data into graphics data signals online 85 which will be used to display the menus. - When the user points to a particular menu selection on a displayed menu, this pointing information is transmitted to the
receiver 82 and converted to graphics commands which are transmitted vialine 81 to optional 2/3D graphics circuit 83. Thegraphics circuit 83 creates graphics for overlay on the TV display, and the pointer information is converted to a graphics image such as a pointer or hand which the user can move on the displayed menu by use of a mouse or touchpad. When the user points to a VOD selection and gives an “order” command, the menu in which the pointer lies is transmitted viabus 81 to thereceiver 82 and the position on that menu where the pointer currently is located is determined bygraphics circuit 83 and transmitted to thereceiver 82. The menu and current position data so determined are mapped to an IP address of a particular server and a particular VOD selection available from that server. Thereceiver 82 then uses the IP address of the video server as a destination address and its own IP address as a source address and the requested selection to create an IP packet bearing the VOD request. This packet is then encapsulated into an Ethernet packet addressed togateway 14 and sent to the gateway via theNIC 84 and theLAN 20. The gateway strips off the Ethernet header and routes the IP packet to the appropriate video server via the appropriate upstream media for that video server. - In alternative embodiments, the user may simply type in the number of a category of video from a displayed menu of available categories and the number of a video selection on the displayed menu. The menu number and program number are then converted into a VOD request IP packet by the
receiver 82 and then encapsulated into an Ethernet packet addressed to thegateway 14. Thegateway 14 then processes the VOD request as described above. - When the upstream VOD request packet reaches the
gateway 14, it is processed by the Ethernet (or other LAN protocol) to IP protocol conversion and routing process (hereafter referred to as the routing circuit) carried out by the host computer circuitry and the software processes symbolized byblock 86 in FIG. 4A (FIGS. 4A-4B together are a block diagram of one embodiment of the gateway). Therouting circuit 86 then routes the VOD request packet to the appropriate subscription service data delivery network for delivery to the process/target device named in the IP destination address. - The
routing circuit 86 is shown as a separate logical block in FIG. 4A from thehost microprocessor 128 and its associated peripherals:random access memory 129,nonvolatile memory 131 to store the bios,hard disk controller 133 and thehard disk 135 it controls,display adapter 137 anddisplay 139,keyboard interface 141 andkeyboard 143. All of these peripheral devices are conventional. In an actual circuit, therouting circuit 86 is usually the host microprocessor programmed to do the IP to Ethernet and vice versa protocol conversions, routing table construction and packet routing functions along with any other functions necessary for a router including network interfaces and any other functions required of the routing process described in the flowcharts herein. Descriptions of gateways, routers, the Internet Protocol and IEEE 802.3 Ethernet local area networks are found in Tanenbaum, Computer Networks, 2nd Ed. (Prentice Hall 1989) ISBN 0-13-162959-X, and Stallings, Data and Computer Communications, 4th Ed., (MacMillan Publishing 1994) ISBN 0-02-415441-5, which are both hereby incorporated by reference. - The function of the gateway is to provide protocol conversion, packet format conversion, video, voice and data demodulation, detection and demultiplexing services, conditional access control to prevent non subscribers from receiving services they have not subscribed to. The
gateway 14 performs the functions of a cable modem and a set-top decoder box for a satellite digital data subscription service such as DirectPC and performs the functions of an ADSL modem. As part of this interface circuitry, the gateway performs MPEG encoding services, IP video. IP video comprises the process of recovering downstream IP packets and sending them to an input port of a routing process and receiving Ethernet upstream packets and converting them to IP packets and sending them upstream. The gateway also performs IP telephony services (similar to the IP video services except for telephony over the internet) as well as switching and routing services. More details about the structure and operation of the gateway will be included below. - It is up to the network interface cards of the peripherals to receive the Ethernet packets from
LAN 18, determine if they are directed to the Ethernet address of that peripheral, convert the payload data to a format useable by the peripheral, and to transfer the data to the process having the IP address in the packet. - Assuming that the service being carried by the home network requires bidirectional data transfer and ATM is to be used upstream, the upstream data transmission process from the peripheral to the internet via the
cable modem 12 is as follows assuming the cable modem is of the type defined in PCT publication WO 97/34421 which is incorporated by reference herein: - the application process that needs to send upstream data outputs one or more Ethernet packets onto the
LAN 18 which include the IP address of the entity on the internet to which the data is directed; - each Ethernet packet gets routed through the
gateway 14 to thecable modem 12 if it has an IP address which indicates it is directed to an entity on the internet to which the gateway is coupled through thecable modem 12; - the SAR in the RU cable modem adds pad bits to each Ethernet packet, computes CRC-32 error detection bits, and adds RFC 1483 bits such that the resulting packet is an integer multiple of 48 bytes;
- the SAR parses the packet into multiple 48-byte ATM cell payload sections with no header bytes, adds standard 5-byte ATM cell headers to each payload section using a virtual link identifier which identifies the virtual upstream channel assigned to that RU to construct the VPINCI fields and using last cell, normal cell and idle cell information to construct the PTI field and calculates a HEC field and transmits the resulting ATM cells to a formatter as a Utopia stream;
- the formatter adds a 9th bit to each byte in the cell and encodes the 9th bits with a start code, last cell, normal cell and idle cell codes using the information in the PTI field of each ATM cell header;
- the formatter strips off the 5-byte header of each ATM cell while saving the information and then parses each upstream ATM cell into 9-bit bytes and places one 9-bit byte into each timeslot of an upstream information vector which corresponds to the virtual channel assigned to this RU modem and transmits the information vector to the upstream transmitter in the
RU cable modem 12 using the information in the VPI/VCI field of the header to identify which virtual channel in which each 9-bit byte from each ATM cell is to be transmitted; - the upstream transmitter of the RU modem transmits the upstream data in the appropriate virtual channel such as by spreading the spectrum of the 9-bit bytes using one or more spreading codes assigned to the virtual channel(s) assigned to the RU;
- the spread spectrum data is then transmitted on the upstream carrier;
- the receiver in the headend cable modem receives the upstream transmissions from each RU and demodulates, demultiplexes and detects the transmitted data of each 9-bit byte and places the recovered 9-bit bytes into the timeslots on a TDMA bus which correspond to the logical channel in which the data was received;
- a formatter process in the headend modem demultiplexes the TDMA stream and reassembles the 48-byte optimized upstream ATM cells using the signalling data in the 9th bits and places each ATM cell in a portion of a cell buffer dedicated to storing ATM cells from the RU which generated the data using the timeslot data to determine from which RU each ATM cell arrived;
- a cell output controller process then retrieves each 48-byte ATM cell and generates a standard 5-byte header and transmits the standard 53-byte ATM cell in an OC3 format data stream to a segmentation and reassembly circuit in a router in the headend cable modem;
- the SAR error checks the 53-byte ATM cell using the HEC field and strips off the header bytes while retaining the VPI/VCI and the PTI field information and reconstructs the AAL5 sequence using RFC 1483 bits and the last cell data encoded in the PTI field to find the packet boundaries and by concatenating 48-byte payload sections of the ATM cells and error checks the packet using CRC bits;
- if no errors are found, the RFC 1483 bits and the CRC bits and pad bits are stripped off to leave an Ethernet packet header, an IP header and a payload section and the result is sent to a router for routing on the appropriate subnet to get to the destination having the IP address somewhere out on the wide area network.
- If the
cable modem 12 has the architecture of any of the cable modems described in Azzam, High Speed Cable Modems, suitable modifications to the above described downstream and upstream processes described above can be made, or the upstream and downstream processes used in those modems can be used for delivery of the same digital services they have used in the prior art to deliver. For example, any of the cable modem hardware and software structures known in the prior art which have been used in the actual field trials identified in Azzam, High Speed Cable Modems,Chapter 14, Section 14.2, pp. 512-518 (McGraw Hill 1997), ISBN 0-07-006417-2, may be used, and all of these modem designs are hereby incorporated by reference. The cable modems whose circuitry and software is incorporated by reference herein include: the LANcity Personal; Hybrid Networks Cable Client Modem 211; Zenith HomeWorks Elite; Motorola CyberSurfr; General Instruments SURFboard SB1000; Hewlett-Packard QuickBurst; Com21 ComPort; Toshiba and any cable modem that conforms to the IEE 802.14 standard. - Typically, the IEEE 802.14 compliant cable modem genus will contain species which have the following characteristics:
- downstream data contained in one of the 6-MHz TV channels that occupy the spectra above 550 MHz;
- upstream channel assigned band between 5 and 45 MHz;
- 64-QAM downstream modulation delivering over 30 Mbps data rate;
- upstream channel using QPSK modulation or a combination TDMA and synchronous code division multiple access multiplexing techniques and QAM modulation delivering from 2 to 10 Mbps in each upstream channel;
- a media access control software layer to mediate upstream access between multiple users sharing the same cable medium;
- a MAC protocol which is ATM friendly using the ATM cell transport concept and possibly involving segmentation of ATM cells into smaller segments to improve system performance;
- status and control information looped back from the upstream to the downstream to provide remote cable modems with status and control information to determine pecking order;
- the upstream channel divided into frequency channels that are allocated to individual users or combining two multiplexing methods such as TDMA and Synchronous CDMA or CDMA.
- Cable modems within this genus include circuits and software to achieve time synchronization where frame alignment is necessary for proper demultiplexing. Although not required to be within the genus, the better modems in the genus also include time synchronization coupled with TDMA and CDMA to lower intersymbol inteference as well as power alignment and adaptive equalization to minimize other forms of interference. These better modems will also include encryption such as pseudorandom scrambling or DES encryption for privacy and a MAC layer protocol that insures fairness in upstream bandwidth access.
- These cable modems have been used to deliver residential online subscription services that include Internet access, Email, world news, shoppping, local content covering city government, schools, libraries and other news of the community, multimedia services, campus networking, distance learning and telemedicine, internet access to schools, Prodigy, Jones Internet Channel and work at home programs.
- Details of Gateway Interfaces To Downstream Cable, Satellite, And ADSL.
- Referring to FIG. 4, there is shown a block diagram of one embodiment of
gateway 14 configured as a standalone circuit where interfaces to the satellite, HFC and PSTN networks are all implemented on the circuit board. This circuitry may be an expansion card in a personal computer or it may be integrated into the motherboard of a personal computer. The other known components of the personal computer are not shown in FIG. 4 for simplicity, but suffice it to say that the host CPU of the PC is coupled to circuitry shown in FIG. 4 by the address, data and control buses of the PC such that the circuits that need control inputs or data from the host CPU may receive it. The control and data inputs needed by each circuit will be described when that circuit is described. - The embodiment of the
gateway 14 shown in FIG. 4 includes the entire circuitry of a DOCSIS1.2cable modem 70 therein. Turning first to the interface circuitry to couple HFC to the LAN,HFC drop line 10 is coupled to an upstream and downstream combiner andisolation circuit 90. There, upstream modulated RF carrier signals online 92 from upstream isolation amplifier orcoupler 94 are coupled onto thecable 10 and downstream modulated RF signals are received fromcable 10 and placed online 96. Typically,combiner 90 will include a bandpass filter to prevent upstream RF signals from enteringline 96 and may optionally include a termination forline 92 to prevent reflections.Isolation circuit 98, typically a buffer amplfier or capacitor or other circuitry such as a lighting arrester protects the internal circuitry of the gateway from any unwanted DC signals or lightning strikes on the HFC. - In the embodiment shown in FIG. 4, three
tuners Tuner 100 is tuned to one of the conventional CATV analog video channels in NTSC, PAL or SECAM format. Typically, the total bandwidth of the HFC will be divided up into different frequency bands for CATV FDMA analog video channels, an upstream DOCSIS data and management and control signals band, a digital VOD signals band and a downstream DOCSIS data band. The frequency band for upstream data and management and control signals extends from 0 to about 50 MHz. Within this band, upstream DOCSIS data will be modulated onto one carrier frequency and management and control data will be modulated onto another carrier frequency. There may be multiple upstream management and control channels at different frequencies or in different timeslots or on the same frequency with the data of each management and control channel having its spectrum spread with a different spreading code. Typically, the frequency band from 50 to 500 MHz will be reserved for FDMA 6 MHz wide analog CATV video signals. Digital video data such as for VOD or teleconferencing etc. is typically modulated onto one of a plurality of different frequency channels in a band above 500 MHz with each channel being about 6 MHz wide and containing a plurality of video, audio and associated data subchannels separated by TDMA. Downstream DOCSIS data such as web pages which are downloaded during high speed internet access is typically modulated onto a carrier having a frequency somewhere above the video on demand carrier frequencies. - One of the functions of the
gateway 14 is to deliver requested services to all the peripherals in the customer premises seemlessly over a shared LAN thereby eliminating the need for separate coaxial cable wiring to deliver CATV analog signals, a digital network to deliver digital data, telephone wires to deliver conventional telephone service. All these services are delivered via a single digital data distribution system comprised of one or more LANs. To that end, even CATV signals that are analog when they arrive are digitized, compressed, turned into IP packets and then into Ethernet packets and transmitted to the various televisions via a LAN. - Reception and Distribution of Analog CATV Signals
-
Tuner 100 starts this process by receiving control data frommicroprocessor 128 defining which CATV analog video channel which has been requested. Users request analog CATV broadcast channels via theirIR keyboards 34 orremote controls 80 in FIG. 3. These requests are encapsulated into management and control Ethernet packets addressed tohost CPU 128 bynetwork adapter 30. The host CPU receives them and generates a bus packet onbus 156 addressed totuner 100 telling it which channel to tune. Thehost bus 156 may be a PCI bus in a Windows based personal computer, but high traffic loads may bring such a bus to its knees since only two devices may use the bus to communicate at any particular time. In alternative embodiments, a high capacity multiplexed bus like an H.100 standard TDMA bus coupled by suitable bus drivers to the host bus in a computer with sufficient expansion slots for all the necessary expansion modules to implement a flexible gateway may be used. In other words, in smaller bandwidth consumption embodiments where only one or two of the expansion modules shown in FIG. 8 are present, a Windows based personal computer with a PCI or ISA bus and one or two expansion slots may be sufficient. However, in higher bandwidth consumption embodiments where many or all of the expansion modules shown in FIG. 8 are present or might be added as the number of services and external networks to be used grows, thegateway 14 may also take the configuration of one or more personal computers, each with a fast microprocessor and a PCI or some other fast bus, each running one or more of the software processes symbolized by FIG. 8 to divide up the labor. These servers would be coupled to the LANs by one or more NICs with their one or more host buses coupled to another expansion module interface circuit board by one or more high capacity buses such as an H.100 TDMA bus, a Firewire or even FDDI or Fibre Channel Arbitrated Loop LAN technology. The expansion module interface circuit board would have a plurality of expansion slots interfaced to the high capacity bus(es) or LAN(s) coupling the expansion module interface circuit board to the one or more servers. Each expansion slot would be available to couple one of the expansion modules shown in FIG. 8 to the shared software and hardware facilities of the servers. For simplicity of expression, all of these various alternative bus or LAN type interconnections between the server(s) and the modules in the expansion slots will be simply referred to as the host bus or thePCI bus 156. There will also be descriptions of circuits to the effect of placing data in PCI bus or host bus packets addressed to a particular circuit to which they are to be sent such as theIP video circuit 158 or therouting process 86. This is to be understood as actually placing the data into a packet with a destination address set to the destination circuit or process or seizing control of the host bus and writing the address of the destination circuit onto its control lines and placing the data to be transferred on the data lines and activating any necessary control signals to latch the address and strobe the data into a data register or other memory. - The RF output of
tuner 100 onbus 134 is then digitized by an analog-to-digital converter in A/D matrix 130. The digital samples online 136 are input to avideo demodulator 138 which functions in the digital domain to demodulate the digitized analog video signal by removing the RF component. Thevideo demodulator 138 outputs digital data online 166 which represents a conventional baseband NTSC, PAL or SECAM format video signal. - The digital data on
line 166 is at too high a bit rate to send over the LAN since uncompressed broadcast video is at 221 Mbps. Therefore, the video data must be compressed. MPEG II compression is preferred, but any known form of compression currently known or to be developed in the future will suffice since the form of compression is not critical. MPEG II compression circuitry is well known, and is used forMPEG encoder 146. However, MPEG compression does not compress NTSC, PAL or SECAM format signals. They must first be converted to YUV format luminance and chrominance signals. This conversion is done invideo decoder 142, which is a known type of circuit in any video system that uses MPEG II compression. - The compressed video data is encapsulated into PCI (or other type) bus packets addressed to
IP video circuit 158. There, the compressed video data is encapsulated into IP packets addressed to the network adapter of the TV where the CATV video channel is to be viewed. TheIP video circuit 158 determines which IP destination address to use in constructing the IP packets via data received from thehost microprocessor 128. When the original request was received, thehost microprocessor 128, in addition to telling thetuner 100 which channel to tune, also determines from the Ethernet packet source address which TV's network adapter requested the data. The IP address of this network adapter is encapsulated into a PCI bus packet and transmitted viahost bus 156 to the IP video circuit. The IP packets encapsulating the digitized CATV channel are then transmitted viabus 160 to therouting process 86. - The
routing process 86 is a conventional IP to Ethernet routing process which examines the IP packet destination addresses and looks up the corresponding Ethernet addresses. The IP packets are then encapsulated into Ethernet packets and routed to the appropriate LAN network interface card forLAN - When the IP packets reach the network adapter of the TV that requested the CATV channel, they are converted to a video signal that can be displayed by the TV by the circuitry described below in conjunction with the discussion of FIG. 5.
- Video on Demand
- One disadvantage of watching CATV broadcast channels is that there is no facility to have VCR like controls such as pause, rewind, play, slow motion or stop over the incoming video. This is one reason why VOD is more advantageous. We turn now to an overview discussion of VOD delivered via cable modem. Later, VOD delivered by ADSL modem or satellite dish will be discussed. The discussions herein regarding delivery of VOD however apply equally to delivery of video conferencing services, home shopping, distance learning and other multimedia services involving video, images or other multimedia data. Also, there is great similarity in the functions and structure of the circuitry for receiving, recovering and distributing digital VOD via satellite so there will be some seeming replication of the discussions that follow. First, a quick overview.
- The VOD downstream frequency band has multiple video channels, each at a different carrier frequency. Each video channel carries multiple TDMA channels of MPEG II compressed video with its associated audio, and sometimes with one or more additional TDMA subchannels devoted to associated data.
- The
tuner 102 is commanded by thehost microprocessor 128 to tune to a particular VOD channel. The customer will order a particular VOD program using theIR keyboard 34 orremote control 80. Themicroprocessor 128 receives the order information via management and control Ethernet packets generated by thenetwork adapter 30 and driven onto theLAN 20. As an example of how the video, audio and associated data subchannels of a VOD program are used, suppose thetuner 102 is tuned to a home shopping VOD channel where a plurality of customers wish to buy an item being shown by the video data on a first subchannel and being described on the associated audio data subchannel, there may be multiple customers who wish to buy the item who need to talk to an operator. These multiple customers can have their telephone calls digitized into IP packets on digital telephones such as 62 in FIG. 1 with each packet addressed to the IP address corresponding to the telephone number shown on the screen. These packets get encapsulated into Ethernet packets and transmitted on theLAN gateway 14. There, they are received by theswitching process 86 and the Ethernet headers are stripped and the IP packets are sent to DOCSIS modem for transmission on an upstream channel. - At the headend modem, the IP telephony packets are recovered and routed to the IP address where the operators are standing by. Suppose, three callers are calling to buy the item being shown and described. The three different operators handling these calls have their speech digitized into IP packets addressed to the digital telephone being used by the caller they are talking to. These IP packets addressed to the telephones of the three different callers are QAM modulated by the headend modem modulator transmitting the VOD program and sent downstream as associated data on three different TDMA subchannels associated with the video and audio subchannels of the home shopping presentation.
- The
host microprocessor 128 tellstuner 102 which channel in the VOD band to tune to via control data transmitted via data, address and control bus 156 (also referred to as the host bus). TheRF tuner 102 tunes to that channel and rejects all other signals. - The RF output of the
tuner 102 is digitized by A/D matrix 130. - Then the video, audio and associated values for each video, audio and data QAM modulated constellation point is recovered by the
QAM demodulator 146. - The recovered data values are then separated by
transport demultiplexer 148 into video, audio and associated data streams onlines control bus 156 which tells it which subchannels to separate out in the demultiplexing process. - A conventional
conditional access circuit 126 then decrypts the recovered data to prevent any unauthorized access thereto. The decryption process can be the same process used in current Ku band satellite digital video delivery or any other conventional encryption process. Since VOD subchannels are sent to only particular users, the data can be encrypted by PGP using the public key of the user to which the data is directed. That user then uses her private key to decrypt the data. - The conditional access circuit has a conventional PCI or other bus interface circuit. Typically the gateway is implemented as one or more circuit boards on a personal computer such as a Pentium class or PowerPC Macintosh which has a system bus. Any system bus which is fast enough to carry the worst case system load bit rate will suffice. The worst case system load is based upon the number and type of peripherals in the house. Typically, a compressed digital video channel can be delivered with good picture quality at 2 Mbps, so if a household has 4 TVs all of which are tuned to a different VOD channel and one video conference going on, 10 Mbps should be adequate. PCI buses have maximum bit rates much above 10 Mbps so a PCI bus for
system bus 156 is adequate for most applications. The conditional access circuit's bus interface packetizes the decrypted video, audio and associated data into PCI bus packets which are addressed to anIP video circuit 158 and placed onbus 156 vialine 160. - The IP video circuit receives the PCI bus packets and encapsulates the video and audio data into IP packets addressed to the
network adapter 30 which ordered the VOD program. The associated data is encapsulated into IP packets addressed to telephone 62 (or whatever telephone is being used to converse with the operator). The IP packets are then transmitted vialine 160 to therouting procss 86. - The
routing process 86 is a conventional IP to Ethernet routing process which examines the IP packet destination addresses and looks up the corresponding Ethernet addresses. The IP packets are then encapsulated into Ethernet packets and routed to the appropriate LAN network interface card forLAN - We now turn to a more detailed discussion of the process carried out by the system to receive VOD via either satellite, HFC or ADSL.
- FIGS.6A-6? together comprise a flowchart of the preferred embodiment of the processing which occurs in the system to order a VOD selection via either HFC, satellite or ADSL modem. Referring jointly to FIGS. 4A and 4B, 5 and 6A-6?, a user orders a particular video program via the
IR keyboard 34 orremote control 80 acting as a pointing device to point to a displayed menu selection onTV 28 in FIG. 3. That selection is received by the IR orRF receiver 82 in FIG. 5, as symbolized bystep 106 in FIG. 6A. The video selection along with the IP address ofnetwork adapter 30 is encapsulated in an IP packet and then encapsulated in an Ethernet packet bynetwork adapter 30 and launched onto LAN 20 (step 108). The IP packet has the IP address ofnetwork adapter 30 as its source address and the IP address of the VOD server as its destination address. The IP address will usually be different depending upon whether the VOD selection has been ordered via HFC, satellite or ADSL since each network probably has its own video server. The user typically picks the VOD selection from a menu displayed on her screen for each network, so by pointing to the desired selection on the menu of the ADSL network, for example, the IP address is set to the IP address of the video server for the ADSL network. - The network adapter encapsulates the IP packet requesting the video selection in an Ethernet packet (step108). The Ethernet packet destination address is the
routing process 86 in the gateway. The IP packet payload message identifies the movie or other video program desired and, in some embodiments, identifies the particular VOD channel and subchannel the gateway's VOD tuner will be tuned to (step 108). MPEG II compressed video is transmitted on two or more subchannels (one video, one associated data and zero or more associated video subchannels), and this is done regardless of whether the delivery media is HFC, satellite or ADSL. Step 108 represents the preferred process wherein the headend of the HFC, satellite network or ADSL central office monitors the channels and subchannels for load and sends downstream load balancing messages indicating which channels and subchannels are free. These load balancing messages are monitored by the gateways, and the channels and subchannels that are available are selected by the gateways for “camping” thereby helping balance the load across the network. In other embodiments however, the video server and/or headend may simply put the requested video selection on any unused subchannels of a channel that is not fully occupied and sends a downstream management and control message to the gateway from which the request originated indicating where the requested video selection will be found. Thehost microprocessor 128 in the gateway then sends data to its circuitry to cause the right channel to be tuned and the right subchannels to be demultiplexed. The “subchannel” means the particular timeslots or spreading codes to use in receiving the video data when tuned to the frequency of the “channel”. In embodiments where only one video subchannel per channel is carried, then subchannel and channel mean the same thing. - In the preferred embodiment, the headend modem (or other headend circuitry such as the uplink transmitting center in the case of satellite or the ADSL central office—hereafter these other headend circuits will be referred to as headend modems for brevity) has a plurality of VOD modulators/transmitters (hereafter called modulators), each of which is coupled to the VOD server and each of which receives a plurality of streams of MPEG II compressed video data. Each modulator is structured to transmit one VOD channel downstream with the plurality of MPEG II compressed video/audio/associated data streams being multiplexed therein by TDMA, CDMA or Synchronous CDMA.
- To implement the preferred form of load balancing, the headend modem keeps track of which subchannels of each downstream VOD channel are in use. It then broadcasts management and control messages to all gateways via the HFC, satellite downlink or ADSL lines of subscribers indicating which VOD channels and subchannels are available and which upstream channels the gateways are to use in sending messages that indicate that a gateway has “camped” on a particular channel and subchannel.
- The meaning of the term “camped” or “camping” is as follows. The gateways receive these broadcast load balancing messages and the host CPU of each gateway with a pending VOD request commands their VOD tuners (such as
tuners ADSL modem 182 in FIG. 4A) to tune to a channel that has an available subchannel, as symbolized bystep 108. The host CPU then commands the appropriate transport demultiplexer (e.g.,demultiplexer 114 for HFC delivery ordemultiplexer 184 in the case of satellite or a similar but not shown demultiplexer in the ADSL modem 182) to demultiplex and select out only the compressed video and audio data subchannels carrying the requested program as well as the associated data subchannels. “Camped” or “Camping” therefore means tuning of the appropriate digital VOD tuners and transport demultiplexers in the gateway to a particular channel and subchannel. - The channel and subchannel camping information is included by the gateway in the IP packet bearing the upstream video request, or is included within a separate IP packet generated by the gateway that refers to the IP packet bearing the VOD request, also as symbolized by
step 108. This camping data aids the video server or router in the headend modem (or the corresponding circuitry in a satellite or ADSL VOD network) to get the requested video data to the correct modulator which is transmitting on the VOD channel to which the gateway coupled to the requesting IP address is tuned. The channel and subchannel data included in the upstream message is also used to control that modulator to put the video and associated audio data on the subchannel to which the gateway is tuned. - Continuing with the discussion of FIG. 6A, the Ethernet packet is received by switching process86 (after it passes through the network adapter card of the host computer and up through the Ethernet protocol layers where the Ethernet header is stripped off as symbolized by step 110). The switching process looks up the destination address of the IP packet in a lookup table and determines from the destination address of the IP packet that it is directed to a VOD server coupled to the headend
modem driving HFC 10 or the headend circuitry driving the uplink to the satellite or to the ADSL central office (step 112). -
Step 116 represents the general process of transmitting the IP packet containing the VOD program request to the appropriate video server over the appropriate transmission media. The following paragraphs discuss the various cases individually, and step 116 is to be interpreted as covering each of these individual cases depending upon which video server is addressed by the IP packet. The following discussion assumes the gateway is equipped with HFC, satellite and ADSL expansion modules so that VOD can be ordered from any of these three networks. The gateway however may have only some subcombination of one or more of the HFC, satellite or ADSL modem expansion cards, so step 116 will only represent routing the IP request packet to one video server or possibly a selected one of two different video servers delivering VOD over two different networks. - In the case of an IP request packet addressed to a video server coupled to the
HFC 10 via the headend modem for delivery of a VOD selection via the HFC,step 116 represents the following subprocess. The IP packet gets routed toDOCSIS modem 70 and transmitted on an upstream management and control channel. In the preferred embodiment, the management and control channel used to transmit the upstream request is the channel designated in a downstream load balancing message from the headend modem indicating which channels and subchannels are available and which upstream channels the gateways are to use in indicating they have camped on one of the available channels and subchannels. The IP packet is recovered from the HFC and coupled directly or via the internet to the video server to which it is addressed. The video server may be coupled directly to headend modem or indirectly via the internet in which case the IP request packet is sent by a router at the headend over the internet to the video server. - In the case of an IP request packet addressed to a video server coupled to the satellite uplink headend circuitry, the upstream channel is over the PSTN so step116 represents the following. The IP packet get routed to the
ADSL modem 182 or theDOCSIS modem 70 for upstream transmission over the phone lines. If routed to the ADSL modem, it transmits the IP packet request message upstream over the PSTN lines to the ADSL central office where it gets routed to the video server coupled to the satellite uplink over a connection to the internet at the CO or a dial-up connection over the PSTN to the video server directly. - If the IP packet addressed to a video server that delivers VOD over the satellite network is routed to the DOCSIS modem, the IP packet gets transmitted over the HFC to the headend DOCFSIS modem. There, the packet gets recovered and reassembled (if necessary) and sent to a router for delivery over the internet or other WAN to the video server to which the packet is addressed. Alternatively, the headend DOCSIS modem may make a dial up connection over the PSTN to the video server or use IP telephony to deliver the packet to the video server over the internet via IP telephony circuitry coupled to the internet at the video server.
- If the IP VOD request packet is addressed to a video server that delivers via ADSL,
step 116 represents the following.Routing process 86 routs the IP packet to theADSL modem 182 where it is transmitted via the ADSL upstream channel to the ADSL modem at the CO. The CO then routes the IP VOD request packet to a video server directly coupled to the CO or gives it to a router connected to the internet for routing to a video server coupled to the CO via the internet (the term internet means the internet or any other wide area network currently in existence or which may come into existence in the future). Alternatively, the CO may make a dial up connection to the video server over the PSTN and send the IP VOD request packet over the dial up connection or may communicate with another CO where a video server is located by a T1 line or DS1 or other high speed telephone lines. The processing and circuitry for ADSL delivery of video demand taught in U.S. Pat. No. 5,247,347 may be used, and that patent is hereby incorporated by reference. -
Step 120 represents the optional step of authentication and/or conditional access gating carried out at the headend prior to routing the IP request packet to the video server. In some embodiments, the IP packet bearing the VOD request is routed to the video server only if the user making the request is authenticated and/or is an authorized subscriber to the requested service. This is typically by using the source address as a search key to search a lookup table of authorized users. The manner in which the requested services such as VOD are monitored so that they are delivered only to authorized subscribers is not critical to the invention, and the lookup function mentioned as part ofstep 120 can be replaced with any known manner of gating services only to authorized users. The gating function can also be done at the gateways after transmission of the VOD data downstream, and thegateway 14 showsconditional access modules step 120 is not needed. Processes for performing conditional access gating at the customer premises are well known in C band and Ku band subscription-based analog and digital video broadcasting, and need not be detailed here. To implement this known type of conditional access at the consumer premises, each gateway has a decryption module (126, 186 and similar circuitry in ADSL modem 182) with a key or password stored therein. This key or password is used by the video server or other service provider to encrypt the VOD data or other data encoding the requested service using the authorized subscriber's public key. Only that subscriber can decrypt the data using his private key. Theconditional access modules - After the IP packet reaches the video server, it reads the IP packet and opens the file storing the data of the requested movie or other video production (step124). The video server then begins transmitting the video data as IP packets addressed to the TV and
network adapter 30 that requested the movie (step 124). The IP packets contain compressed video data, typically by MPEG II compression. Step 124 is intended to represent one of the following three subprocesses of delivery of the video data bearing IP packets depending upon the video server to which the original IP packet bearing the VOD request was directed and whether the IP video data packets are to be delivered over HFC, via satellite or via a DSL connection. Step 124 is not intended to represent delivery of the VOD data by all three networks. The discussion of each subprocess is labeled by a header, and three different lines of steps are shown in FIGS. 6A-6? for the three different delivery networks since each delivery network is coupled to different circuitry in thegateway 14. - First, in the case of HFC delivery,
step 124 represents the process of transmitting the IP VOD packets to the modulator in the headend modem which is transmitting downstream on the channel identified in the original request packet. Transmission to this modulator can be by a local direct connection, or via the internet or other WAN or by a T1 or DS1 leased line or possibly by other high speed PSTN connection such as DSL. - The video data is compressed in any known manner and is encrypted before transmission. The preferred manner of implementing conditional access is to do the gating function at the video server end of the connection to avoid wasting downstream bandwidth on requests by unauthorized users.
- In the HFC delivery case, the compressed video and audio data (and possibly associated data such as IP telephony packets) is transmitted by the headend on the channel and subchannels identified in the camping data given in the original request message and arrives at the
gateway 14 via line 10 (step 136). In alternative embodiments, the video server and headend will cooperate to put the VOD data on unused subchannels of a channel that is not fully utilized and send a downstream management and control message telling the gateway where to find the VOD program it requested (step 136). - Upon reaching the gateway on the
HFC connection 10, the RF downstream signal is coupled throughcoupler 90 to buffer/isolation circuit 98 and reachestuners Tuners host CPU 128 of the gateway to listen on the analog video and DOCSIS data carrier frequencies, respectively.Tuner 102 however has been instructed by host microprocessor 128 (hereafter, the “host”) to tune to the channel on which the VOD data is modulated. Intuner 102, the RF signal is received the RF component is removed and, a baseband signal is output online 190. In some embodiments, thetuner 102 outputs an IF signal online 190 which is digitized in A/D matrix 130 with the IF mixed down to baseband byQAM demodulator 146 prior to demodulation of the constellation points. Also, in some embodiments, conventional carrier recovery and clock recovery is performed intuner 102, and the RF component is removed using a local carrier synchronized in frequency and phase with the transmitter's carriers to reduce the RF signal to I and Q baseband signals onlines - The VOD data bearing RF carrier is QAM modulated, so the tuner outputs a complex analog baseband signal on
line 190 with an inphase and a quadrature component, each having multiple sample periods each of which defines the I and Q values for one constellation point. Both components are sent to A/D matrix 130 for sampling with one sample per constellation point on each of the I and Q signals. - The A/D matrix is comprised of either two or three A/D converters depending upon whether the
DOCSIS modem 70 has A/D conversion circuitry therein. Typically, it does, so the output of theDOCSIS data tuner 104 online 132 is shown as passing the baseband signal straight through thematrix 130 without any sampling thereby. - The samples of the baseband analog I and Q signals on
lines bus 136. The process of receiving the RF downstream VOD signal and demodulating and digitizing each constellation point's I and Q values is symbolized bystep 136. In the preferred embodiment, the clock signal embedded in the data (or transmitted on a separate channel in some embodiments) defining the boundaries of each constellation point is recovered bytuner 100 and is made available to any of the other circuits that need it to deal with the video data. - The digitized, compressed VOD data is typically QAM-64 modulated. This means that the video and audio data is transmitted in the form of constellation points each point transmitted during a different time on the quadrature carriers with video, audio and associated data constellation points transmitted during different timeslots on the same channel. Each vidoe, audio or associated data point takes the form of a complex number having a phase and an amplitude value.
QAM demodulator 146 determines the complex value of video, audio and corresponding data points of the compressed VOD data that correspond to each constellation point (step 140). -
Transport demultiplexer 148 functions to demultiplex the video, audio and associated data points from their respective subchannel timeslots (or codes in embodiments where the subchannels are CDMA multiplexed)as symbolized bystep 144. The video demultiplexer receives a control data input from themicroprocessor 128 that tells the demultiplexer which subchannel timeslots (or codes) to use in retrieving the requested VOD data. - The retrieved video, audio and associated data is output in compressed form on
buses conditional access circuit 126. This optional circuit descrambles the data if the user is authorized to receive the program ordered or does other known types of conditional access gating if the conditional access function has not already been done at the headend (step 192). If the user is authorized to receive the VOD data, the video, audio and associated data points are encapsulated into bus packets used on thehost bus 156 and sent over the bus to an IPvideo encapsulation process 158. Typically, the host bus is a PCI bus so known PCI bus interface circuits inconditional access circuit 126 encapsulate the VOD data into PCI bus packets addressed to the IP video encapsulation circuitry (step 192). - The IP video circuitry monitors the
bus 158 for packets addressed to it and when it finds one, it takes the PCI bus packets that together comprise an IP packet of VOD data and reassembles the VOD data therein into and IP packet payload. In cases where the VOD data was never put into an IP packet format at the headend, the VOD video and audio data are assembled into IP packets addressed to the network adapter that requested the VOD program. Any associated data is encapsulated into an IP packet addressed to the appropriate peripheral such as thePC 22 or thetelephone 60 in FIG. 3. Usually, the IP destination address to which the video, audio and associated data are bound is included within the data itself, and if an IP packet was broken up into, for example octets or ATM cells for transmission, the original IP source and destination addresses are preserved such as by the methods described previously herein. - In the preferred embodiment, the IP source and destination addresses in the IP packet data within the PCI bus packets are used to assemble an IP packet header upon reassembly of the IP packet. The resulting IP packets are transmitted over
line 160 to the routing process 86 (step 194). In embodiments where the VOD video, audio and associated data was never placed into an IP packet format, thehost 128 keeps track of where each VOD request came from on the LAN and the addresses of the video server to which each is addressed. The when data arrives from that video server (as determined by the source address of the data or the network, channel and subchannel on which the data arrived), the host sends data to theIP video circuit 158 telling it the IP address of the network adapter the video and audio data are to be addressed to and the IP address of any other peripheral to which any associated data is to be sent. The case where the VOD data is not originally encapsulated into an IP packet could happen where a video server is coupled directly to a headend modem or a satellite uplink facility or an ADSL CO. Step 194 is to be also interpreted as covering this alternative case of constructing IP packets using IP addresses supplied from thehost 128 which is monitoring all outgoing VOD requests. - The
routing process 86 receives the VOD IP packets and reads the IP destination address and determines that the IP address is mapped to the Ethernet address ofnetwork adapter 30 in FIG. 3. The IP packets addressed to this network adapter are then encapsulated into Ethernet packets addressed to thenetwork adapter 30 and sent to the appropriate network interface circuit in routingcircuitry 86 for launching onto LAN 20 (step 196). The household might have multiple TV sets, each with its own network adapter. In such a case, the IP destiantion address in the VOD data will be used to determine which network adapter ordered the program and that network adapter's Ethernet address will be used in the Ethernet packet headers of the Ethernet packets into which the VOD data IP packets are encapsulated. The routing circuitry will then determine which LAN and NIC to use to get the data to the right TV. - What happens to the VOD data when it gets to the network adapter will be discussed below after the discussion of the ADSL and satellite delivery cases.
- DSL Network Delivery
- In the case of ADSL delivery (or delivery by any digital subscriber line service with adequate bandwidth), the IP packets are transmitted from the video server to an ADSL central office within approximately 3 miles of the subscriber by a T1 or DS1 line typically although an ADSL downstream connection might be used if the possible maximum load of VOD data being sent to this particular CO is light enough (
step 198, FIG. 6B). - From the ADSL central office, the video data IP packets are FDMA multiplexed onto the ADSL downstream carrier and transmitted to the gateway of the requesting subscriber via the appropriate local loop. At the gateway, the IP packets arrive on the PSTN
local loop 58 and coupled through anisolation buffer 204 to the ADSL modem 182(step 202). - The
ADSL modem 182 is a conventional structure and recovers the IP packets in conventional manner and outputs them online 188 to the switching process. There, the IP packets bearing VOD data are encapsulated in Ethernet packets addressed to the NIC ofnetwork adapter 30 which ordered the video program and sent to the appropriate NIC in routingcircuitry 86 which interfaces to the LAN to which thenetwork adapter 30 which ordered the VOD program is coupled (step 206). - In embodiments where only a single LAN is in use at the customer premises, an ADLS modem200 (shown in dashed lines to indicate it is an alternative embodiment) with an Ethernet output interface may be substituted for
ADSL modem 182 with the ADSL modem output coupled directly to the LAN. - Satellite Network Delivery
- In the case of satellite delivery of the video data IP packets, the video server for the satellite network delivers the VOD data IP packets to the satellite uplink facility by any suitable means such as a T1 or DS1 leased line or by direct connection to the uplink transmitter if the video server is located at the uplink facility (step208).
- The uplink facility modulates the IP packet data onto the DirecPC uplink carrier or another carrier devoted to VOD applications and transmits it to a geosynchronous satellite (step210).
- A transponder on the satellite then recovers the IP packets and QPSK modulates them (or using some other suitable modulation scheme) onto a DiretPC or VOD downlink carrier and transmits them to all the dishes in its footprint area on the surface of the earth (step212).
- Tuner180 (FIG. 4A) receives the RF signal and does conventional carrier and clock recovery so that the recovered carrier and clock signals can be used in demodulating, detecting and demultiplexing the signals as was the case for the preferred embodiment of
tuner 102.Tuner 180 receives data fromhost 128 viahost bus 156 that tells it which downstream channel to which it should tune, and it tunes out all other RF signals. The VOD downlink quadrature carriers are then demodulated and I and Q baseband signals are output onlines 216 and 218 (step 214). - Analog to digital conversion can happen anywhere after the
tuner 180 and prior to theIP packetization circuit 158. However, for parallelism with the HFC case, we will assume that A/D conversion happens in theQPSK demodulator 220 prior to the constellation point demodulation process. The recovered clock from thetuner 180 is used to synchronize the demodulation and A/D conversion processes incircuit 220. The I and Q values of the QPSK constellation points are then demodulated to their original analog or digital values to yield a stream of video, audio and associated data points on bus 222 (step 224). If they are demodulated to analog values, these analog values for the I and Q values of each constellation point are later digitized. - The satellite VOD delivery system is much like the HFC system in that video programs are delivered on channels each having a different downlink frequency and each having a plurality of TDMA orCDMA CDAM subchannels. It is the function of
transport demultiplexer 184 to receive data fromhost 128 telling it which subchannels to recover and to demultiplex the video, audio and associated data points from their respective subchannels (step 226). Thetransport demultiplexer 184 has any conventional TDMA or CDMA demultiplexing structure that can receive data indicating which subchannels to recover and recover them and can be the same structure astransport demultiplexer 148. - The recovered video, audio and any associated data are output to a
conditional access circuit 186 viabuses 228, 230 and 232. The optionalconditional access circuit 186 functions to decrypt or otherwise gate the VOD data to the subscriber who requested it only if she is a legitimate subscriber and if this gating function was not performed at the satellite uplink facility or the video server (step 234). The conditional access circuit can have any of the known structures to perform this function. - The conditional access circuit has a host bus interface circuit (not separately shown) which functions to take the data from the VOD IP packets (usually the IP packets bearing VOD data are broken up for transmission over the channel)and encapsulate the data into bus packets of the type used on the
host bus 156, e.g., PCI bus packets. These packets are addressed to the IP video circuit 158 (step 236). - The IP video circuit functions as previously described. Basically, it takes packet addressed to it off the
host bus 156 and either reassembles the IP packet if it was originally an IP packet but was broken up for transmission (such as into ATM cells) or encapsulates the data into an IP packet if it never was in an IP packet format (step 238). Presumably, the incoming VOD data includes the IP destination address in it. However, in some embodiments, thehost 128 will tell theIP video circuit 158, “If you receive data fromconditional access circuit 186, it is to be addressed to the IP address of network adapter xx which requested it.” One way or another, theIP video circuit 158 assembles an IP packet header for each packet that tells therouting circuitry 86 where the packet is to be sent on the LAN. The resulting IP packets are sent to therouting circuit 86 via bus 160 (step 238). - The
routing circuit 86 looks up the Ethernet address bound to the IP address, encapsulates each IP packet into an Ethernet packet and routes it to the appropriate network interface circuitry inrouter 86 for the LAN to which the network adapter is coupled which ordered the VOD program (step 240). - Note that if there is associated data with the VOD program which needs to go to the
personal computer 22 or toIP telephone 60 in FIG. 3, that data has its IP address set to the PC or the telephone as the case may be and therouter 86 addresses the Ethernet packets containing this associated data to the Ethernet address of the PC or telephone or other peripheral as the case may be and this is true regardless of whether the VOD data is delivered by ADSL, HFC or satellite (steps 238 and 194). - The Network Adapter Structure and Subprocess for Video on Demand Processing
- Regardless of which network was used to transmit the VOD program, the data that encodes the program has now been encapsulated into Ethernet packets and put onto the LAN. A block diagram of a
typical network adapter 30 in FIG. 3 is shown in FIG. 5. The function of the network adapter is to pick the appropriate Ethernet packets off the LAN, strip out the video and audio data and convert it to an NTSC or PAL or SECAM signal or to a video signal which can be fed into a video input of a TV. - Each network adapter has a
network interface card 84 which couples the network adapter to the physical media of the LAN. Network interface circuits for Ethernets are well known, and will not be described further herein. Each NIC on theLANs network adapter 30 arrives at the gateway, the gateway's routing tables will map this IP address to the Ethernet address of the network adapter. The entire IP packet, header and all, will then be encapsulated into an Ethernet packet with the destination address of the Ethernet packet being that of the network adapter. - All Ethernet packets are received by
NIC 84, but only packets addressed to thenetwork adapter 30 are kept. When an Ethernet packet addressed to networkadapter 30 is received, it is examined to determine if the Ethernet address matches the address of the network adapter, and, if so, the packet is passed through the Ethernet protocol stack where the Ethernet header is stripped off and error detection and correction are done on the packet. The resulting IP packet is then passed to the IP video circuit 242 (step 244). For outbound packets such as menu requests and VOD request packets, the Ethernet protocol stack inNIC 84 performs the CSMA/CD transmission and collision detection protocol and transmits the packet on the LAN. - The IP packets from the
NIC 84 are examined by theIP video circuit 242 to determine if they are addressed to the network adapter and whether they are graphics data or video data. The IP packet header is stripped off and payloads of packets that contain compressed video/audio data are transmitted as a bit stream toMPEG decoder 246, and packets that contain graphics data are transmitted as a bit stream to 2/3 D graphics circuit 83 (step 248). In some embodiments, the menus will not be sent as separate data but will simply be video frames which are digitized and compressed. In such embodiments,bus 87 is not necessary. - The
MPEG decoder 246 decompresses the compressed video and audio data bits and generates and uncompressed audio bit stream online 250 and an uncompressed video bit stream on line 252 (step 258). - The audio bit stream is enhanced for stereo and filtered and then converted to an analog signal in any conventional audio processor254 (step 258). In alternative embodiments, the uncompressed audio data not processed to enhance it or convert it to stereo or filter it and is simply converted to an audio signal.
- The data output on
line 252 is a digitized YUV format video signal.Video processor 256 filters the video signal to enhance it (step 258). The combination of thevideo processor 256 and the 2/3D Graphics circuit 83 are commercially available in integrated circuit form from ATI or C3. - The digitized YUV format video signal on line264 (or 252 if
video procesor 256 is not used, is converted byvideo encoder 260 into an NTSC, PAL, SECAM or composite format video signal which can be displayed on a TV (step 262). If the output signal format is composite video, the composite video signal is input to the TV's video inputs via line 266 (step 262). Likewise, the audio processor converts the digitized uncompressed audio data into an audio signal online 270 for coupling into the audio input of a TV (step 272). If the output signal from thevideo encoder 260 is NTSC, PAL or SECAM format, the signal is modulated onto an RF carrier at some locally unused frequency such aschannel 3 by a video modulator 276 (step 274). - Wideband Internet Access
- Dial up internet connections through modems are very slow. It is much more useful to surf the internet with a much wider bandwidth at least downstream.
- Referring to FIGS.7A-7?, there is shown a flowchart of the process of high bandwidth surfing of the internet using one of the HFC, satellite delivered DirectPC or DSL networks. In
step 278, thepersonal computer 22 in FIG. 3 or network computer (hereafter sometimes referred to as NC) 24 or 26 launches its browser and enters a URL of a web page to be viewed. Thenetwork computers - If the program to be run is resident on a server on the internet, the step of doubling clicking the icon of the program to be run is converted by TCP/IP protocol software layers in the network computer (typically stored in nonvolatile flash EEPROM or ROM) into an IP packet addressed to the server storing the application program to be run. The IP packet is then encapsulated into an Ethernet packet by the NIC of the NC addressed to the
gateway 14. At the gateway, the Ethernet packet is received by the NIC and the Ethernet headers are stripped off by therouting process 86. The packet is then routed to the appropriate transmitter for the upstream medium the user has a subscription for or which is cheapest for internet access if the user has DSL, satellite and HFC modules installed—or some combination thereof (least cost routing process). In other words, the IP packet will be routed to theDOCSIS modem 70 for upstream transmission over theHFC 10 or to theADSL modem 182 if the DSL service or to conventional modem 280 (which may also be a conventional FAX/Data modem) if satellite downloading service via DirectPC is to be used. The IP packet is sent by one of these media to the headend, ADSL CO or by dialup connection to the satellite uplink facility. At the destination, the IP packet is recovered and routed by a router at the destination to the internet server storing the application to be executed. - The internet server then sends the program to be executed to the network computer by encapsulating the data of the program into IP packets addressed to the NC that reqeusted it. These IP packets arrive at the gateway and are recovered by the DOCSIS modem, ADSL modem or satellite reception circuitry to be described below and sent to the
routing process 86. There, they are encapsulated into Ethernet packets addressed to the NIC of the NC that requested the program and launched on the LAN. The NC receives the packets, strips out the data of the program, stores in its RAM and begins executing it. - The user then enters the URL of the web site she wants to visit (step278). The browser or other application then passes this URL down to TCP/IP protocol software processes in execution on the computer which turn the URL into an IP packet requesting that the web page at that URL be downloaded to the computer that asked for it, as identified by the source address of the IP packet (step 282). This IP packet is then encapsulated into an Ethernet packet addressed to the
gateway 14 by the NIC of the NC or PC (step 284). - The gateway's NIC (not shown separately in FIG. 4A) receives the Ethernet packet, strips off the Ethernet header after error detection and correction and passes the IP packet up to the routing process layers. The router looks up the destination address in its routing tables and forwards the packet to one of the upstream transmitters (step286). If the user has only one network interface such as an HFC interface only or an ADSL interface only installed (as determined by either a discovery process carried out by the router or by configuration data), the IP packet is forwarded to that upstream transmitter. However, if user has more than one network interface installed, the router may forward the IP packet to an upstream transmitter based upon any criteria such as user choice as indicated by a management and control packet sent to the gateway or a field in the IP packet, by a random or round robin selection process or by a least cost routing algorithm that automatically picks the cheapest service for widebandwidth internet access. Step 286 is intended to represent any of these methods of selecting the upstream transmitter.
- If the upstream transmitter is the
DOCSIS modem 70, the IP packet is transmitted upstream over a virtual channel devoted to this gateway or assigned to it on the fly by the headend. The virtual channel can be established by TDMA, SCDMA or CDMA or possibly by FDMA. The CO modem recovers the IP packet and passes it to a router coupled to the headend (step 288). - If the upstream transmitter is the
ADSL modem 182, the IP packet is modulated onto the upstream carrier and transmitted over the PSTNlocal loop 58 to the ADSL modem at the CO. There, it is recovered and passed to a router coupled to the internet (step 288). - If the downstream medium is going to be the satellite downlink, the upstream transmitter is the
conventional modem 280. This modem dials a modem at the satellite uplink facility and transmits the IP packet thereto. The IP packet is recovered and passed to a router coupled to the internet (step 288). - The router sends the IP packet to the web server at the URL (step290) which opens the web page identified in the URL and begins sending the web page data back to the router as a series of IP packets (step 292).
- The IP packets arrive at the router and are sent to the appropriate downstream transmitter. Step294 is intended to represent downstream transmission over any of the HFC, DSL or satellite media. In the case of HFC delivery, the downstream transmitter will be the headend modem. The headend modem will either broadcast the IP packet on the downstream carrier to all gateways or transmit it on a virtual downstream channel assigned to the gateway at the premises of the PC or NC that requested the web page (step 294).
- If the downstream media is the satellite downlink, the router sends the IP packets to the uplink transmitter which transmits them to the satellite. A transponder on the satellite receives the packets and re-broadcasts them on the downlink channel (step294).
- If the downstream media is a DSL local loop, the router at the CO sends the IP packets to the ADSL modem at the CO which modulates them onto the downstream carrier (step294)
-
Step 296 is represents the recovery of the IP packets at the gateway, regardless of the downstream media, transmission to the router, protocol conversion and routing and transmission out on the appropriate LAN. The details of how this happens in the gateway for each different downstream media follows. - In the case of HFC downstream delivery,
tuner 104 filters out all but the DOCSIS downstream carrier and removes the RF component. The resulting baseband signal is passed through the A/D matrix online 132 to theDOCSIS modem 70. There, the IP packets are recovered and sent to therouting circuit 86 viabus 300. Although this is shown as a separate bus, it may actually be thehost bus 156 in some embodiments with the IP packets being sent tohost microprocessor 128 by encapsulation in PCI bus packets addressed to the host. Likewise for all other buses shown in FIG. 4A going into or coming out of therouting circuit 86. Therouter 86 looks up the destination address in the IP packets and determines they are addressed toPC 22 or one ofNC - In the case of satellite downstream delivery,
tuner 302 in FIG. 4B is directed byhost 128 to tune to the DirectPC downstream QPSK modulated carrier. The tuner rejects all other signals and recovers the carrier and synchronizes a local oscillator to generate two coherent reference signals which are phase and frequency matched to the two quadrature carriers used to transmit the downstream IP packets. These local reference signals supply two correlators in the tuner, one for the inphase channel and one for the quadrature channel. Each correlator is comprised of a multiplier and an integrator. Digital QPSK transmission and transmitters and receivers therefore as well as other modulation and multiplexing schemes and carrier and clock recovery circuits are described in Haykin, Communication Systems, 3rd Ed. (Wiley & Sons 1994) ISBN 0-471-57178-8 which is hereby incorporated by reference. The digital satellite receiver channel is not limited to QPSK modulation, and any modulation and/or multiplexing scheme used today or subsequently for downstream transmissions may be used with suitable adjustments to the gateway satellite digital data receiver. - The output of
receiver 302 is coupled via I and 0buses QPSK demodulator 304 which functions to recover the IP packet data and encapsulate it into bus packets for the host bus addressed to therouting circuit 86. The QPSK demodulator 304 is typically comprised of a decision device that receives the baseband I and Q channel signals and compares them to decision threshold of zero volts. If the I channel voltage is greater than zero, a decision oflogic 1 is made but if its voltage is less than zero, a decision of logic 0 is made. If the Q channel voltage is greater than zero, a decision oflogic 1 is made but if its voltage is less than zero, a decision of logic 0 is made. Finally, the two binary bit sequences defining the IP packets coming out of the decision circuit are recombined in a multiplexer indemodulator 304 and sent to bus interface circuitry indemodulator 304 for encapsulation into bus packets and transmission viabus 312 and thehost bus 156 to therouter 86. The router receives them, strips off the host bus packet headers, looks up the IP destination address and finds they are addressed to thePC 22 or one of the NCs. The IP packets are then encapsulated into Ethernet packets (or whatever other packet format is used on theLANs 18 or 20) addressed to the PC or NC that ordered the data and sent to the proper NIC (step 296). - If the downstream media is an ADSL local loop, a
conventional ADSL modem 182 in FIG. 4A recovers the IP packets and sends them onbus 188 to therouter 86. The router receives them, strips off the host bus packet headers (ifbus 188 is actually the host bus 156), looks up the IP destination address and finds they are addressed to thePC 22 or one of the NCs. The IP packets are then encapsulated into Ethernet packets (or whatever other packet format is used on theLANs 18 or 20) addressed to the PC or NC that ordered the data and sent to the proper NIC (step 296). - The NIC of the PC or NC that ordered the data receives the Ethernet packets, does error correction and strips off the Ethernet headers. The resulting IP packets are passed up the TCP/IP protocol layers where the IP packet headers are stripped off and the TCP protocol makes sure all the packets have been received. The payload data is then sent to the application that requested it for display (step308). Processing by the PC or NC of the IP packet data and Ethernet packets is the same as in PCs on a LAN that share modems and dial up connections to the internet through ISPs, and that technology is incorporated by reference.
- Reception and Distribution of Analog Video Broadcasts Via Satellite or Terrestial Antenna
- One of the advantages of the
gateway 14 is that it may also be used to distribute analog TV broadcasts to TV's throughout the house using the LAN thereby eliminating the need for separate wiring. -
Tuner 314 starts this process by receiving control data frommicroprocessor 128 defining which C-band analog video channel has been requested by the user.Tuner 314 can be any conventional C-band satellite tuner modified so as to accept digital control data from thehost 128 to control which satellite and which transponder to tune to as opposed to receiving this information directly from a remote control or front panel switches. In the home network described herein, users request C-band broadcast channels via theirIR keyboards 34 orremote controls 80 in FIG. 3. These requests are encapsulated into management and control Ethernet packets addressed tohost CPU 128 bynetwork adapter 30. The host CPU receives them and generates a PCI bus packet onbus 156 addressed totuner 314 telling it which channel to tune, i.e., which satellite to turn the dish to and which transponder or channel in the downlink broadcast to tune to. - The RF (or IF) output of
tuner 314 onbus 134 is then digitized by an analog-to-digital converter 316. The digital samples online 318 are input to avideo demodulator 320 which functions in the digital domain to demodulate the digitized analog video signal by removing the RF component. Thevideo demodulator 320 outputs digital data online 322 which represents a conventional baseband NTSC, PAL or SECAM format video signal. - The digital data on
line 322 is at too high a bit rate to send over the LAN since uncompressed broadcast video consumes about 221 Mbps of bandwidth. Therefore, the video data must be compressed. MPEG II compression is preferred, but any known form of compression currently known or to be developed in the future will suffice since the form of compression is not critical. MPEG II compression circuitry is well known, and is used forMPEG encoder 326. However, MPEG compression does not compress NTSC, PAL or SECAM format signals. They must first be converted to YUV format luminance and chrominance signals. This conversion is done invideo decoder 324, which is a known type of circuit in any video system that uses MPEG II compression. - The compressed video data is encapsulated into PCI (or other type) bus packets addressed to
IP video circuit 158 on FIG. 4A. There, the compressed video data is encapsulated into IP packets addressed to the network adapter of the TV where the request originated and the satellite C-band video channel is to be viewed. TheIP video circuit 158 determines which IP destination address to use in constructing the IP packets via data received from thehost microprocessor 128. When the original request was received, thehost microprocessor 128, in addition to telling thetuner 314 which channel to tune, also determines from the source address of the Ethernet packet bearing the request which TV's network adapter requested the data. The IP address of this network adapter is encapsulated into a PCI bus packet and transmitted viahost bus 156 to the IP video circuit. The IP packets encapsulating the digitized C-band video channel are then transmitted viabus 160 to therouting circuit 86.Bus 160 may simply be thehost bus 156 in embodiments where the routing process is carried out in software on thehost 128. - The
routing process 86 is a conventional IP to Ethernet routing process which examines the IP packet destination addresses and looks up the corresponding Ethernet addresses. The IP packets are then encapsulated into Ethernet packets and routed to the appropriate LAN network interface card forLAN - When the IP packets reach the network adapter of the TV that requested the CATV channel, they are converted to a video signal that can be displayed by the TV by the circuitry described above in conjunction with the discussion of FIG. 5.
- Terrestial Broadcast Reception
- Reception and distribution of standard TV broadcasts received over an antenna coupled to the
gateway 14 is very similar. Astandard TV antenna 328 is coupled to the gateway by a coax ortwinlead wire 330. ATV tuner 332 tunes the requested channel and outputs the desired channel as an RF or IF signal.Tuner 332 can be a conventional TV tuner modified to receive digital control data from thehost computer 128 which controls which analog TV broadcast channel the tuner selects. - A/
D converter 334 samples the output RF or IF and feeds the samples to avideo demodulator 336. There the signal is demodulated in the digital domain to remove the RF component. As is the case for all the analog signal receiver circuits for both HFC and satellite, the analog-to-digital conversion can happen anywhere along the line of circuits including just before the MPEG encoder. - The
output 338 is a digitized version of an NTSC or PAL or SECAM signal. It is fed to avideo decoder 340 which converts it to a YUV format. The YUV signal is then compressed byMPEG encoder 342 and put into bus packets of the format used on the host bus 156 (typically PCI) and addressed to theIP video circuit 158. - The IP video circuit strips off the bus packet headers (and may perform error detection and correction) and encapsulates the compressed video data from the PCI bus packets into IP packets addressed to the network adapter of the TV set where the requested channel is to be viewed. The IP packets are then sent to the
router 86 where the destination address is looked up and the IP packets are encapsulated into Ethernet packets addressed to the same network adapter and launched onto the appropriate LAN. - LAN Alternative Embodiments
- Video is isochronous or stream-oriented. On the other hand, traditional LAN traffic is more bursty. LANs were not developed to support streaming traffic, and it is therefore possible that a 10 Mbps 10Base-T Ethernet LAN will not have sufficient bandwidth at times to support the load, especially where there are multiple TVs each requesting a different channel along with other simultaneous traffic sharing the 10 Mbps bandwidth. Video is highly bandwidth intensive so even 100 Mbps LANs have trouble supporting high quality video intermingled with more traditional LAN data traffic.
- Accordingly, it is within the scope of the genus of the invention to use higher capacity LANs for
LANs - Reception and Distribution of DirecTV Digital Video Broadcasts
- The gateway will include a bus slot for a module which can receive regularly scheduled DirecTV and other format digital video broadcasts on downlinks from a satellite. A
tuner 344 serves to receive digital control information from host microprocessor as to which channel on the downlink a user has requested. The tuner then tunes to this channel and rejects all other signals and a QAM demodulator demodulates the signal to recover the transmitted data and outputs a complex baseband signal online 348. Conventional QAM modulated digital data receivers are taught in Lee & Messerschmitt, Digital Communications, 2d Ed., (Kluwer Academic Publishers 1994) ISBN0-7923-9391-0, Section 6.4.3, pp. 203-208 and FIGS. 6-18 and 6-19, the entirety of this book being hereby incorporated by reference. Typically, thetuner 344 will be comprised of a bandpass filter to tune the desired channel and reject out-of-band signals and doubling as an anti-aliasing filter. Typically, the signal is then digitized and a phase splitter (a filter that passes only frequency components in the positive half of the Fourier spectrum and rejects Fourier components in the negative half) acts in the discrete time domain to remove the negative half Fourier frequency components of the received spectrum to output an analytic signal. Then the positive half frequency components of the received signals are demodulated, i.e., the RF carrier component is removed by mixing with a local carrier which is synchronized to the transmitted carrier. - FIG. 6-16 of Lee et al. at p.204 illustrates three different configurations for a QAM tuner.
- The function of the
QAM demodulator 346 is to detect the actual symbols sent. This is typically done by sampling and slicing. A complete QAM tuner to get the receive signal back to baseband and demodulator to recover the transmitted symbols is shown in FIG. 6-18(b) of Lee & Messerschmitt for the real valued case and is comprised of two mixers which move the received spectrum back to baseband by multiplying by quadrature shifted local carriers and two receive bandpass filters to reject out of band signals and pass only the positive half Fourier components of inphase and quadrature signals. The I and Q signals are then sampled at the symbol rate and passed through a slicer to recover the symbols actually transmitted. A more complete representation of a practical QAM receiver including both precursor equalization and postcursor equalization and carrier and timing recovery is shown in FIG. 6-23 of Lee & Messerschmitt. Preferably there will also be an error detection and correction circuit as well (not shown). - After the symbols of the compressed video program are recovered, a
conventional transport demultiplexer 350 receives digital control input from the host as to which subchannel on which to find the video program which has been ordered and demultiplexes the audio, video and any associated data from those subchannels. - To help manage the load on the LAN, an
optional transcoder 352 is used to translate the bit rate of the compressed video down to a lower rate when necessary because of current loading conditions on the LAN. Transcoders are known and were commercially available from Imedia in San Franscisco, Calif. and now from the assignee of the present invention. - The output data of the transcoder is supplied to a conventional
conditional access circuit 354 which decrypts the data if the subscriber is authorized to receive the program. Alternatively, theconditional access circuit 354 may function to decrypt the original encrypted data if the user is an authorized subscriber and then re-encrypt the data before transmission on the LAN using the new C5 encryption standard. The re-encrypted data is then packetized into bus packets and transmitted over thehost bus 156 to theIP video circuit 158. There it is encapsulated into IP video packets addressed to the network adapter that requested the program and sent overdata path 160 to the routing circuit/process 86. The routing process looks up the destination address and maps it to the LAN address of the network adapter and encapsulates the data into Ethernet packets and sends them to the correct NIC for transmission over the LAN. At the network adapter, the packets are processed as previosuly described in connection with the description of FIG. 5 to convert the data to NTSC, PAL or SECAM video signals and the corresponding synchronized audio. If C5 encryption is used, the data remains encrypted at all stages until it is converted to analog video and audio signals. - A conventional DirecTV receiver modified to receive digital control data telling it which channel and subchannel to tune can be substituted for
tuner 344,QAM demodulator 346 andtransport demultiplexer 350. Alternatively, the satellite receiver taught in U.S. Pat. No. 5,983,071 may be used but modified to remove theaudio decoder 160, the D/A converter 164, the video decoder 170 and the NTSC encoder 174. Those functions all happen at the network adapter after distribution over the LAN. If the receiver of U.S. Pat. No. 5,983,071 is substituted for thetuner 344,QAM demodulator 346 andtransport demultiplexer 158 and theconditional access circuit 354, the audio and video output stream on lines 162 and 172 of the patent will be supplied to thetranscoder 352. The receiver taught in U.S. Pat. No. 5,983,071 may also be used in place oftuner 102, A/D matrix 130,QAM demodulator 146,conditional access circuit 126 andtransport demultiplexer 148. Again, this receiver will be modified to remove the following components taught in the patent:audio decoder 160, the D/A converter 164, the video decoder 170 and the NTSC encoder 174. Those functions all happen at the network adapter after distribution over the LAN. A transcoder may also optionally substituted into the HFC digital video receiver module circuit that includestuner 102, and theconditional access circuits tuner 102,QAM demodulator 130 andtransport demultiplexer 148 and theconditional access circuit 126, the audio and video output stream on lines 162 and 172 of the patent will be supplied to either a transcoder, if present, or to bus interface circuitry (not shown) which packetizes it and sends it to theIP video circuit 158 over the host bus. - Pay Per View Push Technology Gateway Compatibility
- The
gateway 14 can also be used to receive pay per view or free regularly scheduled broadcasts of digital or analog video programs. Push technology means a video server at or coupled to the HFC headend, ADSL CO or satellite uplink has a regular schedule of video programs that it outputs at specific times on specific channels. A menu displayed on the television set in the manner described elsewhere herein or publication is used by the user to select the program the user wishes to view. The user selects the program she wishes to view at the time the program is supposed to start by entering the program number (the program number can be mapped to the service provider and the video server IP address or that information can be entered manually) on herremote control 80 orkeyboard 34. That program number is encapsulated into an Ethernet request packet and transmitted to the gateway where it is routed to the host. Thehost 128 then sends the appropriate command data over the host bus totuner ADSL modem 182 to tune to the appropriate channel, depending upon which medium the program will be arriving. In the case of digital video, the host also sends control packets to thetransport demultiplexer - IP Telephony
- Since there is a LAN to runs throughout the customer premises, it is useful to use the LAN to distribute video and audio and FAX telephony data to the video phones, telephones, FAX machines and FAX modems throughout the premises. Also, since all these physical telephony devices are coupled to a computer, it is useful to include an IP and/or PBX telephony module352353 in the gateway to provide functionality that the user could not formerly obtain from POTS service. POTS service can provide conference calling, call forwarding, caller ID, voice mail and pager notification of voice mail messages as well as other services through facilities such as Centrex provided by the CO switch. However, these services all cost extra money, and can be implemented locally in the gateway through use of “PBX on a card” expansion circuitry to extend the functionality of the host.
Such telephony circuitry 352 to extend the functionality of DOS and Windows based personal computers to include PBX functionality, voice mail and a host of other features is commercially available as the VS1 and Incline systems from Picazo Communications, Inc. of San Jose, Calif. and from Netphone, Inc. of Marlborough, Mass., and Altigen Communications, Inc., the details of which are hereby incorporated by reference. The Netphone PBX on a card technology which can be used to implementcircuit 352 is described in U.S. Pat. No. 5,875,234 which is hereby incorporated by reference. This patent basically teaches a PBX circuit on an expansion card that is coupled to the host bus of a network server. The PBX card can establish and maintain telephone calls and do normal PBX call control functions. The PBX card can be controlled from telephony enabled applications on the server/gateway or by telephony enabled applications running on PCs via the LAN connection to the gateway. Any known expansion circuitry to add PBX functionality to a LAN server regardless of whether it is implemented one one circuit board or more than one may be used forcircuit 352. - Typically, the
circuit 352 will have its own switching circuit for connecting phone calls from extension phones coupled to conventional phone lines toCO trunk lines 58 and vice versa. - In some embodiments, the PBX functionality alone may be sufficient. However, use of the internet for telephony is a growing market, and websites such as www.net2phone.com already exist to allow long distance telephone conversations to take place over the internet regardless of distance for 10 cents per minute. To allow users to take advantage of these services, PCs on
LANs PBX telephony circuit 352 will include circuitry to digitize analog voice signals arriving from the extension phones viaconventional phone lines 354. The IP &PBX telephony circuit 352 may also include packetization circuitry in some embodiments to receive Ethernet packets carrying digitized voice from the PCs onLANs router 86 viabus 356 and packetize them into IP packets addressed to the internet server providing the IP telephony services. These IP packets are then sent back overbus 356 torouter 86 where they are routed to the server identified in the destination address of the IP packet. The routing can be least cost routing if multiple high bandwidth upstream media such as HFC and ADSL upstream high speed internet access modules such asDOCSIS modem 70 andADSL modem 182 are present in the gateway. In other embodiments, thePBX expansion module 352 will do call control switching and provide other services betweenextension lines 354 and the CO trunk lines, and analog telephone signals from the extension phones online 354 will be digitized and packetized into an IP packet addressed to an IP telephony server on the internet whose IP address is fixed and known to be the IP address to which the telephone data from the conventional POTS telephones is to be directed. - Then, instead of sending data from Ethernet packets bearing telephony data from PCs, telephones and FAX machines on the LAN for encapsulation into IP packets by the IP &
PBX telephony module 352, the IP packet encapsulation will be done at the source. In other words, ifPC 22 orNC 24 orphone 60 orFAX 64 at the customer premises wants to send data to an IP telephony server on the internet, the digital data generated by the source device will be encapsulated by the source device into IP packets addressed to the IP telephony server on the internet. These packets will then be encapsulated into Ethernet packets and sent to thegateway 14. Thegateway 14 will then strip off the Ethernet packet headers and rout the enclosed IP packets to the server on the internet to which they are addressed via theDOCSIS modem 70, theADSL modem 182 or possibly by theconventional modem 280 in FIG. 4A (although use of the conventional modem would only make sense if higher bandwidth upstream media was not available). - Modular Construction of Gateway
- Referring to FIG. 8, there is shown a block diagram illustrating the software architecture and modular construction of the gateway/
LAN server 14. As mentioned above, in alternative embodiments, thegateway 14 may actually be comprised of two or more servers to divide the labor but each coupled to the expansion modules by a bus/LAN structure 156. For example, one server may run only the PBX control software and IP telephony software and another server may run only the management and control and routing process needed for the push and pull video applications and high speed internet access and perform any routing functions needed for IP telephony by the first server. - The software processes in the host or server run in conjunction with the
operating system 358 and use its application programmatic interfaces (API) for message transfers between processes and to send data to the LAN interface or NIC 360 and thehost bus 156. The data paths between the various software processes and between the various processes andNICs host bus 156 through the operating system are symbolized bydata path 366. This data path represents any of the typical methods and apparatus for transferring data between processes or between processes and circuits in the gateway. For example,NIC # 1 362 may receive an Ethernet packet bearing a request for a video-on-demand program that is addressed to the management and control process. Oneway NIC 362 can transfer that packet to therouting process 86 by writing the data into on-board scratchpad RAM and invoking a software interrupt for therouting process 86 and passing it a pointer to the message in RAM. The routing process then executes an interrupt service routine for that interrupt and reads the data from the scratchpad RAM at the address passed with the interrupt or at some preassigned address stored in an interrupt table. Processes and circuits can also pass messages by writing them into predetermined locations in shared address space inRAM 129 with the destination circuit or process and then setting an interrupt bit and storing an interrupt number in a register. The interrupt bit causes the host to execute a generic interrupt service routine to retrieve the interrupt number and then look up the interrupt number in an interrupt vector table. The table would return the address of the beginning of an interrupt service routine for that number. Each circuit or process would have an interrupt number and an associated interrupt service routine. The service routine pointed to by the vector table would then be executed and retrieve the data and return it to the process or circuit associated with that interrupt. Each of the expansion modules could pass data or IP packets to therouting process 86 or theIP video process 158 in that way. - A management and
control process 368 receives video-on-demand and other requests for services and data as described in the detailed descriptions of each module. These other requests can include the numbers of CATV or terrestial channels to tune in or requests for DirecPC or ADSL or HFC high speed internet access. Other data the management and control process will receive in alternative embodiments is LAN available bandwidth status and other network management type data. In response, the management and control process sends out the appropriate control data to the tuners, transport demultiplexers, transcoders, conditional access circuits, IP video process and other circuits or processes to manage retrieving the requested data and distributing it to the right peripheral or to transmit data upstream on particular upstream channels. These upstream channels may be preassigned or assigned by downstream control messages from the headend or ADSL CO or satellite uplink server. - The
routing process 86 translates between IP and Ethernet or other LAN protocols and functions as previously described. TheIP video process 158 encapsulates data sent to over the host bus into IP packets addressed to the proper peripheral device. - The IP telephony and other telephony enabled and PBX processes represented by
block 370 control the IP and PBX telephony expansion module to implement PBX functions, carry out IP telephony etc. For example, there may be 5 conventional or LAN telephones in the home each of which is primarily answered by one person in the family. One of the processes ofblock 370 may implement direct inward dialing such that each telephone has its own virtual telephone number which an outsider can dial when, for example, they want to talk to teenager Judy without the inconvenience of accidently talking to her father. Likewise, two extension phones may wish to have a conference call with a phone in some other state. The PBX control sofware controls the switch in thePBX module 372 to implement any of these desired PBX functions. The IP telephony process carries out IP telephony, by, for example, receiving digital data from conventional POTS phones viatelephony module 372 and encapsulates it into IP packets which are passed torouter 86 and vice versa. IP packets received from LAN enabledtelephones router 86. - Likewise, a database program or word processing program being run on a PC or NC out on the LAN may be telephony enabled. For example, a rolodex file made by a word processing program may contain telephone numbers and the user may look up a person by name and then double click on the phone number. This double click will be converted by the telephony enabled application into an Ethernet packet requesting that the telephone number be dialed. This Ethernet packet is sent to
NIC router 86. The router strips the Ethernet header off and passes the data of the request to a PBX application represented byblock 370. The PBX application makes a function call to a library program of theOS 358 through thestandard TAPI interface 374. - The TAPI interface represents a collection of predefined Windows function calls, each of which invokes a library program from a telephony dynamic linked library of programs. The TAPI function calls provide a standard telephony programmatic interface to applications that want to perform telephone functions. The basic level of functions allow application programs to carry out basic inbound and outbound voice and data calls by providing programs that can be invoked to initialize and open and close TAPI lines, read and write various parameters that control a line device, handle the details of placing an outbound voice or data call or answer an inbound voice or data call, recognize, translate and or build telephone “addresses” or dialing strings, manipulating call handles etc. Other programs in the TAPI library provide more advanced functions such as digit or tone generation and detection, call acceptance and rejection, redirection, call forwarding, park, hold, conference, etc. if the These advanced features are called supplemental telephony services and allow multiple telephone handsets or other line devices to share only a single CO trunk line or to share multiple CO trunk lines in a PBX type arrangement. The trunk lines can be analog, T1, ISDN or DSL. Because TAPI also supports the logical construct of phone devices, the NCs and PCs out on the network with TAPI libraries can actually have multi-line virtual telephones implement in code running thereof so that every room with a PC in it can also have a multi-line phone capable of speakerphone, conference, hold, park, call forwarding and other advanced capabilities not normally on standard home telephones.
- TAPI services focus on “line devices” as a means for transporting information from one place to another. A line device can be a standard telephone handset, a fax board, a data modem, a telephony card or any physical device coupled to a telephone line. In the system depicted in FIG. 8, the
ADSL modem module 378,conventional modem module 380 and IP andPBX telephony module 372 are all line devices. Because a line device is a logical construct, TAPI can see multiple line devices all coupled to the same physical telephone line. A TAPI call control program (dialer.exe) can accept multiple simultaneous TAPI service requests from, for example, the PBX application, the IP telephony application and other telephony enabled applications all represented byblock 370 and queue them all for service in order. - Communications between the application programs and the TAPI library are by the Windows messaging function using predefined TAPI data structures. Telephony libraries of other operating system may be substituted for the Window TAPI library and the data structures and and messaging functions of the operating system in use can be substituted.
- How TAPI is structured and how application programs can be written to utilize this resource are all defined in Amundsen, MAPI, SAPI & TAPIDeveloper's Guide, (SAMS Publishing 1996) ISBN 0-672-30928-9, which is hereby incorporated by reference.
- Returning to the current example, the TAPI program executes and makes a function call to the telephone
service provider process 376 and passes it the number to be dialed. TheTSP layer 376 isolates the TAPI library program from needing to know the details of the specific hardware installed and it isolates the particular hardware which is installed from having to be designed for the specific telephony enabled application programs which are present. It is translator between the TAPI world and the harware world. In other words, theTSP layer 376 implements the TSPI fucntions that are used by TAPI implementation. Each TSP then uses whatever interface is appropriate to control the telephony hardware to which it is connected. TheTSP layer 376 and the PBXcard driver layer 378 actually can be combined in some embodiments, and in other embodiments, the TSP layer can be used to interface to other telephony hardware such as a FAXmodem expansion module 380 at the gateway by which FAXes may be sent using data received from PCs that do not have FAX modems or connections to telephone lines available at their location on the network. - Assuming the TSP and PBX card drivers are separate processes, either
TSP 376 orTAPI program 374 then invokes the proper function call of a PBXcard driver process 378 and passes it the number to be dialed. The PBX card driver speaks the specific language of the IP andPBX telephony module 372 and sends it a properly formatted message to control the switch and other circuitry thereon to seize a CO trunk line and generate the appropriate DTMF tones to dial the requested number when a dial tone is detected. - When the person answers, the voice is digitized by a codec in the
PBX card 372 and and the data is passed back to the PBX card driver which then passes it back up through all the layers to the router. The router encapsulates the data into an Ethernet packet addressed to the telephone or other line device that made the call and passes the packets to the appropriate NIC. From the NIC, the packets are transmitted via LAN to the network adapter of the telephone or PC or NC that originated the call. The reverse thing happens for voice going out from the PC, NC or telephone which originated the call to the person who answered the phone. - The host bus is coupled via bus connectors and expansion slots to one or more expansion modules which implement the transmitter and receiver circuitry and other interface circuitry necessary to interface the gateway to the satellite, HFC, POTS or DSL media or any other media such as the power lines or wireless local loops which may be developed in the future. Modules are shown for currently existing technologies only, but newer upstream and downstream media are sure to follow, and the genus of the invention includes expansion modules of whatever type are needed to interface to these newer media.
- The
ADSL modem module 378 may be anyconventional ADSL modem 182 or SDSL modem or any other modem to interface to any type of digital subscriber line local loop which can be digitally controlled by thehost 128. It will include any connectors andisolation circuitry 204 needed to connect to the DSL CO trunk line. - The FAX/
Data Modem Module 380 can be any conventional FAX/Data modem or simple data modem for coupling via suitable connectors andisolation circuitry 205 toextension phone lines 354 within the customer premises as well as DSLCO trunk lines 58 and which can be digitally controlled by thehost 128. - The IP &
PBX telephony module 372 can be any known or future developed “PBX on a card” including one or more expansion cards which give a conventionalpersonal computer host 128 running any operating system PBX capabilities and which can be digitally controlled by thehost 128. It can include any needed additional known circuitry and software needed to implement IP telephony functions. - A DOCSIS modem module can be any known or future developed cable modem that conforms to the DOCSIS standard or any new standard for modems that allow high speed data transfers from a customer premises to a headend cable modem and/or the internet over a CATV HFC cable plant, and which can be digitally controlled by the
host 128. - An HFC
digital video module 388 can be any digital video receiver which can be digitally controlled by thehost 128 and is compatible with reception of digitized compressed video data transmitted over HFC. In the system of FIG. 4A, for example, the HFCdigital video module 388 would typically includetuner 108, an A/D converter included inmatrix 130,QAM demodulator 146,transport demultiplexer 148 andconditional access circuit 126 to communicate with the sharedIP video process 158 running in software on the host. It may also include the upstream and downstream combiner andisolation circuits - An HFC
analog video module 390 can be any receiver capable of receiving regularly scheduled analog CATV transmissions over HFC which can digitize and compress the data for transmission over the LAN and which can be digitally controlled by thehost 128. In the exemplary embodiment of FIGS. 4A and 4B, themodule 390 typically would includetuner 100, an A/D converter frommatrix 130,video demodulator 138,video decoder 114 andMPEG encoder 147. It may also include the upstream and downstream combiner andisolation circuits - In some species within the genus of the invention, all HFC interface modules such as386, 388 and 390 may be combined into one HFC interface module. Likewise for all expansion modules that interface to the PSTN and extension phone lines or all modules that interface with the satellite dish.
- A satellite digital video-on-
demand module 392 can be any satellite receiver which can be digitally controlled by thehost 128 to tune in and receive a specifically requested compressed digital video-on-demand broadcast from a satellite. In the embodiment of FIGS. 4A and 4B, it includestuner 180, QPSK demodulator 220,transport demultiplexer 184 andconditional access circuit 186. - A satellite analog
video video module 394 can be any coventional C-band satellite receiver modified to receive tuning commands digitally from thehost 128 and modified to digitize and compress the video program for distribution on a LAN. In the embodiment of FIGS. 4A and 4B, it would includetuner 314, A/D converter 316,video demodulator 320,video decoder 324 andMPEG encoder 326. - A
satellite DirectPC module 396 can be any conventional DirectPC receiver or any equivalent receiver for receiving IP packetized data transmitted from a satellite capable of being digitally controlled by a host computer and send the recovered IP packets to a routing process being run by the host. In the embodiment of FIGS. 4A and 4B, it would includetuner 302 andQPSK demodulator 304. - A
satellite DirecTV module 398 can be any conventional DirecTV receiver or equivalent digital satellite TV broadcast receiver which can receive regularly-scheduled, compressed, digital TV broadcasts from a satellite but modified to be controlled digitally by thehost 128 to tune to a requested broadcast channel. In the embodiment of FIGS. 4A and 4B, this module would includetuner 344,QAM demodulator 346,transport demultiplexer 350, optionally transcoder 352 andconditional access circuit 354. - A terrestial analog NTSC or PAL or
SECAM module 400 can be any receiver capable of being digitally tuned by the host computer which can receive regularly scheduled analog TV broadcasts via an antenna and digitize and compress them for distribution over a LAN. In the embodiment of FIGS. 4A and 4B, it would includetuner 332, A/D converter 334,video demodulator 336,video decoder 340 andMPEG encoder 342. - Any of the modules defined above which recover or generate digital data for transmission on the LAN can optionally include a transcoder to translate the original bit rate to a lower bit rate where needed because of network loading. Likewise, any module that recovers digital data that encodes copyrighted materials such as video or audio programs may include a C5 standard encryption circuit to re-encode the digital data before transmission on the LAN to prevent perfect, unauthorized digital copies which could happen if the digital data were to be transmitted in the clear.
- Although the invention has been disclosed in terms of the preferred and alternative embodiments disclosed herein, those skilled in the art will appreciate possible alternative embodiments and other modifications to the teachings disclosed herein which do not depart from the spirit and scope of the invention. All such alternative embodiments and other modifications are intended to be included within the scope of the claims appended hereto.
Claims (35)
1. A gateway apparatus comprising:
a host computer having a host bus;
one or more local area network interfaces coupling said host computer to one or more local area networks than carry data between said gateway and one or more devices located within a customer premises;
one or more external network interface circuits coupled to said host bus for interfacing said host computer to one or more networks external to said customer premises which deliver analog and/or digital video and other digital data to said customer premises; and
wherein said host computer is programmed to implement an IP packetization process to receive data from said external network interface circuits and packetize it into IP packets, and programmed with a routing process to receive IP packets from said IP packetization process and encapsulate them into local area network packets and transmit them on the appropriate local area network via one or more of said local area network interfaces and for receiving local area network packets from devices coupled to said local area networks and stripping off the local area network packet headers and routing the encapsulated IP packets to the appropriate external network interface circuit for transmission over an external network, and a management and control process for receiving requests for data from said devices coupled to said local area networks and sending digital control data to said external network interface circuits to control them to obtain said data.
2. The apparatus of claim 1 wherein said IP packetization process controls said host computer to receive data from said one or more external network interface circuits which is not already in the form of an internet protocol packet and packetizing said data into an internet protocol formatted packet addressed to a device coupled to one or more of said local area networks.
3. The apparatus of claim 1 wherein said routing process controls said host computer to receive internet protocol formatted packets either from said IP packetization process or directly from an external network interface circuit and, with said network interface, look up the Ethernet address of the device coupled to said local area network that corresponds to the internet protocol packet's destination address, and do all the protocol conversions necessary to encapsulate each said internet protocol packet into one or more Ethernet local area network packets addressed to a device which requested data in said internet protocol packet and transmit same over the appropriate local area network to the device which requested said data, and further controls said host computer to receive Ethernet packets from devices coupled to said local area networks that include internet protocol packets via said local area network interface(s) and do all the protocol conversions necessary to strip off the Ethernet packet header and route the encapsulated internet protocol packet to the appropriate external network interface circuit for transmission on an external network to the server to which the internet protocol packet is addressed.
4. The apparatus of claim 1 wherein said management and control process is structured to control said host computer to receive Ethernet packets from devices coupled to said local area network(s) which contain requests to download specific web pages at URLs identified in said packet or to receive and distribute regularly scheduled video broadcasts over a CATV hybrid fiber coaxial cable system, a satellite downlink or a terrestial broadcast, or to request a video program to be delivered over said CATV hybrid fiber coaxial cable system or said satellite downlink or via a digital subscriber line local loop, and generating and sending appropriate control data to the appropriate one of said external network interface circuits to cause the requested data or video broadcast or video-on-demand program to be received.
5. The apparatus of claim 1 wherein said one or more external network interface circuits comprises a digital subscriber line modem.
6. The apparatus of claim 1 wherein said one or more external network interface circuits comprises a conventional POTS line fax and/or data modem.
7. The apparatus of claim 1 wherein said one or more external network interface circuits comprises an internet packet telephony circuit to interface said gateway to plain old telephone service and/or digital subscriber line phone lines from a public service telephone network central office.
8. The apparatus of claim 1 wherein said one or more external network interface circuits comprises a private branch exchange (PBX) telephony circuit for interfacing said gateway to one or more plain old telephone service (POTS) telephone lines which are internal or external to said customer premises and/or one or more digital subscriber line (DSL) phone lines from a public service telephone network central office, said PBX telephony circuit including a switch controlled by a plurality of processes controlling said host computer to implement PBX telephony functions for line devices such as telephones coupled to said one or more POTS or DSL lines or to said local area netork, said processes including a PBX application process, one or more processes implementing a TAPI dynamic linked library and a PBX card driver process.
9. The apparatus of claim 1 wherein said one or more external network interface circuits comprises a cable modem for interfacing said gateway to a CATV hybrid fiber coaxial cable system connection.
10. The apparatus of claim 9 wherein said cable modem is compatible with the DOCSIS 1.2 national standard for cable modems as that standard existed as of the filing date of this patent application.
11. The apparatus of claim 1 wherein said one or more external network interface circuits comprises a receiver for interfacing said gateway to a CATV hybrid fiber coaxial cable system connection, said receiver capable of receiving and demodulating and recovering digitized, compressed video-on-demand program data modulated onto a downstream carrier requested by a device coupled to said local area network and demultiplexing the audio and video components and transmitting the recovered data to said IP packetization process via said host bus.
12. The apparatus of claim 1 wherein said one or more external network interface circuits comprises a receiver for interfacing said gateway to a CATV hybrid fiber coaxial (HFC) cable system connection, said receiver capable of receiving analog video transmissions on said HFC requested by a device coupled to said local area network and digitizing and demodulate said analog video transmissions and then encoding the resulting data into a format in which it can be compressed, and then compressing the data and transmitting it via said host bus to said IP packetization process.
13. The apparatus of claim 1 wherein said one or more external network interface circuits comprises a receiver for interfacing said gateway to a satellite dish and receiving compressed digital data encoding a regularly scheduled television program modulated onto a downlink carrier requested by a device coupled to said local area network and demodulating and recovering said digital data and demultiplexing the audio and video data therefrom and transmitting said recovered digital data via said host bus to said IP packetization process.
14. The apparatus of claim 1 wherein said one or more external network interface circuits comprises a receiver for interfacing said gateway to a satellite dish and receiving compressed digital data encoding a video-on-demand television program modulated onto a downlink carrier requested by a device coupled to said local area network and demodulating and recovering said digital data and demultiplexing the audio and video data therefrom and transmitting said recovered digital data via said host bus to said IP packetization process.
15. The apparatus of claim 1 wherein said one or more external network interface circuits comprises a receiver for interfacing said gateway to a satellite dish and receiving analog regularly scheduled television programs modulated onto a downlink carrier requested by a device coupled to said local area network and demodulating and digitizing said television signals and encoding the digital data into a format that can be compressed and compressing said digital data and transmitting said compressed digital data via said host bus to said IP packetization process.
16. The apparatus of claim 1 wherein said one or more external network interface circuits comprises a receiver for interfacing said gateway to a satellite dish and receiving digital data encoding a web page or other information from the internet and encapsulated into internet protocol packets requested by a device coupled to said local area network and that have been modulated onto a downlink carrier and demodulating and recovering said internet protocol packets and transmitting them via said host bus to said routing process.
17. The apparatus of claim 1 wherein said one or more external network interface circuits comprises a receiver for interfacing said gateway to a conventional terrestial broadcast television antenna and receiving a regularly scheduled television program signal requested by a device coupled to said local area network and modulated onto a terrestial broadcast carrier and demodulating said signals digitizing said signals and encoding the digital data into a format that can be compressed and compressing the digital data and transmitting said compressed digital data via said host bus to said IP packetization process. TER-008 claims #2.
18. A gateway apparatus comprising:
a host computer having a host bus;
one or more local area network interface means for coupling said host computer to one or more local area networks than carry data between said gateway and one or more devices located within a customer premises;
one or more external network receiver means coupled to said host bus for interfacing said host computer to one or more networks external to said customer premises by receiving analog signals and digitizing and compressing them and supplying the compressed data to said host computer or receiving and recovering video and other data in digital form which has been modulated onto a dowstream carrier for transmission to said customer premises and supplying the recovered digital data to said host computer;
one or more external network transceiver means coupled to said host bus for interfacing said host computer to one or more networks external to said customer premises by receiving analog signals and digitizing and compressing them and supplying the compressed data to said host computer or receiving and recovering video and other data in digital form which has been modulated onto a dowstream carrier for transmission to said customer premises and supplying the recovered digital data to said host computer and include an upstream transmitter for receiving digital data from said host computer and transmitting it outbound on an external network; and
wherein said host computer is programmed to implement an IP packetization process to receive data from said external network interface circuits and packetize it into internet protocol (IP) formatted packets, and programmed with a routing process to receive IP packets from said IP packetization process and encapsulate them into local area network packets and transmit them on the appropriate local area network via one or more of said local area network interfaces and for receiving local area network packets from devices coupled to said local area networks and stripping off the local area network packet headers and routing the encapsulated IP packets to the appropriate external network interface circuit for transmission over an external network, and an IP telephony and other processes to control said host computer to control line devices coupled to standard or DSL telephone lines or local area networks coupled to said gateway or line devices and other external network interface circuits coupled to said host computer via said host bus to implement IP telephony functions, and a management and control process for receiving requests for data from said devices coupled to said local area networks and sending digital control data to said external network interface circuits and/or line devices to control them to obtain said data.
19. The apparatus of claim 1 18 wherein said one or more local area network interface means are Ethernet local area network interface cards and wherein said routing process controls said host computer to receive internet protocol formatted packets either from said IP packetization process or directly from an external network interface circuit and, with said network interface, look up the Ethernet address of the device coupled to said local area network that corresponds to the internet protocol packet's destination address, and do all the protocol conversions necessary to encapsulate each said internet protocol packet into one or more Ethernet local area network packets addressed to a device which requested data in said internet protocol packet and transmit same over the appropriate local area network to the device which requested said data, and further controls said host computer to receive Ethernet packets from devices coupled to said local area networks that include internet protocol packets via said local area network interface(s) and do all the protocol conversions necessary to strip off the Ethernet packet header and route the encapsulated internet protocol packet to the appropriate external network transceiver means for transmission on an external network to the server to which the internet protocol packet is addressed.
20. The apparatus of claim 18 wherein said one or more external network transceiver means comprises a private branch exchange (PBX) telephony means for interfacing said gateway to one or more plain old telephone service (POTS) telephone lines which are internal or external to said customer premises and/or one or more digital subscriber line (DSL) phone lines from a public service telephone network central office, said PBX telephony means including a switch controlled by a plurality of processes controlling said host computer to implement PBX telephony functions for line devices such as telephones coupled to said one or more POTS or DSL lines or to said local area netork, said processes controlling said host computer including a PBX application process, one or more processes implementing a TAPI dynamic linked library and a PBX card driver process.
21. The apparatus of claim 18 wherein said management and control process is structured to control said host computer to receive Ethernet packets from devices coupled to said local area network(s) which contain requests to download specific web pages at URLs identified in said packet or to receive and distribute regularly scheduled video broadcasts over a CATV hybrid fiber coaxial cable system, a satellite downlink or a terrestial broadcast, or to request a video program to be delivered over said CATV hybrid fiber coaxial cable system or said satellite downlink or via a digital subscriber line local loop, and generating and sending appropriate control data to the appropriate one of said external network transceiver means to cause the requested data or video broadcast or video-on-demand program to be received.
22. The apparatus of claim 18 wherein said one or more external network transceiver means comprises a digital subscriber line modem means for interfacing said gateway to a digital subscriber line local loop.
23. The apparatus of claim 18 wherein said one or more external network transceiver means comprises a conventional POTS line fax and/or data modem means for interfacing said gateway to said conventional POTS telephone line to the central office of the public service telephone network.
24. The apparatus of claim 18 wherein said one or more external network transceiver means comprises an internet packet telephony means for interfacing said gateway to plain old telephone service and/or digital subscriber line phone lines from a public service telephone network central office.
25. The apparatus of claim 18 wherein said one or more external network transceiver means comprises a cable modem means for interfacing said gateway to a CATV hybrid fiber coaxial cable system connection.
26. The apparatus of claim 25 wherein said cable modem is compatible with the DOCSIS 1.2 national standard for cable modems as that standard existed as of the filing date of this patent application.
27. The apparatus of claim 18 wherein said one or more external network transceiver mean comprises means for interfacing said gateway to a CATV hybrid fiber coaxial cable system connection to request a specified video-on-demand program via an upstream message and for receiving and demodulating and recovering digitized, compressed video-on-demand program data modulated onto a downstream carrier requested by a device coupled to said local area network and demultiplexing the audio and video components and transmitting the recovered data to said IP packetization process via said host bus.
28. The apparatus of claim 18 wherein said one or more external network receiver means comprises means for interfacing said gateway to a CATV hybrid fiber coaxial (HFC) cable system connection to make said gateway capable of receiving analog video transmissions on said HFC requested by a device coupled to said local area network and digitizing and demodulating said analog video transmissions and then encoding the resulting data into a format in which it can be compressed, and then compressing the data and transmitting it via said host bus to said IP packetization process.
29. The apparatus of claim 18 wherein said one or more external network receiver means comprises a means for interfacing said gateway to a satellite dish and receiving compressed digital data encoding a regularly scheduled television program modulated onto a downlink carrier requested by a device coupled to said local area network and demodulating and recovering said digital data and demultiplexing the audio and video data therefrom and transmitting said recovered digital data via said host bus to said IP packetization process.
30. The apparatus of claim 18 wherein said one or more external network transceiver means comprises a conventional modem means for making a dialup connection to a satellite uplink facility or video server and sending a message requesting delivery of a specified video-on-demand selection, and receiver means for interfacing said gateway to a satellite dish and receiving compressed digital data encoding a video-on-demand television program modulated onto a downlink carrier requested by a device coupled to said local area network and demodulating and recovering said digital data and demultiplexing the audio and video data therefrom and transmitting said recovered digital data via said host bus to said IP packetization process.
31. The apparatus of claim 18 wherein said one or more external network receiver means comprises means for interfacing said gateway to a satellite dish and receiving analog regularly scheduled television programs modulated onto a downlink carrier requested by a device coupled to said local area network and demodulating and digitizing said television signals and encoding the digital data into a format that can be compressed and compressing said digital data and transmitting said compressed digital data via said host bus to said IP packetization process.
32. The apparatus of claim 18 wherein said one or more external network receiver means comprises means for interfacing said gateway to a satellite dish and receiving digital data encoding a web page or other information from the internet and encapsulated into internet protocol packets requested by a device coupled to said local area network and that have been modulated onto a downlink carrier and demodulating and recovering said internet protocol packets and transmitting them via said host bus to said routing process.
33. The apparatus of claim 18 wherein said one or more external network receiver means comprises means for interfacing said gateway to a conventional terrestial broadcast television antenna and receiving a regularly scheduled television program signal requested by a device coupled to said local area network and modulated onto a terrestial broadcast carrier and demodulating said signals digitizing said signals and encoding the digital data into a format that can be compressed and compressing the digital data and transmitting said compressed digital data via said host bus to said IP packetization process.
34. A gateway apparatus comprising:
a host bus;
a plurality of expansion card connectors electrically coupled to said host bus;
one or more expansion module printed circuit boards coupled to said host bus through one or more of said expansion card connectors, each expansion module including the appropriate circuitry to receive signals from an external network media comprised of either a hybrid fiber coaxial cable of a CATV system, a digital subscriber line local loop, an analog plain old telephone service line or a satellite dish, and to either recover digital data transmitted via said external network media or to receive analog signals transmitted via said external network media and generate digital data therefrom, and, depending upon the type of external network media to which each expansion module is coupled, to also transmit digital data modulated on a carrier signal out on said external network media;
one or more network interface adapters for coupling said gateway to one or more local area networks which convey digital data throughout a customer premises; an
a host computer having a central processing unit or microprocessor coupled to said host bus and programmed to perform at least a management and control process to receive requests tranmitted TRANSMITTED from users to said gateway via one or more of said local area networks for data or video or audio programs transmitted on a regularly scheduled or on-demand basis on one of said external network media and to react thereto by appropriately controlling said one or more expansion modules via data transmitted over said host bus to retrieve the requested data or video or audio program, and programmed to perform an IP packetization process to receive digital data from one or more of said expansion modules and said management and control process and encapsulate said data into an internet protocol packet addressed to the device on a local area network coupled to said gateway which requested said data, and programmed to perform a routing process to receive network packets containing internet protocol packets and to strip off the network packet header and to route said internet protocol packet to the appropriate expansion module for upstream transmission on a external network media and to receive internet protocol packets from one or more of said expansion modules or said IP packetization process and to look up the IP destination address and map it to a local area network address corresponding thereto and encapsulate the internet protocol packet in a local area network packet addressed to the device owning said IP destination address and route it to said device via the appropriate network adapter, and programmed with one or more IP telephony and/or PBX and/or other telephony enabled application programs to implement IP telephony and/or PBX functions through a TAPI dynamic linked library of programs which control said host computer to carry out standard and advanced telephony functions which can be invoked through a standard TAPI application programmatic interface and one or more telephony service provider programs and/or PBX expansion module programs which convert messages from one or more TAPI library programs to digital data sent over said host bus to one or more of said expansion modules to carry out one or more telephony functions.
35. A network adapter for coupling a conventional television to a local area network, comprising:
a network interface circuit having an input coupled to a local area network and having an output at which digital data encoding a compressed video appears and functioning to receive local area network packets encapsulating internet protocol format packets but only outputting internet protocol format packets encapsulated in local area network packets addressed to this particular network interface circuit;
means for receiving infrared or radio frequency commands and data from a wireless remote control or a wireless keyboard and for packetizing the data and commands into packets suitable for transmission over said local area network;
an internet protocol video circuit coupled to said network interface circuit for receiving internet protocol format packets from said network interface circuit and determining if the packet contains video or graphics data and stripping off the internet protocol format header and outputting graphics data at a graphics data output and outputting video data at a video data output;
a decompression circuit coupled to said video data output for decompressing the video data and outputting uncompressed video data in a YUV format at a first output and uncompressed audio data at second output;
an audio processor means coupled to receive said uncompressed audio data and process it to convert it to an analog audio signal;
a graphics circuit coupled to said graphics output for receiving graphics data and generating graphics data signals at a graphics output;
means coupled to receive said uncompressed video data and said graphics data signals and process both said graphics data signals and said uncompressed video data into NTSC, PAL or SECAM or composite format analog video signal which can be displayed on a television if coupled to a video input of said television; and
optionally, a video modulator for receiving said analog video signal and said analog audio signal and modulating them onto an radio frequency carrier at the frequency of a locally unused channel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/731,310 US20040172658A1 (en) | 2000-01-14 | 2003-12-08 | Home network for ordering and delivery of video on demand, telephone and other digital services |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US48368100A | 2000-01-14 | 2000-01-14 | |
US10/731,310 US20040172658A1 (en) | 2000-01-14 | 2003-12-08 | Home network for ordering and delivery of video on demand, telephone and other digital services |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US48368100A Continuation | 2000-01-14 | 2000-01-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040172658A1 true US20040172658A1 (en) | 2004-09-02 |
Family
ID=23921084
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/602,303 Expired - Lifetime US6678740B1 (en) | 2000-01-14 | 2000-06-23 | Process carried out by a gateway in a home network to receive video-on-demand and other requested programs and services |
US09/602,265 Expired - Lifetime US6889385B1 (en) | 2000-01-14 | 2000-06-23 | Home network for receiving video-on-demand and other requested programs and services |
US09/602,512 Expired - Lifetime US6857132B1 (en) | 2000-01-14 | 2000-06-23 | Head end multiplexer to select and transmit video-on-demand and other requested programs and services |
US10/731,310 Abandoned US20040172658A1 (en) | 2000-01-14 | 2003-12-08 | Home network for ordering and delivery of video on demand, telephone and other digital services |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/602,303 Expired - Lifetime US6678740B1 (en) | 2000-01-14 | 2000-06-23 | Process carried out by a gateway in a home network to receive video-on-demand and other requested programs and services |
US09/602,265 Expired - Lifetime US6889385B1 (en) | 2000-01-14 | 2000-06-23 | Home network for receiving video-on-demand and other requested programs and services |
US09/602,512 Expired - Lifetime US6857132B1 (en) | 2000-01-14 | 2000-06-23 | Head end multiplexer to select and transmit video-on-demand and other requested programs and services |
Country Status (4)
Country | Link |
---|---|
US (4) | US6678740B1 (en) |
EP (1) | EP1117214B1 (en) |
AT (1) | ATE313196T1 (en) |
DE (1) | DE60115727T2 (en) |
Cited By (218)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020029293A1 (en) * | 2000-07-14 | 2002-03-07 | Comsat Corporation | Intelligent radio design for satellite gateways and terrestrial base stations |
US20020114454A1 (en) * | 2000-12-21 | 2002-08-22 | Hamilton Jon W. | Method and system for trusted digital camera |
US20020116714A1 (en) * | 2001-02-13 | 2002-08-22 | Peter Buchner | Network tuning device |
US20020126635A1 (en) * | 2001-03-06 | 2002-09-12 | Kddi Corporation | System and method for switching between frequency channels in wireless LAN |
US20020174435A1 (en) * | 2001-02-27 | 2002-11-21 | Hillel Weinstein | System, apparatus and method for expanding the operational bandwidth of a communication system |
US20020188737A1 (en) * | 2001-06-07 | 2002-12-12 | Jae-Hong Park | Data relay apparatus and method thereof |
US20020194623A1 (en) * | 2001-05-09 | 2002-12-19 | Rees Ian Paul | Network imaging |
US20020196843A1 (en) * | 1999-03-23 | 2002-12-26 | Itzik Ben-Bassat | Satellite communication card |
US20030041162A1 (en) * | 2001-08-27 | 2003-02-27 | Hochmuth Roland M. | System and method for communicating graphics images over a computer network |
US20030068154A1 (en) * | 2000-03-08 | 2003-04-10 | Edward Zylka | Gateway content storage system having database indexing, and method thereof |
US20030097664A1 (en) * | 2001-11-21 | 2003-05-22 | James Meyers | Method and system for interactive movie scene television |
US20030120742A1 (en) * | 2000-10-23 | 2003-06-26 | Yoichi Ohgami | Home network system |
US20030145334A1 (en) * | 2002-01-29 | 2003-07-31 | Kabushiki Kaisha Toshiba | Wireless data-transferring apparatus |
US20030156218A1 (en) * | 2001-05-24 | 2003-08-21 | Indra Laksono | Method and apparatus of multiplexing a plurality of channels in a multimedia system |
US20030200548A1 (en) * | 2001-12-27 | 2003-10-23 | Paul Baran | Method and apparatus for viewer control of digital TV program start time |
US20040006772A1 (en) * | 2002-07-08 | 2004-01-08 | Ahmad Ansari | Centralized video and data integration unit |
US20040043759A1 (en) * | 2000-10-31 | 2004-03-04 | Mcgovern David | Telecommunications systems |
US20040078812A1 (en) * | 2001-01-04 | 2004-04-22 | Calvert Kerry Wayne | Method and apparatus for acquiring media services available from content aggregators |
US20040098456A1 (en) * | 2002-11-18 | 2004-05-20 | Openpeak Inc. | System, method and computer program product for video teleconferencing and multimedia presentations |
US20040132403A1 (en) * | 2003-01-02 | 2004-07-08 | Agere Systems, Inc. | Wireless cable networking gateway and Wi-Fi system incorporating the same |
US20040133925A1 (en) * | 2001-06-01 | 2004-07-08 | Guido Franceschini | Method for transmitting information stream corresponding transmission system transmitter receiver and computer product |
US20040136373A1 (en) * | 2003-01-13 | 2004-07-15 | Bareis Bernard F. | Broadband multi-drop local network, interface and method for multimedia access |
US20040158623A1 (en) * | 2001-05-17 | 2004-08-12 | Dan Avida | Stream-oriented interconnect for networked computer storage |
US20040177374A1 (en) * | 2003-03-07 | 2004-09-09 | Ho-Hyun Park | Apparatus for controlling digital transport stream on digital settop box |
US20040183824A1 (en) * | 2003-03-21 | 2004-09-23 | Benson Rodger William | Interface for presenting data representations in a screen-area inset |
US20040210939A1 (en) * | 2003-04-01 | 2004-10-21 | Chang-Won Kim | Apparatus for separating digital broadcasting signal from data transmitted through internet network and method thereof |
US20040250273A1 (en) * | 2001-04-02 | 2004-12-09 | Bellsouth Intellectual Property Corporation | Digital video broadcast device decoder |
US20040261112A1 (en) * | 2000-12-28 | 2004-12-23 | Hicks John Alson | System and method for multimedia on demand services |
US20050015811A1 (en) * | 2003-07-14 | 2005-01-20 | Norman George I. | Apparatus method and system for providing enhanced digital services using an analog broadcast license |
US20050025175A1 (en) * | 2002-07-08 | 2005-02-03 | White Russell William | Ethernet-based digital subscriber line methods and systems |
US20050060754A1 (en) * | 2003-09-17 | 2005-03-17 | Wegener Communications, Inc. | Apparatus and method for distributed control of media dissemination |
US20050065768A1 (en) * | 2003-09-22 | 2005-03-24 | Jeyhan Karaoguz | Host arbitrated user interface resource sharing |
US20050081249A1 (en) * | 2001-12-27 | 2005-04-14 | Soederqvist Erik Richard | Method for connecting a plurality of computer terminals to a broadband cable |
US20050078609A1 (en) * | 2003-10-10 | 2005-04-14 | Adc Broadband Access Systems, Inc. | Access switch for a cable network having a zero configuration multimedia service subsystem |
US6898276B1 (en) | 2002-05-31 | 2005-05-24 | Verizon Communications Inc. | Soft network interface device for digital broadband local carrier networks |
US20050155082A1 (en) * | 2001-02-27 | 2005-07-14 | Hillel Weinstein | Device, system and method for connecting a subscriber device to a wideband distribution network |
US20050180428A1 (en) * | 2004-02-13 | 2005-08-18 | Era Digital Media Co., Ltd. | Cross media information integration system |
US20050188078A1 (en) * | 2004-02-23 | 2005-08-25 | Kotzin Michael D. | System and method for managing and associating dynamic containers of a content providing device |
US20060013220A1 (en) * | 2004-07-14 | 2006-01-19 | Cannon Kabushiki Kaisha | Control method of communication apparatus, communication apparatus, and control program of communication apparatus |
US20060026657A1 (en) * | 2004-07-22 | 2006-02-02 | Broadcom Corporation | Highly integrated single chip set-top box |
US20060026659A1 (en) * | 2004-05-21 | 2006-02-02 | Broadcom Corporation | Integrated cable modem |
US20060026661A1 (en) * | 2004-05-21 | 2006-02-02 | Broadcom Corporation | Integrated set-top box |
US20060039380A1 (en) * | 2004-08-09 | 2006-02-23 | Cloonan Thomas J | Very high speed cable modem for increasing bandwidth |
US20060056458A1 (en) * | 2004-09-15 | 2006-03-16 | Evensen Mark C | Multimedia residential gateway |
US20060059259A1 (en) * | 2000-11-20 | 2006-03-16 | Hba Matchmaker Media, Inc. | Method and system for dataflow management in a communications network |
US20060075108A1 (en) * | 2004-09-15 | 2006-04-06 | Nortel Networks Limited | Network media gateway |
WO2006039941A1 (en) * | 2004-10-15 | 2006-04-20 | Pirelli & C. S.P.A. | Method for secure signal transmission in a telecommunication network, in particular in a local area network |
US20060101501A1 (en) * | 2000-10-16 | 2006-05-11 | Zeev Orbach | System, device and method of expanding the operational bandwidth of a communication infrastructure |
US20060117379A1 (en) * | 2002-12-11 | 2006-06-01 | Bennett James D | Transcoding and data rights management in a mobile video network with STB as a hub |
US20060120407A1 (en) * | 2001-04-25 | 2006-06-08 | Infineon Technologies Ag, A German Corporation | Data transmission network |
US20060126551A1 (en) * | 2004-11-25 | 2006-06-15 | Christophe Delaunay | Device and method for distributing broadcast services on a local network |
US20060136968A1 (en) * | 2004-12-20 | 2006-06-22 | Electronics And Telecommunications Research Institute | Apparatus for distributing same/different digital broadcasting streams in heterogeneous home network and method thereof |
WO2006052343A3 (en) * | 2004-11-03 | 2006-06-29 | Gen Instrument Corp | Method and apparatus for distributing digital stream data to a user terminal |
US20060168291A1 (en) * | 2005-01-05 | 2006-07-27 | Van Zoest Alexander | Interactive multichannel data distribution system |
US20060174032A1 (en) * | 2005-01-28 | 2006-08-03 | Standard Microsystems Corporation | High speed ethernet MAC and PHY apparatus with a filter based ethernet packet router with priority queuing and single or multiple transport stream interfaces |
US20060174021A1 (en) * | 2005-01-05 | 2006-08-03 | Roland Osborne | Media transfer protocol |
US20060182139A1 (en) * | 2004-08-09 | 2006-08-17 | Mark Bugajski | Method and system for transforming video streams using a multi-channel flow-bonded traffic stream |
US20060184990A1 (en) * | 2005-02-17 | 2006-08-17 | Hanarotelecom, Inc. | Hybrid-fiber coaxial network-based high-speed QoS transmission system for internet protocol broadcasting service |
US20060221987A1 (en) * | 2005-03-30 | 2006-10-05 | Junxion Inc. | LAN and WWAN gateway |
US20060239278A1 (en) * | 2005-04-22 | 2006-10-26 | Hurst William Robert | Methods and apparatus to self-configure a flexible residential gateway |
US20060239244A1 (en) * | 2005-04-22 | 2006-10-26 | Hurst William Robert | Methods and apparatus to self-configure a flexible residential gateway |
US20060239425A1 (en) * | 2005-04-22 | 2006-10-26 | Hurst William Robert | Methods and apparatus to self-configure a flexible residential gateway |
US20060270340A1 (en) * | 2003-03-11 | 2006-11-30 | Pugel Michael A | Apparatus and method for distributing signals by down-converting to vacant channels |
GB2427799A (en) * | 2005-06-24 | 2007-01-03 | Era Digital Media Co Ltd | Cross media information integration system |
US20070002835A1 (en) * | 2005-07-01 | 2007-01-04 | Microsoft Corporation | Edge-based communication |
US20070036164A1 (en) * | 2005-08-11 | 2007-02-15 | Rolf Goehler | Digital gateway for education systems |
US20070046432A1 (en) * | 2005-08-31 | 2007-03-01 | Impinj, Inc. | Local processing of received RFID tag responses |
US20070064712A1 (en) * | 2005-09-16 | 2007-03-22 | Samsung Electronics Co., Ltd. | Method and apparatus for transmitting additional information on digital broadcast through home network |
US20070076746A1 (en) * | 2005-09-14 | 2007-04-05 | Faska Thomas S | Device, system, and method for transporting data using combined broadband and legacy network infrastructures |
US20070079341A1 (en) * | 2005-10-05 | 2007-04-05 | Scientific-Atlanta, Inc. | Dvd multi-room playback after headend conversation |
US20070088812A1 (en) * | 2005-10-18 | 2007-04-19 | Clark Christopher M | Media control system |
US20070104168A1 (en) * | 2005-11-10 | 2007-05-10 | Junxion Inc. | Gateway network multiplexing |
US20070104169A1 (en) * | 2005-11-10 | 2007-05-10 | Junxion, Inc. | LAN / WWAN gateway carrier customization |
US20070110098A1 (en) * | 2003-12-09 | 2007-05-17 | Viasat, Inc. | Method For Channel Congestion Management |
US20070153836A1 (en) * | 2003-03-13 | 2007-07-05 | Serconet, Ltd. | Telephone system having multiple distinct sources and accessories therefor |
US20070166000A1 (en) * | 2005-03-01 | 2007-07-19 | Ramesh Nallur | System and method for generating trick mode streams |
US20070186180A1 (en) * | 2005-12-30 | 2007-08-09 | Barrett Morgan | Ubiquitous navbar user interface across multiple heterogeneous digital media devices |
US20070183324A1 (en) * | 2006-02-06 | 2007-08-09 | Cuberson Russel D | Methods, systems, and computer program products for providing supported DSL communications features as selections |
US20070192798A1 (en) * | 2005-12-30 | 2007-08-16 | Barrett Morgan | Digital content delivery via virtual private network (VPN) incorporating secured set-top devices |
US20070260552A1 (en) * | 2006-05-05 | 2007-11-08 | Bennett James D | Switching network supporting media rights management |
US20070258469A1 (en) * | 2006-05-05 | 2007-11-08 | Broadcom Corporation, A California Corporation | Switching network employing adware quarantine techniques |
US20070258437A1 (en) * | 2006-05-05 | 2007-11-08 | Broadcom Corporation, A California Corporation | Switching network employing server quarantine functionality |
US20070261083A1 (en) * | 2002-07-08 | 2007-11-08 | Ahmad Ansari | System for providing DBS DSL video services to multiple display devices |
US20070298772A1 (en) * | 2004-08-27 | 2007-12-27 | Owens Steve B | System and method for an interactive security system for a home |
US20080016181A1 (en) * | 2006-07-13 | 2008-01-17 | Erik John Burckart | Method and system for providing remote media |
US20080022335A1 (en) * | 2006-07-24 | 2008-01-24 | Nabil Yousef | A receiver with a visual program guide for mobile television applications and method for creation |
US20080040764A1 (en) * | 2001-07-20 | 2008-02-14 | Hillel Weinstein | System, apparatus and method for expanding the operational bandwidth of a communication system |
US20080052284A1 (en) * | 2006-08-05 | 2008-02-28 | Terry Stokes | System and Method for the Capture and Archival of Electronic Communications |
US20080074497A1 (en) * | 2006-09-21 | 2008-03-27 | Ktech Telecommunications, Inc. | Method and Apparatus for Determining and Displaying Signal Quality Information on a Television Display Screen |
US20080089362A1 (en) * | 2006-10-17 | 2008-04-17 | Texas Instruments Incorporated | Single chip tuner integrated circuit for use in a cable modem |
US20080101266A1 (en) * | 2005-05-13 | 2008-05-01 | Mobile Ip Pty Ltd. | Method, system and device for facilitating data communication |
US20080101224A1 (en) * | 2006-10-31 | 2008-05-01 | Verizon Services Organization Inc. | Priority call routing |
US20080109854A1 (en) * | 2006-11-06 | 2008-05-08 | Casavant Scott D | Satellite television ip bitstream generator receiving unit |
US20080120675A1 (en) * | 2006-11-22 | 2008-05-22 | Horizon Semiconductors Ltd. | Home gateway for multiple units |
US20080120366A1 (en) * | 2006-11-21 | 2008-05-22 | Lockheed Martin Corporation | Methods and apparatus for providing access to vehicle electronic systems |
US20080120667A1 (en) * | 2006-11-17 | 2008-05-22 | Texas Instruments Incorporated | Hybrid mpeg/ip digital cable gateway device and architecture associated therewith |
US20080155611A1 (en) * | 2006-12-22 | 2008-06-26 | Kabushiki Kaisha Toshiba | Television lan signal-separating apparatus, indoor lan system and television lan signal-separating method |
US20080182669A1 (en) * | 2007-01-26 | 2008-07-31 | Alan Amron | Game and video cartridge for portable electronic device |
US20080182670A1 (en) * | 2007-01-26 | 2008-07-31 | Alan Amron | Game and video cartridge for a host device |
US20080259838A1 (en) * | 2004-09-10 | 2008-10-23 | Nederlandse Organisatie Voor Toegepast- Natuurwetenschappelijk Onderzoek Tno | Method and Device for Inverse Multiplexing of Multicast Transmission |
US20080281718A1 (en) * | 2007-01-08 | 2008-11-13 | Barrett Morgan | Household network incorporating secure set-top devices |
US20080300673A1 (en) * | 2007-04-16 | 2008-12-04 | Boston Scientific Scimed, Inc. | Radiopaque compositions, stents and methods of preparation |
US20080307469A1 (en) * | 2001-12-20 | 2008-12-11 | At&T Intellectual Property I, Lp, Formerly Known As Bellsouth Intellectual Property Corporation | System and Method for Content Transmission Network Selection |
US20080307128A1 (en) * | 2007-01-26 | 2008-12-11 | Digital Video Chip, Llc | Universal multimedia |
US20090007190A1 (en) * | 2005-10-26 | 2009-01-01 | Barry Jay Weber | System and method for inserting sync bytes into transport packets |
US20090031419A1 (en) * | 2001-05-24 | 2009-01-29 | Indra Laksono | Multimedia system and server and methods for use therewith |
US20090041026A1 (en) * | 2007-08-06 | 2009-02-12 | At&T Knowledge Ventures, L.P. | System for configuring network elements |
US20090041467A1 (en) * | 2007-08-09 | 2009-02-12 | General Instrument Corporation | Field-Configurable Optical Network Terminal Device |
US20090110088A1 (en) * | 2007-10-30 | 2009-04-30 | Antonio Di Giandomenico | System and Method for Providing a Versatile RF and Analog Front-End for Wireless and Wired Networks |
US20090119735A1 (en) * | 2000-10-16 | 2009-05-07 | Oleg Dounaevski | Wideband node in a catv network |
US20090158376A1 (en) * | 2007-12-17 | 2009-06-18 | Seung Eun Hong | Method and apparatus of building ip-based video service system in hybrid fiber coax network |
US20090172762A1 (en) * | 2008-01-02 | 2009-07-02 | Harmonic Inc. | Methods and System for Efficient Data Transfer Over Hybrid Fiber Coax Infrastructure |
US20090193452A1 (en) * | 2000-11-14 | 2009-07-30 | Scientific-Atlanta, Inc. | Media content sharing over a home network |
US20090190297A1 (en) * | 2008-01-29 | 2009-07-30 | Michael Feldman | Motherboard expansion device |
US20090225221A1 (en) * | 2008-03-04 | 2009-09-10 | Andrew Robert Gordon | Flexible router |
US20090232077A1 (en) * | 2008-03-15 | 2009-09-17 | Abraham Krieger | Media Receiver Hub |
US20090273455A1 (en) * | 2008-04-30 | 2009-11-05 | Embarq Holdings Company, Llc | System and method for in-patient telephony |
US20090290197A1 (en) * | 2008-05-20 | 2009-11-26 | David Mandelstam | Telecommunication system and method of synchronization |
WO2009145750A1 (en) * | 2008-05-30 | 2009-12-03 | Digital Video Chip, Llc | Universal multimedia |
US20100027411A1 (en) * | 2005-10-26 | 2010-02-04 | Thomson Licensing | System and Method for Compensating for a Satellite Gateway Failure |
US20100061432A1 (en) * | 2008-09-11 | 2010-03-11 | Texas Instruments Incorporated | Reduced cost saw-less catv rf tuner circuit for use in a cable modem |
US20100064055A1 (en) * | 2008-09-08 | 2010-03-11 | Sling Media Inc. | Systems and methods for projecting images from a computer system |
US20100064332A1 (en) * | 2008-09-08 | 2010-03-11 | Sling Media Inc. | Systems and methods for presenting media content obtained from multiple sources |
US7680255B2 (en) | 2001-07-05 | 2010-03-16 | Mosaid Technologies Incorporated | Telephone outlet with packet telephony adaptor, and a network using same |
US7686653B2 (en) | 2003-09-07 | 2010-03-30 | Mosaid Technologies Incorporated | Modular outlet |
US7697927B1 (en) | 2005-01-25 | 2010-04-13 | Embarq Holdings Company, Llc | Multi-campus mobile management system for wirelessly controlling systems of a facility |
US7702095B2 (en) | 2003-01-30 | 2010-04-20 | Mosaid Technologies Incorporated | Method and system for providing DC power on local telephone lines |
US7715534B2 (en) | 2000-03-20 | 2010-05-11 | Mosaid Technologies Incorporated | Telephone outlet for implementing a local area network over telephone lines and a local area network using such outlets |
US20100146527A1 (en) * | 2006-06-09 | 2010-06-10 | Glenn Ritchie Gordon Craib | Place-Shifting Apparatus and System |
US20100158022A1 (en) * | 2008-12-22 | 2010-06-24 | Broadcom Corporation | SYSTEMS AND METHODS FOR PROVIDING A MoCA IMPROVED PERFORMANCE FOR SHORT BURST PACKETS |
US20100174608A1 (en) * | 2007-03-22 | 2010-07-08 | Harkness David H | Digital rights management and audience measurement systems and methods |
US7765573B1 (en) | 2005-03-08 | 2010-07-27 | Embarq Holdings Company, LLP | IP-based scheduling and control of digital video content delivery |
US20100238932A1 (en) * | 2009-03-19 | 2010-09-23 | Broadcom Corporation | Method and apparatus for enhanced packet aggregation |
US20100281174A1 (en) * | 2009-05-04 | 2010-11-04 | Comcast Cable Holdings, Llc | Personalized Media Server in a Service Provider Network |
US20100281508A1 (en) * | 2009-05-04 | 2010-11-04 | Comcast Cable Holdings, Llc | Internet Protocol (IP) to Video-on-Demand (VOD) Gateway |
US20100281093A1 (en) * | 2009-05-04 | 2010-11-04 | Comcast Cable Holdings, Llc | Sharing Media Content Based on a Media Server |
US20100281534A1 (en) * | 2009-05-04 | 2010-11-04 | Comcast Cable Holdings, Llc | Network-Based Digital Media Server |
US20100290461A1 (en) * | 2006-11-20 | 2010-11-18 | Broadcom Corporation | Mac to phy interface apparatus and methods for transmission of packets through a communications network |
US7840982B1 (en) | 2004-09-28 | 2010-11-23 | Embarq Holding Company, Llc | Video-all call system and method for a facility |
US7840984B1 (en) | 2004-03-17 | 2010-11-23 | Embarq Holdings Company, Llc | Media administering system and method |
US20100306814A1 (en) * | 2009-05-26 | 2010-12-02 | Broadcom Corporation | Integrated Set-Top Box with Daisy-Chaining |
US20100309283A1 (en) * | 2009-06-08 | 2010-12-09 | Kuchar Jr Rodney A | Portable Remote Audio/Video Communication Unit |
US20100319047A1 (en) * | 2008-03-31 | 2010-12-16 | Panasonic Corporation | Digital broadcast receiver |
US20100325670A1 (en) * | 2009-06-17 | 2010-12-23 | Echostar Technologies L.L.C. | Satellite Signal Distribution |
US7865925B2 (en) | 2003-01-15 | 2011-01-04 | Robertson Neil C | Optimization of a full duplex wideband communications system |
US7870584B2 (en) | 2002-08-02 | 2011-01-11 | Russ Samuel H | Interactive program guide with selectable updating |
US7876998B2 (en) | 2005-10-05 | 2011-01-25 | Wall William E | DVD playback over multi-room by copying to HDD |
US7877014B2 (en) * | 2001-07-05 | 2011-01-25 | Enablence Technologies Inc. | Method and system for providing a return path for signals generated by legacy video service terminals in an optical network |
US7908627B2 (en) * | 2005-06-22 | 2011-03-15 | At&T Intellectual Property I, L.P. | System and method to provide a unified video signal for diverse receiving platforms |
US7908625B2 (en) | 2002-10-02 | 2011-03-15 | Robertson Neil C | Networked multimedia system |
US20110083141A1 (en) * | 2003-11-14 | 2011-04-07 | Rovi Technologies Corporation | Interactive television systems having pod modules and methods for use in the same |
US7965735B2 (en) | 1998-07-28 | 2011-06-21 | Mosaid Technologies Incorporated | Local area network of serial intelligent cells |
US8000349B2 (en) | 2000-04-18 | 2011-08-16 | Mosaid Technologies Incorporated | Telephone communication system over a single telephone line |
US8046806B2 (en) | 2002-10-04 | 2011-10-25 | Wall William E | Multiroom point of deployment module |
US8060624B1 (en) * | 2005-08-23 | 2011-11-15 | Sprint Communications Company L.P. | Initiating a communication session from a presence enabled media host device |
US8094640B2 (en) | 2003-01-15 | 2012-01-10 | Robertson Neil C | Full duplex wideband communications system for a local coaxial network |
US8127326B2 (en) | 2000-11-14 | 2012-02-28 | Claussen Paul J | Proximity detection using wireless connectivity in a communications system |
US8132216B1 (en) | 2008-11-07 | 2012-03-06 | The Directv Group, Inc. | Method and system for controlling a multi-terminal system |
US20120066723A1 (en) * | 2001-02-09 | 2012-03-15 | Fisk Julian B | System for and method of distributing television, video and other signals |
US20120079130A1 (en) * | 2009-09-30 | 2012-03-29 | Huawei Technologies Co., Ltd. | Agent service processing method and internet protocol agent terminal |
US8174999B2 (en) | 2000-08-30 | 2012-05-08 | Broadcom Corporation | Home network system and method |
US20120163290A1 (en) * | 2010-12-28 | 2012-06-28 | Broadcom Corporation | Internet protocol low noise block front end architecture |
US8213309B2 (en) | 2008-12-22 | 2012-07-03 | Broadcom Corporation | Systems and methods for reducing latency and reservation request overhead in a communications network |
US8219799B1 (en) | 2008-04-25 | 2012-07-10 | Lockheed Martin Corporation | Secure communication system |
US8220038B1 (en) | 2008-04-25 | 2012-07-10 | Lockheed Martin Corporation | Method for securely routing communications |
US8228879B2 (en) * | 1995-10-05 | 2012-07-24 | Broadcom Corporation | Hierarchical data collection network supporting packetized voice communications among wireless terminals and telephones |
US8254413B2 (en) | 2008-12-22 | 2012-08-28 | Broadcom Corporation | Systems and methods for physical layer (“PHY”) concatenation in a multimedia over coax alliance network |
US20120331509A1 (en) * | 2001-05-24 | 2012-12-27 | Vixs Systems, Inc. | Channel selection in a multimedia system |
US8345553B2 (en) | 2007-05-31 | 2013-01-01 | Broadcom Corporation | Apparatus and methods for reduction of transmission delay in a communication network |
US8351582B2 (en) | 1999-07-20 | 2013-01-08 | Mosaid Technologies Incorporated | Network for telephony and data communication |
US8358663B2 (en) | 2006-11-20 | 2013-01-22 | Broadcom Corporation | System and method for retransmitting packets over a network of communication channels |
US20130077887A1 (en) * | 2011-01-18 | 2013-03-28 | Dimension, Inc. | Methods and systems for up-scaling a standard definition (sd) video to high definition (hd) quality |
US8514860B2 (en) | 2010-02-23 | 2013-08-20 | Broadcom Corporation | Systems and methods for implementing a high throughput mode for a MoCA device |
US8537925B2 (en) | 2006-11-20 | 2013-09-17 | Broadcom Corporation | Apparatus and methods for compensating for signal imbalance in a receiver |
US8553547B2 (en) | 2009-03-30 | 2013-10-08 | Broadcom Corporation | Systems and methods for retransmitting packets over a network of communication channels |
US8582598B2 (en) | 1999-07-07 | 2013-11-12 | Mosaid Technologies Incorporated | Local area network for distributing data communication, sensing and control signals |
US8595770B2 (en) | 2011-10-31 | 2013-11-26 | The Directv Group, Inc. | Aggregated content distribution system and method for operating the same |
US8601519B1 (en) | 2000-12-28 | 2013-12-03 | At&T Intellectual Property I, L.P. | Digital residential entertainment system |
US20130332967A1 (en) * | 2012-06-12 | 2013-12-12 | Glenn Chang | Combined terrestrial and satellite content for a seamless user experience |
US8611327B2 (en) | 2010-02-22 | 2013-12-17 | Broadcom Corporation | Method and apparatus for policing a QoS flow in a MoCA 2.0 network |
US8611528B2 (en) | 2004-02-16 | 2013-12-17 | Mosaid Technologies Incorporated | Outlet add-on module |
US8621530B1 (en) | 2011-10-31 | 2013-12-31 | The Directv Group, Inc. | Method and system for controlling user devices in an aggregated content distribution system |
US8627385B2 (en) | 2002-10-04 | 2014-01-07 | David B. Davies | Systems and methods for operating a peripheral record playback device in a networked multimedia system |
US8677423B2 (en) | 2000-12-28 | 2014-03-18 | At&T Intellectual Property I, L. P. | Digital residential entertainment system |
US8724485B2 (en) | 2000-08-30 | 2014-05-13 | Broadcom Corporation | Home network system and method |
US8730798B2 (en) | 2009-05-05 | 2014-05-20 | Broadcom Corporation | Transmitter channel throughput in an information network |
US8755289B2 (en) | 2000-08-30 | 2014-06-17 | Broadcom Corporation | Home network system and method |
US8799633B2 (en) | 2011-02-11 | 2014-08-05 | Standard Microsystems Corporation | MAC filtering on ethernet PHY for wake-on-LAN |
US8839314B2 (en) | 2004-12-01 | 2014-09-16 | At&T Intellectual Property I, L.P. | Device, system, and method for managing television tuners |
US8848725B2 (en) | 2000-04-19 | 2014-09-30 | Conversant Intellectual Property Management Incorporated | Network combining wired and non-wired segments |
US8856843B1 (en) | 2011-10-31 | 2014-10-07 | The Directv Group, Inc. | Method and system for adding local channels and program guide data at a user receiving device in an aggregated content distribution system |
US8867355B2 (en) | 2009-07-14 | 2014-10-21 | Broadcom Corporation | MoCA multicast handling |
US20140325583A1 (en) * | 2011-11-25 | 2014-10-30 | Masaki Mukawa | Video transmitter apparatus and video receiver apparatus, and video transmitting method and video receiving method |
US8942250B2 (en) | 2009-10-07 | 2015-01-27 | Broadcom Corporation | Systems and methods for providing service (“SRV”) node selection |
US9100361B1 (en) * | 2008-04-25 | 2015-08-04 | Lockheed Martin Corporation | Secure routing module |
US9112717B2 (en) | 2008-07-31 | 2015-08-18 | Broadcom Corporation | Systems and methods for providing a MoCA power management strategy |
US20150365158A1 (en) * | 2013-02-05 | 2015-12-17 | Lantiq Deutschland Gmbh | System, Method and Apparatus for an Uplink Extender |
US20160066005A1 (en) * | 2014-08-29 | 2016-03-03 | The Nielsen Company (Us), Llc | Methods and apparatus to identify remote presentation of streaming media |
US20160094879A1 (en) * | 2014-09-29 | 2016-03-31 | At&T Intellectual Property I, Lp. | Method and apparatus for distributing content in a communication network |
US9363554B2 (en) | 2000-12-27 | 2016-06-07 | Chanbond Llc | Intelligent device system and method for distribution of digital signals on a wideband signal distribution system |
US20160182611A1 (en) * | 2013-06-24 | 2016-06-23 | Alcatel Lucent | Automated adaption of a codec |
US9531619B2 (en) | 2009-04-07 | 2016-12-27 | Broadcom Corporation | Channel assessment in an information network |
US9942618B2 (en) | 2007-10-31 | 2018-04-10 | The Directv Group, Inc. | SMATV headend using IP transport stream input and method for operating the same |
US9992525B1 (en) | 2008-09-15 | 2018-06-05 | The Directv Group, Inc. | Method and system for inserting local channel insertion in a multi-terminal system |
US10021437B1 (en) * | 2008-09-15 | 2018-07-10 | The Directv Group, Inc. | Method and system for discontinuing a channel stream in a multi-terminal system |
US20180210723A1 (en) * | 2010-03-15 | 2018-07-26 | Comcast Cable Communications, Llc | Home Gateway Expansion |
US20180310073A1 (en) * | 2015-12-07 | 2018-10-25 | Caavo Inc | Network-based control of a media device |
US20190104334A1 (en) * | 2017-09-29 | 2019-04-04 | Intel Corporation | Cable modem with embedded video transmitter |
WO2019070283A1 (en) * | 2017-10-05 | 2019-04-11 | Blonder Tongue Laboratories, Inc. | Networking modules for display systems |
US20200136856A1 (en) * | 2016-12-21 | 2020-04-30 | Multivac Sepp Haggenmüller Se & Co. Kg | Packaging machine having a bus node assembly |
US11019600B2 (en) * | 2016-05-17 | 2021-05-25 | SpectraRep, LLC | Method and system for datacasting and content management |
US11032353B2 (en) | 2004-01-13 | 2021-06-08 | May Patents Ltd. | Information device |
US11165511B2 (en) | 2013-09-19 | 2021-11-02 | Radius Universal Llc | Fiber optic communications and power network |
US11343562B1 (en) * | 2021-04-20 | 2022-05-24 | Cox Communications, Inc. | Digital receiver integrated local channel insertion |
US20230011720A1 (en) * | 2021-07-09 | 2023-01-12 | ReadyLinks Inc. | Bidirectional power feed digital communication device |
US11728893B1 (en) * | 2020-01-28 | 2023-08-15 | Acacia Communications, Inc. | Method, system, and apparatus for packet transmission |
US11924005B2 (en) * | 2017-10-12 | 2024-03-05 | Rockport Networks, Inc. | Dedicated network gateway device |
US11929887B2 (en) | 2021-07-09 | 2024-03-12 | ReadyLinks Inc. | Facilitating and provisioning customer broadband transport service |
Families Citing this family (472)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6020189A (en) * | 1996-08-30 | 2000-02-01 | The Johns Hopkins University School Of Medicine | Fibroblast growth factor homologous factors (FHFs) and methods of use |
EP1121804B1 (en) * | 1998-09-08 | 2004-11-17 | Asvan Technology, LLC. | Enhanced security communications system |
US6697489B1 (en) * | 1999-03-30 | 2004-02-24 | Sony Corporation | Method and apparatus for securing control words |
US7730300B2 (en) * | 1999-03-30 | 2010-06-01 | Sony Corporation | Method and apparatus for protecting the transfer of data |
US7933295B2 (en) * | 1999-04-13 | 2011-04-26 | Broadcom Corporation | Cable modem with voice processing capability |
US6765931B1 (en) * | 1999-04-13 | 2004-07-20 | Broadcom Corporation | Gateway with voice |
US6263503B1 (en) | 1999-05-26 | 2001-07-17 | Neal Margulis | Method for effectively implementing a wireless television system |
US8266657B2 (en) * | 2001-03-15 | 2012-09-11 | Sling Media Inc. | Method for effectively implementing a multi-room television system |
US8464302B1 (en) | 1999-08-03 | 2013-06-11 | Videoshare, Llc | Method and system for sharing video with advertisements over a network |
US7065779B1 (en) | 1999-10-13 | 2006-06-20 | Cisco Technology, Inc. | Technique for synchronizing multiple access controllers at the head end of an access network |
US7039614B1 (en) * | 1999-11-09 | 2006-05-02 | Sony Corporation | Method for simulcrypting scrambled data to a plurality of conditional access devices |
US6678740B1 (en) * | 2000-01-14 | 2004-01-13 | Terayon Communication Systems, Inc. | Process carried out by a gateway in a home network to receive video-on-demand and other requested programs and services |
US20020059637A1 (en) * | 2000-01-14 | 2002-05-16 | Rakib Selim Shlomo | Home gateway for video and data distribution from various types of headend facilities and including digital video recording functions |
US7225164B1 (en) * | 2000-02-15 | 2007-05-29 | Sony Corporation | Method and apparatus for implementing revocation in broadcast networks |
US6795448B1 (en) * | 2000-03-02 | 2004-09-21 | Intel Corporation | IP packet ready PBX expansion circuit for a conventional personal computer with expandable, distributed DSP architecture |
WO2001067772A2 (en) | 2000-03-09 | 2001-09-13 | Videoshare, Inc. | Sharing a streaming video |
EP2285104A1 (en) * | 2000-03-31 | 2011-02-16 | United Video Properties, Inc. | System and method for reducing cut-offs in program recording |
WO2001086914A2 (en) * | 2000-05-08 | 2001-11-15 | Broadcom Corporation | System and method for supporting multiple voice channels |
US7606883B1 (en) * | 2000-05-11 | 2009-10-20 | Thomson Licensing | Method and system for controlling and auditing content/service systems |
US7549107B1 (en) * | 2000-05-18 | 2009-06-16 | Broadcom Corporation | Interleaved reed solomon coding for home networking |
US20020026501A1 (en) * | 2000-05-31 | 2002-02-28 | Khoi Hoang | Decreased idle time and constant bandwidth data-on-demand broadcast delivery matrices |
US20010054060A1 (en) * | 2000-06-16 | 2001-12-20 | Fillebrown Lisa A. | Personal wireless network |
US20040205812A1 (en) * | 2000-06-22 | 2004-10-14 | Candelore Brant L. | Method and apparatus for routing program data in a program viewing unit |
US7690020B2 (en) * | 2000-06-30 | 2010-03-30 | Time Warner Cable, A Division Of Time Warner Entertainment Company, L.P. | Hybrid central/distributed VOD system with tiered content structure |
US7068596B1 (en) * | 2000-07-07 | 2006-06-27 | Nevco Technology, Inc. | Interactive data transmission system having staged servers |
US20060259926A1 (en) | 2000-07-20 | 2006-11-16 | Digital Deck, Inc. | Adaptable programming guide for networked devices |
US20020029384A1 (en) * | 2000-07-20 | 2002-03-07 | Griggs Theodore L. | Mechanism for distributing content data |
JP4174319B2 (en) * | 2000-07-27 | 2008-10-29 | 株式会社インフォシティ | Information access apparatus and method, and information providing apparatus and method |
US20020023265A1 (en) * | 2000-08-08 | 2002-02-21 | Metcalf Darrell J. | Wireless controller with publicly-accessible communications link for controlling the content seen on large-screen systems |
EP1182819B1 (en) * | 2000-08-23 | 2006-10-04 | Sony Deutschland GmbH | Home network controlling via e-mails |
AU2001285231A1 (en) * | 2000-08-24 | 2002-03-04 | Jacob Gil | A method and system for automatically connecting real-world entities directly tocorresponding network-based data sources or services |
US8037492B2 (en) * | 2000-09-12 | 2011-10-11 | Thomson Licensing | Method and system for video enhancement transport alteration |
KR20190096450A (en) | 2000-10-11 | 2019-08-19 | 로비 가이드스, 인크. | Systems and methods for delivering media content |
US7451235B2 (en) * | 2000-10-11 | 2008-11-11 | Broadcom Corporation | Dynamic delta encoding for cable modem header suppression |
US6649567B2 (en) * | 2001-10-11 | 2003-11-18 | Isp Investments Inc. | Controlled release microbiocide for porous surfaces |
US10915296B2 (en) | 2000-11-01 | 2021-02-09 | Flexiworld Technologies, Inc. | Information apparatus that includes a touch sensitive screen interface for managing or replying to e-mails |
US11204729B2 (en) | 2000-11-01 | 2021-12-21 | Flexiworld Technologies, Inc. | Internet based digital content services for pervasively providing protected digital content to smart devices based on having subscribed to the digital content service |
US10860290B2 (en) | 2000-11-01 | 2020-12-08 | Flexiworld Technologies, Inc. | Mobile information apparatuses that include a digital camera, a touch sensitive screen interface, support for voice activated commands, and a wireless communication chip or chipset supporting IEEE 802.11 |
US20020051200A1 (en) * | 2000-11-01 | 2002-05-02 | Chang William Ho | Controller for device-to-device pervasive digital output |
US7177598B2 (en) * | 2000-11-15 | 2007-02-13 | Wi-Lan, Inc. | Method and system for reducing channel interference in a frame-synchronized wireless communication system |
JP3764645B2 (en) * | 2000-11-15 | 2006-04-12 | 株式会社日立製作所 | Multi-party call system and multi-party call method |
US20020078101A1 (en) * | 2000-11-20 | 2002-06-20 | Chang William Ho | Mobile and pervasive output client device |
US7113738B2 (en) * | 2000-12-15 | 2006-09-26 | The Fantastic Ip Gmbh | Decision support method for planning broadcast transmissions |
US20020083475A1 (en) * | 2000-12-27 | 2002-06-27 | Earl Hennenhoefer | Intelligent device system and method for distribution of digital signals on a wideband signal distribution system |
US20020124097A1 (en) * | 2000-12-29 | 2002-09-05 | Isely Larson J. | Methods, systems and computer program products for zone based distribution of audio signals |
US20020097408A1 (en) | 2001-01-19 | 2002-07-25 | Chang William Ho | Output device for universal data output |
US20020178454A1 (en) * | 2001-02-14 | 2002-11-28 | Antoine Mark J. | Broadcast television and satellite signal switching system and method for telephony signal insertion |
US20020120751A1 (en) * | 2001-02-23 | 2002-08-29 | Chris Del Sordo | Control channel protocol and hardware-independent downstream services software design for broadband devices |
GB0104836D0 (en) * | 2001-02-27 | 2001-04-18 | Ccc Network Systems Group Ltd | Improvements relating to server systems |
JP2002271362A (en) * | 2001-03-09 | 2002-09-20 | Sony Corp | Router device and method for controlling audio and video equipment using the same |
US7350225B2 (en) * | 2001-03-27 | 2008-03-25 | Intel Corporation | System and related methods facilitating the rapid detection and acquisition of data channels in a cable modem using various modulation techniques |
US7162732B2 (en) * | 2001-03-27 | 2007-01-09 | Intel Corporation | System and related methods facilitating the detection and acquisition of a data channel in a cable modem |
US20020154055A1 (en) * | 2001-04-18 | 2002-10-24 | Robert Davis | LAN based satellite antenna/satellite multiswitch |
US8572278B2 (en) * | 2001-04-30 | 2013-10-29 | Facebook, Inc. | Generating multiple data streams from a single data source |
US7124166B2 (en) * | 2001-04-30 | 2006-10-17 | Aol Llc | Duplicating digital streams for digital conferencing using switching technologies |
US7237033B2 (en) | 2001-04-30 | 2007-06-26 | Aol Llc | Duplicating switch for streaming data units to a terminal |
US7350082B2 (en) * | 2001-06-06 | 2008-03-25 | Sony Corporation | Upgrading of encryption |
US7895616B2 (en) * | 2001-06-06 | 2011-02-22 | Sony Corporation | Reconstitution of program streams split across multiple packet identifiers |
US7139398B2 (en) * | 2001-06-06 | 2006-11-21 | Sony Corporation | Time division partial encryption |
US7747853B2 (en) | 2001-06-06 | 2010-06-29 | Sony Corporation | IP delivery of secure digital content |
GB2403385A (en) * | 2001-06-14 | 2004-12-29 | Peter D Hallenbeck | Transmitting infra-red command codes over a network |
US7209442B1 (en) * | 2001-06-27 | 2007-04-24 | Cisco Technology, Inc. | Packet fiber node |
US7639617B2 (en) * | 2001-06-27 | 2009-12-29 | Cisco Technology, Inc. | Upstream physical interface for modular cable modem termination system |
US7688828B2 (en) * | 2001-06-27 | 2010-03-30 | Cisco Technology, Inc. | Downstream remote physical interface for modular cable modem termination system |
US7085287B1 (en) | 2001-06-27 | 2006-08-01 | Cisco Technology, Inc. | Map routing technique implemented in access networks |
US7349430B1 (en) | 2001-06-27 | 2008-03-25 | Cisco Technology, Inc. | Addressing scheme implemented in access networks |
US7054915B2 (en) * | 2001-06-28 | 2006-05-30 | Thomas Licensing | Remote services control in an ATM/DSL service network |
US7529485B2 (en) * | 2001-07-05 | 2009-05-05 | Enablence Usa Fttx Networks, Inc. | Method and system for supporting multiple services with a subscriber optical interface located outside a subscriber's premises |
US7809852B2 (en) * | 2001-07-26 | 2010-10-05 | Brocade Communications Systems, Inc. | High jitter scheduling of interleaved frames in an arbitrated loop |
JP2003046977A (en) * | 2001-07-31 | 2003-02-14 | Matsushita Electric Ind Co Ltd | Relay server |
US20030046693A1 (en) * | 2001-08-29 | 2003-03-06 | Digeo, Inc. | System and method for focused navigation within an interactive television user interface |
DE10147875A1 (en) * | 2001-09-28 | 2003-04-24 | Siemens Ag | Broadband bi-directional communication, e.g. for broadband television, uses hybrid network architecture to form data downlinks and uplinks to subscribers via two-core telephone lines |
EP2523358A3 (en) | 2001-10-11 | 2012-11-21 | Mosaid Technologies Incorporated | Outlet with analog signal adapter |
US20030074670A1 (en) * | 2001-10-12 | 2003-04-17 | Penk Mark D. | Propagation of dynamic network information |
US7500261B1 (en) * | 2001-10-30 | 2009-03-03 | Sprint Communications Company L.P. | Multi-point multi-channel data distribution system |
US20030093804A1 (en) * | 2001-11-13 | 2003-05-15 | Chang Matthew S. | Seamless integration of multiple data/internet connections |
US7458092B1 (en) | 2001-11-15 | 2008-11-25 | Sprint Communications Company L.P. | Centralized IP video gateway with port extenders having remote control interfaces |
US20030101457A1 (en) * | 2001-11-26 | 2003-05-29 | Tiemann Michael D. | Systems and methods for distributing, duplicating and viewing movies, including customer-specific identification in the title sequence thereof |
US20040049789A1 (en) * | 2001-12-07 | 2004-03-11 | Yazaki North America, Inc. | Method and apparatus for interfacing various audiovisual devices with a digital data network |
FR2833791B1 (en) * | 2001-12-13 | 2004-02-06 | Telediffusion De France Tdf | METROLOGY DEVICE FOR AUTOMATIC MONITORING OF A DIGITAL SIGNAL BROADCASTING NETWORK AND BROADCASTING NETWORK COMPRISING SUCH A METROLOGY DEVICE |
US7103001B1 (en) * | 2001-12-19 | 2006-09-05 | Bell South Intellectual Property Corp. | System and method for planning ports in DSL network elements |
US7171493B2 (en) * | 2001-12-19 | 2007-01-30 | The Charles Stark Draper Laboratory | Camouflage of network traffic to resist attack |
US7602716B1 (en) * | 2001-12-20 | 2009-10-13 | Cisco Technology, Inc. | Load sharing on DOCSIS |
KR100425317B1 (en) * | 2001-12-21 | 2004-03-31 | 삼성전자주식회사 | Method and system for remote-updating for functions of home devices |
US7039938B2 (en) * | 2002-01-02 | 2006-05-02 | Sony Corporation | Selective encryption for video on demand |
US7765567B2 (en) * | 2002-01-02 | 2010-07-27 | Sony Corporation | Content replacement by PID mapping |
US7242773B2 (en) * | 2002-09-09 | 2007-07-10 | Sony Corporation | Multiple partial encryption using retuning |
US7218738B2 (en) * | 2002-01-02 | 2007-05-15 | Sony Corporation | Encryption and content control in a digital broadcast system |
US7376233B2 (en) * | 2002-01-02 | 2008-05-20 | Sony Corporation | Video slice and active region based multiple partial encryption |
US7233669B2 (en) * | 2002-01-02 | 2007-06-19 | Sony Corporation | Selective encryption to enable multiple decryption keys |
US7302059B2 (en) * | 2002-01-02 | 2007-11-27 | Sony Corporation | Star pattern partial encryption |
US7215770B2 (en) * | 2002-01-02 | 2007-05-08 | Sony Corporation | System and method for partially encrypted multimedia stream |
US7155012B2 (en) * | 2002-01-02 | 2006-12-26 | Sony Corporation | Slice mask and moat pattern partial encryption |
US7823174B2 (en) * | 2002-01-02 | 2010-10-26 | Sony Corporation | Macro-block based content replacement by PID mapping |
US20030131350A1 (en) | 2002-01-08 | 2003-07-10 | Peiffer John C. | Method and apparatus for identifying a digital audio signal |
US6658091B1 (en) | 2002-02-01 | 2003-12-02 | @Security Broadband Corp. | LIfestyle multimedia security system |
US8156533B2 (en) * | 2002-02-04 | 2012-04-10 | Accenture Global Services Limited | Media transmission system and method |
US7668306B2 (en) | 2002-03-08 | 2010-02-23 | Intel Corporation | Method and apparatus for connecting packet telephony calls between secure and non-secure networks |
US7404001B2 (en) * | 2002-03-27 | 2008-07-22 | Ericsson Ab | Videophone and method for a video call |
JP3964248B2 (en) * | 2002-04-03 | 2007-08-22 | シャープ株式会社 | Access point and wireless communication system |
US7260090B2 (en) * | 2002-04-26 | 2007-08-21 | Ontash & Ermac, Inc. | Analog gateway |
US20030208772A1 (en) * | 2002-05-02 | 2003-11-06 | Celite Systems | Digital subscriber line head-end |
WO2003096210A1 (en) * | 2002-05-08 | 2003-11-20 | Starrete Communications, Inc. | System and method for providing video telephony over a cable access network infrastructure |
US7558873B1 (en) * | 2002-05-08 | 2009-07-07 | Nvidia Corporation | Method for compressed large send |
US20030212994A1 (en) * | 2002-05-09 | 2003-11-13 | Radiant Communications Corporation | Remote monitoring system |
US7979573B2 (en) * | 2002-05-15 | 2011-07-12 | Broadcom Corporation | Smart routing between peers in a point-to-point link based system |
US8082565B2 (en) * | 2002-05-16 | 2011-12-20 | Intel Corporation | Converged communication server with transaction management |
US7530084B2 (en) * | 2002-05-28 | 2009-05-05 | Sony Corporation | Method and apparatus for synchronizing dynamic graphics |
US20090180025A1 (en) * | 2002-05-28 | 2009-07-16 | Sony Corporation | Method and apparatus for overlaying graphics on video |
US20030229898A1 (en) * | 2002-06-05 | 2003-12-11 | Babu Suresh P. | Multiple on-demand media vendor integration |
US7596692B2 (en) * | 2002-06-05 | 2009-09-29 | Microsoft Corporation | Cryptographic audit |
DE10228605A1 (en) * | 2002-06-26 | 2004-01-15 | Deutsche Thomson-Brandt Gmbh | Module for integration in a home network |
US8028092B2 (en) | 2002-06-28 | 2011-09-27 | Aol Inc. | Inserting advertising content |
US7437548B1 (en) | 2002-07-11 | 2008-10-14 | Nvidia Corporation | Network level protocol negotiation and operation |
US8181208B1 (en) * | 2002-08-07 | 2012-05-15 | Entropic Communications, Inc. | Media server and network for coaxial cable supporting legacy set top boxes |
EP1527614B1 (en) * | 2002-08-08 | 2008-03-26 | Technolux Holding S.A. | Telecommunications and telephony network |
US8818896B2 (en) * | 2002-09-09 | 2014-08-26 | Sony Corporation | Selective encryption with coverage encryption |
CN1695135A (en) * | 2002-09-17 | 2005-11-09 | 伊迪蒂克公司 | System and method for the packaging and distribution of data |
US20040060074A1 (en) * | 2002-09-19 | 2004-03-25 | Ganesh Basawapatna | Video distribution system with increased centralized processing |
US7954127B2 (en) * | 2002-09-25 | 2011-05-31 | The Directv Group, Inc. | Direct broadcast signal distribution methods |
US8601514B1 (en) * | 2002-09-27 | 2013-12-03 | Arris Enterprises, Inc. | PC media center and extension device for a home entertainment system |
US8141117B1 (en) | 2002-09-30 | 2012-03-20 | Arris Group, Inc. | PC media center and extension device for interfacing with a personal video recorder through a home network |
US7690022B2 (en) * | 2002-10-02 | 2010-03-30 | Ganesh Basawapatna | Video distribution system for digital and analog subscribers |
US7545935B2 (en) * | 2002-10-04 | 2009-06-09 | Scientific-Atlanta, Inc. | Networked multimedia overlay system |
US7724907B2 (en) | 2002-11-05 | 2010-05-25 | Sony Corporation | Mechanism for protecting the transfer of digital content |
US8572408B2 (en) * | 2002-11-05 | 2013-10-29 | Sony Corporation | Digital rights management of a digital device |
IL152824A (en) * | 2002-11-13 | 2012-05-31 | Mosaid Technologies Inc | Addressable outlet and a network using same |
US7450501B2 (en) * | 2002-12-11 | 2008-11-11 | Broadcom Corporation | Media processing system based on satellite set top box platform with telephony downstream and upstream data paths |
US8645988B2 (en) * | 2002-12-13 | 2014-02-04 | Sony Corporation | Content personalization for digital content |
US8667525B2 (en) * | 2002-12-13 | 2014-03-04 | Sony Corporation | Targeted advertisement selection from a digital stream |
US20040123325A1 (en) * | 2002-12-23 | 2004-06-24 | Ellis Charles W. | Technique for delivering entertainment and on-demand tutorial information through a communications network |
US8010061B2 (en) * | 2002-12-24 | 2011-08-30 | Agere Systems, Inc. | Combining multimedia signaling and wireless network signaling on a common communication medium |
US20040133917A1 (en) * | 2003-01-07 | 2004-07-08 | Schilling Donald L. | Video on demand using MCMD and TDM or FDM |
US7596801B2 (en) * | 2003-01-21 | 2009-09-29 | Scientific-Atlanta, Inc. | Single wire return device in a fiber to the home system |
US20040151187A1 (en) * | 2003-01-31 | 2004-08-05 | Lichtenstein Walter D. | Scheduling data transfers for multiple use requests |
US8813142B2 (en) * | 2003-01-31 | 2014-08-19 | Qwest Communications International Inc. | Methods, systems and apparatus for providing video transmissions over multiple media |
US8490129B2 (en) | 2003-01-31 | 2013-07-16 | Qwest Communications International Inc. | Methods, systems and apparatus for selectively distributing urgent public information |
US7921443B2 (en) * | 2003-01-31 | 2011-04-05 | Qwest Communications International, Inc. | Systems and methods for providing video and data services to a customer premises |
US10142023B2 (en) | 2003-01-31 | 2018-11-27 | Centurylink Intellectual Property Llc | Antenna system and methods for wireless optical network termination |
US20040153567A1 (en) * | 2003-01-31 | 2004-08-05 | Lichtenstein Walter D. | Scheduling data transfers using virtual nodes |
KR100513866B1 (en) * | 2003-02-06 | 2005-09-09 | 삼성전자주식회사 | Legacy fax service system in home network and method thereof |
US20040165586A1 (en) * | 2003-02-24 | 2004-08-26 | Read Christopher Jensen | PID filters based network routing |
US20070256094A1 (en) * | 2003-03-11 | 2007-11-01 | Thomson Licensing | Apparatus and Method for Distributing Signals by Down-Converting to Vacant Channels |
US20040181811A1 (en) * | 2003-03-13 | 2004-09-16 | Rakib Selim Shlomo | Thin DOCSIS in-band management for interactive HFC service delivery |
US20050086306A1 (en) * | 2003-03-14 | 2005-04-21 | Lemke Ralph E. | Providing background delivery of messages over a network |
US7409702B2 (en) * | 2003-03-20 | 2008-08-05 | Sony Corporation | Auxiliary program association table |
ES2221792B1 (en) * | 2003-04-08 | 2005-08-01 | Simon, S.A. | CONFIGURABLE DISTRIBUTOR MODULE OF COMMUNICATIONS SERVICES FOR HOUSING AND SIMILAR. |
US20060051059A1 (en) | 2004-09-08 | 2006-03-09 | Krakirian Haig H | Video recorder having user extended and automatically extended time slots |
US8560629B1 (en) * | 2003-04-25 | 2013-10-15 | Hewlett-Packard Development Company, L.P. | Method of delivering content in a network |
US7228535B2 (en) * | 2003-05-05 | 2007-06-05 | International Business Machines Corporation | Methods and apparatus for multimedia stream scheduling in resource-constrained environment |
US20040230997A1 (en) * | 2003-05-13 | 2004-11-18 | Broadcom Corporation | Single-chip cable set-top box |
US8707373B2 (en) * | 2003-05-14 | 2014-04-22 | The Directv Group, Inc. | Method and system for providing digital video distribution |
US20040237110A1 (en) * | 2003-05-21 | 2004-11-25 | Jones Morris E. | Display monitor |
US7583704B1 (en) | 2003-06-10 | 2009-09-01 | Carl Walker | Synchronizing separated upstream and downstream channels of cable modem termination systems |
US8997157B1 (en) * | 2003-06-18 | 2015-03-31 | The Directv Group, Inc. | Audio/video satellite broadcast network |
WO2005002215A1 (en) * | 2003-06-19 | 2005-01-06 | Ictv, Inc. | Interactive picture-in-picture video |
JP4352797B2 (en) * | 2003-07-07 | 2009-10-28 | ソニー株式会社 | Receiving apparatus and receiving method |
US7093274B2 (en) * | 2003-07-29 | 2006-08-15 | Sony Corporation | Apparatus and method for accommodating fast change of digital streaming sources and formats |
KR100532278B1 (en) * | 2003-07-31 | 2005-11-29 | 삼성전자주식회사 | Mpts-spts splitting apparatus |
US8112449B2 (en) | 2003-08-01 | 2012-02-07 | Qwest Communications International Inc. | Systems and methods for implementing a content object access point |
US20050036067A1 (en) * | 2003-08-05 | 2005-02-17 | Ryal Kim Annon | Variable perspective view of video images |
KR100787216B1 (en) * | 2003-08-06 | 2007-12-21 | 삼성전자주식회사 | Digital entertainment system |
KR100565942B1 (en) * | 2003-08-13 | 2006-03-30 | 한국전자통신연구원 | System and method for combining broadcasting and communication of being based on ethernet |
US20050066357A1 (en) * | 2003-09-22 | 2005-03-24 | Ryal Kim Annon | Modifying content rating |
US7346163B2 (en) * | 2003-10-31 | 2008-03-18 | Sony Corporation | Dynamic composition of pre-encrypted video on demand content |
US20050097596A1 (en) * | 2003-10-31 | 2005-05-05 | Pedlow Leo M.Jr. | Re-encrypted delivery of video-on-demand content |
US7263187B2 (en) * | 2003-10-31 | 2007-08-28 | Sony Corporation | Batch mode session-based encryption of video on demand content |
US7620180B2 (en) * | 2003-11-03 | 2009-11-17 | Sony Corporation | Preparation of content for multiple conditional access methods in video on demand |
US20050097597A1 (en) * | 2003-10-31 | 2005-05-05 | Pedlow Leo M.Jr. | Hybrid storage of video on demand content |
US7343013B2 (en) * | 2003-12-16 | 2008-03-11 | Sony Corporation | Composite session-based encryption of video on demand content |
US7853980B2 (en) * | 2003-10-31 | 2010-12-14 | Sony Corporation | Bi-directional indices for trick mode video-on-demand |
US20050102702A1 (en) * | 2003-11-12 | 2005-05-12 | Candelore Brant L. | Cablecard with content manipulation |
US7307985B1 (en) * | 2003-12-04 | 2007-12-11 | Sprint Communications Company L.P. | Method and system for automatically routing a dial plan through a communications network |
US7447740B2 (en) * | 2003-12-19 | 2008-11-04 | Microsoft Corporation | Internet video conferencing on a home television |
US7643480B2 (en) * | 2004-01-22 | 2010-01-05 | Hain-Ching Liu | Method and system for reliably and efficiently transporting data over a network |
US20050169473A1 (en) * | 2004-02-03 | 2005-08-04 | Candelore Brant L. | Multiple selective encryption with DRM |
US20050188089A1 (en) * | 2004-02-24 | 2005-08-25 | Lichtenstein Walter D. | Managing reservations for resources |
US8166554B2 (en) * | 2004-02-26 | 2012-04-24 | Vmware, Inc. | Secure enterprise network |
US8214875B2 (en) * | 2004-02-26 | 2012-07-03 | Vmware, Inc. | Network security policy enforcement using application session information and object attributes |
US9584522B2 (en) | 2004-02-26 | 2017-02-28 | Vmware, Inc. | Monitoring network traffic by using event log information |
US9609003B1 (en) | 2007-06-12 | 2017-03-28 | Icontrol Networks, Inc. | Generating risk profile using data of home monitoring and security system |
US10156959B2 (en) | 2005-03-16 | 2018-12-18 | Icontrol Networks, Inc. | Cross-client sensor user interface in an integrated security network |
US7711796B2 (en) | 2006-06-12 | 2010-05-04 | Icontrol Networks, Inc. | Gateway registry methods and systems |
US10313303B2 (en) | 2007-06-12 | 2019-06-04 | Icontrol Networks, Inc. | Forming a security network including integrated security system components and network devices |
US11677577B2 (en) | 2004-03-16 | 2023-06-13 | Icontrol Networks, Inc. | Premises system management using status signal |
US11316958B2 (en) | 2008-08-11 | 2022-04-26 | Icontrol Networks, Inc. | Virtual device systems and methods |
US11190578B2 (en) | 2008-08-11 | 2021-11-30 | Icontrol Networks, Inc. | Integrated cloud system with lightweight gateway for premises automation |
US10339791B2 (en) | 2007-06-12 | 2019-07-02 | Icontrol Networks, Inc. | Security network integrated with premise security system |
US10721087B2 (en) | 2005-03-16 | 2020-07-21 | Icontrol Networks, Inc. | Method for networked touchscreen with integrated interfaces |
US11582065B2 (en) | 2007-06-12 | 2023-02-14 | Icontrol Networks, Inc. | Systems and methods for device communication |
US11343380B2 (en) | 2004-03-16 | 2022-05-24 | Icontrol Networks, Inc. | Premises system automation |
US10382452B1 (en) | 2007-06-12 | 2019-08-13 | Icontrol Networks, Inc. | Communication protocols in integrated systems |
US11368327B2 (en) | 2008-08-11 | 2022-06-21 | Icontrol Networks, Inc. | Integrated cloud system for premises automation |
US11368429B2 (en) | 2004-03-16 | 2022-06-21 | Icontrol Networks, Inc. | Premises management configuration and control |
US9531593B2 (en) | 2007-06-12 | 2016-12-27 | Icontrol Networks, Inc. | Takeover processes in security network integrated with premise security system |
US10127802B2 (en) | 2010-09-28 | 2018-11-13 | Icontrol Networks, Inc. | Integrated security system with parallel processing architecture |
US11489812B2 (en) | 2004-03-16 | 2022-11-01 | Icontrol Networks, Inc. | Forming a security network including integrated security system components and network devices |
US10348575B2 (en) | 2013-06-27 | 2019-07-09 | Icontrol Networks, Inc. | Control system user interface |
US9191228B2 (en) | 2005-03-16 | 2015-11-17 | Icontrol Networks, Inc. | Cross-client sensor user interface in an integrated security network |
US8988221B2 (en) | 2005-03-16 | 2015-03-24 | Icontrol Networks, Inc. | Integrated security system with parallel processing architecture |
US12063220B2 (en) | 2004-03-16 | 2024-08-13 | Icontrol Networks, Inc. | Communication protocols in integrated systems |
US11811845B2 (en) | 2004-03-16 | 2023-11-07 | Icontrol Networks, Inc. | Communication protocols over internet protocol (IP) networks |
US10522026B2 (en) | 2008-08-11 | 2019-12-31 | Icontrol Networks, Inc. | Automation system user interface with three-dimensional display |
US11201755B2 (en) | 2004-03-16 | 2021-12-14 | Icontrol Networks, Inc. | Premises system management using status signal |
US10237237B2 (en) | 2007-06-12 | 2019-03-19 | Icontrol Networks, Inc. | Communication protocols in integrated systems |
US10142392B2 (en) | 2007-01-24 | 2018-11-27 | Icontrol Networks, Inc. | Methods and systems for improved system performance |
US9141276B2 (en) | 2005-03-16 | 2015-09-22 | Icontrol Networks, Inc. | Integrated interface for mobile device |
US10200504B2 (en) | 2007-06-12 | 2019-02-05 | Icontrol Networks, Inc. | Communication protocols over internet protocol (IP) networks |
US9729342B2 (en) | 2010-12-20 | 2017-08-08 | Icontrol Networks, Inc. | Defining and implementing sensor triggered response rules |
US11244545B2 (en) | 2004-03-16 | 2022-02-08 | Icontrol Networks, Inc. | Cross-client sensor user interface in an integrated security network |
US11916870B2 (en) | 2004-03-16 | 2024-02-27 | Icontrol Networks, Inc. | Gateway registry methods and systems |
US10444964B2 (en) | 2007-06-12 | 2019-10-15 | Icontrol Networks, Inc. | Control system user interface |
US11113950B2 (en) | 2005-03-16 | 2021-09-07 | Icontrol Networks, Inc. | Gateway integrated with premises security system |
US20090077623A1 (en) | 2005-03-16 | 2009-03-19 | Marc Baum | Security Network Integrating Security System and Network Devices |
US8635350B2 (en) | 2006-06-12 | 2014-01-21 | Icontrol Networks, Inc. | IP device discovery systems and methods |
AU2005223267B2 (en) | 2004-03-16 | 2010-12-09 | Icontrol Networks, Inc. | Premises management system |
US10375253B2 (en) | 2008-08-25 | 2019-08-06 | Icontrol Networks, Inc. | Security system with networked touchscreen and gateway |
US11277465B2 (en) | 2004-03-16 | 2022-03-15 | Icontrol Networks, Inc. | Generating risk profile using data of home monitoring and security system |
US11159484B2 (en) | 2004-03-16 | 2021-10-26 | Icontrol Networks, Inc. | Forming a security network including integrated security system components and network devices |
US8963713B2 (en) | 2005-03-16 | 2015-02-24 | Icontrol Networks, Inc. | Integrated security network with security alarm signaling system |
IL161869A (en) | 2004-05-06 | 2014-05-28 | Serconet Ltd | System and method for carrying a wireless based signal over wiring |
US8149833B2 (en) * | 2004-05-25 | 2012-04-03 | Cisco Technology, Inc. | Wideband cable downstream protocol |
US7817553B2 (en) | 2004-05-25 | 2010-10-19 | Cisco Technology, Inc. | Local area network services in a cable modem network |
US7539208B2 (en) * | 2004-05-25 | 2009-05-26 | Cisco Technology, Inc. | Timing system for modular cable modem termination system |
US8102854B2 (en) * | 2004-05-25 | 2012-01-24 | Cisco Technology, Inc. | Neighbor discovery proxy with distributed packet inspection scheme |
US7646786B2 (en) * | 2004-05-25 | 2010-01-12 | Cisco Technology, Inc. | Neighbor discovery in cable networks |
US7720101B2 (en) * | 2004-05-25 | 2010-05-18 | Cisco Technology, Inc. | Wideband cable modem with narrowband circuitry |
US7835274B2 (en) * | 2004-05-25 | 2010-11-16 | Cisco Technology, Inc. | Wideband provisioning |
US7532627B2 (en) * | 2004-05-25 | 2009-05-12 | Cisco Technology, Inc. | Wideband upstream protocol |
US7864686B2 (en) * | 2004-05-25 | 2011-01-04 | Cisco Technology, Inc. | Tunneling scheme for transporting information over a cable network |
DE602004011485T2 (en) * | 2004-05-28 | 2009-01-22 | Alcatel Lucent | Broadband telecommunications system and method used therein for reducing the latency of a channel zapping from a multimedia receiver |
US8346605B2 (en) | 2004-06-07 | 2013-01-01 | Sling Media, Inc. | Management of shared media content |
US7917932B2 (en) * | 2005-06-07 | 2011-03-29 | Sling Media, Inc. | Personal video recorder functionality for placeshifting systems |
US9998802B2 (en) | 2004-06-07 | 2018-06-12 | Sling Media LLC | Systems and methods for creating variable length clips from a media stream |
EP1769399B1 (en) | 2004-06-07 | 2020-03-18 | Sling Media L.L.C. | Personal media broadcasting system |
US7975062B2 (en) | 2004-06-07 | 2011-07-05 | Sling Media, Inc. | Capturing and sharing media content |
US8099755B2 (en) | 2004-06-07 | 2012-01-17 | Sling Media Pvt. Ltd. | Systems and methods for controlling the encoding of a media stream |
US7769756B2 (en) | 2004-06-07 | 2010-08-03 | Sling Media, Inc. | Selection and presentation of context-relevant supplemental content and advertising |
US7765566B2 (en) * | 2004-06-21 | 2010-07-27 | General Instrument Corporation | In-band signaling to control encryption and transcoding resources in VOD/On-Demand system |
JP4655190B2 (en) * | 2004-08-06 | 2011-03-23 | ソニー株式会社 | Information processing apparatus and method, recording medium, and program |
US20060029093A1 (en) * | 2004-08-09 | 2006-02-09 | Cedric Van Rossum | Multimedia system over electronic network and method of use |
KR100602954B1 (en) * | 2004-09-22 | 2006-07-24 | 주식회사 아이큐브 | Media gateway |
US8028097B2 (en) * | 2004-10-04 | 2011-09-27 | Sony Corporation | System and method for synchronizing audio-visual devices on a power line communications (PLC) network |
KR100612449B1 (en) * | 2004-10-05 | 2006-08-16 | 삼성전자주식회사 | IP Set-Top Box capable of providing a local area wireless communication function and a voice conversation function |
US8671427B1 (en) | 2004-11-17 | 2014-03-11 | Verisign, Inc. | Method and apparatus to enable sending personal data via a network |
WO2006062553A1 (en) * | 2004-12-06 | 2006-06-15 | Thomson Licensing | Multiple closed captioning flows and customer access in digital networks |
KR20070091123A (en) * | 2004-12-06 | 2007-09-07 | 톰슨 라이센싱 | Network managed channel change in digital networks |
US8522293B2 (en) | 2004-12-15 | 2013-08-27 | Time Warner Cable Enterprises Llc | Method and apparatus for high bandwidth data transmission in content-based networks |
US7895617B2 (en) * | 2004-12-15 | 2011-02-22 | Sony Corporation | Content substitution editor |
US8041190B2 (en) | 2004-12-15 | 2011-10-18 | Sony Corporation | System and method for the creation, synchronization and delivery of alternate content |
US8069265B2 (en) * | 2005-01-10 | 2011-11-29 | Broadcom Corporation | Method and system for network rotameter station and service |
TW200704183A (en) * | 2005-01-27 | 2007-01-16 | Matrix Tv | Dynamic mosaic extended electronic programming guide for television program selection and display |
US20060193313A1 (en) * | 2005-02-25 | 2006-08-31 | Telkonet, Inc. | Local area network above telephony infrastructure |
US20060193336A1 (en) * | 2005-02-25 | 2006-08-31 | Telkonet, Inc. | Local area network above cable television methods and devices |
US8887224B2 (en) * | 2005-03-09 | 2014-11-11 | Vudu, Inc. | Updating content libraries by transmitting release data |
US8225083B2 (en) * | 2005-03-09 | 2012-07-17 | Vudu, Inc. | Secured seeding of data in a distributed environment |
US7797440B2 (en) * | 2005-03-09 | 2010-09-14 | Vudu, Inc. | Method and system for managing objects distributed in a network |
US8028322B2 (en) | 2005-03-14 | 2011-09-27 | Time Warner Cable Inc. | Method and apparatus for network content download and recording |
US10999254B2 (en) | 2005-03-16 | 2021-05-04 | Icontrol Networks, Inc. | System for data routing in networks |
US11496568B2 (en) | 2005-03-16 | 2022-11-08 | Icontrol Networks, Inc. | Security system with networked touchscreen |
US9306809B2 (en) | 2007-06-12 | 2016-04-05 | Icontrol Networks, Inc. | Security system with networked touchscreen |
US11700142B2 (en) | 2005-03-16 | 2023-07-11 | Icontrol Networks, Inc. | Security network integrating security system and network devices |
US20120324566A1 (en) | 2005-03-16 | 2012-12-20 | Marc Baum | Takeover Processes In Security Network Integrated With Premise Security System |
US11615697B2 (en) | 2005-03-16 | 2023-03-28 | Icontrol Networks, Inc. | Premise management systems and methods |
US20170180198A1 (en) | 2008-08-11 | 2017-06-22 | Marc Baum | Forming a security network including integrated security system components |
US20110128378A1 (en) | 2005-03-16 | 2011-06-02 | Reza Raji | Modular Electronic Display Platform |
US8621525B2 (en) * | 2005-04-01 | 2013-12-31 | The Directv Group, Inc. | Signal injection via power supply |
US7958531B2 (en) * | 2005-04-01 | 2011-06-07 | The Directv Group, Inc. | Automatic level control for incoming signals of different signal strengths |
US8024759B2 (en) * | 2005-04-01 | 2011-09-20 | The Directv Group, Inc. | Backwards-compatible frequency translation module for satellite video delivery |
US7945932B2 (en) * | 2005-04-01 | 2011-05-17 | The Directv Group, Inc. | Narrow bandwidth signal delivery system |
US7950038B2 (en) * | 2005-04-01 | 2011-05-24 | The Directv Group, Inc. | Transponder tuning and mapping |
US7987486B2 (en) * | 2005-04-01 | 2011-07-26 | The Directv Group, Inc. | System architecture for control and signal distribution on coaxial cable |
US7900230B2 (en) * | 2005-04-01 | 2011-03-01 | The Directv Group, Inc. | Intelligent two-way switching network |
US8549565B2 (en) * | 2005-04-01 | 2013-10-01 | The Directv Group, Inc. | Power balancing signal combiner |
US8774860B2 (en) * | 2005-04-05 | 2014-07-08 | Nokia Corporation | Method and device for low-power FM transmission of audio data to RDS capable FM radio receiver |
ITMI20050677A1 (en) * | 2005-04-18 | 2006-10-19 | Sisvel Spa | CONNECTION SYSTEM BETWEEN A SERVICE CENTER AND A PLURALITY OF TV RECEPTION DEVICES |
FI20055226A0 (en) * | 2005-05-13 | 2005-05-13 | Nokia Corp | Method and element for service control |
US7630361B2 (en) * | 2005-05-20 | 2009-12-08 | Cisco Technology, Inc. | Method and apparatus for using data-over-cable applications and services in non-cable environments |
KR100694216B1 (en) * | 2005-06-07 | 2007-03-14 | 삼성전자주식회사 | Apparatus and method for providing the channel of multi program on digital broadcasting system |
US7702952B2 (en) | 2005-06-30 | 2010-04-20 | Sling Media, Inc. | Firmware update for consumer electronic device |
KR100739120B1 (en) * | 2005-07-08 | 2007-07-13 | 삼성전자주식회사 | Broadcasting receive apparatus to offer a multi-stream and method of offering the multi-stream |
US7804888B2 (en) * | 2005-08-04 | 2010-09-28 | Agere Systems Inc. | Voice modem protocol for uninterrupted data connection |
US8875196B2 (en) * | 2005-08-13 | 2014-10-28 | Webtuner Corp. | System for network and local content access |
US20080016535A1 (en) * | 2005-09-02 | 2008-01-17 | The Directv Group, Inc. | Frequency shift key control in video delivery systems |
US8789115B2 (en) * | 2005-09-02 | 2014-07-22 | The Directv Group, Inc. | Frequency translation module discovery and configuration |
US7937732B2 (en) * | 2005-09-02 | 2011-05-03 | The Directv Group, Inc. | Network fraud prevention via registration and verification |
WO2007036758A1 (en) * | 2005-09-29 | 2007-04-05 | Nortel Networks Limited | Network media gateway |
US7991348B2 (en) * | 2005-10-12 | 2011-08-02 | The Directv Group, Inc. | Triple band combining approach to satellite signal distribution |
US8019275B2 (en) * | 2005-10-12 | 2011-09-13 | The Directv Group, Inc. | Band upconverter approach to KA/KU signal distribution |
US20070089142A1 (en) * | 2005-10-14 | 2007-04-19 | John Norin | Band converter approach to Ka/Ku signal distribution |
US20070094402A1 (en) * | 2005-10-17 | 2007-04-26 | Stevenson Harold R | Method, process and system for sharing data in a heterogeneous storage network |
US20070089158A1 (en) * | 2005-10-18 | 2007-04-19 | Clark Christopher M | Apparatus and method for providing access to associated data related to primary media data |
US20080288600A1 (en) * | 2005-10-18 | 2008-11-20 | Clark Christopher M | Apparatus and method for providing access to associated data related to primary media data via email |
US8549156B1 (en) * | 2005-10-26 | 2013-10-01 | At&T Intellectual Property Ii, L.P. | Method and apparatus for sharing a stored video session |
JP2009514332A (en) * | 2005-10-26 | 2009-04-02 | トムソン ライセンシング | System and method for inserting synchronization bytes into a transmission packet |
US20070220565A1 (en) * | 2005-11-04 | 2007-09-20 | Angel Albert J | Inventory Control With Content Cache, Time Scarcity Marker and Merchandising Incentives for Transactional Shopping Video On Demand Cable Systems |
US20070107019A1 (en) * | 2005-11-07 | 2007-05-10 | Pasquale Romano | Methods and apparatuses for an integrated media device |
KR101199367B1 (en) * | 2005-11-10 | 2012-11-09 | 엘지전자 주식회사 | Broadcasting receiver and interfacing method, and data structure |
KR100734859B1 (en) * | 2005-12-08 | 2007-07-03 | 한국전자통신연구원 | Method and apparatus for controlling internet set-top box by Megaco protocol |
GB0525547D0 (en) * | 2005-12-15 | 2006-01-25 | Symfony Technology Ltd | An electronic home entertainment device |
US9614977B1 (en) | 2005-12-16 | 2017-04-04 | At&T Intellectual Property Ii, L.P. | Real-time media control for audio and multimedia conferencing services |
FR2895182A1 (en) * | 2005-12-20 | 2007-06-22 | Thomson Licensing Sas | METHOD FOR TRANSMITTING DIGITAL TELEVISION SERVICES, GATEWAY AND CORRESPONDING NETWORK |
US7870125B1 (en) * | 2005-12-27 | 2011-01-11 | Charter Communications Holding Company | Integrated media content server system and method for the customization of metadata that is associated therewith |
US7813451B2 (en) * | 2006-01-11 | 2010-10-12 | Mobileaccess Networks Ltd. | Apparatus and method for frequency shifting of a wireless signal and systems using frequency shifting |
US8453183B2 (en) * | 2006-01-23 | 2013-05-28 | At&T Intellectual Property I, L.P. | System and method of processing a satellite signal |
US7706534B2 (en) * | 2006-02-28 | 2010-04-27 | Nokia Corporation | Pay per minute for DVB-H services |
US8185921B2 (en) | 2006-02-28 | 2012-05-22 | Sony Corporation | Parental control of displayed content using closed captioning |
US7555464B2 (en) * | 2006-03-01 | 2009-06-30 | Sony Corporation | Multiple DRM management |
US7701951B2 (en) * | 2006-03-06 | 2010-04-20 | Cisco Technology, Inc. | Resource reservation and admission control for IP network |
US7884844B2 (en) * | 2006-03-15 | 2011-02-08 | Polycom, Inc. | System for conducting videoconferencing session over television network |
US8619953B2 (en) | 2006-03-15 | 2013-12-31 | Polycom, Inc. | Home videoconferencing system |
US20070234384A1 (en) * | 2006-03-16 | 2007-10-04 | Gary Rein | Integrated command center for flat screen televisions, and internet protocol monitors |
DE102006017245B4 (en) * | 2006-04-12 | 2012-11-22 | Lantiq Deutschland Gmbh | Data transfer device |
US9386327B2 (en) | 2006-05-24 | 2016-07-05 | Time Warner Cable Enterprises Llc | Secondary content insertion apparatus and methods |
US8280982B2 (en) | 2006-05-24 | 2012-10-02 | Time Warner Cable Inc. | Personal content server apparatus and methods |
US7656849B1 (en) | 2006-05-31 | 2010-02-02 | Qurio Holdings, Inc. | System and method for bypassing an access point in a local area network for P2P data transfers |
FR2902268A1 (en) * | 2006-06-08 | 2007-12-14 | France Telecom | SYSTEM FOR ACCESSING IP TELEVISION SERVICE IN IMS ARCHITECTURE NETWORK |
US20070288968A1 (en) * | 2006-06-09 | 2007-12-13 | Norin John L | Video and data home networking architectures |
US20080022319A1 (en) * | 2006-06-09 | 2008-01-24 | Hanno Basse | Presentation modes for various format bit streams |
US12063221B2 (en) | 2006-06-12 | 2024-08-13 | Icontrol Networks, Inc. | Activation of gateway device |
US10079839B1 (en) | 2007-06-12 | 2018-09-18 | Icontrol Networks, Inc. | Activation of gateway device |
US8024762B2 (en) | 2006-06-13 | 2011-09-20 | Time Warner Cable Inc. | Methods and apparatus for providing virtual content over a network |
BRPI0712972A2 (en) * | 2006-06-16 | 2012-04-17 | Directv Group Inc | system for receiving satellite video signals for monitor display on a device for displaying video information |
US8102863B1 (en) | 2006-06-27 | 2012-01-24 | Qurio Holdings, Inc. | High-speed WAN to wireless LAN gateway |
US20080005266A1 (en) * | 2006-06-30 | 2008-01-03 | Gene Fein | Multimedia delivery system |
US20080002711A1 (en) * | 2006-06-30 | 2008-01-03 | Bugenhagen Michael K | System and method for access state based service options |
US7969443B2 (en) * | 2006-08-01 | 2011-06-28 | Nvidia Corporation | System and method for dynamically processing content being communicated over a network for display purposes |
US7961192B2 (en) * | 2006-08-01 | 2011-06-14 | Nvidia Corporation | Multi-graphics processor system and method for processing content communicated over a network for display purposes |
US20090027573A1 (en) * | 2006-08-02 | 2009-01-29 | Gary Rein | Integrated command center for flat screen televisions, and internet protocol monitors |
US20090189495A1 (en) * | 2006-08-02 | 2009-07-30 | Gary Rein | Integrated command center for flat screen televisions, and internet protocol monitors |
US20080033798A1 (en) * | 2006-08-04 | 2008-02-07 | Carey John G | Delivering information to a client device in a communication-challenged environment |
WO2008023130A2 (en) * | 2006-08-22 | 2008-02-28 | Thomson Licensing | Mechanism for the management of receivers / decoders connections |
US8054328B2 (en) * | 2006-08-30 | 2011-11-08 | Inventec Multimedia & Telecom Corporation | Video phone communication system and method therefor |
US20080231761A1 (en) | 2006-09-05 | 2008-09-25 | Sony Corporation | Information communication system, terminal apparatus, base apparatus, information communication method, information processing method, and computer program and recording medium |
US7624153B2 (en) * | 2006-09-15 | 2009-11-24 | Microsoft Corporation | Allocation of resources to deliver media content using a combination of static and dynamic resources |
US8775656B2 (en) * | 2006-10-10 | 2014-07-08 | Microsoft Corporation | Strategies for integrating plural modes of content delivery |
WO2008044085A1 (en) * | 2006-10-11 | 2008-04-17 | Nokia Corporation | Service discovery in broadcast networks |
US7616568B2 (en) * | 2006-11-06 | 2009-11-10 | Ixia | Generic packet generation |
WO2008062250A1 (en) * | 2006-11-23 | 2008-05-29 | Nokia Corporation | Method and device for maintaining continuity of radio transmissions |
CA2672418C (en) * | 2006-12-20 | 2018-06-12 | Thomson Licensing | Embedded audio routing switcher |
US11706279B2 (en) | 2007-01-24 | 2023-07-18 | Icontrol Networks, Inc. | Methods and systems for data communication |
US7633385B2 (en) | 2007-02-28 | 2009-12-15 | Ucontrol, Inc. | Method and system for communicating with and controlling an alarm system from a remote server |
US8181206B2 (en) | 2007-02-28 | 2012-05-15 | Time Warner Cable Inc. | Personal content server apparatus and methods |
US20080216135A1 (en) * | 2007-03-03 | 2008-09-04 | Howard Pfeffer | Methods and apparatus for improved content delivery including content delivery streams dynamically populated in response to user requests |
US8910222B2 (en) * | 2007-03-03 | 2014-12-09 | Time Warner Cable Enterprises Llc | Methods and apparatus for implementing guides and using recording information in determining program to communications channel mappings |
US8732734B2 (en) * | 2007-03-03 | 2014-05-20 | Time Warner Cable Enterprises Llc | Methods and apparatus supporting the recording of multiple simultaneously broadcast programs communicated using the same communications channel |
US8451986B2 (en) | 2007-04-23 | 2013-05-28 | Icontrol Networks, Inc. | Method and system for automatically providing alternate network access for telecommunications |
US8712318B2 (en) | 2007-05-29 | 2014-04-29 | The Directv Group, Inc. | Integrated multi-sat LNB and frequency translation module |
US7923373B2 (en) | 2007-06-04 | 2011-04-12 | Micron Technology, Inc. | Pitch multiplication using self-assembling materials |
US11237714B2 (en) | 2007-06-12 | 2022-02-01 | Control Networks, Inc. | Control system user interface |
US10666523B2 (en) | 2007-06-12 | 2020-05-26 | Icontrol Networks, Inc. | Communication protocols in integrated systems |
US11218878B2 (en) | 2007-06-12 | 2022-01-04 | Icontrol Networks, Inc. | Communication protocols in integrated systems |
US11423756B2 (en) | 2007-06-12 | 2022-08-23 | Icontrol Networks, Inc. | Communication protocols in integrated systems |
US11601810B2 (en) | 2007-06-12 | 2023-03-07 | Icontrol Networks, Inc. | Communication protocols in integrated systems |
US11646907B2 (en) | 2007-06-12 | 2023-05-09 | Icontrol Networks, Inc. | Communication protocols in integrated systems |
US10523689B2 (en) | 2007-06-12 | 2019-12-31 | Icontrol Networks, Inc. | Communication protocols over internet protocol (IP) networks |
US11212192B2 (en) | 2007-06-12 | 2021-12-28 | Icontrol Networks, Inc. | Communication protocols in integrated systems |
US10051078B2 (en) | 2007-06-12 | 2018-08-14 | Icontrol Networks, Inc. | WiFi-to-serial encapsulation in systems |
US12003387B2 (en) | 2012-06-27 | 2024-06-04 | Comcast Cable Communications, Llc | Control system user interface |
US11089122B2 (en) | 2007-06-12 | 2021-08-10 | Icontrol Networks, Inc. | Controlling data routing among networks |
US10423309B2 (en) | 2007-06-12 | 2019-09-24 | Icontrol Networks, Inc. | Device integration framework |
US10616075B2 (en) | 2007-06-12 | 2020-04-07 | Icontrol Networks, Inc. | Communication protocols in integrated systems |
US11316753B2 (en) | 2007-06-12 | 2022-04-26 | Icontrol Networks, Inc. | Communication protocols in integrated systems |
US10389736B2 (en) | 2007-06-12 | 2019-08-20 | Icontrol Networks, Inc. | Communication protocols in integrated systems |
US10498830B2 (en) | 2007-06-12 | 2019-12-03 | Icontrol Networks, Inc. | Wi-Fi-to-serial encapsulation in systems |
US7954131B2 (en) | 2007-06-13 | 2011-05-31 | Time Warner Cable Inc. | Premises gateway apparatus and methods for use in a content-based network |
US8434120B2 (en) * | 2007-06-26 | 2013-04-30 | Thomson Licensing | System and method for grouping program identifiers into multicast groups |
US8238813B1 (en) | 2007-08-20 | 2012-08-07 | The Directv Group, Inc. | Computationally efficient design for broadcast satellite single wire and/or direct demod interface |
US9277490B2 (en) | 2007-08-21 | 2016-03-01 | International Business Machines Corporation | System and method of locating wireless connection among a plurality of wireless connections |
US11831462B2 (en) | 2007-08-24 | 2023-11-28 | Icontrol Networks, Inc. | Controlling data routing in premises management systems |
US20090083820A1 (en) * | 2007-09-25 | 2009-03-26 | Comcast Cable Holdings, Llc | Re-transmission of television channels over network |
US8477793B2 (en) * | 2007-09-26 | 2013-07-02 | Sling Media, Inc. | Media streaming device with gateway functionality |
JP5194673B2 (en) | 2007-09-26 | 2013-05-08 | 株式会社日立製作所 | Mobile terminal and information transmission / reception method |
US8594133B2 (en) | 2007-10-22 | 2013-11-26 | Corning Mobileaccess Ltd. | Communication system using low bandwidth wires |
US8350971B2 (en) | 2007-10-23 | 2013-01-08 | Sling Media, Inc. | Systems and methods for controlling media devices |
US20090113505A1 (en) * | 2007-10-26 | 2009-04-30 | At&T Bls Intellectual Property, Inc. | Systems, methods and computer products for multi-user access for integrated video |
US8175649B2 (en) | 2008-06-20 | 2012-05-08 | Corning Mobileaccess Ltd | Method and system for real time control of an active antenna over a distributed antenna system |
US20090165075A1 (en) * | 2007-12-19 | 2009-06-25 | General Instrument Corporation | Landline Telephony Alternative for Service in a Satellite System or Other Conditional Access System |
US8276181B1 (en) | 2007-12-21 | 2012-09-25 | General Instrument Corporation | Content distribution system and method for optimizing multiplexed transport channels |
US8064479B2 (en) * | 2008-01-02 | 2011-11-22 | Harmonic, Inc. | Methods and system for efficient data transfer over hybrid fiber coax infrastructure |
US8060609B2 (en) | 2008-01-04 | 2011-11-15 | Sling Media Inc. | Systems and methods for determining attributes of media items accessed via a personal media broadcaster |
US20090185792A1 (en) * | 2008-01-18 | 2009-07-23 | Rutan & Tucker, LLP | Digital video camcorder with wireless transmission built-in |
JP5088152B2 (en) * | 2008-01-23 | 2012-12-05 | 富士通株式会社 | Video broadcast program, video broadcast method, video broadcast apparatus, and video broadcast system |
US11916928B2 (en) | 2008-01-24 | 2024-02-27 | Icontrol Networks, Inc. | Communication protocols over internet protocol (IP) networks |
US9503691B2 (en) | 2008-02-19 | 2016-11-22 | Time Warner Cable Enterprises Llc | Methods and apparatus for enhanced advertising and promotional delivery in a network |
US9743142B2 (en) | 2008-02-19 | 2017-08-22 | Time Warner Cable Enterprises Llc | Multi-stream premises apparatus and methods for use in a content delivery network |
WO2009108176A1 (en) * | 2008-02-29 | 2009-09-03 | Thomson Licensing | Methods and apparatuses for providing load balanced signal distribution |
ITMI20080390A1 (en) * | 2008-03-10 | 2009-09-11 | Telsey Spa | CONNECTION DEVICE FOR TELEPHONE COMMUNICATIONS AND DATA |
US20170185278A1 (en) | 2008-08-11 | 2017-06-29 | Icontrol Networks, Inc. | Automation system user interface |
US8667279B2 (en) | 2008-07-01 | 2014-03-04 | Sling Media, Inc. | Systems and methods for securely place shifting media content |
US11258625B2 (en) | 2008-08-11 | 2022-02-22 | Icontrol Networks, Inc. | Mobile premises automation platform |
US11758026B2 (en) | 2008-08-11 | 2023-09-12 | Icontrol Networks, Inc. | Virtual device systems and methods |
US11792036B2 (en) | 2008-08-11 | 2023-10-17 | Icontrol Networks, Inc. | Mobile premises automation platform |
US11729255B2 (en) | 2008-08-11 | 2023-08-15 | Icontrol Networks, Inc. | Integrated cloud system with lightweight gateway for premises automation |
US8381310B2 (en) | 2009-08-13 | 2013-02-19 | Sling Media Pvt. Ltd. | Systems, methods, and program applications for selectively restricting the placeshifting of copy protected digital media content |
US8358665B2 (en) * | 2008-08-15 | 2013-01-22 | Qualcomm Incorporated | Method and apparatus for controlling the presentation of multimedia data from a multiplex signal between devices in a local area network |
US8902868B2 (en) * | 2008-08-15 | 2014-12-02 | Qualcomm Incorporated | Method and apparatus for wirelessly distributing multiplex signal comprising multimedia data over a local area network |
US20100067553A1 (en) * | 2008-09-12 | 2010-03-18 | Viasys Healthcare, Inc | Synchronization of video with telemetry signals method and apparatus |
US9191610B2 (en) | 2008-11-26 | 2015-11-17 | Sling Media Pvt Ltd. | Systems and methods for creating logical media streams for media storage and playback |
US7991883B1 (en) | 2008-12-15 | 2011-08-02 | Adobe Systems Incorporated | Server communication in a multi-tier server architecture |
US8392530B1 (en) * | 2008-12-18 | 2013-03-05 | Adobe Systems Incorporated | Media streaming in a multi-tier client-server architecture |
WO2010080823A1 (en) | 2009-01-06 | 2010-07-15 | The Directv Group, Inc. | Frequency drift estimation for low cost outdoor unit |
US8438602B2 (en) | 2009-01-26 | 2013-05-07 | Sling Media Inc. | Systems and methods for linking media content |
JP5649588B2 (en) | 2009-02-08 | 2015-01-07 | コーニング モバイルアクセス エルティディ. | Communication system using a cable for carrying an Ethernet signal |
US8171148B2 (en) * | 2009-04-17 | 2012-05-01 | Sling Media, Inc. | Systems and methods for establishing connections between devices communicating over a network |
US8638211B2 (en) | 2009-04-30 | 2014-01-28 | Icontrol Networks, Inc. | Configurable controller and interface for home SMA, phone and multimedia |
US9094713B2 (en) | 2009-07-02 | 2015-07-28 | Time Warner Cable Enterprises Llc | Method and apparatus for network association of content |
US8406431B2 (en) | 2009-07-23 | 2013-03-26 | Sling Media Pvt. Ltd. | Adaptive gain control for digital audio samples in a media stream |
CN101990321A (en) * | 2009-08-03 | 2011-03-23 | 中兴通讯股份有限公司 | Method and system for local IP (Internet Protocol) access control |
US9479737B2 (en) | 2009-08-06 | 2016-10-25 | Echostar Technologies L.L.C. | Systems and methods for event programming via a remote media player |
US20110032986A1 (en) * | 2009-08-07 | 2011-02-10 | Sling Media Pvt Ltd | Systems and methods for automatically controlling the resolution of streaming video content |
US9525838B2 (en) | 2009-08-10 | 2016-12-20 | Sling Media Pvt. Ltd. | Systems and methods for virtual remote control of streamed media |
US20110035765A1 (en) * | 2009-08-10 | 2011-02-10 | Sling Media Pvt Ltd | Systems and methods for providing programming content |
US8532472B2 (en) | 2009-08-10 | 2013-09-10 | Sling Media Pvt Ltd | Methods and apparatus for fast seeking within a media stream buffer |
US8966101B2 (en) * | 2009-08-10 | 2015-02-24 | Sling Media Pvt Ltd | Systems and methods for updating firmware over a network |
US9565479B2 (en) * | 2009-08-10 | 2017-02-07 | Sling Media Pvt Ltd. | Methods and apparatus for seeking within a media stream using scene detection |
US8799408B2 (en) | 2009-08-10 | 2014-08-05 | Sling Media Pvt Ltd | Localization systems and methods |
US9160974B2 (en) | 2009-08-26 | 2015-10-13 | Sling Media, Inc. | Systems and methods for transcoding and place shifting media content |
US8314893B2 (en) | 2009-08-28 | 2012-11-20 | Sling Media Pvt. Ltd. | Remote control and method for automatically adjusting the volume output of an audio device |
GB2486780B (en) | 2009-10-19 | 2015-06-03 | Ibm | Dynamic resource allocation for distributed cluster storage network |
US9015225B2 (en) | 2009-11-16 | 2015-04-21 | Echostar Technologies L.L.C. | Systems and methods for delivering messages over a network |
US8723639B2 (en) * | 2009-12-07 | 2014-05-13 | Joel Butler | Healthcare television system apparatus |
US8799485B2 (en) | 2009-12-18 | 2014-08-05 | Sling Media, Inc. | Methods and apparatus for establishing network connections using an inter-mediating device |
US8626879B2 (en) | 2009-12-22 | 2014-01-07 | Sling Media, Inc. | Systems and methods for establishing network connections using local mediation services |
EP2348480B1 (en) * | 2009-12-22 | 2017-04-26 | EchoStar Technologies L.L.C. | A method and system for control of electronic components |
US9178923B2 (en) | 2009-12-23 | 2015-11-03 | Echostar Technologies L.L.C. | Systems and methods for remotely controlling a media server via a network |
US9275054B2 (en) | 2009-12-28 | 2016-03-01 | Sling Media, Inc. | Systems and methods for searching media content |
US20110158149A1 (en) * | 2009-12-29 | 2011-06-30 | Satish Mugulavalli | Multimedia gateway for use in a networked home environment |
US9887855B2 (en) | 2010-01-22 | 2018-02-06 | Alcatel-Lucent Usa, Inc. | Virtual converged cable access platforms for HFC cable networks |
US8856349B2 (en) | 2010-02-05 | 2014-10-07 | Sling Media Inc. | Connection priority services for data communication between two devices |
US11711592B2 (en) | 2010-04-06 | 2023-07-25 | Comcast Cable Communications, Llc | Distribution of multiple signals of video content independently over a network |
US10448083B2 (en) * | 2010-04-06 | 2019-10-15 | Comcast Cable Communications, Llc | Streaming and rendering of 3-dimensional video |
EP2569712B1 (en) | 2010-05-10 | 2021-10-13 | Icontrol Networks, Inc. | Control system user interface |
US9183560B2 (en) | 2010-05-28 | 2015-11-10 | Daniel H. Abelow | Reality alternate |
KR20120025086A (en) | 2010-09-07 | 2012-03-15 | (주)휴맥스 | Apparatus and method for receiving broadcasting signal of pay channel |
US8836467B1 (en) | 2010-09-28 | 2014-09-16 | Icontrol Networks, Inc. | Method, system and apparatus for automated reporting of account and sensor zone information to a central station |
JP2014502465A (en) | 2010-11-18 | 2014-01-30 | エアレオ・インコーポレーテッド | System and method for providing network access to an antenna feed |
US11750414B2 (en) | 2010-12-16 | 2023-09-05 | Icontrol Networks, Inc. | Bidirectional security sensor communication for a premises security system |
US9147337B2 (en) | 2010-12-17 | 2015-09-29 | Icontrol Networks, Inc. | Method and system for logging security event data |
US9185004B2 (en) | 2010-12-29 | 2015-11-10 | Comcast Cable Communications, Llc | Quality of service for distribution of content to network devices |
WO2012112910A1 (en) | 2011-02-18 | 2012-08-23 | Aereo, Inc. | Cloud based location shifting service |
DE102011014988B4 (en) * | 2011-03-24 | 2016-06-09 | Kathrein-Werke Kg | Satellite receiver |
CA2836462A1 (en) | 2011-05-17 | 2012-11-22 | Eduard Zaslavsky | System and method for scalable, high accuracy, sensor and id based audience measurement system |
AU2012258732A1 (en) | 2011-05-24 | 2013-12-12 | WebTuner, Corporation | System and method to increase efficiency and speed of analytics report generation in Audience Measurement Systems |
KR20140043406A (en) | 2011-05-26 | 2014-04-09 | 웹튜너 코포레이션 | Highly scalable audience measurement system with client event pre-processing |
US20130041828A1 (en) * | 2011-08-10 | 2013-02-14 | Cox Communications, Inc. | Systems, Methods, and Apparatus for Managing Digital Content and Rights Tokens |
WO2013063134A1 (en) * | 2011-10-26 | 2013-05-02 | Aereo, Inc. | Method and system for assigning antennas in dense array |
KR20130080628A (en) * | 2012-01-05 | 2013-07-15 | 한국전자통신연구원 | Headend device for cable network and method therefor |
US8863201B2 (en) * | 2012-01-30 | 2014-10-14 | Time Warner Cable Enterprises Llc | Gateway apparatus and methods for providing content and data delivery in a fiber-based content delivery network |
US20130219006A1 (en) * | 2012-02-21 | 2013-08-22 | Sony Corporation | Multiple media devices through a gateway server or services to access cloud computing service storage |
US9277271B2 (en) * | 2012-02-23 | 2016-03-01 | Zenith Electronics Llc | Wireless network antenna apparatus and method |
WO2013142662A2 (en) | 2012-03-23 | 2013-09-26 | Corning Mobile Access Ltd. | Radio-frequency integrated circuit (rfic) chip(s) for providing distributed antenna system functionalities, and related components, systems, and methods |
JP6223830B2 (en) * | 2012-05-10 | 2017-11-01 | サターン ライセンシング エルエルシーSaturn Licensing LLC | Transmission device, transmission method, reception device, reception method, program, stream transmission / reception system, and electronic device |
US9660792B2 (en) * | 2012-06-30 | 2017-05-23 | Cable Television Laboratories, Inc. | Multi-carrier transmission |
TW201409224A (en) * | 2012-08-16 | 2014-03-01 | Hon Hai Prec Ind Co Ltd | Video processing system and method |
EP2918075B1 (en) * | 2012-11-12 | 2020-02-26 | Nokia of America Corporation | Virtual converged cable access platforms for hfc cable networks |
US20140223504A1 (en) * | 2013-02-07 | 2014-08-07 | MaxLinear, In. | Cable distribution networks |
US9357215B2 (en) * | 2013-02-12 | 2016-05-31 | Michael Boden | Audio output distribution |
US20140282786A1 (en) | 2013-03-12 | 2014-09-18 | Time Warner Cable Enterprises Llc | Methods and apparatus for providing and uploading content to personalized network storage |
RU2523858C1 (en) * | 2013-10-15 | 2014-07-27 | Вячеслав Михайлович Смелков | Device for panoramic television surveillance |
US11146637B2 (en) | 2014-03-03 | 2021-10-12 | Icontrol Networks, Inc. | Media content management |
US11405463B2 (en) | 2014-03-03 | 2022-08-02 | Icontrol Networks, Inc. | Media content management |
US9184960B1 (en) | 2014-09-25 | 2015-11-10 | Corning Optical Communications Wireless Ltd | Frequency shifting a communications signal(s) in a multi-frequency distributed antenna system (DAS) to avoid or reduce frequency interference |
KR20160120605A (en) * | 2015-04-08 | 2016-10-18 | 한국전자통신연구원 | Apparatus and method for transmitting and receving media service in hybrid network |
US9716763B2 (en) * | 2015-05-13 | 2017-07-25 | Arris Enterprises Llc | Content streaming apparatus for transferring a streaming session to another apparatus |
US9807459B2 (en) | 2015-05-14 | 2017-10-31 | At&T Intellectual Property I, L.P. | Media interface device |
US10051338B2 (en) * | 2015-10-21 | 2018-08-14 | At&T Intellectual Property I, L.P. | System and method for coordinating back-up services for land based content subscribers |
US9800915B2 (en) | 2016-02-10 | 2017-10-24 | At&T Intellectual Property I, L.P. | Method and apparatus for satellite television service with alternate delivery capabilities |
CN107276987A (en) * | 2017-05-17 | 2017-10-20 | 厦门奥普拓自控科技有限公司 | A kind of the special line physical isolation industrial data means of communication and system |
US11729442B2 (en) * | 2017-12-29 | 2023-08-15 | Sling Media L.L.C. | Multiplexed place shifting device |
US10478753B1 (en) | 2018-12-20 | 2019-11-19 | CH International Equipment Ltd. | Apparatus and method for treatment of hydraulic fracturing fluid during hydraulic fracturing |
CA3125549A1 (en) | 2018-12-20 | 2020-06-25 | Haven Technology Solutions Llc | Apparatus and method for gas-liquid separation of multi-phase fluid |
Citations (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4694492A (en) * | 1984-11-09 | 1987-09-15 | Pirmasafe, Inc. | Computer communications security control system |
US4829569A (en) * | 1984-09-21 | 1989-05-09 | Scientific-Atlanta, Inc. | Communication of individual messages to subscribers in a subscription television system |
US4894789A (en) * | 1988-02-22 | 1990-01-16 | Yee Keen Y | TV data capture device |
US4920432A (en) * | 1988-01-12 | 1990-04-24 | Eggers Derek C | System for random access to an audio video data library with independent selection and display at each of a plurality of remote locations |
US5093718A (en) * | 1990-09-28 | 1992-03-03 | Inteletext Systems, Inc. | Interactive home information system |
US5130983A (en) * | 1990-03-27 | 1992-07-14 | Heffner Iii Horace W | Method of polling to determine service needs and the like |
US5133079A (en) * | 1990-07-30 | 1992-07-21 | Ballantyne Douglas J | Method and apparatus for distribution of movies |
US5195092A (en) * | 1987-08-04 | 1993-03-16 | Telaction Corporation | Interactive multimedia presentation & communication system |
US5200993A (en) * | 1991-05-10 | 1993-04-06 | Bell Atlantic Network Services, Inc. | Public telephone network including a distributed imaging system |
US5247347A (en) * | 1991-09-27 | 1993-09-21 | Bell Atlantic Network Services, Inc. | Pstn architecture for video-on-demand services |
US5351075A (en) * | 1990-03-20 | 1994-09-27 | Frederick Herz | Home video club television broadcasting system |
US5373288A (en) * | 1992-10-23 | 1994-12-13 | At&T Corp. | Initializing terminals in a signal distribution system |
US5408465A (en) * | 1993-06-21 | 1995-04-18 | Hewlett-Packard Company | Flexible scheme for admission control of multimedia streams on integrated networks |
US5512936A (en) * | 1991-07-31 | 1996-04-30 | Alcatel Network Systems, Inc. | Video line card switch for use in a video line card shelf in a switched video system |
US5537106A (en) * | 1990-08-24 | 1996-07-16 | Sony Corporation | Remote controller |
US5550578A (en) * | 1990-09-28 | 1996-08-27 | Ictv, Inc. | Interactive and conventional television information system |
US5572517A (en) * | 1995-02-28 | 1996-11-05 | General Instrument Corporation | Configurable hybrid medium access control for cable metropolitan area networks |
US5572528A (en) * | 1995-03-20 | 1996-11-05 | Novell, Inc. | Mobile networking method and apparatus |
US5638426A (en) * | 1993-10-12 | 1997-06-10 | Multimedia Systems Corporation | Interactive system for a closed cable network |
US5659351A (en) * | 1993-06-04 | 1997-08-19 | Ciena Corporation | Switch and insertion networks in optical cable TV system |
US5774527A (en) * | 1993-08-19 | 1998-06-30 | News Datacom Ltd. | Integrated telephone and cable communication networks |
US5778256A (en) * | 1993-03-24 | 1998-07-07 | Universal Electronics Inc. | PDA having a separate infrared generating device connected to its printer port for controlling home appliances |
US5790806A (en) * | 1996-04-03 | 1998-08-04 | Scientific-Atlanta, Inc. | Cable data network architecture |
US5798753A (en) * | 1995-03-03 | 1998-08-25 | Sun Microsystems, Inc. | Color format conversion in a parallel processor |
US5815662A (en) * | 1995-08-15 | 1998-09-29 | Ong; Lance | Predictive memory caching for media-on-demand systems |
US5818512A (en) * | 1995-01-26 | 1998-10-06 | Spectravision, Inc. | Video distribution system |
US5819036A (en) * | 1995-12-14 | 1998-10-06 | Time Warner Cable | Method for message addressing in a full service network |
US5822676A (en) * | 1995-12-14 | 1998-10-13 | Time Warner Entertainment Co. L.P. | Digital serialization of program events |
US5828655A (en) * | 1995-04-21 | 1998-10-27 | Hybrid Networks, Inc. | Hybrid access system with quality-based channel switching |
US5861881A (en) * | 1991-11-25 | 1999-01-19 | Actv, Inc. | Interactive computer system for providing an interactive presentation with personalized video, audio and graphics responses for multiple viewers |
US5878277A (en) * | 1995-05-23 | 1999-03-02 | Hitachi Denshi Kabushiki Kaisha | Communication system having at least two types of communication channels |
US5894595A (en) * | 1994-08-01 | 1999-04-13 | At&T Corp | Personal mobile communication system |
US5905942A (en) * | 1997-02-18 | 1999-05-18 | Lodgenet Entertainment Corporation | Multiple dwelling unit interactive audio/video distribution system |
US5983073A (en) * | 1997-04-04 | 1999-11-09 | Ditzik; Richard J. | Modular notebook and PDA computer systems for personal computing and wireless communications |
US5987518A (en) * | 1996-10-28 | 1999-11-16 | General Instrument Corporation | Method and apparatus for communicating internet protocol data over a broadband MPEG channel |
US6014694A (en) * | 1997-06-26 | 2000-01-11 | Citrix Systems, Inc. | System for adaptive video/audio transport over a network |
US6018359A (en) * | 1998-04-24 | 2000-01-25 | Massachusetts Institute Of Technology | System and method for multicast video-on-demand delivery system |
US6038425A (en) * | 1998-08-03 | 2000-03-14 | Jeffrey; Ross A. | Audio/video signal redistribution system |
US6046760A (en) * | 1996-05-06 | 2000-04-04 | Samsung Electronics Co., Ltd. | Set top board for video on demand service and a computer system mounting the same |
US6049823A (en) * | 1995-10-04 | 2000-04-11 | Hwang; Ivan Chung-Shung | Multi server, interactive, video-on-demand television system utilizing a direct-access-on-demand workgroup |
US6052120A (en) * | 1996-10-01 | 2000-04-18 | Diamond Multimedia Systems, Inc. | Method of operating a portable interactive graphics display tablet and communications systems |
US6081533A (en) * | 1997-06-25 | 2000-06-27 | Com21, Inc. | Method and apparatus for an application interface module in a subscriber terminal unit |
US6088730A (en) * | 1997-06-02 | 2000-07-11 | International Business Machines Corporation | Methods and apparatus for downloading data between an information processing device and an external device via a wireless communications technique |
US6101543A (en) * | 1996-10-25 | 2000-08-08 | Digital Equipment Corporation | Pseudo network adapter for frame capture, encapsulation and encryption |
US6104334A (en) * | 1997-12-31 | 2000-08-15 | Eremote, Inc. | Portable internet-enabled controller and information browser for consumer devices |
US6111592A (en) * | 1996-11-26 | 2000-08-29 | Kabushiki Kaisha Toshiba | DMA data transfer apparatus, motion picture decoding apparatus using the same, and DMA data transfer method |
US6112250A (en) * | 1996-04-11 | 2000-08-29 | America Online, Inc. | Recompression of files at an intermediate node in a network system |
US6154772A (en) * | 1997-11-04 | 2000-11-28 | Georgia Tech Research Corporation | System and method for the delivery of digital video and data over a communication channel |
US6169845B1 (en) * | 1989-07-26 | 2001-01-02 | Canon Kabushiki Kaisha | Moving-image data recording/reproducing apparatus for simultaneously recording/reproducing a plurality of moving image data items using a plurality of recording/reproducing means |
US6178446B1 (en) * | 1997-12-31 | 2001-01-23 | At&T Corp | Method and system for supporting interactive commercials displayed on a display device using a telephone network |
US6505255B1 (en) * | 1999-04-29 | 2003-01-07 | Mitsubishi Electric Information Technology Center America, Inc. (Ita) | Method for formatting and routing data between an external network and an internal network |
US20040228336A1 (en) * | 1999-12-30 | 2004-11-18 | Fen-Chung Kung | Personal IP toll-free number |
US6928656B1 (en) * | 1999-05-14 | 2005-08-09 | Scientific-Atlanta, Inc. | Method for delivery of IP data over MPEG-2 transport networks |
US20060159116A1 (en) * | 1997-12-31 | 2006-07-20 | Irwin Gerszberg | Facility management platform for a hybrid coaxial/twisted pair local loop network service architecture |
Family Cites Families (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002504271A (en) | 1991-09-10 | 2002-02-05 | ハイブリッド・ネットワークス・インコーポレイテッド | Remote link adapter for TV broadcast data transmission system |
US6201536B1 (en) * | 1992-12-09 | 2001-03-13 | Discovery Communications, Inc. | Network manager for cable television system headends |
JP3807679B2 (en) * | 1992-12-09 | 2006-08-09 | セドナ・パテント・サービシズ・エルエルシー | Digital cable headend for cable TV distribution system |
WO1997027704A1 (en) * | 1993-04-21 | 1997-07-31 | Kinya Washino | Multi-format audio/video production system with frame-rate conversion |
WO1995034153A1 (en) * | 1994-06-08 | 1995-12-14 | Hughes Aircraft Company | Apparatus and method for hybrid network access |
US6560340B1 (en) * | 1995-04-03 | 2003-05-06 | Scientific-Atlanta, Inc. | Method and apparatus for geographically limiting service in a conditional access system |
US5935004A (en) * | 1995-08-28 | 1999-08-10 | Mediaone Group, Inc. | System and method for scheduled delivery of a software program over a cable network |
JP3435295B2 (en) * | 1996-09-30 | 2003-08-11 | 株式会社東芝 | Information transmitting device and traffic control device, band operation method and call accepting method using the same |
US6543053B1 (en) * | 1996-11-27 | 2003-04-01 | University Of Hong Kong | Interactive video-on-demand system |
US6604242B1 (en) * | 1998-05-18 | 2003-08-05 | Liberate Technologies | Combining television broadcast and personalized/interactive information |
US6236653B1 (en) * | 1996-12-23 | 2001-05-22 | Lucent Technologies Inc. | Local telephone service over a cable network using packet voice |
US6637032B1 (en) * | 1997-01-06 | 2003-10-21 | Microsoft Corporation | System and method for synchronizing enhancing content with a video program using closed captioning |
JP3922312B2 (en) * | 1997-02-13 | 2007-05-30 | ソニー株式会社 | Cable modem and cable modem control method |
US6477179B1 (en) * | 1997-05-09 | 2002-11-05 | Sony Corporation | Data receiving device and data receiving method |
US6317885B1 (en) * | 1997-06-26 | 2001-11-13 | Microsoft Corporation | Interactive entertainment and information system using television set-top box |
US6111611A (en) * | 1997-07-10 | 2000-08-29 | Thomson Consumer Electronics | System for forming and processing program specific information suitable for terrestrial, cable or satellite broadcast |
JP3657745B2 (en) * | 1997-07-23 | 2005-06-08 | 横河電機株式会社 | User authentication method and user authentication system |
US6385647B1 (en) * | 1997-08-18 | 2002-05-07 | Mci Communications Corporations | System for selectively routing data via either a network that supports Internet protocol or via satellite transmission network based on size of the data |
EP0901261B1 (en) | 1997-09-05 | 2013-01-09 | Hitachi, Ltd. | Transport protocol conversion method and protocol conversion equipment |
GB9721947D0 (en) * | 1997-10-16 | 1997-12-17 | Thomson Consumer Electronics | Intelligent IP packet scheduler algorithm |
US6396531B1 (en) * | 1997-12-31 | 2002-05-28 | At+T Corp. | Set top integrated visionphone user interface having multiple menu hierarchies |
WO1999044363A1 (en) * | 1998-02-27 | 1999-09-02 | Ridgeway Systems And Software Ltd. | Audio-video packet synchronisation at network gateway |
WO1999053654A1 (en) | 1998-04-16 | 1999-10-21 | Ameritech | Home gateway system and method |
US6516030B1 (en) * | 1998-05-14 | 2003-02-04 | Interval Research Corporation | Compression of combined black/white and color video signal |
US6483951B1 (en) * | 1998-06-26 | 2002-11-19 | Lsi Logic Corporation | Digital video filter sequence for bandwidth constrained systems |
US6598231B1 (en) * | 1998-09-08 | 2003-07-22 | Asvan Technology, Llc | Enhanced security communications system |
US6320900B1 (en) * | 1998-10-30 | 2001-11-20 | Compaq Computer Corporation | Methods and arrangements for transmitting high speed data over reduced bandwidth communication resources |
US6577642B1 (en) * | 1999-01-15 | 2003-06-10 | 3Com Corporation | Method and system for virtual network administration with a data-over cable system |
US6633547B1 (en) * | 1999-04-29 | 2003-10-14 | Mitsubishi Electric Research Laboratories, Inc. | Command and control transfer |
US6459703B1 (en) * | 1999-06-21 | 2002-10-01 | Terayon Communication Systems, Inc. | Mixed DOCSIS 1.0 TDMA bursts with SCDMA transmissions on the same frequency channel |
US6400720B1 (en) * | 1999-06-21 | 2002-06-04 | General Instrument Corporation | Method for transporting variable length and fixed length packets in a standard digital transmission frame |
US6330719B1 (en) * | 1999-06-30 | 2001-12-11 | Webtv Networks, Inc. | Interactive television receiver unit browser that waits to send requests |
US6553568B1 (en) * | 1999-09-29 | 2003-04-22 | 3Com Corporation | Methods and systems for service level agreement enforcement on a data-over cable system |
US6601106B1 (en) * | 1999-10-15 | 2003-07-29 | Cisco Technology, Inc. | Packet processing using non-sequential encapsulation and decapsulation chains |
US6678733B1 (en) * | 1999-10-26 | 2004-01-13 | At Home Corporation | Method and system for authorizing and authenticating users |
CA2325358C (en) * | 1999-11-10 | 2005-08-02 | Pfizer Products Inc. | 7-¬(4'-trifluoromethyl-biphenyl-2-carbonyl)amino|-quinoline-3-carboxylic acid amides, and methods of inhibiting the secretion of apolipoprotein b |
US6678740B1 (en) * | 2000-01-14 | 2004-01-13 | Terayon Communication Systems, Inc. | Process carried out by a gateway in a home network to receive video-on-demand and other requested programs and services |
WO2001056200A1 (en) * | 2000-01-26 | 2001-08-02 | Vyyo, Ltd. | A unidirectional communication scheme for remote maintenance and co ntrol in a broadband wireless access system |
US6519773B1 (en) * | 2000-02-08 | 2003-02-11 | Sherjil Ahmed | Method and apparatus for a digitized CATV network for bundled services |
-
2000
- 2000-06-23 US US09/602,303 patent/US6678740B1/en not_active Expired - Lifetime
- 2000-06-23 US US09/602,265 patent/US6889385B1/en not_active Expired - Lifetime
- 2000-06-23 US US09/602,512 patent/US6857132B1/en not_active Expired - Lifetime
-
2001
- 2001-01-12 DE DE60115727T patent/DE60115727T2/en not_active Expired - Lifetime
- 2001-01-12 AT AT01660004T patent/ATE313196T1/en not_active IP Right Cessation
- 2001-01-12 EP EP01660004A patent/EP1117214B1/en not_active Expired - Lifetime
-
2003
- 2003-12-08 US US10/731,310 patent/US20040172658A1/en not_active Abandoned
Patent Citations (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4829569A (en) * | 1984-09-21 | 1989-05-09 | Scientific-Atlanta, Inc. | Communication of individual messages to subscribers in a subscription television system |
US4694492A (en) * | 1984-11-09 | 1987-09-15 | Pirmasafe, Inc. | Computer communications security control system |
US5195092A (en) * | 1987-08-04 | 1993-03-16 | Telaction Corporation | Interactive multimedia presentation & communication system |
US4920432A (en) * | 1988-01-12 | 1990-04-24 | Eggers Derek C | System for random access to an audio video data library with independent selection and display at each of a plurality of remote locations |
US4894789A (en) * | 1988-02-22 | 1990-01-16 | Yee Keen Y | TV data capture device |
US6169845B1 (en) * | 1989-07-26 | 2001-01-02 | Canon Kabushiki Kaisha | Moving-image data recording/reproducing apparatus for simultaneously recording/reproducing a plurality of moving image data items using a plurality of recording/reproducing means |
US5351075A (en) * | 1990-03-20 | 1994-09-27 | Frederick Herz | Home video club television broadcasting system |
US5130983A (en) * | 1990-03-27 | 1992-07-14 | Heffner Iii Horace W | Method of polling to determine service needs and the like |
US5133079A (en) * | 1990-07-30 | 1992-07-21 | Ballantyne Douglas J | Method and apparatus for distribution of movies |
US5537106A (en) * | 1990-08-24 | 1996-07-16 | Sony Corporation | Remote controller |
US5550578A (en) * | 1990-09-28 | 1996-08-27 | Ictv, Inc. | Interactive and conventional television information system |
US5093718A (en) * | 1990-09-28 | 1992-03-03 | Inteletext Systems, Inc. | Interactive home information system |
US5200993A (en) * | 1991-05-10 | 1993-04-06 | Bell Atlantic Network Services, Inc. | Public telephone network including a distributed imaging system |
US5512936A (en) * | 1991-07-31 | 1996-04-30 | Alcatel Network Systems, Inc. | Video line card switch for use in a video line card shelf in a switched video system |
US5247347A (en) * | 1991-09-27 | 1993-09-21 | Bell Atlantic Network Services, Inc. | Pstn architecture for video-on-demand services |
US5861881A (en) * | 1991-11-25 | 1999-01-19 | Actv, Inc. | Interactive computer system for providing an interactive presentation with personalized video, audio and graphics responses for multiple viewers |
US5373288A (en) * | 1992-10-23 | 1994-12-13 | At&T Corp. | Initializing terminals in a signal distribution system |
US5778256A (en) * | 1993-03-24 | 1998-07-07 | Universal Electronics Inc. | PDA having a separate infrared generating device connected to its printer port for controlling home appliances |
US5659351A (en) * | 1993-06-04 | 1997-08-19 | Ciena Corporation | Switch and insertion networks in optical cable TV system |
US5408465A (en) * | 1993-06-21 | 1995-04-18 | Hewlett-Packard Company | Flexible scheme for admission control of multimedia streams on integrated networks |
US5774527A (en) * | 1993-08-19 | 1998-06-30 | News Datacom Ltd. | Integrated telephone and cable communication networks |
US5638426A (en) * | 1993-10-12 | 1997-06-10 | Multimedia Systems Corporation | Interactive system for a closed cable network |
US5894595A (en) * | 1994-08-01 | 1999-04-13 | At&T Corp | Personal mobile communication system |
US5818512A (en) * | 1995-01-26 | 1998-10-06 | Spectravision, Inc. | Video distribution system |
US5572517A (en) * | 1995-02-28 | 1996-11-05 | General Instrument Corporation | Configurable hybrid medium access control for cable metropolitan area networks |
US5798753A (en) * | 1995-03-03 | 1998-08-25 | Sun Microsystems, Inc. | Color format conversion in a parallel processor |
US5572528A (en) * | 1995-03-20 | 1996-11-05 | Novell, Inc. | Mobile networking method and apparatus |
US5828655A (en) * | 1995-04-21 | 1998-10-27 | Hybrid Networks, Inc. | Hybrid access system with quality-based channel switching |
US5878277A (en) * | 1995-05-23 | 1999-03-02 | Hitachi Denshi Kabushiki Kaisha | Communication system having at least two types of communication channels |
US5815662A (en) * | 1995-08-15 | 1998-09-29 | Ong; Lance | Predictive memory caching for media-on-demand systems |
US6049823A (en) * | 1995-10-04 | 2000-04-11 | Hwang; Ivan Chung-Shung | Multi server, interactive, video-on-demand television system utilizing a direct-access-on-demand workgroup |
US5819036A (en) * | 1995-12-14 | 1998-10-06 | Time Warner Cable | Method for message addressing in a full service network |
US5822676A (en) * | 1995-12-14 | 1998-10-13 | Time Warner Entertainment Co. L.P. | Digital serialization of program events |
US5790806A (en) * | 1996-04-03 | 1998-08-04 | Scientific-Atlanta, Inc. | Cable data network architecture |
US6112250A (en) * | 1996-04-11 | 2000-08-29 | America Online, Inc. | Recompression of files at an intermediate node in a network system |
US6046760A (en) * | 1996-05-06 | 2000-04-04 | Samsung Electronics Co., Ltd. | Set top board for video on demand service and a computer system mounting the same |
US6052120A (en) * | 1996-10-01 | 2000-04-18 | Diamond Multimedia Systems, Inc. | Method of operating a portable interactive graphics display tablet and communications systems |
US6101543A (en) * | 1996-10-25 | 2000-08-08 | Digital Equipment Corporation | Pseudo network adapter for frame capture, encapsulation and encryption |
US5987518A (en) * | 1996-10-28 | 1999-11-16 | General Instrument Corporation | Method and apparatus for communicating internet protocol data over a broadband MPEG channel |
US6111592A (en) * | 1996-11-26 | 2000-08-29 | Kabushiki Kaisha Toshiba | DMA data transfer apparatus, motion picture decoding apparatus using the same, and DMA data transfer method |
US5905942A (en) * | 1997-02-18 | 1999-05-18 | Lodgenet Entertainment Corporation | Multiple dwelling unit interactive audio/video distribution system |
US5983073A (en) * | 1997-04-04 | 1999-11-09 | Ditzik; Richard J. | Modular notebook and PDA computer systems for personal computing and wireless communications |
US6088730A (en) * | 1997-06-02 | 2000-07-11 | International Business Machines Corporation | Methods and apparatus for downloading data between an information processing device and an external device via a wireless communications technique |
US6081533A (en) * | 1997-06-25 | 2000-06-27 | Com21, Inc. | Method and apparatus for an application interface module in a subscriber terminal unit |
US6014694A (en) * | 1997-06-26 | 2000-01-11 | Citrix Systems, Inc. | System for adaptive video/audio transport over a network |
US6154772A (en) * | 1997-11-04 | 2000-11-28 | Georgia Tech Research Corporation | System and method for the delivery of digital video and data over a communication channel |
US6104334A (en) * | 1997-12-31 | 2000-08-15 | Eremote, Inc. | Portable internet-enabled controller and information browser for consumer devices |
US6178446B1 (en) * | 1997-12-31 | 2001-01-23 | At&T Corp | Method and system for supporting interactive commercials displayed on a display device using a telephone network |
US20060159116A1 (en) * | 1997-12-31 | 2006-07-20 | Irwin Gerszberg | Facility management platform for a hybrid coaxial/twisted pair local loop network service architecture |
US6018359A (en) * | 1998-04-24 | 2000-01-25 | Massachusetts Institute Of Technology | System and method for multicast video-on-demand delivery system |
US6038425A (en) * | 1998-08-03 | 2000-03-14 | Jeffrey; Ross A. | Audio/video signal redistribution system |
US6505255B1 (en) * | 1999-04-29 | 2003-01-07 | Mitsubishi Electric Information Technology Center America, Inc. (Ita) | Method for formatting and routing data between an external network and an internal network |
US6928656B1 (en) * | 1999-05-14 | 2005-08-09 | Scientific-Atlanta, Inc. | Method for delivery of IP data over MPEG-2 transport networks |
US20040228336A1 (en) * | 1999-12-30 | 2004-11-18 | Fen-Chung Kung | Personal IP toll-free number |
Cited By (402)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8228879B2 (en) * | 1995-10-05 | 2012-07-24 | Broadcom Corporation | Hierarchical data collection network supporting packetized voice communications among wireless terminals and telephones |
US7965735B2 (en) | 1998-07-28 | 2011-06-21 | Mosaid Technologies Incorporated | Local area network of serial intelligent cells |
US8325636B2 (en) | 1998-07-28 | 2012-12-04 | Mosaid Technologies Incorporated | Local area network of serial intelligent cells |
US7986708B2 (en) | 1998-07-28 | 2011-07-26 | Mosaid Technologies Incorporated | Local area network of serial intelligent cells |
US8885660B2 (en) | 1998-07-28 | 2014-11-11 | Conversant Intellectual Property Management Incorporated | Local area network of serial intelligent cells |
US8885659B2 (en) | 1998-07-28 | 2014-11-11 | Conversant Intellectual Property Management Incorporated | Local area network of serial intelligent cells |
US8908673B2 (en) | 1998-07-28 | 2014-12-09 | Conversant Intellectual Property Management Incorporated | Local area network of serial intelligent cells |
US8867523B2 (en) | 1998-07-28 | 2014-10-21 | Conversant Intellectual Property Management Incorporated | Local area network of serial intelligent cells |
US20020196843A1 (en) * | 1999-03-23 | 2002-12-26 | Itzik Ben-Bassat | Satellite communication card |
US8582598B2 (en) | 1999-07-07 | 2013-11-12 | Mosaid Technologies Incorporated | Local area network for distributing data communication, sensing and control signals |
US8929523B2 (en) | 1999-07-20 | 2015-01-06 | Conversant Intellectual Property Management Inc. | Network for telephony and data communication |
US8351582B2 (en) | 1999-07-20 | 2013-01-08 | Mosaid Technologies Incorporated | Network for telephony and data communication |
US20030068154A1 (en) * | 2000-03-08 | 2003-04-10 | Edward Zylka | Gateway content storage system having database indexing, and method thereof |
US7715534B2 (en) | 2000-03-20 | 2010-05-11 | Mosaid Technologies Incorporated | Telephone outlet for implementing a local area network over telephone lines and a local area network using such outlets |
US8855277B2 (en) | 2000-03-20 | 2014-10-07 | Conversant Intellectual Property Managment Incorporated | Telephone outlet for implementing a local area network over telephone lines and a local area network using such outlets |
US8363797B2 (en) | 2000-03-20 | 2013-01-29 | Mosaid Technologies Incorporated | Telephone outlet for implementing a local area network over telephone lines and a local area network using such outlets |
US20120307990A1 (en) * | 2000-04-18 | 2012-12-06 | Mosaid Technologies Incorporated | Telephone communication system over a single telephone line |
US8223800B2 (en) | 2000-04-18 | 2012-07-17 | Mosaid Technologies Incorporated | Telephone communication system over a single telephone line |
US8559422B2 (en) * | 2000-04-18 | 2013-10-15 | Mosaid Technologies Incorporated | Telephone communication system over a single telephone line |
US8000349B2 (en) | 2000-04-18 | 2011-08-16 | Mosaid Technologies Incorporated | Telephone communication system over a single telephone line |
US8873586B2 (en) | 2000-04-19 | 2014-10-28 | Conversant Intellectual Property Management Incorporated | Network combining wired and non-wired segments |
US8982904B2 (en) | 2000-04-19 | 2015-03-17 | Conversant Intellectual Property Management Inc. | Network combining wired and non-wired segments |
US8848725B2 (en) | 2000-04-19 | 2014-09-30 | Conversant Intellectual Property Management Incorporated | Network combining wired and non-wired segments |
US8873575B2 (en) | 2000-04-19 | 2014-10-28 | Conversant Intellectual Property Management Incorporated | Network combining wired and non-wired segments |
US8867506B2 (en) | 2000-04-19 | 2014-10-21 | Conversant Intellectual Property Management Incorporated | Network combining wired and non-wired segments |
US8982903B2 (en) | 2000-04-19 | 2015-03-17 | Conversant Intellectual Property Management Inc. | Network combining wired and non-wired segments |
US7213080B2 (en) * | 2000-07-14 | 2007-05-01 | Comsat Corporation | Intelligent radio design for satellite gateways and terrestrial base stations |
US20020029293A1 (en) * | 2000-07-14 | 2002-03-07 | Comsat Corporation | Intelligent radio design for satellite gateways and terrestrial base stations |
US8174999B2 (en) | 2000-08-30 | 2012-05-08 | Broadcom Corporation | Home network system and method |
US8755289B2 (en) | 2000-08-30 | 2014-06-17 | Broadcom Corporation | Home network system and method |
US9160555B2 (en) | 2000-08-30 | 2015-10-13 | Broadcom Corporation | Home network system and method |
US8761200B2 (en) | 2000-08-30 | 2014-06-24 | Broadcom Corporation | Home network system and method |
US9184984B2 (en) | 2000-08-30 | 2015-11-10 | Broadcom Corporation | Network module |
US8724485B2 (en) | 2000-08-30 | 2014-05-13 | Broadcom Corporation | Home network system and method |
US9094226B2 (en) * | 2000-08-30 | 2015-07-28 | Broadcom Corporation | Home network system and method |
US20060101501A1 (en) * | 2000-10-16 | 2006-05-11 | Zeev Orbach | System, device and method of expanding the operational bandwidth of a communication infrastructure |
US7904932B2 (en) | 2000-10-16 | 2011-03-08 | Xtend Networks Ltd. | Wideband node in a CATV network |
US7616890B2 (en) | 2000-10-16 | 2009-11-10 | Xtend Networks Ltd. | System, device and method of expanding the operational bandwidth of a communication infrastructure |
US20090119735A1 (en) * | 2000-10-16 | 2009-05-07 | Oleg Dounaevski | Wideband node in a catv network |
US20030120742A1 (en) * | 2000-10-23 | 2003-06-26 | Yoichi Ohgami | Home network system |
US20040043759A1 (en) * | 2000-10-31 | 2004-03-04 | Mcgovern David | Telecommunications systems |
US8549567B2 (en) * | 2000-11-14 | 2013-10-01 | Samuel H. Russ | Media content sharing over a home network |
US7849486B2 (en) * | 2000-11-14 | 2010-12-07 | Russ Samuel H | Networked subscriber television distribution |
US8127326B2 (en) | 2000-11-14 | 2012-02-28 | Claussen Paul J | Proximity detection using wireless connectivity in a communications system |
US20090193452A1 (en) * | 2000-11-14 | 2009-07-30 | Scientific-Atlanta, Inc. | Media content sharing over a home network |
US7861272B2 (en) * | 2000-11-14 | 2010-12-28 | Russ Samuel H | Networked subscriber television distribution |
US20060059259A1 (en) * | 2000-11-20 | 2006-03-16 | Hba Matchmaker Media, Inc. | Method and system for dataflow management in a communications network |
US20020114454A1 (en) * | 2000-12-21 | 2002-08-22 | Hamilton Jon W. | Method and system for trusted digital camera |
US10136180B2 (en) | 2000-12-27 | 2018-11-20 | Chanbond Llc | Intelligent device system and method for distribution of digital signals on a wideband signal distribution system |
US9363554B2 (en) | 2000-12-27 | 2016-06-07 | Chanbond Llc | Intelligent device system and method for distribution of digital signals on a wideband signal distribution system |
US8001574B2 (en) | 2000-12-28 | 2011-08-16 | At&T Intellectual Property I, L. P. | Methods, systems, and products for media on-demand |
US8677423B2 (en) | 2000-12-28 | 2014-03-18 | At&T Intellectual Property I, L. P. | Digital residential entertainment system |
US7698723B2 (en) | 2000-12-28 | 2010-04-13 | At&T Intellectual Property I, L.P. | System and method for multimedia on demand services |
US8601519B1 (en) | 2000-12-28 | 2013-12-03 | At&T Intellectual Property I, L.P. | Digital residential entertainment system |
US20040261112A1 (en) * | 2000-12-28 | 2004-12-23 | Hicks John Alson | System and method for multimedia on demand services |
US20040078812A1 (en) * | 2001-01-04 | 2004-04-22 | Calvert Kerry Wayne | Method and apparatus for acquiring media services available from content aggregators |
US8677417B2 (en) * | 2001-01-04 | 2014-03-18 | Thomson Licensing | Method and apparatus for acquiring media services available from content aggregators |
US20120066723A1 (en) * | 2001-02-09 | 2012-03-15 | Fisk Julian B | System for and method of distributing television, video and other signals |
US20020116714A1 (en) * | 2001-02-13 | 2002-08-22 | Peter Buchner | Network tuning device |
US7748023B2 (en) | 2001-02-27 | 2010-06-29 | Xtend Networks Ltd. | Device, system and method for connecting a subscriber device to a wideband distribution network |
US20050155082A1 (en) * | 2001-02-27 | 2005-07-14 | Hillel Weinstein | Device, system and method for connecting a subscriber device to a wideband distribution network |
US20020174435A1 (en) * | 2001-02-27 | 2002-11-21 | Hillel Weinstein | System, apparatus and method for expanding the operational bandwidth of a communication system |
US20020126635A1 (en) * | 2001-03-06 | 2002-09-12 | Kddi Corporation | System and method for switching between frequency channels in wireless LAN |
US7283493B2 (en) * | 2001-03-06 | 2007-10-16 | Kddi Corporation | System and method for switching between frequency channels in wireless LAN |
US20040250273A1 (en) * | 2001-04-02 | 2004-12-09 | Bellsouth Intellectual Property Corporation | Digital video broadcast device decoder |
US20060120407A1 (en) * | 2001-04-25 | 2006-06-08 | Infineon Technologies Ag, A German Corporation | Data transmission network |
US20020194623A1 (en) * | 2001-05-09 | 2002-12-19 | Rees Ian Paul | Network imaging |
US20060233170A1 (en) * | 2001-05-17 | 2006-10-19 | Dan Avida | Stream-Oriented Interconnect for Networked Computer Storage |
US20040158623A1 (en) * | 2001-05-17 | 2004-08-12 | Dan Avida | Stream-oriented interconnect for networked computer storage |
US7069375B2 (en) | 2001-05-17 | 2006-06-27 | Decru, Inc. | Stream-oriented interconnect for networked computer storage |
US7944936B2 (en) | 2001-05-17 | 2011-05-17 | Netapp, Inc. | Stream-oriented interconnect for networked computer storage |
US20150089550A1 (en) * | 2001-05-24 | 2015-03-26 | Vixs Systems, Inc. | Method and modem for use in a multimedia system |
US20150089532A1 (en) * | 2001-05-24 | 2015-03-26 | Vixs Systems, Inc. | Method and computer for use in a multimedia system |
US20030156218A1 (en) * | 2001-05-24 | 2003-08-21 | Indra Laksono | Method and apparatus of multiplexing a plurality of channels in a multimedia system |
US20120331509A1 (en) * | 2001-05-24 | 2012-12-27 | Vixs Systems, Inc. | Channel selection in a multimedia system |
US20150089537A1 (en) * | 2001-05-24 | 2015-03-26 | Vixs Systems, Inc. | Method and streaming video server for use in a multimedia system |
US9832536B2 (en) | 2001-05-24 | 2017-11-28 | Vixs Systems, Inc. | Method and set top box for use in a multimedia system |
US9609388B2 (en) * | 2001-05-24 | 2017-03-28 | Vixs Systems, Inc. | Method and set top box for use in a multimedia system |
US20150089565A1 (en) * | 2001-05-24 | 2015-03-26 | Vixs Systems, Inc. | Method and set top box for use in a multimedia system |
US20090031419A1 (en) * | 2001-05-24 | 2009-01-29 | Indra Laksono | Multimedia system and server and methods for use therewith |
US20150089547A1 (en) * | 2001-05-24 | 2015-03-26 | Vixs Systems, Inc. | Method and cellphone for use in a multimedia system |
US20150089531A1 (en) * | 2001-05-24 | 2015-03-26 | Vixs Systems, Inc. | Method and client module for use in a multimedia system |
US9578375B2 (en) * | 2001-05-24 | 2017-02-21 | Vixs Systems, Inc. | Method and modem for use in a multimedia system |
US7200855B2 (en) * | 2001-05-24 | 2007-04-03 | Vixs Systems, Inc. | Method and apparatus of multiplexing a plurality of channels in a multimedia system |
US9485539B2 (en) * | 2001-05-24 | 2016-11-01 | Vixs Systems, Inc. | Method and client module for use in a multimedia system |
US20180084307A1 (en) * | 2001-05-24 | 2018-03-22 | Vixs Systems, Inc. | Method and set top box for use in a multimedia system |
US9467741B2 (en) * | 2001-05-24 | 2016-10-11 | Vixs Systems, Inc. | Method and computer for use in a multimedia system |
US9456248B2 (en) * | 2001-05-24 | 2016-09-27 | Vixs Systems, Inc. | Method and television for use in a multimedia system |
US9420341B2 (en) * | 2001-05-24 | 2016-08-16 | Vixs Systems, Inc. | Method and streaming video server for use in a multimedia system |
US20150095935A1 (en) * | 2001-05-24 | 2015-04-02 | Vixs Systems, Inc. | Method and television for use in a multimedia system |
US10440444B2 (en) * | 2001-05-24 | 2019-10-08 | Vixs Systems, Inc. | Method and set top box for use in a multimedia system |
US9392331B2 (en) * | 2001-05-24 | 2016-07-12 | Vixs Systems, Inc. | Method and cellphone for use in a multimedia system |
US9197435B2 (en) * | 2001-05-24 | 2015-11-24 | Vixs Systems, Inc | Channel selection in a multimedia system |
US20040133925A1 (en) * | 2001-06-01 | 2004-07-08 | Guido Franceschini | Method for transmitting information stream corresponding transmission system transmitter receiver and computer product |
US20020188737A1 (en) * | 2001-06-07 | 2002-12-12 | Jae-Hong Park | Data relay apparatus and method thereof |
US8761186B2 (en) | 2001-07-05 | 2014-06-24 | Conversant Intellectual Property Management Incorporated | Telephone outlet with packet telephony adapter, and a network using same |
US7769030B2 (en) | 2001-07-05 | 2010-08-03 | Mosaid Technologies Incorporated | Telephone outlet with packet telephony adapter, and a network using same |
US7680255B2 (en) | 2001-07-05 | 2010-03-16 | Mosaid Technologies Incorporated | Telephone outlet with packet telephony adaptor, and a network using same |
US8472593B2 (en) | 2001-07-05 | 2013-06-25 | Mosaid Technologies Incorporated | Telephone outlet with packet telephony adaptor, and a network using same |
US7877014B2 (en) * | 2001-07-05 | 2011-01-25 | Enablence Technologies Inc. | Method and system for providing a return path for signals generated by legacy video service terminals in an optical network |
US20080040764A1 (en) * | 2001-07-20 | 2008-02-14 | Hillel Weinstein | System, apparatus and method for expanding the operational bandwidth of a communication system |
US20030041162A1 (en) * | 2001-08-27 | 2003-02-27 | Hochmuth Roland M. | System and method for communicating graphics images over a computer network |
US20030097664A1 (en) * | 2001-11-21 | 2003-05-22 | James Meyers | Method and system for interactive movie scene television |
US8584185B2 (en) * | 2001-12-20 | 2013-11-12 | At&T Intellectual Property I, L.P. | System and method for content transmission network selection |
US20080307469A1 (en) * | 2001-12-20 | 2008-12-11 | At&T Intellectual Property I, Lp, Formerly Known As Bellsouth Intellectual Property Corporation | System and Method for Content Transmission Network Selection |
US20050081249A1 (en) * | 2001-12-27 | 2005-04-14 | Soederqvist Erik Richard | Method for connecting a plurality of computer terminals to a broadband cable |
US20030200548A1 (en) * | 2001-12-27 | 2003-10-23 | Paul Baran | Method and apparatus for viewer control of digital TV program start time |
US20030145334A1 (en) * | 2002-01-29 | 2003-07-31 | Kabushiki Kaisha Toshiba | Wireless data-transferring apparatus |
US6898276B1 (en) | 2002-05-31 | 2005-05-24 | Verizon Communications Inc. | Soft network interface device for digital broadband local carrier networks |
US8732771B2 (en) * | 2002-07-08 | 2014-05-20 | At&T Intellectual Property I, L.P. | System for providing DBS DSL video services to multiple display devices |
US20070261083A1 (en) * | 2002-07-08 | 2007-11-08 | Ahmad Ansari | System for providing DBS DSL video services to multiple display devices |
US20040006772A1 (en) * | 2002-07-08 | 2004-01-08 | Ahmad Ansari | Centralized video and data integration unit |
US20050025175A1 (en) * | 2002-07-08 | 2005-02-03 | White Russell William | Ethernet-based digital subscriber line methods and systems |
US7606218B2 (en) * | 2002-07-08 | 2009-10-20 | At&T Intellectual Property 1, L.P. | Ethernet-based digital subscriber line methods and systems |
US20070110041A1 (en) * | 2002-07-08 | 2007-05-17 | White Russell W | Ethernet-based broadband communication channel methods and systems |
US7751388B2 (en) | 2002-07-08 | 2010-07-06 | At&T Intellectual Property I, L.P. | Ethernet-based broadband communication channel methods and systems |
US7870584B2 (en) | 2002-08-02 | 2011-01-11 | Russ Samuel H | Interactive program guide with selectable updating |
US7908625B2 (en) | 2002-10-02 | 2011-03-15 | Robertson Neil C | Networked multimedia system |
US8627385B2 (en) | 2002-10-04 | 2014-01-07 | David B. Davies | Systems and methods for operating a peripheral record playback device in a networked multimedia system |
US9762970B2 (en) | 2002-10-04 | 2017-09-12 | Tech 5 | Access of stored video from peer devices in a local network |
US8966550B2 (en) | 2002-10-04 | 2015-02-24 | Cisco Technology, Inc. | Home communication systems |
US8046806B2 (en) | 2002-10-04 | 2011-10-25 | Wall William E | Multiroom point of deployment module |
US7761505B2 (en) * | 2002-11-18 | 2010-07-20 | Openpeak Inc. | System, method and computer program product for concurrent performance of video teleconference and delivery of multimedia presentation and archiving of same |
US20040098456A1 (en) * | 2002-11-18 | 2004-05-20 | Openpeak Inc. | System, method and computer program product for video teleconferencing and multimedia presentations |
US20060117379A1 (en) * | 2002-12-11 | 2006-06-01 | Bennett James D | Transcoding and data rights management in a mobile video network with STB as a hub |
US8955020B2 (en) * | 2002-12-11 | 2015-02-10 | Broadcom Corporation | Transcoding and data rights management in a mobile video network with STB as a hub |
US20040132403A1 (en) * | 2003-01-02 | 2004-07-08 | Agere Systems, Inc. | Wireless cable networking gateway and Wi-Fi system incorporating the same |
US7657222B2 (en) * | 2003-01-02 | 2010-02-02 | Agere Systems Inc. | Wireless cable networking gateway and Wi-Fi system incorporating the same |
US8837514B2 (en) | 2003-01-13 | 2014-09-16 | Bernard F. Bareis | Broadband multi-drop local network, interface and method for multimedia access |
US20080310436A1 (en) * | 2003-01-13 | 2008-12-18 | Bareis Bernard F | Broadband multi-drop local network, interface and method for multimedia access |
US20040136373A1 (en) * | 2003-01-13 | 2004-07-15 | Bareis Bernard F. | Broadband multi-drop local network, interface and method for multimedia access |
US7346071B2 (en) * | 2003-01-13 | 2008-03-18 | Bareis Bernard F | Broadband multi-drop local network, interface and method for multimedia access |
US8300654B2 (en) | 2003-01-13 | 2012-10-30 | Bareis Bernard F | Broadband multi-drop local network, interface and method for multimedia access |
US7865925B2 (en) | 2003-01-15 | 2011-01-04 | Robertson Neil C | Optimization of a full duplex wideband communications system |
US8094640B2 (en) | 2003-01-15 | 2012-01-10 | Robertson Neil C | Full duplex wideband communications system for a local coaxial network |
US8230470B2 (en) | 2003-01-15 | 2012-07-24 | Robertson Neil C | Full duplex wideband communications system for a local coaxial network |
US7702095B2 (en) | 2003-01-30 | 2010-04-20 | Mosaid Technologies Incorporated | Method and system for providing DC power on local telephone lines |
US8107618B2 (en) | 2003-01-30 | 2012-01-31 | Mosaid Technologies Incorporated | Method and system for providing DC power on local telephone lines |
US8787562B2 (en) | 2003-01-30 | 2014-07-22 | Conversant Intellectual Property Management Inc. | Method and system for providing DC power on local telephone lines |
US20040177374A1 (en) * | 2003-03-07 | 2004-09-09 | Ho-Hyun Park | Apparatus for controlling digital transport stream on digital settop box |
US20060270340A1 (en) * | 2003-03-11 | 2006-11-30 | Pugel Michael A | Apparatus and method for distributing signals by down-converting to vacant channels |
US7746905B2 (en) | 2003-03-13 | 2010-06-29 | Mosaid Technologies Incorporated | Private telephone network connected to more than one public network |
US7738453B2 (en) | 2003-03-13 | 2010-06-15 | Mosaid Technologies Incorporated | Telephone system having multiple sources and accessories therefor |
US20070153836A1 (en) * | 2003-03-13 | 2007-07-05 | Serconet, Ltd. | Telephone system having multiple distinct sources and accessories therefor |
US7656904B2 (en) * | 2003-03-13 | 2010-02-02 | Mosaid Technologies Incorporated | Telephone system having multiple distinct sources and accessories therefor |
US8238328B2 (en) | 2003-03-13 | 2012-08-07 | Mosaid Technologies Incorporated | Telephone system having multiple distinct sources and accessories therefor |
US20040183824A1 (en) * | 2003-03-21 | 2004-09-23 | Benson Rodger William | Interface for presenting data representations in a screen-area inset |
US7487460B2 (en) * | 2003-03-21 | 2009-02-03 | Microsoft Corporation | Interface for presenting data representations in a screen-area inset |
US20040210939A1 (en) * | 2003-04-01 | 2004-10-21 | Chang-Won Kim | Apparatus for separating digital broadcasting signal from data transmitted through internet network and method thereof |
US7555768B2 (en) * | 2003-07-14 | 2009-06-30 | Brain Tree International, Inc | Apparatus method and system for providing enhanced digital services using an analog broadcast license |
US20050015811A1 (en) * | 2003-07-14 | 2005-01-20 | Norman George I. | Apparatus method and system for providing enhanced digital services using an analog broadcast license |
US7686653B2 (en) | 2003-09-07 | 2010-03-30 | Mosaid Technologies Incorporated | Modular outlet |
US20050060754A1 (en) * | 2003-09-17 | 2005-03-17 | Wegener Communications, Inc. | Apparatus and method for distributed control of media dissemination |
US8150945B2 (en) * | 2003-09-22 | 2012-04-03 | Broadcom Corporation | Host arbitrated user interface resource sharing |
US20050065768A1 (en) * | 2003-09-22 | 2005-03-24 | Jeyhan Karaoguz | Host arbitrated user interface resource sharing |
US20050078609A1 (en) * | 2003-10-10 | 2005-04-14 | Adc Broadband Access Systems, Inc. | Access switch for a cable network having a zero configuration multimedia service subsystem |
US20110083141A1 (en) * | 2003-11-14 | 2011-04-07 | Rovi Technologies Corporation | Interactive television systems having pod modules and methods for use in the same |
US20070110098A1 (en) * | 2003-12-09 | 2007-05-17 | Viasat, Inc. | Method For Channel Congestion Management |
US7975008B2 (en) | 2003-12-09 | 2011-07-05 | Viasat, Inc. | System for channel congestion management |
US20100008225A1 (en) * | 2003-12-09 | 2010-01-14 | Viasat, Inc. | System for channel congestion management |
US7650379B2 (en) | 2003-12-09 | 2010-01-19 | Viasat, Inc. | Method for channel congestion management |
US11032353B2 (en) | 2004-01-13 | 2021-06-08 | May Patents Ltd. | Information device |
US20050180428A1 (en) * | 2004-02-13 | 2005-08-18 | Era Digital Media Co., Ltd. | Cross media information integration system |
US8611528B2 (en) | 2004-02-16 | 2013-12-17 | Mosaid Technologies Incorporated | Outlet add-on module |
US20050188078A1 (en) * | 2004-02-23 | 2005-08-25 | Kotzin Michael D. | System and method for managing and associating dynamic containers of a content providing device |
US7840984B1 (en) | 2004-03-17 | 2010-11-23 | Embarq Holdings Company, Llc | Media administering system and method |
US8732788B2 (en) * | 2004-05-21 | 2014-05-20 | Broadcom Corporation | Integrated set-top box |
US20060026659A1 (en) * | 2004-05-21 | 2006-02-02 | Broadcom Corporation | Integrated cable modem |
US8578434B2 (en) | 2004-05-21 | 2013-11-05 | Broadcom Corporation | Integrated cable modem |
US20060026661A1 (en) * | 2004-05-21 | 2006-02-02 | Broadcom Corporation | Integrated set-top box |
US9560420B2 (en) | 2004-05-21 | 2017-01-31 | Broadcom Corporation | Integrated cable modem |
US20060013220A1 (en) * | 2004-07-14 | 2006-01-19 | Cannon Kabushiki Kaisha | Control method of communication apparatus, communication apparatus, and control program of communication apparatus |
US7769005B2 (en) * | 2004-07-14 | 2010-08-03 | Canon Kabushiki Kaisha | Control method of communication apparatus, communication apparatus, and control program of communication apparatus |
US8239914B2 (en) | 2004-07-22 | 2012-08-07 | Broadcom Corporation | Highly integrated single chip set-top box |
US20060026657A1 (en) * | 2004-07-22 | 2006-02-02 | Broadcom Corporation | Highly integrated single chip set-top box |
US20060039380A1 (en) * | 2004-08-09 | 2006-02-23 | Cloonan Thomas J | Very high speed cable modem for increasing bandwidth |
US9699102B2 (en) * | 2004-08-09 | 2017-07-04 | Arris Enterprises Llc | Very high speed cable modem for increasing bandwidth |
US9722850B2 (en) * | 2004-08-09 | 2017-08-01 | Arris Enterprises Llc | Method and system for transforming video streams using a multi-channel flow-bonded traffic stream |
US20060182139A1 (en) * | 2004-08-09 | 2006-08-17 | Mark Bugajski | Method and system for transforming video streams using a multi-channel flow-bonded traffic stream |
US7786891B2 (en) | 2004-08-27 | 2010-08-31 | Embarq Holdings Company, Llc | System and method for an interactive security system for a home |
US20070298772A1 (en) * | 2004-08-27 | 2007-12-27 | Owens Steve B | System and method for an interactive security system for a home |
US20080259838A1 (en) * | 2004-09-10 | 2008-10-23 | Nederlandse Organisatie Voor Toegepast- Natuurwetenschappelijk Onderzoek Tno | Method and Device for Inverse Multiplexing of Multicast Transmission |
US8699395B2 (en) * | 2004-09-10 | 2014-04-15 | Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno | Method and device for inverse multiplexing of multicast transmission |
US20060056458A1 (en) * | 2004-09-15 | 2006-03-16 | Evensen Mark C | Multimedia residential gateway |
US20060075108A1 (en) * | 2004-09-15 | 2006-04-06 | Nortel Networks Limited | Network media gateway |
US7512137B2 (en) * | 2004-09-15 | 2009-03-31 | Entone Technologies, Ltd. | Multimedia residential gateway |
US7840982B1 (en) | 2004-09-28 | 2010-11-23 | Embarq Holding Company, Llc | Video-all call system and method for a facility |
WO2006039941A1 (en) * | 2004-10-15 | 2006-04-20 | Pirelli & C. S.P.A. | Method for secure signal transmission in a telecommunication network, in particular in a local area network |
US9894044B2 (en) | 2004-10-15 | 2018-02-13 | Telecom Italia S.P.A. | Method for secure signal transmission in a telecommunication network, in particular in a local area network |
US20090204805A1 (en) * | 2004-10-15 | 2009-08-13 | Mauro Robba | Method for secure signal transmission in a telecommunication network, in particular in a local area network |
WO2006052343A3 (en) * | 2004-11-03 | 2006-06-29 | Gen Instrument Corp | Method and apparatus for distributing digital stream data to a user terminal |
US20060126551A1 (en) * | 2004-11-25 | 2006-06-15 | Christophe Delaunay | Device and method for distributing broadcast services on a local network |
US8839314B2 (en) | 2004-12-01 | 2014-09-16 | At&T Intellectual Property I, L.P. | Device, system, and method for managing television tuners |
US20060136968A1 (en) * | 2004-12-20 | 2006-06-22 | Electronics And Telecommunications Research Institute | Apparatus for distributing same/different digital broadcasting streams in heterogeneous home network and method thereof |
US7577975B2 (en) * | 2004-12-20 | 2009-08-18 | Electronics And Telecommunications Research Institute | Apparatus for distributing same/different digital broadcasting streams in heterogeneous home network and method thereof |
US20060195884A1 (en) * | 2005-01-05 | 2006-08-31 | Van Zoest Alexander | Interactive multichannel data distribution system |
US20060168291A1 (en) * | 2005-01-05 | 2006-07-27 | Van Zoest Alexander | Interactive multichannel data distribution system |
US20060174021A1 (en) * | 2005-01-05 | 2006-08-03 | Roland Osborne | Media transfer protocol |
US7664872B2 (en) * | 2005-01-05 | 2010-02-16 | Divx, Inc. | Media transfer protocol |
US7697927B1 (en) | 2005-01-25 | 2010-04-13 | Embarq Holdings Company, Llc | Multi-campus mobile management system for wirelessly controlling systems of a facility |
US20060174032A1 (en) * | 2005-01-28 | 2006-08-03 | Standard Microsystems Corporation | High speed ethernet MAC and PHY apparatus with a filter based ethernet packet router with priority queuing and single or multiple transport stream interfaces |
US8880728B2 (en) | 2005-01-28 | 2014-11-04 | Standard Microsystems Corporation | High speed ethernet MAC and PHY apparatus with a filter based ethernet packet router with priority queuing and single or multiple transport stream interfaces |
US8281031B2 (en) | 2005-01-28 | 2012-10-02 | Standard Microsystems Corporation | High speed ethernet MAC and PHY apparatus with a filter based ethernet packet router with priority queuing and single or multiple transport stream interfaces |
US20060184990A1 (en) * | 2005-02-17 | 2006-08-17 | Hanarotelecom, Inc. | Hybrid-fiber coaxial network-based high-speed QoS transmission system for internet protocol broadcasting service |
US20070166000A1 (en) * | 2005-03-01 | 2007-07-19 | Ramesh Nallur | System and method for generating trick mode streams |
US7765573B1 (en) | 2005-03-08 | 2010-07-27 | Embarq Holdings Company, LLP | IP-based scheduling and control of digital video content delivery |
US20060221987A1 (en) * | 2005-03-30 | 2006-10-05 | Junxion Inc. | LAN and WWAN gateway |
US7616743B2 (en) | 2005-04-22 | 2009-11-10 | At&T Intellectual Property I, L.P. | Methods and apparatus to self-configure a flexible residential gateway |
US8005069B2 (en) | 2005-04-22 | 2011-08-23 | At&T Intellectual Property I, L.P. | Methods and apparatus to self-configure a flexible residential gateway |
US20060239278A1 (en) * | 2005-04-22 | 2006-10-26 | Hurst William Robert | Methods and apparatus to self-configure a flexible residential gateway |
US20060239244A1 (en) * | 2005-04-22 | 2006-10-26 | Hurst William Robert | Methods and apparatus to self-configure a flexible residential gateway |
US7889746B2 (en) * | 2005-04-22 | 2011-02-15 | At&T Intellectual Property I, L.P. | Methods and apparatus to self-configure a flexible residential gateway |
US20060239425A1 (en) * | 2005-04-22 | 2006-10-26 | Hurst William Robert | Methods and apparatus to self-configure a flexible residential gateway |
US20080101266A1 (en) * | 2005-05-13 | 2008-05-01 | Mobile Ip Pty Ltd. | Method, system and device for facilitating data communication |
US20110167442A1 (en) * | 2005-06-22 | 2011-07-07 | At&T Intellectual Property I, L.P. | System and Method to Provide a Unified Video Signal for Diverse Receiving Platforms |
US10085054B2 (en) | 2005-06-22 | 2018-09-25 | At&T Intellectual Property | System and method to provide a unified video signal for diverse receiving platforms |
US9338490B2 (en) | 2005-06-22 | 2016-05-10 | At&T Intellectual Property I, L.P. | System and method to provide a unified video signal for diverse receiving platforms |
US8966563B2 (en) * | 2005-06-22 | 2015-02-24 | At&T Intellectual Property, I, L.P. | System and method to provide a unified video signal for diverse receiving platforms |
US7908627B2 (en) * | 2005-06-22 | 2011-03-15 | At&T Intellectual Property I, L.P. | System and method to provide a unified video signal for diverse receiving platforms |
GB2427799A (en) * | 2005-06-24 | 2007-01-03 | Era Digital Media Co Ltd | Cross media information integration system |
US20070002835A1 (en) * | 2005-07-01 | 2007-01-04 | Microsoft Corporation | Edge-based communication |
US20070036164A1 (en) * | 2005-08-11 | 2007-02-15 | Rolf Goehler | Digital gateway for education systems |
US8060624B1 (en) * | 2005-08-23 | 2011-11-15 | Sprint Communications Company L.P. | Initiating a communication session from a presence enabled media host device |
US8154385B2 (en) * | 2005-08-31 | 2012-04-10 | Impinj, Inc. | Local processing of received RFID tag responses |
US20070046432A1 (en) * | 2005-08-31 | 2007-03-01 | Impinj, Inc. | Local processing of received RFID tag responses |
US8570157B1 (en) * | 2005-08-31 | 2013-10-29 | Impinj, Inc. | Local processing of received RFID tag responses |
US8184643B2 (en) * | 2005-09-14 | 2012-05-22 | Ciena Corporation | Device, system, and method for transporting data using combined broadband and legacy network infrastructures |
US20070076746A1 (en) * | 2005-09-14 | 2007-04-05 | Faska Thomas S | Device, system, and method for transporting data using combined broadband and legacy network infrastructures |
US20070064712A1 (en) * | 2005-09-16 | 2007-03-22 | Samsung Electronics Co., Ltd. | Method and apparatus for transmitting additional information on digital broadcast through home network |
US20070079341A1 (en) * | 2005-10-05 | 2007-04-05 | Scientific-Atlanta, Inc. | Dvd multi-room playback after headend conversation |
US8280229B2 (en) | 2005-10-05 | 2012-10-02 | Wall William E | DVD playback over multi-room by copying to HDD |
US7876998B2 (en) | 2005-10-05 | 2011-01-25 | Wall William E | DVD playback over multi-room by copying to HDD |
US20070088812A1 (en) * | 2005-10-18 | 2007-04-19 | Clark Christopher M | Media control system |
US8811155B2 (en) * | 2005-10-26 | 2014-08-19 | Thomson Licensing | System and method for compensating for a satellite gateway failure |
US20100027411A1 (en) * | 2005-10-26 | 2010-02-04 | Thomson Licensing | System and Method for Compensating for a Satellite Gateway Failure |
US8079049B2 (en) * | 2005-10-26 | 2011-12-13 | Thomson Licensing | System and method for inserting sync bytes into transport packets |
KR101183554B1 (en) | 2005-10-26 | 2012-09-20 | 톰슨 라이센싱 | A system and method for compensating for a satellite gateway failure |
US20090007190A1 (en) * | 2005-10-26 | 2009-01-01 | Barry Jay Weber | System and method for inserting sync bytes into transport packets |
US8054778B2 (en) | 2005-11-10 | 2011-11-08 | Junxion, Inc. | LAN/WWAN gateway carrier customization |
US8121071B2 (en) | 2005-11-10 | 2012-02-21 | Sierra Wireless America, Inc. | Gateway network multiplexing |
US20070104169A1 (en) * | 2005-11-10 | 2007-05-10 | Junxion, Inc. | LAN / WWAN gateway carrier customization |
US20070104168A1 (en) * | 2005-11-10 | 2007-05-10 | Junxion Inc. | Gateway network multiplexing |
US7673240B2 (en) | 2005-12-30 | 2010-03-02 | Polaroid Labs, Llc | Ubiquitous navbar user interface across multiple heterogeneous digital media devices |
US20070186180A1 (en) * | 2005-12-30 | 2007-08-09 | Barrett Morgan | Ubiquitous navbar user interface across multiple heterogeneous digital media devices |
US20070192798A1 (en) * | 2005-12-30 | 2007-08-16 | Barrett Morgan | Digital content delivery via virtual private network (VPN) incorporating secured set-top devices |
US20070183324A1 (en) * | 2006-02-06 | 2007-08-09 | Cuberson Russel D | Methods, systems, and computer program products for providing supported DSL communications features as selections |
US8121029B2 (en) * | 2006-02-06 | 2012-02-21 | At&T Intellectual Property I, L.P. | Methods and systems for providing supported DSL communications features as selections |
US20070258437A1 (en) * | 2006-05-05 | 2007-11-08 | Broadcom Corporation, A California Corporation | Switching network employing server quarantine functionality |
US8223965B2 (en) | 2006-05-05 | 2012-07-17 | Broadcom Corporation | Switching network supporting media rights management |
US20070258469A1 (en) * | 2006-05-05 | 2007-11-08 | Broadcom Corporation, A California Corporation | Switching network employing adware quarantine techniques |
US20070260552A1 (en) * | 2006-05-05 | 2007-11-08 | Bennett James D | Switching network supporting media rights management |
US20100146527A1 (en) * | 2006-06-09 | 2010-06-10 | Glenn Ritchie Gordon Craib | Place-Shifting Apparatus and System |
US8468567B2 (en) * | 2006-06-09 | 2013-06-18 | Motive Television Plc | Place-shifting apparatus and system |
US20080016181A1 (en) * | 2006-07-13 | 2008-01-17 | Erik John Burckart | Method and system for providing remote media |
WO2008014030A3 (en) * | 2006-07-24 | 2008-03-27 | Newport Media Inc | A receiver with a visual program guide for mobile television applications and method for creation |
US7707611B2 (en) * | 2006-07-24 | 2010-04-27 | Newport Media, Inc. | Receiver with a visual program guide for mobile television applications and method for creation |
US20080022335A1 (en) * | 2006-07-24 | 2008-01-24 | Nabil Yousef | A receiver with a visual program guide for mobile television applications and method for creation |
WO2008014030A2 (en) * | 2006-07-24 | 2008-01-31 | Newport Media, Inc. | A receiver with a visual program guide for mobile television applications and method for creation |
US20080052284A1 (en) * | 2006-08-05 | 2008-02-28 | Terry Stokes | System and Method for the Capture and Archival of Electronic Communications |
US20080074497A1 (en) * | 2006-09-21 | 2008-03-27 | Ktech Telecommunications, Inc. | Method and Apparatus for Determining and Displaying Signal Quality Information on a Television Display Screen |
US20080211919A1 (en) * | 2006-09-21 | 2008-09-04 | Ktech Telecommunications, Inc. | System and method for analyzing and displaying digital signal quality information |
WO2008042533A2 (en) * | 2006-10-03 | 2008-04-10 | Viasat, Inc. | Method for channel congestion management |
WO2008042533A3 (en) * | 2006-10-03 | 2008-06-12 | Viasat Inc | Method for channel congestion management |
US7978735B2 (en) * | 2006-10-17 | 2011-07-12 | Intel Corporation | Single chip tuner integrated circuit for use in a cable modem |
US20080089362A1 (en) * | 2006-10-17 | 2008-04-17 | Texas Instruments Incorporated | Single chip tuner integrated circuit for use in a cable modem |
US8295176B2 (en) * | 2006-10-31 | 2012-10-23 | Verizon Patent And Licensing Inc. | Priority call routing |
US20080101224A1 (en) * | 2006-10-31 | 2008-05-01 | Verizon Services Organization Inc. | Priority call routing |
US20080109854A1 (en) * | 2006-11-06 | 2008-05-08 | Casavant Scott D | Satellite television ip bitstream generator receiving unit |
US8719875B2 (en) | 2006-11-06 | 2014-05-06 | The Directv Group, Inc. | Satellite television IP bitstream generator receiving unit |
US20080120667A1 (en) * | 2006-11-17 | 2008-05-22 | Texas Instruments Incorporated | Hybrid mpeg/ip digital cable gateway device and architecture associated therewith |
US8537925B2 (en) | 2006-11-20 | 2013-09-17 | Broadcom Corporation | Apparatus and methods for compensating for signal imbalance in a receiver |
US8831028B2 (en) | 2006-11-20 | 2014-09-09 | Broadcom Corporation | System and method for retransmitting packets over a network of communication channels |
US20100290461A1 (en) * | 2006-11-20 | 2010-11-18 | Broadcom Corporation | Mac to phy interface apparatus and methods for transmission of packets through a communications network |
US8358663B2 (en) | 2006-11-20 | 2013-01-22 | Broadcom Corporation | System and method for retransmitting packets over a network of communication channels |
US9008086B2 (en) | 2006-11-20 | 2015-04-14 | Broadcom Corporation | MAC to PHY interface apparatus and methods for transmission of packets through a communications network |
US8526429B2 (en) | 2006-11-20 | 2013-09-03 | Broadcom Corporation | MAC to PHY interface apparatus and methods for transmission of packets through a communications network |
US8041477B2 (en) | 2006-11-21 | 2011-10-18 | Lockheed Martin Corporation | Methods and apparatus for providing access to vehicle electronic systems |
US20080120366A1 (en) * | 2006-11-21 | 2008-05-22 | Lockheed Martin Corporation | Methods and apparatus for providing access to vehicle electronic systems |
US8214102B2 (en) | 2006-11-21 | 2012-07-03 | Lockheed Martin Corporation | Methods and apparatus for providing access to vehicle electronic systems |
US20110162063A1 (en) * | 2006-11-21 | 2011-06-30 | Lockheed Martin Corporation | Methods and apparatus for providing access to vehicle electronic systems |
US20080120675A1 (en) * | 2006-11-22 | 2008-05-22 | Horizon Semiconductors Ltd. | Home gateway for multiple units |
US20080155611A1 (en) * | 2006-12-22 | 2008-06-26 | Kabushiki Kaisha Toshiba | Television lan signal-separating apparatus, indoor lan system and television lan signal-separating method |
US20080281718A1 (en) * | 2007-01-08 | 2008-11-13 | Barrett Morgan | Household network incorporating secure set-top devices |
US20080182670A1 (en) * | 2007-01-26 | 2008-07-31 | Alan Amron | Game and video cartridge for a host device |
US20080182669A1 (en) * | 2007-01-26 | 2008-07-31 | Alan Amron | Game and video cartridge for portable electronic device |
US20080307128A1 (en) * | 2007-01-26 | 2008-12-11 | Digital Video Chip, Llc | Universal multimedia |
US8010711B2 (en) | 2007-01-26 | 2011-08-30 | Digital Video Chip, Llc | Universal multimedia |
US20100174608A1 (en) * | 2007-03-22 | 2010-07-08 | Harkness David H | Digital rights management and audience measurement systems and methods |
US20080300673A1 (en) * | 2007-04-16 | 2008-12-04 | Boston Scientific Scimed, Inc. | Radiopaque compositions, stents and methods of preparation |
US8345553B2 (en) | 2007-05-31 | 2013-01-01 | Broadcom Corporation | Apparatus and methods for reduction of transmission delay in a communication network |
US9641456B2 (en) | 2007-05-31 | 2017-05-02 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Apparatus and methods for reduction of transmission delay in a communication network |
US7711000B2 (en) * | 2007-08-06 | 2010-05-04 | At&T Intellectual Property I, L.P. | System for configuring network elements |
US20090041026A1 (en) * | 2007-08-06 | 2009-02-12 | At&T Knowledge Ventures, L.P. | System for configuring network elements |
US8254779B2 (en) | 2007-08-09 | 2012-08-28 | General Instrument Corporation | Field-configurable optical network terminal device |
WO2009020816A1 (en) * | 2007-08-09 | 2009-02-12 | General Instrument Corporation | Field-configurable optical network terminal device |
US20090041467A1 (en) * | 2007-08-09 | 2009-02-12 | General Instrument Corporation | Field-Configurable Optical Network Terminal Device |
US8565692B2 (en) * | 2007-10-30 | 2013-10-22 | Lantiq Deutschland Gmbh | System and method for providing a versatile RF and analog front-end for wireless and wired networks |
US20090110088A1 (en) * | 2007-10-30 | 2009-04-30 | Antonio Di Giandomenico | System and Method for Providing a Versatile RF and Analog Front-End for Wireless and Wired Networks |
US9942618B2 (en) | 2007-10-31 | 2018-04-10 | The Directv Group, Inc. | SMATV headend using IP transport stream input and method for operating the same |
US20090158376A1 (en) * | 2007-12-17 | 2009-06-18 | Seung Eun Hong | Method and apparatus of building ip-based video service system in hybrid fiber coax network |
US20090172762A1 (en) * | 2008-01-02 | 2009-07-02 | Harmonic Inc. | Methods and System for Efficient Data Transfer Over Hybrid Fiber Coax Infrastructure |
US20090190297A1 (en) * | 2008-01-29 | 2009-07-30 | Michael Feldman | Motherboard expansion device |
US20090225221A1 (en) * | 2008-03-04 | 2009-09-10 | Andrew Robert Gordon | Flexible router |
US20090232077A1 (en) * | 2008-03-15 | 2009-09-17 | Abraham Krieger | Media Receiver Hub |
US8699502B2 (en) * | 2008-03-15 | 2014-04-15 | Entropic Communications, Inc. | Media receiver hub |
US20100319047A1 (en) * | 2008-03-31 | 2010-12-16 | Panasonic Corporation | Digital broadcast receiver |
US8219799B1 (en) | 2008-04-25 | 2012-07-10 | Lockheed Martin Corporation | Secure communication system |
US9100361B1 (en) * | 2008-04-25 | 2015-08-04 | Lockheed Martin Corporation | Secure routing module |
US8220038B1 (en) | 2008-04-25 | 2012-07-10 | Lockheed Martin Corporation | Method for securely routing communications |
US8237551B2 (en) | 2008-04-30 | 2012-08-07 | Centurylink Intellectual Property Llc | System and method for in-patient telephony |
US20090273455A1 (en) * | 2008-04-30 | 2009-11-05 | Embarq Holdings Company, Llc | System and method for in-patient telephony |
US8610576B2 (en) | 2008-04-30 | 2013-12-17 | Centurylink Intellectual Property Llc | Routing communications to a person within a facility |
US20090290197A1 (en) * | 2008-05-20 | 2009-11-26 | David Mandelstam | Telecommunication system and method of synchronization |
US8351583B2 (en) * | 2008-05-20 | 2013-01-08 | David Mandelstam | Telecommunication system and method of synchronization |
WO2009145750A1 (en) * | 2008-05-30 | 2009-12-03 | Digital Video Chip, Llc | Universal multimedia |
US9112717B2 (en) | 2008-07-31 | 2015-08-18 | Broadcom Corporation | Systems and methods for providing a MoCA power management strategy |
US9807692B2 (en) | 2008-07-31 | 2017-10-31 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Systems and methods for providing power management |
US20100064332A1 (en) * | 2008-09-08 | 2010-03-11 | Sling Media Inc. | Systems and methods for presenting media content obtained from multiple sources |
US9600222B2 (en) | 2008-09-08 | 2017-03-21 | Sling Media Inc. | Systems and methods for projecting images from a computer system |
US8667163B2 (en) | 2008-09-08 | 2014-03-04 | Sling Media Inc. | Systems and methods for projecting images from a computer system |
US20100064055A1 (en) * | 2008-09-08 | 2010-03-11 | Sling Media Inc. | Systems and methods for projecting images from a computer system |
US20100061432A1 (en) * | 2008-09-11 | 2010-03-11 | Texas Instruments Incorporated | Reduced cost saw-less catv rf tuner circuit for use in a cable modem |
US9992525B1 (en) | 2008-09-15 | 2018-06-05 | The Directv Group, Inc. | Method and system for inserting local channel insertion in a multi-terminal system |
US10021437B1 (en) * | 2008-09-15 | 2018-07-10 | The Directv Group, Inc. | Method and system for discontinuing a channel stream in a multi-terminal system |
US8132216B1 (en) | 2008-11-07 | 2012-03-06 | The Directv Group, Inc. | Method and system for controlling a multi-terminal system |
US8804480B2 (en) | 2008-12-22 | 2014-08-12 | Broadcom Corporation | Systems and methods for providing a MoCA improved performance for short burst packets |
US8811403B2 (en) | 2008-12-22 | 2014-08-19 | Broadcom Corporation | Systems and methods for physical layer (“PHY”) concatenation in a multimedia over coax alliance network |
US8213309B2 (en) | 2008-12-22 | 2012-07-03 | Broadcom Corporation | Systems and methods for reducing latency and reservation request overhead in a communications network |
US8238227B2 (en) | 2008-12-22 | 2012-08-07 | Broadcom Corporation | Systems and methods for providing a MoCA improved performance for short burst packets |
US8737254B2 (en) | 2008-12-22 | 2014-05-27 | Broadcom Corporation | Systems and methods for reducing reservation request overhead in a communications network |
US8254413B2 (en) | 2008-12-22 | 2012-08-28 | Broadcom Corporation | Systems and methods for physical layer (“PHY”) concatenation in a multimedia over coax alliance network |
US20100158022A1 (en) * | 2008-12-22 | 2010-06-24 | Broadcom Corporation | SYSTEMS AND METHODS FOR PROVIDING A MoCA IMPROVED PERFORMANCE FOR SHORT BURST PACKETS |
US20100238932A1 (en) * | 2009-03-19 | 2010-09-23 | Broadcom Corporation | Method and apparatus for enhanced packet aggregation |
US9554177B2 (en) | 2009-03-30 | 2017-01-24 | Broadcom Corporation | Systems and methods for retransmitting packets over a network of communication channels |
US8553547B2 (en) | 2009-03-30 | 2013-10-08 | Broadcom Corporation | Systems and methods for retransmitting packets over a network of communication channels |
US9531619B2 (en) | 2009-04-07 | 2016-12-27 | Broadcom Corporation | Channel assessment in an information network |
US20100281508A1 (en) * | 2009-05-04 | 2010-11-04 | Comcast Cable Holdings, Llc | Internet Protocol (IP) to Video-on-Demand (VOD) Gateway |
US12003819B2 (en) | 2009-05-04 | 2024-06-04 | Comcast Cable Communications, Llc | Internet protocol (IP) to video-on-demand (VOD) gateway |
US8190751B2 (en) | 2009-05-04 | 2012-05-29 | Comcast Cable Communications, Llc | Personalized media server in a service provider network |
US8190706B2 (en) | 2009-05-04 | 2012-05-29 | Comcast Cable Communications, Llc | Network based digital media server |
US20100281093A1 (en) * | 2009-05-04 | 2010-11-04 | Comcast Cable Holdings, Llc | Sharing Media Content Based on a Media Server |
US20100281534A1 (en) * | 2009-05-04 | 2010-11-04 | Comcast Cable Holdings, Llc | Network-Based Digital Media Server |
US11606616B2 (en) | 2009-05-04 | 2023-03-14 | Comcast Cable Communications, Llc | Internet protocol (IP) to video-on-demand (VOD) gateway |
US11082745B2 (en) | 2009-05-04 | 2021-08-03 | Comcast Cable Communications, Llc | Internet protocol (IP) to video-on-demand (VOD) gateway |
US8438210B2 (en) | 2009-05-04 | 2013-05-07 | Comcast Cable Communications, Llc | Sharing media content based on a media server |
US8078665B2 (en) | 2009-05-04 | 2011-12-13 | Comcast Cable Holdings, Llc | Sharing media content based on a media server |
US20100281174A1 (en) * | 2009-05-04 | 2010-11-04 | Comcast Cable Holdings, Llc | Personalized Media Server in a Service Provider Network |
US8730798B2 (en) | 2009-05-05 | 2014-05-20 | Broadcom Corporation | Transmitter channel throughput in an information network |
US20100306814A1 (en) * | 2009-05-26 | 2010-12-02 | Broadcom Corporation | Integrated Set-Top Box with Daisy-Chaining |
US20100309283A1 (en) * | 2009-06-08 | 2010-12-09 | Kuchar Jr Rodney A | Portable Remote Audio/Video Communication Unit |
US9253542B2 (en) | 2009-06-17 | 2016-02-02 | Echostar Technologies L.L.C. | Satellite signal distribution |
CN102450008A (en) * | 2009-06-17 | 2012-05-09 | 艾科星科技公司 | Satellite signal distribution |
US20100325670A1 (en) * | 2009-06-17 | 2010-12-23 | Echostar Technologies L.L.C. | Satellite Signal Distribution |
US8572661B2 (en) * | 2009-06-17 | 2013-10-29 | Echostar Technologies L.L.C. | Satellite signal distribution |
US8867355B2 (en) | 2009-07-14 | 2014-10-21 | Broadcom Corporation | MoCA multicast handling |
US20120079130A1 (en) * | 2009-09-30 | 2012-03-29 | Huawei Technologies Co., Ltd. | Agent service processing method and internet protocol agent terminal |
US8942250B2 (en) | 2009-10-07 | 2015-01-27 | Broadcom Corporation | Systems and methods for providing service (“SRV”) node selection |
US8611327B2 (en) | 2010-02-22 | 2013-12-17 | Broadcom Corporation | Method and apparatus for policing a QoS flow in a MoCA 2.0 network |
US8942220B2 (en) | 2010-02-22 | 2015-01-27 | Broadcom Corporation | Method and apparatus for policing a flow in a network |
US8514860B2 (en) | 2010-02-23 | 2013-08-20 | Broadcom Corporation | Systems and methods for implementing a high throughput mode for a MoCA device |
US8953594B2 (en) | 2010-02-23 | 2015-02-10 | Broadcom Corporation | Systems and methods for increasing preambles |
US10977023B2 (en) * | 2010-03-15 | 2021-04-13 | Comcast Cable Communications, Llc | Home gateway expansion |
US20180210723A1 (en) * | 2010-03-15 | 2018-07-26 | Comcast Cable Communications, Llc | Home Gateway Expansion |
US10038493B2 (en) * | 2010-12-28 | 2018-07-31 | Avago Technologies General Ip (Singapore) Pte. Ltd | Internet protocol low noise block front end architecture |
US20120163290A1 (en) * | 2010-12-28 | 2012-06-28 | Broadcom Corporation | Internet protocol low noise block front end architecture |
US8639053B2 (en) * | 2011-01-18 | 2014-01-28 | Dimension, Inc. | Methods and systems for up-scaling a standard definition (SD) video to high definition (HD) quality |
US8983236B1 (en) | 2011-01-18 | 2015-03-17 | Dimension, Inc. | Methods and systems for up-scaling a standard definition (SD) video to high definition (HD) quality |
US20130077887A1 (en) * | 2011-01-18 | 2013-03-28 | Dimension, Inc. | Methods and systems for up-scaling a standard definition (sd) video to high definition (hd) quality |
US8799633B2 (en) | 2011-02-11 | 2014-08-05 | Standard Microsystems Corporation | MAC filtering on ethernet PHY for wake-on-LAN |
US8621530B1 (en) | 2011-10-31 | 2013-12-31 | The Directv Group, Inc. | Method and system for controlling user devices in an aggregated content distribution system |
US8856843B1 (en) | 2011-10-31 | 2014-10-07 | The Directv Group, Inc. | Method and system for adding local channels and program guide data at a user receiving device in an aggregated content distribution system |
US8595770B2 (en) | 2011-10-31 | 2013-11-26 | The Directv Group, Inc. | Aggregated content distribution system and method for operating the same |
US20140325583A1 (en) * | 2011-11-25 | 2014-10-30 | Masaki Mukawa | Video transmitter apparatus and video receiver apparatus, and video transmitting method and video receiving method |
US20130332967A1 (en) * | 2012-06-12 | 2013-12-12 | Glenn Chang | Combined terrestrial and satellite content for a seamless user experience |
US10998959B2 (en) * | 2013-02-05 | 2021-05-04 | Lantiq Beteiligungs-GmbH & Co. KG | System, method and apparatus for an uplink extender |
US20150365158A1 (en) * | 2013-02-05 | 2015-12-17 | Lantiq Deutschland Gmbh | System, Method and Apparatus for an Uplink Extender |
US20160182611A1 (en) * | 2013-06-24 | 2016-06-23 | Alcatel Lucent | Automated adaption of a codec |
US10666711B2 (en) * | 2013-06-24 | 2020-05-26 | Alcatel Lucent | Automated adaption of a codec |
US11165511B2 (en) | 2013-09-19 | 2021-11-02 | Radius Universal Llc | Fiber optic communications and power network |
US20160066005A1 (en) * | 2014-08-29 | 2016-03-03 | The Nielsen Company (Us), Llc | Methods and apparatus to identify remote presentation of streaming media |
US20160094879A1 (en) * | 2014-09-29 | 2016-03-31 | At&T Intellectual Property I, Lp. | Method and apparatus for distributing content in a communication network |
US20180146249A1 (en) * | 2014-09-29 | 2018-05-24 | At&T Intellectual Property I, L.P. | Method and apparatus for distributing content in a communication network |
US10623812B2 (en) * | 2014-09-29 | 2020-04-14 | At&T Intellectual Property I, L.P. | Method and apparatus for distributing content in a communication network |
US9628854B2 (en) * | 2014-09-29 | 2017-04-18 | At&T Intellectual Property I, L.P. | Method and apparatus for distributing content in a communication network |
US11012741B2 (en) | 2014-09-29 | 2021-05-18 | At&T Intellectual Property I, L.P. | Method and apparatus for distributing content in a communication network |
US20180310073A1 (en) * | 2015-12-07 | 2018-10-25 | Caavo Inc | Network-based control of a media device |
US10812865B2 (en) * | 2015-12-07 | 2020-10-20 | Caavo Inc | Network-based control of a media device |
US10972804B2 (en) | 2015-12-07 | 2021-04-06 | Caavo Inc | Network-based control of a media device |
US11019600B2 (en) * | 2016-05-17 | 2021-05-25 | SpectraRep, LLC | Method and system for datacasting and content management |
US20200136856A1 (en) * | 2016-12-21 | 2020-04-30 | Multivac Sepp Haggenmüller Se & Co. Kg | Packaging machine having a bus node assembly |
US11418359B2 (en) * | 2016-12-21 | 2022-08-16 | Multivac Sepp Haggenmueller Se & Co. Kg | Packaging machine having a bus node assembly |
US20190104334A1 (en) * | 2017-09-29 | 2019-04-04 | Intel Corporation | Cable modem with embedded video transmitter |
US20200021874A1 (en) * | 2017-10-05 | 2020-01-16 | Blonder Tongue Laboratories, Inc. | Networking modules for display systems |
US10805660B2 (en) * | 2017-10-05 | 2020-10-13 | Blonder Tongue Laboratories, Inc. | Networking modules for display systems |
US11956493B2 (en) | 2017-10-05 | 2024-04-09 | Blonder Tongue Laboratories, Inc. | Networking modules for display systems |
WO2019070283A1 (en) * | 2017-10-05 | 2019-04-11 | Blonder Tongue Laboratories, Inc. | Networking modules for display systems |
US11924005B2 (en) * | 2017-10-12 | 2024-03-05 | Rockport Networks, Inc. | Dedicated network gateway device |
US11728893B1 (en) * | 2020-01-28 | 2023-08-15 | Acacia Communications, Inc. | Method, system, and apparatus for packet transmission |
US11343562B1 (en) * | 2021-04-20 | 2022-05-24 | Cox Communications, Inc. | Digital receiver integrated local channel insertion |
US20230011720A1 (en) * | 2021-07-09 | 2023-01-12 | ReadyLinks Inc. | Bidirectional power feed digital communication device |
US11750407B2 (en) * | 2021-07-09 | 2023-09-05 | ReadyLinks Inc. | Bidirectional power feed digital communication device |
US11929887B2 (en) | 2021-07-09 | 2024-03-12 | ReadyLinks Inc. | Facilitating and provisioning customer broadband transport service |
Also Published As
Publication number | Publication date |
---|---|
DE60115727T2 (en) | 2006-08-17 |
US6857132B1 (en) | 2005-02-15 |
EP1117214A3 (en) | 2001-09-12 |
EP1117214A2 (en) | 2001-07-18 |
DE60115727D1 (en) | 2006-01-19 |
EP1117214B1 (en) | 2005-12-14 |
US6678740B1 (en) | 2004-01-13 |
US6889385B1 (en) | 2005-05-03 |
ATE313196T1 (en) | 2005-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1117214B1 (en) | Home network gateway | |
US7089577B1 (en) | Process for supplying video-on-demand and other requested programs and services from a headend | |
US5583863A (en) | Full service network using asynchronous transfer mode multiplexing | |
US7039048B1 (en) | Headend cherrypicker multiplexer with switched front end | |
US6285685B1 (en) | Apparatus and method for providing PC communication and internet service by using settop box | |
US5812786A (en) | Variable rate and variable mode transmission system | |
US5677905A (en) | Access subnetwork controller for video dial tone networks | |
US5544161A (en) | ATM packet demultiplexer for use in full service network having distributed architecture | |
US5696765A (en) | Configurable hybrid medium access control for cable metropolitan area networks | |
US5666487A (en) | Network providing signals of different formats to a user by multplexing compressed broadband data with data of a different format into MPEG encoded data stream | |
US5740075A (en) | Access subnetwork controller for video dial tone networks | |
US6011548A (en) | System for integrating satellite boardband data distributed over a cable TV network with legacy corporate local area networks | |
US5572517A (en) | Configurable hybrid medium access control for cable metropolitan area networks | |
US20030014762A1 (en) | Subscriber internet interface system and apparatus | |
US20030217182A1 (en) | Interface architecture | |
US7529846B2 (en) | Video receiver architecture for digital subscriber line networks | |
JP2007525051A (en) | Thin DOCSIS in-band management for interactive HFC service delivery | |
JP2007525051A6 (en) | Thin DOCSIS in-band management for interactive HFC service delivery | |
EP1464003B1 (en) | Physical layer recovery in a streaming data delivery system | |
WO2002001781A2 (en) | A process for supplying video from a headend | |
WO2002001318A2 (en) | Process carried out by a gateway in a home network | |
Zahariadis et al. | Internet Access over residential ATM networks | |
KR100414672B1 (en) | Video signal service apparatus using atm exchange and method therefor | |
Lee et al. | Integrated multimedia information system on interactive CATV network | |
WO2005027524A1 (en) | Method and device for quality signal distribution, preferably television and/or radio signals |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: TERAYON COMMUNICATION SYSTEMS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RAKIB, SELIM SCHLOMO;FISH, RONALD CRAIG;REEL/FRAME:017296/0322;SIGNING DATES FROM 20050627 TO 20060215 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: GOOGLE TECHNOLOGY HOLDINGS LLC, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MOTOROLA MOBILITY LLC;REEL/FRAME:035465/0001 Effective date: 20141028 |