US20020022788A1 - Apparatus and methods for material capture and removal - Google Patents
Apparatus and methods for material capture and removal Download PDFInfo
- Publication number
- US20020022788A1 US20020022788A1 US09/916,642 US91664201A US2002022788A1 US 20020022788 A1 US20020022788 A1 US 20020022788A1 US 91664201 A US91664201 A US 91664201A US 2002022788 A1 US2002022788 A1 US 2002022788A1
- Authority
- US
- United States
- Prior art keywords
- catheter
- catheter body
- capture device
- aperture
- material capture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000463 material Substances 0.000 title claims abstract description 282
- 238000000034 method Methods 0.000 title claims abstract description 37
- 238000005520 cutting process Methods 0.000 claims abstract description 101
- 230000000149 penetrating effect Effects 0.000 claims description 72
- 210000004204 blood vessel Anatomy 0.000 claims description 9
- 238000003384 imaging method Methods 0.000 claims description 8
- 238000002604 ultrasonography Methods 0.000 claims description 4
- 230000035515 penetration Effects 0.000 claims 2
- 230000013011 mating Effects 0.000 claims 1
- 210000001367 artery Anatomy 0.000 abstract description 4
- 230000007246 mechanism Effects 0.000 description 17
- 210000005166 vasculature Anatomy 0.000 description 7
- 239000013077 target material Substances 0.000 description 5
- 201000001320 Atherosclerosis Diseases 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000004806 packaging method and process Methods 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 230000002792 vascular Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 229910001000 nickel titanium Inorganic materials 0.000 description 3
- 239000013307 optical fiber Substances 0.000 description 3
- 239000004642 Polyimide Substances 0.000 description 2
- HZEWFHLRYVTOIW-UHFFFAOYSA-N [Ti].[Ni] Chemical compound [Ti].[Ni] HZEWFHLRYVTOIW-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 210000004351 coronary vessel Anatomy 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012014 optical coherence tomography Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- -1 polytetrafluoroethylenes Polymers 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- 206010003210 Arteriosclerosis Diseases 0.000 description 1
- 208000037260 Atherosclerotic Plaque Diseases 0.000 description 1
- 206010061688 Barotrauma Diseases 0.000 description 1
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- 229920000271 Kevlar® Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 208000024248 Vascular System injury Diseases 0.000 description 1
- 208000012339 Vascular injury Diseases 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000003872 anastomosis Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 230000008081 blood perfusion Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 208000028867 ischemia Diseases 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 208000010125 myocardial infarction Diseases 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- HLXZNVUGXRDIFK-UHFFFAOYSA-N nickel titanium Chemical compound [Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni] HLXZNVUGXRDIFK-UHFFFAOYSA-N 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000012858 resilient material Substances 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 229910001285 shape-memory alloy Inorganic materials 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B10/00—Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
- A61B10/02—Instruments for taking cell samples or for biopsy
- A61B10/0233—Pointed or sharp biopsy instruments
- A61B10/0266—Pointed or sharp biopsy instruments means for severing sample
- A61B10/0275—Pointed or sharp biopsy instruments means for severing sample with sample notch, e.g. on the side of inner stylet
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B10/00—Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
- A61B10/02—Instruments for taking cell samples or for biopsy
- A61B10/04—Endoscopic instruments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/3205—Excision instruments
- A61B17/3207—Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
- A61B17/320783—Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions through side-hole, e.g. sliding or rotating cutter inside catheter
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B2017/320064—Surgical cutting instruments with tissue or sample retaining means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/3205—Excision instruments
- A61B17/3207—Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
- A61B17/320783—Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions through side-hole, e.g. sliding or rotating cutter inside catheter
- A61B2017/320791—Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions through side-hole, e.g. sliding or rotating cutter inside catheter with cutter extending outside the cutting window
Definitions
- the present invention relates generally to apparatus and methods for removing occluding materials from body lumens. More particularly, the present invention relates to the construction and use of atherectomy catheters for excising atheroma and other materials from blood vessels.
- Atherosclerosis occurs naturally as a result of aging, but may also be aggravated by factors such as diet, hypertension, heredity, vascular injury, and the like. Atheromatous and other vascular deposits restrict blood flow and can cause ischemia which, in acute cases, can result in myocardial infarction. Atheromatous deposits can have widely varying properties, with some deposits being relatively soft and others being fibrous and/or calcified. In the latter case, the deposits are frequently referred to as plaque.
- Atherosclerosis can be treated in a variety of ways, including drugs, bypass surgery, and a variety of catheter-based approaches which rely on intravascular widening or removal of the atheromatous or other material occluding a blood vessel.
- a variety of methods for cutting or dislodging material and removing such material from the blood vessel have been proposed, generally being referred to as atherectomy procedures.
- Atherectomy catheters intended to excise material from the blood vessel lumen generally employ a rotatable and/or axially translatable cutting blade which can be advanced into or past the occlusive material in order to cut and separate such material from the blood vessel lumen.
- side-cutting atherectomy catheters generally employ a housing having an aperture on one side, a blade which is rotated or translated by the aperture, and a balloon or other deflecting structure to urge the aperture against the material to be removed.
- Atherectomy catheters have proven to be very successful in treating many types of atherosclerosis, some catheter designs suffer from certain limitations. For example, many side-cutting atherectomy catheters have difficulty in capturing occluding material in the cutting aperture. To facilitate material capture, the cutting aperture is frequently elongated. Although improving material capture, such lengthening makes it more difficult to introduce the distal end of the catheter through torturous regions of the vasculature. Additionally, it is often difficult for conventional atherectomy cutters to apply the requisite pressure to cut off the targeted material. When higher pressures are applied, damage to the artery (barotrauma) can occur. High pressures can also compress plaque, subsequently reducing the cutter's ability to capture the occlusive material. This decreases the effectiveness of these cutters and limits the cutter and catheter designs.
- Atherectomy catheters which can access small, tortuous regions of the vasculature and which can remove atheromatous and other occluding materials from within blood vessels in a controlled fashion with minimum risk of injuring the blood vessel wall.
- atherectomy catheters which can facilitate capturing of occlusive material. It would also be particularly desirable to decrease the amount of force required to cut off occlusive material from the body.
- the present invention provides catheters, kits, and methods for removing material from a body lumen.
- the catheters and methods of the present invention are for use in a variety of body lumens, including but not limited to intravascular lumens such as the coronary artery and other blood vessels.
- the catheter of the present invention has a cutting element that cuts material engaged by a material capture device on the catheter body.
- the material capture device tensions the material during cutting, which reduces the amount of cutting force required.
- the material capture device typically follows a path that draws material into the catheter body.
- the material capture device is arranged on the catheter body to advance along a path outwardly from the catheter body into the material and then inwardly towards the catheter body to tension the material.
- the material capture device may extend in an outwardly direction but not beyond the outer diameter of the catheter body.
- the cutting element on the catheter body moves between a first position and a second position to cut the material while in tension, where motion of the cutting element urges the material capture device to draw cut material into the catheter body.
- the blade or blades of the catheter will be actuable with the application of reasonable mechanical forces which are capable of being transmitted along even rather lengthy catheters.
- the catheters will be suitable for directional removal of occluding material and may include mechanisms for engaging cutting blades against selected portions of a vascular wall.
- the engaging mechanisms should permit blood perfusion during performance of an atherectomy procedure.
- the catheter of the present invention uses a material capture device in the form of a material capture needle.
- the needle will be deployed in a radially outward direction from the catheter body.
- the needle will capture material while the catheter remains stationary.
- Some embodiments may use a plurality of material capture needles.
- the material capture needle may follow a path outwardly from the catheter body in various manners.
- the needle has a portion that advances through an elongate slot on the catheter body to move the needle along a path outwardly from the catheter body.
- Another embodiment uses a curved needle rotatably mounted about a pivot pin. As the needle is rotated, it will protrude outwardly from the catheter body.
- a preferred embodiment uses a needle having a bias element which urges the needle outwardly when the catheter is in position.
- a material cutting element will engage the material that has been captured and sheer off the material into the catheter.
- a material capture device of the present invention uses a penetrating member mounted to extend through an aperture on the catheter body to penetrate material in advance of the cutting blade and to draw material into the catheter body as the cutting blade is advanced past the aperture.
- the penetrating member is rotatably mounted to the slidable cutting blade on the catheter body.
- a cam surface on the catheter body engages a surface of the penetrating member to guide the member along a path to engage the material and draw the material into the catheter body.
- an abutment or raised portion on the catheter body is mounted to engage one end of the penetrating member. This contact caused the penetrating member to rotate about its pivot point on the cutting blade and thus engage material and draw material into the catheter body.
- a method for excising occlusive material from within a body lumen.
- the method involves engaging the occlusive material with a material capture device on a catheter body.
- the material is drawn in a radially inward direction by the device to tension the material to be cut.
- a blade is advanced through the tensioned material to sever the material from the body lumen.
- tensioning the material reduces the amount of cutting force required.
- the tensioning of the occlusive material may also comprise moving the material capture device towards a catheter body while the material capture device is in contact with the occlusive material.
- the engaging and tensioning steps may also be performed with a single motion by the user to facilitate cutting.
- kits according to the present invention will comprise a catheter having a material capture device.
- the kits will further include instructions for use setting forth a method as described above.
- the kits will further include packaging suitable for containing the catheter and the instructions for use.
- Exemplary containers include pouches, trays, boxes, tubes, and the like.
- the instructions for use may be provided on a separate sheet of paper or other medium.
- the instructions may be printed in whole or in part on the packaging.
- at least the catheter will be provided in a sterilized condition.
- Other kit components such as a guidewire, may also be included.
- FIG. 1 is a perspective view of an atherectomy catheter constructed in accordance with the principles of the present invention.
- FIGS. 2 - 4 show various embodiments of a material capture device and a material cutting element according to the present invention.
- FIGS. 5 A- 5 C illustrate a material cutting sequence using one embodiment of a material capture device and material cutting element according to the present invention.
- FIGS. 6 A- 6 B show cross-sectional views of a further embodiment of a material capture device and material cutting element.
- FIGS. 7 - 8 show still further embodiments of a material capture device and material cutting element.
- FIGS. 9 - 11 show cross-sectional views of a preferred embodiment of the material capture device
- FIGS. 12, 13, 14 , 14 A-C, and 15 show alternative embodiments of the device show in FIGS. 9 - 11 .
- FIGS. 16 - 18 depict various embodiments of a cam surface according to the present invention.
- FIGS. 19 - 22 are cross-sectional views of a telescoping cutter having a material capture device according to the present invention.
- FIGS. 23 - 24 show a still further embodiment of the material capture device.
- FIG. 25 shows a kit according to the present invention.
- FIGS. 26 and 27 illustrate a catheter having material capture devices and material cutting elements oriented at various angles on the catheter body.
- FIG. 28 shows a preferred embodiment of the present invention for use with a material imaging device according to the present invention.
- the present invention provides devices, methods, and kits for use in removing material from a body lumen.
- the present invention may be used in a variety of body lumens, including but not limited to coronary and other arteries.
- the present invention reduces the amount of force required to cut material and facilitates material capture into apertures of the catheter.
- Apparatus according to the present invention will comprise catheters having catheter bodies adapted for intraluminal introduction to the target body lumen.
- the dimensions and other physical characteristics of the catheter bodies will vary significantly depending on the body lumen which is to be accessed.
- the catheter bodies will typically be very flexible and suitable for introduction over a guidewire to a target site within the vasculature.
- catheters can be intended for “over-the-wire” introduction when a guidewire lumen extends fully through the catheter body or for “rapid exchange” introduction where the guidewire lumen extends only through a distal portion of the catheter body.
- Catheter bodies intended for intravascular introduction will typically have a length in the range from 50 cm to 200 cm and an outer diameter in the range from 1 French (0.33 mm; Fr.) to 12 Fr., usually from 3 Fr. to 9 Fr.
- the length is typically in the range from 125 to 200 cm, the diameter is preferably below 8 Fr., more preferably below 7 Fr., and most preferably in the range from 2 Fr. to 7 Fr.
- Catheter bodies will typically be composed of an organic polymer which is fabricated by conventional extrusion techniques. Suitable polymers include polyvinylchloride, polyurethanes, polyesters, polytetrafluoroethylenes (PTFE), silicone rubbers, natural rubbers, and the like.
- the catheter body may be reinforced with braid, helical wires, axial filaments, or the like, in order to increase rotational strength, column strength, toughness, pushability, and the like.
- Suitable catheter bodies may be formed by extrusion, with one or more lumens being provided when desired.
- the catheter diameter can be modified by heat expansion and shrinkage using conventional techniques. The resulting catheters will thus be suitable for introduction to the vascular system, often the coronary arteries, by conventional techniques.
- the cutting blades used in the present invention will usually be formed from a metal, but could also be formed from hard plastics, ceramics, or composites of two or more materials, which can be honed or otherwise formed into the desired cutting edge.
- the cutting blades are formed as coaxial tubular blades with the cutting edges defined in aligned apertures therein. It will be appreciated that the present invention is not limited to such preferred cutting blade assemblies, in a variety of other designs, such as the use of wiper blades, scissor blades or the like.
- the cutting edge of either or both the blades may be hardened, e.g., by application of a coating.
- a preferred coating material is titanium nitride, available from Brycoat, Inc., which may be applied according to manufacturer's instructions.
- a catheter 10 constructed in accordance with the principles of the present invention comprises a catheter body 12 having a proximal end 14 and a distal end 16 .
- a cutting mechanism 18 comprises an outer cutter 20 , an inner cutter 22 is attached to the distal end of the catheter body 12 , and a needle 23 as a material capture device.
- An atraumatic tip 24 is attached to the distal end of the outer cutter 20 , and a guidewire lumen 25 extends through the entire catheter body, cutting mechanism 18 , and terminates in port 25 at the distal tip of tip section 24 .
- a proximal hub 30 is attached to the proximal end of catheter body 12 and comprises a perfusion/aspiration connector 32 , a guidewire connector 34 , and a slider 36 .
- the slider 36 is attached to the proximal end of an actuator rod 37 which extends from the hub 30 through the lumen of catheter body 12 into the cutting mechanism 18 where it is attached at a proximal end of the inner cutter 22 . In this way, manual actuation of slider 36 in the direction of arrow 38 moves inner cutter 22 in the direction of arrow 40 .
- this embodiment of the catheter 10 uses the material capture needle 23 to capture the material and tension it towards the cutters 20 and 22 .
- the material capture needle 23 follows a path where the material capture needle extends outwardly from the catheter body and moves inwardly towards the catheter body to tension the material.
- the material capture needle 23 when the material capture needle 23 is deployed, it angles out from the aperture 42 and a portion of the material capture needle typically runs parallel to the window with the sharpened tip located near the proximal end of the aperture.
- the inner cutter or cutting element 22 is reciprocated to open and close the aperture 42 formed in the wall of the catheter body 12 . Movement of the inner cutter 22 also controls the deployment of the material capture needle.
- the material capture needle 23 When the inner cutter 22 opens the aperture 42 , the material capture needle 23 is biased outwardly from the catheter body 12 .
- the material capture needle 23 is preferably spring-loaded, where in its resting condition, the material capture needle extends outwardly from the catheter body 12 .
- the material capture needle 23 is otherwise constrained within the catheter body 12 when the inner cutter 22 closes aperture 42 .
- the material capture needle 23 may be made of a variety of materials such as stainless steel or a superelastic material.
- the material capture needle 23 With the material capture needle 23 deployed as shown in FIG. 2B, the material capture needle may penetrate into the material when the catheter body 12 is pulled in the proximal direction.
- the inner cutter 22 is then closed, as indicated by arrow 40 , to push the material capture needle 23 towards the catheter body 12 as indicated by arrow 44 .
- closing of cutter 22 will tension the material and draw it into the catheter body 12 when the cutters 20 and 22 will shear off the material.
- the inner cutter 22 upon finishing the closing motion, will wipe the piece of cut-off material off the material capture needle 23 and into the catheter for storage.
- the material capture needle 23 and cutting mechanism 18 may then be readied to make a subsequent cut.
- the material capture needle 23 typically has a diameter between about 0.1 to 0.5 mm, preferably 0.2 to 0.3 mm, with a length between about 1 to 5 mm, preferably 3 to 4 mm.
- FIGS. 3 - 4 a variety of catheter embodiments may incorporate a needle as a material capture device. Like the catheter of FIG. 2, these catheters rely on the motion of a cutter to control positioning of the material capture needle during cutting.
- the FIGS. 3 A- 3 B show the distal portion of a catheter 50 having an outer cutter 52 which reciprocates to control the deployment of the material capture needle 54 . Additionally, in this embodiment, the material capture needle 54 is deployed to have a forward pointing sharpened tip. With the material capture needle 54 deployed, the catheter 50 would be pushed forward as indicated by arrow 56 to penetrate target material T.
- the catheter 50 may also incorporate a ski mechanism 58 to urge the cutting side of the catheter radially against the target material T.
- FIGS. 4A and 4B show a catheter 70 having a telescoping cutter 72 for use with a material capture needle 74 .
- the telescoping cutter 72 is used to decrease the rigid length of the catheter 70 and may be used to create a larger window or aperture 76 for removing greater amounts of material.
- the material capture needle 74 will be pushed into the aperture 76 as indicated by arrow 78 , along with material attached to the material capture needle.
- the material capture device 74 may also include one or more barbs 79 which keep the material from sliding off once it is excised.
- the catheter 70 is quite useful and an improvement over conventional atherectomy catheters even without incorporation of the material capture needle 74 .
- the decrease in the rigid length of the distal portion of catheter 70 is a significant advantage, particularly when the catheter is introduced to the highly tortuous regions of the coronary vasculature.
- the rigid cutter portion of the catheter can be extended in length by 50% or more, with a theoretical limit of 100% for a two-portion telescoping region.
- the cutting aperture 76 is defined only on one of the cutter blades. In other embodiments, it will possible to define the aperture on both of the cutting blades and/or in a variety of configurations. While the cutting blades will preferably employ the cutting edges at each end, the advantages of the telescoping cutter can be enjoyed even without the cutting edges.
- FIGS. 5 A- 5 C another embodiment of an atherectomy catheter 100 uses a material capture needle 102 which rotates about a pivot pin 104 .
- the material capture needle 102 will rotate upward as the drawbar 108 is pulled proximally.
- the drawbar 108 is coupled to slider 110 which has cutting blade 112 .
- a cam 106 about the pivot pin 104 will pull against the material capture needle 102 as drawbar 108 is moved.
- the drawbar 108 will be retracted until the blade 112 , as shown in FIG. 5C, has sheared off any material captured by the material capture needle 102 .
- FIGS. 6A and 6B show a catheter embodiment similar to that of FIGS. 5 A- 5 C.
- the material capture needle 120 of FIG. 6A rotates about a pivot 122 to engage material M to be excised from the luminal wall.
- the needle actuator for this embodiment differs from that of catheter 100 .
- the material capture needle 120 of the present embodiment sits between tabs 124 and 126 which are attached to the drawbar 130 .
- the drawbar 130 rotates the needle 120 while pulling on slider 132 having blade 134 .
- the motion of the pivoting material capture needle 120 may be dependent or independent of the motion of the cutting element or blade 134 .
- the material capture needle 120 may also be constructed of existing devices such as a suture needle used in procedures such as coronary anastomoses.
- FIG. 7 shows a material capture needle 150 mounted on a base 152 which slides within elongate slots or grooves 154 and 156 .
- the slots 154 and 156 guide the needle 150 along a path that carries the needle outward and then inwardly towards the catheter body 158 after the needle has engaged the catheter body.
- the inner cutter 160 has a cut-out 162 which holds the base 152 as the cutter is moved with the material capture needle 150 .
- the base may move vertically within the cut-out 162 to follow the slots 154 and 156 .
- FIG. 8 shows a cutter 170 which is controlled by a drawbar 172 which is separate from the material capture needles 180 and drawbar 182 .
- the material capture needles 180 continue to pivot as indicated by arrows 184 . Pulling of the cutter drawbar 172 will reciprocate the cutter 170 without interacting with the positioning of the material capture needle 180 .
- Such separate control may be desirable in particular situations where the timing of the engagement of the material capture needle 180 and the cutter 170 must be more accurately controlled.
- FIG. 9 shows an inner cutter 200 mounted coaxially within an outer cutter 202 and in a fully distal position to open the window 204 .
- the material capture device in this embodiment comprises a penetrating member 206 and a cam surface 208 .
- the penetrating member 206 is pivotably mounted on the inner cutter about a pivot pin 210 .
- the penetrating member 206 has a curved surface 212 that is designed to slide over the cam surface 208 .
- the curved surface 212 is typically a lower or underside surface of the penetrating member 206 .
- the cam surface 208 will guide the penetrating member 206 in a radially outward direction along a path that brings the member into engagement with targeted material.
- the penetrating member 206 may have a variety of material-engaging positions, e.g., where the sharpened tip 214 extends radially beyond the outer diameter of the outer cutter 202 , where the sharpened tip 214 is radially aligned with the outer diameter of the outer cutter or the inner cutter 200 , or where the tip 214 is within the inner cutter.
- the curved surface 212 may be also contain longitudinal grooves and be contoured as desired to best follow and maintain contact with the cam surface 208 during the cutting motion.
- the penetrating member 206 includes a lower protrusion 216 which helps move tissue proximally away from the cutters after the tissue has been excised.
- a drive wire 220 mounted within a drive tube 222 is used to move the inner cutter 200 from a first, open position to a second, closed position.
- the drive wire 220 may be made of material such as stainless steel or nickel titanium.
- the drive tube 222 may also be made of a variety of materials such as a polymer like polyimide, polyurethane, or polyethylene or a flexible metal such as nickel titanium.
- the drive tube 222 may also be made from a composite of metal and polymer, or a metal that has material selectively removed to increase its flexibility.
- the cam surface 208 is fixedly secured to the outer cutter 202 and remains stationary relative to the penetrating member 206 during the cutting motion.
- the inner cutter 200 typically includes a slot or cut-out portion to accommodate the cam surface 208 . Movement of the inner cutter 200 brings the sharpened end 214 into contact with target material which is pushed towards the first blade 224 (FIG. 10). Referring now to FIG. 11 as the window 204 is closed, a second blade 226 on the inner cutter 200 will complete the cutting motion by shearing off the material against the first blade 224 .
- the cam surface 208 will push against the lower surface 212 of the penetrating member 206 and force the sharpened tip 214 of the penetrating member to retract into the inner cutter as shown in FIG. 11.
- FIG. 12 shows an embodiment of the penetrating member 230 where the member has a more aggressively designed sharpened tip 232 .
- the additional length of the tip 232 allows the penetrating member 230 to engage materials further away from the outer cutter 202 .
- the lower surface 234 of the penetrating member 230 includes a recessed portion 236 that allows the penetrating member to be retracted into the outer cutter 202 when the inner cutter 200 is in its distal most position.
- FIG. 13 shows a material capture device where the sharpened tip 240 of the penetrating member 242 is even with the outer diameter of the outer cutter 202 when the penetrating member is in its tissue-engaging position.
- the cam surface 244 has a decreased height and the location of the pivot pin 246 has also been lowered to change the position of the sharpened tip 240 .
- the extension distance may vary depending on the desired function of the cutter.
- the extension distance of the penetrating member (where the outer edge of the inner cutter is 0.000) may range between about-0.05 to 0.10 inches (as shown in phantom), preferably between about 0.00 to 0.04 inches, and most preferably between about 0.01 to 0.02 inches for a 0.100 maximum diameter cutter.
- the length of the sharpened tip 240 may also be used to change the maximum extension distance of the material capture device.
- FIG. 14 shows an embodiment of the penetrating member 250 used with a reduced length inner cutter 252 .
- a shorter inner cutter 252 can reduce the rigid length of the catheter and improve tracking of the catheter through tortuous vasculature.
- the inner cutter 252 in FIG. 14 has the side-opening aperture 254 located at the proximal end of the cutter. In other embodiments, this side-opening aperture is located away from the ends of the cutter. Moving the aperture 254 to the end of the cutter 252 allows the reduction in rigid length.
- the drive wire 220 is repositioned to be on the lower surface of the inner cutter 252 .
- FIGS. 12 - 14 may further be provided with positioner wires as shown in FIGS. 14 A- 14 C.
- the cutter mechanism 500 comprises a penetrating member 502 , an inner cutter 504 , an outer tubular cutter 506 , and a pair of positioner wires 510 (only one of which is visible in the figures).
- the inner cutter 504 is shown in if its closed (fully proximally advanced) configuration in FIG. 14A.
- the penetrating member 502 is fully radially retracted within the cutter assembly, and the positioning wires are also fully retracted.
- the positioning wires 510 form from a resilient material, typically stainless steel ribbon or a shape memory alloy ribbon, such as nitinol.
- the proximal ends of each wire are attached in slots formed near the proximal end of the outer tubular cutter 506 and extend inwardly through openings (not shown) so that their distal ends extend radially inwardly into the interior of the outer tubular cutter, as shown in the left-hand side of FIG. 14A.
- the cutter mechanism 500 With the inner cutter 504 closed, as shown in FIG. 14A, the cutter mechanism 500 can be advanced through the vasculature with a minimum profile, i.e., neither the tissue-penetrating member 502 nor the positioner wires 510 extend out from the cutter mechanism.
- the inner cutting blade 504 may be distally retracted, both opening a cutter window 514 and causing the cam surface 518 on the penetrating member 502 to engage a cam element 520 , causing the penetrating tip of the penetrating element 502 to emerge through the cutter window 514 as generally described with the embodiments of FIGS. 12 - 14 .
- Cutter mechanism 500 differs from the earlier embodiments in that a lower portion of the inner cutter 504 engages the curved distal ends 522 of the positioner wires 510 , as best seen in FIG. 14B. In particular, as the inner cutter 504 moves in a distal direction, (i.e., toward the left in FIGS.
- the positioner wires 510 will apply a very low amount of force against the artery wall since the penetrating member 502 will be able to quickly engage and capture the tissue to be cut by the mechanism 500 . Additionally, if the lesion being treated has a small diameter, the positioner wires will simply fold over as the inner cutter is moved distally to open the cutter window 514 . During the cutting operation, the positioner wires 510 will quickly spring back into the outer tubular cutter 506 since the tissue-penetrating member will act to maintain contact with the material to be cut during the remainder of the cutting operation.
- FIGS. 15 - 18 show a still further embodiment of the material capture device using a penetrating member and a cam surface.
- the penetrating member comprise a curved needle 260 which is fixedly secured to the inner cutter 200 and biased against a cam surface 262 .
- the curved needle 260 may be integrally formed with the inner cutter 200 or otherwise attached such as by welding or other methods known in the art.
- the cam surface 262 will guide the needle 260 along a path outwardly to engage target material and then it back towards the catheter body.
- the needle 260 need not move beyond the outer cutter 202 , instead remaining even with the outer diameter of the outer cutter as the needle engages material.
- the inner cutter 200 may also include a material imaging device 264 such as an ultrasound transducer or optical fibers which will image tissue when the window 204 is closed by the cutter.
- the optical fibers may be used for optical coherence tomography or optical coherence reflectometry.
- a suitable ultrasound transducer or transducer array may be found in commonly assigned, copending U.S. patent application Ser. No. 09/____ (Attorney Docket No. 18489-001000US), filed ______, the full disclosure of which is incorporated herein by reference.
- FIGS. 16 - 18 shows various embodiments of the cam surface 262 .
- FIG. 16 shows a perspective view of the cam surface 262 used in the device of FIG. 15.
- FIGS. 17 and 18 show a cam surface 270 which has separate tracks 272 and 274 which can guide the needle 260 along different needle paths when the needle is advanced and when the needle is retracted.
- the cam surface 270 has funneled portions 276 and 278 for guiding the needle into the respective tracks 272 and 274 , depending on whether the needle is being advanced or retracted.
- the telescoping portion 300 in this embodiment of the cutting device extends outwardly from an aperture 302 on the catheter body 304 .
- the catheter body 304 may include a cutting blade 305 for shearing material drawn into the cutting device. It should be understood, of course, that the blade may be located in a variety of positions such as on the telescoping portion 300 of the device or located on both the telescoping portion and the catheter body. As shown in FIG. 19,
- the distal end 306 of the telescoping portion 300 is preferably adapted to mount a soft, atraumatic distal tip (shown in phantom) to facilitate passage of the device through body lumens.
- the tip may, in some embodiments, be integrally formed with the telescoping portion 300 .
- the telescoping portion 300 is in a distal position where one edge 307 of the telescoping portion is spaced apart from the catheter body and defines a cutting window 308 .
- the edge 307 may comprise a cutting blade while in other embodiments the edge may be unsharpened, but pushing material into the cutting window.
- the cutting window 308 is preferably a directional cutting window which may open towards one side of the catheter where material may intrude to be cut off.
- a penetrating member 310 is preferably rotatably mounted about a pivot pin 312 on the telescoping portion 300 to engage the material. It should be understood that some embodiments of the telescoping portion 300 may not include the penetrating member 310 .
- the penetrating member 310 is shown in FIG. 19 to be in a first, tissue-engaging position.
- a tether or leash element 314 is rotatably coupled to the penetrating member 310 and can be pulled proximally as indicated by arrow 316 to rotate the member into the tissue-engaging position.
- the tether 314 may be made of a variety of materials such as stainless steel or a polymer like polyimide or a fibrous material like Kevlar®.
- FIG. 20 shows the telescoping portion 300 being retracted by a drive wire 318 as indicated by arrow 320 .
- the penetrating member 310 will begin to rotate as indicated by arrow 324 . Further retraction of the telescoping portion 300 will cause the sharpened tip 326 of the penetrating member 310 to be pushed within the boundaries of the catheter body.
- the penetrating member 310 and telescoping portion 300 may be substantially retracted into the catheter body 304 .
- the tether 314 has a bent portion 330 that allows the penetrating member to rotated to the position shown in FIG. 22. Retraction of the penetrating member 310 into the catheter body as shown in FIG. 22 also functions to push tissue proximally into the catheter body where it can be stored.
- FIG. 23 shows a penetrating member 340 that is rotatably mounted to the outer cutter 342 , instead of the inner, slidable cutter 344 as shown in previous embodiments.
- the inner cutter 344 can be reciprocated to cut off materials captured in the window 346 .
- the inner cutter 344 includes a pushing element 348 that contacts the penetrating member 340 to rotate the penetrating member into the target material and then return to the inside of the outer cutter 342 .
- the pushing element 348 traverses over the top of the surface of the penetrating member and wipes off any tissue, directing it into the catheter.
- the penetrating member 340 may be reset to its starting position by a variety of methods such as through the use of a leash element as described above or by using a bias element to create a return force.
- kits including catheters 400 , instructions for use 402 , and packages 404 .
- Catheters 400 will generally be described above, and the instruction for use (IFU) 402 will set forth any of the methods described above.
- Package 404 may be any conventional medical device packaging, including pouches, trays, boxes, tubes, or the like.
- the instructions for use 402 will usually be printed on a separate piece of paper, but may also be printed in whole or in part on a portion of the packaging 404 .
- the cutters and material capture devices may be oriented in a variety of angles on the catheter body.
- the catheters 430 and 440 have cutters 432 and 442 which are oriented perpendicularly or at other inclined angles to a longitudinal axis 450 of the catheter.
- a plurality of material capture devices may be used with a single or a plurality of cutting blades.
- another embodiment of the device includes an ultrasound transducer 460 as shown in FIG. 28.
- the device may use one or more optical fibers for optical coherence tomography or optical coherence reflectometry.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Engineering & Computer Science (AREA)
- Public Health (AREA)
- Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Vascular Medicine (AREA)
- Surgical Instruments (AREA)
Abstract
Catheters, kits, and methods are provided for removing material from a body lumen. The catheters and methods may be used in a variety of body lumens, including but not limited to coronary and other arteries. In general, the catheter has a cutting element that cuts material while the material is engaged by a material capture device on the catheter body. Preferably, the material capture device tensions the material during cutting, which reduces the amount of cutting force required. The material capture device typically follows a path that draws material into the catheter body. Preferably, but not necessarily, the material capture device may be arranged on the catheter body to advance along a path outwardly from the catheter body into the material and then inwardly towards the catheter body to tension the material. The cutting element on the catheter body moves between a first position and a second position to cut the material while in tension.
Description
- The present invention relates generally to apparatus and methods for removing occluding materials from body lumens. More particularly, the present invention relates to the construction and use of atherectomy catheters for excising atheroma and other materials from blood vessels.
- Cardiovascular disease frequently arises from the accumulation of atheromatous material on the inner walls of vascular lumens, particularly arterial lumens of the coronary and other vasculature, resulting in a condition known as atherosclerosis. Atherosclerosis occurs naturally as a result of aging, but may also be aggravated by factors such as diet, hypertension, heredity, vascular injury, and the like. Atheromatous and other vascular deposits restrict blood flow and can cause ischemia which, in acute cases, can result in myocardial infarction. Atheromatous deposits can have widely varying properties, with some deposits being relatively soft and others being fibrous and/or calcified. In the latter case, the deposits are frequently referred to as plaque.
- Atherosclerosis can be treated in a variety of ways, including drugs, bypass surgery, and a variety of catheter-based approaches which rely on intravascular widening or removal of the atheromatous or other material occluding a blood vessel. Of particular interest to the present invention, a variety of methods for cutting or dislodging material and removing such material from the blood vessel have been proposed, generally being referred to as atherectomy procedures. Atherectomy catheters intended to excise material from the blood vessel lumen generally employ a rotatable and/or axially translatable cutting blade which can be advanced into or past the occlusive material in order to cut and separate such material from the blood vessel lumen. In particular, side-cutting atherectomy catheters generally employ a housing having an aperture on one side, a blade which is rotated or translated by the aperture, and a balloon or other deflecting structure to urge the aperture against the material to be removed.
- Although atherectomy catheters have proven to be very successful in treating many types of atherosclerosis, some catheter designs suffer from certain limitations. For example, many side-cutting atherectomy catheters have difficulty in capturing occluding material in the cutting aperture. To facilitate material capture, the cutting aperture is frequently elongated. Although improving material capture, such lengthening makes it more difficult to introduce the distal end of the catheter through torturous regions of the vasculature. Additionally, it is often difficult for conventional atherectomy cutters to apply the requisite pressure to cut off the targeted material. When higher pressures are applied, damage to the artery (barotrauma) can occur. High pressures can also compress plaque, subsequently reducing the cutter's ability to capture the occlusive material. This decreases the effectiveness of these cutters and limits the cutter and catheter designs.
- For these reasons, it is desired to provide atherectomy catheters which can access small, tortuous regions of the vasculature and which can remove atheromatous and other occluding materials from within blood vessels in a controlled fashion with minimum risk of injuring the blood vessel wall. In particular, it is desired to provide atherectomy catheters which can facilitate capturing of occlusive material. It would also be particularly desirable to decrease the amount of force required to cut off occlusive material from the body. At least some of these objectives will be met by the catheter and method of the present invention described hereinafter and in the claims.
- The present invention provides catheters, kits, and methods for removing material from a body lumen. The catheters and methods of the present invention are for use in a variety of body lumens, including but not limited to intravascular lumens such as the coronary artery and other blood vessels. In general, the catheter of the present invention has a cutting element that cuts material engaged by a material capture device on the catheter body. Preferably, the material capture device tensions the material during cutting, which reduces the amount of cutting force required. The material capture device typically follows a path that draws material into the catheter body. Preferably, but not necessarily, the material capture device is arranged on the catheter body to advance along a path outwardly from the catheter body into the material and then inwardly towards the catheter body to tension the material. In some embodiments, the material capture device may extend in an outwardly direction but not beyond the outer diameter of the catheter body. The cutting element on the catheter body moves between a first position and a second position to cut the material while in tension, where motion of the cutting element urges the material capture device to draw cut material into the catheter body.
- Desirably, the blade or blades of the catheter will be actuable with the application of reasonable mechanical forces which are capable of being transmitted along even rather lengthy catheters. Further desirably, the catheters will be suitable for directional removal of occluding material and may include mechanisms for engaging cutting blades against selected portions of a vascular wall. Optionally, the engaging mechanisms should permit blood perfusion during performance of an atherectomy procedure.
- In one embodiment, the catheter of the present invention uses a material capture device in the form of a material capture needle. The needle will be deployed in a radially outward direction from the catheter body. Preferably, but not necessarily, the needle will capture material while the catheter remains stationary. Some embodiments may use a plurality of material capture needles. The material capture needle may follow a path outwardly from the catheter body in various manners. In one embodiment, the needle has a portion that advances through an elongate slot on the catheter body to move the needle along a path outwardly from the catheter body. Another embodiment uses a curved needle rotatably mounted about a pivot pin. As the needle is rotated, it will protrude outwardly from the catheter body. A preferred embodiment uses a needle having a bias element which urges the needle outwardly when the catheter is in position. Typically, a material cutting element will engage the material that has been captured and sheer off the material into the catheter.
- In a further embodiment, a material capture device of the present invention uses a penetrating member mounted to extend through an aperture on the catheter body to penetrate material in advance of the cutting blade and to draw material into the catheter body as the cutting blade is advanced past the aperture. The penetrating member is rotatably mounted to the slidable cutting blade on the catheter body. A cam surface on the catheter body engages a surface of the penetrating member to guide the member along a path to engage the material and draw the material into the catheter body. In a still further embodiment, an abutment or raised portion on the catheter body is mounted to engage one end of the penetrating member. This contact caused the penetrating member to rotate about its pivot point on the cutting blade and thus engage material and draw material into the catheter body.
- In another aspect of the present invention, a method is provided for excising occlusive material from within a body lumen. The method involves engaging the occlusive material with a material capture device on a catheter body. The material is drawn in a radially inward direction by the device to tension the material to be cut. A blade is advanced through the tensioned material to sever the material from the body lumen. As mentioned previously, tensioning the material reduces the amount of cutting force required. The tensioning of the occlusive material may also comprise moving the material capture device towards a catheter body while the material capture device is in contact with the occlusive material. Typically, the engaging and tensioning steps may also be performed with a single motion by the user to facilitate cutting.
- In a still further aspect, kits according to the present invention will comprise a catheter having a material capture device. The kits will further include instructions for use setting forth a method as described above. Optionally, the kits will further include packaging suitable for containing the catheter and the instructions for use. Exemplary containers include pouches, trays, boxes, tubes, and the like. The instructions for use may be provided on a separate sheet of paper or other medium. Optionally, the instructions may be printed in whole or in part on the packaging. Usually, at least the catheter will be provided in a sterilized condition. Other kit components, such as a guidewire, may also be included.
- A further understanding of the nature and advantages of the invention will become apparent by reference to the remaining portions of the specification and drawings.
- FIG. 1 is a perspective view of an atherectomy catheter constructed in accordance with the principles of the present invention.
- FIGS.2-4 show various embodiments of a material capture device and a material cutting element according to the present invention.
- FIGS.5A-5C illustrate a material cutting sequence using one embodiment of a material capture device and material cutting element according to the present invention.
- FIGS.6A-6B show cross-sectional views of a further embodiment of a material capture device and material cutting element.
- FIGS.7-8 show still further embodiments of a material capture device and material cutting element.
- FIGS.9-11 show cross-sectional views of a preferred embodiment of the material capture device;
- FIGS. 12, 13,14, 14A-C, and 15 show alternative embodiments of the device show in FIGS. 9-11.
- FIGS.16-18 depict various embodiments of a cam surface according to the present invention.
- FIGS.19-22 are cross-sectional views of a telescoping cutter having a material capture device according to the present invention.
- FIGS.23-24 show a still further embodiment of the material capture device.
- FIG. 25 shows a kit according to the present invention.
- FIGS. 26 and 27 illustrate a catheter having material capture devices and material cutting elements oriented at various angles on the catheter body.
- FIG. 28 shows a preferred embodiment of the present invention for use with a material imaging device according to the present invention.
- The present invention provides devices, methods, and kits for use in removing material from a body lumen. The present invention may be used in a variety of body lumens, including but not limited to coronary and other arteries. Advantageously, the present invention reduces the amount of force required to cut material and facilitates material capture into apertures of the catheter.
- Apparatus according to the present invention will comprise catheters having catheter bodies adapted for intraluminal introduction to the target body lumen. The dimensions and other physical characteristics of the catheter bodies will vary significantly depending on the body lumen which is to be accessed. In the exemplary case of atherectomy catheters intended for intravascular introduction, the catheter bodies will typically be very flexible and suitable for introduction over a guidewire to a target site within the vasculature. In particular, catheters can be intended for “over-the-wire” introduction when a guidewire lumen extends fully through the catheter body or for “rapid exchange” introduction where the guidewire lumen extends only through a distal portion of the catheter body.
- Catheter bodies intended for intravascular introduction will typically have a length in the range from 50 cm to 200 cm and an outer diameter in the range from 1 French (0.33 mm; Fr.) to 12 Fr., usually from 3 Fr. to 9 Fr. In the case of coronary catheters, the length is typically in the range from 125 to 200 cm, the diameter is preferably below 8 Fr., more preferably below 7 Fr., and most preferably in the range from 2 Fr. to 7 Fr. Catheter bodies will typically be composed of an organic polymer which is fabricated by conventional extrusion techniques. Suitable polymers include polyvinylchloride, polyurethanes, polyesters, polytetrafluoroethylenes (PTFE), silicone rubbers, natural rubbers, and the like. Optionally, the catheter body may be reinforced with braid, helical wires, axial filaments, or the like, in order to increase rotational strength, column strength, toughness, pushability, and the like. Suitable catheter bodies may be formed by extrusion, with one or more lumens being provided when desired. The catheter diameter can be modified by heat expansion and shrinkage using conventional techniques. The resulting catheters will thus be suitable for introduction to the vascular system, often the coronary arteries, by conventional techniques.
- The cutting blades used in the present invention will usually be formed from a metal, but could also be formed from hard plastics, ceramics, or composites of two or more materials, which can be honed or otherwise formed into the desired cutting edge. In the exemplary embodiments, the cutting blades are formed as coaxial tubular blades with the cutting edges defined in aligned apertures therein. It will be appreciated that the present invention is not limited to such preferred cutting blade assemblies, in a variety of other designs, such as the use of wiper blades, scissor blades or the like. Optionally, the cutting edge of either or both the blades may be hardened, e.g., by application of a coating. A preferred coating material is titanium nitride, available from Brycoat, Inc., which may be applied according to manufacturer's instructions.
- Referring now to FIG. 1, a
catheter 10 constructed in accordance with the principles of the present invention comprises acatheter body 12 having aproximal end 14 and adistal end 16. Acutting mechanism 18 comprises anouter cutter 20, aninner cutter 22 is attached to the distal end of thecatheter body 12, and aneedle 23 as a material capture device. Anatraumatic tip 24 is attached to the distal end of theouter cutter 20, and aguidewire lumen 25 extends through the entire catheter body, cuttingmechanism 18, and terminates inport 25 at the distal tip oftip section 24. Aproximal hub 30 is attached to the proximal end ofcatheter body 12 and comprises a perfusion/aspiration connector 32, aguidewire connector 34, and aslider 36. Theslider 36 is attached to the proximal end of anactuator rod 37 which extends from thehub 30 through the lumen ofcatheter body 12 into thecutting mechanism 18 where it is attached at a proximal end of theinner cutter 22. In this way, manual actuation ofslider 36 in the direction ofarrow 38 movesinner cutter 22 in the direction ofarrow 40. - Referring to FIGS. 2A and 2B, this embodiment of the
catheter 10 uses thematerial capture needle 23 to capture the material and tension it towards thecutters material capture needle 23 follows a path where the material capture needle extends outwardly from the catheter body and moves inwardly towards the catheter body to tension the material. In this embodiment, when thematerial capture needle 23 is deployed, it angles out from theaperture 42 and a portion of the material capture needle typically runs parallel to the window with the sharpened tip located near the proximal end of the aperture. The inner cutter or cuttingelement 22 is reciprocated to open and close theaperture 42 formed in the wall of thecatheter body 12. Movement of theinner cutter 22 also controls the deployment of the material capture needle. When theinner cutter 22 opens theaperture 42, thematerial capture needle 23 is biased outwardly from thecatheter body 12. Thematerial capture needle 23 is preferably spring-loaded, where in its resting condition, the material capture needle extends outwardly from thecatheter body 12. Thematerial capture needle 23 is otherwise constrained within thecatheter body 12 when theinner cutter 22 closesaperture 42. Thematerial capture needle 23 may be made of a variety of materials such as stainless steel or a superelastic material. - With the
material capture needle 23 deployed as shown in FIG. 2B, the material capture needle may penetrate into the material when thecatheter body 12 is pulled in the proximal direction. Theinner cutter 22 is then closed, as indicated byarrow 40, to push thematerial capture needle 23 towards thecatheter body 12 as indicated byarrow 44. Preferably, closing ofcutter 22 will tension the material and draw it into thecatheter body 12 when thecutters inner cutter 22, upon finishing the closing motion, will wipe the piece of cut-off material off thematerial capture needle 23 and into the catheter for storage. Thematerial capture needle 23 andcutting mechanism 18 may then be readied to make a subsequent cut. Thematerial capture needle 23 typically has a diameter between about 0.1 to 0.5 mm, preferably 0.2 to 0.3 mm, with a length between about 1 to 5 mm, preferably 3 to 4 mm. - Referring to FIGS.3-4, a variety of catheter embodiments may incorporate a needle as a material capture device. Like the catheter of FIG. 2, these catheters rely on the motion of a cutter to control positioning of the material capture needle during cutting. The FIGS. 3A-3B show the distal portion of a
catheter 50 having anouter cutter 52 which reciprocates to control the deployment of thematerial capture needle 54. Additionally, in this embodiment, thematerial capture needle 54 is deployed to have a forward pointing sharpened tip. With thematerial capture needle 54 deployed, thecatheter 50 would be pushed forward as indicated byarrow 56 to penetrate target material T. Thecatheter 50 may also incorporate aski mechanism 58 to urge the cutting side of the catheter radially against the target material T. Such a ski mechanism is described in detail in commonly assigned, copending U.S. patent application Ser. No. 08/982,231 (Attorney Docket No. 18489-000200) filed Dec. 17, 1997, the full disclosure of which is incorporated herein by reference. All of the catheter structures herein may optionally employ such mechanisms. - FIGS. 4A and 4B show a
catheter 70 having atelescoping cutter 72 for use with amaterial capture needle 74. Thetelescoping cutter 72 is used to decrease the rigid length of thecatheter 70 and may be used to create a larger window oraperture 76 for removing greater amounts of material. As thetelescoping cutter 72 is drawn proximally, thematerial capture needle 74 will be pushed into theaperture 76 as indicated byarrow 78, along with material attached to the material capture needle. As seen in FIG. 4B, thematerial capture device 74 may also include one ormore barbs 79 which keep the material from sliding off once it is excised. - The
catheter 70 is quite useful and an improvement over conventional atherectomy catheters even without incorporation of thematerial capture needle 74. The decrease in the rigid length of the distal portion ofcatheter 70 is a significant advantage, particularly when the catheter is introduced to the highly tortuous regions of the coronary vasculature. Once at a desired location, however, the rigid cutter portion of the catheter can be extended in length by 50% or more, with a theoretical limit of 100% for a two-portion telescoping region. In the illustrated embodiment, the cuttingaperture 76 is defined only on one of the cutter blades. In other embodiments, it will possible to define the aperture on both of the cutting blades and/or in a variety of configurations. While the cutting blades will preferably employ the cutting edges at each end, the advantages of the telescoping cutter can be enjoyed even without the cutting edges. - Referring now to FIGS.5A-5C, another embodiment of an
atherectomy catheter 100 uses amaterial capture needle 102 which rotates about apivot pin 104. As indicated byarrow 106 in FIG. 5A, thematerial capture needle 102 will rotate upward as thedrawbar 108 is pulled proximally. As seen in the cross-section of FIG. 5B, thedrawbar 108 is coupled toslider 110 which has cuttingblade 112. Acam 106 about thepivot pin 104 will pull against thematerial capture needle 102 asdrawbar 108 is moved. Thedrawbar 108 will be retracted until theblade 112, as shown in FIG. 5C, has sheared off any material captured by thematerial capture needle 102. - FIGS. 6A and 6B show a catheter embodiment similar to that of FIGS.5A-5C. The
material capture needle 120 of FIG. 6A rotates about apivot 122 to engage material M to be excised from the luminal wall. The needle actuator for this embodiment differs from that ofcatheter 100. Thematerial capture needle 120 of the present embodiment sits betweentabs drawbar 130. Thedrawbar 130 rotates theneedle 120 while pulling onslider 132 havingblade 134. Of course, it should be understood that the motion of the pivotingmaterial capture needle 120 may be dependent or independent of the motion of the cutting element orblade 134. Thematerial capture needle 120 may also be constructed of existing devices such as a suture needle used in procedures such as coronary anastomoses. - FIG. 7 shows a
material capture needle 150 mounted on a base 152 which slides within elongate slots orgrooves slots needle 150 along a path that carries the needle outward and then inwardly towards thecatheter body 158 after the needle has engaged the catheter body. Theinner cutter 160 has a cut-out 162 which holds the base 152 as the cutter is moved with thematerial capture needle 150. The base may move vertically within the cut-out 162 to follow theslots - In a still further embodiment of the cutting mechanism, FIG. 8 shows a
cutter 170 which is controlled by adrawbar 172 which is separate from the material capture needles 180 anddrawbar 182. The material capture needles 180 continue to pivot as indicated byarrows 184. Pulling of thecutter drawbar 172 will reciprocate thecutter 170 without interacting with the positioning of thematerial capture needle 180. Such separate control may be desirable in particular situations where the timing of the engagement of thematerial capture needle 180 and thecutter 170 must be more accurately controlled. - Referring now to FIG. 9, a preferred embodiment of the present invention having a material capture device will now be described in further detail. FIG. 9 shows an
inner cutter 200 mounted coaxially within anouter cutter 202 and in a fully distal position to open thewindow 204. The material capture device in this embodiment comprises a penetratingmember 206 and acam surface 208. The penetratingmember 206 is pivotably mounted on the inner cutter about apivot pin 210. The penetratingmember 206 has acurved surface 212 that is designed to slide over thecam surface 208. Thecurved surface 212 is typically a lower or underside surface of the penetratingmember 206. As theinner cutter 200 is advanced during the cutting motion, thecam surface 208 will guide the penetratingmember 206 in a radially outward direction along a path that brings the member into engagement with targeted material. By varying the shape of thecurved surface 212 and the height of thecam surface 208, the penetratingmember 206 may have a variety of material-engaging positions, e.g., where the sharpenedtip 214 extends radially beyond the outer diameter of theouter cutter 202, where the sharpenedtip 214 is radially aligned with the outer diameter of the outer cutter or theinner cutter 200, or where thetip 214 is within the inner cutter. It should be understood that thecurved surface 212 may be also contain longitudinal grooves and be contoured as desired to best follow and maintain contact with thecam surface 208 during the cutting motion. As shown in FIG. 9, the penetratingmember 206 includes alower protrusion 216 which helps move tissue proximally away from the cutters after the tissue has been excised. - Referring now to FIG. 10, a
drive wire 220 mounted within adrive tube 222 is used to move theinner cutter 200 from a first, open position to a second, closed position. Of course, other push/pull elements or separate push elements and pull elements may be used to control the movement of theinner cutter 200. Thedrive wire 220 may be made of material such as stainless steel or nickel titanium. Thedrive tube 222 may also be made of a variety of materials such as a polymer like polyimide, polyurethane, or polyethylene or a flexible metal such as nickel titanium. Thedrive tube 222 may also be made from a composite of metal and polymer, or a metal that has material selectively removed to increase its flexibility. Further details of the drive tube can be found in commonly assigned, copending U.S. patent application Ser. No. 08/982,231 (Attorney Docket No. 18489-000200US), filed on Dec. 17, 1997, the full disclosure of which is incorporated herein by reference. - As seen in FIGS. 10 and 11, the
cam surface 208 is fixedly secured to theouter cutter 202 and remains stationary relative to the penetratingmember 206 during the cutting motion. Theinner cutter 200 typically includes a slot or cut-out portion to accommodate thecam surface 208. Movement of theinner cutter 200 brings the sharpenedend 214 into contact with target material which is pushed towards the first blade 224 (FIG. 10). Referring now to FIG. 11 as thewindow 204 is closed, asecond blade 226 on theinner cutter 200 will complete the cutting motion by shearing off the material against thefirst blade 224. Thecam surface 208 will push against thelower surface 212 of the penetratingmember 206 and force the sharpenedtip 214 of the penetrating member to retract into the inner cutter as shown in FIG. 11. - Referring now to FIGS.12-14, other embodiments of the penetrating member, cam surface, and inner cutter will now be described. FIG. 12 shows an embodiment of the penetrating
member 230 where the member has a more aggressively designed sharpenedtip 232. The additional length of thetip 232 allows the penetratingmember 230 to engage materials further away from theouter cutter 202. Thelower surface 234 of the penetratingmember 230 includes a recessedportion 236 that allows the penetrating member to be retracted into theouter cutter 202 when theinner cutter 200 is in its distal most position. - FIG. 13 shows a material capture device where the sharpened
tip 240 of the penetratingmember 242 is even with the outer diameter of theouter cutter 202 when the penetrating member is in its tissue-engaging position. Thecam surface 244 has a decreased height and the location of the pivot pin 246 has also been lowered to change the position of the sharpenedtip 240. The extension distance may vary depending on the desired function of the cutter. For example, the extension distance of the penetrating member (where the outer edge of the inner cutter is 0.000) may range between about-0.05 to 0.10 inches (as shown in phantom), preferably between about 0.00 to 0.04 inches, and most preferably between about 0.01 to 0.02 inches for a 0.100 maximum diameter cutter. The length of the sharpenedtip 240 may also be used to change the maximum extension distance of the material capture device. - FIG. 14 shows an embodiment of the penetrating
member 250 used with a reduced lengthinner cutter 252. Using a shorterinner cutter 252 can reduce the rigid length of the catheter and improve tracking of the catheter through tortuous vasculature. Unlike the inner cutters shown in FIGS. 9-11, theinner cutter 252 in FIG. 14 has the side-openingaperture 254 located at the proximal end of the cutter. In other embodiments, this side-opening aperture is located away from the ends of the cutter. Moving theaperture 254 to the end of thecutter 252 allows the reduction in rigid length. In this embodiment, thedrive wire 220 is repositioned to be on the lower surface of theinner cutter 252. - The embodiments of FIGS.12-14 may further be provided with positioner wires as shown in FIGS. 14A-14C. The
cutter mechanism 500 comprises a penetratingmember 502, aninner cutter 504, an outertubular cutter 506, and a pair of positioner wires 510 (only one of which is visible in the figures). Theinner cutter 504 is shown in if its closed (fully proximally advanced) configuration in FIG. 14A. The penetratingmember 502 is fully radially retracted within the cutter assembly, and the positioning wires are also fully retracted. - The
positioning wires 510 form from a resilient material, typically stainless steel ribbon or a shape memory alloy ribbon, such as nitinol. The proximal ends of each wire are attached in slots formed near the proximal end of the outertubular cutter 506 and extend inwardly through openings (not shown) so that their distal ends extend radially inwardly into the interior of the outer tubular cutter, as shown in the left-hand side of FIG. 14A. With theinner cutter 504 closed, as shown in FIG. 14A, thecutter mechanism 500 can be advanced through the vasculature with a minimum profile, i.e., neither the tissue-penetratingmember 502 nor thepositioner wires 510 extend out from the cutter mechanism. - Once positioned at the treatment location, the
inner cutting blade 504 may be distally retracted, both opening acutter window 514 and causing thecam surface 518 on the penetratingmember 502 to engage acam element 520, causing the penetrating tip of the penetratingelement 502 to emerge through thecutter window 514 as generally described with the embodiments of FIGS. 12-14.Cutter mechanism 500 differs from the earlier embodiments in that a lower portion of theinner cutter 504 engages the curved distal ends 522 of thepositioner wires 510, as best seen in FIG. 14B. In particular, as theinner cutter 504 moves in a distal direction, (i.e., toward the left in FIGS. 14A-14C), it depresses the curved ends 522, causing the main body of thepositioner wires 510 to emerge from theouter cutter 506, as indicated at 530 in FIG. 14B. As theinner cutter 504 moves further in the distal direction, thepositioner wires 510 are deployed fully outwardly, as best shown in FIG. 14C. Thecutter window 514 is fully opened and the penetratingmember 502 again retracted within thecutter mechanism 500. With thepositioner wires 510 fully deployed, the penetratingmember 502 of the cutter mechanism is disposed to penetrate into target tissue as theinner cutter member 504 is closed in the proximal direction. Preferably, thepositioner wires 510 will apply a very low amount of force against the artery wall since the penetratingmember 502 will be able to quickly engage and capture the tissue to be cut by themechanism 500. Additionally, if the lesion being treated has a small diameter, the positioner wires will simply fold over as the inner cutter is moved distally to open thecutter window 514. During the cutting operation, thepositioner wires 510 will quickly spring back into the outertubular cutter 506 since the tissue-penetrating member will act to maintain contact with the material to be cut during the remainder of the cutting operation. - FIGS.15-18 show a still further embodiment of the material capture device using a penetrating member and a cam surface. In FIG. 15, the penetrating member comprise a
curved needle 260 which is fixedly secured to theinner cutter 200 and biased against acam surface 262. Thecurved needle 260 may be integrally formed with theinner cutter 200 or otherwise attached such as by welding or other methods known in the art. As theinner cutter 200 is advanced, thecam surface 262 will guide theneedle 260 along a path outwardly to engage target material and then it back towards the catheter body. As discussed previously, theneedle 260 need not move beyond theouter cutter 202, instead remaining even with the outer diameter of the outer cutter as the needle engages material. Theinner cutter 200 may also include amaterial imaging device 264 such as an ultrasound transducer or optical fibers which will image tissue when thewindow 204 is closed by the cutter. The optical fibers may be used for optical coherence tomography or optical coherence reflectometry. A suitable ultrasound transducer or transducer array may be found in commonly assigned, copending U.S. patent application Ser. No. 09/____ (Attorney Docket No. 18489-001000US), filed ______, the full disclosure of which is incorporated herein by reference. - FIGS.16-18 shows various embodiments of the
cam surface 262. FIG. 16 shows a perspective view of thecam surface 262 used in the device of FIG. 15. FIGS. 17 and 18 show acam surface 270 which hasseparate tracks needle 260 along different needle paths when the needle is advanced and when the needle is retracted. Thecam surface 270 has funneledportions respective tracks - Referring now to FIGS.19-22, a telescoping cutting device using a material capture device will be described in further detail. As shown in FIG. 19, the
telescoping portion 300 in this embodiment of the cutting device extends outwardly from anaperture 302 on thecatheter body 304. Thecatheter body 304 may include acutting blade 305 for shearing material drawn into the cutting device. It should be understood, of course, that the blade may be located in a variety of positions such as on thetelescoping portion 300 of the device or located on both the telescoping portion and the catheter body. As shown in FIG. 19, thedistal end 306 of thetelescoping portion 300 is preferably adapted to mount a soft, atraumatic distal tip (shown in phantom) to facilitate passage of the device through body lumens. The tip may, in some embodiments, be integrally formed with thetelescoping portion 300. - As seen in FIG. 19, the
telescoping portion 300 is in a distal position where oneedge 307 of the telescoping portion is spaced apart from the catheter body and defines a cuttingwindow 308. In some embodiments, theedge 307 may comprise a cutting blade while in other embodiments the edge may be unsharpened, but pushing material into the cutting window. The cuttingwindow 308 is preferably a directional cutting window which may open towards one side of the catheter where material may intrude to be cut off. A penetratingmember 310 is preferably rotatably mounted about apivot pin 312 on thetelescoping portion 300 to engage the material. It should be understood that some embodiments of thetelescoping portion 300 may not include the penetratingmember 310. The penetratingmember 310 is shown in FIG. 19 to be in a first, tissue-engaging position. A tether orleash element 314 is rotatably coupled to the penetratingmember 310 and can be pulled proximally as indicated byarrow 316 to rotate the member into the tissue-engaging position. Thetether 314 may be made of a variety of materials such as stainless steel or a polymer like polyimide or a fibrous material like Kevlar®. - FIG. 20 shows the
telescoping portion 300 being retracted by adrive wire 318 as indicated byarrow 320. As one end of the penetratingmember 310 contacts abutment ordeflection block 322, the penetratingmember 310 will begin to rotate as indicated byarrow 324. Further retraction of thetelescoping portion 300 will cause the sharpenedtip 326 of the penetratingmember 310 to be pushed within the boundaries of the catheter body. As seen in FIG. 21, the penetratingmember 310 andtelescoping portion 300 may be substantially retracted into thecatheter body 304. Thetether 314 has abent portion 330 that allows the penetrating member to rotated to the position shown in FIG. 22. Retraction of the penetratingmember 310 into the catheter body as shown in FIG. 22 also functions to push tissue proximally into the catheter body where it can be stored. - Referring now to FIGS. 23 and 24, a still further embodiment of the tissue capture device will be described. FIG. 23 shows a penetrating
member 340 that is rotatably mounted to theouter cutter 342, instead of the inner,slidable cutter 344 as shown in previous embodiments. Theinner cutter 344 can be reciprocated to cut off materials captured in thewindow 346. Theinner cutter 344 includes a pushingelement 348 that contacts the penetratingmember 340 to rotate the penetrating member into the target material and then return to the inside of theouter cutter 342. The pushingelement 348 traverses over the top of the surface of the penetrating member and wipes off any tissue, directing it into the catheter. The penetratingmember 340 may be reset to its starting position by a variety of methods such as through the use of a leash element as described above or by using a bias element to create a return force. - Referring now to FIG. 25, the present invention will further comprise
kits including catheters 400, instructions foruse 402, and packages 404.Catheters 400 will generally be described above, and the instruction for use (IFU) 402 will set forth any of the methods described above.Package 404 may be any conventional medical device packaging, including pouches, trays, boxes, tubes, or the like. The instructions foruse 402 will usually be printed on a separate piece of paper, but may also be printed in whole or in part on a portion of thepackaging 404. - While all the above is a complete description of the preferred embodiments of the inventions, various alternatives, modifications, and equivalents may be used. For example, the cutters and material capture devices may be oriented in a variety of angles on the catheter body. As seen in FIGS. 26 and 27, the
catheters cutters longitudinal axis 450 of the catheter. A plurality of material capture devices may be used with a single or a plurality of cutting blades. Additionally, as discussed above for FIG. 15, another embodiment of the device includes anultrasound transducer 460 as shown in FIG. 28. In place of an ultrasonic transducer, the device may use one or more optical fibers for optical coherence tomography or optical coherence reflectometry. Although the foregoing invention has been described in detail for purposes of clarity of understanding, it will be obvious that certain modifications may be practiced within the scope of the appended claims.
Claims (58)
1. A catheter for removing material from a body lumen, said catheter comprising:
a catheter body having a proximal end and a distal end;
a material capture device arranged on said catheter body to engage said material; and
a cutting element mounted near the distal end of the catheter body to move between a first position and a second position to cut said material while said material is engaged by said material capture device, wherein motion of the cutting element urges the material capture device to draw cut material into the catheter body.
2. A catheter as in claim 1 wherein said catheter body comprises a proximal, flexible portion and a distal, rigid portion containing said cutting element.
3. A catheter as in claim 2 wherein said catheter body comprises a inner cutter mounted coaxially within said distal, rigid portion, said material capture device mounted on said inner cutter.
4. A catheter as in claim 2 wherein said catheter body comprises an atraumatic distal tip mounted on said distal, rigid portion.
5. A catheter as in claim 1 wherein:
said material capture device is arranged on said catheter body to advance along a path outwardly from the catheter body into said material and then inwardly towards the catheter body to tension said material; and
said cutting element on said catheter body moving between said first position and said second position to cut said material while in tension.
6. A catheter as in claim 5 wherein said path comprises a radially curved path extending in an outward direction away from the catheter body towards said material to be cut off.
7. A catheter as in claim 6 where in said material capture device moving along said path does not exceed the outer diameter of the catheter body.
8. A catheter as in claim 5 wherein said material capture device travels in a slot on the catheter body to advance along said path.
9. A catheter as in claim 5 wherein said material capture device travels in a groove on the catheter body to advance along said path.
10. A catheter as in claim 5 wherein said material capture device comprises a bias element to urge said material capture device along said path.
11. A catheter as in claim 5 wherein said material capture device is configured to rotate about a pivot pin to deploy said material capture device along said path.
12. A catheter as in claim 1 wherein said material capture device comprises:
a penetrating member pivotably mounted about a pin on said cutting blade, said penetrating member movable between a first, tissue-engaging position and a second tissue-retracting position; and
a cam surface disposed on said catheter body to contact and rotate said penetrating member about said pivot point when said cutting blade is advanced over the cam surface.
13. A catheter as in claim 12 wherein said cam surface is configured to slidably contact a lower surface on said penetrating member to guide said penetrating member over an accurate path as the cutting blade is advanced.
14. A catheter as in claim 13 wherein said cam surface includes a groove for mating with said penetrating member.
15. A catheter as in claim 13 wherein said cam surface includes a first groove having a funneled opening and a second groove having a second funneled opening.
16. A catheter as in claim 13 wherein said penetrating member comprises a recess on said lower surface to facilitate positioning of said member over said cam surface.
17. A catheter as in claim 1 wherein said material capture device comprises:
a penetrating member rotatably mounted on said cutting element; and
an abutment disposed on said catheter body to engage one end of the penetrable member and cause rotation of the penetrating member from a first, open position to a second, closed position.
18. A catheter as in claim 17 further comprising a tether coupled to said penetrating member to control positioning of the penetrating member.
19. A catheter as in claim 1 wherein said material capture device comprises a penetrating member rotatably mounted on said catheter body and fixedly secured relative to said slidable cutting element;
a pushing element mounted on said cutting element to engage said penetrating member to move said member between a first position to a second tissue-engaging position.
20. A catheter as in claim 1 wherein said material capture device is configured to be deployed from an aperture in the side wall of the catheter body.
21. A catheter as in claim 20 wherein said cutting element includes an material imaging device mounted to be in an imaging position when said aperture is closed by said cutting element.
22. A catheter as in claim 1 wherein said cutting element includes a first cutting blade having at least one penetrating point.
23. A catheter as in claim 1 wherein said cutting element has a first cutting blade opposed to a second cutting blade for removing said material.
24. A catheter as in claim 1 wherein said cutting element comprises a tubular inner cutter slidably mounted within an outer cutter of the catheter body, said inner cutter coupled to a drive wire actuated by a user.
25. A catheter as in claim 1 wherein said material capture device extends an extension distance outward from the catheter body to engage material, said extension distance equal to the diameter of the catheter body.
26. A catheter as in claim 1 wherein said material capture device includes a barbed distal tip to retain material on the capture device.
27. A catheter as in claim 1 wherein said cutting element further comprises a material imaging device.
28. A catheter as in claim 27 wherein said material imaging device comprises an ultrasound transducer array.
29. A catheter as in claim 1 wherein said material capture device comprises means for penetrating said material.
30. A catheter as in claim 29 wherein said means for penetrating material comprises a curved needle biased outwardly from the catheter body.
31. A catheter as in claim 29 wherein said means for penetrating material comprises a penetrating member rotatably mounted about a pivot pin on said cutting element.
32. A catheter as in claim 29 wherein said means for penetrating material is configured to engage a raised portion on said catheter body to move said means to engage material and then retract material into the catheter body.
33. A catheter as in claim 32 wherein said raised portion comprises a cam surface having a plurality of tracks, wherein each track has a funneled entrance to guide said penetrating member therein.
34. A catheter for removing material from the wall of a body lumen, said catheter comprising:
a catheter body having a proximal end and a distal end;
a side aperture on the catheter body;
a cutting blade adapted to advance past the aperture to sever material which intrudes through the aperture; and
a penetration member mounted to extend through the aperture to penetrate material in advance of the cutting blade and to draw material into the catheter body as the cutting blade is advanced past the aperture.
35. A catheter as in claim 34 further comprising a cam surface mounted on said catheter body, said cam surface having a surface configured to guide said penetration member into said material when said blade is advanced.
36. A catheter for removing material from a body lumen, said catheter comprising:
a catheter body having a proximal end and a distal end;
a material capture device arranged on said catheter body to advance along a path radially outwardly from the catheter body into said material and then inwardly towards the catheter body to tension said material; and
a cutting element on said catheter body moving between a first position and a second position to cut said material while said material is in tension.
37. A catheter for removing material from a body lumen, said catheter comprising:
a catheter body having a proximal end, a distal end, and an aperture;
a slidable, telescoping portion on said catheter body configured to extend outwardly from said aperture on the catheter body, said telescoping portion having a first open position leaving a gap between one edge of said portion and said catheter body to define a cutter window in which material may intrude to be engaged and having a second closed position wherein said cutting blade is positioned to cut off said material.
38. A catheter as in claim 37 wherein said gap defines a side-opening cutter window.
39. A catheter as in claim 37 wherein said aperture comprises a forward facing, distal aperture on the catheter body.
40. A catheter as in claim 37 further comprising a material capture device mounted on said telescoping portion, said portion moving between a first position and a second position to cut said material while said material is engaged by said material capture device, wherein motion of the telescoping portion urges the material capture device to draw cut material into the catheter body.
41. A catheter as in claim 40 wherein said material capture device is rotatably mounted to said telescoping portion and configured to engage a raised portion on said catheter body to rotate said material capture device to engage material and then draw material into the catheter body.
42. A method for excising occlusive material from within a body lumen, said method comprising:
capturing said occlusive material with a material capture device on a catheter body;
drawing said device radially inwardly towards the catheter body to tension the material; and
advancing a blade through the tensioned material to sever said material from the body lumen.
43. A method as in claim 42 wherein said engaging of said occlusive material comprises extending said material capture device from said catheter body in a radially outward direction.
44. A method as in claim 43 wherein said material capture device does not extend beyond the outer diameter of the catheter body when engaging said material.
45. A method as in claim 42 wherein said engaging of said occlusive material comprises penetrating said material with said material capture device.
46. A method as in claim 42 wherein said engaging of occlusive material comprises radially extending said material capture device outward from an aperture on the catheter body.
47. A method as in claim 46 wherein said engaging of said occlusive material comprises guiding said material capture device against a raised portion on the catheter body to direct said capture device into said material.
48. A method as in claim 46 wherein said engaging of said occlusive material comprises advancing said cutting blade to engage a pushing element against said material capture device mounted on the catheter body.
49. A method as in claim 46 wherein said engaging of said occlusive material comprises penetrating said material in advance of the blade and said drawing of said device into the catheter body occurs as the cutting blade is advanced past the aperture.
50. A method as in claim 46 further comprising imaging said material prior to cutting said material, wherein said imaging occurs when said aperture is closed by said cutting blade.
51. A method as in claim 42 wherein said drawing of the device comprises moving said material capture device radially towards said catheter body while said material capture device remains in contact with said material.
52. A method as in claim 51 wherein said drawing of said material capture device occurs when said cutting element is advanced, said cutting element pushing against said material capture device and biasing it into the catheter body.
53. A method as in claim 51 wherein drawing of said material capture device comprises positioning said material capture device against a raised portion on the catheter body to guide said device with the material into the catheter body.
54. A method as in claim 42 wherein said engaging and tensioning of material are performed through a single motion by the user.
55. A method for removing material from a body lumen, said method comprising:
positioning a catheter within the lumen;
extending a distal portion of the catheter forwardly to open an aperture, wherein material is invaginated into the aperture; and
closing the distal portion of the catheter to close the aperture and sever the invaginated material.
56. A method as in claim 55 , wherein the body lumen is a blood vessel and the material is atheromatous material.
57. A method as in claim 55 , further comprising penetrating the tissue with a material capture device and drawing the captured material into the aperture with the device as the distal portion of the catheter body is closed.
58. A kit comprising:
a catheter having a material capture device and a cutting element;
instructions for use in removing material from a body lumen comprising engaging said material with a material capture device and tensioning said material towards the catheter while cutting said occlusive material with a cutting element; and
a package adapted to contain the device and the instructions for use.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/916,642 US20020022788A1 (en) | 1999-08-19 | 2001-07-27 | Apparatus and methods for material capture and removal |
US11/455,995 US20060235334A1 (en) | 1999-08-19 | 2006-06-19 | Apparatus and methods for material capture and removal |
US12/357,037 US8784333B2 (en) | 1999-08-19 | 2009-01-21 | Apparatus and methods for material capture and removal |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/377,884 US6638233B2 (en) | 1999-08-19 | 1999-08-19 | Apparatus and methods for material capture and removal |
US09/916,642 US20020022788A1 (en) | 1999-08-19 | 2001-07-27 | Apparatus and methods for material capture and removal |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/377,884 Continuation US6638233B2 (en) | 1999-08-19 | 1999-08-19 | Apparatus and methods for material capture and removal |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/455,995 Continuation US20060235334A1 (en) | 1999-08-19 | 2006-06-19 | Apparatus and methods for material capture and removal |
Publications (1)
Publication Number | Publication Date |
---|---|
US20020022788A1 true US20020022788A1 (en) | 2002-02-21 |
Family
ID=23490904
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/377,884 Expired - Lifetime US6638233B2 (en) | 1999-08-19 | 1999-08-19 | Apparatus and methods for material capture and removal |
US09/916,642 Abandoned US20020022788A1 (en) | 1999-08-19 | 2001-07-27 | Apparatus and methods for material capture and removal |
US11/455,995 Abandoned US20060235334A1 (en) | 1999-08-19 | 2006-06-19 | Apparatus and methods for material capture and removal |
US12/357,037 Expired - Fee Related US8784333B2 (en) | 1999-08-19 | 2009-01-21 | Apparatus and methods for material capture and removal |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/377,884 Expired - Lifetime US6638233B2 (en) | 1999-08-19 | 1999-08-19 | Apparatus and methods for material capture and removal |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/455,995 Abandoned US20060235334A1 (en) | 1999-08-19 | 2006-06-19 | Apparatus and methods for material capture and removal |
US12/357,037 Expired - Fee Related US8784333B2 (en) | 1999-08-19 | 2009-01-21 | Apparatus and methods for material capture and removal |
Country Status (1)
Country | Link |
---|---|
US (4) | US6638233B2 (en) |
Cited By (84)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020077642A1 (en) * | 2000-12-20 | 2002-06-20 | Fox Hollow Technologies, Inc. | Debulking catheter |
US20040167554A1 (en) * | 2000-12-20 | 2004-08-26 | Fox Hollow Technologies, Inc. | Methods and devices for reentering a true lumen from a subintimal space |
US20040167553A1 (en) * | 2000-12-20 | 2004-08-26 | Fox Hollow Technologies, Inc. | Methods and devices for cutting tissue |
US20050154407A1 (en) * | 2000-12-20 | 2005-07-14 | Fox Hollow Technologies, Inc. | Method of evaluating drug efficacy for treating atherosclerosis |
US20050177068A1 (en) * | 2000-12-20 | 2005-08-11 | Fox Hollow Technologies, Inc. | Debulking catheters and methods |
US20060089640A1 (en) * | 2004-10-15 | 2006-04-27 | Baxano, Inc. | Devices and methods for tissue modification |
US20060089633A1 (en) * | 2004-10-15 | 2006-04-27 | Baxano, Inc. | Devices and methods for tissue access |
US20060122458A1 (en) * | 2004-10-15 | 2006-06-08 | Baxano, Inc. | Devices and methods for tissue access |
US20060184187A1 (en) * | 2005-01-27 | 2006-08-17 | Wilson-Cook Medical Inc. | Endoscopic cutting device |
US20060236019A1 (en) * | 2005-04-19 | 2006-10-19 | Fox Hollow Technologies, Inc. | Libraries and data structures of materials removed by debulking catheters |
US20060235366A1 (en) * | 2000-12-20 | 2006-10-19 | Fox Hollow Technologies, Inc. | Method of evaluating a treatment for vascular disease |
US20060239982A1 (en) * | 2000-12-20 | 2006-10-26 | Fox Hollow Technologies, Inc. | Debulking catheters and methods |
US20060258951A1 (en) * | 2005-05-16 | 2006-11-16 | Baxano, Inc. | Spinal Access and Neural Localization |
US20070078469A1 (en) * | 2000-12-20 | 2007-04-05 | Fox Hollow Technologies, Inc | Testing a patient population having a cardiovascular condition for drug efficacy |
US20070123888A1 (en) * | 2004-10-15 | 2007-05-31 | Baxano, Inc. | Flexible tissue rasp |
US20070196926A1 (en) * | 2006-02-17 | 2007-08-23 | Fox Hollow Technologies, Inc. | Testing lumenectomy samples for Markers of non-vascular diseases |
US20070213735A1 (en) * | 2004-10-15 | 2007-09-13 | Vahid Saadat | Powered tissue modification devices and methods |
US20070213734A1 (en) * | 2006-03-13 | 2007-09-13 | Bleich Jeffery L | Tissue modification barrier devices and methods |
US20070213733A1 (en) * | 2004-10-15 | 2007-09-13 | Bleich Jeffery L | Mechanical tissue modification devices and methods |
US20070225703A1 (en) * | 2005-10-15 | 2007-09-27 | Baxano, Inc. | Flexible Tissue Removal Devices and Methods |
US20070260252A1 (en) * | 2006-05-04 | 2007-11-08 | Baxano, Inc. | Tissue Removal with at Least Partially Flexible Devices |
US20080033465A1 (en) * | 2006-08-01 | 2008-02-07 | Baxano, Inc. | Multi-Wire Tissue Cutter |
US20080051812A1 (en) * | 2006-08-01 | 2008-02-28 | Baxano, Inc. | Multi-Wire Tissue Cutter |
US20080086034A1 (en) * | 2006-08-29 | 2008-04-10 | Baxano, Inc. | Tissue Access Guidewire System and Method |
US20080103504A1 (en) * | 2006-10-30 | 2008-05-01 | Schmitz Gregory P | Percutaneous spinal stenosis treatment |
US20080147084A1 (en) * | 2006-12-07 | 2008-06-19 | Baxano, Inc. | Tissue removal devices and methods |
US20080161809A1 (en) * | 2006-10-03 | 2008-07-03 | Baxano, Inc. | Articulating Tissue Cutting Device |
US20080275458A1 (en) * | 2004-10-15 | 2008-11-06 | Bleich Jeffery L | Guidewire exchange systems to treat spinal stenosis |
US20080312660A1 (en) * | 2007-06-15 | 2008-12-18 | Baxano, Inc. | Devices and methods for measuring the space around a nerve root |
US20090018507A1 (en) * | 2007-07-09 | 2009-01-15 | Baxano, Inc. | Spinal access system and method |
US20090069709A1 (en) * | 2007-09-06 | 2009-03-12 | Baxano, Inc. | Method, system, and apparatus for neural localization |
US20090125036A1 (en) * | 2004-10-15 | 2009-05-14 | Bleich Jeffery L | Devices and methods for selective surgical removal of tissue |
US20090149865A1 (en) * | 2007-12-07 | 2009-06-11 | Schmitz Gregory P | Tissue modification devices |
US20090177241A1 (en) * | 2005-10-15 | 2009-07-09 | Bleich Jeffery L | Multiple pathways for spinal nerve root decompression from a single access point |
US7625346B2 (en) | 2003-05-30 | 2009-12-01 | Boston Scientific Scimed, Inc. | Transbronchial needle aspiration device |
US7708749B2 (en) | 2000-12-20 | 2010-05-04 | Fox Hollow Technologies, Inc. | Debulking catheters and methods |
WO2010105261A2 (en) * | 2009-03-13 | 2010-09-16 | Baxano, Inc. | Flexible neural localization devices and methods |
US20100321426A1 (en) * | 2007-11-22 | 2010-12-23 | Kazuki Suzuki | Image forming apparatus |
US20100331900A1 (en) * | 2009-06-25 | 2010-12-30 | Baxano, Inc. | Surgical tools for treatment of spinal stenosis |
US20100331883A1 (en) * | 2004-10-15 | 2010-12-30 | Schmitz Gregory P | Access and tissue modification systems and methods |
US20110004107A1 (en) * | 2009-07-01 | 2011-01-06 | Rosenthal Michael H | Atherectomy catheter with laterally-displaceable tip |
US7887538B2 (en) | 2005-10-15 | 2011-02-15 | Baxano, Inc. | Methods and apparatus for tissue modification |
US20110112539A1 (en) * | 2008-07-14 | 2011-05-12 | Wallace Michael P | Tissue modification devices |
US20110160731A1 (en) * | 2004-10-15 | 2011-06-30 | Bleich Jeffery L | Devices and methods for tissue access |
US20110224710A1 (en) * | 2004-10-15 | 2011-09-15 | Bleich Jeffery L | Methods, systems and devices for carpal tunnel release |
US8192452B2 (en) | 2009-05-14 | 2012-06-05 | Tyco Healthcare Group Lp | Easily cleaned atherectomy catheters and methods of use |
US8221397B2 (en) | 2004-10-15 | 2012-07-17 | Baxano, Inc. | Devices and methods for tissue modification |
US8246640B2 (en) | 2003-04-22 | 2012-08-21 | Tyco Healthcare Group Lp | Methods and devices for cutting tissue at a vascular location |
US8328829B2 (en) | 1999-08-19 | 2012-12-11 | Covidien Lp | High capacity debulking catheter with razor edge cutting window |
WO2013003088A1 (en) * | 2011-06-28 | 2013-01-03 | Cook Medical Technologies, LLC | Biopsy needle with flexible length |
WO2013003087A1 (en) * | 2011-06-28 | 2013-01-03 | Cook Medical Technologies Llc | Flexible biopsy needle |
US8366712B2 (en) | 2005-10-15 | 2013-02-05 | Baxano, Inc. | Multiple pathways for spinal nerve root decompression from a single access point |
US8398641B2 (en) | 2008-07-01 | 2013-03-19 | Baxano, Inc. | Tissue modification devices and methods |
US8409206B2 (en) | 2008-07-01 | 2013-04-02 | Baxano, Inc. | Tissue modification devices and methods |
US8414604B2 (en) | 2008-10-13 | 2013-04-09 | Covidien Lp | Devices and methods for manipulating a catheter shaft |
EP2617361A4 (en) * | 2011-06-23 | 2013-07-24 | Olympus Medical Systems Corp | Biopsy treatment tool |
US8496677B2 (en) | 2009-12-02 | 2013-07-30 | Covidien Lp | Methods and devices for cutting tissue |
US8597315B2 (en) | 1999-08-19 | 2013-12-03 | Covidien Lp | Atherectomy catheter with first and second imaging devices |
EP2735273A1 (en) * | 2011-07-21 | 2014-05-28 | Panasonic Healthcare Co., Ltd. | Instrument for collecting body tissue and method for collecting body tissue using same |
US8784333B2 (en) | 1999-08-19 | 2014-07-22 | Covidien Lp | Apparatus and methods for material capture and removal |
US8784440B2 (en) | 2008-02-25 | 2014-07-22 | Covidien Lp | Methods and devices for cutting tissue |
US20140222049A1 (en) * | 2012-12-12 | 2014-08-07 | Covidien Lp | Tissue-Removing Catheter with Ball and Socket Deployment Mechanism |
US8808186B2 (en) | 2010-11-11 | 2014-08-19 | Covidien Lp | Flexible debulking catheters with imaging and methods of use and manufacture |
US8920450B2 (en) | 2010-10-28 | 2014-12-30 | Covidien Lp | Material removal device and method of use |
US8932232B2 (en) | 2009-03-31 | 2015-01-13 | Arch Medical Devices Ltd. | Tissue sampling device and method |
US8992717B2 (en) | 2011-09-01 | 2015-03-31 | Covidien Lp | Catheter with helical drive shaft and methods of manufacture |
US9028512B2 (en) | 2009-12-11 | 2015-05-12 | Covidien Lp | Material removal device having improved material capture efficiency and methods of use |
US9101386B2 (en) | 2004-10-15 | 2015-08-11 | Amendia, Inc. | Devices and methods for treating tissue |
US9119662B2 (en) | 2010-06-14 | 2015-09-01 | Covidien Lp | Material removal device and method of use |
EP2883503A4 (en) * | 2012-08-13 | 2016-04-13 | Olympus Corp | Treatment device for endoscope |
US9314253B2 (en) | 2008-07-01 | 2016-04-19 | Amendia, Inc. | Tissue modification devices and methods |
US9456829B2 (en) | 2004-10-15 | 2016-10-04 | Amendia, Inc. | Powered tissue modification devices and methods |
US9532844B2 (en) | 2012-09-13 | 2017-01-03 | Covidien Lp | Cleaning device for medical instrument and method of use |
US9655596B2 (en) | 2012-05-10 | 2017-05-23 | Arch Medical Devices Ltd. | Biopsy needle with a laterally expandable distal portion |
US9687266B2 (en) | 2009-04-29 | 2017-06-27 | Covidien Lp | Methods and devices for cutting and abrading tissue |
US9757099B2 (en) | 2012-02-27 | 2017-09-12 | Cook Medical Technologies Llc | Biopsy needle with enhanced flexibility |
JP2017196188A (en) * | 2016-04-27 | 2017-11-02 | 株式会社ナノ・グレインズ | Tissue sampling tool |
US10213224B2 (en) | 2014-06-27 | 2019-02-26 | Covidien Lp | Cleaning device for catheter and catheter including the same |
US10292721B2 (en) | 2015-07-20 | 2019-05-21 | Covidien Lp | Tissue-removing catheter including movable distal tip |
US10314664B2 (en) | 2015-10-07 | 2019-06-11 | Covidien Lp | Tissue-removing catheter and tissue-removing element with depth stop |
US10314667B2 (en) | 2015-03-25 | 2019-06-11 | Covidien Lp | Cleaning device for cleaning medical instrument |
US11426249B2 (en) | 2006-09-12 | 2022-08-30 | Teleflex Life Sciences Limited | Vertebral access system and methods |
US11771439B2 (en) | 2007-04-04 | 2023-10-03 | Teleflex Life Sciences Limited | Powered driver |
WO2023229578A1 (en) * | 2022-05-24 | 2023-11-30 | Bard Peripheral Vascular, Inc. | Advanceable and steerable biopsy devices and systems |
Families Citing this family (164)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6102926A (en) | 1996-12-02 | 2000-08-15 | Angiotrax, Inc. | Apparatus for percutaneously performing myocardial revascularization having means for sensing tissue parameters and methods of use |
US6051008A (en) * | 1996-12-02 | 2000-04-18 | Angiotrax, Inc. | Apparatus having stabilization members for percutaneously performing surgery and methods of use |
US6120520A (en) | 1997-05-27 | 2000-09-19 | Angiotrax, Inc. | Apparatus and methods for stimulating revascularization and/or tissue growth |
US6482217B1 (en) | 1998-04-10 | 2002-11-19 | Endicor Medical, Inc. | Neuro thrombectomy catheter |
US7314477B1 (en) | 1998-09-25 | 2008-01-01 | C.R. Bard Inc. | Removable embolus blood clot filter and filter delivery unit |
US6814318B2 (en) | 1999-08-18 | 2004-11-09 | The Procter & Gamble Company | Disposable cartridge for electrostatic spray device |
US7887556B2 (en) * | 2000-12-20 | 2011-02-15 | Fox Hollow Technologies, Inc. | Debulking catheters and methods |
EP1301228B1 (en) | 2000-07-13 | 2008-07-23 | Abbott Cardiovascular Systems Inc. | Deployment system for myocardial cellular material |
WO2003033514A1 (en) | 2001-10-19 | 2003-04-24 | Vascular Biogenics Ltd. | Polynucleotide constructs, pharmaceutical compositions and methods for targeted downregulation of angiogenesis and anticancer therapy |
US8071740B2 (en) * | 2000-11-17 | 2011-12-06 | Vascular Biogenics Ltd. | Promoters exhibiting endothelial cell specificity and methods of using same for regulation of angiogenesis |
DE10105592A1 (en) | 2001-02-06 | 2002-08-08 | Achim Goepferich | Placeholder for drug release in the frontal sinus |
US9204956B2 (en) | 2002-02-20 | 2015-12-08 | C. R. Bard, Inc. | IVC filter with translating hooks |
US8317816B2 (en) | 2002-09-30 | 2012-11-27 | Acclarent, Inc. | Balloon catheters and methods for treating paranasal sinuses |
US8308708B2 (en) | 2003-07-15 | 2012-11-13 | Abbott Cardiovascular Systems Inc. | Deployment system for myocardial cellular material |
US20050070818A1 (en) * | 2003-09-30 | 2005-03-31 | Mueller Richard L. | Biopsy device with viewing assembly |
US20070208252A1 (en) | 2004-04-21 | 2007-09-06 | Acclarent, Inc. | Systems and methods for performing image guided procedures within the ear, nose, throat and paranasal sinuses |
US8894614B2 (en) | 2004-04-21 | 2014-11-25 | Acclarent, Inc. | Devices, systems and methods useable for treating frontal sinusitis |
US8702626B1 (en) | 2004-04-21 | 2014-04-22 | Acclarent, Inc. | Guidewires for performing image guided procedures |
US10188413B1 (en) | 2004-04-21 | 2019-01-29 | Acclarent, Inc. | Deflectable guide catheters and related methods |
US7559925B2 (en) | 2006-09-15 | 2009-07-14 | Acclarent Inc. | Methods and devices for facilitating visualization in a surgical environment |
US20070167682A1 (en) | 2004-04-21 | 2007-07-19 | Acclarent, Inc. | Endoscopic methods and devices for transnasal procedures |
US7654997B2 (en) | 2004-04-21 | 2010-02-02 | Acclarent, Inc. | Devices, systems and methods for diagnosing and treating sinusitus and other disorders of the ears, nose and/or throat |
US7803150B2 (en) | 2004-04-21 | 2010-09-28 | Acclarent, Inc. | Devices, systems and methods useable for treating sinusitis |
US20060004323A1 (en) | 2004-04-21 | 2006-01-05 | Exploramed Nc1, Inc. | Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures |
US7361168B2 (en) | 2004-04-21 | 2008-04-22 | Acclarent, Inc. | Implantable device and methods for delivering drugs and other substances to treat sinusitis and other disorders |
US20060063973A1 (en) | 2004-04-21 | 2006-03-23 | Acclarent, Inc. | Methods and apparatus for treating disorders of the ear, nose and throat |
US9089258B2 (en) | 2004-04-21 | 2015-07-28 | Acclarent, Inc. | Endoscopic methods and devices for transnasal procedures |
US8764729B2 (en) | 2004-04-21 | 2014-07-01 | Acclarent, Inc. | Frontal sinus spacer |
US8932276B1 (en) | 2004-04-21 | 2015-01-13 | Acclarent, Inc. | Shapeable guide catheters and related methods |
US7410480B2 (en) * | 2004-04-21 | 2008-08-12 | Acclarent, Inc. | Devices and methods for delivering therapeutic substances for the treatment of sinusitis and other disorders |
US8747389B2 (en) | 2004-04-21 | 2014-06-10 | Acclarent, Inc. | Systems for treating disorders of the ear, nose and throat |
US20190314620A1 (en) | 2004-04-21 | 2019-10-17 | Acclarent, Inc. | Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures |
US7720521B2 (en) | 2004-04-21 | 2010-05-18 | Acclarent, Inc. | Methods and devices for performing procedures within the ear, nose, throat and paranasal sinuses |
US8146400B2 (en) | 2004-04-21 | 2012-04-03 | Acclarent, Inc. | Endoscopic methods and devices for transnasal procedures |
US7419497B2 (en) | 2004-04-21 | 2008-09-02 | Acclarent, Inc. | Methods for treating ethmoid disease |
US9399121B2 (en) | 2004-04-21 | 2016-07-26 | Acclarent, Inc. | Systems and methods for transnasal dilation of passageways in the ear, nose or throat |
US9101384B2 (en) | 2004-04-21 | 2015-08-11 | Acclarent, Inc. | Devices, systems and methods for diagnosing and treating sinusitis and other disorders of the ears, Nose and/or throat |
US9351750B2 (en) | 2004-04-21 | 2016-05-31 | Acclarent, Inc. | Devices and methods for treating maxillary sinus disease |
US9554691B2 (en) | 2004-04-21 | 2017-01-31 | Acclarent, Inc. | Endoscopic methods and devices for transnasal procedures |
US7462175B2 (en) | 2004-04-21 | 2008-12-09 | Acclarent, Inc. | Devices, systems and methods for treating disorders of the ear, nose and throat |
US8920402B2 (en) * | 2004-04-27 | 2014-12-30 | The Spectranetics Corporation | Thrombectomy and soft debris removal device |
US7959608B2 (en) * | 2004-04-27 | 2011-06-14 | The Spectranetics Corporation | Thrombectomy and soft debris removal device |
US7608073B2 (en) * | 2004-07-09 | 2009-10-27 | Tyco Healthcare Group Lp | Energy based partial circumferential hemorrhoid repair device |
WO2006006169A2 (en) | 2004-07-14 | 2006-01-19 | By-Pass, Inc. | Material delivery system |
WO2006015302A1 (en) * | 2004-07-29 | 2006-02-09 | X-Sten, Corp. | Spinal ligament modification devices |
US7704267B2 (en) | 2004-08-04 | 2010-04-27 | C. R. Bard, Inc. | Non-entangling vena cava filter |
US7794473B2 (en) | 2004-11-12 | 2010-09-14 | C.R. Bard, Inc. | Filter delivery system |
US12115057B2 (en) | 2005-05-12 | 2024-10-15 | C.R. Bard, Inc. | Tubular filter |
CA2607580C (en) | 2005-05-12 | 2016-12-20 | C.R. Bard Inc. | Removable embolus blood clot filter |
US8951225B2 (en) | 2005-06-10 | 2015-02-10 | Acclarent, Inc. | Catheters with non-removable guide members useable for treatment of sinusitis |
WO2006137054A2 (en) * | 2005-06-20 | 2006-12-28 | Otomedics Advanced Medical Technologies Ltd. | Ear tubes |
EP3228265A3 (en) | 2005-07-29 | 2018-05-23 | Vertos Medical, Inc. | Percutaneous tissue excision devices |
US8062327B2 (en) | 2005-08-09 | 2011-11-22 | C. R. Bard, Inc. | Embolus blood clot filter and delivery system |
US8114113B2 (en) | 2005-09-23 | 2012-02-14 | Acclarent, Inc. | Multi-conduit balloon catheter |
US20070162061A1 (en) * | 2005-11-04 | 2007-07-12 | X-Sten, Corp. | Tissue excision devices and methods |
US8052659B2 (en) * | 2005-11-10 | 2011-11-08 | Phase One Medical Llc | Catheter device |
US9192755B2 (en) | 2005-11-10 | 2015-11-24 | Phase One Medical, Llc | Catheter device |
US8007488B2 (en) | 2005-11-10 | 2011-08-30 | Phase One Medical Llc | Catheter device |
MX344147B (en) | 2005-11-18 | 2016-12-07 | Bard Inc C R | Vena cava filter with filament. |
US8038595B2 (en) | 2006-01-25 | 2011-10-18 | Beth Israel Deaconess Medical Center | Devices and methods for tissue transplant and regeneration |
US20070185514A1 (en) * | 2006-02-06 | 2007-08-09 | Kirchhevel G L | Microsurgical instrument |
WO2007133366A2 (en) | 2006-05-02 | 2007-11-22 | C. R. Bard, Inc. | Vena cava filter formed from a sheet |
US7951161B2 (en) * | 2006-05-09 | 2011-05-31 | Medrad, Inc. | Atherectomy system having a variably exposed cutter |
US7942830B2 (en) | 2006-05-09 | 2011-05-17 | Vertos Medical, Inc. | Ipsilateral approach to minimally invasive ligament decompression procedure |
US8190389B2 (en) | 2006-05-17 | 2012-05-29 | Acclarent, Inc. | Adapter for attaching electromagnetic image guidance components to a medical device |
US20070276419A1 (en) | 2006-05-26 | 2007-11-29 | Fox Hollow Technologies, Inc. | Methods and devices for rotating an active element and an energy emitter on a catheter |
US9326842B2 (en) | 2006-06-05 | 2016-05-03 | C. R . Bard, Inc. | Embolus blood clot filter utilizable with a single delivery system or a single retrieval system in one of a femoral or jugular access |
US8560047B2 (en) | 2006-06-16 | 2013-10-15 | Board Of Regents Of The University Of Nebraska | Method and apparatus for computer aided surgery |
US8361094B2 (en) | 2006-06-30 | 2013-01-29 | Atheromed, Inc. | Atherectomy devices and methods |
US8628549B2 (en) | 2006-06-30 | 2014-01-14 | Atheromed, Inc. | Atherectomy devices, systems, and methods |
US9314263B2 (en) | 2006-06-30 | 2016-04-19 | Atheromed, Inc. | Atherectomy devices, systems, and methods |
US20090018566A1 (en) | 2006-06-30 | 2009-01-15 | Artheromed, Inc. | Atherectomy devices, systems, and methods |
US20080045986A1 (en) | 2006-06-30 | 2008-02-21 | Atheromed, Inc. | Atherectomy devices and methods |
CN101511285B (en) | 2006-06-30 | 2012-07-18 | 阿瑟罗迈德公司 | Atherectomy devices and methods |
US8007506B2 (en) | 2006-06-30 | 2011-08-30 | Atheromed, Inc. | Atherectomy devices and methods |
US9492192B2 (en) | 2006-06-30 | 2016-11-15 | Atheromed, Inc. | Atherectomy devices, systems, and methods |
US7981128B2 (en) | 2006-06-30 | 2011-07-19 | Atheromed, Inc. | Atherectomy devices and methods |
US9820688B2 (en) | 2006-09-15 | 2017-11-21 | Acclarent, Inc. | Sinus illumination lightwire device |
US7456107B2 (en) * | 2006-11-09 | 2008-11-25 | Cabot Microelectronics Corporation | Compositions and methods for CMP of low-k-dielectric materials |
US20080140001A1 (en) * | 2006-12-12 | 2008-06-12 | By-Pass Inc. | Fluid Delivery Apparatus And Methods |
US8439687B1 (en) | 2006-12-29 | 2013-05-14 | Acclarent, Inc. | Apparatus and method for simulated insertion and positioning of guidewares and other interventional devices |
WO2008124787A2 (en) | 2007-04-09 | 2008-10-16 | Acclarent, Inc. | Ethmoidotomy system and implantable spacer devices having therapeutic substance delivery capability for treatment of paranasal sinusitis |
US8118757B2 (en) | 2007-04-30 | 2012-02-21 | Acclarent, Inc. | Methods and devices for ostium measurement |
US8485199B2 (en) | 2007-05-08 | 2013-07-16 | Acclarent, Inc. | Methods and devices for protecting nasal turbinate during surgery |
US20080300506A1 (en) * | 2007-05-29 | 2008-12-04 | Boston Scientific Scimed, Inc. | Biopsy device with multiple cutters |
WO2009036383A1 (en) * | 2007-09-12 | 2009-03-19 | Promex Technologies, Llc | Surgical cutting instrument |
US8070762B2 (en) | 2007-10-22 | 2011-12-06 | Atheromed Inc. | Atherectomy devices and methods |
US8236016B2 (en) | 2007-10-22 | 2012-08-07 | Atheromed, Inc. | Atherectomy devices and methods |
US9414855B1 (en) * | 2007-11-05 | 2016-08-16 | Cardica, Inc. | Anvil knife for anastomosis tool |
US9504491B2 (en) * | 2007-11-07 | 2016-11-29 | Abbott Cardiovascular Systems Inc. | Catheter having window and partial balloon covering for dissecting tissue planes and injecting treatment agent to coronary blood vessel |
US8551129B2 (en) * | 2007-11-14 | 2013-10-08 | Todd P. Lary | Treatment of coronary stenosis |
US8613721B2 (en) * | 2007-11-14 | 2013-12-24 | Medrad, Inc. | Delivery and administration of compositions using interventional catheters |
US10206821B2 (en) | 2007-12-20 | 2019-02-19 | Acclarent, Inc. | Eustachian tube dilation balloon with ventilation path |
US8182432B2 (en) | 2008-03-10 | 2012-05-22 | Acclarent, Inc. | Corewire design and construction for medical devices |
US20100125253A1 (en) * | 2008-11-17 | 2010-05-20 | Avinger | Dual-tip Catheter System for Boring through Blocked Vascular Passages |
US9125562B2 (en) | 2009-07-01 | 2015-09-08 | Avinger, Inc. | Catheter-based off-axis optical coherence tomography imaging system |
US8644913B2 (en) | 2011-03-28 | 2014-02-04 | Avinger, Inc. | Occlusion-crossing devices, imaging, and atherectomy devices |
US8062316B2 (en) | 2008-04-23 | 2011-11-22 | Avinger, Inc. | Catheter system and method for boring through blocked vascular passages |
US8696695B2 (en) | 2009-04-28 | 2014-04-15 | Avinger, Inc. | Guidewire positioning catheter |
WO2010014799A1 (en) | 2008-07-30 | 2010-02-04 | Acclarent, Inc. | Paranasal ostium finder devices and methods |
AU2009293312B2 (en) | 2008-09-18 | 2015-07-09 | Acclarent, Inc. | Methods and apparatus for treating disorders of the ear nose and throat |
USD621939S1 (en) | 2008-10-23 | 2010-08-17 | Vertos Medical, Inc. | Tissue modification device |
USD611146S1 (en) | 2008-10-23 | 2010-03-02 | Vertos Medical, Inc. | Tissue modification device |
USD610259S1 (en) | 2008-10-23 | 2010-02-16 | Vertos Medical, Inc. | Tissue modification device |
USD635671S1 (en) | 2008-10-23 | 2011-04-05 | Vertos Medical, Inc. | Tissue modification device |
USD619253S1 (en) | 2008-10-23 | 2010-07-06 | Vertos Medical, Inc. | Tissue modification device |
USD619252S1 (en) | 2008-10-23 | 2010-07-06 | Vertos Medical, Inc. | Tissue modification device |
US20100241155A1 (en) | 2009-03-20 | 2010-09-23 | Acclarent, Inc. | Guide system with suction |
US8435290B2 (en) | 2009-03-31 | 2013-05-07 | Acclarent, Inc. | System and method for treatment of non-ventilating middle ear by providing a gas pathway through the nasopharynx |
US7978742B1 (en) | 2010-03-24 | 2011-07-12 | Corning Incorporated | Methods for operating diode lasers |
CA2763324C (en) | 2009-05-28 | 2018-10-23 | Avinger, Inc. | Optical coherence tomography for biological imaging |
MX2012001288A (en) | 2009-07-29 | 2012-06-19 | Bard Inc C R | Tubular filter. |
EP2493399A1 (en) * | 2009-10-29 | 2012-09-05 | Cook Medical Technologies LLC | Compartment syndrome treatment method and surgical instrument for same |
EP2509498B1 (en) | 2009-12-08 | 2020-09-16 | Avinger, Inc. | Devices for predicting and preventing restenosis |
US8062260B2 (en) * | 2009-12-22 | 2011-11-22 | Alcon Research, Ltd. | Trocar cannula device with retention feature |
MX338216B (en) | 2010-03-11 | 2016-04-07 | Advanced Catheter Therapies Inc | Atherectomy device. |
WO2014039096A1 (en) | 2012-09-06 | 2014-03-13 | Avinger, Inc. | Re-entry stylet for catheter |
US11382653B2 (en) | 2010-07-01 | 2022-07-12 | Avinger, Inc. | Atherectomy catheter |
US10363062B2 (en) | 2011-10-17 | 2019-07-30 | Avinger, Inc. | Atherectomy catheters and non-contact actuation mechanism for catheters |
EP2588012B1 (en) | 2010-07-01 | 2016-08-17 | Avinger, Inc. | Atherectomy catheters with longitudinally displaceable drive shafts |
WO2014039099A1 (en) | 2012-09-06 | 2014-03-13 | Avinger, Inc. | Balloon atherectomy catheters with imaging |
US9155492B2 (en) | 2010-09-24 | 2015-10-13 | Acclarent, Inc. | Sinus illumination lightwire device |
US20130317529A1 (en) * | 2010-12-03 | 2013-11-28 | Steven S. Golden | Methods and devices for metabolic surgery |
US9949754B2 (en) | 2011-03-28 | 2018-04-24 | Avinger, Inc. | Occlusion-crossing devices |
US11911117B2 (en) | 2011-06-27 | 2024-02-27 | Board Of Regents Of The University Of Nebraska | On-board tool tracking system and methods of computer assisted surgery |
EP2723270B1 (en) | 2011-06-27 | 2019-01-23 | Board of Regents of the University of Nebraska | On-board tool tracking system of computer assisted surgery |
US9498231B2 (en) | 2011-06-27 | 2016-11-22 | Board Of Regents Of The University Of Nebraska | On-board tool tracking system and methods of computer assisted surgery |
EP2765930B1 (en) | 2011-10-13 | 2018-09-26 | Atheromed, Inc. | Atherectomy apparatus |
US9345406B2 (en) | 2011-11-11 | 2016-05-24 | Avinger, Inc. | Occlusion-crossing devices, atherectomy devices, and imaging |
US9351757B2 (en) | 2012-01-17 | 2016-05-31 | Covidien Lp | Material removal device and method of use |
EP2745764B1 (en) * | 2012-05-10 | 2018-07-18 | Olympus Corporation | Treatment instrument for endoscope |
EP2849660B1 (en) | 2012-05-14 | 2021-08-25 | Avinger, Inc. | Atherectomy catheter drive assemblies |
US11406412B2 (en) | 2012-05-14 | 2022-08-09 | Avinger, Inc. | Atherectomy catheters with imaging |
EP2849636B1 (en) | 2012-05-14 | 2020-04-22 | Avinger, Inc. | Optical coherence tomography with graded index fiber for biological imaging |
US9498247B2 (en) | 2014-02-06 | 2016-11-22 | Avinger, Inc. | Atherectomy catheters and occlusion crossing devices |
US11284916B2 (en) | 2012-09-06 | 2022-03-29 | Avinger, Inc. | Atherectomy catheters and occlusion crossing devices |
US9943329B2 (en) | 2012-11-08 | 2018-04-17 | Covidien Lp | Tissue-removing catheter with rotatable cutter |
WO2014112518A1 (en) | 2013-01-21 | 2014-07-24 | 富士フイルム株式会社 | Tissue sampling device |
US9433437B2 (en) | 2013-03-15 | 2016-09-06 | Acclarent, Inc. | Apparatus and method for treatment of ethmoid sinusitis |
JP6291025B2 (en) | 2013-03-15 | 2018-03-14 | アビンガー・インコーポレイテッドAvinger, Inc. | Optical pressure sensor assembly |
US9629684B2 (en) | 2013-03-15 | 2017-04-25 | Acclarent, Inc. | Apparatus and method for treatment of ethmoid sinusitis |
US9854979B2 (en) | 2013-03-15 | 2018-01-02 | Avinger, Inc. | Chronic total occlusion crossing devices with imaging |
US10105149B2 (en) | 2013-03-15 | 2018-10-23 | Board Of Regents Of The University Of Nebraska | On-board tool tracking system and methods of computer assisted surgery |
WO2014142954A1 (en) | 2013-03-15 | 2014-09-18 | Avinger, Inc. | Tissue collection device for catheter |
EP3005949B1 (en) * | 2013-05-27 | 2021-09-29 | FUJIFILM Corporation | Tissue sampling device |
EP3019096B1 (en) | 2013-07-08 | 2023-07-05 | Avinger, Inc. | System for identification of elastic lamina to guide interventional therapy |
US9993231B2 (en) | 2013-11-20 | 2018-06-12 | Covidien Lp | Devices, systems, and methods for navigating a biopsy tool to a target location and obtaining a tissue sample using the same |
US9526519B2 (en) | 2014-02-03 | 2016-12-27 | Covidien Lp | Tissue-removing catheter with improved angular tissue-removing positioning within body lumen |
US9456843B2 (en) | 2014-02-03 | 2016-10-04 | Covidien Lp | Tissue-removing catheter including angular displacement sensor |
CN106102608B (en) | 2014-02-06 | 2020-03-24 | 阿维格公司 | Atherectomy catheters and occlusion crossing devices |
US10278680B2 (en) | 2014-03-19 | 2019-05-07 | Covidien Lp | Devices, systems, and methods for navigating a biopsy tool to a target location and obtaining a tissue sample using the same |
EP3166512B1 (en) | 2014-07-08 | 2020-08-19 | Avinger, Inc. | High speed chronic total occlusion crossing devices |
US20160095584A1 (en) * | 2014-10-01 | 2016-04-07 | Boston Scientific Scimed, Inc. | Endoscopic needle with rotary jaw for lateral acquisition |
EP3322338A4 (en) | 2015-07-13 | 2019-03-13 | Avinger, Inc. | Micro-molded anamorphic reflector lens for image guided therapeutic/diagnostic catheters |
WO2017132247A1 (en) | 2016-01-25 | 2017-08-03 | Avinger, Inc. | Oct imaging catheter with lag correction |
CN108882948A (en) | 2016-04-01 | 2018-11-23 | 阿维格公司 | Rotary-cut art conduit with zigzag cutter |
US9962180B2 (en) | 2016-04-27 | 2018-05-08 | Covidien Lp | Catheter including drive assembly for rotating and reciprocating tissue-removing element |
WO2017210466A1 (en) | 2016-06-03 | 2017-12-07 | Avinger, Inc. | Catheter device with detachable distal end |
WO2018006041A1 (en) | 2016-06-30 | 2018-01-04 | Avinger, Inc. | Atherectomy catheter with shapeable distal tip |
WO2018049078A1 (en) | 2016-09-07 | 2018-03-15 | Vertos Medical, Inc. | Percutaneous lateral recess resection methods and instruments |
US10588656B2 (en) | 2017-11-10 | 2020-03-17 | Penumbra, Inc. | Thrombectomy catheter |
CN109171824A (en) * | 2018-07-16 | 2019-01-11 | 郑州大学第附属医院 | A kind of liver biopsy puncture needle and its application method |
JP2022553223A (en) | 2019-10-18 | 2022-12-22 | アビンガー・インコーポレイテッド | occlusion crossing device |
US11304723B1 (en) | 2020-12-17 | 2022-04-19 | Avantec Vascular Corporation | Atherectomy devices that are self-driving with controlled deflection |
Citations (81)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3831585A (en) * | 1972-07-19 | 1974-08-27 | T Brondy | Retrograde renal biopsy device |
US4669469A (en) * | 1986-02-28 | 1987-06-02 | Devices For Vascular Intervention | Single lumen atherectomy catheter device |
US4771774A (en) * | 1986-02-28 | 1988-09-20 | Devices For Vascular Intervention, Inc. | Motor drive unit |
US4817613A (en) * | 1987-07-13 | 1989-04-04 | Devices For Vascular Intervention, Inc. | Guiding catheter |
US4926858A (en) * | 1984-05-30 | 1990-05-22 | Devices For Vascular Intervention, Inc. | Atherectomy device for severe occlusions |
US4966604A (en) * | 1989-01-23 | 1990-10-30 | Interventional Technologies Inc. | Expandable atherectomy cutter with flexibly bowed blades |
US4986807A (en) * | 1989-01-23 | 1991-01-22 | Interventional Technologies, Inc. | Atherectomy cutter with radially projecting blade |
US5047040A (en) * | 1987-11-05 | 1991-09-10 | Devices For Vascular Intervention, Inc. | Atherectomy device and method |
US5053044A (en) * | 1988-01-11 | 1991-10-01 | Devices For Vascular Intervention, Inc. | Catheter and method for making intravascular incisions |
US5071425A (en) * | 1988-09-12 | 1991-12-10 | Devices For Vascular Intervention, Inc. | Atherectomy catheter and method of forming the same |
US5084010A (en) * | 1990-02-20 | 1992-01-28 | Devices For Vascular Intervention, Inc. | System and method for catheter construction |
US5092873A (en) * | 1990-02-28 | 1992-03-03 | Devices For Vascular Intervention, Inc. | Balloon configuration for atherectomy catheter |
US5154724A (en) * | 1990-05-14 | 1992-10-13 | Andrews Winston A | Atherectomy catheter |
US5181920A (en) * | 1990-06-08 | 1993-01-26 | Devices For Vascular Intervention, Inc. | Atherectomy device with angioplasty balloon and method |
US5183432A (en) * | 1988-03-19 | 1993-02-02 | Nihonmatai Co., Ltd. | Floating body of sophisticated shape produced from a single sheet of film with a single sealing |
US5217474A (en) * | 1991-07-15 | 1993-06-08 | Zacca Nadim M | Expandable tip atherectomy method and apparatus |
US5222966A (en) * | 1990-02-28 | 1993-06-29 | Devices For Vascular Intervention, Inc. | Balloon connection and inflation lumen for atherectomy catheter |
US5224949A (en) * | 1992-01-13 | 1993-07-06 | Interventional Technologies, Inc. | Camming device |
US5226909A (en) * | 1989-09-12 | 1993-07-13 | Devices For Vascular Intervention, Inc. | Atherectomy device having helical blade and blade guide |
US5269793A (en) * | 1989-07-20 | 1993-12-14 | Devices For Vascular Intervention, Inc. | Guide wire systems for intravascular catheters |
US5282484A (en) * | 1989-08-18 | 1994-02-01 | Endovascular Instruments, Inc. | Method for performing a partial atherectomy |
US5318032A (en) * | 1992-02-05 | 1994-06-07 | Devices For Vascular Intervention | Guiding catheter having soft tip |
US5372602A (en) * | 1992-11-30 | 1994-12-13 | Device For Vascular Intervention, Inc. | Method of removing plaque using catheter cutter with torque control |
US5419774A (en) * | 1993-07-13 | 1995-05-30 | Scimed Life Systems, Inc. | Thrombus extraction device |
US5429136A (en) * | 1993-04-21 | 1995-07-04 | Devices For Vascular Intervention, Inc. | Imaging atherectomy apparatus |
US5491524A (en) * | 1994-10-05 | 1996-02-13 | Carl Zeiss, Inc. | Optical coherence tomography corneal mapping apparatus |
US5507795A (en) * | 1994-04-29 | 1996-04-16 | Devices For Vascular Intervention, Inc. | Catheter with perfusion system |
US5507760A (en) * | 1993-11-09 | 1996-04-16 | Devices For Vascular Intervention, Inc. | Cutter device |
US5514115A (en) * | 1993-07-07 | 1996-05-07 | Device For Vascular Intervention, Inc. | Flexible housing for intracorporeal use |
US5527325A (en) * | 1993-07-09 | 1996-06-18 | Device For Vascular Intervention, Inc. | Atherectomy catheter and method |
US5549601A (en) * | 1994-10-11 | 1996-08-27 | Devices For Vascular Intervention, Inc. | Delivery of intracorporeal probes |
US5624457A (en) * | 1994-04-07 | 1997-04-29 | Devices For Vascular Intervention | Directional atherectomy device with flexible housing |
US5632754A (en) * | 1994-12-23 | 1997-05-27 | Devices For Vascular Intervention | Universal catheter with interchangeable work element |
US5643298A (en) * | 1992-11-09 | 1997-07-01 | Nordgren; Gregory N. | Intra-artery obstruction clearing apparatus and methods |
US5643296A (en) * | 1994-12-16 | 1997-07-01 | Devices For Vasclar Intervention | Intravascular catheter with guiding structure |
US5700687A (en) * | 1995-01-30 | 1997-12-23 | Bedminster Bioconversion Corporation | Odor control system |
US5741270A (en) * | 1997-02-28 | 1998-04-21 | Lumend, Inc. | Manual actuator for a catheter system for treating a vascular occlusion |
US5816923A (en) * | 1993-12-09 | 1998-10-06 | Devices For Vascular Intervention, Inc. | Flexible composite drive shaft for transmitting torque |
US5823971A (en) * | 1993-10-29 | 1998-10-20 | Boston Scientific Corporation | Multiple biopsy sampling coring device |
US5836957A (en) * | 1994-12-22 | 1998-11-17 | Devices For Vascular Intervention, Inc. | Large volume atherectomy device |
US5868685A (en) * | 1995-11-14 | 1999-02-09 | Devices For Vascular Intervention | Articulated guidewire |
US5911734A (en) * | 1997-05-08 | 1999-06-15 | Embol-X, Inc. | Percutaneous catheter and guidewire having filter and medical device deployment capabilities |
US5916210A (en) * | 1990-01-26 | 1999-06-29 | Intraluminal Therapeutics, Inc. | Catheter for laser treatment of atherosclerotic plaque and other tissue abnormalities |
US5951482A (en) * | 1997-10-03 | 1999-09-14 | Intraluminal Therapeutics, Inc. | Assemblies and methods for advancing a guide wire through body tissue |
US5954745A (en) * | 1997-05-16 | 1999-09-21 | Gertler; Jonathan | Catheter-filter set having a compliant seal |
US5959281A (en) * | 1997-02-07 | 1999-09-28 | Lulirama International, Inc. | Interactive card reading system |
US5968064A (en) * | 1997-02-28 | 1999-10-19 | Lumend, Inc. | Catheter system for treating a vascular occlusion |
US6010449A (en) * | 1997-02-28 | 2000-01-04 | Lumend, Inc. | Intravascular catheter system for treating a vascular occlusion |
US6013072A (en) * | 1997-07-09 | 2000-01-11 | Intraluminal Therapeutics, Inc. | Systems and methods for steering a catheter through body tissue |
US6022362A (en) * | 1998-09-03 | 2000-02-08 | Rubicor Medical, Inc. | Excisional biopsy devices and methods |
US6027450A (en) * | 1994-12-30 | 2000-02-22 | Devices For Vascular Intervention | Treating a totally or near totally occluded lumen |
US6048349A (en) * | 1997-07-09 | 2000-04-11 | Intraluminal Therapeutics, Inc. | Systems and methods for guiding a medical instrument through a body |
US6068638A (en) * | 1995-10-13 | 2000-05-30 | Transvascular, Inc. | Device, system and method for interstitial transvascular intervention |
US6081738A (en) * | 1998-01-15 | 2000-06-27 | Lumend, Inc. | Method and apparatus for the guided bypass of coronary occlusions |
US6106515A (en) * | 1998-08-13 | 2000-08-22 | Intraluminal Therapeutics, Inc. | Expandable laser catheter |
US6120515A (en) * | 1996-02-06 | 2000-09-19 | Devices For Vascular Intervention, Inc. | Composite atherectomy cutter |
US6120516A (en) * | 1997-02-28 | 2000-09-19 | Lumend, Inc. | Method for treating vascular occlusion |
US6126649A (en) * | 1999-06-10 | 2000-10-03 | Transvascular, Inc. | Steerable catheter with external guidewire as catheter tip deflector |
US6190353B1 (en) * | 1995-10-13 | 2001-02-20 | Transvascular, Inc. | Methods and apparatus for bypassing arterial obstructions and/or performing other transvascular procedures |
US6193676B1 (en) * | 1997-10-03 | 2001-02-27 | Intraluminal Therapeutics, Inc. | Guide wire assembly |
US6217549B1 (en) * | 1997-02-28 | 2001-04-17 | Lumend, Inc. | Methods and apparatus for treating vascular occlusions |
US6217527B1 (en) * | 1998-09-30 | 2001-04-17 | Lumend, Inc. | Methods and apparatus for crossing vascular occlusions |
US6228076B1 (en) * | 1999-01-09 | 2001-05-08 | Intraluminal Therapeutics, Inc. | System and method for controlling tissue ablation |
US6235000B1 (en) * | 1998-01-13 | 2001-05-22 | Lumend, Inc. | Apparatus for crossing total occlusion in blood vessels |
US6258052B1 (en) * | 1997-11-13 | 2001-07-10 | Lumend, Inc. | Guidewire and catheter with rotating and reciprocating symmetrical or asymmetrical distal tip |
US6266550B1 (en) * | 1998-01-16 | 2001-07-24 | Lumend, Inc. | Catheter apparatus for treating arterial occlusions |
US6283983B1 (en) * | 1995-10-13 | 2001-09-04 | Transvascular, Inc. | Percutaneous in-situ coronary bypass method and apparatus |
US6283951B1 (en) * | 1996-10-11 | 2001-09-04 | Transvascular, Inc. | Systems and methods for delivering drugs to selected locations within the body |
US6302875B1 (en) * | 1996-10-11 | 2001-10-16 | Transvascular, Inc. | Catheters and related devices for forming passageways between blood vessels or other anatomical structures |
US6330884B1 (en) * | 1997-11-14 | 2001-12-18 | Transvascular, Inc. | Deformable scaffolding multicellular stent |
US6375615B1 (en) * | 1995-10-13 | 2002-04-23 | Transvascular, Inc. | Tissue penetrating catheters having integral imaging transducers and their methods of use |
US6394976B1 (en) * | 2000-01-31 | 2002-05-28 | Intraluminal Therapeutics, Inc. | Catheter for controlling the advancement of a guide wire |
US6398798B2 (en) * | 1998-02-28 | 2002-06-04 | Lumend, Inc. | Catheter system for treating a vascular occlusion |
US6428552B1 (en) * | 2001-01-22 | 2002-08-06 | Lumend, Inc. | Method and apparatus for crossing intravascular occlusions |
US6443966B1 (en) * | 1988-12-14 | 2002-09-03 | Intravascular Medical, Inc. | Surgical instrument |
US6447525B2 (en) * | 1999-08-19 | 2002-09-10 | Fox Hollow Technologies, Inc. | Apparatus and methods for removing material from a body lumen |
US20030120295A1 (en) * | 2000-12-20 | 2003-06-26 | Fox Hollow Technologies, Inc. | Debulking catheters and methods |
US20030125757A1 (en) * | 2000-12-20 | 2003-07-03 | Fox Hollow Technologies, Inc. | Debulking catheters and methods |
US20030125758A1 (en) * | 2000-12-20 | 2003-07-03 | Fox Hollow Technologies, Inc. | Debulking catheters and methods |
US6623496B2 (en) * | 1999-08-19 | 2003-09-23 | Fox Hollow Technologies, Inc. | Atherectomy catheter with aligned imager |
US6638233B2 (en) * | 1999-08-19 | 2003-10-28 | Fox Hollow Technologies, Inc. | Apparatus and methods for material capture and removal |
Family Cites Families (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2178790A (en) | 1938-05-07 | 1939-11-07 | Abner E Henry | Cutting implement |
ES152231Y (en) | 1969-10-02 | 1970-07-01 | Ballestero Sierra | A PERFECTED TROCAR. |
US3815604A (en) | 1972-06-19 | 1974-06-11 | Malley C O | Apparatus for intraocular surgery |
US3837345A (en) | 1973-08-31 | 1974-09-24 | A Matar | Venous valve snipper |
US3995619A (en) | 1975-10-14 | 1976-12-07 | Glatzer Stephen G | Combination subcutaneous suture remover, biopsy sampler and syringe |
US4034744A (en) * | 1975-11-13 | 1977-07-12 | Smith Kline Instruments, Inc. | Ultrasonic scanning system with video recorder |
US4210146A (en) | 1978-06-01 | 1980-07-01 | Anton Banko | Surgical instrument with flexible blade |
JPS5581633A (en) * | 1978-12-15 | 1980-06-19 | Olympus Optical Co | Endoscope |
DE3347671A1 (en) * | 1983-12-31 | 1985-07-11 | Richard Wolf Gmbh, 7134 Knittlingen | TISSUE SAMPLING INSTRUMENT |
US5024651A (en) | 1984-05-14 | 1991-06-18 | Surgical Systems & Instruments, Inc. | Atherectomy system with a sleeve |
US4781186A (en) | 1984-05-30 | 1988-11-01 | Devices For Vascular Intervention, Inc. | Atherectomy device having a flexible housing |
US4979951A (en) | 1984-05-30 | 1990-12-25 | Simpson John B | Atherectomy device and method |
USRE33258E (en) | 1984-07-23 | 1990-07-10 | Surgical Dynamics Inc. | Irrigating, cutting and aspirating system for percutaneous surgery |
US4696298A (en) | 1985-11-19 | 1987-09-29 | Storz Instrument Company | Vitrectomy cutting mechanism |
US5000185A (en) * | 1986-02-28 | 1991-03-19 | Cardiovascular Imaging Systems, Inc. | Method for intravascular two-dimensional ultrasonography and recanalization |
US4819635A (en) | 1987-09-18 | 1989-04-11 | Henry Shapiro | Tubular microsurgery cutting apparatus |
US4850957A (en) | 1988-01-11 | 1989-07-25 | American Biomed, Inc. | Atherectomy catheter |
US5431673A (en) | 1989-02-17 | 1995-07-11 | American Biomed, Inc. | Distal atherectomy catheter |
US4994067A (en) | 1989-02-17 | 1991-02-19 | American Biomed, Inc. | Distal atherectomy catheter |
US5087265A (en) | 1989-02-17 | 1992-02-11 | American Biomed, Inc. | Distal atherectomy catheter |
US5226910A (en) | 1989-07-05 | 1993-07-13 | Kabushiki Kaisha Topcon | Surgical cutter |
US5505210A (en) | 1989-11-06 | 1996-04-09 | Mectra Labs, Inc. | Lavage with tissue cutting cannula |
US5100424A (en) | 1990-05-21 | 1992-03-31 | Cardiovascular Imaging Systems, Inc. | Intravascular catheter having combined imaging abrasion head |
US5674232A (en) | 1990-06-05 | 1997-10-07 | Halliburton; Alexander George | Catheter and method of use thereof |
US5250065A (en) | 1990-09-11 | 1993-10-05 | Mectra Labs, Inc. | Disposable lavage tip assembly |
US5242460A (en) | 1990-10-25 | 1993-09-07 | Devices For Vascular Intervention, Inc. | Atherectomy catheter having axially-disposed cutting edge |
US5133360A (en) * | 1991-03-07 | 1992-07-28 | Spears Colin P | Spears retriever |
US5263928A (en) * | 1991-06-14 | 1993-11-23 | Baxter International Inc. | Catheter and endoscope assembly and method of use |
US5285795A (en) | 1991-09-12 | 1994-02-15 | Surgical Dynamics, Inc. | Percutaneous discectomy system having a bendable discectomy probe and a steerable cannula |
US5250059A (en) | 1992-01-22 | 1993-10-05 | Devices For Vascular Intervention, Inc. | Atherectomy catheter having flexible nose cone |
US5224488A (en) | 1992-08-31 | 1993-07-06 | Neuffer Francis H | Biopsy needle with extendable cutting means |
US5383460A (en) | 1992-10-05 | 1995-01-24 | Cardiovascular Imaging Systems, Inc. | Method and apparatus for ultrasound imaging and atherectomy |
US5571122A (en) | 1992-11-09 | 1996-11-05 | Endovascular Instruments, Inc. | Unitary removal of plaque |
US5584842A (en) | 1992-12-02 | 1996-12-17 | Intramed Laboratories, Inc. | Valvulotome and method of using |
US5620447A (en) | 1993-01-29 | 1997-04-15 | Smith & Nephew Dyonics Inc. | Surgical instrument |
US5318528A (en) | 1993-04-13 | 1994-06-07 | Advanced Surgical Inc. | Steerable surgical devices |
US5395313A (en) | 1993-08-13 | 1995-03-07 | Naves; Neil H. | Reciprocating arthroscopic shaver |
US5441510A (en) * | 1993-09-01 | 1995-08-15 | Technology Development Center | Bi-axial cutter apparatus for catheter |
EP0722286B1 (en) * | 1993-09-20 | 2002-08-21 | Boston Scientific Corporation | Multiple biopsy sampling device |
US5571130A (en) | 1994-10-04 | 1996-11-05 | Advanced Cardiovascular Systems, Inc. | Atherectomy and prostectomy system |
US5658302A (en) * | 1995-06-07 | 1997-08-19 | Baxter International Inc. | Method and device for endoluminal disruption of venous valves |
US5989281A (en) | 1995-11-07 | 1999-11-23 | Embol-X, Inc. | Cannula with associated filter and methods of use during cardiac surgery |
US5695506A (en) | 1996-02-06 | 1997-12-09 | Devices For Vascular Intervention | Catheter device with a flexible housing |
US5800389A (en) * | 1996-02-09 | 1998-09-01 | Emx, Inc. | Biopsy device |
US5709698A (en) | 1996-02-26 | 1998-01-20 | Linvatec Corporation | Irrigating/aspirating shaver blade assembly |
US6036707A (en) | 1996-03-07 | 2000-03-14 | Devices For Vascular Intervention | Catheter device having a selectively flexible housing |
US5819738A (en) | 1996-07-03 | 1998-10-13 | Symbiosis Corporation | Jaw assembly having progressively larger teeth and endoscopic biopsy forceps instrument incorporating same |
US5843103A (en) | 1997-03-06 | 1998-12-01 | Scimed Life Systems, Inc. | Shaped wire rotational atherectomy device |
US5938671A (en) | 1997-11-14 | 1999-08-17 | Reflow, Inc. | Recanalization apparatus and devices for use therein and method |
US6027514A (en) * | 1997-12-17 | 2000-02-22 | Fox Hollow Technologies, Inc. | Apparatus and method for removing occluding material from body lumens |
JP4157183B2 (en) * | 1998-02-17 | 2008-09-24 | オリンパス株式会社 | Endoscopic treatment tool |
US6352503B1 (en) * | 1998-07-17 | 2002-03-05 | Olympus Optical Co., Ltd. | Endoscopic surgery apparatus |
US6241744B1 (en) | 1998-08-14 | 2001-06-05 | Fox Hollow Technologies, Inc. | Apparatus for deploying a guidewire across a complex lesion |
US6440147B1 (en) | 1998-09-03 | 2002-08-27 | Rubicor Medical, Inc. | Excisional biopsy devices and methods |
AU2002235159A1 (en) | 2000-12-05 | 2002-06-18 | Lumend, Inc. | Catheter system for vascular re-entry from a sub-intimal space |
-
1999
- 1999-08-19 US US09/377,884 patent/US6638233B2/en not_active Expired - Lifetime
-
2001
- 2001-07-27 US US09/916,642 patent/US20020022788A1/en not_active Abandoned
-
2006
- 2006-06-19 US US11/455,995 patent/US20060235334A1/en not_active Abandoned
-
2009
- 2009-01-21 US US12/357,037 patent/US8784333B2/en not_active Expired - Fee Related
Patent Citations (96)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3831585A (en) * | 1972-07-19 | 1974-08-27 | T Brondy | Retrograde renal biopsy device |
US4926858A (en) * | 1984-05-30 | 1990-05-22 | Devices For Vascular Intervention, Inc. | Atherectomy device for severe occlusions |
US4669469A (en) * | 1986-02-28 | 1987-06-02 | Devices For Vascular Intervention | Single lumen atherectomy catheter device |
US4771774A (en) * | 1986-02-28 | 1988-09-20 | Devices For Vascular Intervention, Inc. | Motor drive unit |
US4817613A (en) * | 1987-07-13 | 1989-04-04 | Devices For Vascular Intervention, Inc. | Guiding catheter |
US5047040A (en) * | 1987-11-05 | 1991-09-10 | Devices For Vascular Intervention, Inc. | Atherectomy device and method |
US5053044A (en) * | 1988-01-11 | 1991-10-01 | Devices For Vascular Intervention, Inc. | Catheter and method for making intravascular incisions |
US5183432A (en) * | 1988-03-19 | 1993-02-02 | Nihonmatai Co., Ltd. | Floating body of sophisticated shape produced from a single sheet of film with a single sealing |
US5071425A (en) * | 1988-09-12 | 1991-12-10 | Devices For Vascular Intervention, Inc. | Atherectomy catheter and method of forming the same |
US6443966B1 (en) * | 1988-12-14 | 2002-09-03 | Intravascular Medical, Inc. | Surgical instrument |
US4986807A (en) * | 1989-01-23 | 1991-01-22 | Interventional Technologies, Inc. | Atherectomy cutter with radially projecting blade |
US4966604A (en) * | 1989-01-23 | 1990-10-30 | Interventional Technologies Inc. | Expandable atherectomy cutter with flexibly bowed blades |
US5269793A (en) * | 1989-07-20 | 1993-12-14 | Devices For Vascular Intervention, Inc. | Guide wire systems for intravascular catheters |
US5282484A (en) * | 1989-08-18 | 1994-02-01 | Endovascular Instruments, Inc. | Method for performing a partial atherectomy |
US5403334A (en) * | 1989-09-12 | 1995-04-04 | Devices For Vascular Intervention, Inc. | Atherectomy device having helical blade and blade guide |
US5226909A (en) * | 1989-09-12 | 1993-07-13 | Devices For Vascular Intervention, Inc. | Atherectomy device having helical blade and blade guide |
US5569277A (en) * | 1989-09-12 | 1996-10-29 | Devices For Vascular Intervention, Inc. | Atherectomy device having helical blade and blade guide |
US5916210A (en) * | 1990-01-26 | 1999-06-29 | Intraluminal Therapeutics, Inc. | Catheter for laser treatment of atherosclerotic plaque and other tissue abnormalities |
US5084010A (en) * | 1990-02-20 | 1992-01-28 | Devices For Vascular Intervention, Inc. | System and method for catheter construction |
US5222966A (en) * | 1990-02-28 | 1993-06-29 | Devices For Vascular Intervention, Inc. | Balloon connection and inflation lumen for atherectomy catheter |
US5092873A (en) * | 1990-02-28 | 1992-03-03 | Devices For Vascular Intervention, Inc. | Balloon configuration for atherectomy catheter |
US5470415A (en) * | 1990-02-28 | 1995-11-28 | Devices For Vascular Intervention, Inc. | Balloon connection and inflation lumen for atherectomy catheter |
US5154724A (en) * | 1990-05-14 | 1992-10-13 | Andrews Winston A | Atherectomy catheter |
US5181920A (en) * | 1990-06-08 | 1993-01-26 | Devices For Vascular Intervention, Inc. | Atherectomy device with angioplasty balloon and method |
US5217474A (en) * | 1991-07-15 | 1993-06-08 | Zacca Nadim M | Expandable tip atherectomy method and apparatus |
US5224949A (en) * | 1992-01-13 | 1993-07-06 | Interventional Technologies, Inc. | Camming device |
US5318032A (en) * | 1992-02-05 | 1994-06-07 | Devices For Vascular Intervention | Guiding catheter having soft tip |
US5643298A (en) * | 1992-11-09 | 1997-07-01 | Nordgren; Gregory N. | Intra-artery obstruction clearing apparatus and methods |
US5372602A (en) * | 1992-11-30 | 1994-12-13 | Device For Vascular Intervention, Inc. | Method of removing plaque using catheter cutter with torque control |
US5485042A (en) * | 1992-11-30 | 1996-01-16 | Devices For Vascular Intervention, Inc. | Motor drive unit with torque control circuit |
US5429136A (en) * | 1993-04-21 | 1995-07-04 | Devices For Vascular Intervention, Inc. | Imaging atherectomy apparatus |
US5776114A (en) * | 1993-07-07 | 1998-07-07 | Devices For Vascular Intervention, Inc. | Flexible housing for intracorporeal use |
US5514115A (en) * | 1993-07-07 | 1996-05-07 | Device For Vascular Intervention, Inc. | Flexible housing for intracorporeal use |
US5948184A (en) * | 1993-07-07 | 1999-09-07 | Devices For Vascular Intervention, Inc. | Flexible housing for intracorporeal use |
US5527325A (en) * | 1993-07-09 | 1996-06-18 | Device For Vascular Intervention, Inc. | Atherectomy catheter and method |
US5669920A (en) * | 1993-07-09 | 1997-09-23 | Devices For Vascular Intervention, Inc. | Atherectomy catheter |
US5419774A (en) * | 1993-07-13 | 1995-05-30 | Scimed Life Systems, Inc. | Thrombus extraction device |
US5823971A (en) * | 1993-10-29 | 1998-10-20 | Boston Scientific Corporation | Multiple biopsy sampling coring device |
US5507760A (en) * | 1993-11-09 | 1996-04-16 | Devices For Vascular Intervention, Inc. | Cutter device |
US5816923A (en) * | 1993-12-09 | 1998-10-06 | Devices For Vascular Intervention, Inc. | Flexible composite drive shaft for transmitting torque |
US5624457A (en) * | 1994-04-07 | 1997-04-29 | Devices For Vascular Intervention | Directional atherectomy device with flexible housing |
US5507795A (en) * | 1994-04-29 | 1996-04-16 | Devices For Vascular Intervention, Inc. | Catheter with perfusion system |
US5491524A (en) * | 1994-10-05 | 1996-02-13 | Carl Zeiss, Inc. | Optical coherence tomography corneal mapping apparatus |
US5549601A (en) * | 1994-10-11 | 1996-08-27 | Devices For Vascular Intervention, Inc. | Delivery of intracorporeal probes |
US5643296A (en) * | 1994-12-16 | 1997-07-01 | Devices For Vasclar Intervention | Intravascular catheter with guiding structure |
US5836957A (en) * | 1994-12-22 | 1998-11-17 | Devices For Vascular Intervention, Inc. | Large volume atherectomy device |
US5868767A (en) * | 1994-12-23 | 1999-02-09 | Devices For Vascular Intervention | Universal catheter with interchangeable work element |
US5632754A (en) * | 1994-12-23 | 1997-05-27 | Devices For Vascular Intervention | Universal catheter with interchangeable work element |
US6027450A (en) * | 1994-12-30 | 2000-02-22 | Devices For Vascular Intervention | Treating a totally or near totally occluded lumen |
US5700687A (en) * | 1995-01-30 | 1997-12-23 | Bedminster Bioconversion Corporation | Odor control system |
US6283983B1 (en) * | 1995-10-13 | 2001-09-04 | Transvascular, Inc. | Percutaneous in-situ coronary bypass method and apparatus |
US6375615B1 (en) * | 1995-10-13 | 2002-04-23 | Transvascular, Inc. | Tissue penetrating catheters having integral imaging transducers and their methods of use |
US6159225A (en) * | 1995-10-13 | 2000-12-12 | Transvascular, Inc. | Device for interstitial transvascular intervention and revascularization |
US6190353B1 (en) * | 1995-10-13 | 2001-02-20 | Transvascular, Inc. | Methods and apparatus for bypassing arterial obstructions and/or performing other transvascular procedures |
US6068638A (en) * | 1995-10-13 | 2000-05-30 | Transvascular, Inc. | Device, system and method for interstitial transvascular intervention |
US5868685A (en) * | 1995-11-14 | 1999-02-09 | Devices For Vascular Intervention | Articulated guidewire |
US6355005B1 (en) * | 1995-11-14 | 2002-03-12 | Devices For Vascular Intervention, Inc. | Articulated guidewire |
US6120515A (en) * | 1996-02-06 | 2000-09-19 | Devices For Vascular Intervention, Inc. | Composite atherectomy cutter |
US6283951B1 (en) * | 1996-10-11 | 2001-09-04 | Transvascular, Inc. | Systems and methods for delivering drugs to selected locations within the body |
US6302875B1 (en) * | 1996-10-11 | 2001-10-16 | Transvascular, Inc. | Catheters and related devices for forming passageways between blood vessels or other anatomical structures |
US5959281A (en) * | 1997-02-07 | 1999-09-28 | Lulirama International, Inc. | Interactive card reading system |
US6217549B1 (en) * | 1997-02-28 | 2001-04-17 | Lumend, Inc. | Methods and apparatus for treating vascular occlusions |
US5968064A (en) * | 1997-02-28 | 1999-10-19 | Lumend, Inc. | Catheter system for treating a vascular occlusion |
US6010449A (en) * | 1997-02-28 | 2000-01-04 | Lumend, Inc. | Intravascular catheter system for treating a vascular occlusion |
US6120516A (en) * | 1997-02-28 | 2000-09-19 | Lumend, Inc. | Method for treating vascular occlusion |
US5741270A (en) * | 1997-02-28 | 1998-04-21 | Lumend, Inc. | Manual actuator for a catheter system for treating a vascular occlusion |
US5911734A (en) * | 1997-05-08 | 1999-06-15 | Embol-X, Inc. | Percutaneous catheter and guidewire having filter and medical device deployment capabilities |
US5954745A (en) * | 1997-05-16 | 1999-09-21 | Gertler; Jonathan | Catheter-filter set having a compliant seal |
US6048349A (en) * | 1997-07-09 | 2000-04-11 | Intraluminal Therapeutics, Inc. | Systems and methods for guiding a medical instrument through a body |
US6013072A (en) * | 1997-07-09 | 2000-01-11 | Intraluminal Therapeutics, Inc. | Systems and methods for steering a catheter through body tissue |
US6063093A (en) * | 1997-07-09 | 2000-05-16 | Intraluminal Therapeutics, Inc. | Systems and methods for guiding a medical instrument through a body |
US5951482A (en) * | 1997-10-03 | 1999-09-14 | Intraluminal Therapeutics, Inc. | Assemblies and methods for advancing a guide wire through body tissue |
US6193676B1 (en) * | 1997-10-03 | 2001-02-27 | Intraluminal Therapeutics, Inc. | Guide wire assembly |
US6258052B1 (en) * | 1997-11-13 | 2001-07-10 | Lumend, Inc. | Guidewire and catheter with rotating and reciprocating symmetrical or asymmetrical distal tip |
US6330884B1 (en) * | 1997-11-14 | 2001-12-18 | Transvascular, Inc. | Deformable scaffolding multicellular stent |
US6221049B1 (en) * | 1998-01-13 | 2001-04-24 | Lumend, Inc. | Methods and apparatus for crossing vascular occlusions |
US6235000B1 (en) * | 1998-01-13 | 2001-05-22 | Lumend, Inc. | Apparatus for crossing total occlusion in blood vessels |
US6157852A (en) * | 1998-01-15 | 2000-12-05 | Lumend, Inc. | Catheter apparatus for treating arterial occlusions |
US6241667B1 (en) * | 1998-01-15 | 2001-06-05 | Lumend, Inc. | Catheter apparatus for guided transvascular treatment of arterial occlusions |
US6081738A (en) * | 1998-01-15 | 2000-06-27 | Lumend, Inc. | Method and apparatus for the guided bypass of coronary occlusions |
US6266550B1 (en) * | 1998-01-16 | 2001-07-24 | Lumend, Inc. | Catheter apparatus for treating arterial occlusions |
US6398798B2 (en) * | 1998-02-28 | 2002-06-04 | Lumend, Inc. | Catheter system for treating a vascular occlusion |
US6106515A (en) * | 1998-08-13 | 2000-08-22 | Intraluminal Therapeutics, Inc. | Expandable laser catheter |
US6022362A (en) * | 1998-09-03 | 2000-02-08 | Rubicor Medical, Inc. | Excisional biopsy devices and methods |
US6217527B1 (en) * | 1998-09-30 | 2001-04-17 | Lumend, Inc. | Methods and apparatus for crossing vascular occlusions |
US6228076B1 (en) * | 1999-01-09 | 2001-05-08 | Intraluminal Therapeutics, Inc. | System and method for controlling tissue ablation |
US6126649A (en) * | 1999-06-10 | 2000-10-03 | Transvascular, Inc. | Steerable catheter with external guidewire as catheter tip deflector |
US20030018346A1 (en) * | 1999-08-19 | 2003-01-23 | Fox Hollows Technologies, Inc. | Apparatus and methods for removing material from a body lumen |
US6447525B2 (en) * | 1999-08-19 | 2002-09-10 | Fox Hollow Technologies, Inc. | Apparatus and methods for removing material from a body lumen |
US6623496B2 (en) * | 1999-08-19 | 2003-09-23 | Fox Hollow Technologies, Inc. | Atherectomy catheter with aligned imager |
US6638233B2 (en) * | 1999-08-19 | 2003-10-28 | Fox Hollow Technologies, Inc. | Apparatus and methods for material capture and removal |
US6394976B1 (en) * | 2000-01-31 | 2002-05-28 | Intraluminal Therapeutics, Inc. | Catheter for controlling the advancement of a guide wire |
US20030120295A1 (en) * | 2000-12-20 | 2003-06-26 | Fox Hollow Technologies, Inc. | Debulking catheters and methods |
US20030125757A1 (en) * | 2000-12-20 | 2003-07-03 | Fox Hollow Technologies, Inc. | Debulking catheters and methods |
US20030125758A1 (en) * | 2000-12-20 | 2003-07-03 | Fox Hollow Technologies, Inc. | Debulking catheters and methods |
US6428552B1 (en) * | 2001-01-22 | 2002-08-06 | Lumend, Inc. | Method and apparatus for crossing intravascular occlusions |
Cited By (190)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8597315B2 (en) | 1999-08-19 | 2013-12-03 | Covidien Lp | Atherectomy catheter with first and second imaging devices |
US8784333B2 (en) | 1999-08-19 | 2014-07-22 | Covidien Lp | Apparatus and methods for material capture and removal |
US8911459B2 (en) | 1999-08-19 | 2014-12-16 | Covidien Lp | Debulking catheters and methods |
US8998937B2 (en) | 1999-08-19 | 2015-04-07 | Covidien Lp | Methods and devices for cutting tissue |
US9532799B2 (en) | 1999-08-19 | 2017-01-03 | Covidien Lp | Method and devices for cutting tissue |
US9615850B2 (en) | 1999-08-19 | 2017-04-11 | Covidien Lp | Atherectomy catheter with aligned imager |
US8328829B2 (en) | 1999-08-19 | 2012-12-11 | Covidien Lp | High capacity debulking catheter with razor edge cutting window |
US8052704B2 (en) | 2000-12-20 | 2011-11-08 | Foxhollow Technologies, Inc. | High capacity debulking catheter with distal driven cutting wheel |
US7713279B2 (en) | 2000-12-20 | 2010-05-11 | Fox Hollow Technologies, Inc. | Method and devices for cutting tissue |
US20130289590A1 (en) * | 2000-12-20 | 2013-10-31 | Covidien Lp | High capacity debulking catheter with distal driven cutting wheel |
US8226674B2 (en) | 2000-12-20 | 2012-07-24 | Tyco Healthcare Group Lp | Debulking catheters and methods |
US7927784B2 (en) | 2000-12-20 | 2011-04-19 | Ev3 | Vascular lumen debulking catheters and methods |
US20050177068A1 (en) * | 2000-12-20 | 2005-08-11 | Fox Hollow Technologies, Inc. | Debulking catheters and methods |
US20020077642A1 (en) * | 2000-12-20 | 2002-06-20 | Fox Hollow Technologies, Inc. | Debulking catheter |
US20060235366A1 (en) * | 2000-12-20 | 2006-10-19 | Fox Hollow Technologies, Inc. | Method of evaluating a treatment for vascular disease |
US20060239982A1 (en) * | 2000-12-20 | 2006-10-26 | Fox Hollow Technologies, Inc. | Debulking catheters and methods |
US8469979B2 (en) | 2000-12-20 | 2013-06-25 | Covidien Lp | High capacity debulking catheter with distal driven cutting wheel |
US20070078469A1 (en) * | 2000-12-20 | 2007-04-05 | Fox Hollow Technologies, Inc | Testing a patient population having a cardiovascular condition for drug efficacy |
US7771444B2 (en) | 2000-12-20 | 2010-08-10 | Fox Hollow Technologies, Inc. | Methods and devices for removing material from a body lumen |
US20050154407A1 (en) * | 2000-12-20 | 2005-07-14 | Fox Hollow Technologies, Inc. | Method of evaluating drug efficacy for treating atherosclerosis |
US20040167554A1 (en) * | 2000-12-20 | 2004-08-26 | Fox Hollow Technologies, Inc. | Methods and devices for reentering a true lumen from a subintimal space |
US20040167553A1 (en) * | 2000-12-20 | 2004-08-26 | Fox Hollow Technologies, Inc. | Methods and devices for cutting tissue |
US20100121360A9 (en) * | 2000-12-20 | 2010-05-13 | Fox Hollow Technologies, Inc | Testing a patient population having a cardiovascular condition for drug efficacy |
US7699790B2 (en) | 2000-12-20 | 2010-04-20 | Ev3, Inc. | Debulking catheters and methods |
US9241733B2 (en) * | 2000-12-20 | 2016-01-26 | Covidien Lp | Debulking catheter |
US7708749B2 (en) | 2000-12-20 | 2010-05-04 | Fox Hollow Technologies, Inc. | Debulking catheters and methods |
US8246640B2 (en) | 2003-04-22 | 2012-08-21 | Tyco Healthcare Group Lp | Methods and devices for cutting tissue at a vascular location |
US8961546B2 (en) | 2003-04-22 | 2015-02-24 | Covidien Lp | Methods and devices for cutting tissue at a vascular location |
US9999438B2 (en) | 2003-04-22 | 2018-06-19 | Covidien Lp | Methods and devices for cutting tissue at a vascular location |
US7758514B2 (en) | 2003-05-30 | 2010-07-20 | Boston Scientific Scimed, Inc. | Transbronchial needle aspiration device |
US7625346B2 (en) | 2003-05-30 | 2009-12-01 | Boston Scientific Scimed, Inc. | Transbronchial needle aspiration device |
US20070213735A1 (en) * | 2004-10-15 | 2007-09-13 | Vahid Saadat | Powered tissue modification devices and methods |
US20100331883A1 (en) * | 2004-10-15 | 2010-12-30 | Schmitz Gregory P | Access and tissue modification systems and methods |
US20080275458A1 (en) * | 2004-10-15 | 2008-11-06 | Bleich Jeffery L | Guidewire exchange systems to treat spinal stenosis |
US8617163B2 (en) | 2004-10-15 | 2013-12-31 | Baxano Surgical, Inc. | Methods, systems and devices for carpal tunnel release |
US8579902B2 (en) | 2004-10-15 | 2013-11-12 | Baxano Signal, Inc. | Devices and methods for tissue modification |
US9320618B2 (en) | 2004-10-15 | 2016-04-26 | Amendia, Inc. | Access and tissue modification systems and methods |
US8647346B2 (en) | 2004-10-15 | 2014-02-11 | Baxano Surgical, Inc. | Devices and methods for tissue modification |
US8192435B2 (en) * | 2004-10-15 | 2012-06-05 | Baxano, Inc. | Devices and methods for tissue modification |
US20090125036A1 (en) * | 2004-10-15 | 2009-05-14 | Bleich Jeffery L | Devices and methods for selective surgical removal of tissue |
US8568416B2 (en) | 2004-10-15 | 2013-10-29 | Baxano Surgical, Inc. | Access and tissue modification systems and methods |
US9345491B2 (en) | 2004-10-15 | 2016-05-24 | Amendia, Inc. | Flexible tissue rasp |
US8652138B2 (en) | 2004-10-15 | 2014-02-18 | Baxano Surgical, Inc. | Flexible tissue rasp |
US8221397B2 (en) | 2004-10-15 | 2012-07-17 | Baxano, Inc. | Devices and methods for tissue modification |
US9247952B2 (en) | 2004-10-15 | 2016-02-02 | Amendia, Inc. | Devices and methods for tissue access |
US8801626B2 (en) | 2004-10-15 | 2014-08-12 | Baxano Surgical, Inc. | Flexible neural localization devices and methods |
US9101386B2 (en) | 2004-10-15 | 2015-08-11 | Amendia, Inc. | Devices and methods for treating tissue |
US20070213733A1 (en) * | 2004-10-15 | 2007-09-13 | Bleich Jeffery L | Mechanical tissue modification devices and methods |
US7738969B2 (en) | 2004-10-15 | 2010-06-15 | Baxano, Inc. | Devices and methods for selective surgical removal of tissue |
US7738968B2 (en) | 2004-10-15 | 2010-06-15 | Baxano, Inc. | Devices and methods for selective surgical removal of tissue |
US7740631B2 (en) | 2004-10-15 | 2010-06-22 | Baxano, Inc. | Devices and methods for tissue modification |
US10052116B2 (en) | 2004-10-15 | 2018-08-21 | Amendia, Inc. | Devices and methods for treating tissue |
US20070123888A1 (en) * | 2004-10-15 | 2007-05-31 | Baxano, Inc. | Flexible tissue rasp |
US20060089640A1 (en) * | 2004-10-15 | 2006-04-27 | Baxano, Inc. | Devices and methods for tissue modification |
US20060089609A1 (en) * | 2004-10-15 | 2006-04-27 | Baxano, Inc. | Devices and methods for tissue modification |
US8430881B2 (en) | 2004-10-15 | 2013-04-30 | Baxano, Inc. | Mechanical tissue modification devices and methods |
US8257356B2 (en) | 2004-10-15 | 2012-09-04 | Baxano, Inc. | Guidewire exchange systems to treat spinal stenosis |
US9456829B2 (en) | 2004-10-15 | 2016-10-04 | Amendia, Inc. | Powered tissue modification devices and methods |
US8613745B2 (en) | 2004-10-15 | 2013-12-24 | Baxano Surgical, Inc. | Methods, systems and devices for carpal tunnel release |
US9463041B2 (en) | 2004-10-15 | 2016-10-11 | Amendia, Inc. | Devices and methods for tissue access |
US11382647B2 (en) | 2004-10-15 | 2022-07-12 | Spinal Elements, Inc. | Devices and methods for treating tissue |
US20060089633A1 (en) * | 2004-10-15 | 2006-04-27 | Baxano, Inc. | Devices and methods for tissue access |
US8048080B2 (en) | 2004-10-15 | 2011-11-01 | Baxano, Inc. | Flexible tissue rasp |
US7918849B2 (en) | 2004-10-15 | 2011-04-05 | Baxano, Inc. | Devices and methods for tissue access |
US20060135882A1 (en) * | 2004-10-15 | 2006-06-22 | Baxano, Inc. | Devices and methods for selective surgical removal of tissue |
US20110098708A9 (en) * | 2004-10-15 | 2011-04-28 | Vahid Saadat | Powered tissue modification devices and methods |
US7938830B2 (en) | 2004-10-15 | 2011-05-10 | Baxano, Inc. | Powered tissue modification devices and methods |
US20060122458A1 (en) * | 2004-10-15 | 2006-06-08 | Baxano, Inc. | Devices and methods for tissue access |
US20110130758A9 (en) * | 2004-10-15 | 2011-06-02 | Baxano, Inc. | Flexible tissue rasp |
US20060100651A1 (en) * | 2004-10-15 | 2006-05-11 | Baxano, Inc. | Devices and methods for tissue access |
US7963915B2 (en) | 2004-10-15 | 2011-06-21 | Baxano, Inc. | Devices and methods for tissue access |
US20110160731A1 (en) * | 2004-10-15 | 2011-06-30 | Bleich Jeffery L | Devices and methods for tissue access |
US20060095059A1 (en) * | 2004-10-15 | 2006-05-04 | Baxano, Inc. | Devices and methods for tissue modification |
US20110224709A1 (en) * | 2004-10-15 | 2011-09-15 | Bleich Jeffery L | Methods, systems and devices for carpal tunnel release |
US20110224710A1 (en) * | 2004-10-15 | 2011-09-15 | Bleich Jeffery L | Methods, systems and devices for carpal tunnel release |
JP4751401B2 (en) * | 2005-01-27 | 2011-08-17 | ウィルソン−クック・メディカル・インコーポレーテッド | Endoscopic cutting instrument |
US20060184187A1 (en) * | 2005-01-27 | 2006-08-17 | Wilson-Cook Medical Inc. | Endoscopic cutting device |
AU2006211174B2 (en) * | 2005-01-27 | 2012-05-31 | Cook Medical Technologies Llc | Endoscopic cutting device |
US7520886B2 (en) * | 2005-01-27 | 2009-04-21 | Wilson-Cook Medical Inc. | Endoscopic cutting device |
US20060236019A1 (en) * | 2005-04-19 | 2006-10-19 | Fox Hollow Technologies, Inc. | Libraries and data structures of materials removed by debulking catheters |
US7794413B2 (en) | 2005-04-19 | 2010-09-14 | Ev3, Inc. | Libraries and data structures of materials removed by debulking catheters |
US8419653B2 (en) | 2005-05-16 | 2013-04-16 | Baxano, Inc. | Spinal access and neural localization |
US20060258951A1 (en) * | 2005-05-16 | 2006-11-16 | Baxano, Inc. | Spinal Access and Neural Localization |
US20100010334A1 (en) * | 2005-05-16 | 2010-01-14 | Bleich Jeffery L | Spinal access and neural localization |
US9492151B2 (en) | 2005-10-15 | 2016-11-15 | Amendia, Inc. | Multiple pathways for spinal nerve root decompression from a single access point |
US20070225703A1 (en) * | 2005-10-15 | 2007-09-27 | Baxano, Inc. | Flexible Tissue Removal Devices and Methods |
US8092456B2 (en) | 2005-10-15 | 2012-01-10 | Baxano, Inc. | Multiple pathways for spinal nerve root decompression from a single access point |
US8062298B2 (en) | 2005-10-15 | 2011-11-22 | Baxano, Inc. | Flexible tissue removal devices and methods |
US20090177241A1 (en) * | 2005-10-15 | 2009-07-09 | Bleich Jeffery L | Multiple pathways for spinal nerve root decompression from a single access point |
US7887538B2 (en) | 2005-10-15 | 2011-02-15 | Baxano, Inc. | Methods and apparatus for tissue modification |
US8366712B2 (en) | 2005-10-15 | 2013-02-05 | Baxano, Inc. | Multiple pathways for spinal nerve root decompression from a single access point |
US9125682B2 (en) | 2005-10-15 | 2015-09-08 | Amendia, Inc. | Multiple pathways for spinal nerve root decompression from a single access point |
US20070196926A1 (en) * | 2006-02-17 | 2007-08-23 | Fox Hollow Technologies, Inc. | Testing lumenectomy samples for Markers of non-vascular diseases |
US7989207B2 (en) * | 2006-02-17 | 2011-08-02 | Tyco Healthcare Group Lp | Testing lumenectomy samples for markers of non-vascular diseases |
US20070213734A1 (en) * | 2006-03-13 | 2007-09-13 | Bleich Jeffery L | Tissue modification barrier devices and methods |
US9351741B2 (en) | 2006-05-04 | 2016-05-31 | Amendia, Inc. | Flexible tissue removal devices and methods |
US20070260252A1 (en) * | 2006-05-04 | 2007-11-08 | Baxano, Inc. | Tissue Removal with at Least Partially Flexible Devices |
US8585704B2 (en) | 2006-05-04 | 2013-11-19 | Baxano Surgical, Inc. | Flexible tissue removal devices and methods |
US8062300B2 (en) | 2006-05-04 | 2011-11-22 | Baxano, Inc. | Tissue removal with at least partially flexible devices |
US20080033465A1 (en) * | 2006-08-01 | 2008-02-07 | Baxano, Inc. | Multi-Wire Tissue Cutter |
WO2008016886A2 (en) * | 2006-08-01 | 2008-02-07 | Baxano, Inc. | Tissue cutting devices and methods |
US20080051812A1 (en) * | 2006-08-01 | 2008-02-28 | Baxano, Inc. | Multi-Wire Tissue Cutter |
WO2008016886A3 (en) * | 2006-08-01 | 2008-12-04 | Baxano Inc | Tissue cutting devices and methods |
US8551097B2 (en) | 2006-08-29 | 2013-10-08 | Baxano Surgical, Inc. | Tissue access guidewire system and method |
US20080086114A1 (en) * | 2006-08-29 | 2008-04-10 | Baxano, Inc. | Tissue Access Guidewire System and Method |
US20110046613A1 (en) * | 2006-08-29 | 2011-02-24 | Gregory Schmitz | Tissue access guidewire system and method |
US8845637B2 (en) | 2006-08-29 | 2014-09-30 | Baxano Surgical, Inc. | Tissue access guidewire system and method |
US7857813B2 (en) | 2006-08-29 | 2010-12-28 | Baxano, Inc. | Tissue access guidewire system and method |
US20080086034A1 (en) * | 2006-08-29 | 2008-04-10 | Baxano, Inc. | Tissue Access Guidewire System and Method |
US11426249B2 (en) | 2006-09-12 | 2022-08-30 | Teleflex Life Sciences Limited | Vertebral access system and methods |
US12089972B2 (en) | 2006-09-12 | 2024-09-17 | Teleflex Life Sciences Limited | Apparatus and methods for biopsy and aspiration of bone marrow |
US20080161809A1 (en) * | 2006-10-03 | 2008-07-03 | Baxano, Inc. | Articulating Tissue Cutting Device |
US20080103504A1 (en) * | 2006-10-30 | 2008-05-01 | Schmitz Gregory P | Percutaneous spinal stenosis treatment |
US20080147084A1 (en) * | 2006-12-07 | 2008-06-19 | Baxano, Inc. | Tissue removal devices and methods |
US11771439B2 (en) | 2007-04-04 | 2023-10-03 | Teleflex Life Sciences Limited | Powered driver |
US20080312660A1 (en) * | 2007-06-15 | 2008-12-18 | Baxano, Inc. | Devices and methods for measuring the space around a nerve root |
US20090018507A1 (en) * | 2007-07-09 | 2009-01-15 | Baxano, Inc. | Spinal access system and method |
US20090069709A1 (en) * | 2007-09-06 | 2009-03-12 | Baxano, Inc. | Method, system, and apparatus for neural localization |
US7959577B2 (en) | 2007-09-06 | 2011-06-14 | Baxano, Inc. | Method, system, and apparatus for neural localization |
US8303516B2 (en) | 2007-09-06 | 2012-11-06 | Baxano, Inc. | Method, system and apparatus for neural localization |
US20100321426A1 (en) * | 2007-11-22 | 2010-12-23 | Kazuki Suzuki | Image forming apparatus |
US8663228B2 (en) | 2007-12-07 | 2014-03-04 | Baxano Surgical, Inc. | Tissue modification devices |
US9463029B2 (en) | 2007-12-07 | 2016-10-11 | Amendia, Inc. | Tissue modification devices |
US20090149865A1 (en) * | 2007-12-07 | 2009-06-11 | Schmitz Gregory P | Tissue modification devices |
US8192436B2 (en) | 2007-12-07 | 2012-06-05 | Baxano, Inc. | Tissue modification devices |
US8784440B2 (en) | 2008-02-25 | 2014-07-22 | Covidien Lp | Methods and devices for cutting tissue |
US9445834B2 (en) | 2008-02-25 | 2016-09-20 | Covidien Lp | Methods and devices for cutting tissue |
US10219824B2 (en) | 2008-02-25 | 2019-03-05 | Covidien Lp | Methods and devices for cutting tissue |
US9314253B2 (en) | 2008-07-01 | 2016-04-19 | Amendia, Inc. | Tissue modification devices and methods |
US8398641B2 (en) | 2008-07-01 | 2013-03-19 | Baxano, Inc. | Tissue modification devices and methods |
US8409206B2 (en) | 2008-07-01 | 2013-04-02 | Baxano, Inc. | Tissue modification devices and methods |
US20110112539A1 (en) * | 2008-07-14 | 2011-05-12 | Wallace Michael P | Tissue modification devices |
US8845639B2 (en) | 2008-07-14 | 2014-09-30 | Baxano Surgical, Inc. | Tissue modification devices |
US8414604B2 (en) | 2008-10-13 | 2013-04-09 | Covidien Lp | Devices and methods for manipulating a catheter shaft |
US9192406B2 (en) | 2008-10-13 | 2015-11-24 | Covidien Lp | Method for manipulating catheter shaft |
US10507037B2 (en) | 2008-10-13 | 2019-12-17 | Covidien Lp | Method for manipulating catheter shaft |
WO2010105261A3 (en) * | 2009-03-13 | 2011-02-10 | Baxano, Inc. | Flexible neural localization devices and methods |
WO2010105261A2 (en) * | 2009-03-13 | 2010-09-16 | Baxano, Inc. | Flexible neural localization devices and methods |
US8932232B2 (en) | 2009-03-31 | 2015-01-13 | Arch Medical Devices Ltd. | Tissue sampling device and method |
US9687266B2 (en) | 2009-04-29 | 2017-06-27 | Covidien Lp | Methods and devices for cutting and abrading tissue |
US10555753B2 (en) | 2009-04-29 | 2020-02-11 | Covidien Lp | Methods and devices for cutting and abrading tissue |
US8192452B2 (en) | 2009-05-14 | 2012-06-05 | Tyco Healthcare Group Lp | Easily cleaned atherectomy catheters and methods of use |
US8574249B2 (en) | 2009-05-14 | 2013-11-05 | Covidien Lp | Easily cleaned atherectomy catheters and methods of use |
US9220530B2 (en) | 2009-05-14 | 2015-12-29 | Covidien Lp | Easily cleaned atherectomy catheters and methods of use |
US20100331900A1 (en) * | 2009-06-25 | 2010-12-30 | Baxano, Inc. | Surgical tools for treatment of spinal stenosis |
US8394102B2 (en) | 2009-06-25 | 2013-03-12 | Baxano, Inc. | Surgical tools for treatment of spinal stenosis |
US9498600B2 (en) * | 2009-07-01 | 2016-11-22 | Avinger, Inc. | Atherectomy catheter with laterally-displaceable tip |
US20110004107A1 (en) * | 2009-07-01 | 2011-01-06 | Rosenthal Michael H | Atherectomy catheter with laterally-displaceable tip |
US8496677B2 (en) | 2009-12-02 | 2013-07-30 | Covidien Lp | Methods and devices for cutting tissue |
US9687267B2 (en) | 2009-12-02 | 2017-06-27 | Covidien Lp | Device for cutting tissue |
US10499947B2 (en) | 2009-12-02 | 2019-12-10 | Covidien Lp | Device for cutting tissue |
US9028512B2 (en) | 2009-12-11 | 2015-05-12 | Covidien Lp | Material removal device having improved material capture efficiency and methods of use |
US10751082B2 (en) | 2009-12-11 | 2020-08-25 | Covidien Lp | Material removal device having improved material capture efficiency and methods of use |
US9913659B2 (en) | 2009-12-11 | 2018-03-13 | Covidien Lp | Material removal device having improved material capture efficiency and methods of use |
US9119662B2 (en) | 2010-06-14 | 2015-09-01 | Covidien Lp | Material removal device and method of use |
US9855072B2 (en) | 2010-06-14 | 2018-01-02 | Covidien Lp | Material removal device and method of use |
US8920450B2 (en) | 2010-10-28 | 2014-12-30 | Covidien Lp | Material removal device and method of use |
US9717520B2 (en) | 2010-10-28 | 2017-08-01 | Covidien Lp | Material removal device and method of use |
US10952762B2 (en) | 2010-10-28 | 2021-03-23 | Covidien Lp | Material removal device and method of use |
US9326789B2 (en) | 2010-11-11 | 2016-05-03 | Covidien Lp | Flexible debulking catheters with imaging and methods of use and manufacture |
US8808186B2 (en) | 2010-11-11 | 2014-08-19 | Covidien Lp | Flexible debulking catheters with imaging and methods of use and manufacture |
EP2617361A1 (en) * | 2011-06-23 | 2013-07-24 | Olympus Medical Systems Corp. | Biopsy treatment tool |
EP2617361A4 (en) * | 2011-06-23 | 2013-07-24 | Olympus Medical Systems Corp | Biopsy treatment tool |
WO2013003087A1 (en) * | 2011-06-28 | 2013-01-03 | Cook Medical Technologies Llc | Flexible biopsy needle |
US20130006144A1 (en) * | 2011-06-28 | 2013-01-03 | Michael Clancy | Biopsy needle with flexible length |
WO2013003088A1 (en) * | 2011-06-28 | 2013-01-03 | Cook Medical Technologies, LLC | Biopsy needle with flexible length |
US10299769B2 (en) | 2011-06-28 | 2019-05-28 | Cook Medical Technologies Llc | Flexible biopsy needle |
EP2735273A4 (en) * | 2011-07-21 | 2014-10-22 | Panasonic Healthcare Co Ltd | Instrument for collecting body tissue and method for collecting body tissue using same |
EP2735273A1 (en) * | 2011-07-21 | 2014-05-28 | Panasonic Healthcare Co., Ltd. | Instrument for collecting body tissue and method for collecting body tissue using same |
US10335188B2 (en) | 2011-09-01 | 2019-07-02 | Covidien Lp | Methods of manufacture of catheter with helical drive shaft |
US8992717B2 (en) | 2011-09-01 | 2015-03-31 | Covidien Lp | Catheter with helical drive shaft and methods of manufacture |
US9770259B2 (en) | 2011-09-01 | 2017-09-26 | Covidien Lp | Catheter with helical drive shaft and methods of manufacture |
US9757099B2 (en) | 2012-02-27 | 2017-09-12 | Cook Medical Technologies Llc | Biopsy needle with enhanced flexibility |
US9655596B2 (en) | 2012-05-10 | 2017-05-23 | Arch Medical Devices Ltd. | Biopsy needle with a laterally expandable distal portion |
EP2883503A4 (en) * | 2012-08-13 | 2016-04-13 | Olympus Corp | Treatment device for endoscope |
US10406316B2 (en) | 2012-09-13 | 2019-09-10 | Covidien Lp | Cleaning device for medical instrument and method of use |
US9532844B2 (en) | 2012-09-13 | 2017-01-03 | Covidien Lp | Cleaning device for medical instrument and method of use |
US9579157B2 (en) | 2012-09-13 | 2017-02-28 | Covidien Lp | Cleaning device for medical instrument and method of use |
US10434281B2 (en) | 2012-09-13 | 2019-10-08 | Covidien Lp | Cleaning device for medical instrument and method of use |
US20140222049A1 (en) * | 2012-12-12 | 2014-08-07 | Covidien Lp | Tissue-Removing Catheter with Ball and Socket Deployment Mechanism |
US10524827B2 (en) | 2012-12-12 | 2020-01-07 | Covidien Lp | Tissue-removing catheter with ball and socket deployment mechanism |
US9636139B2 (en) * | 2012-12-12 | 2017-05-02 | Covidien Lp | Tissue-removing catheter with ball and socket deployment mechanism |
US10213224B2 (en) | 2014-06-27 | 2019-02-26 | Covidien Lp | Cleaning device for catheter and catheter including the same |
US12048453B2 (en) | 2014-06-27 | 2024-07-30 | Covidien Lp | Cleaning device for catheter and catheter including the same |
US10314667B2 (en) | 2015-03-25 | 2019-06-11 | Covidien Lp | Cleaning device for cleaning medical instrument |
US10292721B2 (en) | 2015-07-20 | 2019-05-21 | Covidien Lp | Tissue-removing catheter including movable distal tip |
US10314664B2 (en) | 2015-10-07 | 2019-06-11 | Covidien Lp | Tissue-removing catheter and tissue-removing element with depth stop |
US11229423B2 (en) | 2016-04-27 | 2022-01-25 | nano grains Co., Ltd. | Tissue collecting instrument |
JP2017196188A (en) * | 2016-04-27 | 2017-11-02 | 株式会社ナノ・グレインズ | Tissue sampling tool |
WO2023229578A1 (en) * | 2022-05-24 | 2023-11-30 | Bard Peripheral Vascular, Inc. | Advanceable and steerable biopsy devices and systems |
Also Published As
Publication number | Publication date |
---|---|
US8784333B2 (en) | 2014-07-22 |
US20090187203A1 (en) | 2009-07-23 |
US20060235334A1 (en) | 2006-10-19 |
US6638233B2 (en) | 2003-10-28 |
US20020038097A1 (en) | 2002-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6638233B2 (en) | Apparatus and methods for material capture and removal | |
US6027514A (en) | Apparatus and method for removing occluding material from body lumens | |
US6447525B2 (en) | Apparatus and methods for removing material from a body lumen | |
US7758599B2 (en) | Atherectomy catheter with aligned imager | |
US10874420B2 (en) | Tissue-removing catheter including urging mechanism | |
WO2001015609A1 (en) | Atherectomy catheter with a rotating and telescoping cutter | |
US9788854B2 (en) | Debulking catheters and methods | |
EP2849661B1 (en) | Atherectomy catheters with imaging | |
US7771444B2 (en) | Methods and devices for removing material from a body lumen | |
US7887556B2 (en) | Debulking catheters and methods | |
EP1622523B1 (en) | Methods and devices for cutting tissue | |
US20030120295A1 (en) | Debulking catheters and methods | |
EP1767159A1 (en) | Catheter for removing atheromatous or thrombotic occlusive material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |