US20010009861A1 - Bootstrapped, piecewise-asymptotic directivity pattern control mechanism setting weighting coefficients of phased array antenna - Google Patents

Bootstrapped, piecewise-asymptotic directivity pattern control mechanism setting weighting coefficients of phased array antenna Download PDF

Info

Publication number
US20010009861A1
US20010009861A1 US09/782,767 US78276701A US2001009861A1 US 20010009861 A1 US20010009861 A1 US 20010009861A1 US 78276701 A US78276701 A US 78276701A US 2001009861 A1 US2001009861 A1 US 2001009861A1
Authority
US
United States
Prior art keywords
antenna elements
outputs
signal
weighting coefficients
signals representative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/782,767
Other versions
US6397083B2 (en
Inventor
Gayle Martin
Steven Halford
John Henry
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Netgear Inc
Original Assignee
Harris Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harris Corp filed Critical Harris Corp
Priority to US09/782,767 priority Critical patent/US6397083B2/en
Assigned to HARRIS CORPORATION reassignment HARRIS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HALFORD, STEVEN D., HENRY III, JOHN C., MARTIN, GAYLE PATRICK
Publication of US20010009861A1 publication Critical patent/US20010009861A1/en
Application granted granted Critical
Publication of US6397083B2 publication Critical patent/US6397083B2/en
Assigned to NETGEAR, INC. reassignment NETGEAR, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HARRIS CORPORATION
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2605Array of radiating elements provided with a feedback control over the element weights, e.g. adaptive arrays

Definitions

  • the present invention relates to subject matter disclosed in the following co-pending patent applications, filed coincidentally herewith: Ser. No. ______ (hereinafter referred to as the ______ application), by K. Halford et al, entitled: “Selective Modification of Antenna Directivity Pattern to Adaptively Cancel Co-channel Interference in TDMA Cellular Communication System,” and Ser. No. ______ (hereinafter referred to as the ______ application), by R. Hildebrand et al, entitled “Circular Phased Array Antenna Having Non-Uniform Angular Separations Between Successively Adjacent Elements,” each of which is assigned to the assignee of the present application and the disclosures of which are incorporated herein.
  • the present invention relates in general to communication systems, and is particularly directed to a new and improved signal processing mechanism for rapidly and optimally setting weighting coefficient values of respective elements of a multi-element antenna, such as a phased array antenna employed to controllably form a beam whose gain and/or nulls are defined so as to maximize the signal to noise ratio.
  • a multi-element antenna such as a phased array antenna employed to controllably form a beam whose gain and/or nulls are defined so as to maximize the signal to noise ratio.
  • TDMA time division multiple access
  • each cell has a time division reuse allocation of three (a given channel is subdivided into three user time slots)
  • preventing interference with communications between user 11 - 1 and its base station BS from each co-channel user in the surrounding cells 21 - 71 would appear to be an ominous task—ostensibly requiring the placement of eighteen nulls in the directivity pattern of the antenna employed by the centroid cell's base station BS.
  • this problem is successfully addressed by determining the times of occurrence of synchronization patterns of monitored co-channel transmissions from users in the adjacent cells, and using this timing information to periodically update a set of amplitude and phase weights (weighting coefficients) for controlling the directivity pattern of a phased array antenna.
  • the weighting coefficients are updated as participants in the pool of interferers change (in a time division multiplexed manner), so as to maintain the desired user effectively free from co-channel interference sourced from any of the adjacent cells.
  • the updated weighting coefficients are stored in memory until the next cyclically repeating occurrence of the time slot of the last (in time) entry in the current pool of co-channel participants.
  • the set of weight control values for the current pool is updated and used to adjust the phased array's directivity pattern, so that the nulls in the directivity pattern effectively follow co-channel users of adjacent cells.
  • the newly updated weight set is then stored until the next (periodically repeated) update interval for the current co-channel user pool, and so on.
  • the maximum number of nulls than can be placed in the directivity pattern of a phased array antenna is only one less than the number of elements of the array, the fact that the number of TDMA co-channel interferers who may be transmitting at any given instant is a small fraction of the total number of potential co-channel interferers (e.g., six versus eighteen in the above example) allows the hardware complexity and cost of the base station's phased array antenna to be considerably reduced.
  • the antenna directivity pattern must be controlled very accurately; in particular, excessive sidelobes that are created by grating effects customarily inherent in a phased array having a spatially periodic geometry must be avoided.
  • this unwanted sidelobe/grating effect is minimized by using a spatially aperiodic phased array geometry, in which a plurality of N antenna elements (such as dipole elements) 31 , 32 , 33 , . . . , 3 N are unequally distributed or spaced apart from one another in a two-dimensional, generally planar array 30 , shown as lying along a circle 40 having a center 41 .
  • This unequal distribution is effective to decorrelate angular and linear separations among elements of the array.
  • Each dipole 3 i of the circular array is oriented orthogonal to the plane of the array, so as to produce a directivity pattern that is generally parallel to the plane of the array.
  • the composite directivity pattern of the array is controllably definable to place a main lobe on a desired user, and one or more nulls along (N ⁇ 1) radial lines ‘r’ emanating from the center 41 of the array toward adjacent cells containing potential interfering co-channel users.
  • the vector distance from any point along that radial direction to any two elements of the array is unequal and uniformly distributed in phase (modulo 2 ⁇ ).
  • weighting coefficient algorithms that may be employed for determining the values of the weighting coefficients and thereby the directivity pattern of the base station's phased array antenna include the “Maximum SNR Method,” described in the text “Introduction to Adaptive Arrays,” by R. Monzingo et al, published 1980, by Wiley and Sons, N.Y., and the PSF algorithm described in U.S. Pat. No. 4,255,791 (the '791 patent) to P. Martin, entitled: “Signal Processing System,” issued Mar. 10, 1981, assigned to the assignee of the present application and the disclosure of which is herein incorporated.
  • the present invention is directed to an alternative approach to the PSF algorithm described in the above-referenced '791 patent, that is particularly useful in a dynamic environment, such as a TDM cellular communication system environment, in which the number of and spatial location of participants may undergo changes, mandating the need for a weighting coefficient control mechanism that is able to make rapid real time adjustments with effectively little or no knowledge of the environment being addressed.
  • this objective is successfully achieved by an iterative or ‘bootstrapped’, piecewise-asymptotic directivity pattern control mechanism, that is operative to continuously monitor signals as received by a plurality of antenna elements and to process these signals in accordance with an iterative weighting coefficient processing mechanism, so as to produce a set of (amplitude and phase) weighting coefficients through which the directivity pattern is controlled so as to maximize the signal to noise ratio.
  • the received signals for the monitored user channel of interest, as modified by the adaptively updated weighting coefficients are then output to a downstream demodulator.
  • the adaptive weighting coefficient control mechanism of the present invention starts off with a relatively coarse, but reasonably well defined set of weighting coefficients, that have a positive signal-to-noise ratio, such as a bit error rate on the order of one in ten, as a non-limiting example.
  • the actual signals received by the antenna elements are modified by this initial set of weights to produce a first set of estimates of the information signal contents of the received signals.
  • the initial set of weighting coefficients are refined by means of a prescribed signal processing operator.
  • the signal processing operator includes a data decision unit, to which the modified received signal estimates are supplied, and a signal transform operator, to which both the unmodified or ‘raw’ data representative of the received signals from the antenna elements and the output of the data decision unit are applied.
  • the data decision unit may comprise a data demodulator or other similar component, that uses such knowledge to derive an initial data estimate output signal.
  • the data decision unit may comprise a relatively simple signal processing component, such as a hard-limiter or bit-slice unit, that does not require a priori knowledge of the signal, as long as the received signal has some degree of coherence.
  • the signal transform operator produces an output containing two components—one containing the desired information signal component S(t) and a noise component n(t) of the form Ad(t)cos( ⁇ t+ ⁇ )+n(t), where d(t) is data and A is amplitude, and the other of which is a transformed noise signal component ⁇ (t) that is uncorrelated with any other signal, including the noise component n(t).
  • the actually received signal input (S+N) and the output (S+ ⁇ ) of the signal transform operator are applied to a correlation—multiplier operator to produce a noise signal set/matrix ( ⁇ N).
  • the individual signal components of the signal input (S+N) are multiplied by signal components of the output (S+ ⁇ ), while the components of the noise signal set/matrix ( ⁇ N) are multiplied to produce a desired signal covariance matrix Rs and a noise covariance matrix Rn.
  • these desired signal and noise covariance matrices Rs and Rn are applied to a coefficient multiplier, which generates the matrix product of the inverse of the noise covariance matrix Rn ⁇ 1 , the useful signal matrix Rs and the previous values of the weighting coefficients W.
  • This matrix product is a set of refined or updated set of weighting coefficients Wu, that replace the previous set of weights, such as an initial set of weights used at the start of the iterative process.
  • the temporarily buffered signals are then modified by the updated weights Wu via a matrix multiplier, to produce an ‘improved’ signal estimate.
  • the values of the signal estimates are applied to the data decision unit in place of the previous estimates. Since the updated weighting coefficients produce better estimates of the received signals, the improved signal estimates will result in more accurate weighting coefficients at the next iteration.
  • Analysis has shown that the degree of improvement of each iteration follows a non-linear track, that is asymptotic to some final ‘ideal’ value, and that the improvement differential between sequential iterations along this asymptotic variation typically becomes very small after only a small number of iterations, e.g., only two in the case of a TDM cellular system. This rapid iterative asymptotic refinement is significant in real time or quasi real time signal processing applications, where throughput delay must be minimized.
  • the number of iterations is preferably determined by simulating the signal processing application of interest.
  • FIG. 1 is a simplified diagrammatic illustration of the cell distribution of a time division multiple access (TDMA) cellular communication system
  • FIGS. 2 and 3 are respective diagrammatic plan and side views of an embodiment of the spatially decorrelated antenna array according to the present invention.
  • FIG. 4 diagrammatically shows the overall signal processing arrangement of a cellular communication system base station of the type described in the above-referenced ______ Halford et al application;
  • FIG. 5 diagrammatically illustrates the general signal processing architecture employed by the time slot processing unit 100 of FIG. 4 to implement the iterative weighting coefficient control operator of the present invention for a respective user channel of a cellular application;
  • FIG. 6 diagrammatically illustrates the functional signal processing modules carried out by the adaptive weighting coefficient control mechanism within the control processor of the weighting coefficient control operator of FIG. 5;
  • FIG. 7 is a flow chart of the respective steps associated with the functional modules of FIG. 6;
  • FIG. 8 shows the composition of the signal processing operator 64 of FIG. 6.
  • FIG. 9 diagrammatically illustrates the iterative processing scheme of the present invention for an arbitrary number N of iterations.
  • FIG. 4 the overall signal processing arrangement of a cellular communication system base station of the type described in the above-referenced ______ Halford et al application is diagrammatically shown as comprising a phased array antenna 30 having a plurality of antenna elements 31 , 32 , . . . , 3 N, coupled to respective weighting circuits 41 - 1 , 41 - 2 , . . . , 41 -N.
  • Each respective weighting circuit 41 -i is coupled to receive a set of amplitude and phase weighting coefficients (W a ,W ⁇ ) i , shown as weights W 1 , . . .
  • W N supplied by a weighting coefficient control operator employed by a time slot processing unit 100 .
  • This weighting coefficient control operator (to be described in detail below with reference to FIGS. 5 - 9 ) adjusts a set of values of the amplitude and phase weighting coefficients (W A , W ⁇ ) for each respective weighting circuit 41 -i of the antenna array 30 , as necessary, to form a desired beam.
  • the outputs of the respective weighting circuits 41 - 1 - 41 -N are summed in a summing unit 42 , and coupled to an RF-IF downconverter 44 , the output of which is coupled to a first port 51 of a mode switch 50 .
  • Mode switch 50 has a second port 52 coupled to time slot processing unit 100 , and a third port 53 coupled to a transceiver 200 .
  • the mode switch 50 selectively couples the elements of the antenna array 30 to one of the time slot processing unit 100 and the base station transceiver 200 .
  • the phased array 30 is coupled to time slot processing unit 100 during one of the time slots available to users in the cell 11 for traffic signalling, but currently unassigned to any of those users, so that the timing relationship between the time slots assigned to users within the base station's cell and those of the adjacent cells containing potential co-channel interferers may be determined, as described in the above-referenced ______ Halford et al application. This timing relationship information is then used by a weighting coefficient control operator to dynamically update the antenna's weighting coefficients. (In traffic signalling mode the array is coupled to base station transceiver 200 ).
  • the characteristics of a cellular system may provide one or more a priori known parameters (such as aspects of the control channel to be handed off to traffic channel, the order of switching of the traffic channels' TDM time slots, which traffic channels are currently unassigned and therefore may be monitored for noise content, etc.,) that enable the initial weighting coefficients of the iterative weighting coefficient operator of the present invention to be set at a reasonably high degree of accuracy (e.g., on the order of ninety-percent).
  • a priori known parameters such as aspects of the control channel to be handed off to traffic channel, the order of switching of the traffic channels' TDM time slots, which traffic channels are currently unassigned and therefore may be monitored for noise content, etc.
  • the iterative weighting coefficient operator of the present invention is able to rapidly converge (e.g., usually within one or two iterations) to a final set of weighting coefficients, using only reduced length data segments (which are subject to change at the time division multiplex switching rate of the time slots of the users of the cellular system) as inputs.
  • the general signal processing architecture employed by the time slot processing unit 100 which may be used to implement the iterative weighting coefficient control operator of the present invention for a respective user channel of such a cellular application is diagrammatically illustrated in FIG. 5.
  • a respective channel signal received through each antenna element's weighting circuit 41 is digitized in a respective analog-to-digital converter 54 -i and then further digitally downconverted via a digital downconverter 55 -i to fall within the digital signal processing baseband parameters of an associated digital signal processor (DSP) 56 -i.
  • DSP digital signal processor
  • Each digital signal processor 56 is coupled via a communications industry standard VME bus 57 , having an associated bus controller 59 , to a supervisory control processor 60 .
  • the supervisory control processor 60 is operative to continuously monitor signals as received by each antenna element of the phased array and to process these signals in accordance with the iterative weighting coefficient processing mechanism of the invention, so as to produce a set of weighting coefficients through which the directivity pattern is controlled so as to maximize the signal to noise ratio.
  • the received signals for the monitored user channel of interest as modified by the stored weighting coefficients adaptively updated by the weighting coefficient algorithm executed by the control processor 60 , are then output to a downstream demodulator (not shown).
  • FIG. 6 diagrammatically illustrates the functional signal processing modules carried out by the adaptive weighting coefficient control mechanism within the control processor 60 of the weighting coefficient control operator of FIG. 5, while FIG. 7 is a flow chart of the respective steps associated with the functional modules of FIG. 6.
  • weighting coefficients that have a positive signal-to-noise ratio, such as a bit error rate on the order of one in ten, as a non-limiting example. While such a coarse performance parameter may be unacceptable for a finally processed signal, its ninety percent accuracy value will enable the invention to rapidly converge the antenna's weighting coefficients to a final set of values.
  • the initial values of the weights may be those associated with the control channel, or derived from a precursor observation of the background noise for an unassigned traffic channel of interest, to provide a reasonably ‘good’ first set of weighting coefficients, upon which the refinement algorithm of the invention may operate.
  • the actual signals 63 received by the antenna elements of the phased array are then modified by this initial set of weights 61 to produce a first set of estimates of the information signal contents of the received signals.
  • the initial set of weighting coefficients 61 are then refined at a step 703 by means of a prescribed signal processing operator 64 .
  • a set of sub-steps 731 - 735 embodied within step 703 , and as will be described below with reference to FIG.
  • operator 64 generates improved values of the weighting coefficients 65 using respective sets of signal and noise covariances that it has derived by correlating the estimates and the raw data.
  • the actually received signals are temporarily stored in buffer 66 , to accommodate the processing throughput of the signal processing operator 64 .
  • These buffered data values are then modified via a matrix multiplier 67 to produce an ‘improved’ signal estimate 68 , at step 705 .
  • the signal processing operator 64 is shown as including a data decision unit 81 , to which the modified received signal estimates 62 are supplied, and a signal transform operator 83 , to which both the unmodified or ‘raw’ data representative of the received signals from the antenna elements and the output of the data decision unit 81 are applied, as shown at sub-step 731 of step 703 .
  • the data decision unit 81 may comprise a data demodulator or other similar component, that uses such knowledge to derive an initial data estimate output signal.
  • data decision unit 81 may comprise a relatively simple signal processing component, such as a hard-limiter or bit-slice unit, that does not require a priori knowledge of the signal, as long as the received signal has some degree of coherence (namely, other than a white noise characteristic).
  • a relatively simple signal processing component such as a hard-limiter or bit-slice unit
  • the signal transform operator 83 may correspond to the signal recognizer described in the above-referenced '791 patent, except that the reference signal for the signal transform operator is derived from the data decision unit 81 , rather than being an a priori known signal.
  • the signal transform operator 83 produces an output containing two components—one of which contains the desired information signal component S(t) in the received signal (which includes both a desired signal component S(t) and a noise component n(t) of the form Ad(t)cos( ⁇ t+ ⁇ )+n(t), where d(t) is data and A is amplitude), and the other of which is a transformed noise signal component ⁇ (t) that is uncorrelated with any other signal, including the noise component n(t).
  • the raw signal input (S+N) to, and the output (S+ ⁇ ) of, the signal transform operator 83 are processed via a correlation—multiplier function to produce a noise signal set/matrix ( ⁇ N).
  • the individual signal components of the raw signal input (S+N) are then multiplied in a multiplication operator 85 by signal components of the output (S+n), while the noise differential components of the noise signal set/matrix ( ⁇ N) are multiplied in a multiplication operator 86 , to produce a useful or desired signal covariance matrix Rs and a noise covariance matrix Rn.
  • these useful signal and noise covariance matrices Rs and Rn produced by multiplication operators 84 and 85 are applied at sub-step 735 to a coefficient multiplier 86 , which generates the matrix product of the inverse of the noise covariance matrix Rn ⁇ 1 , the useful signal matrix Rs and the previous values of the weighting coefficients Ws.
  • This matrix product is a set of refined or updated set of weighting coefficients Wu, that are to replace the previous set of weights, such as an initial set of weights used at the start of the iterative process.
  • the temporarily stored or buffered signals are then modified by the updated weights Wu via matrix multiplier 67 , to produce an ‘improved’ signal estimate 68 .
  • the values of the signal estimates produced at 68 are applied to the data decision unit 81 at step 703 in place of the previous estimates (which used the initial coarse weight values during the first iteration, as described). Because the updated weighting coefficients produce better estimates of the received signals, the improved signal estimates, in turn, will result in more accurate weighting coefficients at the next iteration.
  • the number of iterations is preferably determined by simulating the signal processing application of interest, rather than using a signal-to-noise ratio comparator between iterations.
  • the iterative processing scheme of the present invention for producing an asymptotically optimized signal estimate from N iterations is diagrammatically illustrated in the flow sequence of FIG. 9, wherein the respective steps are identified by the reference numerals of the flow chart of FIG. 7 described above.
  • the adaptive weighting coefficient control mechanism of the present invention is able to ‘bootstrap’ itself, starting with a relatively coarse, but reasonably well defined set of weighting coefficients, that have a positive signal-to-noise ratio.
  • Received signals are subjected to this initial set of weights to produce a first set of signal estimates.
  • These estimates and the received signals are iteratively processed a prescribed number of times to refine the weighting coefficients to optimal values, such that the gain and/or nulls of antenna's directivity pattern will maximize the signal to noise ratio.
  • Such improved functionality makes the invention particularly useful in association with the phased array antenna of a base station of a time division multiple access (TDMA) cellular communication system, where it is necessary to cancel interference from co-channel users located in cells adjacent to the cell containing a desired user and the base station.
  • TDMA time division multiple access

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Weighting coefficients for a phased array antenna are iteratively refined to optimal values by a ‘bootstrapped’ process that starts with a coarse set of weighting coefficients, to which received signals are subjected, to produce a first set of signal estimates. These estimates and the received signals are iteratively processed a prescribed number of times to refine the weighting coefficients, such that the gain and/or nulls of antenna's directivity pattern will maximize the signal to noise ratio. Such improved functionality is particularly useful in association with the phased array antenna of a base station of a time division multiple access (TDMA) cellular communication system, where it is necessary to cancel interference from co-channel users located in cells adjacent to the cell containing a desired user and the base station.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present invention relates to subject matter disclosed in the following co-pending patent applications, filed coincidentally herewith: Ser. No. ______ (hereinafter referred to as the ______ application), by K. Halford et al, entitled: “Selective Modification of Antenna Directivity Pattern to Adaptively Cancel Co-channel Interference in TDMA Cellular Communication System,” and Ser. No. ______ (hereinafter referred to as the ______ application), by R. Hildebrand et al, entitled “Circular Phased Array Antenna Having Non-Uniform Angular Separations Between Successively Adjacent Elements,” each of which is assigned to the assignee of the present application and the disclosures of which are incorporated herein. [0001]
  • FIELD OF THE INVENTION
  • The present invention relates in general to communication systems, and is particularly directed to a new and improved signal processing mechanism for rapidly and optimally setting weighting coefficient values of respective elements of a multi-element antenna, such as a phased array antenna employed to controllably form a beam whose gain and/or nulls are defined so as to maximize the signal to noise ratio. Such improved functionality makes the invention particularly useful in association with the phased array antenna of a base station of a time division multiple access (TDMA) cellular communication system, where it is necessary to cancel interference from co-channel users located in cells adjacent to the cell containing a desired user and the base station. [0002]
  • BACKGROUND OF THE INVENTION
  • As described in the above-referenced ______ Halford et al application, in a TDMA cellular communication system, a simplified illustration of which is diagrammatically shown in FIG. 1, communications between a base station BS and a desired user [0003] 11-1 in a centroid cell 11 are subject to potential interference by co-channel transmissions from users in cells dispersed relative to the cell of interest (cell 11), particularly immediately adjacent cells shown at 21-71. This potential for co-channel interference is due to the fact that the same frequency is assigned to multiple system users, who transmit during respectively different time slots.
  • In the non-limiting simplified example of FIG. 1, where each cell has a time division reuse allocation of three (a given channel is subdivided into three user time slots), preventing interference with communications between user [0004] 11-1 and its base station BS from each co-channel user in the surrounding cells 21-71 would appear to be an ominous task—ostensibly requiring the placement of eighteen nulls in the directivity pattern of the antenna employed by the centroid cell's base station BS.
  • In accordance with the invention disclosed in the ______ application, this problem is successfully addressed by determining the times of occurrence of synchronization patterns of monitored co-channel transmissions from users in the adjacent cells, and using this timing information to periodically update a set of amplitude and phase weights (weighting coefficients) for controlling the directivity pattern of a phased array antenna. Namely, the weighting coefficients are updated as participants in the pool of interferers change (in a time division multiplexed manner), so as to maintain the desired user effectively free from co-channel interference sourced from any of the adjacent cells. [0005]
  • In addition to being applied to the weighting elements, the updated weighting coefficients are stored in memory until the next cyclically repeating occurrence of the time slot of the last (in time) entry in the current pool of co-channel participants. In response to this next occurrence, the set of weight control values for the current pool is updated and used to adjust the phased array's directivity pattern, so that the nulls in the directivity pattern effectively follow co-channel users of adjacent cells. The newly updated weight set is then stored until the next (periodically repeated) update interval for the current co-channel user pool, and so on. [0006]
  • Since the maximum number of nulls than can be placed in the directivity pattern of a phased array antenna is only one less than the number of elements of the array, the fact that the number of TDMA co-channel interferers who may be transmitting at any given instant is a small fraction of the total number of potential co-channel interferers (e.g., six versus eighteen in the above example) allows the hardware complexity and cost of the base station's phased array antenna to be considerably reduced. However, because the locations of co-channel interferers and therefore the placement of nulls is dynamic and spatially variable, the antenna directivity pattern must be controlled very accurately; in particular, excessive sidelobes that are created by grating effects customarily inherent in a phased array having a spatially periodic geometry must be avoided. [0007]
  • In accordance with the invention described in the above-referenced ______ Hildebrand et al application, and diagrammatically illustrated in FIGS. 2 and 3, this unwanted sidelobe/grating effect is minimized by using a spatially aperiodic phased array geometry, in which a plurality of N antenna elements (such as dipole elements) [0008] 31, 32, 33, . . . , 3N are unequally distributed or spaced apart from one another in a two-dimensional, generally planar array 30, shown as lying along a circle 40 having a center 41. This unequal distribution is effective to decorrelate angular and linear separations among elements of the array.
  • Each dipole [0009] 3 i of the circular array is oriented orthogonal to the plane of the array, so as to produce a directivity pattern that is generally parallel to the plane of the array. Via control of amplitude and phase weighting elements coupled in the feed for each dipole element, the composite directivity pattern of the array is controllably definable to place a main lobe on a desired user, and one or more nulls along (N−1) radial lines ‘r’ emanating from the center 41 of the array toward adjacent cells containing potential interfering co-channel users. Namely, for any angle of incidence of a received signal, the vector distance from any point along that radial direction to any two elements of the array is unequal and uniformly distributed in phase (modulo 2π).
  • What results is a spatially decorrelated antenna element separation scheme, in which no two pairs of successively adjacent antenna elements have the same angular or chord separation. Without spacial correlation among any of the elements of the array, sidelobes of individual elements, rather than constructively reinforcing one another into unwanted composite sidelobes of substantial magnitude, are diminished, thereby allowing nulls of substantial depth to be placed upon co-channel interferers. [0010]
  • As further described in the ______ Halford et al application, non-limiting examples of weighting coefficient algorithms that may be employed for determining the values of the weighting coefficients and thereby the directivity pattern of the base station's phased array antenna include the “Maximum SNR Method,” described in the text “Introduction to Adaptive Arrays,” by R. Monzingo et al, published 1980, by Wiley and Sons, N.Y., and the PSF algorithm described in U.S. Pat. No. 4,255,791 (the '791 patent) to P. Martin, entitled: “Signal Processing System,” issued Mar. 10, 1981, assigned to the assignee of the present application and the disclosure of which is herein incorporated. [0011]
  • SUMMARY OF THE INVENTION
  • The present invention is directed to an alternative approach to the PSF algorithm described in the above-referenced '791 patent, that is particularly useful in a dynamic environment, such as a TDM cellular communication system environment, in which the number of and spatial location of participants may undergo changes, mandating the need for a weighting coefficient control mechanism that is able to make rapid real time adjustments with effectively little or no knowledge of the environment being addressed. [0012]
  • Pursuant to the invention, this objective is successfully achieved by an iterative or ‘bootstrapped’, piecewise-asymptotic directivity pattern control mechanism, that is operative to continuously monitor signals as received by a plurality of antenna elements and to process these signals in accordance with an iterative weighting coefficient processing mechanism, so as to produce a set of (amplitude and phase) weighting coefficients through which the directivity pattern is controlled so as to maximize the signal to noise ratio. The received signals for the monitored user channel of interest, as modified by the adaptively updated weighting coefficients, are then output to a downstream demodulator. [0013]
  • In order for the adaptive weighting coefficient control mechanism of the present invention to ‘bootstrap’ itself, it starts off with a relatively coarse, but reasonably well defined set of weighting coefficients, that have a positive signal-to-noise ratio, such as a bit error rate on the order of one in ten, as a non-limiting example. The actual signals received by the antenna elements are modified by this initial set of weights to produce a first set of estimates of the information signal contents of the received signals. Using this initial set of signal estimates and the actual signals received by the antenna elements (and buffered as necessary for iterative signal processing, as will be described), the initial set of weighting coefficients are refined by means of a prescribed signal processing operator. [0014]
  • The signal processing operator includes a data decision unit, to which the modified received signal estimates are supplied, and a signal transform operator, to which both the unmodified or ‘raw’ data representative of the received signals from the antenna elements and the output of the data decision unit are applied. If a priori knowledge of the signal is available, the data decision unit may comprise a data demodulator or other similar component, that uses such knowledge to derive an initial data estimate output signal. Alternatively, the data decision unit may comprise a relatively simple signal processing component, such as a hard-limiter or bit-slice unit, that does not require a priori knowledge of the signal, as long as the received signal has some degree of coherence. [0015]
  • Using the signal processing scheme described in the above-identified '791 patent, the signal transform operator produces an output containing two components—one containing the desired information signal component S(t) and a noise component n(t) of the form Ad(t)cos(ωt+φ)+n(t), where d(t) is data and A is amplitude, and the other of which is a transformed noise signal component η(t) that is uncorrelated with any other signal, including the noise component n(t). Since the transformed noise signal component η(t) is uncorrelated with any other signal, then the correlated energy E is such that E((n(t)*S(t))=0, E((η(t)*n(t))=0, and E((η(t)*S(t))=0, leaving only E((S(t)*S(t)) proportional to S[0016] 2(t).
  • The actually received signal input (S+N) and the output (S+η) of the signal transform operator are applied to a correlation—multiplier operator to produce a noise signal set/matrix (η−N). The individual signal components of the signal input (S+N) are multiplied by signal components of the output (S+η), while the components of the noise signal set/matrix (η−N) are multiplied to produce a desired signal covariance matrix Rs and a noise covariance matrix Rn. In order to derive the actual values of the updated weighting coefficients, these desired signal and noise covariance matrices Rs and Rn are applied to a coefficient multiplier, which generates the matrix product of the inverse of the noise covariance matrix Rn[0017] −1, the useful signal matrix Rs and the previous values of the weighting coefficients W. This matrix product is a set of refined or updated set of weighting coefficients Wu, that replace the previous set of weights, such as an initial set of weights used at the start of the iterative process. The temporarily buffered signals are then modified by the updated weights Wu via a matrix multiplier, to produce an ‘improved’ signal estimate.
  • For each subsequent iteration of the weighting coefficient update sequence, the values of the signal estimates are applied to the data decision unit in place of the previous estimates. Since the updated weighting coefficients produce better estimates of the received signals, the improved signal estimates will result in more accurate weighting coefficients at the next iteration. Analysis has shown that the degree of improvement of each iteration follows a non-linear track, that is asymptotic to some final ‘ideal’ value, and that the improvement differential between sequential iterations along this asymptotic variation typically becomes very small after only a small number of iterations, e.g., only two in the case of a TDM cellular system. This rapid iterative asymptotic refinement is significant in real time or quasi real time signal processing applications, where throughput delay must be minimized. The number of iterations is preferably determined by simulating the signal processing application of interest. [0018]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a simplified diagrammatic illustration of the cell distribution of a time division multiple access (TDMA) cellular communication system; [0019]
  • FIGS. 2 and 3 are respective diagrammatic plan and side views of an embodiment of the spatially decorrelated antenna array according to the present invention; [0020]
  • FIG. 4 diagrammatically shows the overall signal processing arrangement of a cellular communication system base station of the type described in the above-referenced ______ Halford et al application; [0021]
  • FIG. 5 diagrammatically illustrates the general signal processing architecture employed by the time [0022] slot processing unit 100 of FIG. 4 to implement the iterative weighting coefficient control operator of the present invention for a respective user channel of a cellular application;
  • FIG. 6 diagrammatically illustrates the functional signal processing modules carried out by the adaptive weighting coefficient control mechanism within the control processor of the weighting coefficient control operator of FIG. 5; [0023]
  • FIG. 7 is a flow chart of the respective steps associated with the functional modules of FIG. 6; [0024]
  • FIG. 8 shows the composition of the [0025] signal processing operator 64 of FIG. 6; and
  • FIG. 9 diagrammatically illustrates the iterative processing scheme of the present invention for an arbitrary number N of iterations. [0026]
  • DETAILED DESCRIPTION
  • Before describing in detail the new and improved iterative weighting coefficient generation scheme in accordance with the present invention, it should be observed that the invention resides primarily in what is effectively a prescribed arrangement of conventional communication circuits and associated signal processing components and attendant supervisory control circuitry therefor, that controls the operations of such circuits and components. Consequently, the configuration of such circuits and components, and the manner in which they are interfaced with other communication system equipment have, for the most part, been illustrated in the drawings by readily understandable block diagrams. These diagrams show only those details that are pertinent to the present invention, so as not to obscure the disclosure with details which will be readily apparent to those skilled in the art having the benefit of the present description. Thus, the block diagram illustrations are primarily intended to show the major components of the system in a convenient functional grouping, whereby the present invention may be more readily understood. [0027]
  • Referring now to FIG. 4 the overall signal processing arrangement of a cellular communication system base station of the type described in the above-referenced ______ Halford et al application is diagrammatically shown as comprising a [0028] phased array antenna 30 having a plurality of antenna elements 31, 32, . . . , 3N, coupled to respective weighting circuits 41-1, 41-2, . . . , 41-N. Each respective weighting circuit 41-i is coupled to receive a set of amplitude and phase weighting coefficients (Wa,WΦ)i, shown as weights W1, . . . , WN supplied by a weighting coefficient control operator employed by a time slot processing unit 100. This weighting coefficient control operator (to be described in detail below with reference to FIGS. 5-9) adjusts a set of values of the amplitude and phase weighting coefficients (WA, WΦ) for each respective weighting circuit 41-i of the antenna array 30, as necessary, to form a desired beam.
  • The outputs of the respective weighting circuits [0029] 41-1-41-N are summed in a summing unit 42, and coupled to an RF-IF downconverter 44, the output of which is coupled to a first port 51 of a mode switch 50. Mode switch 50 has a second port 52 coupled to time slot processing unit 100, and a third port 53 coupled to a transceiver 200. Under the control of the base station's supervisory processor 300, the mode switch 50 selectively couples the elements of the antenna array 30 to one of the time slot processing unit 100 and the base station transceiver 200.
  • In timing acquisition mode, the phased [0030] array 30 is coupled to time slot processing unit 100 during one of the time slots available to users in the cell 11 for traffic signalling, but currently unassigned to any of those users, so that the timing relationship between the time slots assigned to users within the base station's cell and those of the adjacent cells containing potential co-channel interferers may be determined, as described in the above-referenced ______ Halford et al application. This timing relationship information is then used by a weighting coefficient control operator to dynamically update the antenna's weighting coefficients. (In traffic signalling mode the array is coupled to base station transceiver 200).
  • As described briefly above, the characteristics of a cellular system may provide one or more a priori known parameters (such as aspects of the control channel to be handed off to traffic channel, the order of switching of the traffic channels' TDM time slots, which traffic channels are currently unassigned and therefore may be monitored for noise content, etc.,) that enable the initial weighting coefficients of the iterative weighting coefficient operator of the present invention to be set at a reasonably high degree of accuracy (e.g., on the order of ninety-percent). As a result, in a cellular system application, the iterative weighting coefficient operator of the present invention is able to rapidly converge (e.g., usually within one or two iterations) to a final set of weighting coefficients, using only reduced length data segments (which are subject to change at the time division multiplex switching rate of the time slots of the users of the cellular system) as inputs. [0031]
  • The general signal processing architecture employed by the time [0032] slot processing unit 100 which may be used to implement the iterative weighting coefficient control operator of the present invention for a respective user channel of such a cellular application is diagrammatically illustrated in FIG. 5. As shown therein a respective channel signal received through each antenna element's weighting circuit 41, after initial downconversion in a downconverter 49, is digitized in a respective analog-to-digital converter 54-i and then further digitally downconverted via a digital downconverter 55-i to fall within the digital signal processing baseband parameters of an associated digital signal processor (DSP) 56-i. Each digital signal processor 56 is coupled via a communications industry standard VME bus 57, having an associated bus controller 59, to a supervisory control processor 60.
  • As will be described, the [0033] supervisory control processor 60 is operative to continuously monitor signals as received by each antenna element of the phased array and to process these signals in accordance with the iterative weighting coefficient processing mechanism of the invention, so as to produce a set of weighting coefficients through which the directivity pattern is controlled so as to maximize the signal to noise ratio. The received signals for the monitored user channel of interest, as modified by the stored weighting coefficients adaptively updated by the weighting coefficient algorithm executed by the control processor 60, are then output to a downstream demodulator (not shown).
  • FIG. 6 diagrammatically illustrates the functional signal processing modules carried out by the adaptive weighting coefficient control mechanism within the [0034] control processor 60 of the weighting coefficient control operator of FIG. 5, while FIG. 7 is a flow chart of the respective steps associated with the functional modules of FIG. 6.
  • As described above, in order for the present invention to ‘bootstrap’ itself, it starts off with a relatively coarse, but still, reasonably well defined set of weighting coefficients, shown as an initial set of [0035] weights 61 in FIG. 6, and as step 701 in FIG. 7. By reasonably well defined is meant weighting coefficients that have a positive signal-to-noise ratio, such as a bit error rate on the order of one in ten, as a non-limiting example. While such a coarse performance parameter may be unacceptable for a finally processed signal, its ninety percent accuracy value will enable the invention to rapidly converge the antenna's weighting coefficients to a final set of values.
  • Empirical examination has shown that only two iterations are required for the cellular TDM system application of the present example. (As pointed out above, the initial values of the weights may be those associated with the control channel, or derived from a precursor observation of the background noise for an unassigned traffic channel of interest, to provide a reasonably ‘good’ first set of weighting coefficients, upon which the refinement algorithm of the invention may operate.) [0036]
  • As shown at [0037] 62 in FIG. 6 and step 702 in FIG. 7, the actual signals 63 received by the antenna elements of the phased array are then modified by this initial set of weights 61 to produce a first set of estimates of the information signal contents of the received signals. Using this initial set of signal estimates 62 and the actual signals 63 received by the antenna elements, the initial set of weighting coefficients 61 are then refined at a step 703 by means of a prescribed signal processing operator 64. As shown by a set of sub-steps 731-735 embodied within step 703, and as will be described below with reference to FIG. 8, operator 64 generates improved values of the weighting coefficients 65 using respective sets of signal and noise covariances that it has derived by correlating the estimates and the raw data. At step 704, the actually received signals are temporarily stored in buffer 66, to accommodate the processing throughput of the signal processing operator 64. These buffered data values are then modified via a matrix multiplier 67 to produce an ‘improved’ signal estimate 68, at step 705.
  • Referring now to FIG. 8, the [0038] signal processing operator 64 is shown as including a data decision unit 81, to which the modified received signal estimates 62 are supplied, and a signal transform operator 83, to which both the unmodified or ‘raw’ data representative of the received signals from the antenna elements and the output of the data decision unit 81 are applied, as shown at sub-step 731 of step 703. As a non-limiting example, if a priori knowledge of the signal is available, the data decision unit 81 may comprise a data demodulator or other similar component, that uses such knowledge to derive an initial data estimate output signal. Alternatively, data decision unit 81 may comprise a relatively simple signal processing component, such as a hard-limiter or bit-slice unit, that does not require a priori knowledge of the signal, as long as the received signal has some degree of coherence (namely, other than a white noise characteristic).
  • The [0039] signal transform operator 83 may correspond to the signal recognizer described in the above-referenced '791 patent, except that the reference signal for the signal transform operator is derived from the data decision unit 81, rather than being an a priori known signal. At sub-step 732, the signal transform operator 83 produces an output containing two components—one of which contains the desired information signal component S(t) in the received signal (which includes both a desired signal component S(t) and a noise component n(t) of the form Ad(t)cos(ωt+φ)+n(t), where d(t) is data and A is amplitude), and the other of which is a transformed noise signal component η(t) that is uncorrelated with any other signal, including the noise component n(t). Since the transformed noise signal component η(t) is uncorrelated with any other signal, then not only is the correlated energy E((n(t)*S(t))=0, but E((η(t)*n(t))=0, and E((η(t)*S(t))=0, leaving only E((S(t)*S(t)) proportional to S2(t).
  • At [0040] sub-step 733, the raw signal input (S+N) to, and the output (S+η) of, the signal transform operator 83 are processed via a correlation—multiplier function to produce a noise signal set/matrix (η−N). At sub-step 734, the individual signal components of the raw signal input (S+N) are then multiplied in a multiplication operator 85 by signal components of the output (S+n), while the noise differential components of the noise signal set/matrix (η−N) are multiplied in a multiplication operator 86, to produce a useful or desired signal covariance matrix Rs and a noise covariance matrix Rn. In order to derive the actual values of the updated weighting coefficients, these useful signal and noise covariance matrices Rs and Rn produced by multiplication operators 84 and 85 are applied at sub-step 735 to a coefficient multiplier 86, which generates the matrix product of the inverse of the noise covariance matrix Rn−1, the useful signal matrix Rs and the previous values of the weighting coefficients Ws. This matrix product is a set of refined or updated set of weighting coefficients Wu, that are to replace the previous set of weights, such as an initial set of weights used at the start of the iterative process. Next, at step 705, the temporarily stored or buffered signals are then modified by the updated weights Wu via matrix multiplier 67, to produce an ‘improved’ signal estimate 68.
  • For each subsequent iteration of the weighting coefficient update sequence described above, the values of the signal estimates produced at [0041] 68 are applied to the data decision unit 81 at step 703 in place of the previous estimates (which used the initial coarse weight values during the first iteration, as described). Because the updated weighting coefficients produce better estimates of the received signals, the improved signal estimates, in turn, will result in more accurate weighting coefficients at the next iteration. Analysis has shown that not only does the degree of improvement of each iteration follow a non-linear track, that is asymptotic to some final ‘ideal’ value, but that the improvement differential between sequential iterations along this asymptotic variation typically becomes very small after only a small number of iterations, e.g., only two in the case of a TDM cellular system, as described above.
  • This is of particular significance in real time or quasi real time signal processing applications, where throughput delay must be minimized. To this end, the number of iterations is preferably determined by simulating the signal processing application of interest, rather than using a signal-to-noise ratio comparator between iterations. The iterative processing scheme of the present invention for producing an asymptotically optimized signal estimate from N iterations is diagrammatically illustrated in the flow sequence of FIG. 9, wherein the respective steps are identified by the reference numerals of the flow chart of FIG. 7 described above. [0042]
  • As will be appreciated from the foregoing description, the adaptive weighting coefficient control mechanism of the present invention is able to ‘bootstrap’ itself, starting with a relatively coarse, but reasonably well defined set of weighting coefficients, that have a positive signal-to-noise ratio. Received signals are subjected to this initial set of weights to produce a first set of signal estimates. These estimates and the received signals are iteratively processed a prescribed number of times to refine the weighting coefficients to optimal values, such that the gain and/or nulls of antenna's directivity pattern will maximize the signal to noise ratio. Such improved functionality makes the invention particularly useful in association with the phased array antenna of a base station of a time division multiple access (TDMA) cellular communication system, where it is necessary to cancel interference from co-channel users located in cells adjacent to the cell containing a desired user and the base station. [0043]
  • While we have shown and described an embodiment in accordance with the present invention, it is to be understood that the same is not limited thereto but is susceptible to numerous changes and modifications as known to a person skilled in the art, and we therefore do not wish to be limited to the details shown and described herein, but intend to cover all such changes and modifications as are obvious to one of ordinary skill in the art. [0044]

Claims (41)

What is claimed:
1. A method of processing signals representative of outputs of antenna elements of a phased array antenna to derive amplitude and phase weighting coefficients, through which signal coupling paths of said antenna elements are controllably weighted to control the directivity pattern of said phased array antenna, said method comprising the steps of:
(a) providing values of said weighting coefficients;
(b) modifying said signals representative of outputs of said antenna elements in accordance with said values of said weighting coefficients provided in step (a);
(c) generating estimates of information signal contents of signals representative of outputs of said antenna elements as modified in step (b); and
(d) iteratively adjusting said signals representative of outputs of said antenna elements by
(d1) subjecting said signals representative of outputs of said antenna elements and estimates of information signal contents of signals representative of outputs of said antenna elements to a prescribed signal processing operator to derive improved values of said weighting coefficients, and
(d2) adjusting said signals representative of outputs of said antenna elements in accordance with said improved values of said weighting coefficients to produce improved signal outputs of said antenna elements, and
(d3) iteratively repeating steps (d1) and (d2) a number of times N, where N is greater than or equal to zero.
2. A method according to
claim 1
, wherein step (d3) comprises iteratively repeating steps (d1) and (d2), as necessary, to bring the signal-to-noise ratio of said improved signal outputs of said antenna elements to within a prescribed improvement value.
3. A method according to
claim 1
, wherein step (d3) comprises iteratively repeating steps (d1) and (d2) a predetermined number of times N, where N is greater than or equal to zero.
4. A method according to
claim 1
, wherein said prescribed signal processing operator is one which combines estimates of said information signal contents of signals representative of outputs of said antenna elements and signals representative of information signal contents and noise signal contents of outputs of said antenna elements to produce respective sets of signal and noise covariances, and generates said improved values of said weighting coefficients in accordance with said respective sets of signal and noise covariances.
5. A method according to
claim 4
, wherein step (d2) comprises generating products of said signals representative of outputs of said antenna elements and said improved values of said weighting coefficients to produce improved signal outputs of said antenna elements.
6. A method according to
claim 4
, wherein step (d2) comprises generating said improved values of said weighting coefficients in accordance with products of previous weighting coefficients and said respective sets of signal and noise covariances.
7. A method according to
claim 4
, wherein said prescribed signal processing operator is one which combines estimates of said information signal contents of signals representative of outputs of said antenna elements, and signals representative of information signal contents and noise signal contents of outputs of said antenna elements, to produce useful signal components and uncorrelated noise signal components, and is operative to produce said set of signal covariances in accordance with said information signal contents of outputs of said antenna elements and said useful signal components, and to produce said set of noise covariances in accordance with said noise signal contents of outputs of said antenna elements and said uncorrelated noise signal components.
8. A method according to
claim 1
, wherein step (c) comprises demodulating said signals representative of outputs of said antenna elements as modified in step (b) to generate said estimates of information signal contents of signals representative of outputs of said antenna elements.
9. A method according to
claim 1
, wherein step (a) comprises providing initial values of said weighting coefficients exclusive of information available in performing steps (c)-(d).
10. A method according to
claim 1
, wherein step (c) comprises subjecting said signals representative of outputs of said antenna elements as modified in step (b) to a limiter operator to generate said estimates of information signal contents of signals representative of outputs of said antenna elements.
11. A method according to
claim 1
, wherein step (c) comprises hard-limiting said signals representative of outputs of said antenna elements as modified in step (b) to generate said estimates of information signal contents of signals representative of outputs of said antenna elements.
12. A method according to
claim 1
, wherein step (d) comprises the preliminary step (do) of storing said signals representative of outputs of said antenna elements, step (d1) comprises subjecting signals stored in step (d0) and said estimates of information signal contents of signals representative of outputs of said antenna elements to a prescribed signal processing operator to derive improved values of said weighting coefficients, and step (d2) comprises adjusting said signals stored in step (d0) in accordance with said improved values of said weighting coefficients to produce improved signal outputs of said antenna elements.
13. A method according to
claim 1
, wherein said phased array antenna is installed at a cell base station of a multi-cell, time division multiple access (TDMA) cellular communication system, and has its directivity pattern adaptively modified in steps (a)-(d) so as to form a beam whose gain and/or nulls are defined so as to maximize the signal to noise ratio in the presence of co-channel users whose communication time slots overlap a communication time slot of said desired user.
14. A method according to
claim 13
, wherein steps (a)-(d) are performed during an unused time slot, to derive values of said weighting coefficients that are effective to maximize the signal to noise ratio in the presence of co-channel users whose communication time slots overlap a communication time slot of said desired user.
15. A method according to
claim 14
, wherein steps (a)-(d) are carried out by receiving transmissions from said users in said dispersed cells exclusive of a transmission from said user in said cell, and further including the step (e) of processing contents of said transmissions from said users to determine relative offsets between said users' time slots and said user time slot.
16. A method according to
claim 15
, wherein step (e) comprises correlating with synchronization patterns contained in transmissions from said users to identify times of transitions between successive ones of said users' time slots relative to a time of transition of said desired user's time slot, and deriving said set of weighting coefficients in accordance with said times of transitions.
17. A method according to
claim 16
, wherein step (e) further comprises generating said weighting coefficients, in response to a transition between successive ones of said users' time slots, and maintaining said values of said weighting coefficients until a further transition between successive ones of said users' time slots.
18. For use with a phased array antenna having a plurality of antenna elements, signal coupling paths of which are controllably weighted by amplitude and phase weighting coefficients to control the beam pattern of said phased array antenna, a method of processing signals representative of outputs of said antenna elements, to derive said weighting coefficients, said method comprising the steps of:
(a) generating initial values of said weighting coefficients;
(b) adjusting said signals representative of outputs of said antenna elements in accordance with said initial values of said weighting coefficients generated in step (a);
(c) generating initial estimates of information signal contents of signals representative of outputs of said antenna elements as adjusted in step (b);
(d) subjecting said signals representative of outputs of said antenna elements and said initial estimates of information signal contents of signals representative of outputs of said antenna elements generated in step (c) to a prescribed signal processing operator to derive improved values of said weighting coefficients; and
(e) adjusting said signals representative of outputs of said antenna elements in accordance with said improved values of said weighting coefficients generated in step (d) to produce improved signal outputs of said antenna elements.
19. A method according to
claim 18
, further including the steps of:
(f) subjecting said improved signal outputs of said antenna elements as adjusted in step (e) and said signals representative of outputs of said antenna elements to said prescribed signal processing operator to derive further improved values of said weighting coefficients;
(g) adjusting said improved signal outputs of said antenna elements in accordance with said further improved values of said weighting coefficients generated in step (f) to produce further improved signal outputs of said antenna elements; and
(h) iteratively repeating steps (f) and (g) a number of times N, where N is greater than or equal to zero.
20. A method according to
claim 19
, wherein step (h) comprises iteratively repeating steps (g) and (h), as necessary, to bring the signal-to-noise ratio of said improved signal outputs of said antenna elements to within a prescribed improvement value.
21. A method according to
claim 19
, wherein step (h) comprises iteratively repeating steps (g) and (h) a predetermined number of times N, where N is greater than or equal to zero.
22. A method according to
claim 18
, wherein said prescribed signal processing operator is one which combines estimates of said information signal contents of signals representative of outputs of said antenna elements and signals representative of information signal contents and noise signal contents of outputs of said antenna elements to produce respective sets of signal and noise covariances, and generates said improved values of said weighting coefficients in accordance with said respective sets of signal and noise covariances.
23. A method according to
claim 22
, wherein step (e) comprises generating products of said signals representative of outputs of said antenna elements and said improved values of said weighting coefficients to produce improved signal outputs of said antenna elements.
24. A method according to
claim 22
, wherein step (e) comprises generating said improved values of said weighting coefficients in accordance with products of previous weighting coefficients and said respective sets of signal and noise covariances.
25. A method according to
claim 22
, wherein said prescribed signal processing operator is one which combines estimates of said information signal contents of signals representative of outputs of said antenna elements, and signals representative of information signal contents and noise signal contents of outputs of said antenna elements, to produce useful signal components and uncorrelated noise signal components, and is operative to produce said set of signal covariances in accordance with said information signal contents of outputs of said antenna elements and said useful signal components, and to produce said set of noise covariances in accordance with said noise signal contents of outputs of said antenna elements and said uncorrelated noise signal components.
26. A method according to
claim 18
, wherein step (c) comprises hard-limiting said signals representative of outputs of said antenna elements as modified in step (b) to generate said estimates of information signal contents of signals representative of outputs of said antenna elements.
27. A method according to
claim 18
, wherein said phased array antenna is installed at a cell base station of a multi-cell, time division multiple access (TDMA) cellular communication system, and has its directivity pattern adaptively modified in steps (a)-(e) so as to form a beam whose gain and/or nulls are defined so as to maximize the signal to noise ratio in the presence of co-channel users whose communication time slots overlap a communication time slot of said desired user.
28. For use with a time division multiple access (TDMA) cellular communication system having a plurality of cells, that are dispersed relative to a cell in which a desired user conducts communications with a base station in said cell, and wherein said dispersed cells contain co-channel users which may transmit during time slots that overlap a desired user's time slot used for communications between said desired user and said base station, a base station signal processing arrangement for reducing interference of communications between said desired user and said base station, by transmissions from said co-channel users in said dispersed cells during said time slot, comprising:
a phased array antenna; and
a signal processor, coupled to said phased array antenna and being programmed to process signals received from said co-channel users, and adaptively controlling values of amplitude and phase weighting coefficients, through which signal coupling paths of said antenna elements are controllably weighted to control the directivity pattern of said phased array antenna in a manner that maximizes the signal to noise ratio in the presence of co-channel users whose communication time slots overlap a communication time slot of said desired user by performing the steps of:
(a) providing values of said weighting coefficients;
(b) modifying said signals representative of outputs of said antenna elements in accordance with said values of said weighting coefficients provided in step (a);
(c) generating estimates of information signal contents of signals representative of outputs of said antenna elements as modified in step (b); and
(d) iteratively adjusting said signals representative of outputs of said antenna elements by
(d1) subjecting said signals representative of outputs of said antenna elements and estimates of information signal contents of signals representative of outputs of said antenna elements to a prescribed signal processing operator to derive improved values of said weighting coefficients, and
(d2) adjusting said signals representative of outputs of said antenna elements in accordance with said improved values of said weighting coefficients to produce improved signal outputs of said antenna elements, and
(d3) iteratively repeating steps (d1) and (d2) a number of times N, where N is greater than or equal to zero.
29. A base station signal processing arrangement according to
claim 28
, wherein step (d3) comprises iteratively repeating steps (d1) and (d2), as necessary, to bring the signal-to-noise ratio of said improved signal outputs of said antenna elements to within a prescribed improvement value.
30. A base station signal processing arrangement according to
claim 28
, wherein step (d3) comprises iteratively repeating steps (d1) and (d2) a predetermined number of times N, where N is greater than or equal to zero.
31. A base station signal processing arrangement according to
claim 28
, wherein said prescribed signal processing operator is one which combines estimates of said information signal contents of signals representative of outputs of said antenna elements and signals representative of information signal contents and noise signal contents of outputs of said antenna elements to produce respective sets of signal and noise covariances, and generates said improved values of said weighting coefficients in accordance with said respective sets of signal and noise covariances.
32. A base station signal processing arrangement according to
claim 31
, wherein step (d2) comprises generating products of said signals representative of outputs of said antenna elements and said improved values of said weighting coefficients to produce improved signal outputs of said antenna elements.
33. A base station signal processing arrangement according to
claim 32
, wherein step (d2) comprises generating said improved values of said weighting coefficients in accordance with products of previous weighting coefficients and said respective sets of signal and noise covariances.
34. A base station signal processing arrangement according to
claim 31
, wherein said prescribed signal processing operator is one which combines estimates of said information signal contents of signals representative of outputs of said antenna elements, and signals representative of information signal contents and noise signal contents of outputs of said antenna elements, to produce useful signal components and uncorrelated noise signal components, and is operative to produce said set of signal covariances in accordance with said information signal contents of outputs of said antenna elements and said useful signal components, and to produce said set of noise covariances in accordance with said noise signal contents of outputs of said antenna elements and said uncorrelated noise signal components.
35. A base station signal processing arrangement according to
claim 28
, wherein step (a) comprises providing initial values of said weighting coefficients exclusive of information available in performing steps (c)-(d).
36. A base station signal processing arrangement according to
claim 28
, wherein step (c) comprises hard-limiting said signals representative of outputs of said antenna elements as modified in step (b) to generate said estimates of information signal contents of signals representative of outputs of said antenna elements.
37. A base station signal processing arrangement according to
claim 28
, wherein steps (a)-(d) are performed during an unused time slot, to derive values of said weighting coefficients that are effective to form a beam whose gain and/or nulls maximize the signal to noise ratio in the presence of co-channel users whose communication time slots overlap a communication time slot of said desired user.
38. A base station signal processing arrangement according to
claim 37
, wherein steps (a)-(d) are carried out by receiving transmissions from said users in said dispersed cells exclusive of a transmission from said user in said cell, and further including the step (e) of processing contents of said transmissions from said users to determine relative offsets between said users' time slots and said user time slot.
39. A base station signal processing arrangement according to
claim 38
, wherein step (e) comprises correlating with synchronization patterns contained in transmissions from said users to identify times of transitions between successive ones of said users' time slots relative to a time of transition of said desired user's time slot, and deriving said set of weighting coefficients in accordance with said times of transitions.
40. A base station signal processing arrangement according to
claim 28
, wherein said antenna comprises a non-linear array of antenna elements having a variable spacing between adjacent antenna elements.
41. A base station signal processing arrangement according to
claim 40
, wherein said phased array antenna comprises a generally circular array of antenna elements, and wherein spacings between successive antenna elements of said generally circular array vary such that, for any point on a radial line in the plane of said circular array and passing through an element of said circular array, the vector distance to any two antenna elements is unequal and uniformly distributed modulo 2π.
US09/782,767 1998-05-19 2001-02-13 Bootstrapped, piecewise-asymptotic directivity pattern control mechanism setting weighting coefficients of phased array antenna Expired - Lifetime US6397083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/782,767 US6397083B2 (en) 1998-05-19 2001-02-13 Bootstrapped, piecewise-asymptotic directivity pattern control mechanism setting weighting coefficients of phased array antenna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/081,460 US6188915B1 (en) 1998-05-19 1998-05-19 Bootstrapped, piecewise-asymptotic directivity pattern control mechanism setting weighting coefficients of phased array antenna
US09/782,767 US6397083B2 (en) 1998-05-19 2001-02-13 Bootstrapped, piecewise-asymptotic directivity pattern control mechanism setting weighting coefficients of phased array antenna

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/081,460 Continuation US6188915B1 (en) 1998-05-19 1998-05-19 Bootstrapped, piecewise-asymptotic directivity pattern control mechanism setting weighting coefficients of phased array antenna

Publications (2)

Publication Number Publication Date
US20010009861A1 true US20010009861A1 (en) 2001-07-26
US6397083B2 US6397083B2 (en) 2002-05-28

Family

ID=22164309

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/081,460 Expired - Fee Related US6188915B1 (en) 1998-05-19 1998-05-19 Bootstrapped, piecewise-asymptotic directivity pattern control mechanism setting weighting coefficients of phased array antenna
US09/782,767 Expired - Lifetime US6397083B2 (en) 1998-05-19 2001-02-13 Bootstrapped, piecewise-asymptotic directivity pattern control mechanism setting weighting coefficients of phased array antenna

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/081,460 Expired - Fee Related US6188915B1 (en) 1998-05-19 1998-05-19 Bootstrapped, piecewise-asymptotic directivity pattern control mechanism setting weighting coefficients of phased array antenna

Country Status (1)

Country Link
US (2) US6188915B1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020118783A1 (en) * 2001-02-26 2002-08-29 Peter Cripps Smart antenna based spectrum multiplexing using a pilot signal
US20020169005A1 (en) * 1998-10-07 2002-11-14 Katsuhiko Hiramatsu Base station apparatus and radio communication method
US6771608B2 (en) 2001-11-05 2004-08-03 The Boeing Company Link tracking with a phased array antenna in a TDMA network
US20040266485A1 (en) * 2003-06-30 2004-12-30 Jeyanandh Paramesh Method and apparatus to combine radio frequency signals
US20050221861A1 (en) * 2004-03-31 2005-10-06 Interdigital Technology Corporation Mitigation of wireless transmit/receive unit (WTRU) to WTRU interference using multiple antennas or beams
US20080209167A1 (en) * 2002-01-04 2008-08-28 Qst Holdings, Llc. Apparatus and method for adaptive multimedia reception and transmission in communication environments
US20080278374A1 (en) * 2005-05-09 2008-11-13 Shanghai Ultimate Power Communications Technology Co., Ltd. Method For Dynamically Selecting Antenna Array Architecture
US20110305212A1 (en) * 2008-11-26 2011-12-15 Kyocera Corporation Base station, method for arranging sub burst region in base station, method for determining terminal to be communicated with, and method for allocating downlink burst region
US8311505B1 (en) * 1999-11-10 2012-11-13 Kenneth F. Rilling Interference reduction for multiple signals
US8737944B2 (en) 2010-05-21 2014-05-27 Kathrein-Werke Kg Uplink calibration system without the need for a pilot signal
EP1959988B2 (en) 2005-12-09 2016-03-09 Progine Farmaceutici Srl Use of bovine lactoferrin for treating destructive inflammation of mucous membrane

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE511365C2 (en) * 1998-01-23 1999-09-20 Ericsson Telefon Ab L M antenna switching
EP0936755B1 (en) * 1998-02-13 2005-07-06 Nec Corporation Adaptive receiving device with antenna array
US6188915B1 (en) * 1998-05-19 2001-02-13 Harris Corporation Bootstrapped, piecewise-asymptotic directivity pattern control mechanism setting weighting coefficients of phased array antenna
JP2000059278A (en) * 1998-08-03 2000-02-25 Matsushita Electric Ind Co Ltd Radio communication equipment
US6226531B1 (en) * 1998-08-24 2001-05-01 Harris Corporation High capacity broadband cellular/PCS base station using a phased array antenna
US7076227B1 (en) * 1998-12-03 2006-07-11 Apex/Eclipse Systems, Inc. Receiving system with improved directivity and signal to noise ratio
US6628969B1 (en) * 1999-09-07 2003-09-30 Kenneth F. Rilling One-tuner adaptive array
US7106853B1 (en) * 1999-09-20 2006-09-12 Apex/Eclipse Systems, Inc. Method and means for increasing inherent channel capacity for wired network
JP4318389B2 (en) * 2000-04-03 2009-08-19 三洋電機株式会社 Adaptive array device, wireless base station, mobile phone
GB2380611B (en) * 2001-05-31 2003-11-12 Univ York Antennas for cellular networks
GB2376567B (en) * 2001-06-12 2005-07-20 Mobisphere Ltd Improvements in or relating to smart antenna arrays
GB2376568B (en) 2001-06-12 2005-06-01 Mobisphere Ltd Improvements in or relating to smart antenna arrays
JP3881196B2 (en) * 2001-06-27 2007-02-14 富士通株式会社 Wireless base station equipment
US6600446B2 (en) 2001-06-29 2003-07-29 Lockheed Martin Corporation Cascadable architecture for digital beamformer
US20040204103A1 (en) * 2002-03-18 2004-10-14 Rouphael Antoine J. Adaptive beamforming in a wireless communication system
JP3913696B2 (en) * 2003-03-19 2007-05-09 三洋電機株式会社 Base station equipment
US7006800B1 (en) * 2003-06-05 2006-02-28 National Semiconductor Corporation Signal-to-noise ratio (SNR) estimator in wireless fading channels
US7852963B2 (en) * 2004-03-05 2010-12-14 Alcatel-Lucent Usa Inc. Method and system for predicting signal power to interference metric
US7068219B2 (en) * 2004-06-10 2006-06-27 Harris Corporation Communications system including phased array antenna providing nulling and related methods
JP4459738B2 (en) * 2004-07-05 2010-04-28 株式会社エヌ・ティ・ティ・ドコモ Relay device, communication device, and directivity control method
US20060033659A1 (en) * 2004-08-10 2006-02-16 Ems Technologies Canada, Ltd. Mobile satcom antenna discrimination enhancement
CA2504989C (en) * 2005-04-22 2013-03-12 Gotohti.Com Inc. Stepped pump foam dispenser
CN100512052C (en) * 2005-04-28 2009-07-08 上海原动力通信科技有限公司 Beam shaping method for inhibiting interferes
US7991167B2 (en) * 2005-04-29 2011-08-02 Lifesize Communications, Inc. Forming beams with nulls directed at noise sources
US8160569B1 (en) * 2005-12-07 2012-04-17 Rockwell Collins, Inc. Bootstrap recursive directional determination for dynamic high-rate directional networking links
WO2007133190A2 (en) 2006-05-01 2007-11-22 Conexant Systems, Inc. Systems and method for frequency based satellite channel scanning
US7830982B2 (en) * 2006-05-12 2010-11-09 Northrop Grumman Systems Corporation Common antenna array using baseband adaptive beamforming and digital IF conversion
US7864657B2 (en) * 2006-05-23 2011-01-04 Motorola Mobility, Inc. Method and apparatus for performing stream weighting in an SDMA communication system
JP4138825B2 (en) * 2006-07-26 2008-08-27 株式会社東芝 Weight calculation method, weight calculation device, adaptive array antenna, and radar device
US8195118B2 (en) 2008-07-15 2012-06-05 Linear Signal, Inc. Apparatus, system, and method for integrated phase shifting and amplitude control of phased array signals
US8489055B2 (en) * 2008-11-14 2013-07-16 Astrium Limited Active interference suppression in a satellite communication system
GB0820902D0 (en) * 2008-11-14 2008-12-24 Astrium Ltd Active interference suppression in a satellite communication system
US8872719B2 (en) 2009-11-09 2014-10-28 Linear Signal, Inc. Apparatus, system, and method for integrated modular phased array tile configuration
US9121943B2 (en) * 2011-05-23 2015-09-01 Sony Corporation Beam forming device and method
CN106330282B (en) * 2015-06-30 2019-11-12 华为技术有限公司 A kind of signal processing method and device
US11923927B2 (en) 2019-10-24 2024-03-05 The University Of Sydney M-MIMO receiver
CN113569192B (en) * 2021-08-05 2024-03-12 阳光学院 Multi-phase hierarchical nested array antenna beam synthesis method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4079379A (en) * 1976-11-22 1978-03-14 Motorola, Inc. Null steering apparatus for a multiple antenna array
US5592490A (en) 1991-12-12 1997-01-07 Arraycomm, Inc. Spectrally efficient high capacity wireless communication systems
US5634199A (en) 1993-04-14 1997-05-27 Stanford University Method of subspace beamforming using adaptive transmitting antennas with feedback
US5471647A (en) 1993-04-14 1995-11-28 The Leland Stanford Junior University Method for minimizing cross-talk in adaptive transmission antennas
US5542101A (en) 1993-11-19 1996-07-30 At&T Corp. Method and apparatus for receiving signals in a multi-path environment
US5929811A (en) * 1995-03-28 1999-07-27 Rilling; Kenneth F. Adaptive array with automatic loop gain control
DE69705356T2 (en) * 1996-05-17 2002-05-02 Motorola Ltd., Basingstoke Method and device for weighting a transmission path
JP3405111B2 (en) * 1997-02-13 2003-05-12 Kddi株式会社 Array antenna control method and device
US5952968A (en) * 1997-09-15 1999-09-14 Rockwell International Corporation Method and apparatus for reducing jamming by beam forming using navigational data
US6188915B1 (en) * 1998-05-19 2001-02-13 Harris Corporation Bootstrapped, piecewise-asymptotic directivity pattern control mechanism setting weighting coefficients of phased array antenna

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020169005A1 (en) * 1998-10-07 2002-11-14 Katsuhiko Hiramatsu Base station apparatus and radio communication method
US8311505B1 (en) * 1999-11-10 2012-11-13 Kenneth F. Rilling Interference reduction for multiple signals
US20020118783A1 (en) * 2001-02-26 2002-08-29 Peter Cripps Smart antenna based spectrum multiplexing using a pilot signal
US6771608B2 (en) 2001-11-05 2004-08-03 The Boeing Company Link tracking with a phased array antenna in a TDMA network
US20080209167A1 (en) * 2002-01-04 2008-08-28 Qst Holdings, Llc. Apparatus and method for adaptive multimedia reception and transmission in communication environments
US20040266485A1 (en) * 2003-06-30 2004-12-30 Jeyanandh Paramesh Method and apparatus to combine radio frequency signals
US7197336B2 (en) * 2003-06-30 2007-03-27 Intel Corporation Method and apparatus to combine radio frequency signals
US20050221861A1 (en) * 2004-03-31 2005-10-06 Interdigital Technology Corporation Mitigation of wireless transmit/receive unit (WTRU) to WTRU interference using multiple antennas or beams
US7630688B2 (en) * 2004-03-31 2009-12-08 Interdigital Technology Corporation Mitigation of wireless transmit/receive unit (WTRU) to WTRU interference using multiple antennas or beams
US20100081396A1 (en) * 2004-03-31 2010-04-01 Interdigital Technology Corporation Mitigation of wireless transmit/receive unit (wtru) to wtru interference using multiple antennas or beams
US7835700B2 (en) 2004-03-31 2010-11-16 Interdigital Technology Corporation Mitigation of wireless transmit/receive unit (WTRU) to WTRU interference using multiple antennas or beams
TWI454081B (en) * 2004-03-31 2014-09-21 Interdigital Tech Corp Mitigation of wireless transmit/receive unit (wtru) to wtru interference using multiple antennas or beams
US20080278374A1 (en) * 2005-05-09 2008-11-13 Shanghai Ultimate Power Communications Technology Co., Ltd. Method For Dynamically Selecting Antenna Array Architecture
EP1959988B2 (en) 2005-12-09 2016-03-09 Progine Farmaceutici Srl Use of bovine lactoferrin for treating destructive inflammation of mucous membrane
US20110305212A1 (en) * 2008-11-26 2011-12-15 Kyocera Corporation Base station, method for arranging sub burst region in base station, method for determining terminal to be communicated with, and method for allocating downlink burst region
US9001752B2 (en) * 2008-11-26 2015-04-07 Kyocera Corporation Base station, method for arranging sub burst region in base station, method for determining terminal to be communicated with, and method for allocating downlink burst region
US8737944B2 (en) 2010-05-21 2014-05-27 Kathrein-Werke Kg Uplink calibration system without the need for a pilot signal

Also Published As

Publication number Publication date
US6188915B1 (en) 2001-02-13
US6397083B2 (en) 2002-05-28

Similar Documents

Publication Publication Date Title
US6188915B1 (en) Bootstrapped, piecewise-asymptotic directivity pattern control mechanism setting weighting coefficients of phased array antenna
US5434578A (en) Apparatus and method for automatic antenna beam positioning
KR100608468B1 (en) Antenna Beam Patterns Having Wide Nulls
CA2397131C (en) Linear signal separation using polarization diversity
US8706167B2 (en) Communication system for mobile users using adaptive antenna with auxiliary elements
Steyskal Digital beamforming
US6226531B1 (en) High capacity broadband cellular/PCS base station using a phased array antenna
AU559567B2 (en) Adaptive antenna array
DE69812445T2 (en) Adaptive antenna
EP1352485B1 (en) Stratospheric platforms communication system using adaptive antennas
RU2523697C2 (en) Active interference mitigation in satellite communication system
CN113721198A (en) Physical layer security combined beam forming method for dual-function MIMO radar communication system
US6968022B1 (en) Method and apparatus for scheduling switched multibeam antennas in a multiple access environment
US7414578B1 (en) Method for efficiently computing the beamforming weights for a large antenna array
US20050169359A1 (en) Apparatus and method for multi-channel equalization
Reddy et al. A Comprehensive Survey on mm Wave Systems with Beamforming Effects in Antenna for 5G Applications
AU727787B2 (en) Cochannel signal processing system
Tsinos et al. Joint Radar-Communication Systems By Optimizing Radar Performance and Quality of Service for Communication Users
GB2265053A (en) Digital signal receiver and signal processor.
Yu et al. Adaptive digital beamforming techniques in transmission antenna arrays
Li et al. Hybrid Beamforming Design and Signal Processing with Fully-Connected Architecture for mmWave Integrated Sensing and Communications
AU762769B2 (en) A method for processing received radio signals subject to unpredictable change in polarization state during propagation
Han et al. Tiled Beamspace Processing for Scaling mmWave Massive MU-MIMO
Zhu et al. An ASI Suppression Scheme Based on Array Synthesis
Do-Hong et al. Wideband direction-of-arrival estimation and beamforming for smart antennas system

Legal Events

Date Code Title Description
AS Assignment

Owner name: HARRIS CORPORATION, FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MARTIN, GAYLE PATRICK;HALFORD, STEVEN D.;HENRY III, JOHN C.;REEL/FRAME:011578/0202;SIGNING DATES FROM 19980216 TO 19980225

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: NETGEAR, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HARRIS CORPORATION;REEL/FRAME:029578/0557

Effective date: 20121106

FPAY Fee payment

Year of fee payment: 12