US20010025034A1 - Curcumin and curcuminoid inhibition of angiogenesis - Google Patents
Curcumin and curcuminoid inhibition of angiogenesis Download PDFInfo
- Publication number
- US20010025034A1 US20010025034A1 US09/765,491 US76549101A US2001025034A1 US 20010025034 A1 US20010025034 A1 US 20010025034A1 US 76549101 A US76549101 A US 76549101A US 2001025034 A1 US2001025034 A1 US 2001025034A1
- Authority
- US
- United States
- Prior art keywords
- curcumin
- angiogenesis
- bfgf
- angiogenesis inhibitor
- curcuminoid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- VFLDPWHFBUODDF-FCXRPNKRSA-N curcumin Chemical compound C1=C(O)C(OC)=CC(\C=C\C(=O)CC(=O)\C=C\C=2C=C(OC)C(O)=CC=2)=C1 VFLDPWHFBUODDF-FCXRPNKRSA-N 0.000 title claims abstract description 195
- 235000012754 curcumin Nutrition 0.000 title claims abstract description 91
- VFLDPWHFBUODDF-UHFFFAOYSA-N diferuloylmethane Natural products C1=C(O)C(OC)=CC(C=CC(=O)CC(=O)C=CC=2C=C(OC)C(O)=CC=2)=C1 VFLDPWHFBUODDF-UHFFFAOYSA-N 0.000 title claims abstract description 91
- 229940109262 curcumin Drugs 0.000 title claims abstract description 90
- 239000004148 curcumin Substances 0.000 title claims abstract description 90
- 229930153442 Curcuminoid Natural products 0.000 title claims description 13
- 230000014399 negative regulation of angiogenesis Effects 0.000 title description 2
- 102000003974 Fibroblast growth factor 2 Human genes 0.000 claims abstract description 60
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 claims abstract description 60
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 46
- 238000000034 method Methods 0.000 claims abstract description 35
- 230000033115 angiogenesis Effects 0.000 claims abstract description 31
- 239000004037 angiogenesis inhibitor Substances 0.000 claims abstract description 26
- 229940121369 angiogenesis inhibitor Drugs 0.000 claims abstract description 24
- 208000035475 disorder Diseases 0.000 claims abstract description 23
- 208000017520 skin disease Diseases 0.000 claims abstract description 7
- 208000002874 Acne Vulgaris Diseases 0.000 claims abstract description 5
- 201000004624 Dermatitis Diseases 0.000 claims abstract description 5
- 208000009905 Neurofibromatoses Diseases 0.000 claims abstract description 5
- 201000004681 Psoriasis Diseases 0.000 claims abstract description 5
- 206010037649 Pyogenic granuloma Diseases 0.000 claims abstract description 5
- 206010039796 Seborrhoeic keratosis Diseases 0.000 claims abstract description 5
- 206010042265 Sturge-Weber Syndrome Diseases 0.000 claims abstract description 5
- 208000026911 Tuberous sclerosis complex Diseases 0.000 claims abstract description 5
- 208000000558 Varicose Ulcer Diseases 0.000 claims abstract description 5
- 206010000496 acne Diseases 0.000 claims abstract description 5
- 208000009621 actinic keratosis Diseases 0.000 claims abstract description 5
- 208000010668 atopic eczema Diseases 0.000 claims abstract description 5
- 201000004196 common wart Diseases 0.000 claims abstract description 5
- 201000011066 hemangioma Diseases 0.000 claims abstract description 5
- 230000035168 lymphangiogenesis Effects 0.000 claims abstract description 5
- 208000008588 molluscum contagiosum Diseases 0.000 claims abstract description 5
- 201000004931 neurofibromatosis Diseases 0.000 claims abstract description 5
- 201000000744 recessive dystrophic epidermolysis bullosa Diseases 0.000 claims abstract description 5
- 201000004700 rosacea Diseases 0.000 claims abstract description 5
- 201000003385 seborrheic keratosis Diseases 0.000 claims abstract description 5
- 201000010153 skin papilloma Diseases 0.000 claims abstract description 5
- 208000009999 tuberous sclerosis Diseases 0.000 claims abstract description 5
- 201000003076 Angiosarcoma Diseases 0.000 claims abstract description 4
- 206010004146 Basal cell carcinoma Diseases 0.000 claims abstract description 4
- 208000002125 Hemangioendothelioma Diseases 0.000 claims abstract description 4
- 208000001258 Hemangiosarcoma Diseases 0.000 claims abstract description 4
- 206010039491 Sarcoma Diseases 0.000 claims abstract description 4
- 208000035250 cutaneous malignant susceptibility to 1 melanoma Diseases 0.000 claims abstract description 4
- 201000001441 melanoma Diseases 0.000 claims abstract description 4
- 206010041823 squamous cell carcinoma Diseases 0.000 claims abstract description 4
- 239000000203 mixture Substances 0.000 claims description 19
- 238000011282 treatment Methods 0.000 claims description 18
- VEEGZPWAAPPXRB-BJMVGYQFSA-N (3e)-3-(1h-imidazol-5-ylmethylidene)-1h-indol-2-one Chemical compound O=C1NC2=CC=CC=C2\C1=C/C1=CN=CN1 VEEGZPWAAPPXRB-BJMVGYQFSA-N 0.000 claims description 14
- UEPVWRDHSPMIAZ-IZTHOABVSA-N (1e,4z,6e)-5-hydroxy-7-(4-hydroxy-3-methoxyphenyl)-1-(4-hydroxyphenyl)hepta-1,4,6-trien-3-one Chemical group C1=C(O)C(OC)=CC(\C=C\C(\O)=C\C(=O)\C=C\C=2C=CC(O)=CC=2)=C1 UEPVWRDHSPMIAZ-IZTHOABVSA-N 0.000 claims description 12
- HJTVQHVGMGKONQ-LUZURFALSA-N Curcumin II Natural products C1=C(O)C(OC)=CC(\C=C\C(=O)CC(=O)\C=C\C=2C=CC(O)=CC=2)=C1 HJTVQHVGMGKONQ-LUZURFALSA-N 0.000 claims description 12
- NMRUIRRIQNAQEB-UHFFFAOYSA-N demethoxycurcumin Natural products OC(=CC(C=CC1=CC(=C(C=C1)O)OC)=O)C=CC1=CC=C(C=C1)O NMRUIRRIQNAQEB-UHFFFAOYSA-N 0.000 claims description 12
- UEPVWRDHSPMIAZ-UHFFFAOYSA-N p-hydroxycinnamoyl feruloylmethane Natural products C1=C(O)C(OC)=CC(C=CC(O)=CC(=O)C=CC=2C=CC(O)=CC=2)=C1 UEPVWRDHSPMIAZ-UHFFFAOYSA-N 0.000 claims description 12
- 239000002674 ointment Substances 0.000 claims description 10
- 230000002401 inhibitory effect Effects 0.000 claims description 8
- 238000009472 formulation Methods 0.000 claims description 6
- 206010008342 Cervix carcinoma Diseases 0.000 claims description 5
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 claims description 5
- 201000010881 cervical cancer Diseases 0.000 claims description 5
- 239000000499 gel Substances 0.000 claims description 5
- 238000002513 implantation Methods 0.000 claims description 4
- 102400000068 Angiostatin Human genes 0.000 claims description 3
- 108010079709 Angiostatins Proteins 0.000 claims description 3
- FZCSTZYAHCUGEM-UHFFFAOYSA-N aspergillomarasmine B Natural products OC(=O)CNC(C(O)=O)CNC(C(O)=O)CC(O)=O FZCSTZYAHCUGEM-UHFFFAOYSA-N 0.000 claims description 3
- 239000000017 hydrogel Substances 0.000 claims description 3
- 239000008194 pharmaceutical composition Substances 0.000 claims description 3
- BMYBKYQDGKGCSU-UHFFFAOYSA-N (2-aminophenyl)phosphonic acid Chemical class NC1=CC=CC=C1P(O)(O)=O BMYBKYQDGKGCSU-UHFFFAOYSA-N 0.000 claims description 2
- LJRDOKAZOAKLDU-UDXJMMFXSA-N (2s,3s,4r,5r,6r)-5-amino-2-(aminomethyl)-6-[(2r,3s,4r,5s)-5-[(1r,2r,3s,5r,6s)-3,5-diamino-2-[(2s,3r,4r,5s,6r)-3-amino-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-6-hydroxycyclohexyl]oxy-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl]oxyoxane-3,4-diol;sulfuric ac Chemical compound OS(O)(=O)=O.N[C@@H]1[C@@H](O)[C@H](O)[C@H](CN)O[C@@H]1O[C@H]1[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](N)C[C@@H](N)[C@@H]2O)O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)N)O[C@@H]1CO LJRDOKAZOAKLDU-UDXJMMFXSA-N 0.000 claims description 2
- 102400001047 Endostatin Human genes 0.000 claims description 2
- 108010079505 Endostatins Proteins 0.000 claims description 2
- 102000013462 Interleukin-12 Human genes 0.000 claims description 2
- 108010065805 Interleukin-12 Proteins 0.000 claims description 2
- MSHZHSPISPJWHW-UHFFFAOYSA-N O-(chloroacetylcarbamoyl)fumagillol Chemical compound O1C(CC=C(C)C)C1(C)C1C(OC)C(OC(=O)NC(=O)CCl)CCC21CO2 MSHZHSPISPJWHW-UHFFFAOYSA-N 0.000 claims description 2
- 239000002442 collagenase inhibitor Substances 0.000 claims description 2
- 239000003937 drug carrier Substances 0.000 claims description 2
- NGGMYCMLYOUNGM-CSDLUJIJSA-N fumagillin Chemical class C([C@H]([C@H]([C@@H]1[C@]2(C)[C@H](O2)CC=C(C)C)OC)OC(=O)\C=C\C=C\C=C\C=C\C(O)=O)C[C@@]21CO2 NGGMYCMLYOUNGM-CSDLUJIJSA-N 0.000 claims description 2
- 150000005623 oxindoles Chemical class 0.000 claims description 2
- 229960001639 penicillamine Drugs 0.000 claims description 2
- 238000011200 topical administration Methods 0.000 claims description 2
- 229920000642 polymer Polymers 0.000 claims 1
- 201000010099 disease Diseases 0.000 abstract description 23
- 230000005764 inhibitory process Effects 0.000 abstract description 16
- 230000003211 malignant effect Effects 0.000 abstract description 7
- 206010005003 Bladder cancer Diseases 0.000 abstract description 5
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 abstract description 5
- 201000005112 urinary bladder cancer Diseases 0.000 abstract description 5
- 230000000694 effects Effects 0.000 description 32
- 210000002889 endothelial cell Anatomy 0.000 description 23
- 206010028980 Neoplasm Diseases 0.000 description 21
- 210000004027 cell Anatomy 0.000 description 20
- LBTVHXHERHESKG-UHFFFAOYSA-N tetrahydrocurcumin Chemical compound C1=C(O)C(OC)=CC(CCC(=O)CC(=O)CCC=2C=C(OC)C(O)=CC=2)=C1 LBTVHXHERHESKG-UHFFFAOYSA-N 0.000 description 20
- 201000011510 cancer Diseases 0.000 description 16
- 150000001875 compounds Chemical class 0.000 description 15
- 239000008188 pellet Substances 0.000 description 15
- 239000003795 chemical substances by application Substances 0.000 description 14
- PLGPSDNOLCVGSS-UHFFFAOYSA-N Tetraphenylcyclopentadienone Chemical compound O=C1C(C=2C=CC=CC=2)=C(C=2C=CC=CC=2)C(C=2C=CC=CC=2)=C1C1=CC=CC=C1 PLGPSDNOLCVGSS-UHFFFAOYSA-N 0.000 description 13
- 201000000159 corneal neovascularization Diseases 0.000 description 13
- 206010055665 Corneal neovascularisation Diseases 0.000 description 12
- 238000001727 in vivo Methods 0.000 description 12
- 206010029113 Neovascularisation Diseases 0.000 description 11
- 230000001772 anti-angiogenic effect Effects 0.000 description 10
- 239000003112 inhibitor Substances 0.000 description 9
- 210000001519 tissue Anatomy 0.000 description 9
- 239000004098 Tetracycline Substances 0.000 description 8
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 8
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 8
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 8
- JYTVKRNTTALBBZ-UHFFFAOYSA-N bis demethoxycurcumin Natural products C1=CC(O)=CC=C1C=CC(=O)CC(=O)C=CC1=CC=CC(O)=C1 JYTVKRNTTALBBZ-UHFFFAOYSA-N 0.000 description 8
- PREBVFJICNPEKM-YDWXAUTNSA-N bisdemethoxycurcumin Chemical compound C1=CC(O)=CC=C1\C=C\C(=O)CC(=O)\C=C\C1=CC=C(O)C=C1 PREBVFJICNPEKM-YDWXAUTNSA-N 0.000 description 8
- 210000004087 cornea Anatomy 0.000 description 8
- YXAKCQIIROBKOP-UHFFFAOYSA-N di-p-hydroxycinnamoylmethane Natural products C=1C=C(O)C=CC=1C=CC(=O)C=C(O)C=CC1=CC=C(O)C=C1 YXAKCQIIROBKOP-UHFFFAOYSA-N 0.000 description 8
- 238000000338 in vitro Methods 0.000 description 8
- 230000007246 mechanism Effects 0.000 description 8
- 235000019364 tetracycline Nutrition 0.000 description 8
- 150000003522 tetracyclines Chemical class 0.000 description 8
- 102000004190 Enzymes Human genes 0.000 description 7
- 108090000790 Enzymes Proteins 0.000 description 7
- 229940088598 enzyme Drugs 0.000 description 7
- 230000006698 induction Effects 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 230000001575 pathological effect Effects 0.000 description 7
- 241000124008 Mammalia Species 0.000 description 6
- 230000012010 growth Effects 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 230000035755 proliferation Effects 0.000 description 6
- 210000003491 skin Anatomy 0.000 description 6
- 230000000699 topical effect Effects 0.000 description 6
- FFTVPQUHLQBXQZ-KVUCHLLUSA-N (4s,4as,5ar,12ar)-4,7-bis(dimethylamino)-1,10,11,12a-tetrahydroxy-3,12-dioxo-4a,5,5a,6-tetrahydro-4h-tetracene-2-carboxamide Chemical compound C1C2=C(N(C)C)C=CC(O)=C2C(O)=C2[C@@H]1C[C@H]1[C@H](N(C)C)C(=O)C(C(N)=O)=C(O)[C@@]1(O)C2=O FFTVPQUHLQBXQZ-KVUCHLLUSA-N 0.000 description 5
- 208000005623 Carcinogenesis Diseases 0.000 description 5
- 102000004960 NAD(P)H dehydrogenase (quinone) Human genes 0.000 description 5
- 108020000284 NAD(P)H dehydrogenase (quinone) Proteins 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 5
- 238000003556 assay Methods 0.000 description 5
- 230000036952 cancer formation Effects 0.000 description 5
- 231100000504 carcinogenesis Toxicity 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 230000001404 mediated effect Effects 0.000 description 5
- 229960004023 minocycline Drugs 0.000 description 5
- 229940040944 tetracyclines Drugs 0.000 description 5
- 244000163122 Curcuma domestica Species 0.000 description 4
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 241000699670 Mus sp. Species 0.000 description 4
- 230000004663 cell proliferation Effects 0.000 description 4
- 230000002113 chemopreventative effect Effects 0.000 description 4
- 238000013270 controlled release Methods 0.000 description 4
- 235000003373 curcuma longa Nutrition 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 210000002510 keratinocyte Anatomy 0.000 description 4
- 108020004999 messenger RNA Proteins 0.000 description 4
- -1 minocycline Chemical class 0.000 description 4
- 230000000638 stimulation Effects 0.000 description 4
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 3
- 235000003392 Curcuma domestica Nutrition 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- 101710128836 Large T antigen Proteins 0.000 description 3
- 241000699666 Mus <mouse, genus> Species 0.000 description 3
- 208000006994 Precancerous Conditions Diseases 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 208000027418 Wounds and injury Diseases 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 239000002870 angiogenesis inducing agent Substances 0.000 description 3
- 239000003242 anti bacterial agent Substances 0.000 description 3
- 239000003963 antioxidant agent Substances 0.000 description 3
- 235000006708 antioxidants Nutrition 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000002775 capsule Substances 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 230000003511 endothelial effect Effects 0.000 description 3
- 239000012894 fetal calf serum Substances 0.000 description 3
- 235000013305 food Nutrition 0.000 description 3
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 3
- 230000003239 periodontal effect Effects 0.000 description 3
- PHEDXBVPIONUQT-RGYGYFBISA-N phorbol 13-acetate 12-myristate Chemical compound C([C@]1(O)C(=O)C(C)=C[C@H]1[C@@]1(O)[C@H](C)[C@H]2OC(=O)CCCCCCCCCCCCC)C(CO)=C[C@H]1[C@H]1[C@]2(OC(C)=O)C1(C)C PHEDXBVPIONUQT-RGYGYFBISA-N 0.000 description 3
- 239000002953 phosphate buffered saline Substances 0.000 description 3
- 229920002338 polyhydroxyethylmethacrylate Polymers 0.000 description 3
- 230000026341 positive regulation of angiogenesis Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 238000013268 sustained release Methods 0.000 description 3
- 239000012730 sustained-release form Substances 0.000 description 3
- 230000009885 systemic effect Effects 0.000 description 3
- 239000003826 tablet Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 229960002180 tetracycline Drugs 0.000 description 3
- 229930101283 tetracycline Natural products 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- 235000013976 turmeric Nutrition 0.000 description 3
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 2
- ARSRBNBHOADGJU-UHFFFAOYSA-N 7,12-dimethyltetraphene Chemical compound C1=CC2=CC=CC=C2C2=C1C(C)=C(C=CC=C1)C1=C2C ARSRBNBHOADGJU-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- 102000029816 Collagenase Human genes 0.000 description 2
- 108060005980 Collagenase Proteins 0.000 description 2
- ULGZDMOVFRHVEP-RWJQBGPGSA-N Erythromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 ULGZDMOVFRHVEP-RWJQBGPGSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 102000005741 Metalloproteases Human genes 0.000 description 2
- 108010006035 Metalloproteases Proteins 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 241001529936 Murinae Species 0.000 description 2
- 102000003945 NF-kappa B Human genes 0.000 description 2
- 108010057466 NF-kappa B Proteins 0.000 description 2
- 239000004100 Oxytetracycline Substances 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 230000000692 anti-sense effect Effects 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 230000003078 antioxidant effect Effects 0.000 description 2
- YZXBAPSDXZZRGB-DOFZRALJSA-N arachidonic acid Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O YZXBAPSDXZZRGB-DOFZRALJSA-N 0.000 description 2
- 150000008365 aromatic ketones Chemical class 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000036770 blood supply Effects 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 210000001043 capillary endothelial cell Anatomy 0.000 description 2
- 210000000748 cardiovascular system Anatomy 0.000 description 2
- 229960002424 collagenase Drugs 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 235000005911 diet Nutrition 0.000 description 2
- 230000037213 diet Effects 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 230000037406 food intake Effects 0.000 description 2
- 210000001035 gastrointestinal tract Anatomy 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 239000007943 implant Substances 0.000 description 2
- 230000002757 inflammatory effect Effects 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 208000014674 injury Diseases 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 230000003902 lesion Effects 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 210000004088 microvessel Anatomy 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229930014626 natural product Natural products 0.000 description 2
- 230000010046 negative regulation of endothelial cell proliferation Effects 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 229960000625 oxytetracycline Drugs 0.000 description 2
- IWVCMVBTMGNXQD-PXOLEDIWSA-N oxytetracycline Chemical compound C1=CC=C2[C@](O)(C)[C@H]3[C@H](O)[C@H]4[C@H](N(C)C)C(O)=C(C(N)=O)C(=O)[C@@]4(O)C(O)=C3C(=O)C2=C1O IWVCMVBTMGNXQD-PXOLEDIWSA-N 0.000 description 2
- 235000019366 oxytetracycline Nutrition 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- 239000002644 phorbol ester Substances 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 230000003389 potentiating effect Effects 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 230000019491 signal transduction Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- IWVCMVBTMGNXQD-UHFFFAOYSA-N terramycin dehydrate Natural products C1=CC=C2C(O)(C)C3C(O)C4C(N(C)C)C(O)=C(C(N)=O)C(=O)C4(O)C(O)=C3C(=O)C2=C1O IWVCMVBTMGNXQD-UHFFFAOYSA-N 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 210000004881 tumor cell Anatomy 0.000 description 2
- ZIUSSTSXXLLKKK-KOBPDPAPSA-N (1e,4z,6e)-5-hydroxy-1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,4,6-trien-3-one Chemical compound C1=C(O)C(OC)=CC(\C=C\C(\O)=C\C(=O)\C=C\C=2C=C(OC)C(O)=CC=2)=C1 ZIUSSTSXXLLKKK-KOBPDPAPSA-N 0.000 description 1
- CRCHRNHFHJDFAA-FCXRPNKRSA-N (1e,6e)-1-(4-hydroxy-5-methoxycyclohex-3-en-1-yl)-7-(4-hydroxy-3-methoxyphenyl)hepta-1,6-diene-3,5-dione Chemical class C1C=C(O)C(OC)CC1\C=C\C(=O)CC(=O)\C=C\C1=CC=C(O)C(OC)=C1 CRCHRNHFHJDFAA-FCXRPNKRSA-N 0.000 description 1
- XIYOPDCBBDCGOE-IWVLMIASSA-N (4s,4ar,5s,5ar,12ar)-4-(dimethylamino)-1,5,10,11,12a-pentahydroxy-6-methylidene-3,12-dioxo-4,4a,5,5a-tetrahydrotetracene-2-carboxamide Chemical compound C=C1C2=CC=CC(O)=C2C(O)=C2[C@@H]1[C@H](O)[C@H]1[C@H](N(C)C)C(=O)C(C(N)=O)=C(O)[C@@]1(O)C2=O XIYOPDCBBDCGOE-IWVLMIASSA-N 0.000 description 1
- SGKRLCUYIXIAHR-AKNGSSGZSA-N (4s,4ar,5s,5ar,6r,12ar)-4-(dimethylamino)-1,5,10,11,12a-pentahydroxy-6-methyl-3,12-dioxo-4a,5,5a,6-tetrahydro-4h-tetracene-2-carboxamide Chemical compound C1=CC=C2[C@H](C)[C@@H]([C@H](O)[C@@H]3[C@](C(O)=C(C(N)=O)C(=O)[C@H]3N(C)C)(O)C3=O)C3=C(O)C2=C1O SGKRLCUYIXIAHR-AKNGSSGZSA-N 0.000 description 1
- UEJJHQNACJXSKW-UHFFFAOYSA-N 2-(2,6-dioxopiperidin-3-yl)-1H-isoindole-1,3(2H)-dione Chemical compound O=C1C2=CC=CC=C2C(=O)N1C1CCC(=O)NC1=O UEJJHQNACJXSKW-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 235000003911 Arachis Nutrition 0.000 description 1
- 244000105624 Arachis hypogaea Species 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 238000011740 C57BL/6 mouse Methods 0.000 description 1
- 239000004099 Chlortetracycline Substances 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 208000032170 Congenital Abnormalities Diseases 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- VFZRZRDOXPRTSC-UHFFFAOYSA-N DMBA Natural products COC1=CC(OC)=CC(C=O)=C1 VFZRZRDOXPRTSC-UHFFFAOYSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- UOACKFBJUYNSLK-XRKIENNPSA-N Estradiol Cypionate Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H](C4=CC=C(O)C=C4CC3)CC[C@@]21C)C(=O)CCC1CCCC1 UOACKFBJUYNSLK-XRKIENNPSA-N 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 101000808011 Homo sapiens Vascular endothelial growth factor A Proteins 0.000 description 1
- XQFRJNBWHJMXHO-RRKCRQDMSA-N IDUR Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(I)=C1 XQFRJNBWHJMXHO-RRKCRQDMSA-N 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 102100037611 Lysophospholipase Human genes 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 102000043276 Oncogene Human genes 0.000 description 1
- 108700020796 Oncogene Proteins 0.000 description 1
- 102000052812 Ornithine decarboxylases Human genes 0.000 description 1
- 108700005126 Ornithine decarboxylases Proteins 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 241001631646 Papillomaviridae Species 0.000 description 1
- 108010058864 Phospholipases A2 Proteins 0.000 description 1
- 229920002732 Polyanhydride Polymers 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 229920001710 Polyorthoester Polymers 0.000 description 1
- KCLANYCVBBTKTO-UHFFFAOYSA-N Proparacaine Chemical compound CCCOC1=CC=C(C(=O)OCCN(CC)CC)C=C1N KCLANYCVBBTKTO-UHFFFAOYSA-N 0.000 description 1
- 102000001253 Protein Kinase Human genes 0.000 description 1
- 102000003923 Protein Kinase C Human genes 0.000 description 1
- 108090000315 Protein Kinase C Proteins 0.000 description 1
- 241000607142 Salmonella Species 0.000 description 1
- 229920001800 Shellac Polymers 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- 208000010040 Sprains and Strains Diseases 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 238000000692 Student's t-test Methods 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 1
- 244000269722 Thea sinensis Species 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 229940123777 Vascular endothelial growth factor (VEGF)receptor antagonist Drugs 0.000 description 1
- 206010052428 Wound Diseases 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 210000003484 anatomy Anatomy 0.000 description 1
- 238000011122 anti-angiogenic therapy Methods 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000001093 anti-cancer Effects 0.000 description 1
- 230000000845 anti-microbial effect Effects 0.000 description 1
- 230000002790 anti-mutagenic effect Effects 0.000 description 1
- 230000001028 anti-proliverative effect Effects 0.000 description 1
- 230000000259 anti-tumor effect Effects 0.000 description 1
- 229940114079 arachidonic acid Drugs 0.000 description 1
- 235000021342 arachidonic acid Nutrition 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 230000035578 autophosphorylation Effects 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 210000002469 basement membrane Anatomy 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000003124 biologic agent Substances 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 239000012888 bovine serum Substances 0.000 description 1
- 239000007975 buffered saline Substances 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000003183 carcinogenic agent Substances 0.000 description 1
- 238000002554 cardiac rehabilitation Methods 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 238000001516 cell proliferation assay Methods 0.000 description 1
- 210000003679 cervix uteri Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 239000012627 chemopreventive agent Substances 0.000 description 1
- 229940124443 chemopreventive agent Drugs 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- CYDMQBQPVICBEU-UHFFFAOYSA-N chlorotetracycline Natural products C1=CC(Cl)=C2C(O)(C)C3CC4C(N(C)C)C(O)=C(C(N)=O)C(=O)C4(O)C(O)=C3C(=O)C2=C1O CYDMQBQPVICBEU-UHFFFAOYSA-N 0.000 description 1
- 229960004475 chlortetracycline Drugs 0.000 description 1
- CYDMQBQPVICBEU-XRNKAMNCSA-N chlortetracycline Chemical compound C1=CC(Cl)=C2[C@](O)(C)[C@H]3C[C@H]4[C@H](N(C)C)C(O)=C(C(N)=O)C(=O)[C@@]4(O)C(O)=C3C(=O)C2=C1O CYDMQBQPVICBEU-XRNKAMNCSA-N 0.000 description 1
- 235000019365 chlortetracycline Nutrition 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229940075614 colloidal silicon dioxide Drugs 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 230000004734 cutaneous carcinogenesis Effects 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001784 detoxification Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 230000001079 digestive effect Effects 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 230000006806 disease prevention Effects 0.000 description 1
- 208000037765 diseases and disorders Diseases 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 229960003722 doxycycline Drugs 0.000 description 1
- 229940088679 drug related substance Drugs 0.000 description 1
- 230000013020 embryo development Effects 0.000 description 1
- 230000008753 endothelial function Effects 0.000 description 1
- 210000003038 endothelium Anatomy 0.000 description 1
- 229960003276 erythromycin Drugs 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000010685 fatty oil Substances 0.000 description 1
- 230000008175 fetal development Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000002695 general anesthesia Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 235000009569 green tea Nutrition 0.000 description 1
- ZJYYHGLJYGJLLN-UHFFFAOYSA-N guanidinium thiocyanate Chemical compound SC#N.NC(N)=N ZJYYHGLJYGJLLN-UHFFFAOYSA-N 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 102000058223 human VEGFA Human genes 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 229960003444 immunosuppressant agent Drugs 0.000 description 1
- 239000003018 immunosuppressive agent Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000004968 inflammatory condition Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 210000001232 limbus corneae Anatomy 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229960004196 lymecycline Drugs 0.000 description 1
- AHEVKYYGXVEWNO-UEPZRUIBSA-N lymecycline Chemical compound C1=CC=C2[C@](O)(C)[C@H]3C[C@H]4[C@H](N(C)C)C(O)=C(C(=O)NCNCCCC[C@H](N)C(O)=O)C(=O)[C@@]4(O)C(O)=C3C(=O)C2=C1O AHEVKYYGXVEWNO-UEPZRUIBSA-N 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 108010082117 matrigel Proteins 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 229940042016 methacycline Drugs 0.000 description 1
- RFKMCNOHBTXSMU-UHFFFAOYSA-N methoxyflurane Chemical compound COC(F)(F)C(Cl)Cl RFKMCNOHBTXSMU-UHFFFAOYSA-N 0.000 description 1
- 229960002455 methoxyflurane Drugs 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- 239000003094 microcapsule Substances 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 239000003226 mitogen Substances 0.000 description 1
- 238000000329 molecular dynamics simulation Methods 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 230000001613 neoplastic effect Effects 0.000 description 1
- 239000000346 nonvolatile oil Substances 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 230000027758 ovulation cycle Effects 0.000 description 1
- 238000009595 pap smear Methods 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 230000001991 pathophysiological effect Effects 0.000 description 1
- 235000019271 petrolatum Nutrition 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000004633 polyglycolic acid Substances 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 150000008442 polyphenolic compounds Chemical class 0.000 description 1
- 235000013824 polyphenols Nutrition 0.000 description 1
- 150000004804 polysaccharides Chemical class 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000036515 potency Effects 0.000 description 1
- 230000035935 pregnancy Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 229960003981 proparacaine Drugs 0.000 description 1
- 239000003528 protein farnesyltransferase inhibitor Substances 0.000 description 1
- 108060006633 protein kinase Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 230000005588 protonation Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000008844 regulatory mechanism Effects 0.000 description 1
- 229960005009 rolitetracycline Drugs 0.000 description 1
- HMEYVGGHISAPJR-IAHYZSEUSA-N rolitetracycline Chemical compound O=C([C@@]1(O)C(O)=C2[C@@H]([C@](C3=CC=CC(O)=C3C2=O)(C)O)C[C@H]1[C@@H](C=1O)N(C)C)C=1C(=O)NCN1CCCC1 HMEYVGGHISAPJR-IAHYZSEUSA-N 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000013207 serial dilution Methods 0.000 description 1
- 239000004208 shellac Substances 0.000 description 1
- 229940113147 shellac Drugs 0.000 description 1
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 description 1
- 235000013874 shellac Nutrition 0.000 description 1
- 210000000329 smooth muscle myocyte Anatomy 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 235000013599 spices Nutrition 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 229960004291 sucralfate Drugs 0.000 description 1
- MNQYNQBOVCBZIQ-JQOFMKNESA-A sucralfate Chemical compound O[Al](O)OS(=O)(=O)O[C@@H]1[C@@H](OS(=O)(=O)O[Al](O)O)[C@H](OS(=O)(=O)O[Al](O)O)[C@@H](COS(=O)(=O)O[Al](O)O)O[C@H]1O[C@@]1(COS(=O)(=O)O[Al](O)O)[C@@H](OS(=O)(=O)O[Al](O)O)[C@H](OS(=O)(=O)O[Al](O)O)[C@@H](OS(=O)(=O)O[Al](O)O)O1 MNQYNQBOVCBZIQ-JQOFMKNESA-A 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 238000007910 systemic administration Methods 0.000 description 1
- 229960003433 thalidomide Drugs 0.000 description 1
- 230000017423 tissue regeneration Effects 0.000 description 1
- 239000003860 topical agent Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 210000003606 umbilical vein Anatomy 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 230000006711 vascular endothelial growth factor production Effects 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000008215 water for injection Substances 0.000 description 1
- 230000029663 wound healing Effects 0.000 description 1
- 239000001052 yellow pigment Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/445—Non condensed piperidines, e.g. piperocaine
- A61K31/4523—Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
- A61K31/454—Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. pimozide, domperidone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/12—Ketones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
- A61K31/195—Carboxylic acids, e.g. valproic acid having an amino group
- A61K31/197—Carboxylic acids, e.g. valproic acid having an amino group the amino and the carboxyl groups being attached to the same acyclic carbon chain, e.g. gamma-aminobutyric acid [GABA], beta-alanine, epsilon-aminocaproic acid or pantothenic acid
- A61K31/198—Alpha-amino acids, e.g. alanine or edetic acid [EDTA]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/336—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having three-membered rings, e.g. oxirane, fumagillin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/34—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having five-membered rings with one oxygen as the only ring hetero atom, e.g. isosorbide
- A61K31/341—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having five-membered rings with one oxygen as the only ring hetero atom, e.g. isosorbide not condensed with another ring, e.g. ranitidine, furosemide, bufetolol, muscarine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/40—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
- A61K31/403—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
- A61K31/404—Indoles, e.g. pindolol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
Definitions
- the invention is generally in the field of methods of inhibiting angiogenesis, and more specifically is drawn to methods and compositions for inhibiting angiogenesis.
- Mammals are characterized by complex cardiovascular systems that enable their warm-blooded nature, internal embryonic and fetal development and successful population of extreme habitats.
- the development of an extensive capillary system, specialized in each organ and tissue, is an essential feature of mammalian cardiovascular systems, to provide optimal distribution of nutrients and other substances including hormones and defensive agents.
- the metabolic and physiologic needs of mammalian cells are met by their proximity to capillaries, and limited resources may be diverted by imbalance of this supply system. Tortora, “Principles of Human Anatomy”, 5 th ed., pp. 371-372, Harper & Row, N. Y. (1989).
- Mammals have effective mechanisms to regulate this vital process. Stimulation of angiogenesis in adult mammals, other than as a part of normal tissue repair, pregnancy or the menstrual cycle, is abnormal and often pathological. Many malignant tumors, benign tumors and inflammatory lesions have the ability to evade or mobilize these regulatory mechanisms to support their growth and further malignant progression.
- curcumin acts to inhibit angiogenesis in part by inhibition of basic fibroblast growth factor (bFGF), and thereby provides a means for treating other disorders characterized by elevated levels of bFGF, such as bladder cancer, using curcumin and other analogues which also inhibit bFGF.
- bFGF basic fibroblast growth factor
- Curcumin and demethoxycurcumin are the preferred agents for treating these disorders.
- the preferred means of administration is to apply the curcumin topically, for example, as an ointment or hydrogel containing between one-half percent (0.5%) and five percent (5%) of the curcumin, or regionally, orally to treat disorders of the gastrointestinal tract or by instillation, to treat bladder or cervical cancer.
- the curcumin or its analogs can be implanted in the form of one or more pellets of a pharmaceutically acceptable vehicle encapsulating or encorporating the curcumin, or by one or more injections of a pharmaceutically acceptable aqueous solution including the curcumin.
- Representative skin disorders include the malignant diseases angiosarcoma, hemangioendothelioma, basal cell carcinoma, squamous cell carcinoma, malignant melanoma and Karposi's sarcoma, and the non-malignant diseases or conditions including psoriasis, lymphangiogenesis, hemangioma of childhood, Sturge-Weber syndrome, verruca vulgaris, neurofibromatosis, tuberous sclerosis, pyogenic granulomas, recessive dystrophic epidermolysis bullosa, venous ulcers, acne, rosacea, eczema, molluscum contagious, seborrheic keratosis, and actinic keratosis.
- Representative disorders characterized by increased levels of bFGF include bladdar and cervical cancers.
- curcumin and its analogs are potent inhibitors of endothelial cell proliferation, a sensitive test of in vitro antiangiogenic effectiveness, and also of corneal neovascularization, a sensitive and reliable test of in vivo antiangiogenic effectiveness.
- the examples demonstrate that this inhibition is exerted directly on the endothelial cells that are primarily involved in angiogenesis, and not indirectly through other effects of these agents.
- the examples further demonstrate that curcumin and its analogs inhibit the stimulation of angiogenesis in vivo by basic fibroblast growth factor.
- FIGS. 1 A-C describe the effect of curcumin on endothelial cell proliferation in the absence of basic fibroblast growth factor (bFGF; FIG. 1A), in the presence of bFGF (FIG. 1B) and in the absence of bFGF, where the endothelial cells have been transformed (FIG. 1C).
- the figures are graphs of cell number versus concentration of curcumin ( ⁇ M).
- FIGS. 2 A- 2 B describe the effect of curcumin on the extent of bFGF-stimulated neovascularization in the mouse cornea (FIG. 2A), in relation to bFGF-stimulated neovascularization in the absence of curcumin (FIG. 2B).
- the figures are graphs of vessel length (mm) and sector size (clock hours) comparing curcumin (10 ⁇ M) with control TPCPD, with both in the presence of 80 ng bFGF.
- FIGS. 3A and 3B describe the effect of curcumin and other curcuminoids, tetrahydrocurcumin, bisdemethoxycurcumin, and demethoxycurcumin, on corneal neovascularization, as measured by vessel length (FIG. 3A) and by sector size (FIG. 3B).
- disorders or diseases that can be treated with the angiogenesis inhibitors include those characterized by elevated levels of basic fibroblast growth factor (bFGF), and a number of dermatological disorders.
- bFGF basic fibroblast growth factor
- Diseases and pathological disorders of the skin characterized by angiogenesis in humans include the malignant diseases angiosarcoma, hemangioendothelioma, basal cell carcinoma, squamous cell carcinoma, malignant melanoma and Karposi's sarcoma, and the non-malignant diseases or conditions psoriasis, lymphangiogenesis, hemangioma of childhood, Sturge-Weber syndrome, verruca vulgaris, neurofibromatosis, tuberous sclerosis, pyogenic granulomas, recessive dystrophic epidermolysis bullosa, venous ulcers, acne, rosacea, eczema, molluscum contagious, seborrheic keratosis, and actinic keratosis.
- bladder cancer O'Brien, et al. Cancer Res. 57(1):136-140 (1997)
- cervical cancer which is caused by a herpes papilloma virus, known to elicit elevated levels of bFGF.
- the antibiotics that are useful as angiogenesis inhibitors are those having collagenase inhibitory activity. These include the tetracyclines and chemically modified tetracyclines (CMTs), and three ringed tetracycline homologs, that have the ability to inhibit collagenase but diminished antibacterial activity. Examples of commercially available tetracyclines include chlotetracyline, demeclyeycline, doxycycline, lymecycline, methacycline, minocycline, oxytetracycline, rolitetracycline, and tetracycline.
- the active salts which are formed through protonation of the dimethylamino group on carbon atom 4, exist as crystalline compounds. These are stabilized in aqueous solution by addition of acid.
- Minocycline a semisynthetic tetracycline antimicrobial, described by Martell, M. J., and Boothe, J. H. in J. Med. Chem., 10: 44-46 (1967), and Zbinovsky, Y., and Chrikian, G. P. Minocycline.
- K. Florey (ed.), Analytical Profiles of Drug Substances, pp. 323-339 (Academic Press, NY 1977) the teachings of which are incorporated herein, has anticollagenase properties, as reported by Golub. L. M., et al., , J. Periodontal Res., 18: 516-526 (1983); Golub, L.
- Minocycline first described in 1967, is derived from the naturally produced parent compounds chlortetracycline and oxytetracycline.
- the chemically modified tetracyclines are described by U.S. Pat. No. 4,704,383 to McNamara, et al., U.S. Pat. No. 4,925,833 to McNamara, et al., and U.S. Pat. No. 4,935,411 to McNamara, et al., the teachings of which are incorporated herein.
- exemplary anti-angiogenic compounds include penicillamine and some cytokines such as IL12.
- Angiogenesis inhibitors may be divided into at least two classes.
- the first class, direct angiogenesis inhibitors includes those agents which are relatively specific for endothelial cells and have little effect on tumor cells. Examples of these include soluble vascular endothelial growth factor (VEGF) receptor antagonists and angiostatin.
- Basic fibroblast growth factor (bFGF) is a potent, direct angiogenic factor, which has been shown to be a strong stimulus for both endothelial proliferation and migration, in vitro and in vivo.
- the activity of bFGF on endothelial cells may be due in part to stimulation of protein kinase C. Shing et al., Science 223:1296-1299 (1984); Kent et al., Circ. Res. 77:231-238 (1995). Blockage of bFGF's stimulation of endothelial cells can inhibit angiogenesis.
- Indirect inhibitors may not have direct effects on endothelial cells but may down-regulate the production of an angiogenesis stimulator, such as VEGF.
- angiogenesis stimulator such as VEGF.
- Arbiser et al., Molec. Med. 4:376-383 (1998).
- VEGF has been shown to be up-regulated during chemically induced skin carcinogenesis; this is likely due to activation of oncogenes, such as H-ras.
- Arbiser et al. Proc. Natl. Acad. Sci. U.S.A. 94:861-866 (1997); Larcher et al., Cancer Res. 56:5391-5396 (1996); Kohl et al., Nature Med. 1:792-797 (1995).
- Examples of indirect inhibitors of angiogenesis include inhibitors of ras-mediated signal transduction, such as farnesyltransferase inhibitors.
- Curcumin (diferuloylmethane) and certain of its analogs, together termed curcuminoids, are well known natural products, recognized as safe for ingestion by and administration to mammals including humans. Bille et al., Food Chem. Toxicol. 23:967-971 (1985). Curcumin is a yellow pigment found in the rhizome of Curcuma longa, the source of the spice turmeric. Turmeric has been a major component of the diet of the Indian subcontinent for several hundred years, and the average daily consumption of curcumin has been found to range up to 0.6 grams for some individuals, without reported adverse effects.
- Food-grade curcumin consists of the three curcuminoids in the relative amounts: 77% curcumin, 17% demethoxycurcumin, and 3% bisdemethoxycurcumin. Thimmayamma et al., Indian J. Nutr Diet 20:153-162 (1983); Bille et al., Food Chem. Toxicol. 23:967-971 (1985). The fully saturated derivative tetrahydrocurcumin is also included in the term curcuminoid.
- Curcumin can be obtained from many sources, including for example Sigma-Aldrich, Inc.
- the curcumin analogs demethoxycurcumin, bisdemethoxycurcumin and tetrahydrocurcumin can also be obtained from many sources, or readily prepared from curcumin by those skilled in the art.
- Curcumin has been used in indigenous Indian medicine for several hundred years, as a topical agent for sprains and inflammatory conditions, in addition to oral use to promote health and treat digestive and other disorders. Absorption of ingested or orally administered curcumin is known to be limited, and absorbed curcumin is rapidly metabolized. Govindarajan, CRC Critical Rev. Food Sci Nutr. 12:199-301 (1980); Rao et al., Indian J. Med. Res. 75:574-578 (1982).
- Huang, et al. found that the oral administration of three curcuminoid compounds curcumin, demethoxycurcumin and bisdemethoxycurcumin were able to inhibit phorbol ester-stimulated induction of ornithine decarboxylase and promotion of mouse skin initiated with 7,12-dimethylbenzanthracene (DMBA). These compounds also inhibited phorbol ester-mediated transformation of JB6 cells. The saturated derivative tetrahydrocurcumin was less active than the unsaturated analogs in these assays. Huang et al., Carcinogenesis 16:2493-2497 (1995).
- curcumin has been demonstrated to inhibit several signal transduction pathways, including those involving protein kinase, the transcription factor NF-kB, phospholipase A2 bioactivity, arachidonic acid metabolism, antioxidant activity, and epidermal growth factor (EGF) receptor autophosphorylation.
- Thaloor et al. disclosed inhibition by curcumin of HUVEC growth and formation of tube structures on Matrigel, in a model of capillary formation, and ascribed this inhibition to modulation of metalloproteinases of the HUVEC. Thaloor et al., Cell Growth Differ. 9:305-312 (1998).
- compositions for local or systemic administration will generally include an inert diluent.
- Solutions or suspensions used for parenteral, intradermal, subcutaneous, or topical application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose.
- the parental preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.
- Inhibitors can be systemically administered either parenterally or enterally.
- the composition can be administered by means of an infusion pump, for example, of the type used for delivering insulin or chemotherapy to specific organs or tumors, by injection, or by depo using a controlled or sustained release formulation.
- drugs are administered orally, in an enteric carrier if necessary to protect the drug during passage through the stomach.
- dosage unit form When the dosage unit form is a capsule, it can contain, in addition to material of the above type, a liquid carrier such as a fatty oil.
- dosage unit forms can contain various other materials which modify the physical form of the dosage unit, for example, coatings of sugar, shellac, or other enteric agents.
- the composition is administered in combination with a biocompatible polymeric implant which releases the angiogenesis inhibitor over a controlled period of time at a selected site.
- biocompatible polymeric implant which releases the angiogenesis inhibitor over a controlled period of time at a selected site.
- biodegradable polymeric materials include polyanhydrides, polyorthoesters, polyglycolic acid, polylactic acid, polyethylene vinyl acetate, and copolymers and blends thereof.
- preferred non-biodegradable polymeric materials include ethylene vinyl acetate copolymers. These can be prepared using standard techniques as microspheres, microcapsules, tablets, disks, sheets, and fibers.
- An implantable pellet is the preferred mode of local administration of these agents to tissues.
- the preferred concentration of curcuminoid agent delivered locally to the target tissue is greater than 10 micromolar, preferably 10-50 micromolar.
- the angiogenesis inhibitors are administered topically or regionally.
- the inhibitors are administered in an ointment, salve or other pharmaceutically acceptable carrier.
- the angiogenesis inhibitors preferably curcumin or demethoxycurcumin or another curcuminoid compound, or a combination of two or more curcuminoid compounds, is applied topically in diseases or pathologic conditions of the skin, or locally in other tissues, to treat cancer, pre-malignant conditions and other diseases and conditions in which angiogenesis occurs.
- the preferred means of administration is to apply the curcumin topically, for example, as an ointment or hydrogel containing between one-half percent (0.5%) and five percent (5%) of the curcumin, or regionally, orally to treat disorders of the gastrointestinal tract or by instillation, to treat bladder or cervical cancer.
- a curcuminoid formulation may be administered topically or by instillation into a bladdar if a biopsy indicated a pre-cancerous condition or into the cervix if a Pap smear was abnormal or suspicious.
- the angiogenesis inhibiting formulation is administered as required to alleviate the symptoms of the disorder.
- Assays can be performed to determine an effective amount of the agent, either in vitro and in vivo. Representative assays are described in the examples provided below. Other methods are known to those skilled in the art, and can be used to determine an effective dose of these and other agents for the treatment and prevention of diseases or other disorders as described herein.
- curcumin inhibits basic fibroblast growth factor (bFGF)-induced proliferation of endothelial cells in vitro and angiogenesis in vivo.
- bFGF basic fibroblast growth factor
- curcumin and curcumin analogs with known differential chemopreventive activities, demethoxycurcumin, tetrahydrocurcumin, and bisdemethoxycurcumin, on in vivo angiogenesis was also demonstrated.
- Curcumin had a strong antiproliferative effect on endothelial cells, with a steep curve occurring between 5 and 10 ⁇ M. This was true both in the presence or absence of bFGF, and this inhibition could not be overcome by the immortalizing ability of SV40 large T antigen.
- the corneal neovascularization assay which measures increased vessel length and density in vivo, in response to a bFGF pellet placed in the normally avascular cornea, has proven useful in the confirmation and characterization of multiple angiogenesis inhibitors.
- the inhibition of bFGF-mediated corneal neovascularization by curcumin and its derivatives is evidence that curcumin is a direct angiogenesis inhibitor in vivo. This inhibition was not due to dilution of bFGF, as administration of a structurally related inactive compound, tetraphenylcyclopentadienone (TPCPD), had no effect on bFGF-induced corneal neovascularization.
- TPA-mediated VEGF production further supports the role of curcumin as a direct angiogenesis inhibitor.
- Bovine capillary endothelial cells were isolated according to the method of Folkman, et al., Proc. Nat. Acad. Sci. U.S.A. 76:5217-5221 (1979), and were plated at a concentration of 10,000 cells/well in gelatinized 24-well dishes.
- the primary endothelial cells were cultured in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% bovine serum and grown at 37° C. in 10% CO2. Twenty-four hours after plating, cells were treated with curcumin in the presence or absence of bFGF. After 72 hours of treatment, cells were counted using a Coulter counter. Cell counts for each condition were repeated in triplicate and in the presence or absence of 1 ng/ml bFGF.
- DMEM Dulbecco's modified Eagle's medium
- MSI ATCC CCRL 2279
- endothelial cells which are a SV40 large T antigen immortalized murine endothelial cell line, were also plated at a concentration of 10,000 cells/well in nongelatinized 24-well dishes.
- MSI cells do not require endothelial mitogens for growth and were cultured in DMEM supplemented with 5% fetal calf serum (FCS). Cells were counted after a 72-hour exposure to curcumin with the same method used for the bovine capillary endothelial cells.
- FCS fetal calf serum
- C57BL6 male mice (5-6 weeks old) were anesthetized with methoxyflurane prior to implantation of pellets and with 0.5% proparacaine.
- a central, intrastromal linear keratotomy was performed with a surgical blade, and a lamellar micropocket was prepared according to the method of Kenyon, et al. (1996).
- the pellet was advanced to the end of the pocket.
- Erythromycin ointment was placed on the operated eye to prevent infection. Eyes were examined by slit lamp on days 3-6 after implantation under general anesthesia. Corneal angiogenesis was assayed through two measurements.
- Vessel length is the length of the vessel from the corneal limbus as it grows toward the pellet containing bFGF.
- Sector size is a measurement of neovascularized area of the cornea.
- the cornea is viewed as a circle that can be divided into twelve sectors of 30 degrees span each, analogous to the division of a clock face into twelve hours.
- neovascularization of a sector corresponding to one fourth of the cornea would be recorded as a sector size measurement of three.
- This system of measurement, recording sector sizes as “clock hours”, was established by Kenyon et al., Invest. Ophthalmol. 37:1625-1632 (1996).
- HaCaT keratinocytes were grown in (DMEM) (JRH) supplemented with 5% FCS (Hyclone, Logan, Utah) in 25cm 2 flasks.
- DMEM fetal methyl methyl calf serum
- FCS Hyclone, Logan, Utah
- TPA 12-O-tetradecanoylphorbol-13-acetate
- cells were switched to serumless media supplemented with 10 ⁇ M curcumin or an equal quantity of ethanol (final concentration 0.1%).
- TPA was added to a final concentration of 5 ng/ml and cells were incubated for three hours at 37° C. and harvested, and their RNA was extracted with guanidinium thiocyanate/phenol.
- curcumin derivatives were measured by assaying quinone reductase [NAD(P)H:(quinone-acceptor) oxidoreductase, EC1.6.99.2] in murine Hepac1c7 cells. Serial dilutions of curcumin, curcumin derivatives, and tetraphenylcyclopentadienone (TPCPD) were added, and the concentration of compound required to double the specific activity (CD) was calculated according to the method of Prochaska, et al., Proc. Natl. Acad. Sci. U.S.A. 89:2394-2398 (1992).
- TPCPD tetraphenylcyclopentadienone
- Curcumin, TPA and TPCPD were obtained from Sigma-Aldrich, Inc. Curcumin analogs (bisdemethoxycurcumin, demethoxycurcumin and tetrahydrocurcumin) were provided by Dr. A. R. Conney of Rutgers-The State University of New Jersey.
- C57BL6 mice were obtained from Charles River Laboratories.
- the MS1 transformed cells were developed by Dr. J. L. Arbiser and deposited with the ATCC (ATCC CCRI 2279).
- Pellets were prepared according to a modification of the method of Kenyon, et al Invest. Opthalmol. Vis. Sci. 37:1625-1632 (1996).
- An aqueous solution of 18 mcg of basic fibroblast growth factor (Scios Nova, Mountain View, Calif.) was evaporated to dryness under reduced pressure in the presence of 10 mg of sucralfate (Bukh Meditec, Vaerlose, Denmark)
- sucralfate Bact Meditec, Vaerlose, Denmark
- Ten microliters of 12% hydron and 10 mg of curcumin or curcumin analog were then added, and the homogenous mixture was deposited onto a sterile 15 ⁇ 15 mm 3-300/50 Nylon mesh (Tetko, Lancaster, N.Y.) and air dried.
- each pellet contained 80 ng of bFGF and 44 ⁇ g of curcumin or curcumin analog. Pellets containing hydron in the absence of bFGF do not cause neovascularization, so pellets prepared in the absence of bFGF were not used in this study. The approximate pore size was 0.4 ⁇ 0.4 mm. Both sides of the mesh were covered with a thin layer of hydron.
- VEGF vascular endothelial growth factor
- Curcumin inhibition of endothelial cell proliferation is dependent on curcumin dose and the presence or absence of basic fibroblast growth.
- Curcumin inhibition of corneal neovascularization is dependent on the presence of basic fibroblast growth factor.
- FIGS. 2 A- 2 B describe the effect of curcumin on the extent of bFGF-stimulated neovascularization in the mouse cornea (FIG. 2A), in relation to bFGF-stimulated neovascularization in the absence of curcumin (FIG. 2B).
- FIGS. 2 A- 2 B describe the effect of curcumin on the extent of bFGF-stimulated neovascularization in the mouse cornea (FIG. 2A), in relation to bFGF-stimulated neovascularization in the absence of curcumin (FIG. 2B).
- Curcumin and other curcumin analog inhibition of corneal neovascularization in the presence of basic fibroblast growth factor is dependent on the dose and structure of the curcuminoid.
- curcumin analogs were assayed for their ability to inhibit bFGF-induced corneal neovascularization as described above.
- FIGS. 3A and 3B describe the effect of curcumin and other curcuminoids, tetrahydrocurcumin, bisdemethoxycurcumin, and demethoxycurcumin, on corneal neovascularization, as measured by vessel length (FIG. 3A) and by sector size (FIG. 3B). All analogs showed inhibitory activity, with demethoxycurcumin showing the greatest activity on both sector size and vessel length, tetrahydrocurcumin having the least effect on sector size, and bisdemethoxycurcumin having the least effect on vessel length. All of the curcumin analogs showed significant inhibition of bFGF-mediated neovascularization compared with control pellets.
- Curcumin does not inhibit vascular endothelial growth factor mRNA production in transformed keratinocytes.
- HaCaT cells are derived from spontaneously transformed human keratinocytes. In order to determine whether curcumin could inhibit production of angiogenesis factors by relevant tumor cells as well as directly inhibit endothelial function; HaCaT cells were treated with tetradecanoylphorbol ester (TPA) in the presence or absence of curcumin and expression of VEGF mRNA was measured.
- TPA tetradecanoylphorbol ester
Landscapes
- Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
- [0001] The United States government has rights in this invention by virtue of grant R03 AR44947 from the National Institutes of Health.
- The invention is generally in the field of methods of inhibiting angiogenesis, and more specifically is drawn to methods and compositions for inhibiting angiogenesis.
- Current treatments of cancer and related diseases have limited effectiveness and numerous serious unintended effects. Based primarily on chemical, radiation and surgical therapy, these treatments have progressed only incrementally during more than thirty years of intensive research to discover the origins and devise improved therapies of neoplastic diseases.
- Current research strategies emphasize the search for effective therapeutic modes with less risk, including the use of natural products and biological agents. This change in emphasis has been stimulated by the fact that many of the consequences, to patients and their offspring, of conventional cancer treatment, including new cancers, mutations and congenital defects, result from their actions on genetic material and mechanisms. Hong et al., J. Natl. Cancer Inst. Monogr. 17:49-53 (1995). Efforts continue to discover the origins of cancer at the genetic level, and correspondingly new treatments, but such interventions also may have serious unanticipated effects.
- The observation by Folkman that tumors are highly vascular, and the elucidation by him and others of a process termed angiogenesis through which many tumors derive a blood supply by the generation of microvessels, provided an important new avenue to therapy of cancer and other diseases and disorders. Folkman, Proc. Natl. Acad. Sci. U.S.A. 95(16):9064-6 (1998); C. R. Acad. Sci. III 316(9):909-918 (1993). Angiogenesis has now been recognized in inflammatory lesions and benign tumors, in addition to malignant tumors.
- Mammals are characterized by complex cardiovascular systems that enable their warm-blooded nature, internal embryonic and fetal development and successful population of extreme habitats. The development of an extensive capillary system, specialized in each organ and tissue, is an essential feature of mammalian cardiovascular systems, to provide optimal distribution of nutrients and other substances including hormones and defensive agents. The metabolic and physiologic needs of mammalian cells are met by their proximity to capillaries, and limited resources may be diverted by imbalance of this supply system. Tortora, “Principles of Human Anatomy”, 5th ed., pp. 371-372, Harper & Row, N. Y. (1989).
- Angiogenesis results primarily from the development of new or lengthened capillaries, and larger microvessels. Capillaries are formed primarily of specialized endothelial cells and the connective tissue layer to which they adhere, the basement membrane. The proliferation of endothelial cells and their migration and orientation to form capillaries is recognized as the key process regulated in the control of angiogenesis. Neovascularization is a form of angiogenesis marked by formation of blood vessels in a tissue or region previously devoid of blood vessel supply, for example the cornea of the eye. The mechanisms involved in angiogenesis are quite complicated, however, and no one appears to be the sole controlling mechanism.
- Mammals have effective mechanisms to regulate this vital process. Stimulation of angiogenesis in adult mammals, other than as a part of normal tissue repair, pregnancy or the menstrual cycle, is abnormal and often pathological. Many malignant tumors, benign tumors and inflammatory lesions have the ability to evade or mobilize these regulatory mechanisms to support their growth and further malignant progression.
- Development of effective preventive and treatment means has been hampered by inadequate understanding of the factors controlling this process. The premise of therapeutic development for such conditions is that effective treatment does not require destruction of the cells or tissues of origin. Reduction or prevention of the increased blood supply can be sufficient to prevent their growth, and the manifestation of the condition as a disease or pathological disorder.
- This concept was initially rejected, but widespread recognition of angiogenesis as a major factor in a variety of pathological conditions and diseases, particularly cancer and pre-cancerous conditions, has occurred recently among scientists and businesses. It is estimated that 184 million U.S. and European Union (EU) disease cases could benefit from treatment to inhibit angiogenesis that is inappropriate and pathological (anti-angiogenic therapy), in addition to an estimated 314 million disease cases in the U.S. and EU that might benefit from treatment to stimulate angiogenesis, for example in cardiac rehabilitation. Thirty-one specific projects of pharmaceutical and biotechnology companies to develop anti-angiogenic treatment were reported in Gen. Eng. News 18(17):1, 8, 34, 46 (1998).
- It is an object of the present invention to provide methods of treating a mammal having a disease or condition characterized by increased angiogenesis.
- It is a further object of the present invention to provide a method of preventing the initiation or progression of a disease or condition characterized by increased angiogenesis in a mammal, especially skin diseases and diseases characterized by elevated basic fibroblast growth factor.
- Methods for treating diseases or disorders of the skin which are characterized by angiogenesis have been developed using curcumin and curcumin analogs. Based on the results obtained with curcumin, it has been determined that other angiogenesis inhibitors can also be used to treat these skin disorders. It was also discovered that curcumin acts to inhibit angiogenesis in part by inhibition of basic fibroblast growth factor (bFGF), and thereby provides a means for treating other disorders characterized by elevated levels of bFGF, such as bladder cancer, using curcumin and other analogues which also inhibit bFGF.
- Curcumin and demethoxycurcumin are the preferred agents for treating these disorders. The preferred means of administration is to apply the curcumin topically, for example, as an ointment or hydrogel containing between one-half percent (0.5%) and five percent (5%) of the curcumin, or regionally, orally to treat disorders of the gastrointestinal tract or by instillation, to treat bladder or cervical cancer. In alternative embodiments, the curcumin or its analogs can be implanted in the form of one or more pellets of a pharmaceutically acceptable vehicle encapsulating or encorporating the curcumin, or by one or more injections of a pharmaceutically acceptable aqueous solution including the curcumin.
- Representative skin disorders include the malignant diseases angiosarcoma, hemangioendothelioma, basal cell carcinoma, squamous cell carcinoma, malignant melanoma and Karposi's sarcoma, and the non-malignant diseases or conditions including psoriasis, lymphangiogenesis, hemangioma of childhood, Sturge-Weber syndrome, verruca vulgaris, neurofibromatosis, tuberous sclerosis, pyogenic granulomas, recessive dystrophic epidermolysis bullosa, venous ulcers, acne, rosacea, eczema, molluscum contagious, seborrheic keratosis, and actinic keratosis. Representative disorders characterized by increased levels of bFGF include bladdar and cervical cancers.
- As demonstrated in the examples, curcumin and its analogs are potent inhibitors of endothelial cell proliferation, a sensitive test of in vitro antiangiogenic effectiveness, and also of corneal neovascularization, a sensitive and reliable test of in vivo antiangiogenic effectiveness. The examples demonstrate that this inhibition is exerted directly on the endothelial cells that are primarily involved in angiogenesis, and not indirectly through other effects of these agents. The examples further demonstrate that curcumin and its analogs inhibit the stimulation of angiogenesis in vivo by basic fibroblast growth factor.
- FIGS.1A-C describe the effect of curcumin on endothelial cell proliferation in the absence of basic fibroblast growth factor (bFGF; FIG. 1A), in the presence of bFGF (FIG. 1B) and in the absence of bFGF, where the endothelial cells have been transformed (FIG. 1C). The figures are graphs of cell number versus concentration of curcumin (μM).
- FIGS.2A-2B describe the effect of curcumin on the extent of bFGF-stimulated neovascularization in the mouse cornea (FIG. 2A), in relation to bFGF-stimulated neovascularization in the absence of curcumin (FIG. 2B). The figures are graphs of vessel length (mm) and sector size (clock hours) comparing curcumin (10 μM) with control TPCPD, with both in the presence of 80 ng bFGF.
- FIGS. 3A and 3B describe the effect of curcumin and other curcuminoids, tetrahydrocurcumin, bisdemethoxycurcumin, and demethoxycurcumin, on corneal neovascularization, as measured by vessel length (FIG. 3A) and by sector size (FIG. 3B).
- I. Disorders to be Treated
- Disorders or diseases that can be treated with the angiogenesis inhibitors include those characterized by elevated levels of basic fibroblast growth factor (bFGF), and a number of dermatological disorders.
- Diseases and pathological disorders of the skin characterized by angiogenesis in humans include the malignant diseases angiosarcoma, hemangioendothelioma, basal cell carcinoma, squamous cell carcinoma, malignant melanoma and Karposi's sarcoma, and the non-malignant diseases or conditions psoriasis, lymphangiogenesis, hemangioma of childhood, Sturge-Weber syndrome, verruca vulgaris, neurofibromatosis, tuberous sclerosis, pyogenic granulomas, recessive dystrophic epidermolysis bullosa, venous ulcers, acne, rosacea, eczema, molluscum contagious, seborrheic keratosis, and actinic keratosis.
- Examples of disorders characterized by elevated levels of bFGF include bladder cancer (O'Brien, et al. Cancer Res. 57(1):136-140 (1997)) and cervical cancer (which is caused by a herpes papilloma virus, known to elicit elevated levels of bFGF).
- II. Pharmaceutical Compositions
- A. Angiogenesis Inhibitors
- Several different classes of compounds have been determined to be useful as inhibitors of angiogenesis. These include collagenase inhibitors such as metalloproteinases and tetracyclines such as minocycline, naturally occurring peptides such as endostatin and angiostatin, described for example in U.S. Pat. No. 5,733,876 to O'Reilly, et al., U.S. Pat. No. 5,290,807, and U.S. Pat. No. 5,639,725, fungal and bacterial derivatives, such as fumagillin derivatives like TNP-470, the sulfated polysaccharides described in U.S. Pat. No. 4,900,815 to Tanaka, et al. and the protein-polysaccharides of U.S. Pat. No. 4,975,422 to Kanoh, et al. and synthetic compounds such as the 2,5-diaryltetrahydrofurans of U.S. Pat. No. 5,629,340 to Kuwano, et al., aminophenylphosphonic acid compounds of U.S. Pat. No. 5,670,493 to Cordi, et al., the 3-substituted oxindole derivatives of U.S. Pat. No. 5,576,330 to Buzzetti, et al., and thalidomides of U.S. Pat. No. 5,712,291 to D'Amato.
- The antibiotics that are useful as angiogenesis inhibitors are those having collagenase inhibitory activity. These include the tetracyclines and chemically modified tetracyclines (CMTs), and three ringed tetracycline homologs, that have the ability to inhibit collagenase but diminished antibacterial activity. Examples of commercially available tetracyclines include chlotetracyline, demeclyeycline, doxycycline, lymecycline, methacycline, minocycline, oxytetracycline, rolitetracycline, and tetracycline. The active salts, which are formed through protonation of the dimethylamino group on
carbon atom 4, exist as crystalline compounds. These are stabilized in aqueous solution by addition of acid. - Minocycline, a semisynthetic tetracycline antimicrobial, described by Martell, M. J., and Boothe, J. H. inJ. Med. Chem., 10: 44-46 (1967), and Zbinovsky, Y., and Chrikian, G. P. Minocycline. In: K. Florey (ed.), Analytical Profiles of Drug Substances, pp. 323-339 (Academic Press, NY 1977), the teachings of which are incorporated herein, has anticollagenase properties, as reported by Golub. L. M., et al., , J. Periodontal Res., 18: 516-526 (1983); Golub, L. M., et al., J. Periodontal Res. 19: 651-655 (1984); Golub, L. M., et al., J. Periodontal Res. 20: 12-23 (1985); and Golub, L. M., et al., J. Dent. Res., 66: 1310-1314 (1987). Minocycline, first described in 1967, is derived from the naturally produced parent compounds chlortetracycline and oxytetracycline. The chemically modified tetracyclines are described by U.S. Pat. No. 4,704,383 to McNamara, et al., U.S. Pat. No. 4,925,833 to McNamara, et al., and U.S. Pat. No. 4,935,411 to McNamara, et al., the teachings of which are incorporated herein.
- Other exemplary anti-angiogenic compounds include penicillamine and some cytokines such as IL12.
- Angiogenesis inhibitors may be divided into at least two classes. The first class, direct angiogenesis inhibitors, includes those agents which are relatively specific for endothelial cells and have little effect on tumor cells. Examples of these include soluble vascular endothelial growth factor (VEGF) receptor antagonists and angiostatin. Basic fibroblast growth factor (bFGF) is a potent, direct angiogenic factor, which has been shown to be a strong stimulus for both endothelial proliferation and migration, in vitro and in vivo. The activity of bFGF on endothelial cells may be due in part to stimulation of protein kinase C. Shing et al., Science 223:1296-1299 (1984); Kent et al., Circ. Res. 77:231-238 (1995). Blockage of bFGF's stimulation of endothelial cells can inhibit angiogenesis.
- Indirect inhibitors may not have direct effects on endothelial cells but may down-regulate the production of an angiogenesis stimulator, such as VEGF. Arbiser et al., Molec. Med. 4:376-383 (1998). VEGF has been shown to be up-regulated during chemically induced skin carcinogenesis; this is likely due to activation of oncogenes, such as H-ras. Arbiser et al., Proc. Natl. Acad. Sci. U.S.A. 94:861-866 (1997); Larcher et al., Cancer Res. 56:5391-5396 (1996); Kohl et al., Nature Med. 1:792-797 (1995). Examples of indirect inhibitors of angiogenesis include inhibitors of ras-mediated signal transduction, such as farnesyltransferase inhibitors.
- Direct inhibition of endothelial cell proliferation can be assayed in cell culture systems, in which the effects of specific factors which control the complex process of angiogenesis can be studied. Effects discovered in such in vitro systems can then be studied in in vivo systems. Kenyon et al., Invest. Ophthalmol. 37:1625-1632 (1996).
- Curcumin (diferuloylmethane) and certain of its analogs, together termed curcuminoids, are well known natural products, recognized as safe for ingestion by and administration to mammals including humans. Bille et al., Food Chem. Toxicol. 23:967-971 (1985). Curcumin is a yellow pigment found in the rhizome ofCurcuma longa, the source of the spice turmeric. Turmeric has been a major component of the diet of the Indian subcontinent for several hundred years, and the average daily consumption of curcumin has been found to range up to 0.6 grams for some individuals, without reported adverse effects. Food-grade curcumin consists of the three curcuminoids in the relative amounts: 77% curcumin, 17% demethoxycurcumin, and 3% bisdemethoxycurcumin. Thimmayamma et al., Indian J. Nutr Diet 20:153-162 (1983); Bille et al., Food Chem. Toxicol. 23:967-971 (1985). The fully saturated derivative tetrahydrocurcumin is also included in the term curcuminoid.
- Curcumin can be obtained from many sources, including for example Sigma-Aldrich, Inc. The curcumin analogs demethoxycurcumin, bisdemethoxycurcumin and tetrahydrocurcumin can also be obtained from many sources, or readily prepared from curcumin by those skilled in the art.
- Curcumin has been used in indigenous Indian medicine for several hundred years, as a topical agent for sprains and inflammatory conditions, in addition to oral use to promote health and treat digestive and other disorders. Absorption of ingested or orally administered curcumin is known to be limited, and absorbed curcumin is rapidly metabolized. Govindarajan, CRC Critical Rev. Food Sci Nutr. 12:199-301 (1980); Rao et al., Indian J. Med. Res. 75:574-578 (1982).
- Numerous effects of the ingestion or oral administration of the curcuminoids have been reported, based on controlled research, population studies, case reports and anecdotal information. Evidence of chemopreventive activity of curcumin administered orally has led to clinical trials sponsored by the National Cancer Institute, regarding prevention of cancer. Kelloff et al., J. Cell. Biochem. Suppl. 26:1-28 (1996). Oral administration of curcumin to mice treated with skin and colon chemical carcinogens has been shown to result in a decreased incidence and size of induced tumors compared with control mice. Huang, et al., Cancer Res. 54:5841-5847 (1994); Huang et al., Carcinogenesis 16:2493-2497 (1995); Huang et al., Cancer Lett. 64:117-121; Rao et al., Cancer Res. 55:259-266 (1995); Conney et al., Adv Enzyme Regul. 31: 385-396 (1991).
- Huang, et al. found that the oral administration of three curcuminoid compounds curcumin, demethoxycurcumin and bisdemethoxycurcumin were able to inhibit phorbol ester-stimulated induction of ornithine decarboxylase and promotion of mouse skin initiated with 7,12-dimethylbenzanthracene (DMBA). These compounds also inhibited phorbol ester-mediated transformation of JB6 cells. The saturated derivative tetrahydrocurcumin was less active than the unsaturated analogs in these assays. Huang et al., Carcinogenesis 16:2493-2497 (1995).
- The mechanism or mechanisms of curcumin's chemopreventive activities were not previously understood, although it was recognized as an antioxidant and was known to exhibit antimutagenic activity in the Ames Salmonella test and to produce biochemical effects similar to those of the polyphenols, chemopreventive agents found in green tea. Stoner, J. Cell. Biochem. Suppl. 22:169-180 (1995). Curcumin has been demonstrated to inhibit several signal transduction pathways, including those involving protein kinase, the transcription factor NF-kB, phospholipase A2 bioactivity, arachidonic acid metabolism, antioxidant activity, and epidermal growth factor (EGF) receptor autophosphorylation. Lu et al., Carcinogenesis 15:2363-2370 (1994); Singh et al., J. Biol. Chem. 270:24995-25000 (1995); Huang et al., Proc. Natl. Acad. Sci. U.S.A. 88:5292-5296 (1991); Korutla et al., Carcinogenesis 16:1741-1745 (1995); Rao et al., Carcinogenesis 14:2219-2225 (1993).
- Because of the complexity of the factors that regulate or effect angiogenesis, and their specific variation between tissues and according to circumstances, the response to a specific agent may be different or opposite, in different tissues, under different physiological or pathological conditions and between in vitro and in vivo conditions. For example, U.S. Pat. No. 5,401,504 to Das et al., discloses that oral or topical administration of turmeric to animals including humans promotes wound healing, and postulates that it acts in part through stimulation of angiogenesis, although this postulate was not experimentally verified. Administration of curcumin has been reported to inhibit smooth muscle cell proliferation in vitro. Huang, et al., European J. Pharmac. 221:381-384 (1992). U.S. Pat. No. 5,891,924 to Aggarwal discloses that oral administration of curcumin to animals inhibits activation of the transcription factor NF-kB, and claims its use in pathophysiological states, particularly specific conditions involving the immune system. Several biochemical actions of curcumin were studied in detail, but no single action was reported to be responsible for these effects of curcumin. Singh et al. reported that curcumin inhibits in vitro proliferation of human umbilical vein endothelial cells (HUVEC) and suggested that it might have anti-angiogenic activity. However, this inhibition was independent of basic fibroblast growth factor stimulation of the proliferation of endothelial cells, and in vivo studies were not reported. Singh et al., Cancer Lett. 107:109-115 (1996). Thaloor et al. disclosed inhibition by curcumin of HUVEC growth and formation of tube structures on Matrigel, in a model of capillary formation, and ascribed this inhibition to modulation of metalloproteinases of the HUVEC. Thaloor et al., Cell Growth Differ. 9:305-312 (1998).
- As demonstrated by the examples, these are not the mechanism involved in inhibition of angiogenesis as described herein, and accordingly, the disorder to be treated and the dosage and means of administration are different, based on the role of curcuminoids in inhibiting bFGF.
- B. Carriers
- Pharmaceutical compositions containing the angiogenesis inhibitor are prepared based on the specific application. Application can be either topical, localized, or systemic. Any of these compositions may also include preservatives, antioxidants, antibiotics, immunosuppressants, and other biologically or pharmaceutically effective agents which do not exert a detrimental effect on the normal tissue to be treated.
- Compositions for local or systemic administration will generally include an inert diluent. Solutions or suspensions used for parenteral, intradermal, subcutaneous, or topical application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose. The parental preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.
- Systemic Carriers
- Inhibitors can be systemically administered either parenterally or enterally. The composition can be administered by means of an infusion pump, for example, of the type used for delivering insulin or chemotherapy to specific organs or tumors, by injection, or by depo using a controlled or sustained release formulation. In a preferred systemic embodiment, drugs are administered orally, in an enteric carrier if necessary to protect the drug during passage through the stomach.
- The angiogenic inhibitors can be administered systemically by injection in a carrier such as saline or phosphate buffered saline (PBS) or orally, in the case of an inhibitor such as thalidomide, in tablet or capsule form. The tablets or capsules can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; or a glidant such as colloidal silicon dioxide. When the dosage unit form is a capsule, it can contain, in addition to material of the above type, a liquid carrier such as a fatty oil. In addition, dosage unit forms can contain various other materials which modify the physical form of the dosage unit, for example, coatings of sugar, shellac, or other enteric agents.
- Local or Topical Carriers
- The angiogenic inhibitors can also be applied locally or topically, in a carrier such as saline or PBS, in an ointment or gel, in a transdermal patch or bandage, or controlled or sustained release formulation. Local administration can be by injection at the site of the injury, or by spraying topically onto the injury. The inhibitor can be absorbed into a bandage for direct application to the wound, or released from sutures or staples at the site. Incorporation of compounds into controlled or sustained release formulations is well known.
- For topical application, the angiogenesis inhibitor is combined with a carrier so that an effective dosage is delivered, based on the desired activity, at the site of application. The topical composition can be applied to the skin for treatment of diseases such as psoriasis. The carrier may be in the form of an ointment, cream, gel, paste, foam, aerosol, suppository, pad or gelled stick. A topical composition for use of an ointment or gel consists of an effective amount of angiogenesis inhibitor in an ophthalmically acceptable excipient such as buffered saline, mineral oil, vegetable oils such as corn or arachis oil, petroleum jelly, Miglyol 182, alcohol solutions, or liposomes or liposome-like products.
- In a preferred form for controlled release, the composition is administered in combination with a biocompatible polymeric implant which releases the angiogenesis inhibitor over a controlled period of time at a selected site. Examples of preferred biodegradable polymeric materials include polyanhydrides, polyorthoesters, polyglycolic acid, polylactic acid, polyethylene vinyl acetate, and copolymers and blends thereof. Examples of preferred non-biodegradable polymeric materials include ethylene vinyl acetate copolymers. These can be prepared using standard techniques as microspheres, microcapsules, tablets, disks, sheets, and fibers.
- An implantable pellet is the preferred mode of local administration of these agents to tissues. The preferred concentration of curcuminoid agent delivered locally to the target tissue is greater than 10 micromolar, preferably 10-50 micromolar.
- III. Methods for Treatment
- For the treatment of skin disorders, the angiogenesis inhibitors are administered topically or regionally. In a preferred embodiment, the inhibitors are administered in an ointment, salve or other pharmaceutically acceptable carrier. For treatment of certain disorders characterized by elevated levels of bFGF, the angiogenesis inhibitors, preferably curcumin or demethoxycurcumin or another curcuminoid compound, or a combination of two or more curcuminoid compounds, is applied topically in diseases or pathologic conditions of the skin, or locally in other tissues, to treat cancer, pre-malignant conditions and other diseases and conditions in which angiogenesis occurs. The preferred means of administration is to apply the curcumin topically, for example, as an ointment or hydrogel containing between one-half percent (0.5%) and five percent (5%) of the curcumin, or regionally, orally to treat disorders of the gastrointestinal tract or by instillation, to treat bladder or cervical cancer.
- The administration of these agents topically or locally may also used to prevent initiation or progression of such diseases and conditions. For example, a curcuminoid formulation may be administered topically or by instillation into a bladdar if a biopsy indicated a pre-cancerous condition or into the cervix if a Pap smear was abnormal or suspicious.
- The angiogenesis inhibiting formulation is administered as required to alleviate the symptoms of the disorder.Assays can be performed to determine an effective amount of the agent, either in vitro and in vivo. Representative assays are described in the examples provided below. Other methods are known to those skilled in the art, and can be used to determine an effective dose of these and other agents for the treatment and prevention of diseases or other disorders as described herein.
- The present invention will be further understood by reference to the following non-limiting examples.
- As demonstrated in the examples, curcumin inhibits basic fibroblast growth factor (bFGF)-induced proliferation of endothelial cells in vitro and angiogenesis in vivo. The effect of curcumin and curcumin analogs with known differential chemopreventive activities, demethoxycurcumin, tetrahydrocurcumin, and bisdemethoxycurcumin, on in vivo angiogenesis was also demonstrated. Curcumin had a strong antiproliferative effect on endothelial cells, with a steep curve occurring between 5 and 10 μM. This was true both in the presence or absence of bFGF, and this inhibition could not be overcome by the immortalizing ability of SV40 large T antigen. The corneal neovascularization assay, which measures increased vessel length and density in vivo, in response to a bFGF pellet placed in the normally avascular cornea, has proven useful in the confirmation and characterization of multiple angiogenesis inhibitors. The inhibition of bFGF-mediated corneal neovascularization by curcumin and its derivatives is evidence that curcumin is a direct angiogenesis inhibitor in vivo. This inhibition was not due to dilution of bFGF, as administration of a structurally related inactive compound, tetraphenylcyclopentadienone (TPCPD), had no effect on bFGF-induced corneal neovascularization. The lack of inhibition of TPA-mediated VEGF production further supports the role of curcumin as a direct angiogenesis inhibitor.
- The following materials and methods were used in the examples.
- MATERIALS AND METHODS
- Endothelial Proliferation Assays
- Bovine capillary endothelial cells were isolated according to the method of Folkman, et al., Proc. Nat. Acad. Sci. U.S.A. 76:5217-5221 (1979), and were plated at a concentration of 10,000 cells/well in gelatinized 24-well dishes. The primary endothelial cells were cultured in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% bovine serum and grown at 37° C. in 10% CO2. Twenty-four hours after plating, cells were treated with curcumin in the presence or absence of bFGF. After 72 hours of treatment, cells were counted using a Coulter counter. Cell counts for each condition were repeated in triplicate and in the presence or absence of 1 ng/ml bFGF.
- Similarly, MSI (ATCC CCRL 2279) endothelial cells, which are a SV40 large T antigen immortalized murine endothelial cell line, were also plated at a concentration of 10,000 cells/well in nongelatinized 24-well dishes. MSI cells do not require endothelial mitogens for growth and were cultured in DMEM supplemented with 5% fetal calf serum (FCS). Cells were counted after a 72-hour exposure to curcumin with the same method used for the bovine capillary endothelial cells.
- Corneal Neovascularization
- C57BL6 male mice (5-6 weeks old) were anesthetized with methoxyflurane prior to implantation of pellets and with 0.5% proparacaine. A central, intrastromal linear keratotomy was performed with a surgical blade, and a lamellar micropocket was prepared according to the method of Kenyon, et al. (1996). The pellet was advanced to the end of the pocket. Erythromycin ointment was placed on the operated eye to prevent infection. Eyes were examined by slit lamp on days 3-6 after implantation under general anesthesia. Corneal angiogenesis was assayed through two measurements.
- Vessel length is the length of the vessel from the corneal limbus as it grows toward the pellet containing bFGF.
- Sector size is a measurement of neovascularized area of the cornea. The cornea is viewed as a circle that can be divided into twelve sectors of 30 degrees span each, analogous to the division of a clock face into twelve hours. Thus, neovascularization of a sector corresponding to one fourth of the cornea would be recorded as a sector size measurement of three. This system of measurement, recording sector sizes as “clock hours”, was established by Kenyon et al., Invest. Ophthalmol. 37:1625-1632 (1996).
- Production of VEGF mRNA in HaCaT Keratinocytes
- HaCaT keratinocytes were grown in (DMEM) (JRH) supplemented with 5% FCS (Hyclone, Logan, Utah) in 25cm2 flasks. One hour prior to stimulation with 12-O-tetradecanoylphorbol-13-acetate (TPA), cells were switched to serumless media supplemented with 10 μM curcumin or an equal quantity of ethanol (final concentration 0.1%). TPA was added to a final concentration of 5 ng/ml and cells were incubated for three hours at 37° C. and harvested, and their RNA was extracted with guanidinium thiocyanate/phenol.
- Phase II Enzyme Induction
- The ability of curcumin derivatives to induce phase II activities was measured by assaying quinone reductase [NAD(P)H:(quinone-acceptor) oxidoreductase, EC1.6.99.2] in murine Hepac1c7 cells. Serial dilutions of curcumin, curcumin derivatives, and tetraphenylcyclopentadienone (TPCPD) were added, and the concentration of compound required to double the specific activity (CD) was calculated according to the method of Prochaska, et al., Proc. Natl. Acad. Sci. U.S.A. 89:2394-2398 (1992).
- Materials
- Curcumin, TPA and TPCPD were obtained from Sigma-Aldrich, Inc. Curcumin analogs (bisdemethoxycurcumin, demethoxycurcumin and tetrahydrocurcumin) were provided by Dr. A. R. Conney of Rutgers-The State University of New Jersey.
- C57BL6 mice were obtained from Charles River Laboratories. The MS1 transformed cells were developed by Dr. J. L. Arbiser and deposited with the ATCC (ATCC CCRI 2279).
- Implant Pellets
- Pellets were prepared according to a modification of the method of Kenyon, et al Invest. Opthalmol. Vis. Sci. 37:1625-1632 (1996). An aqueous solution of 18 mcg of basic fibroblast growth factor (Scios Nova, Mountain View, Calif.) was evaporated to dryness under reduced pressure in the presence of 10 mg of sucralfate (Bukh Meditec, Vaerlose, Denmark) Ten microliters of 12% hydron and 10 mg of curcumin or curcumin analog were then added, and the homogenous mixture was deposited onto a sterile 15×15 mm 3-300/50 Nylon mesh (Tetko, Lancaster, N.Y.) and air dried. Once the mixture was dry, the mesh was manually dissociated to yield 225 pellets. Each pellet contained 80 ng of bFGF and 44 μg of curcumin or curcumin analog. Pellets containing hydron in the absence of bFGF do not cause neovascularization, so pellets prepared in the absence of bFGF were not used in this study. The approximate pore size was 0.4×0.4 mm. Both sides of the mesh were covered with a thin layer of hydron.
- Isotopically Labelled Antisense Riboprobe
- A plasmid containing the coding region of human vascular endothelial growth factor (VEGF) 121 was obtained from H. Welch (University of Freiburg, Germany), and used to generate P32-labeled antisense riboprobe as per manufacturers protocols (Ambion, Austin, Tex.). RNAse protection assays were performed according to the method of Hod, Biotechniques 13:852-853 (1992). Protected fragments were separated on gels of 5% acrylamide, 8 M urea, 1 x Tris-borate buffer, and quantified with a phosphorimager (Molecular Dynamics, Sunnyvale, Calif.). An 18S riboprobe was included in each sample to normalize for variations in loading and recovery of RNA.
- Measurement and Analysis
- Significant differences between two groups were determined using an unpaired, two-tailed Student's t-test. Results are expressed as the mean plus or minus the standard error of the mean.
- Curcumin inhibition of endothelial cell proliferation is dependent on curcumin dose and the presence or absence of basic fibroblast growth.
- Endothelial cells were stimulated to proliferate in the presence of 1 ng/ml bFGF. Curcumin was added in concentrations ranging from 0.5 to 10 μM to primary endothelial cells.
- FIGS.1A-C describe the effect of curcumin on endothelial cell proliferation in the absence of basic fibroblast growth factor (bFGF; FIG. 1A), in the presence of bFGF (FIG. 1B) and in the absence of bFGF, where the endothelial cells have been transformed (FIG. 1C). A steep decrease in cell number was seen at 10 μM. No evidence of cytotoxicity was observed, and the number of cells at the end of treatment was not significantly less than the number cells originally plated. This decrease in proliferation due to curcumin concentration of 10 μM was observed in both the presence or absence of bFGF.
- In addition, curcumin was able to inhibit the growth of endothelial cells immortalized by SV40 large T antigen, with a similar dose response as seen with primary endothelial cells.
- Curcumin inhibition of corneal neovascularization is dependent on the presence of basic fibroblast growth factor.
- The ability of curcumin to inhibit bFGF-induced corneal neovascularization in vivo was measured. Pellets were prepared containing 80 ng of bFGF and curcumin, or a control aromatic ketone, tetraphenylcyclopentadienone (TPCPD). TPCPD was added to rule out the possibility that the inhibition of neovascularization due to curcumin was not secondary to dilution. Neovascularization was assessed by slit lamp at 5 days after implantation, and the corneas were photographed.
- FIGS.2A-2B describe the effect of curcumin on the extent of bFGF-stimulated neovascularization in the mouse cornea (FIG. 2A), in relation to bFGF-stimulated neovascularization in the absence of curcumin (FIG. 2B). There was no difference in neovascularization in mice containing bFGF pellets in the presence or absence of TPCPD. Both the vessel length and sectpr sizes were significantly reduced in the presence of curcumin.
- Curcumin and other curcumin analog inhibition of corneal neovascularization in the presence of basic fibroblast growth factor is dependent on the dose and structure of the curcuminoid.
- Three curcumin analogs were assayed for their ability to inhibit bFGF-induced corneal neovascularization as described above.
- FIGS. 3A and 3B describe the effect of curcumin and other curcuminoids, tetrahydrocurcumin, bisdemethoxycurcumin, and demethoxycurcumin, on corneal neovascularization, as measured by vessel length (FIG. 3A) and by sector size (FIG. 3B). All analogs showed inhibitory activity, with demethoxycurcumin showing the greatest activity on both sector size and vessel length, tetrahydrocurcumin having the least effect on sector size, and bisdemethoxycurcumin having the least effect on vessel length. All of the curcumin analogs showed significant inhibition of bFGF-mediated neovascularization compared with control pellets.
- Curcumin does not inhibit vascular endothelial growth factor mRNA production in transformed keratinocytes.
- HaCaT cells are derived from spontaneously transformed human keratinocytes. In order to determine whether curcumin could inhibit production of angiogenesis factors by relevant tumor cells as well as directly inhibit endothelial function; HaCaT cells were treated with tetradecanoylphorbol ester (TPA) in the presence or absence of curcumin and expression of VEGF mRNA was measured.
- TPA caused a 2.5-fold increase in VEGF mRNA. This increase was not inhibited by curcumin. Thus the primary antiangiogenic effect of curcumin is directly on endothelium, rather than inhibition of production of VEGF, an important angiogenic factor.
- Inhibition of corneal neovascularization by curcumin and other curcuminoids does not correlate with the induction of Phase II enzymes by curcumin and other curcuminoids.
- Several plant-derived compounds with anticancer and chemopreventive activities also show the ability to induce phase II detoxifying enzymes, including quinone reductase. To determine whether the antiangiogenic activities of curcumin derivatives correlated with the ability to induce quinone reductase activity, the concentration needed to double the specific activity value (CD) was determined.
- All of the curcumin analogs studied except tetrahydrocurcumin had approximately equal potencies in induction of phase II enzymes, a measure of detoxification activity, whereas the fully saturated tetrahydrocurcumin has little ability to induce phase II enzymes. Tetrahydrocurcumin, the curcumin derivative with the least antitumor activity, caused a 1.6-fold induction of quinone reductase activity at the highest concentration tested, 25 μM. However, TPCPD, which is an unsaturated aromatic ketone with no anti-angiogenic activity, had a CD value of 4.8 μM. The results are shown in Table 1. Thus, antiangiogenic activity does not correlate with phase II activity. This finding is evidence that the two processes are not based on similar mechanisms.
- Modifications and variations of the methods and compositions described herein will be obvious to those skilled in the art and are intended to come within the scope of the appended claims.
TABLE 1 Actual and Relative Effects of Curcuminoids and TPCPD On Phase II Enzyme Induction and Angiogenisis ANTI-ANGIOGENIC EFFECT PHASE II Sector Vessel INDUCTION Size3 Length COMPOUND CD1 Rank2 (μM) Rank2 (mm.) Rank2 Tetrahydro- >25 1 2.43 2 0.74 3 curcumin Bisdemethoxy- 11.0 2 1.7 3 0.88 2 curcumin Demethoxy- 9.0 3 0.71 5 0.26 5 curcumin Curcumin 7.3 4 1.17 4 0.59 4 TPCPD 4.8 5 3.72 1 1.16 1
Claims (16)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/765,491 US20010025034A1 (en) | 1999-06-30 | 2001-01-18 | Curcumin and curcuminoid inhibition of angiogenesis |
US11/924,567 US20090018209A1 (en) | 1999-06-30 | 2007-10-25 | Curcumin and curcuminoid inhibition of angiogenesis |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/345,712 US6673843B2 (en) | 1999-06-30 | 1999-06-30 | Curcumin and curcuminoid inhibition of angiogenesis |
US09/765,491 US20010025034A1 (en) | 1999-06-30 | 2001-01-18 | Curcumin and curcuminoid inhibition of angiogenesis |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/345,712 Continuation US6673843B2 (en) | 1999-06-30 | 1999-06-30 | Curcumin and curcuminoid inhibition of angiogenesis |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/924,567 Continuation US20090018209A1 (en) | 1999-06-30 | 2007-10-25 | Curcumin and curcuminoid inhibition of angiogenesis |
Publications (1)
Publication Number | Publication Date |
---|---|
US20010025034A1 true US20010025034A1 (en) | 2001-09-27 |
Family
ID=23356174
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/345,712 Expired - Fee Related US6673843B2 (en) | 1999-06-30 | 1999-06-30 | Curcumin and curcuminoid inhibition of angiogenesis |
US09/765,491 Abandoned US20010025034A1 (en) | 1999-06-30 | 2001-01-18 | Curcumin and curcuminoid inhibition of angiogenesis |
US11/924,567 Abandoned US20090018209A1 (en) | 1999-06-30 | 2007-10-25 | Curcumin and curcuminoid inhibition of angiogenesis |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/345,712 Expired - Fee Related US6673843B2 (en) | 1999-06-30 | 1999-06-30 | Curcumin and curcuminoid inhibition of angiogenesis |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/924,567 Abandoned US20090018209A1 (en) | 1999-06-30 | 2007-10-25 | Curcumin and curcuminoid inhibition of angiogenesis |
Country Status (5)
Country | Link |
---|---|
US (3) | US6673843B2 (en) |
EP (1) | EP1196158A4 (en) |
AU (1) | AU780432B2 (en) |
CA (1) | CA2377141A1 (en) |
WO (1) | WO2001000201A1 (en) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003267966A (en) * | 2002-03-13 | 2003-09-25 | Pola Chem Ind Inc | Flavan derivative, skin fibroblast proliferation inhibitor and external preparation for skin |
US20040002499A1 (en) * | 2002-04-24 | 2004-01-01 | Bharat Aggarwal | Synergistic effects of nuclear transcription factor NF-kappaB inhibitors and anti-neoplastic agents |
US20040058021A1 (en) * | 2002-06-24 | 2004-03-25 | Bharat Aggarwal | Treatment of human multiple myeloma by curcumin |
US20050049299A1 (en) * | 2003-08-26 | 2005-03-03 | Aggarwal Bharat B. | Selective inhibitors of stat-3 activation and uses thereof |
US20050181036A1 (en) * | 2003-08-26 | 2005-08-18 | Research Development Foundation | Aerosol delivery of curcumin |
US20060067975A1 (en) * | 2004-09-28 | 2006-03-30 | Atrium Medical Corporation | UV cured gel and method of making |
US20070270464A1 (en) * | 2006-02-24 | 2007-11-22 | Emory University | Prodrugs of curcumin analogs |
US7462646B2 (en) | 2003-08-26 | 2008-12-09 | Research Development Foundation | Osteoclastogenesis inhibitors and uses thereof |
US20100183697A1 (en) * | 2005-09-28 | 2010-07-22 | Atrium Medical Corporation | Tissue-separating fatty acid adhesion barrier |
US20100197584A1 (en) * | 2007-07-27 | 2010-08-05 | Research Foundations of the City University of- New York | Use of curcumin to block brain tumor formation in mice |
US20100298444A1 (en) * | 2007-12-21 | 2010-11-25 | Asac Compania De Biotecnologia E Investigacion S.A. | Method for improving the therapeutic efficacy of curcuminoids and their analogs |
US20110117142A1 (en) * | 2008-07-02 | 2011-05-19 | Basf Se | Method for coating tablets |
US8574627B2 (en) | 2006-11-06 | 2013-11-05 | Atrium Medical Corporation | Coated surgical mesh |
US8722077B2 (en) | 2004-09-28 | 2014-05-13 | Atrium Medical Corporation | Drug delivery coating for use with a stent |
US8841326B2 (en) | 2004-02-12 | 2014-09-23 | Stc.Unm | Therapeutic curcumin derivatives |
US9000040B2 (en) | 2004-09-28 | 2015-04-07 | Atrium Medical Corporation | Cross-linked fatty acid-based biomaterials |
US9012506B2 (en) | 2004-09-28 | 2015-04-21 | Atrium Medical Corporation | Cross-linked fatty acid-based biomaterials |
US9220820B2 (en) | 2005-10-15 | 2015-12-29 | Atrium Medical Corporation | Hydrophobic cross-linked gels for bioabsorbable drug carrier coatings |
US9427423B2 (en) | 2009-03-10 | 2016-08-30 | Atrium Medical Corporation | Fatty-acid based particles |
US9492596B2 (en) | 2006-11-06 | 2016-11-15 | Atrium Medical Corporation | Barrier layer with underlying medical device and one or more reinforcing support structures |
US9801982B2 (en) | 2004-09-28 | 2017-10-31 | Atrium Medical Corporation | Implantable barrier device |
US9867880B2 (en) | 2012-06-13 | 2018-01-16 | Atrium Medical Corporation | Cured oil-hydrogel biomaterial compositions for controlled drug delivery |
US10322213B2 (en) | 2010-07-16 | 2019-06-18 | Atrium Medical Corporation | Compositions and methods for altering the rate of hydrolysis of cured oil-based materials |
US10864304B2 (en) | 2009-08-11 | 2020-12-15 | Atrium Medical Corporation | Anti-infective antimicrobial-containing biomaterials |
Families Citing this family (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030236300A1 (en) * | 1999-10-27 | 2003-12-25 | Yale University | Conductance of improperly folded proteins through the secretory pathway and related methods for treating disease |
US20030149113A1 (en) * | 2001-10-12 | 2003-08-07 | Caplan Michael J. | Conductance of improperly folded proteins through the secretory pathway and related methods for treating disease |
US6664272B2 (en) | 1999-12-03 | 2003-12-16 | Emory University | Curcumin analogs with anti-tumor and anti-angiogenic properties |
DE10031955A1 (en) * | 2000-06-30 | 2002-01-17 | Deutsches Krebsforsch | Curcumin derivatives with improved water solubility compared to curcumin and medicaments containing them |
US7211267B2 (en) * | 2001-04-05 | 2007-05-01 | Collagenex Pharmaceuticals, Inc. | Methods of treating acne |
TWI233361B (en) * | 2001-04-13 | 2005-06-01 | Gen Hospital Corp | Methods of preventing UVB-induced skin damage |
GB0113348D0 (en) * | 2001-06-01 | 2001-07-25 | Mars Uk Ltd | Skin diet |
CA2478522A1 (en) * | 2002-03-08 | 2003-09-18 | Emory University | Novel curcuminoid-factor viia constructs as suppressors of tumor growth and angiogenesis |
KR20030074017A (en) * | 2002-03-15 | 2003-09-19 | 한국생명공학연구원 | Method of preparing curcumin and its derivatives and pharmaceutical compositions for the prevention and treatment of cancers comprising the same |
US8192749B2 (en) | 2003-04-16 | 2012-06-05 | Galderma Laboratories Inc. | Methods of simultaneously treating ocular rosacea and acne rosacea |
US6790979B2 (en) * | 2002-04-17 | 2004-09-14 | University Of North Carolina At Chapel Hill | Curcumin analogues and uses thereof |
US7355081B2 (en) | 2002-04-17 | 2008-04-08 | The University Of North Carolina At Chapel Hill | Curcumin analogues and uses thereof |
KR100564386B1 (en) * | 2002-05-13 | 2006-03-27 | 주식회사 마이코플러스 | A pharmaceutical composition for the treatment of seborrhea containing 4-hydroxy-5-methoxy-4-[2-methyl-3-3-methyl-2-butenyl-2-oxiranyl]-1-oxaspiro[2,5]octan-6-one |
WO2003105751A2 (en) * | 2002-06-17 | 2003-12-24 | Ho-Jeong Kwon | Novel curcumin derivatives |
US7968115B2 (en) * | 2004-03-05 | 2011-06-28 | Board Of Regents, The University Of Texas System | Liposomal curcumin for treatment of cancer |
ES2391385T3 (en) | 2003-04-07 | 2012-11-23 | Supernus Pharmaceuticals, Inc. | Doxycycline formulations in a single daily dose |
WO2005025623A2 (en) * | 2003-07-28 | 2005-03-24 | Emory University | Ef-24-factor vii conjugates |
WO2005077394A1 (en) * | 2004-02-11 | 2005-08-25 | Ramot At Tel-Aviv University Ltd | Compositions for treatment of cancer and inflammation with curcumin and at least one nsaid |
US20080103213A1 (en) * | 2004-03-05 | 2008-05-01 | Board Of Regents, The University Of Texas System | Liposomal curcumin for treatment of neurofibromatosis |
US8784881B2 (en) | 2004-03-05 | 2014-07-22 | Board Of Regents, The University Of Texas System | Liposomal curcumin for treatment of diseases |
BRPI0509019A (en) * | 2004-03-22 | 2007-08-07 | Celgene Corp | methods for treating, preventing or controlling a skin disorder or disease, for treating, preventing or controlling senile keratosis and for treating or controlling keratosis, pharmaceutical composition, individual unit dosage form, and kit |
US12053438B2 (en) | 2005-05-30 | 2024-08-06 | Arjuna Natural Private Limited | Formulation of curcuminoids with enhanced bioavailability of curcumin, demethoxycurcumin, bisdemethoxycurcumin and method of preparation and uses thereof |
US10543277B2 (en) | 2005-05-30 | 2020-01-28 | Arjuna Natural Private Limited | Formulation of curcumin with enhanced bioavailability of curcumin and method of preparation and treatment thereof |
US10286027B2 (en) | 2005-05-30 | 2019-05-14 | Arjuna Natural Extracts, Ltd. | Sustained release formulations of curcuminoids and method of preparation thereof |
HUE042590T2 (en) | 2005-05-30 | 2019-07-29 | Benny Antony | Method for improving the bioavailability of curcumin |
US7544373B2 (en) * | 2007-04-02 | 2009-06-09 | Medicis Pharmaceutical Corporation | Minocycline oral dosage forms for the treatment of acne |
US7919483B2 (en) * | 2005-06-24 | 2011-04-05 | Medicis Pharmaceutical Corporation | Method for the treatment of acne |
US8722650B1 (en) | 2005-06-24 | 2014-05-13 | Medicis Pharmaceutical Corporation | Extended-release minocycline dosage forms |
US7541347B2 (en) * | 2007-04-02 | 2009-06-02 | Medicis Pharmaceutical Coropration | Minocycline oral dosage forms for the treatment of acne |
US8252776B2 (en) | 2007-04-02 | 2012-08-28 | Medicis Pharmaceutical Corporation | Minocycline oral dosage forms for the treatment of acne |
US20080242642A1 (en) * | 2007-04-02 | 2008-10-02 | Medicis Pharmaceutical Corporation | Minocycline oral dosage forms for the treatment of acne |
US20080241235A1 (en) * | 2007-04-02 | 2008-10-02 | Medicis Pharmaceutical Corporation | Minocycline oral dosage forms for the treatment of acne |
WO2007098118A2 (en) * | 2006-02-16 | 2007-08-30 | Byron Robinson Pharmaceutical, Inc. | Antineoplastic and curcumin derivatives and methods of preparation and use |
US8182843B2 (en) * | 2006-06-30 | 2012-05-22 | Piramal Life Sciences Limited | Herbal compositions for the treatment of diseases of the oral cavity |
US20100317613A1 (en) * | 2006-10-16 | 2010-12-16 | Takara Bio Inc. | Activity enhancer for detoxifying enzyme |
CN101631466B (en) * | 2006-12-18 | 2013-02-13 | 杰克·阿比瑟 | Novel palladium complexes inhibit N-myristoyltransferase activity in vitro and cancer growth in vivo |
US20080241197A1 (en) * | 2007-04-02 | 2008-10-02 | Medicis Pharmaceutical Corporation | Minocycline dosage forms for the treatment of acne |
TW200841883A (en) * | 2007-04-20 | 2008-11-01 | Microbio Company Ltd Taiwan | Composition for prevention and/or treatment of cancer |
WO2009017874A2 (en) * | 2007-05-25 | 2009-02-05 | University Of Rochester | Novel curcumin derivatives and their pharmaceutical uses thereof |
EP2276463A4 (en) * | 2008-04-11 | 2013-12-04 | Univ Louisiana State | Diterpene glycosides as natural solubilizers |
CN102099491A (en) * | 2008-05-15 | 2011-06-15 | 北卡罗来纳-查佩尔山大学 | Novel targets for regulation of angiogenesis |
WO2010017310A1 (en) | 2008-08-06 | 2010-02-11 | Medicis Pharmaceutical Corporation | Method for the treatment of acne and certain dosage forms thereof |
KR101168051B1 (en) | 2008-09-08 | 2012-07-24 | 김우경 | Pharmaceutical Compositions for Treating or Preventing Ophthalmic or Skin Disease Comprising Curcumin as an Active Ingredient |
EP3206488B1 (en) | 2009-05-15 | 2019-08-21 | The Research Foundation for The State University of New York | Curcumin analogues as zinc chelators and their uses |
WO2010151653A2 (en) | 2009-06-24 | 2010-12-29 | Board Of Supervisors Of Louisiana State University & Agricultural & Mechanical College | Terpene glycosides and their combinations as solubilizing agents |
US9561241B1 (en) | 2011-06-28 | 2017-02-07 | Medicis Pharmaceutical Corporation | Gastroretentive dosage forms for minocycline |
WO2013059203A1 (en) * | 2011-10-17 | 2013-04-25 | The Research Foundation Of State University Of New York | Novel modified curcumins and their uses |
US9220695B2 (en) | 2012-06-29 | 2015-12-29 | The Research Foundation For The State University Of New York | Polyenolic zinc-binding agents (pezbins) actively promote inactivation of cancer stem cells and potentiate cytotoxic anti-tumor drug substances |
US10544461B2 (en) | 2013-04-16 | 2020-01-28 | The Johns Hopkins University | Diagnostic and prognostic test for sturge-weber syndrome, klippel-trenaunay-weber syndrome, and port-wine stains (PWSS) |
US10300000B2 (en) | 2016-09-12 | 2019-05-28 | The Research Foundation For The State University Of New York | Inhibition of melanogenesis by chemically modified curcumins |
US20210023000A1 (en) * | 2019-07-25 | 2021-01-28 | Skin Medicinals LLC | Topical compositions |
CN117771223A (en) * | 2023-03-01 | 2024-03-29 | 孙良丹 | Use of compounds or pharmaceutically acceptable derivatives thereof for inhibiting AIM2 protein activity |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4900815A (en) * | 1986-05-23 | 1990-02-13 | Daiichi Seiyaku Co., Ltd. | Sulfated polysaccharide DS4152 |
US5190918A (en) * | 1990-02-22 | 1993-03-02 | W. R. Grace & Co.-Conn. | Peptide fragments and analogs of thrombospondin and methods of use |
US5268384A (en) * | 1990-11-21 | 1993-12-07 | Galardy Richard E | Inhibition of angiogenesis by synthetic matrix metalloprotease inhibitors |
US5422363A (en) * | 1992-12-16 | 1995-06-06 | Takeda Chemical Industries, Inc. | Stable pharmaceutical composition of fumagillol derivatives |
US5776898A (en) * | 1991-05-14 | 1998-07-07 | Dana-Farber Cancer Institute | Method for treating a tumor with a chemotherapeutic agent |
US5952372A (en) * | 1998-09-17 | 1999-09-14 | Mcdaniel; William Robert | Method for treating rosacea using oral or topical ivermectin |
US6015804A (en) * | 1998-09-11 | 2000-01-18 | The Research Foundation Of State University Of New York | Method of using tetracycline compounds to enhance interleukin-10 production |
US6218368B1 (en) * | 1998-05-04 | 2001-04-17 | Emil Wirostko | Antibiotic treatment of age-related macular degeneration |
US6482810B1 (en) * | 1991-01-15 | 2002-11-19 | Henry Brem | Antibiotic composition for inhibition of angiogenesis |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4925833A (en) | 1983-12-29 | 1990-05-15 | The Research Foundation Of State University Of New York | Use of tetracycline to enhance bone protein synthesis and/or treatment of osteoporosis |
US4704383A (en) | 1983-12-29 | 1987-11-03 | The Research Foundation Of State University Of New York | Non-antibacterial tetracycline compositions possessing anti-collagenolytic properties and methods of preparing and using same |
JPH0643336B2 (en) | 1988-06-30 | 1994-06-08 | 呉羽化学工業株式会社 | Vascular growth inhibitor |
US5290807A (en) | 1989-08-10 | 1994-03-01 | Children's Medical Center Corporation | Method for regressing angiogenesis using o-substituted fumagillol derivatives |
DE4137540A1 (en) * | 1991-11-14 | 1993-05-19 | Steigerwald Arzneimittelwerk | USE OF PREPARATIONS OF CURCUMA PLANTS |
JPH06128133A (en) * | 1992-10-20 | 1994-05-10 | Kobe Steel Ltd | External agent for preventing ultraviolet hazard |
US5629340A (en) | 1993-01-11 | 1997-05-13 | Tsumura & Co. | Angiogenesis inhibitor and novel compound |
US5629327A (en) | 1993-03-01 | 1997-05-13 | Childrens Hospital Medical Center Corp. | Methods and compositions for inhibition of angiogenesis |
US6180377B1 (en) * | 1993-06-16 | 2001-01-30 | Celltech Therapeutics Limited | Humanized antibodies |
GB9326136D0 (en) | 1993-12-22 | 1994-02-23 | Erba Carlo Spa | Biologically active 3-substituted oxindole derivatives useful as anti-angiogenic agents |
US5401504B1 (en) | 1993-12-28 | 1998-04-21 | Univ Mississippi Medical Cente | Use of tumeric in wound healing |
IL112205A0 (en) * | 1994-01-06 | 1995-03-15 | Res Dev Foundation | Curcumin, analogues of curcumin and novel uses thereof |
US5925376C1 (en) * | 1994-01-10 | 2001-03-20 | Madalene C Y Heng | Method for treating psoriasis using selected phosphorylase kinase inhibitor and additional compounds |
US5639725A (en) | 1994-04-26 | 1997-06-17 | Children's Hospital Medical Center Corp. | Angiostatin protein |
US5654312A (en) * | 1995-06-07 | 1997-08-05 | Andrulis Pharmaceuticals | Treatment of inflammatory and/or autoimmune dermatoses with thalidomide alone or in combination with other agents |
FR2736914B1 (en) | 1995-07-21 | 1997-08-22 | Adir | NOVEL AMINOPHENYLPHOSPHONIC ACID DERIVATIVES, THEIR PREPARATION PROCESS AND THE PHARMACEUTICAL COMPOSITIONS CONTAINING THEM |
US5861415A (en) * | 1996-07-12 | 1999-01-19 | Sami Chemicals & Extracts, Ltd. | Bioprotectant composition, method of use and extraction process of curcuminoids |
US5891924A (en) | 1996-09-26 | 1999-04-06 | Research Development Foundation | Curcumin (diferuloylmethane) inhibition of NFκB activation |
JPH10120558A (en) * | 1996-10-18 | 1998-05-12 | Dokutaazu Kosumeteikusu:Kk | Skin preparation for improving sputum for external use |
JPH1192363A (en) * | 1997-09-24 | 1999-04-06 | Kureha Chem Ind Co Ltd | Prophylactic for animals having immature immune system |
-
1999
- 1999-06-30 US US09/345,712 patent/US6673843B2/en not_active Expired - Fee Related
-
2000
- 2000-06-27 AU AU56398/00A patent/AU780432B2/en not_active Ceased
- 2000-06-27 WO PCT/US2000/017608 patent/WO2001000201A1/en active IP Right Grant
- 2000-06-27 CA CA002377141A patent/CA2377141A1/en not_active Abandoned
- 2000-06-27 EP EP00941736A patent/EP1196158A4/en not_active Ceased
-
2001
- 2001-01-18 US US09/765,491 patent/US20010025034A1/en not_active Abandoned
-
2007
- 2007-10-25 US US11/924,567 patent/US20090018209A1/en not_active Abandoned
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4900815A (en) * | 1986-05-23 | 1990-02-13 | Daiichi Seiyaku Co., Ltd. | Sulfated polysaccharide DS4152 |
US5190918A (en) * | 1990-02-22 | 1993-03-02 | W. R. Grace & Co.-Conn. | Peptide fragments and analogs of thrombospondin and methods of use |
US5268384A (en) * | 1990-11-21 | 1993-12-07 | Galardy Richard E | Inhibition of angiogenesis by synthetic matrix metalloprotease inhibitors |
US6482810B1 (en) * | 1991-01-15 | 2002-11-19 | Henry Brem | Antibiotic composition for inhibition of angiogenesis |
US5776898A (en) * | 1991-05-14 | 1998-07-07 | Dana-Farber Cancer Institute | Method for treating a tumor with a chemotherapeutic agent |
US5422363A (en) * | 1992-12-16 | 1995-06-06 | Takeda Chemical Industries, Inc. | Stable pharmaceutical composition of fumagillol derivatives |
US6218368B1 (en) * | 1998-05-04 | 2001-04-17 | Emil Wirostko | Antibiotic treatment of age-related macular degeneration |
US6015804A (en) * | 1998-09-11 | 2000-01-18 | The Research Foundation Of State University Of New York | Method of using tetracycline compounds to enhance interleukin-10 production |
US5952372A (en) * | 1998-09-17 | 1999-09-14 | Mcdaniel; William Robert | Method for treating rosacea using oral or topical ivermectin |
Cited By (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003267966A (en) * | 2002-03-13 | 2003-09-25 | Pola Chem Ind Inc | Flavan derivative, skin fibroblast proliferation inhibitor and external preparation for skin |
US20040002499A1 (en) * | 2002-04-24 | 2004-01-01 | Bharat Aggarwal | Synergistic effects of nuclear transcription factor NF-kappaB inhibitors and anti-neoplastic agents |
US20060210656A1 (en) * | 2002-04-24 | 2006-09-21 | Bharat Aggarwal | Synergistic Effects of Nuclear Transcription Factor NF-kB Inhibitors and Anti-Neoplastic Agents |
US7105576B2 (en) | 2002-04-24 | 2006-09-12 | Research Development Foundation | Synergistic effects of nuclear transcription factor NF-κB inhibitors and anti-neoplastic agents |
US20040058021A1 (en) * | 2002-06-24 | 2004-03-25 | Bharat Aggarwal | Treatment of human multiple myeloma by curcumin |
US7196105B2 (en) | 2002-06-24 | 2007-03-27 | Research Development Foundation | Treatment of human multiple myeloma by curcumin |
US20060233899A1 (en) * | 2002-06-24 | 2006-10-19 | Bharat Aggarwal | Treatment of Human Multiple Myeloma by Curcumin |
US20050049299A1 (en) * | 2003-08-26 | 2005-03-03 | Aggarwal Bharat B. | Selective inhibitors of stat-3 activation and uses thereof |
US20050181036A1 (en) * | 2003-08-26 | 2005-08-18 | Research Development Foundation | Aerosol delivery of curcumin |
WO2005020908A2 (en) * | 2003-08-26 | 2005-03-10 | Research Development Foundation | Selective inhibitors of stat-3 activation and uses thereof |
WO2005020908A3 (en) * | 2003-08-26 | 2009-04-02 | Res Dev Foundation | Selective inhibitors of stat-3 activation and uses thereof |
US7462646B2 (en) | 2003-08-26 | 2008-12-09 | Research Development Foundation | Osteoclastogenesis inhibitors and uses thereof |
US9187397B2 (en) | 2004-02-12 | 2015-11-17 | Stc.Unm | Therapeutic curcumin derivatives |
US8841326B2 (en) | 2004-02-12 | 2014-09-23 | Stc.Unm | Therapeutic curcumin derivatives |
US9000040B2 (en) | 2004-09-28 | 2015-04-07 | Atrium Medical Corporation | Cross-linked fatty acid-based biomaterials |
US8962023B2 (en) * | 2004-09-28 | 2015-02-24 | Atrium Medical Corporation | UV cured gel and method of making |
US11793912B2 (en) | 2004-09-28 | 2023-10-24 | Atrium Medical Corporation | Cross-linked fatty acid-based biomaterials |
US9801982B2 (en) | 2004-09-28 | 2017-10-31 | Atrium Medical Corporation | Implantable barrier device |
US10869902B2 (en) | 2004-09-28 | 2020-12-22 | Atrium Medical Corporation | Cured gel and method of making |
US10814043B2 (en) | 2004-09-28 | 2020-10-27 | Atrium Medical Corporation | Cross-linked fatty acid-based biomaterials |
US8722077B2 (en) | 2004-09-28 | 2014-05-13 | Atrium Medical Corporation | Drug delivery coating for use with a stent |
US10792312B2 (en) | 2004-09-28 | 2020-10-06 | Atrium Medical Corporation | Barrier layer |
US8795703B2 (en) | 2004-09-28 | 2014-08-05 | Atrium Medical Corporation | Stand-alone film and methods for making the same |
US9682175B2 (en) | 2004-09-28 | 2017-06-20 | Atrium Medical Corporation | Coating material and medical device system including same |
US8858978B2 (en) | 2004-09-28 | 2014-10-14 | Atrium Medical Corporation | Heat cured gel and method of making |
US9801913B2 (en) | 2004-09-28 | 2017-10-31 | Atrium Medical Corporation | Barrier layer |
US20060067983A1 (en) * | 2004-09-28 | 2006-03-30 | Atrium Medical Corporation | Stand-alone film and methods for making the same |
US9012506B2 (en) | 2004-09-28 | 2015-04-21 | Atrium Medical Corporation | Cross-linked fatty acid-based biomaterials |
US20060067975A1 (en) * | 2004-09-28 | 2006-03-30 | Atrium Medical Corporation | UV cured gel and method of making |
US10772995B2 (en) | 2004-09-28 | 2020-09-15 | Atrium Medical Corporation | Cross-linked fatty acid-based biomaterials |
US9827352B2 (en) | 2004-09-28 | 2017-11-28 | Atrium Medical Corporation | Cross-linked fatty acid-based biomaterials |
US10016465B2 (en) | 2004-09-28 | 2018-07-10 | Atrium Medical Corporation | Cured gel and method of making |
US9278161B2 (en) | 2005-09-28 | 2016-03-08 | Atrium Medical Corporation | Tissue-separating fatty acid adhesion barrier |
US20100183697A1 (en) * | 2005-09-28 | 2010-07-22 | Atrium Medical Corporation | Tissue-separating fatty acid adhesion barrier |
US11083823B2 (en) | 2005-09-28 | 2021-08-10 | Atrium Medical Corporation | Tissue-separating fatty acid adhesion barrier |
US9220820B2 (en) | 2005-10-15 | 2015-12-29 | Atrium Medical Corporation | Hydrophobic cross-linked gels for bioabsorbable drug carrier coatings |
US20070270464A1 (en) * | 2006-02-24 | 2007-11-22 | Emory University | Prodrugs of curcumin analogs |
US9492596B2 (en) | 2006-11-06 | 2016-11-15 | Atrium Medical Corporation | Barrier layer with underlying medical device and one or more reinforcing support structures |
US9592324B2 (en) | 2006-11-06 | 2017-03-14 | Atrium Medical Corporation | Tissue separating device with reinforced support for anchoring mechanisms |
US8574627B2 (en) | 2006-11-06 | 2013-11-05 | Atrium Medical Corporation | Coated surgical mesh |
US20100197584A1 (en) * | 2007-07-27 | 2010-08-05 | Research Foundations of the City University of- New York | Use of curcumin to block brain tumor formation in mice |
US8748494B2 (en) | 2007-12-21 | 2014-06-10 | ASAC Compñia de Biotecnología e Investigación, S.A. | Method for improving the therapeutic efficacy of curcuminoids and their analogs |
US20100298444A1 (en) * | 2007-12-21 | 2010-11-25 | Asac Compania De Biotecnologia E Investigacion S.A. | Method for improving the therapeutic efficacy of curcuminoids and their analogs |
US9211270B2 (en) | 2007-12-21 | 2015-12-15 | ASAC Compañia de Technologia e Invertigación, S.A. | Method for improving the efficacy of curcuminoids and their analogs |
US20110117142A1 (en) * | 2008-07-02 | 2011-05-19 | Basf Se | Method for coating tablets |
US10285964B2 (en) | 2009-03-10 | 2019-05-14 | Atrium Medical Corporation | Fatty-acid based particles |
US9427423B2 (en) | 2009-03-10 | 2016-08-30 | Atrium Medical Corporation | Fatty-acid based particles |
US11166929B2 (en) | 2009-03-10 | 2021-11-09 | Atrium Medical Corporation | Fatty-acid based particles |
US10864304B2 (en) | 2009-08-11 | 2020-12-15 | Atrium Medical Corporation | Anti-infective antimicrobial-containing biomaterials |
US10322213B2 (en) | 2010-07-16 | 2019-06-18 | Atrium Medical Corporation | Compositions and methods for altering the rate of hydrolysis of cured oil-based materials |
US11097035B2 (en) | 2010-07-16 | 2021-08-24 | Atrium Medical Corporation | Compositions and methods for altering the rate of hydrolysis of cured oil-based materials |
US10888617B2 (en) | 2012-06-13 | 2021-01-12 | Atrium Medical Corporation | Cured oil-hydrogel biomaterial compositions for controlled drug delivery |
US9867880B2 (en) | 2012-06-13 | 2018-01-16 | Atrium Medical Corporation | Cured oil-hydrogel biomaterial compositions for controlled drug delivery |
Also Published As
Publication number | Publication date |
---|---|
AU5639800A (en) | 2001-01-31 |
US20090018209A1 (en) | 2009-01-15 |
WO2001000201A1 (en) | 2001-01-04 |
US6673843B2 (en) | 2004-01-06 |
EP1196158A1 (en) | 2002-04-17 |
CA2377141A1 (en) | 2001-01-04 |
EP1196158A4 (en) | 2004-05-26 |
AU780432B2 (en) | 2005-03-24 |
US20020006966A1 (en) | 2002-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6673843B2 (en) | Curcumin and curcuminoid inhibition of angiogenesis | |
US7709031B2 (en) | Angiogenic agents from plant extracts, gallic acid, and derivatives | |
EP0827743B1 (en) | Use of histone decarboxylase inhibitors for treating fibrosis | |
WO2016062283A1 (en) | Applications of anti-inflammatory medicament in preparing cancer-inhibiting pharmaceutical composition | |
Lin et al. | The fungus-derived retinoprotectant theissenolactone C improves glaucoma-like injury mediated by MMP-9 inhibition | |
CN117568231A (en) | Lactobacillus johnsonii BW002 and application thereof in preventing and/or repairing liver injury | |
KR102166053B1 (en) | Pharmaceutical composition for enhancing sensitivity to anti-cancer drugs comprising IRE1alpha or XBP1 activation inhibitor | |
US20070042976A1 (en) | Method of treating cosmetic and dermatologic conditions by a demethylating agent | |
CN109745563B (en) | SIRT1 inhibitor for preventing and treating oral cavity injury caused by radiation | |
JPS631287B2 (en) | ||
CA2679402A1 (en) | Administration of 3,5-diiodothyropropionic acid for stimulating weight loss, and/or lowering triglyceride levels, and/or treatment of metabolic syndrome | |
EP2853261A1 (en) | Agent for improving vesicourethral dyssynergia | |
JP2024536823A (en) | Compositions and methods for preventing and treating skin radiation damage - Patents.com | |
CA3193398A1 (en) | Composition and method for prevention and treatment of cutaneous radiation injury | |
WO2022221988A1 (en) | Pharmaceutical hydronidone formulations for diseases | |
US20150071880A1 (en) | Treatment of epithelial layer lesions | |
KR102204204B1 (en) | Composition for treatment of muscular disorders | |
CA3104916C (en) | Pharmaceutical composition for preventing diabetes and use thereof | |
CN111905102A (en) | Use of EZH2 inhibitors for the treatment of gliomas | |
KR101243430B1 (en) | Composition of health-promoting food containing sulforaphane and its analog for relieving pain | |
AU2012223521B2 (en) | Treatment of urinary incontinence using nitrone spin traps | |
AU2006200822B2 (en) | Treatment of epithelial layer lesions | |
CN118903111A (en) | Application of indole in preparation of medicine for treating hepatic fibrosis | |
KR20150026510A (en) | A composition for preventing or treating obesity comprising 2-amino-2-norbornanecarboxylic acid | |
KR20100087955A (en) | Composition containing sulforaphane and its analog for treating pain |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: EMORY UNIVERSITY, GEORGIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ARBISER, JACK L.;REEL/FRAME:016473/0108 Effective date: 19990820 |
|
AS | Assignment |
Owner name: UNIVERSITY, EMORY, GEORGIA Free format text: CONFIRMATORY LICENSE;ASSIGNOR:NATIONAL SCIENCE FOUNDATION;REEL/FRAME:020467/0880 Effective date: 20071213 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF Free format text: CONFIRMATORY LICENSE;ASSIGNOR:EMORY UNIVERSITY;REEL/FRAME:021250/0959 Effective date: 20071115 |
|
AS | Assignment |
Owner name: NATIONAL INSTITUTES OF HEALTH-DIRECTOR DEITR, MARY Free format text: CONFIRMATORY LICENSE;ASSIGNOR:EMORY UNIVERSIYT;REEL/FRAME:036929/0174 Effective date: 20151022 |