US20030190644A1 - Methods for generating databases and databases for identifying polymorphic genetic markers - Google Patents
Methods for generating databases and databases for identifying polymorphic genetic markers Download PDFInfo
- Publication number
- US20030190644A1 US20030190644A1 US10/272,756 US27275602A US2003190644A1 US 20030190644 A1 US20030190644 A1 US 20030190644A1 US 27275602 A US27275602 A US 27275602A US 2003190644 A1 US2003190644 A1 US 2003190644A1
- Authority
- US
- United States
- Prior art keywords
- dna
- data
- population
- sequence
- samples
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 0 CCCC(C)C(CC1)C1C(CC1)C1C(CC1)C1C(CC1)C1C(CC1)C1C(CC1)C1C(CC1)C1C(CC1)C1C1C(CC2)C2C(*C)CC1 Chemical compound CCCC(C)C(CC1)C1C(CC1)C1C(CC1)C1C(CC1)C1C(CC1)C1C(CC1)C1C(CC1)C1C(CC1)C1C1C(CC2)C2C(*C)CC1 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6869—Methods for sequencing
- C12Q1/6872—Methods for sequencing involving mass spectrometry
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6827—Hybridisation assays for detection of mutation or polymorphism
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/156—Polymorphic or mutational markers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T436/00—Chemistry: analytical and immunological testing
- Y10T436/24—Nuclear magnetic resonance, electron spin resonance or other spin effects or mass spectrometry
Definitions
- SNPs single nucleotide polymorphisms
- microsatellites tandem repeats
- tandem repeats newly mapped introns and exons
- SNPs Single Nucleotide Polymorphisms
- the databases comprise sets of parameters associated with subjects in populations selected only on the basis of being healthy (i e., where the subjects are mammals, such as humans, they are selected based upon apparent health and no detectable infections).
- the databases can be sorted based upon one or more of the selected parameters.
- the databases can be relational databases, in which an index that represents each subject serves to relate parameters, which are the data, such as age, ethnicity, sex, medical history, etc. and ultimately genotypic information, that was inputted into and stored in the database.
- the database can then be sorted according to these parameters. Initially, the parameter information is obtained from a questionnaire answered by each subject from whom a body tissue or body fluid sample is obtained. As additional information about each sample is obtained, this information can be entered into the database and can serve as a sorting parameter.
- the databases obtained from healthy individuals have numerous uses, such as correlating known polymorphisms with a phenotype or disease.
- the databases can be used to identify alleles that are deleterious, that are beneficial, and that are correlated with diseases.
- genotypic information can be obtained by any method known to those of skill in the art, but is generally obtained using mass spectrometry.
- any database can be sorted according to the methods herein, and alleles that exhibit statistically significant correlations with any of the sorting parameters can be identified. It is noted, however, is noted, that the databases provided herein and randomly selected databases will perform better in these methods, since disease-based databases suffer numerous limitations, including their relatively small size, the homogeneity of the selected disease population, and the masking effect of the polymorphism associated with the markers for which the database was selected. Hence, the healthy database provided herein, provides advantages not heretofore recognized or exploited.
- the methods provided herein can be used with a selected database, including disease-based databases, with or without sorting for the discovery and correlation of polymorphisms.
- the databases provided herein represent a greater genetic diversity than the unselected databases typically utilized for the discovery of polymorphisms and thus allow for the enhanced discovery and correlation of polymorphisms.
- the databases provided herein can be used for taking an identified polymorphism and ascertaining whether it changes in frequency when the data are sorted according to a selected parameter.
- One use of these methods is correlating a selected marker with a particular parameter by following the occurrence of known genetic markers and then, having made this correlation, determining or identifying correlations with diseases. Examples of this use are p53 and Lipoprotein Lipase polymorphism. As exemplified herein, known markers are shown to have particular correlation with certain groups, such as a particular ethnicity or race or one sex. Such correlations will then permit development of better diagnostic tests and treatment regimens.
- the databases and methods provided herein permit, among other things, identification of components, particularly key components, of a disease process by understanding its genetic underpinnings and also permit an understanding of processes, such as individual drug responses.
- the databases and methods provided herein also can be used in methods involving elucidation of pathological pathways, in developing new diagnostic assays, identifying new potential drug targets, and in identifying new drug candidates.
- the methods and databases can be used with experimental procedures, including, but are not limited to, in silico SNP identification, in vitro SNP identification/verification, genetic profiling of large populations, and in biostatistical analyses and interpretations.
- kits that contain a database provided herein and a biological sample from a subject in the database, and typically biological samples from all subjects or a plurality of subjects in the database. Collections of the tissue and body fluid samples are also provided.
- determining whether a genetic marker correlates with susceptibility to morbidity, early mortality, or morbidity and early mortality comprising identifying a polymorphism and determining the frequency of the polymorphism with increasing age in a healthy population.
- the method and system for identifying a biological sample generates a data set indicative of the composition of the biological sample.
- the data set is DNA spectrometry data received from a mass spectrometer.
- the data set is denoised, and a baseline is deleted. Since possible compositions of the biological sample can be known, expected peak areas can be determined. Using the expected peak areas, a residual baseline is generated to further correct the data set. Probable peaks are then identifiable in the corrected data set, which are used to identify the composition of the biological sample.
- statistical methods are employed to determine the probability that a probable peak is an actual peak, not an actual peak, or that the data too inconclusive to call.
- the method and system for identifying a biological sample accurately makes composition calls in a highly automated manner.
- complete SNP profile information for example, can be collected efficiently.
- the collected data are analyzed with highly accurate results. For example, when a particular composition is called, the result can be relied upon with great confidence.
- Such confidence is provided by the robust computational process employed
- FIG. 1 depicts an exemplary sample bank.
- Panel 1 shows the samples as a function of sex and ethnicity.
- Panel 2 shows the Caucasians as a function of age.
- Panel 3 shows the Hispanics as a function of age.
- FIGS. 2A and 2C show an age- and sex-distribution of the 291S allele of the lipoprotein lipase gene in which a total of 436 males and 589 females were investigated.
- FIG. 2B shows an age distribution for the 436 males.
- FIG. 3 is an exemplary questionnaire for population-based sample banking.
- FIG. 4 depicts processing and tracking of blood sample components.
- FIG. 5 depicts the allelic frequency of “sick” alleles and “healthy” alleles as a function of age. It is noted that the relative frequency of healthy alleles increases in a population with increasing age.
- FIG. 6 depicts the age-dependent distribution of ApoE genotypes (see, Schchter et al. (1994) Nature Genetics 6:29-32).
- FIG. 7A-D depicts age-related and genotype frequency of the p53 (tumor suppressor) codon 72 among the Caucasian population in the database.
- *R72 and *P72 represent the frequency of the allele in the database population.
- R72, R72P, and P72 represent the genotypes of the individuals in the population.
- the frequency of the homozygous P72 allele drops from 6.7% to 3.7% with age.
- FIG. 8 depicts the allele and genotype frequencies of the p21 S31R allele as a function of age.
- FIG. 9 depicts the frequency of the FVII Allele 353Q in pooled versus individual samples.
- FIG. 10 depicts the frequency of the CETP (cholesterol ester transfer protein) allele in pooled versus individual samples.
- FIG. 11 depicts the frequency of the plasminogen activator inhibitor-1 (PAI-1) 5G in pooled versus individual samples.
- FIG. 12 shows mass spectra of the samples and the ethnic diversity of the PAI-1 alleles.
- FIG. 13 shows mass spectra of the samples and the ethnic diversity of the CETP 405 alleles.
- FIG. 14 shows mass spectra of the samples and the ethnic diversity of the Factor VII 353 alleles.
- FIG. 15 shows ethnic diversity of PAI-1, CETP and Factor VII using the pooled DNA samples.
- FIG. 16 shows the p53-Rb pathway and the relationships among the various factors in the pathway.
- FIG. 17 which is a block diagram of a computer constructed to provide and process the databases described herein, depicts a typical computer system for storing and sorting the databases provided herein and practicing the methods provided herein.
- FIG. 18 is a flow diagram that illustrates the processing steps performed using the computer illustrated in FIG. 17, to maintain and provide access to the databases for identifying polymorphic genetic markers.
- FIG. 19 is a histogram showing the allele and genotype distribution in the age and sex stratified Caucasian population for the AKAP10-1 locus. Bright green bars show frequencies in individuals younger than 40 years. Dark green bars show frequencies in individuals older than 60 years.
- FIG. 20 is a histogram showing the allele and genotype distribution in the age and sex stratified Caucasian population for the AKAP10-5 locus. Bright green bars show frequencies in individuals younger than 40 years; dark green bars show frequencies in individuals older than 60 years.
- FIG. 21 is a histogram showing the allele and genotype distribution in the age and sex stratified Caucasian population for the h-msrA locus. Genotype difference between male age groups is significant. Bright green bars show frequencies in individuals younger than 40 years. Dark green bars show frequencies in individuals older than 60 years.
- FIG. 22A-D is a sample data collection questionnaire used for the healthy database.
- FIG. 23 is a flowchart showing processing performed by the computing device of FIG. 24 when performing genotyping of sense strands and antisense strands from assay fragments.
- FIG. 24 is a block diagram showing a system provided herein;
- FIG. 25 is a flowchart of a method of identifying a biological sample provided herein;
- FIG. 26 is a graphical representation of data from a mass spectrometer
- FIG. 27 is a diagram of wavelet transformation of mass spectrometry data
- FIG. 28 is a graphical representation of wavelet stage 0 hi data
- FIG. 29 is a graphical representation of stage 0 noise profile
- FIG. 30 is a graphical representation of generating stage noise standard deviations
- FIG. 31 is a graphical representation of applying a threshold to data stages
- FIG. 32 is a graphical representation of a sparse data set
- FIG. 33 is a formula for signal shifting
- FIG. 34 is a graphical representation of a wavelet transformation of a denoised and shifted signal
- FIG. 35 is a graphical representation of a denoised and shifted signal
- FIG. 36 is a graphical representation of removing peak sections
- FIG. 37 is a graphical representation of generating a peak free signal
- FIG. 38 is a block diagram of a method of generating a baseline correction
- FIG. 39 is a graphical representation of a baseline and signal
- FIG. 40 is a graphical representation of a signal with baseline removed
- FIG. 41 is a table showing compressed data
- FIG. 42 is a flowchart of method for compressing data
- FIG. 43 is a graphical representation of mass shifting
- FIG. 44 is a graphical representation of determining peak width
- FIG. 45 is a graphical representation of removing peaks
- FIG. 46 is a graphical representation of a signal with peaks removed
- FIG. 47 is a graphical representation of a residual baseline
- FIG. 48 is a graphical representation of a signal with residual baseline removed
- FIG. 49 is a graphical representation of determining peak height
- FIG. 50 is a graphical representation of determining signal-to-noise for each peak
- FIG. 51 is a graphical representation of determining a residual error for each peak
- FIG. 52 is a graphical representation of peak probabilities
- FIG. 53 is a graphical representation of applying an allelic ratio to peak probability
- FIG. 54 is a graphical representation of determining peak probability
- FIG. 55 is a graphical representation of calling a genotype
- FIG. 56 is a flowchart showing a statistical procedure for calling a genotype
- FIG. 57 is a flowchart showing processing performed by the computing device of FIG. 1 when performing standardless genotyping.
- FIG. 58 is graphical representation of applying an allelic ratio to peak probability for standardless genotype processing.
- a biopolymer includes, but is not limited to, nucleic acid, proteins, polysaccharides, lipids and other macromolecules.
- Nucleic acids include DNA, RNA, and fragments thereof. Nucleic acids can be derived from genomic DNA, RNA, mitochondrial nucleic acid, chloroplast nucleic acid and other organelles with separate genetic material.
- morbidity refers to conditions, such as diseases or disorders, that compromise the health and well-being of an organism, such as an animal.
- Morbidity susceptibility or morbidity-associated genes are genes that, when altered, for example, by a variation in nucleotide sequence, facilitate the expression of a specific disease clinical phenotype.
- morbidity susceptibility genes have the potential, upon alteration, of increasing the likelihood or general risk that an organism will develop a specific disease.
- mortality refers to the statistical likelihood that an organism, particularly an animal, will not survive a full predicted lifespan. Hence, a trait or a marker, such as a polymorphism, associated with increased mortality is observed at a lower frequency in older than younger segments of a population.
- a polymorphism refers to a variation in the sequence of a gene in the genome amongst a population, such as allelic variations and other variations that arise or are observed.
- a polymorphism refers to the occurrence of two or more genetically determined alternative sequences or alleles in a population. These differences can occur in coding and non-coding portions of the genome, and can be manifested or detected as differences in nucleic acid sequences, gene expression, including, for example transcription, processing, translation, transport, protein processing, trafficking, DNA synthesis, expressed proteins, other gene products or products of biochemical pathways or in post-translational modifications and any other differences manifested amongst members of a population.
- a single nucleotide polymorphism refers to a polymorphism that arises as the result of a single base change, such as an insertion, deletion or change in a base.
- a polymorphic marker or site is the locus at which divergence occurs. Such site can be as small as one base pair (an SNP).
- Polymorphic markers include, but are not limited to, restriction fragment length polymorphisms, variable number of tandem repeats (VNTR's), hypervariable regions, minisatellites, dinucleotide repeats, trinucleotide repeats, tetranucleotide repeats and other repeating patterns, simple sequence repeats and insertional elements, such as Alu.
- Polymorphic forms also are manifested as different mendelian alleles for a gene. Polymorphisms can be observed by differences in proteins, protein modifications, RNA expression modification, DNA and RNA methylation, regulatory factors that alter gene expression and DNA replication, and any other manifestation of alterations in genomic nucleic acid or organelle nucleic acids.
- a healthy population refers to a population of organisms, including but are not limited to, animals, bacteria, viruses, parasites, plants, eubacteria, and others, that are disease free.
- the concept of disease-free is a function of the selected organism. For example, for mammals it refers to a subject not manifesting any disease state.
- Practically a healthy subject, when human, is defined as human donor who passes blood bank criteria to donate blood for eventual use in the general population. These criteria are as follows: free of detectable viral, bacterial, mycoplasma, and parasitic infections; not anemic; and then further selected based upon a questionnaire regarding history (see FIG. 3).
- a healthy population represents an unbiased population of sufficient health to donate blood according to blood bank criteria, and not further selected for any disease state.
- individuals are not taking any medications.
- plants for example, it is a plant population that does not manifest diseases pathology associated with plants.
- bacteria it is a bacterial population replicating without environmental stress, such as selective agents, heat and other pathogens.
- a healthy database refers to a database of profiles of subjects that have not been pre-selected for any particular disease. Hence, the subjects that serve as the source of data for the database are selected, according to predetermined criteria, to be healthy. In contrast to other such databases that have been pre-selected for subjects with a particular disease or other characteristic, the subjects for the database provided herein are not so-selected. Also, if the subjects do manifest a disease or other condition, any polymorphism discovered or characterized should be related to an independent disease or condition. In a one embodiment, where the subjects are human, a healthy subject manifests no disease symptoms and meets criteria, such as those set by blood banks for blood donors.
- the subjects for the database are a population of any organism, including, but are not limited to, animals, plants, bacteria, viruses, parasites and any other organism or entity that has nucleic acid.
- subjects are mammals, such as, although not necessarily, humans.
- Such a database can capture the diversity of a population, thus providing for discovery of rare polymorphisms.
- a profile refers to information relating to, but not limited to and not necessarily including all of, age, sex, ethnicity, disease history, family history, phenotypic characteristics, such as height and weight and other relevant parameters.
- a sample collect information form is shown in FIG. 22, which illustrates profile intent.
- a disease state is a condition or abnormality or disorder that can be inherited or result from environmental stresses, such as toxins, bacterial, fungal and viral infections.
- set of non-selected subjects means that the subjects have not been pre-selected to share a common disease or other characteristic. They can be selected to be healthy as defined herein.
- a phenotype refers to a set of parameters that includes any distinguishable trait of an organism.
- a phenotype can be physical traits and can be, in instances in which the subject is an animal, a mental trait, such as emotional traits. Some phenotypes can be determined by observation elicited by questionnaires (see, e.g., FIGS. 3 and 22) or by referring to prior medical and other records.
- a phenotype is a parameter around which the database can be sorted.
- a parameter is any input data that will serve as a basis for sorting the database. These parameters will include phenotypic traits, medical histories, family histories and any other such information elicited from a subject or observed about the subject. A parameter can describe the subject, some historical or current environmental or social influence experienced by the subject, or a condition or environmental influence on someone related to the subject. Paramaters include, but are not limited to, any of those described herein, and known to those of skill in the art.
- haplotype refers to two or polymorphism located on a single DNA strand.
- haplotyping refers to identification of two or more polymorphisms on a single DNA strand.
- Haplotypes can be indicative of a phenotype. For some disorders a single polymorphism can suffice to indicate a trait; for others a plurality (i.e., a haplotype) can be needed.
- Haplotyping can be performed by isolating nucleic acid and separating the strands. In addition, when using enzymes such a certain nucleases, that produce, different size fragments from each strand, strand separation is not needed for haplotyping.
- pattern with reference to a mass spectrum or mass spectrometric analyses refers to a characteristic distribution and number of signals (such peaks or digital representations thereof).
- signal in the context of a mass spectrum and analysis thereof refers to the output data, which the number or relative number of moleucles having a particular mass. Signals include “peaks” and digital representations thereof.
- adaptor when used with reference to haplotyping using Fen ligase, refers to a nucleic acid that specifically hybridizes to a polymorphism of interest.
- An adaptor can be partially double-stranded.
- An adaptor complex is formed when an adaptor hybridizes to its target.
- a target nucleic acid refers to any nucleic acid of interest in a sample. It can contain one or more nucleotides.
- standardless analysis refers to a determination based upon an internal standard. For example, the frequency of a polymorphism can be determined herein by comparing signals within a single mass spectrum.
- amplifying refers to methods for increasing the amount of a bipolymer, especially nucleic acids. Based on the 5′ and 3′ primers that are chosen, amplication also serves to restrict and define the region of the genome which is subject to analysis. Amplification can be performed by any method known to those skilled in the art, including use of the polymerase chain reaction (PCR) etc. Amplification, e.g., PCR must be done quantitatively when the frequency of polymorphism is required to be determined.
- PCR polymerase chain reaction
- cleaving refers to non-specific and specific fragmentation of a biopolymer.
- multiplexing refers to the simultaneous detection of more than one polymorphism.
- Methods for performing multiplexed reactions, particularly in conjunction with mass spectrometry are known (see, e.g., U.S. Pat. Nos. 6,043,031, 5,547,835 and International PCT application No. WO 97/37041).
- mass spectrometry encompasss any suitable mass spectrometric format known to those of skill in the art.
- Such formats iniude, but are not limited to, Matrix-Assisted Laser Desorption/Ionization, Time-of-Flight (MALDI-TOF), Electrospray (ES), IR-MALDI (see, e.g., published International PCT application No.99/57318 and U.S. Pat. No. 5,118,937), Ion Cyclotron Resonance (ICR), Fourier Transform and combinations thereof.
- MALDI particular UV and IR, are among the formats contemplated.
- mass spectrum refers to the presentation of data obtained from analyzing a biopolymer or fragment thereof by mass spectrometry either graphically or encoded numerically.
- a blood component is a component that is separated from blood and includes, but is not limited to red blood cells and platelets, blood clotting factors, plasma, enzymes, plasminogen, immunoglobulins.
- a cellular blood component is a component of blood, such as a red blood cell, that is a cell.
- a blood protein is a protein that is normally found in blood. Examples of such proteins are blood factors VII and VII. Such proteins and components are well-known to those of skill in the art.
- plasma can be prepared by any method known to those of skill in the art. For example, it can be prepared by centrifuging blood at a force that pellets the red cells and forms an interface between the red cells and the buffy coat, which contains leukocytes, above which is the plasma.
- typical platelet concentrates contain at least about 10% plasma.
- Blood can be separated into its components, including, but not limited to, plasma, platelets and red blood cells by any method known to those of skill in the art. For example, blood can be centrifuged for a sufficient time and at a sufficient acceleration to form a pellet containing the red blood cells. Leukocytes collect primarily at the interface of the pellet and supernatant in the buffy coat region. The supernatant, which contains plasma, platelets, and other blood components, can then be removed and centrifuged at a higher acceleration, whereby the platelets pellet.
- p53 is a cell cycle control protein that assesses DNA damage and acts as a transcription factor regulation gene which control cell growth, DNA repair and apoptosis.
- the p53 mutations have been found in a wide variety of different cancers, including all of the different types of leukemia, with varying frequency. The loss of normal p53 functions results in genomic instability and uncontrolled growth of the host cell.
- p21 is a cyclin-dependent kinase inhibitor, associated with G1 phase arrest of normal cells. Expression triggers apoptosis or programmed cell death and has been associated with Wilms' tumor, a pediatric kidney cancer.
- Factor VII is a serine protease involved the extrinsic blood coagulation cascade. This factor is activated by thrombin and works with tissue factor (Factor III) in the processing of Factor X to Factor Xa.
- tissue factor Factor III
- Evidence has supported an association between polymorphisms in the gene and increase Factor VII activity which can result in an elevated risk of ischemic cardiovascular disease including myocardial infarction.
- a relational database stores information in a form representative of matrices, such as two-dimensional tables, including rows and columns of data, or higher dimensional matrices.
- the relational database has separate tables each with a parameter.
- the tables are linked with a record number, which also acts as an index.
- the database can be searched or sorted by using data in the tables and is stored in any suitable storage medium, such as floppy disk, CD rom disk, hard drive or other suitable medium.
- a bar codes refers any array of optically readable marks of any desired size and shape that are arranged in a reference context or frame of, typically, although not necessarily, one or more columns and one or more rows.
- the bar code refers to any symbology, not necessary “bar” but can include dots, characters or any symbol or symbols.
- symbology refers to an identifier code or symbol, such as a bar code, that is linked to a sample.
- the index will reference each such symbology.
- the symbology is any code known or designed by the user.
- the symbols are associated with information stored in the database. For example, each sample can be uniquely identified with an encoded symbology.
- the parameters such as the answers to the questions and subsequent genotypic and other information obtained upon analysis of the samples is included in the database and associated with the symbology.
- the database is stored on any suitable recording medium, such as a hard drive, a floppy disk, a tape, a CD ROM, a DVD disk and any other suitable medium.
- first databases of parameters associated with non-selected, particularly healthy, subjects. Also provided are combinations of the databases with indexed samples obtained from each of the subjects. Further provided are databases produced from the first databases. These contain, in addition to the original parameters, information, such as genotypic information, including, but are not limited to, genomic sequence information, derived from the samples.
- the databases which are herein designated healthy databases, are so-designated because they are not obtained from subjects pre-selected for a particular disease. Hence, although individual members can have a disease, the collection of individuals is not selected to have a particular disease.
- the subjects from whom the parameters are obtained comprise either a set of subjects who are randomly selected across, typically, all populations, or are pre-selected to be disease-free or healthy.
- the database is not selected to be representative of any pre-selected phenotype, genotype, disease or other characteristic.
- the number of subjects from which the database is prepared is selected to produce statistically significant results when used in the methods provided herein.
- the number of subjects will be greater than 100, 200, and typically than 1000.
- the precise number can be empirically determined based upon the frequency of the parameter(s) that can be used to sort the database.
- the population can have at least 50, at least 100, at least 200, at least 500, at least 1000, at least 5000 or at least 10,000 or more subjects.
- information about each subject is recorded and associated with each subject as a database.
- the information associated with each of the subjects includes, but is not limited to, information related to historical characteristics of the subjects, phenotypic characteristics and also genotypic characteristics, medical characteristics and any other traits and characteristics about the subject that can be determined. This information will serve as the basis for sorting the database.
- the subjects are mammals, such as humans, and the information relates to one or more of parameters, such as age, sex, medical history, ethnicity and any other factor.
- parameters such as age, sex, medical history, ethnicity and any other factor.
- Such information when the animals are humans, for example, can be obtained by a questionnaire and by observations about the individual, such as hair color, eye color and other characteristics.
- Genotypic information can be obtained from tissue or other body and body fluid samples from the subject.
- the healthy genomic database can include profiles and polymorphisms from healthy individuals from a library of blood samples where each sample in the library is an individual and separate blood or other tissue sample. Each sample in the database is profiled as to the sex, age, ethnic group, and disease history of the donor.
- the databases are generated by first identifying healthy populations of subjects and obtaining information about each subject that will serve as the sorting parameters for the database. This information can be entered into a storage medium, such as the memory of a computer.
- the information obtained about each subject in a population used for generating the database is stored in a computer memory or other suitable storage medium.
- the information is linked to an identifier associated with each subject.
- the database will identify a subject, for example by a datapoint representative of a bar code, and then all information, such as the information from a questionnaire, regarding the individual is associated with the datapoint. As the information is collected the database is generated.
- profile information such as subject histories obtained from questionnaires
- the resulting database can be sorted as desired, using standard software, such as by age, sex and/or ethnicity.
- An exemplary questionnaire for subjects from whom samples are to be obtained is shown in FIGS. 22 A-D.
- Each questionnaire for example, can be identified by a bar code, particularly a machine readable bar code for entry into the database.
- the data in the questionnaire is entered into the database and is associated with the bar code.
- a tissue, cell or blood sample is obtained from the subject.
- FIG. 4 exemplifies processing and tracking of blood sample components. Each component is tracked with a bar code, dated, is entered into the database and associated with the subject and the profile of the subject. Typically, the whole blood is centrifuged to produce plasma, red blood cells (which pellet) and leukocytes found in the buffy coat which layers in between. Various samples are obtained and coded with a bar code and stored for use as needed.
- Samples are collected from the subjects.
- the samples include, but are not limited to, tissues, cells, and fluids, such as nucleic acid, blood, plasma, amniotic fluid, synovial fluid, urine, saliva, aqueous humor, sweat, sperm samples and cerebral spinal fluid. It is understood that the particular set of samples depends upon the organisms in the population.
- each sample is indexed with an identifier, particularly a machine readable code, such as a bar code.
- an identifier particularly a machine readable code, such as a bar code.
- this information is entered into the database in the memory of the storage medium and associated with each subject.
- This information includes, but is not limited to, genotypic information.
- nucleic acid sequence information and other information indicative of polymorphisms such as masses of PCR fragments, peptide fragment sequences or masses, spectra of biopolymers and small molecules and other indicia of the structure or function of a gene, gene product or other marker from which the existence of a polymorphism within the population can be inferred.
- a database can be derived from a collection of blood samples.
- FIG. 1 shows the status of a collection of over 5000 individual samples. The samples were processed in the laboratory following SOP (standard operating procedure) guidelines. Any standard blood processing protocol can be used.
- Age At least 17 years old
- HIV Human immunodeficiency virus
- a relational database is a an exemplary format in which data are stored as matrices or tables of the parameters linked by an indexer that identifies each subject.
- Software for preparing and manipulating, including sorting the database can be readily developed or adapted from commercially available software, such as Microsoft Access.
- Quality control procedures can be implemented. For example, after collection of samples, the quality of the collection in the bank can be assessed. For example, mix-up of samples can be checked by testing for known markers, such as sex. After samples are separated by ethnicity, samples are randomly tested for a marker associated with a particular ethnicity, such as HLA DQA1 group specific component, to assess whether the samples have been properly sorted by ethnic group.
- An exemplary sample bank is depicted in FIG. 4.
- Analyzed material include proteins, metabolites, nucleic acids, lipids and any other desired constituent of the material.
- nucleic acids such as genomic DNA, can be analyzed by sequencing.
- Sequencing can be performed using any method known to those of skill in the art. For example, if a polymorphism is identified or known, and it is desired to assess its frequency or presence among the subjects in the database, the region of interest from each sample can be isolated, such as by PCR or restriction fragments, hybridization or other suitable method known to those of skill in the art and sequenced.
- sequencing analysis can be effected using mass spectrometry (see, e.g., U.S. Pat. Nos. 5,547,835, 5,622,824, 5,851,765, and 5,928,906). Nucleic acids also can be sequenced by hybridization (see, e.g., U.S. Pat. Nos. 5,503,980, 5,631,134, 5,795,714) and including analysis by mass spectrometry (see, U.S. application Ser. Nos. 08/419,994 and 09/395,409).
- Amplification can be performed, e.g., by PCR and/or LCR, according to methods known in the art.
- genomic DNA of a cell is exposed to two PCR primers and amplification for a number of cycles sufficient to produce the required amount of amplified DNA.
- the primers are located between 150 and 350 base pairs apart.
- Alternative amplification methods include: self sustained sequence replication (Guatelli, J. C. et al., 1990, Proc. Natl. Acad. Sci. U.S.A. 87:1874-1878), transcriptional amplification system (Kwoh, D. Y. et al., 1989, Proc. Natl. Acad. Sci. U.S.A. 86:1173-1177), Q-Beta Replicase (Lizardi, P. M. et al., 1988, Bio/Technology 6:1197), or any other nucleic acid amplification method, followed by the detection of the amplified molecules using techniques well known to those of skill in the art. These detection schemes are especially useful for the detection of nucleic acid molecules if such molecules are present in very low numbers.
- Nucleic acids also can be analyzed by detection methods and protocols, particularly those that rely on mass spectrometry (see, e.g., U.S. Pat. No. 5,605,798, 6,043,031, allowed copending U.S. application Ser. No. 08/744,481, U.S. application Ser. No. 08/990,851 and International PCT application No. WO 99/31278, International PCT application No. WO 98/20019). These methods can be automated (see, e.g., copending U.S. application Ser. No. 09/285,481 and published International PCT application No. PCT/US00/08111, which describes an automated process line).
- a solid support such as a silicon or silicon-coated substrate, such as in the form of an array
- analyses are performed using mass spectrometry, particularly MALDI, small nanoliter volumes of sample are loaded on, such that the resulting spot is about, or smaller than, the size of the laser spot. It has been found that when this is achieved, the results from the mass spectrometric analysis are quantitative. The area under the signals in the resulting mass spectra are proportional to concentration (when normalized and corrected for background). Methods for preparing and using such chips are described in U.S. Pat. No. 6,024,925, co-pending U.S. application Ser. Nos.
- the methods provided herein permit quantitative determination of alleles.
- the areas under the signals in the mass spectra can be used for quantitative determinations.
- the frequency is determined from the ratio of the signal to the total area of all of the spectrum and corrected for background. This is possible because of the PROBE technology as described in the above applications incorporated by reference herein.
- Additional methods of analyzing nucleic acids include amplification-based methods including polymerase chain reaction (PCR), ligase chain reaction (LCR), mini-PCR, rolling circle amplification, autocatalytic methods, such as those using Q ⁇ replicase, TAS, 3SR, and any other suitable method known to those of skill in the art.
- PCR polymerase chain reaction
- LCR ligase chain reaction
- mini-PCR mini-PCR
- rolling circle amplification such as those using Q ⁇ replicase, TAS, 3SR, and any other suitable method known to those of skill in the art.
- polymorphisms include but are not limited to, allele specific probes, Southern analyses, and other such analyses.
- Amplified fragments are yielded by standard polymerase chain methods (U.S. Pat. Nos. 4,683,195 and 4,683,202).
- the fragmentation method involves the use of enzymes that cleave single or double strands of DNA and enzymes that ligate DNA.
- the cleavage enzymes can be glycosylases, nickases, and site-specific and non site-specific nucleases, such as, but are not limited to, glycosylases, nickases and site-specific nucleases.
- DNA glycosylases specifically remove a certain type of nucleobase from a given DNA fragment. These enzymes can thereby produce abasic sites, which can be recognized either by another cleavage enzyme, cleaving the exposed phosphate backbone specifically at the abasic site and producing a set of nucleobase specific fragments indicative of the sequence, or by chemical means, such as alkaline solutions and or heat. The use of one combination of a DNA glycosylase and its targeted nucleotide would be sufficient to generate a base specific signature pattern of any given target region.
- a DNA glycosylase can be uracil-DNA glycolsylase (UDG) , 3-methyladenine DNA glycosylase, 3-methyladenine DNA glycosylase II, pyrimidine hydrate-DNA glycosylase, FaPy-DNA glycosylase, thymine mismatch-DNA glycosylase, hypoxanthine-DNA glycosylase, 5-Hydroxymethyluracil DNA glycosylase (HmUDG), 5-Hydroxymethylcytosine DNA glycosylase, or 1,N6-etheno-adenine DNA glycosylase (see, e.g.,, U.S. Pat. Nos.
- Uracil for example, can be incorporated into an amplified DNA molecule by amplifying the DNA in the presence of normal DNA precursor nucleotides (e.g. dCTP, dATP, and dGTP) and dUTP.
- normal DNA precursor nucleotides e.g. dCTP, dATP, and dGTP
- UDG normal DNA precursor nucleotides
- uracil residues are cleaved.
- Subsequent chemical treatment of the products from the UDG reaction results in the cleavage of the phosphate backbone and the generation of nucleobase specific fragments.
- the separation of the complementary strands of the amplified product prior to glycosylase treatment allows complementary patterns of fragmentation to be generated.
- dUTP and Uracil DNA glycosylase allows the generation of T specific fragments for the complementary strands, thus providing information on the T as well as the A positions within a given sequence.
- a C-specific reaction on both (complementary) strands i.e. with a C-specific glycosylase
- a DNA nickase can be used to recognize and cleave one strand of a DNA duplex.
- Numerous nickases are known. Among these, for example, are nickase NY2A nickase and NYS1 nickase (Megabase) with the following cleavage sites:
- NY2A 5′ . . . R AG . . . 3′
- NYS1 5′ . . . CC[A/G/T] . . . 3′
- the Fen-ligase method involves two enzymes: Fen-1 enzyme and a ligase.
- the Fen-1 enzyme is a site-specific nuclease known as a “flap” endonuclease (U.S. Pat. Nos. 5,843,669, 5,874,283, and 6,090,606). This enzyme recognizes and cleaves DNA “flaps” created by the overlap of two oligonucleotides hybridized to a target DNA strand. This cleavage is highly specific and can recognize single base pair mutations, permitting detection of a single homologue from an individual heterozygous at one SNP of interest and then genotyping that homologue at other SNPs occurring within the fragment.
- Fen-1 enzymes can be Fen-1 like nucleases e.g. human, murine, and Xenopus XPG enzymes and yeast RAD2 nucleases or Fen-1 endonucleases from, for example, M. jannaschii, P. furiosus, and P. woesei. Among such enzymes are the Fen-1 enzymes.
- the ligase enzyme forms a phosphodiester bond between two double stranded nucleic acid fragments.
- the ligase can be DNA Ligase I or DNA Ligase IlIl (see, e.g., U.S. Pat. Nos. 5,506,137, 5,700,672, 5,858,705 and 5,976,806; see, also, Waga, et al. (1994) J. Biol. Chem. 269:10923-10934, Li et al. (1994) Nucleic Acids Res. 22:632-638, Arrand et al. (1986) J. Biol. Chem.
- Restriction enzymes bind specifically to and cleave double-stranded DNA at specific sites within or adjacent to a particular recognition sequence. These enzymes have been classified into three groups (e.g. Types I, II, and III) as known to those of skill in the art. Because of the properties of type I and type III enzymes, they have not been widely used in molecular biological applications. Thus, for purposes herein type II enzymes are among those contemplated. Of the thousands of restriction enzymes known in the art, there are 179 different type II specificities.
- 31 have a 4-base recognition sequence
- 11 have a 5-base recognition sequence
- 127 have a 6-base recognition sequence
- 10 have recognition sequences of greater than six bases (U.S. Pat. No. 5,604,098).
- type IIS is exemplified herein.
- Type IIS enzymes can be Alw XI, Bbv I, Bce 83, Bpm I, Bsg I, Bsm AI, Bsm FI, Bsa I, Bcc I, Bcg I, Ear I, Eco 57I, Esp 3I, Fau I, Fok I, Gsu I, Hga I, Mme I, Mbo II, Sap I, and the otheres.
- Fok I enzyme endonuclease is an exemplary well characterized member of the Type IIS class (see, e.g., U.S. Pat. Nos. 5,714,330, 5,604,098, 5,436,150, 6,054,276 and 5,871,911; see, also, Szybalski et al. (1991 ) Gene 100:13-26, Wilson and Murray (1991) Ann. Rev. Genet. 25:585-627, Sugisaki et al. (1981) Gene 16:73-78, Podhajska and Szalski (1985) Gene 40:175-182.
- Fok I recognizes the sequence 5′GGATG-3′ and cleaves DNA accordingly.
- Type IIS restriction sites can be introduced into DNA targets by incorporating the sites into primers used to amplify such targets. Fragments produced by digestion with Fok I are site specific and can be analyzed by mass spectrometry methods such as MALDI-TOF mass spectrometry, ESI-TOF mass spectrometry, and any other type of mass spectrometry well known to those of skill in the art.
- age groups can be screened for polymorphisms.
- allelic dropout is examined by doing comparative PCR in an adjacent region of the genome.
- allelic frequencies can be determined across the population by analyzing each sample in the population individually, determining the presence or absence of allele or marker of interest in each individual sample, and then determining the frequency of the marker in the population.
- the database can then be sorted (stratified) to identify any correlations between the allele and a selected parameter using standard statistical analysis. If a correlation is observed, such as a decrease in a particular marker with age or correlation with sex or other parameter, then the marker is a candidate for further study, such as genetic mapping to identify a gene or pathway in which it is involved.
- the marker can then be correlated, for example, with a disease. Haplotying also can be carried out. Genetic mapping can be effected using standard methods and can also require use of databases of others, such as databases previously determined to be associated with a disorder.
- the frequency of genotypic and other markers can be obtained by pooling samples.
- a target population and a genetic variation to be assessed is selected, a plurality of samples of biopolymers are obtained from members of the population, and the biopolymer from which the marker or genotype can be inferred is determined or detected.
- FIG. 10 depicts the frequency of the CETP Allele in pooled versus individual samples.
- FIG. 15 shows ethnic diversity among various ethnic groups in the database using pooled DNA samples to obtain the data.
- FIGS. 12 - 14 show mass spectra for these samples.
- pooling of test samples has application not only to the healthy databases provided herein, but also to use in gathering data for entry into any database of subjects and genotypic information, including typical databases derived from diseased populations. What is demonstrated herein, is the finding that the results achieved are statistically the same as the results that would be achieved if each sample is analyzed separately. Analysis of pooled samples by a method, such as the mass spectrometric methods provided herein, permits resolution of such data and quantitation of the results.
- the R53Q acid polymorphism was assessed.
- the “individual” data represent allelic frequency observed in 92 individuals reactions.
- the pooled data represent the allelic frequency of the same 92 individuals pooled into a single probe reaction.
- the concentration of DNA in the samples of individual donors is 250 nanograms.
- the total concentration of DNA in the pooled samples is also 250 nanograms, where the concentration of any individual DNA is 2.7 nanograms.
- markers identified thereby can be used, for example, for identification of previously unidentified or unknown genetic markers and to identify new uses for known markers. As markers are identified, these can be entered into the database to use as sorting parameters from which additional correlations can be determined.
- the samples in the healthy databases can be used to identify new polymorphisms and genetic markers, using any mapping, sequencing, amplification and other methodologies, and in looking for polymorphisms among the population in the database.
- the thus-identified polymorphism can then be entered into the database for each sample, and the database sorted (stratified) using that polymorphism as a sorting parameter to identify any patterns and correlations that emerge, such as age correlated changes in the frequency of the identified marker. If a correlation is identified, the locus of the marker can be mapped and its function or effect assessed or deduced.
- the databases can also be used in conjunction with known markers and sorted to identify any correlations.
- the databases can be used for:
- diseases and disorders for which polymorphisms can be linked include, those linked to inborn errors of metabolism, acquired metabolic disorders, intermediary metabolism, oncogenesis pathways, blood clotting pathways, and DNA synthetic and repair pathways, DNA repair/replication/transcription factors and activities, e.g., such as genes related to oncogenesis, aging and genes involved in blood clotting and the related biochemical pathways that are related to thrombosis, embolism, stroke, myocardial infarction, angiogenesis and oncogenesis.
- a number of diseases are caused by or involve deficient or defective enzymes in intermediary metabolism (see, e.q., Tables 1 and 2, below) that result, upon ingestion of the enzyme substrates, in accumulation of harmful metabolites that damage organs and tissues, particularly an infant's developing brain and other organs, resulting in mental retardation and other developmental disorders.
- the p53 gene is a tumor suppressor gene that is mutated in diverse tumor types.
- One common allelic variant occurs at codon 72.
- HDL-C high density lipoprotein cholesterol
- an exemplary database containing about 5000 subjects, answers to the questionnaire (see FIG. 3), and genotypic information has been stratified.
- a particular known allele has been selected, and the samples tested for the marker using mass spectrometric analyses, particularly PROBE (see the EXAMPLES) to identify polymorphisms in each sample.
- the population in the database has been sorted according to various parameters and correlations have been observed. For example, FIGS. 2 A-C, show sorting of the data by age and sex for the Lipoprotein Lipase gene in the Caucasian population in the database. The results show a decrease in the frequency of the allele with age in males but no such decrease in females.
- Other alleles that have been tested against the database include, alleles of p53, p21 and factor VII. Results when sorted by age are shown in the figures.
- an age- and sex-stratified population-based sample bank that is ethnically homogenous is a suitable tool for rapid identification and validation of genetic factors regarding their potential medical utility.
- Systems, including computers, containing the databases are provided herein.
- the computers and databases can be used in conjunction, for example, with the APL system (see, copending U.S. application Ser. No. 09/285,481), which is an automated system for analyzing biopolymers, particularly nucleic acids. Results from the APL system can be entered into the database.
- Any suitable computer system can be used.
- the computer system can be integrated into systems for sample analysis, such as the automated process line described herein (see, e.g., copending U.S. application Ser. No. 09/285,481).
- FIG. 17 is a block diagram of a computer constructed to provide and process the databases described herein.
- the processing that maintains the database and performs the methods and procedures can be performed on multiple computers all having a similar construction, or can be performed by a single, integrated computer.
- the computer through which data are added to the database can be separate from the computer through which the database is sorted, or can be integrated with it. In either arrangement, the computers performing the processing can have a construction as illustrated in FIG. 17.
- FIG. 17 is a block diagram of an exemplary computer 1700 that maintains the database described above and performs the methods and procedures.
- Each computer 1700 operates under control of a central processor unit (CPU) 1702, such as a “Pentium” microprocessor and associated integrated circuit chips, available from Intel Corporation of Santa Clara, Calif., USA.
- CPU central processor unit
- a computer user can input commands and data from a keyboard and display mouse 1704 and can view inputs and computer output at a display 1706.
- the display is typically a video monitor or flat panel display device.
- the computer 1700 also includes a direct access storage device (DASD) 1707, such as a fixed hard disk drive.
- the memory 1708 typically comprises volatile semiconductor random access memory (RAM).
- Each computer can include a program product reader 1710 that accepts a program product storage device 1712, from which the program product reader can read data (and to which it can optionally write data).
- the program product reader can comprise, for example, a disk drive, and the program product storage device can comprise removable storage media such as a magnetic floppy disk, an optical CD-ROM disc, a CD-R disc, a CD-RW disc, or a DVD data disc.
- the computers can be connected so they can communicate with each other, and with other connected computers, over a network 1713.
- Each computer 1700 can communicate with the other connected computers over the network 1713 through a network interface 1714 that enables communication over a connection 1716 between the network and the computer.
- the computer 1700 operates under control of programming steps that are temporarily stored in the memory 1708 in accordance with conventional computer construction.
- the programming steps can be executed by the CPU 1702, the pertinent system components perform their respective functions.
- the programming steps implement the functionality of the system as described above.
- the programming steps can be received from the DASD 1707, through the program product reader 1712, or through the network connection 1716.
- the storage drive 1710 can receive a program product, read programming steps recorded thereon and transfer the programming steps into the memory 1708 for execution by the CPU 1702.
- the program product storage device 1710 can comprise any one of multiple removable media having recorded computer-readable instructions, including magnetic floppy disks and CD-ROM storage discs.
- Other suitable program product storage devices can include magnetic tape and semiconductor memory chips. In this way, the processing steps necessary for operation can be embodied on a program product.
- the program steps can be received into the operating memory 1708 over the network 1713.
- the computer receives data including program steps into the memory 1708 through the network interface 1714 after network communication has been established over the network connection 1716 by well-known methods that will be understood by those skilled in the art without further explanation.
- the program steps are then executed by the CPU 1702 to implement the processing of the Garment Database system.
- FIG. 18 is a flow diagram that illustrates the processing steps performed using the computer illustrated in FIG. 17, to maintain and provide access to the databases, such as for identifying polymorphic genetic markers.
- the information contained in the database is stored in computers having a construction similar to that illustrated in FIG. 17.
- the first step for maintaining the database, as indicated in FIG. 18, is to identify healthy members of a population.
- the population members are subjects that are selected only on the basis of being healthy, and where the subjects are mammals, such as humans, they can be selected based upon apparent health and the absence of detectable infections.
- the step of identifying is represented by the flow diagram box numbered 1802.
- the next step is to obtain identifying and historical information and data relating to the identified members of the population.
- the information and data comprise parameters for each of the population members, such as member age, ethnicity, sex, medical history, and ultimately genotypic information.
- the parameter information is obtained from a questionnaire answered by each member, from whom a body tissue or body fluid sample also is obtained.
- the step of entering and storing these parameters into the database of the computer is represented by the flow diagram box numbered 1806. As additional information about each population member and corresponding sample is obtained, this information can be inputted into the database and can serve as a sorting parameter.
- the parameters of the members are associated with an indexer.
- This step can be executed as part of the database storage operation, such as when a new data record is stored according to the relational database structure and is automatically linked with other records according to that structure.
- the step 1806 also can be executed as part of a conventional data sorting or retrieval process, in which the database entries are searched according to an input search or indexing key value to determine attributes of the data. For example, such search and sort techniques can be used to follow the occurrence of known genetic markers and then determine if there is a correlation with diseases for which they have been implicated. Examples of this use are for assessing the frequencies of the p53 and Lipoprotein Lipase polymorphisms.
- Such searching of the database also can be valuable for identifying one or more genetic markers whose frequency changes within the population as a function of age, ethnic group, sex, or some other criteria. This can allow the identification of previously unknown polymorphisms and, ultimately, identification of a gene or pathway involved in the onset and progression of disease.
- the database can be used for taking an identified polymorphism and ascertaining whether it changes in frequency when the data are sorted according to a selected parameter.
- the databases and methods provided herein permit, among other things, identification of components, particularly key components, of a disease process by understanding its genetic underpinnings, and also an understanding of processes, such as individual drug responses.
- the databases and methods provided herein also can be used in methods involving elucidation of pathological pathways, in developing new diagnostic assays, identifying new potential drug targets, and in identifying new drug candidates.
- a database containing information provided by a population of healthy blood donors who were not selected for any particular disease to can be used to identify polymorphisms and the alleles in which they are present, whose frequency decreases with age. These can represent morbidity susceptibility markers and genes.
- Polymorphisms of the genome can lead to altered gene function, protein function or genome instability. To identify those polymorphisms which have a clinical relevance/utility is the goal of a world-wide scientific effort. It can be expected that the discovery of such polymorphisms will have a fundamental impact on the identification and development of novel drug compounds to cure diseases. The strategy to identify valuable polymorphisms is cumbersome and dependent upon the availability of many large patient and control cohorts to show disease association. In particular, genes that cause a general risk of the population to suffer from any disease (morbidity susceptibility genes) will escape these case/control studies entirely.
- morbidity susceptibility gene is a gene that is expressed in many different cell types or tissues (housekeeping gene) and its altered function can facilitate the expression of a clinical phenotype caused by disease-specific susceptibility genes that are involved in a pathway specific for this disorder.
- these morbidity susceptibility genes predispose people to develop a distinct disease according to their genetic make-up for this disease.
- Candidates for morbidity susceptibility genes can be found at the bottom level of pathways involving transcription, translation, heat-shock proteins, protein trafficking, DNA repair, assembly systems for subcellular structures (e.g. mitochondria, peroxysomes and other cellular microbodies), receptor signaling cascades, immunology, etc. Those pathways control the quality of life at the cellular level as well as for the entire organism. Mutations/polymorphisms located in genes encoding proteins for those pathways can reduce the fitness of cells and make the organism more susceptible to express the clinical phenotype caused by the action of a disease-specific susceptibility gene. Therefore, these morbidity susceptibility genes can be potentially involved in a whole variety of different complex diseases if not in all. Disease-specific susceptibility genes are involved in pathways that can be considered as disease-specific pathways like glucose-, lipid, hormone metabolism, etc.
- the exemplified method permit, among other things, identification of genes and/or gene products involved in a man's general susceptibility to morbidity and/or mortality; use of these genes and/or gene products in studies to elucidate the genetic underpinnings of human diseases; use of these genes and/or gene products in combinatorial statistical analyses without or together with disease-specific susceptibility genes; use of these genes and/or gene products to predict penetrance of disease susceptibility genes; use of these genes and/or gene products in predisposition and/or acute medical diagnostics and use of these genes and/or gene products to develop drugs to cure diseases and/or to extend the life span of humans.
- the healthy population stratified by age, gender and ethnicity, etc. is a very efficient and a universal screening tool for morbidity associated genes. Changes of allelic frequencies in the young compared to the old population are expected to indicate putative morbidity susceptibility genes. Individual samples of this healthy population base can be pooled to further increase the throughput. In an experiment, pools of young and old Caucasian females and males were applied to screen more than 400 randomly chosen single nucleotide polymorphisms located in many different genes. Candidate polymorphisms were identified if the allelic difference was greater than 8% between young and old for both or only one of the genders. The initial results were assayed again in at least one independent subsequent experiments.
- This example describes the use of a database containing information provided by a population of healthy blood donors who were not selected for any particular disease to determine the distribution of allelic frequencies of known genetic markers with age and by sex in a Caucasian subpopulation of the database.
- the results described in this example demonstrate that a disease-related genetic marker or polymorphism can be identified by sorting a healthy database by a parameter or parameters, such as age, sex and ethnicity.
- Blood was obtained by venous puncture from human subjects who met blood bank criteria for donating blood.
- the blood samples were preserved with EDTA at pH 8.0 and labeled.
- Each donor provided information such as age, sex, ethnicity, medical history and family medical history.
- Each sample was labeled with a barcode representing identifying information.
- a database was generated by entering, for each donor, the subject identifier and information corresponding to that subject into the memory of a computer storage medium using commercially available software, e.g., Microsoft Access.
- N291S polymorphism N291S polymorphism of the Lipoprotein Lipase gene, which results in a substitution of a serine for an asparagine at amino acid codon 291, leads to reduced levels of high density lipoprotein cholesterol (HDL-C) that is associated with an increased risk of males for arteriosclerosis and in particular myocardial infarction (see, Reymer et al. (1995) Nature Genetics 10:28-34).
- HDL-C high density lipoprotein cholesterol
- the p53 gene encodes a cell cycle control protein that assesses DNA damage and acts as a transcription factor regulating genes that control cell growth, DNA repair and apoptosis (programmed cell death). Mutations in the p53 gene have been found in a wide variety of different cancers, including different types of leukemia, with varying frequency. The loss of normal p53 function results in genomic instability an uncontrolled cell growth. A polymorphism that has been identified in the p53 gene, i.e., the R72P allele, results in the substitution of a proline for an arginine at amino acid codon 72 of the gene.
- the p21 gene encodes a cyclin-dependent kinase inhibitor associated with G1phase arrest of normal cells. Expression of the p21 gene triggers apoptosis. Polymorphisms of the p21 gene have been associated with Wilms' tumor, a pediatric kidney cancer. One polymorphism of the p21 gene, the S31R polymorphism, results in a substitution of an arginine for a serine at amino acid codon 31.
- the genetic polymorphisms were profiled within segments of the Caucasian subpopulation of the sample bank.
- p53 profiling the genomic DNA isolated from blood from a total of 1277 Caucasian subjects age 18-59 years and 457 Caucasian subjects age 60-79 years was analyzed.
- p21 profiling the genomic DNA isolated from blood from a total of 910 Caucasian subjects age 18-49 years and 824 Caucasian subjects age 50-79 years was analyzed.
- lipoprotein lipase gene profiling the genomic DNA from a total of 1464 Caucasian females and 1470 Caucasian males under 60 years of age and a total of 478 Caucasian females and 560 Caucasian males over 60 years of age was analyzed.
- Genomic DNA was isolated from blood samples obtained from the individuals. Ten milliliters of whole blood from each individual was centrifuged at 2000 ⁇ g. One milliliter of the buffy coat was added to 9 ml of 155 mM NH 4 Cl, 10 mM KHCO 3 , and 0.1 mM Na 2 EDTA, incubated 10 min at room temperature and centrifuged for 10 min at 2000 ⁇ g. The supernatant was removed, and the white cell pellet was washed in 155 mM NH 4 Cl, 10 mM KHCO 3 and 0.1 mM Na 2 EDTA and resuspended in 4.5 ml of 50 mM Tris, 5 mM EDTA and 1% SDS.
- Proteins were precipitated from the cell lysate by 6 mM ammonium acetate, pH 7.3, and then separated from the nucleic acids by centrifugation at 3000 ⁇ g.
- the nucleic acid was recovered from the supernatant by the addition of an equal volume of 100% isopropanol and centrifugation at 2000 ⁇ g.
- the dried nucleic acid pellet was hydrated in 10 mM Tris, pH 7.6, and 1 mM Na 2 EDTA and stored at 4° C.
- Assays of the genomic DNA to determine the presence or absence of the known genetic markers were developed using the BiomassPROBETM detection method (primer oligo base extension) reaction.
- This method uses a single detection primer followed by an oligonucleotide extension step to give products, which can be readily resolved by mass spectrometry, and, in particular, MALDI-TOF mass spectrometry.
- the products differ in length depending on the presence or absence of a polymorphism.
- a detection primer anneals adjacent to the site of a variable nucleotide or sequence of nucleotides, and the primer is extended using a DNA polymerase in the presence of one or more dideoxyNTPs and, optionally, one or more deoxyNTPs.
- the resulting products are resolved by MALDI-TOF mass spectrometry.
- the mass of the products as measured by MALDI-TOF mass spectrometry makes possible the determination of the nucleotide(s) present at the variable site.
- each of the Caucasian genomic DNA samples was subjected to nucleic acid amplification using primers corresponding to sites 5′ and 3′ of the polymorphic sites of the p21 (S31R allele), p53 (R72P allele) and Lipoprotein Lipase (N291S allele) genes.
- One primer in each primer pair was biotinylated to permit immobilization of the amplification product to a solid support.
- the polymerase chain reaction primers used for amplification of the relevant segments of the p21, p53 and lipoprotein lipase genes are shown below: US4p21c31-2F (SEQ ID NO: 9) and US5p21-2R (SEQ ID NO: 10) for p21 gene amplification; US4-p53-ex4-F (also shown as p53-ex4US4 (SEQ ID NO: 2)) and US5-p53/2-4R (also shown as US5P53/4R (SEQ ID NO: 3)) for p53 gene amplification; and US4-LPL-F2 (SEQ ID NO: 16) and US5-LPL-R2 (SEQ ID NO: 17) for lipoprotein lipase gene amplification.
- Amplification of the respective DNA sequences was conducted according to standard protocols.
- primers can be used in a concentration of 8 pmol.
- the reaction mixture e.g., total volume 50 ⁇ l
- the reaction mixture can contain Taq-polymerase including 10 ⁇ buffer and dTNPs. Cycling conditions for polymerase chain reaction amplification can typically be initially 5 min. at 95° C., followed by 1 min. at 94° C., 45 sec at 53° C., and 30 sec at 72° C. for 40 cycles with a final extension time of 5 min at 72° C.
- Amplification products can be purified by using Qiagen's PCR purification kit (No. 28106) according to manufacturer's instructions. The elution of the purified products from the column can be done in 50 ⁇ l TE-buffer (10 mM Tris, 1 mM EDTA, pH 7.5).
- the purified amplification products were immobilized via a biotin-avidin linkage to streptavidin-coated beads and the double-stranded DNA was denatured.
- a detection primer was then annealed to the immobilized DNA using conditions such as, for example, the following: 50 ⁇ l annealing buffer (20 mM Tris, 10 mM KCl, 10 mM (NH 4 ) 2 SO 4 , 2 mM MgSO 2 , 1% Triton X-100, pH 8) at 50° C. for 10 min, followed by washing of the beads three times with 200 ⁇ l washing buffer (40 mM Tris, 1 mM EDTA, 50 mM NaCl, 0.1% Tween 20, pH 8.8) and once in 200 ⁇ l TE buffer.
- 50 ⁇ l annealing buffer (20 mM Tris, 10 mM KCl, 10 mM (NH 4 ) 2 SO 4 , 2 mM MgSO 2 , 1% Tri
- the PROBE extension reaction was performed, for example, by using some components of the DNA sequencing kit from USB (No. 70770) and dNTPs or ddNTPs from Pharmacia.
- An exemplary protocol could include a total reaction volume of 45 ⁇ l, containing of 21 ⁇ l water, 6 ⁇ l Sequenase-buffer, 3 ⁇ l 10 mM DTT solution, 4.5 ⁇ p, 0.5 mM of three dNTPs, 4.5 ⁇ l, 2 mM the missing one ddNTP, 5.5 ⁇ l glycerol enzyme dilution buffer, 0.25 ⁇ l Sequenase 2.0, and 0.25 pyrophosphatase.
- the reaction can then by pipetted on ice and incubated for 15 min at room temperature and for 5 min at 37° C.
- the beads can be washed three times with 200 ⁇ l washing buffer and once with 60 ⁇ l of a 70 mM NH 4 -Citrate solution.
- the DNA was denatured to release the extended primers from the immobilized template.
- Each of the resulting extension products was separately analyzed by MALDI-TOF mass spectrometry using 3-hydroxypicolinic acid (3-HPA) as matrix and a UV laser.
- the primers used in the PROBE reactions are as shown below: P21/31-3 (SEQ ID NO: 12) for PROBE analysis of the p21 polymorphic site; P53/72 (SEQ ID NO: 4) for PROBE analysis of the p53 polymorphic site; and LPL-2 for PROBE analysis of the lipoprotein lipase gene polymorphic site.
- P21/31-3 SEQ ID NO: 12
- P53/72 SEQ ID NO: 4
- LPL-2 for PROBE analysis of the lipoprotein lipase gene polymorphic site.
- the extension reaction was performed using dideoxy-C.
- the products resulting from the reaction conducted on a “wild-type” allele template (wherein codon 31 encodes a serine) and from the reaction conducted on a polymorphic S31R allele template (wherein codon 31 encodes an arginine) are shown below and designated as P21/31-3 Ser (wt) (SEQ ID NO: 13) and P21/31-3 Arg (SEQ ID NO: 14), respectively.
- the masses for each product as can be measured by MALDI-TOF mass spectrometry are also provided (i.e., 4900.2 Da for the wild-type product and 5213.4 Da for the polymorphic product).
- the extension reaction was performed using a mixture of ddA and ddT.
- the products resulting from the reaction conducted on a “wild-type” allele template (wherein codon 291 encodes an asparagine) and from the reaction conducted on a polymorphic N291S allele template (wherein codon 291 encodes a serine) are shown below and designated as 291Asn and 291Ser, respectively.
- the masses for each product as can be measured by MALDI-TOF mass spectrometry are also provided (i.e., 6438.2 Da for the wild-type product and 6758.4 Da for the polymorphic product).
- Biotinylated US5 primer is used in the PCR amplification.
- Masses Allele Product Termination ddA, ddT SEQ # Length Mass LPL-2 caatctgggctatgagatca 19 20 6141 291 Asn caatctgggctatgagatcaa 20 21 6438.2 291 Ser caatctgggctatgagatcagt 21 22 6758.4
- Biotinylated US5 primer is used in the PCR amplification.
- P21-1 (S31R) Amino acid exchange serine to arginine at codon 31 of the tumor suppressor gene p21.
- Product length 207 bp US4p21c3l-2F gtcc gtcagaaccc atgcggcagc (SEQ ID NO: 8) p21/31-3 31S aaggcctgcc gccgctctt cggcccagtg ga cagcgagc agctgag ccg cgactgtgat a 31R gcgctaatgg cgggctgcat ccaggaggcc cgtgagcgat ggaacttcga ctttgtcacc gagacaccac tggaggg US5p21-2R Primers (SEQ ID NOs: 9-11) US4p21c31-2F
- Masses Allele Product Termination ddC SEQ # Length Mass P21/31-3 cagcgagcagctgag 12 15 4627 P21/31-3 Ser cagcgagcagctgagc 13 16 4900.2 (wt) P21/31-3 Arg cagcgagcagctgagac 14 17 5213.4
- Biotinylated US5 primer is used in the PCR amplification.
- Each of the Caucasian subject DNA samples was individually analyzed by MALDI-TOF mass spectrometry to determine the identity of the nucleotide at the polymorphic sites.
- the genotypic results of each assay can be entered into the database.
- the results were then sorted according to age and/or sex to determine the distribution of allelic frequencies by age and/or sex. As depicted in the Figures showing histograms of the results, in each case, there was a differential distribution of the allelic frequencies of the genetic markers for the p21, p53 and lipoprotein lipase gene polymorphisms.
- FIG. 8 shows the results of the p21 genetic marker assays and reveals a statistically significant decrease (from 13.3% to 9.2%) in the frequency of the heterozygous genotype (S31 R) in Caucasians with age (18-49 years of age compared to 50-79 years of age).
- the frequencies of the homozygous (S31 and R31) genotypes for the two age groups are also shown, as are the overall frequencies of the S31 and R31 alleles in the two age groups (designated as *S31 and *R31, respectively in the Figure).
- FIGS. 7 A-C show the results of the p53 genetic marker assays and reveals a statistically significant decrease (from 6.7% to 3.7%) in the frequency of the homozygous polymorphic genotype (P72) in Caucasians with age (18-59 years of age compared to 60-79 years of age).
- the frequencies of the homozygous “wild-type” genotype (R72) and the heterozygous genotype (R72P) for the two age groups are also shown, as are the overall frequencies of the R72 and P72 alleles in the two age groups (designated as *R72 and *P72, respectively in the Figure).
- FIG. 2C shows the results of the lipoprotein lipase gene genetic marker assays and reveals a statistically significant decrease (from 1.97% to 0.54%) in the frequency of the polymorphic allele (S291) in Caucasian males with age (see also Reymer et al. (1995) Nature Genetics 10:28-34). The frequencies of this allele in Caucasian females of different age groups are also shown.
- This example describes the use of MALDI-TOF mass spectrometry to analyze DNA samples of a number of subjects as individual samples and as pooled samples of multiple subjects to assess the presence or absence of a polymorphic allele (the 353Q allele) of the Factor VII gene and determine the frequency of the allele in the group of subjects.
- the results of this study show that essentially the same allelic frequency can be obtained by analyzing pooled DNA samples as by analyzing each sample separately and thereby demonstrate the quantitative nature of MALDI-TOF mass spectrometry in the analysis of nucleic acids.
- Factor VII is a serine protease involved in the extrinsic blood coagulation cascade. This factor is activated by thrombin and works with tissue factor (Factor III) in the processing of Factor X to Factor Xa.
- tissue factor Factor III
- the polymorphism investigated in this study is R353Q (i.e., a substitution of a glutamic acid residue for an arginine residue at codon 353 of the Factor VII gene) (see Table 5).
- Genomic DNA was isolated from separate blood samples obtained from a large number of subjects divided into multiple groups of 92 subjects per group. Each sample of genomic DNA was analyzed using the BiomassPROBETM assay as described in Example 1 to determine the presence or absence of the 353Q polymorphism of the Factor VII gene.
- DNA from each sample was amplified in a polymerase chain reaction using primers F7-353FUS4 (SEQ ID NO: 24) and F7-353RUS5 (SEQ ID NO: 26) as shown below and using standard conditions, for example, as described in Example 1.
- One of the primers was biotinylated to permit immobilization of the amplification product to a solid support.
- the purified amplification products were immobilized via a biotin-avidin linkage to streptavidin-coated beads and the double-stranded DNA was denatured.
- a detection primer was then annealed to the immobilized DNA using conditions such as, for example, described in Example 1.
- the detection primer is shown as F7-353-P (SEQ ID NO: 27) below.
- the PROBE extension reaction was carried out using conditions, for example, such as those described in Example 1. The reaction was performed using ddG.
- the DNA was denatured to release the extended primers from the immobilized template.
- Each of the resulting extension products was separately analyzed by MALDI-TOF mass spectrometry.
- a matrix such as 3-hydroxypicolinic acid (3-HPA) and a UV laser could be used in the MALDI-TOF mass spectrometric analysis.
- the products resulting from the reaction conducted on a “wild-type” allele template (wherein codon 353 encodes an arginine) and from the reaction conducted on a polymorphic 353Q allele template (wherein codon 353 encodes a glutamic acid) are shown below and designated as 353 CGG and 353 CAG, respectively.
- the masses for each product as can be measured by MALDI-TOF mass spectrometry are also provided (i.e., 5646.8 Da for the wild-type product and 5960 Da for the polymorphic product).
- the samples from 92 subjects were pooled (250 nanograms total concentration of DNA in which the concentration of any individual DNA is 2.7 nanograms), and the pool of DNA was subjected to MALDI-TOF mass spectrometric analysis.
- the area under the signal corresponding to the mass of the 353Q polymorphism PROBE extension product in the resulting spectrum was integrated in order to quantitate the amount of DNA present.
- the ratio of this amount to total DNA was used to determine the allelic frequency of the 353Q polymorphism in the group of subjects.
- This type of individual sample vs. pooled sample analysis was repeated for numerous different groups of 92 different samples.
- Masses Allele Product Termination ddG SEQ # Length Mass F7-353-P atgccacccactacc 27 18 5333.6 353 CGG cacatgccacccactaccg 28 19 5646.8 353 CAG cacatgccacccactaccag 29 20 5960 US5-bio bio- agcggataacaatttcacagg 30 23 7648.6
- Blood is obtained from a donor by venous puncture and preserved with 1 mM EDTA pH 8.0. Ten milliliters of whole blood from each donor was centrifuged at 2000 ⁇ g. One milliliter of the buffy coat was added to 9 milliters of 155 mM NH 4 Cl, 1 OmM KHCO 3 , and 0.1 mM Na 2 EDTA, incubated 10 minutes at room temperature and centrifuged for 10 minutes at 2000 ⁇ g.
- the supernatant was removed, and the white cell pellet was washed in 155 mM NH 4 Cl, 10 mM KHCO 3 , and 0.1 mM Na 2 EDTA and resuspended in 4.5 milliliters of 50 mM Tris, 5 mM EDTA, and 1% SDS. Proteins were precipitated from the cell lysate by 6M Ammonium Acetate, pH 7.3, and separated from the nucleic acid by centrifugation 3000 ⁇ g. The nucleic acid was recovered from the supernatant by the addition of an equal volume of 100% isopropanol and centrifugation at 2000 ⁇ g. The dried nucleic acid pellet was hydrated in lOmM Tris pH 7.6 and 1 mM Na2EDTA and stored at 4C.
- Candidate morbidity and mortality markers include housekeeping genes, such as genes involved in signal transduction.
- genes include the A-kinase anchoring proteins (AKAPs) genes, which participate in signal transduction pathways involving protein phosphorylation.
- AKAPs A-kinase anchoring proteins
- Protein phosphorylation is an important mechanism for enzyme regulation and the transduction of extracellular signals across the cell membrane in eukaryotic cells.
- a wide variety of cellular substrates, including enzymes, membrane receptors, ion channels and transcription factors, can be phosphorylated in response to extracellular signals that interact with cells.
- a key enzyme in the phosphorylation of cellular proteins in response to hormones and neurotransmitters is cyclic AMP (cAMP)-dependent protein kinase (PKA).
- cAMP cyclic AMP
- PKA cyclic AMP
- PKA Upon activation by cAMP, PKA thus mediates a variety of cellular responses to such extracellular signals.
- An array of PKA isozymes are expressed in mammalian cells.
- the PKAs usually exist as inactive tetramers containing a regulatory (R) subunit dimer and two catalytic (C) subunits.
- R regulatory
- C catalytic
- Genes encoding three C subunits (C ⁇ , C ⁇ and Cy) and four R subunits (RI ⁇ , RI ⁇ , RII ⁇ and RII ⁇ ) have been identified [see Takio et al. (1982) Proc. Natl. Acad. Sci. U.S. A. 79:2544-2548; Lee et al. (1983) Proc. Natl. Acad. Sci.
- the type I PKA holoenzyme (RI ⁇ and RI ⁇ ) is predominantly cytoplasmic, whereas the majority of type II PKA (RII ⁇ and RII ⁇ ) associates with cellular structures and organelles [Scott (1991) Pharmacol. Ther. 50:123-1451. Many hormones and other signals act through receptors to generate cAMP which binds to the R subunits of PKA and releases and activates the C subunits to phosphorylate proteins. Because protein kinases and their substrates are widely distributed throughout cells, there are mechanisms in place in cells to localize protein kinase-mediated responses to different signals.
- AKAPs A-kinase anchoring proteins
- Anchoring not only places the kinase close to the substrates, but also positions the PKA holoenzyme at sites where it can optimally respond to fluctuations in the second messenger cAMP [Mochly-Rosen (1995) Science 268:247-251; Faux and Scott (1996) Trends Biochem. Sci. 21:312-315; Hubbard and Cohen (1993) Trends Biochem. Sci. 18:172-177].
- RII regulatory subunit
- AKAPs Up to 75% of type II PKA is localized to various intracellular sites through association of the regulatory subunit (RII) with AKAPs [see, e.g., Hausken et al. (1996) J. Biol. Chem. 271:29016-290221.
- RII subunits of PKA bind to AKAPs with nanomolar affinity [Carr et al. (1992) J. Biol. Chem. 267:13376-13382], and many AKAP-RII complexes have been isolated from cell extracts.
- RI subunits of PKA bind to AKAPs with only micromolar affinity [Burton et al. (1997) Proc. Natl. Acad. Sci. U.S.A.
- AKAPs More than 20 AKAPs have been reported in different tissues and species.
- Complementary DNAs (cDNAs) encoding AKAPs have been isolated from diverse species, ranging from Caenorhabditis elegans and Drosophilia to human [see, e.g., Colledge and Scott (1999) Trends Cell Biol. 9:216-2211. Regions within AKAPs that mediate association with RII subunits of PKA have been identified. These regions of approximately 10-18 amino acid residues vary substantially in primary sequence, but secondary structure predictions indicate that they are likely to form an amphipathic helix with hydrophobic residues aligned along one face of the helix and charged residues along the other [Carr et al. (1991) J.
- Hydrophobic amino acids with a long aliphatic side chain e.g., valine, leucine or isoleucine, can participate in binding to RII subunits [Glantz et al. (1993) J. Biol. Chem. 268:12796-12804].
- AKAPs also have the ability to bind to multiple proteins, including other signaling enzymes.
- AKAP79 binds to PKA, protein kinase C (PKC) and the protein phosphatase calcineurin (PP2B) [Coghlan et al. (1995) Science 267:108-112 and Klauck et al. (1996) Science 271:1589-15921. Therefore, the targeting of AKAP79 to neuronal postsynaptic membranes brings together enzymes with opposite catalytic activities in a single complex.
- PKA protein kinase C
- P2B protein phosphatase calcineurin
- AKAPs thus serve as potential regulatory mechanisms that increase the selectivity and intensity of a cAMP-mediated response. There is a need, therefore, to identify and elucidate the structural and functional properties of AKAPs in order to gain a complete understanding of the important role these proteins ⁇ play in the basic functioning of cells.
- AKAP10 cDNA also referred to as D-AKAP2
- GenBank database accession numbers AF037439 (SEQ ID NO: 31) and NM 007202.
- the AKAP10 gene is located on chromosome 17.
- mouse D-AKAP2 cDNA The sequence of a mouse D-AKAP2 cDNA is also available in the GenBank database (see accession number AF021833).
- the mouse D-AKAP2 protein contains an RGS domain near the amino terminus that is characteristic of proteins that interact with G ⁇ subunits and possess GTPase activating protein-like activity [Huang et al. (1997) Proc. Natl. Acad. Sci. U.S.A. 94:11184-11189].
- the human AKAP10 protein also has sequences homologous to RGS domains. The carboxy-terminal 40 residues of the mouse D-AKAP2 protein are responsible for the interaction with the regulatory subunits of PKA. This sequence is fairly well conserved between the mouse D-AKAP2 and human AKAP10 proteins.
- Polymorphisms of AKAP genes that alter gene expression, regulation, protein structure and/or protein function are more likely to have a significant effect on the regulation of enzyme (particularly PKA) activity, cellular transduction of signals and responses thereto and on the basic functioning of cells than polymorphisms that do not alter gene and/or protein function. Included in the polymorphic AKAPs provided herein are human AKAP10 proteins containing differing amino acid residues at position number 646.
- Amino acid 646 of the human AKAP10 protein is located in the carboxy-terminal region of the protein within a segment that participates in the binding of R-subunits of PKAs. This segment includes the carboxy-terminal 40 amino acids.
- the amino acid residue reported for position 646 of the human AKAP10 protein is an isoleucine.
- Polymorphic human AKAP10 proteins provided herein have the amino acid sequence but contain residues other than isoleucine at amino acid position 646 of the protein.
- the amino acid at position 646 is a valine, leucine or phenylalanine residue.
- an allele of the human AKAP10 gene that contains a specific polymorphism at position 2073 of the coding sequence and thereby encodes a valine at position 646 has been detected in varying frequencies in DNA samples from younger and older segments of the human population.
- the A at position 2073 of the AKAP10 gene coding sequence is changed from an A to a G, giving rise to an altered sequence in which the codon for amino acid 646 changes from ATT, coding for isoleucine, to GTT, coding for valine.
- Morbidity Marker 1 Human Protein Kinase A Anchoring Protein (AKAP10-1)
- PCR primers were synthesized by OPERON using phosphoramidite chemistry. Amplification of the AKAP10 target sequence was carried out in single 50 ⁇ l PCR reaction with 100 ng-1 ug of pooled human genomic DNAs in a 50 ⁇ l PCR reaction. Individual DNA concentrations within the pooled samples were present in equal concentration with the final concentration ranging from 1-25 ng.
- the 5′ biotinylated universal primer After an initial round of amplification with the target with the specific forward and reverse primer, the 5′ biotinylated universal primer then hybridized and acted as a reverse primer thereby introducing a 3′ biotin capture moiety into the molecule.
- the amplification protocol results in a 5′-biotinylated double stranded DNA amplicon and dramatically reduces the cost of high throughput genotyping by eliminating the need to 5′ biotin label each forward primer used in a genotyping.
- Thermal cycling was performed in 0.2 mL tubes or 96 well plate using an MJ Research Thermal Cycler (calculated temperature) with the following cycling parameters: 94° C. for 5 min; 45 cycles: 94° C. for 20 sec, 56° C. for 30 sec, 72° C. for 60 sec; 72° C. 3 min.
- Genotyping using the BiomassPROBE assay methods was carried out by resuspending the DNA coated magnetic beads in 26 mM Tris-HCl pH 9.5, 6.5 mM MgCl 2 and 50 mM each of dTTP and 50 mM each of ddCTP, ddATP, ddGTP, 2.5U of a thermostable DNA polymerase (Ambersham) and 20 pmol of a template specific oligonucleotide PROBE primer 5′-CTGGCGCCCACGTGGTCAA-3′ (SEQ ID NO: 48) (Operon). Primer extension occurs with three cycles of oligonucleotide primer hybridization and extension.
- the extension products were analyzed after denaturation from the template with 50 mM NH 4 Cl and transfer of 150 nL each sample to a silicon chip preloaded with 150 nL of H3PA matrix material.
- the sample material was allowed to crystallize and was analyzed by MALDI-TOF (Bruker, PerSeptive).
- the SNP that is present in AKAP10-1 is a T to C transversion at nucleotide number 156277 of the sequence of a genomic clone of the AKAP10 gene (GenBank Accession No. AC005730) (SEQ ID NO: 36).
- SEQ ID NO: 35 represents the nucleotide sequence of human chromosome 17, which contains the genomic nucleotide sequence of the human AKAP10 gene
- SEQ ID NO: 36 represents the nucleotide sequence of human chromosome 17, which contains the genomic nucleotide sequence of the human AKAP10-1 allele.
- the mass of the primer used in the BioMass probe reaction was 5500.6 daltons.
- the primer is extended by the addition of ddC, which has a mass of 5773.8.
- the wildtype gene results in the addition of dT and ddG to the primer to produce an extension product having a mass of 6101 daltons.
- the polymorphism is localized in the non-translated 3′-region of the gene encoding the human protein kinase A anchoring protein (AKAP10).
- the gene is located on chromosome 17. Its structure includes 15 exons and 14 intervening sequences (introns).
- the encoded protein is responsible for the sub-cellular localization of the cAMP-dependent protein kinase and, therefore, plays a key role in the G-protein mediated receptor-signaling pathway (Huang et al. PNAS (1007) 94:11184-11189).
- Morbitity Marker 2 Human Protein Kinase A Anchoring Protein (AKAP10-5)
- Genomic DNA was isolated from blood (as described above) of seventeen (17) individuals with a genotype CC at the AKAP10-1 gene locus and a single heterozygous individual (CT) (as described).
- a target sequence in the AKAP10-1 gene which encodes the C-terminal PKA binding domain was amplified using the polymerase chain reaction.
- PCR primers were synthesized by OPERON using phosphoramidite chemistry. Amplification of the AKAP10-1 target sequence was carried out in individual 50 ⁇ l PCR reaction with 25 ng of human genomic DNA templates.
- Thermal cycling was performed in 0.2 mL tubes or 96 well plate using an MJ Research Thermal Cycler (MJ Research, Waltham, Mass.) (calculated temperature) with the following cycling parameters: 94° C. for 5 min; 45 cycles; 94° C. for 20 sec, 56° C. for 30 sec, 72° C. for 60 sec; 72° C. 3 min. After amplification the amplicons were purified using a chromatography (Mo Bio Laboratories (Solana Beach, Calif.)).
- the sequence of the 18 amplicons, representing the target region was determined using a standard Sanger cycle sequencing method with 25 nmol of the PCR amplicon, 3.2 uM DNA sequencing primer 5′-CCC ACA GCA GTT AAT CCT TC-3′(SEQ ID NO: 55), and chain terminating dRhodamine labeled 2′, 3′ dideoxynucleotides (PE Biosystems, Foster City, Calif.) using the following cycling parameters: 96° C. for 15 seconds; 25 cycles: 55° C. for 15 seconds, 60° C. for 4 minutes.
- the sequencing products precipitated by 0.3M NaOAc and ethanol. The precipitate was centrifuged and dried. The pellets were resuspended in deionized formamide and separated on a 5% polyacrylimide gel. The sequence was determined using the “Sequencher” software (Gene Codes, Ann Arbor, Mich.).
- AKAP10-5 SEQ ID NO: 33
- SEQ ID NO: 33 This single nucleotide polymorphism was designated as AKAP10-5 (SEQ ID NO: 33) and resulted in a substitution of a valine for an isoleucine residue at amino acid position 646 of the amino acid sequence of human AKAP10 (SEQ ID NO: 32).
- the healthy population stratified by age is a very efficient and a universal screening tool for morbidity associated genes by allowing for the detection of changes of allelic frequencies in the young compared to the old population. Individual samples of this healthy population base can be pooled to further increase the throughput.
- Healthy samples were obtained through the blood bank of San Bernardino, Calif. Both parents of the blood donors were of Caucasian origin. Practically a healthy subject, when human, is defined as human donor who passes blood bank criteria to donate blood for eventual use in the general population. These criteria are as follows: free of detectable viral, bacterial, mycoplasma, and parasitic infections; not anemic; and then further selected based upon a questionnaire regarding history (see FIG. 3). Thus, a healthy population represents an unbiased population of sufficient health to donate blood according to blood bank criteria, and not further selected for any disease state. Typically such individuals are not taking any medications.
- PCR primers were synthesized by OPERON using phosphoramidite chemistry. Amplification of the AKAP10 target sequence was carried out in a single 50 ⁇ l PCR reaction with 100 ng-1 ⁇ g of pooled human genomic DNAs in a 50 ⁇ l PCR reaction. Individual DNA concentrations within the pooled samples were present in equal concentration with the final concentration ranging from 1-25 ng.
- Each reaction contained 1 ⁇ PCR buffer (Qiagen, Valencia, Calif.), 200 ⁇ M dNTPs, 1U Hotstar Taq polymerase (Qiagen, Valencia, Calif.), 4 mM MgCl 2 , and 25 pmol of the forward primer containing the universal primer sequence and the target specific sequence 5′-AGCGGATAACAATTTCACACAGGGAGCTAGCTTGGAAGAT TGC-3′ (SEQ ID NO: 41), 2 pmol of the reverse primer 5′-GTCCAATATATGCAAACAGTTG-3′ (SEQ ID NO: 54), and 10 pmol of a biotinylated universal primer complementary to the 5′ end of the PCR amplicon BIO:5′-AGCGGATAACAATTTCACACAGG-3′ (SEQ ID NO: 43).
- the 5′ biotinylated universal primer can then be hybridized and acted as a forward primer thereby introducing a 5′ biotin capture moiety into the molecule.
- the amplification protocol resulted in a 5′-biotinylated double stranded DNA amplicon and dramatically reduced the cost of high throughput genotyping by eliminating the need to 5′ biotin label every forward primer used in a genotyping.
- Themal cycling was performed in 0.2 mL tubes or 96 well plate using an MJ Research Thermal Cycler (calculated temperature) with the following cycling parameters: 94° C. for 5 min; 45 cycles: 94° C. for 20 sec, 56° C. for 30 sec; 72° C. for 60 sec; 72° C. 3 min.
- BiomassPROBETM assay of primer extension analysis (see, U.S. Pat. No. 6,043,031) of donor population for AKAP 10-5 (SEQ ID NO: 33) was performed. Genotyping using these methods was carried out by resuspending the DNA coated magnetic beads in 26 mM Tris-HCL pH 9.5, 6.5 mM MgCl 2 , 50 mM dTTP, 50 mM each of ddCTP, ddATP, ddGTP, 2.5U of a thermostable DNA polymerase (Ambersham), and 20 pmol of a template specific oligonucleotide PROBE primer 5′-ACTGAGCCTGCTGCATAA-3′ (SEQ ID NO: 44) (Operon).
- Primer extension occurs with three cycles of oligonucleotide primer with hybridization and extension.
- the extension products were analyzed after denaturation from the template with 50 mM NH 4 Cl and transfer of 150 nL of each sample to a silicon chip preloaded with 150 nl of H3PA matrix material.
- the sample material was allowed to crystallize and analyzed by MALDI-TOF (Bruker, PerSeptive).
- the primer has a mass of 5483.6 daltons.
- the SNP results in the addition of a ddC to the primer, giving a mass of 5756.8 daltons for the extended product.
- the wild type results in the addition a T and ddG to the primer giving a mass of 6101 daltons.
- the frequency of the SNP was measured in a population of age selected healthy individuals. Seven hundred thirteen (713) individuals under 40 years of age (360 females, 353 males) and 703 individuals over 60 years of age (322 females, 381 males) were tested for the presence of the SNP, AKAP10-5 (SEQ ID NO: 33). Results are presented below in Table 4.
- FIG. 20 graphically shows these results of allele and genotype distribution in the age and sex stratified Caucasian population.
- Morbidity Marker 3 Human Methionine Sulfoxide Reductase A (msrA)
- PCR primers were synthesized by OPERON using phosphoramidite chemistry. Amplification of the AKAP10 target sequence was carried out in single 50 ⁇ l PCR reaction with 100 ng-1 ug of pooled human genomic DNA templates in a 50 ⁇ l PCR reaction. Individual DNA concentrations within the pooled samples were present in an equal concentration with the final concentration ranging from 1-25 ng.
- the 5′ biotinylated universal primer was then hybridized and acted as a reverse primer thereby introducing a 3′ biotin capture moiety into the molecule.
- the amplification protocol results in a 5′-biotinylated double stranded DNA amplicon and dramatically reduces the cost of high throughput genotyping by eliminating the need to 5′ biotin label each forward primer used in a genotyping.
- Thermal cycling was performed in 0.2 mL tubes or 96 well plate using an MJ Research Thermal Cycler (calculated temperature) with the following cycling parameters: 94° C. for 5 min; 45 cycles: 94° C. for 20 sec, 56° C. for 30 sec, 72° C. for 60 sec; 72° C. 3 min.
- Genotyping using the BiomassPROBE assay methods was carried out by resuspending the DNA coated magnetic beads in 26 mM Tris-HCl pH 9.5, 6.5 mM MgCl 2 , 50 mM of dTTPs and 50 mM each of ddCTP, ddATP, ddGTP, 2.5U of a thermostable DNA polymerase (Ambersham), and 20 pmol of a template specific oligonucleotide PROBE primer 5′-CTGAAAAGGGAGAGAAAG-3′ (Operon) (SEQ ID NO: 52). Primer extension occurs with three cycles of oligonucleotide primer with hybridization and extension.
- the extension products were analyzed after denaturation from the template with 50 mM NH 4 Cl and transfer of 150 nl each sample to a silicon chip preloaded with 150 nl of H3PA matrix material.
- the sample material was allowed to crystallize and analyzed by MALDI-TOF (Bruker, PerSeptive).
- the SNP is represented as a T to C tranversion in the sequence of two ESTs.
- the wild type is represented by having a T at position 128 of GenBank Accession No. AW 195104, which represents the nucleotide sequence of an EST which is a portion of the wild type human msrA gene (SEQ ID NO: 39).
- the SNP is presented as a C at position 129 of GenBank Accession No. AW 874187, which represents the nucleotide sequence of an EST which is a portion of an allele of the human msrA gene (SEQ ID NO: 40).
- the SNP is represented as an A to G transversion.
- the primer utilized in the BioMass probe reaction had a mass of 5654.8 daltons.
- the primer is extended by the incorporation of a ddC and has a mass of 5928.
- the primer is extended by adding a dT and a DDC to produce a mass of 6232.1 daltons.
- the frequency of the SNP was measured in a population of age selected healthy individuals. Five hundred fifty-two (552) individuals between the ages of 18-39 years (276 females, 276 males and 552 individuals between the age of 60-79 (184 females between the ages of 60-69, 368 males between the age of 60-79) were tested for the presence of the polymorphism localized in the nontranslated 3′ region of h-msr-A.
- Genotype difference between male age group among healthy individuals is significant.
- the age-related allele and genotype frequency of this marker in both genders and the entire population is shown in FIG. 21.
- the decrease of the homozygous CC genotype in the older male population is highly significant.
- the polymorphism is localized in the non-translated 3′-region of the gene encoding the human methionine sulfoxide reductase (h-msrA). The exact localization is 451 base pairs downstream the stop codon (TAA). It is likely that this SNP is in linkage disequilibrium (LD) with another polymorphism more upstream in the coding or promoter region; thus, it does not directly cause morbidity.
- the enzyme methionine sulfoxide reductase has been proposed to exhibit multiple biological functions. It can serve to repair oxidative protein damage but also play an important role in the regulation of proteins by activation or inactivation of their biological functions (Moskovitz et al.
- the products of the enzymatic digestions were purified with ZipTips (Millipore, Bedford, Mass.).
- the ZipTips were pre-wetted with 10 ⁇ L 50% acetonitrile and equilibrated 4 times with 10 ⁇ l 0.1 M TEAAc.
- the oligonucleotide fragments were bound to the C18 in the ZipTip material by continuous aspiration and dispension of each sample into the ZipTip.
- Each digested oligonucleotide was conditioned by washing with 10 ⁇ L 0.1 M TEAAc, followed by 4 washing steps with 10 ⁇ L H 2 O. DNA fragments were eluted from the Ziptip with 7 ⁇ L 50% acetonitrile.
- any method for condition the samples can be employed.
- Methods for conditioning which generally is used to increase peak resolution, are well known (see, e.g., International PCT application No. WO 98/20019).
- DNA Glycosylases modifies DNA at each position that a specific nucleobase resides in the DNA, thereby producing abasic sites. In a subsequent reaction with another enzyme, a chemical, or heat, the phosphate backbone at each abasic site can be cleaved.
- the glycosylase utilized in the following procedures was uracil-DNA glycosylase (UDG).
- Uracil bases were incorporated into DNA fragments in each position that a thymine base would normally occupy by amplifying a DNA target sequence in the presence of uracil.
- Each uracil substituted DNA amplicon was incubated with UDG, which cleaved each uracil base in the amplicon, and was then subjected to conditions that effected backbone cleavage at each abasic site, which produced DNA fragments.
- DNA fragments were subjected to MALDI-TOF mass spectrometry analysis. Genetic variability in the target DNA was then assessed by analyzing mass spectra.
- Glycosylases specific for nucleotide analogs or modified nucleotides, as described herein, can be substituted for UDG in the following procedures.
- the glycosylase methods described hereafter, in conjunction with phosphate backbone cleavage and MALDI, can be used to analyze DNA fragments for the purposes of SNP scanning, bacteria typing, methylation analysis, microsatellite analysis, genotyping, and nucleotide sequencing and re-sequencing.
- a glycosylase procedure was used to genotype the DNA sequence encoding UCP-2 (Uncoupling Protein 2).
- the sequence for UCP-2 is deposited in GenBank under accession number AF096289.
- the sequence variation genotyped in the following procedure was a cytosine (C-allele) to thymine (T-allele) variation at nucleotide position 4790, which results in a alanine to valine mutation at position 55 in the UCP-2 polypeptide.
- DNA was amplified using a PCR procedure with a 50 ⁇ L reaction volume containing of 5 pmol biotinylated primer having the sequence 5′-TGCTTATCCCTGTAGCTACCCTGTCTTGGCCTTGCAGATCCAA-3′ (SEQ ID NO: 91), 15 pmol non-biotinylated primer having the sequence 5′-AGCGGATAACAATTTCACACAGGCCATCACACCGCGGTACTG-3′ (SEQ ID NO: 92), 200 ⁇ M dATP, 200 ⁇ M dCTP, 200 ⁇ M dGTP, 600 ⁇ M dUTP (to fully replace dTTP), 1.5 mM to 3 mM MgCl 2 , 1 U of HotStarTaq polymerase, and 25 ng of CEPH DNA. Amplification was effected with 45 cycles at an annealing temperature of 56° C.
- the amplification product was then immobilized onto a solid support by incubating 50 ⁇ L of the amplification reaction with 5 ⁇ L of prewashed Dynabeads for 20 minutes at room temperature. The supernatant was removed, and the beads were incubated with 50 ⁇ L of 0.1 M NaOH for 5 minutes at room temperature to denature the double-stranded PCR product in such a fashion that single-stranded DNA was linked to the beads. The beads were then neutralized by three washes with 50 ⁇ L 10 mM TrisHCl (pH 8).
- the beads were resuspended in 10 ⁇ L of a 60 mM TrisHCl/1 mM EDTA (pH 7.9) solution, and 1 U uracil DNA glycosylase was added to the solution for 45 minutes at 37° C. to remove uracil nucleotides present in the single-stranded DNA linked to the beads.
- the beads were then washed two times with 25 ⁇ L of 10 mM TrisHCl (pH 8) and once with 10 ⁇ L of water.
- the biotinylated strands were then eluted from the beads with 12 ⁇ L of 2 M NH 4 OH at 60° C. for 10 minutes.
- the backbone of the DNA was cleaved by incubating the samples for 10 min at 95° C. (with a closed lid), and ammonia was evaporated from the samples by incubating the samples for 11 min at 80° C.
- the glycosylase assay was conducted using pooled samples to detect genetic variability at the UCP-2 locus. DNA of known genotype was pooled from eleven individuals and was diluted to a fixed concentration of 5 ng/ ⁇ L. The procedure provided in Example 3A was followed using 2 pmol of forward primer having a sequence of 5′-CCCAGTCACGACGTTGTAAAACGTCTTGGCCTTGCAGATCCAAG-3′ (SEQ ID NO: 93) and 15 pmol of reverse primer having the sequence 5′-AGCGGATAACAATTTCACACAGGCCATCACACCGCGGTACTG-3′ (SEQ ID NO: 94).
- biotinylated primer having the sequence 5′bioCCCAGTCACGACGTTGTAAAACG 3′ can be introduced to the PCR reaction after about two cycles.
- the fragments were analyzed via MALDI-TOF mass spectroscopy (Example 4).
- the T-allele which generated a unique fragment of 3254 Daltons, could be distinguished in mass spectra from the C-allele, which generated a unique fragment of 4788 Daltons.
- Allelic frequency in the pooled samples was quantified by integrating the area under each signal corresponding to an allelic fragment. Integration was accomplished by hand calculations using equations well known to those skilled in the art. In the pool of eleven samples, this procedure suggested that 40.9% of the individuals harbored the T allele and 59.09% of the individuals harbored the C allele.
- BKR-2 Bradykinin Receptor 2
- the sequence for BKR-2 is deposited in GenBank under accession number X86173.
- BKR-2 includes a SNP in the promoter region, which is a C to T variation, as well as a SNP in a repeated unit, which is a G to T variation.
- the procedure provided in Example 3A was utilized to identify the SNP in the promotor region, the SNP in the microsattelite repeat region, and the number of repeated units in the microsattelite region of BKR-2.
- a forward PCR primer having the sequence 5′-CTCCAGCTGGGCAGGAGTGC-3′ (SEQ ID NO: 95) and a reverse primer having the sequence 5′-CACTTCAGTCGCTCCCT-3′ (SEQ ID NO: 96) were utilized to amplify BKR-2 DNA in the presence of uracil.
- the amplicon was fragmented by UDG followed by backbone cleavage.
- the cleavage fragments were analyzed by MALDI-TOF mass spectrometry as described in Example 4.
- the T-allele generated a unique fragment having a mass of 1784 Daltons, which was readily detected in a mass spectrum. Hence, the presence of the T-allele was indicative of the G to T sequence variation in the repeat region of BKR-2.
- the number of repeat regions was distinguished between individuals having two repeat sequences and individuals having three repeat sequences in BKR-2.
- the DNA of these individuals did not harbor the G to T sequence variation in the repeat sequence as each repeat sequence contained a G at the SNP locus.
- the number of repeat regions was determined in individual samples by calculating the area under a signal corresponding to a unique DNA fragment having a mass of 2771.6 Daltons. This signal in spectra generated from individuals having two repeat regions had an area that was thirty-three percent less than the area under the same signal in spectra generated from individuals having three repeat regions.
- the procedures discussed above can be utilized to genotype individuals for the number of repeat sequences present in BKR-2.
- Bisulfite treatment of genomic DNA can be utilized to analyze positions of methylated cytosine residues within the DNA. Treating nucleic acids with bisulfite deaminates cytosine residues to uracil residues, while methylated cytosine remains unmodified. Thus, by comparing the sequence of a PCR product generated from genomic DNA that is not treated with bisulfite with the sequence of a PCR product generated from genomic DNA that is treated with bisulfite, the degree of methylation in a nucleic acid as well as the positions where cytosine is methylated can be deduced.
- Genomic DNA (2 ⁇ g) was digested by incubation with 1 ⁇ L of a restriction enzyme at 37° C. for 2 hours. An aliquot of 3 M NaOH was added to yield a final concentration of 0.3M NaOH in the digestion solution. The reaction was incubated at 37° C. for 15 minutes followed by treatment with 5.35M urea, 4.44M bisulfite, and 10 mM hydroquinone, where the final concentration of hydroquinone is 0.5 mM.
- sample A The sample that was treated with bisulfite was compared to the same digestion sample that had not undergone bisulfite treatment (sample B).
- sample A and sample B were amplified by a standard PCR procedure.
- the PCR procedure included the step of overlaying each sample with mineral oil and then subjecting the sample to thermocycling (20 cycles of 15 minutes at 55° C. followed by 30 seconds at 95° C.).
- the PCR reaction contained four nucleotide bases, C, A, G, and U.
- the mineral oil was removed from each sample, and the PCR products were purified with glassmilk. Sodium iodide (3 volumes) and glassmilk (5 ⁇ L) were added to samples A and B.
- the samples were then placed on ice for 8 minutes, washed with 420 ⁇ L cold buffer, centrifuged for 10 seconds, and the supernatant fractions were removed. This process was repeated twice and then 25 ⁇ L of water was added. Samples were incubated for 5 minutes at 37° C., were centrifuged for 20 seconds, and the supernatant fraction was collected, and then this incubation/centrifugation/supernatant fraction collection procedure was repeated. 50 ⁇ L 0.1 M NaOH was then added to the samples to denature the DNA.
- sample A and sample B were then treated with 2U of UDG (MBI Fermentas) and then subjected to backbone cleavage, as described herein.
- UDG MBI Fermentas
- the resulting fragments from each of sample A and sample B were analyzed by MALDI-TOF mass spectroscopy as described in Example 4.
- Sample A gave rise to a greater number of fragments than the number of fragments arising from sample B, indicative that the nucleic acid harbored at least one methylated cytosine moiety.
- Haplotyping procedures permit the selection of a fragment from one of an individual's two homologous chromosomes and to genotype linked SNPs on that fragment.
- the direct resolution of haplotypes can yield increased information content, improving the diagnosis of any linked disease genes or identifying linkages associated with those diseases.
- haplotypes were typically reconstructed indirectly through pedigree analysis (in cases where pedigrees were available) through laborious and unreliable allele-specific PCR or through single-molecule dilution methods well known in the art.
- a haplotyping procedure was used to determine the presence of two SNPs, referred to as SNP1 and SNP2, located on one strand in a DNA sample.
- the haplotyping procedure used in this assay utilized Fen-1, a site-specific “flap” endonuclease that cleaves DNA “flaps” created by the overlap of two oligonucleotides hybridized to a target DNA strand.
- the two overlapping oligonucleotides in this example were short arm and long arm allele-specific adaptors.
- the target DNA was an amplified nucleic acid that had been denatured and contained SNP1 and SNP2.
- the short arm adaptor included a unique sequence not found in the target DNA.
- the 3′ distal nucleotide of the short arm adaptor was identical to one of the SNP1 alleles.
- the long arm adaptor included two regions: a 3′ region complementary to the short arm and a 5′ gene-specific region complementary to the fragment of interest adjacent to the SNP. If there was a match between the adaptor and one of the homologues, the Fen enzyme recognized and cleaved the overlapping flap.
- the short arm of the adaptor was then ligated to the remainder of the target fragment (minus the SNP site). This ligated fragment was used as the forward primer for a second PCR reaction in which only the ligated homologue was amplified.
- the second PCR product (PCR2) was then analyzed by mass spectrometry. If there was no match between the adaptors and the target DNA, there was no overlap, no cleavage by Fen-1, and thus no PCR2 product of interest.
- the second SNP was found by using an adaptor that was specific for SNP2 and hybridizing the adaptor to the PCR2 product containing the first SNP.
- the Fen-ligase and amplification procedures were repeated for the PCR2 product containing the first SNP. If the amplified product yielded a second SNP, then SNP1 and SNP2 were on the same fragment.
- the SNP is unknown, then four allele-specific adaptors (e.g. C, G, A, and T) can be used to hybridize with the target DNA.
- the substrates are then treated with the Fen-ligase protocol, including amplification.
- the PCR2 products can be analyzed by PROBE, as described herein, to determine which adaptors were hybridized to the DNA target and thus identify the SNPs in the sequence.
- a Fen-ligase assay was used to detect two SNPs present in Factor VII. These SNPs are located 814 base pairs apart from each other. SNP1 was located at position 8401 (C to T), and SNP2 was located at 9215 (G to A).
- a PCR product (PCR1) was generated for a known heterozygous individual at SNP1, a short distance from the 5′ end of the SNP. Specifically, a 10 ⁇ L PCR reaction was performed by mixing 1.5 mM MgCl 2 , 200 ⁇ M of each dNTP, 0.5 U HotStar polymerase, 0.1 ⁇ M of a forward primer having the sequence 5′-GCG CTC CTG TCG GTG CCA (SEQ ID NO: 56), 0.1 ⁇ M of a reverse primer having the sequence 5′-GCC TGA CTG GTG GGG CCC (SEQ ID NO: 57), and 1 ng of genomic DNA. The annealing temperature was 58° C., and the amplification process yielded fragments that were 861 bp in length.
- the PCR1 reaction mixture was divided in half and was treated with an exonuclease 1/SAP mixture (0.22 ⁇ L mixture/5 ⁇ L PCR1 reaction) which contained 1.0 ⁇ L SAP and 0.1 ⁇ L exon1.
- the exonuclease treatment was done for 30 minutes at 37° C. and then 20 minutes at 85° C. to denature the DNA.
- C and T allele-specific adaptors
- the long arm and short arm oligonucleotides of each adaptor (10 ⁇ M) were mixed in a 1:1 ratio and heated for 30 seconds at 95° C. The temperature was reduced in 2° C. increments to 37° C. for annealing.
- the C-adaptor had a short arm sequence of 5′-CAT GCA TGC ACG GTC (SEQ ID NO: 58) and a long arm sequence of 5′-CAG AGA GTA CCC CTC GAC CGT GCA TGC ATG (SEQ ID NO: 59).
- the long arm of the adaptor was 30 bp (15 bp gene-specific), and the short arm was 15 bp.
- the T-adaptor had a short arm sequence of 5′-CAT GCA TGC ACG GTT (SEQ ID NO: 60) and a long arm sequence of 5′-GTA CGT ACG TGC CAA CTC CCC ATG AGA GAC (SEQ ID NO: 61).
- the adaptor could also have a hairpin structure in which the short and long arm are separated by a loop containing of 3 to 10 nucleotides (SEQ ID NO: 118).
- Solution B A second solution (Solution B) containing of 1.65 ⁇ l Ampligase (Thermostable ligase, Epicentre Technologies), 1.65 ⁇ l 200 ng/ ⁇ l MFEN (from Methanocuccus jannaschil), and 3.0 ⁇ l of an allel specific adaptor (C or T) was prepared.
- Solution B was added to Solution A at 95° C. and incubated at 55° C. for 3 hours.
- the total reaction volume was 15.0 ⁇ l per adaptor-specific reaction. For a bi-allelic system, 2 ⁇ 15.0 ⁇ l reactions were required.
- a second amplification reaction was conducted in each sample tube using the short arm adaptor (C or T) sequence as the forward primer (minus the SNP1 site). Only the ligated homologue was amplified.
- a standard PCR reaction was conducted with a total volume of 10.0 ⁇ l containing of 1 ⁇ Buffer (final concentration), 1.5 mM final concentration MgCl 2 , 200 ⁇ M final concentration dNTPs, 0.5 U HotStar polymerase, 0.1 ⁇ M final concentration forward primer 5′-CAT GCA TGC ACG GT (SEQ ID NO: 62), 0.1 ⁇ M final concentration reverse primer 5′-GCC TGA CTG GTG GGG CCC (SEQ ID NO: 63), and 1.0 ⁇ l of the purified FEN-ligase reaction solution. The annealing temperature was 58° C.
- the PCR2 product was analyzed by MALDI TOF mass spectroscopy as described in Example 4. The mass spectrum of Fen SNP1 showed a mass of 6084.08 Daltons
- the second SNP (SNP2) can be found by using an adaptor that is specific for SNP2 and hybridizing that adaptor to the PCR2 product containing the first SNP.
- the Fen-ligase and amplification procedures are repeated for the PCR2 product containing the first SNP. If the amplified product yields a second SNP, then SN1 and SN2 are on the same fragment.
- the mass spectrum of SNP2, representing the T allele, showed a mass of 6359.88 Daltons.
- This assay also can be performed upon pooled DNA to yield haplotype frequencies as described herein.
- the Fen-ligase assay can be used to analyze multiplexes as described herein.
- NY2A nickase and NYS1 nickase (Megabase), which cleave DNA at the following sites:
- NY2A 5′ . . . R AG . . . 3′
- NYS1 5′ . . . ⁇ CC[A/G/T] . . . 3′
- Tris-HCl (10 mM), KCl (10 mM, pH 8.3), magnesium acetate (25 mM), BSA (1 mg/mL), and 6 U of Cvi NY2A or Cvi NYS1 Nickase (Megabase Research) were added to 25 pmol of double-stranded oligonucleotide template having a sequence of 5′-CGC AGG GTT TCC TCG TCG CAC TGG GCA TGT G-3′ (SEQ ID NO: 90, Operon, Alameda, Calif.) synthesized using standard phosphoramidite chemistry. With a total volume of 20 ⁇ L, the reaction mixture was incubated at 37° C.
- Example 5 The digestion products were purified using ZipTips (Millipore, Bedford, Mass.) as described in Example 5.
- the samples were analyzed by MALDI-TOF mass spectroscopy as described in Example 1.
- the nickase Cvi NY2A yielded three fragments with masses 4049.76 Daltons, 5473.14 Daltons, and 9540.71 Daltons.
- the Cvi NYS1 nickase yielded fragments with masses 2063.18 Daltons, 3056.48 Daltons, 6492.81 Daltons, and 7450.14 Daltons.
- DQA was amplified from the genomic DNA of 100 healthy individuals.
- DQA was amplified using standard PCR chemistry in a reaction having a total volume of 50 ⁇ L containing of 10 mM Tris-HCl, 10 mM KCl (pH 8.3), 2.5 mM MgCl 2 , 200 ⁇ M of each dNTP, 10 pmol of a forward primer having the sequence 5′-GTG CTG CAG GTG TAA ACT TGT ACC AG-3′(SEQ ID NO: 64), 10 pmol of a reverse primer having the sequence 5′-CAC GGA TCC GGT AGC AGC GGT AGA GTT G-3′(SEQ ID NO: 65), 1 U DNA polymerase (Stoffel fragment, Perkin Elmer), and 200 ng human genomic DNA (2 ng DNA/individual).
- the template was denatured at 94° C. for 5 minutes. Thermal cycling was continued with a touch-down program that included 45 cycles of 20 seconds at 94° C., 30 seconds at 56° C., 1 minute at 72° C., and a final extension of 3 minutes at 72° C.
- the crude PCR product was used in the subsequent nickase reaction.
- the unpurified PCR product was subjected to nickase digestion. Tris-HCl (10 mM), KCl (10 mM, pH 8.3), magnesium acetate (25 mM), BSA (1 mg/mL), and 5 U of Cvi NY2A or Cvi NYS1 Nickase (Megabase Research) were added to 25 pmol of the amplified template with a total reaction volume of 20 ⁇ L. The mixture was then incubated at 37° C. for 5 hours. The digestion products were purified with either ZipTips (Millipore, Bedford, Mass.) as described in Example 5. The samples were analyzed by MALDI-TOF mass spectroscopy as described in Example 4. This assay also can be used to do multiplexing and standardless genotyping as described herein.
- the two complementary strands can be separated after digestion by using a single-stranded undigested PCR product as a capture probe.
- This probe (preparation shown below in Example 8C) can be hybridized to the nickase fragments in hybridization buffer containing 200 mM sodium citrate and 1% blocking reagent (Boehringer Mannheim). The reaction is heated to 95° C. for 5 minutes and cooled to room temperature over 30 minutes by using a thermal cycler (PTC-200 DNA engine, MJ Research, Waltham, Mass.). The capture probe-nickase fragment is immobilized on 140 ⁇ g of streptavidin-coated magnetic beads.
- the beads are subsequently washed three times with 70 mM ammonium citrate.
- the captured single-stranded nickase fragments are eluted by heating to 80° C. for 5 minutes in 5 ⁇ L of 50 mM ammonium hydroxide.
- the capture probe is prepared by amplifying the human ⁇ -globin gene (3′ end of intron 1 to 5′ end of exon 2) via PCR methods in a total volume of 50 ⁇ L containing of GeneAmp 1XPCR Buffer II, 10 mM Tris-HCl, pH 8.3, 50 mM KCl, 2 mM MgCl 2 , 0.2 mM dNTP mix, 10 pmol of each primer (forward primer 5′-ACTGGGCATGTGGAGACAG-3′(SEQ ID NO: 66) and biotinylated reverse primer bio5′-GCACTTTCTTGCCATGAG-3′(SEQ ID: 67), 2 U of AmpliTaq Gold, and 200 ng of human genomic DNA.
- GeneAmp 1XPCR Buffer II 10 mM Tris-HCl, pH 8.3, 50 mM KCl, 2 mM MgCl 2 , 0.2 mM dNTP mix, 10 pmol of each primer (forward primer 5′-ACT
- the template is denatured at 94° C. for 8 minutes. Thermal cycling is continued with a touch-down program that included 11 cycles of 20 seconds at 94° C., 30 seconds at 64° C., 1 minute at 72° C.; and a final extension of 5 minutes at 72° C.
- the amplicon is purified using UltraCleanTM PCR clean-up kit (MO Bio Laboratories, Solano Beach, Calif.).
- a Type IIS assay was used to identify human gene sequences with known SNPs.
- the Type IIS enzyme used in this assay was Fok I which effected double-stranded cleavage of the target DNA.
- the assay involved the steps of amplification and Fok I treatment of the amplicon.
- the primers were designed so that each PCR product of a designated gene target was less than 100 bases such that a Fok I recognition sequence was incorporated at the 5′ and 3′ end of the amplicon. Therefore, the fragments that were cleaved by Fok I included a center fragment containing the SNP of interest.
- Amplification of the ten human gene sequences were carried out in a single 50 ⁇ L volume PCR reaction with 20 ng of human genomic DNA template in 5 PCR reaction tubes.
- Each reaction vial contained 1 ⁇ PCR buffer (Qiagen), 200 ⁇ M dNTPs, 1 U Hotstar Taq polymerase (Qiagen), 4 mM MgCl 2 , and 10 pmol of each primer.
- the primers were designed such that a Fok I recognition site was incorporated at the 5′ and 3′ ends of the amplicon.
- Thermal cycling was performed in 0.2 mL tubes or a 96 well plate using a MJ Research Thermal Cycler (calculated temperature) with the following cycling parameters: 94° C. for 5 minutes; 45 cycles: 94° C. for 20 seconds, 56° C. for 20 seconds, 72° C. for 60 seconds; and 72° C. for 3 minutes.
- the sample was treated with 0.2 U Exonuclease I (Amersham Pharmacia) and S Alkaline Phosphotase (Amersham Pharmacia) to remove the unincorporated primers and dNTPs.
- 0.2 U of exonuclease I and SAP were added to 5 ⁇ L of the PCR sample. The sample was then incubated at 37° C. for 15 minutes. Exonuclease I and SAP were then inactivated by heating the sample up to 85° C. for 15 minutes.
- Fok I digestion was performed by adding 2 U of Fok I (New England Biolab) to the 5 uL PCR sample and incubating at 37° C. for 30 minutes.
- a healthy database can be used to associate a disease state with a specific allele (SNP) that has been found to show a strong association between age and the allele, in particular the homozygous genotype.
- SNP specific allele
- the method involves using the same healthy database used to identify the age dependent association, however stratification is by information given by the donors about common disorders from which their parents suffered (the donor's familial history of disease). There are three possible answers a donor could give about the health status of their parents: neither were affected, one was affected or both were affected. Only donors above a certain minimum age, depending on the disease, are utilized, as the donors parents must be old enough to to have exhibited clinical disease phenotypes. The genotype frequency in each of these groups is determined and compared with each other. If there is an association of the marker in the donor to a disease the frequency of the heterozyous genotype will be increased. The frequency of the homozygous genotype should not increase, as it should be significantly underrepresented in the healthy population.
- the apparatus 10 for identifying a biological sample generally comprises a mass spectrometer 15 communicating with a computing device 20.
- the mass spectrometer can be a MALDI-TOF mass spectrometer manufactured by Bruker-Franzen Analytik GmbH; however, it will be appreciated that other mass spectrometers can be substituted.
- the computing device 20 is typically a general purpose computing device. It will be appreciated that the computing device could be alternatively configured, for example, it can be integrated with the mass spectrometer or could be part of a computer in a larger network system.
- the apparatus 10 for identifying a biological sample can operate as an automated identification system having a robot 25 with a robotic arm 27 configured to deliver a sample plate 29 into a receiving area 31 of the mass spectrometer 15.
- the sample to be identified can be placed on the plate 29 and automatically received into the mass spectrometer 15.
- the biological sample is then processed in the mass spectrometer to generate data indicative of the mass of DNA fragments in the biological sample.
- This data can be sent directly to computing device 20, or can have some preprocessing or filtering performed within the mass spectrometer.
- the mass spectrometer 15 transmits unprocessed and unfiltered mass spectrometry data to the computing device 20. It will be appreciated that the analysis in the computing device can be adjusted to accommodate preprocessing or filtering performed within the mass spectrometer.
- method 35 data are received into a computing device from a test instrument in block 40.
- data are received in a raw, unprocessed and unfiltered form, but alternatively can have some form of filtering or processing applied.
- the test instrument of an exemplary embodiment is a mass spectrometer as described above. It will be appreciated that other test instruments could be substituted for the mass spectrometer.
- the data generated by the test instrument, and in particular the mass spectrometer includes information indicative of the identification of the biological sample. More specifically, the data are indicative of the DNA composition of the biological sample.
- mass spectrometry data gathered from DNA samples obtained from DNA amplification techniques are noisier than, for example, those from typical protein samples. This is due in part because protein samples are more readily prepared in more abundance, and protein samples are more easily ionizable as compared to DNA samples. Accordingly, conventional mass spectrometer data analysis techniques are generally ineffective for DNA analysis of a biological sample. To improve the analysis capability so that DNA composition data can be more readily discerned, an embodiment uses wavelet technology for analyzing the DNA mass spectrometry data.
- Wavelets are an analytical tool for signal processing, numerical analysis, and mathematical modeling. Wavelet technology provides a basic expansion function which is applied to a data set. Using wavelet decomposition, the data set can be simultaneously analyzed in the time and frequency domains. Wavelet transformation is the technique of choice in the analysis of data that exhibit complicated time (mass) and frequency domain information, such as MALDI-TOF DNA data. Wavelet transforms as described herein have superior denoising properties as compared to conventional Fourier analysis techniques. Wavelet transformation has proven to be particularly effective in interpreting the inherently noisy MALDI-TOF spectra of DNA samples. In using wavelets, a “small wave” or “scaling function” is used to transform a data set into stages, with each stage representing a frequency component in the data set. Using wavelet transformation, mass spectrometry data can be processed, filtered, and analyzed with sufficient discrimination to be useful for identification of the DNA composition for a biological sample.
- the data received in block 40 is denoised in block 45.
- the denoised data then has a baseline correction applied in block 50.
- a baseline correction is generally necessary as data coming from the test instrument, in particular a mass spectrometer instrument, has data arranged in a generally exponentially decaying manner. This generally exponential decaying arrangement is not due to the composition of the biological sample, but is a result of the physical properties and characteristics of the test instrument, and other chemicals involved in DNA sample preparation. Accordingly, baseline correction substantially corrects the data to remove a component of the data attributable to the test system, and sample preparation characteristics.
- a signal remains which is generally indicative of the composition of the biological sample. Due to the extraordinary discrimination required for analyzing the DNA composition of the biological sample, the composition is not readily apparent from the denoised and corrected signal. For example, although the signal can include peak areas, it is not yet clear whether these “putative” peaks actually represent a DNA composition, or whether the putative peaks are the result of a systemic or chemical aberration. Further, any call of the composition of the biological sample would have a probability of error which would be unacceptable for clinical or therapeutic purposes. In such critical situations, there needs to be a high degree of certainty that any call or identification of the sample is accurate. Therefore, additional data processing and interpretation is necessary before the sample can be accurately and confidently identified.
- the biological sample is selected and processed to have only a limited range of possible compositions. Accordingly, it is therefore known where peaks indicating composition should be located, if present. Taking advantage of knowing the location of these expected peaks, in block 60 the method 35 matches putative peaks in the processed signal to the location of the expected peaks. In such a manner, the probability of each putative peak in the data being an actual peak indicative of the composition of the biological sample can be determined. Once the probability of each peak is determined in block 60, then in block 65 the method 35 statistically determines the composition of the biological sample, and determines if confidence is high enough to calling a genotype.
- FIG. 26 shows an example of data from a mass spectrometer.
- the mass spectrometer data 70 generally comprises data points distributed along an x-axis 71 and a y-axis 72.
- the x-axis 71 represents the mass of particles detected, while the y-axis 72 represents a numerical concentration of the particles.
- the mass spectrometry data 70 is generally exponentially decaying with data at the left end of the x-axis 73 generally decaying in an exponential manner toward data at the heavier end 74 of the x-axis 71.
- the general exponential presentation of the data is not indicative of the composition of the biological sample, but is more reflective of systematic error and characteristics. Further, as described above and illustrated in FIG. 26, considerable noise exists in the mass spectrometry DNA data 70.
- the denoising process generally entails 1) performing a wavelet transformation on the raw data to decompose the raw data into wavelet stage coefficients; 2) generating a noise profile from the highest stage of wavelet coefficients; and 3) applying a scaled noise profile to other stages in the wavelet transformation.
- the denoising process is further described below.
- the wavelet transformation of the raw mass spectrometry data is generally diagramed.
- the mass spectrometry data 70 is sequentially transformed into stages. In each stage, the data are represented in a high stage and a low stage, with the low stage acting as the input to the next sequential stage.
- the mass spectrometry data 70 is transformed into stage 0 high data 82 and stage 0 low data 83.
- the stage 0 low data 83 is then used as an input to the next level transformation to generate stage 1 high data 84 and stage 1 low data 85.
- the stage 1 low data 85 is used as an input to be transformed into stage 2 high data 86 and stage 2 low data 87.
- the transformation is continued until no more useful information can be derived by further wavelet transformation.
- a 24-point wavelet is used. More particularly a wavelet commonly referred to as the Daubechies 24 is used to decompose the raw data. It will be appreciated that other wavelets can be used for the wavelet transformation. Since each stage in a wavelet transformation has one-half the data points of the previous stage, the wavelet transformation can be continued until the stage n low data 89 has around 50 points. Accordingly, the stage n high 88 would contain about 100 data points. Since the exemplary wavelet is 24 points long, little data or information can be derived by continuing the wavelet transformation on a data set of around 50 points.
- FIG. 28 shows an example of stage 0 high data 95. Since stage 0 high data 95 is generally indicative of the highest frequencies in the mass spectrometry data, stage 0 high data 95 will closely relate to the quantity of high frequency noise in the mass spectrometry data.
- an exponential fitting formula has been applied to the stage 0 high data 95 to generate a stage 0 noise profile 97.
- the exponential fitting formula is in the format A 0 +A 1 EXP ( ⁇ A 2 m). It will be appreciated that other exponential fitting formulae or other types of curve fits can be used.
- noise profiles for the other high stages are determined. Since the later data points in each stage will likely be representative of the level of noise in each stage, only the later data points in each stage are used to generate a standard deviation figure that is representative of the noise content in that particular stage. More particularly, in generating the noise profile for each remaining stage, only the last five percent of the data points in each stage are analyzed to determined a standard deviation number. It will be appreciated that other numbers of points, or alternative methods could be used to generate such a standard deviation figure.
- stage 0 noise profile (the exponential curve) 97 to generate a scaled noise profile for each stage.
- FIG. 30 shows that stage 1 high data 98 has stage 1 high data 103 with the last five percent of the data points represented by area 99. The points in area 99 are evaluated to determine a standard deviation number indicative of the noise content in stage 1 high data 103. The standard deviation number is then used with the stage 0 noise profile 97 to generate a stage 1 noise profile.
- stage 2 high 100 has stage 2 high data 104 with the last five percent of points represented by area 101.
- the data points in area 101 are then used to calculate a standard deviation number which is then used to scale the stage 0 noise profile 97 to generate a noise profile for stage 2 data.
- stage n high data 108 has the last five percent of data points indicated in area 106.
- the data points in area 106 are used to determine a standard deviation number for stage n.
- the stage n standard deviation number is then used with the stage 0 noise profile 97 to generate a noise profile for stage n. Accordingly, each of the high data stages has a noise profile.
- FIG. 31 shows how the noise profile is applied to the data in each stage.
- the noise profile is used to generate a threshold which is applied to the data in each stage. Since the noise profile is already scaled to adjust for the noise content of each stage, calculating a threshold permits further adjustment to tune the quantity of noise removed. Wavelet coefficients below the threshold are ignored while those above the threshold are retained. Accordingly, the remaining data have a substantial portion of the noise content removed.
- stage 0 and 1 Due to the characteristics of wavelet transformation, the lower stages, such as stage 0 and 1, will have more noise content than the later stages such as stage 2 or stage n. Indeed, stage n low data are likely to have little noise at all. Therefore, in an embodiment, the noise profiles are applied more aggressively in the lower stages and less aggressively in the later stages.
- FIG. 31 shows that stage 0 high threshold is determined by multiplying the stage 0 noise profile by a factor of four. In such a manner, significant numbers of data points in stage 0 high data 95 will be below the threshold and therefore eliminated.
- Stage 1 high threshold 112 is set at two times the noise profile for the stage 1 high data, and stage 2 high threshold 114 is set equal to the noise profile for stage 2 high.
- stage n high threshold 116 is therefore determined by scaling the noise profile for each respective stage n high by a factor equal to (1 ⁇ 2 n-2 ). It will be appreciated that other factors can be applied to scale the noise profile for each stage. For example, the noise profile can be scaled more or less aggressively to accommodate specific systemic characteristics or sample compositions. As indicated above, stage n low data does not have a noise profile applied as stage n low data 118 is assumed to have little or no noise content. After the scaled noise profiles have been applied to each high data stage, the mass spectrometry data 70 has been denoised and is ready for further processing. A wavelet transformation of the denoised signal results in the sparse data set 120 as shown in FIG. 31.
- the mass spectrometry data received in block 40 has been denoised in block 45 and is now passed to block 50 for baseline correction.
- the artifacts introduced by the wavelet transformation procedure can be removed.
- Wavelet transformation results vary slightly depending upon which point of the wavelet is used as a starting point.
- an exemplary embodiment uses the 24-point Daubechies-24 wavelet.
- the denoised data are transformed using every available possible starting point, with the results averaged to determine a final denoised and shifted signal.
- FIG. 33 shows that the wavelet coefficient is applied 24 different times and then the results averaged to generate the final data set. It will be appreciated that other techniques can be used to accommodate the slight error introduced due to wavelet shifting.
- FIG. 33 shows an example of the wavelet coefficient 135 data set from the denoised and shifted signal 130.
- FIG. 36 shows that putative peak areas 145, 147, and 149 are located in the denoised and shifted signal 150.
- the putative peak areas are systematically identified by taking a moving average along the signal 150 and identifying sections of the signal 150 which exceed a threshold related to the moving average. It will be appreciated that other methods can be used to identify putative peak areas in the signal 150.
- Putative peak areas 145, 147 and 149 are removed from the signal 150 to create a peak-free signal 155 as shown in FIG. 37.
- the peak-free signal 155 is further analyzed to identify remaining minimum values 157, and the remaining minimum values 157 are connected to generate the peak-free signal 155.
- FIG. 38 shows a process of using the peak-free signal 155 to generate a baseline 170 as shown in FIG. 39.
- a wavelet transformation is performed on the peak-free signal 155. All the stages from the wavelet transformation are eliminated in block 164 except for the n low stage.
- the n low stage will generally indicate the lowest frequency component of the peak-free signal 155 and therefore will generally indicate the system exponential characteristics.
- Block 166 shows that a signal is reconstructed from the n low coefficients and the baseline signal 170 is generated in block 168.
- FIG. 39 shows a denoised and shifted data signal 172 positioned adjacent a correction baseline 170.
- the baseline correction 170 is subtracted from the denoised and shifted signal 172 to generate a signal 175 having a baseline correction applied as shown in FIG. 40.
- the putative peaks in signal 175 are not identifiable with sufficient accuracy or confidence to call the DNA composition of a biological sample.
- the data from the baseline correction 50 is now compressed in block 55; the compression technique used in an exemplary embodiment is detailed in FIG. 41.
- the data in the baseline corrected data are presented in an array format 182 with x-axis points 183 having an associated data value 184.
- the x-axis is indexed by the non-zero wavelet coefficients, and the associated value is the value of the wavelet coefficient.
- the maximum value 184 is indicated to be 1000.
- an intermediate format 186 is generated.
- the intermediate format 186 generally comprises a real number having a whole number portion 188 and a decimal portion 190.
- the whole number portion is the x-axis point 183 while the decimal portion is the value data 184 divided by the maximum data value.
- a data value “25” is indicated at x-axis point “100” .
- the intermediate value for this data point would be “100.025”.
- the final compressed data 195 is generated.
- the first point of the intermediate data file becomes the starting point for the compressed data.
- each data point in the compressed data 195 is calculated as follows: the whole number portion (left of the decimal) is replaced by the difference between the current and the last whole number. The remainder (right of the decimal) remains intact.
- the starting point of the compressed data 195 is shown to be the same as the intermediate data point which is “100.025”.
- the comparison between the first intermediate data point “100.025” and the second intermediate data point “150.220” is “50.220”. Therefore, “50.220” becomes the second point of the compressed data 195.
- the second intermediate point is “150.220” and the third intermediate data point is “500.0001” . Therefore, the third compressed data becomes “350.000”.
- the calculation for determining compressed data points is continued until the entire array of data points is converted to a single array of real numbers.
- FIG. 42 generally describes the method of compressing mass spectrometry data, showing that the data file in block 201 is presented as an array of coefficients in block 202. The data starting point and maximum is determined as shown in block 203, and the intermediate real numbers are calculated in block 204 as described above. With the intermediate data points generated, the compressed data are generated in block 205.
- the described compression method is highly advantageous and efficient for compressing data sets such as a processed data set from a mass spectrometry instrument.
- the method is particularly useful for data, such as mass spectrometry data, that uses large numbers and has been processed to have occasional lengthy gaps in x-axis data. Accordingly, an x-y data array for processed mass spectrometry data can be stored with an effective compression rate of 10 ⁇ or more.
- the compression technique is applied to mass spectrometry data, it will be appreciated that the method can also advantageously be applied to other data sets.
- peak heights are now determined in block 60.
- the first step in determining peak height is illustrated in FIG. 43 where the signal 210 is shifted left or right to correspond with the position of expected peaks.
- expected peaks such as expected peaks 212, 214, and 216.
- putative peaks located in the signal such as putative peaks 218, 222, and 224 can be compared to the expected peaks 212, 214, and 216, respectively.
- the entire signal is then shifted such that the putative peaks align more closely with the expected peaks.
- the strongest putative peak is identified in FIG. 44.
- the strongest peak is calculated as a combination of analyzing the overall peak height and area beneath the peak. For example, a moderately high but wide peak would be stronger than a very high peak that is extremely narrow.
- a Gaussian 228 curve is fit to the peak 225. Once the Gaussian is fit, the width (W) of the Gaussian is determined and will be used as the peak width for future calculations.
- the denoised, shifted, and baseline-corrected signal is not sufficiently processed for confidently calling the DNA composition of the biological sample.
- the baseline has generally been removed, there are still residual baseline effects present. These residual baseline effects are therefore removed to increase the accuracy and confidence in making identifications.
- FIG. 45 shows that the putative peaks 218, 222, and 224 are removed from the baseline corrected signal.
- the peaks are removed by identifying a center line 230, 232, and 234 of the putative peaks 218, 222, and 224, respectively and removing an area to the left and to the right of the identified center line.
- For each putative peak an area equal to twice the width (W) of the Gaussian is removed from the left of the center line, while an area equivalent to 50 daltons is removed from the right of the center line. It has been found that the area representing 50 daltons is adequate to sufficiently remove the effect of salt adducts which can be associated with an actual peak.
- Such adducts appear to the right of an actual peak and are a natural effect from the chemistry involved in acquiring a mass spectrum. Although a 50 Dalton buffer has been selected, it will be appreciated that other ranges or methods can be used to reduce or eliminate adduct effects.
- the peaks are removed and remaining minima 247 located as shown in FIG. 46 with the minima 247 connected to create signal 245.
- a quartic polynomial is applied to signal 245 to generate a residual baseline 250 as shown in FIG. 47.
- the residual baseline 250 is subtracted from the signal 225 to generate the final signal 255 as indicated in FIG. 48.
- the residual baseline is the result of a quartic fit to signal 245, it will be appreciated that other techniques can be used to smooth or fit the residual baseline.
- a Gaussian such as Gaussian 266, 268, and 270 is fit to each of the peaks, such as peaks 260, 262, and 264, respectively. Accordingly, the height of the Gaussian is determined as height 272, 274, and 276. Once the height of each Gaussian peak is determined, then the method of identifying a biological compound 35 can move into the genotyping phase 65 as shown in FIG. 25.
- each putative peak is an actual peak. Accordingly, putative peaks with a strong signal-to-noise ratio are generally more likely to be an actual peak than a putative peak with a lower signal-to-noise ratio.
- the height of each peak such as height 272, 274, and 276, is determined for each peak, with the height being an indicator of signal strength for each peak.
- the noise profile such as noise profile 97, is extrapolated into noise profile 280 across the identified peaks. At the center line of each of the peaks, a noise value is determined, such as noise value 282, 283, and 284.
- signal-to-noise ratios can be calculated for each peak. For example, the signal-to-noise ratio for the first peak in FIG. 50 would be calculated as signal value 272 divided by noise value 282, and in a similar manner the signal-to-noise ratio of the middle peak in FIG. 50 would be determined as signal 274 divided by noise value 283.
- the signal-to-noise ratio is generally a useful indicator of the presence of an actual peak, further processing has been found to increase the confidence by which a sample can be identified.
- the signal-to-noise ratio for each peak in the exemplarly embodiment can be adjusted by the goodness of fit between a Gaussian and each putative peak. It is a characteristic of a mass spectrometer that sample material is detected in a manner that generally complies with a normal distribution. Accordingly, greater confidence will be associated with a putative signal having a Gaussian shape than a signal that has a less normal distribution. The error resulting from having a non-Gaussian shape can be referred to as a “residual error”.
- a residual error is calculated by taking a root mean square calculation between the Gaussian 293 and the putative peak 290 in the data signal. The calculation is performed on data within one width on either side of a center line of the Gaussian. The residual error is calculated as:
- G is the Gaussian signal value
- R is the putative peak value
- N is the number of points from ⁇ W to +W.
- An adjusted signal noise ratio is calculated for each putative peak using the formula (S/N) * EXP ( ⁇ 1 ⁇ R) , where S/N is the signal-to-noise ratio, and R is the residual error determined above.
- S/N is the signal-to-noise ratio
- R is the residual error determined above.
- a probability is determined that a putative peak is an actual peak.
- a probability profile 300 is generated where the adjusted signal-to-noise ratio is the x-axis and the probability is the y-axis. Probability is necessarily in the range between a 0% probability and a 100% probability, which is indicated as 1. Generally, the higher the adjusted signal-to-noise ratio, the greater the confidence that a putative peak is an actual peak.
- the probability is 100% that the putative peak is an actual peak and can confidently be used to identify the DNA composition of a biological sample.
- the target value of adjusted signal-to-noise ratio where the probability is assumed to be 100% is a variable parameter which is to be set according to application specific criteria. For example, the target signal-to-noise ratio will be adjusted depending upon trial experience, sample characteristics, and the acceptable error tolerance in the overall system. More specifically, for situations requiring a conservative approach where error cannot be tolerated, the target adjusted signal-to-noise ratio can be set to, for example, 10 and higher. Accordingly, 100% probability will not be assigned to a peak unless the adjusted signal-to-noise ratio is 10 or over.
- the system can be set to assume a 100% probability with a 5 or greater target signal-to-noise ratio.
- an intermediate signal-to-noise ratio target figure can be selected, such as 7, when a moderate risk of error can be assumed.
- the allelic ratio between the signal strength of the highest peak and the signal strength of the second (or third and so on) highest peak should fall within an expected ratio. If the allelic ratio falls outside of normal guidelines, the exemplary embodiment imposes an allelic ratio penalty to the probability.
- FIG. 53 shows an allelic penalty 315 which has an x-axis 317 that is the ratio between the signal strength of the second highest peak divided by signal strength of the highest peak. The yaxis 319 assigns a penalty between 0 and 1 depending on the determined allelic ratio.
- allelic ratios over 30% are within the expected range and therefore no penalty is applied. Between a ratio of 10% and 30%, the penalty is linearly increased until at allelic ratios below 10% it is assumed the second-highest peak is not real.
- the allelic penalty chart 315 is used to determine a penalty 319, which is multiplied by the peak probability determined in FIG. 52 to determine a final peak probability.
- the statistical probability for various composition components can be determined, as an example, in order to determine the probability of each of three possible combinations of two peaks,—peak G, peak C and combinations GG, CC and GC.
- FIG. 54 shows an example where a most probable peak 325 is determined to have a final peak probability of 90%. Peak 325 is positioned such that it represents a G component in the biological sample. Accordingly, it can be maintained that there is a 90% probability that G exists in the biological sample. Also in the example shown in FIG. 54, the second highest probability is peak 330 which has a peak probability of 20%. Peak 330 is at a position associated with a C composition. Accordingly, it can be maintained that there is a 20% probability that C exists in the biological sample.
- the probability of combinations of G and C existing can be calculated.
- FIG. 54 indicates that the probability of GG existing 329 is calculated as 72%. This is calculated as the probability of GG is equal to the probability of G existing (90%) multiplied by the probability of C not existing (100% ⁇ 20%). So if the probability of G existing is 90% and the probability of C not existing is 80%, the probability of GG is 72%.
- the probability of CC existing is equivalent to the probability of C existing (20%) multiplied by the probability of G not existing (100% ⁇ 90%). As shown in FIG. 54, the probability of C existing is 20% while the probability of G not existing is 10%, so therefore the probability of CC is only 2%. Finally, the probability of GC existing is equal to the probability of G existing (90%) multiplied by the probability of C existing (20%). So if the probability of G existing is 90% and the probability of C existing is 20%, the probability of GC existing is 18%. In summary form, then, the probability of the composition of the biological sample is: probability of GG: 72%; probability of GC: 18%; and probability of CC: 2%.
- FIG. 55 is used to decide whether or not sufficient confidence exists to call the genotype.
- FIG. 55 shows a call chart 335 which has an x-axis 337 which is the ratio of the highest combination probability to the second highest combination probability.
- the yaxis 339 simply indicates whether the ratio is sufficiently high to justify calling the genotype.
- the value of the ratio can be indicated by M 340.
- the value of M is set depending upon trial data, sample composition, and the ability to accept error. For example, the value M can be set relatively high, such as to a value 4 so that the highest probability must be at least four times greater than the second highest probability before confidence is established to call a genotype.
- the value of M can be set to a more aggressive value, such as to 3, so that the ratio between the highest and second highest probabilities needs to be only a ratio of 3 or higher.
- moderate value can be selected for M when a moderate risk can be accepted.
- the probability of GG was 72% and the probability of GC was 18%
- the ratio between 72% and 18% is 4.0, therefore, whether M is set to 3, 3.5, or 4, the system would call the genotype as GG.
- the exemplary embodiment uses a ratio between the two highest peak probabilities to determine if a genotype confidently can be called, it will be appreciated that other methods can be substituted. It will also be appreciated that the above techniques can be used for calculating probabilities and choosing genotypes (or more general DNA patterns) containing of combinations of more than two peaks.
- FIG. 56 a flow chart is shown generally defining the process of statistically calling genotype described above.
- block 402 shows that the height of each peak is determined and that in block 404 a noise profile is extrapolated for each peak.
- the signal is determined from the height of each peak in block 406 and the noise for each peak is determined using the noise profile in block 408.
- block 410 the signal-to-noise ratio is calculated for each peak.
- a residual error is determined in block 412 and an adjusted signal-to-noise ratio is calculated in block 414.
- Block 416 shows that a probability profile is developed, with the probability of each peak existing found in block 418.
- An allelic penalty can be applied in block 420, with the allelic penalty applied to the adjusted peak probability in block 422.
- the probability of each combination of components is calculated in block 424 with the ratio between the two highest probabilities being determined in block 426. If the ratio of probabilities exceeds a threshold value then the genotype is called in block 428.
- the computing device 20 supports “standardless” genotyping by identifying data peaks that contain putative SNPs.
- Standardless genotyping is used, for example, where insufficient information is known about the samples to determine a distribution of expected peak locations, against which an allelic penalty as described above can be reliably calculated. This permits the computing device to be used for identification of peaks that contain putative SNPs from data generated by any assay that fragments a targeted DNA molecule.
- peaks that are associated with an area under the data curve that deviates significantly from the typical area of other peaks in the data spectrum are identified and their corresponding mass (location along the x-axis) is determined.
- peaks that deviate significantly from the average area of other peaks in the data are identified, and the expected allelic ratio between data peaks is defined in terms of the ratio of the area under the data peaks. Theoretically, where each genetic loci has the same molar concentration of analyte, the area under each corresponding peak should be the same, thus producing a 1.0 ratio of the peak area between any two peaks. In accordance with the methods provided herein, peaks having a smaller ratio relative to the other peaks in the data will not be recognized as peaks. More particularly, peaks having an area ratio smaller than 30% relative to a nominal value for peak area will be assigned an allelic penalty. The mass of the remaining peaks (their location along the x-axis of the data) will be determined based on oligonucleotide standards.
- FIG. 57 shows a flow diagram representation of the processing by the computing device 20 (FIG. 24) when performing standardless genotyping.
- the computing device receives data from the mass spectrometer.
- the height of each putative peak in the data sample is determined, as indicated by the block 504.
- a de-noise process 505 is performed, beginning with an extrapolation of the noise profile (block 506), followed by finding the noise of each peak (block 508) and calculating the signal to noise ratio for each data sample (block 510).
- Each of these operations can be performed in accordance with the description above for denoise operations 45 of FIG. 25. Other suitable denoise operations will occur to those skilled in the art.
- the next operation is to find the residual error associated with each data point. This is represented by the block 512 in FIG. 57.
- the next step, block 514 involves calculating an adjusted signal to noise ratio for each identified peak.
- a probability profile is developed next (block 516), followed by a determination of the peak probabilities at block 518.
- the denoise operations of FIG. 57 comprising block 502 to block 518, comprise the corresponding operations described above in conjunction with FIG. 56 for block 402 through block 418, respectively.
- the next action for the standardless genotype processing is to determine an allelic penalty for each peak, indicated by the block 524.
- the standardless genotype processing of FIG. 57 determines an allelic penalty by comparing area under the peaks. Therefore, rather than compare signal strength ratios to determine an allelic penalty, such as described above for FIG. 53, the standardless processing determines the area under each of the identified peaks and compares the ratio of those areas. Determining the area under each peak can be computed using conventional numerical analysis techniques for calculating the area under a curve for experimental data.
- the allelic penalty is assigned in accordance with FIG. 58, which shows that no penalty is assigned to peaks having a peak area relative to an expected average area value that is greater than 0.30 (30%).
- the allelic penalty is applied to the peak probability value, which can be determined according to the process such as described in FIG. 52. It should be apparent from FIG. 58 that the allelic penalty imposed for peaks below a ratio of 30% is that such peaks will be removed from further measurement and processing. Other penalty schemes, however, can be imposed in accordance with knowledge about the data being processed, as determined by those skilled in the art.
- the standardless genotype processing compares the location of the remaining putative peaks to oligonucleotide standards to determine corresponding masses in the processing for block 524.
- the processing of the block 524 is performed to determine mass and genotype, rather than performing the operations corresponding to block 424, 426, and 428 of FIG. 33. Techniques for performing such comparisons and determining mass will be known to those skilled in the art.
- the computing device 20 permits the detection and determination of the mass (location along the x-axis of the data) of the sense and antisense strand of fragments generated in the assay. If desired, the computing device can also detect and determine the quantity (area under each peak) of the respective sense and antisense strands, using a similar technique to that described above for standardless genotype processing. The data generated for each type of strand can then be combined to achieve a data redundancy and to thereby increase the confidence level of the determined genotype. This technique obviates primer peaks that are often observed in data from other diagnostic methods, thereby permitting a higher level of multiplexing. In addition, when quantitation is used in pooling experiments, the ratio of the measured peak areas is more reliably calculated than the peak identifying technique, due to data redundancy.
- FIG. 23 is a flow diagram that illustrates the processing implemented by the computing device 20 to perform sense and antisense processing.
- the computing device receives data from the mass spectrometer. This data will include data for the sense strand and antisense strand of assay fragments.
- the height of each putative peak in the data sample is determined, as indicated by the block 604.
- a de-noise process 605 is performed, beginning with an operation that extrapolates the noise profile (block 606), followed by finding the noise of each peak (block 608) and calculating the signal to noise ratio for each data sample (block 610).
- the next operation is to find the residual error associated with each data point. This is represented by the block 612 in FIG. 36.
- FIG. 23 shows that processing includes sense strand processing (block 630) and antisense strand processing (block 640).
- Each block 630, 640 includes processing that corresponds to adjusting the signal to noise ratio, developing a probability profile, determining an allelic penalty, adjusting the peak probability by the allelic penalty, calculating genotype probabilities, and testing genotype probability ratios, such as described above in conjunction with blocks 414 through 426 of FIG. 56.
- the processing of each block 630, 640 can, if desired, include standardless processing operations such as described above in conjunction with FIG. 57. The standardless processing can be included in place of or in addition to the processing operations of FIG. 56.
- the data from the sense strand and antisense strand processing is combined and compared to expected database values to obtain the benefits of data redundancy as between the sense strand and antisense strand.
- This processing is represented by the block 650.
- the genotype processing is performed (block 660) and the genotype is identified.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
A high throughput method of determining frequencies of genetic variations is provided. The method includes steps of selecting a healthy target population and a genetic variation to be assessed; pooling a plurality of samples of biopolymers obtained from members of the population; determining or detecting the biopolymer that comprises the variation by mass spectrometry; obtaining a mass spectrum or a digital representation thereof; and determining the frequency of the variation in the population.
Description
- This application is a divisional application of copending U.S. patent application Ser. No. 09/687,483, filed Oct. 13, 2000, to Andreas Braun, Hubert Koster, Dirk Van den Boom, Yip Ping, Charles Rodi, Liyan He, Norman Chiu and Christian Jurinke entitled “METHODS FOR GENERATING DATABASES AND DATABASES FOR IDENTIFYING POLYMORPHIC GENETIC MARKERS.”
- Benefit of priority under 35 U.S.C. § 119(e) to the following provisional applications is claimed herein:
- U.S. provisional application Serial No. 60/217,658 to Andreas Braun, Hubert Koster; Dirk Van den Boom, filed Jul. 10, 2000, entitled “METHODS FOR GENERATING DATABASES AND DATABASES FOR IDENTIFYING POLYMORPHIC GENETIC MARKERS”; U.S. provisional application Serial No. 60/159,176 to Andreas Braun, Hubert Koster, Dirk Van den Boom, filed Oct. 13, 1999, entitled “METHODS FOR GENERATING DATABASES AND DATABASES FOR IDENTIFYING POLYMORPHIC GENETIC MARKERS”; U.S. provisional application Serial No. 60/217,251, filed Jul. 10, 2000, to Andreas Braun, entitled “POLYMORPHIC KINASE ANCHOR PROTEIN GENE SEQUENCES, POLYMORPHIC KINASE ANCHOR PROTEINS AND METHODS OF DETECTING POLYMORPHIC KINASE ANCHOR PROTEINS AND NUCLEIC ACIDS ENCODING THE SAME”. This application is also a continuation-in-part of U.S. application Ser. No. 09/663,968, to Ping Yip, filed Sep. 19, 2000, entitled “METHOD AND DEVICE FOR IDENTIFYING A BIOLOGICAL SAMPLE.”
- The above-noted applications and provisional applications are incorporated by reference in their entirety.
- Process and methods for creating a database of genomic samples from healthy human donors. Methods that use the database to identify and correlate with polymorphic genetic markers and other markers with diseases and conditions are provided.
- Diseases in all organisms have a genetic component, whether inherited or resulting from the body's response to environmental stresses, such as viruses and toxins. The ultimate goal of ongoing genomic research is to use this information to develop new ways to identify, treat and potentially cure these diseases. The first step has been to screen disease tissue and identify genomic changes at the level of individual samples. The identification of these “disease” markers has then fueled the development and commercialization of diagnostic tests that detect these errant genes or polymorphisms. With the increasing numbers of genetic markers, including single nucleotide polymorphisms (SNPs), microsatellites, tandem repeats, newly mapped introns and exons, the challenge to the medical and pharmaceutical communities is to identify genotypes which not only identify the disease but also follow the progression of the disease and are predictive of an organism's response to treatment.
- Currently the pharmaceutical and biotechnology industries find a disease and then attempt to determine the genomic basis for the disease. This approach is time consuming and expensive and in many cases involves the investigator guessing as to what pathways might be involved in the disease.
- Genomics
- Presently the two main strategies employed in analyzing the available genomic information are the technology driven reverse genetics brute force strategy and the knowledge-based pathway oriented forward genetics strategy. The brute force approach yields large databases of sequence information but little information about the medical or other uses of the sequence information. Hence this strategy yields intangible products of questionable value. The knowledge-based strategy yields small databases that contain a lot of information about medical uses of particular DNA sequences and other products in the pathway and yield tangible products with a high value.
- Polymorphisms
- Polymorphisms have been known since 1901 with the identification of blood types. In the 1950's they were identified on the level of proteins using large population genetic studies. In the 1980's and 1990's many of the known protein polymorphisms were correlated with genetic loci on genomic DNA. For example, the gene dose of the
apolipoprotein E type 4 allele was correlated with the risk of Alzheimer's disease in late onset families (see, e.g., Corder et al. (1993) Science 261: 921-923; mutation in blood coagulation factor V was associated with resistance to activated protein C (see, e.g., Bertina et aL. (1994) Nature 369:64-67); resistance to HIV-1 infection has been shown in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene (see, e.g., Samson et al. (1996) Nature 382:722-725); and a hypermutable tract in antigen presenting cells (APC, such as macrophages), has been identified in familial colorectal cancer in individuals of Ashkenzi jewish background (see, e.g., Laken et al. (1997) Nature Genet. 17:79-83). There can be more than three million polymorphic sites in the human genome. Many have been identified, but not yet characterized or mapped or associated with a marker. - Single Nucleotide Polymorphisms (SNPs)
- Much of the focus of genomics has been in the identification of SNPs, which are important for a variety of reasons. They allow indirect testing (association of haplotypes) and direct testing (functional variants). They are the most abundant and stable genetic markers. Common diseases are best explained by common genetic alterations, and the natural variation in the human population aids in understanding disease, therapy and environmental interactions.
- Currently, the only available method to identify SNPs in DNA is by sequencing, which is expensive, difficult and laborious. Furthermore, once a SNP is discovered it must be validated to determine if it is a real polymorphism and not a sequencing error. Also, discovered SNPs must then be evaluated to determine if they are associated with a particular phenotype. Thus, there is a need to develop new paradigms for identifying the genomic basis for disease and markers thereof. Therefore, it is an object herein to provide methods for identifying the genomic basis of disease and markers thereof.
- Databases and methods using the databases are provided herein. The databases comprise sets of parameters associated with subjects in populations selected only on the basis of being healthy (i e., where the subjects are mammals, such as humans, they are selected based upon apparent health and no detectable infections). The databases can be sorted based upon one or more of the selected parameters.
- The databases, for example, can be relational databases, in which an index that represents each subject serves to relate parameters, which are the data, such as age, ethnicity, sex, medical history, etc. and ultimately genotypic information, that was inputted into and stored in the database. The database can then be sorted according to these parameters. Initially, the parameter information is obtained from a questionnaire answered by each subject from whom a body tissue or body fluid sample is obtained. As additional information about each sample is obtained, this information can be entered into the database and can serve as a sorting parameter.
- The databases obtained from healthy individuals have numerous uses, such as correlating known polymorphisms with a phenotype or disease. The databases can be used to identify alleles that are deleterious, that are beneficial, and that are correlated with diseases.
- For purposes herein, genotypic information can be obtained by any method known to those of skill in the art, but is generally obtained using mass spectrometry.
- Also provided herein, is a new use for existing databases of subjects and genotypic and other parameters, such as age, ethnicity, race, and gender. Any database can be sorted according to the methods herein, and alleles that exhibit statistically significant correlations with any of the sorting parameters can be identified. It is noted, however, is noted, that the databases provided herein and randomly selected databases will perform better in these methods, since disease-based databases suffer numerous limitations, including their relatively small size, the homogeneity of the selected disease population, and the masking effect of the polymorphism associated with the markers for which the database was selected. Hence, the healthy database provided herein, provides advantages not heretofore recognized or exploited. The methods provided herein can be used with a selected database, including disease-based databases, with or without sorting for the discovery and correlation of polymorphisms. In addition, the databases provided herein represent a greater genetic diversity than the unselected databases typically utilized for the discovery of polymorphisms and thus allow for the enhanced discovery and correlation of polymorphisms.
- The databases provided herein can be used for taking an identified polymorphism and ascertaining whether it changes in frequency when the data are sorted according to a selected parameter.
- One use of these methods is correlating a selected marker with a particular parameter by following the occurrence of known genetic markers and then, having made this correlation, determining or identifying correlations with diseases. Examples of this use are p53 and Lipoprotein Lipase polymorphism. As exemplified herein, known markers are shown to have particular correlation with certain groups, such as a particular ethnicity or race or one sex. Such correlations will then permit development of better diagnostic tests and treatment regimens.
- These methods are valuable for identifying one or more genetic markers whose frequency changes within the population as a function of age, ethnic group, sex or some other criteria. This can allow the identification of previously unknown polymorphisms and ultimately a gene or pathway involved in the onset and progression of disease.
- The databases and methods provided herein permit, among other things, identification of components, particularly key components, of a disease process by understanding its genetic underpinnings and also permit an understanding of processes, such as individual drug responses. The databases and methods provided herein also can be used in methods involving elucidation of pathological pathways, in developing new diagnostic assays, identifying new potential drug targets, and in identifying new drug candidates.
- The methods and databases can be used with experimental procedures, including, but are not limited to, in silico SNP identification, in vitro SNP identification/verification, genetic profiling of large populations, and in biostatistical analyses and interpretations.
- Also provided herein, are combinations that contain a database provided herein and a biological sample from a subject in the database, and typically biological samples from all subjects or a plurality of subjects in the database. Collections of the tissue and body fluid samples are also provided.
- Also, provided herein, are methods for determining a genetic marker that correlates with age, comprising identifying a polymorphism and determining the frequency of the polymorphism with increasing age in a healthy population.
- Further provided herein are methods for determining whether a genetic marker correlates with susceptibility to morbidity, early mortality, or morbidity and early mortality, comprising identifying a polymorphism and determining the frequency of the polymorphism with increasing age in a healthy population.
- Any of the methods herein described can be used out in a multiplex format.
- Also provided are an apparatus and process for accurately identifying genetic information. It is another object herein that genetic information be extracted from genetic data in a highly automated manner. Therefore, to overcome the deficiencies in the known conventional systems, methods and apparatus for identifying a biological sample are provided.
- Briefly, the method and system for identifying a biological sample generates a data set indicative of the composition of the biological sample. In a particular example, the data set is DNA spectrometry data received from a mass spectrometer. The data set is denoised, and a baseline is deleted. Since possible compositions of the biological sample can be known, expected peak areas can be determined. Using the expected peak areas, a residual baseline is generated to further correct the data set. Probable peaks are then identifiable in the corrected data set, which are used to identify the composition of the biological sample. In a disclosed example, statistical methods are employed to determine the probability that a probable peak is an actual peak, not an actual peak, or that the data too inconclusive to call.
- Advantageously, the method and system for identifying a biological sample accurately makes composition calls in a highly automated manner. In such a manner, complete SNP profile information, for example, can be collected efficiently. More importantly, the collected data are analyzed with highly accurate results. For example, when a particular composition is called, the result can be relied upon with great confidence. Such confidence is provided by the robust computational process employed
- FIG. 1 depicts an exemplary sample bank.
Panel 1 shows the samples as a function of sex and ethnicity.Panel 2 shows the Caucasians as a function of age.Panel 3 shows the Hispanics as a function of age. - FIGS. 2A and 2C show an age- and sex-distribution of the 291S allele of the lipoprotein lipase gene in which a total of 436 males and 589 females were investigated. FIG. 2B shows an age distribution for the 436 males.
- FIG. 3 is an exemplary questionnaire for population-based sample banking.
- FIG. 4 depicts processing and tracking of blood sample components.
- FIG. 5 depicts the allelic frequency of “sick” alleles and “healthy” alleles as a function of age. It is noted that the relative frequency of healthy alleles increases in a population with increasing age.
- FIG. 6 depicts the age-dependent distribution of ApoE genotypes (see, Schächter et al. (1994)Nature Genetics 6:29-32).
- FIG. 7A-D depicts age-related and genotype frequency of the p53 (tumor suppressor)
codon 72 among the Caucasian population in the database. *R72 and *P72 represent the frequency of the allele in the database population. R72, R72P, and P72 represent the genotypes of the individuals in the population. The frequency of the homozygous P72 allele drops from 6.7% to 3.7% with age. - FIG. 8 depicts the allele and genotype frequencies of the p21 S31R allele as a function of age.
- FIG. 9 depicts the frequency of the
FVII Allele 353Q in pooled versus individual samples. - FIG. 10 depicts the frequency of the CETP (cholesterol ester transfer protein) allele in pooled versus individual samples.
- FIG. 11 depicts the frequency of the plasminogen activator inhibitor-1 (PAI-1) 5G in pooled versus individual samples.
- FIG. 12 shows mass spectra of the samples and the ethnic diversity of the PAI-1 alleles.
- FIG. 13 shows mass spectra of the samples and the ethnic diversity of the CETP 405 alleles.
- FIG. 14 shows mass spectra of the samples and the ethnic diversity of the Factor VII 353 alleles.
- FIG. 15 shows ethnic diversity of PAI-1, CETP and Factor VII using the pooled DNA samples.
- FIG. 16 shows the p53-Rb pathway and the relationships among the various factors in the pathway.
- FIG. 17, which is a block diagram of a computer constructed to provide and process the databases described herein, depicts a typical computer system for storing and sorting the databases provided herein and practicing the methods provided herein.
- FIG. 18 is a flow diagram that illustrates the processing steps performed using the computer illustrated in FIG. 17, to maintain and provide access to the databases for identifying polymorphic genetic markers.
- FIG. 19 is a histogram showing the allele and genotype distribution in the age and sex stratified Caucasian population for the AKAP10-1 locus. Bright green bars show frequencies in individuals younger than 40 years. Dark green bars show frequencies in individuals older than 60 years.
- FIG. 20 is a histogram showing the allele and genotype distribution in the age and sex stratified Caucasian population for the AKAP10-5 locus. Bright green bars show frequencies in individuals younger than 40 years; dark green bars show frequencies in individuals older than 60 years.
- FIG. 21 is a histogram showing the allele and genotype distribution in the age and sex stratified Caucasian population for the h-msrA locus. Genotype difference between male age groups is significant. Bright green bars show frequencies in individuals younger than 40 years. Dark green bars show frequencies in individuals older than 60 years.
- FIG. 22A-D is a sample data collection questionnaire used for the healthy database.
- FIG. 23 is a flowchart showing processing performed by the computing device of FIG. 24 when performing genotyping of sense strands and antisense strands from assay fragments.
- FIG. 24 is a block diagram showing a system provided herein;
- FIG. 25 is a flowchart of a method of identifying a biological sample provided herein;
- FIG. 26 is a graphical representation of data from a mass spectrometer;
- FIG. 27 is a diagram of wavelet transformation of mass spectrometry data;
- FIG. 28 is a graphical representation of
wavelet stage 0 hi data; - FIG. 29 is a graphical representation of
stage 0 noise profile; - FIG. 30 is a graphical representation of generating stage noise standard deviations;
- FIG. 31 is a graphical representation of applying a threshold to data stages;
- FIG. 32 is a graphical representation of a sparse data set;
- FIG. 33 is a formula for signal shifting;
- FIG. 34 is a graphical representation of a wavelet transformation of a denoised and shifted signal;
- FIG. 35 is a graphical representation of a denoised and shifted signal;
- FIG. 36 is a graphical representation of removing peak sections;
- FIG. 37 is a graphical representation of generating a peak free signal;
- FIG. 38 is a block diagram of a method of generating a baseline correction;
- FIG. 39 is a graphical representation of a baseline and signal;
- FIG. 40 is a graphical representation of a signal with baseline removed;
- FIG. 41 is a table showing compressed data;
- FIG. 42 is a flowchart of method for compressing data;
- FIG. 43 is a graphical representation of mass shifting;
- FIG. 44 is a graphical representation of determining peak width;
- FIG. 45 is a graphical representation of removing peaks;
- FIG. 46 is a graphical representation of a signal with peaks removed;
- FIG. 47 is a graphical representation of a residual baseline;
- FIG. 48 is a graphical representation of a signal with residual baseline removed;
- FIG. 49 is a graphical representation of determining peak height;
- FIG. 50 is a graphical representation of determining signal-to-noise for each peak;
- FIG. 51 is a graphical representation of determining a residual error for each peak;
- FIG. 52 is a graphical representation of peak probabilities;
- FIG. 53 is a graphical representation of applying an allelic ratio to peak probability;
- FIG. 54 is a graphical representation of determining peak probability;
- FIG. 55 is a graphical representation of calling a genotype;
- FIG. 56 is a flowchart showing a statistical procedure for calling a genotype;
- FIG. 57 is a flowchart showing processing performed by the computing device of FIG. 1 when performing standardless genotyping; and
- FIG. 58 is graphical representation of applying an allelic ratio to peak probability for standardless genotype processing.
- Definitions
- Unless defined otherwise, all technical and scientific terms used herein have the same meaning as is commonly understood by one of ordinary skill in the art to which this invention belongs. All patents, applications, published applications and other publications and sequences from GenBank and other databases referred to herein throughout the disclosure are incorporated by reference in their entirety.
- As used herein, a biopolymer includes, but is not limited to, nucleic acid, proteins, polysaccharides, lipids and other macromolecules. Nucleic acids include DNA, RNA, and fragments thereof. Nucleic acids can be derived from genomic DNA, RNA, mitochondrial nucleic acid, chloroplast nucleic acid and other organelles with separate genetic material.
- As used herein, morbidity refers to conditions, such as diseases or disorders, that compromise the health and well-being of an organism, such as an animal. Morbidity susceptibility or morbidity-associated genes are genes that, when altered, for example, by a variation in nucleotide sequence, facilitate the expression of a specific disease clinical phenotype. Thus, morbidity susceptibility genes have the potential, upon alteration, of increasing the likelihood or general risk that an organism will develop a specific disease.
- As used herein, mortality refers to the statistical likelihood that an organism, particularly an animal, will not survive a full predicted lifespan. Hence, a trait or a marker, such as a polymorphism, associated with increased mortality is observed at a lower frequency in older than younger segments of a population.
- As used herein, a polymorphism, e.g. genetic variation, refers to a variation in the sequence of a gene in the genome amongst a population, such as allelic variations and other variations that arise or are observed. Thus, a polymorphism refers to the occurrence of two or more genetically determined alternative sequences or alleles in a population. These differences can occur in coding and non-coding portions of the genome, and can be manifested or detected as differences in nucleic acid sequences, gene expression, including, for example transcription, processing, translation, transport, protein processing, trafficking, DNA synthesis, expressed proteins, other gene products or products of biochemical pathways or in post-translational modifications and any other differences manifested amongst members of a population. A single nucleotide polymorphism (SNP) refers to a polymorphism that arises as the result of a single base change, such as an insertion, deletion or change in a base.
- A polymorphic marker or site is the locus at which divergence occurs. Such site can be as small as one base pair (an SNP). Polymorphic markers include, but are not limited to, restriction fragment length polymorphisms, variable number of tandem repeats (VNTR's), hypervariable regions, minisatellites, dinucleotide repeats, trinucleotide repeats, tetranucleotide repeats and other repeating patterns, simple sequence repeats and insertional elements, such as Alu. Polymorphic forms also are manifested as different mendelian alleles for a gene. Polymorphisms can be observed by differences in proteins, protein modifications, RNA expression modification, DNA and RNA methylation, regulatory factors that alter gene expression and DNA replication, and any other manifestation of alterations in genomic nucleic acid or organelle nucleic acids.
- As used herein, a healthy population refers to a population of organisms, including but are not limited to, animals, bacteria, viruses, parasites, plants, eubacteria, and others, that are disease free. The concept of disease-free is a function of the selected organism. For example, for mammals it refers to a subject not manifesting any disease state. Practically a healthy subject, when human, is defined as human donor who passes blood bank criteria to donate blood for eventual use in the general population. These criteria are as follows: free of detectable viral, bacterial, mycoplasma, and parasitic infections; not anemic; and then further selected based upon a questionnaire regarding history (see FIG. 3). Thus, a healthy population represents an unbiased population of sufficient health to donate blood according to blood bank criteria, and not further selected for any disease state. Typically such individuals are not taking any medications. For plants, for example, it is a plant population that does not manifest diseases pathology associated with plants. For bacteria it is a bacterial population replicating without environmental stress, such as selective agents, heat and other pathogens.
- As used herein, a healthy database (or healthy patient database) refers to a database of profiles of subjects that have not been pre-selected for any particular disease. Hence, the subjects that serve as the source of data for the database are selected, according to predetermined criteria, to be healthy. In contrast to other such databases that have been pre-selected for subjects with a particular disease or other characteristic, the subjects for the database provided herein are not so-selected. Also, if the subjects do manifest a disease or other condition, any polymorphism discovered or characterized should be related to an independent disease or condition. In a one embodiment, where the subjects are human, a healthy subject manifests no disease symptoms and meets criteria, such as those set by blood banks for blood donors.
- Thus, the subjects for the database are a population of any organism, including, but are not limited to, animals, plants, bacteria, viruses, parasites and any other organism or entity that has nucleic acid. Among subjects are mammals, such as, although not necessarily, humans. Such a database can capture the diversity of a population, thus providing for discovery of rare polymorphisms.
- As used herein, a profile refers to information relating to, but not limited to and not necessarily including all of, age, sex, ethnicity, disease history, family history, phenotypic characteristics, such as height and weight and other relevant parameters. A sample collect information form is shown in FIG. 22, which illustrates profile intent.
- As used herein, a disease state is a condition or abnormality or disorder that can be inherited or result from environmental stresses, such as toxins, bacterial, fungal and viral infections.
- As used herein, set of non-selected subjects means that the subjects have not been pre-selected to share a common disease or other characteristic. They can be selected to be healthy as defined herein.
- As used herein, a phenotype refers to a set of parameters that includes any distinguishable trait of an organism. A phenotype can be physical traits and can be, in instances in which the subject is an animal, a mental trait, such as emotional traits. Some phenotypes can be determined by observation elicited by questionnaires (see, e.g., FIGS.3 and 22) or by referring to prior medical and other records. For purposes herein, a phenotype is a parameter around which the database can be sorted.
- As used herein, a parameter is any input data that will serve as a basis for sorting the database. These parameters will include phenotypic traits, medical histories, family histories and any other such information elicited from a subject or observed about the subject. A parameter can describe the subject, some historical or current environmental or social influence experienced by the subject, or a condition or environmental influence on someone related to the subject. Paramaters include, but are not limited to, any of those described herein, and known to those of skill in the art.
- As used herein, haplotype refers to two or polymorphism located on a single DNA strand. Hence, haplotyping refers to identification of two or more polymorphisms on a single DNA strand. Haplotypes can be indicative of a phenotype. For some disorders a single polymorphism can suffice to indicate a trait; for others a plurality (i.e., a haplotype) can be needed. Haplotyping can be performed by isolating nucleic acid and separating the strands. In addition, when using enzymes such a certain nucleases, that produce, different size fragments from each strand, strand separation is not needed for haplotyping.
- As used herein, pattern with reference to a mass spectrum or mass spectrometric analyses, refers to a characteristic distribution and number of signals (such peaks or digital representations thereof).
- As used herein, signal in the context of a mass spectrum and analysis thereof refers to the output data, which the number or relative number of moleucles having a particular mass. Signals include “peaks” and digital representations thereof.
- As used herein, adaptor, when used with reference to haplotyping using Fen ligase, refers to a nucleic acid that specifically hybridizes to a polymorphism of interest. An adaptor can be partially double-stranded. An adaptor complex is formed when an adaptor hybridizes to its target.
- As used herein, a target nucleic acid refers to any nucleic acid of interest in a sample. It can contain one or more nucleotides.
- As used herein, standardless analysis refers to a determination based upon an internal standard. For example, the frequency of a polymorphism can be determined herein by comparing signals within a single mass spectrum.
- As used herein, amplifying refers to methods for increasing the amount of a bipolymer, especially nucleic acids. Based on the 5′ and 3′ primers that are chosen, amplication also serves to restrict and define the region of the genome which is subject to analysis. Amplification can be performed by any method known to those skilled in the art, including use of the polymerase chain reaction (PCR) etc. Amplification, e.g., PCR must be done quantitatively when the frequency of polymorphism is required to be determined.
- As used herein, cleaving refers to non-specific and specific fragmentation of a biopolymer.
- As used herein, multiplexing refers to the simultaneous detection of more than one polymorphism. Methods for performing multiplexed reactions, particularly in conjunction with mass spectrometry are known (see, e.g., U.S. Pat. Nos. 6,043,031, 5,547,835 and International PCT application No. WO 97/37041).
- As used herein, reference to mass spectrometry encompasss any suitable mass spectrometric format known to those of skill in the art. Such formats iniude, but are not limited to, Matrix-Assisted Laser Desorption/Ionization, Time-of-Flight (MALDI-TOF), Electrospray (ES), IR-MALDI (see, e.g., published International PCT application No.99/57318 and U.S. Pat. No. 5,118,937), Ion Cyclotron Resonance (ICR), Fourier Transform and combinations thereof. MALDI, particular UV and IR, are among the formats contemplated.
- As used herein, mass spectrum refers to the presentation of data obtained from analyzing a biopolymer or fragment thereof by mass spectrometry either graphically or encoded numerically.
- As used herein, a blood component is a component that is separated from blood and includes, but is not limited to red blood cells and platelets, blood clotting factors, plasma, enzymes, plasminogen, immunoglobulins. A cellular blood component is a component of blood, such as a red blood cell, that is a cell. A blood protein is a protein that is normally found in blood. Examples of such proteins are blood factors VII and VII. Such proteins and components are well-known to those of skill in the art.
- As used herein, plasma can be prepared by any method known to those of skill in the art. For example, it can be prepared by centrifuging blood at a force that pellets the red cells and forms an interface between the red cells and the buffy coat, which contains leukocytes, above which is the plasma. For example, typical platelet concentrates contain at least about 10% plasma.
- Blood can be separated into its components, including, but not limited to, plasma, platelets and red blood cells by any method known to those of skill in the art. For example, blood can be centrifuged for a sufficient time and at a sufficient acceleration to form a pellet containing the red blood cells. Leukocytes collect primarily at the interface of the pellet and supernatant in the buffy coat region. The supernatant, which contains plasma, platelets, and other blood components, can then be removed and centrifuged at a higher acceleration, whereby the platelets pellet.
- As used herein, p53 is a cell cycle control protein that assesses DNA damage and acts as a transcription factor regulation gene which control cell growth, DNA repair and apoptosis. The p53 mutations have been found in a wide variety of different cancers, including all of the different types of leukemia, with varying frequency. The loss of normal p53 functions results in genomic instability and uncontrolled growth of the host cell.
- As used herein, p21 is a cyclin-dependent kinase inhibitor, associated with G1 phase arrest of normal cells. Expression triggers apoptosis or programmed cell death and has been associated with Wilms' tumor, a pediatric kidney cancer.
- As used herein, Factor VII is a serine protease involved the extrinsic blood coagulation cascade. This factor is activated by thrombin and works with tissue factor (Factor III) in the processing of Factor X to Factor Xa. Evidence has supported an association between polymorphisms in the gene and increase Factor VII activity which can result in an elevated risk of ischemic cardiovascular disease including myocardial infarction.
- As used herein, a relational database stores information in a form representative of matrices, such as two-dimensional tables, including rows and columns of data, or higher dimensional matrices. For example, in one embodiment, the relational database has separate tables each with a parameter. The tables are linked with a record number, which also acts as an index. The database can be searched or sorted by using data in the tables and is stored in any suitable storage medium, such as floppy disk, CD rom disk, hard drive or other suitable medium.
- As used herein, a bar codes refers any array of optically readable marks of any desired size and shape that are arranged in a reference context or frame of, typically, although not necessarily, one or more columns and one or more rows. For purposes herein, the bar code refers to any symbology, not necessary “bar” but can include dots, characters or any symbol or symbols.
- As used herein, symbology refers to an identifier code or symbol, such as a bar code, that is linked to a sample. The index will reference each such symbology. The symbology is any code known or designed by the user. The symbols are associated with information stored in the database. For example, each sample can be uniquely identified with an encoded symbology. The parameters, such as the answers to the questions and subsequent genotypic and other information obtained upon analysis of the samples is included in the database and associated with the symbology. The database is stored on any suitable recording medium, such as a hard drive, a floppy disk, a tape, a CD ROM, a DVD disk and any other suitable medium.
- Databases
- Human genotyping is currently dependent on collaborations with hospitals, tissues banks and research institutions that provide samples of disease tissue. This approach is based on the concept that the onset and/or progression of diseases can be correlated with the presence of a polymorphisms or other genetic markers. This approach does not consider that disease correlated with the presence of specific markers and the absence of specific markers. It is shown herein that identification and scoring of the appearance and disappearance of markers is possible only if these markers are measured in the background of healthy subjects where the onset of disease does not mask the change in polymorphism occurrence. Databases of information from disease populations suffer from small sample size, selection bias and heterogeneity. The databases provided herein from healthy populations solve these problems by permitting large sample bands, simple selection methods and diluted heterogeneity.
- Provided herein are first databases of parameters, associated with non-selected, particularly healthy, subjects. Also provided are combinations of the databases with indexed samples obtained from each of the subjects. Further provided are databases produced from the first databases. These contain, in addition to the original parameters, information, such as genotypic information, including, but are not limited to, genomic sequence information, derived from the samples.
- The databases, which are herein designated healthy databases, are so-designated because they are not obtained from subjects pre-selected for a particular disease. Hence, although individual members can have a disease, the collection of individuals is not selected to have a particular disease.
- The subjects from whom the parameters are obtained comprise either a set of subjects who are randomly selected across, typically, all populations, or are pre-selected to be disease-free or healthy. As a result, the database is not selected to be representative of any pre-selected phenotype, genotype, disease or other characteristic. Typically the number of subjects from which the database is prepared is selected to produce statistically significant results when used in the methods provided herein. Generally, the number of subjects will be greater than 100, 200, and typically than 1000. The precise number can be empirically determined based upon the frequency of the parameter(s) that can be used to sort the database. Generally the population can have at least 50, at least 100, at least 200, at least 500, at least 1000, at least 5000 or at least 10,000 or more subjects.
- Upon identification of a collection of subjects, information about each subject is recorded and associated with each subject as a database. The information associated with each of the subjects, includes, but is not limited to, information related to historical characteristics of the subjects, phenotypic characteristics and also genotypic characteristics, medical characteristics and any other traits and characteristics about the subject that can be determined. This information will serve as the basis for sorting the database.
- In an exemplary embodiment, the subjects are mammals, such as humans, and the information relates to one or more of parameters, such as age, sex, medical history, ethnicity and any other factor. Such information, when the animals are humans, for example, can be obtained by a questionnaire and by observations about the individual, such as hair color, eye color and other characteristics. Genotypic information can be obtained from tissue or other body and body fluid samples from the subject.
- The healthy genomic database can include profiles and polymorphisms from healthy individuals from a library of blood samples where each sample in the library is an individual and separate blood or other tissue sample. Each sample in the database is profiled as to the sex, age, ethnic group, and disease history of the donor.
- The databases are generated by first identifying healthy populations of subjects and obtaining information about each subject that will serve as the sorting parameters for the database. This information can be entered into a storage medium, such as the memory of a computer.
- The information obtained about each subject in a population used for generating the database is stored in a computer memory or other suitable storage medium. The information is linked to an identifier associated with each subject. Hence the database will identify a subject, for example by a datapoint representative of a bar code, and then all information, such as the information from a questionnaire, regarding the individual is associated with the datapoint. As the information is collected the database is generated.
- Thus, for example, profile information, such as subject histories obtained from questionnaires, is collected in the database. The resulting database can be sorted as desired, using standard software, such as by age, sex and/or ethnicity. An exemplary questionnaire for subjects from whom samples are to be obtained is shown in FIGS.22A-D. Each questionnaire, for example, can be identified by a bar code, particularly a machine readable bar code for entry into the database. After a subject provides data and is deemed to be healthy (i.e., meets standards for blood donation), the data in the questionnaire is entered into the database and is associated with the bar code. A tissue, cell or blood sample is obtained from the subject.
- FIG. 4 exemplifies processing and tracking of blood sample components. Each component is tracked with a bar code, dated, is entered into the database and associated with the subject and the profile of the subject. Typically, the whole blood is centrifuged to produce plasma, red blood cells (which pellet) and leukocytes found in the buffy coat which layers in between. Various samples are obtained and coded with a bar code and stored for use as needed.
- Samples are collected from the subjects. The samples include, but are not limited to, tissues, cells, and fluids, such as nucleic acid, blood, plasma, amniotic fluid, synovial fluid, urine, saliva, aqueous humor, sweat, sperm samples and cerebral spinal fluid. It is understood that the particular set of samples depends upon the organisms in the population.
- Once samples are obtained the collection can be stored and, in some embodiments, each sample is indexed with an identifier, particularly a machine readable code, such as a bar code. For analyses, the samples or components of the samples, particularly biopolymers and small molecules, such as nucleic acids and/or proteins and metabolites, are isolated.
- After samples are analyzed, this information is entered into the database in the memory of the storage medium and associated with each subject. This information includes, but is not limited to, genotypic information. Particularly, nucleic acid sequence information and other information indicative of polymorphisms, such as masses of PCR fragments, peptide fragment sequences or masses, spectra of biopolymers and small molecules and other indicia of the structure or function of a gene, gene product or other marker from which the existence of a polymorphism within the population can be inferred.
- In an exemplary embodiment, a database can be derived from a collection of blood samples. For example, FIG. 1(see, also FIG. 10) shows the status of a collection of over 5000 individual samples. The samples were processed in the laboratory following SOP (standard operating procedure) guidelines. Any standard blood processing protocol can be used.
- For the exemplary database described herein, the following criteria were used to select subjects:
- No testing is done for infectious agents.
- Age: At least 17 years old
- Weight: Minimum of 110 pounds
- Permanently Disqualified:
- History of hepatitis (after age 11)
- Leukemia Lymphoma
- Human immunodeficiency virus (HIV),AIDS
- Chronic kidney disease
- Temporarily Disqualified:
- Pregnancy—until six weeks after delivery, miscarriage or abortion
- Major surgery or transfusions—for one year
- Mononucleosis—until complete recovery
- Prior whole blood donation—for eight weeks
- Antibiotics by injection for one week; by mouth, for forty-eight hours, except antibiotics for skin complexion;
- 5 year Deferment:
- Internal cancer and skin cancer if it has been removed, is healed and there is no recurrence
- These correspond to blood bank criteria for donating blood and represent a healthy population as defined herein for a human healthy database.
- 5 Structure of the Database
- Any suitable database structure and format known to those of skill in the art can be employed. For example, a relational database is a an exemplary format in which data are stored as matrices or tables of the parameters linked by an indexer that identifies each subject. Software for preparing and manipulating, including sorting the database, can be readily developed or adapted from commercially available software, such as Microsoft Access.
- Quality Control
- Quality control procedures can be implemented. For example, after collection of samples, the quality of the collection in the bank can be assessed. For example, mix-up of samples can be checked by testing for known markers, such as sex. After samples are separated by ethnicity, samples are randomly tested for a marker associated with a particular ethnicity, such as HLA DQA1 group specific component, to assess whether the samples have been properly sorted by ethnic group. An exemplary sample bank is depicted in FIG. 4.
- Obtaining Genotypic Data and Other Parameters for the Database
- After informational and historical parameters are entered into the database, material from samples obtained from each subject, is analyzed. Analyzed material include proteins, metabolites, nucleic acids, lipids and any other desired constituent of the material. For example, nucleic acids, such as genomic DNA, can be analyzed by sequencing.
- Sequencing can be performed using any method known to those of skill in the art. For example, if a polymorphism is identified or known, and it is desired to assess its frequency or presence among the subjects in the database, the region of interest from each sample can be isolated, such as by PCR or restriction fragments, hybridization or other suitable method known to those of skill in the art and sequenced. For purposes herein, sequencing analysis can be effected using mass spectrometry (see, e.g., U.S. Pat. Nos. 5,547,835, 5,622,824, 5,851,765, and 5,928,906). Nucleic acids also can be sequenced by hybridization (see, e.g., U.S. Pat. Nos. 5,503,980, 5,631,134, 5,795,714) and including analysis by mass spectrometry (see, U.S. application Ser. Nos. 08/419,994 and 09/395,409).
- In other detection methods, it is necessary to first amplify prior to identifying the allelic variant. Amplification can be performed, e.g., by PCR and/or LCR, according to methods known in the art. In one embodiment, genomic DNA of a cell is exposed to two PCR primers and amplification for a number of cycles sufficient to produce the required amount of amplified DNA. In some embodiments, the primers are located between 150 and 350 base pairs apart.
- Alternative amplification methods include: self sustained sequence replication (Guatelli, J. C. et al., 1990, Proc. Natl. Acad. Sci. U.S.A. 87:1874-1878), transcriptional amplification system (Kwoh, D. Y. et al., 1989, Proc. Natl. Acad. Sci. U.S.A. 86:1173-1177), Q-Beta Replicase (Lizardi, P. M. et al., 1988, Bio/Technology 6:1197), or any other nucleic acid amplification method, followed by the detection of the amplified molecules using techniques well known to those of skill in the art. These detection schemes are especially useful for the detection of nucleic acid molecules if such molecules are present in very low numbers.
- Nucleic acids also can be analyzed by detection methods and protocols, particularly those that rely on mass spectrometry (see, e.g., U.S. Pat. No. 5,605,798, 6,043,031, allowed copending U.S. application Ser. No. 08/744,481, U.S. application Ser. No. 08/990,851 and International PCT application No. WO 99/31278, International PCT application No. WO 98/20019). These methods can be automated (see, e.g., copending U.S. application Ser. No. 09/285,481 and published International PCT application No. PCT/US00/08111, which describes an automated process line). Among the methods of analysis herein are those involving the primer oligo base extension (PROBE) reaction with mass spectrometry for detection (described herein and elsewhere, see e.g., U.S. Pat. No. 6,043,031; see, also U.S. application Ser. Nos. 09/287,681, 09/287,682, 09/287,141 and 09/287,679, allowed copending U.S. application Ser. No. 08/744,481, International PCT application No. PCT/US97/20444, published as International PCT application No. WO 98/20019, and based upon U.S. application Ser. Nos. 08/744,481, 08/744,590, 08/746,036, 08/746,055, 08/786,988, 08/787,639, 08/933,792, 08/746,055, 08/786,988 and 08/787,639; see, also U.S. application Ser. No. 09/074,936, U.S. Pat. No. 6,024,925, and U.S. application Ser. Nos. 08/746,055 and 08/786,988, and published International PCT application No. WO 98/20020)
- A chip based format in which the biopolymer is linked to a solid support, such as a silicon or silicon-coated substrate, such as in the form of an array, is among the formats for performing the analyses is. Generally, when analyses are performed using mass spectrometry, particularly MALDI, small nanoliter volumes of sample are loaded on, such that the resulting spot is about, or smaller than, the size of the laser spot. It has been found that when this is achieved, the results from the mass spectrometric analysis are quantitative. The area under the signals in the resulting mass spectra are proportional to concentration (when normalized and corrected for background). Methods for preparing and using such chips are described in U.S. Pat. No. 6,024,925, co-pending U.S. application Ser. Nos. 08/786,988, 09/364,774, 09/371,150 and 09/297,575; see, also U.S. application Ser. No. PCT/US97/20195, which published as WO 98/20020. Chips and kits for performing these analyses are commercially available from SEQUENOM under the trademark MassARRAY. MassArray relies on the fidelity of the enzymatic primer extension reactions combined with the miniaturized array and MALDI-TOF (Matrix-Assisted Laser Desorption Ionization-Time of Flight) mass spectrometry to deliver results rapidly. It accurately distinguishes single base changes in the size of DNA fragments associated with genetic variants without tags.
- The methods provided herein permit quantitative determination of alleles. The areas under the signals in the mass spectra can be used for quantitative determinations. The frequency is determined from the ratio of the signal to the total area of all of the spectrum and corrected for background. This is possible because of the PROBE technology as described in the above applications incorporated by reference herein.
- Additional methods of analyzing nucleic acids include amplification-based methods including polymerase chain reaction (PCR), ligase chain reaction (LCR), mini-PCR, rolling circle amplification, autocatalytic methods, such as those using Qβ replicase, TAS, 3SR, and any other suitable method known to those of skill in the art.
- Other methods for analysis and identification and detection of polymorphisms, include but are not limited to, allele specific probes, Southern analyses, and other such analyses.
- The methods described below provide ways to fragment given amplified or non-amplified nucleotide sequences thereby producing a set of mass signals when mass spectrometry is used to analyze the fragment mixtures.
- Amplified fragments are yielded by standard polymerase chain methods (U.S. Pat. Nos. 4,683,195 and 4,683,202). The fragmentation method involves the use of enzymes that cleave single or double strands of DNA and enzymes that ligate DNA. The cleavage enzymes can be glycosylases, nickases, and site-specific and non site-specific nucleases, such as, but are not limited to, glycosylases, nickases and site-specific nucleases.
- Glycosylase Fragmentation Method
- DNA glycosylases specifically remove a certain type of nucleobase from a given DNA fragment. These enzymes can thereby produce abasic sites, which can be recognized either by another cleavage enzyme, cleaving the exposed phosphate backbone specifically at the abasic site and producing a set of nucleobase specific fragments indicative of the sequence, or by chemical means, such as alkaline solutions and or heat. The use of one combination of a DNA glycosylase and its targeted nucleotide would be sufficient to generate a base specific signature pattern of any given target region.
- Numerous DNA gicosylases are known, For example, a DNA glycosylase can be uracil-DNA glycolsylase (UDG) , 3-methyladenine DNA glycosylase, 3-methyladenine DNA glycosylase II, pyrimidine hydrate-DNA glycosylase, FaPy-DNA glycosylase, thymine mismatch-DNA glycosylase, hypoxanthine-DNA glycosylase, 5-Hydroxymethyluracil DNA glycosylase (HmUDG), 5-Hydroxymethylcytosine DNA glycosylase, or 1,N6-etheno-adenine DNA glycosylase (see, e.g.,, U.S. Pat. Nos. 5,536,649, 5,888, 795, 5,952,176 and 6,099,553, International PCT application Nos. WO 97/03210, WO 99/54501; see, also, Eftedal et al. (1993) Nucleic Acids Res 21:2095-2101, Bjelland and Seeberg (1987) Nucleic Acids Res. 15:2787-2801, Saparbaev et al. (1995) Nucleic Acids Res. 23:3750-3755, Bessho (1999) Nucleic Acids Res. 27:979-983) corresponding to the enzyme's modified nucleotide or nucleotide analog target. uracil-DNA glycolsylase (UDG) is an exemplary glycosylase.
- Uracil, for example, can be incorporated into an amplified DNA molecule by amplifying the DNA in the presence of normal DNA precursor nucleotides (e.g. dCTP, dATP, and dGTP) and dUTP. When the amplified product is treated with UDG, uracil residues are cleaved. Subsequent chemical treatment of the products from the UDG reaction results in the cleavage of the phosphate backbone and the generation of nucleobase specific fragments. Moreover, the separation of the complementary strands of the amplified product prior to glycosylase treatment allows complementary patterns of fragmentation to be generated. Thus, the use of dUTP and Uracil DNA glycosylase allows the generation of T specific fragments for the complementary strands, thus providing information on the T as well as the A positions within a given sequence. Similar to this, a C-specific reaction on both (complementary) strands (i.e. with a C-specific glycosylase) yields information on C as well as G positions within a given sequence if the fragmentation patterns of both amplification strands are analyzed separately. Thus, with the glycosylase method and mass spectrometry, a full series of A, C, G and T specific fragmentation patterns can be analyzed.
- Nickase Fragmentation Method
- A DNA nickase, or DNase, can be used to recognize and cleave one strand of a DNA duplex. Numerous nickases are known. Among these, for example, are nickase NY2A nickase and NYS1 nickase (Megabase) with the following cleavage sites:
- NY2A: 5′ . . . R AG . . . 3′
- 3′ . . . Y TC . . . 5′ where R=A or G and Y=C or T
- NYS1: 5′ . . . CC[A/G/T] . . . 3′
- 3′ . . . GG[T/C/A] . . . 5′.
- Fen-Ligase Fragmentation Method
- The Fen-ligase method involves two enzymes: Fen-1 enzyme and a ligase. The Fen-1 enzyme is a site-specific nuclease known as a “flap” endonuclease (U.S. Pat. Nos. 5,843,669, 5,874,283, and 6,090,606). This enzyme recognizes and cleaves DNA “flaps” created by the overlap of two oligonucleotides hybridized to a target DNA strand. This cleavage is highly specific and can recognize single base pair mutations, permitting detection of a single homologue from an individual heterozygous at one SNP of interest and then genotyping that homologue at other SNPs occurring within the fragment. Fen-1 enzymes can be Fen-1 like nucleases e.g. human, murine, and Xenopus XPG enzymes and yeast RAD2 nucleases or Fen-1 endonucleases from, for example,M. jannaschii, P. furiosus, and P. woesei. Among such enzymes are the Fen-1 enzymes.
- The ligase enzyme forms a phosphodiester bond between two double stranded nucleic acid fragments. The ligase can be DNA Ligase I or DNA Ligase IlIl (see, e.g., U.S. Pat. Nos. 5,506,137, 5,700,672, 5,858,705 and 5,976,806; see, also, Waga, et al. (1994) J. Biol. Chem. 269:10923-10934, Li et al. (1994) Nucleic Acids Res. 22:632-638, Arrand et al. (1986) J. Biol. Chem. 261:9079-9082, Lehman (1974) Science 186:790-797, Higgins and Cozzarelli (1979) Methods Enzymol. 68:50-71, Lasko et al. (1990) Mutation Res. 236:277-287, and Lindahl and Barnes (1992) Ann. Rev. Biochem. 61:251-281 ). Thermostable ligase (Epicenter Technologies), where “thermostable” denotes that the ligase retains activity even after exposure to temperatures necessary to separate two strands of DNA, are among the ligases for use herein.
- Type IIS Enzyme Fragmentation Method
- Restriction enzymes bind specifically to and cleave double-stranded DNA at specific sites within or adjacent to a particular recognition sequence. These enzymes have been classified into three groups (e.g. Types I, II, and III) as known to those of skill in the art. Because of the properties of type I and type III enzymes, they have not been widely used in molecular biological applications. Thus, for purposes herein type II enzymes are among those contemplated. Of the thousands of restriction enzymes known in the art, there are 179 different type II specificities. Of the 179 unique type II restriction endonucleases, 31 have a 4-base recognition sequence, 11 have a 5-base recognition sequence, 127 have a 6-base recognition sequence, and 10 have recognition sequences of greater than six bases (U.S. Pat. No. 5,604,098). Of category type II enzymes, type IIS is exemplified herein.
- Type IIS enzymes can be Alw XI, Bbv I,
Bce 83, Bpm I, Bsg I, Bsm AI, Bsm FI, Bsa I, Bcc I, Bcg I, Ear I, Eco 57I, Esp 3I, Fau I, Fok I, Gsu I, Hga I, Mme I, Mbo II, Sap I, and the otheres. - The Fok I enzyme endonuclease is an exemplary well characterized member of the Type IIS class (see, e.g., U.S. Pat. Nos. 5,714,330, 5,604,098, 5,436,150, 6,054,276 and 5,871,911; see, also, Szybalski et al. (1991 ) Gene 100:13-26, Wilson and Murray (1991) Ann. Rev. Genet. 25:585-627, Sugisaki et al. (1981) Gene 16:73-78, Podhajska and Szalski (1985) Gene 40:175-182. Fok I recognizes the
sequence 5′GGATG-3′ and cleaves DNA accordingly. Type IIS restriction sites can be introduced into DNA targets by incorporating the sites into primers used to amplify such targets. Fragments produced by digestion with Fok I are site specific and can be analyzed by mass spectrometry methods such as MALDI-TOF mass spectrometry, ESI-TOF mass spectrometry, and any other type of mass spectrometry well known to those of skill in the art. - Once a polymorphism has been found to correlate with a parameter such as age, age groups can be screened for polymorphisms. The possibility of false results due to allelic dropout is examined by doing comparative PCR in an adjacent region of the genome.
- Analyses
- In using the database, allelic frequencies can be determined across the population by analyzing each sample in the population individually, determining the presence or absence of allele or marker of interest in each individual sample, and then determining the frequency of the marker in the population. The database can then be sorted (stratified) to identify any correlations between the allele and a selected parameter using standard statistical analysis. If a correlation is observed, such as a decrease in a particular marker with age or correlation with sex or other parameter, then the marker is a candidate for further study, such as genetic mapping to identify a gene or pathway in which it is involved. The marker can then be correlated, for example, with a disease. Haplotying also can be carried out. Genetic mapping can be effected using standard methods and can also require use of databases of others, such as databases previously determined to be associated with a disorder.
- Exemplary analyses have been performed and these are shown in the figures, and discussed herein.
- Sample Pooling
- It has been found that using the databases provided herein, or any other database of such information, substantially the same frequencies that were obtained by examining each sample separately can be obtained by pooling samples, such as in batches of 10, 20, 50, 100, 200, 500, 1000 or any other number. A precise number can be determined empirically if necessary, and can be as low as 3.
- In one embodiment, the frequency of genotypic and other markers can be obtained by pooling samples. To do this a target population and a genetic variation to be assessed is selected, a plurality of samples of biopolymers are obtained from members of the population, and the biopolymer from which the marker or genotype can be inferred is determined or detected. A comparison of samples tested in pools and individually and the sorted results therefrom are shown in FIG. 9, which shows frequency of the
factor VII Allele 353Q. FIG. 10 depicts the frequency of the CETP Allele in pooled versus individual samples. FIG. 15 shows ethnic diversity among various ethnic groups in the database using pooled DNA samples to obtain the data. FIGS. 12-14 show mass spectra for these samples. - Pooling of test samples has application not only to the healthy databases provided herein, but also to use in gathering data for entry into any database of subjects and genotypic information, including typical databases derived from diseased populations. What is demonstrated herein, is the finding that the results achieved are statistically the same as the results that would be achieved if each sample is analyzed separately. Analysis of pooled samples by a method, such as the mass spectrometric methods provided herein, permits resolution of such data and quantitation of the results.
- For factor VII the R53Q acid polymorphism was assessed. In FIG. 9, the “individual” data represent allelic frequency observed in 92 individuals reactions. The pooled data represent the allelic frequency of the same 92 individuals pooled into a single probe reaction. The concentration of DNA in the samples of individual donors is 250 nanograms. The total concentration of DNA in the pooled samples is also 250 nanograms, where the concentration of any individual DNA is 2.7 nanograms.
- It also was shown that it is possible to reduce the DNA concentration of individuals in a pooled samples from 2.7 nanograms to 0.27 nanograms without any change in the quality of the spectrum or the ability to quantitate the amount of sample detected. Hence low concentrations of sample can be used in the pooling methods.
- Use of the Databases and Markers Identified Thereby
- The successful use of genomics requires a scientific hypothesis (i.e., common genetic variation, such as a SNP), a study design (i.e., complex disorders), samples and technology, such as the chip-based mass spectrometric analyses (see, e.g., U.S. Pat. No. 5,605,798, U.S. Pat. No. 5,777,324, U.S. Pat. No. 6,043,031, allowed copending U.S. application Ser. No. 08/744,481, U.S. application Ser. No. 08/990,851, International PCT application No. WO 98/20019, copending U.S. application Ser. No. 09/285,481, which describes an automated process line for analyses; see, also, U.S. application Ser. Nos. 08/617,256, 09/287,681, 09/287,682, 09/287,141 and 09/287,679, allowed copending U.S. application Ser. No. 08/744,481, International PCT application No. PCT/US97/20444, published as International PCT application No. WO 98/20019, and based upon U.S. application Ser. Nos. 08/744,481, 08/744,590, 08/746,036, 08/746,055, 08/786,988, 08/787,639, 08/933,792, 08/746,055, 09/266,409, 08/786,988 and 08/787,639; see, also U.S. application Ser. No. 09/074,936). All of these aspects can be used in conjunction with the databases provided herein and samples in the collection.
- The databases and markers identified thereby can be used, for example, for identification of previously unidentified or unknown genetic markers and to identify new uses for known markers. As markers are identified, these can be entered into the database to use as sorting parameters from which additional correlations can be determined.
- Previously Unidentified or Unknown Genetic Markers
- The samples in the healthy databases can be used to identify new polymorphisms and genetic markers, using any mapping, sequencing, amplification and other methodologies, and in looking for polymorphisms among the population in the database. The thus-identified polymorphism can then be entered into the database for each sample, and the database sorted (stratified) using that polymorphism as a sorting parameter to identify any patterns and correlations that emerge, such as age correlated changes in the frequency of the identified marker. If a correlation is identified, the locus of the marker can be mapped and its function or effect assessed or deduced.
- Thus, the databases here provide means for:
- identification of significantly different allelic frequencies of genetic factors by comparing the occurrence or disappearance of the markers with increasing age in population and then associating the markers with a disease or a biochemical pathway;
- identification of significantly different allelic frequencies of disease causing genetic factors by comparing the male with the female population or comparing other selected stratified populations and associating the markers with a disease or a biochemical pathway;
- identification of significantly different allelic frequencies of disease causing genetic factors by comparing different ethnic groups and associating the markers with a disease or a biochemical pathway that is known to occur in high frequency in the ethnic group;
- profiling potentially functional variants of genes through the general panmixed population stratified according to age, sex, and ethnic origin and thereby demonstrating the contribution of the variant genes to the physical condition of the investigated population;
- identification of functionally relevant gene variants by gene disequilibrium analysis performed within the general panmixed population stratified according to age, sex, and ethnic origin and thereby demonstrating their contribution to the physical condition of investigated population;
- identification of potentially functional variants of chromosomes or parts of chromosomes by linkage disequilibrium analysis performed within the general panmixed population stratified according to age, sex, and ethnic origin and thereby demonstrating their contribution to the physical condition of investigated population.
- Uses of the Identified Markers and Known Markers
- The databases can also be used in conjunction with known markers and sorted to identify any correlations. For example, the databases can be used for:
- determination and evaluation of the penetrance of medically relevant polymorphic markers;
- determination and evaluation of the diagnostic specificity of medically relevant genetic factors;
- determination and evaluation of the positive predictive value of medically relevant genetic factors;
- determination and evaluation of the onset of complex diseases, such as, but are not limited to, diabetes, hypertension, autoimmune diseases, arteriosclerosis, cancer and other diseases within the general population with respect to their causative genetic factors;
- delineation of the appropriate strategies for preventive disease treatment;
- delineation of appropriate timelines for primary disease intervention;
- validation of medically relevant genetic factors identified in isolated populations regarding their general applicability;
- validation of disease pathways including all potential target structures identified in isolated populations regarding their general applicability; and
- validation of appropriate drug targets identified in isolated populations regarding their general applicability.
- Among the diseases and disorders for which polymorphisms can be linked include, those linked to inborn errors of metabolism, acquired metabolic disorders, intermediary metabolism, oncogenesis pathways, blood clotting pathways, and DNA synthetic and repair pathways, DNA repair/replication/transcription factors and activities, e.g., such as genes related to oncogenesis, aging and genes involved in blood clotting and the related biochemical pathways that are related to thrombosis, embolism, stroke, myocardial infarction, angiogenesis and oncogenesis.
- For example, a number of diseases are caused by or involve deficient or defective enzymes in intermediary metabolism (see, e.q., Tables 1 and 2, below) that result, upon ingestion of the enzyme substrates, in accumulation of harmful metabolites that damage organs and tissues, particularly an infant's developing brain and other organs, resulting in mental retardation and other developmental disorders.
- Identification of Markers and Genes for Such Disorders is of Great Interest.
- Model Systems
- Several gene systems, p21, p53 and Lipoprotein Lipase polymorphism (N291S), were selected. The p53 gene is a tumor suppressor gene that is mutated in diverse tumor types. One common allelic variant occurs at
codon 72. A polymorphism that has been identified in the p53 gene, i.e., the R72P allele, results in an amino acid exchange, arginine to proline, atcodon 72 of the gene. - Using diseased populations, it has been shown that there are ethnic differences in the allelic distribution of these alleles among African-Americans and Caucasians in the U.S. The results here support this finding and also demonstrate that the results obtained with a healthy database are meaningful (see, FIG. 7B).
- The 291S allele leads to reduced levels of high density lipoprotein cholesterol (HDL-C) that is associated with an increased risk of males for arteriosclerosis and in particular myocardial infarction (see, Reymer et al. (1995)Nature Genetics 10:28-34).
- Both genetic polymorphisms were profiled within a part of the Caucasian population-based sample bank. For the polymorphism located in the lipoprotein lipase gene a total of 1025 unselected individuals (436 males and 589 females) were tested. Genomic DNA was isolated from blood samples obtained from the individuals.
- As shown in the Examples and figures, an exemplary database containing about 5000 subjects, answers to the questionnaire (see FIG. 3), and genotypic information has been stratified. A particular known allele has been selected, and the samples tested for the marker using mass spectrometric analyses, particularly PROBE (see the EXAMPLES) to identify polymorphisms in each sample. The population in the database has been sorted according to various parameters and correlations have been observed. For example, FIGS.2A-C, show sorting of the data by age and sex for the Lipoprotein Lipase gene in the Caucasian population in the database. The results show a decrease in the frequency of the allele with age in males but no such decrease in females. Other alleles that have been tested against the database, include, alleles of p53, p21 and factor VII. Results when sorted by age are shown in the figures.
- These examples demonstrate an effect of altered frequency of disease causing genetic factors within the general population. The scientific interpretation of those results allows prediction of medical relevance of polymorphic genetic alterations. In addition, conclusions can be drawn with regard to their penetrance, diagnostic specificity, positive predictive value, onset of disease, most appropriate onset of preventive strategies, and the general applicability of genetic alterations identified in isolated populations to panmixed populations.
- Therefore, an age- and sex-stratified population-based sample bank that is ethnically homogenous is a suitable tool for rapid identification and validation of genetic factors regarding their potential medical utility.
- Exemplary Computer System for Creating, Storing and Processing the Databases
- Systems
- Systems, including computers, containing the databases are provided herein. The computers and databases can be used in conjunction, for example, with the APL system (see, copending U.S. application Ser. No. 09/285,481), which is an automated system for analyzing biopolymers, particularly nucleic acids. Results from the APL system can be entered into the database.
- Any suitable computer system can be used. The computer system can be integrated into systems for sample analysis, such as the automated process line described herein (see, e.g., copending U.S. application Ser. No. 09/285,481).
- FIG. 17 is a block diagram of a computer constructed to provide and process the databases described herein. The processing that maintains the database and performs the methods and procedures can be performed on multiple computers all having a similar construction, or can be performed by a single, integrated computer. For example, the computer through which data are added to the database can be separate from the computer through which the database is sorted, or can be integrated with it. In either arrangement, the computers performing the processing can have a construction as illustrated in FIG. 17.
- FIG. 17 is a block diagram of an
exemplary computer 1700 that maintains the database described above and performs the methods and procedures. Eachcomputer 1700 operates under control of a central processor unit (CPU) 1702, such as a “Pentium” microprocessor and associated integrated circuit chips, available from Intel Corporation of Santa Clara, Calif., USA. A computer user can input commands and data from a keyboard anddisplay mouse 1704 and can view inputs and computer output at adisplay 1706. The display is typically a video monitor or flat panel display device. Thecomputer 1700 also includes a direct access storage device (DASD) 1707, such as a fixed hard disk drive. Thememory 1708 typically comprises volatile semiconductor random access memory (RAM). Each computer can include aprogram product reader 1710 that accepts a programproduct storage device 1712, from which the program product reader can read data (and to which it can optionally write data). The program product reader can comprise, for example, a disk drive, and the program product storage device can comprise removable storage media such as a magnetic floppy disk, an optical CD-ROM disc, a CD-R disc, a CD-RW disc, or a DVD data disc. If desired, the computers can be connected so they can communicate with each other, and with other connected computers, over anetwork 1713. Eachcomputer 1700 can communicate with the other connected computers over thenetwork 1713 through anetwork interface 1714 that enables communication over aconnection 1716 between the network and the computer. - The
computer 1700 operates under control of programming steps that are temporarily stored in thememory 1708 in accordance with conventional computer construction. When the programming steps are executed by theCPU 1702, the pertinent system components perform their respective functions. Thus, the programming steps implement the functionality of the system as described above. The programming steps can be received from theDASD 1707, through theprogram product reader 1712, or through thenetwork connection 1716. Thestorage drive 1710 can receive a program product, read programming steps recorded thereon and transfer the programming steps into thememory 1708 for execution by theCPU 1702. As noted above, the programproduct storage device 1710 can comprise any one of multiple removable media having recorded computer-readable instructions, including magnetic floppy disks and CD-ROM storage discs. Other suitable program product storage devices can include magnetic tape and semiconductor memory chips. In this way, the processing steps necessary for operation can be embodied on a program product. - Alternatively, the program steps can be received into the
operating memory 1708 over thenetwork 1713. In the network method, the computer receives data including program steps into thememory 1708 through thenetwork interface 1714 after network communication has been established over thenetwork connection 1716 by well-known methods that will be understood by those skilled in the art without further explanation. The program steps are then executed by theCPU 1702 to implement the processing of the Garment Database system. - It should be understood that all of the computers of the system and can have a construction similar to that shown in FIG. 17. Details described with respect to the FIG. 17
computer 1700 will be understood to apply to all computers of thesystem 1700. This is indicated bymultiple computers 1700 shown connected to thenetwork 1713. Any one of thecomputers 1700 can have an alternative construction, so long as they can communicate with the other computers and support the functionality described herein. - FIG. 18 is a flow diagram that illustrates the processing steps performed using the computer illustrated in FIG. 17, to maintain and provide access to the databases, such as for identifying polymorphic genetic markers. In particular, the information contained in the database is stored in computers having a construction similar to that illustrated in FIG. 17. The first step for maintaining the database, as indicated in FIG. 18, is to identify healthy members of a population. As noted above, the population members are subjects that are selected only on the basis of being healthy, and where the subjects are mammals, such as humans, they can be selected based upon apparent health and the absence of detectable infections. The step of identifying is represented by the flow diagram box numbered 1802.
- The next step, represented by the flow diagram box numbered 1804, is to obtain identifying and historical information and data relating to the identified members of the population. The information and data comprise parameters for each of the population members, such as member age, ethnicity, sex, medical history, and ultimately genotypic information. Initially, the parameter information is obtained from a questionnaire answered by each member, from whom a body tissue or body fluid sample also is obtained. The step of entering and storing these parameters into the database of the computer is represented by the flow diagram box numbered 1806. As additional information about each population member and corresponding sample is obtained, this information can be inputted into the database and can serve as a sorting parameter.
- In the next step, represented by the flow diagram box numbered 1808, the parameters of the members are associated with an indexer. This step can be executed as part of the database storage operation, such as when a new data record is stored according to the relational database structure and is automatically linked with other records according to that structure. The
step 1806 also can be executed as part of a conventional data sorting or retrieval process, in which the database entries are searched according to an input search or indexing key value to determine attributes of the data. For example, such search and sort techniques can be used to follow the occurrence of known genetic markers and then determine if there is a correlation with diseases for which they have been implicated. Examples of this use are for assessing the frequencies of the p53 and Lipoprotein Lipase polymorphisms. - Such searching of the database also can be valuable for identifying one or more genetic markers whose frequency changes within the population as a function of age, ethnic group, sex, or some other criteria. This can allow the identification of previously unknown polymorphisms and, ultimately, identification of a gene or pathway involved in the onset and progression of disease.
- In addition, the database can be used for taking an identified polymorphism and ascertaining whether it changes in frequency when the data are sorted according to a selected parameter.
- In this way, the databases and methods provided herein permit, among other things, identification of components, particularly key components, of a disease process by understanding its genetic underpinnings, and also an understanding of processes, such as individual drug responses. The databases and methods provided herein also can be used in methods involving elucidation of pathological pathways, in developing new diagnostic assays, identifying new potential drug targets, and in identifying new drug candidates.
- Morbidity and/or Early Mortality Associated Polymorphisms
- A database containing information provided by a population of healthy blood donors who were not selected for any particular disease to can be used to identify polymorphisms and the alleles in which they are present, whose frequency decreases with age. These can represent morbidity susceptibility markers and genes.
- Polymorphisms of the genome can lead to altered gene function, protein function or genome instability. To identify those polymorphisms which have a clinical relevance/utility is the goal of a world-wide scientific effort. It can be expected that the discovery of such polymorphisms will have a fundamental impact on the identification and development of novel drug compounds to cure diseases. The strategy to identify valuable polymorphisms is cumbersome and dependent upon the availability of many large patient and control cohorts to show disease association. In particular, genes that cause a general risk of the population to suffer from any disease (morbidity susceptibility genes) will escape these case/control studies entirely.
- Here described is a screening strategy to identify morbidity susceptibility genes underlying a variety of different diseases. The definition of a morbidity susceptibility gene is a gene that is expressed in many different cell types or tissues (housekeeping gene) and its altered function can facilitate the expression of a clinical phenotype caused by disease-specific susceptibility genes that are involved in a pathway specific for this disorder. In other words, these morbidity susceptibility genes predispose people to develop a distinct disease according to their genetic make-up for this disease.
- Candidates for morbidity susceptibility genes can be found at the bottom level of pathways involving transcription, translation, heat-shock proteins, protein trafficking, DNA repair, assembly systems for subcellular structures (e.g. mitochondria, peroxysomes and other cellular microbodies), receptor signaling cascades, immunology, etc. Those pathways control the quality of life at the cellular level as well as for the entire organism. Mutations/polymorphisms located in genes encoding proteins for those pathways can reduce the fitness of cells and make the organism more susceptible to express the clinical phenotype caused by the action of a disease-specific susceptibility gene. Therefore, these morbidity susceptibility genes can be potentially involved in a whole variety of different complex diseases if not in all. Disease-specific susceptibility genes are involved in pathways that can be considered as disease-specific pathways like glucose-, lipid, hormone metabolism, etc.
- The exemplified method permit, among other things, identification of genes and/or gene products involved in a man's general susceptibility to morbidity and/or mortality; use of these genes and/or gene products in studies to elucidate the genetic underpinnings of human diseases; use of these genes and/or gene products in combinatorial statistical analyses without or together with disease-specific susceptibility genes; use of these genes and/or gene products to predict penetrance of disease susceptibility genes; use of these genes and/or gene products in predisposition and/or acute medical diagnostics and use of these genes and/or gene products to develop drugs to cure diseases and/or to extend the life span of humans.
- Screening Process
- The healthy population stratified by age, gender and ethnicity, etc. is a very efficient and a universal screening tool for morbidity associated genes. Changes of allelic frequencies in the young compared to the old population are expected to indicate putative morbidity susceptibility genes. Individual samples of this healthy population base can be pooled to further increase the throughput. In an experiment, pools of young and old Caucasian females and males were applied to screen more than 400 randomly chosen single nucleotide polymorphisms located in many different genes. Candidate polymorphisms were identified if the allelic difference was greater than 8% between young and old for both or only one of the genders. The initial results were assayed again in at least one independent subsequent experiments. Repeated experiments are necessary to recognize unstable biochemical reactions, which occur with a frequency of about 2-3% and can mimic age-related allelic frequency differences. Average frequency differences and standard deviations are calculated after successful reproducibility of initial results. The final allelic frequency is then compared to a reference population of Caucasian CEPH sample pool. The result should show similar allelic frequencies in the young Caucasian population. Subsequently, the exact allele frequencies of candidates including genotype information were obtained by analyzing all individual samples. This procedure is straight forward with regard to time and cost. It enables the screening of an enormous number of SNPs. So far, several markers with a highly significant association to age were identified and described below.
- In general at least 5 individuals in a stratified population should to be screened to produce statistically significant results. The frequency of the allele is determined for an age stratified population. Chi square analysis is then performed on the allelic frequencies to determine if the difference between age groups is statistically significant. A p value less than of 0.1 is considered to represent a statistically significant difference. Typically the p value should be less than 0.05.
- Clinical Trials
- The identification of markers whose frequency in a population decreases with age also allows for better designed and balanced clinical trials. Currently, if a clinical trial utilizes a marker as a significant endpoint in a study and the marker disappears with age, then the results of the study can be inaccurate. By using methods provided herein, it can be ascertained that if a marker decreases in frequency with age. This information can be considered and controlled when designing the study. For, example, an age independent marker could be substituted in its place.
- The following examples are included for illustrative purposes only and are not intended to limit the scope of the invention.
- This example describes the use of a database containing information provided by a population of healthy blood donors who were not selected for any particular disease to determine the distribution of allelic frequencies of known genetic markers with age and by sex in a Caucasian subpopulation of the database. The results described in this example demonstrate that a disease-related genetic marker or polymorphism can be identified by sorting a healthy database by a parameter or parameters, such as age, sex and ethnicity.
- Generating a Database
- Blood was obtained by venous puncture from human subjects who met blood bank criteria for donating blood. The blood samples were preserved with EDTA at pH 8.0 and labeled. Each donor provided information such as age, sex, ethnicity, medical history and family medical history. Each sample was labeled with a barcode representing identifying information. A database was generated by entering, for each donor, the subject identifier and information corresponding to that subject into the memory of a computer storage medium using commercially available software, e.g., Microsoft Access.
- Model Genetic Markers
- The frequencies of polymorphisms known to be associated at some level with disease were determined in a subpopulation of the subjects represented in the database. These known polymorphisms occur in the p21, p53 and Lipoprotein Lipase genes. Specifically, the N291S polymorphism (N291S) of the Lipoprotein Lipase gene, which results in a substitution of a serine for an asparagine at amino acid codon 291, leads to reduced levels of high density lipoprotein cholesterol (HDL-C) that is associated with an increased risk of males for arteriosclerosis and in particular myocardial infarction (see, Reymer et al. (1995)Nature Genetics 10:28-34).
- The p53 gene encodes a cell cycle control protein that assesses DNA damage and acts as a transcription factor regulating genes that control cell growth, DNA repair and apoptosis (programmed cell death). Mutations in the p53 gene have been found in a wide variety of different cancers, including different types of leukemia, with varying frequency. The loss of normal p53 function results in genomic instability an uncontrolled cell growth. A polymorphism that has been identified in the p53 gene, i.e., the R72P allele, results in the substitution of a proline for an arginine at
amino acid codon 72 of the gene. - The p21 gene encodes a cyclin-dependent kinase inhibitor associated with G1phase arrest of normal cells. Expression of the p21 gene triggers apoptosis. Polymorphisms of the p21 gene have been associated with Wilms' tumor, a pediatric kidney cancer. One polymorphism of the p21 gene, the S31R polymorphism, results in a substitution of an arginine for a serine at
amino acid codon 31. - Database Analysis
- Sorting of Subjects According to Specific Parameters
- The genetic polymorphisms were profiled within segments of the Caucasian subpopulation of the sample bank. For p53 profiling, the genomic DNA isolated from blood from a total of 1277 Caucasian subjects age 18-59 years and 457 Caucasian subjects age 60-79 years was analyzed. For p21 profiling, the genomic DNA isolated from blood from a total of 910 Caucasian subjects age 18-49 years and 824 Caucasian subjects age 50-79 years was analyzed. For lipoprotein lipase gene profiling, the genomic DNA from a total of 1464 Caucasian females and 1470 Caucasian males under 60 years of age and a total of 478 Caucasian females and 560 Caucasian males over 60 years of age was analyzed.
- Isolation and Analysis of Genomic DNA
- Genomic DNA was isolated from blood samples obtained from the individuals. Ten milliliters of whole blood from each individual was centrifuged at 2000×g. One milliliter of the buffy coat was added to 9 ml of 155 mM NH4Cl, 10 mM KHCO3, and 0.1 mM Na2EDTA, incubated 10 min at room temperature and centrifuged for 10 min at 2000×g. The supernatant was removed, and the white cell pellet was washed in 155 mM NH4Cl, 10 mM KHCO3 and 0.1 mM Na2EDTA and resuspended in 4.5 ml of 50 mM Tris, 5 mM EDTA and 1% SDS. Proteins were precipitated from the cell lysate by 6 mM ammonium acetate, pH 7.3, and then separated from the nucleic acids by centrifugation at 3000×g. The nucleic acid was recovered from the supernatant by the addition of an equal volume of 100% isopropanol and centrifugation at 2000×g. The dried nucleic acid pellet was hydrated in 10 mM Tris, pH 7.6, and 1 mM Na2EDTA and stored at 4° C.
- Assays of the genomic DNA to determine the presence or absence of the known genetic markers were developed using the BiomassPROBE™ detection method (primer oligo base extension) reaction. This method uses a single detection primer followed by an oligonucleotide extension step to give products, which can be readily resolved by mass spectrometry, and, in particular, MALDI-TOF mass spectrometry. The products differ in length depending on the presence or absence of a polymorphism. In this method, a detection primer anneals adjacent to the site of a variable nucleotide or sequence of nucleotides, and the primer is extended using a DNA polymerase in the presence of one or more dideoxyNTPs and, optionally, one or more deoxyNTPs. The resulting products are resolved by MALDI-TOF mass spectrometry. The mass of the products as measured by MALDI-TOF mass spectrometry makes possible the determination of the nucleotide(s) present at the variable site.
- First, each of the Caucasian genomic DNA samples was subjected to nucleic acid amplification using primers corresponding to
sites 5′ and 3′ of the polymorphic sites of the p21 (S31R allele), p53 (R72P allele) and Lipoprotein Lipase (N291S allele) genes. One primer in each primer pair was biotinylated to permit immobilization of the amplification product to a solid support. Specifically, the polymerase chain reaction primers used for amplification of the relevant segments of the p21, p53 and lipoprotein lipase genes are shown below: US4p21c31-2F (SEQ ID NO: 9) and US5p21-2R (SEQ ID NO: 10) for p21 gene amplification; US4-p53-ex4-F (also shown as p53-ex4US4 (SEQ ID NO: 2)) and US5-p53/2-4R (also shown as US5P53/4R (SEQ ID NO: 3)) for p53 gene amplification; and US4-LPL-F2 (SEQ ID NO: 16) and US5-LPL-R2 (SEQ ID NO: 17) for lipoprotein lipase gene amplification. - Amplification of the respective DNA sequences was conducted according to standard protocols. For example, primers can be used in a concentration of 8 pmol. The reaction mixture (e.g.,
total volume 50 μl) can contain Taq-polymerase including 10×buffer and dTNPs. Cycling conditions for polymerase chain reaction amplification can typically be initially 5 min. at 95° C., followed by 1 min. at 94° C., 45 sec at 53° C., and 30 sec at 72° C. for 40 cycles with a final extension time of 5 min at 72° C. Amplification products can be purified by using Qiagen's PCR purification kit (No. 28106) according to manufacturer's instructions. The elution of the purified products from the column can be done in 50 μl TE-buffer (10 mM Tris, 1 mM EDTA, pH 7.5). - The purified amplification products were immobilized via a biotin-avidin linkage to streptavidin-coated beads and the double-stranded DNA was denatured. A detection primer was then annealed to the immobilized DNA using conditions such as, for example, the following: 50 μl annealing buffer (20 mM Tris, 10 mM KCl, 10 mM (NH4)2SO4, 2 mM MgSO2, 1% Triton X-100, pH 8) at 50° C. for 10 min, followed by washing of the beads three times with 200 μl washing buffer (40 mM Tris, 1 mM EDTA, 50 mM NaCl, 0.1
% Tween 20, pH 8.8) and once in 200 μl TE buffer. - The PROBE extension reaction was performed, for example, by using some components of the DNA sequencing kit from USB (No. 70770) and dNTPs or ddNTPs from Pharmacia. An exemplary protocol could include a total reaction volume of 45 μl, containing of 21 μl water, 6 μl Sequenase-buffer, 3
μl 10 mM DTT solution, 4.5 μp, 0.5 mM of three dNTPs, 4.5 μl, 2 mM the missing one ddNTP, 5.5 μl glycerol enzyme dilution buffer, 0.25 μl Sequenase 2.0, and 0.25 pyrophosphatase. The reaction can then by pipetted on ice and incubated for 15 min at room temperature and for 5 min at 37° C. The beads can be washed three times with 200 μl washing buffer and once with 60 μl of a 70 mM NH4-Citrate solution. - The DNA was denatured to release the extended primers from the immobilized template. Each of the resulting extension products was separately analyzed by MALDI-TOF mass spectrometry using 3-hydroxypicolinic acid (3-HPA) as matrix and a UV laser.
- Specifically, the primers used in the PROBE reactions are as shown below: P21/31-3 (SEQ ID NO: 12) for PROBE analysis of the p21 polymorphic site; P53/72 (SEQ ID NO: 4) for PROBE analysis of the p53 polymorphic site; and LPL-2 for PROBE analysis of the lipoprotein lipase gene polymorphic site. In the PROBE analysis of the p21 polymorphic site, the extension reaction was performed using dideoxy-C. The products resulting from the reaction conducted on a “wild-type” allele template (wherein
codon 31 encodes a serine) and from the reaction conducted on a polymorphic S31R allele template (whereincodon 31 encodes an arginine) are shown below and designated as P21/31-3 Ser (wt) (SEQ ID NO: 13) and P21/31-3 Arg (SEQ ID NO: 14), respectively. The masses for each product as can be measured by MALDI-TOF mass spectrometry are also provided (i.e., 4900.2 Da for the wild-type product and 5213.4 Da for the polymorphic product). - In the PROBE analysis of the p53 polymorphic site, the extension reaction was performed using dideoxy-C. The products resulting from the reaction conducted on a “wild-type” allele template (wherein
codon 72 encodes an arginine) and from the reaction conducted on a polymorphic R72P allele template (whereincodon 72 encodes a proline) are shown below and designated as Cod72 G Arg (wt) and Cod72 C Pro, respectively. The masses for each product as can be measured by MALDI-TOF mass spectrometry are also provided (i.e., 5734.8 Da for the wild-type product and 5405.6 Da for the polymorphic product). - In the PROBE analysis of the lipoprotein lipase gene polymorphic site, the extension reaction was performed using a mixture of ddA and ddT. The products resulting from the reaction conducted on a “wild-type” allele template (wherein codon 291 encodes an asparagine) and from the reaction conducted on a polymorphic N291S allele template (wherein codon 291 encodes a serine) are shown below and designated as 291Asn and 291Ser, respectively. The masses for each product as can be measured by MALDI-TOF mass spectrometry are also provided (i.e., 6438.2 Da for the wild-type product and 6758.4 Da for the polymorphic product).
- P53-1 (R72P)
PCR Product length: 407 bp US4-p53-ex4-F ctg aggacctggt cctctgactg (SEQ ID NO: 1) ctcttttcac ccatctacag tcccccttgc cgtcccaagc aatggatgat ttgatgctgt ccccggacga tattgaacaa tggttcactg aagacccagg tccagatgaa gctcccagaa P53/72 72R tgccagaggc tgctccccgc gtggcccctg caccagcagc tcctacaccg gcggcccctg c 72P caccagcccc ctcctggccc ctgtcatctt ctgtcccttc ccagaaaacc taccagggca gctacggttt ccgtctgggc ttcttgcatt ctgggacagc caagtctgtg acttgcacgg tcagttgccc tgaggggctg gcttccatga gacttcaa US5-p53/2-4R Primers (SEQ ID NOs: 2-4) p53-ex4FUS4 ccc agt cac gac gtt gta aaa cgc tga gga cct ggt cct ctg ac US5P53/4R agc gga taa caa ttt cac aca ggt tga agt ctc atg gaa gcc P53/72 gcc aga ggc tgc tcc cc -
Masses Product Termination: Allele ddC SEQ # Length Mass P53/72 gccagaggctgctcccc 5 17 5132.4 Cod72 G Arg gccagaggctgctccccgc 6 19 5734.8 (wt) Cod72 C Pro gccagaggctgctccccc 7 18 5405.6 - Biotinylated US5 primer is used in the PCR amplification.
- LPL-1 (N291S)
- Amino acid exchange asparagine to serine at codon 291 of the lipoprotein lipase gene.
PCR Product length: 251 bp US4-LPL-F2 (SEQ ID NO: 16) gcgctccatt catctcttca tcgactctct gttgaatgaa gaaaatccaa gtaaggccta (SEQ ID NO: 15) caggtgcagt tccaaggaag cctttgagaa agggctctgc ttgagttgta gaaagaaccg LPL-2 291N ctgcaacaat ctgggctatg agatcaataa agtcagagcc aaaagaagca gcaaaatgta g 291Scctgaagact cgttctcaga tgccc US4-LPL-R2 Primers (SEQ ID NOs: 16-18): US4-LPL-F2 ccc agt cac gac gtt gta aaa cgg cgc tcc att cat ctc ttc US5-LPL-R2 agc gga taa caa ttt cac aca ggg ggc atc tga gaa cga gtc LPL-2 caa tct ggg cta tga gat ca -
Masses Allele Product Termination: ddA, ddT SEQ # Length Mass LPL-2 caatctgggctatgagatca 19 20 6141 291 Asn caatctgggctatgagatcaa 20 21 6438.2 291 Ser caatctgggctatgagatcagt 21 22 6758.4 - Biotinylated US5 primer is used in the PCR amplification.
P21-1 (S31R) Amino acid exchange serine to arginine at codon 31 of the tumorsuppressor gene p21. Product length: 207 bp US4p21c3l-2F gtcc gtcagaaccc atgcggcagc (SEQ ID NO: 8) p21/31-3 31S aaggcctgcc gccgcctctt cggcccagtg gacagcgagc agctgagccg cgactgtgat a 31R gcgctaatgg cgggctgcat ccaggaggcc cgtgagcgat ggaacttcga ctttgtcacc gagacaccac tggaggg US5p21-2R Primers (SEQ ID NOs: 9-11) US4p21c31-2F ccc agt cac gac gtt gta aaa cgg tcc gtc aga acc cat gcg g US5p21-2R agc gga taa caa ttt cac aca ggc tcc agt ggt gtc tcg gtg ac P21/31-3 cag cga gca gct gag -
Masses Allele Product Termination: ddC SEQ # Length Mass P21/31-3 cagcgagcagctgag 12 15 4627 P21/31-3 Ser cagcgagcagctgagc 13 16 4900.2 (wt) P21/31-3 Arg cagcgagcagctgagac 14 17 5213.4 - Biotinylated US5 primer is used in the PCR amplification.
- Each of the Caucasian subject DNA samples was individually analyzed by MALDI-TOF mass spectrometry to determine the identity of the nucleotide at the polymorphic sites. The genotypic results of each assay can be entered into the database. The results were then sorted according to age and/or sex to determine the distribution of allelic frequencies by age and/or sex. As depicted in the Figures showing histograms of the results, in each case, there was a differential distribution of the allelic frequencies of the genetic markers for the p21, p53 and lipoprotein lipase gene polymorphisms.
- FIG. 8 shows the results of the p21 genetic marker assays and reveals a statistically significant decrease (from 13.3% to 9.2%) in the frequency of the heterozygous genotype (S31 R) in Caucasians with age (18-49 years of age compared to 50-79 years of age). The frequencies of the homozygous (S31 and R31) genotypes for the two age groups are also shown, as are the overall frequencies of the S31 and R31 alleles in the two age groups (designated as *S31 and *R31, respectively in the Figure).
- FIGS.7A-C show the results of the p53 genetic marker assays and reveals a statistically significant decrease (from 6.7% to 3.7%) in the frequency of the homozygous polymorphic genotype (P72) in Caucasians with age (18-59 years of age compared to 60-79 years of age). The frequencies of the homozygous “wild-type” genotype (R72) and the heterozygous genotype (R72P) for the two age groups are also shown, as are the overall frequencies of the R72 and P72 alleles in the two age groups (designated as *R72 and *P72, respectively in the Figure). These results are consistent with the observation that allele is not benign, as p53 regulates expression of a second protein, p21, which inhibits cyclin-dependent kinases (CDKs) needed to drive cells through the cell-cycle (a mutation in either gene can disrupt the cell cycle leading to increased cell division).
- FIG. 2C shows the results of the lipoprotein lipase gene genetic marker assays and reveals a statistically significant decrease (from 1.97% to 0.54%) in the frequency of the polymorphic allele (S291) in Caucasian males with age (see also Reymer et al. (1995)Nature Genetics 10:28-34). The frequencies of this allele in Caucasian females of different age groups are also shown.
- This example describes the use of MALDI-TOF mass spectrometry to analyze DNA samples of a number of subjects as individual samples and as pooled samples of multiple subjects to assess the presence or absence of a polymorphic allele (the 353Q allele) of the Factor VII gene and determine the frequency of the allele in the group of subjects. The results of this study show that essentially the same allelic frequency can be obtained by analyzing pooled DNA samples as by analyzing each sample separately and thereby demonstrate the quantitative nature of MALDI-TOF mass spectrometry in the analysis of nucleic acids.
- Factor VII
- Factor VII is a serine protease involved in the extrinsic blood coagulation cascade. This factor is activated by thrombin and works with tissue factor (Factor III) in the processing of Factor X to Factor Xa. There is evidence that supports an association between polymorphisms in the Factor VII gene and increased Factor VII activity which can result in an elevated risk of ischemic cardiovascular disease, including myocardial infarction. The polymorphism investigated in this study is R353Q (i.e., a substitution of a glutamic acid residue for an arginine residue at codon 353 of the Factor VII gene) (see Table 5).
- Analysis of DNA Samples for the Presence or Absence of the 353Q Allele of the Factor VII Gene
- Genomic DNA was isolated from separate blood samples obtained from a large number of subjects divided into multiple groups of 92 subjects per group. Each sample of genomic DNA was analyzed using the BiomassPROBE™ assay as described in Example 1 to determine the presence or absence of the 353Q polymorphism of the Factor VII gene.
- First, DNA from each sample was amplified in a polymerase chain reaction using primers F7-353FUS4 (SEQ ID NO: 24) and F7-353RUS5 (SEQ ID NO: 26) as shown below and using standard conditions, for example, as described in Example 1. One of the primers was biotinylated to permit immobilization of the amplification product to a solid support. The purified amplification products were immobilized via a biotin-avidin linkage to streptavidin-coated beads and the double-stranded DNA was denatured. A detection primer was then annealed to the immobilized DNA using conditions such as, for example, described in Example 1. The detection primer is shown as F7-353-P (SEQ ID NO: 27) below. The PROBE extension reaction was carried out using conditions, for example, such as those described in Example 1. The reaction was performed using ddG.
- The DNA was denatured to release the extended primers from the immobilized template. Each of the resulting extension products was separately analyzed by MALDI-TOF mass spectrometry. A matrix such as 3-hydroxypicolinic acid (3-HPA) and a UV laser could be used in the MALDI-TOF mass spectrometric analysis. The products resulting from the reaction conducted on a “wild-type” allele template (wherein codon 353 encodes an arginine) and from the reaction conducted on a polymorphic 353Q allele template (wherein codon 353 encodes a glutamic acid) are shown below and designated as 353 CGG and 353 CAG, respectively. The masses for each product as can be measured by MALDI-TOF mass spectrometry are also provided (i.e., 5646.8 Da for the wild-type product and 5960 Da for the polymorphic product).
- The MALDI-TOF mass spectrometric analyses of the PROBE reactions of each DNA sample were first conducted separately on each sample (250 nanograms total concentration of DNA per analysis). The allelic frequency of the 353Q polymorphism in the group of 92 subjects was calculated based on the number of individual subjects in which it was detected.
- Next, the samples from 92 subjects were pooled (250 nanograms total concentration of DNA in which the concentration of any individual DNA is 2.7 nanograms), and the pool of DNA was subjected to MALDI-TOF mass spectrometric analysis. The area under the signal corresponding to the mass of the 353Q polymorphism PROBE extension product in the resulting spectrum was integrated in order to quantitate the amount of DNA present. The ratio of this amount to total DNA was used to determine the allelic frequency of the 353Q polymorphism in the group of subjects. This type of individual sample vs. pooled sample analysis was repeated for numerous different groups of 92 different samples.
- The frequencies calculated based on individual MALDI-TOF mass spectrometric analysis of the 92 separate samples of each group of 92 are compared to those calculated based on MALDI-TOF mass spectrometric analysis of pools of DNA from 92 samples in FIG. 9. These comparisons are shown as “pairs” of bar graphs in the Figure, each pair being labeled as a separate “pool” number, e.g., P1, P16, P2, etc. Thus, for example, for P1, the allelic frequency of the polymorphism calculated by separate analysis of each of the 92 samples was 11.41%, and the frequency calculated by analysis of a pool of all of the 92 DNA samples was 12.09%.
- The similarity in frequencies calculated by analyzing separate DNA samples individually and by pooling the DNA samples demonstrates that it is possible, through the quantitative nature of MALDI-TOF mass spectrometry, to analyze pooled samples and obtain accurate frequency determinations. The ability to analyze pooled DNA samples significantly reduces the time and costs involved in the use of the non-selected, healthy databases as described herein. It has also been shown that it is possible to decrease the DNA concentration of the individual samples in a pooled mixture from 2.7 nanograms to 0.27 nanograms without any change in the quality of the spectrum or the ability to quantitate the amount of sample detected.
- Factor VII R353Q PROBE Assay
- PROBE Assay for cod353 CGG>CAG (Arg>Gln), Exon 9 G>A.
PCR fragment: 134 bp (incl. US tags; SEQ ID Nos. 22 and 23) Frequency of A allele: Europeans about 0.1, Japanese/Chinese about 0.03-0.05 (Thromb. Haemost. 1995, 73:617-22; Diabetologia 1998, 41:760-6): F7-353FUS4> 1201 GTGCCGGCTA CTCGGATGGC AGCAAGGACT CCTGCAAGGG GGACAGTGGA GGCCCACATG F7-353-P> A <F7-353RUS5 1261 CCACCCACTA CCGGGGCACG TGGTACCTGA CGGGCATCGT CAGCTGGGGC CAGGGCTGCG Primers (SEQ ID NOs: 24-26) Tmgs F7-353FUS4 CCC AGT CAC GAC GTT GTA AAA CGA TGG CAG CAA GGA CTC CTG 64° C. F7-353-P CAC ATG CCA CCC ACT ACC F7-353RUS5 AGC GGA TAA CAA TTT CAC ACA GGT GAC GAT GCC CGT CAG GTA C 64° C. -
Masses Allele Product Termination: ddG SEQ # Length Mass F7-353- P atgccacccactacc 27 18 5333.6 353 CGG cacatgccacccactaccg 28 19 5646.8 353 CAG cacatgccacccactaccag 29 20 5960 US5-bio bio- agcggataacaatttcacacagg 30 23 7648.6 - Conclusion
- The above examples demonstrate an effect of altered frequency of disease causing genetic factors within the general population. Interpretation of those results allows prediction of the medical relevance of polymorphic genetic alterations. In addition, conclusions can be drawn with regard to their penetrance, diagnostic specificity, positive predictive value, onset of disease, most appropriate onset of preventive strategies, and the general applicability of genetic alterations identified in isolated populations to panmixed populations. Therefore, an age- and sex-stratified population-based sample bank that is ethnically homogenous is a suitable tool for rapid identification and validation of genetic factors regarding their potential medical utility.
- Morbidity and Mortality Markers
- Sample Band and Initial Screening
- Healthy samples were obtained through the blood bank of San Bernardino, Calif. Donors signed prior to the blood collection a consent form and agreed that their blood will be used in genetic studies with regard to human aging. All samples were anomymized. Tracking back of samples is not possible.
- Isolation of DNA from Blood Samples of a Healthy Donor Population
- Blood is obtained from a donor by venous puncture and preserved with 1 mM EDTA pH 8.0. Ten milliliters of whole blood from each donor was centrifuged at 2000×g. One milliliter of the buffy coat was added to 9 milliters of 155 mM NH4Cl, 1 OmM KHCO3, and 0.1 mM Na2EDTA, incubated 10 minutes at room temperature and centrifuged for 10 minutes at 2000×g. The supernatant was removed, and the white cell pellet was washed in 155 mM NH4Cl, 10 mM KHCO3, and 0.1 mM Na2EDTA and resuspended in 4.5 milliliters of 50 mM Tris, 5 mM EDTA, and 1% SDS. Proteins were precipitated from the cell lysate by 6M Ammonium Acetate, pH 7.3, and separated from the nucleic acid by centrifugation 3000×g. The nucleic acid was recovered from the supernatant by the addition of an equal volume of 100% isopropanol and centrifugation at 2000×g. The dried nucleic acid pellet was hydrated in lOmM Tris pH 7.6 and 1 mM Na2EDTA and stored at 4C.
- In this study, samples were pooled as shown in Table 1. Both parents of the blood donors were of Caucasian origin.
TABLE 1 Pool ID Sex Age-range # individuals SP1 Female 18-39 years 276 SP2 Males 18-39 years 276 SP3 Females 60-69 years 184 SP4 Males 60-79 years 368 - More than 400 SNPs were tested using all four pools. After one test run 34 assays were selected to be re-assayed at least once. Finally, 10 assays showed repeatedly differences in allele frequencies of several percent and, therefore, fulfilled the criteria to be tested using the individual samples. Average allele frequency and standard deviation is tabulated in Table 2.
TABLE 2 Assay ID SP1 SP1-STD SP2 SP2-STD SP3 SP3-STD SP4 SP4-STD 47861 0.457 0.028 0.433 0.042 0.384 0.034 0.380 0.015 47751 0.276 0.007 0.403 0.006 0.428 0.052 0.400 0.097 48319 0.676 0.013 0.627 0.018 0.755 0.009 0.686 0.034 48070 0.581 0.034 0.617 0.045 0.561 n.a. 0.539 0.032 49807 0.504 0.034 0.422 0.020 0.477 0.030 0.556 0.005 49534 0.537 0.017 0.503 n.a. 0.623 0.023 0.535 0.009 49733 0.560 0.006 0.527 0.059 0.546 0.032 0.436 0.016 49947 0.754 0.008 0.763 0.047 0.736 0.052 0.689 0.025 50128 0.401 0.022 0.363 0.001 0.294 0.059 0.345 0.013 63306 0.697 0.012 0.674 0.013 0.712 0.017 0.719 0.005 - So far, 7 out of the 10 potential morbidity markers were fully analyzed. Additional information about genes in which these SNPs are located was gathered through publicly available databases, including Genbank.
- AKAPS
- Candidate morbidity and mortality markers include housekeeping genes, such as genes involved in signal transduction. Among such genes are the A-kinase anchoring proteins (AKAPs) genes, which participate in signal transduction pathways involving protein phosphorylation. Protein phosphorylation is an important mechanism for enzyme regulation and the transduction of extracellular signals across the cell membrane in eukaryotic cells. A wide variety of cellular substrates, including enzymes, membrane receptors, ion channels and transcription factors, can be phosphorylated in response to extracellular signals that interact with cells. A key enzyme in the phosphorylation of cellular proteins in response to hormones and neurotransmitters is cyclic AMP (cAMP)-dependent protein kinase (PKA). Upon activation by cAMP, PKA thus mediates a variety of cellular responses to such extracellular signals. An array of PKA isozymes are expressed in mammalian cells. The PKAs usually exist as inactive tetramers containing a regulatory (R) subunit dimer and two catalytic (C) subunits. Genes encoding three C subunits (Cα, Cβ and Cy) and four R subunits (RIα, RIβ, RIIα and RIIβ) have been identified [see Takio et al. (1982)Proc. Natl. Acad. Sci. U.S. A. 79:2544-2548; Lee et al. (1983) Proc. Natl. Acad. Sci. U.S. A. 80:3608-3612; Jahnsen et al. (1996) J. Biol. Chem. 261:12352-12361; Clegg et al. (1988) Proc. Natl. Acad. Sci. U.S.A. 85:3703-3707; and Scott (1991) Pharmacol. Ther. 50:123-145]. The type I (RI) α and type II (RII) α subunits are distributed ubiquitously, whereas RIβ and RIIβ are present mainly in brain [see. e.g., Miki and Eddy (1999) J. Biol. Chem. 274:29057-29062]. The type I PKA holoenzyme (RIα and RIβ) is predominantly cytoplasmic, whereas the majority of type II PKA (RIIα and RIIβ) associates with cellular structures and organelles [Scott (1991) Pharmacol. Ther. 50:123-1451. Many hormones and other signals act through receptors to generate cAMP which binds to the R subunits of PKA and releases and activates the C subunits to phosphorylate proteins. Because protein kinases and their substrates are widely distributed throughout cells, there are mechanisms in place in cells to localize protein kinase-mediated responses to different signals. One such mechanism involves subcellular targeting of PKAs through association with anchoring proteins, referred to as A-kinase anchoring proteins (AKAPs), that place PKAs in close proximity to specific organelles or cytoskelet al components and particular substrates thereby providing for more specific PKA interactions and localized responses [see, e.g., Scott et al. (1990) J. Biol. Chem. 265:21561-21566; Bregman et al. (1991) J. Biol. Chem. 266:7207-7213; and Miki and Eddy (1999) J. Biol. Chem. 274:29057-290621. Anchoring not only places the kinase close to the substrates, but also positions the PKA holoenzyme at sites where it can optimally respond to fluctuations in the second messenger cAMP [Mochly-Rosen (1995) Science 268:247-251; Faux and Scott (1996) Trends Biochem. Sci. 21:312-315; Hubbard and Cohen (1993) Trends Biochem. Sci. 18:172-177].
- Up to 75% of type II PKA is localized to various intracellular sites through association of the regulatory subunit (RII) with AKAPs [see, e.g., Hausken et al. (1996)J. Biol. Chem. 271:29016-290221. RII subunits of PKA bind to AKAPs with nanomolar affinity [Carr et al. (1992) J. Biol. Chem. 267:13376-13382], and many AKAP-RII complexes have been isolated from cell extracts. RI subunits of PKA bind to AKAPs with only micromolar affinity [Burton et al. (1997) Proc. Natl. Acad. Sci. U.S.A. 94:11067-110721. Evidence of binding of a PKA RI subunit to an AKAP has been reported [Miki and Eddy (1998) J. Biol. Chem 273:34384-34390] in which RIα-specific and RIα/RIIα dual specificity PKA anchoring domains were identified on FSC1/AKAP82. Additional dual specific AKAPs, referred to as D-AKAP1 and D-AKAP2, which interact with the type I and type II regulatory subunits of PKA have also been reported [Huang et al. (1997) J. Biol. Chem. 272:8057-8064; Huang et al. (1997) Proc. Natl. Acad. Sci. U.S.A. 94:11184-11189].
- More than 20 AKAPs have been reported in different tissues and species. Complementary DNAs (cDNAs) encoding AKAPs have been isolated from diverse species, ranging fromCaenorhabditis elegans and Drosophilia to human [see, e.g., Colledge and Scott (1999) Trends Cell Biol. 9:216-2211. Regions within AKAPs that mediate association with RII subunits of PKA have been identified. These regions of approximately 10-18 amino acid residues vary substantially in primary sequence, but secondary structure predictions indicate that they are likely to form an amphipathic helix with hydrophobic residues aligned along one face of the helix and charged residues along the other [Carr et al. (1991) J. Biol. Chem. 266:14188-14192; Carr et al. (1992) J. Biol. Chem. 267:13376-13382]. Hydrophobic amino acids with a long aliphatic side chain, e.g., valine, leucine or isoleucine, can participate in binding to RII subunits [Glantz et al. (1993) J. Biol. Chem. 268:12796-12804].
- Many AKAPs also have the ability to bind to multiple proteins, including other signaling enzymes. For example, AKAP79 binds to PKA, protein kinase C (PKC) and the protein phosphatase calcineurin (PP2B) [Coghlan et al. (1995)Science 267:108-112 and Klauck et al. (1996) Science 271:1589-15921. Therefore, the targeting of AKAP79 to neuronal postsynaptic membranes brings together enzymes with opposite catalytic activities in a single complex.
- AKAPs thus serve as potential regulatory mechanisms that increase the selectivity and intensity of a cAMP-mediated response. There is a need, therefore, to identify and elucidate the structural and functional properties of AKAPs in order to gain a complete understanding of the important role these proteins μplay in the basic functioning of cells.
- AKAP10
- The sequence of a human AKAP10 cDNA (also referred to as D-AKAP2) is available in the GenBank database, at accession numbers AF037439 (SEQ ID NO: 31) and NM 007202. The AKAP10 gene is located on
chromosome 17. - The sequence of a mouse D-AKAP2 cDNA is also available in the GenBank database (see accession number AF021833). The mouse D-AKAP2 protein contains an RGS domain near the amino terminus that is characteristic of proteins that interact with Gα subunits and possess GTPase activating protein-like activity [Huang et al. (1997)Proc. Natl. Acad. Sci. U.S.A. 94:11184-11189]. The human AKAP10 protein also has sequences homologous to RGS domains. The carboxy-
terminal 40 residues of the mouse D-AKAP2 protein are responsible for the interaction with the regulatory subunits of PKA. This sequence is fairly well conserved between the mouse D-AKAP2 and human AKAP10 proteins. - Polymorphisms of the Human AKAP10 Gene and Polymorphic AKAP10 Proteins
- Polymorphisms of AKAP genes that alter gene expression, regulation, protein structure and/or protein function are more likely to have a significant effect on the regulation of enzyme (particularly PKA) activity, cellular transduction of signals and responses thereto and on the basic functioning of cells than polymorphisms that do not alter gene and/or protein function. Included in the polymorphic AKAPs provided herein are human AKAP10 proteins containing differing amino acid residues at position number 646.
- Amino acid 646 of the human AKAP10 protein is located in the carboxy-terminal region of the protein within a segment that participates in the binding of R-subunits of PKAs. This segment includes the carboxy-
terminal 40 amino acids. - The amino acid residue reported for position 646 of the human AKAP10 protein is an isoleucine. Polymorphic human AKAP10 proteins provided herein have the amino acid sequence but contain residues other than isoleucine at amino acid position 646 of the protein. In particular embodiments of the polymorphic human AKAP10 proteins provided herein, the amino acid at position 646 is a valine, leucine or phenylalanine residue.
- An A to G Transition at Nucleotide 2073 of the Human AKAP10 Coding Sequence
- As described herein, an allele of the human AKAP10 gene that contains a specific polymorphism at position 2073 of the coding sequence and thereby encodes a valine at position 646 has been detected in varying frequencies in DNA samples from younger and older segments of the human population. In this allele, the A at position 2073 of the AKAP10 gene coding sequence is changed from an A to a G, giving rise to an altered sequence in which the codon for amino acid 646 changes from ATT, coding for isoleucine, to GTT, coding for valine.
- Morbidity Marker 1: Human Protein Kinase A Anchoring Protein (AKAP10-1)
- PCR Amplification and BiomassPROBE assay detection of AKAP10-1 in a healthy donor population
- PCR Amplification of Donor Population for
AKAP 10 - PCR primers were synthesized by OPERON using phosphoramidite chemistry. Amplification of the AKAP10 target sequence was carried out in single 50 μl PCR reaction with 100 ng-1 ug of pooled human genomic DNAs in a 50 μl PCR reaction. Individual DNA concentrations within the pooled samples were present in equal concentration with the final concentration ranging from 1-25 ng. Each reaction containing IX PCR buffer (Qiagen, Valencia, Calif.), 200 uM dNTPs, 1U Hotstar Taq polymerase (Qiagen, Valencia, Calif.), 4 mM MgCl2, and 25 pmol of the forward primer containing the universal primer sequence and the target
specific sequence 5′-TCTCAATCATGTGCATTGAGG-3′(SEQ ID NO: 45), 2 pmol of thereverse primer 5′-AGCGGATAACAATTTCACACAGGGATCACACAGCCATCAGCAG-3′ (SEQ ID NO: 46), and 10 pmol of a biotinylated universal primer complementary to the 5′ end of thePCR amplicon 5′-AGCGGATAACAATTTCACACAGG-3′(SEQ ID NO: 47). After an initial round of amplification with the target with the specific forward and reverse primer, the 5′ biotinylated universal primer then hybridized and acted as a reverse primer thereby introducing a 3′ biotin capture moiety into the molecule. The amplification protocol results in a 5′-biotinylated double stranded DNA amplicon and dramatically reduces the cost of high throughput genotyping by eliminating the need to 5′ biotin label each forward primer used in a genotyping. Thermal cycling was performed in 0.2 mL tubes or 96 well plate using an MJ Research Thermal Cycler (calculated temperature) with the following cycling parameters: 94° C. for 5 min; 45 cycles: 94° C. for 20 sec, 56° C. for 30 sec, 72° C. for 60 sec; 72° C. 3 min. - Immobilization of DNA
- The 50 μl PCR reaction was added to 25 ul of streptavidin coated magnetic bead (Dynal) prewashed three times and resuspended in 1M NH4Cl, 0.06M NH4OH. The PCR amplicons were allowed to bind to the beads for 15 minutes at room temperature. The beads were then collected with a magnet and the supernatant containing unbound DNA was removed. The unbound strand was released from the double stranded amplicons by incubation in 100 mM NaOH and washing of the beads three times with 10 mM Tris pH 8.0.
- BiomassPROBE Assay Analysis of Donor Population for AKAP10-1 (clone 48319)
- Genotyping using the BiomassPROBE assay methods was carried out by resuspending the DNA coated magnetic beads in 26 mM Tris-HCl pH 9.5, 6.5 mM MgCl2 and 50 mM each of dTTP and 50 mM each of ddCTP, ddATP, ddGTP, 2.5U of a thermostable DNA polymerase (Ambersham) and 20 pmol of a template specific
oligonucleotide PROBE primer 5′-CTGGCGCCCACGTGGTCAA-3′ (SEQ ID NO: 48) (Operon). Primer extension occurs with three cycles of oligonucleotide primer hybridization and extension. The extension products were analyzed after denaturation from the template with 50 mM NH4Cl and transfer of 150 nL each sample to a silicon chip preloaded with 150 nL of H3PA matrix material. The sample material was allowed to crystallize and was analyzed by MALDI-TOF (Bruker, PerSeptive). The SNP that is present in AKAP10-1 is a T to C transversion at nucleotide number 156277 of the sequence of a genomic clone of the AKAP10 gene (GenBank Accession No. AC005730) (SEQ ID NO: 36). SEQ ID NO: 35: represents the nucleotide sequence ofhuman chromosome 17, which contains the genomic nucleotide sequence of the human AKAP10 gene, and SEQ ID NO: 36 represents the nucleotide sequence ofhuman chromosome 17, which contains the genomic nucleotide sequence of the human AKAP10-1 allele. The mass of the primer used in the BioMass probe reaction was 5500.6 daltons. In the presence of the SNP, the primer is extended by the addition of ddC, which has a mass of 5773.8. The wildtype gene results in the addition of dT and ddG to the primer to produce an extension product having a mass of 6101 daltons. - The frequency of the SNP was measured in a population of age selected healthy individuals. Five hundred fifty-two (552) individuals between the ages of 18-39 years (276 females, 276 males) and 552 individuals between the ages of 60-79 (184 females between the ages of 60-69, 368 males between the age of 60-79) were tested for the presence of the polymorphism localized in the non-translated 3′ region of
AKAP 10. Differences in the frequency of this polymorphism with increasing age groups were observed among healthy individuals. Statistical analysis showed that the significance level for differences in the allelic frequency for alleles between the “younger” and the “older” populations was p=0.0009 and for genotypes was p=0.003. Differences between age groups are significant. For the total population allele significance is p=0.0009, and genotype significance is p=0.003. - This marker led to the best significant result with regard to allele and genotype frequencies in the age-stratified population. FIG. 19 shows the allele and genotype frequency in both genders as well as in the entire population. For the latter, the significance for alleles was p=0.0009 and for genotypes was p=0.003. The young and old populations were in Hardy-Weinberg equilibrium. A preferential change of one particular genotype was not observed.
- The polymorphism is localized in the non-translated 3′-region of the gene encoding the human protein kinase A anchoring protein (AKAP10). The gene is located on
chromosome 17. Its structure includes 15 exons and 14 intervening sequences (introns). The encoded protein is responsible for the sub-cellular localization of the cAMP-dependent protein kinase and, therefore, plays a key role in the G-protein mediated receptor-signaling pathway (Huang et al. PNAS (1007) 94:11184-11189). Since its localization is outside the coding region, this polymorphism is most likely in linkage disequilibrium (LD) with other non-synonymous polymorphisms that could cause amino acid substitutions and subsequently alter the function of the protein. Sequence comparison of different Genbank database entries concerning this gene revealed further six potential polymorphisms of which two are supposed to change the respective amino acid (see Table 3).TABLE 3 Exon Codon Nucleotides Amino acid 3 100 GCT > GCC Ala > Ala 4 177 AGT > GTG Met > Val 8 424 GGG > GGC Gly > Gly 10 524 CCG > CTG Pro > Leu 12 591 GTG > GTC Val > Val 12 599 CGC > CGA Arg > Arg - Morbitity Marker 2: Human Protein Kinase A Anchoring Protein (AKAP10-5)
- Discovery of AKAP10-5 Allele (SEQ ID NO: 33)
- Genomic DNA was isolated from blood (as described above) of seventeen (17) individuals with a genotype CC at the AKAP10-1 gene locus and a single heterozygous individual (CT) (as described). A target sequence in the AKAP10-1 gene which encodes the C-terminal PKA binding domain was amplified using the polymerase chain reaction. PCR primers were synthesized by OPERON using phosphoramidite chemistry. Amplification of the AKAP10-1 target sequence was carried out in individual 50 μl PCR reaction with 25 ng of human genomic DNA templates. Each reaction containing I×PCR buffer (Qiagen, Valencia, Calif.), 200 μM dNTPs, IU Hotstar Taq polymerase (Qiagen, Valencia, Calif.), 4 mM MgCl2, 25 pmol of the forward primer (Ex13F) containing the universal primer sequence and the target
specific sequence 5′-TCC CAA AGT GCT GGA ATT AC-3′ (SEQ ID NO: 53), and 2 pmol of the reverse primer (Ex14R) 5′-GTC CAA TAT ATG CAA ACA GTT G-3′ (SEQ ID NO: 54). Thermal cycling was performed in 0.2 mL tubes or 96 well plate using an MJ Research Thermal Cycler (MJ Research, Waltham, Mass.) (calculated temperature) with the following cycling parameters: 94° C. for 5 min; 45 cycles; 94° C. for 20 sec, 56° C. for 30 sec, 72° C. for 60 sec; 72° C. 3 min. After amplification the amplicons were purified using a chromatography (Mo Bio Laboratories (Solana Beach, Calif.)). - The sequence of the 18 amplicons, representing the target region, was determined using a standard Sanger cycle sequencing method with 25 nmol of the PCR amplicon, 3.2 uM
DNA sequencing primer 5′-CCC ACA GCA GTT AAT CCT TC-3′(SEQ ID NO: 55), and chain terminating dRhodamine labeled 2′, 3′ dideoxynucleotides (PE Biosystems, Foster City, Calif.) using the following cycling parameters: 96° C. for 15 seconds; 25 cycles: 55° C. for 15 seconds, 60° C. for 4 minutes. The sequencing products precipitated by 0.3M NaOAc and ethanol. The precipitate was centrifuged and dried. The pellets were resuspended in deionized formamide and separated on a 5% polyacrylimide gel. The sequence was determined using the “Sequencher” software (Gene Codes, Ann Arbor, Mich.). - The sequence of all 17 of the amplicons, which are homozygous for the AKAP10-1 SNP of the amplicons, revealed a polymorphism at nucleotide position 152171 (numbering for GenBank Accession No. AC005730 for AKAP10 genomic clone (SEQ ID NO: 35)) with A replaced by G. This SNP also can be designated as located at nucleotide 2073 of a cDNA clone of the wildtype AKAP10 (GenBank Accession No. AF037439) (SEQ ID NO: 31). The amino acid sequence of the human AKAP10 protein is provided as SEQ ID NO: 34. This single nucleotide polymorphism was designated as AKAP10-5 (SEQ ID NO: 33) and resulted in a substitution of a valine for an isoleucine residue at amino acid position 646 of the amino acid sequence of human AKAP10 (SEQ ID NO: 32).
- PCR Amplification and BiomassPROBE Assay Detection of AKAP10-5 in a Healthy Donor Population
- The healthy population stratified by age is a very efficient and a universal screening tool for morbidity associated genes by allowing for the detection of changes of allelic frequencies in the young compared to the old population. Individual samples of this healthy population base can be pooled to further increase the throughput.
- Healthy samples were obtained through the blood bank of San Bernardino, Calif. Both parents of the blood donors were of Caucasian origin. Practically a healthy subject, when human, is defined as human donor who passes blood bank criteria to donate blood for eventual use in the general population. These criteria are as follows: free of detectable viral, bacterial, mycoplasma, and parasitic infections; not anemic; and then further selected based upon a questionnaire regarding history (see FIG. 3). Thus, a healthy population represents an unbiased population of sufficient health to donate blood according to blood bank criteria, and not further selected for any disease state. Typically such individuals are not taking any medications.
- PCR primers were synthesized by OPERON using phosphoramidite chemistry. Amplification of the AKAP10 target sequence was carried out in a single 50 μl PCR reaction with 100 ng-1 μg of pooled human genomic DNAs in a 50 μl PCR reaction. Individual DNA concentrations within the pooled samples were present in equal concentration with the final concentration ranging from 1-25 ng. Each reaction contained 1×PCR buffer (Qiagen, Valencia, Calif.), 200 μM dNTPs, 1U Hotstar Taq polymerase (Qiagen, Valencia, Calif.), 4 mM MgCl2, and 25 pmol of the forward primer containing the universal primer sequence and the target
specific sequence 5′-AGCGGATAACAATTTCACACAGGGAGCTAGCTTGGAAGAT TGC-3′ (SEQ ID NO: 41), 2 pmol of thereverse primer 5′-GTCCAATATATGCAAACAGTTG-3′ (SEQ ID NO: 54), and 10 pmol of a biotinylated universal primer complementary to the 5′ end of the PCR amplicon BIO:5′-AGCGGATAACAATTTCACACAGG-3′ (SEQ ID NO: 43). After an initial round of amplification with the target with the specific forward and reverse primer, the 5′ biotinylated universal primer can then be hybridized and acted as a forward primer thereby introducing a 5′ biotin capture moiety into the molecule. The amplification protocol resulted in a 5′-biotinylated double stranded DNA amplicon and dramatically reduced the cost of high throughput genotyping by eliminating the need to 5′ biotin label every forward primer used in a genotyping. - Themal cycling was performed in 0.2 mL tubes or 96 well plate using an MJ Research Thermal Cycler (calculated temperature) with the following cycling parameters: 94° C. for 5 min; 45 cycles: 94° C. for 20 sec, 56° C. for 30 sec; 72° C. for 60 sec; 72° C. 3 min.
- Immobilization of DNA
- The 50 μl PCR reaction was added to 25 μL of streptavidin coated magnetic beads (Dynal, Oslo, Norway), which were prewashed three times and resuspended in 1M NH4Cl, 0.06M NH4OH. The 5′ end of one strand of the double stranded PCR amplicons were allowed to bind to the beads for 15 minutes at room temperature. The beads were then collected with a magnet, and the supernatant containing unbound DNA was removed. The hybridized but unbound strand was released from the double stranded amplicons by incubation in 100 mM NaOH and washing of the beads three times with 10 mM Tris pH 8.0.
- Detection of AKAP10-5 using BiomassPROBE™ Assay
- BiomassPROBE™ assay of primer extension analysis (see, U.S. Pat. No. 6,043,031) of donor population for AKAP 10-5 (SEQ ID NO: 33) was performed. Genotyping using these methods was carried out by resuspending the DNA coated magnetic beads in 26 mM Tris-HCL pH 9.5, 6.5 mM MgCl2, 50 mM dTTP, 50 mM each of ddCTP, ddATP, ddGTP, 2.5U of a thermostable DNA polymerase (Ambersham), and 20 pmol of a template specific
oligonucleotide PROBE primer 5′-ACTGAGCCTGCTGCATAA-3′ (SEQ ID NO: 44) (Operon). Primer extension occurs with three cycles of oligonucleotide primer with hybridization and extension. The extension products were analyzed after denaturation from the template with 50 mM NH4Cl and transfer of 150 nL of each sample to a silicon chip preloaded with 150 nl of H3PA matrix material. The sample material was allowed to crystallize and analyzed by MALDI-TOF (Bruker, PerSeptive). The primer has a mass of 5483.6 daltons. The SNP results in the addition of a ddC to the primer, giving a mass of 5756.8 daltons for the extended product. The wild type results in the addition a T and ddG to the primer giving a mass of 6101 daltons. - The frequency of the SNP was measured in a population of age selected healthy individuals. Seven hundred thirteen (713) individuals under 40 years of age (360 females, 353 males) and 703 individuals over 60 years of age (322 females, 381 males) were tested for the presence of the SNP, AKAP10-5 (SEQ ID NO: 33). Results are presented below in Table 4.
TABLE 4 AKAP10-5 (2073V) frequency comparison in 2 age groups <40 >60 delta G allele Female Alleles *G 38.6 34.6 4.0 *A 61.4 65.4 Genotypes G 13.9 11.8 2.1 GA 49.4 45.7 A 36.7 42.5 Male Alleles *G 41.4 37.0 4.4 *A 58.6 63.0 Genotypes G 18.4 10.8 7.7 GA 45.9 52.5 A 35.7 36.7 Total Alleles *G 40.0 35.9 4.1 *A 60.0 64.1 Genotypes G 16.1 11.2 4.9 GA 47.7 49.4 A 36.2 39.4 - FIG. 20 graphically shows these results of allele and genotype distribution in the age and sex stratified Caucasian population.
- Morbidity Marker 3: Human Methionine Sulfoxide Reductase A (msrA)
- The age-related allele and genotype frequency of this marker in both genders and the entire population is shown in FIG. 21. The decrease of the homozygous CC genotype in the older male population is highly significant.
- Methionine Sulfoxide Reductase A (#63306)
- PCR Amplification and BiomassPROBE assay detection of the human methioine sulfoxide reductase A (h-msr-A) in a healthy donor population
- PCR Amplification of Donor Population for h-msr-A
- PCR primers were synthesized by OPERON using phosphoramidite chemistry. Amplification of the AKAP10 target sequence was carried out in single 50 μl PCR reaction with 100 ng-1 ug of pooled human genomic DNA templates in a 50 μl PCR reaction. Individual DNA concentrations within the pooled samples were present in an equal concentration with the final concentration ranging from 1-25 ng. Each reaction containing I X PCR buffer (Qiagen, Valencia, Calif.), 200 μM dNTPs, 1U Hotstar Taq polymerase (Qiagen, Valencia, Calif.), 4 mM MgCl2, 25 pmol of the forward primer containing the universal primer sequence and the target
specific sequence 5′-TTTCTCTGCACAGAGAGGC-3′ (SEQ ID NO: 49), 2 pmol of thereverse primer 5′-AGCGGATAACAATTTCACACAGGGCTGAAATCCTTCGCTTTACC-3′ (SEQ ID NO: 50), and 10 pmol of a biotinylated universal primer complementary to the 5′ end of thePCR amplicon 5′-AGCGGATAACAATTTCACACAGG-3′ (SEQ ID NO: 51). After an initial round of amplification of the target with the specific forward and reverse primers, the 5′ biotinylated universal primer was then hybridized and acted as a reverse primer thereby introducing a 3′ biotin capture moiety into the molecule. The amplification protocol results in a 5′-biotinylated double stranded DNA amplicon and dramatically reduces the cost of high throughput genotyping by eliminating the need to 5′ biotin label each forward primer used in a genotyping. Thermal cycling was performed in 0.2 mL tubes or 96 well plate using an MJ Research Thermal Cycler (calculated temperature) with the following cycling parameters: 94° C. for 5 min; 45 cycles: 94° C. for 20 sec, 56° C. for 30 sec, 72° C. for 60 sec; 72° C. 3 min. - Immobilization of DNA
- The 50 μl PCR reaction was added to 25 ul of streptavidin coated magnetic bead (Dynal) prewashed three times and resuspended in 1M NH4Cl, 0.06M NH4OH. The PCR amplicons were allowed to bind to the beads for 15 minutes at room temperature. The beads were then collected with a magnet and the supernatant containing unbound DNA was removed. The unbound strand was released from the double stranded amplicons by incubation in 100 mM NaOH and washing of the beads three times with 10 mM Tris pH 8.0.
- BiomassPROBE Assay Analysis of Donor Population for h-msr A
- Genotyping using the BiomassPROBE assay methods was carried out by resuspending the DNA coated magnetic beads in 26 mM Tris-HCl pH 9.5, 6.5 mM MgCl2, 50 mM of dTTPs and 50 mM each of ddCTP, ddATP, ddGTP, 2.5U of a thermostable DNA polymerase (Ambersham), and 20 pmol of a template specific
oligonucleotide PROBE primer 5′-CTGAAAAGGGAGAGAAAG-3′ (Operon) (SEQ ID NO: 52). Primer extension occurs with three cycles of oligonucleotide primer with hybridization and extension. The extension products were analyzed after denaturation from the template with 50 mM NH4Cl and transfer of 150 nl each sample to a silicon chip preloaded with 150 nl of H3PA matrix material. The sample material was allowed to crystallize and analyzed by MALDI-TOF (Bruker, PerSeptive). The SNP is represented as a T to C tranversion in the sequence of two ESTs. The wild type is represented by having a T atposition 128 of GenBank Accession No. AW 195104, which represents the nucleotide sequence of an EST which is a portion of the wild type human msrA gene (SEQ ID NO: 39). The SNP is presented as a C at position 129 of GenBank Accession No. AW 874187, which represents the nucleotide sequence of an EST which is a portion of an allele of the human msrA gene (SEQ ID NO: 40). - In a genomic sequence the SNP is represented as an A to G transversion. The primer utilized in the BioMass probe reaction had a mass of 5654.8 daltons. In the presence of the SNP the primer is extended by the incorporation of a ddC and has a mass of 5928. In the presence of the wildtype the primer is extended by adding a dT and a DDC to produce a mass of 6232.1 daltons.
- The frequency of the SNP was measured in a population of age selected healthy individuals. Five hundred fifty-two (552) individuals between the ages of 18-39 years (276 females, 276 males and 552 individuals between the age of 60-79 (184 females between the ages of 60-69, 368 males between the age of 60-79) were tested for the presence of the polymorphism localized in the nontranslated 3′ region of h-msr-A.
- Genotype difference between male age group among healthy individuals is significant. For the male population allele significance is p=0.0009 and genotype significance is p=0.003. The age-related allele and genotype frequency of this marker in both genders and the entire population is shown in FIG. 21. The decrease of the homozygous CC genotype in the older male population is highly significant.
- The polymorphism is localized in the non-translated 3′-region of the gene encoding the human methionine sulfoxide reductase (h-msrA). The exact localization is 451 base pairs downstream the stop codon (TAA). It is likely that this SNP is in linkage disequilibrium (LD) with another polymorphism more upstream in the coding or promoter region; thus, it does not directly cause morbidity. The enzyme methionine sulfoxide reductase has been proposed to exhibit multiple biological functions. It can serve to repair oxidative protein damage but also play an important role in the regulation of proteins by activation or inactivation of their biological functions (Moskovitz et al. (1990) PNAS 95:14071-14075). It has also been shown that its activity is significantly reduced in brain tissues of Alzheimer patients (Gabbita et al., (1999) J. Neurochem 73:1660-1666). It is scientifically conceivable that proteins involved in the metabolism of reactive oxygen species are associated to disease.
- Conclusion
- The use of the healthy population provides for the identification of morbidity markers. The identification of proteins involved in the G-protein coupled signaling transduction pathway or in the detoxification of oxidative stress can be considered as convincing results. Further confirmation and validation of other potential polymorphisms already identified in silico in the gene encoding the human protein kinase A anchoring protein could even provide stronger association to morbidity and demonstrate that this gene product is a suitable pharmaceutical or diagnostic target.
- MALDI-TOF Mass Spectrometry Analysis
- All of the products of the enzyme assays listed below were analyzed by MALDI-TOF mass spectrometry. A diluted matrix solution (0.15 μL) containing of 10:1 3-hydroxypicolinic acid:ammonium citrate in 1:1 water:acetonitrile diluted 2.5-fold with water was pipetted onto a SpectroChip (Sequenom, Inc.) and was allowed to crystallize. Then, 0.15 μL of sample was added. A linear PerSeptive Voyager DE mass spectrometer or Bruker Biflex MALDI-TOF mass spectrometer, operating in positive ion mode, was used for the measurements. The sample plates were kept at 18.2 kV for 400 nm after each UV laser shot (approximate 250 laser shots total), and then the target voltage was raised to 20 kV. The original spectra were digitized at 500 MHz.
- Sample Conditioning
- Where indicated in the examples below, the products of the enzymatic digestions were purified with ZipTips (Millipore, Bedford, Mass.). The ZipTips were pre-wetted with 10 μL 50% acetonitrile and equilibrated 4 times with 10 μl 0.1 M TEAAc. The oligonucleotide fragments were bound to the C18 in the ZipTip material by continuous aspiration and dispension of each sample into the ZipTip. Each digested oligonucleotide was conditioned by washing with 10 μL 0.1 M TEAAc, followed by 4 washing steps with 10 μL H2O. DNA fragments were eluted from the Ziptip with 7 μL 50% acetonitrile.
- Any method for condition the samples can be employed. Methods for conditioning, which generally is used to increase peak resolution, are well known (see, e.g., International PCT application No. WO 98/20019).
- DNA Glycosylase-Mediated Sequence Analysis
- DNA Glycosylases modifies DNA at each position that a specific nucleobase resides in the DNA, thereby producing abasic sites. In a subsequent reaction with another enzyme, a chemical, or heat, the phosphate backbone at each abasic site can be cleaved.
- The glycosylase utilized in the following procedures was uracil-DNA glycosylase (UDG). Uracil bases were incorporated into DNA fragments in each position that a thymine base would normally occupy by amplifying a DNA target sequence in the presence of uracil. Each uracil substituted DNA amplicon was incubated with UDG, which cleaved each uracil base in the amplicon, and was then subjected to conditions that effected backbone cleavage at each abasic site, which produced DNA fragments. DNA fragments were subjected to MALDI-TOF mass spectrometry analysis. Genetic variability in the target DNA was then assessed by analyzing mass spectra.
- Glycosylases specific for nucleotide analogs or modified nucleotides, as described herein, can be substituted for UDG in the following procedures. The glycosylase methods described hereafter, in conjunction with phosphate backbone cleavage and MALDI, can be used to analyze DNA fragments for the purposes of SNP scanning, bacteria typing, methylation analysis, microsatellite analysis, genotyping, and nucleotide sequencing and re-sequencing.
- A. Genotyping
- A glycosylase procedure was used to genotype the DNA sequence encoding UCP-2 (Uncoupling Protein 2). The sequence for UCP-2 is deposited in GenBank under accession number AF096289. The sequence variation genotyped in the following procedure was a cytosine (C-allele) to thymine (T-allele) variation at nucleotide position 4790, which results in a alanine to valine mutation at
position 55 in the UCP-2 polypeptide. - DNA was amplified using a PCR procedure with a 50 μL reaction volume containing of 5 pmol biotinylated primer having the
sequence 5′-TGCTTATCCCTGTAGCTACCCTGTCTTGGCCTTGCAGATCCAA-3′ (SEQ ID NO: 91), 15 pmol non-biotinylated primer having thesequence 5′-AGCGGATAACAATTTCACACAGGCCATCACACCGCGGTACTG-3′ (SEQ ID NO: 92), 200 μM dATP, 200 μM dCTP, 200 μM dGTP, 600 μM dUTP (to fully replace dTTP), 1.5 mM to 3 mM MgCl2, 1 U of HotStarTaq polymerase, and 25 ng of CEPH DNA. Amplification was effected with 45 cycles at an annealing temperature of 56° C. - The amplification product was then immobilized onto a solid support by incubating 50 μL of the amplification reaction with 5 μL of prewashed Dynabeads for 20 minutes at room temperature. The supernatant was removed, and the beads were incubated with 50 μL of 0.1 M NaOH for 5 minutes at room temperature to denature the double-stranded PCR product in such a fashion that single-stranded DNA was linked to the beads. The beads were then neutralized by three washes with 50 μL 10 mM TrisHCl (pH 8). The beads were resuspended in 10 μL of a 60 mM TrisHCl/1 mM EDTA (pH 7.9) solution, and 1 U uracil DNA glycosylase was added to the solution for 45 minutes at 37° C. to remove uracil nucleotides present in the single-stranded DNA linked to the beads. The beads were then washed two times with 25 μL of 10 mM TrisHCl (pH 8) and once with 10 μL of water. The biotinylated strands were then eluted from the beads with 12 μL of 2 M NH4OH at 60° C. for 10 minutes. The backbone of the DNA was cleaved by incubating the samples for 10 min at 95° C. (with a closed lid), and ammonia was evaporated from the samples by incubating the samples for 11 min at 80° C.
- The cleavage fragments were then analyzed by MALDI-TOF mass spectrometry as described in Example 4. The T-allele generated a unique fragment of 3254 Daltons. The C-allele generated a unique fragment of 4788 Daltons. These fragements were distinguishable in mass spectra. Thus, the above-identified procedure was successfully utilized to genotype individuals heterozygous for the C-allele and T-aliele in UCP-2.
- B. Glycosylase Analysis Utilizing Pooled DNA Samples
- The glycosylase assay was conducted using pooled samples to detect genetic variability at the UCP-2 locus. DNA of known genotype was pooled from eleven individuals and was diluted to a fixed concentration of 5 ng/μL. The procedure provided in Example 3A was followed using 2 pmol of forward primer having a sequence of 5′-CCCAGTCACGACGTTGTAAAACGTCTTGGCCTTGCAGATCCAAG-3′ (SEQ ID NO: 93) and 15 pmol of reverse primer having the
sequence 5′-AGCGGATAACAATTTCACACAGGCCATCACACCGCGGTACTG-3′ (SEQ ID NO: 94). In addition, 5 pmol of biotinylated primer having thesequence 5′bioCCCAGTCACGACGTTGTAAAACG 3′ (SEQ ID NO: 97) can be introduced to the PCR reaction after about two cycles. The fragments were analyzed via MALDI-TOF mass spectroscopy (Example 4). As determined in Example 3A, the T-allele, which generated a unique fragment of 3254 Daltons, could be distinguished in mass spectra from the C-allele, which generated a unique fragment of 4788 Daltons. Allelic frequency in the pooled samples was quantified by integrating the area under each signal corresponding to an allelic fragment. Integration was accomplished by hand calculations using equations well known to those skilled in the art. In the pool of eleven samples, this procedure suggested that 40.9% of the individuals harbored the T allele and 59.09% of the individuals harbored the C allele. - C. Glycosylase-Mediated Microsatellite Analysis
- A glycosylase procedure was utilized to identify microsatellites of the Bradykinin Receptor 2 (BKR-2) sequence. The sequence for BKR-2 is deposited in GenBank under accession number X86173. BKR-2 includes a SNP in the promoter region, which is a C to T variation, as well as a SNP in a repeated unit, which is a G to T variation. The procedure provided in Example 3A was utilized to identify the SNP in the promotor region, the SNP in the microsattelite repeat region, and the number of repeated units in the microsattelite region of BKR-2. Specifically, a forward PCR primer having the
sequence 5′-CTCCAGCTGGGCAGGAGTGC-3′ (SEQ ID NO: 95) and a reverse primer having thesequence 5′-CACTTCAGTCGCTCCCT-3′ (SEQ ID NO: 96) were utilized to amplify BKR-2 DNA in the presence of uracil. The amplicon was fragmented by UDG followed by backbone cleavage. The cleavage fragments were analyzed by MALDI-TOF mass spectrometry as described in Example 4. - With regard to the SNP in the BKR-2 promotor region having a C to T variation, the C-allele generated a unique fragment having a mass of 7342.4 Daltons, and the T-allele generated a unique fragment having a mass of 7053.2 Daltons. These fragments were distinguishable in mass spectra. Thus, the above-identified procedure was successfully utilized to genotype individuals heterozygous for the C-allele and T-allele in the promotor region of BKR-2.
- With regard to the SNP in the BKR-2 repeat region having a G to T variation, the T-allele generated a unique fragment having a mass of 1784 Daltons, which was readily detected in a mass spectrum. Hence, the presence of the T-allele was indicative of the G to T sequence variation in the repeat region of BKR-2.
- In addition, the number of repeat regions was distinguished between individuals having two repeat sequences and individuals having three repeat sequences in BKR-2. The DNA of these individuals did not harbor the G to T sequence variation in the repeat sequence as each repeat sequence contained a G at the SNP locus. The number of repeat regions was determined in individual samples by calculating the area under a signal corresponding to a unique DNA fragment having a mass of 2771.6 Daltons. This signal in spectra generated from individuals having two repeat regions had an area that was thirty-three percent less than the area under the same signal in spectra generated from individuals having three repeat regions. Thus, the procedures discussed above can be utilized to genotype individuals for the number of repeat sequences present in BKR-2.
- D. Bisulfite Treatment Coupled with Glycosylase Digestion
- Bisulfite treatment of genomic DNA can be utilized to analyze positions of methylated cytosine residues within the DNA. Treating nucleic acids with bisulfite deaminates cytosine residues to uracil residues, while methylated cytosine remains unmodified. Thus, by comparing the sequence of a PCR product generated from genomic DNA that is not treated with bisulfite with the sequence of a PCR product generated from genomic DNA that is treated with bisulfite, the degree of methylation in a nucleic acid as well as the positions where cytosine is methylated can be deduced.
- Genomic DNA (2 μg) was digested by incubation with 1 μL of a restriction enzyme at 37° C. for 2 hours. An aliquot of 3 M NaOH was added to yield a final concentration of 0.3M NaOH in the digestion solution. The reaction was incubated at 37° C. for 15 minutes followed by treatment with 5.35M urea, 4.44M bisulfite, and 10 mM hydroquinone, where the final concentration of hydroquinone is 0.5 mM.
- The sample that was treated with bisulfite (sample A) was compared to the same digestion sample that had not undergone bisulfite treatment (sample B). After sample A was treated with bisulfite as described above, sample A and sample B were amplified by a standard PCR procedure. The PCR procedure included the step of overlaying each sample with mineral oil and then subjecting the sample to thermocycling (20 cycles of 15 minutes at 55° C. followed by 30 seconds at 95° C.). The PCR reaction contained four nucleotide bases, C, A, G, and U. The mineral oil was removed from each sample, and the PCR products were purified with glassmilk. Sodium iodide (3 volumes) and glassmilk (5 μL) were added to samples A and B. The samples were then placed on ice for 8 minutes, washed with 420 μL cold buffer, centrifuged for 10 seconds, and the supernatant fractions were removed. This process was repeated twice and then 25 μL of water was added. Samples were incubated for 5 minutes at 37° C., were centrifuged for 20 seconds, and the supernatant fraction was collected, and then this incubation/centrifugation/supernatant fraction collection procedure was repeated. 50 μL 0.1 M NaOH was then added to the samples to denature the DNA. The samples were incubated at room temperature for 5 minutes, washed three times with 50 μL of 10 mM TrisHCl (pH 8), and resuspended in 10
μL 60 mM TrisHCl/1 mM EDTA, pH 7.9. - The sequence of PCR products from sample A and sample B were then treated with 2U of UDG (MBI Fermentas) and then subjected to backbone cleavage, as described herein. The resulting fragments from each of sample A and sample B were analyzed by MALDI-TOF mass spectroscopy as described in Example 4. Sample A gave rise to a greater number of fragments than the number of fragments arising from sample B, indicative that the nucleic acid harbored at least one methylated cytosine moiety.
- Fen-Ligase-Mediated Haplotyping
- Haplotyping procedures permit the selection of a fragment from one of an individual's two homologous chromosomes and to genotype linked SNPs on that fragment. The direct resolution of haplotypes can yield increased information content, improving the diagnosis of any linked disease genes or identifying linkages associated with those diseases. In previous studies, haplotypes were typically reconstructed indirectly through pedigree analysis (in cases where pedigrees were available) through laborious and unreliable allele-specific PCR or through single-molecule dilution methods well known in the art.
- A haplotyping procedure was used to determine the presence of two SNPs, referred to as SNP1 and SNP2, located on one strand in a DNA sample. The haplotyping procedure used in this assay utilized Fen-1, a site-specific “flap” endonuclease that cleaves DNA “flaps” created by the overlap of two oligonucleotides hybridized to a target DNA strand. The two overlapping oligonucleotides in this example were short arm and long arm allele-specific adaptors. The target DNA was an amplified nucleic acid that had been denatured and contained SNP1 and SNP2.
- The short arm adaptor included a unique sequence not found in the target DNA. The 3′ distal nucleotide of the short arm adaptor was identical to one of the SNP1 alleles. Moreover, the long arm adaptor included two regions: a 3′ region complementary to the short arm and a 5′ gene-specific region complementary to the fragment of interest adjacent to the SNP. If there was a match between the adaptor and one of the homologues, the Fen enzyme recognized and cleaved the overlapping flap. The short arm of the adaptor was then ligated to the remainder of the target fragment (minus the SNP site). This ligated fragment was used as the forward primer for a second PCR reaction in which only the ligated homologue was amplified. The second PCR product (PCR2) was then analyzed by mass spectrometry. If there was no match between the adaptors and the target DNA, there was no overlap, no cleavage by Fen-1, and thus no PCR2 product of interest.
- If there was more than one SNP in the sequence of interest, the second SNP (SNP2) was found by using an adaptor that was specific for SNP2 and hybridizing the adaptor to the PCR2 product containing the first SNP. The Fen-ligase and amplification procedures were repeated for the PCR2 product containing the first SNP. If the amplified product yielded a second SNP, then SNP1 and SNP2 were on the same fragment.
- If the SNP is unknown, then four allele-specific adaptors (e.g. C, G, A, and T) can be used to hybridize with the target DNA. The substrates are then treated with the Fen-ligase protocol, including amplification. The PCR2 products can be analyzed by PROBE, as described herein, to determine which adaptors were hybridized to the DNA target and thus identify the SNPs in the sequence.
- A Fen-ligase assay was used to detect two SNPs present in Factor VII. These SNPs are located 814 base pairs apart from each other. SNP1 was located at position 8401 (C to T), and SNP2 was located at 9215 (G to A).
- A. First Amplification Step
- A PCR product (PCR1) was generated for a known heterozygous individual at SNP1, a short distance from the 5′ end of the SNP. Specifically, a 10 μL PCR reaction was performed by mixing 1.5 mM MgCl2, 200 μM of each dNTP, 0.5 U HotStar polymerase, 0.1 μM of a forward primer having the
sequence 5′-GCG CTC CTG TCG GTG CCA (SEQ ID NO: 56), 0.1 μM of a reverse primer having thesequence 5′-GCC TGA CTG GTG GGG CCC (SEQ ID NO: 57), and 1 ng of genomic DNA. The annealing temperature was 58° C., and the amplification process yielded fragments that were 861 bp in length. - The PCR1 reaction mixture was divided in half and was treated with an
exonuclease 1/SAP mixture (0.22 μL mixture/5 μL PCR1 reaction) which contained 1.0 μL SAP and 0.1 μL exon1. The exonuclease treatment was done for 30 minutes at 37° C. and then 20 minutes at 85° C. to denature the DNA. - B. Adaptor Oligonucleotides
- A solution of allele-specific adaptors (C and T), containing of one long and one short oligonucleotide per adaptor, was prepared. The long arm and short arm oligonucleotides of each adaptor (10 μM) were mixed in a 1:1 ratio and heated for 30 seconds at 95° C. The temperature was reduced in 2° C. increments to 37° C. for annealing. The C-adaptor had a short arm sequence of 5′-CAT GCA TGC ACG GTC (SEQ ID NO: 58) and a long arm sequence of 5′-CAG AGA GTA CCC CTC GAC CGT GCA TGC ATG (SEQ ID NO: 59). Hence, the long arm of the adaptor was 30 bp (15 bp gene-specific), and the short arm was 15 bp. The T-adaptor had a short arm sequence of 5′-CAT GCA TGC ACG GTT (SEQ ID NO: 60) and a long arm sequence of 5′-GTA CGT ACG TGC CAA CTC CCC ATG AGA GAC (SEQ ID NO: 61). The adaptor could also have a hairpin structure in which the short and long arm are separated by a loop containing of 3 to 10 nucleotides (SEQ ID NO: 118).
- C. FEN-ligase Reaction
- In two tubes (one tube for each allele-specific adaptor per sample) was placed a solution (Solution A) containing of 3.5 μl 10 mM 16% PEG/50 mM MOPS, 1.2 μl 25 mM MgCl2, 1.5 μl 10X Ampligase Buffer, and 2.5 μl PCR1. Each tube containing Solution A was incubated at 95° C. for 5 minutes to denature the PCR1 product. A second solution (Solution B) containing of 1.65 μl Ampligase (Thermostable ligase, Epicentre Technologies), 1.65
μl 200 ng/μl MFEN (from Methanocuccus jannaschil), and 3.0 μl of an allel specific adaptor (C or T) was prepared. Thus, different variations of Solution B, each variation containing of different allele-specific adaptors, were made. Solution B was added to Solution A at 95° C. and incubated at 55° C. for 3 hours. The total reaction volume was 15.0 μl per adaptor-specific reaction. For a bi-allelic system, 2×15.0 μl reactions were required. - The Fen-ligase reaction in each tube was then deactivated by adding 8.0 μl 10 mM EDTA. Then, 1.0 μl exoIII/Buffer (70%/30%) solution was added to each sample and incubated 30 minutes at 37° C., 20 minutes at 70° C. (to deactivate exoIII), and 5 minutes at 95° C. (to denature the sample and dissociate unused adaptor from template). The samples were cooled in an ice slurry and purified on UltraClean PCR Clean-up (MoBio) spin columns which removed all fragments less than 100 base pairs in length. The fragments were eluted with 50 μl H2O.
- D. Second Amplification Step
- A second amplification reaction (PCR2) was conducted in each sample tube using the short arm adaptor (C or T) sequence as the forward primer (minus the SNP1 site). Only the ligated homologue was amplified. A standard PCR reaction was conducted with a total volume of 10.0 μl containing of 1×Buffer (final concentration), 1.5 mM final concentration MgCl2, 200 μM final concentration dNTPs, 0.5 U HotStar polymerase, 0.1 μM final concentration forward
primer 5′-CAT GCA TGC ACG GT (SEQ ID NO: 62), 0.1 μM finalconcentration reverse primer 5′-GCC TGA CTG GTG GGG CCC (SEQ ID NO: 63), and 1.0 μl of the purified FEN-ligase reaction solution. The annealing temperature was 58° C. The PCR2 product was analyzed by MALDI TOF mass spectroscopy as described in Example 4. The mass spectrum of Fen SNP1 showed a mass of 6084.08 Daltons, representing the C allele. - E. Genotyping Additional SNPs
- The second SNP (SNP2) can be found by using an adaptor that is specific for SNP2 and hybridizing that adaptor to the PCR2 product containing the first SNP. The Fen-ligase and amplification procedures are repeated for the PCR2 product containing the first SNP. If the amplified product yields a second SNP, then SN1 and SN2 are on the same fragment. The mass spectrum of SNP2, representing the T allele, showed a mass of 6359.88 Daltons.
- This assay also can be performed upon pooled DNA to yield haplotype frequencies as described herein. The Fen-ligase assay can be used to analyze multiplexes as described herein.
- Nickase-Mediated Sequence Analysis
- A DNA nickase, or DNase, was used to recognize and cleave one strand of a DNA duplex. NY2A nickase and NYS1 nickase (Megabase), which cleave DNA at the following sites:
- NY2A: 5′ . . . R AG . . . 3′
- 340 . . . Y⇓TC . . . 5′ where R=A or G and Y=C or T
- NYS1: 5′ . . . ⇓CC[A/G/T] . . . 3′
- 3′ . . . GG[T/C/A] . . . 5′
- were used.
- A. Nickase Digestion
- Tris-HCl (10 mM), KCl (10 mM, pH 8.3), magnesium acetate (25 mM), BSA (1 mg/mL), and 6 U of Cvi NY2A or Cvi NYS1 Nickase (Megabase Research) were added to 25 pmol of double-stranded oligonucleotide template having a sequence of 5′-CGC AGG GTT TCC TCG TCG CAC TGG GCA TGT G-3′ (SEQ ID NO: 90, Operon, Alameda, Calif.) synthesized using standard phosphoramidite chemistry. With a total volume of 20 μL, the reaction mixture was incubated at 37° C. for 5 hours, and the digestion products were purified using ZipTips (Millipore, Bedford, Mass.) as described in Example 5. The samples were analyzed by MALDI-TOF mass spectroscopy as described in Example 1. The nickase Cvi NY2A yielded three fragments with masses 4049.76 Daltons, 5473.14 Daltons, and 9540.71 Daltons. The Cvi NYS1 nickase yielded fragments with masses 2063.18 Daltons, 3056.48 Daltons, 6492.81 Daltons, and 7450.14 Daltons.
- B. Nickase Digestion of Pooled Samples
- DQA (HLA ClassII-DQ Alpha, expected fragment size=225 bp) was amplified from the genomic DNA of 100 healthy individuals. DQA was amplified using standard PCR chemistry in a reaction having a total volume of 50 μL containing of 10 mM Tris-HCl, 10 mM KCl (pH 8.3), 2.5 mM MgCl2, 200 μM of each dNTP, 10 pmol of a forward primer having the
sequence 5′-GTG CTG CAG GTG TAA ACT TGT ACC AG-3′(SEQ ID NO: 64), 10 pmol of a reverse primer having thesequence 5′-CAC GGA TCC GGT AGC AGC GGT AGA GTT G-3′(SEQ ID NO: 65), 1 U DNA polymerase (Stoffel fragment, Perkin Elmer), and 200 ng human genomic DNA (2 ng DNA/individual). The template was denatured at 94° C. for 5 minutes. Thermal cycling was continued with a touch-down program that included 45 cycles of 20 seconds at 94° C., 30 seconds at 56° C., 1 minute at 72° C., and a final extension of 3 minutes at 72° C. The crude PCR product was used in the subsequent nickase reaction. - The unpurified PCR product was subjected to nickase digestion. Tris-HCl (10 mM), KCl (10 mM, pH 8.3), magnesium acetate (25 mM), BSA (1 mg/mL), and 5 U of Cvi NY2A or Cvi NYS1 Nickase (Megabase Research) were added to 25 pmol of the amplified template with a total reaction volume of 20 μL. The mixture was then incubated at 37° C. for 5 hours. The digestion products were purified with either ZipTips (Millipore, Bedford, Mass.) as described in Example 5. The samples were analyzed by MALDI-TOF mass spectroscopy as described in Example 4. This assay also can be used to do multiplexing and standardless genotyping as described herein.
- To simplify the nickase mass spectrum, the two complementary strands can be separated after digestion by using a single-stranded undigested PCR product as a capture probe. This probe (preparation shown below in Example 8C) can be hybridized to the nickase fragments in hybridization buffer containing 200 mM sodium citrate and 1% blocking reagent (Boehringer Mannheim). The reaction is heated to 95° C. for 5 minutes and cooled to room temperature over 30 minutes by using a thermal cycler (PTC-200 DNA engine, MJ Research, Waltham, Mass.). The capture probe-nickase fragment is immobilized on 140 μg of streptavidin-coated magnetic beads. The beads are subsequently washed three times with 70 mM ammonium citrate. The captured single-stranded nickase fragments are eluted by heating to 80° C. for 5 minutes in 5 μL of 50 mM ammonium hydroxide.
- C. Preparation of Capture Probe
- The capture probe is prepared by amplifying the human β-globin gene (3′ end of
intron 1 to 5′ end of exon 2) via PCR methods in a total volume of 50 μL containing of GeneAmp 1XPCR Buffer II, 10 mM Tris-HCl, pH 8.3, 50 mM KCl, 2 mM MgCl2, 0.2 mM dNTP mix, 10 pmol of each primer (forward primer 5′-ACTGGGCATGTGGAGACAG-3′(SEQ ID NO: 66) and biotinylated reverse primer bio5′-GCACTTTCTTGCCATGAG-3′(SEQ ID: 67), 2 U of AmpliTaq Gold, and 200 ng of human genomic DNA. The template is denatured at 94° C. for 8 minutes. Thermal cycling is continued with a touch-down program that included 11 cycles of 20 seconds at 94° C., 30 seconds at 64° C., 1 minute at 72° C.; and a final extension of 5 minutes at 72° C. The amplicon is purified using UltraClean™ PCR clean-up kit (MO Bio Laboratories, Solano Beach, Calif.). - Multiplex Type IIS SNP Assay
- A Type IIS assay was used to identify human gene sequences with known SNPs. The Type IIS enzyme used in this assay was Fok I which effected double-stranded cleavage of the target DNA. The assay involved the steps of amplification and Fok I treatment of the amplicon. In the amplification step, the primers were designed so that each PCR product of a designated gene target was less than 100 bases such that a Fok I recognition sequence was incorporated at the 5′ and 3′ end of the amplicon. Therefore, the fragments that were cleaved by Fok I included a center fragment containing the SNP of interest.
- Ten human gene targets with known SNPs were analyzed by this assay. Sequences of the ten gene targets, as well as the primers used to amplify the target regions, are found in Table 5. The ten targets were lipoprotein lipase, prothrombin, factor V, cholesterol ester transfer protein (CETP), factor VII, factor XIII, HLA-
H exon 2, HLA-H exon 4, methylenetetrahydrofolate reductase (MTHR), andP53 exon 4codon 72. - Amplification of the ten human gene sequences were carried out in a single 50 μL volume PCR reaction with 20 ng of human genomic DNA template in 5 PCR reaction tubes. Each reaction vial contained 1×PCR buffer (Qiagen), 200 μM dNTPs, 1 U Hotstar Taq polymerase (Qiagen), 4 mM MgCl2, and 10 pmol of each primer. US8, having sequence of 5′TCAGTCACGACGTT3′(SEQ ID NO: 68), and US9, having sequence of 5′CGGATAACAATTTC3′(SEQ ID NO: 69), were used for the forward and reverse primers respectively. Moreover, the primers were designed such that a Fok I recognition site was incorporated at the 5′ and 3′ ends of the amplicon. Thermal cycling was performed in 0.2 mL tubes or a 96 well plate using a MJ Research Thermal Cycler (calculated temperature) with the following cycling parameters: 94° C. for 5 minutes; 45 cycles: 94° C. for 20 seconds, 56° C. for 20 seconds, 72° C. for 60 seconds; and 72° C. for 3 minutes.
- Following PCR, the sample was treated with 0.2 U Exonuclease I (Amersham Pharmacia) and S Alkaline Phosphotase (Amersham Pharmacia) to remove the unincorporated primers and dNTPs. Typically, 0.2 U of exonuclease I and SAP were added to 5 μL of the PCR sample. The sample was then incubated at 37° C. for 15 minutes. Exonuclease I and SAP were then inactivated by heating the sample up to 85° C. for 15 minutes. Fok I digestion was performed by adding 2 U of Fok I (New England Biolab) to the 5 uL PCR sample and incubating at 37° C. for 30 minutes. Since the Fok I restriction sites are located on both sides of the amplicon, the 5′ and 3′ cutoff fragments have higher masses than the center fragment containing the SNP. The sample was then purified by anion exchange and analyzed by MALDI-TOF mass spectrometry as described in Example 4. The masses of the gene fragments from this multiplexing experiment are listed in Table 6. These gene fragments were resolved in mass spectra thereby allowing multiplex analysis of sequence variability in these genes.
TABLE 5 Genes for Multiplex Type IIS Assay Seq. ID Seq. Gene Sequence No Primers ID No. Lipoprotein cctttgagaa agggctctgc ttgagttgta 98-99 5′ 70 Lipase gaaagaaccg ctgcaacaat caatttcatcgctggatgcaatct (Asn291Ser) ctgggctatg agatca[ag]taa agtcagagcc gggctatgagatc 3′ aaaagaagca gcaaaatgta 5′ 71 caatttcacacagcggatgcttct tttggctctgact 3′ Prothrombin 26731 gaattatttt tgtgtttcta aaactatggt 100- 5′ 72 tcccaataaa agtgactctc 101 tcagtcacgacgttggatgccaa 26781 agc[ga]agcctc aatgctccca taaaagtgactctcagc 3′ gtgctattca tgggcagctc tctgggctca 5′ 73 cggataacaatttcggatgcact gggagcattgaggc 3′ Factor V taataggact acttctaatc tgtaagagca 102- 5′ 74 (Arg506Gln) gatccctgga caggc[ga]agga 103 tcagtcacgacgttggatgagca gatccctggacaggc 3′ atacaggtat tttgtccttg aagtaacctt tcag 5′ 75 cggataacaatttcggatggaca aaatacctgtattcc 3′ Cholesterol ester 1261 ctcaccatgg gcatttgatt gcagagcage 104- 5′ 76 transfer protein tccgagtcc[ga] tccagagctt 105 tcagtcacgacgttggatgcaga (CETP) (I405V) gcagctccgagtc 3′ 1311 cctgcagtca atgatcaccg ctgtgggcat 5′ 77 ccctgaggtc atgtctcgta cagcggtgatcattggatgcagg aagctctgg 3′ Factor VII 1221 agcaaggact cctgcaaggg ggacagtgga 106- 5′ 78 (R353Q) ggcccacatg ccacccacta 107 tcagtcacgacgttggatgccca catgccacccactac 3′ 1271 cc[ag]gggcacg tggtacctga 5′ 79 cgggcatcgt cagctggggc cagggctgcg cggataacaatttcggatgcccg tcaggtaccacg 3′ Factor XIII 111 caataactct aatgcagcgg aagatgacct 108- 5′ 80 (V34L) gcccacagtg gagcttcagg 109 tcagtcacgacgttggatgccca cagtggagcttcag 3′ 161 gc[gt]tggtgcc ccggggcgtc 5′ 81 aacctgcaag gtatgagcat accccccttc gctcataccttgcaggatgacg 3′ HLA-H exon 2 361 ttgaagctttgggctacgtg gatgaccagc 110- 5′ 82 (His63Asp) tgttcgtgtt ctatgat[cg]at 111 tcagtcacgacgttggatgacca gctgttcgtgttc 3′ 411 gagagtcgcc gtgtggagcc ccgaactcca 5′ 83 tgggtttcca gtagaatttc tacatggagttcggggatgcaca cggcgactctc 3′ HLA-H exon 4 1021 ggataacctt ggctgtaccc cctggggaag 112- 5′ 84 (Cys282Tyr) agcagagata tacgt[ga]ccag 113 tcagtcacgacgttggatgggga agagcagagatatacgt 3′ 1071 gtggagcacc caggcctgga tcagcccctc 5′ 85 attgtgatct gggagccctc gaggggctgatccaggatgggt gctccac 3′ Methylentetra- 761 tgaagcactt gaagga gaag gtgtctgcgg 114- 5′ 86 hydrofolate- gag[ct]cgattt catcatcacg 115 tcagtcacgacgttggatgggga redctase agagcagagatatacgt 3′ (MTHR) (Ala222Val) 811 cagcttttct ttgaggctga cacattcttc 5′ 87 gaggggctgatccaggatgggt gctccac 3′ P53 Exon4 12101 tccagatgaa gctcccagaa 116- 5′ 88 Codon 72 tgccagaggc tgctcccc[gc]c gtggcccctg 117 gatgaagctcccaggatgccag (Arg72Pro) aggc 3′ 12151 caccagcagc tcctacaccg 5′ 89 gcggcccctg gccgccggtgtaggatgctgctg gtgc 3′ -
TABLE 6 The mass of Center Fragments for Ten Different SNP Typing by IIS Assay Gene LPL(Asn291Ser) Prothrombin FV(Arg506Gln) CETP(I405V) FVII(R353Q) FXIII(V34) Genotype A G G A G A G A G A G T + strand 6213 6229 5845 5829 5677 5661 3388 3372 6128 6112 5058 5033 mass (Da) − strand 6129 6114 5949 5964 5472 5487 3437 3452 6174 6189 4916 4940 mass (Da) Gene Hlah2 Hlah4 MTHR(Ala222Val) P53exon4(Arg72Pro) Genotype C G G A C T G C + strand 5889 5929 4392 4376 4400 4415 4586 4546 mass (Da) − strand 5836 5796 4319 4334 4368 4352 4724 4764 mass (Da) - Exemplary use of Parental Medical History Parameter for Stratification of Healthy Datebase
- A healthy database can be used to associate a disease state with a specific allele (SNP) that has been found to show a strong association between age and the allele, in particular the homozygous genotype. The method involves using the same healthy database used to identify the age dependent association, however stratification is by information given by the donors about common disorders from which their parents suffered (the donor's familial history of disease). There are three possible answers a donor could give about the health status of their parents: neither were affected, one was affected or both were affected. Only donors above a certain minimum age, depending on the disease, are utilized, as the donors parents must be old enough to to have exhibited clinical disease phenotypes. The genotype frequency in each of these groups is determined and compared with each other. If there is an association of the marker in the donor to a disease the frequency of the heterozyous genotype will be increased. The frequency of the homozygous genotype should not increase, as it should be significantly underrepresented in the healthy population.
- Method and Device for Identifying a Biological Sample Description
- A method and device for identifying a biological sample is provided. Referring now to FIG. 24, an
apparatus 10 for identifying a biological sample is disclosed. Theapparatus 10 for identifying a biological sample generally comprises amass spectrometer 15 communicating with acomputing device 20. In an embodiment, the mass spectrometer can be a MALDI-TOF mass spectrometer manufactured by Bruker-Franzen Analytik GmbH; however, it will be appreciated that other mass spectrometers can be substituted. Thecomputing device 20 is typically a general purpose computing device. It will be appreciated that the computing device could be alternatively configured, for example, it can be integrated with the mass spectrometer or could be part of a computer in a larger network system. - The
apparatus 10 for identifying a biological sample can operate as an automated identification system having arobot 25 with arobotic arm 27 configured to deliver asample plate 29 into a receivingarea 31 of themass spectrometer 15. In such a manner, the sample to be identified can be placed on theplate 29 and automatically received into themass spectrometer 15. The biological sample is then processed in the mass spectrometer to generate data indicative of the mass of DNA fragments in the biological sample. This data can be sent directly tocomputing device 20, or can have some preprocessing or filtering performed within the mass spectrometer. In an embodiment, themass spectrometer 15 transmits unprocessed and unfiltered mass spectrometry data to thecomputing device 20. It will be appreciated that the analysis in the computing device can be adjusted to accommodate preprocessing or filtering performed within the mass spectrometer. - Referring now to FIG. 25, a
general method 35 for identifying a biological sample is shown. Inmethod 35, data are received into a computing device from a test instrument inblock 40. Generally the data are received in a raw, unprocessed and unfiltered form, but alternatively can have some form of filtering or processing applied. The test instrument of an exemplary embodiment is a mass spectrometer as described above. It will be appreciated that other test instruments could be substituted for the mass spectrometer. - The data generated by the test instrument, and in particular the mass spectrometer, includes information indicative of the identification of the biological sample. More specifically, the data are indicative of the DNA composition of the biological sample. Typically, mass spectrometry data gathered from DNA samples obtained from DNA amplification techniques are noisier than, for example, those from typical protein samples. This is due in part because protein samples are more readily prepared in more abundance, and protein samples are more easily ionizable as compared to DNA samples. Accordingly, conventional mass spectrometer data analysis techniques are generally ineffective for DNA analysis of a biological sample. To improve the analysis capability so that DNA composition data can be more readily discerned, an embodiment uses wavelet technology for analyzing the DNA mass spectrometry data. Wavelets are an analytical tool for signal processing, numerical analysis, and mathematical modeling. Wavelet technology provides a basic expansion function which is applied to a data set. Using wavelet decomposition, the data set can be simultaneously analyzed in the time and frequency domains. Wavelet transformation is the technique of choice in the analysis of data that exhibit complicated time (mass) and frequency domain information, such as MALDI-TOF DNA data. Wavelet transforms as described herein have superior denoising properties as compared to conventional Fourier analysis techniques. Wavelet transformation has proven to be particularly effective in interpreting the inherently noisy MALDI-TOF spectra of DNA samples. In using wavelets, a “small wave” or “scaling function” is used to transform a data set into stages, with each stage representing a frequency component in the data set. Using wavelet transformation, mass spectrometry data can be processed, filtered, and analyzed with sufficient discrimination to be useful for identification of the DNA composition for a biological sample.
- Referring again to FIG. 25, the data received in
block 40 is denoised inblock 45. The denoised data then has a baseline correction applied inblock 50. A baseline correction is generally necessary as data coming from the test instrument, in particular a mass spectrometer instrument, has data arranged in a generally exponentially decaying manner. This generally exponential decaying arrangement is not due to the composition of the biological sample, but is a result of the physical properties and characteristics of the test instrument, and other chemicals involved in DNA sample preparation. Accordingly, baseline correction substantially corrects the data to remove a component of the data attributable to the test system, and sample preparation characteristics. - After denoising in
block 45 and the baseline correction inblock 50, a signal remains which is generally indicative of the composition of the biological sample. Due to the extraordinary discrimination required for analyzing the DNA composition of the biological sample, the composition is not readily apparent from the denoised and corrected signal. For example, although the signal can include peak areas, it is not yet clear whether these “putative” peaks actually represent a DNA composition, or whether the putative peaks are the result of a systemic or chemical aberration. Further, any call of the composition of the biological sample would have a probability of error which would be unacceptable for clinical or therapeutic purposes. In such critical situations, there needs to be a high degree of certainty that any call or identification of the sample is accurate. Therefore, additional data processing and interpretation is necessary before the sample can be accurately and confidently identified. - Since the quantity of data resulting from each mass spectrometry test is typically thousands of data points, and an automated system can be set to perform hundreds or even thousands of tests per hour, the quantity of mass spectrometry data generated is enormous. To facilitate efficient transmission and storage of the mass spectrometry data, block 55 shows that the denoised and baseline corrected data are compressed.
- In one embodiment, the biological sample is selected and processed to have only a limited range of possible compositions. Accordingly, it is therefore known where peaks indicating composition should be located, if present. Taking advantage of knowing the location of these expected peaks, in
block 60 themethod 35 matches putative peaks in the processed signal to the location of the expected peaks. In such a manner, the probability of each putative peak in the data being an actual peak indicative of the composition of the biological sample can be determined. Once the probability of each peak is determined inblock 60, then inblock 65 themethod 35 statistically determines the composition of the biological sample, and determines if confidence is high enough to calling a genotype. - Referring again to block 40, data are received from the test instrument, which can be a mass spectrometer. In a specific illustration, FIG. 26 shows an example of data from a mass spectrometer. The
mass spectrometer data 70 generally comprises data points distributed along an x-axis 71 and a y-axis 72. The x-axis 71 represents the mass of particles detected, while the y-axis 72 represents a numerical concentration of the particles. As can be seen in FIG. 26, themass spectrometry data 70 is generally exponentially decaying with data at the left end of the x-axis 73 generally decaying in an exponential manner toward data at the heavier end 74 of the x-axis 71. The general exponential presentation of the data is not indicative of the composition of the biological sample, but is more reflective of systematic error and characteristics. Further, as described above and illustrated in FIG. 26, considerable noise exists in the massspectrometry DNA data 70. - Referring again to block 45, where the raw data received in
block 40 is denoised, the denoising process will be described in more detail. As illustrated in FIG. 25, the denoising process generally entails 1) performing a wavelet transformation on the raw data to decompose the raw data into wavelet stage coefficients; 2) generating a noise profile from the highest stage of wavelet coefficients; and 3) applying a scaled noise profile to other stages in the wavelet transformation. Each step of the denoising process is further described below. - Referring now to FIG. 27, the wavelet transformation of the raw mass spectrometry data is generally diagramed. Using wavelet transformation techniques, the
mass spectrometry data 70 is sequentially transformed into stages. In each stage, the data are represented in a high stage and a low stage, with the low stage acting as the input to the next sequential stage. For example, themass spectrometry data 70 is transformed intostage 0high data 82 andstage 0low data 83. Thestage 0low data 83 is then used as an input to the next level transformation to generatestage 1high data 84 andstage 1low data 85. In a similar manner, thestage 1low data 85 is used as an input to be transformed intostage 2high data 86 andstage 2low data 87. The transformation is continued until no more useful information can be derived by further wavelet transformation. For example, in the one embodiment a 24-point wavelet is used. More particularly a wavelet commonly referred to as theDaubechies 24 is used to decompose the raw data. It will be appreciated that other wavelets can be used for the wavelet transformation. Since each stage in a wavelet transformation has one-half the data points of the previous stage, the wavelet transformation can be continued until the stage nlow data 89 has around 50 points. Accordingly, the stage n high 88 would contain about 100 data points. Since the exemplary wavelet is 24 points long, little data or information can be derived by continuing the wavelet transformation on a data set of around 50 points. - FIG. 28 shows an example of
stage 0high data 95. Sincestage 0high data 95 is generally indicative of the highest frequencies in the mass spectrometry data,stage 0high data 95 will closely relate to the quantity of high frequency noise in the mass spectrometry data. In FIG. 29, an exponential fitting formula has been applied to thestage 0high data 95 to generate astage 0noise profile 97. In particular, the exponential fitting formula is in the format A0+A1 EXP (−A2 m). It will be appreciated that other exponential fitting formulae or other types of curve fits can be used. - Referring now to FIG. 30, noise profiles for the other high stages are determined. Since the later data points in each stage will likely be representative of the level of noise in each stage, only the later data points in each stage are used to generate a standard deviation figure that is representative of the noise content in that particular stage. More particularly, in generating the noise profile for each remaining stage, only the last five percent of the data points in each stage are analyzed to determined a standard deviation number. It will be appreciated that other numbers of points, or alternative methods could be used to generate such a standard deviation figure.
- The standard deviation number for each stage is used with the
stage 0 noise profile (the exponential curve) 97 to generate a scaled noise profile for each stage. For example, FIG. 30 shows thatstage 1high data 98 hasstage 1high data 103 with the last five percent of the data points represented byarea 99. The points inarea 99 are evaluated to determine a standard deviation number indicative of the noise content instage 1high data 103. The standard deviation number is then used with thestage 0noise profile 97 to generate astage 1 noise profile. - In a similar manner,
stage 2 high 100 hasstage 2high data 104 with the last five percent of points represented byarea 101. The data points inarea 101 are then used to calculate a standard deviation number which is then used to scale thestage 0noise profile 97 to generate a noise profile forstage 2 data. This same process is continued for each of the stage high data as shown by the stage n high 105. For stage n high 105, stage nhigh data 108 has the last five percent of data points indicated inarea 106. The data points inarea 106 are used to determine a standard deviation number for stage n. The stage n standard deviation number is then used with thestage 0noise profile 97 to generate a noise profile for stage n. Accordingly, each of the high data stages has a noise profile. - FIG. 31 shows how the noise profile is applied to the data in each stage. Generally, the noise profile is used to generate a threshold which is applied to the data in each stage. Since the noise profile is already scaled to adjust for the noise content of each stage, calculating a threshold permits further adjustment to tune the quantity of noise removed. Wavelet coefficients below the threshold are ignored while those above the threshold are retained. Accordingly, the remaining data have a substantial portion of the noise content removed.
- Due to the characteristics of wavelet transformation, the lower stages, such as
stage stage 2 or stage n. Indeed, stage n low data are likely to have little noise at all. Therefore, in an embodiment, the noise profiles are applied more aggressively in the lower stages and less aggressively in the later stages. For example, FIG. 31 shows thatstage 0 high threshold is determined by multiplying thestage 0 noise profile by a factor of four. In such a manner, significant numbers of data points instage 0high data 95 will be below the threshold and therefore eliminated.Stage 1high threshold 112 is set at two times the noise profile for thestage 1 high data, andstage 2high threshold 114 is set equal to the noise profile forstage 2 high. Following this geometric progression, stage nhigh threshold 116 is therefore determined by scaling the noise profile for each respective stage n high by a factor equal to (½n-2). It will be appreciated that other factors can be applied to scale the noise profile for each stage. For example, the noise profile can be scaled more or less aggressively to accommodate specific systemic characteristics or sample compositions. As indicated above, stage n low data does not have a noise profile applied as stage nlow data 118 is assumed to have little or no noise content. After the scaled noise profiles have been applied to each high data stage, themass spectrometry data 70 has been denoised and is ready for further processing. A wavelet transformation of the denoised signal results in thesparse data set 120 as shown in FIG. 31. - Referring again to FIG. 25, the mass spectrometry data received in
block 40 has been denoised inblock 45 and is now passed to block 50 for baseline correction. Before performing baseline correction, the artifacts introduced by the wavelet transformation procedure can be removed. Wavelet transformation results vary slightly depending upon which point of the wavelet is used as a starting point. For example, an exemplary embodiment uses the 24-point Daubechies-24 wavelet. By starting the transformation at the 0 point of the wavelet, a slightly different result will be obtained than if starting atpoints - The formula 125 is generally indicated in FIG. 33. Once the signal has been denoised and shifted, a denoised and shifted
signal 130 is generated as shown in FIG. 58. FIG. 34 shows an example of thewavelet coefficient 135 data set from the denoised and shiftedsignal 130. - FIG. 36 shows that
putative peak areas signal 150. The putative peak areas are systematically identified by taking a moving average along thesignal 150 and identifying sections of thesignal 150 which exceed a threshold related to the moving average. It will be appreciated that other methods can be used to identify putative peak areas in thesignal 150. -
Putative peak areas signal 150 to create a peak-free signal 155 as shown in FIG. 37. The peak-free signal 155 is further analyzed to identify remainingminimum values 157, and the remainingminimum values 157 are connected to generate the peak-free signal 155. - FIG. 38 shows a process of using the peak-
free signal 155 to generate abaseline 170 as shown in FIG. 39. As shown inblock 162, a wavelet transformation is performed on the peak-free signal 155. All the stages from the wavelet transformation are eliminated inblock 164 except for the n low stage. The n low stage will generally indicate the lowest frequency component of the peak-free signal 155 and therefore will generally indicate the system exponential characteristics.Block 166 shows that a signal is reconstructed from the n low coefficients and thebaseline signal 170 is generated inblock 168. - FIG. 39 shows a denoised and shifted data signal 172 positioned adjacent a
correction baseline 170. Thebaseline correction 170 is subtracted from the denoised and shifted signal 172 to generate asignal 175 having a baseline correction applied as shown in FIG. 40. Although such a denoised, shifted, and corrected signal is sufficient for most identification purposes, the putative peaks insignal 175 are not identifiable with sufficient accuracy or confidence to call the DNA composition of a biological sample. - Referring again to FIG. 25, the data from the
baseline correction 50 is now compressed inblock 55; the compression technique used in an exemplary embodiment is detailed in FIG. 41. In FIG. 41the data in the baseline corrected data are presented in anarray format 182 withx-axis points 183 having an associateddata value 184. The x-axis is indexed by the non-zero wavelet coefficients, and the associated value is the value of the wavelet coefficient. In the illustrated data example in table 182, themaximum value 184 is indicated to be 1000. Although a particularly advantageous compression technique for mass spectrometry data is shown, it will be appreciated that other compression techniques can be used. The data also can be stored without compression. - In compressing the data according to one embodiment, an
intermediate format 186 is generated. Theintermediate format 186 generally comprises a real number having awhole number portion 188 and adecimal portion 190. The whole number portion is thex-axis point 183 while the decimal portion is thevalue data 184 divided by the maximum data value. For example, in the data 182 a data value “25” is indicated at x-axis point “100” . The intermediate value for this data point would be “100.025”. - From the intermediate
compressed data 186 the finalcompressed data 195 is generated. The first point of the intermediate data file becomes the starting point for the compressed data. Thereafter each data point in thecompressed data 195 is calculated as follows: the whole number portion (left of the decimal) is replaced by the difference between the current and the last whole number. The remainder (right of the decimal) remains intact. For example, the starting point of thecompressed data 195 is shown to be the same as the intermediate data point which is “100.025”. The comparison between the first intermediate data point “100.025” and the second intermediate data point “150.220” is “50.220”. Therefore, “50.220” becomes the second point of thecompressed data 195. In a similar manner, the second intermediate point is “150.220” and the third intermediate data point is “500.0001” . Therefore, the third compressed data becomes “350.000”. The calculation for determining compressed data points is continued until the entire array of data points is converted to a single array of real numbers. - FIG. 42 generally describes the method of compressing mass spectrometry data, showing that the data file in
block 201 is presented as an array of coefficients inblock 202. The data starting point and maximum is determined as shown inblock 203, and the intermediate real numbers are calculated inblock 204 as described above. With the intermediate data points generated, the compressed data are generated inblock 205. The described compression method is highly advantageous and efficient for compressing data sets such as a processed data set from a mass spectrometry instrument. The method is particularly useful for data, such as mass spectrometry data, that uses large numbers and has been processed to have occasional lengthy gaps in x-axis data. Accordingly, an x-y data array for processed mass spectrometry data can be stored with an effective compression rate of 10×or more. Although the compression technique is applied to mass spectrometry data, it will be appreciated that the method can also advantageously be applied to other data sets. - Referring again to FIG. 25, peak heights are now determined in
block 60. The first step in determining peak height is illustrated in FIG. 43 where thesignal 210 is shifted left or right to correspond with the position of expected peaks. As the set of possible compositions in the biological sample is known before the mass spectrometry data are generated, the possible positioning of expected peaks is already known. These possible peaks are referred to as expected peaks, such as expectedpeaks putative peaks peaks - Once the putative peaks have been shifted to match expected peaks, the strongest putative peak is identified in FIG. 44. In one embodiment, the strongest peak is calculated as a combination of analyzing the overall peak height and area beneath the peak. For example, a moderately high but wide peak would be stronger than a very high peak that is extremely narrow. With the strongest putative peak identified, such as
putative peak 225, a Gaussian 228 curve is fit to thepeak 225. Once the Gaussian is fit, the width (W) of the Gaussian is determined and will be used as the peak width for future calculations. - As generally addressed above, the denoised, shifted, and baseline-corrected signal is not sufficiently processed for confidently calling the DNA composition of the biological sample. For example, although the baseline has generally been removed, there are still residual baseline effects present. These residual baseline effects are therefore removed to increase the accuracy and confidence in making identifications.
- To remove the residual baseline effects, FIG. 45 shows that the
putative peaks center line putative peaks - The peaks are removed and remaining
minima 247 located as shown in FIG. 46 with theminima 247 connected to createsignal 245. A quartic polynomial is applied to signal 245 to generate aresidual baseline 250 as shown in FIG. 47. Theresidual baseline 250 is subtracted from thesignal 225 to generate thefinal signal 255 as indicated in FIG. 48. Although the residual baseline is the result of a quartic fit to signal 245, it will be appreciated that other techniques can be used to smooth or fit the residual baseline. - To determine peak height, as shown in FIG. 49, a Gaussian such as
Gaussian peaks height biological compound 35 can move into thegenotyping phase 65 as shown in FIG. 25. - An indication of the confidence that each putative peak is an actual peak can be discerned by calculating a signal-to-noise ratio for each putative peak. Accordingly, putative peaks with a strong signal-to-noise ratio are generally more likely to be an actual peak than a putative peak with a lower signal-to-noise ratio. As described above and shown in FIG. 50, the height of each peak, such as
height noise profile 97, is extrapolated intonoise profile 280 across the identified peaks. At the center line of each of the peaks, a noise value is determined, such asnoise value signal value 272 divided bynoise value 282, and in a similar manner the signal-to-noise ratio of the middle peak in FIG. 50 would be determined assignal 274 divided bynoise value 283. - Although the signal-to-noise ratio is generally a useful indicator of the presence of an actual peak, further processing has been found to increase the confidence by which a sample can be identified. For example, the signal-to-noise ratio for each peak in the exemplarly embodiment can be adjusted by the goodness of fit between a Gaussian and each putative peak. It is a characteristic of a mass spectrometer that sample material is detected in a manner that generally complies with a normal distribution. Accordingly, greater confidence will be associated with a putative signal having a Gaussian shape than a signal that has a less normal distribution. The error resulting from having a non-Gaussian shape can be referred to as a “residual error”.
- Referring to FIG. 51, a residual error is calculated by taking a root mean square calculation between the Gaussian 293 and the
putative peak 290 in the data signal. The calculation is performed on data within one width on either side of a center line of the Gaussian. The residual error is calculated as: - {square root}[(G−R)2/N],
- where G is the Gaussian signal value, R is the putative peak value, and N is the number of points from −W to +W. The calculated residual error is used to generate an adjusted signal-to-noise ratio, as described below.
- An adjusted signal noise ratio is calculated for each putative peak using the formula (S/N) * EXP(−1·R), where S/N is the signal-to-noise ratio, and R is the residual error determined above. Although the exemplary embodiment calculates an adjusted signal-to-noise ratio using a residual error for each peak, it will be appreciated that other techniques can be used to account for the goodness of fit between the Gaussian and the actual signal.
- Referring now to FIG. 52, a probability is determined that a putative peak is an actual peak. In making the determination of peak probability, a
probability profile 300 is generated where the adjusted signal-to-noise ratio is the x-axis and the probability is the y-axis. Probability is necessarily in the range between a 0% probability and a 100% probability, which is indicated as 1. Generally, the higher the adjusted signal-to-noise ratio, the greater the confidence that a putative peak is an actual peak. - At some target value for the adjusted signal-to-noise, it has been found that the probability is 100% that the putative peak is an actual peak and can confidently be used to identify the DNA composition of a biological sample. The target value of adjusted signal-to-noise ratio where the probability is assumed to be 100% is a variable parameter which is to be set according to application specific criteria. For example, the target signal-to-noise ratio will be adjusted depending upon trial experience, sample characteristics, and the acceptable error tolerance in the overall system. More specifically, for situations requiring a conservative approach where error cannot be tolerated, the target adjusted signal-to-noise ratio can be set to, for example, 10 and higher. Accordingly, 100% probability will not be assigned to a peak unless the adjusted signal-to-noise ratio is 10 or over.
- In other situations, a more aggressive approach can be taken as sample data is more pronounced or the risk of error can be reduced. In such a situation, the system can be set to assume a 100% probability with a 5 or greater target signal-to-noise ratio. Of course, an intermediate signal-to-noise ratio target figure can be selected, such as 7, when a moderate risk of error can be assumed. Once the target adjusted signal-to-noise ratio is set for the method, then for any adjusted signal-to-noise ratio a probability can be determined that a putative peak is an actual peak.
- Due to the chemistry involved in performing an identification test, especially a mass spectrometry test of a sample prepared by DNA amplifications, the allelic ratio between the signal strength of the highest peak and the signal strength of the second (or third and so on) highest peak should fall within an expected ratio. If the allelic ratio falls outside of normal guidelines, the exemplary embodiment imposes an allelic ratio penalty to the probability. For example, FIG. 53 shows an
allelic penalty 315 which has anx-axis 317 that is the ratio between the signal strength of the second highest peak divided by signal strength of the highest peak. Theyaxis 319 assigns a penalty between 0 and 1 depending on the determined allelic ratio. In the exemplary embodiment, it is assumed that allelic ratios over 30% are within the expected range and therefore no penalty is applied. Between a ratio of 10% and 30%, the penalty is linearly increased until at allelic ratios below 10% it is assumed the second-highest peak is not real. For allelic ratios between 10% and 30%, theallelic penalty chart 315 is used to determine apenalty 319, which is multiplied by the peak probability determined in FIG. 52 to determine a final peak probability. Although the exemplary embodiment incorporates an allelic ratio penalty to account for a possible chemistry error, it will be appreciated that other techniques can be used. Similar treatment will be applied to the other peaks. - With the peak probability of each peak determined, the statistical probability for various composition components can be determined, as an example, in order to determine the probability of each of three possible combinations of two peaks,—peak G, peak C and combinations GG, CC and GC. FIG. 54 shows an example where a most
probable peak 325 is determined to have a final peak probability of 90%.Peak 325 is positioned such that it represents a G component in the biological sample. Accordingly, it can be maintained that there is a 90% probability that G exists in the biological sample. Also in the example shown in FIG. 54, the second highest probability is peak 330 which has a peak probability of 20%.Peak 330 is at a position associated with a C composition. Accordingly, it can be maintained that there is a 20% probability that C exists in the biological sample. - With the probability of G existing (90%) and the probability of C existing (20%) as a starting point, the probability of combinations of G and C existing can be calculated. For example, FIG. 54 indicates that the probability of GG existing 329 is calculated as 72%. This is calculated as the probability of GG is equal to the probability of G existing (90%) multiplied by the probability of C not existing (100% −20%). So if the probability of G existing is 90% and the probability of C not existing is 80%, the probability of GG is 72%.
- In a similar manner, the probability of CC existing is equivalent to the probability of C existing (20%) multiplied by the probability of G not existing (100% −90%). As shown in FIG. 54, the probability of C existing is 20% while the probability of G not existing is 10%, so therefore the probability of CC is only 2%. Finally, the probability of GC existing is equal to the probability of G existing (90%) multiplied by the probability of C existing (20%). So if the probability of G existing is 90% and the probability of C existing is 20%, the probability of GC existing is 18%. In summary form, then, the probability of the composition of the biological sample is:
probability of GG: 72%; probability of GC: 18%; and probability of CC: 2%. - Once the probabilities of each of the possible combinations has been determined, FIG. 55 is used to decide whether or not sufficient confidence exists to call the genotype. FIG. 55 shows a
call chart 335 which has anx-axis 337 which is the ratio of the highest combination probability to the second highest combination probability. Theyaxis 339 simply indicates whether the ratio is sufficiently high to justify calling the genotype. The value of the ratio can be indicated byM 340. The value of M is set depending upon trial data, sample composition, and the ability to accept error. For example, the value M can be set relatively high, such as to avalue 4 so that the highest probability must be at least four times greater than the second highest probability before confidence is established to call a genotype. If a certain level of error can be acceptable, the value of M can be set to a more aggressive value, such as to 3, so that the ratio between the highest and second highest probabilities needs to be only a ratio of 3 or higher. Of course, moderate value can be selected for M when a moderate risk can be accepted. Using the example of FIG. 54, where the probability of GG was 72% and the probability of GC was 18%, the ratio between 72% and 18% is 4.0, therefore, whether M is set to 3, 3.5, or 4, the system would call the genotype as GG. Although the exemplary embodiment uses a ratio between the two highest peak probabilities to determine if a genotype confidently can be called, it will be appreciated that other methods can be substituted. It will also be appreciated that the above techniques can be used for calculating probabilities and choosing genotypes (or more general DNA patterns) containing of combinations of more than two peaks. - Referring now to FIG. 56, a flow chart is shown generally defining the process of statistically calling genotype described above. In FIG. 56
block 402 shows that the height of each peak is determined and that in block 404 a noise profile is extrapolated for each peak. The signal is determined from the height of each peak inblock 406 and the noise for each peak is determined using the noise profile in block 408. Inblock 410, the signal-to-noise ratio is calculated for each peak. To account for a non-Gaussian peak shape, a residual error is determined inblock 412 and an adjusted signal-to-noise ratio is calculated inblock 414.Block 416 shows that a probability profile is developed, with the probability of each peak existing found inblock 418. An allelic penalty can be applied inblock 420, with the allelic penalty applied to the adjusted peak probability inblock 422. The probability of each combination of components is calculated inblock 424 with the ratio between the two highest probabilities being determined inblock 426. If the ratio of probabilities exceeds a threshold value then the genotype is called inblock 428. - In another embodiment, the computing device 20 (FIG. 24) supports “standardless” genotyping by identifying data peaks that contain putative SNPs. Standardless genotyping is used, for example, where insufficient information is known about the samples to determine a distribution of expected peak locations, against which an allelic penalty as described above can be reliably calculated. This permits the computing device to be used for identification of peaks that contain putative SNPs from data generated by any assay that fragments a targeted DNA molecule. For such standardless genotyping, peaks that are associated with an area under the data curve that deviates significantly from the typical area of other peaks in the data spectrum are identified and their corresponding mass (location along the x-axis) is determined.
- More particularly, peaks that deviate significantly from the average area of other peaks in the data are identified, and the expected allelic ratio between data peaks is defined in terms of the ratio of the area under the data peaks. Theoretically, where each genetic loci has the same molar concentration of analyte, the area under each corresponding peak should be the same, thus producing a 1.0 ratio of the peak area between any two peaks. In accordance with the methods provided herein, peaks having a smaller ratio relative to the other peaks in the data will not be recognized as peaks. More particularly, peaks having an area ratio smaller than 30% relative to a nominal value for peak area will be assigned an allelic penalty. The mass of the remaining peaks (their location along the x-axis of the data) will be determined based on oligonucleotide standards.
- FIG. 57 shows a flow diagram representation of the processing by the computing device 20 (FIG. 24) when performing standardless genotyping. In the first operation, represented by the flow diagram box numbered 502, the computing device receives data from the mass spectrometer. Next, the height of each putative peak in the data sample is determined, as indicated by the
block 504. After the height of each peak in the mass spectrometer data is determined, ade-noise process 505 is performed, beginning with an extrapolation of the noise profile (block 506), followed by finding the noise of each peak (block 508) and calculating the signal to noise ratio for each data sample (block 510). Each of these operations can be performed in accordance with the description above fordenoise operations 45 of FIG. 25. Other suitable denoise operations will occur to those skilled in the art. - The next operation is to find the residual error associated with each data point. This is represented by the
block 512 in FIG. 57. The next step, block 514, involves calculating an adjusted signal to noise ratio for each identified peak. A probability profile is developed next (block 516), followed by a determination of the peak probabilities atblock 518. In an exemplary embodiment, the denoise operations of FIG. 57, comprising block 502 to block 518, comprise the corresponding operations described above in conjunction with FIG. 56 forblock 402 throughblock 418, respectively. - The next action for the standardless genotype processing is to determine an allelic penalty for each peak, indicated by the
block 524. As noted above, the standardless genotype processing of FIG. 57 determines an allelic penalty by comparing area under the peaks. Therefore, rather than compare signal strength ratios to determine an allelic penalty, such as described above for FIG. 53, the standardless processing determines the area under each of the identified peaks and compares the ratio of those areas. Determining the area under each peak can be computed using conventional numerical analysis techniques for calculating the area under a curve for experimental data. - Thus, the allelic penalty is assigned in accordance with FIG. 58, which shows that no penalty is assigned to peaks having a peak area relative to an expected average area value that is greater than 0.30 (30%). The allelic penalty is applied to the peak probability value, which can be determined according to the process such as described in FIG. 52. It should be apparent from FIG. 58 that the allelic penalty imposed for peaks below a ratio of 30% is that such peaks will be removed from further measurement and processing. Other penalty schemes, however, can be imposed in accordance with knowledge about the data being processed, as determined by those skilled in the art.
- After the allelic penalty has been determined and applied, the standardless genotype processing compares the location of the remaining putative peaks to oligonucleotide standards to determine corresponding masses in the processing for
block 524. For standardless genotype data, the processing of theblock 524 is performed to determine mass and genotype, rather than performing the operations corresponding to block 424, 426, and 428 of FIG. 33. Techniques for performing such comparisons and determining mass will be known to those skilled in the art. - In another embodiment, the computing device 20 (FIG. 24) permits the detection and determination of the mass (location along the x-axis of the data) of the sense and antisense strand of fragments generated in the assay. If desired, the computing device can also detect and determine the quantity (area under each peak) of the respective sense and antisense strands, using a similar technique to that described above for standardless genotype processing. The data generated for each type of strand can then be combined to achieve a data redundancy and to thereby increase the confidence level of the determined genotype. This technique obviates primer peaks that are often observed in data from other diagnostic methods, thereby permitting a higher level of multiplexing. In addition, when quantitation is used in pooling experiments, the ratio of the measured peak areas is more reliably calculated than the peak identifying technique, due to data redundancy.
- FIG. 23 is a flow diagram that illustrates the processing implemented by the
computing device 20 to perform sense and antisense processing. In the first operation, represented by the flow diagram box numbered 602, the computing device receives data from the mass spectrometer. This data will include data for the sense strand and antisense strand of assay fragments. Next, the height of each putative peak in the data sample is determined, as indicated by theblock 604. After the height of each peak in the mass spectrometer data is determined, ade-noise process 605 is performed, beginning with an operation that extrapolates the noise profile (block 606), followed by finding the noise of each peak (block 608) and calculating the signal to noise ratio for each data sample (block 610). Each of these operations can be performed in accordance with the description above for thedenoise operations 45 of FIG. 25. Other suitable denoise operations will occur to those skilled in the art. The next operation is to find the residual error associated with each data point. This is represented by theblock 612 in FIG. 36. - After the residual error for the data of the sense strand and antisense strand has been performed, processing to identify the genotypes will be performed for the sense strand and also for the antisense strand. Therefore, FIG. 23 shows that processing includes sense strand processing (block 630) and antisense strand processing (block 640). Each
block blocks 414 through 426 of FIG. 56. The processing of eachblock - After the genotype probability processing is completed, the data from the sense strand and antisense strand processing is combined and compared to expected database values to obtain the benefits of data redundancy as between the sense strand and antisense strand. Those skilled in the art will understand techniques to take advantage of known data redundancies between a sense strand and antisense strand of assay fragments. This processing is represented by the
block 650. After the data from the two strands is combined for processing, the genotype processing is performed (block 660) and the genotype is identified. - Since modifications will be apparent to those of skill in this art, it is intended that this invention be limited only by the scope of the appended claims.
-
0 SEQUENCE LISTING <160> NUMBER OF SEQ ID NOS: 118 <210> SEQ ID NO 1 <211> LENGTH: 361 <212> TYPE: DNA <213> ORGANISM: Homo Sapien <400> SEQUENCE: 1 ctgaggacct ggtcctctga ctgctctttt cacccatcta cagtccccct tgccgtccca 60 agcaatggat gatttgatgc tgtccccgga cgatattgaa caatggttca ctgaagaccc 120 aggtccagat gaagctccca gaatgccaga ggctgctccc cgcgtggccc ctgcaccagc 180 agctcctaca ccggcggccc ctgcaccagc cccctcctgg cccctgtcat cttctgtccc 240 ttcccagaaa acctaccagg gcagctacgg tttccgtctg ggcttcttgc attctgggac 300 agccaagtct gtgacttgca cggtcagttg ccctgagggg ctggcttcca tgagacttca 360 a 361 <210> SEQ ID NO 2 <211> LENGTH: 44 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide Primer <400> SEQUENCE: 2 cccagtcacg acgttgtaaa acgctgagga cctggtcctc tgac 44 <210> SEQ ID NO 3 <211> LENGTH: 42 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide Primer <400> SEQUENCE: 3 agcggataac aatttcacac aggttgaagt ctcatggaag cc 42 <210> SEQ ID NO 4 <211> LENGTH: 17 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Probe <400> SEQUENCE: 4 gccagaggct gctcccc 17 <210> SEQ ID NO 5 <211> LENGTH: 17 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Probe <400> SEQUENCE: 5 gccagaggct gctcccc 17 <210> SEQ ID NO 6 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Probe <400> SEQUENCE: 6 gccagaggct gctccccgc 19 <210> SEQ ID NO 7 <211> LENGTH: 18 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Probe <400> SEQUENCE: 7 gccagaggct gctccccc 18 <210> SEQ ID NO 8 <211> LENGTH: 161 <212> TYPE: DNA <213> ORGANISM: Homo Sapien <400> SEQUENCE: 8 gtccgtcaga acccatgcgg cagcaaggcc tgccgccgcc tcttcggccc agtggacagc 60 gagcagctga gccgcgactg tgatgcgcta atggcgggct gcatccagga ggcccgtgag 120 cgatggaact tcgactttgt caccgagaca ccactggagg g 161 <210> SEQ ID NO 9 <211> LENGTH: 43 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide Primer <400> SEQUENCE: 9 cccagtcacg acgttgtaaa acggtccgtc agaacccatg cgg 43 <210> SEQ ID NO 10 <211> LENGTH: 44 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide Primer <400> SEQUENCE: 10 agcggataac aatttcacac aggctccagt ggtgtctcgg tgac 44 <210> SEQ ID NO 11 <211> LENGTH: 15 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide Primer <400> SEQUENCE: 11 cagcgagcag ctgag 15 <210> SEQ ID NO 12 <211> LENGTH: 15 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Probe <400> SEQUENCE: 12 cagcgagcag ctgag 15 <210> SEQ ID NO 13 <211> LENGTH: 16 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Probe <400> SEQUENCE: 13 cagcgagcag ctgagc 16 <210> SEQ ID NO 14 <211> LENGTH: 17 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Probe <400> SEQUENCE: 14 cagcgagcag ctgagac 17 <210> SEQ ID NO 15 <211> LENGTH: 205 <212> TYPE: DNA <213> ORGANISM: Homo Sapien <400> SEQUENCE: 15 gcgctccatt catctcttca tcgactctct gttgaatgaa gaaaatccaa gtaaggccta 60 caggtgcagt tccaaggaag cctttgagaa agggctctgc ttgagttgta gaaagaaccg 120 ctgcaacaat ctgggctatg agatcaataa agtcagagcc aaaagaagca gcaaaatgta 180 cctgaagact cgttctcaga tgccc 205 <210> SEQ ID NO 16 <211> LENGTH: 42 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide Primers <400> SEQUENCE: 16 cccagtcacg acgttgtaaa acggcgctcc attcatctct tc 42 <210> SEQ ID NO 17 <211> LENGTH: 42 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide Primer <400> SEQUENCE: 17 agcggataac aatttcacac agggggcatc tgagaacgag tc 42 <210> SEQ ID NO 18 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide Primer <400> SEQUENCE: 18 caatctgggc tatgagatca 20 <210> SEQ ID NO 19 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Probe <400> SEQUENCE: 19 caatctgggc tatgagatca 20 <210> SEQ ID NO 20 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Probe <400> SEQUENCE: 20 caatctgggc tatgagatca a 21 <210> SEQ ID NO 21 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Probe <400> SEQUENCE: 21 caatctgggc tatgagatca gt 22 <210> SEQ ID NO 22 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Homo Sapien <220> FEATURE: <223> OTHER INFORMATION: Probe <400> SEQUENCE: 22 gtgccggcta ctcggatggc agcaaggact cctgcaaggg ggacagtgga ggcccacatg 60 <210> SEQ ID NO 23 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Homo sapien <400> SEQUENCE: 23 ccacccacta ccggggcacg tggtacctga cgggcatcgt cagctggggc cagggctgcg 60 <210> SEQ ID NO 24 <211> LENGTH: 42 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide primer <400> SEQUENCE: 24 cccagtcacg acgttgtaaa acgatggcag caaggactcc tg 42 <210> SEQ ID NO 25 <211> LENGTH: 18 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide primer <400> SEQUENCE: 25 cacatgccac ccactacc 18 <210> SEQ ID NO 26 <211> LENGTH: 43 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide primer <400> SEQUENCE: 26 agcggataac aatttcacac aggtgacgat gcccgtcagg tac 43 <210> SEQ ID NO 27 <211> LENGTH: 15 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Probe <400> SEQUENCE: 27 atgccaccca ctacc 15 <210> SEQ ID NO 28 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Probe <400> SEQUENCE: 28 cacatgccac ccactaccg 19 <210> SEQ ID NO 29 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Probe <400> SEQUENCE: 29 cacatgccac ccactaccag 20 <210> SEQ ID NO 30 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Probe <400> SEQUENCE: 30 agcggataac aatttcacac agg 23 <210> SEQ ID NO 31 <211> LENGTH: 2363 <212> TYPE: DNA <213> ORGANISM: Homo Sapien <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (138)...(2126) <223> OTHER INFORMATION: AKAP-10 <300> PUBLICATION INFORMATION: <308> DATABASE ACCESSION NUMBER: GenBank AF037439 <309> DATABASE ENTRY DATE: 1997-12-21 <400> SEQUENCE: 31 gcggcttgtt gataatatgg cggctggagc tgcctgggca tcccgaggag gcggtggggc 60 ccactcccgg aagaagggtc ccttttcgcg ctagtgcagc ggcccctctg gacccggaag 120 tccgggccgg ttgctga atg agg gga gcc ggg ccc tcc ccg cgc cag tcc 170 Met Arg Gly Ala Gly Pro Ser Pro Arg Gln Ser 1 5 10 ccc cgc acc ctc cgt ccc gac ccg ggc ccc gcc atg tcc ttc ttc cgg 218 Pro Arg Thr Leu Arg Pro Asp Pro Gly Pro Ala Met Ser Phe Phe Arg 15 20 25 cgg aaa gtg aaa ggc aaa gaa caa gag aag acc tca gat gtg aag tcc 266 Arg Lys Val Lys Gly Lys Glu Gln Glu Lys Thr Ser Asp Val Lys Ser 30 35 40 att aaa gct tca ata tcc gta cat tcc cca caa aaa agc act aaa aat 314 Ile Lys Ala Ser Ile Ser Val His Ser Pro Gln Lys Ser Thr Lys Asn 45 50 55 cat gcc ttg ctg gag gct gca gga cca agt cat gtt gca atc aat gcc 362 His Ala Leu Leu Glu Ala Ala Gly Pro Ser His Val Ala Ile Asn Ala 60 65 70 75 att tct gcc aac atg gac tcc ttt tca agt agc agg aca gcc aca ctt 410 Ile Ser Ala Asn Met Asp Ser Phe Ser Ser Ser Arg Thr Ala Thr Leu 80 85 90 aag aag cag cca agc cac atg gag gct gct cat ttt ggt gac ctg ggc 458 Lys Lys Gln Pro Ser His Met Glu Ala Ala His Phe Gly Asp Leu Gly 95 100 105 aga tct tgt ctg gac tac cag act caa gag acc aaa tca agc ctt tct 506 Arg Ser Cys Leu Asp Tyr Gln Thr Gln Glu Thr Lys Ser Ser Leu Ser 110 115 120 aag acc ctt gaa caa gtc ttg cac gac act att gtc ctc cct tac ttc 554 Lys Thr Leu Glu Gln Val Leu His Asp Thr Ile Val Leu Pro Tyr Phe 125 130 135 att caa ttc atg gaa ctt cgg cga atg gag cat ttg gtg aaa ttt tgg 602 Ile Gln Phe Met Glu Leu Arg Arg Met Glu His Leu Val Lys Phe Trp 140 145 150 155 tta gag gct gaa agt ttt cat tca aca act tgg tcg cga ata aga gca 650 Leu Glu Ala Glu Ser Phe His Ser Thr Thr Trp Ser Arg Ile Arg Ala 160 165 170 cac agt cta aac aca atg aag cag agc tca ctg gct gag cct gtc tct 698 His Ser Leu Asn Thr Met Lys Gln Ser Ser Leu Ala Glu Pro Val Ser 175 180 185 cca tct aaa aag cat gaa act aca gcg tct ttt tta act gat tct ctt 746 Pro Ser Lys Lys His Glu Thr Thr Ala Ser Phe Leu Thr Asp Ser Leu 190 195 200 gat aag aga ttg gag gat tct ggc tca gca cag ttg ttt atg act cat 794 Asp Lys Arg Leu Glu Asp Ser Gly Ser Ala Gln Leu Phe Met Thr His 205 210 215 tca gaa gga att gac ctg aat aat aga act aac agc act cag aat cac 842 Ser Glu Gly Ile Asp Leu Asn Asn Arg Thr Asn Ser Thr Gln Asn His 220 225 230 235 ttg ctg ctt tcc cag gaa tgt gac agt gcc cat tct ctc cgt ctt gaa 890 Leu Leu Leu Ser Gln Glu Cys Asp Ser Ala His Ser Leu Arg Leu Glu 240 245 250 atg gcc aga gca gga act cac caa gtt tcc atg gaa acc caa gaa tct 938 Met Ala Arg Ala Gly Thr His Gln Val Ser Met Glu Thr Gln Glu Ser 255 260 265 tcc tct aca ctt aca gta gcc agt aga aat agt ccc gct tct cca cta 986 Ser Ser Thr Leu Thr Val Ala Ser Arg Asn Ser Pro Ala Ser Pro Leu 270 275 280 aaa gaa ttg tca gga aaa cta atg aaa agt ata gaa caa gat gca gtg 1034 Lys Glu Leu Ser Gly Lys Leu Met Lys Ser Ile Glu Gln Asp Ala Val 285 290 295 aat act ttt acc aaa tat ata tct cca gat gct gct aaa cca ata cca 1082 Asn Thr Phe Thr Lys Tyr Ile Ser Pro Asp Ala Ala Lys Pro Ile Pro 300 305 310 315 att aca gaa gca atg aga aat gac atc ata gca agg att tgt gga gaa 1130 Ile Thr Glu Ala Met Arg Asn Asp Ile Ile Ala Arg Ile Cys Gly Glu 320 325 330 gat gga cag gtg gat ccc aac tgt ttc gtt ttg gca cag tcc ata gtc 1178 Asp Gly Gln Val Asp Pro Asn Cys Phe Val Leu Ala Gln Ser Ile Val 335 340 345 ttt agt gca atg gag caa gag cac ttt agt gag ttt ctg cga agt cac 1226 Phe Ser Ala Met Glu Gln Glu His Phe Ser Glu Phe Leu Arg Ser His 350 355 360 cat ttc tgt aaa tac cag att gaa gtg ctg acc agt gga act gtt tac 1274 His Phe Cys Lys Tyr Gln Ile Glu Val Leu Thr Ser Gly Thr Val Tyr 365 370 375 ctg gct gac att ctc ttc tgt gag tca gcc ctc ttt tat ttc tct gag 1322 Leu Ala Asp Ile Leu Phe Cys Glu Ser Ala Leu Phe Tyr Phe Ser Glu 380 385 390 395 tac atg gaa aaa gag gat gca gtg aat atc tta caa ttc tgg ttg gca 1370 Tyr Met Glu Lys Glu Asp Ala Val Asn Ile Leu Gln Phe Trp Leu Ala 400 405 410 gca gat aac ttc cag tct cag ctt gct gcc aaa aag ggg caa tat gat 1418 Ala Asp Asn Phe Gln Ser Gln Leu Ala Ala Lys Lys Gly Gln Tyr Asp 415 420 425 gga cag gag gca cag aat gat gcc atg att tta tat gac aag tac ttc 1466 Gly Gln Glu Ala Gln Asn Asp Ala Met Ile Leu Tyr Asp Lys Tyr Phe 430 435 440 tcc ctc caa gcc aca cat cct ctt gga ttt gat gat gtt gta cga tta 1514 Ser Leu Gln Ala Thr His Pro Leu Gly Phe Asp Asp Val Val Arg Leu 445 450 455 gaa att gaa tcc aat atc tgc agg gaa ggt ggg cca ctc ccc aac tgt 1562 Glu Ile Glu Ser Asn Ile Cys Arg Glu Gly Gly Pro Leu Pro Asn Cys 460 465 470 475 ttc aca act cca tta cgt cag gcc tgg aca acc atg gag aag gtc ttt 1610 Phe Thr Thr Pro Leu Arg Gln Ala Trp Thr Thr Met Glu Lys Val Phe 480 485 490 ttg cct ggc ttt ctg tcc agc aat ctt tat tat aaa tat ttg aat gat 1658 Leu Pro Gly Phe Leu Ser Ser Asn Leu Tyr Tyr Lys Tyr Leu Asn Asp 495 500 505 ctc atc cat tcg gtt cga gga gat gaa ttt ctg ggc ggg aac gtg tcg 1706 Leu Ile His Ser Val Arg Gly Asp Glu Phe Leu Gly Gly Asn Val Ser 510 515 520 ccg act gct cct ggc tct gtt ggc cct cct gat gag tct cac cca ggg 1754 Pro Thr Ala Pro Gly Ser Val Gly Pro Pro Asp Glu Ser His Pro Gly 525 530 535 agt tct gac agc tct gcg tct cag tcc agt gtg aaa aaa gcc agt att 1802 Ser Ser Asp Ser Ser Ala Ser Gln Ser Ser Val Lys Lys Ala Ser Ile 540 545 550 555 aaa ata ctg aaa aat ttt gat gaa gcg ata att gtg gat gcg gca agt 1850 Lys Ile Leu Lys Asn Phe Asp Glu Ala Ile Ile Val Asp Ala Ala Ser 560 565 570 ctg gat cca gaa tct tta tat caa cgg aca tat gcc ggg aag atg aca 1898 Leu Asp Pro Glu Ser Leu Tyr Gln Arg Thr Tyr Ala Gly Lys Met Thr 575 580 585 ttt gga aga gtg agt gac ttg ggg caa ttc atc cgg gaa tct gag cct 1946 Phe Gly Arg Val Ser Asp Leu Gly Gln Phe Ile Arg Glu Ser Glu Pro 590 595 600 gaa cct gat gta agg aaa tca aaa gga tcc atg ttc tca caa gct atg 1994 Glu Pro Asp Val Arg Lys Ser Lys Gly Ser Met Phe Ser Gln Ala Met 605 610 615 aag aaa tgg gtg caa gga aat act gat gag gcc cag gaa gag cta gct 2042 Lys Lys Trp Val Gln Gly Asn Thr Asp Glu Ala Gln Glu Glu Leu Ala 620 625 630 635 tgg aag att gct aaa atg ata gtc agt gac att atg cag cag gct cag 2090 Trp Lys Ile Ala Lys Met Ile Val Ser Asp Ile Met Gln Gln Ala Gln 640 645 650 tat gat caa ccg tta gag aaa tct aca aag tta tga ctcaaaactt 2136 Tyr Asp Gln Pro Leu Glu Lys Ser Thr Lys Leu * 655 660 gagataaagg aaatctgctt gtgaaaaata agagaacttt tttcccttgg ttggattctt 2196 caacacagcc aatgaaaaca gcactatatt tctgatctgt cactgttgtt tccagggaga 2256 gaatggggag acaatcctag gacttccacc ctaatgcagt tacctgtagg gcataattgg 2316 atggcacatg atgtttcaca cagtgaggag tctttaaagg ttaccaa 2363 <210> SEQ ID NO 32 <211> LENGTH: 662 <212> TYPE: PRT <213> ORGANISM: Homo Sapien <400> SEQUENCE: 32 Met Arg Gly Ala Gly Pro Ser Pro Arg Gln Ser Pro Arg Thr Leu Arg 1 5 10 15 Pro Asp Pro Gly Pro Ala Met Ser Phe Phe Arg Arg Lys Val Lys Gly 20 25 30 Lys Glu Gln Glu Lys Thr Ser Asp Val Lys Ser Ile Lys Ala Ser Ile 35 40 45 Ser Val His Ser Pro Gln Lys Ser Thr Lys Asn His Ala Leu Leu Glu 50 55 60 Ala Ala Gly Pro Ser His Val Ala Ile Asn Ala Ile Ser Ala Asn Met 65 70 75 80 Asp Ser Phe Ser Ser Ser Arg Thr Ala Thr Leu Lys Lys Gln Pro Ser 85 90 95 His Met Glu Ala Ala His Phe Gly Asp Leu Gly Arg Ser Cys Leu Asp 100 105 110 Tyr Gln Thr Gln Glu Thr Lys Ser Ser Leu Ser Lys Thr Leu Glu Gln 115 120 125 Val Leu His Asp Thr Ile Val Leu Pro Tyr Phe Ile Gln Phe Met Glu 130 135 140 Leu Arg Arg Met Glu His Leu Val Lys Phe Trp Leu Glu Ala Glu Ser 145 150 155 160 Phe His Ser Thr Thr Trp Ser Arg Ile Arg Ala His Ser Leu Asn Thr 165 170 175 Met Lys Gln Ser Ser Leu Ala Glu Pro Val Ser Pro Ser Lys Lys His 180 185 190 Glu Thr Thr Ala Ser Phe Leu Thr Asp Ser Leu Asp Lys Arg Leu Glu 195 200 205 Asp Ser Gly Ser Ala Gln Leu Phe Met Thr His Ser Glu Gly Ile Asp 210 215 220 Leu Asn Asn Arg Thr Asn Ser Thr Gln Asn His Leu Leu Leu Ser Gln 225 230 235 240 Glu Cys Asp Ser Ala His Ser Leu Arg Leu Glu Met Ala Arg Ala Gly 245 250 255 Thr His Gln Val Ser Met Glu Thr Gln Glu Ser Ser Ser Thr Leu Thr 260 265 270 Val Ala Ser Arg Asn Ser Pro Ala Ser Pro Leu Lys Glu Leu Ser Gly 275 280 285 Lys Leu Met Lys Ser Ile Glu Gln Asp Ala Val Asn Thr Phe Thr Lys 290 295 300 Tyr Ile Ser Pro Asp Ala Ala Lys Pro Ile Pro Ile Thr Glu Ala Met 305 310 315 320 Arg Asn Asp Ile Ile Ala Arg Ile Cys Gly Glu Asp Gly Gln Val Asp 325 330 335 Pro Asn Cys Phe Val Leu Ala Gln Ser Ile Val Phe Ser Ala Met Glu 340 345 350 Gln Glu His Phe Ser Glu Phe Leu Arg Ser His His Phe Cys Lys Tyr 355 360 365 Gln Ile Glu Val Leu Thr Ser Gly Thr Val Tyr Leu Ala Asp Ile Leu 370 375 380 Phe Cys Glu Ser Ala Leu Phe Tyr Phe Ser Glu Tyr Met Glu Lys Glu 385 390 395 400 Asp Ala Val Asn Ile Leu Gln Phe Trp Leu Ala Ala Asp Asn Phe Gln 405 410 415 Ser Gln Leu Ala Ala Lys Lys Gly Gln Tyr Asp Gly Gln Glu Ala Gln 420 425 430 Asn Asp Ala Met Ile Leu Tyr Asp Lys Tyr Phe Ser Leu Gln Ala Thr 435 440 445 His Pro Leu Gly Phe Asp Asp Val Val Arg Leu Glu Ile Glu Ser Asn 450 455 460 Ile Cys Arg Glu Gly Gly Pro Leu Pro Asn Cys Phe Thr Thr Pro Leu 465 470 475 480 Arg Gln Ala Trp Thr Thr Met Glu Lys Val Phe Leu Pro Gly Phe Leu 485 490 495 Ser Ser Asn Leu Tyr Tyr Lys Tyr Leu Asn Asp Leu Ile His Ser Val 500 505 510 Arg Gly Asp Glu Phe Leu Gly Gly Asn Val Ser Pro Thr Ala Pro Gly 515 520 525 Ser Val Gly Pro Pro Asp Glu Ser His Pro Gly Ser Ser Asp Ser Ser 530 535 540 Ala Ser Gln Ser Ser Val Lys Lys Ala Ser Ile Lys Ile Leu Lys Asn 545 550 555 560 Phe Asp Glu Ala Ile Ile Val Asp Ala Ala Ser Leu Asp Pro Glu Ser 565 570 575 Leu Tyr Gln Arg Thr Tyr Ala Gly Lys Met Thr Phe Gly Arg Val Ser 580 585 590 Asp Leu Gly Gln Phe Ile Arg Glu Ser Glu Pro Glu Pro Asp Val Arg 595 600 605 Lys Ser Lys Gly Ser Met Phe Ser Gln Ala Met Lys Lys Trp Val Gln 610 615 620 Gly Asn Thr Asp Glu Ala Gln Glu Glu Leu Ala Trp Lys Ile Ala Lys 625 630 635 640 Met Ile Val Ser Asp Ile Met Gln Gln Ala Gln Tyr Asp Gln Pro Leu 645 650 655 Glu Lys Ser Thr Lys Leu 660 <210> SEQ ID NO 33 <211> LENGTH: 2363 <212> TYPE: DNA <213> ORGANISM: Homo Sapien <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (138)...(2126) <223> OTHER INFORMATION: AKAP-10-5 <220> FEATURE: <221> NAME/KEY: allele <222> LOCATION: 2073 <223> OTHER INFORMATION: Single Nucleotide Polymorphism: A to G <400> SEQUENCE: 33 gcggcttgtt gataatatgg cggctggagc tgcctgggca tcccgaggag gcggtggggc 60 ccactcccgg aagaagggtc ccttttcgcg ctagtgcagc ggcccctctg gacccggaag 120 tccgggccgg ttgctga atg agg gga gcc ggg ccc tcc ccg cgc cag tcc 170 Met Arg Gly Ala Gly Pro Ser Pro Arg Gln Ser 1 5 10 ccc cgc acc ctc cgt ccc gac ccg ggc ccc gcc atg tcc ttc ttc cgg 218 Pro Arg Thr Leu Arg Pro Asp Pro Gly Pro Ala Met Ser Phe Phe Arg 15 20 25 cgg aaa gtg aaa ggc aaa gaa caa gag aag acc tca gat gtg aag tcc 266 Arg Lys Val Lys Gly Lys Glu Gln Glu Lys Thr Ser Asp Val Lys Ser 30 35 40 att aaa gct tca ata tcc gta cat tcc cca caa aaa agc act aaa aat 314 Ile Lys Ala Ser Ile Ser Val His Ser Pro Gln Lys Ser Thr Lys Asn 45 50 55 cat gcc ttg ctg gag gct gca gga cca agt cat gtt gca atc aat gcc 362 His Ala Leu Leu Glu Ala Ala Gly Pro Ser His Val Ala Ile Asn Ala 60 65 70 75 att tct gcc aac atg gac tcc ttt tca agt agc agg aca gcc aca ctt 410 Ile Ser Ala Asn Met Asp Ser Phe Ser Ser Ser Arg Thr Ala Thr Leu 80 85 90 aag aag cag cca agc cac atg gag gct gct cat ttt ggt gac ctg ggc 458 Lys Lys Gln Pro Ser His Met Glu Ala Ala His Phe Gly Asp Leu Gly 95 100 105 aga tct tgt ctg gac tac cag act caa gag acc aaa tca agc ctt tct 506 Arg Ser Cys Leu Asp Tyr Gln Thr Gln Glu Thr Lys Ser Ser Leu Ser 110 115 120 aag acc ctt gaa caa gtc ttg cac gac act att gtc ctc cct tac ttc 554 Lys Thr Leu Glu Gln Val Leu His Asp Thr Ile Val Leu Pro Tyr Phe 125 130 135 att caa ttc atg gaa ctt cgg cga atg gag cat ttg gtg aaa ttt tgg 602 Ile Gln Phe Met Glu Leu Arg Arg Met Glu His Leu Val Lys Phe Trp 140 145 150 155 tta gag gct gaa agt ttt cat tca aca act tgg tcg cga ata aga gca 650 Leu Glu Ala Glu Ser Phe His Ser Thr Thr Trp Ser Arg Ile Arg Ala 160 165 170 cac agt cta aac aca atg aag cag agc tca ctg gct gag cct gtc tct 698 His Ser Leu Asn Thr Met Lys Gln Ser Ser Leu Ala Glu Pro Val Ser 175 180 185 cca tct aaa aag cat gaa act aca gcg tct ttt tta act gat tct ctt 746 Pro Ser Lys Lys His Glu Thr Thr Ala Ser Phe Leu Thr Asp Ser Leu 190 195 200 gat aag aga ttg gag gat tct ggc tca gca cag ttg ttt atg act cat 794 Asp Lys Arg Leu Glu Asp Ser Gly Ser Ala Gln Leu Phe Met Thr His 205 210 215 tca gaa gga att gac ctg aat aat aga act aac agc act cag aat cac 842 Ser Glu Gly Ile Asp Leu Asn Asn Arg Thr Asn Ser Thr Gln Asn His 220 225 230 235 ttg ctg ctt tcc cag gaa tgt gac agt gcc cat tct ctc cgt ctt gaa 890 Leu Leu Leu Ser Gln Glu Cys Asp Ser Ala His Ser Leu Arg Leu Glu 240 245 250 atg gcc aga gca gga act cac caa gtt tcc atg gaa acc caa gaa tct 938 Met Ala Arg Ala Gly Thr His Gln Val Ser Met Glu Thr Gln Glu Ser 255 260 265 tcc tct aca ctt aca gta gcc agt aga aat agt ccc gct tct cca cta 986 Ser Ser Thr Leu Thr Val Ala Ser Arg Asn Ser Pro Ala Ser Pro Leu 270 275 280 aaa gaa ttg tca gga aaa cta atg aaa agt ata gaa caa gat gca gtg 1034 Lys Glu Leu Ser Gly Lys Leu Met Lys Ser Ile Glu Gln Asp Ala Val 285 290 295 aat act ttt acc aaa tat ata tct cca gat gct gct aaa cca ata cca 1082 Asn Thr Phe Thr Lys Tyr Ile Ser Pro Asp Ala Ala Lys Pro Ile Pro 300 305 310 315 att aca gaa gca atg aga aat gac atc ata gca agg att tgt gga gaa 1130 Ile Thr Glu Ala Met Arg Asn Asp Ile Ile Ala Arg Ile Cys Gly Glu 320 325 330 gat gga cag gtg gat ccc aac tgt ttc gtt ttg gca cag tcc ata gtc 1178 Asp Gly Gln Val Asp Pro Asn Cys Phe Val Leu Ala Gln Ser Ile Val 335 340 345 ttt agt gca atg gag caa gag cac ttt agt gag ttt ctg cga agt cac 1226 Phe Ser Ala Met Glu Gln Glu His Phe Ser Glu Phe Leu Arg Ser His 350 355 360 cat ttc tgt aaa tac cag att gaa gtg ctg acc agt gga act gtt tac 1274 His Phe Cys Lys Tyr Gln Ile Glu Val Leu Thr Ser Gly Thr Val Tyr 365 370 375 ctg gct gac att ctc ttc tgt gag tca gcc ctc ttt tat ttc tct gag 1322 Leu Ala Asp Ile Leu Phe Cys Glu Ser Ala Leu Phe Tyr Phe Ser Glu 380 385 390 395 tac atg gaa aaa gag gat gca gtg aat atc tta caa ttc tgg ttg gca 1370 Tyr Met Glu Lys Glu Asp Ala Val Asn Ile Leu Gln Phe Trp Leu Ala 400 405 410 gca gat aac ttc cag tct cag ctt gct gcc aaa aag ggg caa tat gat 1418 Ala Asp Asn Phe Gln Ser Gln Leu Ala Ala Lys Lys Gly Gln Tyr Asp 415 420 425 gga cag gag gca cag aat gat gcc atg att tta tat gac aag tac ttc 1466 Gly Gln Glu Ala Gln Asn Asp Ala Met Ile Leu Tyr Asp Lys Tyr Phe 430 435 440 tcc ctc caa gcc aca cat cct ctt gga ttt gat gat gtt gta cga tta 1514 Ser Leu Gln Ala Thr His Pro Leu Gly Phe Asp Asp Val Val Arg Leu 445 450 455 gaa att gaa tcc aat atc tgc agg gaa ggt ggg cca ctc ccc aac tgt 1562 Glu Ile Glu Ser Asn Ile Cys Arg Glu Gly Gly Pro Leu Pro Asn Cys 460 465 470 475 ttc aca act cca tta cgt cag gcc tgg aca acc atg gag aag gtc ttt 1610 Phe Thr Thr Pro Leu Arg Gln Ala Trp Thr Thr Met Glu Lys Val Phe 480 485 490 ttg cct ggc ttt ctg tcc agc aat ctt tat tat aaa tat ttg aat gat 1658 Leu Pro Gly Phe Leu Ser Ser Asn Leu Tyr Tyr Lys Tyr Leu Asn Asp 495 500 505 ctc atc cat tcg gtt cga gga gat gaa ttt ctg ggc ggg aac gtg tcg 1706 Leu Ile His Ser Val Arg Gly Asp Glu Phe Leu Gly Gly Asn Val Ser 510 515 520 ccg act gct cct ggc tct gtt ggc cct cct gat gag tct cac cca ggg 1754 Pro Thr Ala Pro Gly Ser Val Gly Pro Pro Asp Glu Ser His Pro Gly 525 530 535 agt tct gac agc tct gcg tct cag tcc agt gtg aaa aaa gcc agt att 1802 Ser Ser Asp Ser Ser Ala Ser Gln Ser Ser Val Lys Lys Ala Ser Ile 540 545 550 555 aaa ata ctg aaa aat ttt gat gaa gcg ata att gtg gat gcg gca agt 1850 Lys Ile Leu Lys Asn Phe Asp Glu Ala Ile Ile Val Asp Ala Ala Ser 560 565 570 ctg gat cca gaa tct tta tat caa cgg aca tat gcc ggg aag atg aca 1898 Leu Asp Pro Glu Ser Leu Tyr Gln Arg Thr Tyr Ala Gly Lys Met Thr 575 580 585 ttt gga aga gtg agt gac ttg ggg caa ttc atc cgg gaa tct gag cct 1946 Phe Gly Arg Val Ser Asp Leu Gly Gln Phe Ile Arg Glu Ser Glu Pro 590 595 600 gaa cct gat gta agg aaa tca aaa gga tcc atg ttc tca caa gct atg 1994 Glu Pro Asp Val Arg Lys Ser Lys Gly Ser Met Phe Ser Gln Ala Met 605 610 615 aag aaa tgg gtg caa gga aat act gat gag gcc cag gaa gag cta gct 2042 Lys Lys Trp Val Gln Gly Asn Thr Asp Glu Ala Gln Glu Glu Leu Ala 620 625 630 635 tgg aag att gct aaa atg ata gtc agt gac gtt atg cag cag gct cag 2090 Trp Lys Ile Ala Lys Met Ile Val Ser Asp Val Met Gln Gln Ala Gln 640 645 650 tat gat caa ccg tta gag aaa tct aca aag tta tga ctcaaaactt 2136 Tyr Asp Gln Pro Leu Glu Lys Ser Thr Lys Leu * 655 660 gagataaagg aaatctgctt gtgaaaaata agagaacttt tttcccttgg ttggattctt 2196 caacacagcc aatgaaaaca gcactatatt tctgatctgt cactgttgtt tccagggaga 2256 gaatggggag acaatcctag gacttccacc ctaatgcagt tacctgtagg gcataattgg 2316 atggcacatg atgtttcaca cagtgaggag tctttaaagg ttaccaa 2363 <210> SEQ ID NO 34 <211> LENGTH: 662 <212> TYPE: PRT <213> ORGANISM: Homo Sapien <400> SEQUENCE: 34 Met Arg Gly Ala Gly Pro Ser Pro Arg Gln Ser Pro Arg Thr Leu Arg 1 5 10 15 Pro Asp Pro Gly Pro Ala Met Ser Phe Phe Arg Arg Lys Val Lys Gly 20 25 30 Lys Glu Gln Glu Lys Thr Ser Asp Val Lys Ser Ile Lys Ala Ser Ile 35 40 45 Ser Val His Ser Pro Gln Lys Ser Thr Lys Asn His Ala Leu Leu Glu 50 55 60 Ala Ala Gly Pro Ser His Val Ala Ile Asn Ala Ile Ser Ala Asn Met 65 70 75 80 Asp Ser Phe Ser Ser Ser Arg Thr Ala Thr Leu Lys Lys Gln Pro Ser 85 90 95 His Met Glu Ala Ala His Phe Gly Asp Leu Gly Arg Ser Cys Leu Asp 100 105 110 Tyr Gln Thr Gln Glu Thr Lys Ser Ser Leu Ser Lys Thr Leu Glu Gln 115 120 125 Val Leu His Asp Thr Ile Val Leu Pro Tyr Phe Ile Gln Phe Met Glu 130 135 140 Leu Arg Arg Met Glu His Leu Val Lys Phe Trp Leu Glu Ala Glu Ser 145 150 155 160 Phe His Ser Thr Thr Trp Ser Arg Ile Arg Ala His Ser Leu Asn Thr 165 170 175 Met Lys Gln Ser Ser Leu Ala Glu Pro Val Ser Pro Ser Lys Lys His 180 185 190 Glu Thr Thr Ala Ser Phe Leu Thr Asp Ser Leu Asp Lys Arg Leu Glu 195 200 205 Asp Ser Gly Ser Ala Gln Leu Phe Met Thr His Ser Glu Gly Ile Asp 210 215 220 Leu Asn Asn Arg Thr Asn Ser Thr Gln Asn His Leu Leu Leu Ser Gln 225 230 235 240 Glu Cys Asp Ser Ala His Ser Leu Arg Leu Glu Met Ala Arg Ala Gly 245 250 255 Thr His Gln Val Ser Met Glu Thr Gln Glu Ser Ser Ser Thr Leu Thr 260 265 270 Val Ala Ser Arg Asn Ser Pro Ala Ser Pro Leu Lys Glu Leu Ser Gly 275 280 285 Lys Leu Met Lys Ser Ile Glu Gln Asp Ala Val Asn Thr Phe Thr Lys 290 295 300 Tyr Ile Ser Pro Asp Ala Ala Lys Pro Ile Pro Ile Thr Glu Ala Met 305 310 315 320 Arg Asn Asp Ile Ile Ala Arg Ile Cys Gly Glu Asp Gly Gln Val Asp 325 330 335 Pro Asn Cys Phe Val Leu Ala Gln Ser Ile Val Phe Ser Ala Met Glu 340 345 350 Gln Glu His Phe Ser Glu Phe Leu Arg Ser His His Phe Cys Lys Tyr 355 360 365 Gln Ile Glu Val Leu Thr Ser Gly Thr Val Tyr Leu Ala Asp Ile Leu 370 375 380 Phe Cys Glu Ser Ala Leu Phe Tyr Phe Ser Glu Tyr Met Glu Lys Glu 385 390 395 400 Asp Ala Val Asn Ile Leu Gln Phe Trp Leu Ala Ala Asp Asn Phe Gln 405 410 415 Ser Gln Leu Ala Ala Lys Lys Gly Gln Tyr Asp Gly Gln Glu Ala Gln 420 425 430 Asn Asp Ala Met Ile Leu Tyr Asp Lys Tyr Phe Ser Leu Gln Ala Thr 435 440 445 His Pro Leu Gly Phe Asp Asp Val Val Arg Leu Glu Ile Glu Ser Asn 450 455 460 Ile Cys Arg Glu Gly Gly Pro Leu Pro Asn Cys Phe Thr Thr Pro Leu 465 470 475 480 Arg Gln Ala Trp Thr Thr Met Glu Lys Val Phe Leu Pro Gly Phe Leu 485 490 495 Ser Ser Asn Leu Tyr Tyr Lys Tyr Leu Asn Asp Leu Ile His Ser Val 500 505 510 Arg Gly Asp Glu Phe Leu Gly Gly Asn Val Ser Pro Thr Ala Pro Gly 515 520 525 Ser Val Gly Pro Pro Asp Glu Ser His Pro Gly Ser Ser Asp Ser Ser 530 535 540 Ala Ser Gln Ser Ser Val Lys Lys Ala Ser Ile Lys Ile Leu Lys Asn 545 550 555 560 Phe Asp Glu Ala Ile Ile Val Asp Ala Ala Ser Leu Asp Pro Glu Ser 565 570 575 Leu Tyr Gln Arg Thr Tyr Ala Gly Lys Met Thr Phe Gly Arg Val Ser 580 585 590 Asp Leu Gly Gln Phe Ile Arg Glu Ser Glu Pro Glu Pro Asp Val Arg 595 600 605 Lys Ser Lys Gly Ser Met Phe Ser Gln Ala Met Lys Lys Trp Val Gln 610 615 620 Gly Asn Thr Asp Glu Ala Gln Glu Glu Leu Ala Trp Lys Ile Ala Lys 625 630 635 640 Met Ile Val Ser Asp Val Met Gln Gln Ala Gln Tyr Asp Gln Pro Leu 645 650 655 Glu Lys Ser Thr Lys Leu 660 <210> SEQ ID NO 35 <211> LENGTH: 162025 <212> TYPE: DNA <213> ORGANISM: Homo Sapien <300> PUBLICATION INFORMATION: <308> DATABASE ACCESSION NUMBER: GenBank AC005730 <309> DATABASE ENTRY DATE: 1998-10-22 <400> SEQUENCE: 35 gaattcctat ttcaaaagaa acaaatgggc caagtatggt ggctcatacc tgtaatccca 60 gcactttggg aggccgaggt gagtgggtca cttgaggtca ggagttccag gccagtctgg 120 ccaacatggt gaaacactgt ctctactaaa aatacaaaaa ttagccgggc gtggtggcgg 180 gcacctgtaa tcccagctac tcaggaggct gaggcaggag aattgcttga acctgggaga 240 tggaggttgc agtgagccga gatcgcgcca ctgctctcca gcctgggtgg cagagtgaga 300 ctctgtctca aaaagaaaca aagaaataaa tgaaacaatt ttgttcacat atatttcaca 360 aatttgaaat gttaaaggta ttatggtcac tgatatcctg tttcattctt tatataatca 420 ttaagtttga aatgtatact tgcactacta acacagtagt taatcttagt cctacaagtt 480 actgctttta cacaatatat tttcgtaata tgtatgcact ggtgtttatg tacgtgttta 540 tgtttatatc tgttaaaatt agcagtttcc atctttttct attttgtacc atcacatcag 600 ttcagaagga ttgacagagc aaaatgattt gatgaagtat aaaagtcaca tggtgagtgg 660 cataaataca actctgaaca attaggaggc tcactattga ctggaactaa actgcaagcc 720 agaaagacac atatcctata tgtcaagaga tgtaccaccc aggcagttaa agaagggaag 780 tacacataga aagcacaatg gtgaataatt aaaaaattgg aatttatcag acactggatt 840 catttgctcc taaagtcaga gtcctctatt gtttttttgt ttttgtgggt ttctttttaa 900 atttttttat tttttgtaga gtcggagtct cactgtgtta cccgggctgg tctagaactc 960 ctggcctcaa acaaacctcc tgcctcagct tcccaaagca ttgggattac agacatgagc 1020 cactgagccc agcccagacg ctttagcatt tatgaagctt ctgaaatagt tgtagaaacc 1080 gcataagctt tccatgtcac tttcaaagtt tgatggtctc tttagtaaac caaccaagtt 1140 attcctcaag ggcaaaataa catttctcag tgcaaaactg atgcacttca ttaccaaaag 1200 gaaaagacca caactataga ggcgtcattg aaagctgcac tcttcagagg ccaaaaaaaa 1260 aggtacaaac acatactaat ggaacattct ttagaagagc cccaaagtta atgataaaca 1320 ttttcatcaa agagaaaaga gaacaaggtg ttagcaaatt cctctatcaa ataacactaa 1380 acatcaagga acatcaatgg catgccatgt ggaagaggaa gtgctagctc atgtacaaac 1440 cagtagataa tttcaacttg ctgccgaatg aaacctcttt gcaaggtatg aatcagcact 1500 tctcatgttt gttttgcttt gttttgtttt gtttttagag acaggccctt gctctgtcac 1560 acaggctgga gtgcagtggc acgatcagag ctcactgcaa cctgaaactc ctgggctcaa 1620 gggatcctcc tgccttagcc tcccaagtag ctgggactac aggcccacca tgcccagcta 1680 attttttaaa ttttctatag agatgggatc tcactagcac ctttcatgtt tgatgttcat 1740 atacaacgac caaggtacaa tgtggaaaag ggtctcaggg atctaaagtg aaggaggacc 1800 agaaagaaaa ggggttgcta catagagtag aagaagttgc acttcatgcc agtctacaac 1860 actgctgttt tcctcagagc agagttgatg atctaaatca ggggtcccca acccccagtt 1920 catagcctgt taggaaccgg gccacacagc aggaggtgag caataggcaa gcgagcatta 1980 ccacctgggc ttcacctccc gtcagatcag tgatgtcatt agattctcat aggaccatga 2040 accctattgt gaactgagca tgcaagggat gtaggttttc cgctctttat gagactctaa 2100 tgccggaaga tctgtcactg tcttccatca ccctgagatg ggaacatcta gttgcaggaa 2160 aacaacctca gggctcccat tgattctata ttacagtgag ttgtatcatt atttcattct 2220 atattacaat gtaataataa tagaaataaa ggcacaatag gccaggcgtg gtggctcaca 2280 cctgtaatcc cagcacttcg ggaggccaag gcaggcggat cacgaggtca ggagatcgag 2340 accatcctgg ctaaaacggt gaaaccccgt ctactaaaaa ttcaaaaaaa aattagccgg 2400 gtgtggtggt gggcacctgt agtcccagct actcgagagg ctgaggcagg agaatggtgt 2460 gaacctggga ggcagagctt gaggtaagcc gagatcacgc cactgcactc cagcctgggc 2520 gacagagcga tactctgtct caaaaaaaaa aaaaaaaaaa aaagaaataa agtgaacaat 2580 aaatgtaatg tggctgaatc attccaaaac aatcccccca ccccagttca cggaaaaatt 2640 ctcccacaaa accagtccct ggtgccaaaa aggttgggga ccgctaatct aaataatcta 2700 atcttcattc aatgctaaaa aatgaataaa ctttttttta aatacacggt ctcactttgt 2760 tgcccaggct ggagtacggt ggcatgatca cagctcactg tagcctcaat cacccaggcc 2820 ccagcgatcc tcccacctaa acttcctgag tagctgggac tacaggcacg caccaccatg 2880 cccagctaat ttttaaattt tttatagaga tgggggtctc accatgttgc ccagactggt 2940 ctcaaaccct gggctcaagt gatcctccct caaactcctg gactcaagtg atcctccttc 3000 cttggcctcc caaagtgctg ggattacaag catgagccac tgtacccagc tggataaaca 3060 ttttaagtcg cactacagtc atggacaatc aggcttttca acatgcagta tggacagtga 3120 gtcccagggt ctgcttttcc atactgaaat acatgtgata ctaaggagaa aggtgctcgc 3180 aaggatattt aaaatgaaga atatttaaaa tgaggaaaaa actgtttctt catgactttg 3240 ataaggctga taaagaccat ttctgtgatc tcaggtgatt cactcaagta gtatatttca 3300 gtaatcatta tctggaacag cctgaatctt aaccaaaata ccatgatttt ttaatgctgt 3360 tatgatacct tgatgatatg accaaactgc aatgtaggca gctaaatctc cacgagtttg 3420 acttccccga gagttgacag ttttcttcac aaattaaaga aatatatttt ttgatacatg 3480 attggcatat ttaaaaacta cactgaaatg ctgcaaaatg atataaagaa acattttcca 3540 gaatcaaatg caatcaaaga gtggattagg aatctactca ccattatcaa ctaaatagaa 3600 acacttggac tgggtgtggt ggctcacatc tgtaatctca gcactttggg aggccaaggc 3660 aggtggattg cttgaggcca ggagctcaag accagcctga gcaacatagc aaaactctgt 3720 ctctacaaaa aaaaaaaaaa attaaccagg catggtggca gatgcttgta atcccagcta 3780 ctctggaagc tgaagtagga ggactgcttg agcccaggag atcaagactg cagtgagccg 3840 tggtcatgct gcgccacagc ctgagtgaca gagagagacc ctgtctcaaa aacaaaaaca 3900 aacaaaaaac acttaacctt cctgtttttt gctgttgttg ttgttgtttg tttgttttga 3960 gatggagtct cactctgttg cccaggctgg agtgcagtgg cgtgatcttg gctcactgca 4020 agctctgcct cccgggttca cgccattctc ctgcctcagc ctcccgagta gctgggacta 4080 taggcgcccg ccaccacgcc cggctacttt tttgcatttt tagtagagat ggggtttcac 4140 cgtgttagcc aggatggtct tgatctcctg acctcgtgat ccacctgcct cggcctccca 4200 aagtgctggg attacaggca tgagccaccg cacccggcca acctttctgt tttttagttt 4260 gatatgcttg ttaactcagc agctgaaaga atgctgaaag tggccttcag taaaaaaatt 4320 tcactagaat ctctacatcc atatttaatc tgaatgcata tccagattga tcagttagag 4380 caaaaacact catcatcatt cctgatgacc tctaattctg gtttcggctt tctatttcaa 4440 tggaaacaga ataaggaaag aaatggaagg gctctggaaa tttgtcctgg gctatagata 4500 ctatcaaaga tcaccaacaa taagatctct cctataaata taaaacaagt ataattaatt 4560 ttttaattat ttttttctct tcagaggatt ttatttcaag ataaaacata acttctaccc 4620 atactattga ttccaaaggt tagaaaaagt gtttttcctc atcttatcct tcaaagaggt 4680 cacagcaatg caaacatcta taaaatgcct ctgcataatt gtcagaagct atagtccaga 4740 aatcattgaa aatgcttttc cattttaagc ttaggtgagg tgtcttagga aacctctatg 4800 acaacttact ctatttattg ggaggtaaac tcccagactc tcccagggtc tcctgtattg 4860 atctcatttt ttaggcttcc taatcccttg aagcacaatc gaaaaagccc tggatctctt 4920 ttctgcacat atcatcgcgg aattcattcg gcttccagca agctgacact ccatgataca 4980 agcggcctcg cccttctccg gacgccagtc cttgctgcgg ttagctagga tgaggggttt 5040 gctgggcttc agtgcaggct tctgcgggtt cccaagccgc accaggtggc ctcacaggct 5100 ggatgtcacc attgcacact gagctcctgg caggctgtac caatttttta attatttaat 5160 atttattttt aaaattatgg tgaatatttt ggtattctgc tctaaaatag gcccataaat 5220 gcacagcaga tatctcttgg aacccacagc tttccactgg aagaactaag tatttttctt 5280 ttaaagatgc tactaagtct ctgaaaagtc cagatcctct acctctttcc atcccaaact 5340 aagacttgga atttatgaga gatctagcta acagaaatcc cagacacatc attggttctt 5400 cccagagtgc agtcctccta aagaggctca gccctaagca ggcccctgca ccaggagggt 5460 gggtctgaga cccacatagc acttcccaag gtgcatgctc cagagaggca ctgaaacagc 5520 tgagcacaag cctgcaagcc tggagaactc tcacagtcag aacggagggg gcccagtggg 5580 actaacataa agagaaaagg gaacacagag aaatggatgg caccaacaac cagcaaagcc 5640 ttcatggcca atgaaagcat cagtgacggg gccagaaccc tcatccccaa agactcttca 5700 ctgcctttag tgaaaaacaa tggctagaga gtgaagttat gatcatgtat agagaggtaa 5760 agttacattt ttatattctg actctgctaa tgtgaaattc cctatctgct agactaaaag 5820 tttcagacac cctgttcaaa tatcccatta gttgctagag acttaaaatg aacagaacgc 5880 acattgtcag gatgactatt accaaaaaat caaaagacag caagtattgg tgaggatgta 5940 gagaaactgg aacttttgtg cactgtttat gagaatgtaa aatggagcag ctgctgtgga 6000 aaagagtatg caggttcctc aaagagtaaa accaagatgt ggaaacaact aaatgcccat 6060 cagtggatga aggggtagac aatatgtggt atatacatac catggagtac tattcagcct 6120 ctaaaaaaaa aaaaggaaat tctataacat gcaacagcat ggatgaatct tgaggacatt 6180 ttgctaatga aataaggcag tcatagaaag acaaatactg cacgactcca cttatatgag 6240 ataccaaaaa tagacaaatt catagaatca aagagtacaa tggaggttac ctggagctgc 6300 agggcgggaa acgaggagtt actaatcaac gaacataacg ttgcagttaa gtaagatgaa 6360 taagctctca agatcagctg tacaacactg tacctagagt caacaataat gtattgtaca 6420 cttaaaaatt tgttaagggt agattaacaa atgtagtaga tccacaaatg tggttaagtg 6480 ttcttaccac agtaaaataa aaaaagaata tcaagcccag gagttcgaga ctagcctggg 6540 taacatggtg aaaccctgtc tctacagaaa atacaaaaat tagccagctg tggaggtgca 6600 ctcctaggga ggctgaggtg ggaggcttgc ttgagcccag gaggtcaagg ctgcagtgag 6660 ccatgattgc accactgtac tccagcccag atgacagagc aagacaccac cccccccaaa 6720 aaaagaaaaa gaatatcaaa cattttaaaa gatcagatac gcaagaacaa caacaaaaaa 6780 gagatgaaca gagcatcgac cctcatctag tgggattctt ggtctaactg aaaaacagac 6840 attgagagac aaacaatgac agtgatgtga tcacagcaat tacacaggta tcccctgggg 6900 actgcagaag aaaggaggaa tgcctaactt tcagaaaata gagaaagcgt caaacagttg 6960 gtgaaagcct tccaaaacta gagagaactg cacacaccaa atcacagaaa gaagaaaagc 7020 cgtgggagat tctgggaccc accggctatt tttgatggct gaacaccctg ctgcaggaga 7080 gacaggagct ggaaagcatg gtgggatgaa acctcaaaca gctttgcctg cattgcttaa 7140 gatgactggg cttgattaac tctagtcaat ggggacaatt caatcaaaga agaaagatgc 7200 tcaaattcac attttagaat gattttttat ggcagtatgg ggaatagatt aaaagagagt 7260 gaagctggag gcaagaaact tgttaagagg caactgaaac agtctagatg ataaataata 7320 aactgacaga gtgactagaa aaatcagaac aggctgaatc aacagatacc tagatgaaaa 7380 taacaggact tgatcaccag ttgtatcttg gagaggaagg agttgtttcc ttgctttccc 7440 tacgactggg aatacggaag gtttgccgtg tgtattggtt atatactggt gtgtagccaa 7500 tcactgacaa ccatttagca gcttaaaaca caaaggctta tctcccagtt tctgtgggcc 7560 aggaatctaa gataggctta gctggctggt tctggctcag agtttctcaa gaggttgcaa 7620 tcaagatgtc agctggggtt gcatcatctg aaggctcaac tggggccgga gggtccactt 7680 ccaaggagtt cactcacctg cctgacaagg cagtgctggt tgttggcagg agatctcaat 7740 tcattgccaa gtgagcctct ctatagcatt gctggaacat cctccccatc tggcagttgg 7800 cttctctcag catgagtgat ctgagagaga gagcaaggag gaagccacag tgttcttcct 7860 actcctactc ctaacactat ggacctactc ctaacactct cacttctgcc ttattccatt 7920 agttagaaag ggaactaagc tccacctctt gaaataagaa gtgtcaaaga atttgtggat 7980 atatttaaaa atcatcacac tgtggaagtg gatagggggt tcaattaatg ctgaacttga 8040 aatgcctgag acattcaaat gtccaacagg caatgaacat acccatagat ggtcatgact 8100 ttagcaagaa tagaggaaga tcacagaatt aaggaggaat tgaaaggtaa aagaagtgga 8160 gtcagattcc ccctgaaaag tgagccatga aaggaacttt aactattgag ttagaggtca 8220 gagtaggaaa tttcggtgga attctttttt aaagaaagga accatataag catgttttga 8280 ggtagaggga gaataaatca gtagacaggg agaggtaaaa aacataaatg ataggggata 8340 gttgacaaag gtcttggcag aatcccttac ccattgactt ggggccaaga gagggacact 8400 tctttgtttg agggataagg aaaataagaa agaatgggtg ctatttagtg tggtcctgtc 8460 tctagggcaa acgcataggt aacaaactgt gtgtgttagg aatatagatg tgacctcaca 8520 ttgagattct cacctcaaat ccattttgtt gttacctgta ccttcctacc ttctcttttt 8580 gctacatgca gactgctgtt ttgtcttcct ggcctgttcc aggtttcagc attctggcat 8640 atctgctacc ctgttcccaa acctctctag agtccatgct ccttccttgg atagtgtttg 8700 attgggccac gtatctaaga agtgatgcct tcagttaggc ctgagaacct cctctatgga 8760 aatctccatc agtgaccctg acagacttgg tatcttggag atgtcactgc tcccagcctg 8820 tggtctagga gaatctcagc ctgggcctct agtagtatgg ataaggcgtt aaggtatctt 8880 tgaaccagag tctgtcatat tcctcaatgt gggacagata aaacagtggt agtgctggtg 8940 tttctgagct agaactctgg tttttggtct agattctttg atgtatgacc tttcagaggt 9000 attaaaattt gttctaatac aatgttcaat acaaatgtag ttccttttct gttaggacct 9060 caacaaaaca tgaccaactg tagatgaaca ttaaactatg acaattcatg gaaatgaata 9120 cagtaatacc tgcggttccc ccattttagc agtcactatg gtgacatttg gcacaaatgg 9180 ctatttaagg gtgcttttgt taaaacctac catcttacta ggcacatgat attgaaacta 9240 atgaaataat ggagaaactt cttaaaaact tttaatgaat aaagtgatga agtgataata 9300 ttttagctgc tatttataaa gtgactatta caggtcaaac attcttctag ggtttttttg 9360 ttgaagttgt cacatttaat ccttaataac ccactatgag tcaggtattc ttctctcccc 9420 tttggacagt tggggaaatg ggggtcagag aggttaggta atttgctcag ggccacacaa 9480 cctgcatgta gaaaatctga gatttgtaca ggaacgtatc aaactctgaa gtccatgctt 9540 ctattttccc atgctgcctt tctaataaaa ggtaactaat gctactggat gctgccccca 9600 aagtgagtca ctttcacccc accctacttg attttctcca taaaactaat cacatcctga 9660 caacttattt attgctgatc tcccccacta gattataaac tcaataaaag caagatcctt 9720 gtctgctgaa tatcagtacc taaaacgctg tctagcacag agcaagtaat taatatttgt 9780 tgaatgaaca aataaaggaa aaaaattcaa aggaagaaaa agccctaaaa cagatgttta 9840 cctaaacata cattttaaaa gaaagcatat aacaaattca ggacagaatt taaatttgat 9900 tttttaaaga aataaccaag tgctagctgg gcacagtggc tcacacctgt aatcctagca 9960 ctctgggagg ccgaggcagg cagatcactt gaggtcaaga gttcaagacc agcctggcca 10020 acatggtgaa acctgtctct actaaaaata cagaaattat ccaggcatgg tggcaggtcc 10080 ctgtaacccc agctactcag gaggctgagt caggagaatt gcttgaaccc aggaggcaga 10140 ggttgcagtg ggccaagatt gcaccactgc actccagcct gagtaacaaa gcaagactct 10200 gtctgaagga gaaggaaaga aagaaggaaa gaaggaaaga aggaaagaag gaaagaagga 10260 aagaaagaaa gaaagaaaga aagaaagaaa gaaagaaaga aagaaagaaa gaaagaaaga 10320 aagaaagaaa aagaaagaaa gaaagaaaga accaagtgct tatttgggac ctactatgct 10380 atgtttttcc atgcacgcta ttttcagtaa agcagttagc aaacttgcaa gatcataaca 10440 acaaatatat gcttctataa ctctaaaatt gtgctttaag aagttcctct ttaccagctc 10500 atgtatgcat tagttttcta agagttacta gtaacttttt ccctggagaa tatccacagc 10560 cagtttattt aaccaaagga ggatgcttac taacatgaag ttatcaaatg tgagcctaag 10620 ttgggccagt tcatgttaat atactccaga acaaaaacca tcctactgtc ctctgacaat 10680 tttacctgaa aattcatttt ccacattacc aaggagccag ggtaggagaa tatagaaaga 10740 ccacccaaga atccttactt ctttcagcaa aatcaattca aagtaggtaa ctaaacacat 10800 gccctaacaa tgaatagcag attgtgctca gaagaatgat ctacaacatc ttactgtgaa 10860 ggaactactg aaatattcca ataagacttc tctccaaaat gattttattg aatttgcatt 10920 ttaaaaaata ttttaagcct aaattttaaa aggtttgata ttggtacatg aatagacaaa 10980 cagacatgga ctagaccaag aattaggttc aaacatatac aggaatttaa tatacgataa 11040 atctagtatt ccaaaggaac caacaaatgg tgttcagaca gcaggatagg catcaggaaa 11100 aacacagttg ggcaccctac cttactccta acaccaggag taactgaagg agcaccaaat 11160 atttatttat tttaattata gttttaagtt ctagggtacg tgtgcacaac atgcaggttt 11220 attacatagg tatacatgtg ccatgttggt gaggagcacc aaatatttaa aagaaaaaaa 11280 ttggccaggg gcggtggctc acacctgtaa tcccagcact ttgggaggcc aaggtgggca 11340 gatcacctga ggtcgggagt tcgagaccag cctgagcaac atggagaaac cccatctcta 11400 ctaaaaatac aaaattagcc aggcatggtg gcacatgcct gtaatcccag ctacttggga 11460 ggctgaggca ggagaatagc tttaatctgg gaggcacagg ttgcggtgag ctgagatatt 11520 gcactccagc ctgggcaaca agagcaaaac ttcaactcaa aaaaattaat aaataaataa 11580 aaataaagaa agaaaagaaa aaaatgaaaa tagtataatt agcagaagaa aacaccgtag 11640 aatcctcgga ctcttaggat ggggaatgcc tataatataa aaaccctgaa gttataaaag 11700 agaaaatcac ctacatacaa accaaatctt tctacatgcc taaaacatag cacaaacaca 11760 gctaaataat catagctgaa tgaactggga aaacaaaact tgactcatat ccagacagag 11820 ttaattttcc tacacataaa gagtacctat ataaacccaa caaaaaaacc accactaacc 11880 caaaataaaa atgtgacagg taatgaacag gtagttcaca gagaatacaa atggctcttc 11940 ggcacataag atgctcagac tgacttttac ttatttattt tttgagagac agggtctcac 12000 gatgttgccc aggttaggct caaactcctg ggctcaaatg atagtaccag gactacaggt 12060 gtgccccacc gcacctggct cctcaaccac ctgtattaac aggaaatgca aaataaaact 12120 ttcaaatcta ttttacctat tagaatggca aaaatttgaa aaacttcaaa catcatcatg 12180 ttggtgagaa tgtgaggaga ctggcactct cattttttgc tgatagcata tatatactga 12240 tggcttctat ggaaagcaat ctggcagcgt ctatcaaatg tacaagtgca tatatccttt 12300 gacaaagcaa ttccactcta ggaatgtgtt ctatatggtt gtgcttcctg gggctgggaa 12360 ctgggagcta agggacaggg gcagaagata atcttctttt ccctccttcc ccgttaaaca 12420 tgttgaattt tatatactgt aatatattat ttttcacaaa agataatttt taagcgatat 12480 gtctgggaat tttttttttt cttttctgag acagggtctc actctgtcat ccaggctgga 12540 atgccatggt atgatctcag ctgactgcag cctcgacctc ctgggttcaa gcaatcctcc 12600 cacctcagcc tcctgagtag ctgggactac aggcacgtgc catcatgcta atttttgtat 12660 atacagggtc tcactatgtt gcccaggcta atgtcaaact cctaggctca agcaatccac 12720 ccacctcagg ctccaaagtg ctgggattac aggcgtgagc caccgcgcct ggccctggga 12780 attcttacaa aagaaaaaat atctactctc cccttctatt aaagtcaaaa cagagaagga 12840 aattcaacct ataatgaaag tagagaaggg cctcaaccct gagcaacaaa cacaaaggct 12900 atttctgaga caggaatttg ctgaacaaaa tcgagggaag atgacaagaa tcaagactca 12960 cttctcggct gggcgcagtg gctcacacct gtaatcccag cactttggga ggccgaggcg 13020 gacagatcac gaggtcagga gattgagacc atactggcta acacagtgaa acccagtctc 13080 tactaaaaat acaaaaaatt agccgggcgt ggtggcaggt gcctgtagtc ccagctactt 13140 gggaagctga ggcaggagaa tggcgtgaac ccaggaagcg gagcttgcag tgagccgaga 13200 tcacgccact gcactccagc ctgggtgaca gagcaagact ctgtctcaaa aaaaaaaaaa 13260 aagactcatt tctctagatc ttgagccgta ttcaaattta tctcagctta gtgagaggtt 13320 aaagcaagga atatccttcc ctgtgggccc tgctccttac tgaaggaagg taacggatga 13380 gtcaaggaca ccaatggaga aaagcactaa caccattatc tgatgaacat tacgtgaaga 13440 agggtaagaa gtgaagtgga attgctgaag aagtcagtga aagcggacat tcatttgggg 13500 aaatggaata taggaaatcc ataaaagtga ttaaaaagat gttagaggct gaggcggggg 13560 gaccacaggg tcaggagatc gagaccatcc tggctaacac ggtgaaaccc catctctact 13620 aaaaatacaa aaaattagcc aggcgtggtg gcaggcacct gtagtcccaa ctactcggga 13680 gactgaggca ggagaatggc atgaacctgg gagacggagc ttgcagtgag ccgagatcac 13740 gccactgcac tccagcctgg gtgacagagt gagactccat ctcaaaaaaa aaagttagat 13800 acgagagata aagatccaac agacacacaa ctgctaattc tgaacagaac aaaacaaatg 13860 gcacaggaaa agaaaattta agatataaca ccggaaaact ttcctgaaat tgagtaactg 13920 aatctatagc ttgaaagggt ttagcatatg ccaagaaaaa tcagtagagt ccaaccagca 13980 caagacacat ctagcaaggc tggtgattct accaacacag agaaagaagt gggtgaccca 14040 taatgcggaa aaaggcagac catctgcagt cttctccaga acactggagt ctgaagacaa 14100 aagaatgctg cctactgagc cagaagggag agaaagtgac ccaacacatc tttaccaagt 14160 tagaatgtca cgcattattt aaaggctgca aaagccatga aagacatgaa agaacacaag 14220 catttacaac atgaaagaac acaagcattc tcatactcaa gaatccttaa gaaaaatgta 14280 gtcctaatcc agcccactga aagttaaatg tacttaatgt gctcattaat gggaacttca 14340 tagcttcaaa tcagtctggt cccatctacc aacatctctc gcccggcttt cctgcaatag 14400 tcagcacctt tccctcctcc cagtcttgtc ccctggagtc tgctctcagc atagcagagt 14460 gaccacatca acacccaagt cagagccctc cagtgcgcac tggtctacaa agcccttccc 14520 accccccacc ccacgtgccc tccggatcct tgtgacgtgt ctcctgcata ccctagcagc 14580 cctggcctcc tcactgcccc tcctgtacat caggaaggcg actccttgag tcttggctct 14640 ggccgcctcc tccacctgca gtgagttaac tcccttacct actctaggtc attgctcaaa 14700 tgtcagcatc tcaatggggc cctccctgac taccctattt aaattctaca tactcccctt 14760 gaccccatgg acctcactca ccctattcca cttttattct tacaatttag cacttgttct 14820 cttctaacgt attctaagac ttactcattt attacattgt ttgccacccc ctctagtaca 14880 taaactccag aggggcaggg atttctgtct atttattcat ttctttatcc ctaggacata 14940 gaacagggca tagttcagag tattcaatgt tatcaatgaa tgaactagca gtagtaccag 15000 ttccagttag gcacagaatt aaatctaaat agaattaaat ctcatggtct gggttaacta 15060 tggatagaaa attagatata attttaagaa gcctagaaag aaaaaattaa taatgtaaaa 15120 ataatattaa tttgataata ataacaaaaa ctctgccagg cactgtggct caaatctgca 15180 atcccagcta ctcaggaggc tgaggtggaa ggatcacttg agaccagagt tcaagactca 15240 gcctaggcaa cacggcaaga aactgtctct aaaaaaatta aaacttaaat ttttaaaaaa 15300 gaattctcaa agcgtcacaa aaactggaga ttaaggtaca ggaagtgtga agtaatatta 15360 ctatgctaat ggtttttttt ttttttagaa aggtataacc aaaagatttc tttctcaagt 15420 cgataaactg agaaagataa gcatatcttc caattaacag agggggagga aaagccagat 15480 acaacaaaat aagatataaa ttagtttcca gttgaaaaca agagtaggag ttattttgca 15540 tcacctcacc tgtgacctcc cccagcccaa aaaacactac tgataaacag ggtagaaaag 15600 catcatctca gataaagcag gaaaaactgc cacagtctca aaccacaaac tataagcaca 15660 cacctggcca accctgccaa gtctgggctc agtaggagga acgtgctgag agctaggatg 15720 taccaactta gacattctgt gggatacaga tgtccctgga agggtcacac catctcaaag 15780 gcacctgtaa tgcccactga ttacagccac catatgtgag agagaaactc agggcactta 15840 gagagtataa caagaacctt atgtcatctg agatgaggaa tcctcagccc tgcaaattaa 15900 ccaactcttt agaacaactg gcaaaacata aatatccaca acttttgttt cagtaattcc 15960 actcttagat atcaatccaa agtacatgag acagcagata cacacacaaa atggtattta 16020 ctgcagcatt gtttataata gcaaaaaaca agaaataatc catatgtctc aataggatac 16080 tgggtacatg agggtatgta cccatcattc aaccatcaaa aagagtgata tggatgtcca 16140 cagatggaca taaaaagctg tgtgttacgt gaaaacaaac tcaagcagca gcaggatggg 16200 cttatgatag tcagtatgag ctaatttctg gaaaaaaaaa tctagtgtgt gcacagaaaa 16260 catctgaaag aacagaaaca aaactatcag cagaatattg agatgtttta ctaagttgta 16320 tatctatact gcttgtaatt tttaccccaa gcaagaatta ctttttggaa aaagaaaatt 16380 caggaaataa agcatttctt taaacttcat gtttaaacaa atggtgatgg aataaaagag 16440 ttcttattca tcataaacac acacagcaca catgcacgca tgtgcgtgag cacacccttt 16500 acttgataaa taccatgttg aatattttag tctttccttt taggttctat cccttcactc 16560 aaaatgcggt tataaataaa tgtacttttc atgtgccttc tgcctaaacc cactttaata 16620 taactttaca gtcccattat cattatagtc tcaaagctag actcagcctg aaactaccct 16680 ttcatttgga acccttatta aaatgccaca tacagctcct tcaaataaaa acaaacccta 16740 ggacctgaca ctaggcttcc tttgttgcta ctcataatgg ccaagttctg tgcttataat 16800 acatcttctt tcattttatt gctacatatc caagggtttt atatgttttt cttattatat 16860 cttaattcaa aacaccatca cgctcttttc cagatgaaaa taaggaaaag aaattgagca 16920 actgactgac ttaaaggtca taaaactata tagtagcaga gtcagcaaaa gaagaaacac 16980 acatctccca agtagaggct gaaaaccagt accattcacc tccagggtga gctatataca 17040 gattacaaag tcaccttctc taaatgttca aactgaatcc catacccata ctttaccact 17100 acctcgtaag aacagcctca gatcttgtta tagccttttt tttagcatgc tgaagccaat 17160 aaaatgcttc ccattcagca agagaaacaa gttctgaaac actgaataat ctgcccaggg 17220 cctatgaaca tttccactgt gagaaatgtt ctccactgtg tggagaagat ccttactctt 17280 ctccacacag gcagaacatt agaaaaattc ttggattcta tgatgcacag cttaggagtc 17340 tgtttagcac aatttaagtc caaatagtta ttaaatcctc ctctgttcca gaaacagtgc 17400 taaatactgt gaatataaaa attgaaaaga tactctcctg gctcccaaga aagtcagcca 17460 gatagaggag acacaggcac acaaatcact gtcacatgaa gctctacctc cctaacttca 17520 aacgagggcc taagtcacca agaatacagt agcagttgtg actacgagta actactataa 17580 ttcaatactt tatcttccct tagaaaactc ttctcccttg gaaatttatt tgcatttcta 17640 aataccattc cttactaaaa ggaagcaggg ctccttgggg aaatagctga ttctaggtgt 17700 ggactatgaa atgaaaatgg tgagtctggg acatcccatg ttgcccagaa atcaaggaac 17760 tgcccaaaga ttaacagagt catgttaaat ggacctaaga gtgaaccaga aggagctcac 17820 tttgccccgc gtggaacaat ttcaagaaaa acatgacagt aatgaattat aaaacatgaa 17880 ttaaaataca tattggtact aaaaagagaa caaaaggatg tggctttgga taaagctctt 17940 cttcatggaa gaataccagc taataaatgt aaaggaaatg agagaattag aaaaattatc 18000 attttgtaaa ccttaatata ttcacctaga catgctaaaa ccactgagta aaaggctgct 18060 tgggaagagg atgctcacat gatctcagag tttcacacca cagataattt attagataca 18120 ggaaggaaga tgtgatcaag cttcctgtga cccccagcca ggccccacaa cactatgtgc 18180 ctccttgtga tgtgggagct acacagcatc gcccacacag cttctcgcca aaactgtttg 18240 aagctaatca caagggaaga actggacagc ttctgaccat gagacgctcc accagacaac 18300 ttgcttggcc tctccaaaga aacttgcttg gcctctccaa agaaaactca gtttcattta 18360 aaaacaaaac taattattta aaaacaaacg aaaagcaagt tgtggacttg agctccaggg 18420 acagagcaga catacttttc cctgttcttc ccagtaagtg gtaataaaaa ccctcaacac 18480 tagatataaa acaaatataa gaaggttctg gaaggggaag aggaggcaga ctatccaggt 18540 gccttgaggc ccacagaaca acccagtgat gggttcactg ggtcttcttt ttgcttcatt 18600 atctcagact tggagctgaa gcagcaggca acttcaaaac accaaggggc acagattgaa 18660 aagccccaag aaaagcctgc cctctctagc caaaggacca ggaaggagac agtctaatga 18720 gatggaacac atttagacag taactgccca tttaccagca ataactgagc agggagccta 18780 gacttccagt cttgtgagga cgtaccaagg tacccaacac ccccaccaag gctgagtaag 18840 gactgcgact tttatccctg catggcagta gtaaggagcc catccctcac ccgccagcag 18900 tgtcagggga acctggactt ccactcccac ccaggagtga tgaggccctc cctgctgggg 18960 tcatgtcaga ggaggcctag tggagattca gtgacttaac cttttcccag agataatgag 19020 gccacctttc ctccctcttc ccccatggtg acagtgaaag cactgtggca agcagtaggc 19080 actcctaccc ctcctagcca gggaggtatc agggaggcca agtagggaac cagaataccc 19140 acaaccaccc agcagcaaca ggggtccccc accccattgg gtgtcaatgg aagcagagcg 19200 gaaagcctgg atatttaccc ccatctagaa gtaacaagct gatgtccccc ttcttctact 19260 acaatggtgt tcaaaacagg tttaaataag gtctagagtc tgataacgta atacccaaat 19320 cgttgaagtt ttcattgagg atcatttata ccaagagtca ggaagatccc aaactgaaag 19380 agagaaaaga caattgacag acactagcac taagagagca cagatattag aactacctga 19440 aaggatgtta aagcacatat cataagcctc aacaggctgg gcgcggtggc tcacgcctgt 19500 aaccccagca ctttgggagg ccgaggcagg tggatcacaa gatcaggaga tcgagaccat 19560 cctggctaac acggtgaaac cccgtctcta ctaaaaatac aaaaaaaaat agcaaggcat 19620 ggtggtgggc acctgtagtc ccagctactc gggagcctga ggcaggagaa tggcatgaac 19680 ctgggaagag gagcagtgag ccgagatcgc accaccgcac tccagcctgg gcaacagagc 19740 aagacttcgt cccaaaaaaa aaaaaaaaaa aaaaaaaagc ctcaacaaac aactacaaac 19800 gtgcttgaaa caaatgaaaa aaaaatcttg gcaaagaaat aaaagatata tattttggcc 19860 aggtgcagtg gctcacagcc tgtaatccct gcactttggg aggctgaggc aggcggatca 19920 cctgaggtca ggagtttgag accagcctga ccaacatgga gaaaccccgt ctctactaaa 19980 aatacaaaat tagccagtca tggtggcaca tgcctgtaat cctagctact caggaggccg 20040 aggcaggaga atcgcttgaa ctcaggaggt ggaggttgcg gtgagccgag atcccgccat 20100 tgcacattgc actccagcct gggcaacaag agcaaaactc catctcaaaa aaatagatac 20160 atattttaat ggaaatttta gaattgaaaa atacagtaac caaattgaat ggaaagacaa 20220 catagaatgg agggggcaga caaaataatc agtgaacttc aacagaaaat aatagaaatt 20280 acccaatatg aagaacagaa agaaaataga ctggccaaaa aataaagaag aaaaaagagg 20340 agcagcagga ggaatgatgg aaaaagagaa aggaaggaag gaagggaagg agggagggaa 20400 ggagtgaggg agaaagtctc aaagacctct gagactaaaa taaaagatct aacacttgtc 20460 atcagggtcc aggaaagaga caaagatggc acagctggaa acgtattcaa aaaataatag 20520 ctgaaaactt cccaaatttg gcaagagaca taaacctata gattcgaaat gctgaacccc 20580 aaataaaaag cccaataaaa tccacaccaa aatacatcat agtcaaactt ctgaaaagac 20640 gaaaagagaa aacgtcttga aagcagtgag tgaaacaaca cttcatgtat aagggaaaaa 20700 caattcaagt aacagatttc ttacagaaat taaggaagcc agaaggaaat gacacaatgg 20760 ttttcaagtg ctgaaagaaa agaagtgtca acacaaaatt ctagattcag taaaaatatc 20820 cttcaagaat caatgggaaa tcaagacagt ctcagataaa gcaaaataag agaatatgtt 20880 gccagcagat ctcccctaaa ggaatggcaa aaggaagatc atgcaacaga ccaaaaaatg 20940 atgaaagaag gaatccagaa acatcaagaa gaaagaaata acatagtaag caaaaataca 21000 tgtaattaca ataaaatttc tatctcctct taagacttct aaattatatt gatggttgaa 21060 gcaaaaatta taaccctgtc tgaagtgctt ctactaaatg tatgcagaga attataaatg 21120 gggaaagtat aggtttctat acctcattga agtggtaaaa tgacaacact gtgaaaagtt 21180 acatacacac acacacgtaa gtatatataa atatatgtgt gtatatgtgt gtgtatatat 21240 atatatacat ataatgtaat acagcaacca ctaacaacac tatacaaaga gataataacc 21300 aaaaacaatt tagataaatt gaaatggaat tctaaaaaat attcaaatac tctacaggaa 21360 gacaagacaa aaagagaaaa aaagaggagg acaaactaaa ttttttaaaa acataaataa 21420 aatggtagac ttaagcccta acttatcaat aattacataa atgtaaatga tctaattata 21480 tcaattaaaa gacagagata gcagagttaa tttaaaaaca tagctataag aaacctgctt 21540 tgggctgagt gcagtgactc acacttgtaa tcccagcact tcgggaggcc aaggcgggtg 21600 gatcacctga ggtcaggagt tccagaccag cctggacaac atggtaatac cccatctcta 21660 ctaaaaatac aaaaaaatta gccaggcatg gtggcacacg cctgtagtcc caactactca 21720 ggaggctgcg acacaagaac tgcttgaacc cgggcagcag aggtagcagt gggccaagat 21780 tgcgccactc cagcctgaac gacagagtga gactccacct cagttgaaaa acaaaaaaga 21840 aacctgcttt aaatatacca acatatgttg gttgaaatta aaagaataaa atatatcatg 21900 aaaacattaa tcaaaagaaa ggagtggcta tattaataac ataaaataga cttcagagaa 21960 aagaaaattt caagagacag gaataaaagg atcaagaaaa gatcctgaaa gaaaagcagg 22020 caaatcaatc attctgcttg gagattcaac accctctctt aacaactgat agaacaacta 22080 gacaaaaaaa tcagcatgga gttgagaaga acttaacacc actgaacaac aggatctaat 22140 agacatttac ggaacactct acccaacaat agcaaaataa acattctttt caagtattca 22200 ctgaacatat ccttagaccc taccctgggc cataaaacaa agctcactag tgattgccga 22260 aggcttggat ggacagtgga agagctgcat ggggagggag aaggtgacag ttaaagagtg 22320 taggatttct ttttgggata atgaaaatgt tccaaaattg attgtggtga tgttggcgca 22380 actctacaaa tataaaaaag gccattgaat tgtacgtttt aagtgggtga aacatatggt 22440 atgtggatta tatctaacgc tttttaaaaa cttaacacat ttcaaagaat agaagtcata 22500 cagagtgtgc tctactggaa tcaaactaga aagaggtaac tggaggataa cgagaaaagc 22560 ctccaaatac ttgaaaactg gacagcacat ttctaaaatc atccgtgggt caaagatatt 22620 catttctgat attcattttt attgtttaat gtatttttaa aaatttctta agggaaataa 22680 actgactaaa aatgaatatg gctgggtgcg gtggctcacg cctgtgatcc cagcactttg 22740 ggaggccgag gctggtggat cacaagatca ggagttcgag accagcctgg ccaagatggt 22800 gaaaccccgt ctcaactaaa aaactacaaa aagtagccaa gcgcagtggc gggagcctgt 22860 ggtcccagct acttgggagg ctgaggtagg agaatcgctt gaacacaggc agcagaggtt 22920 gcagtgagcc aagattgtgc cactgcacgc cagcctgggc gacagagact gcctcaaaaa 22980 aaaaaaaaaa aaaaagaata tcaaaatttg tgggacatag ttaaagcaat gctgagaggg 23040 aaatttataa cactaaatgt ttacattaga aaagagaaaa agtttcaaat caatagtctc 23100 cactcccatc tcaagaacac agaagatgaa gagcaaaata aacccaaagc aagcaaaaga 23160 aagaaaatat aaaaataaat cagtaaaatt gaaaacagaa acacaataaa gaaaatcagt 23220 gaaacaaagt actgattctt cgaaagatta ataaaattga caaacctcta gcaaggctaa 23280 caaacaaaaa agaaagaaga cacggattac cagttattag aatgaaagca taattagaaa 23340 caactctaca cattataaat ttgacaatgt agatgaaatg gactaattac tgaaaaaaca 23400 caaattacca caactcaccc aatatgaaat agataattgg gatagcctga taactactga 23460 gaaaattgaa tttgtaattt taacactctt aaaacagaaa cattaaactt aatattttat 23520 aaatattaga taaggtaatt atacccttcc ttaacaaata aaaacgacaa attattttgc 23580 agctaaagag atgtatgtac tgtgaaaaat atcttcagaa aaatagaact ttgtttgaag 23640 aataaggatt taaaaaatgt ttttaactct caagaagcaa atatctgggc ccagatggtt 23700 tcactgaaga attctaccaa atgtttaatg aagaattacc accaactcta catagcatct 23760 ttgagaaaac tgaagagaag ggaacatctc ccagttcatt ttatgaagtg ggtgttactc 23820 tgatactaga actgtataag gacagctact cttgacacac tgcctatggg tagctctgct 23880 ctgcaggaac agtcagaaaa aaaaaaaaaa gaagcactgg acaagggcag tataaaaaaa 23940 gaaaactggg ccaggtgcag tggctcacac ctgtaatctc agcactttgg gaggctgacg 24000 ctggtggatc acctgaggtc aggagtttga gactagcctg gccaacatgg taaaaccctg 24060 tctctactaa aatacaaaaa ttagccaggc agggtggtgg ggaaaataaa aaggaaaaaa 24120 aaacaaaaat aaactgcaga ccaatatcct tcatgagtat agacacaaaa ctccttaaac 24180 tccttaacaa aatattagca agtagaagca atatataaaa ataattatac accatgatca 24240 agtgggactt attccagaaa cgcaagtctg gttcaacatt tgaaaacaag gtaacccact 24300 atatgaacgt actaaagagg aaaactacat aatcacatca atcaatgcag aaaaaagcat 24360 ttgccaaaat ccaatatcca ttcatgatac tctaataaga aaaataagaa taaaggggaa 24420 attccttgac ttgataaagc ttacaaaaga ctacaaaagc ttacagctaa cctatactta 24480 atggtgaaaa actaaatgct ttcccctacg atcaggaaca aagcaaggat gttcactctc 24540 attgctctta tttaacatag ccctgaagtt ctaacttgtg caaaacgata agaaagggaa 24600 atgaaagacc tgcagattgg caaagaagaa ataaaactgt tcctgtttgc agatgacatg 24660 attgtctcat agaaaatgta aagcaactag gggtaggggg gcagtggaga cacgctggtc 24720 aaaggatacc aaatttcagt taggaggagt aagttcaaga tacctattgc acaacatggt 24780 aactatactt aatatattgt attcttgaaa atactaaaag agtgggtgtt aagcgttctc 24840 accacaaaaa tgataactat gtgaagtaat gcatacgtta attagcacaa cgtatattac 24900 tccaaaacat catgttgtac atgataaata cacacaattt tatctgtcag tttaaaaaca 24960 catgattttg gccaggcaca gtggctcata cctgtaatcc cagcatttta ggaggctgag 25020 gcgagcagaa aacttgaggt cgggagtttg agaccagaat ggtcaacata gtgaaatccc 25080 gtctccacta ataatacaaa aattagcagg atgtggtggc gtgcacctgt agacccagct 25140 acttgggagg ctgaggcacg agaattgctt gaacaaggga ggcagaggtt gcagtgagct 25200 gggtgccact gcattccagc ctggtgacag agtgagactc catctcaaaa aaaataaaat 25260 aaagcatgac ttttcttaaa tgcaaagcag ccaagcgcag tggctcatgc ctgtaatccc 25320 accactttgg gaggccgagg caggcagatc acaaggtcag gagtttgaga ccagcctgac 25380 caacatggtg aaaccccatc tctactaaaa aatatataaa ttagccaggc atgtgtagtc 25440 tcagctactc aggaggctga ggcaggagaa tcacttgaac ccggaggcag aggttgcagt 25500 gttgagccac cgcactccag cctgggtgag agaacgagac tccgtctcaa aaaaaaaaag 25560 caaaataacc taattttaaa aacactaaaa ctactaagtg aattcagtaa gtctttagga 25620 ttcaggatat atgatgaaca tacaaaaatc aattgagctg gacaaaggag gattgtttta 25680 ggtcagtagt ttgaggctgt aatgcacaat gattgtgcct gtgaatagct gctgtgctcc 25740 agcctgagca gcataatgag accacatctc tatttaaaaa aaaaaaaatt gtatctctat 25800 gtactagcaa taagcacatg ggtactaaaa ttaaaaacat aataaatact gtttttaatt 25860 gcctgaaaaa aatgaaatac ttacatataa atctaacaaa atgtgcagga cttgtgtgct 25920 gaaaactaca aaacgctgat aaaagaaatc aaagaagact taaatagcgt gaaatatacc 25980 atgcttatag gttggaaaac ttaatatagt aaagatgcca attttatcca aattattaca 26040 caggataaca ttattactac caaaatccca gaaaaatttt acatagatat agacaagatc 26100 atacaaaaat gtatacggaa atatgcaaag gaactagagt agctaaaaca aatttgaaaa 26160 agaaaaataa agtgggaaga atcagtctat ccagtttcaa gacttacata gctacagtaa 26220 tcaagactgt gatattgaca gagggacagc tatagatcaa tgcaaccaaa tagagaacta 26280 agaaagaagc acacacaaat atgcccaaat gatttctgac aaaggtgtta aaacacttca 26340 acgggggaag atatgtctct cattaaaggg tgtagagtca ttgcacatct ataggcaaaa 26400 agatgaacct gaacctcaca ccctacagaa aaattaactc aaaatgactc aaggactaaa 26460 cataagatat acatctataa aacatttaga aaaaggccac gcacggtggc tcacgctcgt 26520 aatcccagca ctttgggagg ccaaggcagg tggatcacct aaggtcagga gtttgagacc 26580 agccggatca acatggagaa gccccatctc tactaaaaat acaaaattag ctggacgtgg 26640 tggcacatgc ctgtaatccc agctacttgg gaggctgagg catgagaatc gcttgaaccc 26700 ggggggcaga ggttgcggtg agccaagatc acaccattgc actccagcct gggcaacaag 26760 agcaaaactc caactcaaaa aaaaaaaaaa aaaggaaaaa tagaaaatct ttgggatgta 26820 aggcgaggta aagaattctt acacttgatg ccaaactaag atctataagg ccagtcgtgg 26880 tggctcatgc ctgtaattcc agcactttgg tcaactagat gaaaggtata tgggaattca 26940 ctgtattatt ctttcaactt ttctgtaggt ttgacatttt tttagtaaaa aattggggga 27000 aagacctgac gcagtggctc acacctgtaa tcccagcact ttgggaggcc ggggcaggtg 27060 gatcacacgg tcaggagttc gagaccagcc tggccaacat ggtgaaaccc cgtctctacc 27120 aaaaatataa aaaattagcc gggtgtcatg gtgcatgcct gtaatcccag ctactgagga 27180 ggctgaggca ggagaatcac ttgaacctgg gaggtggaag ttgcagtgag ccgagattgt 27240 gccactgcac tccagccttg ggtgacagag cgagactccg tctcaaaaga aaaaaaaaaa 27300 aaagaatatc aaacgcttac tttagaaact atttaaagga gccagaattt aattgtatta 27360 gtatttagag caatttttat gctccatggc attgttaaat agagcaacca gctaacaatt 27420 agtggagttc aacagctgtt aaatttgcta actgtttagg aagagagccc tatcaatatc 27480 actgtcattt gaggctgaca ataagcacac ccaaagctgt acctccttga ggagcaacat 27540 aaggggttta accctgttag ggtgttaatg gtttggatat ggtttgtttg gccccaccga 27600 gtctcatgtt gaaatttgtt ccccagtact ggaggtgggg ccttattgga aggtgtctga 27660 gtcatggggg tggcatatcc ctcctgaatg gtttggtgcc attcttgcag gaatgagtga 27720 gttcttactc ttagttccca caacaactgg ttattaaaaa cagcctggca ctttccccca 27780 tctctcgctt cctctctcac catgtgatct cactggttcc ccttcccttt atgcaatgag 27840 tggaagcagc ctgaagccct cgccagaagc agatagtgat gccatgcttc ttgtacagcc 27900 tacaaaacca tgagcccaat aaaccttttt tctttataaa ttatccagcc tcaggtattc 27960 ctttatagca agacaaatga accaagacag ggggaaatca acttcattaa aataatctat 28020 gcagtcacta aacaaataag aacaagaggc tccagaagtg ggaagccaat acccagagtt 28080 cctacaatac agtatctgaa aagtccagtt tccaaccaaa aaatatatat atacaggccg 28140 gacatggtag cttatgtctg taatcccagc actttgggat gctgaggcgg gcagatcacc 28200 ctaggtcagg agttcgagac cagcctggcc aatatggcaa aaccccgtct ctactaaaaa 28260 tacaaaaatt agccaggcat ggtggtggat gcctgtaatc ccagctactc gggaggctga 28320 ggcagggaat cacttgaacc caggaggcag aggttgcagt gagccgagat cacgccactg 28380 aactccagcc tgggcaacaa agtgagactc cacctcaaaa aaaaaaaaaa tatacatata 28440 tatatgtgtg tgtgtgtgtg tgcgcgcgtg tgtgtatata cacatacaca tatatacata 28500 tatacagaca cacatatata tatgaagcat gaaaagaaac aaggaagtat gaaccatact 28560 ttctgtggtt atgataggat ggggtatcac gggggaagta gacaagggaa actgcaagtg 28620 agagcaaaca gttatcagat ttaacagaaa aagactttgg agtaaccatt ataaatatgt 28680 ccacagaatt aaagaaaagc gtgattaaaa aaggaaagga aagtatcata acaatattac 28740 tccaaataga gaatatcaat aaaggcatag aaattataaa atataataca atggaaattc 28800 cggagttgaa aggtagaata actaaaattt aaaattcact agagaaggtt caacactata 28860 tttgaactgg cagaagaaaa atttagtgag acaaatatac ttcaatagac attattcaaa 28920 tgaaaaataa aaagaaaaaa gaatgaagaa aaataaacag aatctcagca aaatgtggca 28980 caccattaat cacattaaca tatgcatact gagagtaccg gaagcagatg agaaagagga 29040 agaaaaaata ttcaaatgat ggccagtaac ttcctagatt tttgttttaa agcaataacc 29100 tatacaatca agaaactcaa tgaattccaa gtaggataaa tacaaaaaga accacaaaca 29160 gatacaccat ggtaaaaatg ctgtaagtca aaaacagaga aaatattgaa agcagctaga 29220 ggaaaactta taagagaacc tcacttacaa aagaacatca cttataaaag aaccacaata 29280 atagaaacag ttgacctctc atcagaaaca atgaatgata acatatttga agtgctcaaa 29340 gaaaaaaaat aaagattcct atatacgaca aagctgtctt tcaaaaatat acatccaaaa 29400 ggattgaaac cagggtcttg aagagttatt tgtacatcca tgttcatagc agcattattc 29460 acaatagcca aaaggtagaa gcaacccaag ggtccatcga caaataaata aaatgtggta 29520 tatgtataca caatggaatt tattcagtat taaaaaggaa tgaaattctg acacatgcta 29580 caacatggct aaaccttgag aacactatgc taagtgaaat aagccagcca caaaaggaca 29640 aataccatat tacttcactt gtatgaaata cctagggtag tcaaattcag agatagaaag 29700 taaaacagtg gttgccaagg gctgagggag ggagtaacgt ggagttattg ttgaatgggt 29760 acagaatttc agttttgcaa gataaaaaga gttctggaga cagatggtgg tgagggtggt 29820 acaacaatac aaatatactt tatactactg aacagtatac ttaaaaatga ttaacatggt 29880 gaaaccccgt ctctactaaa aatacaaaaa aattagctgg gtgtggtggc gggcacctgt 29940 aatcccagct acttgggagg ctgaggcagc agaattgctt gaaaccagaa ggcggaggtt 30000 gcagtgagct gagattgcgc caccgcactc tagcctgggc aataagagca aaactccgtc 30060 tcaaaaaata aaaaataaaa aaaatttaaa aatgattaag caggaggcca ggcacggtgg 30120 ctcacaccta taatgccagc actttgggag gccgaggcag gcgatcactt gagaccagga 30180 gtttgagacc agcctggcca acatggcaaa accctgtctc tgctaaaaat acaaaaatta 30240 gccaggcatg gtggcatata cttataatcc cagctactgg tgagactgag acacgagaat 30300 tgcttgaacc caggaggcag agattgcagt gagtcgagat cgcgccactg aattccagcc 30360 tgggcgacag agcaagattc tgtctcgaaa aaacaaaaac aaaaacaaaa agcaaaacca 30420 aaaaataatt aagcaggaaa cgagattgct gctgaggagg agaaagatgt gcaggaccaa 30480 ggctcatgag agcacaaaac ttttcaaaaa atgtttaatg attaaaatgg taaattttat 30540 atgtatctta ccacaaaaaa aagggctggg gggcaggaaa tgaaggtgaa ataaagacat 30600 cccagagaaa caaaagtaga gaatttgttg ccttagaaga aacaccacag gaagttcttc 30660 aggctgaaaa caagtgaccc cagagggtaa tctgaattct cacagaaaat tgaagcatag 30720 cagtaaaggt tattctgtaa ctatgacact aacaatgcat attttttcct ttcttctctg 30780 aaatgattta aaaagcaatt gcataaaata ttatatataa agcctattgt tgaacctata 30840 acatatatag aaatatactt gtaatatatt tgcaaataac tgcacaaaag agagttggaa 30900 caaagctgtt actaggctaa agaaattact acagatagta aagtaatata acagggaact 30960 taaaaataaa attttaaaaa atttaaaaat aataattaca acaataatat ggttgggttt 31020 gtaatattaa tagacataat acaaaaatac cacaaaaagg gaagaagaca atagaactac 31080 ataggaataa cattttggta tctaactaga attaaattat aaatatgaag tatattctgg 31140 taagttaaga cacacatgtt aaaccctaga tactaaaaag taactcacat aaatacagta 31200 aaaaaataaa taaaataatt aaaatgtttg tattagtttc ctcagggtac agtaacaaac 31260 taccacaaat tgagtggctt aacacaactt aaatgtattt tctcccagtt ctggaggcta 31320 aacacctgca atcaaggtga gtacagggcc atgctccctg tgaaggctct aggaaagaat 31380 cctcccttgt ctcttccagc ttccagtggt tctcagtaac cctaagtgct ccttggcttg 31440 tagctatatc attcctagca accagaaaga agaaaataat aaagattatg gcaaaaaata 31500 atgaaatcaa aaggagaaaa atggaaaaaa ataaataaaa ccaaaagcta gttctttgaa 31560 aagatcaacc aagttaacaa accttttaac tagactgaca aaaaggaggt aagactcaaa 31620 ttactagaat cagaaataaa agaggggaca ttactaatga gggattagaa aagaatacta 31680 cgaacaaatg tgtgccaaca aattagaaaa cttagatgaa atggacaggt tcctaggaca 31740 acatcaacta ccaaaattta ctcaagaaga aagagacaat ttgaatgagc tataacaagg 31800 gaagagactg aattgacaac caagaaacta tccacaaaga aaatcccagg cccagaagat 31860 ttcactgtga aattctttca aacttataaa tataaattaa catcagttct tcacaaactc 31920 ctccaaaaaa aagaacagat ctctatttac aggcgatacg atctttagaa aatcctaagg 31980 gaactactaa gacactatga taactgataa acaagttcag caaggctgca ggatagaaaa 32040 ccaatataca aaaatctatt atatttctat acacttgcag tgaacaaccc aaaaatgaga 32100 ttaagaaaat aattcaattt acaataacat caaaaagaat aaaaacactc aaaaataaat 32160 ttattcaagt aagtgcaaaa cttatactct agaagctaca aaacactgtt aaaagaaatt 32220 aaaggtttac ataaatgaaa aactatccca tgttcatgga tcaaaagact tattactggc 32280 aatgctctcc aaattgatct ataaattcaa caaaatcctt atcaaaatcc cagatgaggc 32340 tgggggtggc ggttcatgcc tgtaatccca gcactttggg aggctgaggc acgcagatta 32400 cctgaggtcg ggagctcgag atcagcctga ccaacatgga gaaaccctat ctcttctaaa 32460 aatacaaaat tagtcaggcg tggtggcaca tgcctataat cccagctact cgggaagctg 32520 aggcaggaga atcgcttgaa cccaggaggc agaggttgca gtgagccaag atcgtgccat 32580 tgcactccag cctgggcaac aagagcaaaa ttccatctca aaaaaaaaaa aaaaaaaatc 32640 ccagatgact tcactgttga aattgaaaag attattctaa aattcacatg gaattgcaag 32700 accttgagaa tagccaaaac aaacttgaaa aacacgaaca aaatatagga tgactcactt 32760 gccaattgca aatgttacga cacagcaaca gtaatcaaga ctgtgtggta ctggcaaaag 32820 acacatacat acatacatat caatggaata taattgagag tacagaaaca agcctaaaca 32880 tctatggtaa gtgcttttct atttttttct tttttttttt cttttttgta gagatagaat 32940 ctcaccatgt tgcccaggct ggtcttcaac ttctgggctc aagcaatcct cccactgtgg 33000 cctcccaaag tgctgggata actggcatga gccaccacat ccagcccaga tgattttcaa 33060 aaaagtcaac aagaccattc ttttcaacaa ataggtctgg gatgatcaga tagtcacatg 33120 aaaaaaaaaa tgaagttgga ccctccatca cactaaagtg ctgcgattat aggcatcagc 33180 caccacatcc agcccaaatg attttcaaaa aggtcaacaa gaccattctt ttcaacaaat 33240 aggtctggga taatcagata gtcacatgaa aaaaaaaatg aagttggacc ctccatcaca 33300 ccatatgcaa aaattaattc aaaaatgaat tgatgactta aacgtaagag ttacgactgt 33360 aaaactctta gaaggaaaca tacgggtaaa tcttaaagac gttaggtttg acaaagaatt 33420 cttagacatg acaccaaaag catgaccaac taaggtaaaa tagggtaaat tgtacctacc 33480 aaaatgaaaa acctttgtgc tggaaaggac accatcaaga aatggaaagc caaaatagcc 33540 aaggcaatat taagcaaaaa gaacaaagct ggaggcatca tactacctga cttcaaagca 33600 acagtaacca aaacagcatg gtactagtag aaaaacagac acatagacca atggaacaga 33660 ataaagaacc caaaaataaa tccacatatt tatagtcaac tgatttttga caatgacacc 33720 ccttcaataa atgatactag gaaaactgga tatcgatatg cagaagaata aaactagacc 33780 cctatctctc accatataga aaaatcaact cagactgaat taaagacttg aatgtaagac 33840 ccaaaactat aaaactactg gtagaaaaca taaggaaaaa cgcttcagga cattggtcca 33900 ggcaaagatc ttatggctaa aacctcaaaa acacaggcaa caaaaacaaa aatggaaaaa 33960 tagcacttta ttaaactaaa aagctcctgc acagcaaagg aaacaacaga atgaaaagac 34020 aacctgtaga atgggagaaa atatttgcaa actatccatc catcaaggga ctagtatcca 34080 gaacacacaa gtgactaaaa caactcaaca gcaaaaaagc aaataatctg gtttttatat 34140 gggcaaaaga tctgaataaa cattctcaaa ggaagacata caaatgtcac tatcattctg 34200 ccagtaccac actgtcttga ttacttgtta gtgtataaat ttttaaattg ggaagtgtga 34260 gtcatcctac actttgttct tgtttttcaa gtttgttttg gctattctgg gagccttgca 34320 agtataaaat agccaacaag tatgaaaaaa tgctcaccat cactaatcat cagagaaata 34380 aaaatcaaga ccactatgag atatcctctc actccagtta gaatggctac tatcaaaaag 34440 acaaaatata atggatgctg gcaaagattt ggagaaaggg gaactcctat acactgtggg 34500 tagggatgca aattggtaat ggccattatg gaaaataata ctgaggtttt tcaaaaaact 34560 gaaaatagaa ctaccatatg atccagcaac cctactactg ggtatttatc caaaggaaag 34620 aagtcagtat actgaagaaa tatatgcact ctcatgttaa ttgcaacact gttcacaaca 34680 gccaagacag ggaataaatc taaatgtgca tcaacagatg aatggataaa gaaaatgtgg 34740 catatacact caatagaata ctattcagcc attaaagaag aatgaaatcc tgtcatccca 34800 gcaacatgga tgaacctgga ggacattata tttaatgaaa taagtaaagc acaaaaagat 34860 aaacagtaca tgttctcact cagacatggg tgctaaaaag aaaatggggt cacagaatta 34920 gaaggggagg cttgggaaaa gttaatggat aaaaatttac agctatgtaa gaagaataag 34980 ttttagtgtt ctatagaact gtagggcgag tatagttacc aataacttat tgtacatgtt 35040 caaaaagcta gaagagattt tggatgttcc cagcacaaag gaatgataaa tgtttgtgat 35100 gatggatatc ctaattaccc tgattcaatc attacacatt gcatacatgt atcaaattat 35160 cactctgtac ctcataaata tgtataatta ttacgtcaac aaaaaaagga aaaaaaagaa 35220 aattaagaca acccacataa tggaagaaat aaaatatctg caaattatat atatctgata 35280 aatatttaat atttataata tataaagaac tcctacaact caagaacaac aacaaaacaa 35340 cccaattcaa aaatgggtaa aagccttgaa tatacactta tctaaagact atatacaatt 35400 ggccaataaa gacacgaaaa gatgctcaac atcactagtc atcagggaaa tataaatcaa 35460 aaccacaatg tagaatgtag acaccacttc atatgcacta ggatggctag aataaaaagg 35520 taataacaaa tgttggtaag gatgtgaaaa aatcagaaac ctcattcgct gctgttggga 35580 atgtaaagtg atgcagccac tttggaaaac agtctggcag ctcctcaaat tattaaatac 35640 agagttaccg tatgacccag gaatattcct cctgggtcta taaccaaaaa aatgaaaaca 35700 tatatccaca taaaaacttg tacatgggca tttatagcaa cattattcat aacagcaaag 35760 gtggtaagaa cccatatgcc catcatctga tgaacaggta aataacatgc ggtattatcc 35820 atacactaga atattatctg cccatacaag gagtgacatc cagctacatg ctacaaggat 35880 gaatctcgga aaccttatgc taagtgaaag aagccagtca caaatgacca cagattatga 35940 ttccatgcat cggaaatgac cagaataggg aaatctatag agacagaaag tagattagtg 36000 gttgggtggg gctgggagga caggtagtac actactttcc cagaactact ggaacaaagt 36060 accacaaact ggggagctta aacatagaaa ttgatttcct cacagttctg gagactagga 36120 ctctgagatc aaggtgtcag cagagctggt tctttctgag ggccctgagg caaggctctg 36180 tcccaggcct ctctccttgg ctggcaggtg gccatcttct ccctgcgtct tcacatcatc 36240 ttttctctgt gtgtgcccat gtccaaattt tgattggctc attctgggtc atggccaatt 36300 gctatgcaca aagtgaagtc tacttccaaa agaagggaag agggaacact gactaggcta 36360 aacttatagt cattttaatg tccgcttttc ctatgagatt gtgaacacac agaagtaggg 36420 tttttatcta cattgtgcaa agtttaataa gaaaaataga attcaagaga agcagttcaa 36480 tagcaggaat ttaatatggg aactaattac aaggtttagg gcaggactaa aaagccagtt 36540 gggatggtga gccaacccag agattagcaa cagtgggacc ccatctacct accacccatg 36600 aagctggaag gataaaggag gggctattat cagagtccac aagccagtgt cagagtcctt 36660 ggctggagct gggaccaccc tagagacact gtgcaaagca gaaaacaagg gggaaaaacc 36720 ctgacttctc ccttcctccc acctttcaat ctcccactag tgcttcctac tagccatact 36780 tggccagaga cagtgacaag gaacactgca aaatgaagtt tgtaggaatc atctccctct 36840 gagacagaga aatatggaag ggtagaaaat gaatcagagg ataaagagaa aaaaccctga 36900 gtactatctt atttatcttt gtatctccag tgcctaatct gtctctcaaa aaaggaaagc 36960 aattgagaga aactgaaaac tccaattgaa atgaaagaat ggagaattac tggactagaa 37020 gagaagagaa aaatttattc cgcatagagt aaacaagaat ggattcacaa aggacgtgat 37080 gaatgaaaag ctataatcag caaagatttg ccagagaaat taaaaagtgg taaactcagc 37140 cacgctgtac aacctgaagg cacaatgcat gaaaacgttt caagaaatga caagatttga 37200 agtcaaattc taagtgcttt tccagaatct ctcaagacga ttatatagct accccatttt 37260 attaaataaa atggaaactt actaaacttt ccccttgtat taaactaaca tatgtcctaa 37320 tagcaaacga ttctggaatt cctagagtaa aatatatttc gtcaaagtgt attgctcttt 37380 taatattctg ctgacctcct tttgctattt aggatatttg tatacacatc acacgtaaat 37440 ttggtctata gtttacatct acgggcttat actgttcttt ttttcatttt tttaaaattt 37500 ccaaccccca gtatccatat actgctctct atcagggtta ttttaacttt gtaaaatcag 37560 ctgagatgct ttccatgttt ttttttttta ttttctgcca catttgaata gcataggagt 37620 taccaccatc aaccttggat tatttaagca ttcacgattc cacgtgtgga ttttttattc 37680 agagtctttc ttgtcattcc tgctatcagc acagaaccca atctcagctt tccagctata 37740 ctctcacccc atggaatttg cagatgaagt tcaaaaggac ctttgcatta tcctgcctcg 37800 ccctcttccc ccttcattta gacatcacct tcttctagaa cgtcttacct gacatgccct 37860 gctcccaacc cctgctgccc aattgtgtgc tctcccgtgt cctggcctgc catcctcttt 37920 agtaattgcc tgctccctca tctgtctccc cacccagaca ttaagctgaa tagactggat 37980 ttgtgtcttg tccatcacta taatctcagc acctagtacc tagtaggtac ttaccatgta 38040 ttcattagca aaatgttatg tataaccttg caccttaaaa acaagagaag gaagacaaaa 38100 ttaagtctta agactatggt ttagaacatg gatcagaaac tacagtctgc agcccaaatc 38160 cagaccaaat gaagagacca tgttcattta catacaacct atagcagctt tcacactaca 38220 ggagcagagc taagtagttc caagggaaca cacggccctg caaagcctaa aatatttact 38280 ctatagctct tcacagaaaa agttttcaga tccctcgttt agaactcttg ttcatatgca 38340 atttcactaa accatagttt tttgggtttg tttggttttt tttggcaaaa aggaatgagc 38400 cgatccagaa aaggttgaaa agaatgaatc attactgctg aaagaatgtg cacacagtcc 38460 gtcagtattc tgctgccatg ctgacaccca tccaatagtg tcatgagatg cagcagctac 38520 tactgtgttc tcaatgccga gtccacccac tccataacca tgtccaagca atcttgggaa 38580 catcatcacc atgcttgttt atccttaagg tattgcctca catacagcag tggctggtca 38640 taaagtcaaa tgacactagt ggccaggagg tcaagagaat gagtgaggac aggtgggtag 38700 gcagcccagg ccctagcaac agcaggagct cacccctcag tcactctagc caggactgaa 38760 atacttttca ccctttcaag agagactagg aatctggatt tttatgtgaa atatcttgat 38820 tactaaatgt tgtcaacaga catgtcaaaa ggtaaaacta agtaagttca tggggcagat 38880 tgactattca ggttatagaa ttaaggattc ttatccaaca cagataccaa ccaaaaagct 38940 gacgtataac atattaggag aaactatgtg cactgtcgaa acatcaacaa ggggctaatg 39000 tctaaaatag tctatattgg attccagttg aaacatgggg aaaggacatg aacaggcaac 39060 ttatgtcaat ggaaactcaa aaagataaca agcatatata aaagcattct caaattcagt 39120 agtaaacaga cagatgcaaa taaaaagagg gaaactgctg ccgggcacag tggctcacac 39180 ctgtaatccc agcactttgg gaggccgagg cgggcggatc atgaagtcag gagatcgaga 39240 ccatcctggc taacatggtg aaaccccgtc tctactgaaa acacaaaaaa ttagccaggc 39300 gtagtggtgg gcaccagtag tcccagctac tcaggaggtt gaggcaggag aatggcatga 39360 acccaggagg cggagattgc agtgagccga gaccatgcca ctgcactcca gcctgggcga 39420 ctgagtgaaa ctccatctca aaaaatataa taataattat aattataata ataataaata 39480 gtaaataaat aaaaagagag agactgctaa agtctagaaa gttgaatgat gccaagcgca 39540 tgcaaagatc agggccttgg gatggccggg tgcagtggct cacgcctgta atcccaccac 39600 tttgggaggc caaggcgggc ggatcatgag gtcaagagat caagaccatc ctggccgaca 39660 cagtgaaacc cggtctctac taaaagtaca aaaaaatata tatatatata tatattatta 39720 tattatatat atatatatca gagccttggg aatccttgtg tgctgctggg gaaggtagtg 39780 gtgcagccac ccttgacagc aatctggcag tacttggtta tattaagtat aggcacacac 39840 cacgaccagg cagtcctact cctgggtcta aatcccaaag aattctcaca caagtccata 39900 aggagacatg tacgaggctc attcagcatt actgggagtg ggaatcaacc tgggtgtcca 39960 tctacaggag acgagatgga caaaatgtgg tggatattaa gaccagaatc accaagtaac 40020 agagatgggt ggtgagtgac aatcctaaga tacagaataa aggctagaac atgatgccat 40080 tcatgtaaat taaaaataga tgcacacaaa gcagtatacg cgtgaccctt gaatagcaca 40140 ggtttgaact gcctgtgtcc acttacatgt ggattttctt ccacttctgc tacccccaag 40200 acagcaagac caacccctct tcttcctcct ccccctcagc ctactcaaca tgaagatgac 40260 aaggatgaag acttttatga taatccaatt ccaaggaact aatgaaaagt atattttctc 40320 ttccttatga ttttctttat ctctagctta cattattcta agaatatggt acataataca 40380 catcacacgc aaaataaatg ttaattgact gtttatatta tgggtaaggc ttccactcaa 40440 cagtaggctg tcagtagtta agttttggga gtcaaaagtt atacacagat tttcaactgt 40500 gcaggcaatc agttcccctg accccctcat tgttcacggg tcaactgtat atacacaaaa 40560 gtattatatg aacctcatta gaatagctgt ctatagggag aagagaatga gagtgggata 40620 aaacggaatg aacaaataaa ccaacaaatg cattaacaag caaaacaaca gaggggcttg 40680 catgggccag tgatgataaa gggctaagaa tgagaatata attaattcaa ttcctcacac 40740 ctgaggtcta aaaccaagga aagggagggc caggcgtgga ggctcacgcc tgtaatccca 40800 gcactttggg aggctgaggc gggcggatca caagattagg agtttgagat cagcctggcc 40860 aacacagtga aagcccatct ctacaaaaaa tacaagaatt acccaggtgt ggtggcacat 40920 gcctgtagtt agctactctg gaggctgagg caggagaatc acttgaaccc aggaggcgga 40980 ggttgcaggg agccgagatc acaccattgc actccagcct gggtgacaga gtaagactct 41040 gtctcaaaaa aataaaaaaa ataaaaaaac agagaaaggg aggaaactag atccaggctg 41100 actagataca gcctttagag ttagaaaaga tgatttgaca atctaagccc acactcagat 41160 tgaatgaaat tgaaaagcct ttcaaactaa aacatttaat tacaccatct gctgcagaca 41220 gaactcagac aactcaaaca ggtaatgtca gcgtggtgtt ttatatcacc accctcaaca 41280 cagaataaaa atcagctgca tgtgaagcag tgactagaat gaagaaaagg ctgcttctta 41340 cttccttcta gtggttcttt ccgaaaacat taataggcac cagctctatg catgtcaccc 41400 tgcagggaga catggggtat ataactatga cttactgttc attcctcaag gaattcccaa 41460 tcttgtggaa gattatacac aatgaggcaa caaaaactat ccaataaaac cacggaaaag 41520 aagccagtga caaagaagcc agtgatgaaa ggccctgtga gcagagctga tggccatttg 41580 gggaagaaag accaacatgg atgggggtga tcagggtggc tccgtgggaa agctggaaga 41640 gaagtggcag atctctgagc tggatgatgg gccactacca tctgtatatg gctaattaaa 41700 gaccatgtgt ggatttttta ttcagctctt tcgtgtcatt cctgctatca gcacagaacc 41760 caatctcaac tttccagcta tattgagcta aacttctcac ctcatggaat ttgcagataa 41820 agttcaaaag gatccttgcc ttttcaaaat aattttgaat ggttgagtag tccctctgtg 41880 ctctctcact gacaccctct caaggctgct gagcacgtgc catgctatgg ctttctccaa 41940 catcaggaaa tgttctccac tcagtttcac cttaatacaa atgtgttctc tcttcagaga 42000 aggcaaaaaa attcatgacc atctgactgg gagaagtcat ttctaggtaa agtgtccatc 42060 tttttctgag gaacacagga ggaaaatctt acagaaaaga gttaacacag caggcctaag 42120 actgcttttt aaaataaata aataaataaa taaataaata aataaataaa taaataaata 42180 aataaatgaa tgatagggtc ttctgtattg gccaggctag tctcaaattc ctggcttcaa 42240 gagatcctcc caccttggtc tcccacagtg ttgggattat agacatgagc cattgtgctt 42300 ggcccaagac tgttattctt aaaaagtctc ataaaaagca tggttaatcc ttggctggca 42360 cctgggaact tagatttcag aagggttccc accatccaac ctggaaagag ggactcactg 42420 tgcctaaatt attgtgtggt ttatgctgaa ctcctgcttt tcttcaggta gcgtggaatg 42480 tggtatgtgc tgggcaaagg gggcctgcat gaccagcccc caataaaaac cctgggtgtt 42540 gggtctctag tgagtttccc tggtagacag catttcacat gcgttgtcac agctccttcc 42600 tcggggagtt aagcacatac atcctgtgtg actgcactgg gagaggatgc ttggaagctt 42660 gtgcctggct tcctttggac ttggccccat gcacctttcc ctttgctgat tgtgctttgt 42720 atcctttcac tgtaataaat tacagccgtg agtacaccac atgctgagtc ttccaagtga 42780 accaccagat ctgagcatgg tcctgggggc ccccaacaca gaaataaatt ataaaagacc 42840 aaggactggg catggtggcc catgccggta atctcagcgc tttgggaggc cgaggcagga 42900 ggaccagtta agcccaaaag ttcaaagtta cagtgaccta tgactgcgcc aatgcactct 42960 aacctgggag acagagcaag accctgtccc caaaacaata aactaaacac atacttctgc 43020 cttccaagtg tcttaaaatt caatggaatg gtagaaacat ttttaaaaca ctaaatcaaa 43080 agaaacctgg aaaacaagag tgccgatggc caactaaaat gtctaggaaa tttctgaaaa 43140 gtaaaaagta ctcagaacca gattacctga gcaaaccata gcccaataca agcttgggag 43200 gaggctgtta tgcagaagga aatggtaaca ggtttccagg aacagacttg taacagcaga 43260 tagaacagca gaggtagaac ctgacaaggt gattacctgg ggaactgcag tctgaatgac 43320 caggactgtt ggacccttcc cctcacatgg aatacacacg ccactcagca gcacaccaca 43380 gctcttcaac aatcacagga ggcacgctac gcctagtaag acaggaaaaa aggaattctc 43440 aaacttcgaa gatgaacaca taaagaatca ccaagttttt attcagtatg atgaaacagg 43500 gacactgaat caacagaaca caaacccaag caaagataat tactagagca catagaagaa 43560 attattagat attcttggga agacctaagg ggacattata aagagcaagc agttggtatg 43620 tgacgatctt tgtgatatac caagaaataa aaacacagga tgaagaccag atagagaata 43680 atgctactat ttgtgcaaaa aaggagaaat ggagaatctg attcatattt gcttgtattt 43740 gcatgaagaa actttggaag gtacataagt aactaacaac aatggttacc tacttgtaag 43800 gcgagagaag taagaggaca ggaatggtgg gaacaccttt tgtgtccgga attggtgggt 43860 tcttggtctg acttggagaa tgaagccgtg gaccctcgcg gtgagcgtaa cagttcttaa 43920 aggcggtgtg tctggagttt gttccttctg atgtttggat gtgttcggag tttcttcctt 43980 ctggtgggtt cgtagtctcg ctgactcagg agtgaagctg cagaccttcg cggcgagtgt 44040 tacagctctt aagggggcgc atctagagtt gttcgttcct cctggtgagt tcgtggtctc 44100 gctagcttca ggagtgaagc tgcagacctt cgaggtgtgt gttgcagctc atatagacag 44160 tgcagaccca aagagtgagc agtaataaga acgcattcca aacatcaaaa ggacaaacct 44220 tcagcagcgc ggaatgcgac cgcagcacgt taccactctt ggctcgggca gcctgctttt 44280 attctcttat ctggccacac ccatatcctg ctgattggtc cattttacag agagccgact 44340 gctccatttt acagagaacc gattggtcca tttttcagag agctgattgg tccattttga 44400 cagagtgctg attggtgcgt ttacaatccc tgagctagac acagggtgct gactggtgta 44460 tttacaatcc cttagctaga cataaaggtt ctcaagtccc caccagactc aggagcccag 44520 ctggcttcac ccagtggatc cggcatcagt gccacaggtg gagctgcctg ccagtcccgc 44580 gccctgcgcc cgcactcctc agccctctgg tggtcgatgg gactgggcgc cgtggagcag 44640 ggggtggtgc tgtcagggag gctcgggccg cacaggagcc caggaggtgg gggtggctca 44700 ggcatggcgg gccgcaggtc atgagcgctg ccccgcaggg aggcagctaa ggcccagcga 44760 gaaatcgggc acagcagctg ctggcccagg tgctaagccc ctcactgcct ggggccgttg 44820 gggccggctg gccggccgct cccagtgcgg ggcccgccaa gcccacgccc accgggaact 44880 cacgctggcc cgcaagcacc gcgtacagcc ccggttcccg cccgcgcctc tccctccaca 44940 cctccctgca aagctgaggg agctggctcc agccttggcc agcccagaaa ggggctccca 45000 cagtgcagcg gtgggctgaa gggctcctca agcgcggcca gagtgggcac taaggctgag 45060 gaggcaccga gagcgagcga ggactgccag cacgctgtca cctctcactt tcatttatgc 45120 ctttttaata cagtctggtt ttgaacactg attatcttac ctattttttt tttttttttt 45180 tgagatggag tcgctctctg tcgcccagac tggagtgcag tggtgccatc ctggctcact 45240 gcaagctccg cctcccgggt tcacaccatt ctcctgcctc aacctcctga gtagctggga 45300 ctacaggcaa tcgccaccac gcccagctaa ttttttattt tatttttttt ttagtagaag 45360 cggagtttca ccatgttagc cagatggtct caatctcctg acctcgtgat ccatccgcct 45420 cggcctccca aagtgctggg attacagacg tgagccactg cgccctgcct atcttaccta 45480 tttcaaaagt taaactttaa gaagtagaaa cccgtggcca ggcgtggtgg ctcacgcctg 45540 taaccccagc actttgggag gccgaggcgg gcggatcacg aggtcaggag atcgagatca 45600 tcctggttaa cacagtgaaa ccccgtcgct actaaaaata caaaaaatta gccgggcgtg 45660 gtggtgggca ccggcagtcc tcgctactgg ggaggctgag gcaggagaat ggcgtgaacc 45720 tgggaggcag agcttgcagt gagccgagat agtgccattg ccttccagcc tgggcgacag 45780 agcgagactc cacctcaaaa aaaaaaaaaa aaaatagaga cccggaaagt taaaaatatg 45840 ataatcaata tttaaaaaca ctcaagagat gggctaaaga gttgacggaa caaatctaaa 45900 tattagattg gtgacctgca aaaccagccc aaggaacatc ccagaatgca gcccataaag 45960 ataaagagag catttccgct gggcacagtg gtatggcagg ggaattgcct gagtccaaga 46020 gttgcaggtc acattgaacc acaccattgc actccaggcc tgggcaacac agcaatactc 46080 tgtctcaaaa aaaaaaaaaa ttaaattaaa aaagacagaa tatttgagag aaaaaaatgc 46140 ttatttcaag aaacatgaaa gataaatcaa gatattctaa ttcccaagta agaataattc 46200 cagaagcaga aaatagaata gaggcaagga aacactcaaa acttctccag tgccatagaa 46260 atgtgtatta atctttagaa tgaaacggac taccaaatgc tgagcaggaa gaacaaaaga 46320 gatccactct taagccagtg tggtgcccaa gcgcagtggc tcatgcctgt aatcccagca 46380 ctttgggagg ccgaggcagg tggatcacct gaggtcagga gtttgagatc agtcaggcca 46440 acatggtgaa accctgtctg tactaaaaat acaaacatta gctgggtatg gtggtgcaca 46500 tctgtaatcc caactacttg ggaggctaag gcaggagaat cacttgaaac caggaggtgg 46560 aggttgtagt gagccgagat catgccacac tcccagcctg ggtgacagag caagattcca 46620 tctcaaaaaa aaaatccact cctagacaaa taatagttaa attttagaac accaaggaga 46680 aagaaaaaaa attgtaaagc ttcagagaaa ataaacatta actacaaaga aacgagagtc 46740 agacgcgtgc acttcttcct agataccagc agataaagca atatctccaa aattcagaag 46800 gttttaacgt agaatcctat acccagtcaa gaatattcac atggaaaagt gaaataaaaa 46860 acattgttta aacatgcaag ggttcagaaa gtttaccatt cacagaatcc ctgaaaacaa 46920 aaccaaataa tcacttaagg actcattaag aaaacaaatg aaataaaagc accaatgatg 46980 agtaaataat cagaaaaatt tacagtttac ctaaataact gtttatgcat aatgtatgaa 47040 aacccaaaaa tttaatatgg gacagaatta aaatcatgat aagattcttt tttgctttac 47100 tcatggagag ttcacataaa cagattatct tttaatagca agagaaaaaa atgtttagat 47160 atgtgtgaaa aactaagggt accaaaacag tgcaaattca tttatcatca ggaaaatcca 47220 aattaaaacc acagtatcca ccagaataac taaaaggtaa aagacagaaa ttaccaagag 47280 ttggcaagaa tgtggagcaa ccacatatac ttctggggta aataagttgg tgcaaccggt 47340 actgaaaact gtttgctagt atctactaaa accgagcaca tgcacagact acaaccaagc 47400 agttccactc ccagatacac actcaacaga aatgcacaca ctcactcaac aaaagacgtg 47460 tactagagtg ttcatgtact tactattcat aatagtccaa aaatgcaaac aaccaactgc 47520 caatcaaagt caaatgtata tctatattag ggatatatac aatggcatat acacagcaat 47580 gagaatgaaa tgaaccagct cggcacagtg gttcatgcct gtaatctcag cactttgggc 47640 gggtaaggca ggcagatcac ttgaggtcag aaatttgaga ctagcctggc caacacggtt 47700 aaaacctgtc cccactaaaa acacaaaaat tagccgggca tagtggttgc aggcctgtaa 47760 ttccagctac tcgggaggct gggttgggag aatcgtttga acccgaaagc cggaggtcgc 47820 agtgagcgga gatcgtgcca ctgcactcca gcctggacga tagagcaaga ctccgtctca 47880 aaaaaggaaa tcaaaaatat aaaataagat gacaggaata atccgcaaaa gatcagtaat 47940 caaaataaat ataaatgggc taaagctacc tattaaaaga caaagatttc acacccataa 48000 ggatagctac tatcaaaaaa agagagagaa taacagatgt tagcaaggat gtatggaaac 48060 tgaaattctc acgcattgct ggtgagaata taaaatggtt cagcctctgc ggaaaacact 48120 atgctgggtc atcaaaaaat taaaaataga agtactactt gatccaacaa ttctacttct 48180 gggtatatac ccaaataact gaaagcaggg tcttgaagag atatttgtac acccatgatc 48240 atggcagcat tattcataat agctatgatg tggaaccaac ataaatatcc tttgataaat 48300 atatggataa gcaaaatgtg gtgtatacat tcaatggaat attaattagc aataaaaatg 48360 aagaaaattc tgacacatgc tacaacatgg atgaaccttg agggcattac attaaatgaa 48420 ataagccagt tataaaaaga caaatactat atgaggtact atattagata ctcatgcaag 48480 gtacctaaaa taggcaaatt catagagaca aaaagcagaa tggtggttgc caggggctgc 48540 ggtaatggat acagagcttc aattttgtaa gatgaaaaaa ttctggagat tggttgcata 48600 acaatgtgca cacacttaac actggggaac tgtaaactta aaagtagtaa atggtaaaaa 48660 taaaaataat aaataataaa ttttatgtta ttttaccaca atatttatta aaagacaaag 48720 attaactaat taaacaaaat ccagccataa gctaatggta agagtaacaa ttaaagaaga 48780 cacagaaaat tgaaaatcag tgactagaaa aagatattcc atataaatgc taacaaaaag 48840 caagtacagc aatataaaga gaatgaacaa aaaaaaaatt aaataagatg gctcgtttat 48900 tcccaaaagg tacaattcac caagaagata caagaattgt gaacctttaa gcacataaaa 48960 cagcttcaaa aatacaacat ttaaagaaaa atatatatta aacatagaaa tagtacaaaa 49020 acccctacaa gaatcataat gggagtcttc aatacaactc tccatatcaa caggtcaaac 49080 agagaaaaaa aataagttaa ggatgcagaa aacctgaatt accatcaata aacttgagat 49140 taatatagaa ctgtataccc aatatactaa gagttcaggg aacagtcgtg actgacagtg 49200 gactgcaaat taatctgttc ttaatctttg tttttctttc agcactgtgg cagaatagag 49260 atcctaaaaa ccttccagct acaaaacatc tttttaaaaa tataaaaaaa tacaaaaata 49320 actctgaaat caatagaaga cacatggtga aaccaaaatt ctagaataca gggagaataa 49380 aggcattttc agatattaca aaaacagaaa attgatcatt gctgaagtaa tttctaaaga 49440 atgtacttga gggagaagaa aaatgttcca aagaaaagta tctgtgatac aagaaggaat 49500 ggaaagtgaa gaaatggtaa acaggtagat aaagctaata aatgttgacc tagaaaataa 49560 caaaaacaat agcaataatg tctcgttgga agggttgaag taaaaataca attaaggcca 49620 aatgtgaggt aagtggaatg aaagaattag aagtccttgc cttgttcaca ggactgatta 49680 aataaatgag ccaggttttc cattcaaaca gttaaaactt gaacaaaata aactcaaatt 49740 aagtagaaag ataaaaaaca gaaattaatg tcatagaaaa ataaaaaatc aatagaatta 49800 atcaataaat cctggttaat aaaagctggt tctttgaaag gattaataaa ataatcatta 49860 agcaagtctg atcaaaaaaa aagagaaaag gtaccaaaaa aagtactgta tcagaaagag 49920 aacatacaga tacatacaga tatgtaagag tctgttttct tacaccagaa tactatatac 49980 aacattatgc tagcatatat taaatttcaa taatgttaat gattttctag gaaaacagaa 50040 aatattaaat ttactttgaa gaaacagaaa aactgagaaa aataaatgat catgaaaaaa 50100 atgaaaaggt aattaaatac tgatattaac tgcctaaaca acaccagcag cagcccaggc 50160 agtctgcagt caagttctgc caaacttgag ggaacagata attcttctat tccagagcat 50220 agaaaatgat ggaaagtttc ccaatttaat cagagaggac agcctgatcc ttgttatgaa 50280 cacagataaa aatggggtaa actatatgcc aaactcagat accaaaaccc taaataagat 50340 gctagcttat tgatgtgaac aatccaaaag tgcattttaa attagcccag ggttttagag 50400 aaagaaaatc tagcaatgtg accaccactt atgttaacaa ttttaagacg aaaatctaca 50460 tgatcatatc aatgcatgct acacaaaagc atttgggcaa aaaacccaac acccaccctt 50520 gactttttaa actcttagta attaggcata aacagaaatg tacttaatgt gatagaatac 50580 actcggtgaa gatacagagg gaatgctccc taaaaccaag cccaagacaa agattcctat 50640 ttaacctcaa tagtcaacac tgcagcgaga gtaatctatg gaagacaagg aaaaaagtaa 50700 aaacatgaga gacatctgtt gtttaacaga caataagatc acctacttgg aagaggcaaa 50760 cgaatcaagc gaaaaactat taaaactgag acaggcttta gtatggaggc tcagcttcag 50820 ctgtagtttg ggctaccaaa ttcaactcgc ttgcttggag agttaatcct gcaaagctaa 50880 tttctgttga ggtattagga ttgacaagcc tgtgctcctc cctcctcccc catcttcaac 50940 actgaaataa cacggtgttt ggaactggat aacagaatct tccaaaaaca aaaattgtcc 51000 tgaagggctg acttgtgccc ttactcaaaa aacactttat ctgctgcctg cagctcctac 51060 agttgctggt ggataagcct gccaaccagc tcggcgtaat tcttcctgca gagggcaagg 51120 aagagcactt tcacaggaaa atttttttcc gaactgtatg ccgcttatta cataaactta 51180 cgtgctggca aatggagctc cagcaaaata agatattcag agtcaaactt ccttaggaaa 51240 aaaaaaaaaa aaaagcaagc acataacact aatttccttg catgggcact ggggaaggag 51300 gtcgttactt ccgcacgccc gcaggtccgc accaccggga aacccacggg caccgcgcgc 51360 tgcccccggg ccttccaggt gcactgcgcc gcggcgcccc agctgacccg ggatgcgcag 51420 ccctagccct tcccctgtca ccccggccag gaaggggcgg gagcgcggcg gacgccgagg 51480 gcgaagggct tctcggtcct ctgcaccacg cagcaccccc aaggcacaac agggagggtg 51540 cgggaggctc ccgagaccca ggagccgggg ccgggcgtgc ccgcgcacct gtcccactgc 51600 ggcgagggct ggggtcgcct ccagggccgc agctgtcggg agccacctgg ctctcagtcc 51660 cgggtccctg cgacaaccct cgggcccgga ggggaggagg cggccacctg ccgctgccac 51720 ctgcggcacc ggtcccaccg ctccgggccg ggcaggacag gccaggacgt ccctcctggg 51780 ctggggacag gacacgcgac gaggggaccg gggcccccgc ggcgaagacg cagcacgcct 51840 tcccagaaag gcagtcccgt gcccccacga cggactgccg gacccccgcg ctcgcccgcc 51900 catcccttca gaccacgcgg ctgaggcgca aagagccggc cggcgggcgg gctggcggcg 51960 cggctagtac tcaccggccc cgctggctca gcgccgccgc aacccccagc ggccacggct 52020 ccgggcgctc actgatgctc aggagaggga cccgcgctcc gccggcgcct ccagccatcg 52080 ccgccagggg gcgagcgcga gccgcgcggg gctcgctggg agatgtagta cccggaccgc 52140 cgcctgcgcc gtcctccttc agccggcggc cgggggcccc ctctctccca gctctcagtg 52200 tctcatctcc ctatctgctc atcctctggt cgcacataat cgatgtttgg gcgtcccaag 52260 ccagatgtgg accccatttc cgcactctac actggaggtt ttctaagggt ggtgcccgga 52320 ccagcagctt cagcctcatc tgggaacttg agaaaatgca gattctccgt cccacccagc 52380 ctattcggtt tttcctgcac taaaaccatg aaggtggggc ccagcagtcc acattctcgc 52440 aagcccgtca agtgattctg aggcgccctc cagtttgaga gctatgctca cggcctcacc 52500 tccgccccgc aaggagcccg gtcttgcctg tggcgctagc cgcacacgga cacctcatcc 52560 tgcggggccc gcccccccgc tgcaccctca ccgcccaacg cctcctccgg gatgcagcgg 52620 aggcgcctgg aagtcggcaa ggtcaacatc cccctcagca tcttccctac cctcacggct 52680 cctcctccag gggtgcctca tggccagggg ttagaaagag ccactgtgtt tcttgacatg 52740 gaagtggcct aagaccttaa tgaaaactgc aggagtggaa tgacagaacc tttggtcata 52800 cttgagggcg tgaagctcaa atgaggagga aggaaaggat ccagggagaa taaccaaccc 52860 tggcaagttg tggcgcccag gtagaggggc gagcctaggc tagcggttct cgaccagggc 52920 cggtgttgcc cctcctcgcc gccccgcgta catttgggga ggtctggaga catttttggt 52980 tgtcatgatg cgggagttgc tactgttgcc taagtgggta gacacgaggg tgctcctcaa 53040 catcctacct gaaggacagg actgccccac aaggaagaat gatccggccc caaataagaa 53100 accctgggct ggtcagcaac aacccctttg ttctgagaag agaggaggaa agaataaaag 53160 aagtggggtg aagttttggt ttggtagagg aaacttgaag acattttcac tggaaaggaa 53220 gagaggaaga ggagggagat gtctgtaagg acgagcaaac cgggtgacag ctgatttcct 53280 catattgaag taatgagtcc tagttataat aaattcctaa taaaaaccca gtttatccct 53340 gcaataaact tgtctttttt ttttaaatat actgcttgat tctgtttgct aatattttat 53400 ttacaggctt tgcattgata tgcaaaaatg agatgggcaa taattttctt tttgaatgtc 53460 taatgttgtt tggtttcaga atcaatgtta tgctcacatc ataaaaaatt tggaaccgag 53520 gcaggaggag tgcttgaggc cagaagttcg agaccagtct aggaaacaca gtgagacccc 53580 cccatctcta caaaaaaaaa aaaagaaaaa aaaatgggca tgtttgcttt ttccttttac 53640 tctgaacaat ttaaggagca ttaaaattat ctattctttg aggtttgatc atttcccagt 53700 taaaaatgtt cctcccagcc tgatgctttc tttggggagg gtaaatcttt taaggctaga 53760 aaagtttctt ctgtggcaat tttattattt acattttaaa aattattcta gagttaattt 53820 tgataaagca tgtatttctt aaaacaaatt atcctttttt tccagatgtt caagtgtatt 53880 tgcataaagt tgaggaaagt agtcttttgt gaatctttta acttctccca aatatcttat 53940 tttgtgtatt tttgcttctt tattttgtta acttttaaaa gtgtattttt ttttcaaaga 54000 atcagctctt aggtttatgt ttttggttat actggagctt ttttcttctt ctttttaaaa 54060 tattttttct cctttatttt ttagacgtat tttgatctaa cgtaatcgga agaaggtaaa 54120 ttagaatctt ttgttactat tgtgttttta tttctcctta tttctctgaa gtcctgcttt 54180 ataaatagta ccatgttatt tgtgcataaa tattcatttg tcttatattc ttgggaattt 54240 tcccacttca tcataaaatg accttccttg tctcatttaa tgtgttcaaa ctttgccctg 54300 aatttaactt tgtctgatat tttaccatcc tgctgaattt tgtttgttac cccaaacaac 54360 ctttgctgtt ttcgtctttt ctgaaccctt tattttaggt aatcccttga attagagcac 54420 taagttttgc tttgtgatta aatctgaaaa tctttatctt gccatagatg agttgagccc 54480 tattcatgtg acagctatat tatgctgttt catagccctt ttggtccttt tttcactctt 54540 gcattgcata ttttgtgttt attgtgtttt gtgtttcttc tgataatttg gaaggtttgt 54600 atttttattc agggagttgc cttataatca tactccgcaa tacacatcgt cctcagtttc 54660 ttcagactgt ctgttaactc cctattctga ataaaaatga cattgtaatt tccctctttt 54720 ttctttaccc cttttcttct cctcacctaa tgtaaatgat tttatccttc tttagtattt 54780 gcttttttaa ttaactacat ttataaatat ctttatcact tgatttttaa atcagctttg 54840 aatgagatat ttggattcct agatataaaa gatgttaatt ataccatttc cacgttagta 54900 ggtttataaa atcatacatt ctgctgtgta accataatcc cacgtttgtt ttagttccac 54960 tcctacagtt aaaagattca gaagtattat taacagttat tttgccatag ttttttcccc 55020 aacccatttt gtggtaagtt atgatcctgc tttagtttct taagaataat ttatagagca 55080 gagtgtggtg gctcacgttt gtaatcccag cactttggga gacaagaggt agaaggatcg 55140 cttgaagcca gcagttcaag accaccctga gcaacatagt gagaccttgt ctctacaaaa 55200 aattttaaaa tttagccaga cgtagtggcg tgtgcctata gtcccagcta ctcaggaggc 55260 tgaggcaaga ggattgctag agcccagaag tttgaggctg cagtgacctc tgattgtgcc 55320 actgcacccc agtctgggca agaaagtgag aacctatctc tttaaaataa caataataac 55380 ttatgaaaat tatattccct gagtttttca tgtttaaaaa tatttgttgc ctttatcctg 55440 taaaagtttg agtataaatt cttgggttat actttattta ttgaagaatg tataagtatt 55500 gtcttctaga attgagtgtt gctgtaatga aaccagaagt cagcctggtt tatttttcct 55560 cagaaatgag gtaattgccg gccggacacc gtggctcatg cctgtaatcc caacactttg 55620 ggaggccgag acaggtggat cacgaggtca ggagattgag accatcctgg ctaacatggt 55680 gaaaccccgg ctctactaaa agtacaaaaa gttagctggg catggtggtg gacgcctgta 55740 atcccagcta cccgggaggc tgaggcagga gaatggcgtg aacctgggag gaggagcttg 55800 cagagagctg agatcgcgcc actgcactcc agcctgggcg acagagtgag actccgtctc 55860 aaaaaaacaa aaaaaaaaca aagaagtgaa gtaattgcca tgatgctcca agaattatct 55920 ctttgtctat gaaatccaga aatctcactg ttatacattt tggaattatt attctgggcc 55980 aatatttcct gggacacaat agattgactc tatagattta attttttttt tttttttgag 56040 acagagtctc actgcaatct cagcttactg caacctctgc ctcacgggtt caagcaattc 56100 tcctgcctca gcctcccaag tagctgggac tacaggcgcg tggcaccatg cctggctaat 56160 ttttgtcttt ttagtagaga cagggtttca ccatgttggc caggctggtc ttgaacgcct 56220 aacctcaagt gatccacctg cctcagcctc ccaaagtgct gggattacag gcgtgagcca 56280 ccatgcccag cctcaattcc tctttctatc tggtaatttt tctgaagttg aaaacatttg 56340 ttctaatacg ttatttcagt gttcttctaa gatgtgtaaa gcaccctatt cccaggtcag 56400 cccccatctt gctagtgagc tcggctggtt cttcacaaga gctctggttt tctcctgctt 56460 aatctcaagt acctctgtca gcctccacct ggtttatgat ttggagtttt ttggtttttg 56520 ttttttgttt ttgacagagt cttactctgt cacccaggct ggagagcagt ggcataatct 56580 cagctcactg caacctctgt ctcccaggtt tgagcgattc tcctgcctca gcctactgag 56640 tagctgggat tacaggcgcg tgccaccaca cccggctaat ttttgtattt ttagtagaga 56700 tggggtttca ccatgttggc cagggtggtc ttgaactcct gacctcaggt aatccacctg 56760 cctcagcctc ccaaagtgct gagattacag gcgtgagcca ccgcgcctgg catggtttgg 56820 agttttaatc tgtagtttta ataaagatag tgcttatgtt tgtgtttctt atatttcttg 56880 gtactcttgg gtaatttgta agatccccat atctacacaa gaagtccatt ttcaattctt 56940 ttcttcagac tgtttatttt attttatttt attttatttt tatgtttgag atggagtctc 57000 gctgtgtcac ttctggaggc tggagtgcag tggcgcgatc tcaggtcact gcaacctccg 57060 tctcccgggt tcaagcaatt ctcctgcctc agcctcccga gtagctggga ttacaggcac 57120 ctgccacttt ttaatttttt tagagacaga gtctcgcttt gttgaccagg ctggagtgcg 57180 gtggtgcaat catggctgac tataacctcc aaatcctggg ctcaagtgat cctcctgcct 57240 cagcctcctg agtagctggg actacaggca catgccacca tgcccagtta attttaattt 57300 ttttgtagag acagggtctc catatgttgc ccaggctggc ctcctactcc tggcctcaag 57360 taatcctcct acctcagcct cccaaattac taggattata agcatgagcc accatgccca 57420 gccttgttct actactttaa tttcatatgt taggtgacca tgtaattgat catccaaacc 57480 aggatactgt aagaatgaaa gaggctgaca gtagtatgat gctgggacta gcattgtgca 57540 ctgagattat ttctgggaaa gcaggagata cggtcaccct acttatagtg tgcttgtctt 57600 tggattgttg aatttggagt ttctatttgc aggcttattt caactgggca gccttgatcc 57660 gccctgccca gcaatgctac cgttctctcc accgggtctc tgggacccct tcagtcacta 57720 tacttagctc agttccccac cctcccactc cctaaaagcg taaccaggaa tcctgcctca 57780 ggtctactgc cgtcttccgt gggctgtttc agttcctatt acccagagtc aaactcccag 57840 cattccctac ctgattccag acttggagtc cagagcttta acctcttcag gccaactccc 57900 cactttgcat ttctgtccct atatcttagt ccatggagat acatttcatg tctttgagtc 57960 tacttacaaa gtaaattttg ctgtttttta attttttttt tgagatggag tcttgccctg 58020 tcacccaggc tgtggtgcaa tgacgccatc tcggctcact gcaacctccg cctcctgggt 58080 tcaagcgatt catctgcctc agcctcccaa gtagctgtga ttacagacag gcaccaccac 58140 gcccagctaa ttttttttat cttttagtag agacagggtt tcaccatgtt ggccaggctg 58200 gtcttgaatt cctgacctcg tgatctgccc atctcggcct cccaaagtgc tgagattaca 58260 ggcgtgagcc actgtgccca gccaattttg ctttttttat atttcattgc tatatgttta 58320 gaggataagt ttacagtgct atatgcattc ccaaatatta gaccaaaaaa atctccaaaa 58380 aattagaaag aaaatccaaa aaatctcaaa aaataccaaa aagcaacaat ctcacagacc 58440 atactcactg acccccaata aaataaaatt agaaattaac cacaacttaa caaaataaag 58500 tactcaagtc agagaggaaa gaggaaataa acatcaaaat tacaaagtct aggcggtggc 58560 tcacgcctgt aatcccagca ctttgggagg ccaaggcggg cagatcacaa ggtcaggaat 58620 tcgagaccag cctggccaat atggtgaaac cccgtttcca ctaaaaatac aaaaattagc 58680 caggcatagt gatgtgtgcc tgtaatccag ccacttggga ggctgaggca ggagaatcac 58740 tgaacccagg gagacgaaga ttgcagtgag ccaaaatcgt gccactgcac ttcggcctgg 58800 gtgacaaagc gagactccat ctcaaaaaaa aaaaaattac aaactcttta gatagaaatt 58860 ttggtgtttt tttttgagac ggagtctcac tctgtcgcag aggctggagt gcagtgggac 58920 tatgtcagct caccgcaacc tccatctcct ggattcaagc aattctcctg tctcagcctc 58980 ccaagtagct aggattacag gcgcccacca ccagacccag ctagttttta tatttttagt 59040 agagatggtg tttcaccatg ttggccaggc tggtctcaaa ctcctgacct caagtgatcc 59100 acctgcttca gcctcccaaa gtgctcagat tacaggcgtg agccaccgca ccccacctag 59160 atagaaattt caacatgagg ccgggcacaa tggctcacgc ctgtaatctc agcacttcag 59220 gaggctgagg cgtgggagga tcacttgggc ccaggagttc aggaccagca tgggtgacag 59280 agacagaccc tgtctctatt tatttgaaaa aaaaaaaaaa aaagagagag agaaagaaat 59340 ttcaacatga aaagtatctc tcaaaccctt cgagatgttg gcaaaaagcg actcaaagga 59400 aaatgtatta ctgtgtgtga atttgcttga aaataagaaa gaggccgggt gtggtggcta 59460 acacctgtaa tcccaacact ctgggagtcc gaatcaagtg gatcatgagg tcaggagatc 59520 gagaccatcc tggctaacat ggtgaaaccc tgtctctact aaaaatacaa aaaattagct 59580 aggcgcggtg gctcatgcct gtaatcccag cactttggga ggctgaggca ggtggatcac 59640 ctgaggtcag gggtttgaga ccagcctggc ctacatggtg aaacctcgtc tcttctacaa 59700 atacaaaaat tagctgggcg tggtggtggg tgcctgtaat cccagctact cagaggctga 59760 ggcaggagaa tcgcttgaac ccgggaggcg gaggttgcgg tgagccgaga tcgcaccact 59820 acactccagc ctgggcaaca gcctgggtga cacagtgaga ctccatctca aaaaatacaa 59880 aaaattagct gggtgtggtg gcctgcgcct gtagtcccag ctacccggga ggctgaggca 59940 ggagaatgga gtgaacctgg gaggaggagc ttgcagtgag ccgagatccc accactgcac 60000 tccagcctgg gcgacagagc aagactcttg tctcaaaaaa aagaaaaaaa aaggaaaaaa 60060 gaaccctgat aataaagaaa ccaaatgttc aactctcaaa gctcggacac tttaaagaaa 60120 taattaataa aggcagaagt taaagggagg atgataaagc aatttttttt gttggttttt 60180 ttgagatgga gtcttgctct gtcacccagg ctggagtgca gtgatgcgat cttggctcac 60240 tgcaacctct gcctcccggg ttcaagcaat tctcctgcct cagcctcctg agtagctggt 60300 actacaggtg cgcgccacct ggcccagcta atttttgtat ttttattaga gacggggttt 60360 caccatattt gttaggctgg tctcaaactc ctgatctcag gtaatctgcc cacctcggcc 60420 tctcaaagtg ctgggattac aggcaggcgc caccgcgcct ggcctaaagc aaaatattgg 60480 ttctgtgcaa aaggtcaata aaaagagcaa acgtttacaa actggagcca gcacccattc 60540 agctcagtgt gtctggagaa aaaacaatct cgcttcagaa ttcatgatta cgcagccctt 60600 tttgcttcct aaaaatccta ctatgttgct gttgaccatt ctctctcttt ctctctctct 60660 tgctttctct ccagaaaagc tattcagaca ttctcctctt tcctcaaacc tccaacactt 60720 cctcctccat ccttagcctc agctgctgac ctcacttcta atcattgaga aaccaggaga 60780 agcatttaag agtgaacctc cgcctccccg cacgggcaaa accacccacc cacagaattg 60840 tgccccaatt ctgcgtcctc tcctctcacc atggatggac ggtccaggct ccgagccaaa 60900 gccaggcctc ccctggagct ctggatccac cacctgcagc ttctcaggca gggccccagc 60960 agctcccctg ctcccttgta ccatcaatcc ctcccctcac tgggtcactc ccaacaatat 61020 atatatttag tgatgtttct cccatgtggt aaaatcactt agcctctctc ctcccccagc 61080 tactatccta tttgtttctt tccattctct gcaaaacttc tcaaagcatt gtgtctatgt 61140 gctgactcca tttatcttct cccgttctct gctgagtcct tcccacagac tctcacccca 61200 gttactccat gaaatgacct ctgcactgcc acatccaatg gtgaatgttc agttcttaat 61260 tttattcagt ctttcagcag catttgacct ggccgatcac tccctcttct taaaaatact 61320 tttctcagcc aggcgtgatg gctcacacct gtaatcccaa cactttggga ggccaaggcg 61380 ggaggatcat gagagcccag gagttcaaga tcagcctggg caacatggca agaccctatc 61440 tctacaaaaa ctaaaaagta gccagtgtga tggcatgcac ctgtagtccc atctacttag 61500 gaggctgagg cagtaggatg acttgagcct gggaaatcaa ggctgcagtg agccatgatt 61560 gcaccactgc actccagcct gagtgacagc gagaccctgt ctcaaaaaga caaaatagga 61620 aacttttctc agcatattcc tctgattctc ctgctgcttc tgtctgcaca gattcagtct 61680 cctttgccgg ttcttcctca tcctcctgat ctcttgacct tgaagtgccc cagagtacag 61740 tctttttttt tttttttgag acgcagtctc gtctgtcacc caagctggag tgcaatggcg 61800 aggtctcagc tcatgcaacc tctgcctcct gggttcaagc gattctcctg cctcagcctc 61860 ccaagtagcc aggactacag gcacatgcca ccatgcccag caaattgttg tatttttagt 61920 agagacaggg ttttactata ttggccacgc tggtctcaaa ctcctgaact cgtgaaccac 61980 ccgcctcggc ctcccaaagt gctgagatta caggcatgag ccaccacacc cggcccagag 62040 tacagtcttt agacggcctc tctacctata cttgctcccc tcataaactc ctcctgcctc 62100 atggctttaa ataccatcgg tagactgatg actcccatat ttctcttttt tttttggaga 62160 cggagtctcg ctcagtcccc caggctggag tgcagtggcg cgatctcggc tcactgcaag 62220 ctccacctgc caagttcaca ccattctcct acctcagcct ctccagtagc tgggactaca 62280 ggcacccgcc accacgcctg gctaattttt ttgtattttt agtagagatg gggtttcacc 62340 atgttagcca ggatggtctc gatctcctga cctcgtgatc cgcccatctc ggcctcccaa 62400 agtgctggga ttataggtgt gagccaccgt gcccagccga tgactcccat atttctatct 62460 cttgctgtgt gggagttctc ctcagaactc catactcata aatccaactc tcataaatag 62520 tatctcaaat gggcaatatg ctcaaaagtc aattcctact tttctcccta aacttgcttt 62580 cctgcagtct ccaccatctt aatgtccaat ctaacattag gaggcaaaaa ctttgaagtc 62640 attcttgact cttctctatt acacacccta tccaatcttt ctgcagatcc agtcgacccc 62700 caaatccagt tagctctcat catctcccct gttaccccct ggtccaggcc atcttcctct 62760 ctcacctgaa tcactgcagc attctcctca ctggtctctt tggttctgtt ttcactccac 62820 cttagcatag tctccacaga gcagtcagag ggatcctttt aaagtgtaat tcccatcctg 62880 tccctgctct gctcaaaacc ctgtcgtgat tcccgtttta atctgtcaga ttaaaagcca 62940 gagtctttcc agtgacctac atgatctgcc tattatcacc tcccacttct ttccccttgc 63000 tcactccact ccagctctgc agctgtcctt tctgtttcct gaacagccca gattttgctt 63060 ctttagaacc tttgtatttg ctgtcccctc tgtctggaat gtttttccag gaagtcacct 63120 ggctctctcc tgcacttcct tcctgaccac catgtttaaa aatcactcaa acacacttca 63180 ggccggacat ggtggctcac gcctgtaatc ccagcacttt gggaggccaa ggtgggtgga 63240 tcacctgagg tcaggagttc gagaccagcc tggccaacat ggtgaaactt cgtctctact 63300 acaaatacaa atagtagcca ggtgtagtgg cacacacctg taatctcagc tactcaggag 63360 gctgaggcag gagaatcgct tgaacccaga aggcagagga ggtgcagtga gccaagatca 63420 cgccacaaca ccccagcctg ggtgacagag caagacccca tctcaaaaaa aaaaaaagaa 63480 aaaaaaatca cacaaacaca cttctcttca tattcctttt ccaagtttta tttttctcca 63540 gaatacttta cattgtttta atggaagttc tccgtttccc cccaactaga atggatactt 63600 cctgcaggta ggcactctag tcctcccatc caagtactaa ccaggctcaa ccctgcttag 63660 cttctgagag caggggagat caggcctgtt cagggtggta tggcccagga attttgattc 63720 tgttttattc attgctgttc tgttgattct cttttgttcc tcctcctagt gctgagaaca 63780 ctacttgtac ataataagca ttcaataaat atttgttgaa tgaatgactt gttgaatgaa 63840 ttaatctcag aaatgcagga ctggttctac attagaaaat ttttcaaggt cattctctgt 63900 tgtcgtaaca cattaagaga ggaaaatttt gtactctaaa tcatttgata aaatacatac 63960 tgatttctgt tttcaaaaac tcttagtggc tgggcgaggt ggctcacatc tataatccca 64020 gcattttggg aggacgaggt gggcggatca cttgaggtca ggagtttgag accagcctgg 64080 ccatcatggt gaaaccctat ctctactgaa aatagaaaaa ttagccgggt gtggtggcgc 64140 atgcctgtag tcccagctac ctgggaggct gaggcaggag aatggcttga acccgggagg 64200 cggaggttgc agtgagccaa gatcatgcca ttgcactcca gcctgggtaa cagagtgaga 64260 ctccatctca aaagaaaact cttagtgagt ttaggaatcc aaggaagacc ctcaaactaa 64320 atagataatc tagctaccag aagccttcag taaaccttaa cactccatgg tgaaacatta 64380 gaaacattcc tactaaaaga caggctaaga atgcctgcaa tcttcacggc tagtccaaga 64440 agtcaaaaag aagaaatgag cgctgattta aaaaaataaa caaacaaaaa actaccgatg 64500 cagaggctgg cagcaaggac tgaaggactg tacagtactt gcctggagca ggcggatggc 64560 cacacccctg cgaagcctgc tcagctggct gggggacgct ccagtgtgtg agtggcagga 64620 tgcagggtac ttcctctgcc agggagttgc actggggaga tcctccccca ctcacacttt 64680 ggcagctggg gctttggaat gtgacttagc ttctgtcaaa gggtcaatcc accctttgat 64740 atatgatgca aaggcgaaca tatgatgcaa aggtgagaga acagcccaaa ttaggacttt 64800 taccacagct gtggaggtgg acagcgacag tggtgggccc tggccagact tttcatgctc 64860 aaaggtggtg gttgttcttc ctacttcttg tccctccagg gcttcctttg cctgtgtgct 64920 gaacctgctt cttttaattt tttttaactt ttttaaattt ttaattgttt taattaaaac 64980 aaattttgaa aactgtctga acctgctttt gaaccctgct atgatttgaa tgtttgtccc 65040 ctgccaaact gattttgaaa cttaatctcc aaagtggcaa tattgagatg gggctttaag 65100 cagtgactgg atcatgagag ctctgacctc atgagtggat taatggatta atgagttgtc 65160 atgggagtgg catcagtggc tttataagag gaagaattaa gacctgagct agcatggtcg 65220 ccccttcacc atttgatatc ttacactgcc taggggctct gcagagagtc cccaccaaca 65280 agaaggctct caccagatac agctcctcaa ccttgtactt ctcagcctct gtaactgtaa 65340 gaaataaatg ccttttcttt atgaattacc cagtttcaga tattctgtta taaacaatag 65400 aaaacgaact aaggcaaact ctcatgattc tactgccatg ccattccaat aaactccctt 65460 tatgcttaag agagccagag ttggccaggc gtggtgactc acgcctgtaa ttccagcact 65520 ttgggaggcc gaggcaggtg gatcacaagg tcaggagatc gagaccatcc tggctaacac 65580 ggtgaaaccc cgtctctact aaaaatacaa aaaaattagc tgggcgtggt agtgggtgcc 65640 tgtagtccca gctactcggg aggctgaagc aggaggagaa tggcgtggac ccaggaggcg 65700 gagcttgcag tgagtcgaga tcgtgccact gcactccagc ctgggtgaca gaatgagact 65760 ccgtctcaaa aaaaaagaga gccagagttt atttctgttg cttgcaacca agaaatctgg 65820 ctggtgcact gaagtttcca taaataatag caatttaaag actctttcca agccaggcaa 65880 tgcctagcct tgtgtagtcc ttgtggtaat acattcattc attcatttgt tcaaccaact 65940 gtgctccaga gactaagaat acaaaaatgg gggccgggtg tggtggctca cacctataat 66000 cctagcactt tgggaggccg aggcaggtag atcacctgag gtcaggagtt cgagaccaac 66060 ctggccaaaa tggtgaaacc cctactctac taaaaataca aaaaattagc tgggggtggt 66120 ggcggacacc tgtaatccca gctactcgtg agactgaggc aggagaatca cttgaacccg 66180 ggaggcagag gttgcagtga gccgagatcg caccactgca ctccagcctg ggcaacaaga 66240 gcgaaactcc acctcgaaaa aaaaaaaaaa aaaaaaagag ggccggggct gggcgcagtg 66300 gctcacgcct gtaatcccag cactctggga ggccaaggca ggagaattac gaggtcagca 66360 gatcgagacc agcctgacca acatggtgaa accccatctc tactaaaaat acaaaaatta 66420 tccgggcgtg gtggcgcaca cctctagtcc cagctacttg ggaggctgag gcaggagaat 66480 cgcttgaacc cgggaggcag aggttgcagt gagccgaaat catgccactg cactccagcc 66540 tgggtgacag agtgagactc cgtctcaaaa aaaaaataaa aaaaaaaaaa gaattcaaaa 66600 attgtagagt tatagtgtgc ttctagttta gttgagagga catctgtcct tcaaggaagg 66660 ctagaatcta taccctgagt ccttactgaa atcaatccag cagtcaaaac atgggaccaa 66720 cgatcacagc agtaagatag gaagagcacc tttgtacatt tagctcatgt tgagataagc 66780 cactgacaga gctgaaggaa gctcacagtt ctgggttcca tcctttggca tttaaaaaga 66840 aaagtgctaa gaaaattcgg ttggtcacgg tggctcacgc ctgtaatccc aacactttga 66900 gaggccaagg caggcagatc acgaggtcag gagttcgaaa ccagcctggc caacatggtg 66960 aaaccccgtc tctactaaaa acagaaaaat tagccgggca tggtggcgca tgcctataat 67020 cccagctact caggaggctg aggcaggaga attgcttgaa cccgggaggg ggaggttgca 67080 gcgagtgaga gcaggccact gcactccagc ctgggagaca gagcaagact ctgtctcaaa 67140 aaaaaaaaag aaaaaaagaa agaaaggaaa aaaagaaaga aaaaaaaaga aaaaagaaaa 67200 ttcaggccag gccaggcctg gtggctcaca cctgtaatcc caacactttg ggaggctgaa 67260 gcgagacggt gccttagccc aggagtttga gaccagcctg agcaacatag cgagaccctg 67320 tctctataaa aaaaaatttt tttttggcca gacgcagtgg ctcacgcctg taatcccagc 67380 actttgggag gccgaggcag gtggatcacg aggtcaggag atggagacca tcctggctaa 67440 cacggtgaaa ccccatctct actaaaaaat acaaaaaatt aaccgggcgt ggtggcgggc 67500 gcctgtagtc ccagctactc gggaggctga ggcaggagaa tggcgtgaac ccgggaggcg 67560 gagcttgcag tgagccgaga ttgcgccact gcactccaga ctgggagaga gtgagactcc 67620 gtctcaaaaa aaaaaaaaaa aaaaaaaaat taattgtcag gtgtgctggc atgcagctgt 67680 agtcctagct actcgggagg ctgaggtaag aagatcgctt gagcccagga gttcaaggct 67740 gcagtaatag tgcctctcac tctaccctgg gtgacaatga gaccctctct caaaaagaaa 67800 gaaaaaaggg aaagaagaaa agaaagaaag aaagagaaga aaggaaggaa gaaagaaaga 67860 aaaagaaaag gaaggaagga agaagaaaaa aaaagaaaga aagaaaagag agagaagttc 67920 aaagaccaaa gggtcaggat cccaaaatag tttttatgtt ttatttattt atttacttat 67980 ttatttttga gacagtatgg ctctgtcgcc caggctggag tgcagtgatg cgattgcggc 68040 tcactgcagc ctccaaactg ggctcaggtg gccctcccac ctcagcctcc cgagtagctg 68100 ggaccacagg cgcgtgccac catgcccagc taatttttta attctttgta gagatgaggt 68160 ctctatatgc tgcccaggct ggtctcgagc tcctgggctt aagccatcca cccgcctggg 68220 cctcccaaag tgctgggatt acagaagtga gccaccgcgc ctaatcgggt ggtttgtttg 68280 tttattgacg gggtctcgct gctgcccagg ctggagtgcc agtggctgtt cacaggtgca 68340 gtcctggagc attgcatcag ctcttgggct ctagcgatcc tccagagtag ctgcagctgg 68400 gattccaggc gcgccaccgc gcggggctca gaatgggttt ttatattgag ggttatgctg 68460 ccacctagag gatatatgta gtaccgaact gtgtgcgcag ggaggctgag gttgcagtga 68520 gccaagatga tgccagggca ctccagcgtg ggtgacagag caagatttca tctcaaaaaa 68580 aaaaaaaaaa aaaaaaaaaa aagaattgaa agtaaggtct tgaagagata tttgtgcctg 68640 tatggtcata gcagtattaa ctttgaccca ctagctaaaa cacaaaagca acatgtgtct 68700 gtcagcaggt gaacggataa acaaaatgtg gtatatatgt acaattgaat attattcagc 68760 ctttaaaaag gaataaaagg ctggatgcgg gggctcacgc ctgtaatcct aacactttgg 68820 gagactgagg tgggtggatc acccgaggtt aggagtttga gaacagcctg gccaacatgg 68880 tgaaacttca tctctactaa aaatactaaa attagccggg catggtggca cttgtctgta 68940 atccaagcta ctggggaggc taaggcagga gaattgcttg aactcaggag ccggaggttg 69000 cagtgagcta agatggcacc actgcactcc agcctgggca acagagtgag actccatctc 69060 aaaacaaaca aacaaaaaat tattatttcc aaagaaacaa gaccctgggt ccatttccca 69120 gcccacacct gatgttgact cacaacacac agcctggttt gctatgagcc tgcttcattt 69180 aattgtcacc ttaacttcac atcaccctca agtcctggaa taactctttg ctgacctttg 69240 tgtgctgagc catctccatg tcgctcaacg tgcagtccct ctcactgcac tgagtcaata 69300 gccagacgtg gtctgactgc agggtcatcc ttggtggctt aggctgactc gggcatagca 69360 gggtgctctg agacctcacc gcatataggc tttgccccca ataaactcta tataatattc 69420 atattatgtg gtctgggtgt gtgtagcttt gcactgtctt ctcgtgacag tgccctcaac 69480 ctctttccca ggatttcctc ctctacctcc tcaagtccca ctgctctgca aagaccaaaa 69540 gctgcagagt cccagctccc tcctttacac cccacgacgc agcctcctct ctcagaaccc 69600 tttaaacaga gtcttttact gcagatccca agaacagcca cacccctctc tcccacccac 69660 tccagacaca cccaggtaat tatagcaccc agggtaacta tgtagatgga gtccctggaa 69720 catgtggata gtgccccctg ggagtatgca aaagcaacat tgctggcacc tgcagagaac 69780 agggtgacat ccaggaatca gagcatgggc ctctgggagg tagggatgtg gccaggcagg 69840 ctgccaaaaa ttggtagagc aaggccacag gatctttctg accttccttc caaacagagg 69900 ctcctgtact ggtgatccct gtgttgattg accactccct tcctgggggt cgtggtctct 69960 gtcccagttg cccggacttc tgtgagtgtc ctactgaggt ccttttcatg agaagcatgc 70020 tgtccttcca cctgctggga gcaagagtga caacttcaat actataatag cagtggcata 70080 cagagaagaa gaaagatgaa gtggcaagaa aaacaggctt ccaagcagga gtttttctat 70140 aaaaacaaaa acgtttacaa gcaaactttt tataaagggc tagatagtaa atattttagg 70200 ctttgagagc cacatagact tgtttgcagg gactcaatgt cgctattgta gtttgaaagc 70260 agccatcagg gttatgtaaa tgagtgagtc tgattttgtt tcagcaaaat tttatttacc 70320 aaaacagaca atgagtgggc tggatttggc ccatgatcct tagtttgcca actcctgctt 70380 tgggctcacc cagatctgat tttgaattct ggctctgcta ctggttagct gcaggagctt 70440 ggaaggctct ctgagcctgt ttcctcatct gtaaaattaa agcaataatt tctaacactc 70500 aagagtgtta cctcacgcct gtaatcccag cactttggag gctgaggcag gcggatcacc 70560 tgaggtcaga agttcaagac cagcgtggcc aacgtggcaa aaccctgtct ctactaaaaa 70620 atacaaaaag tagccgggca tggtggcgcg catctgtaat cccagctact tgggaggctg 70680 aggcagggat actgctagaa cctgggaggt ggagcgtgca gtgagtggag atcacacctc 70740 cacactccag cctggccgac agagcgagac tccatctcaa aaaaaaaaaa aaaaagagtg 70800 ttagaaggtt ttgagataat gaataaaaga tgccttgtgt atactaagta ttcaacaact 70860 gatagctgca ttggtctaat tataacagtt tagaagcgat tgagtcaaca aatgctggat 70920 ttgtcaggga ggacttccta tcaggaggta gatcttgggc tgagtcctga agcaaagata 70980 ggcattggat agaggagttg agagaacacc ctaggactgt tattattatt attcgacacg 71040 gagtctcttg ctctgtcacc caggctggag tgcagtggcg cgatctcggc tcactgcaac 71100 ctctgcctcc caggttcaag cgattctcct gcctcctaag tagctgagac tacaggtgtg 71160 tgccaccaca cccggctaat ttttatattt ttagtagaga cagagtttca ccatgttggc 71220 catgctggtc tcgaactcct gacttcaggt gatccacccg cctcagcctc ccaaagtgct 71280 ggaataacag atgtgagcca ccgcacccag cccagaacca tttttcaatc cttggctctg 71340 ccttttatta gctgcaagat ctcaggcaat ttatttaacc tctccaaaga ctcattttct 71400 cattcacaaa atgaggcaaa taataatatc tactatccca ggttgtcatg agaattaaat 71460 gcaacatgac atttaatgaa atgagaagtc ccttggacat taactggcta aagtatgtgc 71520 tcgacaagga tatcatttta ggtggatact tagcatctca gaactgatgc tcacaatgga 71580 atatcattga aacgcattaa aattcatttt aaatgattgt aggtagtgag gcaattgaaa 71640 gaagaagaca agaggactga ttataatgct tcaggctcac tagtctcctt ttaggaggga 71700 aaaacaattt caagttaaat tttaggctct agatttttac ccctgctgct cattagaatc 71760 acccagattg atgaaatcag agcccatctg aggctgtgtt tttcatctcc agaatgagag 71820 ctgttgtggg gattaagttt ttgaaaaagt acatctaaca ggtgatcgaa aatgatagtg 71880 atattattgc agtgatggtc attattgttg ttattattat actgaaagag gcttcagttt 71940 tctgatccat aaagtgaggg aattgcatga gaccattgct aagattcctt ctagctctgt 72000 ttttttgttt ttgtttttta gacagagtct ctgtcgccca ggctggagtg caatggcatg 72060 atcttggctc actgcaacct ccgcctcccg ggttcaaatg atcctcctgt ctcagcctcc 72120 gaagtagctg ggactacagg cacacaccac catgcccagc taacttttat atttttaata 72180 gaggtggggt ttcaccatat tggtcaggct ggtctcaaac tcctgacctc aggtgatcca 72240 cccgcctcgg cctcccaaca tgctgggatt acaggcatga gccactgtgc ccaacccctt 72300 ctagctttct tgatcactga ttctagggtt ctctgctgaa atatatttga gacatcctgg 72360 ataaaagatc atgcaagagc tcccaatatg gtattaataa ttgattctgg aggcttagct 72420 actcctgatg gattagacat gactcaactg cctctcttat gtgtacaaca caacaacaca 72480 accaagaaag gttattctgg cattccattt attcagttta tttacagccc ttacttccag 72540 cagcacgtta aagatatggc cagggccggg tgcagtggct caagtctgta atcccaggac 72600 tttgggaggc caaggtgggc ggatcacaag gtcaggagtt tgagaatctg gcaattcttc 72660 agacttagaa gcaaccagct cgataacaca gtcttgtgtg ggctctccct ctgtccctcc 72720 ctcgcttccc tcatttctca tccctgcccc tgagactgtg caccttcaca tagccctgcc 72780 atgagacctt catctcaggc tttgctttct ggggtaactg aggctaaaca ctgagtggcc 72840 ctaaaagagg attgggattt ggaagttaga ttattcacca gagaacagac tttgctgatg 72900 atcaggccca ggttgtaatt gttgaaaaaa agagaggatg catagtctta tctcatctcc 72960 tagtcaaagt caacaccatg ataaataaga gtcaaatcct gagatgtgaa ttggggacat 73020 ttgagtggtt aaccctgaga agcttgcacc ttcagacccc tcaatacccc tgctccccag 73080 agaaggctgg acattgacct cagcacaggc aggagccctg caagatgcca tttgtcctac 73140 taaagatgga cccctccact ctgtttctag gtaaataacc aaagtcaagt ctccacacag 73200 cctgagcaag aaagtcagag cctgctacag gagaaaatac cacactggcc aaaggattca 73260 ctagccctgg ccactgtgtg tgggaggaac cagggaatca tgtgtgggag tcaatgttga 73320 agctgttgga ctgggggtgg ggtggaatat aagcctggcc ctggggagtt tttcccgttt 73380 gagggccttt acccacaact caagatccag tgctatagca ggagatccca gagctagtcc 73440 taacagatgg tcaggattga acttggccta gagtaaaatg aggaggatag tgccagaact 73500 ttctcaacat actattgagg aagaggtcag aaggcttaag gaggtagtgt aactggaaag 73560 gggtcctgat ccagacccca ggagagggtt cttggacctt gcataagaaa gagttcgaga 73620 cgagtccacc cagtaaagtg aaagcaattt tattaaagaa gaaacagaaa aatggctact 73680 ccatagagca gcgacatggg ctgcttaact gagtgttctt atgattattt cttgattcta 73740 tgctaaacaa agggtggatt atttgtgagg tttccaggaa aggggcaggg atttcccaga 73800 actgatggat ccccccactt ttagaccata tagagtaact tcctgacgtt gccatggcgt 73860 ttgtaaactg tcatggccct ggagggaatg tcttttagca tgttaatgta ttataatgtg 73920 tataatgagc agtgaggacg gccagaggtc gctttcatca ccatcttggt tttggtgggt 73980 tttggccggc ttctttatca catcctgttt tatgagcagg gtctttatga cctataactt 74040 ctcctgccga cctcctatct cctcctgtga ctaagaatgc agcctagcag gtctcagcct 74100 cattttacca tggagtcgct ctgattccaa tgcctctgac agcaggaatg ttggaattga 74160 attactatgc aagacctgag aagccattgg aggacacagc cttcattagg acactggcat 74220 ctgtgacagg ctgggtggtg gtaattgtct gttggccagt gtggactgtg ggagatgcta 74280 ctactgtaag atatgacaag gtttctcttc aaacaggctg atccgcttct tattctctaa 74340 ttccaagtac caccccccgc ctttcttctc cttttccttc tttctgattt tactacatgc 74400 ccaggcatgc tacggcccca gctcacattc ctttccttat ttaaaaatgg actggggctg 74460 ggcgcggtgg ctcatgcctg taatcccagc actttgggag gccgaggcgg gcggatcatg 74520 aggtcaggag atcgagacca tcctggctaa cacggtgaaa ccccgtctct actaaaaatg 74580 caaaaacatt agccaggcgt ggttgcaggt gcctgcagtc ccagcggctc aggaggctga 74640 ggcaggagaa tggcgtgaac ctgggaggtg gaggttgcaa tgagccgaga ttgtgccact 74700 gcactccagc ctgggtgaca gagcgagact ccgtctcaaa aaaaaaaaaa aaaaaaaaaa 74760 tagctgggca tggtggcgcg tgcctgtaat accagctact ctggaggctg aggcaagaga 74820 atcgcttgaa cccagtaggc ggaagttgca gtgagccgag atcttgacac tgcactccag 74880 cctggtgaca gagtgagact ctgtctcaaa aaaaaaaaaa agaaaaaaaa agacagaaag 74940 aaagagcaca gacagagtca caggtatttg cagtaggaag ctgtcaggtt agagtgcacg 75000 gaaatagaaa gtatatttta cacttacagc acatcttcgt ttgattagcc acatttaaaa 75060 tactgaatag caacgtgtgg ctatttagta ttcactaaaa tcttggacag tgcaagtcta 75120 aagaatcctt gatccgtccg gcatggtggc tcacgccttt aatcccagca ctttgggagg 75180 ccaaggtgga aggatcactt aaggtcagga gttcgagacc agcctggcca acatggtgaa 75240 acctcgtctc tactaataat acaaaaaaaa ttagccgggc atggtggtgc atgcctgtaa 75300 tcccaggtac ttgggaggct gaggcaggag aatagcttga atccaggagg cgctgcagtg 75360 agccgagatc atgccatgcc actactgcac tccagcctgg gcaacagagt gagactgtct 75420 caaaaaaaaa aaaaaaattg ttgggcgtgg tggctcacgc ctgtaatccc agcactttgg 75480 gaggctgagg ggggtggatc acctgggttc tggagttcga gaccagcctg gccaacatgg 75540 tgaaacccca tctctactaa aaatacaaaa attagctggg cgtggtggtg ggcacctgaa 75600 atctcagcta ctcaggaggc tgaggcagga gaatttcttg aacccaggag gcagaggttg 75660 cagtgagcca agatcgcgcc tctgcactcc atcctgggtg gcagagcaag actatgtctc 75720 aaaaaaaaaa aaaaaaatac ttgattgtct ggacattctg cagaacatca tatggagaca 75780 ctatgttgac gacatcatgc tgattgtaag caagaaatgg caagtgttcc agaaacacag 75840 tcaagacaca tacatgccag aaggtgagat ataaactcta ctaagattca gtggcctgcc 75900 acactggtga catttttaaa cctgctagat gtttgtgtag aaaaggattt aaccttgccc 75960 aaagaggggt ctggcctttg tccccagcta ctggacataa tctctttaaa ctcttgaaat 76020 atcattcctg atagaagtat ttttgttttg actaggggcc ttgggccagc cagatagcaa 76080 caatgtgatc tgggttgggg gctttggatc aggtggcatc agtgtgacct cctgagtggc 76140 tagagactag aatcaaccac atgggcagac aacccagctt acatgatgga attccaataa 76200 agactttgga cacaagggct tgggtaagct ttcctggttg gcaatgctct atactgggaa 76260 acccattctg actccatagg gagaggacaa ctggatattc tcatttggta cctccctggg 76320 ctttgcccta tgcatttttc ccttgtctga ttattattat tattatgaga tggaatctcg 76380 ctctgtcacc caggctggag tgcagtggaa tgatctcaac tcactgcaac ctctgcctcc 76440 ccggttcaag cgattttcct gtctcggcct cccgagtagc tgggactaca gatgcatacc 76500 accacacccg gctaattttt ttgtattttt agtagagacg gggtttcacg ttagccagga 76560 tggtctcgat ctcctgacct catgttccgc ctgcctcggc ctctcaaagt gctaggaata 76620 catgtgtgag ccaccgcgcc cagccccctt ggctgattat taaagtgtat ccttgagctg 76680 tagtaaatta taaccgtgaa tataacagct tttagtgagt tttgtgagca cttctagcaa 76740 attatcaaac ctaaggatag ccttggggac ccctgaactt gcagttggtg tcagaaataa 76800 gggtgctcat gtgtgtacca tgccctctaa ttttgtagtt aattaacttt cacaacttta 76860 ttattaccgc ttacactcaa tgtttattca catttatcca cataccactt attctagtgc 76920 cttgcatcaa agactttcta tctcatgtac tttattctgc ttgaagtaaa tcctttagga 76980 tattcttttt tttttttaaa ctttgcacat acatactttt attttttatt tatttttaat 77040 tttgttattt ttgtgggtac gtagtagata tatgtattta tggagtacat gagatgtttt 77100 gatacaggca tgcaatgtga aataagcaca tcatggagaa tggggtatcc atcctctcaa 77160 gcaatttatc cttcaagtta caaacaatcc aattacactc tttaagttat tttaaaatgt 77220 acatttaatt ttgtattgac tagagtcact ctgttgtgct atcaaatata attttttttt 77280 tttttgagac agagtctcac tcagtggccc agactgaaag tgcagtggca caagctcggc 77340 tcacttcaat ctctgcctcc ctggttcaag cgaatctcct gcctcagcct cccacatagc 77400 tgggattaca ggcacacacc accatgccca gctaattttt atattttttt agtagagacg 77460 ggttttcgcc atgttggcca ggctggtctt gaactcctgg cctcaaatga tctgaccacc 77520 tcagcctccc aaagtgctag gattacaggc atgagccacc acacctggcc aaaatagaat 77580 attctttagt gaggtctgct ggtgacaatt tttttctttt ttttgagact gagtctcgct 77640 gttgtcagct tgggctggag tgcaatagca cgatctcagc tcactgcaac ctccacctcc 77700 cggattccag caattctcct gcctcagcct cccaagtagc tgagagatta caggcaccca 77760 ccaccacacg cggctaattt ttgtattttt agtagaaatg ggggttcacc gtgttggcca 77820 ggctggtctc gaactcctga cctcaggtga tccacccacc ttggcctccc aaagtgctgg 77880 gattacaagc atgagccacc acgcacagcc aattttttcc gtttttgtct gaaatcttat 77940 tttgtgtcat ctttgaaata tatttttgat ggatataaaa ttgttggttg atagttatta 78000 tcattattat tattattttg agacagggtc tcactctgtt gcctatgctg gggtgtagta 78060 atgtgatctc ggttcactgc agacttgacc tcctagggct caggtgatct tcccacctca 78120 gcctccctag tagctgggac tacagatgca tgccaccata cccaactaat ttttctattt 78180 tttgtagaga tgaggctttg ccacatttcc caggctggtc tctaactcct gagctctagc 78240 aatccaccca ccttggcctt acaaagtgct gggccatgac tagccagcag ttacttttta 78300 tagcatattg aatatttaat atgaatcttc tggcatccac tgtaactgtt taaaaaatca 78360 gctgtttact tggcactctt tttttttttt ttttttttga gacagagtct tgccctgtcg 78420 cccaggctgg agtgcagtgg cgtgatcttg gctcactgca agctctgcct cccgggttca 78480 cgccattctc ctgcctcagc ctccggagta gctgggacta aaggcgcccg ccaccacgcc 78540 cggctgattt ttttgtattt ttcgtagagt tggggtttca ccgtgttagc caggatggtc 78600 tcgatctcct gacctcgtga tctgtccgcc tcggcctccc aaagtgctgg gattataggc 78660 gtgagccacc gcgcccagcc tctttttttt ttttttttag acggagtctt actctgtcat 78720 ctaggctggt gtacagtggc gtgatctcag ctcagtgcaa cctccacctc ctgcctcagc 78780 ctgccaaata gctgggatta caggtgcgta ccatcacgcc cggctaattt ttgtattttc 78840 agtagagatg gggtttcacc atgttagaca ggctggtctc gaactcctgg cctcaagtga 78900 tctgcctgcc ccagcctccc aaagattaca ggcatgagcc accgcacccg gccaagtagc 78960 actcctttga aggtaatctg cttcccctac ccctagcaat ttttaacaat ttttcttcat 79020 ttttatttcc tgaagttttg ttattaataa tctgtgtgca gatttctttg tatttctttt 79080 gtttgcagtt catagtgatt cttgaattag tgtgttggtt tctgttatca ccacaggaaa 79140 attgtcagcc gttagctttt caaatatttc cttgctaaat tctctcttct cccctttcgg 79200 tacaattgat ttgattaaaa ctaaaaccag ggccgggtgc agtgactcat gcctgtaatc 79260 ccaacacttt gagaggctga ggcaggtgga tcacctaagc tcaggagttc aagaccagcc 79320 tggccaatat ggtgaaaccc cgtctctact aaaaatacaa aaattaccag gcatggtggc 79380 acacatttgt agtcaggagg ctgaggcagg agaattgctt gaatccagga ggtggaggtt 79440 gcagtgagct gagatcccac cactgcagtc tggcctgggc gacagagtga gatgagaatc 79500 tgtctcgaaa aaaaaagtta tgaatgtttg ataaactata tttgttagaa tgtttgttgt 79560 agaatactat tcattgattt ttaaacaatg ttagattaaa ccattcactg gatttgtgat 79620 aattaactta ctgattttac ctcactgatt tgttgtaatt aatacaactg gtataaaaag 79680 actgtgacga ggccgggcat ggtggctccc gcctataatc ccagcacttt gggaggctga 79740 ggcaggcgga tcacctgagg tcaggagttc aagaccagcc tgaccaacat ggtgaaaccc 79800 catctttact aaaaatacaa aattagccgg tcgtggtggt gcatgcctgt aatcccagct 79860 cttcgggagg ctgtggcagg agaatcactt gaacccggga ggtggaggtt gcagtgagcc 79920 gatatcgcgc cattgcactc cagcctgggc aacaagagcg aaactccgtc taaaaaaaaa 79980 aaagaaaaaa aacacataaa acaaaacaac actgtgacgg ttcccaaaaa ttaggagcat 80040 aattaaagga actcctgata aaaattaatt ttatcttaca tgtaaactaa aatgacttta 80100 tgaagttaat tcagaaatac aatgcagggt attagtttgc cacagctgcg tattcagcct 80160 aatgtaatat tcttgttatt tttaaattct tcttttaact ttactcatat gtggatcatc 80220 aaatttcaaa agattaaatg acaatactct tagcagcaag cttccctaag catataaaca 80280 ttttaatggg tgatgattca gaaggtaccc gaagaatatg tactgccaga tatcattcac 80340 ccccatatac ctgcccgaca gacatcccat tttgggaccc tggataaatg tgtgggtgga 80400 gagaaagata ggagaaagtg gtataagcaa atggctttgg agtctgattg acagcgattg 80460 aaatcctgtc tctacctctt aacagcctca tgatcctaca taagttaccc cgatcctcag 80520 ggccacatct gtaaattggg ggttgcgatg gcagccatct cacagggtct cttttcgggg 80580 aagggcagga attatggatt aagtgagcta gtaattgtaa agcacttaat acaaggaggg 80640 cgcataataa gtacttcata aataatgacg gccattatca tgactgaggt gtatgcagct 80700 gtcggggatt acggcgactt cagaatttct ggtgggcagg gctcaaaggc agcaaatcac 80760 actggaagtc gaggtgaggc actgcttctg cacagactgc ttagctggag agaatgagga 80820 aggcttagag gagatttaga ggaacttaga gtcctccgcc tccaactctg tgggatctgc 80880 tcccgtgcca gagacattca ggggatttct cgcactctcc cctcccctac gtccctcccg 80940 ccccatccaa ctaaccacac aacacataca aaatagcccc tgcgaggttc tgcacgctgg 81000 aagggaacag gagaagggcg ctgcgctttc ttgctgatgc cctgtacttg ggcccctggt 81060 agacacagcc acttgtcccc tcagcctgca gagaaatccc acgtagaccg cgcccgggtc 81120 cttggcttca gccaatctcc ctttggtggg ggtgggatgc acgatccaag gttttattgg 81180 ctacagacag cggggtgtgg tccgccaaga acacagattg gctcccgagg gcatctcgga 81240 tccctggtgg ggcgccgctc agcctcccgg tgcaggcccg gccgaggcca ggaggaagcg 81300 gccagaccgc gtccattcgg cgccagctca ctccggacgt ccggagcctc tgccagcgct 81360 gcttccgtcc agtgcgcctg gacgcgctgt ccttaactgg agaaaggctt caccttgaaa 81420 tccaggcttc atccctagtt agcgtgtgac cttgagcagt tgactttatt tttcagtgcc 81480 tagttttcca gataccagga ctgactccaa ggactattac tcatctggag ggtttagcac 81540 agtaccgtcg catagtaaat ttccatgtca gttttggtta cctttcatgc acttgcaaac 81600 atgccatgct ctgaaacgaa ataggcacat cttttttttt ttttttttta aggagtcttc 81660 ctctcgccca ggctggagtg cagtggcgcg atcttggctc actgcaacct ccacctcccg 81720 tgttcgagat tctcctgcct cagcctcctg attagctggg actacaggca tgccacgacg 81780 cccagttaat ttttgtattt ttagtagaga cggggtttcg ccatcttggc caggctggtc 81840 taactcctga cctcaggtga tctgactgcc tcagcctctc aaagtgttgg gattacaggc 81900 ataagccact gcatctggcc agaaatgaaa taagtaaatc ttttaacctg ctctaacaat 81960 atagtgaaaa gaccatatta ttattagagc aggttaaggg atttgcctat ttcgggttct 82020 agttatagtc ttaaacttgg acattcttgt agaaagtaaa aagtttcctc ttcaaagttc 82080 cccttcttgt taaagaatac atcataagtg ttagaagtaa tagtttattt taaagactaa 82140 ctttcttcaa gcctccttgc tttgtgctaa taactctttg ttaagcccta tcctatgtaa 82200 ctgttggaca tgctcacagg cacgttccag ttcacagcct atgccccttc cttatttgga 82260 aatgttattg cttccttaaa cctttcggta agcaacttcc tctccttctt cgttcttcct 82320 tgcacttacc tatttagaaa gttttaggct attagcaaat cggctatcag tttaagagtg 82380 tgaggtcccg ctccagccaa tggatgcagg acatagcagt gaggacgacc caaatgcgta 82440 agggataaat atgtttgctt ttcctttgtt caggtgtgct ctcgacatcg ttccatctgc 82500 gattgagcac cctttctgca gaaagtaaag attgccttgc tggagatctt ttgtctccgt 82560 gctgactttt cttcgtggca ccgattatct atttctaaca attttggtat ttctaacatt 82620 ctgaacaatc ttgggctagt tgtctcttct gggcctgttt ccccatccgt cacatgataa 82680 acttcattgg tttaaaaacc ccagcgaaca tttattgagt tactattacc ttcctgccct 82740 ccccaacccc aaccccaggg agcagttaca acctcagccg ctgagcgcac tcgccgggtg 82800 ttaagaagca ccaaagacag ggaggcttga ttgattttgc tttgggagta gagggtcaga 82860 agattcacag gaaaatggca tttgagcaag gatgattcac tggagctagc ttttaaatac 82920 tggcgaggct tttatgttgc agtcccttac aaagttgagc attcgcaggg actgcactcc 82980 gaaataagcc cgcttcccct tttcattcgc taatgatcca gggagctgct ggttccgcat 83040 gcggcaggtt gtgccttttc ctaatcaggg ttctgcatcg cctcgaaccc gcaggccgtg 83100 gcgggttctc ctgaggaagc agggactggg gtgcagggtg aagctgctcg tgccggccag 83160 cgcctgtgag caaaactcaa acggaggagc aggaggggtc gagctggagc gtggcagggt 83220 tgaccctgcc ttttagaagg gcacaatttg aagggtaccc aggggccgga agccggggac 83280 ctaaggcccg ccccgttcca gctgctggga gggctcccgc cccagggagt tagttttgca 83340 gagactgggt ctgcagcgct ccaccggggg ccggcgacag acgccacaaa acagctgcag 83400 gaacggtggc tcgctccagg cacccagggc ccgggaaaga ggcgcgggta gcacgcgcgg 83460 gtcacgtggg cgatgcgggc gtgcgcccct gcacccgcgg gagggggatg gggaaaaggg 83520 gcggggccgg cgcttgacct cccgtgaagc ctagcgcggg gaaggaccgg aactccgggc 83580 gggcggcttg ttgataatat ggcggctgga gctgcctggg catcccgagg aggcggtggg 83640 gcccactccc ggaagaaggg tcccttttcg cgctagtgca gcggcccctc tggacccgga 83700 agtccgggcc ggttgctgaa tgaggggagc cgggccctcc ccgcgccagt ccccccgcac 83760 cctccgtccc gacccgggcc ccgccatgtc cttcttccgg cggaaaggta gctgaggggg 83820 cgccggcggg gagtcaggcc gggcctcagg ggcggcggtg gggcaggtgg gcctgcgagg 83880 gctttcccca aggcggcagc aaggccttca gcgagcctcg acctcggcgc agatgccccc 83940 tgagtgcctt gctctgctcc gggactcttc tgggagggag aaggtggcct tcttgcgcga 84000 ggtcagagga gtattgtcgc gctggttcag aagcgattgc taaagcccat agaagttcct 84060 gcctgtttgg ttaagaacag ttcttaggtg ggggttagtt tttttgtgtt tctttgagga 84120 ccgtggatca agatcaagga aatctcttta gaaccttatt atggaagtct gaagtttcca 84180 aatgttgagg gttttatgtc taaaagcaac acgtgaaaaa attgttttct tcacccagtg 84240 ctgtcttcca atttcctctt tggggggagg ggtagttact gctgttacta aaataaaatt 84300 acttattgct aaagttcccc aacaggaaga ccactacttt tgatgacttt ggcaagtttg 84360 ctaactactg gaaccctaac ttacaaacga actacttaca tttttgattt ccagttgtat 84420 tacctgccca atgtttacgt agaaacagct taattttgat tctgggtaac gttgttgcac 84480 ttcattaaaa atacatatcc gaagtgagca agtatgggtc tgtggacagc agtgattttt 84540 cctgtcaatt cctgttgctt cagataaaat gtaccagaca gaggccgggc gcggtggctc 84600 acgcctgtaa tcccagcact ttgggaggct tggcgggtgg atcacctgag atcgggagtt 84660 caagaccagc ctgaccaaca tggagaaacc ccgtgtctac taaaaataca aaattagcca 84720 gggtggtggc gcatgcctgt aatgccagct acttgggagg ctgaagcagg agaatcgctt 84780 gaacctggga ggcggaggtt gcggtgagcc gagatagcac cattgcactc cagcctgggc 84840 aaaaagagcg aaactccgtc tcaaaaaaaa agtaccagac agaaatgggt tttgttttct 84900 ttttttgttt tgagacggag tttcgctctt gttgcccagg ctcgagtgca atggcgcgat 84960 ctcagtctcg gctcactgca acctctgtct cccaggttta atcgattctc ctgcctcagc 85020 ctcccaagta gctgggatta cccatgcccc accatgcccg gctaattttt gtatttttag 85080 tagaaacggg gcttcaccat gttaggctgg tcttgaaccc ctgacctcaa gtgggcctcc 85140 cacctcggcc tcccaaagtg ccaggattac aggcatgagc caccgcggcc agccagaaat 85200 gggttttgga aaaagcacta aacaaaatcg aacttggttt catatgacag ctctgctgct 85260 aactgtaaca ggggcagacc agttaaccta cttttctgtc ttctgtcagc tgagaattag 85320 atgattccca aaggcccatt gaactctgaa tgactttaaa tacttcttct taagtgggta 85380 cacggttttg gtaactgatg ccaggtgatg aatgcatgaa agtgcttaat gaatgaaacc 85440 ggtaaaatag taggaggaag ctttattggt aaggcagggg tatacctaat agctctctaa 85500 tttattggta ttgaagtggt taacttttgt ttttttaagg ggggaaaaca ttctaagaat 85560 aatgaggcaa actgcatatt gcacaagaga ctgttgtctc tattcaacaa ataccttttg 85620 agtgtccaga gtctgccagg tgctgtgcta ggccctcacg attgagtagt gaaccagaga 85680 atgtccctgc acccatggag cttattgtct actggggtag acagataata aataagcaaa 85740 caaatcttct ctcttctccc tttcgctcca tgtaagtgtg tgtgtatagg tgtatactta 85800 caagttgagt aaagtgttat gaaagattaa gaggagaaat gcattttggt tagatgttag 85860 aggactcagc aggtgacctt gaaacttaga gctgaaggat cagtaggagg taactagaga 85920 ggccagggaa tcgcatgttc aaaggccagg aggcaagaaa gagcatggtg cccttcaaga 85980 gaggaaagaa ggctactgtg actggagcat agatgtaggc aagtgttggg tgattgagag 86040 ctctacgggc catggttagg ttttattcct aatgccgaga tgccaaacat ggtggttcat 86100 atctgtaatc ccagtatttt aggaggccga ggcaggaata tagcttgaac ccaggagttc 86160 aagaccagcc tgagcaacat gagacctgta caaaacattt aaaaaattgc tgggtatgat 86220 ggtgcacacc tgtggtccca gctactcagg aggctgaggc agaaggatca cttgagccta 86280 ggaggtggag gctacaatga gccatatttg agtcactaca ctccagcctg gatgacaaag 86340 tgagaccatg tgtcaaacaa aatacagaaa gaatattaat ttaaaatttt gaaagaggag 86400 tgatctgaac ttatatctta aaaagatcat tctagggcat ggtggctcat gcctgtaatc 86460 aagggctttg ggaggctgag acaggaggat cacctgaggc cagttcgaga tcaacctgta 86520 cagcatagag agactccatc tctacaaaaa gaaaaaataa atagctgggt gttgtgagtt 86580 attcaggagg ctgaagcaga aagatcactt gagcccagga gtttgaggct gcagtaagct 86640 atgatcccac cactgcaaca cagtgagatc ttgtctcaaa aaaaaaaaaa aatcattcta 86700 ggtgcttttt ggaggctgga tgtggtaaga gtagaagctg gagatggtcc tgttagggat 86760 tcgattcaga ctttaaatac catcaatgca ttgagtccca aatttacatc actacgttgg 86820 atccttgccc ctgaatccag actggtatat ccaactttag gttcagtttg tatctctacc 86880 tgaccaatat agaggtgtcc agtcttttgg cttccctagg ccacattgga agaagaattg 86940 tcttgagcca cacatagagt acactaacgc taacaatagc agatgagcta aaaaaaaatc 87000 gcaaaactta taatgtttta agaaagttta cgaatttgtg ttgggcacat tcagagccat 87060 cctgggccgc gggatggaca agcttaatcc agtagatacc ttcaacttac aatatctaaa 87120 attttatgcc agatttagtc attttaaacc tgctcatcag tttttctcaa gaagtagtat 87180 tttggctttt tttcttttct tttttttgag atggagtttc gctcttatcg ttcaagctgg 87240 agtgcagtgg cggatcttgg ctcactgcaa cctccgcctc ctgggttcaa gtgattctcc 87300 tgcctcagcc tcgcaagtag ctggaattac aggcatgcgc caccatgacc agctaatttt 87360 tggagacagg gtttcaccat gttggtcagg ctggttttgt actcctgacc tcaggtgatc 87420 tgcctgcctc ggcctcccaa aggctgggat tacaggcatg agccaccgct cccggctgca 87480 tttttggatt tttagttgct cagcccaaaa ctttagtaca tctttgaacc tcttctttcc 87540 tcctactcta tatctgatcc atcagcaaat ctgttaggtc tacctcacac atatcgaaat 87600 cctaccacgt ctcaccatct gtgacaatta acaccctggt ctaggcagtc atctctgtta 87660 agattgagtg gttaaggatg tcctctaagg agatgacatt caaatcttag cttaaatgtc 87720 aagagggagc tggttttata aagattgagg aggcagcatt attttgccat aggcttccat 87780 ttggtttcca ttccattctt gatacttatg gtatatattc aaaacaaatg cacagaaaca 87840 gacccaggta tattgggaat ttcggatata gagttcctag ttgggaaaag atagactgat 87900 ctgtaaatga tgctagttat ccatcatctg gcaaaaaata atttcctgcc tcctctcata 87960 tatctcagat caacagactt tttctgttaa gggccaaatc ataaatattt taggctttcc 88020 agaccatatg gtttctgtca cactctcctt tatccttgaa gccatagaca atatgtaaac 88080 aaatgggcat ggctgtgcta cgataaaact ttacttacaa aaactggtag tgggccagtt 88140 taggcatggc cagcactttg ggaggctaag gcagatggat cacttggggt caggagtttg 88200 agaccagcct ggccaacatg gtgaaaccct gtctctacta aaaatacaaa aaatagctgg 88260 gcatggtggt gggtgtctat aattccagct actctggagg ctaagacaca agaatcactt 88320 gaacccagga ggcagaggtt gcagtgagct gagatagcac cactgcactc cagccagggt 88380 gacggagtct taaagcaaaa caaaacaaaa ggtagtgggt tgtatttggc ccatgggctg 88440 tagtttgcca atccctgatg cagaaacaaa ttccaggtaa ataagagcct ggaatgttaa 88500 aaaaacaaaa cttgaagtca tgtagaagaa caggtagggg gaacaatcct gatctcagga 88560 taggaaggga tattgcttaa aataagacac aggaaaatat aatccatgtt gtgtaaattt 88620 gactacgtta aaacttaaaa ctttcgccaa gcgcggtggc tcacgcctgt aataccagta 88680 ctttgggagg ccgaggtgag cagatcacca ggtcaggaga ttgagaccat cctggctaac 88740 acggtgaaac cccgtctcta ctaaaaatac aaaacattag ccgggcgtgg tggcgggcgc 88800 ctgtagtccc agctacttgg gaggctgagg caggagaatg gcctgaaccc gggaggcgaa 88860 gcttgcagtg agctgagatc gcgccactgc actccagcct gggcgacaga gtgagattcc 88920 gtctcaaaaa aacaaaacaa aacaaagcaa aaaacctaaa actttcatac aataaagtat 88980 acctaagata cttctagaag agaagattta catccaggac gtgtatggaa tttctgcaag 89040 taataagtaa aagacaaggg acatgaagag gcagttcaca aaagaggaag ccaaaatgac 89100 caataaacat gaaaggatgt ttaacctcaa aggaaacaag gaaatgaatt aaaaacatca 89160 aatgccattt caaaactagt aagttggcaa aattaaaaat accaaggatg agaatatgaa 89220 gcatggctat atgagtgcat ggaatggtac agtcactttc attaaaaatg cacataattt 89280 gttttttatt tatttttttg agacagtcta tgtcgcccag gctagaatgc agtggcatga 89340 tctcggctca ccacaatctc tgcctcctgg gttcaagcaa ttctcctgcc tcagcctcct 89400 gagtagctgg gattacaggc acatgccaca acgcccggtt aagttttgta tttttagtag 89460 agacagggtt ttgccatgtt ggccaggctg gtctcgaact cctgacctca ggtgagctgc 89520 ttcccaaagt gctgggatta gaggcgtgag ccaatgctcc tggctgaaaa aaatgcacat 89580 aatttgttac ctagcaattc catgtctaga ggcttatcct agagaaattc ttgcttatat 89640 gcataggaag acgtgtacta gaatgttcac tagttgaatg tttaagtgaa aattaggaaa 89700 taaagtaaat gttcattaac aggaaaatga gtaaaggtat atttataaaa caattaagta 89760 gctaaaatga ataaactaga gctgcgtgaa tgaactagaa ctggttcaat agtcatgtca 89820 gattattgaa tgaatacagg tcagatatgt atagagtgtc atttgtgtaa ttaatttttt 89880 tttttttttt gagatggagt ctcactctgt tgcccaggct ggagtgcagt ggcgtgatct 89940 cagctcactg caacctccac ctcctgggtt aaagtgattc tcctgcctca gcctcccgag 90000 tagttgggat tacaggcatg caccaccatg cccagctcat tttcctattt ttagtggcca 90060 cagggtttca ccatgttggc caggctggtc ttgaactcct gacctcaagt gttccaccca 90120 acttggcctc ccaaagtgct aggattacag gcgtgagcca ccgtgctcag ccatttgcgt 90180 gatttttaaa gatgtgcaga ataatgccat taaaaaaaat acacatacat gtatatatat 90240 acacgtttgg ctgggtgtgg tggctcacac ctgtaatccc agcactttgg gaggctgagg 90300 caggaggatc acttgagccc aggtgtacaa gactagcctg ggcgagatag caagacccca 90360 tctcaacaac agaaaggata attaggtatg gtggcatgag aggatcactt gagcccagga 90420 gttcgagtgt tatcaggcca ctgcactcta gcctggacaa caaagcaaga ccgtgtctca 90480 aaaaaataaa aataaaaagt atttgtatgt ggtcatagtc aaaaaacgta catggaagga 90540 aaatgtcttt atttatttat ttattttttt ttttttaaga cagagtcttg ctctgtcacc 90600 caggctgggg tacagtggtg taatctcagc tcaccgcaat ctcggcctcc cgggttcaag 90660 cgattcttct gcctcagcct tctaagtagc tgggactaca ggtacccgcc accacaccct 90720 gctaattctt gtgttttcag tagagacagg gtttcaccat gttggcaagg ctggtctcga 90780 actcctgacc ttaagtgagc cacccgcctt ggcctcccaa agtcctggga ttacaggtgt 90840 gagccactgc gcttggccag gaaatatcta atttagtaag tatttatatc tgggaaagga 90900 agggtcaggt ggtgattcat aggaactcta aagtctatgt ataatactta gggggacaga 90960 aggaaataaa gcaaaatgct gatatttgat tgttgagttg tgtatatgtt agaagtataa 91020 cataggagat ctgattgata gtaggagaat gtttttaggt ggtaaaagtg gaaccgtggt 91080 ggtttgtttt ggcagtagaa tcagttggtc atagtttgta tgtggaaggt aataaacaga 91140 ccatgttaag gatgacttcc ggaattttgg tctgagtagt gggtggatga cagtgtcatt 91200 catgagggaa gatgaagact gaggtaggaa caggtttggg agaagatgac atgttccctt 91260 ttagacaagt ggaattatgg aagatggcag gtaggtggtt agctatatga atttgagata 91320 aaagatttag gatggagata taaatttagg agtaacagcg tatctatggt attgtaagcc 91380 ttaagaatgg gtaggatcag ccaggaaata cagatgtata tgcagaagag aggagtcaag 91440 gaagccaaga caagttaatg tttaaagtga gtgatgtagt ccatgggcag atgctgctga 91500 gagggctgca aacaccagtg accctacaac atttttaaat gtcgtcttcc tgacagcagt 91560 gatcagtacc tgcaacgatc ttatttattt ttttcatgtt agtctccaca cacttgaatg 91620 tagacttttt gaaggcaaaa tcattgcctt ttctgagctg ggagcatgtc tggcacatac 91680 caagcactca acagttgatg tattgacttc atccagatac tctgagggcg agttatttcc 91740 tgctactagc ctttcacctt tcaatgttta agagcacaaa tacagagatg ggcacgtttt 91800 ggcatttctt attttgataa ccttttcctg gtaagatttt ttaatgttga aaaaaaaaaa 91860 caagaaaaga gggttaaaaa tagtcttatg tcagatcctg tgatagaatt cacacttggc 91920 ttaagctgct gggcaccttc ctatcttgga tgtcatatta gcttatctac agcagaattt 91980 ttactgtttt atgtagtaag gaagcaatta tatgattatt ttacagacaa attattcttt 92040 atcttttatt tttttagacg gagtctctct ttgtctccca ggctggagta cagtgtcgcg 92100 atctcggctc actgcaacct ccgcctcctg ggttcaagca attctctgcc tcagcctccc 92160 aagtagctgg gcttacaggt gtccgccacc acacccagct cattgttttg tatttttagt 92220 agagatgggg tttcaccatg ttggccaggc tggtcttgag ctactgacct caggtgatcc 92280 acccgccttg gcatcccaaa gtgctggaat tacaggcgtg agccaccgtg cctggcccag 92340 acaaattatt atactctgag tgttagaggc ttaggatgtt ttcacttgat gctatgggag 92400 gaataagtaa taagatatga tacacaacca aagacctttc ttcactatgc ttctagtagc 92460 tagtactatg gatgacacat ggtaataata ttggttagca tttgtcctca atttactgtg 92520 ctagttactc ttctaagccc cttacaggta tatatttttt ttcatcaata atcctctaag 92580 gtagttttta ttattgacct aattttataa atcaagaaaa ttaagaccca gagaagtaag 92640 taacttgtcc aagatcacat ggcttataag tggtagagcc agaatttgac cccagatgtt 92700 gtgactacat tgtctctcca taagcaggtt caactctttt gactggatgc tgttccaagg 92760 tcacttcctt agagaagcct ttgctgacaa ctaccctcct gtgccctcct ccaaggctgt 92820 ccattgttct agaactttga atactcatct tagaataaag ctggtctaat ttttacagtg 92880 ttatagaatg gatctctgac tgcaaaagtt ggtcataatt atctttttat gttctagtga 92940 aaggcaaaga acaagagaag acctcagatg tgaagtccat taaaggtaag ttctgccctt 93000 ggcagtccac tgcattaaaa agtgatgtgc tttgcatttg tgagttcttt aatcctgtta 93060 tactctctct tttggcatta atcatttctg ccttatttta taattactta tgattttgat 93120 ttatttccct ctttaacctg tataatgctt taacatctag catataataa gtaggctttt 93180 tttttttttt tttttttgga gacggagtct tgctctgtta cccaggctgg agtgcagtgg 93240 cgcgatcttg gctcactgca agctctgtct cccgggttca caccattctc ctgcctcagc 93300 ctccccagca gctgggacta caggtgcacg gcgccacgcc tggctaattt tttgtatttt 93360 ttagtagaga cagagtttca ccatgttagc cagtatggtc tcgatctcct gaccttgtga 93420 tccgcccgcc tcggcctccc aaagtgctgg gattacaagc gtgagccacc gcacccggcc 93480 gtaagtaggc tttttttacc ttaattttat ttttttgaga tggagtcttg ctcttatccc 93540 caggctggag tgcagtggtg ccatctcggc tcactgcagc atccacctcc cgggttcaag 93600 cgattctcct gcctcagcct cccgagtagc tgggattaca ggtggccgcc accatgccca 93660 gctaattttt gtatttttag tagagacagg gtttcaccgt gttggccagg ccagtctcaa 93720 actcctgacc tcaagtgatc cactcgcctt ggcctcccaa agtcctggga ttacaggcgt 93780 gagccaccat gcctggccat aagtaggctt ttactgagcc ttgtgtgtat tggctatcct 93840 agtgattaca gtgaaccagt gcccttctta ttaatcacac atttaattgt tccctaaaag 93900 tgattagttc actttattta tttagtaaga caaaaaatga agaatactct taactgagca 93960 gtctgttaac tgtaggaaag cactgacact tataaggctt agttttctgt catttatcca 94020 gaagtatggt tgattacagt ttttactttt ttatttgaat gaacaacctt aatttaaaat 94080 atattttgtt tattttttgt tgggatcgat acattgtcct tgtttataga ttagagcatg 94140 ctttttaaag atgctgtatt actcactgat tttatttgtc cagtgtacag agattgaagt 94200 gggaaaatta taatggaaat tgtttccata gtcattacat attaatttca tcaatttatt 94260 tccataaaat ctgtagattg ctacttattt agatttttcc ttcaaatgtt tttatgttgt 94320 attgcttgca ctgagtattt attctatatg ctcaatttgc tggagaagaa gactaattat 94380 aacttaggca agttgtaaaa ttagggaaaa aagtaaggta ccttacagcc tagtttactt 94440 atttcttatg taaagccagt tagattccac attagttcaa actgccttct ttgagcaaaa 94500 cttgattggc agtgataaag gcttaaagcc cttctcaagc agagacctgt aaagactaga 94560 tctgactgta gtagaaggaa ggaacttaga tgtttcaggc agtgagaaca ccagtcttcc 94620 actctaaact ttgccactaa cagtatgacc ttgggaagtt gtaactttct tcagattctt 94680 catttgttga atggggggat tggcctagct aatttctaaa tctctactgg gctaaaaaat 94740 tctgtgctta tactctgatt atgaagtaca taatctgtgc ttaacattca ctgacttatc 94800 cttaggataa tacagaagca gtacaagaaa cagcccctca agatgtttgc agtctggtta 94860 gaaagacaaa cttatacaca gaacagtagc aaatagacca aaataataat agctgccatt 94920 tatagaacac ttcttctgtt ctgggcatta gacaaaaact gactataacg gtgaacaaaa 94980 aagacttagg tcctgccctc attgaactta cagattagta ggggagagga acattaatca 95040 agtaattcca cagatggctt agcctagatt ggtagtgatg gaagtaaaga gatgtgaacg 95100 gacttgaaaa aaaattcgga ggcaaaatgg atagaagttt attattgatt aaatatgagg 95160 tgtgagagag agggatattt aagattgata cctaccttct ggcttgccta acagaaccaa 95220 aacaggaaat tatatgttca gttttgttat gttgggtggg aggtgctttt gagtcattca 95280 tttatatatg ttatatatgt tattttatat gcatagtaat tttaaggtct gagttttaaa 95340 ccaaaggtta gagagtgatt ttttagagtc tagcaaacct aagttgaaat cctgcctgtt 95400 gaaatggctg tttactagct cattaaccta gggcaaagta ttcaacttgt tttcattttt 95460 gtcttcatct ctaaaatgag gaaaatatgg tcttacaaga ttgtcctgag agatagatga 95520 aataatatcc aaaaaaaaaa aaggtacata gagaaactcg tatagtgcct ggtatatagt 95580 aggtcctcca ttggtagcta tcattatcta gttttaacat agccttcagt ttgttgaatt 95640 agtcaaactg agtgaagcac tgcaaggaat tcagaggaat ttgagatcaa caaatgattt 95700 ctgaagttta gggaagactt catggcaatg acacttacct tgtataaaag ttgaagaata 95760 agaaagattt gaatgagaga ttctttctct tctccctacc agcccagctt cttatttgag 95820 gatatattgg gcaaaggggc cttcagacaa gtagagggag atttttacag aaagattgag 95880 atgaaggtat agaaggctgt aaagaccaga aaagagaatt gagacagagg aagcaggaag 95940 ccactgtagg tttttgagca agatattgat gctgtaagta tggtgtttat gaaaggttag 96000 tctggaagag atttgcagga tggagacccc ggaagttttt ttgttataat acagaaagac 96060 ttgcactgag ggtgaggtgt taaaaataaa caggtaagta aatgtttaaa catcttgaag 96120 gaaaagtcaa caaatcttgg caagtaaaca gataacagtg aaaaagaatg ggaccaagat 96180 tttgagtttt ggagactggt ggattgaaca gacagggaaa ttgagaggag aatcagatga 96240 tgatgtttta agttgatatt tagacagatt gtgcttgaga tggtaaagtc aatgtgggtg 96300 ggaatgctta gtagcgagta atcagtgata caagaccaaa gcccaggtca aagacaagtc 96360 acagatacag atcagggctt tttcatctgc tccacagagg tgtaccctag gagctgttgc 96420 aaacagtcca tgtggagggt gtgagtaaga tgtttccctt gaatttgcca gaattacttt 96480 tttgttgttg ttgttgtttt ttctgagaca gattctcgct ctgttgccca ggctggaggg 96540 cagtggcgag atcgcgcagc tcactgcaac ctctgcctct cgggttcgag tgattctcct 96600 gcctcagcct cccaagtagc tgggattaca ggcttgtgcc accaagccca gctaatttct 96660 tttgtatttt tagtagagat ggggtttcac catgttggcc agactggtct cgaactcctg 96720 gcctcgtgat ctgcctgcct cagcctccaa aagttctggg attacaggcg tgaaccactg 96780 cacccggtcc cttgttaagt ttattttggt gggaagcaaa ggaggtttca gcttttaaaa 96840 agtttgaaaa ttattgctct ggtaataatt aaagatttga gagtaaatat gctttctagc 96900 agaaagaata aaagaagaac agatagcctc aagaagggga gccaaagaag caggctatat 96960 ctgacacact gggtgttgat aaatgggtat taaaagaatg agagcaatga gcagatagaa 97020 gaggaaatta ggagagtata ataccatgga gaccaagaaa gatagactat caggaaggag 97080 tggtaaaaat aagttactag ttctaagaga gatgttaaga gggaccgggg aaagccttgt 97140 acaaatgagt tagtagcatt ttacattata tacatctaat taagaaacaa tgcgagagtc 97200 tcaccattcc tatagactct tacttgtact tgtctgaaca cgaaaactgg cttttgttta 97260 taaataagct aaaaattatt ttgctccaat ttctcatgaa aataaaaata aaccttcttt 97320 taacattgaa aaaatagttt gaagacagtc actcttcatt ttgtaattcc cacaactatt 97380 attgaatgac tgaaattatc tttattctga agccaaaggg gtgatactga tatttcttca 97440 gactactaaa aatatatttt atgaattttt agtgtgcttt atcttttttt gttttttttt 97500 ttgagatgga gtttcactcc cgttgctcag gctggagggc agtggtgcaa tctcagctca 97560 ctgcaacctt cgcctcccag attcaagcaa ttctcctgcc tcggtctccc aagtagctgg 97620 gattacaggc acctgccccc acacccagct aattttttgt atttttagta gagacagggt 97680 ttcaccatgt tggtcaggct ggtcttgaac tcctgacctc aggtgatcca cccaccttgg 97740 cctcccaaag tactgcgatt gcaggcatga gccaccatgc ctggcctgag gaatattttt 97800 ctaggttccc cccaccccaa gcatttattc tgcaatttta gttttgttcc taaagcaagc 97860 aaggtttaag gatttaaaaa taatccgtat tttagaatgc tttctggctt tgttactttt 97920 tatccacagt agaagttctc agagaatgat ctccctcttt taatttaact ttttggcaca 97980 gtattttgag aattataaat aatattagaa tgttttctgg ctgggtgtgg tggctcatgc 98040 ctgtaatcct ggctacttgg gaggctgagg caggagaatc acttgaacat gggaggcaga 98100 ggttgcagtg agccgaggtc atgccactgc actccagcct gggtgacaga gcaagactct 98160 gtctgggaaa aaaaaaaaaa aaaaaaagag tgttttcttt cctattttcc accacttgat 98220 taagttactt ttcctcttaa gtattttttg ctgagtatgc tgacttaaga gtaatgttac 98280 aaaatttaat ttttaaagtt ctctgaaagc ccctttatga gagttttagg ctatcaaatt 98340 gtgtttaatt cttaacaatt ttttgaaaaa ttatagcttc aatatccgta cattccccac 98400 aaaaaagcac taaaaatcat gccttgctgg aggctgcagg accaagtcat gttgcaatca 98460 atgccatttc tgccaacatg gactcctttt caagtagcag gacagccaca cttaagaagc 98520 agccaagcca catggaggcc gctcattttg gtgacctggg taagtaacta tcatttttta 98580 ttaacttgta ttagaaggat ttgagtacaa tatgtgaaac ttctgtcata ggatacagaa 98640 ctatataatt ggaaagtgct ttggaaaaaa tgtatttaaa ataacagcta caagtataat 98700 gggtagctgt gttgtgttcc tgtaaatata gaatataaag catgcccagt agaaaaacaa 98760 gcatttccag aagaaatata tctgatcact aaatataaat atatgaaaaa gatgtctcac 98820 tttattactg agggaagtgc aaattaaaat aatcagttaa tgttctccta acacattagc 98880 atatttttta aagtttgaca atttgaatgt cagtgaagat gcagggaaat acccctccta 98940 tttagtgata atataatctg gtgaagactc tttggaaagc aatttggaaa tcagtataaa 99000 atatgcatgt catttaggcc actctttcta agacctagcc ctcagatatg ctcattcata 99060 tgtgcaggtg tgtatgtgtg tgtgtgtgtg tgtgtgtgtg tgtatatgta tgtatgtatg 99120 tatgtatgta tgtatgttga aggctattca ttatagtatt gtttgtgata gcaaaaaatt 99180 atggacaaca tataaatatc tgttataggg aaataaccaa attgtggtat acgcatgctc 99240 tggagtataa tatagccatt tgtttctatt tatttatttt cttgagacag ggttttactc 99300 tgttgcccag gctggagtgc agtggtatga tcatggttca ctgcagcctt cacctcctgg 99360 gcacaagcca ttctctcgcc tcagcctcca gagttactag gactgcaggc atgtgtcacc 99420 acacccagat aattttttaa ttttttgtag agacagggtc tcactatgtt gcctaagctg 99480 gtctcaaact cctggcctca agcaattctc ccacacaggc ctcccaaagt gctgggatta 99540 ccaacgtgaa ccaccacacc tggttcagtg tagccattta gaaatctaaa aaagacgtgg 99600 gaaaatgtct aaggcatgtt taaatgtgag aaaagcaagt cacagtatgc atggtaaaat 99660 ccgttatatt aaaataagtt cttccaaaac aaaaacatat gcaggagacc tttattttgt 99720 cagtatttct tacccaaatt tctgcactta gaaaattgca tgtcatgttg tcataagttg 99780 aaaaaaagat ccatgaacca atggacttct aataaaatca gtcctgcttt tgacatctct 99840 ctctactttt gtgtatattc aaaccagagt gtcaatgtgt ttgtggggca cacttagcaa 99900 taatacatag cagacaaaat gcatatagct cagagagtaa aattgtaagt tttgctagat 99960 cactcataaa ttgctgatga gaatttaaaa tggtgcagat gctctggaaa acaggcagtt 100020 tctttctttc tttttttttt tctttttgag acagggtctc actctgttgc gcaggctgga 100080 gtacagtggc gtgattacaa ctcactgcag cctcaccctc ctcaggttca ggtgatcctc 100140 cctcagtctc ctgagtagct gggactatag gcatgcacca ccacgcctgg ctaatttttg 100200 tatttttttt tttttttttt gtagagacgg ggtttcgcca tgtttcccag gctggtctca 100260 aactcctgga atcaagcgat ccacttgcgt aggcctccca aagtgctggg attacgggcg 100320 tgagctactg tgcctggcct aggcagtttg tttgtttgtt tgtttgtttg tttatttatt 100380 tgtagacgga gtctcacagg ctggagtgca gtggcccaat ttttggctca ctgcaacctc 100440 cgcctcccag gttcaagcta ttctcctgcc tcagcctcct gagtagctgg gatgacaggt 100500 gcctgccata atgcctggct gatttttgta tatttagtag atatggggtt tcaccatgtt 100560 ggtcaggctg gttttgaact cctgacctca ggtgatcagc ccgcctcggc ctcccaaagt 100620 gctgggatta caggcatgag ccgtcatccc tggctggtgg tttcttatga cgtgaaacat 100680 gcaattacca tatgacctag cagttgcact ctgtatttat cccagataaa tgaaaactta 100740 ccttccaata aaaacctgtg cacaaatgtt catagcagct taatattgaa aaactggatg 100800 ttcttcagca ggtgaatgaa ctggttcatt cataccatgg aataccattc agcaataaaa 100860 aggaacaaac tgttgataca tttaaccacc tggatgaata tcaagggaat tatgctgtca 100920 gacaaaaacc agtccctaaa gactacatat agtatgattc cgtttggata atattcttga 100980 aatagagaaa ttaagagaaa tgaaaagatt agtgtttgcc agatgttaga gacagggagg 101040 tgagaggggt aagtgggtgt agttataaaa gtgcaacatg agggatcttt gtgatgttga 101100 agttgtatct tggcagtgga tgcagaaatc tcaatgtgat aaaattacaa agaactaaaa 101160 acaagaatga gtatagataa aactggggaa atctgaacaa gttagagtgt tgtatcactg 101220 tcagtatctt agagtgatat tgtactatag ctttgcaaga tgttaccatg ggagaaacta 101280 aagtgtacaa gggatctcta ggtattatta tttttttaga gatggggttt cactatgttc 101340 cccaggccgg tcttgaactc ctgggctcta gtgatccgcc tgccccagcc tcctaaagta 101400 ctggaattac aggcgtgagc gaccatgcct ggccctttca gtattgtatc ttagaacttc 101460 atgtgaatct agcattatct catagaattt aattaaaaga aattgtaaac ctcacagaag 101520 atcagaattt cctcaagttt gtgatgttga caaagatgaa ctagttgaca ctgacagtaa 101580 gactgaggat gaagacacga cgtgcttcaa aaaaatgatt tgaatatcaa tggattaaga 101640 agaactcttt tgacaaattg atgaaaccct cagtcagttt tataagaatg cccatcttta 101700 tgatcatgct atgaaagcca atttttaaaa aaattttttg tctttcctaa caattagctt 101760 gtggttataa tttaaattta gttaaatata agataaatga ttttttatta agtttagttt 101820 catttttcaa ggtacgatct caaagctact ctttaaccta ctatgaatga ataatgctga 101880 gttcataaca tctttgtaga tatatccaca attttccctc aggataagtg cctacaagtg 101940 gaattactgg actgaaaata atgcagtttg ctaagacttt gctatctgtt cctgaatgct 102000 cctccaaaaa ggttttgcca gtttacatcc tcatgaccag cgaatgagag tgttgcctat 102060 tttcctgtgc ccttgttact gcttaataat ttttgaaaaa aatctaattt gacagacaaa 102120 aatgcatttt atgttaattt gcttttctgg gatttttaat gaggttgagt atagttttta 102180 atatttttat tggccccttt ggaactagta tcataagttt tttttcttaa gaatttatgt 102240 agtctgggct gggcgcagtg gctcacgcct gcaatcccag cactttggga ggccgaggtg 102300 ggtggattgc cgaaggtcag gagtttgaga ccatcctgac caacatggtg aaaccgaatc 102360 tctactaaaa gtacaaaaac tagctcagcg tggtggcggg tgcctgtaat cccagctact 102420 taggaggctg agtcaagaga atcgcttgaa cccgggaggt ggaggttggt tgcattgagc 102480 cgagatcgcg ccattgctct ccagcctagg caacaagagt gaaaagtctc aaaaaaaaaa 102540 aaaaaaaaaa aaaaaagaat ttacatggtc tgaattgcca ttaaaagaga tatgagaatt 102600 attgagtaac aaataacttt ttaataattt aggcaagttt tggacgattg tactttgttt 102660 agaaaccaaa agcatagtat ttgtagtttt tttatttact ttagttgcta ggaagtaaac 102720 tttattcaag gtctctggta ccagttgttg ctaaaagtga ttgactaatc tgtcaatctg 102780 aaattatttg ttgctgaact gctaattctt ttgcttctat cttttaggca gatcttgtct 102840 ggactaccag actcaagaga ccaaatcaag cctttctaag acccttgaac aagtcttgca 102900 cgacactatt gtcctccctt acttcattca attcatggaa cttcggcgaa tggagcattt 102960 ggtgaaattt tggttagagg ctgaaagttt tcattcaaca acttggtcgc gaataagagc 103020 acacagtcta aacacagtga agcagagctc actggctgag cctgtctctc catctaaaaa 103080 gcatgaaact acagcgtctt ttttaactga ttctcttgat aagagattgg aggattctgg 103140 ctcagcacag ttgtttatga ctcattcaga aggaattgac ctgaataata gaactaacag 103200 cactcagaat cacttgctgc tttcccagga atgtgacagt gcccattctc tccgtcttga 103260 aatggccaga gcaggaactc accaagtttc catggaaacc caagaatctt cctctacact 103320 tacagtagcc agtagaaata gtcccgcttc tccactaaaa gaattgtcag gaaaactaat 103380 gaaaagtgag tatgtgattt tcttgtgtgt acatatgtgt ctcactttct ttttttaatt 103440 tactaagcag aacttcagat gaggaataaa atgattggaa tatttttttt ctcctctaac 103500 tacttgtaaa tttgggagaa tttggagagt gtagtagagt cagatcagtg tatggaaaag 103560 gagcaggagt gactggacct tctaagaagt gtgttatcag aattagtaaa tgaagggtca 103620 aatgtcctac ttttcccctc cactgatttt gacatcaaac cattatccac atagccttat 103680 ttcctccctc ggtcttaatt ttattaatat tttactgcac tttgcagata aaatttttaa 103740 aaaattttta aaaattgcca ataagtgaca tttattaagt tcagtgctta gtgtatattt 103800 ggattttatt tattagtcac aagacctttg tgcaggtagt aggcatgatt atcttttttt 103860 ttttgagatg gagtcttgct ctgtcgccca ggctggagtg caatggcgcg gtctcggctc 103920 actgcaacct ccgggttcat gccattctcc tgcctcagcc tcccaaatag ctgggactac 103980 aggcgcctgc caccacaccc ggctaatttt tttgtatttt tagtagagac ggggtttcac 104040 catgttcgcc aggatggtct cgatctcctg actttgtgat ccgcctgcct cggcctccca 104100 aagtgctggg attacaggca tgagccaccg cgcccggact gattatctta tttacacatg 104160 agaaaaccag ggcttagaaa ggttaggtaa cttcctctag gttgtacagt aaatgtggac 104220 ctagaagcat tttgacaaga gcacctgttt ttttttcttc tctattagtt tagaaattat 104280 atactcttaa ttatcacctg ggattttgat tagacagcct tcatgttctt tttcatctta 104340 aatgttcttt gtgtcttaaa gggctaagtg atttcttcag atcttttagt tcactcattc 104400 tcagtgaact aaaatgaggt ctaatctgct actgaatcaa gttttcagca tgttatttcc 104460 ttcctccctc cctccctcct tccttccctc aaccaggctc ccgaggagct gggattacag 104520 gcgcccgcca ccactcctgg ctaattttta tattttagta gagacggggt ttcaccatgt 104580 tggtcaggct gatcttgaac tcctgacctc aagtgaccca cctgcctcgg cctcccaaag 104640 tgctgggatt acaggcatga atcaccacac ctgacggcat gttattttca tcgcaaagtt 104700 actgtaagct gggagaagtg gcacacactt gtactcccag ctactcagga agcttaaggt 104760 gagaagattg cttgagccca ggagttttga gaccaacctg ggcaacacag caagacccca 104820 gctcaaacaa agaaaaaaag ttattgaatt ttttatttct atggatcatt ttttgtagtt 104880 tcttattcct ttcacccttc attcccactt ttgatcccat cttttattta tttagtttta 104940 ttaaatgtat atttgtctga taattctgct atctacagtt ttttgtggac ctgactcagc 105000 atttctttgt ttcttcggat tcagactgtt ggtggcttgt gattttagtg atttttggcc 105060 gtgaacatgt ttcttggact tttgtctgtg ggaattctct gtgtactctg tataaattaa 105120 gttacttcag gtgttttgca ttttcttttg ccatgcacct ggggcctggg tcactaccct 105180 tctggtacca cttaaaactg aatttttgtc ttgggtgctc gtactgatcc tgtatgagta 105240 caggtttata cttactgtag aaatatggtg tttgattatg gggtattgtc ccagatggtg 105300 ctggagtatt aatatgctct ctgttaaact taatgtgttg tccctgtaaa actccaaaat 105360 tctgaattcc agaatactac tggccccaaa tgtttaagat aagggcactg cctgtatttg 105420 tttctgcctc ccactatttt ccttagttta acacaaactc acctttttaa aaaacatttt 105480 gagagaattc agtattggga agagtttcta acctgtttct ggaaatggaa gtccaaagtc 105540 tgtttctgta attgtttttt ttttgagatg gagtctcact ctgtcaccca ggctggagtg 105600 caatgacgta ctctcagctc actgcaacct ccacctcccg ggttcaagcg attctcttgc 105660 ctcagccccc tgagtagctg ggattacagg tgcccaccac catgcctggc tgatttttgt 105720 atttttagaa gagatggggt ttcgccatgt tggccaggct ggtcttgaac tcctgacttt 105780 gtgatctgcc cacctcagcc tcccaaagtg ctaggattat gtttctgtaa ttgtaataca 105840 tttattgttt ttagaaactg tctttgcttt agtggtaatt ttcaataaaa atagaaatag 105900 cagtggagtt attaaaagag cattagttac atttttccct ttttcattat cttcaaatat 105960 tatatatagt aagtttgacc tttttaaaat gtatacttgt atcagtttta acacatacat 106020 agattcctgt aactgtcacc actataaggg taaagaacag ttagttcctt cacctttgaa 106080 gtcaagcccc acctctatcc caacacttgg caaccgctga tctttctccg tctcaatagc 106140 tttgcctttt ctcttttttt ttcttatttt tttttttgag acagcgtctt gctctgtcgc 106200 ccgagctgga gtgcagtgag gcaatctcgg ctcactgcaa cctccgcctc ctgggttcaa 106260 gcagttctcc tgccttagcc tccctagtag ctgggattat aggcacgcac caccacaccc 106320 ggctgatttt tttgtatttt tagtagaaat ggggtttcac catgttggcc aggctggtct 106380 caaactcttg acctcaagtg atccacctgc ctcggcctcc caaagtgctg ggattacagg 106440 cgtgagccac tgtgcccaat caggactttt tttttttaaa tttacattca acttgtcatt 106500 tttttcttgt atggattgtg ccttcagagt cacacctaag agccctttgc ctaagcaaag 106560 gtcatgaaga ttttctcata tgtttccttt taaaagtatt gtggttggcc aggtgccatg 106620 gcttatgcct gtaatctcag cactttgaga agctgaggtg ggcagattac gaggtcagga 106680 gatcgagacc atcctggcta atgcggtgaa accccatctc tactaaaaat acaaaaaaaa 106740 aaaaaaatta gccgggcgtg gtggcgggca cctgtagtcc cagctacttg agaggttgag 106800 gcaggagaat agtgtgaacc cgggaggtgg agcttgcagt gagccgagat cgcgccactg 106860 cactccagcc tgggcaacac agtgagactc catctcaaaa aaaaaaaaaa agtattatgg 106920 ttttacactt tacgtttaga tatatatctt ttttgagtta atgtcgtata agtatgaggg 106980 ttacgtcaga ttttttgttt tttgtttatt tttacatatg gatgtctagt tgttctaata 107040 ccatttgttg aaaagacaac ctttactcca ttgaattgcc tttgtacttt tgccatattt 107100 gtctaggcct gtttttggac tcctttttct gtttcatgat gtgtgtgtct attcctttgt 107160 taataccaca tggtcttaat tactgtatag taagtcttaa aattgggtaa tgctggcctt 107220 ataaaacgaa ttgggaagtt tttattttta ctcttatttc cattttctag aagagattgt 107280 gtagaattgg tgtcatttct tctttagata tttggttgaa ttgggaagtg atgccatctg 107340 ggcctagggt tttgtttttt gtgtgtgaga cagagtctca cttctgtcac ccaggttgga 107400 gtgcagtggt gagatcttgg cttactgcaa cctctgcctc ccaggttcaa gttatcctcc 107460 tgcctcagcc tcccaaatag ctgggattac aagcgtgtgc caccatgccc gactaatttt 107520 tgtattttta atgcagacag ggtttcacca tgttagccaa gctggtctcg aacttgtgac 107580 ctcaagtgat tagcccacct tggcctccca aagtgttagg attatagatg tgagccaccg 107640 tgcctggcag gggcctaggg ttttcttttt cagagtattt taaactatga attcagatta 107700 tttaatagat ataggactat ttaagttatc tgtttcttct tgagtgaatt tttactgtag 107760 tttatggcct ttgagtaatt aattgtattg aattgtcaaa tttatgagcg tgtaattatt 107820 tatagcattt cgggtttgta gtggtatccc tcttttattc ctggtgttgg caattgtgtc 107880 ttgtttttct ttgtcagatt gtatagggat ttattagtct tttcaaagaa ctagcttttg 107940 ttttgatttt tctgttgttt tgttttcaat tttattgatt ttctgctctt tattatttct 108000 tttctattat ttctgcttgc tttgggttta ttttactctt ttttttttct ccaagttgct 108060 taaagtagaa acttagattt ctggtttgag acctttcttt tctaagataa gcatttaata 108120 ctgtaaattt ccttctaacc actgctttag ttacaccccc acaaattctg gtattttgaa 108180 ctgagcacaa atgaaatgtt ctaatttccc ttgaatctta ttcttttacc aatgaattat 108240 ttagaaatat gttatttagt ttgcaagcaa ttggagactt ttttcctgtt atttttctac 108300 catttatttc tcatttcatt atattatggt cagagaatat attttgaatg atttcattta 108360 ttaattttta aaaataacat taaaaaattt tttaaaatgt gaatatacca catacagtat 108420 aaagattgta cattctgttt ttggacagtt ttctataaat gtcaagttga tttagttggt 108480 taatgatggt gttcagtttt tctttattct tgctgatact ttgtatgcag ttatatcact 108540 ttattactca gaagagtgtt gaactttcca actacaattt ttttttccaa ttttactttc 108600 agctctatct ggttttgctt catgtatttt gaggctctgt tgttaggtgt gtacacattc 108660 aggatgatat cttctgggtg aattgcctgt tttatcatta tgtaattccc tctttatggt 108720 aattttcctt gttctaagat cagaaatatc tgttgtccaa tttatataga cactgcagct 108780 ttcatttgat tagtgcttgc atggcatatc tttttccatt tttttacttt tgatctacct 108840 ttataattct atttaaaggg ggcttcttgt aggcagcata tagttgggta gtgttattta 108900 tttatttatt tatttattta tttatttatt tattgagaca gagttttgct cttgttgccc 108960 aagctggagt gcagtggtgc aatcctggct taccacaacc tccacctcct gggttgcagt 109020 gattctcctg cctcagcctc ccaagtagct gggattacag gcacgcgcac catgcctggc 109080 tgattttttg tatttttagt agaaacggat tttcaccatg ttagccaggc tcgtcttgaa 109140 ctcctgacct caggtgatcc acctgctttg gcctcccaaa gtgctgggat tacaggcgtg 109200 agccactgca cccggctgag tcatgttatt tttaatcttt tctcacaata cagggttttt 109260 gttggtaaat ttaattattt taatataaat tttagtataa ttatttacat taaatgtaac 109320 tgttgcactg gggtatttat aatgtgtaaa tataattatt ggtattaata taattatatt 109380 actcataata atattaatat ctttggattt agattaccag tttagtatat gtttttctgt 109440 ttctccctct ttgatttccc cttttttgct tttttttttt ttttaattct tatttttttt 109500 tagtatttgt tgatcattct tgggtgtttc ttggagaggg ggatttggca gggtcatagg 109560 acaatagttg agggaaggtc agcagataaa catgtgaaca aggtctctgg ttttcctaga 109620 cagaggaccc tgcggccttc tgcagtgttt gtgtccctgg gtacttgaga ttagggagtg 109680 gtgatgactc ttaacgagca tgctgccttc aagcatctgt ttaacaaagc acatcttgca 109740 ccacccttaa tccatttaac cctgagtggt aatagcacat gtttcagaga gcagggggtt 109800 gggggtaagg ttatagatta acagcatccc aaggcagaag aatttttctt agtacagaac 109860 aaaatggagt ctcccatgtc tacttctttc tacacagaca cagtaacaat ctgatctctc 109920 tttcttttcc ccacatttcc cccttttcta ttcgacaaaa ctgccatcgt catcatggcc 109980 cgttctcaat gagctgttgg gtacacctcc cagacggggt ggcagctggg cagaggggct 110040 cctcacttcc cagatggggc agccgggcag aggcgccccc cacctcccag acggggcagt 110100 ggccgggcgg aggcgccccc cacctccctc ccggatgggg cggctggccg ggcgggggct 110160 gaccccccac ctccctcccg gacggggcgg ctggccgggc gggggctgac cccccacctc 110220 cctcccagat ggggcggctg gccgggcggg ggctgccccc cacctccctc ccggacgggg 110280 cggctgccgg gctgaggggc tcctcacttc gcagaccggg cggctgccgg gcggaggggc 110340 tcctcacttc tcagacgggg cggccgggca gagacgctcc tcacctccca gatggggtgg 110400 cggtcgggca gagacactcc tcagttccca gacggggtcg cggccgggca gaggcgctcc 110460 tcccatccca gacggggcgg cggggcagag gtggtcccca catctcagac gatgggctgc 110520 cgggcagaga cactcctcac ttcctagacg ggatggcagc cgggaagagg tgctcctcac 110580 ttcccagacg gggcggccgg tcagaggggc tcctcacatc ccagacgatg ggcggctagg 110640 cagagacgct cctcacttcc cggacggggt ggcggccggg cagaggctgc aatctcggca 110700 ctttgggagg ccaaggcagg cggctgggaa gtggaggttg tagggagctg agatcacgcc 110760 actgcactcc agcctgggca acattgagca ttgagtgagc gagactccgt ctgcaatcct 110820 ggcacctcgg gaggccgagg caggcagatc actcgcggtc aggagctgga gaccagcccg 110880 gccaacacag cgaaaccccg tctccaccaa aaaatgcaaa aaccagtcag gtgtggcggc 110940 gtgcgcctgc aatcccaggc actctgcagg ctgaggcagg agaatcaggc agggaggttg 111000 cagtgagccg agatggcggc agtacagtcc agcctcggct ttcacaactt tggtggcatc 111060 agagggagac cggggagagg gagagggaga cgagggagag cccctttttt gctttctttt 111120 ggattatttg aatttttcct taaatttatt tatcttactt atttatttat ttttttgagt 111180 gattctcctg ccacagctcc caagtagctg ggactgcagg catgtgccac tacacccagc 111240 taattttttt gtatttttag tagagacagg gtttcaccat attggccagg ctggtcttga 111300 actcttgacc tcaagtgatc cacctgcctc ggcctcccaa agtgctggga ttacaggcgt 111360 gagccaccat gccctgcctt tttctagaat ttatatattg agttcttgat tgtatctttt 111420 tatgtaggct ttttagtggc ttctctagga attacaatat acatactttt cacagtgtac 111480 tcacatttaa tattttgtaa cttcaagtgg aatgtagaaa acttaaccac cataaaaata 111540 gaactaggga tgaggttaaa aaagagagag aaaagaaatg taataaagat ttaataacac 111600 cgtttttttt tttttttctc tttttttttt gagacagagt ctctctttct gttaccaggc 111660 tggagtgcag tggcgtgatc ttggctcact gcaacctccg cctcctgggt tcaagtgttt 111720 ctcctgcctc agcctactga gtagctggga ttacaggtgc gcgccaccat gcccagctaa 111780 tttttgtatt tttagtagag acggtttcac tgtgttggcc aggatggtct cgatttcttg 111840 accttgtgat tcgctctcct cagcctccca aagtgctggg attacaggcg tgagccaccg 111900 cgcccggcta agtctttaaa tatttttttg acattgcact ttttctcttt tccttctagg 111960 attttagtaa cccaaatgtt agttttgtta ttgtttggca ggttcctgag gctttcctta 112020 cttctttaaa tttttttttc ctgttgttca gcttcgaaaa tttctattca tctgtcttca 112080 aattcactgg ttctttcccg ttatttccat tctgttattg agtctttgta gtgaatttta 112140 aattttgttt attatgtttt ttagttctaa aattttcttt ttttgtgtat gtcttatact 112200 ttgctcctga aactcttatt tgtttcagga gtgatcttat ttcttagagc atggttttag 112260 tagctactta aaatttgttt tatcatccca gcatatgtgt cctcttgatt gtcttttctc 112320 ttgtgagata atgggatttt ctggttcttt atatgacaat taattttgga ttgtatcttg 112380 gacagtttga cttacgttac atgattctga atcttgttta aatcctgtgg aaaatattga 112440 agtttttgct ttaacaagca gttgacctag ttaggttcag tccacaaatt ctaagcagca 112500 ttctgtcggc tctggttcca tcatcagttc agttttgtat cttatctgct tatgtgcctt 112560 tctgtgtcca gtctgggacc tggccaatgg tcaggtccca aagcctttgt acacttttag 112620 aagcagggcc atgcacaccc agctcacgag tggccccggg agtgcacata caactcgacg 112680 ttttcatggg ctccttcttt tctgtgatgt ccctgacacg ttctgccttc taagaacctc 112740 cctttatccc tttcctgttg tctggctaga aagtcagggc tttagattcc ctatacttca 112800 gcacacttcc tgtagctatg tcaacctctg tggccacgac ttcttcttct tgggactgca 112860 gtttctcttg tcagaaagta ggattcttgg agctgctgtc attgctgctg tggctgctct 112920 gatgctgcct gggagtcgaa ggagagaaag gaacaaaaca aaacaaccca ggggatttcc 112980 tccactctct ttgatccgtg agagccccct ttcctgttcc tcagaccaga aatagagggc 113040 ctgtcttgga acttcttctt tgtgcatctg gtgtgcagtt tcagcttttg agtccaggcc 113100 aggaggtgct ggacaaactt gtcaggagta cggaggtact gcaagttctg attacttttc 113160 tcagtccacc tgcttccaag tccttggatg catttgtcca ttgttttgag ttgcattcca 113220 tgggagagac agaagagtgt gcttatttca tcttgacata cttattagga tttcatatca 113280 aatcaacgga tgatattctc tatattaatt tgctgttttc cctttagcaa gcacattagg 113340 aaaataacac tttaacaccc gcctttggtg gtttctgtca taattattaa tacttgactt 113400 tttttttttt tttgagacgg agtctcactc tgtcctttga ggcattgtcc ccataaactt 113460 ttggtaaagc atcaataatt ttatctttca tccacacaag cttcaccata aatttgatgt 113520 ttattcttcc attttagcag aattcatgtt gctccaatag gggctgtctt caaactgatg 113580 ttttctcctt cttagtgcct cagagtagat cctgttcaga tacgttataa caggttaata 113640 tgagtttatt ttggtgtaaa agtactttga aattcatgca tagttttttc atcatatgca 113700 ttttccatag ctttgaacac ccccatgtaa ctctcctctt ccacaaacca aacaatgaaa 113760 aagcaccttt gtgatggaag tttattttgc aataggaact cacagtgatc taagccctgc 113820 tattcatgaa tataattcat tactggagtc caagttgctt tttggttttt gaagttctct 113880 tcttcccttg caggtataga acaagatgca gtgaatactt ttaccaaata tatatctcca 113940 gatgctgcta aaccaatacc aattacagaa gcaatgagaa atgacatcat aggtaagcag 114000 tgcttgaaac tatggcaaaa aaaaaatgac aaaaaatgca cagaactgac aattttcgtt 114060 attgactaag ataatttttt cttaacatgg aatttagcag ttcccttcct aatttgtttt 114120 ctgagtattt tttatatcgg attatagctc actttaaaag tttctcggct gcattcggtg 114180 cgagggtctt tgcctgggcc agatgggctg cagtgtagcg ggtgctcagg cctgcccgct 114240 gctgagcagc cgggccggcg ggcggctacg ctaaccggca cagaccaccg gatggactgg 114300 ccggcagccc cgcaccagtg cacgaagtgg gcgggacaga aacttctggg gttggaagtc 114360 cagtgaggct aaaagccggt accaaagtct ctaggcatca gggctgcagc ccaagagtct 114420 cacgaccagt gggcaactgg atggccagac aggtgtctca gtggtggcct ctccgtctca 114480 gggcttcatc ccacttctca gtgggcctga cgtccctggg caccctggat gtctacctgc 114540 attagccaga gccatcacat ggcctgtgac ttgccttttt ttgccagttg attgtgccac 114600 acacagtgtc atttctgtgt catttggcac agctggaggt gcaaggagga gggcagcctc 114660 atgtccagtc ccagtttcac gtaactttat tcttctgaat aaagacaatt tgctaacctt 114720 aaaaaaaaaa aaaaaaaaaa agtttttctt atatgttgga cccaaattct taggctttaa 114780 cctgaataac aatgacagca agatcaataa atagtacaca tttattaaac actcactgtg 114840 tcccagacaa tattccaagc actttttatg gatagactca ttttaacttc taaagaactt 114900 tgtgggataa atacagttat tttatagatg aagaaactga agcacagaga agttaagtgc 114960 tttgtccagg gtaacagctc agatatggca gagtcaggat ttgaaactag accctcacat 115020 accttaactg ctgtgctgtg gcagtgtttt tcatactgta ggttgggacc agccttctct 115080 tatgccctca ccccctgcca aaaaaaaaaa aaaaaaaaaa aaatatatat atatatatat 115140 atatatatat atatatatat aatatatata tatataaaat atatatatat ataaaatata 115200 tgtattagta tatatgcata tatagtatat attatatatt agtatatata ctaatatata 115260 atatacatat tagtgtgtgt atatatatat atactagaat aaaaaaatca aagtatctca 115320 gagtagtaag gacaaacatt tcagaaaaat gttttcatta tatatacatg tatgtatgtg 115380 tatgctgatt caacaaatat atttcttata ggttatagca aaatagtttg aaagctttta 115440 ctgtgtttta tcaggaagac cttaggtgaa cgtatattca cagataaaag aggttattta 115500 ttcattcaat aaatattaca ttctcataag tcctaatatt atgtattttt attcttcaaa 115560 aaagttagta tttgtgattt atgaaataag acatgttctt gcacttttag cagatctgtc 115620 ccgatgttgg gcttctttaa tccttagtgt gggtgctttg cactcactca ctgctgggga 115680 cagcaagacc cctgttagtc tcagctgtgt ttcttaaatt ggcccactgt accttccagt 115740 tagctattct ggggtccatg tcatgttggc tccattttcc ttttctttct cccacacaga 115800 tacctataac ggctataaca taggcctggt ggctgttggt ggcttatccc tatctgcttg 115860 tatttaaggg gtactgtttc actgagtttt gctgacagat gttgtcatga gatttgaggt 115920 tttctgtgtt gttgctctat ttttatgtgg gaatttgcta ctatcatcat ccctagacca 115980 gcttttccta gtaatacaac agggatgttc tgactgatta gagtttgcct gtttgaagaa 116040 ttggttggct agtgattttt ttttgagggg agtctgtacc agttaatagc ctgactggcg 116100 tgtggataaa aaggaagcag tttcaagtca aataaaacac ttaaaatgaa accacactgc 116160 aactctcttt cttttactta agcttaatca aattaatgat gatgtaatcc catgaaggaa 116220 aagtcttctg aaggatcaag ttgataacat tttgtgatca aagaatttga gaaaacctct 116280 atcccagtgt ctatcattat atattttagg atgttaatta cctgtgtggc tttaggcaag 116340 tcatttttcc tccttgagcc ccattcttaa tcctgtccaa attatttgtc tcctcttgca 116400 gttggactat tttaatatag ctgtccttca agtgagtttt gttcaaagga gccttcactt 116460 tagctcttac tgtgtaccca ctttgcatag tcttgtttta aatgtaatcc ttggattttt 116520 ggtgttgcta actaattact gtttttatgt gaggatttag agtgatccag aatctatact 116580 tgcactacct ccttcatctt ccacaaatgt ttgaagtggt agaattttta aaaactttga 116640 aggtacagct gacagaattt gctgatggtt tggaagtgag tggtatgaga gggaaaaaaa 116700 ggaataaagc atgactgcat tttttgtttg tttgtttgtt tgtttttgag acggagtctc 116760 actctcgcca ggctggagtg cagtggcgtg atcttggctc acggcaacct ccgcctcctg 116820 ggttcaagcg attcccctgc ctcagcctcc caagtagctg ggactacagg cgctcgccac 116880 cacgcctggc taattttttt ttttgtattt tagtagaaac ggggtttcac cgtgttggcc 116940 aggatggtct ccatctcctg acctcatgat ctactcacct tggcctccca aagtgctgag 117000 gttacaggca tatatataag catataaagt gtgttatagc atacaaacag gtatatatat 117060 aaacatgcag tccacacagc tgataggaat gaggcagtag tgaaggagaa gttgatgtag 117120 gagaggggac agttgttaca ggaaagaagt ctggaggcag aagggatgaa ttccagtgct 117180 cacatagaag attgcttaga tgggagcaag gacaatttat ctagagtcac aggaaagaat 117240 gcagtacacg ggtagagatg caggtgagtt gaaagatgtg agagatgatg gaaataattt 117300 tctgattgct tctatattct caaggaagca ggaagcaaag tcctcagcaa agagaataga 117360 agaggtgtta aatatttgag aaaggagatg tactgtagaa aaaaaaaaaa ctcagtttct 117420 ccttctgaac tctcacaaaa cagaaccctt ccatgactct agttgtgtgg ggttttttcc 117480 ctgtcagcta ccaattctgc agatgattgt tcagtgaaca ccaactgggt gtcctctaag 117540 tcagttcagt tctcacactg tttacctgga gatagcatca gatcccacag attgaggact 117600 ctgtcccaca agactgcctc cacttcagat gccagtctca agtacaagtt gtggcctgtg 117660 cttctgactg accttctata aattggagtt cccacagtcc cctccttggg ttcaataaat 117720 ttgctagagc agctctcaga actcagggaa atgctttaca tatatttacc catttattat 117780 aaaggatatt acaaaggata cagattgaac aggcagatgg aagagatgca tgggcaaggt 117840 atgggagagg ggcacagagc ttccatgcac tctccaggtc atgccaccct ccaagaacct 117900 ctacagattt agctattcag aagcccccct ccccattctg tccttttggg ttttttgtgg 117960 agacttcatt atataggcat gattgatcat tggctattgg tgatcagctc aaccttcagc 118020 cccctcatcc cgggaggttg gtgggtaggg ctgaaagtcc caaacgtgta attctgcctt 118080 ggtctttctg gtgattagcc ctcatcctaa agctctttag aggccacagc cacaagtcat 118140 ctcattagcc ttcaaaagaa tccagagatt ccatgaattt taggcgctgt atgctaagaa 118200 actggctaaa ggccagttgc aatgtctcag gcctgtaatc ccagcacttt gggaggctga 118260 ggcaggagga tcgtttcagg ccatgagatc aaaaccagcc tggtcaacat agtgagaccc 118320 ccttacaaaa aatttaaaaa ttggccaggc gtaatagctc ttgtctgtag tctcagctac 118380 tcagaaggct gaggatcact gagccctgga gttgaaggca gcagtgagcc atgatcgtgc 118440 cactgactcc ggcttgggtg acaaagtgag accttgtctc agaagaaaaa ggaaaaaaaa 118500 aaaactgggc aaagactaaa taacatattt cacagtatca cagatttgta ttgtctagga 118560 aagtgaatgt aaacagacca ggacactagt atgatccctt ggtttcatga aggtcccact 118620 aaagtcatga acacaaagtg agactaggca tcatgttata tggtttttcc agccatgttt 118680 aacagctagc taaatagcta attgtttcgc tgcagtttat tttagcagtt ccttatttta 118740 gcacatttca tgttttaaaa tttctaccaa taacatttta ataaactttt ttacagataa 118800 cttcacaaat ccataatttt ttaagttaca atcccagaaa tagaattgct cattgaaagg 118860 gtatgttcat ttttaaagtt atgctagaaa ctgccaaatt gccttcagaa aaaggtgttt 118920 gtatccccac taacactagt gttagttttc ttgtgccctt gctcaagtat acatattatt 118980 aaaaacaatg ttgggccagt ttactagata aaaggtgtag tgcctcctta ttctaatcta 119040 tttgattact agtgagtatg tatgtctttt cacgttggtc attttatgtt tgttcctttg 119100 tggattgtca tgtcctttgc tcatttttct tttggaacat ttcttagtag tttataagag 119160 ctcttggtat tttaatgata gtaacctttt aactgtcatg catgctgcaa atcttttttc 119220 tgtttgtttg cctttgtatt ttgtttttgg agggtttcta tgtataggaa ttaaatttta 119280 tgttgttaaa tcttttgatt tctgcttttg catatgtact tcaaaagact ttctatttta 119340 agatcaagtg ttacctgtat tttcttttag ttctatttaa aacctcttaa tttatatgcc 119400 tgtgctgtta actcccaagt tgattcacaa gtgtgtatac atagtttgaa tttagtggca 119460 atttaattat ttacaacttc ttttgcagca aggatttgtg gagaagatgg acaggtggat 119520 cccaactgtt tcgttttggc acagtccata gtctttagtg caatggagca agagtaagtt 119580 agttcatatt ttcacattgt gcatcctagg gaatttgggt tcattgttag gaatgggctt 119640 cactcagcta aaaacaaagt atttttgaga atttaaatat tttggatatt tacaagatca 119700 tataaagcat actctatctt ggttaacagt ttcttttaaa tataaattat gtgaactctt 119760 aaaattttca ttttcatttt caatgttaat atttcctaag ttaaaataat ttgtttttag 119820 ttctgaaata atttggggag tgattgagtc tgtagtgatt atgactatta gaattggttt 119880 atttatttaa ataatgcatg tcttcagatg gctctcctaa tttgttagtt aggctttaag 119940 ctaaatggat gctatataac taaatccaca tagatttgtt gaaatggctc cagaggtttt 120000 ttagatttat tactgctatg tgcccttaaa aaaaatctat tcattctttc acttaacatt 120060 tatcagaaga gtgctctgtg taagacgtgg ttaggcatag tgccagtctt gaaggaagtt 120120 acagcctaat aaaagacata gggcatgttg tttggttact gtaatatgaa gtggcatgtg 120180 ttaaatgtca ggggagaact acaaagtcat aaaaaggtgg gagagattac atacaggtaa 120240 aggaatcagg aatgacacca tggggagtaa ggtagtgttg acctaggcct ttaagataca 120300 atagggacag tatggaaaga gtatattttt cccacttaaa ctctttcctt ggtcgttccc 120360 tcaaattttc ccttttgtcc atgtgcaggc actttagtga gtttctgcga agtcaccatt 120420 tctgtaaata ccagattgaa gtgctgacca gtggaactgt ttacctggct gacattctct 120480 tctgtgagtc agccctcttt tatttctctg aggtaaagtc tgcatttctt ttcacactct 120540 attcgagcat tccagcctct aactatcaat gctggggccc tgtctatagg aaataacaca 120600 gaagagccaa gtcatttcca aaaagatgta tcattgtttc aagttgtttc tgatggcaag 120660 agtaatttaa taatatatta gagagaacat gaaaattcaa tgtattaaat aactctaatt 120720 ttgagaaacc taattaaact actgcatgta agagagtgca tgtttttaat tatttggagc 120780 tattttaaaa ccacagaatt tgaaacttgc ttccagtgca taaattgcag accagacttc 120840 agaagagaaa aaaagtagta aattttttct tatgctcatc atttttactt tagtcacttg 120900 ataggattgc ccagtgaaga agcatttgca acagacaatg agtatattaa tctttttgag 120960 gcatacagtt tagtataatg ctctttgtta ggcttcaaca agtgaaatta ttttgttgga 121020 aagcaaatga ctattaagta gaaagaggat tcccagtctc acaaagcagt aatttagaca 121080 ctcgattctg cctctttaca agaatacagg tactcagttg atttgttttc tcactccctt 121140 tctttgctat aagtttaaat caacaatttg tttaggttaa tatgtcctca tggaatggtg 121200 gaaatgatca gatataaaat atttggtttg gttagtttac tctttatatg tttgctggca 121260 aggaaccaca aatccagttt agtataattt ttactctagt tcactaaaag tttgcatcca 121320 gctgtgtagg tagtgtttgt ttcttgttaa cttttttttc gtctaaaaga atactttaaa 121380 acttttcaat ctcaaatgac tgtaacttgc tgacaggtgt taacagaaga agtagatctt 121440 tttgtttttt gcttatgacc tgtattttaa tatttgagct tatagattag agattgtgag 121500 agaaatctgt ttatagtctt attttccctt gtgtattttt tcttcctagt acatggaaaa 121560 agaggatgca gtgaatatct tacaattctg gttggcagca gataacttcc agtctcagct 121620 tgctgccaaa aagggccaat atgatggaca ggaggcacag aatgatgcca tgattttata 121680 tgacaagtga gttatattga tagatggatt cagcagatac ttattgaaca tttgatatgt 121740 tttgtggaaa taaagatgaa taaactcagt ctctgttgtc aaggagctca caggaggcag 121800 cataaaagct gcttttatat ggtgtttgta aagctttggg ggttcttaga acaaaagttt 121860 ctgctgggaa aggggaggtg tatgtggggt aaacaggatg gcaatggtgg tgttcaagga 121920 gtgtttccca gaagagagat tttgtttgga tcccaaagaa agaagggaat tttgctaccc 121980 agagaaggca gaaaacaaca ttctaggcaa aggcattggc ccagaagcca tggaaacgta 122040 ggggaaagtg gcactttcaa gaaacttgag tttagataat caaaggagtg gggaataaat 122100 atgaggatgc tggtactaat tggaatagat tgtaagggac cttgaatgcc tatttatggg 122160 tatattatac tttctgtata aatctgctca ggcacgttgt taattagttt tttattagtt 122220 ttcactgaaa atgagaggat ggaaacatca tacagtaaac aaaattgaaa atatctggtc 122280 aggcagatga tgagcttgtg gccagctctg taacgtatgg tattcttttc atttaacttt 122340 tcttactctg taaaaaaagt aattcgtggt cgggcacggt ggctcactcc tgtaatcaca 122400 acactttgag aggcagaggc aggtgaatcg cttgagccca ggaatttgag accagcctgg 122460 gcaacatggc aaaacccgcc tttactaaaa atacaaaaat tagctgagcg tgatggcgtg 122520 cgcctgttgt cctagctact taggggcctg aggcagaagg atcacctgag ccttgggagg 122580 tcgaggctgc agtgagctgt gatccactgt actccaccct gggcagggca gtagagtgag 122640 accctgtctc caaaaaaaaa aaaaacaaca aaggtaattt gttatttgta tccttaagca 122700 aatgctaaag gggtaacttg gggatagaga aaagtccaca gatgttaggg tttgaagaca 122760 ctaatagtat ctaggccagt ggttcctgaa cattagtctg tgggctcttg ctgggctgtc 122820 tgcataggaa tcacctgaga gcttattaaa aataggtttt caggctggtt gcggtggctc 122880 acgcctataa tcccagcact ttgggaggct gaggcaggcg gattacttga ggtcaggcgt 122940 tcaagaccag cctggccaac atggtaaaac cccgtctcta ctaaaaatac aagaattagc 123000 caggcatgat ggcacacacc tgtaatccca gctactcagg aggctgagga aggagaattg 123060 ctcgagcccg ggaggtggag gttgcagtga gcggagatca tgccactgca ctccaggctg 123120 gctgacagag ggagactctg tctcagaaaa aaaaaaaaaa ataggttttc agtctgggta 123180 ccggtggctc acacctgtaa tcccagcact ttgggaggcc aaggcaggca gatcacttga 123240 ggtcaggagt ttgagaactg cctggccaac atagtgaaac cttgtctcta ctagaaacta 123300 caaaaaatta actgggcatt ttgacgggtg cctataatcc cagctactag ggaggctgag 123360 gcaggagaat tgcttgaacc cgggaggcag aggactgcat ctcaaaaaaa aaaaaaaaaa 123420 aaaggtttcc agtccccctg tctcagaaat tctgattctg caggtttgag gtgtgaccag 123480 gaatctttat ttttagaaga cataccagat aattctgata aatagccagt ttagggatgt 123540 agtctaattt tcctattttg caagtaagga aaataaggcc cagagaggta atgattttct 123600 caaagtcaca gaacaagtta gtggcagaat ttggactgga atgcagttct taatgttctg 123660 tccagtgttt attctggtac agtatgtttg tagaaggtat tacgtaagaa acattgttat 123720 atagatgttg agataggaag agtttacatt tagaaatttg gtctaaaatg cctgaacatt 123780 caagtcgtgg aggagtattg accaacttac tcaatacaac ataggagatt cacattttgt 123840 tacaaaaatg ctgatttaaa aggagagttt tctttttttt cttctttttt attttttgag 123900 atggagtctt gctctgtcac ccaggctaga gtgcagtgac acgatctcag ctcactgcaa 123960 cctccacctc ctgggttcaa gcggttctcc tgcctcagcc tcctgagtag ctgggattac 124020 aggtgggggc caccacgccc agctaatttt tgtattttta gtagagacag ggtttcacca 124080 tgttggccag gccggtcttg aactcctgac ctcaagtgat ccacccacca ctgcctccca 124140 aagtgctggg attataggcg tgagccactg tgcccagcct gcttgttttt gtatcatata 124200 tatgcatcat cataatcatg cattatcaac ctttgtattt ctgtcaggac atagaaacca 124260 ttagagtgct tggaagagag cctttttttt tttctcgcat ttaatgcttt ttttggtatt 124320 catttcataa tcagcttacc aaaacattac ctgcattata ccccatcaag gtagaaatct 124380 ttgtgttatc aatattggtt actccctttc cacaccgagt catcagtaag tcctgttcta 124440 tccaaatagg tcatatgcat ctagctcacc cctcagtgct gttttgtttt gaatttgtac 124500 atgtttactc ctgatgcctt gtagttatga tgatgtgttc ttattttatt ctgtgcatac 124560 aagttctcag ctcgcttttt agggaaaatg accatgtctt cctttcctat aaattccttt 124620 ctatctatca agtcctcaac agagaatagg tacccataaa tatgtgattg ttagtttctt 124680 tgcctcagtt gtagtctgat ccttacagct tttaaacaac agtagagttc accgtcaaga 124740 actaaggatg gttggcaggc agatagaaag gtagcaagtt gacccaacta tctctgggga 124800 agtgggaaca aagaaaggtt acatcagcac tgtcatcaca tagctctata gttctaggcc 124860 tgcaggctca atcaagtagc cttgtataag attctctgga ggaggtgctg aaagttgctt 124920 atacttgcta tggaatttga ttttacttcg gatatctttt taccataggt acttctccct 124980 ccaagccaca catcctcttg gatttgatga tgttgtacga ttagaaattg aatccaatat 125040 ctgcagggaa ggtgggccac tccccaactg tttcacaact ccattacgtc aggcctggac 125100 aaccatggag aaggtaaccc agaacttcaa acgtatcaaa ctacaagaag ttttattggt 125160 agaactcata aaatataagg tgggaaaacc aagcagaata gcacagtgga aattgaagca 125220 gtccagcaaa gtgattaaga gcagaggcct tgagtctggc ctggtatgta cagtcacgtg 125280 ccacataaca ttttagtcaa cagtggactg cgtgtacgat ggtcctgtac gattataatg 125340 gatcaaagct ggtagtgcaa taataacaaa agttagaaaa aataaatttt aataagtaaa 125400 aaagaaaaaa gaaaaactaa aaagataaaa gaataaccaa gaacaaaaca aaaaaaatta 125460 taatggagct gaaaaatctc tgttgcctca tatttactgt actatacttt taatcattat 125520 tttagagtgc tccttctact tactaagaaa acagttaact gtaaaacagc ttcagacagg 125580 tccttcagga ggtttccaga aggaggcatt gttatcaaag gagatgacgg ctccatgcgt 125640 gttactgccc ctgaagacct tccagtggga caagatgtgg aggtgaaaga aagtgttatt 125700 gatgatcctg accctgtgta ggcttaggct aatgtgggtg tttgtcttag tttttaacaa 125760 acaaatttaa aaagaaaaaa aaaattaaaa atagaaaaaa gcttataaaa taaggatata 125820 atgaaaatat ttttgtacag ctgtatatgt ttgtgtttta agctgttatg acaacagagt 125880 caaaaagcta aaaaaagtaa aacagttaaa aagttacagt aagctaattt attattaaag 125940 aaaaaaattt taaataaatt tagtgtagcc taagtgtaca gtgtaagtct acagtagtgt 126000 acaataatgt gctaggcctt cacattcact taccactcac tcgctgactc acccagagca 126060 acttccagtc ttgcaagctc cattcatggt aagtgcccta tacagatgta ccatttttta 126120 tcttttatac tgtattttta ctgtgccttt tctgtatttg tgtttaaata cacaaattct 126180 taccattgca atagtggcct acgatattca ttatagtaac atgtgataca ggtttgtagc 126240 ccaaaagcaa taggttgtac catatagcca aggggtgtag taggccatac catctaggtt 126300 tgtataagta cactctgtga tgttagcaca atggcaagca gcctaacgga aattctgttt 126360 attgattgat tgattgattg attgattgag acagagtttc actccattgt ccaggctgga 126420 gtgcagttgc acagtcttgg cacactgcaa cttctgcctc ccaggttcaa ccaattatcc 126480 tgcctcatcc tcccaagtag ctgggattac aggcaggcac caccatacct ggctaatttt 126540 tgtattttag tagagacagg gtttcaccat tttggccagg ctgttctcga actcctgacc 126600 ttaagtgatc tgcctgcttt ggcctccgaa agtgctggga ttacaggcat gagctaccat 126660 gcctgggcag taactgaaat tctctaatgc cattttcctt atctgtaaag tgacgataat 126720 atgcacgttt acctcaaagt tactttgatg attaaagtaa ggtaatgtat ataaaataca 126780 tattaacata gtacctgaca catggtaagc atcaaaaaat gttaactact tttattacta 126840 ttattattac gtatttttaa ataattagag agcagtatca aaaattagct gggcgtagtg 126900 gcatgcacct atagttccag ctactcagga ggctgaagct ggaggattgc atgagcctgg 126960 gaattaaagg ctgcagtgag ccgtgttcat gcccctgcac tccagccttg gtgacagagc 127020 aagaccctgt cttgaacaat taaagaaggc attatgccgc aacgttagct tagaaatgat 127080 ccacatatat caccagtaac tgtcaacagg attggaaccc tagttttggg tattatgatc 127140 acaaggtatt attaatagct tattaataat aaagcgttgg ctaggcacgg cgactcacat 127200 ctgtaatccc agcactttgg gaggccgagg tgggtggatc acctgaggtc aggagtttga 127260 gaccagcctg accaacatgg agaaacccca tctctactaa aaatacaaaa ttagccgggc 127320 gtggtggtgc atgcctgtaa tcccagctac ttaggaggct gaggcaggaa aatctcttga 127380 acccgggagg cagaggttgc agtgagctga gatcgcacca ttgcactcca gcctgggcaa 127440 caagagcaaa actccgtctc aaaaatataa ttataataaa taaataaaag taaagtattg 127500 atgtttgtga atgatttatt cttctaatga actagaggag atttttccag gaatttcaga 127560 gccagtgagg ttatgttgct tgtatgtgtc atgtgtatcc aggtgaaaaa acttaattaa 127620 acgctattat ataataccat acataaaaac tgaattttag gaatactgaa gaatgacata 127680 tagaagtcaa atcattaaat agctagtagt aaacagaata gagtgtcagc tgttacccaa 127740 tgatgataat attttcacga ttaaaattaa accttttctg attttaaagg aaaagttcag 127800 atctgtatca tataaagaat gtaaattttc agggtaataa aattaaaatg cagagagaaa 127860 aatgcaaaaa tagttcttac tagatgtgtg tatgtaagga acttagacta attttaagaa 127920 cactgtcaag accctggtag ttaggtagga aaaaagacat gaatgattca ttcaacaaaa 127980 actttgagta tttctgtgct agatggtagt gttacagtgg taaacaaaat aaatgtgttt 128040 ctgctatcct ggagcttagt ctacaaaaaa ggtacatatt ggccgggcac ggtggctcac 128100 gcctgtaatc ctagcacttt ggaagatcga ggcgggtgga tcacctgagg tcaggagttc 128160 aagaccagct tggccaacat ggcgaaaccc cgtctctact aaaaatacaa aaattaactg 128220 ggtgtggtgg cggacacctg taatcccagc tactcgggag gctgaggcag gagaatcact 128280 tgaacctggg agacagaggt tccagtgagt cgagatcatg ccactgcatt ccagcccggg 128340 ggacaaaagc gaaaatacgt ctcaaaaaaa caaaaacaaa caacaaaggc acgtattaaa 128400 tacgaacata aatatttaca aattatactg aataagttct catgtttatt atttgcttgt 128460 ccagttacaa acttttcctt cgtagaatta gaaatataaa taataaacat gagaactcat 128520 tcagtataat taataattat taaatgtaaa taaaaacatc tatgtacaat taggcattta 128580 tttaagaatt atttgaaaaa aaaacaatgt ggaaacagat attttgatat attgctagtg 128640 attgaaattg ataatgttct tttgaagagt aaagtgacca tatatattaa agttaaaatt 128700 taactcagca atcacacgcc tggtgagtta tcttaaggaa atcagtttga aagtaaaatc 128760 aatatatgca caaagacttt aacatttatc ataaaccaga aaaatcgagt ttcaaattat 128820 atcctatgga ctattttctg ctaaaaagta ttaatatcaa ctttatgtaa tactttcgtg 128880 acaaatattt tgggggagaa aacccaacaa aattacatgc attgtaattt tttttttttt 128940 ttttttttta gacagtcttg ctccagcgtc caggctggag tgcagtggtg caatctcggc 129000 tcactgcaac ctccatctcc caggttcaag caattctcct gcctcaggcc tcccgagtag 129060 ctgggattac aggcgctcac caccatgcct agctaatttt tatagttttt agtagagatg 129120 gggtttcatc atgttggcca ggctggtctt gaactcctgg tctcaagtga tccgtctgcc 129180 tcggcctcct agagtgctga gattacaggt gtaagccact gcacccagcc ttatgcatta 129240 taattttaat ttgtaaactg tacaaaggga taatacttgt agtacaacaa gaagtaaaaa 129300 catttgttat aggtagttaa catttgtaac cagtagaatt ataggtaaaa tttatttatt 129360 taaaacagtt ttagttggat ttgatttcaa ctttaaaata atgcttttca tctctatcag 129420 gtctttttgc ctggcttttt gtccagcaat ctttattata aatatttgaa tgatctcatc 129480 cattcggttc gaggagatga atttctgggc gggaacgtgt cgctgactgc tcctggctct 129540 gttggccctc ctgatgagtc tcacccaggg agttctgaca gctctgcgtc tcaggtattg 129600 actgattgcg tctgccatta gggagaaaag catacacatc ctttccttca catcccagta 129660 acagatccta ttatttgtaa attttaagtt gtggaaaaaa aagataaaag ccaggcacag 129720 tggcctgtgc ctgtaatccc agcactttgg gaggctgcgg tgggcggatc acacgaggtc 129780 aggaattcga gaccagcctg gccgacatgg tgaaacccca tctctactaa aaatacaaaa 129840 attagccggg catggtggca ggcacctgta atcctagcta cttgggaggc tgaggcagga 129900 gaatcgcttg aacccaggag gcagaggttg caatgaacca aaatcacgcc actgcactcc 129960 agcctgggtg acaaagtgag actgtgtctc aaaaaaaaaa aaaaaagaga gaaataaaat 130020 tagcctactt actatcttct aatcaaagca tttgtggtaa cttaaaatat actgtattgt 130080 aaagtatcat gctgtttcat ttaggccatt attctatttg aatctgtggc tgtttctctt 130140 aataaatcaa gtaatatgga atatattcat agcctctgaa gagctcttta tgtaagtatt 130200 tatttaggat actttttgta aaataagtga atgaattctt aggtctcctt tttttttctt 130260 ttcttgagac agggtctcct cgctgcaacc tggaaattct gggctcaaat aatccaccca 130320 ccacagcctc ctgaatagct gggactagag gcatgcacca ccacgcctgg ctaatttgaa 130380 attttttttt ggccaggcat gatggttcac gcctgtaatc ccagcacttt gggagaccga 130440 ggcaggcaga tcacgaggtc gggagatgga gaccagcctg gccaacgtgg tgaaaccccg 130500 tctctactaa aaatacaaaa attagctggt tatggtggct catgcctgta atcccagcta 130560 cttgggaggc tgaggcagga gaatggcttc aaccagggag tcggaggttg cagtgagccg 130620 agatcacgcc actgcactcc tgcatggtga cagagtgaga ctccatctca aaaaaaattt 130680 tttttttaaa tgatggagtc ttgctgtgtt gctcaggctg gtcttgaacc cctgacctca 130740 aatgccgcct gcttcagcct aagtttcttt tttttttgta aagagacagg gtcttgctat 130800 gttggccagg gtagtctcaa actcctggct tcaagcagtc ctcccacctt ggcctctcaa 130860 agtgctggga ttacaggcgt gaaccactac ctataatgtt gtgtttcact caaggccttt 130920 tgatttcgtt ttgcattacc gtgccacatt gtgcatttcc ttgacctttt ttgggttttt 130980 tggagtgctt tcatatgtta aaccatacct gattctcctc aaaatcacac aaagtagaat 131040 atcctaagac aagaaatcta aggaggcata aagaagttaa ctggttttat taaactcaca 131100 cagtaaatga tagagccaga aatattcccc ttctagtgtt cttcaccatc agcttaatgt 131160 agcataataa ttttctaatt actgttgaca aataaataac cctttgaatt ttcaatactg 131220 ggccttggat aaattttcct aatttgtaag agagtattat cgtattgcca tttacaaagc 131280 tctcctgagt atctttttct tctgttaagt ttacctagga gataaactgc tgagtatggt 131340 tgccattttg gttttttgat ataggttaga atgtcttggt tttttttttt tttttttttg 131400 gtttttgttg ttgtcattgt ttgagacagc atcttgctct gtcgcccagg ctggagtgca 131460 atggcacgat cgtggctcac tgcaacctcc acctcccggg ttcaagcaat tctcctgcct 131520 cagcttcctg agtagctggg attacaggca tgtgcaacca cacctggcta atttttgtgt 131580 ttttagtaga gaaggggttt caccatgttg gtcaggctgg tattgaactg ctgacctcat 131640 gatccacctg cctcggcctc ccaaagtgct gggattgcag gcatgagcca ctgcacctgg 131700 ctgaatgtct tgtttttgat taggcactta agaaaggcct aggtactaac cataaaatat 131760 atttttatac cttttgttga tactatatat atagaaaact gcacttatca taaccttaga 131820 caccttgaag aatgttcaca agcagaacta acccatgtga cccagcatcc agatcaaaaa 131880 cagcattatc agcccctcta gaagccctct tgggcccctt ccattcactg tccttcttgt 131940 caccagggta gctactatcc tgacttttga tggcatagat tagcattacc tgttcttgtc 132000 attttataaa taaaaccata ctgtgtattc ttttcttgta cagctttatt gtgctaattc 132060 acatttacat catacaattc agtggttttt atatggtcac agagttaggt aaccattacc 132120 acatcgattt tagaacattt ttttcactcc agatagaaac cccctttact taaactccaa 132180 atcccccact ccaccagccc taggcagcca ctagtctact ttttatctct atagagacaa 132240 tagatttgct tattctggac atttcataaa catggaaccg tatattatgt ggtcttttgt 132300 tgccaactgt ctttcactta gcatcatgtg ttcaaaagag catcatgtta tccatgtttg 132360 gcatgtatca gaattttatt cctcattatg gccaaatatc ccattgcaag gatttatgac 132420 attttatttg aattgtaccc tcctttctgc catttatcaa taatgctact gtgaccattt 132480 gtgtacaagt ttttgtgtgg atacaggttt tctttttgtt tttaaatttg aggtggagtc 132540 ttgctctgtc gcccaggctg gagtgcagtg gcacaatctc ggctcactgc aacctctgtc 132600 tcctgggttc aagcagttct cctgcctcag cctcccgagt atctgggact ataggcacgc 132660 accaccacgc ccagctaatt ttttagtaga gatggggttt caccatgttg gccagtctgg 132720 tctcgaactc ttgacctcaa gtgatccacc catctcggcc tcccaaagtg ctgggattac 132780 aggggtgagc cactatgccc ggctgtggtt ttcatttctt ttgttgtata tacataggag 132840 tagaattgct gagtcaagag gtaactctta aacttattga aaaactgcca gattgttttc 132900 cgaaaaggct gcaccatttt gcaatcccac cagcagtgta tgagttttac agcttctcca 132960 catttcattg gaacttatta tctgtttggc tgtttttaaa aatgatagtc attccaataa 133020 gttctacttc agtgtggttt ttgcacttct ctgatgagta atgatgttga gcatcttttc 133080 atttgcttat tggcctttgt tctagctttg gaaaaatgtt tattcaaatc ctttggccat 133140 ttttattttt atttttattt atttattttt ttttgagacc aagtctcact ctgtcagcca 133200 ggctggagta caatggtgtg gtctcagctc actgcaacct ccgcctcctg tgttcaagtg 133260 attctcctgc ctcagcctcc cgagtagctg ggattacatt tcaggcacct gccagcatgc 133320 cgggctgatt tttgtatttt tactagtgac agggtttcac catgttagcc aggctggtca 133380 caaactcctg acctcaggtg atctgcctgc ctaggcttcc caaagtgctg ggattacagg 133440 cgtgagccat tgggcccagc ctagattttc ttttttcttt ttttttttga gaaggagtct 133500 tgctcttgtt gcccaggctg gagtgcaatg gcacaatctt ggctcactgc aacctctgcc 133560 tcctgggttc aagcgatttt cctgcctcag cctccccagt agctgggatt acaggtgcct 133620 accaccacac ccagctaact tttgtatttt ttttagagac agggtttcac catgttggcc 133680 aggctggtct caactcctga cctcaggtga tccacctgcc ttggcctccc gaagtgctgg 133740 gattaccggc atgagctacc aggcccagcc aattttctca ttatattgcc caggctggtc 133800 tcaaactcct gggttcaagt gatcctcctg ccttggcctc ccaaagtgtg gggagtacag 133860 gcgtgagcca ccttgctcag cccctttgcc catttttaaa ttagattgcc tttttatatt 133920 gagtttcagg agtcctttat atattctaga taaatgtccc ttatcaaatt atattatttc 133980 caggtatttt cttcattctg tgagttgtct ttcctctacc ttttaaaaaa ggtgggtttt 134040 tgtttgtttg tttgtttgtt tttttaagat aaggtctcat tctgctgccc aggctggagt 134100 gcagtggcac aatcacagct cactgccacc tcaacttcct gggccgaagt gatcctctta 134160 cttcagcctc ctgaatagct agggccatag atacacacta tcacacccag cttttttttt 134220 ctgtttgtag agacagatct tactgtgttg cccaagttgg tctcaaactc taggctcaaa 134280 gtgattctcc cacctctgcc tcccagagtg ctgggattac aggtgtgagc cacacgcaac 134340 ctgtcttttc actattaata gtgtcttcct gcttcagcct cccgagtagc tgggattaca 134400 ggcacccacc accatgcctg gctaattttt ttgcattttt agtagagaca gtgtttcacc 134460 atgttcaccc ggctggtctt gaactcctga cctcaggtga ttcacctgcc atggcctccc 134520 aaagtgctgg gattacaggc gtgagccact gcacccggcc aaaatattgc cttcttaaca 134580 gtattgtctt ctaatttgtg aacatggatg tatcttcatg tatttatgtg ttctttcatt 134640 tcagcagaat tttgtagttt tcagagtaga agcctttcac ctccttgggt catttattcc 134700 tatgttttaa gttcttttcg attccattat aaatagaatt gttttcttaa tttcattttc 134760 agattgtttg atgagagagc atagaaatac aagtgatttt tacatgttga tcttgcaact 134820 tcaactttga taaatctgat tgttagctct aatagttttc ttgtggattc tttaggattt 134880 tcaatatata agatcatgtc atttatggat agagatagtt ttttttctgg ctagaactta 134940 cagagcaatg atgagtagaa gtggcagaag caaaaatctt tgtcttgttt cctatctgac 135000 agggaaagct ttcagtttca tcatttaata tgatgttagg tgtgggtttt caataaatgc 135060 cttttttcag attcaggaat ttccctatca ttcctgattt tttaaggctt tttttttttt 135120 ttaaatcatg aaagggtgtt gaatattgtc atgttctttc tgtatcagta taaatgatcc 135180 tatggatttt gggttttatt ctgttgatgt gaaatattaa ttgattttca gatgttaaac 135240 caaccttgca tacctgagat gaatctcact tggtcatggt gtataatctt ttcaatatgc 135300 tgctggattc catttactgg tattttgttg aagattttgt atctgaacgc ttaagataac 135360 atttacactc tatcagaaat gaattgacca taaatgtgag agtgtatttg tgggttcttg 135420 attctcttcc attccaaaga tagacataca tccgtctgta tgtctgtctt tatgccagta 135480 ccatactctc ttgattacta ttgctttgta ataagttttg aaatcagaaa gtataaatga 135540 gattttggta tctgagtaac agtcctcata gaattagttg ggaaatattc cctctttatt 135600 ctggtccctc tttctttttt gtttaactgt gtatcttgga gattgttcct tctcaacaca 135660 tgagagccgc tttccctacc ctcccacccc tgctatagag aggtctataa gtgtctgttc 135720 aattatttta tttacttaac ctattactta gtcggggaca ttaagcttgt ttatgtcttt 135780 tattttaaac aatgctgcag tgaataatct tgtatataag tcattttcca tcaatataag 135840 tctctctgta actgaatttt tagaagtgga atttctaggt caacctatgg ctctgtattt 135900 cacaaaaata ccaattctgg tttttcttgt ggaggtgggg agtaggaggt agaatgctgg 135960 aggagaactt gctgtactca gctggctagt cattttagaa aggtttcctt agcttctttt 136020 tgtcatatgg cctcaccaag aatcaaaaac attcctattt accctgtaaa catggggctt 136080 tactacccaa gatacatatt tctggatgta tgacagcttt tcatattgaa gaaataatgc 136140 tgtgagtaca gcacatttgt tggaacttag gtcgttaaga atgtcttata aattcataca 136200 ttatacattt tattttattt tattttttag tttttgatac agagtcttcc tctgtcgccc 136260 aggccagcgt gcagtggtac aatcttggct cactgcgacc tccatctcct gggctcaagt 136320 gattctcatg tctcagcctc cagagtagct atggttacag gcatgcacca ccatgcccgg 136380 ctaatttttt tatttttagt agaaactggg tttcaccata ttgaccatgc tggcctcgaa 136440 ctcttggcct caagtgatcg gcctgcctca gcctcccaaa gtgctgggat ccttgtattg 136500 ggtaaaagat gaatattgag ggctgcatgg tggctcatac ctgtaatccc agcactttct 136560 gagactgagg tgggaggagt cctggagccc aggagggtga ggctgcagtg agttgtgatc 136620 gcgccattgc acttcaacct aggaattata ggcttcagtc actgtgcccg gcatgtacat 136680 tttaatattg tgctttcctc ttttagctat agtatgaggt tacatttcag agtcattgtt 136740 gttaagcatc ttaatagtga tgaggttgag tgaaagttac ttctatttca aacactgaag 136800 aaaattttgt acaaatctgt cacattccaa gcccaggact gattgtttca tatacttcta 136860 attttacaat ttctattgta gtccagtgtg aaaaaagcca gtattaaaat actgaaaaat 136920 tttgatgaag cgataattgt ggatgcggca agtctggatc cagaatcttt atatcaacgg 136980 acatatgccg ggtaagctta gctcatgcct agaattttta caagtgtaaa taactttgca 137040 tcttttaaat tttttaatta aattttacat ttttttctaa tctattatta tatgcccaga 137100 actttcactt agagtgtgca gtataatgtg gtggttaagt ataaaggctc tggagtgact 137160 tcctgggttt taatcttggc tctgccattt attggcagcc gctaacctct tggtatctca 137220 gtttcttcat ctgtaaaatg agaataataa agtgaaaaga tgccaacatc atttactctg 137280 ggctgcataa ctgatacttg gaaaaagtat tcctttgagt ttaagaatta agttggttat 137340 tcattttagc ttgtaataaa aagatagtga ttcataggat atgccactta ctgaaattta 137400 ccacagatcc aatcataaaa tcactttctc ttccctaaag atagcttgat taacatgtaa 137460 aggtgtgtaa aggcttgatt acactaccct gatccgtacc ccagttccca gcagcaccat 137520 gaaaaaggga tttcaacata tttaattact ttcagtagaa agtaacagtg gtaggccagg 137580 cgcagtggct cacacctgta atcccagcac tttgggaggc cgaggtgggc ggatcacgag 137640 gtcaggagat tgagaccatc ctggctaaca cgatgaaacc ccgtctctac taaaaataca 137700 aaaaattagc cgggcatggt ggcaggcacc tgtagtccca gctacttggg aggctgagac 137760 aggagaatgg cgtgagcccg ggaggcggag cttgcagtga gcttagattg tgccactgca 137820 ctccagcctg cgcagtggag cgagactctt gtctcaaaaa aaaagaaagt aacagtggta 137880 ttgggagact gaggagccta gaaagtactt gaaggaagta aaaggtttgt ttgaccacat 137940 tgtatttgga aagccagctt tttcagctgt gtcagctttg tgtagtgatt tttagttctt 138000 cttttagaaa ataacggaca aggccgggca cggtggctca cgcctgtaat cccaccactt 138060 tgggaggccg agacgggcgg attacctgat ctcaggagtt cgagaccagc ctgggcaaca 138120 tggtgaaacc ccgtctctac taaaatacaa aaagttagcc gggcgtggtg gcgtgtgcct 138180 gtagtcccag ctactccgga ggctgaggca ggagaattgc ttgaacccgg gaggcggagg 138240 ttgcagtgag ccaagatcac accattgcac tgcagcctgc gcgacagagt aagactctgt 138300 ctcaaaaaat aataataaaa taaaaaagaa tggacagtaa acctaaatga gttcattccc 138360 aaagatgatg ttattcttaa gggatggttc atttatttaa gaccttacat aaagtctatc 138420 aattgcgtga tttttcactt ctgtaattgt gtgtatgtat aatgtaaata tatatgtttt 138480 tgttttgttt tggttttttg agacggagtc tcgctctgtt gctcaggctg gaatgcagtg 138540 gtgcaatctc agctctctgc aacctctgtc tcccaggttc aagcgtttct tctgcctcat 138600 cctcccaagt agctgggact acaggcacgt gccaccacgc ccggctaatt ttttgtattt 138660 ttagtagaga tggggtttca ccgtgttagc caggatggtc tcaatctcct gacctcgtga 138720 tccacccgcc ttggcttccc aaagtgttgc tattacaggc atgagccacc acacccagca 138780 tgtatttttt aaatgtataa aatgaagcag aaaagagaaa tgataatttt tcttcatctt 138840 gaaagattat cttcaccagg cgcagtggct cacacttgta atcccagcac tttgggaggc 138900 ctcggcaggc ggctcacttg agttcgaaac cagcctggcc gacatggtga aactccgtct 138960 ctactaaaaa taaataaata aagatggttt taatatatgt tttagtttta tgattttagc 139020 atctttctga aatttttctc aaggcaagta aatttgtatc agttggtata ttggtaccca 139080 tctatgaaat aacttattag gaagatatct ctaaaataag atcactttgc ctaaaataaa 139140 ctgatatatt gatgttcaca gaatttttct tttaaccgac ttgataaatg cattattctt 139200 gacgtcaagt gatccacctt cctcagcctc ccaaagtgct gggattacac acatgagcca 139260 ccgcacctgg cattattctt ataaaaggtt aaatttctag ttaagtttaa tgtcctcttt 139320 gttcatgtac cattgcttat tttcttccct tcctactcac agtaatcatt cttatggtat 139380 gcacttttgt ttgcttattt ttatgtaatt gatattacgc tccattctgt acgttgtact 139440 ttcattcaca gtgagttttg gacattccta tgttcatcta tacagactta cttcatttta 139500 actacactgt agtattccgt atgtaatatt tactataact catcactgta gcagagcatc 139560 tcatagtgta tgtattactg ttttgccatt ttggtatcaa tgagtattta agtcatttgc 139620 agtttttccc tcttataccc agtattacag aggatctctt tttatatgct tctttgtacc 139680 aagaggcaga ttaaaaaatt tttttttgaa aaaatttttg aaaaaaaatg aaatgaagtc 139740 tcactatgtt gcccaggctg gtctcaaact cctaggctca agcaatcctt ccatcttggc 139800 ctcccaaagt gctggggtta caggcatgag ccaccatgcc tggcctacat tttaaatttt 139860 gatagctctt acaatttact ttgtaaagta tctgcatcat tttatgttct caccagtctt 139920 taataagaat acttcatact tttggctgga cacagtggct cacgcctgta atcccagcac 139980 tttgggaggc cgaggcgggc agatcaagag atcgagacca ccctggccaa tatggtgaaa 140040 ccctgtctct actaaaaata caaaaattag ctgggcgtgg tggcgcaccc gtagtcccag 140100 ctactcgaga ggctgagaca ggagaatcac ttgaacccgg gaggtggagg ttgcagtgaa 140160 cttagatcac accactgcac tccagcctag caacagagtg agactctgtc tcaaaaaaaa 140220 aaaagaatac ttcagactta attttttttc cagtcttaag tgtttgctaa tgagattgag 140280 tttcttttgg tatgtctctt gattgttcag gttttttctt ttatgaattg actgttcatc 140340 tctttttcac attatttctg ttgggtgatt ttattagtga cttgttaaaa ttctgtatat 140400 tttttcagca tgacacttca ttattcaaaa aaaaaaaaag attctctatg tttctcgata 140460 ctaatcattg gttggtaata ccttaaaaat aagaccctta ctgtattttt tgcttttttt 140520 tttttttttt tttttttttt tttgagatag agtcttgctc tgttgcccag gctggagtgc 140580 aatggtatga tctcggctct cagctcactg caactgcaac ctctacctcc ctgtttcaag 140640 caattctcct gccttagcct cccaagtagc tgggattaca ggcatccacc accacaccca 140700 gctaattttt gtatttttag tagagacagg gtttcaccat gttggccagg ctggtctcaa 140760 actactggcc tcaagtgatc cgcctgcctc ggcatcccaa agtactggga ttacaggcat 140820 gagccacagt gcctagccac tttttgcttt ttaactttgt tttatagtac tatagtttta 140880 gtataaacag atgtatgtat acacacaact atggctttat aatatgtttc agtcattgtt 140940 agagcaaggc ctaccttttg ggtgcttctt ttacaaaatt gtcttggcta ttcttgtgcc 141000 ttttttctta tttgtgaatt ttagaattgt gaattacctg ttgactcacc atgttttgta 141060 aactgaggat tttgaatgga attgcactca attaaagatt atcttgcttt ctgtgcagca 141120 atgttttatt tcaaataatc cctactttaa attacttagg atagctataa attgtgtttc 141180 tggctttcta gatttagatg aaacgcttta aattgattgt tttctcctaa atttaaaact 141240 gattgttaga agttaaagtc ttctgttcat tcttatttag gaagatgaca tttggaagag 141300 tcagtgactt ggggcaattc atccgagaat ctgagcctga acctgatgta aggaaatcaa 141360 aaggtttgtg gtgtttttat acttcatatt aagcctttac tcacattagt gattgactgt 141420 aagtcaaaga ccacttaagg tttaaactgt ttattttgta aagtaaccac tgtatctttc 141480 accttgtgtt tatagtcaga agtaagtaca agggcttcct gtagtcacat ctttatgcaa 141540 tctcctctga atcaaaagtt agtgaacttg ctttgccact ccagaaggca catgaatatg 141600 aaaaagcatt gtctattttc ttatttaatg gcaaaatacc cgacctaagt tggacttaat 141660 gtttgagacc gtttatttta ttaaattata ttttttctct tttctttttt ttttttgaga 141720 cagttcttgc tctgtcaccc agaccggagt gcagtggtct gaccgcacct cactgcaacc 141780 tctgcttcct aggttcaagc gattttcctg cctcatcctc ctgagtagct gggactacaa 141840 gtgcgcacca ccacacctgg ctaatttttg tatttttagc agagatgagg tttcaccacg 141900 ttggctaggc tggtctcata ctcctgacct caagcaatcc atccgccttg gcttcccaaa 141960 gtgctgggat tacaagtgtg agccaccatg cctggcctta ttaaattatt tttattaaat 142020 ttcctcaaga ttgatgaaag taatgaaata taaaagtaat gaaatatatg tggaaaatag 142080 actggattaa gaaaatgtgg cacatataca ccatggatac tatgcagcca taaaaaagga 142140 tgagttcatg tcctttgtag ggacatggat gaagctggaa accatcattc tgagcaaact 142200 gtctcaagga tagaaaacca aacaccgcat gctctcactc ataggtggga attgaacaat 142260 gagaacactt ggacacaggg tggggaacat cacacgctgg ggcctgtcgt ggggtggggg 142320 gctgggggag gaatagcatt aggagatata cctaatataa atgacgagtt aatgggtgca 142380 gcacaccaac atggtacatg tatacatatg taacaaagct gcacgttgtg cacatgtacc 142440 ctagaactta aagtataata aatttaaaaa aaataaatat atgtggaaaa tattaatagg 142500 tcaaaattca aattgttcat ttaatcagaa gagtagttta gtcaaatcca agggttagac 142560 aacagaaatc ttttttgtca agtgcattct ttgtgactga tttcattttc ttcctggttt 142620 acacaggaag atttcagaaa caaatgtgga tccgtgacag atggtatcta gaagttttta 142680 gtttggttga attgacagta ttttattgag taaaagatac taatttttgt aagaagaaaa 142740 attcaatttt gataagtatg tttaagatta agagctattg gccaggcgct gtggctcatg 142800 cctgtaatcc tagcactttg ggaagctgga gcaggtgggt cacgaggtca agagattgag 142860 accatcctgg ccaacatggt gaaaccctgt ctctactaaa ttagccaggc gtggtggcac 142920 atgcctgtgc acccgcctcc gggtttaagc gatcctactg cctcaggctc ctgagtagct 142980 gggattacag gcgccatggc taatttttgc atttttagta gagacagggt ttcactacat 143040 tggccaggct ggtctggtct caaactcctg acctcaggtg atctgcccgc cttagcctcc 143100 caaagtgctg ggattacagg catgattcac catgtctggc catttatctt attttctttt 143160 tttttttttt ttttgtttga gacggagtct tgctgtgtcg cccagagctg gagtgcaatg 143220 gtgcgatctc agctcactgc aacctctgcc tcctgggttc aagcaattct cctgcctcag 143280 tcttccaagt agctgggatt acaggcgcgt gccaccacat ctagctaatt tttgtatttt 143340 tagtagagac agggtttcac catgttggcc aggctggtct cggaactcct gacctcgtaa 143400 tctgcccacc tcggcctccc aaagtgctga gattacaagt gtgagccact gtgcccagcc 143460 atcttatttt ctttcttttt ttttgtcggg tgggaggggg acagagtcta gctctgtcgc 143520 caggcttggc tcactgcaac ctctgccccc caggttctag caattattct gcctcagcct 143580 cccaagtagc tgggattata ggcacctgcc accacgcctg gctaattttt tgttattttt 143640 agtagagatg gggttttgct atgttgacca tgctggcctc aagtgatccg cccaccttgg 143700 cctcccaaag tactgggctt acaggcgtga gcttgtattg ggtaaaagaa caatattggg 143760 ggctgcatgg tggttcatac ctgtaatctg agcactttgt gagactgaga tggaaggagt 143820 gttggagccc aggagggtga ggctgcggct gcagtgaatt gtgatcacgc cattgcactt 143880 ccacctaggt aatggagcaa gaccatgtct ctaaaaaaca aaacacaatt tttttaagga 143940 atactgggaa gaggtcagtg gtggttttag aacagaggaa gtgccagatg acctttgtga 144000 ggcattggcc aggaagaact ctacagtgtc tttaggtagc ttctgtccat aaggataatg 144060 gggtctcctc cccagtatta atagaaaatc tctgagctgt ttttttttgt ttgtttgttt 144120 tgtttttttt tcctgagatg gagtctctct ctgtcggcca ggctggagtg ctgtggcgcg 144180 atcttggctc actgcaagct ctgcctccca ggttcacacc attctcctgc ctcagcctcc 144240 caagtagctg ggactacagg tgtccaccac cacgcccagc taattttttg ttatttttag 144300 tagagatggg gtttcaccat gtcagccagg atggtctcga tctcctgacc tcgtgatccg 144360 ctcgcctctg ccttgcaaag tgctggagtt acaggcgtga gccaccgtgc ctggcctggt 144420 ttttttgttg ttgttattta tttatttatt tatttatttt ttgagacaga ctctcgctct 144480 gtcgcccggg ctggagtgta gtggcacgat gtcggctcac tgcaagctct gcctgccagg 144540 ttcaagccat tctcctgcct cagcctcctg agtagcaggg accacaggcg ctcgccacca 144600 cgcccggcta attttttgta tttttagaag agacggggtt tcaccgcatt agccaggatg 144660 gtctcgatct cctgatgtcg tgatccgccc acctcggcct cccaaagtgc tgggattaca 144720 ggtgtgagcc accgtgcctg gcctgatttt tttttttttt taatctggtc tcatacctct 144780 gacagctcat gaagaagtgc tcctgcttca tatgtatatg tgttagcata gtgttaacat 144840 agcataggtg ttcggtgttt gcagtttctg tttgttttat atgaattaag gtgtattatg 144900 agcagttgaa gatatatagg aaattttttc ccaaaccact atctctgctc gttctattca 144960 ttcagtctgt ttatgttatt ccttcattca ttcattttat agaacagtgg agtgcctact 145020 gtatgcatct attgttctgg gtcctgggga agaaaacaaa gttcctgctt tcatggaact 145080 tacattatat tggcggagac agtaacagac aaacaaatgt agcctgtgta catgtgttac 145140 atgaaaagca gggtaggggg ctgggagaga gtagtaggga gtgctatttt cgaggtggtt 145200 gtcaggaaag gcctcactga ggaggtggca ttttgagtag acctgagcgc agcgggggcg 145260 taagcccagg cagcatgtgg aggaagagtg ttcttggtga aaggaacaag gatagaggcc 145320 cgaagctaga gagctcagca tgatcaagga acagcaagcc ccgtgtggct ggaatggagt 145380 gagcaaagga atgagcagta gaaggtgagt gagttgggag gtcaccagag accatggcaa 145440 ggacttgaaa gtgtcaggga cacattggaa gttggagcag ggaaatgatg ggatttatgt 145500 tttgtttttg ttttatgttt agtgttttta agggattgct ctatcagcta tttggaaaat 145560 ttagtgtagg gcttcaagaa gagaagcaga gaaacaacat tcttgccata gtcatagtct 145620 aagtaaggga tgatggtggt gtggattagg ctggtagtgg aagaccagtc cagttcgggt 145680 tgtatttgaa ggtagaggca aaaagattat atttctacca gcaagcccat ctatgaagtt 145740 acttgtatta ttaatttaat tgagacatgc ccacataaac taataaatag gaatttctgc 145800 agtttggtta aacacccctg tatatcctgg ttcttctttt agttgtccag atgtctcttt 145860 aagtcaagta ttttttggtg gtgtaggagc ctagagattg aatttattca cccaaaaggc 145920 atttgagtga ttactatgtg ccaggcacta tgctgaatgc caaggatgta aataagaggg 145980 cgtagtctca gtctgtttta ctccagcttg gttccttttt aatgaccctg acttgttaag 146040 catatcagtt atcctacaga atgtttaatc ttctgtactt tcctggttgt gttatttagc 146100 ttatttctct ttccttgaca tttcttgtaa actggaagtt acacctatag tcttgatgat 146160 tcgtgttaca cattttagat tagaacacat catgtgttgt atatggtgtt tttgaaagcc 146220 tctctgtata ttggtctgta cattaaaatg ttgcctgaat ggatacacat aaaatttaac 146280 agtgattaca ttagagatga gaagaaagag gtgcctttta cttttcaata taccttttcc 146340 tctgcttttt gaactttctt gccctatgca tacgttattg cttaatcatc cacctcatct 146400 cttcccctgt ggctttctgt tgcatttgga atgaaatcta gcctctttgc tgttacctgt 146460 ggatgtccct tgctggcctc tatcacctta ctttgaacca ctcctttcat ggactgagct 146520 ctcattggac tatcttttat tcttttgctg aagtttcttc actttgagtg cctctgcagt 146580 tgctatttca tggctgtggc aagccctgcc atggctttca tgcaaggatg gttcctcctt 146640 ctcatctcaa tattatctct tcagagaggg accttcccaa ctccgatgat ctaaaatcct 146700 ttgtatatac cactcactac cacttctttc ttttcttttc cttttatctt tttttttttt 146760 tttttttttt gagatagggt cttgctctgt tgcccaggct ggaatcacga ctcactgcag 146820 cctcatcttc ttgggctcaa atgatcctct cacctcagcc tctcgagtag ctggaactgc 146880 aggcacacac caccatactt ggcttattat tttacttttt gtagagacag ggtttcacca 146940 aggctggtct caagctcctg ccgcaagcaa tccacatctc tcagcctccc aaagtattgg 147000 gattatagga gtgagccact actcctggcc tattttctta ttcactgtct aaaattatct 147060 tgttcattta tttacatact tgtttatagc ttatttctca gctggacatg gtgcctcaca 147120 cctgtaatct caatactttg ggaggctggg ttggagaatt ggttgagccc aggacttcaa 147180 gaccagcctg ggcaacaaag tgagaccctg tctataaaaa attgtttaaa aattagctgg 147240 gcatggtggc acatgcctgt ggtcccagct acttgggagg cagaggtggg agaatcgctt 147300 gggcccagga ggttgaggcg acggtgagcc atgattgtgc cactgcactc tagcctagtg 147360 acagagtgag accatgtgtc taaaaagtaa ataaaaatag tttctctttc atgactagaa 147420 tattacctct atgtgggcag ggagtttgtc tatactattt ggcactatat ttcctgattc 147480 tgaaattatg cctagcacat ggtaagtact ccttaaatat ttattgactg aattatttaa 147540 tacttaagaa tttcatttgg gattatctga gtggtaagat tacggattat atttatgtaa 147600 gaaaaaatca ttttttaaac ttggttgccc tttgccacac tgacatagac actaagtttt 147660 cttagccaga ttacttccga ggatactcac agaggccatt ctcttctcaa tccccaaata 147720 attgatattt cttagcactt tcaagctaat gcaattctta gatgatgtat ctgtgtatat 147780 catatcctca ttctacaaat gtagaaattg aagtctgggc acagtggctc tcacctgtaa 147840 tctcagcagt ttgggaggcc aaggcgagcg gatcactgag gacaagagtt aagaccagcc 147900 tggccaacat ggtaaagcct tgcctctatt aaaaatacaa caattagggc cgggcgtggt 147960 ggctcacgcc tataatccca gcacgttggg aggccaaggc aggcagatca cgaggtcagg 148020 agttcgagac catcctggct aacacagtga aaccccatct ctactaaaaa tacaaaaaat 148080 tagccaggca tggtggcacg cgcttgtagt cccagctatc gggaggctga ggcaggtgaa 148140 tcccttgaac ccgggaggcg gaggttgcaa tgagctgaga ttgcaccgct gaactccagc 148200 ctggtcaaca gagggagact ctgtctcaaa aaaaaaaaaa aaaaacaatt agccaggcgt 148260 ggtggcgggt acgagtacct gtaatcccag ctactaggga ggctgaggga ggagaatcac 148320 ttaaacccag gaggtggagt ttgcagcggg ctgataatgc accactacat tccagcctgg 148380 gcaacagagt gagactctgt cttaaaaaaa aaaaaaagaa agaaagaaat tgaggaatgt 148440 ggagattgtg gtctgtgatt tgttaggaat cacacagcag gttagtagca actacagggc 148500 tttggttcag aataccacct tgacaatggt ttgtttacag ttcggctccc cttcctctgc 148560 ctttctctcc ttccttattg agggcagctg gaaagaattt tcatcattta ctagcctata 148620 gctttaattt gagttttgaa accttgataa tagagcacag aggaaaagac tgagttttct 148680 ttttttgaga cagtcttgct ctatggccca ggctggagtg cagtgacacc atctcagctg 148740 gttgcaacct ctgcctccca ggttcaagca attctgcctc agcctctcga gtagctgaga 148800 ttacaggcac gtgtcaccac gcccagctaa ttttctgttt ttgtttcgtt ttgttttttt 148860 ctgagatgga gtcttgctct gtcacccagg ctggagtgca gtggtgcgat gttggctcac 148920 tcaaacctct gtctcctggg ttcaagcaat tcttctgcct cagcctcccc agtagctggg 148980 actacaggta cgtgccacca tccctagttc atttttgtat gtttagtaga gatggggttt 149040 cactatgttg accaggctgg tctcgaactc ctgatctcag gtgatctact cgtctcagtt 149100 tcccaaagtg ctgggattat tggcacacgc ctatttttgt atttttagta gagacggggt 149160 ttcaccatgt tggttagact ggtctcaaac ttctgacctc aagtgatttg cccgccccag 149220 cctcccaaag tgctgggatt acaggcgtga gccaccgtgc ccagccaaga ttgagttttg 149280 aaaagagcct tctgagatta tgagaagggc aagcaagata acttaagaag ttacattaaa 149340 atcatctaag agacagtgta acaagaagga attgtaaaat gatgttatga gcacgtgccc 149400 aatgtagtgg caatcccttg tgcttcgata cattggtggg agacaaaact gtacttaaat 149460 tgataaatcc cttacatgtc attttaagga gcttagactg actcccatca tgtagacatc 149520 agagatttct tttttttttt tttttttttt tttttttttt tttgtgacag agttttgctc 149580 ttgttgccga ggctggagtg caatggcgtg atctcggctc accacaacct ccacctccca 149640 ggttcaagca attctcctgc ctcagcctcc cgagtagctg ggattacagc catgcaccac 149700 cacgcctggc taattttgta tttttagtag agacggggtt tctccatgtt gtggctggtc 149760 tcgaactcct gacctcaggt gatcctcccg cctcagccac ccaaagttct gaaattacag 149820 gcgtgagcca ccgcgcccag cccagagatt tctaaacaga gttctaacca gatgcttttc 149880 cctgtcagta gaatgagaat gaattggagg tgggagagac tggcatgagg gacaccagtc 149940 agccagtgga attagctggt aatgttgata ggagaagaaa aagattcaaa gttaggtagt 150000 ggtagcaaga attagaggga aggtcggatt tatgatatgt ccaaggttga attctaaggt 150060 gaaatttggt ggcagatttc atgtgtaaat tgggaaggta gattgagttt ttttaacatg 150120 ggttttctaa catgtcaata gagtgactct gcaggggggc ctgacgagag aacagtgcat 150180 ggggtgattc aacagccagt tgagccttca tgcagagcat ttaacactgt gactctgtag 150240 actctggttg gcagtaaaat ttcattaaac caatatttaa acccttaggt aataataaaa 150300 attgagggaa aaggatccag gttttgtatt ttttatgaat tcagttattg aattaaacag 150360 gaccttgcct caagaaataa tctaccaaca attaacttgt tttaaagcaa agttaggaag 150420 tgagcatgtt caaattatta aataaaaaag taagctgtgt atttcattca tagaaataga 150480 ggctggccta cttcggatga ttctcagcat gtgattacag atgtgggctt atacatccta 150540 gggagttaag gcgtactctg gcttggatag agtagagctc tttgaaactc ttctctcacc 150600 cagctagttt atatagacta gagaactaga atgtagcagc atactctgtc ttagaagccc 150660 ttttatatag gagctggtct ggaaggtttg aaaacataac aaatgtgttg gtgtctccca 150720 atgtattgct agattcttac ccaagagcat tatcctggtt agggtttggt ttggttttgt 150780 tttgtttttt aatgtttgcc acaaactaac actagatgtt agttctttca tcaagtgagg 150840 agagtagaag aaaagtccag aactctgaaa caccttttca aaagtttttc aagccatgat 150900 gtttgcaagt taaatgctct gttatgtaag caatataatc agtttttatt aatgtaacat 150960 tccttagtgt tttggggtat cacacaaaaa agaatatcca tatctggaag caacagcttt 151020 taaataagag cattgtggtg gtggtggtga tagtggtttt tttttttttt tttgagttgg 151080 agtctcgctc tgttgcccag gttggagtgc agtggcacga tctcagctcg cttcaacctc 151140 tgctcccagg ttcaagcaat tcttctgcct cagcctcctg agtagctggg attataggca 151200 cctgctacca tgcctggctg atttttatta ttttagtaga gacaggtttc accatgttgg 151260 ccaggctggt cttgaactct taacctcagg tgaatcaccc acctcggcct cccaaagtgc 151320 tggaattaca ggcatgaacc accatggcca gccaaataag agcattttta atgtaaaatt 151380 atgcatgaaa tgtacattca attttgtctt tgtttactag gatccatgtt ctcacaagct 151440 atgaagaaat gggtgcaagg aaatactgat gaggtaaatc ctacctttag gataaaaaga 151500 tttctgttta taagtgccac cctcatgtaa gtgaggttta aaattttcct tttctttagg 151560 tcccatgttt aagcagcatg gcacatttat gttctcttac ccagaatgta ccaagaaagg 151620 gtggtccctt cttaacatct aacaattgcc tggtagtagc agtgaaggta tcttcagtca 151680 gaggctagga ccactgaagg atatacatgc attcaagttt ccatcagcca gcaggcatca 151740 gtaatcagtg tgtagatcaa aagctcaaat gtttccttcc ccactggcag ttttacttca 151800 agtagtggag gcttgctttt ttaatagtta attaagtaca ttgagagatg ggaggtgaaa 151860 aaaggaaaat gttttatttt gaccatctaa tatgaaagta gttcggtgtt aggtatccag 151920 tagttgacac tggaagacag ggaatgacat gttaatattc atagccagag ggtggcccag 151980 gttttttcgt acatgggaat gaaattctta tccaaataag tagaaattat gtgcgtaagc 152040 catttgttaa gagcactgag tatgtgcatc tcgatccatc taatgaataa ccattatcac 152100 cagtttaaat tattttcttt aggcccagga agagctagct tggaagattg ctaaaatgat 152160 agtcagtgac attatgcagc aggctcagta tgatcaaccg ttagagaaat ctacaaaggt 152220 aaggatgact tcgttttgtg taaactaaaa agtattattt tccaggtgta aaaataaaaa 152280 agaacataag gggtttcttt gcctttgaag gattaactgc tgtggggatt accttcttat 152340 cataagcaac tagaaaattg acaaactaaa tgaaacaact gtttgcatat attggacaat 152400 gggcaataca gggaaaccat ggaaaccaaa cagagcccag tagtcttgct gaacgaaaga 152460 gttaaatatc aaagttcagg ccaggtgcag tggctcacgc ctgtaatccc agcactttgg 152520 gaggccaagg cgggtgaatc acttgaggtc aggagttcaa gaccagcctg gccaacatgg 152580 tgaaaccctg tcttagccgg gtgtggtggc aggcacctgt aatcccaact atttgggagg 152640 ctgaggcagg agaatcgctt gaaccaggga ggcggaggtt gcagtgagcc gagatcacac 152700 cactgcactc cagcctgggc gacgagcgaa accccatttc aaaaaaaaaa tcaaagttca 152760 gagagctcaa tttgagtaga agttgtagga taaggtagca gaaaagagga agctgcccag 152820 aaagaaagcc gtagagatat ttagagagat tcccatggat ccttggccta ggagtgatct 152880 gtatatgtgt ggggtgaaaa cgcatgtgtc caggtagaga accccccaga aattagtagg 152940 ctgaatgatt gctggaacat agggctaaga aaagttcatg gccagaagga tctggccaga 153000 gtagagagac ttagtaatac acaaggcatt gggtagtgtc ttcacagagg ttatgcctta 153060 ctactgaaga taaattagtc ctagagtaca agcacctgaa ccaagtttca aagcaaattt 153120 ttaaagggtc aaattaccta acaactgcat gccaaaacaa aggcctaacc ctctttacag 153180 taacacaaca aaattcagca cttcacagtg taaagttaga atgtctgacg tccaggctgg 153240 gcgcagtggc tcatgcctgt aatcccagca ctttgggagg ccgaggcagg tagatgacct 153300 gaggtcagga gttcaagacc agcctggcta acatggtgca accccgtctc tattaaaaat 153360 acaaaaactt agccaggcat ggtggccggc acctgtgatc ccggctactt gggaggctga 153420 ggcaggagaa ttgcctgaac ccaggaggtg aaggttgcag tgagccgaga tcgcaccact 153480 gcactctggt ctgggcaaaa agagcaaaac tcaggctcaa aaaaaaaaaa gaatgtctga 153540 cgtcaatcac aaattaccaa gcatgacatg aagttgacct ataaccagga gaaaactcaa 153600 tctatagaaa cagacccaga tgtgagaaag atgatgaatt tagcagacaa agaccatcaa 153660 gtggctattt taaatattaa aaatatgttc aagtggccag gtgcagtggc tcatgcctgt 153720 aatcccagca ctttgggagg ccaaggtggg taggagttca agaccagctt ggccaatatg 153780 gtgaaacccc ttctctacta aaaatacaaa aaaattagct gggcatggtg gcaggtgcct 153840 atagtcccag ctatatggga ggctgaggca caagaatcac ttgaacccgg gaggtggagg 153900 ttgaggttgc agtaagccga gattgtgcca cttgtactcc agcctggaca acagagtgag 153960 actctgtctc aaaaaaaaaa aaaaaaaagt taaagaaaac aagagtataa tgagaaaaat 154020 gcaaaatagt tttaaaagaa ccaaatggaa tttcttaaaa taaaaaatac cagaaatggg 154080 ggccgggcgt ggtagctcac gtctataatc ccagcacttt gtgggggctg aggcaggcag 154140 atcacctgag atcggtagtt caaggccagc ctgaccaaca tggagaaacc tcatctctac 154200 taaaaataca aaattagctg ggcgtggtgg cgcattgcct gtaatcccag ctacttggga 154260 ggctgaggca ggagaattgc ttgaacccgg gaggcagagg ttgcggtgag ctgagattgc 154320 accagtgcac tccagcttgg gccacaagag tgaaactccg tctcaaaaaa aaaacaaaaa 154380 aaaacagtag actcgaagaa ctagctgagt ttttctttac tttaggcagt aagtgtgacc 154440 ttttgcaggt gactacttta gttcctcatg tcctcattag tagatcagag aaattcgaca 154500 ccaaaacccc aaaagaaaaa ccccttctaa tcctcattcc atgattttat gaatgcatga 154560 agtcctaggc ctgcgaagga atactcattc tctttatcct gtgttgatac ctctctgctt 154620 caacctccaa ctcgacattt gcctatagga tgtacttgga cattcagcat aaactacctc 154680 acaccattac tgaattgctt catgtgcaca tgtcccatgc cacaataccg gggaccttgt 154740 cttccgtgat atttgtccgc agtgctgtga ctacaggagg gagtcagtga atgtctgcat 154800 gtgtgtcttt accatccctc ttgaatatgc tctagggtta attcctagaa gtagaattac 154860 tctattgaaa attggcaata tttttcattc taatatctat tgccaacatg ggaaagcaag 154920 tctggatgcc agtccttgtt atatgcccct tgggtaagtt acgtaacctc tttaagcttc 154980 tgttcactca tattttaaca aggaaaatta caatatttta cctcacaaaa ttgtagtcag 155040 cttctggctg tcttaaactc tggtatatag taaacactaa gtgttggtgt ccatccttaa 155100 tttgtaataa taggtcactt gttagagaaa tgcaccttac cattttcttt tcttttcttt 155160 tttcagttat gactcaaaac ttgagataaa ggaaatctgc ttgtgaaaaa taagagaact 155220 tttttccctt ggttggattc ttcaacacag ccaatgaaaa cagcactata tttctgatct 155280 gtcactgttg tttccaggag agaatgggag acaatcctag acttccacca taatgcagtt 155340 acctgtaggc ataattgatg cacatgatgt tcacacagtg agagtcttaa agatacaaaa 155400 tggtattgtt tacattacta gaaaattatt agttttccaa tggcaataac ccatttatga 155460 gagtgtttta gcctactgga atagacaggg accacatcct ctgggaagca gataagcata 155520 gaactgatac ttgatgcaca ctcgtagtgg taactcatcc ctaatcagca ttgtaaagca 155580 ggtgccagag gtggtttgct ttgtccttcc aaagcaggtg agtcagcccc accgagagcc 155640 aggcagcttt gagtggcagc gtggtgctag cagcttcagc ggaacagggt gagagttaat 155700 tatgcagtct tcttgacagc ggcattaatt tggaaggaaa ctgacaagtc atgggtcaag 155760 tttcagtgac ttcctccttc ctctgatggc agtatatagt tttcacattt taattcctcc 155820 tcctgagatg cactatactt aaaaccattc tctcccctgc taacagaagg gtgtgaatct 155880 ggtttacttt gagcattagg atttgcccct ttggaattct gcactccagt tacttaactt 155940 tcccttcaga atacatgtgg aaagaaagaa agaaatagcg atgactccac ttttgcccct 156000 gtggcacctt gaacaaagca gttcttccca aattatactt tttttttttt taaataaggt 156060 gagcaggatg actggggaga gagaaacatt tgactttgac tgcctccccc attctttgct 156120 gtgagctgga aagtgtgcag ttggtcgtct ttcttctcct ttctttagga tagtaagaga 156180 ctcactcact gcacttctgc tcagttggct tctgcatcgg gatcacacag ccatcagcag 156240 gactgcccag ttggtgagca cactccattg accacgtggc gccagcgctt cctcaatgca 156300 catgattgag aggaaagaaa gttctcttag atgttactgc ttttgctcag actttgcaaa 156360 aaaaaaaata tatatatata tgtataaata tataattatt aatcactttt gtccttgaga 156420 aagtcttgaa tgaacagaga atttattcca ttgcaatatt tgattgtata gaggcacact 156480 gtttcatcga cagaagaagc aaaaaggctt tgtgtaagtt tttggtacta tgtaccacct 156540 ctgttattct tttaaagctg aagtattcat gtacttaaac catattatat ttaattgtgt 156600 ttgattttaa aatatatata tatgaattct atttaaaatt gtgtcaactt tctgctttca 156660 gggcatttat ggctcttctg ttgaaatata ttgatctttc caaatatttt catttgcttt 156720 ctaaaaaccc agaacatgag ccactactgg actttgcctt gtgtttgaag tgtatggcat 156780 aaacccaagg tttttattag tcatctatgc tgtgattaat tcattttgtt cttttaacaa 156840 aatatttcca tccacttcac attgcttcaa tctttaacag aaaagcaata taaaggttat 156900 agaataaaat gtggttttgg gcaactcttg ctgcctctgc atgttttgga ataacaattt 156960 ctacaagact ctaggctgtt taaactagtg ctttcagtta agataaattc taatcatttc 157020 tttgtatata cattttgtgc ttctgagcta gagatgccaa gtagttgtaa actgcttata 157080 aagagaatag cagcaaattt gagactcggc tacttttttc tgccccacct gctttgagac 157140 acagaagcgg agtgtggccc gaaattatta gccagattta atatttgatc taaagtaggt 157200 ccttgtactc attttaaagt tggaatttga ttcctccaac attgagcacc caccatgttc 157260 caggctctgt gcattgtgcc cacaaaataa gattccctgg tggagttttt atgggttcaa 157320 ataatcagtt gaacaccctt catctttatc atgttgttga cattgacaca aattgtttaa 157380 aaagaaaaga tattagagag aaagtggtac ctttgtaact tgatgtgtct tcatcattcg 157440 gtaagatttg atgaaagtaa aaagcaaatg tcagccaaat ccagtgaaca gcaataaaac 157500 agggagtaac tttttataac tttttctact tggatttcaa cattcagtag agcttttcga 157560 aatgtaagta gtttacagta ctggaggttt gactagttca gtaggaattt ggaggggaag 157620 gtcattctga attgtaacaa agtacaaact tctttgctgt tttatttaag tactgagagc 157680 taagcacctg atgaagtgac tgacctctct ccagtgacag tgtttgggta cctgcctgac 157740 ttcaggagtg gggtttatgt ttctacacag tgaccttttc tctcgccctc tcctccctct 157800 tgcccacaca ccagttgatt ggacctgggt tgaactcctg atccagacag gcccaagaca 157860 gttcttaatg ttaagaattt tggggccggg cacggtggct catgcctgta attgcaacac 157920 tttgggaggc cgagacaggc ggatcacttg aggtcagggg ttcgaggcca gcctggccaa 157980 catggtgaaa ccctgtcttt actaaaaata caaaaattag ctgggcatgg tggcgcacgc 158040 ctgtaatccc agctacgtgg gtggctgaga caggggaatc gcttgaacct ggaggcggag 158100 gttgtgcaat gagccgagac cgtgtcactg cattccagcc tgggtgacag agggagactc 158160 tgtctccaaa aataaaaata agaaaaagaa ttttgggcta ggtgcagtgg ctcacgcctg 158220 taattacagc attttggaag gcccaagatg ggcagatcac ttgaggacag gagttcgaga 158280 ccagcctgga caacatggtg aaactccatc tctactaaaa agacaaaagt tagccagatg 158340 tggtgatggg cacctataat cctagctcct cgggaggctg gggcaggaga atcacttgaa 158400 cccaggaagc agagattgca gtgagccaag atcacatctc tgcactccag cctgggcaac 158460 agagcaagac tctgtctcaa aaaaaaaaga atttggccag gcgcagtggt tcacgcctgt 158520 aatcccagca ctttgggagg ccaaggcagg cagatcacga ggtcaggaga tcgagattgt 158580 cctggctaac atggtgaaac cctgtctcta ctaaaaatac aaaacattag ccgggtgtgg 158640 tggtgggcac ctgtagtccc agctactagg gaggctgagg cagaggaagg atgtgaaccc 158700 aggaggcgga gcttgcagta agccaagatc gtgccactgc actacagtct gggcgacaga 158760 gtgagactcc gtctcaaaaa aaaaaagaat tttggccggg tgcggtggca catgcctgta 158820 gtcccagcac tttgggagac caaagtgggc ggattacctg aggtcaggag ttcaagacca 158880 gtccggccaa tatggcgaaa ccctgtctct tactaaaaaa aatacaaaaa ttagccaggt 158940 gtggtggcgg gcacctgggg aggctgaggc agggagaaat gcttgaaccg gggaggcaga 159000 ggttgcagta agccaagatc gtgccactgc actccagagc aagactcttt ctcaaaaaaa 159060 aaaaaaaaag aattttgcat ggggaaggag agatactgtt caccatctgg aatggtgctt 159120 ggatgtggca cttacaaaat caggagccag cactgcatgg acaaacagaa gcatgtgggc 159180 ctgagatagc aggtaccttg ataaccctga agacatcctt ggtttctgca tctattcctg 159240 catccttgca ttggactaca ttaatctgtc agttatcctt ataatgattt ttgatttttt 159300 ttttttgaga tggagtttcg ctcttgttgc ccaggctgga gtgcaatggc acgatctcgg 159360 ctcaccacaa cctccacctc ccaggttcaa gtgattctgc tgcctcagcc tcctgagtaa 159420 ctgggattac aggcatgcgc caccacacct ggctaatttt gtatttttag tagagacggg 159480 gtttctccat gttggtcagg ctggtctcga actcccaacc tcaggtgatc accctgtctc 159540 ggcctcccaa agtgctggga ttacaggcgt aagccatggt acccggtctg ttttttgatt 159600 ttttgaaacc agtctgaagt gagttttttt aattacgtga aaggagtttg gctaaaatac 159660 tgccatactg ccctaatgcc taatgattat gtattctcag catgtctgca aagtactgct 159720 gatttctgga gaataatttt tctttagtaa acttcactta agtcgtcatg tgtattctct 159780 caaaatggta tcctaaccta atggagctaa aagacacccc ttgtttttat aacaagcagt 159840 tactgaggcc caggaagggg agaagtccct ggcttgtgag atgatcacca ttagaactca 159900 ggcctgggcc agtgcctttt catgcttctc agatccttcc aaagaataat gaagattata 159960 accgctttta gcaattgtaa taaacccaga aatagaaagc tttttggtta gagtactggt 160020 agaagtttgg cgggagagat aatttttaca aaatttgtaa atacctgcca attctatata 160080 ctaggcaagg tctctggcct tgtaaaaccc ctcaaggtta caactttggt ggcccacact 160140 aatagttacc cactgaggcc ctctccgggt gaacattgag cactagagga agcccctctg 160200 cttgggcagg actgggcgtg gtgcagagta ggagcggtga tactgtggat tctgggcagg 160260 tggagatggc cagtgatgtc caataaagga cactggaggg agcagtgtga gtaaaggccc 160320 tgagggcatt catgttcagg gagggttgct gcccactggc ttgcttggca cacaggagag 160380 tgggtattcc tgccttagta actttatgta aacaagtatt tcctcagtct gttcctctca 160440 aactgcctgc tctggcacat tcagaatgtc acagaactca cctggatgca ttcagcccct 160500 tgcctaaagg tgacagtgca tctccttccc caccccaccc ctcataccac tgaagcacct 160560 gtcagactgg cccagtctgt gggcaaggag cctagagagg gcttagtttc agcttgaaag 160620 gagctgggat ttaccaagaa gcaaatgaga gacgaggatt gcaacaactg tgccatttcc 160680 ccagcttcag ctgactcctg tatattgact gtgccttcag actcatccgt aagtgacccc 160740 aggctggcct ctcccacatc acagtaagaa ttccacacac catacaactt ggaaagaggc 160800 tccagctgaa ggaagcccca cacttctttc aagtttttct tagtcttctc ttcttggcaa 160860 agagtacctt ttgtttcttc taattatgta actattggtt tagtaaatat tcacccattc 160920 agtcaccctg taagtggcag gcactgttta cagggacaca ggaaggaata aaaacttgca 160980 ggcaccttgg agcttgcatt ctattgaaga ggtaatggaa gttgggatag cagctaaact 161040 atgctggtat tggccaggcg cagtggctca cacctgtaat cccagcactt tggaggccaa 161100 ggtgggcaga tcatgaagtc aggagatcga gaccatcctg gctaacatgg tgaaaccccg 161160 tctctactaa aagtaaaaaa aaaaattagc caggtgtggt ggcgggcgcc tgtagtccca 161220 gctacttggg aggctgaggc aggagaatgg tgtgaaccca ggaggcgaag attgcagtga 161280 gccgagatgg caccactgca ctccagcctg ggtgacagag cgagactctg tctcagaaaa 161340 aaaaaatatg ctggtagttt tgattcaaga tggcctttgg agcccatgat ttaggtctcg 161400 tacccaccaa ggtctactgg aaaacatcag gctctcctgc tatagaccca tagggagagc 161460 tgcagccgag agggggagct gaagagaagt gccccttctg tgtcctgtca gcctcatcct 161520 tccgcaagga ccagttgctg tgccactcca ttcacttgct gcaagactgg aggtttttcc 161580 tcaggtgttg agcacctggt ttacaagatg tcagcatctt gatgcctgag accatcaagg 161640 caagtctctg aacagggctt accttagagt aaggcttaga agaggccgta aagtcagtct 161700 cagctccgtg gctctgcaga gctttgggac atgtgaattc ttaaaaacaa gactattgta 161760 cagttactat atgcatgcag tataaaatta taaccttgga aaatcctagc tagctgttga 161820 gctaattcca taaagtaatc agctcctgag ttctgcagtg gtaataataa tcagcataat 161880 gagtaaacac tgtgtgtgcc aggcagcgtc tcatttgatc cttgtgataa tcttgtaagt 161940 actgattttc tcccttcttt aaacaaagtt tttttttttt ttttagagag ggtctcacta 162000 tgttgcccag gctagtcttg aattc 162025 <210> SEQ ID NO 36 <211> LENGTH: 162025 <212> TYPE: DNA <213> ORGANISM: Homo Sapien <220> FEATURE: <221> NAME/KEY: mutation <222> LOCATION: 156,277 <223> OTHER INFORMATION: Nucleotide Base Change: T to C <400> SEQUENCE: 36 gaattcctat ttcaaaagaa acaaatgggc caagtatggt ggctcatacc tgtaatccca 60 gcactttggg aggccgaggt gagtgggtca cttgaggtca ggagttccag gccagtctgg 120ccaacatggt gaaacactgt ctctactaaa aatacaaaaa ttagccgggc gtggtggcgg 180 gcacctgtaa tcccagctac tcaggaggct gaggcaggag aattgcttga acctgggaga 240 tggaggttgc agtgagccga gatcgcgcca ctgctctcca gcctgggtgg cagagtgaga 300 ctctgtctca aaaagaaaca aagaaataaa tgaaacaatt ttgttcacat atatttcaca 360 aatttgaaat gttaaaggta ttatggtcac tgatatcctg tttcattctt tatataatca 420ttaagtttga aatgtatact tgcactacta acacagtagt taatcttagt cctacaagtt 480 actgctttta cacaatatat tttcgtaata tgtatgcact ggtgtttatg tacgtgttta 540 tgtttatatc tgttaaaatt agcagtttcc atctttttct attttgtacc atcacatcag 600ttcagaagga ttgacagagc aaaatgattt gatgaagtat aaaagtcaca tggtgagtgg 660 cataaataca actctgaaca attaggaggc tcactattga ctggaactaa actgcaagcc 720 agaaagacac atatcctata tgtcaagaga tgtaccaccc aggcagttaa agaagggaag 780 tacacataga aagcacaatg gtgaataatt aaaaaattgg aatttatcag acactggatt 840 catttgctcc taaagtcaga gtcctctatt gtttttttgt ttttgtgggt ttctttttaa 900 atttttttat tttttgtaga gtcggagtct cactgtgtta cccgggctgg tctagaactc 960 ctggcctcaa acaaacctcc tgcctcagct tcccaaagca ttgggattac agacatgagc 1020 cactgagccc agcccagacg ctttagcatt tatgaagctt ctgaaatagt tgtagaaacc 1080 gcataagctt tccatgtcac tttcaaagtt tgatggtctc tttagtaaac caaccaagtt 1140 attcctcaag ggcaaaataa catttctcag tgcaaaactg atgcacttca ttaccaaaag 1200 gaaaagacca caactataga ggcgtcattg aaagctgcac tcttcagagg ccaaaaaaaa 1260 aggtacaaac acatactaat ggaacattct ttagaagagc cccaaagtta atgataaaca 1320 ttttcatcaa agagaaaaga gaacaaggtg ttagcaaatt cctctatcaa ataacactaa 1380 acatcaagga acatcaatgg catgccatgt ggaagaggaa gtgctagctc atgtacaaac 1440 cagtagataa tttcaacttg ctgccgaatg aaacctcttt gcaaggtatg aatcagcact 1500 tctcatgttt gttttgcttt gttttgtttt gtttttagag acaggccctt gctctgtcac 1560 acaggctgga gtgcagtggc acgatcagag ctcactgcaa cctgaaactc ctgggctcaa 1620 gggatcctcc tgccttagcc tcccaagtag ctgggactac aggcccacca tgcccagcta 1680 attttttaaa ttttctatag agatgggatc tcactagcac ctttcatgtt tgatgttcat 1740 atacaacgac caaggtacaa tgtggaaaag ggtctcaggg atctaaagtg aaggaggacc 1800 agaaagaaaa ggggttgcta catagagtag aagaagttgc acttcatgcc agtctacaac 1860 actgctgttt tcctcagagc agagttgatg atctaaatca ggggtcccca acccccagtt 1920 catagcctgt taggaaccgg gccacacagc aggaggtgag caataggcaa gcgagcatta 1980 ccacctgggc ttcacctccc gtcagatcag tgatgtcatt agattctcat aggaccatga 2040 accctattgt gaactgagca tgcaagggat gtaggttttc cgctctttat gagactctaa 2100 tgccggaaga tctgtcactg tcttccatca ccctgagatg ggaacatcta gttgcaggaa 2160 aacaacctca gggctcccat tgattctata ttacagtgag ttgtatcatt atttcattct 2220 atattacaat gtaataataa tagaaataaa ggcacaatag gccaggcgtg gtggctcaca 2280 cctgtaatcc cagcacttcg ggaggccaag gcaggcggat cacgaggtca ggagatcgag 2340 accatcctgg ctaaaacggt gaaaccccgt ctactaaaaa ttcaaaaaaa aattagccgg 2400 gtgtggtggt gggcacctgt agtcccagct actcgagagg ctgaggcagg agaatggtgt 2460 gaacctggga ggcagagctt gaggtaagcc gagatcacgc cactgcactc cagcctgggc 2520 gacagagcga tactctgtct caaaaaaaaa aaaaaaaaaa aaagaaataa agtgaacaat 2580 aaatgtaatg tggctgaatc attccaaaac aatcccccca ccccagttca cggaaaaatt 2640 ctcccacaaa accagtccct ggtgccaaaa aggttgggga ccgctaatct aaataatcta 2700 atcttcattc aatgctaaaa aatgaataaa ctttttttta aatacacggt ctcactttgt 2760 tgcccaggct ggagtacggt ggcatgatca cagctcactg tagcctcaat cacccaggcc 2820 ccagcgatcc tcccacctaa acttcctgag tagctgggac tacaggcacg caccaccatg 2880 cccagctaat ttttaaattt tttatagaga tgggggtctc accatgttgc ccagactggt 2940 ctcaaaccct gggctcaagt gatcctccct caaactcctg gactcaagtg atcctccttc 3000 cttggcctcc caaagtgctg ggattacaag catgagccac tgtacccagc tggataaaca 3060 ttttaagtcg cactacagtc atggacaatc aggcttttca acatgcagta tggacagtga 3120 gtcccagggt ctgcttttcc atactgaaat acatgtgata ctaaggagaa aggtgctcgc 3180 aaggatattt aaaatgaaga atatttaaaa tgaggaaaaa actgtttctt catgactttg 3240 ataaggctga taaagaccat ttctgtgatc tcaggtgatt cactcaagta gtatatttca 3300 gtaatcatta tctggaacag cctgaatctt aaccaaaata ccatgatttt ttaatgctgt 3360 tatgatacct tgatgatatg accaaactgc aatgtaggca gctaaatctc cacgagtttg 3420 acttccccga gagttgacag ttttcttcac aaattaaaga aatatatttt ttgatacatg 3480 attggcatat ttaaaaacta cactgaaatg ctgcaaaatg atataaagaa acattttcca 3540 gaatcaaatg caatcaaaga gtggattagg aatctactca ccattatcaa ctaaatagaa 3600 acacttggac tgggtgtggt ggctcacatc tgtaatctca gcactttggg aggccaaggc 3660 aggtggattg cttgaggcca ggagctcaag accagcctga gcaacatagc aaaactctgt 3720 ctctacaaaa aaaaaaaaaa attaaccagg catggtggca gatgcttgta atcccagcta 3780 ctctggaagc tgaagtagga ggactgcttg agcccaggag atcaagactg cagtgagccg 3840 tggtcatgct gcgccacagc ctgagtgaca gagagagacc ctgtctcaaa aacaaaaaca 3900 aacaaaaaac acttaacctt cctgtttttt gctgttgttg ttgttgtttg tttgttttga 3960 gatggagtct cactctgttg cccaggctgg agtgcagtgg cgtgatcttg gctcactgca 4020 agctctgcct cccgggttca cgccattctc ctgcctcagc ctcccgagta gctgggacta 4080 taggcgcccg ccaccacgcc cggctacttt tttgcatttt tagtagagat ggggtttcac 4140 cgtgttagcc aggatggtct tgatctcctg acctcgtgat ccacctgcct cggcctccca 4200 aagtgctggg attacaggca tgagccaccg cacccggcca acctttctgt tttttagttt 4260 gatatgcttg ttaactcagc agctgaaaga atgctgaaag tggccttcag taaaaaaatt 4320 tcactagaat ctctacatcc atatttaatc tgaatgcata tccagattga tcagttagag 4380 caaaaacact catcatcatt cctgatgacc tctaattctg gtttcggctt tctatttcaa 4440 tggaaacaga ataaggaaag aaatggaagg gctctggaaa tttgtcctgg gctatagata 4500 ctatcaaaga tcaccaacaa taagatctct cctataaata taaaacaagt ataattaatt 4560 ttttaattat ttttttctct tcagaggatt ttatttcaag ataaaacata acttctaccc 4620 atactattga ttccaaaggt tagaaaaagt gtttttcctc atcttatcct tcaaagaggt 4680 cacagcaatg caaacatcta taaaatgcct ctgcataatt gtcagaagct atagtccaga 4740 aatcattgaa aatgcttttc cattttaagc ttaggtgagg tgtcttagga aacctctatg 4800 acaacttact ctatttattg ggaggtaaac tcccagactc tcccagggtc tcctgtattg 4860 atctcatttt ttaggcttcc taatcccttg aagcacaatc gaaaaagccc tggatctctt 4920 ttctgcacat atcatcgcgg aattcattcg gcttccagca agctgacact ccatgataca 4980 agcggcctcg cccttctccg gacgccagtc cttgctgcgg ttagctagga tgaggggttt 5040 gctgggcttc agtgcaggct tctgcgggtt cccaagccgc accaggtggc ctcacaggct 5100 ggatgtcacc attgcacact gagctcctgg caggctgtac caatttttta attatttaat 5160 atttattttt aaaattatgg tgaatatttt ggtattctgc tctaaaatag gcccataaat 5220 gcacagcaga tatctcttgg aacccacagc tttccactgg aagaactaag tatttttctt 5280 ttaaagatgc tactaagtct ctgaaaagtc cagatcctct acctctttcc atcccaaact 5340 aagacttgga atttatgaga gatctagcta acagaaatcc cagacacatc attggttctt 5400 cccagagtgc agtcctccta aagaggctca gccctaagca ggcccctgca ccaggagggt 5460 gggtctgaga cccacatagc acttcccaag gtgcatgctc cagagaggca ctgaaacagc 5520 tgagcacaag cctgcaagcc tggagaactc tcacagtcag aacggagggg gcccagtggg 5580 actaacataa agagaaaagg gaacacagag aaatggatgg caccaacaac cagcaaagcc 5640 ttcatggcca atgaaagcat cagtgacggg gccagaaccc tcatccccaa agactcttca 5700 ctgcctttag tgaaaaacaa tggctagaga gtgaagttat gatcatgtat agagaggtaa 5760 agttacattt ttatattctg actctgctaa tgtgaaattc cctatctgct agactaaaag 5820 tttcagacac cctgttcaaa tatcccatta gttgctagag acttaaaatg aacagaacgc 5880 acattgtcag gatgactatt accaaaaaat caaaagacag caagtattgg tgaggatgta 5940 gagaaactgg aacttttgtg cactgtttat gagaatgtaa aatggagcag ctgctgtgga 6000 aaagagtatg caggttcctc aaagagtaaa accaagatgt ggaaacaact aaatgcccat 6060 cagtggatga aggggtagac aatatgtggt atatacatac catggagtac tattcagcct 6120 ctaaaaaaaa aaaaggaaat tctataacat gcaacagcat ggatgaatct tgaggacatt 6180 ttgctaatga aataaggcag tcatagaaag acaaatactg cacgactcca cttatatgag 6240 ataccaaaaa tagacaaatt catagaatca aagagtacaa tggaggttac ctggagctgc 6300 agggcgggaa acgaggagtt actaatcaac gaacataacg ttgcagttaa gtaagatgaa 6360 taagctctca agatcagctg tacaacactg tacctagagt caacaataat gtattgtaca 6420 cttaaaaatt tgttaagggt agattaacaa atgtagtaga tccacaaatg tggttaagtg 6480 ttcttaccac agtaaaataa aaaaagaata tcaagcccag gagttcgaga ctagcctggg 6540 taacatggtg aaaccctgtc tctacagaaa atacaaaaat tagccagctg tggaggtgca 6600 ctcctaggga ggctgaggtg ggaggcttgc ttgagcccag gaggtcaagg ctgcagtgag 6660 ccatgattgc accactgtac tccagcccag atgacagagc aagacaccac cccccccaaa 6720 aaaagaaaaa gaatatcaaa cattttaaaa gatcagatac gcaagaacaa caacaaaaaa 6780 gagatgaaca gagcatcgac cctcatctag tgggattctt ggtctaactg aaaaacagac 6840 attgagagac aaacaatgac agtgatgtga tcacagcaat tacacaggta tcccctgggg 6900 actgcagaag aaaggaggaa tgcctaactt tcagaaaata gagaaagcgt caaacagttg 6960 gtgaaagcct tccaaaacta gagagaactg cacacaccaa atcacagaaa gaagaaaagc 7020 cgtgggagat tctgggaccc accggctatt tttgatggct gaacaccctg ctgcaggaga 7080 gacaggagct ggaaagcatg gtgggatgaa acctcaaaca gctttgcctg cattgcttaa 7140 gatgactggg cttgattaac tctagtcaat ggggacaatt caatcaaaga agaaagatgc 7200 tcaaattcac attttagaat gattttttat ggcagtatgg ggaatagatt aaaagagagt 7260 gaagctggag gcaagaaact tgttaagagg caactgaaac agtctagatg ataaataata 7320 aactgacaga gtgactagaa aaatcagaac aggctgaatc aacagatacc tagatgaaaa 7380 taacaggact tgatcaccag ttgtatcttg gagaggaagg agttgtttcc ttgctttccc 7440 tacgactggg aatacggaag gtttgccgtg tgtattggtt atatactggt gtgtagccaa 7500tcactgacaa ccatttagca gcttaaaaca caaaggctta tctcccagtt tctgtgggcc 7560 aggaatctaa gataggctta gctggctggt tctggctcag agtttctcaa gaggttgcaa 7620 tcaagatgtc agctggggtt gcatcatctg aaggctcaac tggggccgga gggtccactt 7680 ccaaggagtt cactcacctg cctgacaagg cagtgctggt tgttggcagg agatctcaat 7740 tcattgccaa gtgagcctct ctatagcatt gctggaacat cctccccatc tggcagttgg 7800 cttctctcag catgagtgat ctgagagaga gagcaaggag gaagccacag tgttcttcct 7860 actcctactc ctaacactat ggacctactc ctaacactct cacttctgcc ttattccatt 7920 agttagaaag ggaactaagc tccacctctt gaaataagaa gtgtcaaaga atttgtggat 7980 atatttaaaa atcatcacac tgtggaagtg gatagggggt tcaattaatg ctgaacttga 8040 aatgcctgag acattcaaat gtccaacagg caatgaacat acccatagat ggtcatgact 8100 ttagcaagaa tagaggaaga tcacagaatt aaggaggaat tgaaaggtaa aagaagtgga 8160 gtcagattcc ccctgaaaag tgagccatga aaggaacttt aactattgag ttagaggtca 8220 gagtaggaaa tttcggtgga attctttttt aaagaaagga accatataag catgttttga 8280 ggtagaggga gaataaatca gtagacaggg agaggtaaaa aacataaatg ataggggata 8340 gttgacaaag gtcttggcag aatcccttac ccattgactt ggggccaaga gagggacact 8400 tctttgtttg agggataagg aaaataagaa agaatgggtg ctatttagtg tggtcctgtc 8460 tctagggcaa acgcataggt aacaaactgt gtgtgttagg aatatagatg tgacctcaca 8520 ttgagattct cacctcaaat ccattttgtt gttacctgta ccttcctacc ttctcttttt 8580 gctacatgca gactgctgtt ttgtcttcct ggcctgttcc aggtttcagc attctggcat 8640 atctgctacc ctgttcccaa acctctctag agtccatgct ccttccttgg atagtgtttg 8700 attgggccac gtatctaaga agtgatgcct tcagttaggc ctgagaacct cctctatgga 8760 aatctccatc agtgaccctg acagacttgg tatcttggag atgtcactgc tcccagcctg 8820 tggtctagga gaatctcagc ctgggcctct agtagtatgg ataaggcgtt aaggtatctt 8880 tgaaccagag tctgtcatat tcctcaatgt gggacagata aaacagtggt agtgctggtg 8940 tttctgagct agaactctgg tttttggtct agattctttg atgtatgacc tttcagaggt 9000 attaaaattt gttctaatac aatgttcaat acaaatgtag ttccttttct gttaggacct 9060 caacaaaaca tgaccaactg tagatgaaca ttaaactatg acaattcatg gaaatgaata 9120 cagtaatacc tgcggttccc ccattttagc agtcactatg gtgacatttg gcacaaatgg 9180 ctatttaagg gtgcttttgt taaaacctac catcttacta ggcacatgat attgaaacta 9240 atgaaataat ggagaaactt cttaaaaact tttaatgaat aaagtgatga agtgataata 9300 ttttagctgc tatttataaa gtgactatta caggtcaaac attcttctag ggtttttttg 9360 ttgaagttgt cacatttaat ccttaataac ccactatgag tcaggtattc ttctctcccc 9420 tttggacagt tggggaaatg ggggtcagag aggttaggta atttgctcag ggccacacaa 9480 cctgcatgta gaaaatctga gatttgtaca ggaacgtatc aaactctgaa gtccatgctt 9540 ctattttccc atgctgcctt tctaataaaa ggtaactaat gctactggat gctgccccca 9600 aagtgagtca ctttcacccc accctacttg attttctcca taaaactaat cacatcctga 9660 caacttattt attgctgatc tcccccacta gattataaac tcaataaaag caagatcctt 9720 gtctgctgaa tatcagtacc taaaacgctg tctagcacag agcaagtaat taatatttgt 9780 tgaatgaaca aataaaggaa aaaaattcaa aggaagaaaa agccctaaaa cagatgttta 9840 cctaaacata cattttaaaa gaaagcatat aacaaattca ggacagaatt taaatttgat 9900 tttttaaaga aataaccaag tgctagctgg gcacagtggc tcacacctgt aatcctagca 9960 ctctgggagg ccgaggcagg cagatcactt gaggtcaaga gttcaagacc agcctggcca 10020 acatggtgaa acctgtctct actaaaaata cagaaattat ccaggcatgg tggcaggtcc 10080 ctgtaacccc agctactcag gaggctgagt caggagaatt gcttgaaccc aggaggcaga 10140 ggttgcagtg ggccaagatt gcaccactgc actccagcct gagtaacaaa gcaagactct 10200gtctgaagga gaaggaaaga aagaaggaaa gaaggaaaga aggaaagaag gaaagaagga 10260 aagaaagaaa gaaagaaaga aagaaagaaa gaaagaaaga aagaaagaaa gaaagaaaga 10320 aagaaagaaa aagaaagaaa gaaagaaaga accaagtgct tatttgggac ctactatgct 10380 atgtttttcc atgcacgcta ttttcagtaa agcagttagc aaacttgcaa gatcataaca 10440 acaaatatat gcttctataa ctctaaaatt gtgctttaag aagttcctct ttaccagctc 10500 atgtatgcat tagttttcta agagttacta gtaacttttt ccctggagaa tatccacagc 10560 cagtttattt aaccaaagga ggatgcttac taacatgaag ttatcaaatg tgagcctaag 10620 ttgggccagt tcatgttaat atactccaga acaaaaacca tcctactgtc ctctgacaat 10680 tttacctgaa aattcatttt ccacattacc aaggagccag ggtaggagaa tatagaaaga 10740 ccacccaaga atccttactt ctttcagcaa aatcaattca aagtaggtaa ctaaacacat 10800 gccctaacaa tgaatagcag attgtgctca gaagaatgat ctacaacatc ttactgtgaa 10860 ggaactactg aaatattcca ataagacttc tctccaaaat gattttattg aatttgcatt 10920 ttaaaaaata ttttaagcct aaattttaaa aggtttgata ttggtacatg aatagacaaa 10980 cagacatgga ctagaccaag aattaggttc aaacatatac aggaatttaa tatacgataa 11040 atctagtatt ccaaaggaac caacaaatgg tgttcagaca gcaggatagg catcaggaaa 11100 aacacagttg ggcaccctac cttactccta acaccaggag taactgaagg agcaccaaat 11160 atttatttat tttaattata gttttaagtt ctagggtacg tgtgcacaac atgcaggttt 11220 attacatagg tatacatgtg ccatgttggt gaggagcacc aaatatttaa aagaaaaaaa 11280 ttggccaggg gcggtggctc acacctgtaa tcccagcact ttgggaggcc aaggtgggca 11340 gatcacctga ggtcgggagt tcgagaccag cctgagcaac atggagaaac cccatctcta 11400 ctaaaaatac aaaattagcc aggcatggtg gcacatgcct gtaatcccag ctacttggga 11460 ggctgaggca ggagaatagc tttaatctgg gaggcacagg ttgcggtgag ctgagatatt 11520 gcactccagc ctgggcaaca agagcaaaac ttcaactcaa aaaaattaat aaataaataa 11580 aaataaagaa agaaaagaaa aaaatgaaaa tagtataatt agcagaagaa aacaccgtag 11640 aatcctcgga ctcttaggat ggggaatgcc tataatataa aaaccctgaa gttataaaag 11700 agaaaatcac ctacatacaa accaaatctt tctacatgcc taaaacatag cacaaacaca 11760 gctaaataat catagctgaa tgaactggga aaacaaaact tgactcatat ccagacagag 11820 ttaattttcc tacacataaa gagtacctat ataaacccaa caaaaaaacc accactaacc 11880 caaaataaaa atgtgacagg taatgaacag gtagttcaca gagaatacaa atggctcttc 11940 ggcacataag atgctcagac tgacttttac ttatttattt tttgagagac agggtctcac 12000 gatgttgccc aggttaggct caaactcctg ggctcaaatg atagtaccag gactacaggt 12060 gtgccccacc gcacctggct cctcaaccac ctgtattaac aggaaatgca aaataaaact 12120 ttcaaatcta ttttacctat tagaatggca aaaatttgaa aaacttcaaa catcatcatg 12180 ttggtgagaa tgtgaggaga ctggcactct cattttttgc tgatagcata tatatactga 12240 tggcttctat ggaaagcaat ctggcagcgt ctatcaaatg tacaagtgca tatatccttt 12300 gacaaagcaa ttccactcta ggaatgtgtt ctatatggtt gtgcttcctg gggctgggaa 12360 ctgggagcta agggacaggg gcagaagata atcttctttt ccctccttcc ccgttaaaca 12420 tgttgaattt tatatactgt aatatattat ttttcacaaa agataatttt taagcgatat 12480 gtctgggaat tttttttttt cttttctgag acagggtctc actctgtcat ccaggctgga 12540 atgccatggt atgatctcag ctgactgcag cctcgacctc ctgggttcaa gcaatcctcc 12600 cacctcagcc tcctgagtag ctgggactac aggcacgtgc catcatgcta atttttgtat 12660 atacagggtc tcactatgtt gcccaggcta atgtcaaact cctaggctca agcaatccac 12720 ccacctcagg ctccaaagtg ctgggattac aggcgtgagc caccgcgcct ggccctggga 12780 attcttacaa aagaaaaaat atctactctc cccttctatt aaagtcaaaa cagagaagga 12840 aattcaacct ataatgaaag tagagaaggg cctcaaccct gagcaacaaa cacaaaggct 12900 atttctgaga caggaatttg ctgaacaaaa tcgagggaag atgacaagaa tcaagactca 12960 cttctcggct gggcgcagtg gctcacacct gtaatcccag cactttggga ggccgaggcg 13020 gacagatcac gaggtcagga gattgagacc atactggcta acacagtgaa acccagtctc 13080 tactaaaaat acaaaaaatt agccgggcgt ggtggcaggt gcctgtagtc ccagctactt 13140 gggaagctga ggcaggagaa tggcgtgaac ccaggaagcg gagcttgcag tgagccgaga 13200 tcacgccact gcactccagc ctgggtgaca gagcaagact ctgtctcaaa aaaaaaaaaa 13260 aagactcatt tctctagatc ttgagccgta ttcaaattta tctcagctta gtgagaggtt 13320 aaagcaagga atatccttcc ctgtgggccc tgctccttac tgaaggaagg taacggatga 13380 gtcaaggaca ccaatggaga aaagcactaa caccattatc tgatgaacat tacgtgaaga 13440 agggtaagaa gtgaagtgga attgctgaag aagtcagtga aagcggacat tcatttgggg 13500 aaatggaata taggaaatcc ataaaagtga ttaaaaagat gttagaggct gaggcggggg 13560 gaccacaggg tcaggagatc gagaccatcc tggctaacac ggtgaaaccc catctctact 13620 aaaaatacaa aaaattagcc aggcgtggtg gcaggcacct gtagtcccaa ctactcggga 13680 gactgaggca ggagaatggc atgaacctgg gagacggagc ttgcagtgag ccgagatcac 13740 gccactgcac tccagcctgg gtgacagagt gagactccat ctcaaaaaaa aaagttagat 13800 acgagagata aagatccaac agacacacaa ctgctaattc tgaacagaac aaaacaaatg 13860 gcacaggaaa agaaaattta agatataaca ccggaaaact ttcctgaaat tgagtaactg 13920 aatctatagc ttgaaagggt ttagcatatg ccaagaaaaa tcagtagagt ccaaccagca 13980 caagacacat ctagcaaggc tggtgattct accaacacag agaaagaagt gggtgaccca 14040 taatgcggaa aaaggcagac catctgcagt cttctccaga acactggagt ctgaagacaa 14100 aagaatgctg cctactgagc cagaagggag agaaagtgac ccaacacatc tttaccaagt 14160 tagaatgtca cgcattattt aaaggctgca aaagccatga aagacatgaa agaacacaag 14220 catttacaac atgaaagaac acaagcattc tcatactcaa gaatccttaa gaaaaatgta 14280 gtcctaatcc agcccactga aagttaaatg tacttaatgt gctcattaat gggaacttca 14340 tagcttcaaa tcagtctggt cccatctacc aacatctctc gcccggcttt cctgcaatag 14400 tcagcacctt tccctcctcc cagtcttgtc ccctggagtc tgctctcagc atagcagagt 14460 gaccacatca acacccaagt cagagccctc cagtgcgcac tggtctacaa agcccttccc 14520 accccccacc ccacgtgccc tccggatcct tgtgacgtgt ctcctgcata ccctagcagc 14580 cctggcctcc tcactgcccc tcctgtacat caggaaggcg actccttgag tcttggctct 14640 ggccgcctcc tccacctgca gtgagttaac tcccttacct actctaggtc attgctcaaa 14700 tgtcagcatc tcaatggggc cctccctgac taccctattt aaattctaca tactcccctt 14760 gaccccatgg acctcactca ccctattcca cttttattct tacaatttag cacttgttct 14820 cttctaacgt attctaagac ttactcattt attacattgt ttgccacccc ctctagtaca 14880 taaactccag aggggcaggg atttctgtct atttattcat ttctttatcc ctaggacata 14940 gaacagggca tagttcagag tattcaatgt tatcaatgaa tgaactagca gtagtaccag 15000 ttccagttag gcacagaatt aaatctaaat agaattaaat ctcatggtct gggttaacta 15060 tggatagaaa attagatata attttaagaa gcctagaaag aaaaaattaa taatgtaaaa 15120 ataatattaa tttgataata ataacaaaaa ctctgccagg cactgtggct caaatctgca 15180 atcccagcta ctcaggaggc tgaggtggaa ggatcacttg agaccagagt tcaagactca 15240 gcctaggcaa cacggcaaga aactgtctct aaaaaaatta aaacttaaat ttttaaaaaa 15300 gaattctcaa agcgtcacaa aaactggaga ttaaggtaca ggaagtgtga agtaatatta 15360 ctatgctaat ggtttttttt ttttttagaa aggtataacc aaaagatttc tttctcaagt 15420 cgataaactg agaaagataa gcatatcttc caattaacag agggggagga aaagccagat 15480 acaacaaaat aagatataaa ttagtttcca gttgaaaaca agagtaggag ttattttgca 15540 tcacctcacc tgtgacctcc cccagcccaa aaaacactac tgataaacag ggtagaaaag 15600 catcatctca gataaagcag gaaaaactgc cacagtctca aaccacaaac tataagcaca 15660 cacctggcca accctgccaa gtctgggctc agtaggagga acgtgctgag agctaggatg 15720 taccaactta gacattctgt gggatacaga tgtccctgga agggtcacac catctcaaag 15780 gcacctgtaa tgcccactga ttacagccac catatgtgag agagaaactc agggcactta 15840 gagagtataa caagaacctt atgtcatctg agatgaggaa tcctcagccc tgcaaattaa 15900 ccaactcttt agaacaactg gcaaaacata aatatccaca acttttgttt cagtaattcc 15960 actcttagat atcaatccaa agtacatgag acagcagata cacacacaaa atggtattta 16020 ctgcagcatt gtttataata gcaaaaaaca agaaataatc catatgtctc aataggatac 16080 tgggtacatg agggtatgta cccatcattc aaccatcaaa aagagtgata tggatgtcca 16140 cagatggaca taaaaagctg tgtgttacgt gaaaacaaac tcaagcagca gcaggatggg 16200 cttatgatag tcagtatgag ctaatttctg gaaaaaaaaa tctagtgtgt gcacagaaaa 16260 catctgaaag aacagaaaca aaactatcag cagaatattg agatgtttta ctaagttgta 16320 tatctatact gcttgtaatt tttaccccaa gcaagaatta ctttttggaa aaagaaaatt 16380 caggaaataa agcatttctt taaacttcat gtttaaacaa atggtgatgg aataaaagag 16440 ttcttattca tcataaacac acacagcaca catgcacgca tgtgcgtgag cacacccttt 16500 acttgataaa taccatgttg aatattttag tctttccttt taggttctat cccttcactc 16560 aaaatgcggt tataaataaa tgtacttttc atgtgccttc tgcctaaacc cactttaata 16620 taactttaca gtcccattat cattatagtc tcaaagctag actcagcctg aaactaccct 16680 ttcatttgga acccttatta aaatgccaca tacagctcct tcaaataaaa acaaacccta 16740 ggacctgaca ctaggcttcc tttgttgcta ctcataatgg ccaagttctg tgcttataat 16800 acatcttctt tcattttatt gctacatatc caagggtttt atatgttttt cttattatat 16860 cttaattcaa aacaccatca cgctcttttc cagatgaaaa taaggaaaag aaattgagca 16920 actgactgac ttaaaggtca taaaactata tagtagcaga gtcagcaaaa gaagaaacac 16980 acatctccca agtagaggct gaaaaccagt accattcacc tccagggtga gctatataca 17040 gattacaaag tcaccttctc taaatgttca aactgaatcc catacccata ctttaccact 17100 acctcgtaag aacagcctca gatcttgtta tagccttttt tttagcatgc tgaagccaat 17160 aaaatgcttc ccattcagca agagaaacaa gttctgaaac actgaataat ctgcccaggg 17220 cctatgaaca tttccactgt gagaaatgtt ctccactgtg tggagaagat ccttactctt 17280 ctccacacag gcagaacatt agaaaaattc ttggattcta tgatgcacag cttaggagtc 17340 tgtttagcac aatttaagtc caaatagtta ttaaatcctc ctctgttcca gaaacagtgc 17400 taaatactgt gaatataaaa attgaaaaga tactctcctg gctcccaaga aagtcagcca 17460 gatagaggag acacaggcac acaaatcact gtcacatgaa gctctacctc cctaacttca 17520 aacgagggcc taagtcacca agaatacagt agcagttgtg actacgagta actactataa 17580 ttcaatactt tatcttccct tagaaaactc ttctcccttg gaaatttatt tgcatttcta 17640 aataccattc cttactaaaa ggaagcaggg ctccttgggg aaatagctga ttctaggtgt 17700 ggactatgaa atgaaaatgg tgagtctggg acatcccatg ttgcccagaa atcaaggaac 17760 tgcccaaaga ttaacagagt catgttaaat ggacctaaga gtgaaccaga aggagctcac 17820 tttgccccgc gtggaacaat ttcaagaaaa acatgacagt aatgaattat aaaacatgaa 17880 ttaaaataca tattggtact aaaaagagaa caaaaggatg tggctttgga taaagctctt 17940 cttcatggaa gaataccagc taataaatgt aaaggaaatg agagaattag aaaaattatc 18000 attttgtaaa ccttaatata ttcacctaga catgctaaaa ccactgagta aaaggctgct 18060 tgggaagagg atgctcacat gatctcagag tttcacacca cagataattt attagataca 18120 ggaaggaaga tgtgatcaag cttcctgtga cccccagcca ggccccacaa cactatgtgc 18180 ctccttgtga tgtgggagct acacagcatc gcccacacag cttctcgcca aaactgtttg 18240 aagctaatca caagggaaga actggacagc ttctgaccat gagacgctcc accagacaac 18300 ttgcttggcc tctccaaaga aacttgcttg gcctctccaa agaaaactca gtttcattta 18360 aaaacaaaac taattattta aaaacaaacg aaaagcaagt tgtggacttg agctccaggg 18420 acagagcaga catacttttc cctgttcttc ccagtaagtg gtaataaaaa ccctcaacac 18480 tagatataaa acaaatataa gaaggttctg gaaggggaag aggaggcaga ctatccaggt 18540 gccttgaggc ccacagaaca acccagtgat gggttcactg ggtcttcttt ttgcttcatt 18600 atctcagact tggagctgaa gcagcaggca acttcaaaac accaaggggc acagattgaa 18660 aagccccaag aaaagcctgc cctctctagc caaaggacca ggaaggagac agtctaatga 18720 gatggaacac atttagacag taactgccca tttaccagca ataactgagc agggagccta 18780 gacttccagt cttgtgagga cgtaccaagg tacccaacac ccccaccaag gctgagtaag 18840 gactgcgact tttatccctg catggcagta gtaaggagcc catccctcac ccgccagcag 18900 tgtcagggga acctggactt ccactcccac ccaggagtga tgaggccctc cctgctgggg 18960 tcatgtcaga ggaggcctag tggagattca gtgacttaac cttttcccag agataatgag 19020 gccacctttc ctccctcttc ccccatggtg acagtgaaag cactgtggca agcagtaggc 19080 actcctaccc ctcctagcca gggaggtatc agggaggcca agtagggaac cagaataccc 19140 acaaccaccc agcagcaaca ggggtccccc accccattgg gtgtcaatgg aagcagagcg 19200 gaaagcctgg atatttaccc ccatctagaa gtaacaagct gatgtccccc ttcttctact 19260 acaatggtgt tcaaaacagg tttaaataag gtctagagtc tgataacgta atacccaaat 19320 cgttgaagtt ttcattgagg atcatttata ccaagagtca ggaagatccc aaactgaaag 19380 agagaaaaga caattgacag acactagcac taagagagca cagatattag aactacctga 19440 aaggatgtta aagcacatat cataagcctc aacaggctgg gcgcggtggc tcacgcctgt 19500 aaccccagca ctttgggagg ccgaggcagg tggatcacaa gatcaggaga tcgagaccat 19560 cctggctaac acggtgaaac cccgtctcta ctaaaaatac aaaaaaaaat agcaaggcat 19620 ggtggtgggc acctgtagtc ccagctactc gggagcctga ggcaggagaa tggcatgaac 19680 ctgggaagag gagcagtgag ccgagatcgc accaccgcac tccagcctgg gcaacagagc 19740 aagacttcgt cccaaaaaaa aaaaaaaaaa aaaaaaaagc ctcaacaaac aactacaaac 19800 gtgcttgaaa caaatgaaaa aaaaatcttg gcaaagaaat aaaagatata tattttggcc 19860 aggtgcagtg gctcacagcc tgtaatccct gcactttggg aggctgaggc aggcggatca 19920 cctgaggtca ggagtttgag accagcctga ccaacatgga gaaaccccgt ctctactaaa 19980 aatacaaaat tagccagtca tggtggcaca tgcctgtaat cctagctact caggaggccg 20040 aggcaggaga atcgcttgaa ctcaggaggt ggaggttgcg gtgagccgag atcccgccat 20100 tgcacattgc actccagcct gggcaacaag agcaaaactc catctcaaaa aaatagatac 20160 atattttaat ggaaatttta gaattgaaaa atacagtaac caaattgaat ggaaagacaa 20220 catagaatgg agggggcaga caaaataatc agtgaacttc aacagaaaat aatagaaatt 20280 acccaatatg aagaacagaa agaaaataga ctggccaaaa aataaagaag aaaaaagagg 20340 agcagcagga ggaatgatgg aaaaagagaa aggaaggaag gaagggaagg agggagggaa 20400 ggagtgaggg agaaagtctc aaagacctct gagactaaaa taaaagatct aacacttgtc 20460 atcagggtcc aggaaagaga caaagatggc acagctggaa acgtattcaa aaaataatag 20520 ctgaaaactt cccaaatttg gcaagagaca taaacctata gattcgaaat gctgaacccc 20580 aaataaaaag cccaataaaa tccacaccaa aatacatcat agtcaaactt ctgaaaagac 20640 gaaaagagaa aacgtcttga aagcagtgag tgaaacaaca cttcatgtat aagggaaaaa 20700 caattcaagt aacagatttc ttacagaaat taaggaagcc agaaggaaat gacacaatgg 20760 ttttcaagtg ctgaaagaaa agaagtgtca acacaaaatt ctagattcag taaaaatatc 20820 cttcaagaat caatgggaaa tcaagacagt ctcagataaa gcaaaataag agaatatgtt 20880 gccagcagat ctcccctaaa ggaatggcaa aaggaagatc atgcaacaga ccaaaaaatg 20940 atgaaagaag gaatccagaa acatcaagaa gaaagaaata acatagtaag caaaaataca 21000 tgtaattaca ataaaatttc tatctcctct taagacttct aaattatatt gatggttgaa 21060 gcaaaaatta taaccctgtc tgaagtgctt ctactaaatg tatgcagaga attataaatg 21120 gggaaagtat aggtttctat acctcattga agtggtaaaa tgacaacact gtgaaaagtt 21180 acatacacac acacacgtaa gtatatataa atatatgtgt gtatatgtgt gtgtatatat 21240 atatatacat ataatgtaat acagcaacca ctaacaacac tatacaaaga gataataacc 21300 aaaaacaatt tagataaatt gaaatggaat tctaaaaaat attcaaatac tctacaggaa 21360 gacaagacaa aaagagaaaa aaagaggagg acaaactaaa ttttttaaaa acataaataa 21420 aatggtagac ttaagcccta acttatcaat aattacataa atgtaaatga tctaattata 21480 tcaattaaaa gacagagata gcagagttaa tttaaaaaca tagctataag aaacctgctt 21540 tgggctgagt gcagtgactc acacttgtaa tcccagcact tcgggaggcc aaggcgggtg 21600 gatcacctga ggtcaggagt tccagaccag cctggacaac atggtaatac cccatctcta 21660 ctaaaaatac aaaaaaatta gccaggcatg gtggcacacg cctgtagtcc caactactca 21720 ggaggctgcg acacaagaac tgcttgaacc cgggcagcag aggtagcagt gggccaagat 21780 tgcgccactc cagcctgaac gacagagtga gactccacct cagttgaaaa acaaaaaaga 21840 aacctgcttt aaatatacca acatatgttg gttgaaatta aaagaataaa atatatcatg 21900 aaaacattaa tcaaaagaaa ggagtggcta tattaataac ataaaataga cttcagagaa 21960 aagaaaattt caagagacag gaataaaagg atcaagaaaa gatcctgaaa gaaaagcagg 22020 caaatcaatc attctgcttg gagattcaac accctctctt aacaactgat agaacaacta 22080 gacaaaaaaa tcagcatgga gttgagaaga acttaacacc actgaacaac aggatctaat 22140 agacatttac ggaacactct acccaacaat agcaaaataa acattctttt caagtattca 22200 ctgaacatat ccttagaccc taccctgggc cataaaacaa agctcactag tgattgccga 22260 aggcttggat ggacagtgga agagctgcat ggggagggag aaggtgacag ttaaagagtg 22320 taggatttct ttttgggata atgaaaatgt tccaaaattg attgtggtga tgttggcgca 22380 actctacaaa tataaaaaag gccattgaat tgtacgtttt aagtgggtga aacatatggt 22440 atgtggatta tatctaacgc tttttaaaaa cttaacacat ttcaaagaat agaagtcata 22500 cagagtgtgc tctactggaa tcaaactaga aagaggtaac tggaggataa cgagaaaagc 22560 ctccaaatac ttgaaaactg gacagcacat ttctaaaatc atccgtgggt caaagatatt 22620 catttctgat attcattttt attgtttaat gtatttttaa aaatttctta agggaaataa 22680 actgactaaa aatgaatatg gctgggtgcg gtggctcacg cctgtgatcc cagcactttg 22740 ggaggccgag gctggtggat cacaagatca ggagttcgag accagcctgg ccaagatggt 22800 gaaaccccgt ctcaactaaa aaactacaaa aagtagccaa gcgcagtggc gggagcctgt 22860 ggtcccagct acttgggagg ctgaggtagg agaatcgctt gaacacaggc agcagaggtt 22920 gcagtgagcc aagattgtgc cactgcacgc cagcctgggc gacagagact gcctcaaaaa 22980 aaaaaaaaaa aaaaagaata tcaaaatttg tgggacatag ttaaagcaat gctgagaggg 23040 aaatttataa cactaaatgt ttacattaga aaagagaaaa agtttcaaat caatagtctc 23100 cactcccatc tcaagaacac agaagatgaa gagcaaaata aacccaaagc aagcaaaaga 23160 aagaaaatat aaaaataaat cagtaaaatt gaaaacagaa acacaataaa gaaaatcagt 23220 gaaacaaagt actgattctt cgaaagatta ataaaattga caaacctcta gcaaggctaa 23280 caaacaaaaa agaaagaaga cacggattac cagttattag aatgaaagca taattagaaa 23340 caactctaca cattataaat ttgacaatgt agatgaaatg gactaattac tgaaaaaaca 23400 caaattacca caactcaccc aatatgaaat agataattgg gatagcctga taactactga 23460 gaaaattgaa tttgtaattt taacactctt aaaacagaaa cattaaactt aatattttat 23520 aaatattaga taaggtaatt atacccttcc ttaacaaata aaaacgacaa attattttgc 23580 agctaaagag atgtatgtac tgtgaaaaat atcttcagaa aaatagaact ttgtttgaag 23640 aataaggatt taaaaaatgt ttttaactct caagaagcaa atatctgggc ccagatggtt 23700 tcactgaaga attctaccaa atgtttaatg aagaattacc accaactcta catagcatct 23760 ttgagaaaac tgaagagaag ggaacatctc ccagttcatt ttatgaagtg ggtgttactc 23820 tgatactaga actgtataag gacagctact cttgacacac tgcctatggg tagctctgct 23880 ctgcaggaac agtcagaaaa aaaaaaaaaa gaagcactgg acaagggcag tataaaaaaa 23940 gaaaactggg ccaggtgcag tggctcacac ctgtaatctc agcactttgg gaggctgacg 24000 ctggtggatc acctgaggtc aggagtttga gactagcctg gccaacatgg taaaaccctg 24060 tctctactaa aatacaaaaa ttagccaggc agggtggtgg ggaaaataaa aaggaaaaaa 24120 aaacaaaaat aaactgcaga ccaatatcct tcatgagtat agacacaaaa ctccttaaac 24180 tccttaacaa aatattagca agtagaagca atatataaaa ataattatac accatgatca 24240 agtgggactt attccagaaa cgcaagtctg gttcaacatt tgaaaacaag gtaacccact 24300 atatgaacgt actaaagagg aaaactacat aatcacatca atcaatgcag aaaaaagcat 24360 ttgccaaaat ccaatatcca ttcatgatac tctaataaga aaaataagaa taaaggggaa 24420 attccttgac ttgataaagc ttacaaaaga ctacaaaagc ttacagctaa cctatactta 24480 atggtgaaaa actaaatgct ttcccctacg atcaggaaca aagcaaggat gttcactctc 24540 attgctctta tttaacatag ccctgaagtt ctaacttgtg caaaacgata agaaagggaa 24600 atgaaagacc tgcagattgg caaagaagaa ataaaactgt tcctgtttgc agatgacatg 24660 attgtctcat agaaaatgta aagcaactag gggtaggggg gcagtggaga cacgctggtc 24720 aaaggatacc aaatttcagt taggaggagt aagttcaaga tacctattgc acaacatggt 24780 aactatactt aatatattgt attcttgaaa atactaaaag agtgggtgtt aagcgttctc 24840 accacaaaaa tgataactat gtgaagtaat gcatacgtta attagcacaa cgtatattac 24900 tccaaaacat catgttgtac atgataaata cacacaattt tatctgtcag tttaaaaaca 24960 catgattttg gccaggcaca gtggctcata cctgtaatcc cagcatttta ggaggctgag 25020 gcgagcagaa aacttgaggt cgggagtttg agaccagaat ggtcaacata gtgaaatccc 25080 gtctccacta ataatacaaa aattagcagg atgtggtggc gtgcacctgt agacccagct 25140 acttgggagg ctgaggcacg agaattgctt gaacaaggga ggcagaggtt gcagtgagct 25200 gggtgccact gcattccagc ctggtgacag agtgagactc catctcaaaa aaaataaaat 25260 aaagcatgac ttttcttaaa tgcaaagcag ccaagcgcag tggctcatgc ctgtaatccc 25320 accactttgg gaggccgagg caggcagatc acaaggtcag gagtttgaga ccagcctgac 25380 caacatggtg aaaccccatc tctactaaaa aatatataaa ttagccaggc atgtgtagtc 25440 tcagctactc aggaggctga ggcaggagaa tcacttgaac ccggaggcag aggttgcagt 25500 gttgagccac cgcactccag cctgggtgag agaacgagac tccgtctcaa aaaaaaaaag 25560 caaaataacc taattttaaa aacactaaaa ctactaagtg aattcagtaa gtctttagga 25620 ttcaggatat atgatgaaca tacaaaaatc aattgagctg gacaaaggag gattgtttta 25680 ggtcagtagt ttgaggctgt aatgcacaat gattgtgcct gtgaatagct gctgtgctcc 25740 agcctgagca gcataatgag accacatctc tatttaaaaa aaaaaaaatt gtatctctat 25800 gtactagcaa taagcacatg ggtactaaaa ttaaaaacat aataaatact gtttttaatt 25860 gcctgaaaaa aatgaaatac ttacatataa atctaacaaa atgtgcagga cttgtgtgct 25920 gaaaactaca aaacgctgat aaaagaaatc aaagaagact taaatagcgt gaaatatacc 25980 atgcttatag gttggaaaac ttaatatagt aaagatgcca attttatcca aattattaca 26040 caggataaca ttattactac caaaatccca gaaaaatttt acatagatat agacaagatc 26100 atacaaaaat gtatacggaa atatgcaaag gaactagagt agctaaaaca aatttgaaaa 26160 agaaaaataa agtgggaaga atcagtctat ccagtttcaa gacttacata gctacagtaa 26220 tcaagactgt gatattgaca gagggacagc tatagatcaa tgcaaccaaa tagagaacta 26280 agaaagaagc acacacaaat atgcccaaat gatttctgac aaaggtgtta aaacacttca 26340 acgggggaag atatgtctct cattaaaggg tgtagagtca ttgcacatct ataggcaaaa 26400 agatgaacct gaacctcaca ccctacagaa aaattaactc aaaatgactc aaggactaaa 26460 cataagatat acatctataa aacatttaga aaaaggccac gcacggtggc tcacgctcgt 26520 aatcccagca ctttgggagg ccaaggcagg tggatcacct aaggtcagga gtttgagacc 26580 agccggatca acatggagaa gccccatctc tactaaaaat acaaaattag ctggacgtgg 26640 tggcacatgc ctgtaatccc agctacttgg gaggctgagg catgagaatc gcttgaaccc 26700 ggggggcaga ggttgcggtg agccaagatc acaccattgc actccagcct gggcaacaag 26760 agcaaaactc caactcaaaa aaaaaaaaaa aaaggaaaaa tagaaaatct ttgggatgta 26820 aggcgaggta aagaattctt acacttgatg ccaaactaag atctataagg ccagtcgtgg 26880 tggctcatgc ctgtaattcc agcactttgg tcaactagat gaaaggtata tgggaattca 26940 ctgtattatt ctttcaactt ttctgtaggt ttgacatttt tttagtaaaa aattggggga 27000 aagacctgac gcagtggctc acacctgtaa tcccagcact ttgggaggcc ggggcaggtg 27060 gatcacacgg tcaggagttc gagaccagcc tggccaacat ggtgaaaccc cgtctctacc 27120 aaaaatataa aaaattagcc gggtgtcatg gtgcatgcct gtaatcccag ctactgagga 27180 ggctgaggca ggagaatcac ttgaacctgg gaggtggaag ttgcagtgag ccgagattgt 27240 gccactgcac tccagccttg ggtgacagag cgagactccg tctcaaaaga aaaaaaaaaa 27300 aaagaatatc aaacgcttac tttagaaact atttaaagga gccagaattt aattgtatta 27360 gtatttagag caatttttat gctccatggc attgttaaat agagcaacca gctaacaatt 27420 agtggagttc aacagctgtt aaatttgcta actgtttagg aagagagccc tatcaatatc 27480 actgtcattt gaggctgaca ataagcacac ccaaagctgt acctccttga ggagcaacat 27540 aaggggttta accctgttag ggtgttaatg gtttggatat ggtttgtttg gccccaccga 27600 gtctcatgtt gaaatttgtt ccccagtact ggaggtgggg ccttattgga aggtgtctga 27660 gtcatggggg tggcatatcc ctcctgaatg gtttggtgcc attcttgcag gaatgagtga 27720 gttcttactc ttagttccca caacaactgg ttattaaaaa cagcctggca ctttccccca 27780 tctctcgctt cctctctcac catgtgatct cactggttcc ccttcccttt atgcaatgag 27840 tggaagcagc ctgaagccct cgccagaagc agatagtgat gccatgcttc ttgtacagcc 27900 tacaaaacca tgagcccaat aaaccttttt tctttataaa ttatccagcc tcaggtattc 27960 ctttatagca agacaaatga accaagacag ggggaaatca acttcattaa aataatctat 28020 gcagtcacta aacaaataag aacaagaggc tccagaagtg ggaagccaat acccagagtt 28080 cctacaatac agtatctgaa aagtccagtt tccaaccaaa aaatatatat atacaggccg 28140 gacatggtag cttatgtctg taatcccagc actttgggat gctgaggcgg gcagatcacc 28200 ctaggtcagg agttcgagac cagcctggcc aatatggcaa aaccccgtct ctactaaaaa 28260 tacaaaaatt agccaggcat ggtggtggat gcctgtaatc ccagctactc gggaggctga 28320 ggcagggaat cacttgaacc caggaggcag aggttgcagt gagccgagat cacgccactg 28380 aactccagcc tgggcaacaa agtgagactc cacctcaaaa aaaaaaaaaa tatacatata 28440 tatatgtgtg tgtgtgtgtg tgcgcgcgtg tgtgtatata cacatacaca tatatacata 28500 tatacagaca cacatatata tatgaagcat gaaaagaaac aaggaagtat gaaccatact 28560 ttctgtggtt atgataggat ggggtatcac gggggaagta gacaagggaa actgcaagtg 28620 agagcaaaca gttatcagat ttaacagaaa aagactttgg agtaaccatt ataaatatgt 28680 ccacagaatt aaagaaaagc gtgattaaaa aaggaaagga aagtatcata acaatattac 28740 tccaaataga gaatatcaat aaaggcatag aaattataaa atataataca atggaaattc 28800 cggagttgaa aggtagaata actaaaattt aaaattcact agagaaggtt caacactata 28860 tttgaactgg cagaagaaaa atttagtgag acaaatatac ttcaatagac attattcaaa 28920 tgaaaaataa aaagaaaaaa gaatgaagaa aaataaacag aatctcagca aaatgtggca 28980 caccattaat cacattaaca tatgcatact gagagtaccg gaagcagatg agaaagagga 29040 agaaaaaata ttcaaatgat ggccagtaac ttcctagatt tttgttttaa agcaataacc 29100 tatacaatca agaaactcaa tgaattccaa gtaggataaa tacaaaaaga accacaaaca 29160 gatacaccat ggtaaaaatg ctgtaagtca aaaacagaga aaatattgaa agcagctaga 29220 ggaaaactta taagagaacc tcacttacaa aagaacatca cttataaaag aaccacaata 29280 atagaaacag ttgacctctc atcagaaaca atgaatgata acatatttga agtgctcaaa 29340 gaaaaaaaat aaagattcct atatacgaca aagctgtctt tcaaaaatat acatccaaaa 29400 ggattgaaac cagggtcttg aagagttatt tgtacatcca tgttcatagc agcattattc 29460 acaatagcca aaaggtagaa gcaacccaag ggtccatcga caaataaata aaatgtggta 29520 tatgtataca caatggaatt tattcagtat taaaaaggaa tgaaattctg acacatgcta 29580 caacatggct aaaccttgag aacactatgc taagtgaaat aagccagcca caaaaggaca 29640 aataccatat tacttcactt gtatgaaata cctagggtag tcaaattcag agatagaaag 29700 taaaacagtg gttgccaagg gctgagggag ggagtaacgt ggagttattg ttgaatgggt 29760 acagaatttc agttttgcaa gataaaaaga gttctggaga cagatggtgg tgagggtggt 29820 acaacaatac aaatatactt tatactactg aacagtatac ttaaaaatga ttaacatggt 29880 gaaaccccgt ctctactaaa aatacaaaaa aattagctgg gtgtggtggc gggcacctgt 29940 aatcccagct acttgggagg ctgaggcagc agaattgctt gaaaccagaa ggcggaggtt 30000 gcagtgagct gagattgcgc caccgcactc tagcctgggc aataagagca aaactccgtc 30060 tcaaaaaata aaaaataaaa aaaatttaaa aatgattaag caggaggcca ggcacggtgg 30120 ctcacaccta taatgccagc actttgggag gccgaggcag gcgatcactt gagaccagga 30180 gtttgagacc agcctggcca acatggcaaa accctgtctc tgctaaaaat acaaaaatta 30240 gccaggcatg gtggcatata cttataatcc cagctactgg tgagactgag acacgagaat 30300 tgcttgaacc caggaggcag agattgcagt gagtcgagat cgcgccactg aattccagcc 30360 tgggcgacag agcaagattc tgtctcgaaa aaacaaaaac aaaaacaaaa agcaaaacca 30420 aaaaataatt aagcaggaaa cgagattgct gctgaggagg agaaagatgt gcaggaccaa 30480 ggctcatgag agcacaaaac ttttcaaaaa atgtttaatg attaaaatgg taaattttat 30540 atgtatctta ccacaaaaaa aagggctggg gggcaggaaa tgaaggtgaa ataaagacat 30600 cccagagaaa caaaagtaga gaatttgttg ccttagaaga aacaccacag gaagttcttc 30660 aggctgaaaa caagtgaccc cagagggtaa tctgaattct cacagaaaat tgaagcatag 30720 cagtaaaggt tattctgtaa ctatgacact aacaatgcat attttttcct ttcttctctg 30780 aaatgattta aaaagcaatt gcataaaata ttatatataa agcctattgt tgaacctata 30840 acatatatag aaatatactt gtaatatatt tgcaaataac tgcacaaaag agagttggaa 30900 caaagctgtt actaggctaa agaaattact acagatagta aagtaatata acagggaact 30960 taaaaataaa attttaaaaa atttaaaaat aataattaca acaataatat ggttgggttt 31020 gtaatattaa tagacataat acaaaaatac cacaaaaagg gaagaagaca atagaactac 31080 ataggaataa cattttggta tctaactaga attaaattat aaatatgaag tatattctgg 31140 taagttaaga cacacatgtt aaaccctaga tactaaaaag taactcacat aaatacagta 31200 aaaaaataaa taaaataatt aaaatgtttg tattagtttc ctcagggtac agtaacaaac 31260 taccacaaat tgagtggctt aacacaactt aaatgtattt tctcccagtt ctggaggcta 31320 aacacctgca atcaaggtga gtacagggcc atgctccctg tgaaggctct aggaaagaat 31380 cctcccttgt ctcttccagc ttccagtggt tctcagtaac cctaagtgct ccttggcttg 31440 tagctatatc attcctagca accagaaaga agaaaataat aaagattatg gcaaaaaata 31500 atgaaatcaa aaggagaaaa atggaaaaaa ataaataaaa ccaaaagcta gttctttgaa 31560 aagatcaacc aagttaacaa accttttaac tagactgaca aaaaggaggt aagactcaaa 31620 ttactagaat cagaaataaa agaggggaca ttactaatga gggattagaa aagaatacta 31680 cgaacaaatg tgtgccaaca aattagaaaa cttagatgaa atggacaggt tcctaggaca 31740 acatcaacta ccaaaattta ctcaagaaga aagagacaat ttgaatgagc tataacaagg 31800 gaagagactg aattgacaac caagaaacta tccacaaaga aaatcccagg cccagaagat 31860 ttcactgtga aattctttca aacttataaa tataaattaa catcagttct tcacaaactc 31920 ctccaaaaaa aagaacagat ctctatttac aggcgatacg atctttagaa aatcctaagg 31980 gaactactaa gacactatga taactgataa acaagttcag caaggctgca ggatagaaaa 32040 ccaatataca aaaatctatt atatttctat acacttgcag tgaacaaccc aaaaatgaga 32100 ttaagaaaat aattcaattt acaataacat caaaaagaat aaaaacactc aaaaataaat 32160 ttattcaagt aagtgcaaaa cttatactct agaagctaca aaacactgtt aaaagaaatt 32220 aaaggtttac ataaatgaaa aactatccca tgttcatgga tcaaaagact tattactggc 32280 aatgctctcc aaattgatct ataaattcaa caaaatcctt atcaaaatcc cagatgaggc 32340 tgggggtggc ggttcatgcc tgtaatccca gcactttggg aggctgaggc acgcagatta 32400 cctgaggtcg ggagctcgag atcagcctga ccaacatgga gaaaccctat ctcttctaaa 32460 aatacaaaat tagtcaggcg tggtggcaca tgcctataat cccagctact cgggaagctg 32520 aggcaggaga atcgcttgaa cccaggaggc agaggttgca gtgagccaag atcgtgccat 32580 tgcactccag cctgggcaac aagagcaaaa ttccatctca aaaaaaaaaa aaaaaaaatc 32640 ccagatgact tcactgttga aattgaaaag attattctaa aattcacatg gaattgcaag 32700 accttgagaa tagccaaaac aaacttgaaa aacacgaaca aaatatagga tgactcactt 32760 gccaattgca aatgttacga cacagcaaca gtaatcaaga ctgtgtggta ctggcaaaag 32820 acacatacat acatacatat caatggaata taattgagag tacagaaaca agcctaaaca 32880 tctatggtaa gtgcttttct atttttttct tttttttttt cttttttgta gagatagaat 32940 ctcaccatgt tgcccaggct ggtcttcaac ttctgggctc aagcaatcct cccactgtgg 33000 cctcccaaag tgctgggata actggcatga gccaccacat ccagcccaga tgattttcaa 33060 aaaagtcaac aagaccattc ttttcaacaa ataggtctgg gatgatcaga tagtcacatg 33120 aaaaaaaaaa tgaagttgga ccctccatca cactaaagtg ctgcgattat aggcatcagc 33180 caccacatcc agcccaaatg attttcaaaa aggtcaacaa gaccattctt ttcaacaaat 33240 aggtctggga taatcagata gtcacatgaa aaaaaaaatg aagttggacc ctccatcaca 33300 ccatatgcaa aaattaattc aaaaatgaat tgatgactta aacgtaagag ttacgactgt 33360 aaaactctta gaaggaaaca tacgggtaaa tcttaaagac gttaggtttg acaaagaatt 33420 cttagacatg acaccaaaag catgaccaac taaggtaaaa tagggtaaat tgtacctacc 33480 aaaatgaaaa acctttgtgc tggaaaggac accatcaaga aatggaaagc caaaatagcc 33540 aaggcaatat taagcaaaaa gaacaaagct ggaggcatca tactacctga cttcaaagca 33600 acagtaacca aaacagcatg gtactagtag aaaaacagac acatagacca atggaacaga 33660 ataaagaacc caaaaataaa tccacatatt tatagtcaac tgatttttga caatgacacc 33720 ccttcaataa atgatactag gaaaactgga tatcgatatg cagaagaata aaactagacc 33780 cctatctctc accatataga aaaatcaact cagactgaat taaagacttg aatgtaagac 33840 ccaaaactat aaaactactg gtagaaaaca taaggaaaaa cgcttcagga cattggtcca 33900 ggcaaagatc ttatggctaa aacctcaaaa acacaggcaa caaaaacaaa aatggaaaaa 33960 tagcacttta ttaaactaaa aagctcctgc acagcaaagg aaacaacaga atgaaaagac 34020 aacctgtaga atgggagaaa atatttgcaa actatccatc catcaaggga ctagtatcca 34080 gaacacacaa gtgactaaaa caactcaaca gcaaaaaagc aaataatctg gtttttatat 34140 gggcaaaaga tctgaataaa cattctcaaa ggaagacata caaatgtcac tatcattctg 34200 ccagtaccac actgtcttga ttacttgtta gtgtataaat ttttaaattg ggaagtgtga 34260 gtcatcctac actttgttct tgtttttcaa gtttgttttg gctattctgg gagccttgca 34320 agtataaaat agccaacaag tatgaaaaaa tgctcaccat cactaatcat cagagaaata 34380 aaaatcaaga ccactatgag atatcctctc actccagtta gaatggctac tatcaaaaag 34440 acaaaatata atggatgctg gcaaagattt ggagaaaggg gaactcctat acactgtggg 34500 tagggatgca aattggtaat ggccattatg gaaaataata ctgaggtttt tcaaaaaact 34560 gaaaatagaa ctaccatatg atccagcaac cctactactg ggtatttatc caaaggaaag 34620 aagtcagtat actgaagaaa tatatgcact ctcatgttaa ttgcaacact gttcacaaca 34680 gccaagacag ggaataaatc taaatgtgca tcaacagatg aatggataaa gaaaatgtgg 34740 catatacact caatagaata ctattcagcc attaaagaag aatgaaatcc tgtcatccca 34800 gcaacatgga tgaacctgga ggacattata tttaatgaaa taagtaaagc acaaaaagat 34860 aaacagtaca tgttctcact cagacatggg tgctaaaaag aaaatggggt cacagaatta 34920 gaaggggagg cttgggaaaa gttaatggat aaaaatttac agctatgtaa gaagaataag 34980 ttttagtgtt ctatagaact gtagggcgag tatagttacc aataacttat tgtacatgtt 35040 caaaaagcta gaagagattt tggatgttcc cagcacaaag gaatgataaa tgtttgtgat 35100 gatggatatc ctaattaccc tgattcaatc attacacatt gcatacatgt atcaaattat 35160 cactctgtac ctcataaata tgtataatta ttacgtcaac aaaaaaagga aaaaaaagaa 35220 aattaagaca acccacataa tggaagaaat aaaatatctg caaattatat atatctgata 35280 aatatttaat atttataata tataaagaac tcctacaact caagaacaac aacaaaacaa 35340 cccaattcaa aaatgggtaa aagccttgaa tatacactta tctaaagact atatacaatt 35400 ggccaataaa gacacgaaaa gatgctcaac atcactagtc atcagggaaa tataaatcaa 35460 aaccacaatg tagaatgtag acaccacttc atatgcacta ggatggctag aataaaaagg 35520 taataacaaa tgttggtaag gatgtgaaaa aatcagaaac ctcattcgct gctgttggga 35580 atgtaaagtg atgcagccac tttggaaaac agtctggcag ctcctcaaat tattaaatac 35640 agagttaccg tatgacccag gaatattcct cctgggtcta taaccaaaaa aatgaaaaca 35700 tatatccaca taaaaacttg tacatgggca tttatagcaa cattattcat aacagcaaag 35760 gtggtaagaa cccatatgcc catcatctga tgaacaggta aataacatgc ggtattatcc 35820 atacactaga atattatctg cccatacaag gagtgacatc cagctacatg ctacaaggat 35880 gaatctcgga aaccttatgc taagtgaaag aagccagtca caaatgacca cagattatga 35940 ttccatgcat cggaaatgac cagaataggg aaatctatag agacagaaag tagattagtg 36000 gttgggtggg gctgggagga caggtagtac actactttcc cagaactact ggaacaaagt 36060 accacaaact ggggagctta aacatagaaa ttgatttcct cacagttctg gagactagga 36120 ctctgagatc aaggtgtcag cagagctggt tctttctgag ggccctgagg caaggctctg 36180 tcccaggcct ctctccttgg ctggcaggtg gccatcttct ccctgcgtct tcacatcatc 36240 ttttctctgt gtgtgcccat gtccaaattt tgattggctc attctgggtc atggccaatt 36300 gctatgcaca aagtgaagtc tacttccaaa agaagggaag agggaacact gactaggcta 36360 aacttatagt cattttaatg tccgcttttc ctatgagatt gtgaacacac agaagtaggg 36420 tttttatcta cattgtgcaa agtttaataa gaaaaataga attcaagaga agcagttcaa 36480 tagcaggaat ttaatatggg aactaattac aaggtttagg gcaggactaa aaagccagtt 36540 gggatggtga gccaacccag agattagcaa cagtgggacc ccatctacct accacccatg 36600 aagctggaag gataaaggag gggctattat cagagtccac aagccagtgt cagagtcctt 36660 ggctggagct gggaccaccc tagagacact gtgcaaagca gaaaacaagg gggaaaaacc 36720 ctgacttctc ccttcctccc acctttcaat ctcccactag tgcttcctac tagccatact 36780 tggccagaga cagtgacaag gaacactgca aaatgaagtt tgtaggaatc atctccctct 36840 gagacagaga aatatggaag ggtagaaaat gaatcagagg ataaagagaa aaaaccctga 36900 gtactatctt atttatcttt gtatctccag tgcctaatct gtctctcaaa aaaggaaagc 36960 aattgagaga aactgaaaac tccaattgaa atgaaagaat ggagaattac tggactagaa 37020 gagaagagaa aaatttattc cgcatagagt aaacaagaat ggattcacaa aggacgtgat 37080 gaatgaaaag ctataatcag caaagatttg ccagagaaat taaaaagtgg taaactcagc 37140 cacgctgtac aacctgaagg cacaatgcat gaaaacgttt caagaaatga caagatttga 37200 agtcaaattc taagtgcttt tccagaatct ctcaagacga ttatatagct accccatttt 37260 attaaataaa atggaaactt actaaacttt ccccttgtat taaactaaca tatgtcctaa 37320 tagcaaacga ttctggaatt cctagagtaa aatatatttc gtcaaagtgt attgctcttt 37380 taatattctg ctgacctcct tttgctattt aggatatttg tatacacatc acacgtaaat 37440 ttggtctata gtttacatct acgggcttat actgttcttt ttttcatttt tttaaaattt 37500 ccaaccccca gtatccatat actgctctct atcagggtta ttttaacttt gtaaaatcag 37560 ctgagatgct ttccatgttt ttttttttta ttttctgcca catttgaata gcataggagt 37620 taccaccatc aaccttggat tatttaagca ttcacgattc cacgtgtgga ttttttattc 37680 agagtctttc ttgtcattcc tgctatcagc acagaaccca atctcagctt tccagctata 37740 ctctcacccc atggaatttg cagatgaagt tcaaaaggac ctttgcatta tcctgcctcg 37800 ccctcttccc ccttcattta gacatcacct tcttctagaa cgtcttacct gacatgccct 37860 gctcccaacc cctgctgccc aattgtgtgc tctcccgtgt cctggcctgc catcctcttt 37920 agtaattgcc tgctccctca tctgtctccc cacccagaca ttaagctgaa tagactggat 37980 ttgtgtcttg tccatcacta taatctcagc acctagtacc tagtaggtac ttaccatgta 38040 ttcattagca aaatgttatg tataaccttg caccttaaaa acaagagaag gaagacaaaa 38100 ttaagtctta agactatggt ttagaacatg gatcagaaac tacagtctgc agcccaaatc 38160 cagaccaaat gaagagacca tgttcattta catacaacct atagcagctt tcacactaca 38220 ggagcagagc taagtagttc caagggaaca cacggccctg caaagcctaa aatatttact 38280 ctatagctct tcacagaaaa agttttcaga tccctcgttt agaactcttg ttcatatgca 38340 atttcactaa accatagttt tttgggtttg tttggttttt tttggcaaaa aggaatgagc 38400 cgatccagaa aaggttgaaa agaatgaatc attactgctg aaagaatgtg cacacagtcc 38460 gtcagtattc tgctgccatg ctgacaccca tccaatagtg tcatgagatg cagcagctac 38520 tactgtgttc tcaatgccga gtccacccac tccataacca tgtccaagca atcttgggaa 38580 catcatcacc atgcttgttt atccttaagg tattgcctca catacagcag tggctggtca 38640 taaagtcaaa tgacactagt ggccaggagg tcaagagaat gagtgaggac aggtgggtag 38700 gcagcccagg ccctagcaac agcaggagct cacccctcag tcactctagc caggactgaa 38760 atacttttca ccctttcaag agagactagg aatctggatt tttatgtgaa atatcttgat 38820 tactaaatgt tgtcaacaga catgtcaaaa ggtaaaacta agtaagttca tggggcagat 38880 tgactattca ggttatagaa ttaaggattc ttatccaaca cagataccaa ccaaaaagct 38940 gacgtataac atattaggag aaactatgtg cactgtcgaa acatcaacaa ggggctaatg 39000 tctaaaatag tctatattgg attccagttg aaacatgggg aaaggacatg aacaggcaac 39060 ttatgtcaat ggaaactcaa aaagataaca agcatatata aaagcattct caaattcagt 39120 agtaaacaga cagatgcaaa taaaaagagg gaaactgctg ccgggcacag tggctcacac 39180 ctgtaatccc agcactttgg gaggccgagg cgggcggatc atgaagtcag gagatcgaga 39240 ccatcctggc taacatggtg aaaccccgtc tctactgaaa acacaaaaaa ttagccaggc 39300 gtagtggtgg gcaccagtag tcccagctac tcaggaggtt gaggcaggag aatggcatga 39360 acccaggagg cggagattgc agtgagccga gaccatgcca ctgcactcca gcctgggcga 39420 ctgagtgaaa ctccatctca aaaaatataa taataattat aattataata ataataaata 39480 gtaaataaat aaaaagagag agactgctaa agtctagaaa gttgaatgat gccaagcgca 39540 tgcaaagatc agggccttgg gatggccggg tgcagtggct cacgcctgta atcccaccac 39600 tttgggaggc caaggcgggc ggatcatgag gtcaagagat caagaccatc ctggccgaca 39660 cagtgaaacc cggtctctac taaaagtaca aaaaaatata tatatatata tatattatta 39720 tattatatat atatatatca gagccttggg aatccttgtg tgctgctggg gaaggtagtg 39780 gtgcagccac ccttgacagc aatctggcag tacttggtta tattaagtat aggcacacac 39840 cacgaccagg cagtcctact cctgggtcta aatcccaaag aattctcaca caagtccata 39900 aggagacatg tacgaggctc attcagcatt actgggagtg ggaatcaacc tgggtgtcca 39960 tctacaggag acgagatgga caaaatgtgg tggatattaa gaccagaatc accaagtaac 40020 agagatgggt ggtgagtgac aatcctaaga tacagaataa aggctagaac atgatgccat 40080 tcatgtaaat taaaaataga tgcacacaaa gcagtatacg cgtgaccctt gaatagcaca 40140 ggtttgaact gcctgtgtcc acttacatgt ggattttctt ccacttctgc tacccccaag 40200 acagcaagac caacccctct tcttcctcct ccccctcagc ctactcaaca tgaagatgac 40260 aaggatgaag acttttatga taatccaatt ccaaggaact aatgaaaagt atattttctc 40320 ttccttatga ttttctttat ctctagctta cattattcta agaatatggt acataataca 40380 catcacacgc aaaataaatg ttaattgact gtttatatta tgggtaaggc ttccactcaa 40440 cagtaggctg tcagtagtta agttttggga gtcaaaagtt atacacagat tttcaactgt 40500 gcaggcaatc agttcccctg accccctcat tgttcacggg tcaactgtat atacacaaaa 40560 gtattatatg aacctcatta gaatagctgt ctatagggag aagagaatga gagtgggata 40620 aaacggaatg aacaaataaa ccaacaaatg cattaacaag caaaacaaca gaggggcttg 40680 catgggccag tgatgataaa gggctaagaa tgagaatata attaattcaa ttcctcacac 40740 ctgaggtcta aaaccaagga aagggagggc caggcgtgga ggctcacgcc tgtaatccca 40800 gcactttggg aggctgaggc gggcggatca caagattagg agtttgagat cagcctggcc 40860 aacacagtga aagcccatct ctacaaaaaa tacaagaatt acccaggtgt ggtggcacat 40920 gcctgtagtt agctactctg gaggctgagg caggagaatc acttgaaccc aggaggcgga 40980 ggttgcaggg agccgagatc acaccattgc actccagcct gggtgacaga gtaagactct 41040 gtctcaaaaa aataaaaaaa ataaaaaaac agagaaaggg aggaaactag atccaggctg 41100 actagataca gcctttagag ttagaaaaga tgatttgaca atctaagccc acactcagat 41160 tgaatgaaat tgaaaagcct ttcaaactaa aacatttaat tacaccatct gctgcagaca 41220 gaactcagac aactcaaaca ggtaatgtca gcgtggtgtt ttatatcacc accctcaaca 41280 cagaataaaa atcagctgca tgtgaagcag tgactagaat gaagaaaagg ctgcttctta 41340 cttccttcta gtggttcttt ccgaaaacat taataggcac cagctctatg catgtcaccc 41400 tgcagggaga catggggtat ataactatga cttactgttc attcctcaag gaattcccaa 41460 tcttgtggaa gattatacac aatgaggcaa caaaaactat ccaataaaac cacggaaaag 41520 aagccagtga caaagaagcc agtgatgaaa ggccctgtga gcagagctga tggccatttg 41580 gggaagaaag accaacatgg atgggggtga tcagggtggc tccgtgggaa agctggaaga 41640 gaagtggcag atctctgagc tggatgatgg gccactacca tctgtatatg gctaattaaa 41700 gaccatgtgt ggatttttta ttcagctctt tcgtgtcatt cctgctatca gcacagaacc 41760 caatctcaac tttccagcta tattgagcta aacttctcac ctcatggaat ttgcagataa 41820 agttcaaaag gatccttgcc ttttcaaaat aattttgaat ggttgagtag tccctctgtg 41880 ctctctcact gacaccctct caaggctgct gagcacgtgc catgctatgg ctttctccaa 41940 catcaggaaa tgttctccac tcagtttcac cttaatacaa atgtgttctc tcttcagaga 42000 aggcaaaaaa attcatgacc atctgactgg gagaagtcat ttctaggtaa agtgtccatc 42060 tttttctgag gaacacagga ggaaaatctt acagaaaaga gttaacacag caggcctaag 42120 actgcttttt aaaataaata aataaataaa taaataaata aataaataaa taaataaata 42180 aataaatgaa tgatagggtc ttctgtattg gccaggctag tctcaaattc ctggcttcaa 42240 gagatcctcc caccttggtc tcccacagtg ttgggattat agacatgagc cattgtgctt 42300 ggcccaagac tgttattctt aaaaagtctc ataaaaagca tggttaatcc ttggctggca 42360 cctgggaact tagatttcag aagggttccc accatccaac ctggaaagag ggactcactg 42420 tgcctaaatt attgtgtggt ttatgctgaa ctcctgcttt tcttcaggta gcgtggaatg 42480 tggtatgtgc tgggcaaagg gggcctgcat gaccagcccc caataaaaac cctgggtgtt 42540 gggtctctag tgagtttccc tggtagacag catttcacat gcgttgtcac agctccttcc 42600 tcggggagtt aagcacatac atcctgtgtg actgcactgg gagaggatgc ttggaagctt 42660 gtgcctggct tcctttggac ttggccccat gcacctttcc ctttgctgat tgtgctttgt 42720 atcctttcac tgtaataaat tacagccgtg agtacaccac atgctgagtc ttccaagtga 42780 accaccagat ctgagcatgg tcctgggggc ccccaacaca gaaataaatt ataaaagacc 42840 aaggactggg catggtggcc catgccggta atctcagcgc tttgggaggc cgaggcagga 42900 ggaccagtta agcccaaaag ttcaaagtta cagtgaccta tgactgcgcc aatgcactct 42960 aacctgggag acagagcaag accctgtccc caaaacaata aactaaacac atacttctgc 43020 cttccaagtg tcttaaaatt caatggaatg gtagaaacat ttttaaaaca ctaaatcaaa 43080 agaaacctgg aaaacaagag tgccgatggc caactaaaat gtctaggaaa tttctgaaaa 43140 gtaaaaagta ctcagaacca gattacctga gcaaaccata gcccaataca agcttgggag 43200 gaggctgtta tgcagaagga aatggtaaca ggtttccagg aacagacttg taacagcaga 43260 tagaacagca gaggtagaac ctgacaaggt gattacctgg ggaactgcag tctgaatgac 43320 caggactgtt ggacccttcc cctcacatgg aatacacacg ccactcagca gcacaccaca 43380 gctcttcaac aatcacagga ggcacgctac gcctagtaag acaggaaaaa aggaattctc 43440 aaacttcgaa gatgaacaca taaagaatca ccaagttttt attcagtatg atgaaacagg 43500 gacactgaat caacagaaca caaacccaag caaagataat tactagagca catagaagaa 43560 attattagat attcttggga agacctaagg ggacattata aagagcaagc agttggtatg 43620 tgacgatctt tgtgatatac caagaaataa aaacacagga tgaagaccag atagagaata 43680 atgctactat ttgtgcaaaa aaggagaaat ggagaatctg attcatattt gcttgtattt 43740 gcatgaagaa actttggaag gtacataagt aactaacaac aatggttacc tacttgtaag 43800 gcgagagaag taagaggaca ggaatggtgg gaacaccttt tgtgtccgga attggtgggt 43860 tcttggtctg acttggagaa tgaagccgtg gaccctcgcg gtgagcgtaa cagttcttaa 43920 aggcggtgtg tctggagttt gttccttctg atgtttggat gtgttcggag tttcttcctt 43980 ctggtgggtt cgtagtctcg ctgactcagg agtgaagctg cagaccttcg cggcgagtgt 44040 tacagctctt aagggggcgc atctagagtt gttcgttcct cctggtgagt tcgtggtctc 44100 gctagcttca ggagtgaagc tgcagacctt cgaggtgtgt gttgcagctc atatagacag 44160 tgcagaccca aagagtgagc agtaataaga acgcattcca aacatcaaaa ggacaaacct 44220 tcagcagcgc ggaatgcgac cgcagcacgt taccactctt ggctcgggca gcctgctttt 44280 attctcttat ctggccacac ccatatcctg ctgattggtc cattttacag agagccgact 44340 gctccatttt acagagaacc gattggtcca tttttcagag agctgattgg tccattttga 44400 cagagtgctg attggtgcgt ttacaatccc tgagctagac acagggtgct gactggtgta 44460 tttacaatcc cttagctaga cataaaggtt ctcaagtccc caccagactc aggagcccag 44520 ctggcttcac ccagtggatc cggcatcagt gccacaggtg gagctgcctg ccagtcccgc 44580 gccctgcgcc cgcactcctc agccctctgg tggtcgatgg gactgggcgc cgtggagcag 44640 ggggtggtgc tgtcagggag gctcgggccg cacaggagcc caggaggtgg gggtggctca 44700 ggcatggcgg gccgcaggtc atgagcgctg ccccgcaggg aggcagctaa ggcccagcga 44760 gaaatcgggc acagcagctg ctggcccagg tgctaagccc ctcactgcct ggggccgttg 44820 gggccggctg gccggccgct cccagtgcgg ggcccgccaa gcccacgccc accgggaact 44880 cacgctggcc cgcaagcacc gcgtacagcc ccggttcccg cccgcgcctc tccctccaca 44940 cctccctgca aagctgaggg agctggctcc agccttggcc agcccagaaa ggggctccca 45000 cagtgcagcg gtgggctgaa gggctcctca agcgcggcca gagtgggcac taaggctgag 45060 gaggcaccga gagcgagcga ggactgccag cacgctgtca cctctcactt tcatttatgc 45120 ctttttaata cagtctggtt ttgaacactg attatcttac ctattttttt tttttttttt 45180 tgagatggag tcgctctctg tcgcccagac tggagtgcag tggtgccatc ctggctcact 45240 gcaagctccg cctcccgggt tcacaccatt ctcctgcctc aacctcctga gtagctggga 45300 ctacaggcaa tcgccaccac gcccagctaa ttttttattt tatttttttt ttagtagaag 45360 cggagtttca ccatgttagc cagatggtct caatctcctg acctcgtgat ccatccgcct 45420 cggcctccca aagtgctggg attacagacg tgagccactg cgccctgcct atcttaccta 45480 tttcaaaagt taaactttaa gaagtagaaa cccgtggcca ggcgtggtgg ctcacgcctg 45540 taaccccagc actttgggag gccgaggcgg gcggatcacg aggtcaggag atcgagatca 45600 tcctggttaa cacagtgaaa ccccgtcgct actaaaaata caaaaaatta gccgggcgtg 45660 gtggtgggca ccggcagtcc tcgctactgg ggaggctgag gcaggagaat ggcgtgaacc 45720 tgggaggcag agcttgcagt gagccgagat agtgccattg ccttccagcc tgggcgacag 45780 agcgagactc cacctcaaaa aaaaaaaaaa aaaatagaga cccggaaagt taaaaatatg 45840 ataatcaata tttaaaaaca ctcaagagat gggctaaaga gttgacggaa caaatctaaa 45900 tattagattg gtgacctgca aaaccagccc aaggaacatc ccagaatgca gcccataaag 45960 ataaagagag catttccgct gggcacagtg gtatggcagg ggaattgcct gagtccaaga 46020 gttgcaggtc acattgaacc acaccattgc actccaggcc tgggcaacac agcaatactc 46080 tgtctcaaaa aaaaaaaaaa ttaaattaaa aaagacagaa tatttgagag aaaaaaatgc 46140 ttatttcaag aaacatgaaa gataaatcaa gatattctaa ttcccaagta agaataattc 46200 cagaagcaga aaatagaata gaggcaagga aacactcaaa acttctccag tgccatagaa 46260 atgtgtatta atctttagaa tgaaacggac taccaaatgc tgagcaggaa gaacaaaaga 46320 gatccactct taagccagtg tggtgcccaa gcgcagtggc tcatgcctgt aatcccagca 46380 ctttgggagg ccgaggcagg tggatcacct gaggtcagga gtttgagatc agtcaggcca 46440 acatggtgaa accctgtctg tactaaaaat acaaacatta gctgggtatg gtggtgcaca 46500 tctgtaatcc caactacttg ggaggctaag gcaggagaat cacttgaaac caggaggtgg 46560 aggttgtagt gagccgagat catgccacac tcccagcctg ggtgacagag caagattcca 46620 tctcaaaaaa aaaatccact cctagacaaa taatagttaa attttagaac accaaggaga 46680 aagaaaaaaa attgtaaagc ttcagagaaa ataaacatta actacaaaga aacgagagtc 46740 agacgcgtgc acttcttcct agataccagc agataaagca atatctccaa aattcagaag 46800 gttttaacgt agaatcctat acccagtcaa gaatattcac atggaaaagt gaaataaaaa 46860 acattgttta aacatgcaag ggttcagaaa gtttaccatt cacagaatcc ctgaaaacaa 46920 aaccaaataa tcacttaagg actcattaag aaaacaaatg aaataaaagc accaatgatg 46980 agtaaataat cagaaaaatt tacagtttac ctaaataact gtttatgcat aatgtatgaa 47040 aacccaaaaa tttaatatgg gacagaatta aaatcatgat aagattcttt tttgctttac 47100 tcatggagag ttcacataaa cagattatct tttaatagca agagaaaaaa atgtttagat 47160 atgtgtgaaa aactaagggt accaaaacag tgcaaattca tttatcatca ggaaaatcca 47220 aattaaaacc acagtatcca ccagaataac taaaaggtaa aagacagaaa ttaccaagag 47280 ttggcaagaa tgtggagcaa ccacatatac ttctggggta aataagttgg tgcaaccggt 47340 actgaaaact gtttgctagt atctactaaa accgagcaca tgcacagact acaaccaagc 47400 agttccactc ccagatacac actcaacaga aatgcacaca ctcactcaac aaaagacgtg 47460 tactagagtg ttcatgtact tactattcat aatagtccaa aaatgcaaac aaccaactgc 47520 caatcaaagt caaatgtata tctatattag ggatatatac aatggcatat acacagcaat 47580 gagaatgaaa tgaaccagct cggcacagtg gttcatgcct gtaatctcag cactttgggc 47640 gggtaaggca ggcagatcac ttgaggtcag aaatttgaga ctagcctggc caacacggtt 47700 aaaacctgtc cccactaaaa acacaaaaat tagccgggca tagtggttgc aggcctgtaa 47760 ttccagctac tcgggaggct gggttgggag aatcgtttga acccgaaagc cggaggtcgc 47820 agtgagcgga gatcgtgcca ctgcactcca gcctggacga tagagcaaga ctccgtctca 47880 aaaaaggaaa tcaaaaatat aaaataagat gacaggaata atccgcaaaa gatcagtaat 47940 caaaataaat ataaatgggc taaagctacc tattaaaaga caaagatttc acacccataa 48000 ggatagctac tatcaaaaaa agagagagaa taacagatgt tagcaaggat gtatggaaac 48060 tgaaattctc acgcattgct ggtgagaata taaaatggtt cagcctctgc ggaaaacact 48120 atgctgggtc atcaaaaaat taaaaataga agtactactt gatccaacaa ttctacttct 48180 gggtatatac ccaaataact gaaagcaggg tcttgaagag atatttgtac acccatgatc 48240 atggcagcat tattcataat agctatgatg tggaaccaac ataaatatcc tttgataaat 48300 atatggataa gcaaaatgtg gtgtatacat tcaatggaat attaattagc aataaaaatg 48360 aagaaaattc tgacacatgc tacaacatgg atgaaccttg agggcattac attaaatgaa 48420 ataagccagt tataaaaaga caaatactat atgaggtact atattagata ctcatgcaag 48480 gtacctaaaa taggcaaatt catagagaca aaaagcagaa tggtggttgc caggggctgc 48540 ggtaatggat acagagcttc aattttgtaa gatgaaaaaa ttctggagat tggttgcata 48600 acaatgtgca cacacttaac actggggaac tgtaaactta aaagtagtaa atggtaaaaa 48660 taaaaataat aaataataaa ttttatgtta ttttaccaca atatttatta aaagacaaag 48720 attaactaat taaacaaaat ccagccataa gctaatggta agagtaacaa ttaaagaaga 48780 cacagaaaat tgaaaatcag tgactagaaa aagatattcc atataaatgc taacaaaaag 48840 caagtacagc aatataaaga gaatgaacaa aaaaaaaatt aaataagatg gctcgtttat 48900 tcccaaaagg tacaattcac caagaagata caagaattgt gaacctttaa gcacataaaa 48960 cagcttcaaa aatacaacat ttaaagaaaa atatatatta aacatagaaa tagtacaaaa 49020 acccctacaa gaatcataat gggagtcttc aatacaactc tccatatcaa caggtcaaac 49080 agagaaaaaa aataagttaa ggatgcagaa aacctgaatt accatcaata aacttgagat 49140 taatatagaa ctgtataccc aatatactaa gagttcaggg aacagtcgtg actgacagtg 49200 gactgcaaat taatctgttc ttaatctttg tttttctttc agcactgtgg cagaatagag 49260 atcctaaaaa ccttccagct acaaaacatc tttttaaaaa tataaaaaaa tacaaaaata 49320 actctgaaat caatagaaga cacatggtga aaccaaaatt ctagaataca gggagaataa 49380 aggcattttc agatattaca aaaacagaaa attgatcatt gctgaagtaa tttctaaaga 49440 atgtacttga gggagaagaa aaatgttcca aagaaaagta tctgtgatac aagaaggaat 49500 ggaaagtgaa gaaatggtaa acaggtagat aaagctaata aatgttgacc tagaaaataa 49560 caaaaacaat agcaataatg tctcgttgga agggttgaag taaaaataca attaaggcca 49620 aatgtgaggt aagtggaatg aaagaattag aagtccttgc cttgttcaca ggactgatta 49680 aataaatgag ccaggttttc cattcaaaca gttaaaactt gaacaaaata aactcaaatt 49740 aagtagaaag ataaaaaaca gaaattaatg tcatagaaaa ataaaaaatc aatagaatta 49800 atcaataaat cctggttaat aaaagctggt tctttgaaag gattaataaa ataatcatta 49860 agcaagtctg atcaaaaaaa aagagaaaag gtaccaaaaa aagtactgta tcagaaagag 49920 aacatacaga tacatacaga tatgtaagag tctgttttct tacaccagaa tactatatac 49980 aacattatgc tagcatatat taaatttcaa taatgttaat gattttctag gaaaacagaa 50040 aatattaaat ttactttgaa gaaacagaaa aactgagaaa aataaatgat catgaaaaaa 50100 atgaaaaggt aattaaatac tgatattaac tgcctaaaca acaccagcag cagcccaggc 50160 agtctgcagt caagttctgc caaacttgag ggaacagata attcttctat tccagagcat 50220 agaaaatgat ggaaagtttc ccaatttaat cagagaggac agcctgatcc ttgttatgaa 50280 cacagataaa aatggggtaa actatatgcc aaactcagat accaaaaccc taaataagat 50340 gctagcttat tgatgtgaac aatccaaaag tgcattttaa attagcccag ggttttagag 50400 aaagaaaatc tagcaatgtg accaccactt atgttaacaa ttttaagacg aaaatctaca 50460 tgatcatatc aatgcatgct acacaaaagc atttgggcaa aaaacccaac acccaccctt 50520 gactttttaa actcttagta attaggcata aacagaaatg tacttaatgt gatagaatac 50580 actcggtgaa gatacagagg gaatgctccc taaaaccaag cccaagacaa agattcctat 50640 ttaacctcaa tagtcaacac tgcagcgaga gtaatctatg gaagacaagg aaaaaagtaa 50700 aaacatgaga gacatctgtt gtttaacaga caataagatc acctacttgg aagaggcaaa 50760 cgaatcaagc gaaaaactat taaaactgag acaggcttta gtatggaggc tcagcttcag 50820 ctgtagtttg ggctaccaaa ttcaactcgc ttgcttggag agttaatcct gcaaagctaa 50880 tttctgttga ggtattagga ttgacaagcc tgtgctcctc cctcctcccc catcttcaac 50940 actgaaataa cacggtgttt ggaactggat aacagaatct tccaaaaaca aaaattgtcc 51000 tgaagggctg acttgtgccc ttactcaaaa aacactttat ctgctgcctg cagctcctac 51060 agttgctggt ggataagcct gccaaccagc tcggcgtaat tcttcctgca gagggcaagg 51120 aagagcactt tcacaggaaa atttttttcc gaactgtatg ccgcttatta cataaactta 51180 cgtgctggca aatggagctc cagcaaaata agatattcag agtcaaactt ccttaggaaa 51240 aaaaaaaaaa aaaagcaagc acataacact aatttccttg catgggcact ggggaaggag 51300 gtcgttactt ccgcacgccc gcaggtccgc accaccggga aacccacggg caccgcgcgc 51360 tgcccccggg ccttccaggt gcactgcgcc gcggcgcccc agctgacccg ggatgcgcag 51420 ccctagccct tcccctgtca ccccggccag gaaggggcgg gagcgcggcg gacgccgagg 51480 gcgaagggct tctcggtcct ctgcaccacg cagcaccccc aaggcacaac agggagggtg 51540 cgggaggctc ccgagaccca ggagccgggg ccgggcgtgc ccgcgcacct gtcccactgc 51600 ggcgagggct ggggtcgcct ccagggccgc agctgtcggg agccacctgg ctctcagtcc 51660 cgggtccctg cgacaaccct cgggcccgga ggggaggagg cggccacctg ccgctgccac 51720 ctgcggcacc ggtcccaccg ctccgggccg ggcaggacag gccaggacgt ccctcctggg 51780 ctggggacag gacacgcgac gaggggaccg gggcccccgc ggcgaagacg cagcacgcct 51840 tcccagaaag gcagtcccgt gcccccacga cggactgccg gacccccgcg ctcgcccgcc 51900 catcccttca gaccacgcgg ctgaggcgca aagagccggc cggcgggcgg gctggcggcg 51960 cggctagtac tcaccggccc cgctggctca gcgccgccgc aacccccagc ggccacggct 52020 ccgggcgctc actgatgctc aggagaggga cccgcgctcc gccggcgcct ccagccatcg 52080 ccgccagggg gcgagcgcga gccgcgcggg gctcgctggg agatgtagta cccggaccgc 52140 cgcctgcgcc gtcctccttc agccggcggc cgggggcccc ctctctccca gctctcagtg 52200 tctcatctcc ctatctgctc atcctctggt cgcacataat cgatgtttgg gcgtcccaag 52260 ccagatgtgg accccatttc cgcactctac actggaggtt ttctaagggt ggtgcccgga 52320 ccagcagctt cagcctcatc tgggaacttg agaaaatgca gattctccgt cccacccagc 52380 ctattcggtt tttcctgcac taaaaccatg aaggtggggc ccagcagtcc acattctcgc 52440 aagcccgtca agtgattctg aggcgccctc cagtttgaga gctatgctca cggcctcacc 52500 tccgccccgc aaggagcccg gtcttgcctg tggcgctagc cgcacacgga cacctcatcc 52560 tgcggggccc gcccccccgc tgcaccctca ccgcccaacg cctcctccgg gatgcagcgg 52620 aggcgcctgg aagtcggcaa ggtcaacatc cccctcagca tcttccctac cctcacggct 52680 cctcctccag gggtgcctca tggccagggg ttagaaagag ccactgtgtt tcttgacatg 52740 gaagtggcct aagaccttaa tgaaaactgc aggagtggaa tgacagaacc tttggtcata 52800 cttgagggcg tgaagctcaa atgaggagga aggaaaggat ccagggagaa taaccaaccc 52860 tggcaagttg tggcgcccag gtagaggggc gagcctaggc tagcggttct cgaccagggc 52920 cggtgttgcc cctcctcgcc gccccgcgta catttgggga ggtctggaga catttttggt 52980 tgtcatgatg cgggagttgc tactgttgcc taagtgggta gacacgaggg tgctcctcaa 53040 catcctacct gaaggacagg actgccccac aaggaagaat gatccggccc caaataagaa 53100 accctgggct ggtcagcaac aacccctttg ttctgagaag agaggaggaa agaataaaag 53160 aagtggggtg aagttttggt ttggtagagg aaacttgaag acattttcac tggaaaggaa 53220 gagaggaaga ggagggagat gtctgtaagg acgagcaaac cgggtgacag ctgatttcct 53280 catattgaag taatgagtcc tagttataat aaattcctaa taaaaaccca gtttatccct 53340 gcaataaact tgtctttttt ttttaaatat actgcttgat tctgtttgct aatattttat 53400 ttacaggctt tgcattgata tgcaaaaatg agatgggcaa taattttctt tttgaatgtc 53460 taatgttgtt tggtttcaga atcaatgtta tgctcacatc ataaaaaatt tggaaccgag 53520 gcaggaggag tgcttgaggc cagaagttcg agaccagtct aggaaacaca gtgagacccc 53580 cccatctcta caaaaaaaaa aaaagaaaaa aaaatgggca tgtttgcttt ttccttttac 53640 tctgaacaat ttaaggagca ttaaaattat ctattctttg aggtttgatc atttcccagt 53700 taaaaatgtt cctcccagcc tgatgctttc tttggggagg gtaaatcttt taaggctaga 53760 aaagtttctt ctgtggcaat tttattattt acattttaaa aattattcta gagttaattt 53820 tgataaagca tgtatttctt aaaacaaatt atcctttttt tccagatgtt caagtgtatt 53880 tgcataaagt tgaggaaagt agtcttttgt gaatctttta acttctccca aatatcttat 53940 tttgtgtatt tttgcttctt tattttgtta acttttaaaa gtgtattttt ttttcaaaga 54000 atcagctctt aggtttatgt ttttggttat actggagctt ttttcttctt ctttttaaaa 54060 tattttttct cctttatttt ttagacgtat tttgatctaa cgtaatcgga agaaggtaaa 54120 ttagaatctt ttgttactat tgtgttttta tttctcctta tttctctgaa gtcctgcttt 54180 ataaatagta ccatgttatt tgtgcataaa tattcatttg tcttatattc ttgggaattt 54240 tcccacttca tcataaaatg accttccttg tctcatttaa tgtgttcaaa ctttgccctg 54300 aatttaactt tgtctgatat tttaccatcc tgctgaattt tgtttgttac cccaaacaac 54360 ctttgctgtt ttcgtctttt ctgaaccctt tattttaggt aatcccttga attagagcac 54420 taagttttgc tttgtgatta aatctgaaaa tctttatctt gccatagatg agttgagccc 54480 tattcatgtg acagctatat tatgctgttt catagccctt ttggtccttt tttcactctt 54540 gcattgcata ttttgtgttt attgtgtttt gtgtttcttc tgataatttg gaaggtttgt 54600 atttttattc agggagttgc cttataatca tactccgcaa tacacatcgt cctcagtttc 54660 ttcagactgt ctgttaactc cctattctga ataaaaatga cattgtaatt tccctctttt 54720 ttctttaccc cttttcttct cctcacctaa tgtaaatgat tttatccttc tttagtattt 54780 gcttttttaa ttaactacat ttataaatat ctttatcact tgatttttaa atcagctttg 54840 aatgagatat ttggattcct agatataaaa gatgttaatt ataccatttc cacgttagta 54900 ggtttataaa atcatacatt ctgctgtgta accataatcc cacgtttgtt ttagttccac 54960 tcctacagtt aaaagattca gaagtattat taacagttat tttgccatag ttttttcccc 55020 aacccatttt gtggtaagtt atgatcctgc tttagtttct taagaataat ttatagagca 55080 gagtgtggtg gctcacgttt gtaatcccag cactttggga gacaagaggt agaaggatcg 55140 cttgaagcca gcagttcaag accaccctga gcaacatagt gagaccttgt ctctacaaaa 55200 aattttaaaa tttagccaga cgtagtggcg tgtgcctata gtcccagcta ctcaggaggc 55260 tgaggcaaga ggattgctag agcccagaag tttgaggctg cagtgacctc tgattgtgcc 55320 actgcacccc agtctgggca agaaagtgag aacctatctc tttaaaataa caataataac 55380 ttatgaaaat tatattccct gagtttttca tgtttaaaaa tatttgttgc ctttatcctg 55440 taaaagtttg agtataaatt cttgggttat actttattta ttgaagaatg tataagtatt 55500 gtcttctaga attgagtgtt gctgtaatga aaccagaagt cagcctggtt tatttttcct 55560 cagaaatgag gtaattgccg gccggacacc gtggctcatg cctgtaatcc caacactttg 55620 ggaggccgag acaggtggat cacgaggtca ggagattgag accatcctgg ctaacatggt 55680 gaaaccccgg ctctactaaa agtacaaaaa gttagctggg catggtggtg gacgcctgta 55740 atcccagcta cccgggaggc tgaggcagga gaatggcgtg aacctgggag gaggagcttg 55800 cagagagctg agatcgcgcc actgcactcc agcctgggcg acagagtgag actccgtctc 55860 aaaaaaacaa aaaaaaaaca aagaagtgaa gtaattgcca tgatgctcca agaattatct 55920 ctttgtctat gaaatccaga aatctcactg ttatacattt tggaattatt attctgggcc 55980 aatatttcct gggacacaat agattgactc tatagattta attttttttt tttttttgag 56040 acagagtctc actgcaatct cagcttactg caacctctgc ctcacgggtt caagcaattc 56100 tcctgcctca gcctcccaag tagctgggac tacaggcgcg tggcaccatg cctggctaat 56160 ttttgtcttt ttagtagaga cagggtttca ccatgttggc caggctggtc ttgaacgcct 56220 aacctcaagt gatccacctg cctcagcctc ccaaagtgct gggattacag gcgtgagcca 56280 ccatgcccag cctcaattcc tctttctatc tggtaatttt tctgaagttg aaaacatttg 56340 ttctaatacg ttatttcagt gttcttctaa gatgtgtaaa gcaccctatt cccaggtcag 56400 cccccatctt gctagtgagc tcggctggtt cttcacaaga gctctggttt tctcctgctt 56460 aatctcaagt acctctgtca gcctccacct ggtttatgat ttggagtttt ttggtttttg 56520 ttttttgttt ttgacagagt cttactctgt cacccaggct ggagagcagt ggcataatct 56580 cagctcactg caacctctgt ctcccaggtt tgagcgattc tcctgcctca gcctactgag 56640 tagctgggat tacaggcgcg tgccaccaca cccggctaat ttttgtattt ttagtagaga 56700 tggggtttca ccatgttggc cagggtggtc ttgaactcct gacctcaggt aatccacctg 56760 cctcagcctc ccaaagtgct gagattacag gcgtgagcca ccgcgcctgg catggtttgg 56820 agttttaatc tgtagtttta ataaagatag tgcttatgtt tgtgtttctt atatttcttg 56880 gtactcttgg gtaatttgta agatccccat atctacacaa gaagtccatt ttcaattctt 56940 ttcttcagac tgtttatttt attttatttt attttatttt tatgtttgag atggagtctc 57000 gctgtgtcac ttctggaggc tggagtgcag tggcgcgatc tcaggtcact gcaacctccg 57060 tctcccgggt tcaagcaatt ctcctgcctc agcctcccga gtagctggga ttacaggcac 57120 ctgccacttt ttaatttttt tagagacaga gtctcgcttt gttgaccagg ctggagtgcg 57180 gtggtgcaat catggctgac tataacctcc aaatcctggg ctcaagtgat cctcctgcct 57240 cagcctcctg agtagctggg actacaggca catgccacca tgcccagtta attttaattt 57300 ttttgtagag acagggtctc catatgttgc ccaggctggc ctcctactcc tggcctcaag 57360 taatcctcct acctcagcct cccaaattac taggattata agcatgagcc accatgccca 57420 gccttgttct actactttaa tttcatatgt taggtgacca tgtaattgat catccaaacc 57480 aggatactgt aagaatgaaa gaggctgaca gtagtatgat gctgggacta gcattgtgca 57540 ctgagattat ttctgggaaa gcaggagata cggtcaccct acttatagtg tgcttgtctt 57600 tggattgttg aatttggagt ttctatttgc aggcttattt caactgggca gccttgatcc 57660 gccctgccca gcaatgctac cgttctctcc accgggtctc tgggacccct tcagtcacta 57720 tacttagctc agttccccac cctcccactc cctaaaagcg taaccaggaa tcctgcctca 57780 ggtctactgc cgtcttccgt gggctgtttc agttcctatt acccagagtc aaactcccag 57840 cattccctac ctgattccag acttggagtc cagagcttta acctcttcag gccaactccc 57900 cactttgcat ttctgtccct atatcttagt ccatggagat acatttcatg tctttgagtc 57960 tacttacaaa gtaaattttg ctgtttttta attttttttt tgagatggag tcttgccctg 58020 tcacccaggc tgtggtgcaa tgacgccatc tcggctcact gcaacctccg cctcctgggt 58080 tcaagcgatt catctgcctc agcctcccaa gtagctgtga ttacagacag gcaccaccac 58140 gcccagctaa ttttttttat cttttagtag agacagggtt tcaccatgtt ggccaggctg 58200 gtcttgaatt cctgacctcg tgatctgccc atctcggcct cccaaagtgc tgagattaca 58260 ggcgtgagcc actgtgccca gccaattttg ctttttttat atttcattgc tatatgttta 58320 gaggataagt ttacagtgct atatgcattc ccaaatatta gaccaaaaaa atctccaaaa 58380 aattagaaag aaaatccaaa aaatctcaaa aaataccaaa aagcaacaat ctcacagacc 58440 atactcactg acccccaata aaataaaatt agaaattaac cacaacttaa caaaataaag 58500 tactcaagtc agagaggaaa gaggaaataa acatcaaaat tacaaagtct aggcggtggc 58560 tcacgcctgt aatcccagca ctttgggagg ccaaggcggg cagatcacaa ggtcaggaat 58620 tcgagaccag cctggccaat atggtgaaac cccgtttcca ctaaaaatac aaaaattagc 58680 caggcatagt gatgtgtgcc tgtaatccag ccacttggga ggctgaggca ggagaatcac 58740 tgaacccagg gagacgaaga ttgcagtgag ccaaaatcgt gccactgcac ttcggcctgg 58800 gtgacaaagc gagactccat ctcaaaaaaa aaaaaattac aaactcttta gatagaaatt 58860 ttggtgtttt tttttgagac ggagtctcac tctgtcgcag aggctggagt gcagtgggac 58920 tatgtcagct caccgcaacc tccatctcct ggattcaagc aattctcctg tctcagcctc 58980 ccaagtagct aggattacag gcgcccacca ccagacccag ctagttttta tatttttagt 59040 agagatggtg tttcaccatg ttggccaggc tggtctcaaa ctcctgacct caagtgatcc 59100 acctgcttca gcctcccaaa gtgctcagat tacaggcgtg agccaccgca ccccacctag 59160 atagaaattt caacatgagg ccgggcacaa tggctcacgc ctgtaatctc agcacttcag 59220 gaggctgagg cgtgggagga tcacttgggc ccaggagttc aggaccagca tgggtgacag 59280 agacagaccc tgtctctatt tatttgaaaa aaaaaaaaaa aaagagagag agaaagaaat 59340 ttcaacatga aaagtatctc tcaaaccctt cgagatgttg gcaaaaagcg actcaaagga 59400 aaatgtatta ctgtgtgtga atttgcttga aaataagaaa gaggccgggt gtggtggcta 59460 acacctgtaa tcccaacact ctgggagtcc gaatcaagtg gatcatgagg tcaggagatc 59520 gagaccatcc tggctaacat ggtgaaaccc tgtctctact aaaaatacaa aaaattagct 59580 aggcgcggtg gctcatgcct gtaatcccag cactttggga ggctgaggca ggtggatcac 59640 ctgaggtcag gggtttgaga ccagcctggc ctacatggtg aaacctcgtc tcttctacaa 59700 atacaaaaat tagctgggcg tggtggtggg tgcctgtaat cccagctact cagaggctga 59760 ggcaggagaa tcgcttgaac ccgggaggcg gaggttgcgg tgagccgaga tcgcaccact 59820 acactccagc ctgggcaaca gcctgggtga cacagtgaga ctccatctca aaaaatacaa 59880 aaaattagct gggtgtggtg gcctgcgcct gtagtcccag ctacccggga ggctgaggca 59940 ggagaatgga gtgaacctgg gaggaggagc ttgcagtgag ccgagatccc accactgcac 60000 tccagcctgg gcgacagagc aagactcttg tctcaaaaaa aagaaaaaaa aaggaaaaaa 60060 gaaccctgat aataaagaaa ccaaatgttc aactctcaaa gctcggacac tttaaagaaa 60120 taattaataa aggcagaagt taaagggagg atgataaagc aatttttttt gttggttttt 60180 ttgagatgga gtcttgctct gtcacccagg ctggagtgca gtgatgcgat cttggctcac 60240 tgcaacctct gcctcccggg ttcaagcaat tctcctgcct cagcctcctg agtagctggt 60300 actacaggtg cgcgccacct ggcccagcta atttttgtat ttttattaga gacggggttt 60360 caccatattt gttaggctgg tctcaaactc ctgatctcag gtaatctgcc cacctcggcc 60420 tctcaaagtg ctgggattac aggcaggcgc caccgcgcct ggcctaaagc aaaatattgg 60480 ttctgtgcaa aaggtcaata aaaagagcaa acgtttacaa actggagcca gcacccattc 60540 agctcagtgt gtctggagaa aaaacaatct cgcttcagaa ttcatgatta cgcagccctt 60600 tttgcttcct aaaaatccta ctatgttgct gttgaccatt ctctctcttt ctctctctct 60660 tgctttctct ccagaaaagc tattcagaca ttctcctctt tcctcaaacc tccaacactt 60720 cctcctccat ccttagcctc agctgctgac ctcacttcta atcattgaga aaccaggaga 60780 agcatttaag agtgaacctc cgcctccccg cacgggcaaa accacccacc cacagaattg 60840 tgccccaatt ctgcgtcctc tcctctcacc atggatggac ggtccaggct ccgagccaaa 60900 gccaggcctc ccctggagct ctggatccac cacctgcagc ttctcaggca gggccccagc 60960 agctcccctg ctcccttgta ccatcaatcc ctcccctcac tgggtcactc ccaacaatat 61020 atatatttag tgatgtttct cccatgtggt aaaatcactt agcctctctc ctcccccagc 61080 tactatccta tttgtttctt tccattctct gcaaaacttc tcaaagcatt gtgtctatgt 61140 gctgactcca tttatcttct cccgttctct gctgagtcct tcccacagac tctcacccca 61200 gttactccat gaaatgacct ctgcactgcc acatccaatg gtgaatgttc agttcttaat 61260 tttattcagt ctttcagcag catttgacct ggccgatcac tccctcttct taaaaatact 61320 tttctcagcc aggcgtgatg gctcacacct gtaatcccaa cactttggga ggccaaggcg 61380 ggaggatcat gagagcccag gagttcaaga tcagcctggg caacatggca agaccctatc 61440 tctacaaaaa ctaaaaagta gccagtgtga tggcatgcac ctgtagtccc atctacttag 61500 gaggctgagg cagtaggatg acttgagcct gggaaatcaa ggctgcagtg agccatgatt 61560 gcaccactgc actccagcct gagtgacagc gagaccctgt ctcaaaaaga caaaatagga 61620 aacttttctc agcatattcc tctgattctc ctgctgcttc tgtctgcaca gattcagtct 61680 cctttgccgg ttcttcctca tcctcctgat ctcttgacct tgaagtgccc cagagtacag 61740 tctttttttt tttttttgag acgcagtctc gtctgtcacc caagctggag tgcaatggcg 61800 aggtctcagc tcatgcaacc tctgcctcct gggttcaagc gattctcctg cctcagcctc 61860 ccaagtagcc aggactacag gcacatgcca ccatgcccag caaattgttg tatttttagt 61920 agagacaggg ttttactata ttggccacgc tggtctcaaa ctcctgaact cgtgaaccac 61980 ccgcctcggc ctcccaaagt gctgagatta caggcatgag ccaccacacc cggcccagag 62040 tacagtcttt agacggcctc tctacctata cttgctcccc tcataaactc ctcctgcctc 62100 atggctttaa ataccatcgg tagactgatg actcccatat ttctcttttt tttttggaga 62160 cggagtctcg ctcagtcccc caggctggag tgcagtggcg cgatctcggc tcactgcaag 62220 ctccacctgc caagttcaca ccattctcct acctcagcct ctccagtagc tgggactaca 62280 ggcacccgcc accacgcctg gctaattttt ttgtattttt agtagagatg gggtttcacc 62340 atgttagcca ggatggtctc gatctcctga cctcgtgatc cgcccatctc ggcctcccaa 62400 agtgctggga ttataggtgt gagccaccgt gcccagccga tgactcccat atttctatct 62460 cttgctgtgt gggagttctc ctcagaactc catactcata aatccaactc tcataaatag 62520 tatctcaaat gggcaatatg ctcaaaagtc aattcctact tttctcccta aacttgcttt 62580 cctgcagtct ccaccatctt aatgtccaat ctaacattag gaggcaaaaa ctttgaagtc 62640 attcttgact cttctctatt acacacccta tccaatcttt ctgcagatcc agtcgacccc 62700 caaatccagt tagctctcat catctcccct gttaccccct ggtccaggcc atcttcctct 62760 ctcacctgaa tcactgcagc attctcctca ctggtctctt tggttctgtt ttcactccac 62820 cttagcatag tctccacaga gcagtcagag ggatcctttt aaagtgtaat tcccatcctg 62880 tccctgctct gctcaaaacc ctgtcgtgat tcccgtttta atctgtcaga ttaaaagcca 62940 gagtctttcc agtgacctac atgatctgcc tattatcacc tcccacttct ttccccttgc 63000 tcactccact ccagctctgc agctgtcctt tctgtttcct gaacagccca gattttgctt 63060 ctttagaacc tttgtatttg ctgtcccctc tgtctggaat gtttttccag gaagtcacct 63120 ggctctctcc tgcacttcct tcctgaccac catgtttaaa aatcactcaa acacacttca 63180 ggccggacat ggtggctcac gcctgtaatc ccagcacttt gggaggccaa ggtgggtgga 63240 tcacctgagg tcaggagttc gagaccagcc tggccaacat ggtgaaactt cgtctctact 63300 acaaatacaa atagtagcca ggtgtagtgg cacacacctg taatctcagc tactcaggag 63360 gctgaggcag gagaatcgct tgaacccaga aggcagagga ggtgcagtga gccaagatca 63420 cgccacaaca ccccagcctg ggtgacagag caagacccca tctcaaaaaa aaaaaaagaa 63480 aaaaaaatca cacaaacaca cttctcttca tattcctttt ccaagtttta tttttctcca 63540 gaatacttta cattgtttta atggaagttc tccgtttccc cccaactaga atggatactt 63600 cctgcaggta ggcactctag tcctcccatc caagtactaa ccaggctcaa ccctgcttag 63660 cttctgagag caggggagat caggcctgtt cagggtggta tggcccagga attttgattc 63720 tgttttattc attgctgttc tgttgattct cttttgttcc tcctcctagt gctgagaaca 63780 ctacttgtac ataataagca ttcaataaat atttgttgaa tgaatgactt gttgaatgaa 63840 ttaatctcag aaatgcagga ctggttctac attagaaaat ttttcaaggt cattctctgt 63900 tgtcgtaaca cattaagaga ggaaaatttt gtactctaaa tcatttgata aaatacatac 63960 tgatttctgt tttcaaaaac tcttagtggc tgggcgaggt ggctcacatc tataatccca 64020 gcattttggg aggacgaggt gggcggatca cttgaggtca ggagtttgag accagcctgg 64080 ccatcatggt gaaaccctat ctctactgaa aatagaaaaa ttagccgggt gtggtggcgc 64140 atgcctgtag tcccagctac ctgggaggct gaggcaggag aatggcttga acccgggagg 64200 cggaggttgc agtgagccaa gatcatgcca ttgcactcca gcctgggtaa cagagtgaga 64260 ctccatctca aaagaaaact cttagtgagt ttaggaatcc aaggaagacc ctcaaactaa 64320 atagataatc tagctaccag aagccttcag taaaccttaa cactccatgg tgaaacatta 64380 gaaacattcc tactaaaaga caggctaaga atgcctgcaa tcttcacggc tagtccaaga 64440 agtcaaaaag aagaaatgag cgctgattta aaaaaataaa caaacaaaaa actaccgatg 64500 cagaggctgg cagcaaggac tgaaggactg tacagtactt gcctggagca ggcggatggc 64560 cacacccctg cgaagcctgc tcagctggct gggggacgct ccagtgtgtg agtggcagga 64620 tgcagggtac ttcctctgcc agggagttgc actggggaga tcctccccca ctcacacttt 64680 ggcagctggg gctttggaat gtgacttagc ttctgtcaaa gggtcaatcc accctttgat 64740 atatgatgca aaggcgaaca tatgatgcaa aggtgagaga acagcccaaa ttaggacttt 64800 taccacagct gtggaggtgg acagcgacag tggtgggccc tggccagact tttcatgctc 64860 aaaggtggtg gttgttcttc ctacttcttg tccctccagg gcttcctttg cctgtgtgct 64920 gaacctgctt cttttaattt tttttaactt ttttaaattt ttaattgttt taattaaaac 64980 aaattttgaa aactgtctga acctgctttt gaaccctgct atgatttgaa tgtttgtccc 65040 ctgccaaact gattttgaaa cttaatctcc aaagtggcaa tattgagatg gggctttaag 65100 cagtgactgg atcatgagag ctctgacctc atgagtggat taatggatta atgagttgtc 65160 atgggagtgg catcagtggc tttataagag gaagaattaa gacctgagct agcatggtcg 65220 ccccttcacc atttgatatc ttacactgcc taggggctct gcagagagtc cccaccaaca 65280 agaaggctct caccagatac agctcctcaa ccttgtactt ctcagcctct gtaactgtaa 65340 gaaataaatg ccttttcttt atgaattacc cagtttcaga tattctgtta taaacaatag 65400 aaaacgaact aaggcaaact ctcatgattc tactgccatg ccattccaat aaactccctt 65460 tatgcttaag agagccagag ttggccaggc gtggtgactc acgcctgtaa ttccagcact 65520 ttgggaggcc gaggcaggtg gatcacaagg tcaggagatc gagaccatcc tggctaacac 65580 ggtgaaaccc cgtctctact aaaaatacaa aaaaattagc tgggcgtggt agtgggtgcc 65640 tgtagtccca gctactcggg aggctgaagc aggaggagaa tggcgtggac ccaggaggcg 65700 gagcttgcag tgagtcgaga tcgtgccact gcactccagc ctgggtgaca gaatgagact 65760 ccgtctcaaa aaaaaagaga gccagagttt atttctgttg cttgcaacca agaaatctgg 65820 ctggtgcact gaagtttcca taaataatag caatttaaag actctttcca agccaggcaa 65880 tgcctagcct tgtgtagtcc ttgtggtaat acattcattc attcatttgt tcaaccaact 65940 gtgctccaga gactaagaat acaaaaatgg gggccgggtg tggtggctca cacctataat 66000 cctagcactt tgggaggccg aggcaggtag atcacctgag gtcaggagtt cgagaccaac 66060 ctggccaaaa tggtgaaacc cctactctac taaaaataca aaaaattagc tgggggtggt 66120 ggcggacacc tgtaatccca gctactcgtg agactgaggc aggagaatca cttgaacccg 66180 ggaggcagag gttgcagtga gccgagatcg caccactgca ctccagcctg ggcaacaaga 66240 gcgaaactcc acctcgaaaa aaaaaaaaaa aaaaaaagag ggccggggct gggcgcagtg 66300 gctcacgcct gtaatcccag cactctggga ggccaaggca ggagaattac gaggtcagca 66360 gatcgagacc agcctgacca acatggtgaa accccatctc tactaaaaat acaaaaatta 66420 tccgggcgtg gtggcgcaca cctctagtcc cagctacttg ggaggctgag gcaggagaat 66480 cgcttgaacc cgggaggcag aggttgcagt gagccgaaat catgccactg cactccagcc 66540 tgggtgacag agtgagactc cgtctcaaaa aaaaaataaa aaaaaaaaaa gaattcaaaa 66600 attgtagagt tatagtgtgc ttctagttta gttgagagga catctgtcct tcaaggaagg 66660 ctagaatcta taccctgagt ccttactgaa atcaatccag cagtcaaaac atgggaccaa 66720 cgatcacagc agtaagatag gaagagcacc tttgtacatt tagctcatgt tgagataagc 66780 cactgacaga gctgaaggaa gctcacagtt ctgggttcca tcctttggca tttaaaaaga 66840 aaagtgctaa gaaaattcgg ttggtcacgg tggctcacgc ctgtaatccc aacactttga 66900 gaggccaagg caggcagatc acgaggtcag gagttcgaaa ccagcctggc caacatggtg 66960 aaaccccgtc tctactaaaa acagaaaaat tagccgggca tggtggcgca tgcctataat 67020 cccagctact caggaggctg aggcaggaga attgcttgaa cccgggaggg ggaggttgca 67080 gcgagtgaga gcaggccact gcactccagc ctgggagaca gagcaagact ctgtctcaaa 67140 aaaaaaaaag aaaaaaagaa agaaaggaaa aaaagaaaga aaaaaaaaga aaaaagaaaa 67200 ttcaggccag gccaggcctg gtggctcaca cctgtaatcc caacactttg ggaggctgaa 67260 gcgagacggt gccttagccc aggagtttga gaccagcctg agcaacatag cgagaccctg 67320 tctctataaa aaaaaatttt tttttggcca gacgcagtgg ctcacgcctg taatcccagc 67380 actttgggag gccgaggcag gtggatcacg aggtcaggag atggagacca tcctggctaa 67440 cacggtgaaa ccccatctct actaaaaaat acaaaaaatt aaccgggcgt ggtggcgggc 67500 gcctgtagtc ccagctactc gggaggctga ggcaggagaa tggcgtgaac ccgggaggcg 67560 gagcttgcag tgagccgaga ttgcgccact gcactccaga ctgggagaga gtgagactcc 67620 gtctcaaaaa aaaaaaaaaa aaaaaaaaat taattgtcag gtgtgctggc atgcagctgt 67680 agtcctagct actcgggagg ctgaggtaag aagatcgctt gagcccagga gttcaaggct 67740 gcagtaatag tgcctctcac tctaccctgg gtgacaatga gaccctctct caaaaagaaa 67800 gaaaaaaggg aaagaagaaa agaaagaaag aaagagaaga aaggaaggaa gaaagaaaga 67860 aaaagaaaag gaaggaagga agaagaaaaa aaaagaaaga aagaaaagag agagaagttc 67920 aaagaccaaa gggtcaggat cccaaaatag tttttatgtt ttatttattt atttacttat 67980 ttatttttga gacagtatgg ctctgtcgcc caggctggag tgcagtgatg cgattgcggc 68040 tcactgcagc ctccaaactg ggctcaggtg gccctcccac ctcagcctcc cgagtagctg 68100 ggaccacagg cgcgtgccac catgcccagc taatttttta attctttgta gagatgaggt 68160 ctctatatgc tgcccaggct ggtctcgagc tcctgggctt aagccatcca cccgcctggg 68220 cctcccaaag tgctgggatt acagaagtga gccaccgcgc ctaatcgggt ggtttgtttg 68280 tttattgacg gggtctcgct gctgcccagg ctggagtgcc agtggctgtt cacaggtgca 68340 gtcctggagc attgcatcag ctcttgggct ctagcgatcc tccagagtag ctgcagctgg 68400 gattccaggc gcgccaccgc gcggggctca gaatgggttt ttatattgag ggttatgctg 68460 ccacctagag gatatatgta gtaccgaact gtgtgcgcag ggaggctgag gttgcagtga 68520 gccaagatga tgccagggca ctccagcgtg ggtgacagag caagatttca tctcaaaaaa 68580 aaaaaaaaaa aaaaaaaaaa aagaattgaa agtaaggtct tgaagagata tttgtgcctg 68640 tatggtcata gcagtattaa ctttgaccca ctagctaaaa cacaaaagca acatgtgtct 68700 gtcagcaggt gaacggataa acaaaatgtg gtatatatgt acaattgaat attattcagc 68760 ctttaaaaag gaataaaagg ctggatgcgg gggctcacgc ctgtaatcct aacactttgg 68820 gagactgagg tgggtggatc acccgaggtt aggagtttga gaacagcctg gccaacatgg 68880 tgaaacttca tctctactaa aaatactaaa attagccggg catggtggca cttgtctgta 68940 atccaagcta ctggggaggc taaggcagga gaattgcttg aactcaggag ccggaggttg 69000 cagtgagcta agatggcacc actgcactcc agcctgggca acagagtgag actccatctc 69060 aaaacaaaca aacaaaaaat tattatttcc aaagaaacaa gaccctgggt ccatttccca 69120 gcccacacct gatgttgact cacaacacac agcctggttt gctatgagcc tgcttcattt 69180 aattgtcacc ttaacttcac atcaccctca agtcctggaa taactctttg ctgacctttg 69240 tgtgctgagc catctccatg tcgctcaacg tgcagtccct ctcactgcac tgagtcaata 69300 gccagacgtg gtctgactgc agggtcatcc ttggtggctt aggctgactc gggcatagca 69360 gggtgctctg agacctcacc gcatataggc tttgccccca ataaactcta tataatattc 69420 atattatgtg gtctgggtgt gtgtagcttt gcactgtctt ctcgtgacag tgccctcaac 69480 ctctttccca ggatttcctc ctctacctcc tcaagtccca ctgctctgca aagaccaaaa 69540 gctgcagagt cccagctccc tcctttacac cccacgacgc agcctcctct ctcagaaccc 69600 tttaaacaga gtcttttact gcagatccca agaacagcca cacccctctc tcccacccac 69660 tccagacaca cccaggtaat tatagcaccc agggtaacta tgtagatgga gtccctggaa 69720 catgtggata gtgccccctg ggagtatgca aaagcaacat tgctggcacc tgcagagaac 69780 agggtgacat ccaggaatca gagcatgggc ctctgggagg tagggatgtg gccaggcagg 69840 ctgccaaaaa ttggtagagc aaggccacag gatctttctg accttccttc caaacagagg 69900 ctcctgtact ggtgatccct gtgttgattg accactccct tcctgggggt cgtggtctct 69960 gtcccagttg cccggacttc tgtgagtgtc ctactgaggt ccttttcatg agaagcatgc 70020 tgtccttcca cctgctggga gcaagagtga caacttcaat actataatag cagtggcata 70080 cagagaagaa gaaagatgaa gtggcaagaa aaacaggctt ccaagcagga gtttttctat 70140 aaaaacaaaa acgtttacaa gcaaactttt tataaagggc tagatagtaa atattttagg 70200 ctttgagagc cacatagact tgtttgcagg gactcaatgt cgctattgta gtttgaaagc 70260 agccatcagg gttatgtaaa tgagtgagtc tgattttgtt tcagcaaaat tttatttacc 70320 aaaacagaca atgagtgggc tggatttggc ccatgatcct tagtttgcca actcctgctt 70380 tgggctcacc cagatctgat tttgaattct ggctctgcta ctggttagct gcaggagctt 70440 ggaaggctct ctgagcctgt ttcctcatct gtaaaattaa agcaataatt tctaacactc 70500 aagagtgtta cctcacgcct gtaatcccag cactttggag gctgaggcag gcggatcacc 70560 tgaggtcaga agttcaagac cagcgtggcc aacgtggcaa aaccctgtct ctactaaaaa 70620 atacaaaaag tagccgggca tggtggcgcg catctgtaat cccagctact tgggaggctg 70680 aggcagggat actgctagaa cctgggaggt ggagcgtgca gtgagtggag atcacacctc 70740 cacactccag cctggccgac agagcgagac tccatctcaa aaaaaaaaaa aaaaagagtg 70800 ttagaaggtt ttgagataat gaataaaaga tgccttgtgt atactaagta ttcaacaact 70860 gatagctgca ttggtctaat tataacagtt tagaagcgat tgagtcaaca aatgctggat 70920 ttgtcaggga ggacttccta tcaggaggta gatcttgggc tgagtcctga agcaaagata 70980 ggcattggat agaggagttg agagaacacc ctaggactgt tattattatt attcgacacg 71040 gagtctcttg ctctgtcacc caggctggag tgcagtggcg cgatctcggc tcactgcaac 71100 ctctgcctcc caggttcaag cgattctcct gcctcctaag tagctgagac tacaggtgtg 71160 tgccaccaca cccggctaat ttttatattt ttagtagaga cagagtttca ccatgttggc 71220 catgctggtc tcgaactcct gacttcaggt gatccacccg cctcagcctc ccaaagtgct 71280 ggaataacag atgtgagcca ccgcacccag cccagaacca tttttcaatc cttggctctg 71340 ccttttatta gctgcaagat ctcaggcaat ttatttaacc tctccaaaga ctcattttct 71400 cattcacaaa atgaggcaaa taataatatc tactatccca ggttgtcatg agaattaaat 71460 gcaacatgac atttaatgaa atgagaagtc ccttggacat taactggcta aagtatgtgc 71520 tcgacaagga tatcatttta ggtggatact tagcatctca gaactgatgc tcacaatgga 71580 atatcattga aacgcattaa aattcatttt aaatgattgt aggtagtgag gcaattgaaa 71640 gaagaagaca agaggactga ttataatgct tcaggctcac tagtctcctt ttaggaggga 71700 aaaacaattt caagttaaat tttaggctct agatttttac ccctgctgct cattagaatc 71760 acccagattg atgaaatcag agcccatctg aggctgtgtt tttcatctcc agaatgagag 71820 ctgttgtggg gattaagttt ttgaaaaagt acatctaaca ggtgatcgaa aatgatagtg 71880 atattattgc agtgatggtc attattgttg ttattattat actgaaagag gcttcagttt 71940 tctgatccat aaagtgaggg aattgcatga gaccattgct aagattcctt ctagctctgt 72000 ttttttgttt ttgtttttta gacagagtct ctgtcgccca ggctggagtg caatggcatg 72060 atcttggctc actgcaacct ccgcctcccg ggttcaaatg atcctcctgt ctcagcctcc 72120 gaagtagctg ggactacagg cacacaccac catgcccagc taacttttat atttttaata 72180 gaggtggggt ttcaccatat tggtcaggct ggtctcaaac tcctgacctc aggtgatcca 72240 cccgcctcgg cctcccaaca tgctgggatt acaggcatga gccactgtgc ccaacccctt 72300 ctagctttct tgatcactga ttctagggtt ctctgctgaa atatatttga gacatcctgg 72360 ataaaagatc atgcaagagc tcccaatatg gtattaataa ttgattctgg aggcttagct 72420 actcctgatg gattagacat gactcaactg cctctcttat gtgtacaaca caacaacaca 72480 accaagaaag gttattctgg cattccattt attcagttta tttacagccc ttacttccag 72540 cagcacgtta aagatatggc cagggccggg tgcagtggct caagtctgta atcccaggac 72600 tttgggaggc caaggtgggc ggatcacaag gtcaggagtt tgagaatctg gcaattcttc 72660 agacttagaa gcaaccagct cgataacaca gtcttgtgtg ggctctccct ctgtccctcc 72720 ctcgcttccc tcatttctca tccctgcccc tgagactgtg caccttcaca tagccctgcc 72780 atgagacctt catctcaggc tttgctttct ggggtaactg aggctaaaca ctgagtggcc 72840 ctaaaagagg attgggattt ggaagttaga ttattcacca gagaacagac tttgctgatg 72900 atcaggccca ggttgtaatt gttgaaaaaa agagaggatg catagtctta tctcatctcc 72960 tagtcaaagt caacaccatg ataaataaga gtcaaatcct gagatgtgaa ttggggacat 73020 ttgagtggtt aaccctgaga agcttgcacc ttcagacccc tcaatacccc tgctccccag 73080 agaaggctgg acattgacct cagcacaggc aggagccctg caagatgcca tttgtcctac 73140 taaagatgga cccctccact ctgtttctag gtaaataacc aaagtcaagt ctccacacag 73200 cctgagcaag aaagtcagag cctgctacag gagaaaatac cacactggcc aaaggattca 73260 ctagccctgg ccactgtgtg tgggaggaac cagggaatca tgtgtgggag tcaatgttga 73320 agctgttgga ctgggggtgg ggtggaatat aagcctggcc ctggggagtt tttcccgttt 73380 gagggccttt acccacaact caagatccag tgctatagca ggagatccca gagctagtcc 73440 taacagatgg tcaggattga acttggccta gagtaaaatg aggaggatag tgccagaact 73500 ttctcaacat actattgagg aagaggtcag aaggcttaag gaggtagtgt aactggaaag 73560 gggtcctgat ccagacccca ggagagggtt cttggacctt gcataagaaa gagttcgaga 73620 cgagtccacc cagtaaagtg aaagcaattt tattaaagaa gaaacagaaa aatggctact 73680 ccatagagca gcgacatggg ctgcttaact gagtgttctt atgattattt cttgattcta 73740 tgctaaacaa agggtggatt atttgtgagg tttccaggaa aggggcaggg atttcccaga 73800 actgatggat ccccccactt ttagaccata tagagtaact tcctgacgtt gccatggcgt 73860 ttgtaaactg tcatggccct ggagggaatg tcttttagca tgttaatgta ttataatgtg 73920 tataatgagc agtgaggacg gccagaggtc gctttcatca ccatcttggt tttggtgggt 73980 tttggccggc ttctttatca catcctgttt tatgagcagg gtctttatga cctataactt 74040 ctcctgccga cctcctatct cctcctgtga ctaagaatgc agcctagcag gtctcagcct 74100 cattttacca tggagtcgct ctgattccaa tgcctctgac agcaggaatg ttggaattga 74160 attactatgc aagacctgag aagccattgg aggacacagc cttcattagg acactggcat 74220 ctgtgacagg ctgggtggtg gtaattgtct gttggccagt gtggactgtg ggagatgcta 74280 ctactgtaag atatgacaag gtttctcttc aaacaggctg atccgcttct tattctctaa 74340 ttccaagtac caccccccgc ctttcttctc cttttccttc tttctgattt tactacatgc 74400 ccaggcatgc tacggcccca gctcacattc ctttccttat ttaaaaatgg actggggctg 74460 ggcgcggtgg ctcatgcctg taatcccagc actttgggag gccgaggcgg gcggatcatg 74520 aggtcaggag atcgagacca tcctggctaa cacggtgaaa ccccgtctct actaaaaatg 74580 caaaaacatt agccaggcgt ggttgcaggt gcctgcagtc ccagcggctc aggaggctga 74640 ggcaggagaa tggcgtgaac ctgggaggtg gaggttgcaa tgagccgaga ttgtgccact 74700 gcactccagc ctgggtgaca gagcgagact ccgtctcaaa aaaaaaaaaa aaaaaaaaaa 74760 tagctgggca tggtggcgcg tgcctgtaat accagctact ctggaggctg aggcaagaga 74820 atcgcttgaa cccagtaggc ggaagttgca gtgagccgag atcttgacac tgcactccag 74880 cctggtgaca gagtgagact ctgtctcaaa aaaaaaaaaa agaaaaaaaa agacagaaag 74940 aaagagcaca gacagagtca caggtatttg cagtaggaag ctgtcaggtt agagtgcacg 75000 gaaatagaaa gtatatttta cacttacagc acatcttcgt ttgattagcc acatttaaaa 75060 tactgaatag caacgtgtgg ctatttagta ttcactaaaa tcttggacag tgcaagtcta 75120 aagaatcctt gatccgtccg gcatggtggc tcacgccttt aatcccagca ctttgggagg 75180 ccaaggtgga aggatcactt aaggtcagga gttcgagacc agcctggcca acatggtgaa 75240 acctcgtctc tactaataat acaaaaaaaa ttagccgggc atggtggtgc atgcctgtaa 75300 tcccaggtac ttgggaggct gaggcaggag aatagcttga atccaggagg cgctgcagtg 75360 agccgagatc atgccatgcc actactgcac tccagcctgg gcaacagagt gagactgtct 75420 caaaaaaaaa aaaaaaattg ttgggcgtgg tggctcacgc ctgtaatccc agcactttgg 75480 gaggctgagg ggggtggatc acctgggttc tggagttcga gaccagcctg gccaacatgg 75540 tgaaacccca tctctactaa aaatacaaaa attagctggg cgtggtggtg ggcacctgaa 75600 atctcagcta ctcaggaggc tgaggcagga gaatttcttg aacccaggag gcagaggttg 75660 cagtgagcca agatcgcgcc tctgcactcc atcctgggtg gcagagcaag actatgtctc 75720 aaaaaaaaaa aaaaaaatac ttgattgtct ggacattctg cagaacatca tatggagaca 75780 ctatgttgac gacatcatgc tgattgtaag caagaaatgg caagtgttcc agaaacacag 75840 tcaagacaca tacatgccag aaggtgagat ataaactcta ctaagattca gtggcctgcc 75900 acactggtga catttttaaa cctgctagat gtttgtgtag aaaaggattt aaccttgccc 75960 aaagaggggt ctggcctttg tccccagcta ctggacataa tctctttaaa ctcttgaaat 76020 atcattcctg atagaagtat ttttgttttg actaggggcc ttgggccagc cagatagcaa 76080 caatgtgatc tgggttgggg gctttggatc aggtggcatc agtgtgacct cctgagtggc 76140 tagagactag aatcaaccac atgggcagac aacccagctt acatgatgga attccaataa 76200 agactttgga cacaagggct tgggtaagct ttcctggttg gcaatgctct atactgggaa 76260 acccattctg actccatagg gagaggacaa ctggatattc tcatttggta cctccctggg 76320 ctttgcccta tgcatttttc ccttgtctga ttattattat tattatgaga tggaatctcg 76380 ctctgtcacc caggctggag tgcagtggaa tgatctcaac tcactgcaac ctctgcctcc 76440 ccggttcaag cgattttcct gtctcggcct cccgagtagc tgggactaca gatgcatacc 76500 accacacccg gctaattttt ttgtattttt agtagagacg gggtttcacg ttagccagga 76560 tggtctcgat ctcctgacct catgttccgc ctgcctcggc ctctcaaagt gctaggaata 76620 catgtgtgag ccaccgcgcc cagccccctt ggctgattat taaagtgtat ccttgagctg 76680 tagtaaatta taaccgtgaa tataacagct tttagtgagt tttgtgagca cttctagcaa 76740 attatcaaac ctaaggatag ccttggggac ccctgaactt gcagttggtg tcagaaataa 76800 gggtgctcat gtgtgtacca tgccctctaa ttttgtagtt aattaacttt cacaacttta 76860 ttattaccgc ttacactcaa tgtttattca catttatcca cataccactt attctagtgc 76920 cttgcatcaa agactttcta tctcatgtac tttattctgc ttgaagtaaa tcctttagga 76980 tattcttttt tttttttaaa ctttgcacat acatactttt attttttatt tatttttaat 77040 tttgttattt ttgtgggtac gtagtagata tatgtattta tggagtacat gagatgtttt 77100 gatacaggca tgcaatgtga aataagcaca tcatggagaa tggggtatcc atcctctcaa 77160 gcaatttatc cttcaagtta caaacaatcc aattacactc tttaagttat tttaaaatgt 77220 acatttaatt ttgtattgac tagagtcact ctgttgtgct atcaaatata attttttttt 77280 tttttgagac agagtctcac tcagtggccc agactgaaag tgcagtggca caagctcggc 77340 tcacttcaat ctctgcctcc ctggttcaag cgaatctcct gcctcagcct cccacatagc 77400 tgggattaca ggcacacacc accatgccca gctaattttt atattttttt agtagagacg 77460 ggttttcgcc atgttggcca ggctggtctt gaactcctgg cctcaaatga tctgaccacc 77520 tcagcctccc aaagtgctag gattacaggc atgagccacc acacctggcc aaaatagaat 77580 attctttagt gaggtctgct ggtgacaatt tttttctttt ttttgagact gagtctcgct 77640 gttgtcagct tgggctggag tgcaatagca cgatctcagc tcactgcaac ctccacctcc 77700 cggattccag caattctcct gcctcagcct cccaagtagc tgagagatta caggcaccca 77760 ccaccacacg cggctaattt ttgtattttt agtagaaatg ggggttcacc gtgttggcca 77820 ggctggtctc gaactcctga cctcaggtga tccacccacc ttggcctccc aaagtgctgg 77880 gattacaagc atgagccacc acgcacagcc aattttttcc gtttttgtct gaaatcttat 77940 tttgtgtcat ctttgaaata tatttttgat ggatataaaa ttgttggttg atagttatta 78000 tcattattat tattattttg agacagggtc tcactctgtt gcctatgctg gggtgtagta 78060 atgtgatctc ggttcactgc agacttgacc tcctagggct caggtgatct tcccacctca 78120 gcctccctag tagctgggac tacagatgca tgccaccata cccaactaat ttttctattt 78180 tttgtagaga tgaggctttg ccacatttcc caggctggtc tctaactcct gagctctagc 78240 aatccaccca ccttggcctt acaaagtgct gggccatgac tagccagcag ttacttttta 78300 tagcatattg aatatttaat atgaatcttc tggcatccac tgtaactgtt taaaaaatca 78360 gctgtttact tggcactctt tttttttttt ttttttttga gacagagtct tgccctgtcg 78420 cccaggctgg agtgcagtgg cgtgatcttg gctcactgca agctctgcct cccgggttca 78480 cgccattctc ctgcctcagc ctccggagta gctgggacta aaggcgcccg ccaccacgcc 78540 cggctgattt ttttgtattt ttcgtagagt tggggtttca ccgtgttagc caggatggtc 78600 tcgatctcct gacctcgtga tctgtccgcc tcggcctccc aaagtgctgg gattataggc 78660 gtgagccacc gcgcccagcc tctttttttt ttttttttag acggagtctt actctgtcat 78720 ctaggctggt gtacagtggc gtgatctcag ctcagtgcaa cctccacctc ctgcctcagc 78780 ctgccaaata gctgggatta caggtgcgta ccatcacgcc cggctaattt ttgtattttc 78840 agtagagatg gggtttcacc atgttagaca ggctggtctc gaactcctgg cctcaagtga 78900 tctgcctgcc ccagcctccc aaagattaca ggcatgagcc accgcacccg gccaagtagc 78960 actcctttga aggtaatctg cttcccctac ccctagcaat ttttaacaat ttttcttcat 79020 ttttatttcc tgaagttttg ttattaataa tctgtgtgca gatttctttg tatttctttt 79080 gtttgcagtt catagtgatt cttgaattag tgtgttggtt tctgttatca ccacaggaaa 79140 attgtcagcc gttagctttt caaatatttc cttgctaaat tctctcttct cccctttcgg 79200 tacaattgat ttgattaaaa ctaaaaccag ggccgggtgc agtgactcat gcctgtaatc 79260 ccaacacttt gagaggctga ggcaggtgga tcacctaagc tcaggagttc aagaccagcc 79320 tggccaatat ggtgaaaccc cgtctctact aaaaatacaa aaattaccag gcatggtggc 79380 acacatttgt agtcaggagg ctgaggcagg agaattgctt gaatccagga ggtggaggtt 79440 gcagtgagct gagatcccac cactgcagtc tggcctgggc gacagagtga gatgagaatc 79500 tgtctcgaaa aaaaaagtta tgaatgtttg ataaactata tttgttagaa tgtttgttgt 79560 agaatactat tcattgattt ttaaacaatg ttagattaaa ccattcactg gatttgtgat 79620 aattaactta ctgattttac ctcactgatt tgttgtaatt aatacaactg gtataaaaag 79680 actgtgacga ggccgggcat ggtggctccc gcctataatc ccagcacttt gggaggctga 79740 ggcaggcgga tcacctgagg tcaggagttc aagaccagcc tgaccaacat ggtgaaaccc 79800 catctttact aaaaatacaa aattagccgg tcgtggtggt gcatgcctgt aatcccagct 79860 cttcgggagg ctgtggcagg agaatcactt gaacccggga ggtggaggtt gcagtgagcc 79920 gatatcgcgc cattgcactc cagcctgggc aacaagagcg aaactccgtc taaaaaaaaa 79980 aaagaaaaaa aacacataaa acaaaacaac actgtgacgg ttcccaaaaa ttaggagcat 80040 aattaaagga actcctgata aaaattaatt ttatcttaca tgtaaactaa aatgacttta 80100 tgaagttaat tcagaaatac aatgcagggt attagtttgc cacagctgcg tattcagcct 80160 aatgtaatat tcttgttatt tttaaattct tcttttaact ttactcatat gtggatcatc 80220 aaatttcaaa agattaaatg acaatactct tagcagcaag cttccctaag catataaaca 80280 ttttaatggg tgatgattca gaaggtaccc gaagaatatg tactgccaga tatcattcac 80340 ccccatatac ctgcccgaca gacatcccat tttgggaccc tggataaatg tgtgggtgga 80400 gagaaagata ggagaaagtg gtataagcaa atggctttgg agtctgattg acagcgattg 80460 aaatcctgtc tctacctctt aacagcctca tgatcctaca taagttaccc cgatcctcag 80520 ggccacatct gtaaattggg ggttgcgatg gcagccatct cacagggtct cttttcgggg 80580 aagggcagga attatggatt aagtgagcta gtaattgtaa agcacttaat acaaggaggg 80640 cgcataataa gtacttcata aataatgacg gccattatca tgactgaggt gtatgcagct 80700 gtcggggatt acggcgactt cagaatttct ggtgggcagg gctcaaaggc agcaaatcac 80760 actggaagtc gaggtgaggc actgcttctg cacagactgc ttagctggag agaatgagga 80820 aggcttagag gagatttaga ggaacttaga gtcctccgcc tccaactctg tgggatctgc 80880 tcccgtgcca gagacattca ggggatttct cgcactctcc cctcccctac gtccctcccg 80940 ccccatccaa ctaaccacac aacacataca aaatagcccc tgcgaggttc tgcacgctgg 81000 aagggaacag gagaagggcg ctgcgctttc ttgctgatgc cctgtacttg ggcccctggt 81060 agacacagcc acttgtcccc tcagcctgca gagaaatccc acgtagaccg cgcccgggtc 81120 cttggcttca gccaatctcc ctttggtggg ggtgggatgc acgatccaag gttttattgg 81180 ctacagacag cggggtgtgg tccgccaaga acacagattg gctcccgagg gcatctcgga 81240 tccctggtgg ggcgccgctc agcctcccgg tgcaggcccg gccgaggcca ggaggaagcg 81300 gccagaccgc gtccattcgg cgccagctca ctccggacgt ccggagcctc tgccagcgct 81360 gcttccgtcc agtgcgcctg gacgcgctgt ccttaactgg agaaaggctt caccttgaaa 81420 tccaggcttc atccctagtt agcgtgtgac cttgagcagt tgactttatt tttcagtgcc 81480 tagttttcca gataccagga ctgactccaa ggactattac tcatctggag ggtttagcac 81540 agtaccgtcg catagtaaat ttccatgtca gttttggtta cctttcatgc acttgcaaac 81600 atgccatgct ctgaaacgaa ataggcacat cttttttttt ttttttttta aggagtcttc 81660 ctctcgccca ggctggagtg cagtggcgcg atcttggctc actgcaacct ccacctcccg 81720 tgttcgagat tctcctgcct cagcctcctg attagctggg actacaggca tgccacgacg 81780 cccagttaat ttttgtattt ttagtagaga cggggtttcg ccatcttggc caggctggtc 81840 taactcctga cctcaggtga tctgactgcc tcagcctctc aaagtgttgg gattacaggc 81900 ataagccact gcatctggcc agaaatgaaa taagtaaatc ttttaacctg ctctaacaat 81960 atagtgaaaa gaccatatta ttattagagc aggttaaggg atttgcctat ttcgggttct 82020 agttatagtc ttaaacttgg acattcttgt agaaagtaaa aagtttcctc ttcaaagttc 82080 cccttcttgt taaagaatac atcataagtg ttagaagtaa tagtttattt taaagactaa 82140 ctttcttcaa gcctccttgc tttgtgctaa taactctttg ttaagcccta tcctatgtaa 82200 ctgttggaca tgctcacagg cacgttccag ttcacagcct atgccccttc cttatttgga 82260 aatgttattg cttccttaaa cctttcggta agcaacttcc tctccttctt cgttcttcct 82320 tgcacttacc tatttagaaa gttttaggct attagcaaat cggctatcag tttaagagtg 82380 tgaggtcccg ctccagccaa tggatgcagg acatagcagt gaggacgacc caaatgcgta 82440 agggataaat atgtttgctt ttcctttgtt caggtgtgct ctcgacatcg ttccatctgc 82500 gattgagcac cctttctgca gaaagtaaag attgccttgc tggagatctt ttgtctccgt 82560 gctgactttt cttcgtggca ccgattatct atttctaaca attttggtat ttctaacatt 82620 ctgaacaatc ttgggctagt tgtctcttct gggcctgttt ccccatccgt cacatgataa 82680 acttcattgg tttaaaaacc ccagcgaaca tttattgagt tactattacc ttcctgccct 82740 ccccaacccc aaccccaggg agcagttaca acctcagccg ctgagcgcac tcgccgggtg 82800 ttaagaagca ccaaagacag ggaggcttga ttgattttgc tttgggagta gagggtcaga 82860 agattcacag gaaaatggca tttgagcaag gatgattcac tggagctagc ttttaaatac 82920 tggcgaggct tttatgttgc agtcccttac aaagttgagc attcgcaggg actgcactcc 82980 gaaataagcc cgcttcccct tttcattcgc taatgatcca gggagctgct ggttccgcat 83040 gcggcaggtt gtgccttttc ctaatcaggg ttctgcatcg cctcgaaccc gcaggccgtg 83100 gcgggttctc ctgaggaagc agggactggg gtgcagggtg aagctgctcg tgccggccag 83160 cgcctgtgag caaaactcaa acggaggagc aggaggggtc gagctggagc gtggcagggt 83220 tgaccctgcc ttttagaagg gcacaatttg aagggtaccc aggggccgga agccggggac 83280 ctaaggcccg ccccgttcca gctgctggga gggctcccgc cccagggagt tagttttgca 83340 gagactgggt ctgcagcgct ccaccggggg ccggcgacag acgccacaaa acagctgcag 83400 gaacggtggc tcgctccagg cacccagggc ccgggaaaga ggcgcgggta gcacgcgcgg 83460 gtcacgtggg cgatgcgggc gtgcgcccct gcacccgcgg gagggggatg gggaaaaggg 83520 gcggggccgg cgcttgacct cccgtgaagc ctagcgcggg gaaggaccgg aactccgggc 83580 gggcggcttg ttgataatat ggcggctgga gctgcctggg catcccgagg aggcggtggg 83640 gcccactccc ggaagaaggg tcccttttcg cgctagtgca gcggcccctc tggacccgga 83700 agtccgggcc ggttgctgaa tgaggggagc cgggccctcc ccgcgccagt ccccccgcac 83760 cctccgtccc gacccgggcc ccgccatgtc cttcttccgg cggaaaggta gctgaggggg 83820 cgccggcggg gagtcaggcc gggcctcagg ggcggcggtg gggcaggtgg gcctgcgagg 83880 gctttcccca aggcggcagc aaggccttca gcgagcctcg acctcggcgc agatgccccc 83940 tgagtgcctt gctctgctcc gggactcttc tgggagggag aaggtggcct tcttgcgcga 84000 ggtcagagga gtattgtcgc gctggttcag aagcgattgc taaagcccat agaagttcct 84060 gcctgtttgg ttaagaacag ttcttaggtg ggggttagtt tttttgtgtt tctttgagga 84120 ccgtggatca agatcaagga aatctcttta gaaccttatt atggaagtct gaagtttcca 84180 aatgttgagg gttttatgtc taaaagcaac acgtgaaaaa attgttttct tcacccagtg 84240 ctgtcttcca atttcctctt tggggggagg ggtagttact gctgttacta aaataaaatt 84300 acttattgct aaagttcccc aacaggaaga ccactacttt tgatgacttt ggcaagtttg 84360 ctaactactg gaaccctaac ttacaaacga actacttaca tttttgattt ccagttgtat 84420 tacctgccca atgtttacgt agaaacagct taattttgat tctgggtaac gttgttgcac 84480 ttcattaaaa atacatatcc gaagtgagca agtatgggtc tgtggacagc agtgattttt 84540 cctgtcaatt cctgttgctt cagataaaat gtaccagaca gaggccgggc gcggtggctc 84600 acgcctgtaa tcccagcact ttgggaggct tggcgggtgg atcacctgag atcgggagtt 84660 caagaccagc ctgaccaaca tggagaaacc ccgtgtctac taaaaataca aaattagcca 84720 gggtggtggc gcatgcctgt aatgccagct acttgggagg ctgaagcagg agaatcgctt 84780 gaacctggga ggcggaggtt gcggtgagcc gagatagcac cattgcactc cagcctgggc 84840 aaaaagagcg aaactccgtc tcaaaaaaaa agtaccagac agaaatgggt tttgttttct 84900 ttttttgttt tgagacggag tttcgctctt gttgcccagg ctcgagtgca atggcgcgat 84960 ctcagtctcg gctcactgca acctctgtct cccaggttta atcgattctc ctgcctcagc 85020 ctcccaagta gctgggatta cccatgcccc accatgcccg gctaattttt gtatttttag 85080 tagaaacggg gcttcaccat gttaggctgg tcttgaaccc ctgacctcaa gtgggcctcc 85140 cacctcggcc tcccaaagtg ccaggattac aggcatgagc caccgcggcc agccagaaat 85200 gggttttgga aaaagcacta aacaaaatcg aacttggttt catatgacag ctctgctgct 85260 aactgtaaca ggggcagacc agttaaccta cttttctgtc ttctgtcagc tgagaattag 85320 atgattccca aaggcccatt gaactctgaa tgactttaaa tacttcttct taagtgggta 85380 cacggttttg gtaactgatg ccaggtgatg aatgcatgaa agtgcttaat gaatgaaacc 85440 ggtaaaatag taggaggaag ctttattggt aaggcagggg tatacctaat agctctctaa 85500 tttattggta ttgaagtggt taacttttgt ttttttaagg ggggaaaaca ttctaagaat 85560 aatgaggcaa actgcatatt gcacaagaga ctgttgtctc tattcaacaa ataccttttg 85620 agtgtccaga gtctgccagg tgctgtgcta ggccctcacg attgagtagt gaaccagaga 85680 atgtccctgc acccatggag cttattgtct actggggtag acagataata aataagcaaa 85740 caaatcttct ctcttctccc tttcgctcca tgtaagtgtg tgtgtatagg tgtatactta 85800 caagttgagt aaagtgttat gaaagattaa gaggagaaat gcattttggt tagatgttag 85860 aggactcagc aggtgacctt gaaacttaga gctgaaggat cagtaggagg taactagaga 85920 ggccagggaa tcgcatgttc aaaggccagg aggcaagaaa gagcatggtg cccttcaaga 85980 gaggaaagaa ggctactgtg actggagcat agatgtaggc aagtgttggg tgattgagag 86040 ctctacgggc catggttagg ttttattcct aatgccgaga tgccaaacat ggtggttcat 86100 atctgtaatc ccagtatttt aggaggccga ggcaggaata tagcttgaac ccaggagttc 86160 aagaccagcc tgagcaacat gagacctgta caaaacattt aaaaaattgc tgggtatgat 86220 ggtgcacacc tgtggtccca gctactcagg aggctgaggc agaaggatca cttgagccta 86280 ggaggtggag gctacaatga gccatatttg agtcactaca ctccagcctg gatgacaaag 86340 tgagaccatg tgtcaaacaa aatacagaaa gaatattaat ttaaaatttt gaaagaggag 86400 tgatctgaac ttatatctta aaaagatcat tctagggcat ggtggctcat gcctgtaatc 86460 aagggctttg ggaggctgag acaggaggat cacctgaggc cagttcgaga tcaacctgta 86520 cagcatagag agactccatc tctacaaaaa gaaaaaataa atagctgggt gttgtgagtt 86580 attcaggagg ctgaagcaga aagatcactt gagcccagga gtttgaggct gcagtaagct 86640 atgatcccac cactgcaaca cagtgagatc ttgtctcaaa aaaaaaaaaa aatcattcta 86700 ggtgcttttt ggaggctgga tgtggtaaga gtagaagctg gagatggtcc tgttagggat 86760 tcgattcaga ctttaaatac catcaatgca ttgagtccca aatttacatc actacgttgg 86820 atccttgccc ctgaatccag actggtatat ccaactttag gttcagtttg tatctctacc 86880 tgaccaatat agaggtgtcc agtcttttgg cttccctagg ccacattgga agaagaattg 86940 tcttgagcca cacatagagt acactaacgc taacaatagc agatgagcta aaaaaaaatc 87000 gcaaaactta taatgtttta agaaagttta cgaatttgtg ttgggcacat tcagagccat 87060 cctgggccgc gggatggaca agcttaatcc agtagatacc ttcaacttac aatatctaaa 87120 attttatgcc agatttagtc attttaaacc tgctcatcag tttttctcaa gaagtagtat 87180 tttggctttt tttcttttct tttttttgag atggagtttc gctcttatcg ttcaagctgg 87240 agtgcagtgg cggatcttgg ctcactgcaa cctccgcctc ctgggttcaa gtgattctcc 87300 tgcctcagcc tcgcaagtag ctggaattac aggcatgcgc caccatgacc agctaatttt 87360 tggagacagg gtttcaccat gttggtcagg ctggttttgt actcctgacc tcaggtgatc 87420 tgcctgcctc ggcctcccaa aggctgggat tacaggcatg agccaccgct cccggctgca 87480 tttttggatt tttagttgct cagcccaaaa ctttagtaca tctttgaacc tcttctttcc 87540 tcctactcta tatctgatcc atcagcaaat ctgttaggtc tacctcacac atatcgaaat 87600 cctaccacgt ctcaccatct gtgacaatta acaccctggt ctaggcagtc atctctgtta 87660 agattgagtg gttaaggatg tcctctaagg agatgacatt caaatcttag cttaaatgtc 87720 aagagggagc tggttttata aagattgagg aggcagcatt attttgccat aggcttccat 87780 ttggtttcca ttccattctt gatacttatg gtatatattc aaaacaaatg cacagaaaca 87840 gacccaggta tattgggaat ttcggatata gagttcctag ttgggaaaag atagactgat 87900 ctgtaaatga tgctagttat ccatcatctg gcaaaaaata atttcctgcc tcctctcata 87960 tatctcagat caacagactt tttctgttaa gggccaaatc ataaatattt taggctttcc 88020 agaccatatg gtttctgtca cactctcctt tatccttgaa gccatagaca atatgtaaac 88080 aaatgggcat ggctgtgcta cgataaaact ttacttacaa aaactggtag tgggccagtt 88140 taggcatggc cagcactttg ggaggctaag gcagatggat cacttggggt caggagtttg 88200 agaccagcct ggccaacatg gtgaaaccct gtctctacta aaaatacaaa aaatagctgg 88260 gcatggtggt gggtgtctat aattccagct actctggagg ctaagacaca agaatcactt 88320 gaacccagga ggcagaggtt gcagtgagct gagatagcac cactgcactc cagccagggt 88380 gacggagtct taaagcaaaa caaaacaaaa ggtagtgggt tgtatttggc ccatgggctg 88440 tagtttgcca atccctgatg cagaaacaaa ttccaggtaa ataagagcct ggaatgttaa 88500 aaaaacaaaa cttgaagtca tgtagaagaa caggtagggg gaacaatcct gatctcagga 88560 taggaaggga tattgcttaa aataagacac aggaaaatat aatccatgtt gtgtaaattt 88620 gactacgtta aaacttaaaa ctttcgccaa gcgcggtggc tcacgcctgt aataccagta 88680 ctttgggagg ccgaggtgag cagatcacca ggtcaggaga ttgagaccat cctggctaac 88740 acggtgaaac cccgtctcta ctaaaaatac aaaacattag ccgggcgtgg tggcgggcgc 88800 ctgtagtccc agctacttgg gaggctgagg caggagaatg gcctgaaccc gggaggcgaa 88860 gcttgcagtg agctgagatc gcgccactgc actccagcct gggcgacaga gtgagattcc 88920 gtctcaaaaa aacaaaacaa aacaaagcaa aaaacctaaa actttcatac aataaagtat 88980 acctaagata cttctagaag agaagattta catccaggac gtgtatggaa tttctgcaag 89040 taataagtaa aagacaaggg acatgaagag gcagttcaca aaagaggaag ccaaaatgac 89100 caataaacat gaaaggatgt ttaacctcaa aggaaacaag gaaatgaatt aaaaacatca 89160 aatgccattt caaaactagt aagttggcaa aattaaaaat accaaggatg agaatatgaa 89220 gcatggctat atgagtgcat ggaatggtac agtcactttc attaaaaatg cacataattt 89280 gttttttatt tatttttttg agacagtcta tgtcgcccag gctagaatgc agtggcatga 89340 tctcggctca ccacaatctc tgcctcctgg gttcaagcaa ttctcctgcc tcagcctcct 89400 gagtagctgg gattacaggc acatgccaca acgcccggtt aagttttgta tttttagtag 89460 agacagggtt ttgccatgtt ggccaggctg gtctcgaact cctgacctca ggtgagctgc 89520 ttcccaaagt gctgggatta gaggcgtgag ccaatgctcc tggctgaaaa aaatgcacat 89580 aatttgttac ctagcaattc catgtctaga ggcttatcct agagaaattc ttgcttatat 89640 gcataggaag acgtgtacta gaatgttcac tagttgaatg tttaagtgaa aattaggaaa 89700 taaagtaaat gttcattaac aggaaaatga gtaaaggtat atttataaaa caattaagta 89760 gctaaaatga ataaactaga gctgcgtgaa tgaactagaa ctggttcaat agtcatgtca 89820 gattattgaa tgaatacagg tcagatatgt atagagtgtc atttgtgtaa ttaatttttt 89880 tttttttttt gagatggagt ctcactctgt tgcccaggct ggagtgcagt ggcgtgatct 89940 cagctcactg caacctccac ctcctgggtt aaagtgattc tcctgcctca gcctcccgag 90000 tagttgggat tacaggcatg caccaccatg cccagctcat tttcctattt ttagtggcca 90060 cagggtttca ccatgttggc caggctggtc ttgaactcct gacctcaagt gttccaccca 90120 acttggcctc ccaaagtgct aggattacag gcgtgagcca ccgtgctcag ccatttgcgt 90180 gatttttaaa gatgtgcaga ataatgccat taaaaaaaat acacatacat gtatatatat 90240 acacgtttgg ctgggtgtgg tggctcacac ctgtaatccc agcactttgg gaggctgagg 90300 caggaggatc acttgagccc aggtgtacaa gactagcctg ggcgagatag caagacccca 90360 tctcaacaac agaaaggata attaggtatg gtggcatgag aggatcactt gagcccagga 90420 gttcgagtgt tatcaggcca ctgcactcta gcctggacaa caaagcaaga ccgtgtctca 90480 aaaaaataaa aataaaaagt atttgtatgt ggtcatagtc aaaaaacgta catggaagga 90540 aaatgtcttt atttatttat ttattttttt ttttttaaga cagagtcttg ctctgtcacc 90600 caggctgggg tacagtggtg taatctcagc tcaccgcaat ctcggcctcc cgggttcaag 90660 cgattcttct gcctcagcct tctaagtagc tgggactaca ggtacccgcc accacaccct 90720 gctaattctt gtgttttcag tagagacagg gtttcaccat gttggcaagg ctggtctcga 90780 actcctgacc ttaagtgagc cacccgcctt ggcctcccaa agtcctggga ttacaggtgt 90840 gagccactgc gcttggccag gaaatatcta atttagtaag tatttatatc tgggaaagga 90900 agggtcaggt ggtgattcat aggaactcta aagtctatgt ataatactta gggggacaga 90960 aggaaataaa gcaaaatgct gatatttgat tgttgagttg tgtatatgtt agaagtataa 91020 cataggagat ctgattgata gtaggagaat gtttttaggt ggtaaaagtg gaaccgtggt 91080 ggtttgtttt ggcagtagaa tcagttggtc atagtttgta tgtggaaggt aataaacaga 91140 ccatgttaag gatgacttcc ggaattttgg tctgagtagt gggtggatga cagtgtcatt 91200 catgagggaa gatgaagact gaggtaggaa caggtttggg agaagatgac atgttccctt 91260 ttagacaagt ggaattatgg aagatggcag gtaggtggtt agctatatga atttgagata 91320 aaagatttag gatggagata taaatttagg agtaacagcg tatctatggt attgtaagcc 91380 ttaagaatgg gtaggatcag ccaggaaata cagatgtata tgcagaagag aggagtcaag 91440 gaagccaaga caagttaatg tttaaagtga gtgatgtagt ccatgggcag atgctgctga 91500 gagggctgca aacaccagtg accctacaac atttttaaat gtcgtcttcc tgacagcagt 91560 gatcagtacc tgcaacgatc ttatttattt ttttcatgtt agtctccaca cacttgaatg 91620 tagacttttt gaaggcaaaa tcattgcctt ttctgagctg ggagcatgtc tggcacatac 91680 caagcactca acagttgatg tattgacttc atccagatac tctgagggcg agttatttcc 91740 tgctactagc ctttcacctt tcaatgttta agagcacaaa tacagagatg ggcacgtttt 91800 ggcatttctt attttgataa ccttttcctg gtaagatttt ttaatgttga aaaaaaaaaa 91860 caagaaaaga gggttaaaaa tagtcttatg tcagatcctg tgatagaatt cacacttggc 91920 ttaagctgct gggcaccttc ctatcttgga tgtcatatta gcttatctac agcagaattt 91980 ttactgtttt atgtagtaag gaagcaatta tatgattatt ttacagacaa attattcttt 92040 atcttttatt tttttagacg gagtctctct ttgtctccca ggctggagta cagtgtcgcg 92100 atctcggctc actgcaacct ccgcctcctg ggttcaagca attctctgcc tcagcctccc 92160 aagtagctgg gcttacaggt gtccgccacc acacccagct cattgttttg tatttttagt 92220 agagatgggg tttcaccatg ttggccaggc tggtcttgag ctactgacct caggtgatcc 92280 acccgccttg gcatcccaaa gtgctggaat tacaggcgtg agccaccgtg cctggcccag 92340 acaaattatt atactctgag tgttagaggc ttaggatgtt ttcacttgat gctatgggag 92400 gaataagtaa taagatatga tacacaacca aagacctttc ttcactatgc ttctagtagc 92460 tagtactatg gatgacacat ggtaataata ttggttagca tttgtcctca atttactgtg 92520 ctagttactc ttctaagccc cttacaggta tatatttttt ttcatcaata atcctctaag 92580 gtagttttta ttattgacct aattttataa atcaagaaaa ttaagaccca gagaagtaag 92640 taacttgtcc aagatcacat ggcttataag tggtagagcc agaatttgac cccagatgtt 92700 gtgactacat tgtctctcca taagcaggtt caactctttt gactggatgc tgttccaagg 92760 tcacttcctt agagaagcct ttgctgacaa ctaccctcct gtgccctcct ccaaggctgt 92820 ccattgttct agaactttga atactcatct tagaataaag ctggtctaat ttttacagtg 92880 ttatagaatg gatctctgac tgcaaaagtt ggtcataatt atctttttat gttctagtga 92940 aaggcaaaga acaagagaag acctcagatg tgaagtccat taaaggtaag ttctgccctt 93000 ggcagtccac tgcattaaaa agtgatgtgc tttgcatttg tgagttcttt aatcctgtta 93060 tactctctct tttggcatta atcatttctg ccttatttta taattactta tgattttgat 93120 ttatttccct ctttaacctg tataatgctt taacatctag catataataa gtaggctttt 93180 tttttttttt tttttttgga gacggagtct tgctctgtta cccaggctgg agtgcagtgg 93240 cgcgatcttg gctcactgca agctctgtct cccgggttca caccattctc ctgcctcagc 93300 ctccccagca gctgggacta caggtgcacg gcgccacgcc tggctaattt tttgtatttt 93360 ttagtagaga cagagtttca ccatgttagc cagtatggtc tcgatctcct gaccttgtga 93420 tccgcccgcc tcggcctccc aaagtgctgg gattacaagc gtgagccacc gcacccggcc 93480 gtaagtaggc tttttttacc ttaattttat ttttttgaga tggagtcttg ctcttatccc 93540 caggctggag tgcagtggtg ccatctcggc tcactgcagc atccacctcc cgggttcaag 93600 cgattctcct gcctcagcct cccgagtagc tgggattaca ggtggccgcc accatgccca 93660 gctaattttt gtatttttag tagagacagg gtttcaccgt gttggccagg ccagtctcaa 93720 actcctgacc tcaagtgatc cactcgcctt ggcctcccaa agtcctggga ttacaggcgt 93780 gagccaccat gcctggccat aagtaggctt ttactgagcc ttgtgtgtat tggctatcct 93840 agtgattaca gtgaaccagt gcccttctta ttaatcacac atttaattgt tccctaaaag 93900 tgattagttc actttattta tttagtaaga caaaaaatga agaatactct taactgagca 93960 gtctgttaac tgtaggaaag cactgacact tataaggctt agttttctgt catttatcca 94020 gaagtatggt tgattacagt ttttactttt ttatttgaat gaacaacctt aatttaaaat 94080 atattttgtt tattttttgt tgggatcgat acattgtcct tgtttataga ttagagcatg 94140 ctttttaaag atgctgtatt actcactgat tttatttgtc cagtgtacag agattgaagt 94200 gggaaaatta taatggaaat tgtttccata gtcattacat attaatttca tcaatttatt 94260 tccataaaat ctgtagattg ctacttattt agatttttcc ttcaaatgtt tttatgttgt 94320 attgcttgca ctgagtattt attctatatg ctcaatttgc tggagaagaa gactaattat 94380 aacttaggca agttgtaaaa ttagggaaaa aagtaaggta ccttacagcc tagtttactt 94440 atttcttatg taaagccagt tagattccac attagttcaa actgccttct ttgagcaaaa 94500 cttgattggc agtgataaag gcttaaagcc cttctcaagc agagacctgt aaagactaga 94560 tctgactgta gtagaaggaa ggaacttaga tgtttcaggc agtgagaaca ccagtcttcc 94620 actctaaact ttgccactaa cagtatgacc ttgggaagtt gtaactttct tcagattctt 94680 catttgttga atggggggat tggcctagct aatttctaaa tctctactgg gctaaaaaat 94740 tctgtgctta tactctgatt atgaagtaca taatctgtgc ttaacattca ctgacttatc 94800 cttaggataa tacagaagca gtacaagaaa cagcccctca agatgtttgc agtctggtta 94860 gaaagacaaa cttatacaca gaacagtagc aaatagacca aaataataat agctgccatt 94920 tatagaacac ttcttctgtt ctgggcatta gacaaaaact gactataacg gtgaacaaaa 94980 aagacttagg tcctgccctc attgaactta cagattagta ggggagagga acattaatca 95040 agtaattcca cagatggctt agcctagatt ggtagtgatg gaagtaaaga gatgtgaacg 95100 gacttgaaaa aaaattcgga ggcaaaatgg atagaagttt attattgatt aaatatgagg 95160 tgtgagagag agggatattt aagattgata cctaccttct ggcttgccta acagaaccaa 95220 aacaggaaat tatatgttca gttttgttat gttgggtggg aggtgctttt gagtcattca 95280 tttatatatg ttatatatgt tattttatat gcatagtaat tttaaggtct gagttttaaa 95340 ccaaaggtta gagagtgatt ttttagagtc tagcaaacct aagttgaaat cctgcctgtt 95400 gaaatggctg tttactagct cattaaccta gggcaaagta ttcaacttgt tttcattttt 95460 gtcttcatct ctaaaatgag gaaaatatgg tcttacaaga ttgtcctgag agatagatga 95520 aataatatcc aaaaaaaaaa aaggtacata gagaaactcg tatagtgcct ggtatatagt 95580 aggtcctcca ttggtagcta tcattatcta gttttaacat agccttcagt ttgttgaatt 95640 agtcaaactg agtgaagcac tgcaaggaat tcagaggaat ttgagatcaa caaatgattt 95700 ctgaagttta gggaagactt catggcaatg acacttacct tgtataaaag ttgaagaata 95760 agaaagattt gaatgagaga ttctttctct tctccctacc agcccagctt cttatttgag 95820 gatatattgg gcaaaggggc cttcagacaa gtagagggag atttttacag aaagattgag 95880 atgaaggtat agaaggctgt aaagaccaga aaagagaatt gagacagagg aagcaggaag 95940 ccactgtagg tttttgagca agatattgat gctgtaagta tggtgtttat gaaaggttag 96000 tctggaagag atttgcagga tggagacccc ggaagttttt ttgttataat acagaaagac 96060 ttgcactgag ggtgaggtgt taaaaataaa caggtaagta aatgtttaaa catcttgaag 96120 gaaaagtcaa caaatcttgg caagtaaaca gataacagtg aaaaagaatg ggaccaagat 96180 tttgagtttt ggagactggt ggattgaaca gacagggaaa ttgagaggag aatcagatga 96240 tgatgtttta agttgatatt tagacagatt gtgcttgaga tggtaaagtc aatgtgggtg 96300 ggaatgctta gtagcgagta atcagtgata caagaccaaa gcccaggtca aagacaagtc 96360 acagatacag atcagggctt tttcatctgc tccacagagg tgtaccctag gagctgttgc 96420 aaacagtcca tgtggagggt gtgagtaaga tgtttccctt gaatttgcca gaattacttt 96480 tttgttgttg ttgttgtttt ttctgagaca gattctcgct ctgttgccca ggctggaggg 96540 cagtggcgag atcgcgcagc tcactgcaac ctctgcctct cgggttcgag tgattctcct 96600 gcctcagcct cccaagtagc tgggattaca ggcttgtgcc accaagccca gctaatttct 96660 tttgtatttt tagtagagat ggggtttcac catgttggcc agactggtct cgaactcctg 96720 gcctcgtgat ctgcctgcct cagcctccaa aagttctggg attacaggcg tgaaccactg 96780 cacccggtcc cttgttaagt ttattttggt gggaagcaaa ggaggtttca gcttttaaaa 96840 agtttgaaaa ttattgctct ggtaataatt aaagatttga gagtaaatat gctttctagc 96900 agaaagaata aaagaagaac agatagcctc aagaagggga gccaaagaag caggctatat 96960 ctgacacact gggtgttgat aaatgggtat taaaagaatg agagcaatga gcagatagaa 97020 gaggaaatta ggagagtata ataccatgga gaccaagaaa gatagactat caggaaggag 97080 tggtaaaaat aagttactag ttctaagaga gatgttaaga gggaccgggg aaagccttgt 97140 acaaatgagt tagtagcatt ttacattata tacatctaat taagaaacaa tgcgagagtc 97200 tcaccattcc tatagactct tacttgtact tgtctgaaca cgaaaactgg cttttgttta 97260 taaataagct aaaaattatt ttgctccaat ttctcatgaa aataaaaata aaccttcttt 97320 taacattgaa aaaatagttt gaagacagtc actcttcatt ttgtaattcc cacaactatt 97380 attgaatgac tgaaattatc tttattctga agccaaaggg gtgatactga tatttcttca 97440 gactactaaa aatatatttt atgaattttt agtgtgcttt atcttttttt gttttttttt 97500 ttgagatgga gtttcactcc cgttgctcag gctggagggc agtggtgcaa tctcagctca 97560 ctgcaacctt cgcctcccag attcaagcaa ttctcctgcc tcggtctccc aagtagctgg 97620 gattacaggc acctgccccc acacccagct aattttttgt atttttagta gagacagggt 97680 ttcaccatgt tggtcaggct ggtcttgaac tcctgacctc aggtgatcca cccaccttgg 97740 cctcccaaag tactgcgatt gcaggcatga gccaccatgc ctggcctgag gaatattttt 97800 ctaggttccc cccaccccaa gcatttattc tgcaatttta gttttgttcc taaagcaagc 97860 aaggtttaag gatttaaaaa taatccgtat tttagaatgc tttctggctt tgttactttt 97920 tatccacagt agaagttctc agagaatgat ctccctcttt taatttaact ttttggcaca 97980 gtattttgag aattataaat aatattagaa tgttttctgg ctgggtgtgg tggctcatgc 98040 ctgtaatcct ggctacttgg gaggctgagg caggagaatc acttgaacat gggaggcaga 98100 ggttgcagtg agccgaggtc atgccactgc actccagcct gggtgacaga gcaagactct 98160 gtctgggaaa aaaaaaaaaa aaaaaaagag tgttttcttt cctattttcc accacttgat 98220 taagttactt ttcctcttaa gtattttttg ctgagtatgc tgacttaaga gtaatgttac 98280 aaaatttaat ttttaaagtt ctctgaaagc ccctttatga gagttttagg ctatcaaatt 98340 gtgtttaatt cttaacaatt ttttgaaaaa ttatagcttc aatatccgta cattccccac 98400 aaaaaagcac taaaaatcat gccttgctgg aggctgcagg accaagtcat gttgcaatca 98460 atgccatttc tgccaacatg gactcctttt caagtagcag gacagccaca cttaagaagc 98520 agccaagcca catggaggcc gctcattttg gtgacctggg taagtaacta tcatttttta 98580 ttaacttgta ttagaaggat ttgagtacaa tatgtgaaac ttctgtcata ggatacagaa 98640 ctatataatt ggaaagtgct ttggaaaaaa tgtatttaaa ataacagcta caagtataat 98700 gggtagctgt gttgtgttcc tgtaaatata gaatataaag catgcccagt agaaaaacaa 98760 gcatttccag aagaaatata tctgatcact aaatataaat atatgaaaaa gatgtctcac 98820 tttattactg agggaagtgc aaattaaaat aatcagttaa tgttctccta acacattagc 98880 atatttttta aagtttgaca atttgaatgt cagtgaagat gcagggaaat acccctccta 98940 tttagtgata atataatctg gtgaagactc tttggaaagc aatttggaaa tcagtataaa 99000 atatgcatgt catttaggcc actctttcta agacctagcc ctcagatatg ctcattcata 99060 tgtgcaggtg tgtatgtgtg tgtgtgtgtg tgtgtgtgtg tgtatatgta tgtatgtatg 99120 tatgtatgta tgtatgttga aggctattca ttatagtatt gtttgtgata gcaaaaaatt 99180 atggacaaca tataaatatc tgttataggg aaataaccaa attgtggtat acgcatgctc 99240 tggagtataa tatagccatt tgtttctatt tatttatttt cttgagacag ggttttactc 99300 tgttgcccag gctggagtgc agtggtatga tcatggttca ctgcagcctt cacctcctgg 99360 gcacaagcca ttctctcgcc tcagcctcca gagttactag gactgcaggc atgtgtcacc 99420 acacccagat aattttttaa ttttttgtag agacagggtc tcactatgtt gcctaagctg 99480 gtctcaaact cctggcctca agcaattctc ccacacaggc ctcccaaagt gctgggatta 99540 ccaacgtgaa ccaccacacc tggttcagtg tagccattta gaaatctaaa aaagacgtgg 99600 gaaaatgtct aaggcatgtt taaatgtgag aaaagcaagt cacagtatgc atggtaaaat 99660 ccgttatatt aaaataagtt cttccaaaac aaaaacatat gcaggagacc tttattttgt 99720 cagtatttct tacccaaatt tctgcactta gaaaattgca tgtcatgttg tcataagttg 99780 aaaaaaagat ccatgaacca atggacttct aataaaatca gtcctgcttt tgacatctct 99840 ctctactttt gtgtatattc aaaccagagt gtcaatgtgt ttgtggggca cacttagcaa 99900 taatacatag cagacaaaat gcatatagct cagagagtaa aattgtaagt tttgctagat 99960 cactcataaa ttgctgatga gaatttaaaa tggtgcagat gctctggaaa acaggcagtt 100020 tctttctttc tttttttttt tctttttgag acagggtctc actctgttgc gcaggctgga 100080 gtacagtggc gtgattacaa ctcactgcag cctcaccctc ctcaggttca ggtgatcctc 100140 cctcagtctc ctgagtagct gggactatag gcatgcacca ccacgcctgg ctaatttttg 100200 tatttttttt tttttttttt gtagagacgg ggtttcgcca tgtttcccag gctggtctca 100260 aactcctgga atcaagcgat ccacttgcgt aggcctccca aagtgctggg attacgggcg 100320 tgagctactg tgcctggcct aggcagtttg tttgtttgtt tgtttgtttg tttatttatt 100380 tgtagacgga gtctcacagg ctggagtgca gtggcccaat ttttggctca ctgcaacctc 100440 cgcctcccag gttcaagcta ttctcctgcc tcagcctcct gagtagctgg gatgacaggt 100500 gcctgccata atgcctggct gatttttgta tatttagtag atatggggtt tcaccatgtt 100560 ggtcaggctg gttttgaact cctgacctca ggtgatcagc ccgcctcggc ctcccaaagt 100620 gctgggatta caggcatgag ccgtcatccc tggctggtgg tttcttatga cgtgaaacat 100680 gcaattacca tatgacctag cagttgcact ctgtatttat cccagataaa tgaaaactta 100740 ccttccaata aaaacctgtg cacaaatgtt catagcagct taatattgaa aaactggatg 100800 ttcttcagca ggtgaatgaa ctggttcatt cataccatgg aataccattc agcaataaaa 100860 aggaacaaac tgttgataca tttaaccacc tggatgaata tcaagggaat tatgctgtca 100920 gacaaaaacc agtccctaaa gactacatat agtatgattc cgtttggata atattcttga 100980 aatagagaaa ttaagagaaa tgaaaagatt agtgtttgcc agatgttaga gacagggagg 101040 tgagaggggt aagtgggtgt agttataaaa gtgcaacatg agggatcttt gtgatgttga 101100 agttgtatct tggcagtgga tgcagaaatc tcaatgtgat aaaattacaa agaactaaaa 101160 acaagaatga gtatagataa aactggggaa atctgaacaa gttagagtgt tgtatcactg 101220 tcagtatctt agagtgatat tgtactatag ctttgcaaga tgttaccatg ggagaaacta 101280 aagtgtacaa gggatctcta ggtattatta tttttttaga gatggggttt cactatgttc 101340 cccaggccgg tcttgaactc ctgggctcta gtgatccgcc tgccccagcc tcctaaagta 101400 ctggaattac aggcgtgagc gaccatgcct ggccctttca gtattgtatc ttagaacttc 101460 atgtgaatct agcattatct catagaattt aattaaaaga aattgtaaac ctcacagaag 101520 atcagaattt cctcaagttt gtgatgttga caaagatgaa ctagttgaca ctgacagtaa 101580 gactgaggat gaagacacga cgtgcttcaa aaaaatgatt tgaatatcaa tggattaaga 101640 agaactcttt tgacaaattg atgaaaccct cagtcagttt tataagaatg cccatcttta 101700 tgatcatgct atgaaagcca atttttaaaa aaattttttg tctttcctaa caattagctt 101760 gtggttataa tttaaattta gttaaatata agataaatga ttttttatta agtttagttt 101820 catttttcaa ggtacgatct caaagctact ctttaaccta ctatgaatga ataatgctga 101880 gttcataaca tctttgtaga tatatccaca attttccctc aggataagtg cctacaagtg 101940 gaattactgg actgaaaata atgcagtttg ctaagacttt gctatctgtt cctgaatgct 102000 cctccaaaaa ggttttgcca gtttacatcc tcatgaccag cgaatgagag tgttgcctat 102060 tttcctgtgc ccttgttact gcttaataat ttttgaaaaa aatctaattt gacagacaaa 102120 aatgcatttt atgttaattt gcttttctgg gatttttaat gaggttgagt atagttttta 102180 atatttttat tggccccttt ggaactagta tcataagttt tttttcttaa gaatttatgt 102240 agtctgggct gggcgcagtg gctcacgcct gcaatcccag cactttggga ggccgaggtg 102300 ggtggattgc cgaaggtcag gagtttgaga ccatcctgac caacatggtg aaaccgaatc 102360 tctactaaaa gtacaaaaac tagctcagcg tggtggcggg tgcctgtaat cccagctact 102420 taggaggctg agtcaagaga atcgcttgaa cccgggaggt ggaggttggt tgcattgagc 102480 cgagatcgcg ccattgctct ccagcctagg caacaagagt gaaaagtctc aaaaaaaaaa 102540 aaaaaaaaaa aaaaaagaat ttacatggtc tgaattgcca ttaaaagaga tatgagaatt 102600 attgagtaac aaataacttt ttaataattt aggcaagttt tggacgattg tactttgttt 102660 agaaaccaaa agcatagtat ttgtagtttt tttatttact ttagttgcta ggaagtaaac 102720 tttattcaag gtctctggta ccagttgttg ctaaaagtga ttgactaatc tgtcaatctg 102780 aaattatttg ttgctgaact gctaattctt ttgcttctat cttttaggca gatcttgtct 102840 ggactaccag actcaagaga ccaaatcaag cctttctaag acccttgaac aagtcttgca 102900 cgacactatt gtcctccctt acttcattca attcatggaa cttcggcgaa tggagcattt 102960 ggtgaaattt tggttagagg ctgaaagttt tcattcaaca acttggtcgc gaataagagc 103020 acacagtcta aacacagtga agcagagctc actggctgag cctgtctctc catctaaaaa 103080 gcatgaaact acagcgtctt ttttaactga ttctcttgat aagagattgg aggattctgg 103140 ctcagcacag ttgtttatga ctcattcaga aggaattgac ctgaataata gaactaacag 103200 cactcagaat cacttgctgc tttcccagga atgtgacagt gcccattctc tccgtcttga 103260 aatggccaga gcaggaactc accaagtttc catggaaacc caagaatctt cctctacact 103320 tacagtagcc agtagaaata gtcccgcttc tccactaaaa gaattgtcag gaaaactaat 103380 gaaaagtgag tatgtgattt tcttgtgtgt acatatgtgt ctcactttct ttttttaatt 103440 tactaagcag aacttcagat gaggaataaa atgattggaa tatttttttt ctcctctaac 103500 tacttgtaaa tttgggagaa tttggagagt gtagtagagt cagatcagtg tatggaaaag 103560 gagcaggagt gactggacct tctaagaagt gtgttatcag aattagtaaa tgaagggtca 103620 aatgtcctac ttttcccctc cactgatttt gacatcaaac cattatccac atagccttat 103680 ttcctccctc ggtcttaatt ttattaatat tttactgcac tttgcagata aaatttttaa 103740 aaaattttta aaaattgcca ataagtgaca tttattaagt tcagtgctta gtgtatattt 103800 ggattttatt tattagtcac aagacctttg tgcaggtagt aggcatgatt atcttttttt 103860 ttttgagatg gagtcttgct ctgtcgccca ggctggagtg caatggcgcg gtctcggctc 103920 actgcaacct ccgggttcat gccattctcc tgcctcagcc tcccaaatag ctgggactac 103980 aggcgcctgc caccacaccc ggctaatttt tttgtatttt tagtagagac ggggtttcac 104040 catgttcgcc aggatggtct cgatctcctg actttgtgat ccgcctgcct cggcctccca 104100 aagtgctggg attacaggca tgagccaccg cgcccggact gattatctta tttacacatg 104160 agaaaaccag ggcttagaaa ggttaggtaa cttcctctag gttgtacagt aaatgtggac 104220 ctagaagcat tttgacaaga gcacctgttt ttttttcttc tctattagtt tagaaattat 104280 atactcttaa ttatcacctg ggattttgat tagacagcct tcatgttctt tttcatctta 104340 aatgttcttt gtgtcttaaa gggctaagtg atttcttcag atcttttagt tcactcattc 104400 tcagtgaact aaaatgaggt ctaatctgct actgaatcaa gttttcagca tgttatttcc 104460 ttcctccctc cctccctcct tccttccctc aaccaggctc ccgaggagct gggattacag 104520 gcgcccgcca ccactcctgg ctaattttta tattttagta gagacggggt ttcaccatgt 104580 tggtcaggct gatcttgaac tcctgacctc aagtgaccca cctgcctcgg cctcccaaag 104640 tgctgggatt acaggcatga atcaccacac ctgacggcat gttattttca tcgcaaagtt 104700 actgtaagct gggagaagtg gcacacactt gtactcccag ctactcagga agcttaaggt 104760 gagaagattg cttgagccca ggagttttga gaccaacctg ggcaacacag caagacccca 104820 gctcaaacaa agaaaaaaag ttattgaatt ttttatttct atggatcatt ttttgtagtt 104880 tcttattcct ttcacccttc attcccactt ttgatcccat cttttattta tttagtttta 104940 ttaaatgtat atttgtctga taattctgct atctacagtt ttttgtggac ctgactcagc 105000 atttctttgt ttcttcggat tcagactgtt ggtggcttgt gattttagtg atttttggcc 105060 gtgaacatgt ttcttggact tttgtctgtg ggaattctct gtgtactctg tataaattaa 105120 gttacttcag gtgttttgca ttttcttttg ccatgcacct ggggcctggg tcactaccct 105180 tctggtacca cttaaaactg aatttttgtc ttgggtgctc gtactgatcc tgtatgagta 105240 caggtttata cttactgtag aaatatggtg tttgattatg gggtattgtc ccagatggtg 105300 ctggagtatt aatatgctct ctgttaaact taatgtgttg tccctgtaaa actccaaaat 105360 tctgaattcc agaatactac tggccccaaa tgtttaagat aagggcactg cctgtatttg 105420 tttctgcctc ccactatttt ccttagttta acacaaactc acctttttaa aaaacatttt 105480 gagagaattc agtattggga agagtttcta acctgtttct ggaaatggaa gtccaaagtc 105540 tgtttctgta attgtttttt ttttgagatg gagtctcact ctgtcaccca ggctggagtg 105600 caatgacgta ctctcagctc actgcaacct ccacctcccg ggttcaagcg attctcttgc 105660 ctcagccccc tgagtagctg ggattacagg tgcccaccac catgcctggc tgatttttgt 105720 atttttagaa gagatggggt ttcgccatgt tggccaggct ggtcttgaac tcctgacttt 105780 gtgatctgcc cacctcagcc tcccaaagtg ctaggattat gtttctgtaa ttgtaataca 105840 tttattgttt ttagaaactg tctttgcttt agtggtaatt ttcaataaaa atagaaatag 105900 cagtggagtt attaaaagag cattagttac atttttccct ttttcattat cttcaaatat 105960 tatatatagt aagtttgacc tttttaaaat gtatacttgt atcagtttta acacatacat 106020 agattcctgt aactgtcacc actataaggg taaagaacag ttagttcctt cacctttgaa 106080 gtcaagcccc acctctatcc caacacttgg caaccgctga tctttctccg tctcaatagc 106140 tttgcctttt ctcttttttt ttcttatttt tttttttgag acagcgtctt gctctgtcgc 106200 ccgagctgga gtgcagtgag gcaatctcgg ctcactgcaa cctccgcctc ctgggttcaa 106260 gcagttctcc tgccttagcc tccctagtag ctgggattat aggcacgcac caccacaccc 106320 ggctgatttt tttgtatttt tagtagaaat ggggtttcac catgttggcc aggctggtct 106380 caaactcttg acctcaagtg atccacctgc ctcggcctcc caaagtgctg ggattacagg 106440 cgtgagccac tgtgcccaat caggactttt tttttttaaa tttacattca acttgtcatt 106500 tttttcttgt atggattgtg ccttcagagt cacacctaag agccctttgc ctaagcaaag 106560 gtcatgaaga ttttctcata tgtttccttt taaaagtatt gtggttggcc aggtgccatg 106620 gcttatgcct gtaatctcag cactttgaga agctgaggtg ggcagattac gaggtcagga 106680 gatcgagacc atcctggcta atgcggtgaa accccatctc tactaaaaat acaaaaaaaa 106740 aaaaaaatta gccgggcgtg gtggcgggca cctgtagtcc cagctacttg agaggttgag 106800 gcaggagaat agtgtgaacc cgggaggtgg agcttgcagt gagccgagat cgcgccactg 106860 cactccagcc tgggcaacac agtgagactc catctcaaaa aaaaaaaaaa agtattatgg 106920 ttttacactt tacgtttaga tatatatctt ttttgagtta atgtcgtata agtatgaggg 106980 ttacgtcaga ttttttgttt tttgtttatt tttacatatg gatgtctagt tgttctaata 107040 ccatttgttg aaaagacaac ctttactcca ttgaattgcc tttgtacttt tgccatattt 107100 gtctaggcct gtttttggac tcctttttct gtttcatgat gtgtgtgtct attcctttgt 107160 taataccaca tggtcttaat tactgtatag taagtcttaa aattgggtaa tgctggcctt 107220 ataaaacgaa ttgggaagtt tttattttta ctcttatttc cattttctag aagagattgt 107280 gtagaattgg tgtcatttct tctttagata tttggttgaa ttgggaagtg atgccatctg 107340 ggcctagggt tttgtttttt gtgtgtgaga cagagtctca cttctgtcac ccaggttgga 107400 gtgcagtggt gagatcttgg cttactgcaa cctctgcctc ccaggttcaa gttatcctcc 107460 tgcctcagcc tcccaaatag ctgggattac aagcgtgtgc caccatgccc gactaatttt 107520 tgtattttta atgcagacag ggtttcacca tgttagccaa gctggtctcg aacttgtgac 107580 ctcaagtgat tagcccacct tggcctccca aagtgttagg attatagatg tgagccaccg 107640 tgcctggcag gggcctaggg ttttcttttt cagagtattt taaactatga attcagatta 107700 tttaatagat ataggactat ttaagttatc tgtttcttct tgagtgaatt tttactgtag 107760 tttatggcct ttgagtaatt aattgtattg aattgtcaaa tttatgagcg tgtaattatt 107820 tatagcattt cgggtttgta gtggtatccc tcttttattc ctggtgttgg caattgtgtc 107880 ttgtttttct ttgtcagatt gtatagggat ttattagtct tttcaaagaa ctagcttttg 107940 ttttgatttt tctgttgttt tgttttcaat tttattgatt ttctgctctt tattatttct 108000 tttctattat ttctgcttgc tttgggttta ttttactctt ttttttttct ccaagttgct 108060 taaagtagaa acttagattt ctggtttgag acctttcttt tctaagataa gcatttaata 108120 ctgtaaattt ccttctaacc actgctttag ttacaccccc acaaattctg gtattttgaa 108180 ctgagcacaa atgaaatgtt ctaatttccc ttgaatctta ttcttttacc aatgaattat 108240 ttagaaatat gttatttagt ttgcaagcaa ttggagactt ttttcctgtt atttttctac 108300 catttatttc tcatttcatt atattatggt cagagaatat attttgaatg atttcattta 108360 ttaattttta aaaataacat taaaaaattt tttaaaatgt gaatatacca catacagtat 108420 aaagattgta cattctgttt ttggacagtt ttctataaat gtcaagttga tttagttggt 108480 taatgatggt gttcagtttt tctttattct tgctgatact ttgtatgcag ttatatcact 108540 ttattactca gaagagtgtt gaactttcca actacaattt ttttttccaa ttttactttc 108600 agctctatct ggttttgctt catgtatttt gaggctctgt tgttaggtgt gtacacattc 108660 aggatgatat cttctgggtg aattgcctgt tttatcatta tgtaattccc tctttatggt 108720 aattttcctt gttctaagat cagaaatatc tgttgtccaa tttatataga cactgcagct 108780 ttcatttgat tagtgcttgc atggcatatc tttttccatt tttttacttt tgatctacct 108840 ttataattct atttaaaggg ggcttcttgt aggcagcata tagttgggta gtgttattta 108900 tttatttatt tatttattta tttatttatt tattgagaca gagttttgct cttgttgccc 108960 aagctggagt gcagtggtgc aatcctggct taccacaacc tccacctcct gggttgcagt 109020 gattctcctg cctcagcctc ccaagtagct gggattacag gcacgcgcac catgcctggc 109080 tgattttttg tatttttagt agaaacggat tttcaccatg ttagccaggc tcgtcttgaa 109140 ctcctgacct caggtgatcc acctgctttg gcctcccaaa gtgctgggat tacaggcgtg 109200 agccactgca cccggctgag tcatgttatt tttaatcttt tctcacaata cagggttttt 109260 gttggtaaat ttaattattt taatataaat tttagtataa ttatttacat taaatgtaac 109320 tgttgcactg gggtatttat aatgtgtaaa tataattatt ggtattaata taattatatt 109380 actcataata atattaatat ctttggattt agattaccag tttagtatat gtttttctgt 109440 ttctccctct ttgatttccc cttttttgct tttttttttt ttttaattct tatttttttt 109500 tagtatttgt tgatcattct tgggtgtttc ttggagaggg ggatttggca gggtcatagg 109560 acaatagttg agggaaggtc agcagataaa catgtgaaca aggtctctgg ttttcctaga 109620 cagaggaccc tgcggccttc tgcagtgttt gtgtccctgg gtacttgaga ttagggagtg 109680 gtgatgactc ttaacgagca tgctgccttc aagcatctgt ttaacaaagc acatcttgca 109740 ccacccttaa tccatttaac cctgagtggt aatagcacat gtttcagaga gcagggggtt 109800 gggggtaagg ttatagatta acagcatccc aaggcagaag aatttttctt agtacagaac 109860 aaaatggagt ctcccatgtc tacttctttc tacacagaca cagtaacaat ctgatctctc 109920 tttcttttcc ccacatttcc cccttttcta ttcgacaaaa ctgccatcgt catcatggcc 109980 cgttctcaat gagctgttgg gtacacctcc cagacggggt ggcagctggg cagaggggct 110040 cctcacttcc cagatggggc agccgggcag aggcgccccc cacctcccag acggggcagt 110100 ggccgggcgg aggcgccccc cacctccctc ccggatgggg cggctggccg ggcgggggct 110160 gaccccccac ctccctcccg gacggggcgg ctggccgggc gggggctgac cccccacctc 110220 cctcccagat ggggcggctg gccgggcggg ggctgccccc cacctccctc ccggacgggg 110280 cggctgccgg gctgaggggc tcctcacttc gcagaccggg cggctgccgg gcggaggggc 110340 tcctcacttc tcagacgggg cggccgggca gagacgctcc tcacctccca gatggggtgg 110400 cggtcgggca gagacactcc tcagttccca gacggggtcg cggccgggca gaggcgctcc 110460 tcccatccca gacggggcgg cggggcagag gtggtcccca catctcagac gatgggctgc 110520 cgggcagaga cactcctcac ttcctagacg ggatggcagc cgggaagagg tgctcctcac 110580 ttcccagacg gggcggccgg tcagaggggc tcctcacatc ccagacgatg ggcggctagg 110640 cagagacgct cctcacttcc cggacggggt ggcggccggg cagaggctgc aatctcggca 110700 ctttgggagg ccaaggcagg cggctgggaa gtggaggttg tagggagctg agatcacgcc 110760 actgcactcc agcctgggca acattgagca ttgagtgagc gagactccgt ctgcaatcct 110820 ggcacctcgg gaggccgagg caggcagatc actcgcggtc aggagctgga gaccagcccg 110880 gccaacacag cgaaaccccg tctccaccaa aaaatgcaaa aaccagtcag gtgtggcggc 110940 gtgcgcctgc aatcccaggc actctgcagg ctgaggcagg agaatcaggc agggaggttg 111000 cagtgagccg agatggcggc agtacagtcc agcctcggct ttcacaactt tggtggcatc 111060 agagggagac cggggagagg gagagggaga cgagggagag cccctttttt gctttctttt 111120 ggattatttg aatttttcct taaatttatt tatcttactt atttatttat ttttttgagt 111180 gattctcctg ccacagctcc caagtagctg ggactgcagg catgtgccac tacacccagc 111240 taattttttt gtatttttag tagagacagg gtttcaccat attggccagg ctggtcttga 111300 actcttgacc tcaagtgatc cacctgcctc ggcctcccaa agtgctggga ttacaggcgt 111360 gagccaccat gccctgcctt tttctagaat ttatatattg agttcttgat tgtatctttt 111420 tatgtaggct ttttagtggc ttctctagga attacaatat acatactttt cacagtgtac 111480 tcacatttaa tattttgtaa cttcaagtgg aatgtagaaa acttaaccac cataaaaata 111540 gaactaggga tgaggttaaa aaagagagag aaaagaaatg taataaagat ttaataacac 111600 cgtttttttt tttttttctc tttttttttt gagacagagt ctctctttct gttaccaggc 111660 tggagtgcag tggcgtgatc ttggctcact gcaacctccg cctcctgggt tcaagtgttt 111720 ctcctgcctc agcctactga gtagctggga ttacaggtgc gcgccaccat gcccagctaa 111780 tttttgtatt tttagtagag acggtttcac tgtgttggcc aggatggtct cgatttcttg 111840 accttgtgat tcgctctcct cagcctccca aagtgctggg attacaggcg tgagccaccg 111900 cgcccggcta agtctttaaa tatttttttg acattgcact ttttctcttt tccttctagg 111960 attttagtaa cccaaatgtt agttttgtta ttgtttggca ggttcctgag gctttcctta 112020 cttctttaaa tttttttttc ctgttgttca gcttcgaaaa tttctattca tctgtcttca 112080 aattcactgg ttctttcccg ttatttccat tctgttattg agtctttgta gtgaatttta 112140 aattttgttt attatgtttt ttagttctaa aattttcttt ttttgtgtat gtcttatact 112200 ttgctcctga aactcttatt tgtttcagga gtgatcttat ttcttagagc atggttttag 112260 tagctactta aaatttgttt tatcatccca gcatatgtgt cctcttgatt gtcttttctc 112320 ttgtgagata atgggatttt ctggttcttt atatgacaat taattttgga ttgtatcttg 112380 gacagtttga cttacgttac atgattctga atcttgttta aatcctgtgg aaaatattga 112440 agtttttgct ttaacaagca gttgacctag ttaggttcag tccacaaatt ctaagcagca 112500 ttctgtcggc tctggttcca tcatcagttc agttttgtat cttatctgct tatgtgcctt 112560 tctgtgtcca gtctgggacc tggccaatgg tcaggtccca aagcctttgt acacttttag 112620 aagcagggcc atgcacaccc agctcacgag tggccccggg agtgcacata caactcgacg 112680 ttttcatggg ctccttcttt tctgtgatgt ccctgacacg ttctgccttc taagaacctc 112740 cctttatccc tttcctgttg tctggctaga aagtcagggc tttagattcc ctatacttca 112800 gcacacttcc tgtagctatg tcaacctctg tggccacgac ttcttcttct tgggactgca 112860 gtttctcttg tcagaaagta ggattcttgg agctgctgtc attgctgctg tggctgctct 112920 gatgctgcct gggagtcgaa ggagagaaag gaacaaaaca aaacaaccca ggggatttcc 112980 tccactctct ttgatccgtg agagccccct ttcctgttcc tcagaccaga aatagagggc 113040 ctgtcttgga acttcttctt tgtgcatctg gtgtgcagtt tcagcttttg agtccaggcc 113100 aggaggtgct ggacaaactt gtcaggagta cggaggtact gcaagttctg attacttttc 113160 tcagtccacc tgcttccaag tccttggatg catttgtcca ttgttttgag ttgcattcca 113220 tgggagagac agaagagtgt gcttatttca tcttgacata cttattagga tttcatatca 113280 aatcaacgga tgatattctc tatattaatt tgctgttttc cctttagcaa gcacattagg 113340 aaaataacac tttaacaccc gcctttggtg gtttctgtca taattattaa tacttgactt 113400 tttttttttt tttgagacgg agtctcactc tgtcctttga ggcattgtcc ccataaactt 113460 ttggtaaagc atcaataatt ttatctttca tccacacaag cttcaccata aatttgatgt 113520 ttattcttcc attttagcag aattcatgtt gctccaatag gggctgtctt caaactgatg 113580 ttttctcctt cttagtgcct cagagtagat cctgttcaga tacgttataa caggttaata 113640 tgagtttatt ttggtgtaaa agtactttga aattcatgca tagttttttc atcatatgca 113700 ttttccatag ctttgaacac ccccatgtaa ctctcctctt ccacaaacca aacaatgaaa 113760 aagcaccttt gtgatggaag tttattttgc aataggaact cacagtgatc taagccctgc 113820 tattcatgaa tataattcat tactggagtc caagttgctt tttggttttt gaagttctct 113880 tcttcccttg caggtataga acaagatgca gtgaatactt ttaccaaata tatatctcca 113940 gatgctgcta aaccaatacc aattacagaa gcaatgagaa atgacatcat aggtaagcag 114000 tgcttgaaac tatggcaaaa aaaaaatgac aaaaaatgca cagaactgac aattttcgtt 114060 attgactaag ataatttttt cttaacatgg aatttagcag ttcccttcct aatttgtttt 114120 ctgagtattt tttatatcgg attatagctc actttaaaag tttctcggct gcattcggtg 114180 cgagggtctt tgcctgggcc agatgggctg cagtgtagcg ggtgctcagg cctgcccgct 114240 gctgagcagc cgggccggcg ggcggctacg ctaaccggca cagaccaccg gatggactgg 114300 ccggcagccc cgcaccagtg cacgaagtgg gcgggacaga aacttctggg gttggaagtc 114360 cagtgaggct aaaagccggt accaaagtct ctaggcatca gggctgcagc ccaagagtct 114420 cacgaccagt gggcaactgg atggccagac aggtgtctca gtggtggcct ctccgtctca 114480 gggcttcatc ccacttctca gtgggcctga cgtccctggg caccctggat gtctacctgc 114540 attagccaga gccatcacat ggcctgtgac ttgccttttt ttgccagttg attgtgccac 114600 acacagtgtc atttctgtgt catttggcac agctggaggt gcaaggagga gggcagcctc 114660 atgtccagtc ccagtttcac gtaactttat tcttctgaat aaagacaatt tgctaacctt 114720 aaaaaaaaaa aaaaaaaaaa agtttttctt atatgttgga cccaaattct taggctttaa 114780 cctgaataac aatgacagca agatcaataa atagtacaca tttattaaac actcactgtg 114840 tcccagacaa tattccaagc actttttatg gatagactca ttttaacttc taaagaactt 114900 tgtgggataa atacagttat tttatagatg aagaaactga agcacagaga agttaagtgc 114960 tttgtccagg gtaacagctc agatatggca gagtcaggat ttgaaactag accctcacat 115020 accttaactg ctgtgctgtg gcagtgtttt tcatactgta ggttgggacc agccttctct 115080 tatgccctca ccccctgcca aaaaaaaaaa aaaaaaaaaa aaatatatat atatatatat 115140 atatatatat atatatatat aatatatata tatataaaat atatatatat ataaaatata 115200 tgtattagta tatatgcata tatagtatat attatatatt agtatatata ctaatatata 115260 atatacatat tagtgtgtgt atatatatat atactagaat aaaaaaatca aagtatctca 115320 gagtagtaag gacaaacatt tcagaaaaat gttttcatta tatatacatg tatgtatgtg 115380 tatgctgatt caacaaatat atttcttata ggttatagca aaatagtttg aaagctttta 115440 ctgtgtttta tcaggaagac cttaggtgaa cgtatattca cagataaaag aggttattta 115500 ttcattcaat aaatattaca ttctcataag tcctaatatt atgtattttt attcttcaaa 115560 aaagttagta tttgtgattt atgaaataag acatgttctt gcacttttag cagatctgtc 115620 ccgatgttgg gcttctttaa tccttagtgt gggtgctttg cactcactca ctgctgggga 115680 cagcaagacc cctgttagtc tcagctgtgt ttcttaaatt ggcccactgt accttccagt 115740 tagctattct ggggtccatg tcatgttggc tccattttcc ttttctttct cccacacaga 115800 tacctataac ggctataaca taggcctggt ggctgttggt ggcttatccc tatctgcttg 115860 tatttaaggg gtactgtttc actgagtttt gctgacagat gttgtcatga gatttgaggt 115920 tttctgtgtt gttgctctat ttttatgtgg gaatttgcta ctatcatcat ccctagacca 115980 gcttttccta gtaatacaac agggatgttc tgactgatta gagtttgcct gtttgaagaa 116040 ttggttggct agtgattttt ttttgagggg agtctgtacc agttaatagc ctgactggcg 116100 tgtggataaa aaggaagcag tttcaagtca aataaaacac ttaaaatgaa accacactgc 116160 aactctcttt cttttactta agcttaatca aattaatgat gatgtaatcc catgaaggaa 116220 aagtcttctg aaggatcaag ttgataacat tttgtgatca aagaatttga gaaaacctct 116280 atcccagtgt ctatcattat atattttagg atgttaatta cctgtgtggc tttaggcaag 116340 tcatttttcc tccttgagcc ccattcttaa tcctgtccaa attatttgtc tcctcttgca 116400 gttggactat tttaatatag ctgtccttca agtgagtttt gttcaaagga gccttcactt 116460 tagctcttac tgtgtaccca ctttgcatag tcttgtttta aatgtaatcc ttggattttt 116520 ggtgttgcta actaattact gtttttatgt gaggatttag agtgatccag aatctatact 116580 tgcactacct ccttcatctt ccacaaatgt ttgaagtggt agaattttta aaaactttga 116640 aggtacagct gacagaattt gctgatggtt tggaagtgag tggtatgaga gggaaaaaaa 116700 ggaataaagc atgactgcat tttttgtttg tttgtttgtt tgtttttgag acggagtctc 116760 actctcgcca ggctggagtg cagtggcgtg atcttggctc acggcaacct ccgcctcctg 116820 ggttcaagcg attcccctgc ctcagcctcc caagtagctg ggactacagg cgctcgccac 116880 cacgcctggc taattttttt ttttgtattt tagtagaaac ggggtttcac cgtgttggcc 116940 aggatggtct ccatctcctg acctcatgat ctactcacct tggcctccca aagtgctgag 117000 gttacaggca tatatataag catataaagt gtgttatagc atacaaacag gtatatatat 117060 aaacatgcag tccacacagc tgataggaat gaggcagtag tgaaggagaa gttgatgtag 117120 gagaggggac agttgttaca ggaaagaagt ctggaggcag aagggatgaa ttccagtgct 117180 cacatagaag attgcttaga tgggagcaag gacaatttat ctagagtcac aggaaagaat 117240 gcagtacacg ggtagagatg caggtgagtt gaaagatgtg agagatgatg gaaataattt 117300 tctgattgct tctatattct caaggaagca ggaagcaaag tcctcagcaa agagaataga 117360 agaggtgtta aatatttgag aaaggagatg tactgtagaa aaaaaaaaaa ctcagtttct 117420 ccttctgaac tctcacaaaa cagaaccctt ccatgactct agttgtgtgg ggttttttcc 117480 ctgtcagcta ccaattctgc agatgattgt tcagtgaaca ccaactgggt gtcctctaag 117540 tcagttcagt tctcacactg tttacctgga gatagcatca gatcccacag attgaggact 117600 ctgtcccaca agactgcctc cacttcagat gccagtctca agtacaagtt gtggcctgtg 117660 cttctgactg accttctata aattggagtt cccacagtcc cctccttggg ttcaataaat 117720 ttgctagagc agctctcaga actcagggaa atgctttaca tatatttacc catttattat 117780 aaaggatatt acaaaggata cagattgaac aggcagatgg aagagatgca tgggcaaggt 117840 atgggagagg ggcacagagc ttccatgcac tctccaggtc atgccaccct ccaagaacct 117900 ctacagattt agctattcag aagcccccct ccccattctg tccttttggg ttttttgtgg 117960 agacttcatt atataggcat gattgatcat tggctattgg tgatcagctc aaccttcagc 118020 cccctcatcc cgggaggttg gtgggtaggg ctgaaagtcc caaacgtgta attctgcctt 118080 ggtctttctg gtgattagcc ctcatcctaa agctctttag aggccacagc cacaagtcat 118140 ctcattagcc ttcaaaagaa tccagagatt ccatgaattt taggcgctgt atgctaagaa 118200 actggctaaa ggccagttgc aatgtctcag gcctgtaatc ccagcacttt gggaggctga 118260 ggcaggagga tcgtttcagg ccatgagatc aaaaccagcc tggtcaacat agtgagaccc 118320 ccttacaaaa aatttaaaaa ttggccaggc gtaatagctc ttgtctgtag tctcagctac 118380 tcagaaggct gaggatcact gagccctgga gttgaaggca gcagtgagcc atgatcgtgc 118440 cactgactcc ggcttgggtg acaaagtgag accttgtctc agaagaaaaa ggaaaaaaaa 118500 aaaactgggc aaagactaaa taacatattt cacagtatca cagatttgta ttgtctagga 118560 aagtgaatgt aaacagacca ggacactagt atgatccctt ggtttcatga aggtcccact 118620 aaagtcatga acacaaagtg agactaggca tcatgttata tggtttttcc agccatgttt 118680 aacagctagc taaatagcta attgtttcgc tgcagtttat tttagcagtt ccttatttta 118740 gcacatttca tgttttaaaa tttctaccaa taacatttta ataaactttt ttacagataa 118800 cttcacaaat ccataatttt ttaagttaca atcccagaaa tagaattgct cattgaaagg 118860 gtatgttcat ttttaaagtt atgctagaaa ctgccaaatt gccttcagaa aaaggtgttt 118920 gtatccccac taacactagt gttagttttc ttgtgccctt gctcaagtat acatattatt 118980 aaaaacaatg ttgggccagt ttactagata aaaggtgtag tgcctcctta ttctaatcta 119040 tttgattact agtgagtatg tatgtctttt cacgttggtc attttatgtt tgttcctttg 119100 tggattgtca tgtcctttgc tcatttttct tttggaacat ttcttagtag tttataagag 119160 ctcttggtat tttaatgata gtaacctttt aactgtcatg catgctgcaa atcttttttc 119220 tgtttgtttg cctttgtatt ttgtttttgg agggtttcta tgtataggaa ttaaatttta 119280 tgttgttaaa tcttttgatt tctgcttttg catatgtact tcaaaagact ttctatttta 119340 agatcaagtg ttacctgtat tttcttttag ttctatttaa aacctcttaa tttatatgcc 119400 tgtgctgtta actcccaagt tgattcacaa gtgtgtatac atagtttgaa tttagtggca 119460 atttaattat ttacaacttc ttttgcagca aggatttgtg gagaagatgg acaggtggat 119520 cccaactgtt tcgttttggc acagtccata gtctttagtg caatggagca agagtaagtt 119580 agttcatatt ttcacattgt gcatcctagg gaatttgggt tcattgttag gaatgggctt 119640 cactcagcta aaaacaaagt atttttgaga atttaaatat tttggatatt tacaagatca 119700 tataaagcat actctatctt ggttaacagt ttcttttaaa tataaattat gtgaactctt 119760 aaaattttca ttttcatttt caatgttaat atttcctaag ttaaaataat ttgtttttag 119820 ttctgaaata atttggggag tgattgagtc tgtagtgatt atgactatta gaattggttt 119880 atttatttaa ataatgcatg tcttcagatg gctctcctaa tttgttagtt aggctttaag 119940 ctaaatggat gctatataac taaatccaca tagatttgtt gaaatggctc cagaggtttt 120000 ttagatttat tactgctatg tgcccttaaa aaaaatctat tcattctttc acttaacatt 120060 tatcagaaga gtgctctgtg taagacgtgg ttaggcatag tgccagtctt gaaggaagtt 120120 acagcctaat aaaagacata gggcatgttg tttggttact gtaatatgaa gtggcatgtg 120180 ttaaatgtca ggggagaact acaaagtcat aaaaaggtgg gagagattac atacaggtaa 120240 aggaatcagg aatgacacca tggggagtaa ggtagtgttg acctaggcct ttaagataca 120300 atagggacag tatggaaaga gtatattttt cccacttaaa ctctttcctt ggtcgttccc 120360 tcaaattttc ccttttgtcc atgtgcaggc actttagtga gtttctgcga agtcaccatt 120420 tctgtaaata ccagattgaa gtgctgacca gtggaactgt ttacctggct gacattctct 120480 tctgtgagtc agccctcttt tatttctctg aggtaaagtc tgcatttctt ttcacactct 120540 attcgagcat tccagcctct aactatcaat gctggggccc tgtctatagg aaataacaca 120600 gaagagccaa gtcatttcca aaaagatgta tcattgtttc aagttgtttc tgatggcaag 120660 agtaatttaa taatatatta gagagaacat gaaaattcaa tgtattaaat aactctaatt 120720 ttgagaaacc taattaaact actgcatgta agagagtgca tgtttttaat tatttggagc 120780 tattttaaaa ccacagaatt tgaaacttgc ttccagtgca taaattgcag accagacttc 120840 agaagagaaa aaaagtagta aattttttct tatgctcatc atttttactt tagtcacttg 120900 ataggattgc ccagtgaaga agcatttgca acagacaatg agtatattaa tctttttgag 120960 gcatacagtt tagtataatg ctctttgtta ggcttcaaca agtgaaatta ttttgttgga 121020 aagcaaatga ctattaagta gaaagaggat tcccagtctc acaaagcagt aatttagaca 121080 ctcgattctg cctctttaca agaatacagg tactcagttg atttgttttc tcactccctt 121140 tctttgctat aagtttaaat caacaatttg tttaggttaa tatgtcctca tggaatggtg 121200 gaaatgatca gatataaaat atttggtttg gttagtttac tctttatatg tttgctggca 121260 aggaaccaca aatccagttt agtataattt ttactctagt tcactaaaag tttgcatcca 121320 gctgtgtagg tagtgtttgt ttcttgttaa cttttttttc gtctaaaaga atactttaaa 121380 acttttcaat ctcaaatgac tgtaacttgc tgacaggtgt taacagaaga agtagatctt 121440 tttgtttttt gcttatgacc tgtattttaa tatttgagct tatagattag agattgtgag 121500 agaaatctgt ttatagtctt attttccctt gtgtattttt tcttcctagt acatggaaaa 121560 agaggatgca gtgaatatct tacaattctg gttggcagca gataacttcc agtctcagct 121620 tgctgccaaa aagggccaat atgatggaca ggaggcacag aatgatgcca tgattttata 121680 tgacaagtga gttatattga tagatggatt cagcagatac ttattgaaca tttgatatgt 121740 tttgtggaaa taaagatgaa taaactcagt ctctgttgtc aaggagctca caggaggcag 121800 cataaaagct gcttttatat ggtgtttgta aagctttggg ggttcttaga acaaaagttt 121860 ctgctgggaa aggggaggtg tatgtggggt aaacaggatg gcaatggtgg tgttcaagga 121920 gtgtttccca gaagagagat tttgtttgga tcccaaagaa agaagggaat tttgctaccc 121980 agagaaggca gaaaacaaca ttctaggcaa aggcattggc ccagaagcca tggaaacgta 122040 ggggaaagtg gcactttcaa gaaacttgag tttagataat caaaggagtg gggaataaat 122100 atgaggatgc tggtactaat tggaatagat tgtaagggac cttgaatgcc tatttatggg 122160 tatattatac tttctgtata aatctgctca ggcacgttgt taattagttt tttattagtt 122220 ttcactgaaa atgagaggat ggaaacatca tacagtaaac aaaattgaaa atatctggtc 122280 aggcagatga tgagcttgtg gccagctctg taacgtatgg tattcttttc atttaacttt 122340 tcttactctg taaaaaaagt aattcgtggt cgggcacggt ggctcactcc tgtaatcaca 122400 acactttgag aggcagaggc aggtgaatcg cttgagccca ggaatttgag accagcctgg 122460 gcaacatggc aaaacccgcc tttactaaaa atacaaaaat tagctgagcg tgatggcgtg 122520 cgcctgttgt cctagctact taggggcctg aggcagaagg atcacctgag ccttgggagg 122580 tcgaggctgc agtgagctgt gatccactgt actccaccct gggcagggca gtagagtgag 122640 accctgtctc caaaaaaaaa aaaaacaaca aaggtaattt gttatttgta tccttaagca 122700 aatgctaaag gggtaacttg gggatagaga aaagtccaca gatgttaggg tttgaagaca 122760 ctaatagtat ctaggccagt ggttcctgaa cattagtctg tgggctcttg ctgggctgtc 122820 tgcataggaa tcacctgaga gcttattaaa aataggtttt caggctggtt gcggtggctc 122880 acgcctataa tcccagcact ttgggaggct gaggcaggcg gattacttga ggtcaggcgt 122940 tcaagaccag cctggccaac atggtaaaac cccgtctcta ctaaaaatac aagaattagc 123000 caggcatgat ggcacacacc tgtaatccca gctactcagg aggctgagga aggagaattg 123060 ctcgagcccg ggaggtggag gttgcagtga gcggagatca tgccactgca ctccaggctg 123120 gctgacagag ggagactctg tctcagaaaa aaaaaaaaaa ataggttttc agtctgggta 123180 ccggtggctc acacctgtaa tcccagcact ttgggaggcc aaggcaggca gatcacttga 123240 ggtcaggagt ttgagaactg cctggccaac atagtgaaac cttgtctcta ctagaaacta 123300 caaaaaatta actgggcatt ttgacgggtg cctataatcc cagctactag ggaggctgag 123360 gcaggagaat tgcttgaacc cgggaggcag aggactgcat ctcaaaaaaa aaaaaaaaaa 123420 aaaggtttcc agtccccctg tctcagaaat tctgattctg caggtttgag gtgtgaccag 123480 gaatctttat ttttagaaga cataccagat aattctgata aatagccagt ttagggatgt 123540 agtctaattt tcctattttg caagtaagga aaataaggcc cagagaggta atgattttct 123600 caaagtcaca gaacaagtta gtggcagaat ttggactgga atgcagttct taatgttctg 123660 tccagtgttt attctggtac agtatgtttg tagaaggtat tacgtaagaa acattgttat 123720 atagatgttg agataggaag agtttacatt tagaaatttg gtctaaaatg cctgaacatt 123780 caagtcgtgg aggagtattg accaacttac tcaatacaac ataggagatt cacattttgt 123840 tacaaaaatg ctgatttaaa aggagagttt tctttttttt cttctttttt attttttgag 123900 atggagtctt gctctgtcac ccaggctaga gtgcagtgac acgatctcag ctcactgcaa 123960 cctccacctc ctgggttcaa gcggttctcc tgcctcagcc tcctgagtag ctgggattac 124020 aggtgggggc caccacgccc agctaatttt tgtattttta gtagagacag ggtttcacca 124080 tgttggccag gccggtcttg aactcctgac ctcaagtgat ccacccacca ctgcctccca 124140 aagtgctggg attataggcg tgagccactg tgcccagcct gcttgttttt gtatcatata 124200 tatgcatcat cataatcatg cattatcaac ctttgtattt ctgtcaggac atagaaacca 124260 ttagagtgct tggaagagag cctttttttt tttctcgcat ttaatgcttt ttttggtatt 124320 catttcataa tcagcttacc aaaacattac ctgcattata ccccatcaag gtagaaatct 124380 ttgtgttatc aatattggtt actccctttc cacaccgagt catcagtaag tcctgttcta 124440 tccaaatagg tcatatgcat ctagctcacc cctcagtgct gttttgtttt gaatttgtac 124500 atgtttactc ctgatgcctt gtagttatga tgatgtgttc ttattttatt ctgtgcatac 124560 aagttctcag ctcgcttttt agggaaaatg accatgtctt cctttcctat aaattccttt 124620 ctatctatca agtcctcaac agagaatagg tacccataaa tatgtgattg ttagtttctt 124680 tgcctcagtt gtagtctgat ccttacagct tttaaacaac agtagagttc accgtcaaga 124740 actaaggatg gttggcaggc agatagaaag gtagcaagtt gacccaacta tctctgggga 124800 agtgggaaca aagaaaggtt acatcagcac tgtcatcaca tagctctata gttctaggcc 124860 tgcaggctca atcaagtagc cttgtataag attctctgga ggaggtgctg aaagttgctt 124920 atacttgcta tggaatttga ttttacttcg gatatctttt taccataggt acttctccct 124980 ccaagccaca catcctcttg gatttgatga tgttgtacga ttagaaattg aatccaatat 125040 ctgcagggaa ggtgggccac tccccaactg tttcacaact ccattacgtc aggcctggac 125100 aaccatggag aaggtaaccc agaacttcaa acgtatcaaa ctacaagaag ttttattggt 125160 agaactcata aaatataagg tgggaaaacc aagcagaata gcacagtgga aattgaagca 125220 gtccagcaaa gtgattaaga gcagaggcct tgagtctggc ctggtatgta cagtcacgtg 125280 ccacataaca ttttagtcaa cagtggactg cgtgtacgat ggtcctgtac gattataatg 125340 gatcaaagct ggtagtgcaa taataacaaa agttagaaaa aataaatttt aataagtaaa 125400 aaagaaaaaa gaaaaactaa aaagataaaa gaataaccaa gaacaaaaca aaaaaaatta 125460 taatggagct gaaaaatctc tgttgcctca tatttactgt actatacttt taatcattat 125520 tttagagtgc tccttctact tactaagaaa acagttaact gtaaaacagc ttcagacagg 125580 tccttcagga ggtttccaga aggaggcatt gttatcaaag gagatgacgg ctccatgcgt 125640 gttactgccc ctgaagacct tccagtggga caagatgtgg aggtgaaaga aagtgttatt 125700 gatgatcctg accctgtgta ggcttaggct aatgtgggtg tttgtcttag tttttaacaa 125760 acaaatttaa aaagaaaaaa aaaattaaaa atagaaaaaa gcttataaaa taaggatata 125820 atgaaaatat ttttgtacag ctgtatatgt ttgtgtttta agctgttatg acaacagagt 125880 caaaaagcta aaaaaagtaa aacagttaaa aagttacagt aagctaattt attattaaag 125940 aaaaaaattt taaataaatt tagtgtagcc taagtgtaca gtgtaagtct acagtagtgt 126000 acaataatgt gctaggcctt cacattcact taccactcac tcgctgactc acccagagca 126060 acttccagtc ttgcaagctc cattcatggt aagtgcccta tacagatgta ccatttttta 126120 tcttttatac tgtattttta ctgtgccttt tctgtatttg tgtttaaata cacaaattct 126180 taccattgca atagtggcct acgatattca ttatagtaac atgtgataca ggtttgtagc 126240 ccaaaagcaa taggttgtac catatagcca aggggtgtag taggccatac catctaggtt 126300 tgtataagta cactctgtga tgttagcaca atggcaagca gcctaacgga aattctgttt 126360 attgattgat tgattgattg attgattgag acagagtttc actccattgt ccaggctgga 126420 gtgcagttgc acagtcttgg cacactgcaa cttctgcctc ccaggttcaa ccaattatcc 126480 tgcctcatcc tcccaagtag ctgggattac aggcaggcac caccatacct ggctaatttt 126540 tgtattttag tagagacagg gtttcaccat tttggccagg ctgttctcga actcctgacc 126600 ttaagtgatc tgcctgcttt ggcctccgaa agtgctggga ttacaggcat gagctaccat 126660 gcctgggcag taactgaaat tctctaatgc cattttcctt atctgtaaag tgacgataat 126720 atgcacgttt acctcaaagt tactttgatg attaaagtaa ggtaatgtat ataaaataca 126780 tattaacata gtacctgaca catggtaagc atcaaaaaat gttaactact tttattacta 126840 ttattattac gtatttttaa ataattagag agcagtatca aaaattagct gggcgtagtg 126900 gcatgcacct atagttccag ctactcagga ggctgaagct ggaggattgc atgagcctgg 126960 gaattaaagg ctgcagtgag ccgtgttcat gcccctgcac tccagccttg gtgacagagc 127020 aagaccctgt cttgaacaat taaagaaggc attatgccgc aacgttagct tagaaatgat 127080 ccacatatat caccagtaac tgtcaacagg attggaaccc tagttttggg tattatgatc 127140 acaaggtatt attaatagct tattaataat aaagcgttgg ctaggcacgg cgactcacat 127200 ctgtaatccc agcactttgg gaggccgagg tgggtggatc acctgaggtc aggagtttga 127260 gaccagcctg accaacatgg agaaacccca tctctactaa aaatacaaaa ttagccgggc 127320 gtggtggtgc atgcctgtaa tcccagctac ttaggaggct gaggcaggaa aatctcttga 127380 acccgggagg cagaggttgc agtgagctga gatcgcacca ttgcactcca gcctgggcaa 127440 caagagcaaa actccgtctc aaaaatataa ttataataaa taaataaaag taaagtattg 127500 atgtttgtga atgatttatt cttctaatga actagaggag atttttccag gaatttcaga 127560 gccagtgagg ttatgttgct tgtatgtgtc atgtgtatcc aggtgaaaaa acttaattaa 127620 acgctattat ataataccat acataaaaac tgaattttag gaatactgaa gaatgacata 127680 tagaagtcaa atcattaaat agctagtagt aaacagaata gagtgtcagc tgttacccaa 127740 tgatgataat attttcacga ttaaaattaa accttttctg attttaaagg aaaagttcag 127800 atctgtatca tataaagaat gtaaattttc agggtaataa aattaaaatg cagagagaaa 127860 aatgcaaaaa tagttcttac tagatgtgtg tatgtaagga acttagacta attttaagaa 127920 cactgtcaag accctggtag ttaggtagga aaaaagacat gaatgattca ttcaacaaaa 127980 actttgagta tttctgtgct agatggtagt gttacagtgg taaacaaaat aaatgtgttt 128040 ctgctatcct ggagcttagt ctacaaaaaa ggtacatatt ggccgggcac ggtggctcac 128100 gcctgtaatc ctagcacttt ggaagatcga ggcgggtgga tcacctgagg tcaggagttc 128160 aagaccagct tggccaacat ggcgaaaccc cgtctctact aaaaatacaa aaattaactg 128220 ggtgtggtgg cggacacctg taatcccagc tactcgggag gctgaggcag gagaatcact 128280 tgaacctggg agacagaggt tccagtgagt cgagatcatg ccactgcatt ccagcccggg 128340 ggacaaaagc gaaaatacgt ctcaaaaaaa caaaaacaaa caacaaaggc acgtattaaa 128400 tacgaacata aatatttaca aattatactg aataagttct catgtttatt atttgcttgt 128460 ccagttacaa acttttcctt cgtagaatta gaaatataaa taataaacat gagaactcat 128520 tcagtataat taataattat taaatgtaaa taaaaacatc tatgtacaat taggcattta 128580 tttaagaatt atttgaaaaa aaaacaatgt ggaaacagat attttgatat attgctagtg 128640 attgaaattg ataatgttct tttgaagagt aaagtgacca tatatattaa agttaaaatt 128700 taactcagca atcacacgcc tggtgagtta tcttaaggaa atcagtttga aagtaaaatc 128760 aatatatgca caaagacttt aacatttatc ataaaccaga aaaatcgagt ttcaaattat 128820 atcctatgga ctattttctg ctaaaaagta ttaatatcaa ctttatgtaa tactttcgtg 128880 acaaatattt tgggggagaa aacccaacaa aattacatgc attgtaattt tttttttttt 128940 ttttttttta gacagtcttg ctccagcgtc caggctggag tgcagtggtg caatctcggc 129000 tcactgcaac ctccatctcc caggttcaag caattctcct gcctcaggcc tcccgagtag 129060 ctgggattac aggcgctcac caccatgcct agctaatttt tatagttttt agtagagatg 129120 gggtttcatc atgttggcca ggctggtctt gaactcctgg tctcaagtga tccgtctgcc 129180 tcggcctcct agagtgctga gattacaggt gtaagccact gcacccagcc ttatgcatta 129240 taattttaat ttgtaaactg tacaaaggga taatacttgt agtacaacaa gaagtaaaaa 129300 catttgttat aggtagttaa catttgtaac cagtagaatt ataggtaaaa tttatttatt 129360 taaaacagtt ttagttggat ttgatttcaa ctttaaaata atgcttttca tctctatcag 129420 gtctttttgc ctggcttttt gtccagcaat ctttattata aatatttgaa tgatctcatc 129480 cattcggttc gaggagatga atttctgggc gggaacgtgt cgctgactgc tcctggctct 129540 gttggccctc ctgatgagtc tcacccaggg agttctgaca gctctgcgtc tcaggtattg 129600 actgattgcg tctgccatta gggagaaaag catacacatc ctttccttca catcccagta 129660 acagatccta ttatttgtaa attttaagtt gtggaaaaaa aagataaaag ccaggcacag 129720 tggcctgtgc ctgtaatccc agcactttgg gaggctgcgg tgggcggatc acacgaggtc 129780 aggaattcga gaccagcctg gccgacatgg tgaaacccca tctctactaa aaatacaaaa 129840 attagccggg catggtggca ggcacctgta atcctagcta cttgggaggc tgaggcagga 129900 gaatcgcttg aacccaggag gcagaggttg caatgaacca aaatcacgcc actgcactcc 129960 agcctgggtg acaaagtgag actgtgtctc aaaaaaaaaa aaaaaagaga gaaataaaat 130020 tagcctactt actatcttct aatcaaagca tttgtggtaa cttaaaatat actgtattgt 130080 aaagtatcat gctgtttcat ttaggccatt attctatttg aatctgtggc tgtttctctt 130140 aataaatcaa gtaatatgga atatattcat agcctctgaa gagctcttta tgtaagtatt 130200 tatttaggat actttttgta aaataagtga atgaattctt aggtctcctt tttttttctt 130260 ttcttgagac agggtctcct cgctgcaacc tggaaattct gggctcaaat aatccaccca 130320 ccacagcctc ctgaatagct gggactagag gcatgcacca ccacgcctgg ctaatttgaa 130380 attttttttt ggccaggcat gatggttcac gcctgtaatc ccagcacttt gggagaccga 130440 ggcaggcaga tcacgaggtc gggagatgga gaccagcctg gccaacgtgg tgaaaccccg 130500 tctctactaa aaatacaaaa attagctggt tatggtggct catgcctgta atcccagcta 130560 cttgggaggc tgaggcagga gaatggcttc aaccagggag tcggaggttg cagtgagccg 130620 agatcacgcc actgcactcc tgcatggtga cagagtgaga ctccatctca aaaaaaattt 130680 tttttttaaa tgatggagtc ttgctgtgtt gctcaggctg gtcttgaacc cctgacctca 130740 aatgccgcct gcttcagcct aagtttcttt tttttttgta aagagacagg gtcttgctat 130800 gttggccagg gtagtctcaa actcctggct tcaagcagtc ctcccacctt ggcctctcaa 130860 agtgctggga ttacaggcgt gaaccactac ctataatgtt gtgtttcact caaggccttt 130920 tgatttcgtt ttgcattacc gtgccacatt gtgcatttcc ttgacctttt ttgggttttt 130980 tggagtgctt tcatatgtta aaccatacct gattctcctc aaaatcacac aaagtagaat 131040 atcctaagac aagaaatcta aggaggcata aagaagttaa ctggttttat taaactcaca 131100 cagtaaatga tagagccaga aatattcccc ttctagtgtt cttcaccatc agcttaatgt 131160 agcataataa ttttctaatt actgttgaca aataaataac cctttgaatt ttcaatactg 131220 ggccttggat aaattttcct aatttgtaag agagtattat cgtattgcca tttacaaagc 131280 tctcctgagt atctttttct tctgttaagt ttacctagga gataaactgc tgagtatggt 131340 tgccattttg gttttttgat ataggttaga atgtcttggt tttttttttt tttttttttg 131400 gtttttgttg ttgtcattgt ttgagacagc atcttgctct gtcgcccagg ctggagtgca 131460 atggcacgat cgtggctcac tgcaacctcc acctcccggg ttcaagcaat tctcctgcct 131520 cagcttcctg agtagctggg attacaggca tgtgcaacca cacctggcta atttttgtgt 131580 ttttagtaga gaaggggttt caccatgttg gtcaggctgg tattgaactg ctgacctcat 131640 gatccacctg cctcggcctc ccaaagtgct gggattgcag gcatgagcca ctgcacctgg 131700 ctgaatgtct tgtttttgat taggcactta agaaaggcct aggtactaac cataaaatat 131760 atttttatac cttttgttga tactatatat atagaaaact gcacttatca taaccttaga 131820 caccttgaag aatgttcaca agcagaacta acccatgtga cccagcatcc agatcaaaaa 131880 cagcattatc agcccctcta gaagccctct tgggcccctt ccattcactg tccttcttgt 131940 caccagggta gctactatcc tgacttttga tggcatagat tagcattacc tgttcttgtc 132000 attttataaa taaaaccata ctgtgtattc ttttcttgta cagctttatt gtgctaattc 132060 acatttacat catacaattc agtggttttt atatggtcac agagttaggt aaccattacc 132120 acatcgattt tagaacattt ttttcactcc agatagaaac cccctttact taaactccaa 132180 atcccccact ccaccagccc taggcagcca ctagtctact ttttatctct atagagacaa 132240 tagatttgct tattctggac atttcataaa catggaaccg tatattatgt ggtcttttgt 132300 tgccaactgt ctttcactta gcatcatgtg ttcaaaagag catcatgtta tccatgtttg 132360 gcatgtatca gaattttatt cctcattatg gccaaatatc ccattgcaag gatttatgac 132420 attttatttg aattgtaccc tcctttctgc catttatcaa taatgctact gtgaccattt 132480 gtgtacaagt ttttgtgtgg atacaggttt tctttttgtt tttaaatttg aggtggagtc 132540 ttgctctgtc gcccaggctg gagtgcagtg gcacaatctc ggctcactgc aacctctgtc 132600 tcctgggttc aagcagttct cctgcctcag cctcccgagt atctgggact ataggcacgc 132660 accaccacgc ccagctaatt ttttagtaga gatggggttt caccatgttg gccagtctgg 132720 tctcgaactc ttgacctcaa gtgatccacc catctcggcc tcccaaagtg ctgggattac 132780 aggggtgagc cactatgccc ggctgtggtt ttcatttctt ttgttgtata tacataggag 132840 tagaattgct gagtcaagag gtaactctta aacttattga aaaactgcca gattgttttc 132900 cgaaaaggct gcaccatttt gcaatcccac cagcagtgta tgagttttac agcttctcca 132960 catttcattg gaacttatta tctgtttggc tgtttttaaa aatgatagtc attccaataa 133020 gttctacttc agtgtggttt ttgcacttct ctgatgagta atgatgttga gcatcttttc 133080 atttgcttat tggcctttgt tctagctttg gaaaaatgtt tattcaaatc ctttggccat 133140 ttttattttt atttttattt atttattttt ttttgagacc aagtctcact ctgtcagcca 133200 ggctggagta caatggtgtg gtctcagctc actgcaacct ccgcctcctg tgttcaagtg 133260 attctcctgc ctcagcctcc cgagtagctg ggattacatt tcaggcacct gccagcatgc 133320 cgggctgatt tttgtatttt tactagtgac agggtttcac catgttagcc aggctggtca 133380 caaactcctg acctcaggtg atctgcctgc ctaggcttcc caaagtgctg ggattacagg 133440 cgtgagccat tgggcccagc ctagattttc ttttttcttt ttttttttga gaaggagtct 133500 tgctcttgtt gcccaggctg gagtgcaatg gcacaatctt ggctcactgc aacctctgcc 133560 tcctgggttc aagcgatttt cctgcctcag cctccccagt agctgggatt acaggtgcct 133620 accaccacac ccagctaact tttgtatttt ttttagagac agggtttcac catgttggcc 133680 aggctggtct caactcctga cctcaggtga tccacctgcc ttggcctccc gaagtgctgg 133740 gattaccggc atgagctacc aggcccagcc aattttctca ttatattgcc caggctggtc 133800 tcaaactcct gggttcaagt gatcctcctg ccttggcctc ccaaagtgtg gggagtacag 133860 gcgtgagcca ccttgctcag cccctttgcc catttttaaa ttagattgcc tttttatatt 133920 gagtttcagg agtcctttat atattctaga taaatgtccc ttatcaaatt atattatttc 133980 caggtatttt cttcattctg tgagttgtct ttcctctacc ttttaaaaaa ggtgggtttt 134040 tgtttgtttg tttgtttgtt tttttaagat aaggtctcat tctgctgccc aggctggagt 134100 gcagtggcac aatcacagct cactgccacc tcaacttcct gggccgaagt gatcctctta 134160 cttcagcctc ctgaatagct agggccatag atacacacta tcacacccag cttttttttt 134220 ctgtttgtag agacagatct tactgtgttg cccaagttgg tctcaaactc taggctcaaa 134280 gtgattctcc cacctctgcc tcccagagtg ctgggattac aggtgtgagc cacacgcaac 134340 ctgtcttttc actattaata gtgtcttcct gcttcagcct cccgagtagc tgggattaca 134400 ggcacccacc accatgcctg gctaattttt ttgcattttt agtagagaca gtgtttcacc 134460 atgttcaccc ggctggtctt gaactcctga cctcaggtga ttcacctgcc atggcctccc 134520 aaagtgctgg gattacaggc gtgagccact gcacccggcc aaaatattgc cttcttaaca 134580 gtattgtctt ctaatttgtg aacatggatg tatcttcatg tatttatgtg ttctttcatt 134640 tcagcagaat tttgtagttt tcagagtaga agcctttcac ctccttgggt catttattcc 134700 tatgttttaa gttcttttcg attccattat aaatagaatt gttttcttaa tttcattttc 134760 agattgtttg atgagagagc atagaaatac aagtgatttt tacatgttga tcttgcaact 134820 tcaactttga taaatctgat tgttagctct aatagttttc ttgtggattc tttaggattt 134880 tcaatatata agatcatgtc atttatggat agagatagtt ttttttctgg ctagaactta 134940 cagagcaatg atgagtagaa gtggcagaag caaaaatctt tgtcttgttt cctatctgac 135000 agggaaagct ttcagtttca tcatttaata tgatgttagg tgtgggtttt caataaatgc 135060 cttttttcag attcaggaat ttccctatca ttcctgattt tttaaggctt tttttttttt 135120 ttaaatcatg aaagggtgtt gaatattgtc atgttctttc tgtatcagta taaatgatcc 135180 tatggatttt gggttttatt ctgttgatgt gaaatattaa ttgattttca gatgttaaac 135240 caaccttgca tacctgagat gaatctcact tggtcatggt gtataatctt ttcaatatgc 135300 tgctggattc catttactgg tattttgttg aagattttgt atctgaacgc ttaagataac 135360 atttacactc tatcagaaat gaattgacca taaatgtgag agtgtatttg tgggttcttg 135420 attctcttcc attccaaaga tagacataca tccgtctgta tgtctgtctt tatgccagta 135480 ccatactctc ttgattacta ttgctttgta ataagttttg aaatcagaaa gtataaatga 135540 gattttggta tctgagtaac agtcctcata gaattagttg ggaaatattc cctctttatt 135600 ctggtccctc tttctttttt gtttaactgt gtatcttgga gattgttcct tctcaacaca 135660 tgagagccgc tttccctacc ctcccacccc tgctatagag aggtctataa gtgtctgttc 135720 aattatttta tttacttaac ctattactta gtcggggaca ttaagcttgt ttatgtcttt 135780 tattttaaac aatgctgcag tgaataatct tgtatataag tcattttcca tcaatataag 135840 tctctctgta actgaatttt tagaagtgga atttctaggt caacctatgg ctctgtattt 135900 cacaaaaata ccaattctgg tttttcttgt ggaggtgggg agtaggaggt agaatgctgg 135960 aggagaactt gctgtactca gctggctagt cattttagaa aggtttcctt agcttctttt 136020 tgtcatatgg cctcaccaag aatcaaaaac attcctattt accctgtaaa catggggctt 136080 tactacccaa gatacatatt tctggatgta tgacagcttt tcatattgaa gaaataatgc 136140 tgtgagtaca gcacatttgt tggaacttag gtcgttaaga atgtcttata aattcataca 136200 ttatacattt tattttattt tattttttag tttttgatac agagtcttcc tctgtcgccc 136260 aggccagcgt gcagtggtac aatcttggct cactgcgacc tccatctcct gggctcaagt 136320 gattctcatg tctcagcctc cagagtagct atggttacag gcatgcacca ccatgcccgg 136380 ctaatttttt tatttttagt agaaactggg tttcaccata ttgaccatgc tggcctcgaa 136440 ctcttggcct caagtgatcg gcctgcctca gcctcccaaa gtgctgggat ccttgtattg 136500 ggtaaaagat gaatattgag ggctgcatgg tggctcatac ctgtaatccc agcactttct 136560 gagactgagg tgggaggagt cctggagccc aggagggtga ggctgcagtg agttgtgatc 136620 gcgccattgc acttcaacct aggaattata ggcttcagtc actgtgcccg gcatgtacat 136680 tttaatattg tgctttcctc ttttagctat agtatgaggt tacatttcag agtcattgtt 136740 gttaagcatc ttaatagtga tgaggttgag tgaaagttac ttctatttca aacactgaag 136800 aaaattttgt acaaatctgt cacattccaa gcccaggact gattgtttca tatacttcta 136860 attttacaat ttctattgta gtccagtgtg aaaaaagcca gtattaaaat actgaaaaat 136920 tttgatgaag cgataattgt ggatgcggca agtctggatc cagaatcttt atatcaacgg 136980 acatatgccg ggtaagctta gctcatgcct agaattttta caagtgtaaa taactttgca 137040 tcttttaaat tttttaatta aattttacat ttttttctaa tctattatta tatgcccaga 137100 actttcactt agagtgtgca gtataatgtg gtggttaagt ataaaggctc tggagtgact 137160 tcctgggttt taatcttggc tctgccattt attggcagcc gctaacctct tggtatctca 137220 gtttcttcat ctgtaaaatg agaataataa agtgaaaaga tgccaacatc atttactctg 137280 ggctgcataa ctgatacttg gaaaaagtat tcctttgagt ttaagaatta agttggttat 137340 tcattttagc ttgtaataaa aagatagtga ttcataggat atgccactta ctgaaattta 137400 ccacagatcc aatcataaaa tcactttctc ttccctaaag atagcttgat taacatgtaa 137460 aggtgtgtaa aggcttgatt acactaccct gatccgtacc ccagttccca gcagcaccat 137520 gaaaaaggga tttcaacata tttaattact ttcagtagaa agtaacagtg gtaggccagg 137580 cgcagtggct cacacctgta atcccagcac tttgggaggc cgaggtgggc ggatcacgag 137640 gtcaggagat tgagaccatc ctggctaaca cgatgaaacc ccgtctctac taaaaataca 137700 aaaaattagc cgggcatggt ggcaggcacc tgtagtccca gctacttggg aggctgagac 137760 aggagaatgg cgtgagcccg ggaggcggag cttgcagtga gcttagattg tgccactgca 137820 ctccagcctg cgcagtggag cgagactctt gtctcaaaaa aaaagaaagt aacagtggta 137880 ttgggagact gaggagccta gaaagtactt gaaggaagta aaaggtttgt ttgaccacat 137940 tgtatttgga aagccagctt tttcagctgt gtcagctttg tgtagtgatt tttagttctt 138000 cttttagaaa ataacggaca aggccgggca cggtggctca cgcctgtaat cccaccactt 138060 tgggaggccg agacgggcgg attacctgat ctcaggagtt cgagaccagc ctgggcaaca 138120 tggtgaaacc ccgtctctac taaaatacaa aaagttagcc gggcgtggtg gcgtgtgcct 138180 gtagtcccag ctactccgga ggctgaggca ggagaattgc ttgaacccgg gaggcggagg 138240 ttgcagtgag ccaagatcac accattgcac tgcagcctgc gcgacagagt aagactctgt 138300 ctcaaaaaat aataataaaa taaaaaagaa tggacagtaa acctaaatga gttcattccc 138360 aaagatgatg ttattcttaa gggatggttc atttatttaa gaccttacat aaagtctatc 138420 aattgcgtga tttttcactt ctgtaattgt gtgtatgtat aatgtaaata tatatgtttt 138480 tgttttgttt tggttttttg agacggagtc tcgctctgtt gctcaggctg gaatgcagtg 138540 gtgcaatctc agctctctgc aacctctgtc tcccaggttc aagcgtttct tctgcctcat 138600 cctcccaagt agctgggact acaggcacgt gccaccacgc ccggctaatt ttttgtattt 138660 ttagtagaga tggggtttca ccgtgttagc caggatggtc tcaatctcct gacctcgtga 138720 tccacccgcc ttggcttccc aaagtgttgc tattacaggc atgagccacc acacccagca 138780 tgtatttttt aaatgtataa aatgaagcag aaaagagaaa tgataatttt tcttcatctt 138840 gaaagattat cttcaccagg cgcagtggct cacacttgta atcccagcac tttgggaggc 138900 ctcggcaggc ggctcacttg agttcgaaac cagcctggcc gacatggtga aactccgtct 138960 ctactaaaaa taaataaata aagatggttt taatatatgt tttagtttta tgattttagc 139020 atctttctga aatttttctc aaggcaagta aatttgtatc agttggtata ttggtaccca 139080 tctatgaaat aacttattag gaagatatct ctaaaataag atcactttgc ctaaaataaa 139140 ctgatatatt gatgttcaca gaatttttct tttaaccgac ttgataaatg cattattctt 139200 gacgtcaagt gatccacctt cctcagcctc ccaaagtgct gggattacac acatgagcca 139260 ccgcacctgg cattattctt ataaaaggtt aaatttctag ttaagtttaa tgtcctcttt 139320 gttcatgtac cattgcttat tttcttccct tcctactcac agtaatcatt cttatggtat 139380 gcacttttgt ttgcttattt ttatgtaatt gatattacgc tccattctgt acgttgtact 139440 ttcattcaca gtgagttttg gacattccta tgttcatcta tacagactta cttcatttta 139500 actacactgt agtattccgt atgtaatatt tactataact catcactgta gcagagcatc 139560 tcatagtgta tgtattactg ttttgccatt ttggtatcaa tgagtattta agtcatttgc 139620 agtttttccc tcttataccc agtattacag aggatctctt tttatatgct tctttgtacc 139680 aagaggcaga ttaaaaaatt tttttttgaa aaaatttttg aaaaaaaatg aaatgaagtc 139740 tcactatgtt gcccaggctg gtctcaaact cctaggctca agcaatcctt ccatcttggc 139800 ctcccaaagt gctggggtta caggcatgag ccaccatgcc tggcctacat tttaaatttt 139860 gatagctctt acaatttact ttgtaaagta tctgcatcat tttatgttct caccagtctt 139920 taataagaat acttcatact tttggctgga cacagtggct cacgcctgta atcccagcac 139980 tttgggaggc cgaggcgggc agatcaagag atcgagacca ccctggccaa tatggtgaaa 140040 ccctgtctct actaaaaata caaaaattag ctgggcgtgg tggcgcaccc gtagtcccag 140100 ctactcgaga ggctgagaca ggagaatcac ttgaacccgg gaggtggagg ttgcagtgaa 140160 cttagatcac accactgcac tccagcctag caacagagtg agactctgtc tcaaaaaaaa 140220 aaaagaatac ttcagactta attttttttc cagtcttaag tgtttgctaa tgagattgag 140280 tttcttttgg tatgtctctt gattgttcag gttttttctt ttatgaattg actgttcatc 140340 tctttttcac attatttctg ttgggtgatt ttattagtga cttgttaaaa ttctgtatat 140400 tttttcagca tgacacttca ttattcaaaa aaaaaaaaag attctctatg tttctcgata 140460 ctaatcattg gttggtaata ccttaaaaat aagaccctta ctgtattttt tgcttttttt 140520 tttttttttt tttttttttt tttgagatag agtcttgctc tgttgcccag gctggagtgc 140580 aatggtatga tctcggctct cagctcactg caactgcaac ctctacctcc ctgtttcaag 140640 caattctcct gccttagcct cccaagtagc tgggattaca ggcatccacc accacaccca 140700 gctaattttt gtatttttag tagagacagg gtttcaccat gttggccagg ctggtctcaa 140760 actactggcc tcaagtgatc cgcctgcctc ggcatcccaa agtactggga ttacaggcat 140820 gagccacagt gcctagccac tttttgcttt ttaactttgt tttatagtac tatagtttta 140880 gtataaacag atgtatgtat acacacaact atggctttat aatatgtttc agtcattgtt 140940 agagcaaggc ctaccttttg ggtgcttctt ttacaaaatt gtcttggcta ttcttgtgcc 141000 ttttttctta tttgtgaatt ttagaattgt gaattacctg ttgactcacc atgttttgta 141060 aactgaggat tttgaatgga attgcactca attaaagatt atcttgcttt ctgtgcagca 141120 atgttttatt tcaaataatc cctactttaa attacttagg atagctataa attgtgtttc 141180 tggctttcta gatttagatg aaacgcttta aattgattgt tttctcctaa atttaaaact 141240 gattgttaga agttaaagtc ttctgttcat tcttatttag gaagatgaca tttggaagag 141300 tcagtgactt ggggcaattc atccgagaat ctgagcctga acctgatgta aggaaatcaa 141360 aaggtttgtg gtgtttttat acttcatatt aagcctttac tcacattagt gattgactgt 141420 aagtcaaaga ccacttaagg tttaaactgt ttattttgta aagtaaccac tgtatctttc 141480 accttgtgtt tatagtcaga agtaagtaca agggcttcct gtagtcacat ctttatgcaa 141540 tctcctctga atcaaaagtt agtgaacttg ctttgccact ccagaaggca catgaatatg 141600 aaaaagcatt gtctattttc ttatttaatg gcaaaatacc cgacctaagt tggacttaat 141660 gtttgagacc gtttatttta ttaaattata ttttttctct tttctttttt ttttttgaga 141720 cagttcttgc tctgtcaccc agaccggagt gcagtggtct gaccgcacct cactgcaacc 141780 tctgcttcct aggttcaagc gattttcctg cctcatcctc ctgagtagct gggactacaa 141840 gtgcgcacca ccacacctgg ctaatttttg tatttttagc agagatgagg tttcaccacg 141900 ttggctaggc tggtctcata ctcctgacct caagcaatcc atccgccttg gcttcccaaa 141960 gtgctgggat tacaagtgtg agccaccatg cctggcctta ttaaattatt tttattaaat 142020 ttcctcaaga ttgatgaaag taatgaaata taaaagtaat gaaatatatg tggaaaatag 142080 actggattaa gaaaatgtgg cacatataca ccatggatac tatgcagcca taaaaaagga 142140 tgagttcatg tcctttgtag ggacatggat gaagctggaa accatcattc tgagcaaact 142200 gtctcaagga tagaaaacca aacaccgcat gctctcactc ataggtggga attgaacaat 142260 gagaacactt ggacacaggg tggggaacat cacacgctgg ggcctgtcgt ggggtggggg 142320 gctgggggag gaatagcatt aggagatata cctaatataa atgacgagtt aatgggtgca 142380 gcacaccaac atggtacatg tatacatatg taacaaagct gcacgttgtg cacatgtacc 142440 ctagaactta aagtataata aatttaaaaa aaataaatat atgtggaaaa tattaatagg 142500 tcaaaattca aattgttcat ttaatcagaa gagtagttta gtcaaatcca agggttagac 142560 aacagaaatc ttttttgtca agtgcattct ttgtgactga tttcattttc ttcctggttt 142620 acacaggaag atttcagaaa caaatgtgga tccgtgacag atggtatcta gaagttttta 142680 gtttggttga attgacagta ttttattgag taaaagatac taatttttgt aagaagaaaa 142740 attcaatttt gataagtatg tttaagatta agagctattg gccaggcgct gtggctcatg 142800 cctgtaatcc tagcactttg ggaagctgga gcaggtgggt cacgaggtca agagattgag 142860 accatcctgg ccaacatggt gaaaccctgt ctctactaaa ttagccaggc gtggtggcac 142920 atgcctgtgc acccgcctcc gggtttaagc gatcctactg cctcaggctc ctgagtagct 142980 gggattacag gcgccatggc taatttttgc atttttagta gagacagggt ttcactacat 143040 tggccaggct ggtctggtct caaactcctg acctcaggtg atctgcccgc cttagcctcc 143100 caaagtgctg ggattacagg catgattcac catgtctggc catttatctt attttctttt 143160 tttttttttt ttttgtttga gacggagtct tgctgtgtcg cccagagctg gagtgcaatg 143220 gtgcgatctc agctcactgc aacctctgcc tcctgggttc aagcaattct cctgcctcag 143280 tcttccaagt agctgggatt acaggcgcgt gccaccacat ctagctaatt tttgtatttt 143340 tagtagagac agggtttcac catgttggcc aggctggtct cggaactcct gacctcgtaa 143400 tctgcccacc tcggcctccc aaagtgctga gattacaagt gtgagccact gtgcccagcc 143460 atcttatttt ctttcttttt ttttgtcggg tgggaggggg acagagtcta gctctgtcgc 143520 caggcttggc tcactgcaac ctctgccccc caggttctag caattattct gcctcagcct 143580 cccaagtagc tgggattata ggcacctgcc accacgcctg gctaattttt tgttattttt 143640 agtagagatg gggttttgct atgttgacca tgctggcctc aagtgatccg cccaccttgg 143700 cctcccaaag tactgggctt acaggcgtga gcttgtattg ggtaaaagaa caatattggg 143760 ggctgcatgg tggttcatac ctgtaatctg agcactttgt gagactgaga tggaaggagt 143820 gttggagccc aggagggtga ggctgcggct gcagtgaatt gtgatcacgc cattgcactt 143880 ccacctaggt aatggagcaa gaccatgtct ctaaaaaaca aaacacaatt tttttaagga 143940 atactgggaa gaggtcagtg gtggttttag aacagaggaa gtgccagatg acctttgtga 144000 ggcattggcc aggaagaact ctacagtgtc tttaggtagc ttctgtccat aaggataatg 144060 gggtctcctc cccagtatta atagaaaatc tctgagctgt ttttttttgt ttgtttgttt 144120 tgtttttttt tcctgagatg gagtctctct ctgtcggcca ggctggagtg ctgtggcgcg 144180 atcttggctc actgcaagct ctgcctccca ggttcacacc attctcctgc ctcagcctcc 144240 caagtagctg ggactacagg tgtccaccac cacgcccagc taattttttg ttatttttag 144300 tagagatggg gtttcaccat gtcagccagg atggtctcga tctcctgacc tcgtgatccg 144360 ctcgcctctg ccttgcaaag tgctggagtt acaggcgtga gccaccgtgc ctggcctggt 144420 ttttttgttg ttgttattta tttatttatt tatttatttt ttgagacaga ctctcgctct 144480 gtcgcccggg ctggagtgta gtggcacgat gtcggctcac tgcaagctct gcctgccagg 144540 ttcaagccat tctcctgcct cagcctcctg agtagcaggg accacaggcg ctcgccacca 144600 cgcccggcta attttttgta tttttagaag agacggggtt tcaccgcatt agccaggatg 144660 gtctcgatct cctgatgtcg tgatccgccc acctcggcct cccaaagtgc tgggattaca 144720 ggtgtgagcc accgtgcctg gcctgatttt tttttttttt taatctggtc tcatacctct 144780 gacagctcat gaagaagtgc tcctgcttca tatgtatatg tgttagcata gtgttaacat 144840 agcataggtg ttcggtgttt gcagtttctg tttgttttat atgaattaag gtgtattatg 144900 agcagttgaa gatatatagg aaattttttc ccaaaccact atctctgctc gttctattca 144960 ttcagtctgt ttatgttatt ccttcattca ttcattttat agaacagtgg agtgcctact 145020 gtatgcatct attgttctgg gtcctgggga agaaaacaaa gttcctgctt tcatggaact 145080 tacattatat tggcggagac agtaacagac aaacaaatgt agcctgtgta catgtgttac 145140 atgaaaagca gggtaggggg ctgggagaga gtagtaggga gtgctatttt cgaggtggtt 145200 gtcaggaaag gcctcactga ggaggtggca ttttgagtag acctgagcgc agcgggggcg 145260 taagcccagg cagcatgtgg aggaagagtg ttcttggtga aaggaacaag gatagaggcc 145320 cgaagctaga gagctcagca tgatcaagga acagcaagcc ccgtgtggct ggaatggagt 145380 gagcaaagga atgagcagta gaaggtgagt gagttgggag gtcaccagag accatggcaa 145440 ggacttgaaa gtgtcaggga cacattggaa gttggagcag ggaaatgatg ggatttatgt 145500 tttgtttttg ttttatgttt agtgttttta agggattgct ctatcagcta tttggaaaat 145560 ttagtgtagg gcttcaagaa gagaagcaga gaaacaacat tcttgccata gtcatagtct 145620 aagtaaggga tgatggtggt gtggattagg ctggtagtgg aagaccagtc cagttcgggt 145680 tgtatttgaa ggtagaggca aaaagattat atttctacca gcaagcccat ctatgaagtt 145740 acttgtatta ttaatttaat tgagacatgc ccacataaac taataaatag gaatttctgc 145800 agtttggtta aacacccctg tatatcctgg ttcttctttt agttgtccag atgtctcttt 145860 aagtcaagta ttttttggtg gtgtaggagc ctagagattg aatttattca cccaaaaggc 145920 atttgagtga ttactatgtg ccaggcacta tgctgaatgc caaggatgta aataagaggg 145980 cgtagtctca gtctgtttta ctccagcttg gttccttttt aatgaccctg acttgttaag 146040 catatcagtt atcctacaga atgtttaatc ttctgtactt tcctggttgt gttatttagc 146100 ttatttctct ttccttgaca tttcttgtaa actggaagtt acacctatag tcttgatgat 146160 tcgtgttaca cattttagat tagaacacat catgtgttgt atatggtgtt tttgaaagcc 146220 tctctgtata ttggtctgta cattaaaatg ttgcctgaat ggatacacat aaaatttaac 146280 agtgattaca ttagagatga gaagaaagag gtgcctttta cttttcaata taccttttcc 146340 tctgcttttt gaactttctt gccctatgca tacgttattg cttaatcatc cacctcatct 146400 cttcccctgt ggctttctgt tgcatttgga atgaaatcta gcctctttgc tgttacctgt 146460 ggatgtccct tgctggcctc tatcacctta ctttgaacca ctcctttcat ggactgagct 146520 ctcattggac tatcttttat tcttttgctg aagtttcttc actttgagtg cctctgcagt 146580 tgctatttca tggctgtggc aagccctgcc atggctttca tgcaaggatg gttcctcctt 146640 ctcatctcaa tattatctct tcagagaggg accttcccaa ctccgatgat ctaaaatcct 146700 ttgtatatac cactcactac cacttctttc ttttcttttc cttttatctt tttttttttt 146760 tttttttttt gagatagggt cttgctctgt tgcccaggct ggaatcacga ctcactgcag 146820 cctcatcttc ttgggctcaa atgatcctct cacctcagcc tctcgagtag ctggaactgc 146880 aggcacacac caccatactt ggcttattat tttacttttt gtagagacag ggtttcacca 146940 aggctggtct caagctcctg ccgcaagcaa tccacatctc tcagcctccc aaagtattgg 147000 gattatagga gtgagccact actcctggcc tattttctta ttcactgtct aaaattatct 147060 tgttcattta tttacatact tgtttatagc ttatttctca gctggacatg gtgcctcaca 147120 cctgtaatct caatactttg ggaggctggg ttggagaatt ggttgagccc aggacttcaa 147180 gaccagcctg ggcaacaaag tgagaccctg tctataaaaa attgtttaaa aattagctgg 147240 gcatggtggc acatgcctgt ggtcccagct acttgggagg cagaggtggg agaatcgctt 147300 gggcccagga ggttgaggcg acggtgagcc atgattgtgc cactgcactc tagcctagtg 147360 acagagtgag accatgtgtc taaaaagtaa ataaaaatag tttctctttc atgactagaa 147420 tattacctct atgtgggcag ggagtttgtc tatactattt ggcactatat ttcctgattc 147480 tgaaattatg cctagcacat ggtaagtact ccttaaatat ttattgactg aattatttaa 147540 tacttaagaa tttcatttgg gattatctga gtggtaagat tacggattat atttatgtaa 147600 gaaaaaatca ttttttaaac ttggttgccc tttgccacac tgacatagac actaagtttt 147660 cttagccaga ttacttccga ggatactcac agaggccatt ctcttctcaa tccccaaata 147720 attgatattt cttagcactt tcaagctaat gcaattctta gatgatgtat ctgtgtatat 147780 catatcctca ttctacaaat gtagaaattg aagtctgggc acagtggctc tcacctgtaa 147840 tctcagcagt ttgggaggcc aaggcgagcg gatcactgag gacaagagtt aagaccagcc 147900 tggccaacat ggtaaagcct tgcctctatt aaaaatacaa caattagggc cgggcgtggt 147960 ggctcacgcc tataatccca gcacgttggg aggccaaggc aggcagatca cgaggtcagg 148020 agttcgagac catcctggct aacacagtga aaccccatct ctactaaaaa tacaaaaaat 148080 tagccaggca tggtggcacg cgcttgtagt cccagctatc gggaggctga ggcaggtgaa 148140 tcccttgaac ccgggaggcg gaggttgcaa tgagctgaga ttgcaccgct gaactccagc 148200 ctggtcaaca gagggagact ctgtctcaaa aaaaaaaaaa aaaaacaatt agccaggcgt 148260 ggtggcgggt acgagtacct gtaatcccag ctactaggga ggctgaggga ggagaatcac 148320 ttaaacccag gaggtggagt ttgcagcggg ctgataatgc accactacat tccagcctgg 148380 gcaacagagt gagactctgt cttaaaaaaa aaaaaaagaa agaaagaaat tgaggaatgt 148440 ggagattgtg gtctgtgatt tgttaggaat cacacagcag gttagtagca actacagggc 148500 tttggttcag aataccacct tgacaatggt ttgtttacag ttcggctccc cttcctctgc 148560 ctttctctcc ttccttattg agggcagctg gaaagaattt tcatcattta ctagcctata 148620 gctttaattt gagttttgaa accttgataa tagagcacag aggaaaagac tgagttttct 148680 ttttttgaga cagtcttgct ctatggccca ggctggagtg cagtgacacc atctcagctg 148740 gttgcaacct ctgcctccca ggttcaagca attctgcctc agcctctcga gtagctgaga 148800 ttacaggcac gtgtcaccac gcccagctaa ttttctgttt ttgtttcgtt ttgttttttt 148860 ctgagatgga gtcttgctct gtcacccagg ctggagtgca gtggtgcgat gttggctcac 148920 tcaaacctct gtctcctggg ttcaagcaat tcttctgcct cagcctcccc agtagctggg 148980 actacaggta cgtgccacca tccctagttc atttttgtat gtttagtaga gatggggttt 149040 cactatgttg accaggctgg tctcgaactc ctgatctcag gtgatctact cgtctcagtt 149100 tcccaaagtg ctgggattat tggcacacgc ctatttttgt atttttagta gagacggggt 149160 ttcaccatgt tggttagact ggtctcaaac ttctgacctc aagtgatttg cccgccccag 149220 cctcccaaag tgctgggatt acaggcgtga gccaccgtgc ccagccaaga ttgagttttg 149280 aaaagagcct tctgagatta tgagaagggc aagcaagata acttaagaag ttacattaaa 149340 atcatctaag agacagtgta acaagaagga attgtaaaat gatgttatga gcacgtgccc 149400 aatgtagtgg caatcccttg tgcttcgata cattggtggg agacaaaact gtacttaaat 149460 tgataaatcc cttacatgtc attttaagga gcttagactg actcccatca tgtagacatc 149520 agagatttct tttttttttt tttttttttt tttttttttt tttgtgacag agttttgctc 149580 ttgttgccga ggctggagtg caatggcgtg atctcggctc accacaacct ccacctccca 149640 ggttcaagca attctcctgc ctcagcctcc cgagtagctg ggattacagc catgcaccac 149700 cacgcctggc taattttgta tttttagtag agacggggtt tctccatgtt gtggctggtc 149760 tcgaactcct gacctcaggt gatcctcccg cctcagccac ccaaagttct gaaattacag 149820 gcgtgagcca ccgcgcccag cccagagatt tctaaacaga gttctaacca gatgcttttc 149880 cctgtcagta gaatgagaat gaattggagg tgggagagac tggcatgagg gacaccagtc 149940 agccagtgga attagctggt aatgttgata ggagaagaaa aagattcaaa gttaggtagt 150000 ggtagcaaga attagaggga aggtcggatt tatgatatgt ccaaggttga attctaaggt 150060 gaaatttggt ggcagatttc atgtgtaaat tgggaaggta gattgagttt ttttaacatg 150120 ggttttctaa catgtcaata gagtgactct gcaggggggc ctgacgagag aacagtgcat 150180 ggggtgattc aacagccagt tgagccttca tgcagagcat ttaacactgt gactctgtag 150240 actctggttg gcagtaaaat ttcattaaac caatatttaa acccttaggt aataataaaa 150300 attgagggaa aaggatccag gttttgtatt ttttatgaat tcagttattg aattaaacag 150360 gaccttgcct caagaaataa tctaccaaca attaacttgt tttaaagcaa agttaggaag 150420 tgagcatgtt caaattatta aataaaaaag taagctgtgt atttcattca tagaaataga 150480 ggctggccta cttcggatga ttctcagcat gtgattacag atgtgggctt atacatccta 150540 gggagttaag gcgtactctg gcttggatag agtagagctc tttgaaactc ttctctcacc 150600 cagctagttt atatagacta gagaactaga atgtagcagc atactctgtc ttagaagccc 150660 ttttatatag gagctggtct ggaaggtttg aaaacataac aaatgtgttg gtgtctccca 150720 atgtattgct agattcttac ccaagagcat tatcctggtt agggtttggt ttggttttgt 150780 tttgtttttt aatgtttgcc acaaactaac actagatgtt agttctttca tcaagtgagg 150840 agagtagaag aaaagtccag aactctgaaa caccttttca aaagtttttc aagccatgat 150900 gtttgcaagt taaatgctct gttatgtaag caatataatc agtttttatt aatgtaacat 150960 tccttagtgt tttggggtat cacacaaaaa agaatatcca tatctggaag caacagcttt 151020 taaataagag cattgtggtg gtggtggtga tagtggtttt tttttttttt tttgagttgg 151080 agtctcgctc tgttgcccag gttggagtgc agtggcacga tctcagctcg cttcaacctc 151140 tgctcccagg ttcaagcaat tcttctgcct cagcctcctg agtagctggg attataggca 151200 cctgctacca tgcctggctg atttttatta ttttagtaga gacaggtttc accatgttgg 151260 ccaggctggt cttgaactct taacctcagg tgaatcaccc acctcggcct cccaaagtgc 151320 tggaattaca ggcatgaacc accatggcca gccaaataag agcattttta atgtaaaatt 151380 atgcatgaaa tgtacattca attttgtctt tgtttactag gatccatgtt ctcacaagct 151440 atgaagaaat gggtgcaagg aaatactgat gaggtaaatc ctacctttag gataaaaaga 151500 tttctgttta taagtgccac cctcatgtaa gtgaggttta aaattttcct tttctttagg 151560 tcccatgttt aagcagcatg gcacatttat gttctcttac ccagaatgta ccaagaaagg 151620 gtggtccctt cttaacatct aacaattgcc tggtagtagc agtgaaggta tcttcagtca 151680 gaggctagga ccactgaagg atatacatgc attcaagttt ccatcagcca gcaggcatca 151740 gtaatcagtg tgtagatcaa aagctcaaat gtttccttcc ccactggcag ttttacttca 151800 agtagtggag gcttgctttt ttaatagtta attaagtaca ttgagagatg ggaggtgaaa 151860 aaaggaaaat gttttatttt gaccatctaa tatgaaagta gttcggtgtt aggtatccag 151920 tagttgacac tggaagacag ggaatgacat gttaatattc atagccagag ggtggcccag 151980 gttttttcgt acatgggaat gaaattctta tccaaataag tagaaattat gtgcgtaagc 152040 catttgttaa gagcactgag tatgtgcatc tcgatccatc taatgaataa ccattatcac 152100 cagtttaaat tattttcttt aggcccagga agagctagct tggaagattg ctaaaatgat 152160 agtcagtgac attatgcagc aggctcagta tgatcaaccg ttagagaaat ctacaaaggt 152220 aaggatgact tcgttttgtg taaactaaaa agtattattt tccaggtgta aaaataaaaa 152280 agaacataag gggtttcttt gcctttgaag gattaactgc tgtggggatt accttcttat 152340 cataagcaac tagaaaattg acaaactaaa tgaaacaact gtttgcatat attggacaat 152400 gggcaataca gggaaaccat ggaaaccaaa cagagcccag tagtcttgct gaacgaaaga 152460 gttaaatatc aaagttcagg ccaggtgcag tggctcacgc ctgtaatccc agcactttgg 152520 gaggccaagg cgggtgaatc acttgaggtc aggagttcaa gaccagcctg gccaacatgg 152580 tgaaaccctg tcttagccgg gtgtggtggc aggcacctgt aatcccaact atttgggagg 152640 ctgaggcagg agaatcgctt gaaccaggga ggcggaggtt gcagtgagcc gagatcacac 152700 cactgcactc cagcctgggc gacgagcgaa accccatttc aaaaaaaaaa tcaaagttca 152760 gagagctcaa tttgagtaga agttgtagga taaggtagca gaaaagagga agctgcccag 152820 aaagaaagcc gtagagatat ttagagagat tcccatggat ccttggccta ggagtgatct 152880 gtatatgtgt ggggtgaaaa cgcatgtgtc caggtagaga accccccaga aattagtagg 152940 ctgaatgatt gctggaacat agggctaaga aaagttcatg gccagaagga tctggccaga 153000 gtagagagac ttagtaatac acaaggcatt gggtagtgtc ttcacagagg ttatgcctta 153060 ctactgaaga taaattagtc ctagagtaca agcacctgaa ccaagtttca aagcaaattt 153120 ttaaagggtc aaattaccta acaactgcat gccaaaacaa aggcctaacc ctctttacag 153180 taacacaaca aaattcagca cttcacagtg taaagttaga atgtctgacg tccaggctgg 153240 gcgcagtggc tcatgcctgt aatcccagca ctttgggagg ccgaggcagg tagatgacct 153300 gaggtcagga gttcaagacc agcctggcta acatggtgca accccgtctc tattaaaaat 153360 acaaaaactt agccaggcat ggtggccggc acctgtgatc ccggctactt gggaggctga 153420 ggcaggagaa ttgcctgaac ccaggaggtg aaggttgcag tgagccgaga tcgcaccact 153480 gcactctggt ctgggcaaaa agagcaaaac tcaggctcaa aaaaaaaaaa gaatgtctga 153540 cgtcaatcac aaattaccaa gcatgacatg aagttgacct ataaccagga gaaaactcaa 153600 tctatagaaa cagacccaga tgtgagaaag atgatgaatt tagcagacaa agaccatcaa 153660 gtggctattt taaatattaa aaatatgttc aagtggccag gtgcagtggc tcatgcctgt 153720 aatcccagca ctttgggagg ccaaggtggg taggagttca agaccagctt ggccaatatg 153780 gtgaaacccc ttctctacta aaaatacaaa aaaattagct gggcatggtg gcaggtgcct 153840 atagtcccag ctatatggga ggctgaggca caagaatcac ttgaacccgg gaggtggagg 153900 ttgaggttgc agtaagccga gattgtgcca cttgtactcc agcctggaca acagagtgag 153960 actctgtctc aaaaaaaaaa aaaaaaaagt taaagaaaac aagagtataa tgagaaaaat 154020 gcaaaatagt tttaaaagaa ccaaatggaa tttcttaaaa taaaaaatac cagaaatggg 154080 ggccgggcgt ggtagctcac gtctataatc ccagcacttt gtgggggctg aggcaggcag 154140 atcacctgag atcggtagtt caaggccagc ctgaccaaca tggagaaacc tcatctctac 154200 taaaaataca aaattagctg ggcgtggtgg cgcattgcct gtaatcccag ctacttggga 154260 ggctgaggca ggagaattgc ttgaacccgg gaggcagagg ttgcggtgag ctgagattgc 154320 accagtgcac tccagcttgg gccacaagag tgaaactccg tctcaaaaaa aaaacaaaaa 154380 aaaacagtag actcgaagaa ctagctgagt ttttctttac tttaggcagt aagtgtgacc 154440 ttttgcaggt gactacttta gttcctcatg tcctcattag tagatcagag aaattcgaca 154500 ccaaaacccc aaaagaaaaa ccccttctaa tcctcattcc atgattttat gaatgcatga 154560 agtcctaggc ctgcgaagga atactcattc tctttatcct gtgttgatac ctctctgctt 154620 caacctccaa ctcgacattt gcctatagga tgtacttgga cattcagcat aaactacctc 154680 acaccattac tgaattgctt catgtgcaca tgtcccatgc cacaataccg gggaccttgt 154740 cttccgtgat atttgtccgc agtgctgtga ctacaggagg gagtcagtga atgtctgcat 154800 gtgtgtcttt accatccctc ttgaatatgc tctagggtta attcctagaa gtagaattac 154860 tctattgaaa attggcaata tttttcattc taatatctat tgccaacatg ggaaagcaag 154920 tctggatgcc agtccttgtt atatgcccct tgggtaagtt acgtaacctc tttaagcttc 154980 tgttcactca tattttaaca aggaaaatta caatatttta cctcacaaaa ttgtagtcag 155040 cttctggctg tcttaaactc tggtatatag taaacactaa gtgttggtgt ccatccttaa 155100 tttgtaataa taggtcactt gttagagaaa tgcaccttac cattttcttt tcttttcttt 155160 tttcagttat gactcaaaac ttgagataaa ggaaatctgc ttgtgaaaaa taagagaact 155220 tttttccctt ggttggattc ttcaacacag ccaatgaaaa cagcactata tttctgatct 155280 gtcactgttg tttccaggag agaatgggag acaatcctag acttccacca taatgcagtt 155340 acctgtaggc ataattgatg cacatgatgt tcacacagtg agagtcttaa agatacaaaa 155400 tggtattgtt tacattacta gaaaattatt agttttccaa tggcaataac ccatttatga 155460 gagtgtttta gcctactgga atagacaggg accacatcct ctgggaagca gataagcata 155520 gaactgatac ttgatgcaca ctcgtagtgg taactcatcc ctaatcagca ttgtaaagca 155580 ggtgccagag gtggtttgct ttgtccttcc aaagcaggtg agtcagcccc accgagagcc 155640 aggcagcttt gagtggcagc gtggtgctag cagcttcagc ggaacagggt gagagttaat 155700 tatgcagtct tcttgacagc ggcattaatt tggaaggaaa ctgacaagtc atgggtcaag 155760 tttcagtgac ttcctccttc ctctgatggc agtatatagt tttcacattt taattcctcc 155820 tcctgagatg cactatactt aaaaccattc tctcccctgc taacagaagg gtgtgaatct 155880 ggtttacttt gagcattagg atttgcccct ttggaattct gcactccagt tacttaactt 155940 tcccttcaga atacatgtgg aaagaaagaa agaaatagcg atgactccac ttttgcccct 156000 gtggcacctt gaacaaagca gttcttccca aattatactt tttttttttt taaataaggt 156060 gagcaggatg actggggaga gagaaacatt tgactttgac tgcctccccc attctttgct 156120 gtgagctgga aagtgtgcag ttggtcgtct ttcttctcct ttctttagga tagtaagaga 156180 ctcactcact gcacttctgc tcagttggct tctgcatcgg gatcacacag ccatcagcag 156240 gactgcccag ttggtgagca cactccattg accacgcggc gccagcgctt cctcaatgca 156300 catgattgag aggaaagaaa gttctcttag atgttactgc ttttgctcag actttgcaaa 156360 aaaaaaaata tatatatata tgtataaata tataattatt aatcactttt gtccttgaga 156420 aagtcttgaa tgaacagaga atttattcca ttgcaatatt tgattgtata gaggcacact 156480 gtttcatcga cagaagaagc aaaaaggctt tgtgtaagtt tttggtacta tgtaccacct 156540 ctgttattct tttaaagctg aagtattcat gtacttaaac catattatat ttaattgtgt 156600 ttgattttaa aatatatata tatgaattct atttaaaatt gtgtcaactt tctgctttca 156660 gggcatttat ggctcttctg ttgaaatata ttgatctttc caaatatttt catttgcttt 156720 ctaaaaaccc agaacatgag ccactactgg actttgcctt gtgtttgaag tgtatggcat 156780 aaacccaagg tttttattag tcatctatgc tgtgattaat tcattttgtt cttttaacaa 156840 aatatttcca tccacttcac attgcttcaa tctttaacag aaaagcaata taaaggttat 156900 agaataaaat gtggttttgg gcaactcttg ctgcctctgc atgttttgga ataacaattt 156960 ctacaagact ctaggctgtt taaactagtg ctttcagtta agataaattc taatcatttc 157020 tttgtatata cattttgtgc ttctgagcta gagatgccaa gtagttgtaa actgcttata 157080 aagagaatag cagcaaattt gagactcggc tacttttttc tgccccacct gctttgagac 157140 acagaagcgg agtgtggccc gaaattatta gccagattta atatttgatc taaagtaggt 157200 ccttgtactc attttaaagt tggaatttga ttcctccaac attgagcacc caccatgttc 157260 caggctctgt gcattgtgcc cacaaaataa gattccctgg tggagttttt atgggttcaa 157320 ataatcagtt gaacaccctt catctttatc atgttgttga cattgacaca aattgtttaa 157380 aaagaaaaga tattagagag aaagtggtac ctttgtaact tgatgtgtct tcatcattcg 157440 gtaagatttg atgaaagtaa aaagcaaatg tcagccaaat ccagtgaaca gcaataaaac 157500 agggagtaac tttttataac tttttctact tggatttcaa cattcagtag agcttttcga 157560 aatgtaagta gtttacagta ctggaggttt gactagttca gtaggaattt ggaggggaag 157620 gtcattctga attgtaacaa agtacaaact tctttgctgt tttatttaag tactgagagc 157680 taagcacctg atgaagtgac tgacctctct ccagtgacag tgtttgggta cctgcctgac 157740 ttcaggagtg gggtttatgt ttctacacag tgaccttttc tctcgccctc tcctccctct 157800 tgcccacaca ccagttgatt ggacctgggt tgaactcctg atccagacag gcccaagaca 157860 gttcttaatg ttaagaattt tggggccggg cacggtggct catgcctgta attgcaacac 157920 tttgggaggc cgagacaggc ggatcacttg aggtcagggg ttcgaggcca gcctggccaa 157980 catggtgaaa ccctgtcttt actaaaaata caaaaattag ctgggcatgg tggcgcacgc 158040 ctgtaatccc agctacgtgg gtggctgaga caggggaatc gcttgaacct ggaggcggag 158100 gttgtgcaat gagccgagac cgtgtcactg cattccagcc tgggtgacag agggagactc 158160 tgtctccaaa aataaaaata agaaaaagaa ttttgggcta ggtgcagtgg ctcacgcctg 158220 taattacagc attttggaag gcccaagatg ggcagatcac ttgaggacag gagttcgaga 158280 ccagcctgga caacatggtg aaactccatc tctactaaaa agacaaaagt tagccagatg 158340 tggtgatggg cacctataat cctagctcct cgggaggctg gggcaggaga atcacttgaa 158400 cccaggaagc agagattgca gtgagccaag atcacatctc tgcactccag cctgggcaac 158460 agagcaagac tctgtctcaa aaaaaaaaga atttggccag gcgcagtggt tcacgcctgt 158520 aatcccagca ctttgggagg ccaaggcagg cagatcacga ggtcaggaga tcgagattgt 158580 cctggctaac atggtgaaac cctgtctcta ctaaaaatac aaaacattag ccgggtgtgg 158640 tggtgggcac ctgtagtccc agctactagg gaggctgagg cagaggaagg atgtgaaccc 158700 aggaggcgga gcttgcagta agccaagatc gtgccactgc actacagtct gggcgacaga 158760 gtgagactcc gtctcaaaaa aaaaaagaat tttggccggg tgcggtggca catgcctgta 158820 gtcccagcac tttgggagac caaagtgggc ggattacctg aggtcaggag ttcaagacca 158880 gtccggccaa tatggcgaaa ccctgtctct tactaaaaaa aatacaaaaa ttagccaggt 158940 gtggtggcgg gcacctgggg aggctgaggc agggagaaat gcttgaaccg gggaggcaga 159000 ggttgcagta agccaagatc gtgccactgc actccagagc aagactcttt ctcaaaaaaa 159060 aaaaaaaaag aattttgcat ggggaaggag agatactgtt caccatctgg aatggtgctt 159120 ggatgtggca cttacaaaat caggagccag cactgcatgg acaaacagaa gcatgtgggc 159180 ctgagatagc aggtaccttg ataaccctga agacatcctt ggtttctgca tctattcctg 159240 catccttgca ttggactaca ttaatctgtc agttatcctt ataatgattt ttgatttttt 159300 ttttttgaga tggagtttcg ctcttgttgc ccaggctgga gtgcaatggc acgatctcgg 159360 ctcaccacaa cctccacctc ccaggttcaa gtgattctgc tgcctcagcc tcctgagtaa 159420 ctgggattac aggcatgcgc caccacacct ggctaatttt gtatttttag tagagacggg 159480 gtttctccat gttggtcagg ctggtctcga actcccaacc tcaggtgatc accctgtctc 159540 ggcctcccaa agtgctggga ttacaggcgt aagccatggt acccggtctg ttttttgatt 159600 ttttgaaacc agtctgaagt gagttttttt aattacgtga aaggagtttg gctaaaatac 159660 tgccatactg ccctaatgcc taatgattat gtattctcag catgtctgca aagtactgct 159720 gatttctgga gaataatttt tctttagtaa acttcactta agtcgtcatg tgtattctct 159780 caaaatggta tcctaaccta atggagctaa aagacacccc ttgtttttat aacaagcagt 159840 tactgaggcc caggaagggg agaagtccct ggcttgtgag atgatcacca ttagaactca 159900 ggcctgggcc agtgcctttt catgcttctc agatccttcc aaagaataat gaagattata 159960 accgctttta gcaattgtaa taaacccaga aatagaaagc tttttggtta gagtactggt 160020 agaagtttgg cgggagagat aatttttaca aaatttgtaa atacctgcca attctatata 160080 ctaggcaagg tctctggcct tgtaaaaccc ctcaaggtta caactttggt ggcccacact 160140 aatagttacc cactgaggcc ctctccgggt gaacattgag cactagagga agcccctctg 160200 cttgggcagg actgggcgtg gtgcagagta ggagcggtga tactgtggat tctgggcagg 160260 tggagatggc cagtgatgtc caataaagga cactggaggg agcagtgtga gtaaaggccc 160320 tgagggcatt catgttcagg gagggttgct gcccactggc ttgcttggca cacaggagag 160380 tgggtattcc tgccttagta actttatgta aacaagtatt tcctcagtct gttcctctca 160440 aactgcctgc tctggcacat tcagaatgtc acagaactca cctggatgca ttcagcccct 160500 tgcctaaagg tgacagtgca tctccttccc caccccaccc ctcataccac tgaagcacct 160560 gtcagactgg cccagtctgt gggcaaggag cctagagagg gcttagtttc agcttgaaag 160620 gagctgggat ttaccaagaa gcaaatgaga gacgaggatt gcaacaactg tgccatttcc 160680 ccagcttcag ctgactcctg tatattgact gtgccttcag actcatccgt aagtgacccc 160740 aggctggcct ctcccacatc acagtaagaa ttccacacac catacaactt ggaaagaggc 160800 tccagctgaa ggaagcccca cacttctttc aagtttttct tagtcttctc ttcttggcaa 160860 agagtacctt ttgtttcttc taattatgta actattggtt tagtaaatat tcacccattc 160920 agtcaccctg taagtggcag gcactgttta cagggacaca ggaaggaata aaaacttgca 160980 ggcaccttgg agcttgcatt ctattgaaga ggtaatggaa gttgggatag cagctaaact 161040 atgctggtat tggccaggcg cagtggctca cacctgtaat cccagcactt tggaggccaa 161100 ggtgggcaga tcatgaagtc aggagatcga gaccatcctg gctaacatgg tgaaaccccg 161160 tctctactaa aagtaaaaaa aaaaattagc caggtgtggt ggcgggcgcc tgtagtccca 161220 gctacttggg aggctgaggc aggagaatgg tgtgaaccca ggaggcgaag attgcagtga 161280 gccgagatgg caccactgca ctccagcctg ggtgacagag cgagactctg tctcagaaaa 161340 aaaaaatatg ctggtagttt tgattcaaga tggcctttgg agcccatgat ttaggtctcg 161400 tacccaccaa ggtctactgg aaaacatcag gctctcctgc tatagaccca tagggagagc 161460 tgcagccgag agggggagct gaagagaagt gccccttctg tgtcctgtca gcctcatcct 161520 tccgcaagga ccagttgctg tgccactcca ttcacttgct gcaagactgg aggtttttcc 161580 tcaggtgttg agcacctggt ttacaagatg tcagcatctt gatgcctgag accatcaagg 161640 caagtctctg aacagggctt accttagagt aaggcttaga agaggccgta aagtcagtct 161700 cagctccgtg gctctgcaga gctttgggac atgtgaattc ttaaaaacaa gactattgta 161760 cagttactat atgcatgcag tataaaatta taaccttgga aaatcctagc tagctgttga 161820 gctaattcca taaagtaatc agctcctgag ttctgcagtg gtaataataa tcagcataat 161880 gagtaaacac tgtgtgtgcc aggcagcgtc tcatttgatc cttgtgataa tcttgtaagt 161940 actgattttc tcccttcttt aaacaaagtt tttttttttt ttttagagag ggtctcacta 162000 tgttgcccag gctagtcttg aattc 162025 <210> SEQ ID NO 37 <211> LENGTH: 1350 <212> TYPE: DNA <213> ORGANISM: Homo Sapien <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (213)...(920) <300> PUBLICATION INFORMATION: <308> DATABASE ACCESSION NUMBER: GenBank AJ242973 <309> DATABASE ENTRY DATE: 1999-10-26 <400> SEQUENCE: 37 gcggccgcgt cgacgtgaca gccggtacgc ccgggtttgg gcaacctcga ttacgggcgg 60 cctccaggcc cgccagcagc gccccgcgcc gcccgcccgc gcccctgccg ccccccggtt 120 ccggccgcgg accccactct ctgccgttcc ggctgcggct ccgctgccgg tagcgccgtc 180ccccgggacc acccttcggc tggcgccctc cc atg ctc tcg gcc acc cgg agg 233 Met Leu Ser Ala Thr Arg Arg 1 5 gct tgc cag ctc ctc ctc ctc cac agc ctc ttt ccc gtc ccg agg atg 281 Ala Cys Gln Leu Leu Leu Leu His Ser Leu Phe Pro Val Pro Arg Met 10 15 20 ggc aac tcg gcc tcg aac atc gtc agc ccc cag gag gcc ttg ccg ggc 329Gly Asn Ser Ala Ser Asn Ile Val Ser Pro Gln Glu Ala Leu Pro Gly 25 30 35 cgg aag gaa cag acc cct gta gcg gcc aaa cat cat gtc aat ggc aac 377 Arg Lys Glu Gln Thr Pro Val Ala Ala Lys His His Val Asn Gly Asn 40 45 50 55 aga aca gtc gaa cct ttc cca gag gga aca cag atg gct gta ttt gga 425 Arg Thr Val Glu Pro Phe Pro Glu Gly Thr Gln Met Ala Val Phe Gly 60 65 70 atg gga tgt ttc tgg gga gct gaa agg aaa ttc tgg gtc ttg aaa gga 473 Met Gly Cys Phe Trp Gly Ala Glu Arg Lys Phe Trp Val Leu Lys Gly 75 80 85 gtg tat tca act caa gtt ggt ttt gca gga ggc tat act tca aat cct 521 Val Tyr Ser Thr Gln Val Gly Phe Ala Gly Gly Tyr Thr Ser Asn Pro 90 95 100 act tat aaa gaa gtc tgc tca gaa aaa act ggc cat gca gaa gtc gtc 569 Thr Tyr Lys Glu Val Cys Ser Glu Lys Thr Gly His Ala Glu Val Val 105 110 115 cga gtg gtg tac cag cca gaa cac atg agt ttt gag gaa ctg ctc aag 617 Arg Val Val Tyr Gln Pro Glu His Met Ser Phe Glu Glu Leu Leu Lys 120 125 130 135 gtc ttc tgg gag aat cac gac ccg acc caa ggt atg cgc cag ggg aac 665 Val Phe Trp Glu Asn His Asp Pro Thr Gln Gly Met Arg Gln Gly Asn 140 145 150 gac cat ggc act cag tac cgc tcg gcc atc tac ccg acc tct gcc aag 713 Asp His Gly Thr Gln Tyr Arg Ser Ala Ile Tyr Pro Thr Ser Ala Lys 155 160 165 caa atg gag gca gcc ctg agc tcc aaa gag aac tac caa aag gtt ctt 761 Gln Met Glu Ala Ala Leu Ser Ser Lys Glu Asn Tyr Gln Lys Val Leu 170 175 180 tca gag cac ggc ttc ggc ccc atc act acc gac atc cgg gag gga cag 809 Ser Glu His Gly Phe Gly Pro Ile Thr Thr Asp Ile Arg Glu Gly Gln 185 190 195 act ttc tac tat gcg gaa gac tac cac cag cag tac ctg agc aag aac 857 Thr Phe Tyr Tyr Ala Glu Asp Tyr His Gln Gln Tyr Leu Ser Lys Asn 200 205 210 215 ccc aat ggc tac tgc ggc ctt ggg ggc acc ggc gtg tcc tgc cca gtg 905 Pro Asn Gly Tyr Cys Gly Leu Gly Gly Thr Gly Val Ser Cys Pro Val 220 225 230 ggt att aaa aaa taa ttgctcccca catggtgggc ctttgaggtt ccagtaaaaa 960 Gly Ile Lys Lys * 235 tgctttcaac aaattgggca atgcttgtgt gattcacaat cgtggcattt aaagtgcaca 1020 aagtacaaag gaatttatac agattgggtt taccgaagta taatctatag gaggcgcgat 1080 ggcaagttga taaaatgtga cttatctcct aataagttat ggtgggagtg gagctgtgcg 1140 gtttcctgtg tcttctgggg tctgagtgaa gatagcaggg atgctgtgtt cacccttctt 1200 ggtagaagct aaggtgtgag ctgggaggtt gctggacagg atgggggacc ccagaagtcc 1260 tttatctgtg ctctctgccc gccagtgcct tacaatttgc aaacgtgtat agcctcagtg 1320 actcattcgc tgaaatcctt cgctttacca 1350 <210> SEQ ID NO 38<211> LENGTH: 235 <212> TYPE: PRT <213> ORGANISM: Homo Sapien <400> SEQUENCE: 38 Met Leu Ser Ala Thr Arg Arg Ala Cys Gln Leu Leu Leu Leu His Ser 1 5 10 15 Leu Phe Pro Val Pro Arg Met Gly Asn Ser Ala Ser Asn Ile Val Ser 20 25 30 Pro Gln Glu Ala Leu Pro Gly Arg Lys Glu Gln Thr Pro Val Ala Ala 35 40 45 Lys His His Val Asn Gly Asn Arg Thr Val Glu Pro Phe Pro Glu Gly 50 55 60 Thr Gln Met Ala Val Phe Gly Met Gly Cys Phe Trp Gly Ala Glu Arg 65 70 75 80 Lys Phe Trp Val Leu Lys Gly Val Tyr Ser Thr Gln Val Gly Phe Ala 85 90 95 Gly Gly Tyr Thr Ser Asn Pro Thr Tyr Lys Glu Val Cys Ser Glu Lys 100 105 110 Thr Gly His Ala Glu Val Val Arg Val Val Tyr Gln Pro Glu His Met 115 120 125 Ser Phe Glu Glu Leu Leu Lys Val Phe Trp Glu Asn His Asp Pro Thr 130 135 140 Gln Gly Met Arg Gln Gly Asn Asp His Gly Thr Gln Tyr Arg Ser Ala 145 150 155 160 Ile Tyr Pro Thr Ser Ala Lys Gln Met Glu Ala Ala Leu Ser Ser Lys 165 170 175 Glu Asn Tyr Gln Lys Val Leu Ser Glu His Gly Phe Gly Pro Ile Thr 180 185 190 Thr Asp Ile Arg Glu Gly Gln Thr Phe Tyr Tyr Ala Glu Asp Tyr His 195 200 205 Gln Gln Tyr Leu Ser Lys Asn Pro Asn Gly Tyr Cys Gly Leu Gly Gly 210 215 220 Thr Gly Val Ser Cys Pro Val Gly Ile Lys Lys 225 230 235 <210> SEQ ID NO 39 <211> LENGTH: 481 <212> TYPE: DNA <213> ORGANISM: Homo Sapien <300> PUBLICATION INFORMATION: <308> DATABASE ACCESSION NUMBER: GenBank AW195104 <309> DATABASE ENTRY DATE: 1999-11-29 <400> SEQUENCE: 39 ggcattattg gactgtaggt ttttattaaa acaaacattt ctcatagctc taagcaaagc 60attagaattc atcaagcgga ctcacatctt ttctctgcac agagaggggc tgaaaaggga 120 gagaaagtcc cttatgtatg tctagatttg gtaaagcgaa ggatttcagc gaatgagtca 180ctgaggctat acacgtttgc aaattgtaag gcactggcgg gcagagagca cagataaagg 240acttctgggg tcccccatcc tgtccagcaa cctcccagct cacaccttag cttctaccaa 300 gaagggtgaa cacagcatcc ctgctatctt cactcagacc ccagaaaacc cagggaaacc 360 cgacagctcc actcccacca taacttatta ggagataagt cacattttat caacttgcca 420tcgcgcctcc tatagattat acttcggtaa acccaatctg tataaattcc tttgtacttt 480 g 481 <210> SEQ ID NO 40<211> LENGTH: 390 <212> TYPE: DNA <213> ORGANISM: Homo Sapien <300> PUBLICATION INFORMATION: <308> DATABASE ACCESSION NUMBER: GenBank AW874187 <309> DATABASE ENTRY DATE: 2000-05-22 <400> SEQUENCE: 40 ttttttttat tggactgtag gtttttatta aaacaaacat ttctcatagc tctaagcaaa 60gcattagaat tcatcaagcg gactcacatc ttttctctgc acagagaggg ctgaaaaggg 120agagaaagcc ccttatgtat gtctagattt ggtaaagcga aggatttcag cgaatgagtc 180actgaggcta tacacgtttg caaattgtaa ggcactggcg ggcagagagc acagataaag 240 gacttttggg ggtcccccat tcctgtccag caacctccca gctcacacct tagcttctac 300caagaagggg tgaacacagc atccctgcta tcttcactca gacccccaga agacacagga 360 aaccgcacag ctccactccc accataactt 390 <210> SEQ ID NO 41<211> LENGTH: 43 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide Primer <400> SEQUENCE: 41 agcggataac aatttcacac agggagctag cttggaagat tgc 43 <210> SEQ ID NO 42 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide Primer <400> SEQUENCE: 42 gtccaatata tgcaaacagt tg 22<210> SEQ ID NO 43 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide Primer <400> SEQUENCE: 43 agcggataac aatttcacac agg 23<210> SEQ ID NO 44 <211> LENGTH: 18 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide Primer <400> SEQUENCE: 44 actgagcctg ctgcataa 18<210> SEQ ID NO 45<211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide Primer <400> SEQUENCE: 45 tctcaatcat gtgcattgag g 21<210> SEQ ID NO 46<211> LENGTH: 43 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide Primer <400> SEQUENCE: 46 agcggataac aatttcacac agggatcaca cagccatcag cag 43 <210> SEQ ID NO 47 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: oligonucleotide primer <400> SEQUENCE: 47 agcggataac aatttcacac agg 23<210> SEQ ID NO 48<211> LENGTH: 18 <212> TYPE: DNA <213> ORGANISM: Oligonucleotide primer <400> SEQUENCE: 48 ctggcgccac gtggtcaa 18<210> SEQ ID NO 49<211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide Primer <400> SEQUENCE: 49 tttctctgca cagagagggc 20<210> SEQ ID NO 50<211> LENGTH: 44 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide Primer <400> SEQUENCE: 50 agcggataac aatttcacac agggctgaaa tccttcgctt tacc 44 <210> SEQ ID NO 51 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide Primer <400> SEQUENCE: 51 agcggataac aatttcacac agg 23<210> SEQ ID NO 52 <211> LENGTH: 18 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide Primer <400> SEQUENCE: 52 ctgaaaaggg agagaaag 18 <210> SEQ ID NO 53 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide Primer <400> SEQUENCE: 53 tcccaaagtg ctggaattac 20<210> SEQ ID NO 54 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide Primer <400> SEQUENCE: 54 gtccaatata tgcaaacagt tg 22<210> SEQ ID NO 55<211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide Primer <400> SEQUENCE: 55 cccacagcag ttaatccttc 20<210> SEQ ID NO 56<211> LENGTH: 18 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide primer <400> SEQUENCE: 56 gcgctcctgt cggtgcca 18<210> SEQ ID NO 57 <211> LENGTH: 18 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide primer <400> SEQUENCE: 57 gcctgactgg tggggccc 18<210> SEQ ID NO 58 <211> LENGTH: 15 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide primer <400> SEQUENCE: 58 catgcatgca cggtc 15<210> SEQ ID NO 59<211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide primer <400> SEQUENCE: 59 cagagagtac ccctcgaccg tgcatgcatg 30<210> SEQ ID NO 60<211> LENGTH: 15 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide primer <400> SEQUENCE: 60 catgcatgca cggtt 15 <210> SEQ ID NO 61 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide primer <400> SEQUENCE: 61 gtacgtacgt gccaactccc catgagagac 30 <210> SEQ ID NO 62 <211> LENGTH: 14 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide primer <400> SEQUENCE: 62 catgcatgca cggt 14 <210> SEQ ID NO 63 <211> LENGTH: 18 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide primer <400> SEQUENCE: 63 gcctgactgg tggggccc 18<210> SEQ ID NO 64 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide primer <400> SEQUENCE: 64 gtgctgcagg tgtaaacttg taccag 26 <210> SEQ ID NO 65<211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide primer <400> SEQUENCE: 65 cacggatccg gtagcagcgg tagagttg 28 <210> SEQ ID NO 66 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide primer <400> SEQUENCE: 66 actgggcatg tggagacag 19<210> SEQ ID NO 67 <211> LENGTH: 18 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide primer <400> SEQUENCE: 67 gcactttctt gccatgag 18<210> SEQ ID NO 68 <211> LENGTH: 14 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide primer <400> SEQUENCE: 68 tcagtcacga cgtt 14 <210> SEQ ID NO 69 <211> LENGTH: 14 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide primer <400> SEQUENCE: 69 cggataacaa tttc 14 <210> SEQ ID NO 70<211> LENGTH: 37 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide primer <400> SEQUENCE: 70 caatttcatc gctggatgca atctgggcta tgagatc 37 <210> SEQ ID NO 71 <211> LENGTH: 37 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide primer <400> SEQUENCE: 71 caatttcaca cagcggatgc ttcttttggc tctgact 37 <210> SEQ ID NO 72<211> LENGTH: 40 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide primer <400> SEQUENCE: 72 tcagtcacga cgttggatgc caataaaagt gactctcagc 40<210> SEQ ID NO 73 <211> LENGTH: 37 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide primer <400> SEQUENCE: 73 cggataacaa tttcggatgc actgggagca ttgaggc 37 <210> SEQ ID NO 74 <211> LENGTH: 38 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide primer <400> SEQUENCE: 74 tcagtcacga cgttggatga gcagatccct ggacaggc 38<210> SEQ ID NO 75 <211> LENGTH: 38 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide primer <400> SEQUENCE: 75 cggataacaa tttcggatgg acaaaatacc tgtattcc 38<210> SEQ ID NO 76 <211> LENGTH: 36 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide primer <400> SEQUENCE: 76 tcagtcacga cgttggatgc agagcagctc cgagtc 36 <210> SEQ ID NO 77 <211> LENGTH: 32 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide primer <400> SEQUENCE: 77 cagcggtgat cattggatgc aggaagctct gg 32<210> SEQ ID NO 78 <211> LENGTH: 38 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide primer <400> SEQUENCE: 78 tcagtcacga cgttggatgc ccacatgcca cccactac 38<210> SEQ ID NO 79 <211> LENGTH: 35 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide primer <400> SEQUENCE: 79 cggataacaa tttcggatgc ccgtcaggta ccacg 35<210> SEQ ID NO 80<211> LENGTH: 37 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide primer <400> SEQUENCE: 80 tcagtcacga cgttggatgc ccacagtgga gcttcag 37 <210> SEQ ID NO 81<211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide primer <400> SEQUENCE: 81 gctcatacct tgcaggatga cg 22<210> SEQ ID NO 82<211> LENGTH: 36 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide primer <400> SEQUENCE: 82 tcagtcacga cgttggatga ccagctgttc gtgttc 36 <210> SEQ ID NO 83<211> LENGTH: 34 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide primer <400> SEQUENCE: 83 tacatggagt tcggggatgc acacggcgac tctc 34 <210> SEQ ID NO 84<211> LENGTH: 40 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide primer <400> SEQUENCE: 84 tcagtcacga cgttggatgg ggaagagcag agatatacgt 40 <210> SEQ ID NO 85<211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide primer <400> SEQUENCE: 85 gaggggctga tccaggatgg gtgctccac 29<210> SEQ ID NO 86<211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide primer <400> SEQUENCE: 86 tgaagcactt gaaggatgag ggtgtctgcg 30<210> SEQ ID NO 87<211> LENGTH: 38 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide primer <400> SEQUENCE: 87 cggataacaa tttcggatgc tgcgtgatga tgaaatcg 38<210> SEQ ID NO 88<211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide primer <400> SEQUENCE: 88 gatgaagctc ccaggatgcc agaggc 26 <210> SEQ ID NO 89<211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide primer <400> SEQUENCE: 89 gccgccggtg taggatgctg ctggtgc 27<210> SEQ ID NO 90<211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide Template <400> SEQUENCE: 90 cgcagggttt cctcgtcgca ctgggcatgt g 31<210> SEQ ID NO 91<211> LENGTH: 43 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Biotinylatd primer <400> SEQUENCE: 91 tgcttatccc tgtagctacc ctgtcttggc cttgcagatc caa 43 <210> SEQ ID NO 92 <211> LENGTH: 42 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide primer <400> SEQUENCE: 92 agcggataac aatttcacac aggccatcac accgcggtac tg 42 <210> SEQ ID NO 93<211> LENGTH: 44 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide primer <400> SEQUENCE: 93 cccagtcacg acgttgtaaa acgtcttggc cttgcagatc caag 44 <210> SEQ ID NO 94 <211> LENGTH: 42 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide primer <400> SEQUENCE: 94 agcggataac aatttcacac aggccatcac accgcggtac tg 42 <210> SEQ ID NO 95<211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide primer <400> SEQUENCE: 95 ctccagctgg gcaggagtgc 20<210> SEQ ID NO 96 <211> LENGTH: 17 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide primer <400> SEQUENCE: 96 cacttcagtc gctccct 17<210> SEQ ID NO 97<211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Biotinylated primer <400> SEQUENCE: 97 cccagtcacg acgttgtaaa acg 23<210> SEQ ID NO 98<211> LENGTH: 100 <212> TYPE: DNA <213> ORGANISM: Homo sapien <400> SEQUENCE: 98 cctttgagaa agggctctgc ttgagttgta gaaagaaccg ctgcaacaat ctgggctatg 60 agatcaataa agtcagagcc aaaagaagca gcaaaatgta 100<210> SEQ ID NO 99<211> LENGTH: 100 <212> TYPE: DNA <213> ORGANISM: Homo sapien <400> SEQUENCE: 99 cctttgagaa agggctctgc ttgagttgta gaaagaaccg ctgcaacaat ctgggctatg 60 agatcagtaa agtcagagcc aaaagaagca gcaaaatgta 100<210> SEQ ID NO 100<211> LENGTH: 100 <212> TYPE: DNA <213> ORGANISM: Homo sapien <400> SEQUENCE: 100 gaattatttt tgtgtttcta aaactatggt tcccaataaa agtgactctc agcgagcctc 60aatgctccca gtgctattca tgggcagctc tctgggctca 100<210> SEQ ID NO 101<211> LENGTH: 100 <212> TYPE: DNA <213> ORGANISM: Homo sapien <400> SEQUENCE: 101 gaattatttt tgtgtttcta aaactatggt tcccaataaa agtgactctc agcaagcctc 60aatgctccca gtgctattca tgggcagctc tctgggctca 100<210> SEQ ID NO 102 <211> LENGTH: 84 <212> TYPE: DNA <213> ORGANISM: Homo sapien <400> SEQUENCE: 102 taataggact acttctaatc tgtaagagca gatccctgga caggcgagga atacaggtat 60 tttgtccttg aagtaacctt tcag 84<210> SEQ ID NO 103<211> LENGTH: 84 <212> TYPE: DNA <213> ORGANISM: Homo sapien <400> SEQUENCE: 103 taataggact acttctaatc tgtaagagca gatccctgga caggcaagga atacaggtat 60 tttgtccttg aagtaacctt tcag 84<210> SEQ ID NO 104<211> LENGTH: 100 <212> TYPE: DNA <213> ORGANISM: Homo sapien <400> SEQUENCE: 104 ctcaccatgg gcatttgatt gcagagcagc tccgagtccg tccagagctt cctgcagtca 60atgatcaccg ctgtgggcat ccctgaggtc atgtctcgta 100<210> SEQ ID NO 105<211> LENGTH: 100 <212> TYPE: DNA <213> ORGANISM: Homo sapien <400> SEQUENCE: 105 ctcaccatgg gcatttgatt gcagagcagc tccgagtcca tccagagctt cctgcagtca 60atgatcaccg ctgtgggcat ccctgaggtc atgtctcgta 100<210> SEQ ID NO 106<211> LENGTH: 100 <212> TYPE: DNA <213> ORGANISM: Homo sapien <400> SEQUENCE: 106 agcaaggact cctgcaaggg ggacagtgga ggcccacatg ccacccacta ccagggcacg 60tggtacctga cgggcatcgt cagctggggc cagggctgcg 100<210> SEQ ID NO 107 <211> LENGTH: 100 <212> TYPE: DNA <213> ORGANISM: Homo sapien <400> SEQUENCE: 107 agcaaggact cctgcaaggg ggacagtgga ggcccacatg ccacccacta ccggggcacg 60tggtacctga cgggcatcgt cagctggggc cagggctgcg 100<210> SEQ ID NO 108<211> LENGTH: 100 <212> TYPE: DNA <213> ORGANISM: Hom sapien <400> SEQUENCE: 108 caataactct aatgcagcgg aagatgacct gcccacagtg gagcttcagg gcgtggtgcc 60ccggggcgtc aacctgcaag gtatgagcat accccccttc 100<210> SEQ ID NO 109 <211> LENGTH: 100 <212> TYPE: DNA <213> ORGANISM: Homo sapien <400> SEQUENCE: 109 caataactct aatgcagcgg aagatgacct gcccacagtg gagcttcagg gcttggtgcc 60 ccggggcgtc aacctgcaag gtatgagcat accccccttc 100<210> SEQ ID NO 110<211> LENGTH: 100 <212> TYPE: DNA <213> ORGANISM: Homo sapien <400> SEQUENCE: 110 ttgaagcttt gggctacgtg gatgaccagc tgttcgtgtt ctatgatcat gagagtcgcc 60 gtgtggagcc ccgaactcca tgggtttcca gtagaatttc 100<210> SEQ ID NO 111 <211> LENGTH: 100 <212> TYPE: DNA <213> ORGANISM: Homo sapien <400> SEQUENCE: 111 ttgaagcttt gggctacgtg gatgaccagc tgttcgtgtt ctatgatgat gagagtcgcc 60 gtgtggagcc ccgaactcca tgggtttcca gtagaatttc 100<210> SEQ ID NO 112<211> LENGTH: 100 <212> TYPE: DNA <213> ORGANISM: Homo sapien <400> SEQUENCE: 112 ggataacctt ggctgtaccc cctggggaag agcagagata tacgtgccag gtggagcacc 60 caggcctgga tcagcccctc attgtgatct gggagccctc 100<210> SEQ ID NO 113<211> LENGTH: 100 <212> TYPE: DNA <213> ORGANISM: Homo sapien <400> SEQUENCE: 113 ggataacctt ggctgtaccc cctggggaag agcagagata tacgtaccag gtggagcacc 60 caggcctgga tcagcccctc attgtgatct gggagccctc 100<210> SEQ ID NO 114<211> LENGTH: 80 <212> TYPE: DNA <213> ORGANISM: Homo sapien <400> SEQUENCE: 114 tgaagcactt gaaggagaag gtgtctgcgg gagccgattt catcatcacg cagcttttct 60ttgaggctga cacattcttc 80<210> SEQ ID NO 115 <211> LENGTH: 80 <212> TYPE: DNA <213> ORGANISM: Homo sapien <400> SEQUENCE: 115 tgaagcactt gaaggagaag gtgtctgcgg gagtcgattt catcatcacg cagcttttct 60ttgaggctga cacattcttc 80<210> SEQ ID NO 116<211> LENGTH: 80 <212> TYPE: DNA <213> ORGANISM: Homo sapien <400> SEQUENCE: 116 tccagatgaa gctcccagaa tgccagaggc tgctccccgc gtggcccctg caccagcagc 60tcctacaccg gcggcccctg 80<210> SEQ ID NO 117 <211> LENGTH: 80 <212> TYPE: DNA <213> ORGANISM: Homo sapien <400> SEQUENCE: 117 tccagatgaa gctcccagaa tgccagaggc tgctcccccc gtggcccctg caccagcagc 60tcctacaccg gcggcccctg 80<210> SEQ ID NO 118<211> LENGTH: 48 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Hair pin structure <400> SEQUENCE: 118 cagagagtac ccctcaaccg tgcatgcatg aaacatgcat gcacggtt 48
Claims (3)
1. A high throughput method of determining frequencies of genetic variations, comprising:
selecting a healthy target population and a genetic variation to be assessed;
pooling a plurality of samples of biopolymers obtained from members of the population;
determining or detecting the biopolymer that comprises the variation by mass spectrometry;
obtaining a mass spectrum or a digital representation thereof; and
determining the frequency of the variation in the population.
2. The method of claim 1 , wherein:
the variation is selected from the group consisting of an allelic variation, a post-translational modification, a nucleic modification, a label, a mass modification of a nucleic acid and methylation; and/or
the biopolymer is a nucleic acid, a protein, a polysaccharide, a lipid, a small organic metabolite or intermediate, wherein the concentration of biopolymer of interest is the same in each of the samples; and/or
the frequency is determined by assessing the method comprising determining the area under the peak in the mass spectrum or digital representation thereof corresponding to the mass of the biopolymer comprising the genomic variation.
3. The method of claim 2 , wherein the method for determining the frequency is effected by determining the ratio of the signal or the digital representation thereof to the total area of the entire mass spectrum, which is corrected for background.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/272,756 US20030190644A1 (en) | 1999-10-13 | 2002-10-15 | Methods for generating databases and databases for identifying polymorphic genetic markers |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15917699P | 1999-10-13 | 1999-10-13 | |
US21765800P | 2000-07-10 | 2000-07-10 | |
US21725100P | 2000-07-10 | 2000-07-10 | |
US09/663,968 US7917301B1 (en) | 2000-09-19 | 2000-09-19 | Method and device for identifying a biological sample |
US68748300A | 2000-10-13 | 2000-10-13 | |
US10/272,756 US20030190644A1 (en) | 1999-10-13 | 2002-10-15 | Methods for generating databases and databases for identifying polymorphic genetic markers |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/663,968 Continuation-In-Part US7917301B1 (en) | 1999-10-13 | 2000-09-19 | Method and device for identifying a biological sample |
US68748300A Division | 1999-10-13 | 2000-10-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030190644A1 true US20030190644A1 (en) | 2003-10-09 |
Family
ID=46281349
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/273,321 Expired - Fee Related US7668658B2 (en) | 1999-10-13 | 2002-10-15 | Methods for generating databases and databases for identifying polymorphic genetic markers |
US10/272,665 Expired - Lifetime US7332275B2 (en) | 1999-10-13 | 2002-10-15 | Methods for detecting methylated nucleotides |
US10/272,756 Abandoned US20030190644A1 (en) | 1999-10-13 | 2002-10-15 | Methods for generating databases and databases for identifying polymorphic genetic markers |
US12/643,933 Expired - Fee Related US8229677B2 (en) | 1999-10-13 | 2009-12-21 | Methods for generating databases and databases for identifying polymorphic genetic markers |
US13/536,807 Expired - Fee Related US8818735B2 (en) | 1999-10-13 | 2012-06-28 | Methods for generating databases and databases for identifying polymorphic genetic markers |
US14/274,476 Abandoned US20150005194A1 (en) | 1999-10-13 | 2014-05-09 | Methods for generating databases and databases for identifying polymorphic genetic markers |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/273,321 Expired - Fee Related US7668658B2 (en) | 1999-10-13 | 2002-10-15 | Methods for generating databases and databases for identifying polymorphic genetic markers |
US10/272,665 Expired - Lifetime US7332275B2 (en) | 1999-10-13 | 2002-10-15 | Methods for detecting methylated nucleotides |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/643,933 Expired - Fee Related US8229677B2 (en) | 1999-10-13 | 2009-12-21 | Methods for generating databases and databases for identifying polymorphic genetic markers |
US13/536,807 Expired - Fee Related US8818735B2 (en) | 1999-10-13 | 2012-06-28 | Methods for generating databases and databases for identifying polymorphic genetic markers |
US14/274,476 Abandoned US20150005194A1 (en) | 1999-10-13 | 2014-05-09 | Methods for generating databases and databases for identifying polymorphic genetic markers |
Country Status (1)
Country | Link |
---|---|
US (6) | US7668658B2 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030096426A1 (en) * | 1997-01-23 | 2003-05-22 | Daniel P. Little | Systems and methods for preparing and analyzing low volume analyte array elements |
WO2005020788A2 (en) * | 2003-08-01 | 2005-03-10 | The General Hospital Corporation | Cognition analysis |
WO2005098050A2 (en) | 2004-03-26 | 2005-10-20 | Sequenom, Inc. | Base specific cleavage of methylation-specific amplification products in combination with mass analysis |
US20050260603A1 (en) * | 2002-12-31 | 2005-11-24 | Mmi Genomics, Inc. | Compositions for inferring bovine traits |
US7668658B2 (en) | 1999-10-13 | 2010-02-23 | Sequenom, Inc. | Methods for generating databases and databases for identifying polymorphic genetic markers |
US20100162423A1 (en) * | 2003-10-24 | 2010-06-24 | Metamorphix, Inc. | Methods and Systems for Inferring Traits to Breed and Manage Non-Beef Livestock |
US7759065B2 (en) | 1995-03-17 | 2010-07-20 | Sequenom, Inc. | Mass spectrometric methods for detecting mutations in a target nucleic acid |
US7820378B2 (en) | 2002-11-27 | 2010-10-26 | Sequenom, Inc. | Fragmentation-based methods and systems for sequence variation detection and discovery |
US8999266B2 (en) | 2000-10-30 | 2015-04-07 | Agena Bioscience, Inc. | Method and apparatus for delivery of submicroliter volumes onto a substrate |
US9068953B2 (en) | 2007-09-17 | 2015-06-30 | Agena Bioscience, Inc. | Integrated robotic sample transfer device |
US9394565B2 (en) | 2003-09-05 | 2016-07-19 | Agena Bioscience, Inc. | Allele-specific sequence variation analysis |
US20210017592A1 (en) * | 2017-07-07 | 2021-01-21 | Massachusetts Institute Of Technology | Systems and methods for genetic identification and analysis |
Families Citing this family (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6994969B1 (en) * | 1999-04-30 | 2006-02-07 | Methexis Genomics, N.V. | Diagnostic sequencing by a combination of specific cleavage and mass spectrometry |
WO2001077378A2 (en) * | 2000-04-06 | 2001-10-18 | Epigenomics Ag | Diagnosis of diseases associated with dna adducts |
US20060286577A1 (en) * | 2005-06-17 | 2006-12-21 | Xiyu Jia | Methods for detection of methylated DNA |
EP2002368A2 (en) * | 2006-03-06 | 2008-12-17 | Applera Corporation | Method and system for generating validation workflow |
EP2016188B1 (en) * | 2006-04-24 | 2015-10-21 | Xiyu Jia | Methods for detection of methylated dna |
US9562837B2 (en) | 2006-05-11 | 2017-02-07 | Raindance Technologies, Inc. | Systems for handling microfludic droplets |
JP5227556B2 (en) * | 2007-09-06 | 2013-07-03 | 株式会社日立製作所 | Analysis equipment |
US8709726B2 (en) | 2008-03-11 | 2014-04-29 | Sequenom, Inc. | Nucleic acid-based tests for prenatal gender determination |
WO2009130693A2 (en) * | 2008-04-21 | 2009-10-29 | Mts Investments Inc. | System and method for statistical mapping between genetic information and facial image data |
WO2010009365A1 (en) | 2008-07-18 | 2010-01-21 | Raindance Technologies, Inc. | Droplet libraries |
US12038438B2 (en) | 2008-07-18 | 2024-07-16 | Bio-Rad Laboratories, Inc. | Enzyme quantification |
US8962247B2 (en) | 2008-09-16 | 2015-02-24 | Sequenom, Inc. | Processes and compositions for methylation-based enrichment of fetal nucleic acid from a maternal sample useful for non invasive prenatal diagnoses |
US8476013B2 (en) | 2008-09-16 | 2013-07-02 | Sequenom, Inc. | Processes and compositions for methylation-based acid enrichment of fetal nucleic acid from a maternal sample useful for non-invasive prenatal diagnoses |
US9127312B2 (en) | 2011-02-09 | 2015-09-08 | Bio-Rad Laboratories, Inc. | Analysis of nucleic acids |
US20110159499A1 (en) * | 2009-11-25 | 2011-06-30 | Quantalife, Inc. | Methods and compositions for detecting genetic material |
US8543339B2 (en) * | 2008-12-05 | 2013-09-24 | 23Andme, Inc. | Gamete donor selection based on genetic calculations |
EP2394175B1 (en) * | 2009-02-09 | 2016-02-03 | caprotec bioanalytics GmbH | Devices, systems and methods for separating magnetic particles |
EP2516680B1 (en) | 2009-12-22 | 2016-04-06 | Sequenom, Inc. | Processes and kits for identifying aneuploidy |
AU2011229918B2 (en) * | 2010-03-24 | 2015-02-05 | Parker Proteomics, Llc | Methods for conducting genetic analysis using protein polymorphisms |
WO2012112804A1 (en) * | 2011-02-18 | 2012-08-23 | Raindance Technoligies, Inc. | Compositions and methods for molecular labeling |
US8460872B2 (en) | 2011-04-29 | 2013-06-11 | Sequenom, Inc. | Quantification of a minority nucleic acid species |
US8658430B2 (en) | 2011-07-20 | 2014-02-25 | Raindance Technologies, Inc. | Manipulating droplet size |
US8990250B1 (en) * | 2011-10-11 | 2015-03-24 | 23Andme, Inc. | Cohort selection with privacy protection |
CN103160937B (en) * | 2011-12-15 | 2015-02-18 | 深圳华大基因科技服务有限公司 | Method for conducting enrichment library construction and SNP analysis on gene of complex genome of higher plant |
ES2930180T3 (en) | 2012-03-02 | 2022-12-07 | Sequenom Inc | Methods for enriching for cancer nucleic acid from a biological sample |
US9920361B2 (en) | 2012-05-21 | 2018-03-20 | Sequenom, Inc. | Methods and compositions for analyzing nucleic acid |
JP2015521862A (en) | 2012-07-13 | 2015-08-03 | セクエノム, インコーポレイテッド | Process and composition for enrichment based on methylation of fetal nucleic acid from maternal samples useful for non-invasive prenatal diagnosis |
EP3597774A1 (en) | 2013-03-13 | 2020-01-22 | Sequenom, Inc. | Primers for dna methylation analysis |
US11646918B2 (en) | 2013-03-15 | 2023-05-09 | Digital Global Systems, Inc. | Systems, methods, and devices for electronic spectrum management for identifying open space |
US10237770B2 (en) * | 2013-03-15 | 2019-03-19 | DGS Global Systems, Inc. | Systems, methods, and devices having databases and automated reports for electronic spectrum management |
US10257729B2 (en) | 2013-03-15 | 2019-04-09 | DGS Global Systems, Inc. | Systems, methods, and devices having databases for electronic spectrum management |
US10219163B2 (en) * | 2013-03-15 | 2019-02-26 | DGS Global Systems, Inc. | Systems, methods, and devices for electronic spectrum management |
US10257727B2 (en) | 2013-03-15 | 2019-04-09 | DGS Global Systems, Inc. | Systems methods, and devices having databases and automated reports for electronic spectrum management |
US9622041B2 (en) | 2013-03-15 | 2017-04-11 | DGS Global Systems, Inc. | Systems, methods, and devices for electronic spectrum management |
JP2016530482A (en) * | 2013-05-23 | 2016-09-29 | アイフィノタイプ エルエルシー | Method and system for maintaining or improving wellness |
WO2015013681A1 (en) | 2013-07-25 | 2015-01-29 | Bio-Rad Laboratories, Inc. | Genetic assays |
WO2015138774A1 (en) | 2014-03-13 | 2015-09-17 | Sequenom, Inc. | Methods and processes for non-invasive assessment of genetic variations |
CN109979526B (en) | 2014-03-25 | 2023-11-24 | 凡弗3基因组有限公司 | System and method for RNA analysis of functionally confirmed cancer mutations |
US10395759B2 (en) | 2015-05-18 | 2019-08-27 | Regeneron Pharmaceuticals, Inc. | Methods and systems for copy number variant detection |
US10747899B2 (en) * | 2015-10-07 | 2020-08-18 | The Board Of Trustees Of The Leland Stanford Junior University | Techniques for determining whether an individual is included in ensemble genomic data |
JP6765433B2 (en) | 2016-02-12 | 2020-10-07 | リジェネロン・ファーマシューティカルズ・インコーポレイテッドRegeneron Pharmaceuticals, Inc. | Methods for detecting anomalous karyotypes |
US10700794B2 (en) * | 2017-01-23 | 2020-06-30 | Digital Global Systems, Inc. | Systems, methods, and devices for automatic signal detection based on power distribution by frequency over time within an electromagnetic spectrum |
JP7141029B2 (en) * | 2017-07-12 | 2022-09-22 | シスメックス株式会社 | How to build a database |
US10943461B2 (en) | 2018-08-24 | 2021-03-09 | Digital Global Systems, Inc. | Systems, methods, and devices for automatic signal detection based on power distribution by frequency over time |
CN111325121B (en) * | 2020-02-10 | 2024-02-20 | 浙江迪谱诊断技术有限公司 | Nucleic acid mass spectrum numerical processing method |
DE102020211219A1 (en) | 2020-09-08 | 2022-03-10 | Robert Bosch Gesellschaft mit beschränkter Haftung | Method and controller for determining a number of samples for bulk analysis using an analyzer for analyzing samples of biological material |
US11379578B1 (en) | 2020-10-16 | 2022-07-05 | Trend Micro Incorporated | Detecting malware by pooled analysis of sample files in a sandbox |
CN112908411B (en) * | 2021-01-12 | 2024-05-14 | 广州市金域转化医学研究院有限公司 | Mitochondrial variation site database and establishment method and application thereof |
WO2023049490A1 (en) * | 2021-09-27 | 2023-03-30 | Purdue Reserach Foundation | Label-free food analysis and molecular detection |
Citations (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9394A (en) * | 1852-11-09 | Brick-machnsfe | ||
US42112A (en) * | 1864-03-29 | Improvement in grain-drills | ||
US155587A (en) * | 1874-10-06 | Improvement in billiard-cushions | ||
US4683202A (en) * | 1985-03-28 | 1987-07-28 | Cetus Corporation | Process for amplifying nucleic acid sequences |
US4683195A (en) * | 1986-01-30 | 1987-07-28 | Cetus Corporation | Process for amplifying, detecting, and/or-cloning nucleic acid sequences |
US4826360A (en) * | 1986-03-10 | 1989-05-02 | Shimizu Construction Co., Ltd. | Transfer system in a clean room |
US4851018A (en) * | 1986-11-28 | 1989-07-25 | Commissariat A L'energie Atomique | Installation for the storage and transfer of objects in a very clean atmosphere |
US5118937A (en) * | 1989-08-22 | 1992-06-02 | Finnigan Mat Gmbh | Process and device for the laser desorption of an analyte molecular ions, especially of biomolecules |
US5436150A (en) * | 1992-04-03 | 1995-07-25 | The Johns Hopkins University | Functional domains in flavobacterium okeanokoities (foki) restriction endonuclease |
US5440119A (en) * | 1992-06-02 | 1995-08-08 | Labowsky; Michael J. | Method for eliminating noise and artifact peaks in the deconvolution of multiply charged mass spectra |
US5453613A (en) * | 1994-10-21 | 1995-09-26 | Hewlett Packard Company | Mass spectra interpretation system including spectra extraction |
US5498545A (en) * | 1994-07-21 | 1996-03-12 | Vestal; Marvin L. | Mass spectrometer system and method for matrix-assisted laser desorption measurements |
US5503980A (en) * | 1992-11-06 | 1996-04-02 | Trustees Of Boston University | Positional sequencing by hybridization |
US5506137A (en) * | 1992-07-23 | 1996-04-09 | Stratagene | Purified thermostable Pyrococcus furiosus DNA ligase |
US5536649A (en) * | 1993-05-11 | 1996-07-16 | Becton, Dickinson And Company | Decontamination of nucleic acid amplification reactions using uracil-N-glycosylase (UDG) |
US5547835A (en) * | 1993-01-07 | 1996-08-20 | Sequenom, Inc. | DNA sequencing by mass spectrometry |
US5604098A (en) * | 1993-03-24 | 1997-02-18 | Molecular Biology Resources, Inc. | Methods and materials for restriction endonuclease applications |
US5605798A (en) * | 1993-01-07 | 1997-02-25 | Sequenom, Inc. | DNA diagnostic based on mass spectrometry |
US5622824A (en) * | 1993-03-19 | 1997-04-22 | Sequenom, Inc. | DNA sequencing by mass spectrometry via exonuclease degradation |
US5686656A (en) * | 1996-02-27 | 1997-11-11 | Aviv Amirav | Method and device for the introduction of a sample into a gas chromatograph |
US5714330A (en) * | 1994-04-04 | 1998-02-03 | Lynx Therapeutics, Inc. | DNA sequencing by stepwise ligation and cleavage |
US5777324A (en) * | 1996-09-19 | 1998-07-07 | Sequenom, Inc. | Method and apparatus for maldi analysis |
US5786146A (en) * | 1996-06-03 | 1998-07-28 | The Johns Hopkins University School Of Medicine | Method of detection of methylated nucleic acid using agents which modify unmethylated cytosine and distinguishing modified methylated and non-methylated nucleic acids |
US5795714A (en) * | 1992-11-06 | 1998-08-18 | Trustees Of Boston University | Method for replicating an array of nucleic acid probes |
US5837832A (en) * | 1993-06-25 | 1998-11-17 | Affymetrix, Inc. | Arrays of nucleic acid probes on biological chips |
US5843669A (en) * | 1996-01-24 | 1998-12-01 | Third Wave Technologies, Inc. | Cleavage of nucleic acid acid using thermostable methoanococcus jannaschii FEN-1 endonucleases |
US5853979A (en) * | 1995-06-30 | 1998-12-29 | Visible Genetics Inc. | Method and system for DNA sequence determination and mutation detection with reference to a standard |
US5858705A (en) * | 1995-06-05 | 1999-01-12 | Human Genome Sciences, Inc. | Polynucleotides encoding human DNA ligase III and methods of using these polynucleotides |
US5871911A (en) * | 1992-12-07 | 1999-02-16 | Wisconsin Alumni Research Foundation | Method of site-specific nucleic acid cleavage |
US5874283A (en) * | 1995-05-30 | 1999-02-23 | John Joseph Harrington | Mammalian flap-specific endonuclease |
US5885841A (en) * | 1996-09-11 | 1999-03-23 | Eli Lilly And Company | System and methods for qualitatively and quantitatively comparing complex admixtures using single ion chromatograms derived from spectroscopic analysis of such admixtures |
US5888795A (en) * | 1997-09-09 | 1999-03-30 | Becton, Dickinson And Company | Thermostable uracil DNA glycosylase and methods of use |
US5900481A (en) * | 1996-11-06 | 1999-05-04 | Sequenom, Inc. | Bead linkers for immobilizing nucleic acids to solid supports |
US5928906A (en) * | 1996-05-09 | 1999-07-27 | Sequenom, Inc. | Process for direct sequencing during template amplification |
US5928870A (en) * | 1997-06-16 | 1999-07-27 | Exact Laboratories, Inc. | Methods for the detection of loss of heterozygosity |
US5952176A (en) * | 1995-07-11 | 1999-09-14 | Forfas (Trading As Bioresearch Ireland) | Glycosylase mediated detection of nucleotide sequences at candidate loci |
US5975492A (en) * | 1997-07-14 | 1999-11-02 | Brenes; Arthur | Bellows driver slot valve |
US5976806A (en) * | 1997-06-25 | 1999-11-02 | Pioneer Hi-Bred International, Inc. | DNA ligase assay |
US6017704A (en) * | 1996-06-03 | 2000-01-25 | The Johns Hopkins University School Of Medicine | Method of detection of methylated nucleic acid using agents which modify unmethylated cytosine and distinguishing modified methylated and non-methylated nucleic acids |
US6022688A (en) * | 1996-05-13 | 2000-02-08 | Sequenom, Inc. | Method for dissociating biotin complexes |
US6024925A (en) * | 1997-01-23 | 2000-02-15 | Sequenom, Inc. | Systems and methods for preparing low volume analyte array elements |
US6054276A (en) * | 1998-02-23 | 2000-04-25 | Macevicz; Stephen C. | DNA restriction site mapping |
US6059724A (en) * | 1997-02-14 | 2000-05-09 | Biosignal, Inc. | System for predicting future health |
US6074823A (en) * | 1993-03-19 | 2000-06-13 | Sequenom, Inc. | DNA sequencing by mass spectrometry via exonuclease degradation |
US6090606A (en) * | 1996-01-24 | 2000-07-18 | Third Wave Technologies, Inc. | Cleavage agents |
US6099553A (en) * | 1998-05-21 | 2000-08-08 | Applied Medical Resources Corporation | Suture clinch |
US6133436A (en) * | 1996-11-06 | 2000-10-17 | Sequenom, Inc. | Beads bound to a solid support and to nucleic acids |
US6140053A (en) * | 1996-11-06 | 2000-10-31 | Sequenom, Inc. | DNA sequencing by mass spectrometry via exonuclease degradation |
US6146854A (en) * | 1995-08-31 | 2000-11-14 | Sequenom, Inc. | Filtration processes, kits and devices for isolating plasmids |
US6188064B1 (en) * | 1998-01-29 | 2001-02-13 | Bruker Daltonik Gmbh | Mass spectrometry method for accurate mass determination of unknown ions |
US6207370B1 (en) * | 1997-09-02 | 2001-03-27 | Sequenom, Inc. | Diagnostics based on mass spectrometric detection of translated target polypeptides |
US6268131B1 (en) * | 1997-12-15 | 2001-07-31 | Sequenom, Inc. | Mass spectrometric methods for sequencing nucleic acids |
US6270835B1 (en) * | 1999-10-07 | 2001-08-07 | Microcoating Technologies, Inc. | Formation of this film capacitors |
US6428955B1 (en) * | 1995-03-17 | 2002-08-06 | Sequenom, Inc. | DNA diagnostics based on mass spectrometry |
US6436635B1 (en) * | 1992-11-06 | 2002-08-20 | Boston University | Solid phase sequencing of double-stranded nucleic acids |
US6566055B1 (en) * | 1996-09-19 | 2003-05-20 | Sequenom, Inc. | Methods of preparing nucleic acids for mass spectrometric analysis |
Family Cites Families (201)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2031216A1 (en) * | 1969-06-19 | 1971-01-14 | Citizen Watch Co Ltd , Tokio | Day and date setting device for clocks with calendar |
US3687808A (en) | 1969-08-14 | 1972-08-29 | Univ Leland Stanford Junior | Synthetic polynucleotides |
US3940475A (en) * | 1970-06-11 | 1976-02-24 | Biological Developments, Inc. | Radioimmune method of assaying quantitatively for a hapten |
NL154598B (en) | 1970-11-10 | 1977-09-15 | Organon Nv | PROCEDURE FOR DETERMINING AND DETERMINING LOW MOLECULAR COMPOUNDS AND PROTEINS THAT CAN SPECIFICALLY BIND THESE COMPOUNDS AND TEST PACKAGING. |
US3817837A (en) | 1971-05-14 | 1974-06-18 | Syva Corp | Enzyme amplification assay |
US4179337A (en) | 1973-07-20 | 1979-12-18 | Davis Frank F | Non-immunogenic polypeptides |
US3939350A (en) * | 1974-04-29 | 1976-02-17 | Board Of Trustees Of The Leland Stanford Junior University | Fluorescent immunoassay employing total reflection for activation |
US3996345A (en) | 1974-08-12 | 1976-12-07 | Syva Company | Fluorescence quenching with immunological pairs in immunoassays |
DE2548891C3 (en) * | 1975-10-31 | 1983-04-28 | Finnigan MAT GmbH, 2800 Bremen | Sample changer for mass spectrometers |
US4275149A (en) | 1978-11-24 | 1981-06-23 | Syva Company | Macromolecular environment control in specific receptor assays |
US4277437A (en) | 1978-04-05 | 1981-07-07 | Syva Company | Kit for carrying out chemically induced fluorescence immunoassay |
JPS6023084B2 (en) | 1979-07-11 | 1985-06-05 | 味の素株式会社 | blood substitute |
US4366241A (en) | 1980-08-07 | 1982-12-28 | Syva Company | Concentrating zone method in heterogeneous immunoassays |
US4640835A (en) * | 1981-10-30 | 1987-02-03 | Nippon Chemiphar Company, Ltd. | Plasminogen activator derivatives |
US4722848A (en) * | 1982-12-08 | 1988-02-02 | Health Research, Incorporated | Method for immunizing animals with synthetically modified vaccinia virus |
US4562639A (en) * | 1982-03-23 | 1986-01-07 | Texas Instruments Incorporated | Process for making avalanche fuse element with isolated emitter |
US4511503A (en) * | 1982-12-22 | 1985-04-16 | Genentech, Inc. | Purification and activity assurance of precipitated heterologous proteins |
US4568649A (en) * | 1983-02-22 | 1986-02-04 | Immunex Corporation | Immediate ligand detection assay |
GB8311018D0 (en) * | 1983-04-22 | 1983-05-25 | Amersham Int Plc | Detecting mutations in dna |
US5118800A (en) | 1983-12-20 | 1992-06-02 | California Institute Of Technology | Oligonucleotides possessing a primary amino group in the terminal nucleotide |
US4496689A (en) * | 1983-12-27 | 1985-01-29 | Miles Laboratories, Inc. | Covalently attached complex of alpha-1-proteinase inhibitor with a water soluble polymer |
FR2567892B1 (en) * | 1984-07-19 | 1989-02-17 | Centre Nat Rech Scient | NOVEL OLIGONUCLEOTIDES, THEIR PREPARATION PROCESS AND THEIR APPLICATIONS AS MEDIATORS IN DEVELOPING THE EFFECTS OF INTERFERONS |
US5166315A (en) | 1989-12-20 | 1992-11-24 | Anti-Gene Development Group | Sequence-specific binding polymers for duplex nucleic acids |
US5235033A (en) | 1985-03-15 | 1993-08-10 | Anti-Gene Development Group | Alpha-morpholino ribonucleoside derivatives and polymers thereof |
US5405938A (en) * | 1989-12-20 | 1995-04-11 | Anti-Gene Development Group | Sequence-specific binding polymers for duplex nucleic acids |
US5034506A (en) | 1985-03-15 | 1991-07-23 | Anti-Gene Development Group | Uncharged morpholino-based polymers having achiral intersubunit linkages |
US5185444A (en) * | 1985-03-15 | 1993-02-09 | Anti-Gene Deveopment Group | Uncharged morpolino-based polymers having phosphorous containing chiral intersubunit linkages |
US5173418A (en) | 1985-05-10 | 1992-12-22 | Benzon Pharma, A/S | Production in Escherichia coli of extracellular Serratia spp. hydrolases |
EP0206448B1 (en) | 1985-06-19 | 1990-11-14 | Ajinomoto Co., Inc. | Hemoglobin combined with a poly(alkylene oxide) |
US5079342A (en) | 1986-01-22 | 1992-01-07 | Institut Pasteur | Cloned DNA sequences related to the entire genomic RNA of human immunodeficiency virus II (HIV-2), polypeptides encoded by these DNA sequences and use of these DNA clones and polypeptides in diagnostic kits |
US4791192A (en) | 1986-06-26 | 1988-12-13 | Takeda Chemical Industries, Ltd. | Chemically modified protein with polyethyleneglycol |
US4726360A (en) * | 1986-07-17 | 1988-02-23 | Medical Engineering Corporation | Penile prosthesis |
DE3788914T2 (en) * | 1986-09-08 | 1994-08-25 | Ajinomoto Kk | Compounds for cleaving RNA at a specific position, oligomers used in the preparation of these compounds and starting materials for the synthesis of these oligomers. |
US4998617A (en) * | 1986-09-15 | 1991-03-12 | Laura Lupton Inc | Facial cosmetic liquid make up kit |
US4987071A (en) * | 1986-12-03 | 1991-01-22 | University Patents, Inc. | RNA ribozyme polymerases, dephosphorylases, restriction endoribonucleases and methods |
US5525464A (en) | 1987-04-01 | 1996-06-11 | Hyseq, Inc. | Method of sequencing by hybridization of oligonucleotide probes |
US6270961B1 (en) * | 1987-04-01 | 2001-08-07 | Hyseq, Inc. | Methods and apparatus for DNA sequencing and DNA identification |
US5202231A (en) * | 1987-04-01 | 1993-04-13 | Drmanac Radoje T | Method of sequencing of genomes by hybridization of oligonucleotide probes |
US4837726A (en) | 1987-06-19 | 1989-06-06 | Applied Biosystems, Inc. | Quantitation of chromatographic information |
US5024939A (en) | 1987-07-09 | 1991-06-18 | Genentech, Inc. | Transient expression system for producing recombinant protein |
US4802102A (en) | 1987-07-15 | 1989-01-31 | Hewlett-Packard Company | Baseline correction for chromatography |
US5403711A (en) * | 1987-11-30 | 1995-04-04 | University Of Iowa Research Foundation | Nucleic acid hybridization and amplification method for detection of specific sequences in which a complementary labeled nucleic acid probe is cleaved |
ATE151467T1 (en) * | 1987-11-30 | 1997-04-15 | Univ Iowa Res Found | DNA MOLECULES STABILIZED BY MODIFICATIONS TO THE 3'-TERMINAL PHOSPHODIESTER BOND, THEIR USE AS NUCLEIC ACID PROBE AND AS THERAPEUTIC AGENTS FOR INHIBITING THE EXPRESSION OF SPECIFIC TARGET GENES |
US4988617A (en) * | 1988-03-25 | 1991-01-29 | California Institute Of Technology | Method of detecting a nucleotide change in nucleic acids |
US5216141A (en) | 1988-06-06 | 1993-06-01 | Benner Steven A | Oligonucleotide analogs containing sulfur linkages |
GB8816982D0 (en) | 1988-07-16 | 1988-08-17 | Probus Biomedical Ltd | Bio-fluid assay apparatus |
US5025939A (en) | 1988-09-16 | 1991-06-25 | Bunn-O-Matic Corporation | Coffee decanter with integral handle |
US5856092A (en) * | 1989-02-13 | 1999-01-05 | Geneco Pty Ltd | Detection of a nucleic acid sequence or a change therein |
US5082767A (en) * | 1989-02-27 | 1992-01-21 | Hatfield G Wesley | Codon pair utilization |
EP0395481A3 (en) | 1989-04-25 | 1991-03-20 | Spectra-Physics, Inc. | Method and apparatus for estimation of parameters describing chromatographic peaks |
US5256775A (en) | 1989-06-05 | 1993-10-26 | Gilead Sciences, Inc. | Exonuclease-resistant oligonucleotides |
US5925525A (en) | 1989-06-07 | 1999-07-20 | Affymetrix, Inc. | Method of identifying nucleotide differences |
US5547839A (en) * | 1989-06-07 | 1996-08-20 | Affymax Technologies N.V. | Sequencing of surface immobilized polymers utilizing microflourescence detection |
FR2650840B1 (en) | 1989-08-11 | 1991-11-29 | Bertin & Cie | RAPID DETECTION AND / OR IDENTIFICATION OF A SINGLE BASED ON A NUCLEIC ACID SEQUENCE, AND ITS APPLICATIONS |
US5591722A (en) * | 1989-09-15 | 1997-01-07 | Southern Research Institute | 2'-deoxy-4'-thioribonucleosides and their antiviral activity |
US5264562A (en) | 1989-10-24 | 1993-11-23 | Gilead Sciences, Inc. | Oligonucleotide analogs with novel linkages |
ATE269870T1 (en) | 1989-10-24 | 2004-07-15 | Isis Pharmaceuticals Inc | 2'-MODIFIED OLIGONUCLEOTIDES |
US5264564A (en) | 1989-10-24 | 1993-11-23 | Gilead Sciences | Oligonucleotide analogs with novel linkages |
US5128448A (en) | 1990-01-10 | 1992-07-07 | Hoffman-La Roche Inc. | CCK analogs with appetite regulating activity |
US5623065A (en) * | 1990-08-13 | 1997-04-22 | Isis Pharmaceuticals, Inc. | Gapped 2' modified oligonucleotides |
US5646265A (en) | 1990-01-11 | 1997-07-08 | Isis Pharmceuticals, Inc. | Process for the preparation of 2'-O-alkyl purine phosphoramidites |
US5670633A (en) | 1990-01-11 | 1997-09-23 | Isis Pharmaceuticals, Inc. | Sugar modified oligonucleotides that detect and modulate gene expression |
AU7225591A (en) | 1990-01-12 | 1991-08-05 | Scripps Clinic And Research Foundation | Nucleic acid enzymes for cleaving dna |
US5283173A (en) * | 1990-01-24 | 1994-02-01 | The Research Foundation Of State University Of New York | System to detect protein-protein interactions |
NZ236819A (en) | 1990-02-03 | 1993-07-27 | Max Planck Gesellschaft | Enzymatic cleavage of fusion proteins; fusion proteins; recombinant dna and pharmaceutical compositions |
US5149797A (en) | 1990-02-15 | 1992-09-22 | The Worcester Foundation For Experimental Biology | Method of site-specific alteration of rna and production of encoded polypeptides |
US5220007A (en) | 1990-02-15 | 1993-06-15 | The Worcester Foundation For Experimental Biology | Method of site-specific alteration of RNA and production of encoded polypeptides |
US6013431A (en) * | 1990-02-16 | 2000-01-11 | Molecular Tool, Inc. | Method for determining specific nucleotide variations by primer extension in the presence of mixture of labeled nucleotides and terminators |
IT1239733B (en) | 1990-02-23 | 1993-11-15 | Eniricerche Spa | NEUTRAL THERMO-STABLE MUTANTS AND MEANS AND METHODS FOR THEIR PREPARATION |
US5470967A (en) | 1990-04-10 | 1995-11-28 | The Dupont Merck Pharmaceutical Company | Oligonucleotide analogs with sulfamate linkages |
GB9009980D0 (en) | 1990-05-03 | 1990-06-27 | Amersham Int Plc | Phosphoramidite derivatives,their preparation and the use thereof in the incorporation of reporter groups on synthetic oligonucleotides |
ATE121454T1 (en) | 1990-05-09 | 1995-05-15 | Massachusetts Inst Technology | UBIQUITIN-SPECIFIC PROTEASE. |
DK0455905T3 (en) * | 1990-05-11 | 1998-12-07 | Microprobe Corp | Dipsticks for nucleic acid hybridization assays and method for covalent immobilization of oligonucleotides |
ATE170980T1 (en) | 1990-07-02 | 1998-09-15 | Univ California | DETERMINATION OF ANALYTES BY TRANSFER OF FLUORESCENCE ENERGY |
US5623070A (en) * | 1990-07-27 | 1997-04-22 | Isis Pharmaceuticals, Inc. | Heteroatomic oligonucleoside linkages |
US5618704A (en) * | 1990-07-27 | 1997-04-08 | Isis Pharmacueticals, Inc. | Backbone-modified oligonucleotide analogs and preparation thereof through radical coupling |
US5541307A (en) | 1990-07-27 | 1996-07-30 | Isis Pharmaceuticals, Inc. | Backbone modified oligonucleotide analogs and solid phase synthesis thereof |
US5489677A (en) * | 1990-07-27 | 1996-02-06 | Isis Pharmaceuticals, Inc. | Oligonucleoside linkages containing adjacent oxygen and nitrogen atoms |
US5610289A (en) * | 1990-07-27 | 1997-03-11 | Isis Pharmaceuticals, Inc. | Backbone modified oligonucleotide analogues |
US5602240A (en) * | 1990-07-27 | 1997-02-11 | Ciba Geigy Ag. | Backbone modified oligonucleotide analogs |
US5608046A (en) * | 1990-07-27 | 1997-03-04 | Isis Pharmaceuticals, Inc. | Conjugated 4'-desmethyl nucleoside analog compounds |
US5677437A (en) | 1990-07-27 | 1997-10-14 | Isis Pharmaceuticals, Inc. | Heteroatomic oligonucleoside linkages |
IL113519A (en) | 1990-08-03 | 1997-11-20 | Sterling Winthrop Inc | Oligonucleoside sequences of from about 6 to about 200 bases having a three atom internucleoside linkage, their preparation and pharmaceutical compositions for inhibiting gene expression containing said oligonucleosides |
SE9002579D0 (en) | 1990-08-07 | 1990-08-07 | Pharmacia Ab | METHOD AND APPARATUS FOR CARRYING OUT BIOCHEMICAL REACTIONS |
US5264563A (en) | 1990-08-24 | 1993-11-23 | Ixsys Inc. | Process for synthesizing oligonucleotides with random codons |
US5214134A (en) * | 1990-09-12 | 1993-05-25 | Sterling Winthrop Inc. | Process of linking nucleosides with a siloxane bridge |
US5561225A (en) | 1990-09-19 | 1996-10-01 | Southern Research Institute | Polynucleotide analogs containing sulfonate and sulfonamide internucleoside linkages |
AU662298B2 (en) * | 1990-09-20 | 1995-08-31 | Gilead Sciences, Inc. | Modified internucleoside linkages |
US6004744A (en) | 1991-03-05 | 1999-12-21 | Molecular Tool, Inc. | Method for determining nucleotide identity through extension of immobilized primer |
US5578443A (en) | 1991-03-06 | 1996-11-26 | Regents Of The University Of Minnesota | DNA sequence-based HLA typing method |
CA2066556A1 (en) | 1991-04-26 | 1992-10-27 | Toyoji Sawayanagi | Alkaline protease, method for producing the same, use thereof and microorganism producing the same |
JPH0534650A (en) | 1991-05-10 | 1993-02-12 | Fujitsu Ltd | Branch interference type optical modulator provided with monitor |
US5175430A (en) | 1991-05-17 | 1992-12-29 | Meridian Instruments, Inc. | Time-compressed chromatography in mass spectrometry |
DE4214112A1 (en) | 1991-08-02 | 1993-02-04 | Europ Lab Molekularbiolog | NEW METHOD FOR SEQUENCING NUCLEIC ACIDS |
US5474796A (en) | 1991-09-04 | 1995-12-12 | Protogene Laboratories, Inc. | Method and apparatus for conducting an array of chemical reactions on a support surface |
US5270170A (en) | 1991-10-16 | 1993-12-14 | Affymax Technologies N.V. | Peptide library and screening method |
DE59208572D1 (en) | 1991-10-17 | 1997-07-10 | Ciba Geigy Ag | Bicyclic nucleosides, oligonucleotides, processes for their preparation and intermediates |
FR2687679B1 (en) | 1992-02-05 | 1994-10-28 | Centre Nat Rech Scient | OLIGOTHIONUCLEOTIDES. |
ATE173767T1 (en) | 1992-04-03 | 1998-12-15 | Perkin Elmer Corp | SAMPLES COMPOSITION AND METHODS |
US5633360A (en) * | 1992-04-14 | 1997-05-27 | Gilead Sciences, Inc. | Oligonucleotide analogs capable of passive cell membrane permeation |
GB9208733D0 (en) | 1992-04-22 | 1992-06-10 | Medical Res Council | Dna sequencing method |
US5257175A (en) | 1992-05-08 | 1993-10-26 | Texas Instruments Incorporated | Analog control of inductive flyback voltages in a full bridge circuit |
US5646020A (en) | 1992-05-14 | 1997-07-08 | Ribozyme Pharmaceuticals, Inc. | Hammerhead ribozymes for preferred targets |
US5247175A (en) | 1992-05-27 | 1993-09-21 | Finnigan Corporation | Method and apparatus for the deconvolution of unresolved data |
US5792664A (en) | 1992-05-29 | 1998-08-11 | The Rockefeller University | Methods for producing and analyzing biopolymer ladders |
DE69334274D1 (en) | 1992-05-29 | 2009-05-14 | Univ Rockefeller | Method of determining the sequence of peptides using a mass spectrometer |
US5434257A (en) | 1992-06-01 | 1995-07-18 | Gilead Sciences, Inc. | Binding compentent oligomers containing unsaturated 3',5' and 2',5' linkages |
EP0577558A2 (en) | 1992-07-01 | 1994-01-05 | Ciba-Geigy Ag | Carbocyclic nucleosides having bicyclic rings, oligonucleotides therefrom, process for their preparation, their use and intermediates |
US5652355A (en) | 1992-07-23 | 1997-07-29 | Worcester Foundation For Experimental Biology | Hybrid oligonucleotide phosphorothioates |
EP0596205A3 (en) | 1992-11-03 | 1996-02-21 | Hewlett Packard Co | Bench supervisor system. |
US6194144B1 (en) | 1993-01-07 | 2001-02-27 | Sequenom, Inc. | DNA sequencing by mass spectrometry |
US5354934A (en) | 1993-02-04 | 1994-10-11 | Amgen Inc. | Pulmonary administration of erythropoietin |
GB9304618D0 (en) | 1993-03-06 | 1993-04-21 | Ciba Geigy Ag | Chemical compounds |
US5593826A (en) * | 1993-03-22 | 1997-01-14 | Perkin-Elmer Corporation, Applied Biosystems, Inc. | Enzymatic ligation of 3'amino-substituted oligonucleotides |
ES2107205T3 (en) | 1993-03-30 | 1997-11-16 | Sanofi Sa | ANALOGS OF ACICLIC NUCLEOSIDES AND OLIGONUCLEOTIDE SEQUENCES THAT CONTAIN THEM. |
HU9501974D0 (en) | 1993-03-31 | 1995-09-28 | Sterling Winthrop Inc | Oligonucleotides with amide linkages replacing phosphodiester linkages |
DE4311944A1 (en) | 1993-04-10 | 1994-10-13 | Degussa | Coated sodium percarbonate particles, process for their preparation and detergent, cleaning and bleaching compositions containing them |
US5363885A (en) | 1993-06-02 | 1994-11-15 | R. J. Reynolds Tobacco Company | Robotic sample preparation system and method |
US5858659A (en) * | 1995-11-29 | 1999-01-12 | Affymetrix, Inc. | Polymorphism detection |
US6156501A (en) | 1993-10-26 | 2000-12-05 | Affymetrix, Inc. | Arrays of modified nucleic acid probes and methods of use |
US5908779A (en) | 1993-12-01 | 1999-06-01 | University Of Connecticut | Targeted RNA degradation using nuclear antisense RNA |
US5446137B1 (en) | 1993-12-09 | 1998-10-06 | Behringwerke Ag | Oligonucleotides containing 4'-substituted nucleotides |
AU691550B2 (en) | 1993-12-09 | 1998-05-21 | Thomas Jefferson University | Compounds and methods for site-directed mutations in eukaryotic cells |
US5519134A (en) * | 1994-01-11 | 1996-05-21 | Isis Pharmaceuticals, Inc. | Pyrrolidine-containing monomers and oligomers |
CA2182517C (en) | 1994-02-07 | 2001-08-21 | Theo Nikiforov | Ligase/polymerase-mediated primer extension of single nucleotide polymorphisms and its use in genetic analysis |
US5538897A (en) * | 1994-03-14 | 1996-07-23 | University Of Washington | Use of mass spectrometry fragmentation patterns of peptides to identify amino acid sequences in databases |
US5627053A (en) * | 1994-03-29 | 1997-05-06 | Ribozyme Pharmaceuticals, Inc. | 2'deoxy-2'-alkylnucleotide containing nucleic acid |
US5807522A (en) | 1994-06-17 | 1998-09-15 | The Board Of Trustees Of The Leland Stanford Junior University | Methods for fabricating microarrays of biological samples |
US5834189A (en) | 1994-07-08 | 1998-11-10 | Visible Genetics Inc. | Method for evaluation of polymorphic genetic sequences, and the use thereof in identification of HLA types |
US5597909A (en) * | 1994-08-25 | 1997-01-28 | Chiron Corporation | Polynucleotide reagents containing modified deoxyribose moieties, and associated methods of synthesis and use |
US5786464C1 (en) | 1994-09-19 | 2012-04-24 | Gen Hospital Corp | Overexpression of mammalian and viral proteins |
US5871945A (en) | 1994-11-23 | 1999-02-16 | Icos Corporation | Modulators of anchoring protein function |
US5807693A (en) | 1994-11-23 | 1998-09-15 | Icos Corporation | Calcineurin inhibitory compounds and anchoring protein |
US5807718A (en) | 1994-12-02 | 1998-09-15 | The Scripps Research Institute | Enzymatic DNA molecules |
DE19515552A1 (en) | 1995-04-27 | 1996-10-31 | Europ Lab Molekularbiolog | Simultaneous sequencing of nucleic acids |
US5869451A (en) | 1995-06-07 | 1999-02-09 | Glaxo Group Limited | Peptides and compounds that bind to a receptor |
US5571676A (en) | 1995-06-07 | 1996-11-05 | Ig Laboratories, Inc. | Method for mismatch-directed in vitro DNA sequencing |
US6020122A (en) * | 1995-06-07 | 2000-02-01 | Abbott Laboratories | Hepatitis C virus second envelope (HCV-E2) glycoprotein expression system |
US5981186A (en) | 1995-06-30 | 1999-11-09 | Visible Genetics, Inc. | Method and apparatus for DNA-sequencing using reduced number of sequencing mixtures |
US5652356A (en) | 1995-08-17 | 1997-07-29 | Hybridon, Inc. | Inverted chimeric and hybrid oligonucleotides |
US5869242A (en) * | 1995-09-18 | 1999-02-09 | Myriad Genetics, Inc. | Mass spectrometry to assess DNA sequence polymorphisms |
US6190865B1 (en) | 1995-09-27 | 2001-02-20 | Epicentre Technologies Corporation | Method for characterizing nucleic acid molecules |
US6051378A (en) | 1996-03-04 | 2000-04-18 | Genetrace Systems Inc. | Methods of screening nucleic acids using mass spectrometry |
DE19613082C2 (en) * | 1996-04-02 | 1999-10-21 | Koenig & Bauer Ag | Method and device for the qualitative assessment of processed material |
FR2749662B1 (en) | 1996-06-11 | 1998-08-28 | Elf Aquitaine | ROBOTIZED LABORATORY OF SAMPLES ANALYSIS |
AU740238B2 (en) | 1996-06-14 | 2001-11-01 | Sarnoff Corporation | Method for polynucleotide sequencing |
AU3651497A (en) * | 1996-07-05 | 1998-02-02 | Beckman Coulter, Inc. | Automated sample processing system |
GB9618960D0 (en) | 1996-09-11 | 1996-10-23 | Medical Science Sys Inc | Proteases |
US6114148C1 (en) | 1996-09-20 | 2012-05-01 | Gen Hospital Corp | High level expression of proteins |
US6028925A (en) * | 1996-09-23 | 2000-02-22 | Rockwell International Corp. | Telephonic switching system, telephonic switch and method for servicing telephone calls using virtual memory spaces |
US5864137A (en) * | 1996-10-01 | 1999-01-26 | Genetrace Systems, Inc. | Mass spectrometer |
DE19782095T1 (en) * | 1996-11-06 | 2000-03-23 | Sequenom Inc | DNA diagnosis based on mass spectrometry |
US6017702A (en) * | 1996-12-05 | 2000-01-25 | The Perkin-Elmer Corporation | Chain-termination type nucleic acid sequencing method including 2'-deoxyuridine-5'-triphosphate |
US5876934A (en) * | 1996-12-18 | 1999-03-02 | Pharmacia Biotech Inc. | DNA sequencing method |
US6046005A (en) * | 1997-01-15 | 2000-04-04 | Incyte Pharmaceuticals, Inc. | Nucleic acid sequencing with solid phase capturable terminators comprising a cleavable linking group |
US5817566A (en) * | 1997-03-03 | 1998-10-06 | Taiwan Semiconductor Manufacturing Company, Ltd. | Trench filling method employing oxygen densified gap filling silicon oxide layer formed with low ozone concentration |
US6117634A (en) | 1997-03-05 | 2000-09-12 | The Reagents Of The University Of Michigan | Nucleic acid sequencing and mapping |
US6133502A (en) | 1997-03-10 | 2000-10-17 | Takeda Chemical Industries, Ltd. | Monocyte chemoattractant protein and its receptor transgenic animal |
WO1998041614A1 (en) * | 1997-03-17 | 1998-09-24 | Dana-Farber Cancer Institute | A non-human mammal deficient in the tiar gene |
US5928806A (en) * | 1997-05-07 | 1999-07-27 | Olah; George A. | Recycling of carbon dioxide into methyl alcohol and related oxygenates for hydrocarbons |
US5985214A (en) | 1997-05-16 | 1999-11-16 | Aurora Biosciences Corporation | Systems and methods for rapidly identifying useful chemicals in liquid samples |
US6011013A (en) * | 1997-06-20 | 2000-01-04 | Oregon Health Sciences University | Contraceptive compositions and methods |
US6030778A (en) * | 1997-07-10 | 2000-02-29 | Millennium Pharmaceuticals, Inc. | Diagnostic assays and kits for body mass disorders associated with a polymorphism in an intron sequence of the SR-BI gene |
US6112161A (en) | 1997-09-17 | 2000-08-29 | Hewlett-Packard | Method, apparatus, and article of manufacture for enhanced intergration of signals |
US6090558A (en) | 1997-09-19 | 2000-07-18 | Genetrace Systems, Inc. | DNA typing by mass spectrometry with polymorphic DNA repeat markers |
US6175057B1 (en) * | 1997-10-08 | 2001-01-16 | The Regents Of The University Of California | Transgenic mouse model of alzheimer's disease and cerebral amyloid angiopathy |
US5928952A (en) | 1997-11-05 | 1999-07-27 | Zymark Corporation | Scheduled system and method for processing chemical products |
DE19754482A1 (en) * | 1997-11-27 | 1999-07-01 | Epigenomics Gmbh | Process for making complex DNA methylation fingerprints |
US5998143A (en) | 1997-12-05 | 1999-12-07 | The Perkin-Elmer Corporation | Cycle sequencing thermal profiles |
IL136574A0 (en) * | 1997-12-08 | 2001-06-14 | California Inst Of Techn | A method for forming a polynucleotide of desired properties |
JP3575295B2 (en) | 1998-04-15 | 2004-10-13 | 住友電装株式会社 | Electrical connector plug |
US6723564B2 (en) * | 1998-05-07 | 2004-04-20 | Sequenom, Inc. | IR MALDI mass spectrometry of nucleic acids using liquid matrices |
US6104028A (en) | 1998-05-29 | 2000-08-15 | Genetrace Systems Inc. | Volatile matrices for matrix-assisted laser desorption/ionization mass spectrometry |
US6294328B1 (en) | 1998-06-24 | 2001-09-25 | The Institute For Genomic Research | DNA sequences for strain analysis in Mycobacterium tuberculosis |
US5869275A (en) * | 1998-07-20 | 1999-02-09 | Huang; Eric Z. | Affinity ultrafiltration assay for transferase activity |
US6132685A (en) | 1998-08-10 | 2000-10-17 | Caliper Technologies Corporation | High throughput microfluidic systems and methods |
US6262334B1 (en) | 1998-08-31 | 2001-07-17 | Bayer Corporation | Human genes and expression products: II |
US6440705B1 (en) * | 1998-10-01 | 2002-08-27 | Vincent P. Stanton, Jr. | Method for analyzing polynucleotides |
US6147344A (en) | 1998-10-15 | 2000-11-14 | Neogenesis, Inc | Method for identifying compounds in a chemical mixture |
US6331427B1 (en) | 1999-03-26 | 2001-12-18 | Millennium Pharmaceuticals, Inc. | Protease homologs |
US20020009394A1 (en) * | 1999-04-02 | 2002-01-24 | Hubert Koster | Automated process line |
US7668658B2 (en) * | 1999-10-13 | 2010-02-23 | Sequenom, Inc. | Methods for generating databases and databases for identifying polymorphic genetic markers |
US20030207297A1 (en) | 1999-10-13 | 2003-11-06 | Hubert Koster | Methods for generating databases and databases for identifying polymorphic genetic markers |
DE10021581B4 (en) | 2000-04-27 | 2005-01-13 | Auergesellschaft Gmbh | Volume control for fan filter units |
US6958214B2 (en) * | 2000-07-10 | 2005-10-25 | Sequenom, Inc. | Polymorphic kinase anchor proteins and nucleic acids encoding the same |
US20030027169A1 (en) * | 2000-10-27 | 2003-02-06 | Sheng Zhang | One-well assay for high throughput detection of single nucleotide polymorphisms |
US6548477B1 (en) * | 2000-11-01 | 2003-04-15 | Praecis Pharmaceuticals Inc. | Therapeutic agents and methods of use thereof for the modulation of angiogenesis |
US7084108B2 (en) | 2000-11-01 | 2006-08-01 | Praecis Pharmaceuticals, Inc. | Therapeutic agents and methods of use thereof for the modulation of angiogenesis |
DE10112515B4 (en) * | 2001-03-09 | 2004-02-12 | Epigenomics Ag | Method for the detection of cytosine methylation patterns with high sensitivity |
US6522477B2 (en) * | 2001-04-17 | 2003-02-18 | Karl Storz Imaging, Inc. | Endoscopic video camera with magnetic drive focusing |
US20020155587A1 (en) | 2001-04-20 | 2002-10-24 | Sequenom, Inc. | System and method for testing a biological sample |
US6893227B2 (en) | 2002-03-21 | 2005-05-17 | Kendro Laboratory Products, Inc. | Device for prevention of backward operation of scroll compressors |
JP2003280586A (en) | 2002-03-26 | 2003-10-02 | Univ Toyama | Organic el element and driving method therefor |
EP1492887A1 (en) * | 2002-04-11 | 2005-01-05 | Sequenom, Inc. | Methods and devices for performing chemical reactions on a solid support |
AU2003228809A1 (en) | 2002-05-03 | 2003-11-17 | Sequenom, Inc. | Kinase anchor protein muteins, peptides thereof, and related methods |
CN1774511B (en) * | 2002-11-27 | 2013-08-21 | 斯昆诺有限公司 | Fragmentation-based methods and systems for sequence variation detection and discovery |
US20070141570A1 (en) | 2003-03-07 | 2007-06-21 | Sequenom, Inc. | Association of polymorphic kinase anchor proteins with cardiac phenotypes and related methods |
CA2523490A1 (en) * | 2003-04-25 | 2004-11-11 | Sequenom, Inc. | Fragmentation-based methods and systems for de novo sequencing |
US8003317B2 (en) * | 2003-07-31 | 2011-08-23 | Sequenom, Inc. | Methods for high level multiplexed polymerase chain reactions and homogeneous mass extension reactions |
US9394565B2 (en) * | 2003-09-05 | 2016-07-19 | Agena Bioscience, Inc. | Allele-specific sequence variation analysis |
CA2580070A1 (en) * | 2004-09-10 | 2006-03-23 | Sequenom, Inc. | Methods for long-range sequence analysis of nucleic acids |
-
2002
- 2002-10-15 US US10/273,321 patent/US7668658B2/en not_active Expired - Fee Related
- 2002-10-15 US US10/272,665 patent/US7332275B2/en not_active Expired - Lifetime
- 2002-10-15 US US10/272,756 patent/US20030190644A1/en not_active Abandoned
-
2009
- 2009-12-21 US US12/643,933 patent/US8229677B2/en not_active Expired - Fee Related
-
2012
- 2012-06-28 US US13/536,807 patent/US8818735B2/en not_active Expired - Fee Related
-
2014
- 2014-05-09 US US14/274,476 patent/US20150005194A1/en not_active Abandoned
Patent Citations (75)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US42112A (en) * | 1864-03-29 | Improvement in grain-drills | ||
US155587A (en) * | 1874-10-06 | Improvement in billiard-cushions | ||
US9394A (en) * | 1852-11-09 | Brick-machnsfe | ||
US4683202B1 (en) * | 1985-03-28 | 1990-11-27 | Cetus Corp | |
US4683202A (en) * | 1985-03-28 | 1987-07-28 | Cetus Corporation | Process for amplifying nucleic acid sequences |
US4683195A (en) * | 1986-01-30 | 1987-07-28 | Cetus Corporation | Process for amplifying, detecting, and/or-cloning nucleic acid sequences |
US4683195B1 (en) * | 1986-01-30 | 1990-11-27 | Cetus Corp | |
US4826360A (en) * | 1986-03-10 | 1989-05-02 | Shimizu Construction Co., Ltd. | Transfer system in a clean room |
US4851018A (en) * | 1986-11-28 | 1989-07-25 | Commissariat A L'energie Atomique | Installation for the storage and transfer of objects in a very clean atmosphere |
US5118937A (en) * | 1989-08-22 | 1992-06-02 | Finnigan Mat Gmbh | Process and device for the laser desorption of an analyte molecular ions, especially of biomolecules |
US5436150A (en) * | 1992-04-03 | 1995-07-25 | The Johns Hopkins University | Functional domains in flavobacterium okeanokoities (foki) restriction endonuclease |
US5440119A (en) * | 1992-06-02 | 1995-08-08 | Labowsky; Michael J. | Method for eliminating noise and artifact peaks in the deconvolution of multiply charged mass spectra |
US5635713A (en) * | 1992-06-02 | 1997-06-03 | Labowsky; Michael J. | Method for eliminating noise and artifact the deconvolution of multiply charged mass spectra |
US5700672A (en) * | 1992-07-23 | 1997-12-23 | Stratagene | Purified thermostable pyrococcus furiousus DNA ligase |
US5506137A (en) * | 1992-07-23 | 1996-04-09 | Stratagene | Purified thermostable Pyrococcus furiosus DNA ligase |
US6436635B1 (en) * | 1992-11-06 | 2002-08-20 | Boston University | Solid phase sequencing of double-stranded nucleic acids |
US5503980A (en) * | 1992-11-06 | 1996-04-02 | Trustees Of Boston University | Positional sequencing by hybridization |
US5795714A (en) * | 1992-11-06 | 1998-08-18 | Trustees Of Boston University | Method for replicating an array of nucleic acid probes |
US5631134A (en) * | 1992-11-06 | 1997-05-20 | The Trustees Of Boston University | Methods of preparing probe array by hybridation |
US5871911A (en) * | 1992-12-07 | 1999-02-16 | Wisconsin Alumni Research Foundation | Method of site-specific nucleic acid cleavage |
US5547835A (en) * | 1993-01-07 | 1996-08-20 | Sequenom, Inc. | DNA sequencing by mass spectrometry |
US5605798A (en) * | 1993-01-07 | 1997-02-25 | Sequenom, Inc. | DNA diagnostic based on mass spectrometry |
US6225450B1 (en) * | 1993-01-07 | 2001-05-01 | Sequenom, Inc. | DNA sequencing by mass spectrometry |
US5691141A (en) * | 1993-01-07 | 1997-11-25 | Sequenom, Inc. | DNA sequencing by mass spectrometry |
US5872003A (en) * | 1993-03-19 | 1999-02-16 | Sequenom, Inc. | DNA sequencing by mass spectrometry via exonuclease degradation |
US6074823A (en) * | 1993-03-19 | 2000-06-13 | Sequenom, Inc. | DNA sequencing by mass spectrometry via exonuclease degradation |
US5622824A (en) * | 1993-03-19 | 1997-04-22 | Sequenom, Inc. | DNA sequencing by mass spectrometry via exonuclease degradation |
US5851765A (en) * | 1993-03-19 | 1998-12-22 | Sequenon, Inc. | DNA sequencing by mass spectrometry via exonuclease degradation |
US5604098A (en) * | 1993-03-24 | 1997-02-18 | Molecular Biology Resources, Inc. | Methods and materials for restriction endonuclease applications |
US5536649A (en) * | 1993-05-11 | 1996-07-16 | Becton, Dickinson And Company | Decontamination of nucleic acid amplification reactions using uracil-N-glycosylase (UDG) |
US5837832A (en) * | 1993-06-25 | 1998-11-17 | Affymetrix, Inc. | Arrays of nucleic acid probes on biological chips |
US5714330A (en) * | 1994-04-04 | 1998-02-03 | Lynx Therapeutics, Inc. | DNA sequencing by stepwise ligation and cleavage |
US5498545A (en) * | 1994-07-21 | 1996-03-12 | Vestal; Marvin L. | Mass spectrometer system and method for matrix-assisted laser desorption measurements |
US5453613A (en) * | 1994-10-21 | 1995-09-26 | Hewlett Packard Company | Mass spectra interpretation system including spectra extraction |
US6589485B2 (en) * | 1995-03-17 | 2003-07-08 | Sequenom, Inc. | Solid support for mass spectrometry |
US6277573B1 (en) * | 1995-03-17 | 2001-08-21 | Sequenom, Inc. | DNA diagnostics based on mass spectrometry |
US6043031A (en) * | 1995-03-17 | 2000-03-28 | Sequenom, Inc. | DNA diagnostics based on mass spectrometry |
US6300076B1 (en) * | 1995-03-17 | 2001-10-09 | Sequenom, Inc. | DNA diagnostics based on mass spectrometry |
US6602662B1 (en) * | 1995-03-17 | 2003-08-05 | Sequenom, Inc. | DNA diagnostics based on mass spectrometry |
US6428955B1 (en) * | 1995-03-17 | 2002-08-06 | Sequenom, Inc. | DNA diagnostics based on mass spectrometry |
US5874283A (en) * | 1995-05-30 | 1999-02-23 | John Joseph Harrington | Mammalian flap-specific endonuclease |
US5858705A (en) * | 1995-06-05 | 1999-01-12 | Human Genome Sciences, Inc. | Polynucleotides encoding human DNA ligase III and methods of using these polynucleotides |
US5853979A (en) * | 1995-06-30 | 1998-12-29 | Visible Genetics Inc. | Method and system for DNA sequence determination and mutation detection with reference to a standard |
US5952176A (en) * | 1995-07-11 | 1999-09-14 | Forfas (Trading As Bioresearch Ireland) | Glycosylase mediated detection of nucleotide sequences at candidate loci |
US6146854A (en) * | 1995-08-31 | 2000-11-14 | Sequenom, Inc. | Filtration processes, kits and devices for isolating plasmids |
US6090606A (en) * | 1996-01-24 | 2000-07-18 | Third Wave Technologies, Inc. | Cleavage agents |
US5843669A (en) * | 1996-01-24 | 1998-12-01 | Third Wave Technologies, Inc. | Cleavage of nucleic acid acid using thermostable methoanococcus jannaschii FEN-1 endonucleases |
US5686656A (en) * | 1996-02-27 | 1997-11-11 | Aviv Amirav | Method and device for the introduction of a sample into a gas chromatograph |
US5928906A (en) * | 1996-05-09 | 1999-07-27 | Sequenom, Inc. | Process for direct sequencing during template amplification |
US6022688A (en) * | 1996-05-13 | 2000-02-08 | Sequenom, Inc. | Method for dissociating biotin complexes |
US6200756B1 (en) * | 1996-06-03 | 2001-03-13 | The Johns Hopkins University School Of Medicine | Methods for identifying methylation patterns in a CpG-containing nucleic acid |
US6017704A (en) * | 1996-06-03 | 2000-01-25 | The Johns Hopkins University School Of Medicine | Method of detection of methylated nucleic acid using agents which modify unmethylated cytosine and distinguishing modified methylated and non-methylated nucleic acids |
US5786146A (en) * | 1996-06-03 | 1998-07-28 | The Johns Hopkins University School Of Medicine | Method of detection of methylated nucleic acid using agents which modify unmethylated cytosine and distinguishing modified methylated and non-methylated nucleic acids |
US6265171B1 (en) * | 1996-06-03 | 2001-07-24 | The Johns Hopkins University School Of Medicine | Method of detection of methylated nucleic acid using agents which modify unmethylated cytosine and distinguish modified methylated and non-methylated nucleic acids |
US5885841A (en) * | 1996-09-11 | 1999-03-23 | Eli Lilly And Company | System and methods for qualitatively and quantitatively comparing complex admixtures using single ion chromatograms derived from spectroscopic analysis of such admixtures |
US6423966B2 (en) * | 1996-09-19 | 2002-07-23 | Sequenom, Inc. | Method and apparatus for maldi analysis |
US6111251A (en) * | 1996-09-19 | 2000-08-29 | Sequenom, Inc. | Method and apparatus for MALDI analysis |
US5777324A (en) * | 1996-09-19 | 1998-07-07 | Sequenom, Inc. | Method and apparatus for maldi analysis |
US6566055B1 (en) * | 1996-09-19 | 2003-05-20 | Sequenom, Inc. | Methods of preparing nucleic acids for mass spectrometric analysis |
US5900481A (en) * | 1996-11-06 | 1999-05-04 | Sequenom, Inc. | Bead linkers for immobilizing nucleic acids to solid supports |
US6140053A (en) * | 1996-11-06 | 2000-10-31 | Sequenom, Inc. | DNA sequencing by mass spectrometry via exonuclease degradation |
US6133436A (en) * | 1996-11-06 | 2000-10-17 | Sequenom, Inc. | Beads bound to a solid support and to nucleic acids |
US6024925A (en) * | 1997-01-23 | 2000-02-15 | Sequenom, Inc. | Systems and methods for preparing low volume analyte array elements |
US6059724A (en) * | 1997-02-14 | 2000-05-09 | Biosignal, Inc. | System for predicting future health |
US5928870A (en) * | 1997-06-16 | 1999-07-27 | Exact Laboratories, Inc. | Methods for the detection of loss of heterozygosity |
US5976806A (en) * | 1997-06-25 | 1999-11-02 | Pioneer Hi-Bred International, Inc. | DNA ligase assay |
US5975492A (en) * | 1997-07-14 | 1999-11-02 | Brenes; Arthur | Bellows driver slot valve |
US6322970B1 (en) * | 1997-09-02 | 2001-11-27 | Sequenom, Inc. | Mass spectrometric detection of polypeptides |
US6207370B1 (en) * | 1997-09-02 | 2001-03-27 | Sequenom, Inc. | Diagnostics based on mass spectrometric detection of translated target polypeptides |
US5888795A (en) * | 1997-09-09 | 1999-03-30 | Becton, Dickinson And Company | Thermostable uracil DNA glycosylase and methods of use |
US6268131B1 (en) * | 1997-12-15 | 2001-07-31 | Sequenom, Inc. | Mass spectrometric methods for sequencing nucleic acids |
US6188064B1 (en) * | 1998-01-29 | 2001-02-13 | Bruker Daltonik Gmbh | Mass spectrometry method for accurate mass determination of unknown ions |
US6054276A (en) * | 1998-02-23 | 2000-04-25 | Macevicz; Stephen C. | DNA restriction site mapping |
US6099553A (en) * | 1998-05-21 | 2000-08-08 | Applied Medical Resources Corporation | Suture clinch |
US6270835B1 (en) * | 1999-10-07 | 2001-08-07 | Microcoating Technologies, Inc. | Formation of this film capacitors |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7759065B2 (en) | 1995-03-17 | 2010-07-20 | Sequenom, Inc. | Mass spectrometric methods for detecting mutations in a target nucleic acid |
US8821816B2 (en) | 1997-01-23 | 2014-09-02 | Agena Biosciences, Inc. | Matrix-assisted laser desorption ionization mass spectrometry substrates having low volume matrix array elements |
US20030096426A1 (en) * | 1997-01-23 | 2003-05-22 | Daniel P. Little | Systems and methods for preparing and analyzing low volume analyte array elements |
US7668658B2 (en) | 1999-10-13 | 2010-02-23 | Sequenom, Inc. | Methods for generating databases and databases for identifying polymorphic genetic markers |
US8818735B2 (en) | 1999-10-13 | 2014-08-26 | Sequenom, Inc. | Methods for generating databases and databases for identifying polymorphic genetic markers |
US8229677B2 (en) | 1999-10-13 | 2012-07-24 | Sequenom, Inc. | Methods for generating databases and databases for identifying polymorphic genetic markers |
US8999266B2 (en) | 2000-10-30 | 2015-04-07 | Agena Bioscience, Inc. | Method and apparatus for delivery of submicroliter volumes onto a substrate |
US9669376B2 (en) | 2000-10-30 | 2017-06-06 | Agena Bioscience, Inc. | Method and apparatus for delivery of submicroliter volumes onto a substrate |
US7820378B2 (en) | 2002-11-27 | 2010-10-26 | Sequenom, Inc. | Fragmentation-based methods and systems for sequence variation detection and discovery |
US7468248B2 (en) | 2002-12-31 | 2008-12-23 | Cargill, Incorporated | Methods and systems for inferring bovine traits |
US20080268454A1 (en) * | 2002-12-31 | 2008-10-30 | Denise Sue K | Compositions, methods and systems for inferring bovine breed or trait |
US20090221432A1 (en) * | 2002-12-31 | 2009-09-03 | Denise Sue K | Compositions, methods and systems for inferring bovine breed |
US20050287531A1 (en) * | 2002-12-31 | 2005-12-29 | Mmi Genomics, Inc. | Methods and systems for inferring bovine traits |
US7709206B2 (en) | 2002-12-31 | 2010-05-04 | Metamorphix, Inc. | Compositions, methods and systems for inferring bovine breed or trait |
US10190167B2 (en) | 2002-12-31 | 2019-01-29 | Branhaven LLC | Methods and systems for inferring bovine traits |
US20050260603A1 (en) * | 2002-12-31 | 2005-11-24 | Mmi Genomics, Inc. | Compositions for inferring bovine traits |
US7511127B2 (en) | 2002-12-31 | 2009-03-31 | Cargill, Incorporated | Compositions, methods and systems for inferring bovine breed |
US8026064B2 (en) | 2002-12-31 | 2011-09-27 | Metamorphix, Inc. | Compositions, methods and systems for inferring bovine breed |
US11053547B2 (en) | 2002-12-31 | 2021-07-06 | Branhaven LLC | Methods and systems for inferring bovine traits |
US20070031845A1 (en) * | 2002-12-31 | 2007-02-08 | Mmi Genomics, Inc. | Compositions, methods and systems for inferring bovine breed |
US8450064B2 (en) | 2002-12-31 | 2013-05-28 | Cargill Incorporated | Methods and systems for inferring bovine traits |
US8669056B2 (en) | 2002-12-31 | 2014-03-11 | Cargill Incorporated | Compositions, methods, and systems for inferring bovine breed |
US9206478B2 (en) | 2002-12-31 | 2015-12-08 | Branhaven LLC | Methods and systems for inferring bovine traits |
US9982311B2 (en) | 2002-12-31 | 2018-05-29 | Branhaven LLC | Compositions, methods, and systems for inferring bovine breed |
US20070112585A1 (en) * | 2003-08-01 | 2007-05-17 | Breiter Hans C | Cognition analysis |
WO2005020788A3 (en) * | 2003-08-01 | 2006-06-29 | Gen Hospital Corp | Cognition analysis |
WO2005020788A2 (en) * | 2003-08-01 | 2005-03-10 | The General Hospital Corporation | Cognition analysis |
US9394565B2 (en) | 2003-09-05 | 2016-07-19 | Agena Bioscience, Inc. | Allele-specific sequence variation analysis |
US20100162423A1 (en) * | 2003-10-24 | 2010-06-24 | Metamorphix, Inc. | Methods and Systems for Inferring Traits to Breed and Manage Non-Beef Livestock |
EP2395098A1 (en) | 2004-03-26 | 2011-12-14 | Sequenom, Inc. | Base specific cleavage of methylation-specific amplification products in combination with mass analysis |
US9249456B2 (en) | 2004-03-26 | 2016-02-02 | Agena Bioscience, Inc. | Base specific cleavage of methylation-specific amplification products in combination with mass analysis |
WO2005098050A2 (en) | 2004-03-26 | 2005-10-20 | Sequenom, Inc. | Base specific cleavage of methylation-specific amplification products in combination with mass analysis |
US9068953B2 (en) | 2007-09-17 | 2015-06-30 | Agena Bioscience, Inc. | Integrated robotic sample transfer device |
US20210017592A1 (en) * | 2017-07-07 | 2021-01-21 | Massachusetts Institute Of Technology | Systems and methods for genetic identification and analysis |
US11655498B2 (en) * | 2017-07-07 | 2023-05-23 | Massachusetts Institute Of Technology | Systems and methods for genetic identification and analysis |
US12065696B2 (en) * | 2017-07-07 | 2024-08-20 | Massachusetts Institute Of Technology | Systems and methods for genetic identification and analysis |
Also Published As
Publication number | Publication date |
---|---|
US8818735B2 (en) | 2014-08-26 |
US20100292930A1 (en) | 2010-11-18 |
US20030180748A1 (en) | 2003-09-25 |
US20150005194A1 (en) | 2015-01-01 |
US8229677B2 (en) | 2012-07-24 |
US20120301882A1 (en) | 2012-11-29 |
US7668658B2 (en) | 2010-02-23 |
US20030180749A1 (en) | 2003-09-25 |
US7332275B2 (en) | 2008-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU776811B2 (en) | Methods for generating databases and databases for identifying polymorphic genetic markers | |
US20030190644A1 (en) | Methods for generating databases and databases for identifying polymorphic genetic markers | |
AU2021273631B2 (en) | Methods and processes for non-invasive assessment of genetic variations | |
CA2414495A1 (en) | Polymorphic kinase anchor proteins and nucleic acids encoding the same | |
AU781437B2 (en) | A novel BAP28 gene and protein | |
US6605432B1 (en) | High-throughput methods for detecting DNA methylation | |
US20040014067A1 (en) | Amplification methods and compositions | |
WO2004033649A2 (en) | High throughput multiplex dna sequence amplifications | |
AU779411B2 (en) | Biallelic markers derived from genomic regions carrying genes involved in arachidonic acid metabolism | |
KR20150043566A (en) | Use of markers in the identification of cardiotoxic agents | |
CA2941594A1 (en) | Genetic polymorphisms of the protein receptor c (procr) associated with myocardial infarction, methods of detection and uses thereof | |
CA2442820A1 (en) | Microarray gene expression profiling in clear cell renal cell carcinoma: prognosis and drug target identification | |
JP5662293B2 (en) | SNP for diagnosing attention deficit / hyperactivity disorder and microarray and kit including the same | |
KR101141543B1 (en) | Polynucleotides derived from ALDH4A1, PINK1, DDOST, KIF17, LMX1A, SRGAP2, ASB3, PSME4, ANXA4, GMCL1, and MAP2 genes comprising single nucleotide polymorphisms, microarrays and diagnostic kits comprising the same, and analytic methods using the same | |
JP2003144176A (en) | Detection method for gene polymorphism | |
US20030207297A1 (en) | Methods for generating databases and databases for identifying polymorphic genetic markers | |
US20030235847A1 (en) | Association of polymorphisms in the SOST gene region with bone mineral density | |
US6797475B2 (en) | Detection of polymorphisms in the human 5-lipoxygenase gene | |
US6692909B1 (en) | Coding sequence polymorphisms in vascular pathology genes | |
KR102250063B1 (en) | Method for identifying causative genes of tourette syndrome | |
AU784761B2 (en) | Biallelic markers related to genes involved in drug metabolism | |
CN106086018A (en) | NR_047662.2 and the reagent of vitro detection, preparation or test kit, application, detection method | |
CA2518238A1 (en) | Association of polymorphic kinase anchor proteins with cardiac phenotypes and related methods | |
TWI358456B (en) | Method of determining susceptibility of high myopi | |
CN100516876C (en) | Methods for diagnosing RCC and other solid tumors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SEQUENOM, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KOSTER, HUBERT;BRAUN, ANDREAS;VAN DEN BOOM, DIRK;AND OTHERS;REEL/FRAME:013823/0001;SIGNING DATES FROM 20001211 TO 20010122 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |