US20010001878A1 - System and method for processor dual voltage detection and over stress protection - Google Patents

System and method for processor dual voltage detection and over stress protection Download PDF

Info

Publication number
US20010001878A1
US20010001878A1 US09/176,737 US17673798A US2001001878A1 US 20010001878 A1 US20010001878 A1 US 20010001878A1 US 17673798 A US17673798 A US 17673798A US 2001001878 A1 US2001001878 A1 US 2001001878A1
Authority
US
United States
Prior art keywords
processor
voltage
pin
signal
recited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/176,737
Other versions
US6327663B2 (en
Inventor
Gerald G. Isaac
Dervinn D. Caldwell
Lance L. Smith
Joseph A. Brcich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GlobalFoundries Inc
AMD Technologies Holdings Inc
Original Assignee
Advanced Micro Devices Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Micro Devices Inc filed Critical Advanced Micro Devices Inc
Priority to US09/176,737 priority Critical patent/US6327663B2/en
Assigned to ADVANCED MICRO DEVICES, INC. reassignment ADVANCED MICRO DEVICES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BRCICH, JOSEPH A., CALDWELL, DERVINN D., ISAAC, GERALD G., SMITH, LANCE L.
Publication of US20010001878A1 publication Critical patent/US20010001878A1/en
Application granted granted Critical
Publication of US6327663B2 publication Critical patent/US6327663B2/en
Assigned to AMD TECHNOLOGIES HOLDINGS, INC. reassignment AMD TECHNOLOGIES HOLDINGS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ADVANCED MICRO DEVICES, INC.
Assigned to GLOBALFOUNDRIES INC. reassignment GLOBALFOUNDRIES INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AMD TECHNOLOGIES HOLDINGS, INC.
Anticipated expiration legal-status Critical
Assigned to WILMINGTON TRUST, NATIONAL ASSOCIATION reassignment WILMINGTON TRUST, NATIONAL ASSOCIATION SECURITY AGREEMENT Assignors: GLOBALFOUNDRIES INC.
Assigned to GLOBALFOUNDRIES INC. reassignment GLOBALFOUNDRIES INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: WILMINGTON TRUST, NATIONAL ASSOCIATION
Assigned to GLOBALFOUNDRIES U.S. INC. reassignment GLOBALFOUNDRIES U.S. INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: WILMINGTON TRUST, NATIONAL ASSOCIATION
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof

Definitions

  • the present invention relates to processor-based computer systems, and more specifically, to a method and a system for automatically sensing processor operating voltage requirements and accordingly adjusting the power supply populated on a printed circuit board to which the processor is coupled.
  • a processor-based computer system is generally known to comprise, at a minimum, an execution unit, memory and various input/output ports.
  • the execution unit is often referred to as a processor, and the processor is typically linked to the memory via a system bus.
  • the system bus sometimes referred to as a local bus, links address and data information sent between the processor and memory.
  • the system bus can also link the processor, or memory, to various other subsystems, some of which are arranged on a single printed circuit board.
  • the single printed circuit board is often referred to as a motherboard.
  • motherboards manufactured today can support multiple configurations.
  • modern motherboards come equipped with numerous switches or jumpers, which can alter the operation of one or more subsystems arranged thereon.
  • the voltage supplied to a processor can also be changed, for example, by connecting a jumper or actuating a switch. It is therefore necessary when inserting a processor into a motherboard that the operator know which jumper to connect or which switch to activate.
  • a motherboard is manufactured so that it can accommodate dissimilar processors, including processors that respond to differing power supply voltages. Coupled with today's dissimilar processor needs, it is easy to be confused while connecting a processor to a motherboard. Because of this confusion, many processors are often damaged due to electrical over stress when subjected to incorrect voltage settings during power-up.
  • One solution to the above problems is a system for detecting jumper and switch settings prior to coupling a processor to the motherboard.
  • Such a system employs a probe and a display remotely linked to the probe.
  • the probe contains a sensor, which responds to signals within the motherboard during times when the probe connects to printed conductors embodying those signals.
  • the sensor is designed to detect the system bus frequency and power supply voltage “seen” by a processor to be connected thereto.
  • the probe may couple to a localized area (or socket) of the motherboard on which a processor is designed for coupling.
  • the motherboard voltage can be changed by identifying the switch of interest and actuating that switch.
  • employing such a system requires that the user is familiar with the processor voltage requirements. Further, the user must also be familiar with the motherboard jumpers and switches applicable to voltage supply. Additional disadvantages of such a system include the need to use an additional and external sensing system in order to identify the current settings of the voltage supply on a motherboard in order to be able to adjust the settings to the one appropriate for the processor to be coupled thereto.
  • a system for detecting the processor supply voltage requirements operable on the processor itself without the need for an external sensing system is therefore desired. Further, a system including a mechanism that is capable of automatically adjusting the power supply into a processor upon identification of the processor needs is also desirable.
  • the problems outlined above are in large part solved by a system that employs a mechanism for detecting the voltage requirements of a processor to be coupled into a motherboard and accordingly adjusts the power supply of the motherboard to the processor voltage requirements.
  • the detection mechanism employed by the system includes the sensing of voltage supply indicators built-in to the processor. Processors with built-in voltage power indication capabilities provide voltage supply indications through pins designed to support voltage detection.
  • the voltage supply adjustment mechanism employed by the system includes controlling voltage regulating circuitry to adjust the voltage supplied to the processor as to the appropriate power requirements during the powering up of the processor. Since the detection of the proper operating voltage requirements of the processor and the consequent adjustment of the voltage power to be supplied to the processor occur automatically during the powering up of the processor, electrical over stress and potential damage of the processor may be eliminated.
  • the processor to be coupled into a motherboard can provide signals indicative of the number of levels of supply voltage and the value of each level of supply voltage needed to correctly operate the processor.
  • the indicative signals may be detected from the processor by applying dissimilar sensing signals into at least one pin of the processor pins.
  • System logic may be employed to detect the voltage requirements. A plurality of logic signals can be detected in this manner to indicate a plurality of voltage requirements appropriate for the processor.
  • the system logic contains circuitry to sense a first pin within a plurality of pins of a processor coupled to an appropriate processor's socket in a motherboard.
  • the first pin of the to-be-coupled processor may be designed to indicate a predetermined level of voltage upon sensing by the system logic circuitry.
  • a logic signal of low and a logic signal of high may be obtained upon sensing the pin by the system logic.
  • the specific level e.g. low indicates the processor's dual voltage requirement (versus a single voltage requirement if the signal is, e.g., high).
  • a second sensing of a second pin within the plurality of the processor's pins may indicate the level of voltage that should be supplied to the processor core, which is different from the voltage supplied to the I/O buffers.
  • the first and second sensing of the first and second pins may be achieved simultaneously.
  • the system logic that senses the first and second pins of a processor coupled to an appropriate socket of a motherboard may be coupled to a power supply circuit to control voltages supplied to the processor upon the identification of the processor voltage supply requirements.
  • FIG. 1 is a block diagram of one embodiment of a computer system with an electrical over stress protection system
  • FIG. 2 is a block diagram depicting one embodiment of an over stress protection system (OSPS);
  • OSPS over stress protection system
  • FIG. 3 is a block diagram of an embodiment of the OSPS using a sensed logic signal from a processor
  • FIG. 4 is a block diagram of an embodiment of the OSPS using a second sensed logic signal from a processor
  • FIG. 5 is a block diagram of an embodiment of the OSPS using three sensed logic signals from a processor
  • FIG. 6 is a block diagram of an embodiment of the OSPS using a combination of sensed logic signals from a processor and a signal from a board to which the processor is coupled;
  • FIG. 7 is a block diagram of one embodiment of a processor shown in FIG. 1;
  • FIG. 8 is a block diagram of a portion of another embodiment of a computer system.
  • FIG. 9 is a block diagram of a portion of the OSPS shown in FIG. 8.
  • FIG. 1 a block diagram of one embodiment of a computer system with an electrical over stress protection system is shown.
  • FIG. 1 shows a computer system 200 including an over stress protection system (OSPS) 20 .
  • a processor 10 coupled to a variety of system components in the computer system 200 through a bus bridge 202 is shown.
  • a main memory 204 is coupled to bus bridge 202 through a memory bus 206
  • a graphics controller 208 is coupled to bus bridge 202 through an AGP bus 210 .
  • a plurality of PCI devices 212 A- 212 B are coupled to bus bridge 202 through a PCI bus 214 .
  • a secondary bus bridge 216 may further be provided to accommodate an electrical interface to one or more EISA or ISA devices 218 through an EISA/ISA bus 220 .
  • Processor 10 is coupled to bus bridge 202 through bus interface 46 .
  • the OSPS 20 is coupled to processor 10 and to a power supply 30 .
  • Power supply 30 is configured to supply voltage to different components within computer system 200 including processor 10 .
  • the OSPS may be coupled to one or more pins of processor 10 or the socket connector pins corresponding to those of the processor pins.
  • Bus bridge 202 provides an interface between processor 10 , main memory 204 , graphics controller 208 , and devices attached to PCI bus 214 .
  • bus bridge 202 identifies the target of the operation (e.g. a particular device or, in the case of PCI bus 214 , that the target is on PCI bus 214 ).
  • Bus bridge 202 routes the operation to the targeted device.
  • Bus bridge 202 generally translates an operation from the protocol used by the source device or bus to the protocol used by the target device or bus.
  • secondary bus bridge 216 may further incorporate additional functionality, as desired.
  • An input/output controller (not shown), either external from or integrated with secondary bus bridge 216 , may also be included within computer system 200 .
  • An external cache unit (not shown) may further be coupled to bus interface 46 between processor 10 and bus bridge 202 in other embodiments.
  • the external cache may be coupled to bus bridge 202 and cache control logic for the external cache may be integrated into bus bridge 202 .
  • processor 10 may include a “backside cache” configuration in which a separate connection from bus interface 46 is used to connect to an L 2 cache.
  • Such a configuration may include the L 2 cache and processor 10 incorporated onto a module (e.g. slot 1 or slot A).
  • Main memory 204 is a memory in which application programs are stored and from which processor 10 primarily executes.
  • a suitable main memory 204 comprises DRAM (Dynamic Random Access Memory).
  • DRAM Dynamic Random Access Memory
  • SDRAM Serial DRAM
  • RDRAM RAMBUS DRAM
  • PCI devices 212 A- 212 B are illustrative of a variety of peripheral devices such as, for example, network interface cards, video accelerators, audio cards, hard or floppy disk drives or drive controllers, SCSI (Small Computer Systems Interface) adapters and telephony cards.
  • ISA device 218 is illustrative of various types of peripheral devices, such as a modem, a sound card, and a variety of data acquisition cards such as GPIB or field bus interface cards.
  • Graphics controller 208 is provided to control the rendering of text and images on a display 226 .
  • Graphics controller 208 may embody a typical graphics accelerator generally known in the art to render three-dimensional data structures which can be effectively shifted into and from main memory 204 .
  • Graphics controller 208 may therefore be a master of AGP bus 210 in that it can request and receive access to a target interface within bus bridge 202 to thereby obtain access to main memory 204 .
  • a dedicated graphics bus accommodates rapid retrieval of data from main memory 204 .
  • graphics controller 208 may further be configured to generate PCI protocol transactions on AGP bus 210 .
  • the AGP interface of bus bridge 202 may thus include functionality to support both AGP protocol transactions as well as PCI protocol target and initiator transactions.
  • Display 226 is any electronic display upon which an image or text can be presented.
  • a suitable display 226 includes a cathode ray tube (“CRT”), a liquid crystal display (“LCD”), etc.
  • CTR cathode ray tube
  • LCD liquid crystal display
  • computer system 200 may be a multiprocessing computer system including additional processors.
  • the OSPS 20 includes a voltage detection unit 22 and a voltage control unit 24 .
  • the voltage detection unit 22 is coupled to a processor 10 and the voltage control unit 24 .
  • the voltage control unit 24 is coupled to a voltage regulating circuitry 40 of power supply 30 .
  • the voltage control unit 24 is configured to sense a pin of processor 10 wherein processor 10 is equipped with voltage detection capabilities through at least one pin.
  • Such a pin may be the VCC2DET pin 32 shown in FIG. 2.
  • the VCC2DET pin 32 may be used to convey a logic signal indicative of a dual voltage requirement or single voltage requirement of the processor.
  • the voltage detection unit 22 may be additionally configured to sense a second pin of processor 10 .
  • the second pin can be used to indicate to the OSPS 20 a level of one of operating voltages of the dual voltages which must be supplied to processor 10 for proper operation upon detection of a dual voltage requirement using the first pin.
  • the second pin may be, for example, the VCC2H/L# pin 34 shown in FIG. 2.
  • the operation of the OSPS 20 is performed during the powering up phase of the processor to be connected into a printed circuit board prior to the actual supply of the power to the processor.
  • the power may be supplied by a power supply unit built into the printed circuit board or by an external power supply unit. This step is implemented to insure detection of the voltage requirement prior to actually powering the core and the I/O buffers of the processor to be coupled thereto. Therefore, the OSPS 20 performs its functions prior to actual powering up of the processor.
  • the voltage control unit 24 of the OSPS 20 (FIG. 2) is configured to control (i.e. enable/disable) the voltage supply to the processor core and I/O buffers.
  • Voltage detection unit 22 is configured to control the level of voltages supplied to the processor.
  • OSPS 20 is described as sensing various pins.
  • processor 10 may be internally configured with either a connection of the sensed pins to ground or no connection.
  • an external pullup resistor may be provided upon each sensed pin and detect either a logic low (pin connected to ground) or a logic high (floating pin pulled up by the pullup resistor).
  • Other configurations are possible as well.
  • two pins could be optionally connected together or not connected together, and the connection/lack of connection could be sensed externally.
  • a current could be supplied to one of the pins and current sensed at the other pin to detect the connection or lack of connection.
  • the sensed pins could be connected/not connected to a particular pin powered by OSPS 20 during power up.
  • pins would be either a logic high (pin connected) or floating (pin not connected) and pulldown resistors may be used.
  • a variety of alternatives are contemplated.
  • a comparator circuit 510 is used to detect two voltage signals from a power supply unit.
  • a reference voltage such as 3.3 volts
  • VCC2 core supply voltage
  • the comparator 510 compares the reference voltage signal with the core voltage signal (VCC2) of the power supply and generates a logic output indicative of the result of the comparison.
  • the output signal of comparator 510 is a logical one if VCC2 is less than the reference voltage and a logical zero if the VCC2 is greater than the reference voltage.
  • the logic output of the comparator 510 is exclusively ORed (circuit 520 ) with the logic level sensed on the VCC2DET pin 32 from processor 10 .
  • the output of the logic circuit 520 is supplied to the power supply regulator circuitry 40 within power supply 30 . If the output is high, voltage regulating circuitry 40 is enabled and processor 10 may be powered up. On the other hand, if the output is low, voltage regulating circuitry 40 is disabled and processor 10 is not powered up.
  • processor 10 is powered up if: (i) the selected VCC2 (core) voltage is less than the reference voltage and VCC2DET pin 32 is a logical low, indicating dual power supply requirements for processor 10 ; or (ii) the selected VCC2 voltage is greater than the reference voltage and VCC2DET pin 32 is a logical high, indicating single power supply requirements for processor 10 .
  • Situation (i) may be indicative of, for example, an AMD K6 processor while situation (ii) may be indicative of an AMD K5 processor in one illustrative example. It is noted that the selected VCC2 voltage may be selected in accordance with the VCC2DET and VCC2H/L# pins as described in more detail below.
  • FIG. 4 a block diagram of an embodiment of the voltage detection unit 22 is shown wherein a second logic signal sensed from a processor is used as to control the supply voltage level to the processor.
  • the VCC2H/L# pin 34 is used by voltage detection unit 22 to control voltage regulator 40 .
  • the condition of the sensed VCC2H/L# signal is either directly or indirectly used to control the level of a power signal to be supplied to the processor.
  • the logic signal on the VCC2H/L# pin is applied into a voltage-divider resistor circuit 26 .
  • VCC2H/L# If the VCC2H/L# signal is low (e.g., the pin is internally connected to ground), resistor 630 is bypassed (shorted to ground) and the resulting voltage applied to the processor is reduced to the desired voltage. If the VCC2H/L# signal is not low (for example, the pin is not internally connected to ground), the voltage supplied is developed across the complete resistor circuit ( 610 , 620 , and 630 ) and a higher voltage supply is applied to the processor. The adjustment applied to the voltage supply signal to the processor allows the voltage regulator circuit 40 to apply the correct voltage to the core voltage pins (VCC2 pins) of the processor.
  • the processor may be powering up with a different core voltage (e.g., dual-voltage) than the voltage applied to the I/O buffer pins of the processor (whose power may be applied separately from a VCC3 output of the power supply 30 as shown in FIG. 4).
  • Voltage detection unit 22 may not need to provide a pullup resistor on VCC2H/L# pin 34 in this example.
  • FIG. 5 an embodiment of the OSPS 20 is shown where more than two logic signals are detected from a processor to be coupled into a printed circuit board with a range of supply voltages by a power supply.
  • the voltage detection unit 22 is used to sense logic signals from more than two pins of the processor to be coupled to the printed circuit board.
  • the logic signals detected from a third or more pins are used to adjust the voltage supplied to the processor through a programmable logic device (PLD) 710 .
  • PLD programmable logic device
  • the voltage detection unit 22 Since more logic signals are detected by the voltage detection unit 22 , more options are available due to larger combinations of logic and thus more voltage levels may be adjusted or selected for supply into the processor, thus covering a range of operating voltage requirements for many processors and printed circuit boards.
  • at least three logic signals may be detected.
  • the logic signals may be detected from the VCC2DET, VCC2H/L#, and BFl pins of the processor 10 (reference numerals 32 , 34 , and 36 , respectively).
  • the detected logic signals are supplied to the programmable detection unit 710 prior to the powering up of processor 10 .
  • the output of the PLD is used to adjust or select the number and level of voltage supply signals to be supplied into the processor.
  • At least one signal is detected from a printed circuit board to which a processor 10 is to be coupled.
  • These signals from the printed circuit board are sampled by the voltage detection unit 22 as additional signals to the logic signals sensed from the processor pins (VCC2DET, VCC2H/L#, and BFl are shown as reference numerals 32 , 34 , and 36 , respectively).
  • signals from jumpers in the printed circuit board can be added to the input of the voltage detection unit 22 as illustrated.
  • the additional signals provide additional options that can be supplied into a voltage control unit or the PLD 710 , thus resulting in a wider range of selection as more voltage control options become available due to more selection options generated from the combination of a larger number of signals.
  • processor 10 includes a core 64 and one or more I/O buffers 66 . Additionally, processor 10 includes VCC2DET pin 32 and VCC2H/L# pin 34 (as well as other pins used by I/O buffers 66 for communication, not shown).
  • the core voltage (VCC2) is illustrated by a pin 62 . However, it is noted that multiple pins may be used to supply the core voltage.
  • the I/O voltage (VCC3) is shown as a pin 60 . However, it is noted that multiple pins may be used to supply the I/O voltage.
  • core 64 includes the logic circuitry employed to perform the functions of processor 10
  • I/O buffers 66 include the circuitry for communicating with other devices (e.g. using bus interface 46 ).
  • the core voltage provided on VCC2 pin(s) 62 powers the circuitry in core 64
  • the I/O voltage provided on VCC3 pin(s) 60 powers the I/O buffer circuitry in I/O buffers 66 .
  • FIG. 8 a block diagram of a portion of another embodiment of a computer system (computer system 200 a ) is shown.
  • a processor 10 a is coupled to an OSPS 20 a, a power supply 30 a, a clock unit 74 , bus bridge 202 , and an optional cache 72 .
  • processor 10 a is coupled to OSPS 20 a via VCC2DET pin 32 , VCC2H/L# pin 34 , BF 1 pin 36 , and a VCC18 pin 70 .
  • processor 10 a receives a core voltage supply VCC2 and an I/O voltage supply VCC3 from power supply 30 a.
  • Processor 10 a is configured to receive a clock signal from clock unit 74 and is coupled to communicate via bus interface 46 with bus bridge 202 and cache 72 .
  • Processor 10 a is configured to indicate its dual voltage requirements using VCC2DET pin 32 , as described above for processor 10 . Furthermore, processor 10 a is configured to indicate a high or low voltage level requirement for VCC2 via the VCC2H/L# pin 34 similar to the above description. However, processor 10 a may require an even lower VCC2 voltage than processor 10 (e.g. 1.8 volts). Furthermore, processor 10 a requires that VCC3 be lower than that required by processor 10 (e.g. 2.5 volts). Processor 10 a indicates these lower voltage requirements using VCC18 pin 70 .
  • VCC18 pin 70 is either internally not connected or internally connected to ground.
  • An external pullup resistor may be used to pull up VCC18 pin 70 similar to VCC2DET and VCC2H/L# pins 32 and 34 .
  • pullup resistors may be eliminated with an appropriate voltage detection unit.
  • Alternative connections for VCC1 8 pin 70 are possible as well, similar to the above description of the VCC2DET and VCC2H/L# pins.
  • OSPS 20 a controls power supply 30 a to provide power to processor 10 a and to other devices shown in FIG. 8.
  • the VCC2 voltage is generated in response to both the VCC2H/L# and VCC18 pins. For example, in one exemplary embodiment, if VCC2H/L# pin 32 is floating and VCC 18 pin 70 is floating, then VCC2 may be supplied at 2.9 volts. If VCC2H/L# pin 32 is a logic low and VCC18 pin 70 is floating, then VCC2 may be supplied at 2.2 volts.
  • VCC18 is a logic low
  • VCC2H/L# pin 32 is a don't care and VCC2 may be supplied at 1.8 volts.
  • Other voltage levels may be selected in other embodiments, according to the requirements of the particular processor, and the VCC2H/L# pin and VCC18 pin may be used to select between a high, medium, and low voltage level from among the desired voltage levels.
  • the generated VCC2 voltage is provided to the VCC2 pin(s) of processor 10 a.
  • Power supply 30 a further generates a VIO voltage responsive to VCC18 pin 70 .
  • the VIO voltage is supplied to the VCC3 pin(s) of processor 10 a, and is the voltage supplied to the I/O buffers of other devices which communicate with processor 10 a (or at least those I/O buffers coupled to pins of processor 10 a ).
  • all devices coupled to processor 10 a may employ voltage levels compatible with processor 10 a.
  • the processor I/O sections of clock unit 74 , bus bridge 202 , and cache 72 are powered by the VIO voltage.
  • remaining portions of theses devices may be powered with a VSYS voltage (e.g. 3.3 volts) provided by power supply 30 a.
  • VSYS voltage e.g. 3.3 volts
  • FIG. 9 a block diagram illustrating processor 10 a, power supply 30 a, and portions of OSPS 20 a is shown. Other embodiments are possible and contemplated.
  • voltage detection units 22 A and 22 B are shown. Voltage detection units 22 A and 22 B, in addition to a voltage control unit 24 described above, may comprise one embodiment of OSPS 20 a.
  • Voltage detection unit 22 A may operate in conjunction with voltage regulating circuitry 40 A to produce the VIO voltage from power supply 30 a.
  • voltage detection unit 22 A comprises a voltage divider circuit including resistors 810 , 820 , and 830 connected in series.
  • VCC18 pin 70 is coupled to the node between resistors 810 and 820 . Accordingly, if VCC18 is connected to ground, then resistor 810 is bypassed (i.e. shorted). The VIO voltage is therefore lowered to the desired lower voltage level (e.g. 2.5 volts). On the other hand, if VCC18 is floating, the VIO voltage is developed across the entire set of resistors 810 - 830 , and a higher VIO voltage is generated (e.g. 3.3. volts).
  • Voltage detection unit 22 B controls voltage regulating circuitry 40 B to generate the VCC2 voltage as one of three possible voltage levels in response to the VCC18 pin 70 and the VCC2H/L# pin 34 .
  • Voltage detection unit 22 B comprises a voltage divider circuit including resistors 840 , 850 , 860 , and 870 connected in series.
  • VCC18 pin 70 is coupled to the node between resistors 860 and 850
  • VCC2H/L# pin 34 is coupled to the node between resistors 840 and 850 .
  • VCC2H/L# pin 34 and VCC18 pin 70 are floating, the VCC2 voltage is developed across the entire set of resistors 840 - 870 and the highest voltage deliverable by voltage regulating circuitry 40 B and voltage detection unit 22 B is provided (e.g. 2.9 volts).
  • resistor 840 is shorted and the VCC2 voltage is lowered (e.g. to 2.2 volts).
  • VCC18 pin 70 is connected to ground, both resistors 840 and 850 are shorted and the VCC2 voltage is lowered even further (e.g. to 1.8 volts).
  • voltage regulating circuitry 40 A- 40 B may comprise any suitable voltage regulator (e.g. linear regulators or DC/DC converters).
  • voltage regulating circuitry 40 A may comprise a linear regulator and voltage regulator circuitry 40 B may comprise a linear regulator or DC/DC converter.
  • any suitable values may be selected for resistors 610 - 630 (shown in FIG. 4) and 810 - 870 (shown in FIG. 9). Generally, the resistance of each of resistors 610 - 630 is selected to supply the desired higher VCC2 voltage when resistor 630 is not shorted and the desired lower VCC2 voltage when resistor 630 is shorted.
  • each of resistors 810 - 830 is selected to supply the desired higher VIO voltage when resistor 810 is not shorted and the desired lower VIO voltage when resistor 810 is shorted.
  • the resistance of each of resistors 840 - 870 is selected to supply the desired highest VCC2 voltage when resistors 840 and 850 are not shorted, the desired medium VCC2 voltage when resistor 840 is shorted by 850 is not shorted, and the desired lower VCC2 voltage when resistors 840 and 850 are both shorted.
  • the ability to indicate and adjust voltage levels in the manner shown may be extended to any desired number of voltage selections by employing additional pins in an encoded or non-encoded format.
  • processors 10 and 10 a are described herein as being coupled to other circuits (e.g. OSPS 20 , power supply 30 , etc.).
  • the pins may be coupled, for example, either directly or indirectly through wiring on the printed circuit board or other electrical coupling to the receiving devices.
  • pin names have been used corresponding to an illustrative embodiment corresponding to an AMD K6 processor, the pin names are not meant to be restrictive. Any pins may be selected in any type of processor for providing automatic voltage detection in accordance with the present disclosure. Furthermore, multiple pins may be used to indicate more than two possible voltage levels for VCC2, or even VCC3, as desired.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Sources (AREA)

Abstract

Method and system for preventing electronic overstress during powering up a processor with voltage detection capabilities employing a mechanism for detecting the voltage requirements of the processor to be coupled into a motherboard and accordingly adjusts the power supply of the motherboard to the processor voltage requirements. The detection mechanism includes sensing of logic signals by sensing a voltage from one or more pins of the processor. Those pins are internally connected to ground or internally not connected thus facilitating sensing of logic signals prior to powering up the processor. The probed signals are used to control the power supplied to the processor by adjustment mechanisms applied to power regulator or programmable logic devices. Since the detection of the proper operating voltage requirements of the processor and the consequent adjustment of the voltage power to be supplied to the processor occur during the powering up of the processor, electrical over stress and potential damage of the processor are eliminated.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The present invention relates to processor-based computer systems, and more specifically, to a method and a system for automatically sensing processor operating voltage requirements and accordingly adjusting the power supply populated on a printed circuit board to which the processor is coupled. [0002]
  • 2. Description of the Related Art [0003]
  • A processor-based computer system is generally known to comprise, at a minimum, an execution unit, memory and various input/output ports. The execution unit is often referred to as a processor, and the processor is typically linked to the memory via a system bus. The system bus, sometimes referred to as a local bus, links address and data information sent between the processor and memory. The system bus can also link the processor, or memory, to various other subsystems, some of which are arranged on a single printed circuit board. The single printed circuit board is often referred to as a motherboard. [0004]
  • Recent developments in processor technologies provide for an increasing number of different processor types available in the market. Generally, these processors can be used for similar and dissimilar fields of applications. With the increase in the number and complexity of available processors, it becomes increasingly difficult to know the voltage requirements of a specific processor. Voltage requirements include, for example, the level of voltage and the number of levels needed to operate the processor. [0005]
  • As finer geometries are becoming achievable through advances in digital integrated circuit manufacturing processes, lower supply voltages are used to insure optimal operation. The lower supply voltage provides advantages for power consumption and reduces cooling requirements of the processors. Furthermore, the lower power supply voltage may be required to prevent damage to internal circuitry of the processor. However, the I/O pins may be required to operate at a higher voltage for electrical compatibility with industry standard interfaces (e.g., socket [0006] 7). Therefore, a processor may have dual operating voltage requirements vs. a single voltage requirement for proper operation. For example, Advanced Micro Device's (AMD's) enhanced 0.35-μm manufacturing process requires a lower supply voltage for the core, separate from the voltage used to power the I/O pins (for compatibility reasons).
  • Further, a substantial percentage of motherboards manufactured today can support multiple configurations. Specifically, modern motherboards come equipped with numerous switches or jumpers, which can alter the operation of one or more subsystems arranged thereon. The voltage supplied to a processor can also be changed, for example, by connecting a jumper or actuating a switch. It is therefore necessary when inserting a processor into a motherboard that the operator know which jumper to connect or which switch to activate. [0007]
  • The availability of a wide selection of voltage supplies in motherboards specifically designed to accommodate many types of processors which may differ in voltage supply requirements presents a need for identifying the correct voltage supply requirements. This flexibility further presents a need to correctly adjust the voltage to be supplied to a processor coupled thereto upon appropriate selection of the processor's operating voltage requirements. For example, typical motherboards may have numerous switches and jumpers, wherein the particular switch and jumper of interest must be identified in order to be properly configured, e.g., the system bus frequency or the processor supply voltage. [0008]
  • Generally speaking, a motherboard is manufactured so that it can accommodate dissimilar processors, including processors that respond to differing power supply voltages. Coupled with today's dissimilar processor needs, it is easy to be confused while connecting a processor to a motherboard. Because of this confusion, many processors are often damaged due to electrical over stress when subjected to incorrect voltage settings during power-up. [0009]
  • One solution to the above problems is a system for detecting jumper and switch settings prior to coupling a processor to the motherboard. Such a system employs a probe and a display remotely linked to the probe. The probe contains a sensor, which responds to signals within the motherboard during times when the probe connects to printed conductors embodying those signals. The sensor is designed to detect the system bus frequency and power supply voltage “seen” by a processor to be connected thereto. Accordingly, the probe may couple to a localized area (or socket) of the motherboard on which a processor is designed for coupling. By knowing the voltage arising from the motherboard, a determination can be made if that voltage is compatible with the to-be-used processor. If the voltage is dissimilar from the processor specification, then the motherboard voltage can be changed by identifying the switch of interest and actuating that switch. However, employing such a system requires that the user is familiar with the processor voltage requirements. Further, the user must also be familiar with the motherboard jumpers and switches applicable to voltage supply. Additional disadvantages of such a system include the need to use an additional and external sensing system in order to identify the current settings of the voltage supply on a motherboard in order to be able to adjust the settings to the one appropriate for the processor to be coupled thereto. [0010]
  • A system for detecting the processor supply voltage requirements operable on the processor itself without the need for an external sensing system is therefore desired. Further, a system including a mechanism that is capable of automatically adjusting the power supply into a processor upon identification of the processor needs is also desirable. [0011]
  • SUMMARY OF THE INVENTION
  • The problems outlined above are in large part solved by a system that employs a mechanism for detecting the voltage requirements of a processor to be coupled into a motherboard and accordingly adjusts the power supply of the motherboard to the processor voltage requirements. The detection mechanism employed by the system includes the sensing of voltage supply indicators built-in to the processor. Processors with built-in voltage power indication capabilities provide voltage supply indications through pins designed to support voltage detection. The voltage supply adjustment mechanism employed by the system includes controlling voltage regulating circuitry to adjust the voltage supplied to the processor as to the appropriate power requirements during the powering up of the processor. Since the detection of the proper operating voltage requirements of the processor and the consequent adjustment of the voltage power to be supplied to the processor occur automatically during the powering up of the processor, electrical over stress and potential damage of the processor may be eliminated. [0012]
  • In one embodiment, the processor to be coupled into a motherboard can provide signals indicative of the number of levels of supply voltage and the value of each level of supply voltage needed to correctly operate the processor. The indicative signals may be detected from the processor by applying dissimilar sensing signals into at least one pin of the processor pins. System logic may be employed to detect the voltage requirements. A plurality of logic signals can be detected in this manner to indicate a plurality of voltage requirements appropriate for the processor. [0013]
  • In one embodiment, the system logic contains circuitry to sense a first pin within a plurality of pins of a processor coupled to an appropriate processor's socket in a motherboard. The first pin of the to-be-coupled processor may be designed to indicate a predetermined level of voltage upon sensing by the system logic circuitry. A logic signal of low and a logic signal of high may be obtained upon sensing the pin by the system logic. The specific level (e.g. low) indicates the processor's dual voltage requirement (versus a single voltage requirement if the signal is, e.g., high). A second sensing of a second pin within the plurality of the processor's pins may indicate the level of voltage that should be supplied to the processor core, which is different from the voltage supplied to the I/O buffers. The first and second sensing of the first and second pins may be achieved simultaneously. The system logic that senses the first and second pins of a processor coupled to an appropriate socket of a motherboard may be coupled to a power supply circuit to control voltages supplied to the processor upon the identification of the processor voltage supply requirements. [0014]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Other objects of the present invention and many of the attendant advantages of the present invention will be readily appreciated as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, in which like reference numerals designate like parts throughout the figures thereof and wherein: [0015]
  • FIG. 1 is a block diagram of one embodiment of a computer system with an electrical over stress protection system; [0016]
  • FIG. 2 is a block diagram depicting one embodiment of an over stress protection system (OSPS); [0017]
  • FIG. 3 is a block diagram of an embodiment of the OSPS using a sensed logic signal from a processor; [0018]
  • FIG. 4 is a block diagram of an embodiment of the OSPS using a second sensed logic signal from a processor; [0019]
  • FIG. 5 is a block diagram of an embodiment of the OSPS using three sensed logic signals from a processor; [0020]
  • FIG. 6 is a block diagram of an embodiment of the OSPS using a combination of sensed logic signals from a processor and a signal from a board to which the processor is coupled; [0021]
  • FIG. 7 is a block diagram of one embodiment of a processor shown in FIG. 1; [0022]
  • FIG. 8 is a block diagram of a portion of another embodiment of a computer system; and [0023]
  • FIG. 9 is a block diagram of a portion of the OSPS shown in FIG. 8. [0024]
  • While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and will herein be described in detail. It should be understood, however, that the drawings and detailed description thereto are not intended to limit the invention to the particular form disclosed, but on the contrary, the intention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the present invention as defined by the appended claims. [0025]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Turning now to FIG. 1, a block diagram of one embodiment of a computer system with an electrical over stress protection system is shown. In one embodiment, FIG. 1 shows a [0026] computer system 200 including an over stress protection system (OSPS) 20. A processor 10 coupled to a variety of system components in the computer system 200 through a bus bridge 202 is shown. Other embodiments are possible and contemplated. In the depicted system, a main memory 204 is coupled to bus bridge 202 through a memory bus 206, and a graphics controller 208 is coupled to bus bridge 202 through an AGP bus 210. A plurality of PCI devices 212A-212B are coupled to bus bridge 202 through a PCI bus 214. A secondary bus bridge 216 may further be provided to accommodate an electrical interface to one or more EISA or ISA devices 218 through an EISA/ISA bus 220. Processor 10 is coupled to bus bridge 202 through bus interface 46. The OSPS 20 is coupled to processor 10 and to a power supply 30. Power supply 30 is configured to supply voltage to different components within computer system 200 including processor 10. Generally, the OSPS may be coupled to one or more pins of processor 10 or the socket connector pins corresponding to those of the processor pins.
  • Bus bridge [0027] 202 provides an interface between processor 10, main memory 204, graphics controller 208, and devices attached to PCI bus 214. When an operation is received from one of the devices connected to bus bridge 202, bus bridge 202 identifies the target of the operation (e.g. a particular device or, in the case of PCI bus 214, that the target is on PCI bus 214). Bus bridge 202 routes the operation to the targeted device. Bus bridge 202 generally translates an operation from the protocol used by the source device or bus to the protocol used by the target device or bus.
  • In addition to providing an interface to an ISA/EISA bus for [0028] PCI bus 214, secondary bus bridge 216 may further incorporate additional functionality, as desired. An input/output controller (not shown), either external from or integrated with secondary bus bridge 216, may also be included within computer system 200. An external cache unit (not shown) may further be coupled to bus interface 46 between processor 10 and bus bridge 202 in other embodiments. Alternatively, the external cache may be coupled to bus bridge 202 and cache control logic for the external cache may be integrated into bus bridge 202. In yet another alternative, processor 10 may include a “backside cache” configuration in which a separate connection from bus interface 46 is used to connect to an L2 cache. Such a configuration may include the L2 cache and processor 10 incorporated onto a module (e.g. slot 1 or slot A). Main memory 204 is a memory in which application programs are stored and from which processor 10 primarily executes. A suitable main memory 204 comprises DRAM (Dynamic Random Access Memory). For example, one or more banks of SDRAM (Synchronous DRAM) or RDRAM (RAMBUS DRAM) may be suitable.
  • [0029] PCI devices 212A-212B are illustrative of a variety of peripheral devices such as, for example, network interface cards, video accelerators, audio cards, hard or floppy disk drives or drive controllers, SCSI (Small Computer Systems Interface) adapters and telephony cards. Similarly, ISA device 218 is illustrative of various types of peripheral devices, such as a modem, a sound card, and a variety of data acquisition cards such as GPIB or field bus interface cards.
  • [0030] Graphics controller 208 is provided to control the rendering of text and images on a display 226. Graphics controller 208 may embody a typical graphics accelerator generally known in the art to render three-dimensional data structures which can be effectively shifted into and from main memory 204. Graphics controller 208 may therefore be a master of AGP bus 210 in that it can request and receive access to a target interface within bus bridge 202 to thereby obtain access to main memory 204. A dedicated graphics bus accommodates rapid retrieval of data from main memory 204. For certain operations, graphics controller 208 may further be configured to generate PCI protocol transactions on AGP bus 210. The AGP interface of bus bridge 202 may thus include functionality to support both AGP protocol transactions as well as PCI protocol target and initiator transactions. Display 226 is any electronic display upon which an image or text can be presented. A suitable display 226 includes a cathode ray tube (“CRT”), a liquid crystal display (“LCD”), etc. It is noted that, while the AGP, PCI, and ISA or EISA buses have been used as examples in the above description, any bus architectures may be substituted as desired. It is further noted that computer system 200 may be a multiprocessing computer system including additional processors.
  • Turning now to FIG. 2, an embodiment of the [0031] OSPS 20 is shown. The OSPS 20 includes a voltage detection unit 22 and a voltage control unit 24. The voltage detection unit 22 is coupled to a processor 10 and the voltage control unit 24. The voltage control unit 24 is coupled to a voltage regulating circuitry 40 of power supply 30. In one embodiment, the voltage control unit 24 is configured to sense a pin of processor 10 wherein processor 10 is equipped with voltage detection capabilities through at least one pin. Such a pin may be the VCC2DET pin 32 shown in FIG. 2. The VCC2DET pin 32 may be used to convey a logic signal indicative of a dual voltage requirement or single voltage requirement of the processor. The voltage detection unit 22 may be additionally configured to sense a second pin of processor 10. The second pin can be used to indicate to the OSPS 20 a level of one of operating voltages of the dual voltages which must be supplied to processor 10 for proper operation upon detection of a dual voltage requirement using the first pin. The second pin may be, for example, the VCC2H/L# pin 34 shown in FIG. 2.
  • The operation of the [0032] OSPS 20 is performed during the powering up phase of the processor to be connected into a printed circuit board prior to the actual supply of the power to the processor. The power may be supplied by a power supply unit built into the printed circuit board or by an external power supply unit. This step is implemented to insure detection of the voltage requirement prior to actually powering the core and the I/O buffers of the processor to be coupled thereto. Therefore, the OSPS 20 performs its functions prior to actual powering up of the processor. The voltage control unit 24 of the OSPS 20 (FIG. 2) is configured to control (i.e. enable/disable) the voltage supply to the processor core and I/O buffers. Voltage detection unit 22 is configured to control the level of voltages supplied to the processor. By such configuration, power supplied to the processor is supplied after the OSPS 20 determines the voltage requirements of the processor coupled thereto. The power supply 30 is therefore prevented from supplying power unless a control from the voltage control unit 24 is asserted to the voltage regulating circuitry 40 indicating that powering the processor is now safe.
  • In the present disclosure, [0033] OSPS 20 is described as sensing various pins. For example, processor 10 may be internally configured with either a connection of the sensed pins to ground or no connection. Accordingly, an external pullup resistor may be provided upon each sensed pin and detect either a logic low (pin connected to ground) or a logic high (floating pin pulled up by the pullup resistor). Other configurations are possible as well. For example, two pins could be optionally connected together or not connected together, and the connection/lack of connection could be sensed externally. A current could be supplied to one of the pins and current sensed at the other pin to detect the connection or lack of connection. As yet another example, the sensed pins could be connected/not connected to a particular pin powered by OSPS 20 during power up. In such an embodiment, pins would be either a logic high (pin connected) or floating (pin not connected) and pulldown resistors may be used. A variety of alternatives are contemplated.
  • Turning now to FIG. 3, an embodiment of the [0034] voltage control unit 24 is depicted. As shown, a comparator circuit 510 is used to detect two voltage signals from a power supply unit. A reference voltage (such as 3.3 volts) and the core supply voltage (VCC2) from the power supply are sampled by the voltage control unit 24 prior to the powering up of the processor. The comparator 510 compares the reference voltage signal with the core voltage signal (VCC2) of the power supply and generates a logic output indicative of the result of the comparison. In the present embodiment, the output signal of comparator 510 is a logical one if VCC2 is less than the reference voltage and a logical zero if the VCC2 is greater than the reference voltage. The logic output of the comparator 510 is exclusively ORed (circuit 520) with the logic level sensed on the VCC2DET pin 32 from processor 10. The output of the logic circuit 520 is supplied to the power supply regulator circuitry 40 within power supply 30. If the output is high, voltage regulating circuitry 40 is enabled and processor 10 may be powered up. On the other hand, if the output is low, voltage regulating circuitry 40 is disabled and processor 10 is not powered up.
  • Accordingly, [0035] processor 10 is powered up if: (i) the selected VCC2 (core) voltage is less than the reference voltage and VCC2DET pin 32 is a logical low, indicating dual power supply requirements for processor 10; or (ii) the selected VCC2 voltage is greater than the reference voltage and VCC2DET pin 32 is a logical high, indicating single power supply requirements for processor 10. Situation (i) may be indicative of, for example, an AMD K6 processor while situation (ii) may be indicative of an AMD K5 processor in one illustrative example. It is noted that the selected VCC2 voltage may be selected in accordance with the VCC2DET and VCC2H/L# pins as described in more detail below.
  • Turning now to FIG. 4, a block diagram of an embodiment of the [0036] voltage detection unit 22 is shown wherein a second logic signal sensed from a processor is used as to control the supply voltage level to the processor. In this embodiment, the VCC2H/L# pin 34 is used by voltage detection unit 22 to control voltage regulator 40. The condition of the sensed VCC2H/L# signal is either directly or indirectly used to control the level of a power signal to be supplied to the processor. The logic signal on the VCC2H/L# pin is applied into a voltage-divider resistor circuit 26. If the VCC2H/L# signal is low (e.g., the pin is internally connected to ground), resistor 630 is bypassed (shorted to ground) and the resulting voltage applied to the processor is reduced to the desired voltage. If the VCC2H/L# signal is not low (for example, the pin is not internally connected to ground), the voltage supplied is developed across the complete resistor circuit (610, 620, and 630) and a higher voltage supply is applied to the processor. The adjustment applied to the voltage supply signal to the processor allows the voltage regulator circuit 40 to apply the correct voltage to the core voltage pins (VCC2 pins) of the processor. Thus, the processor may be powering up with a different core voltage (e.g., dual-voltage) than the voltage applied to the I/O buffer pins of the processor (whose power may be applied separately from a VCC3 output of the power supply 30 as shown in FIG. 4). Voltage detection unit 22 may not need to provide a pullup resistor on VCC2H/L# pin 34 in this example.
  • Turning now to FIG. 5, an embodiment of the [0037] OSPS 20 is shown where more than two logic signals are detected from a processor to be coupled into a printed circuit board with a range of supply voltages by a power supply. In this embodiment, the voltage detection unit 22 is used to sense logic signals from more than two pins of the processor to be coupled to the printed circuit board. In addition to the usage of the logic signals detected from a first pin and a second pin, the logic signals detected from a third or more pins are used to adjust the voltage supplied to the processor through a programmable logic device (PLD) 710. Since more logic signals are detected by the voltage detection unit 22, more options are available due to larger combinations of logic and thus more voltage levels may be adjusted or selected for supply into the processor, thus covering a range of operating voltage requirements for many processors and printed circuit boards. In the embodiment of FIG. 5 at least three logic signals may be detected. For example, the logic signals may be detected from the VCC2DET, VCC2H/L#, and BFl pins of the processor 10 ( reference numerals 32, 34, and 36, respectively). The detected logic signals are supplied to the programmable detection unit 710 prior to the powering up of processor 10. The output of the PLD is used to adjust or select the number and level of voltage supply signals to be supplied into the processor.
  • Turning now to FIG. 6, at least one signal (e.g. a jumper [0038] 38) is detected from a printed circuit board to which a processor 10 is to be coupled. These signals from the printed circuit board are sampled by the voltage detection unit 22 as additional signals to the logic signals sensed from the processor pins (VCC2DET, VCC2H/L#, and BFl are shown as reference numerals 32, 34, and 36, respectively). In the embodiment shown in FIG. 6, signals from jumpers in the printed circuit board can be added to the input of the voltage detection unit 22 as illustrated. The additional signals provide additional options that can be supplied into a voltage control unit or the PLD 710, thus resulting in a wider range of selection as more voltage control options become available due to more selection options generated from the combination of a larger number of signals.
  • Turning next to FIG. 7, a block diagram of one embodiment of [0039] processor 10 is shown in more detail. In the embodiment of FIG. 7, processor 10 includes a core 64 and one or more I/O buffers 66. Additionally, processor 10 includes VCC2DET pin 32 and VCC2H/L# pin 34 (as well as other pins used by I/O buffers 66 for communication, not shown). The core voltage (VCC2) is illustrated by a pin 62. However, it is noted that multiple pins may be used to supply the core voltage. Similarly, the I/O voltage (VCC3) is shown as a pin 60. However, it is noted that multiple pins may be used to supply the I/O voltage. Generally, core 64 includes the logic circuitry employed to perform the functions of processor 10, while I/O buffers 66 include the circuitry for communicating with other devices (e.g. using bus interface 46). The core voltage provided on VCC2 pin(s) 62 powers the circuitry in core 64, while the I/O voltage provided on VCC3 pin(s) 60 powers the I/O buffer circuitry in I/O buffers 66.
  • Turning now to FIG. 8, a block diagram of a portion of another embodiment of a computer system ([0040] computer system 200 a) is shown. Other embodiments are possible and contemplated. In the embodiment of FIG. 8, a processor 10 a is coupled to an OSPS 20 a, a power supply 30 a, a clock unit 74, bus bridge 202, and an optional cache 72. More particularly, processor 10 a is coupled to OSPS 20 a via VCC2DET pin 32, VCC2H/L# pin 34, BF1 pin 36, and a VCC18 pin 70. Furthermore, processor 10 a receives a core voltage supply VCC2 and an I/O voltage supply VCC3 from power supply 30 a. Processor 10 a is configured to receive a clock signal from clock unit 74 and is coupled to communicate via bus interface 46 with bus bridge 202 and cache 72.
  • [0041] Processor 10 a is configured to indicate its dual voltage requirements using VCC2DET pin 32, as described above for processor 10. Furthermore, processor 10 a is configured to indicate a high or low voltage level requirement for VCC2 via the VCC2H/L# pin 34 similar to the above description. However, processor 10 a may require an even lower VCC2 voltage than processor 10 (e.g. 1.8 volts). Furthermore, processor 10 a requires that VCC3 be lower than that required by processor 10 (e.g. 2.5 volts). Processor 10 a indicates these lower voltage requirements using VCC18 pin 70.
  • In one embodiment, [0042] VCC18 pin 70 is either internally not connected or internally connected to ground. An external pullup resistor may be used to pull up VCC18 pin 70 similar to VCC2DET and VCC2H/L# pins 32 and 34. Alternatively, as illustrated in FIG. 9 below, pullup resistors may be eliminated with an appropriate voltage detection unit. Alternative connections for VCC1 8 pin 70 are possible as well, similar to the above description of the VCC2DET and VCC2H/L# pins.
  • In response to the VCC2H/L# and VCC18 pins, OSPS [0043] 20 a controls power supply 30 a to provide power to processor 10 a and to other devices shown in FIG. 8. The VCC2 voltage is generated in response to both the VCC2H/L# and VCC18 pins. For example, in one exemplary embodiment, if VCC2H/L# pin 32 is floating and VCC 18 pin 70 is floating, then VCC2 may be supplied at 2.9 volts. If VCC2H/L# pin 32 is a logic low and VCC18 pin 70 is floating, then VCC2 may be supplied at 2.2 volts. Finally, if VCC18 is a logic low, then VCC2H/L# pin 32 is a don't care and VCC2 may be supplied at 1.8 volts. Other voltage levels may be selected in other embodiments, according to the requirements of the particular processor, and the VCC2H/L# pin and VCC18 pin may be used to select between a high, medium, and low voltage level from among the desired voltage levels. The generated VCC2 voltage is provided to the VCC2 pin(s) of processor 10 a.
  • [0044] Power supply 30 a further generates a VIO voltage responsive to VCC18 pin 70. The VIO voltage is supplied to the VCC3 pin(s) of processor 10 a, and is the voltage supplied to the I/O buffers of other devices which communicate with processor 10 a (or at least those I/O buffers coupled to pins of processor 10 a). In this manner, all devices coupled to processor 10 a may employ voltage levels compatible with processor 10 a. As shown in FIG. 8, for example, the processor I/O sections of clock unit 74, bus bridge 202, and cache 72 are powered by the VIO voltage. On the other hand, remaining portions of theses devices may be powered with a VSYS voltage (e.g. 3.3 volts) provided by power supply 30 a.
  • Turning next to FIG. 9, a block [0045] diagram illustrating processor 10 a, power supply 30 a, and portions of OSPS 20 a is shown. Other embodiments are possible and contemplated. In FIG. 9, voltage detection units 22A and 22B are shown. Voltage detection units 22A and 22B, in addition to a voltage control unit 24 described above, may comprise one embodiment of OSPS 20 a.
  • [0046] Voltage detection unit 22A may operate in conjunction with voltage regulating circuitry 40A to produce the VIO voltage from power supply 30 a. In the embodiment shown, voltage detection unit 22A comprises a voltage divider circuit including resistors 810, 820, and 830 connected in series. VCC18 pin 70 is coupled to the node between resistors 810 and 820. Accordingly, if VCC18 is connected to ground, then resistor 810 is bypassed (i.e. shorted). The VIO voltage is therefore lowered to the desired lower voltage level (e.g. 2.5 volts). On the other hand, if VCC18 is floating, the VIO voltage is developed across the entire set of resistors 810-830, and a higher VIO voltage is generated (e.g. 3.3. volts).
  • [0047] Voltage detection unit 22B controls voltage regulating circuitry 40B to generate the VCC2 voltage as one of three possible voltage levels in response to the VCC18 pin 70 and the VCC2H/L# pin 34. Voltage detection unit 22B comprises a voltage divider circuit including resistors 840, 850, 860, and 870 connected in series. VCC18 pin 70 is coupled to the node between resistors 860 and 850, and VCC2H/L# pin 34 is coupled to the node between resistors 840 and 850. Accordingly, if both VCC2H/L# pin 34 and VCC18 pin 70 are floating, the VCC2 voltage is developed across the entire set of resistors 840-870 and the highest voltage deliverable by voltage regulating circuitry 40B and voltage detection unit 22B is provided (e.g. 2.9 volts). On the other hand, if VCC2H/L# pin 34 is connected to ground and VCC18 pin 70 is floating, resistor 840 is shorted and the VCC2 voltage is lowered (e.g. to 2.2 volts). Finally, if VCC18 pin 70 is connected to ground, both resistors 840 and 850 are shorted and the VCC2 voltage is lowered even further (e.g. to 1.8 volts).
  • It is noted that [0048] voltage regulating circuitry 40A-40B may comprise any suitable voltage regulator (e.g. linear regulators or DC/DC converters). Preferably, voltage regulating circuitry 40A may comprise a linear regulator and voltage regulator circuitry 40B may comprise a linear regulator or DC/DC converter. It is further noted that any suitable values may be selected for resistors 610-630 (shown in FIG. 4) and 810-870 (shown in FIG. 9). Generally, the resistance of each of resistors 610-630 is selected to supply the desired higher VCC2 voltage when resistor 630 is not shorted and the desired lower VCC2 voltage when resistor 630 is shorted. Similarly, the resistance of each of resistors 810-830 is selected to supply the desired higher VIO voltage when resistor 810 is not shorted and the desired lower VIO voltage when resistor 810 is shorted. Finally, the resistance of each of resistors 840-870 is selected to supply the desired highest VCC2 voltage when resistors 840 and 850 are not shorted, the desired medium VCC2 voltage when resistor 840 is shorted by 850 is not shorted, and the desired lower VCC2 voltage when resistors 840 and 850 are both shorted. The ability to indicate and adjust voltage levels in the manner shown may be extended to any desired number of voltage selections by employing additional pins in an encoded or non-encoded format.
  • It is noted that embodiments employing programmable logic devices and OSPS [0049] 20 a are contemplated as well (similar to the embodiments of FIGS. 5 and 6). It is further noted that pins of processors 10 and 10 a are described herein as being coupled to other circuits (e.g. OSPS 20, power supply 30, etc.). The pins may be coupled, for example, either directly or indirectly through wiring on the printed circuit board or other electrical coupling to the receiving devices.
  • It is noted that, while certain pin names have been used corresponding to an illustrative embodiment corresponding to an AMD K6 processor, the pin names are not meant to be restrictive. Any pins may be selected in any type of processor for providing automatic voltage detection in accordance with the present disclosure. Furthermore, multiple pins may be used to indicate more than two possible voltage levels for VCC2, or even VCC3, as desired. [0050]
  • Different combinations of signals sensed from the processors and signals obtained from the printed circuit board may be used for the purpose of this embodiment and as in the embodiments of this invention. Accordingly, various modifications and changes may be made without departing from the spirit and scope of the invention as set forth in the claims. It should be noted that numerous variations and modifications will become apparent to those skilled in the art once the above disclosure is fully appreciated. It is intended that the following claims be interpreted to embrace all such modifications and changes. The specification and drawings are to be regarded in an illustrative rather than a restrictive sense. [0051]

Claims (20)

What is claimed is:
1. A processor comprising:
a first core;
a first input/output buffer; and
a plurality of pins configured to provide connections for said first core and said first input/output buffer with signals external to said processor, wherein at least a first pin of said plurality of pins is adapted to indicate a first logic signal and at least a second pin of said plurality of pins is adapted to indicate a second logic signal, wherein said first logic signal is indicative of the number of supply voltage levels required to operate said processor, and said second logic signal is indicative of at least one value of said supply voltage levels.
2. The processor as recited in
claim 1
, wherein said number of supply voltage levels is two, and said processor operates on a dual voltage.
3. The processor as recited in
claim 1
, wherein said dual voltage included a first voltage level and a second voltage level wherein said first voltage level is supplied to said core of said processor and said second voltage level is supplied to said first buffer of said processor.
4. The processor as recited in
claim 1
, wherein said first logic signal of said first pin of said plurality of pins is configured either as a floating or as a low logic, wherein said floating is indicative of a first number of voltages and said low logic is indicative of a second number of voltages.
5. The processor as recited in
claim 1
, wherein said second logic signal of said second pin of said plurality of pins is configured either as a floating or as a low logic, and wherein said floating is indicative of a first voltage level and said low logic is indicative of a second voltage level.
6. The processor as recited in
claim 5
wherein said plurality of pins includes a third pin configured to indicate a third logic signal, and wherein a value of said third logic signal is indicative of whether said first voltage level is a lower of at least a pair of voltages or a higher of said at least said pair of voltages.
7. The processor as recited in
claim 1
wherein said second pin of said processor is a pin which is internally either connected or not connected.
8. An electrical over stressed protection system for a processor to be coupled into a computer system including:
a voltage detection unit configured to sense at least a first pin and at least a second pin of said processor, wherein said voltage detection unit is further configured to adjust a plurality of voltage signals to be supplied to said processor in response to logic signals detected on said first pin and said second pin of said processor; and
a voltage control unit coupled to said voltage detection unit, wherein said voltage control unit is configured to selectively enable said plurality of voltage signals.
9. The system as recited in
claim 8
wherein said first pin of said processor is adapted to provide a signal indicative of a number of supply voltage levels of said processor, wherein said supply voltage levels are the operating voltages of said processor.
10. The system as recited in
claim 8
wherein said second pin of said processor is adapted to provide a signal indicative of at least one value of said voltage supply levels of said processor, wherein said supply voltage levels are the operating voltages of said processor.
11. The system as recited in
claim 8
wherein said processor includes a core and a plurality of input/output buffers.
12. The system as recited in
claim 8
wherein said plurality of voltage signals include a first voltage supply signal and second voltage supply signal, wherein said first voltage supply signal is provided to said core of said processor and said second voltage supply signal is provided to at least one of said input/output buffers of said processor.
13. The system as recited in
claim 8
wherein said voltage detection unit is further configured to sense a third pin of said processor.
14. The system as recited in
claim 13
wherein said third pin of said processor is adapted to supply a signal indicative of an additional power supply requirement of said processor.
15. A method for preventing electrical over stress during powering up of a processor, the method comprising:
retrieving a first signal on at least a first pin of said processor prior to powering up said processor;
retrieving a second signal on at least a second pin of said processor; and
adjusting at least one voltage supply signal to be supplied to said processor, wherein said at least one voltage supply signal is responsive to at least one of said first signal on said first pin and said second signal on said second pin of said processor.
16. The method as recited in
claim 15
further comprising indicating, via said first signal, at least one level of voltage power supply requirement of said processor.
17. The method as recited in
claim 16
wherein said at least one level of voltage includes either a voltage supply requirement to a core of said processor or a voltage supply requirement to at least one of input/output buffers of said processor.
18. The method as recited in
claim 15
further comprising, via said second signal of said second pin of said processor, at least one value of said level of voltage power supply requirement of said processor.
19. The method as recited in
claim 15
further comprising indicating, via said first signal on said first pin of said processor, the number of multi-operating voltages of said processor.
20. The method as recited in
claim 15
further comprising indicating, via said second signal on said second pin of said processor, the value of at least one of said multi-operating voltages of said processor.
US09/176,737 1998-10-21 1998-10-21 System and method for processor dual voltage detection and over stress protection Expired - Lifetime US6327663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/176,737 US6327663B2 (en) 1998-10-21 1998-10-21 System and method for processor dual voltage detection and over stress protection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/176,737 US6327663B2 (en) 1998-10-21 1998-10-21 System and method for processor dual voltage detection and over stress protection

Publications (2)

Publication Number Publication Date
US20010001878A1 true US20010001878A1 (en) 2001-05-24
US6327663B2 US6327663B2 (en) 2001-12-04

Family

ID=22645636

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/176,737 Expired - Lifetime US6327663B2 (en) 1998-10-21 1998-10-21 System and method for processor dual voltage detection and over stress protection

Country Status (1)

Country Link
US (1) US6327663B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6384346B1 (en) * 1999-10-14 2002-05-07 Via Technologies, Inc. Trace layout of a printed circuit board with AGP and PCI slots
US20110068174A1 (en) * 2009-09-18 2011-03-24 Keyence Corporation Optical Information Reader
US20130086395A1 (en) * 2011-09-30 2013-04-04 Qualcomm Incorporated Multi-Core Microprocessor Reliability Optimization
US8996902B2 (en) 2012-10-23 2015-03-31 Qualcomm Incorporated Modal workload scheduling in a heterogeneous multi-processor system on a chip
CN107562106A (en) * 2017-09-05 2018-01-09 华大半导体有限公司 A kind of super low-power consumption High-reliability power source management design and implementation method
CN107589773A (en) * 2017-09-05 2018-01-16 华大半导体有限公司 Super low-power consumption High-reliability power source management design and implementation method

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6615360B1 (en) * 2000-01-25 2003-09-02 International Business Machines Corporation Method and system for controlling a power on sequence in response to monitoring respective components of a computer system with multiple CPU sockets to determine proper functionality
US6651178B1 (en) * 2000-02-29 2003-11-18 3Com Corporation Communication module having power supply requirement identification
US6985987B2 (en) * 2000-11-01 2006-01-10 Via Technologies, Inc. Apparatus and method for supporting multi-processors and motherboard of the same
US6574577B2 (en) * 2000-12-13 2003-06-03 Intel Corporation Circuit to indicate the status of a supply voltage
US6874083B2 (en) * 2000-12-22 2005-03-29 Intel Corporation Method and apparatus to ensure proper voltage and frequency configuration signals are defined before applying power to processor
US6823465B2 (en) * 2001-04-30 2004-11-23 Intel Corporation Establishment of voltage of a terminal at a voltage level in response to validating the indication of the voltage to be supplied to the terminal
US6978388B1 (en) * 2002-01-18 2005-12-20 Apple Computer, Inc. Method and apparatus for managing a power load change in a system
US7227652B2 (en) * 2002-10-17 2007-06-05 Lexmark International, Inc. Switching power supply, method of operation and device-and-power-supply assembly
US20040117673A1 (en) * 2002-12-17 2004-06-17 Tawfik Arabi Method and apparatus to provide platform load lines
US20040123163A1 (en) * 2002-12-20 2004-06-24 Ta-Feng Huang Device for managing electric power source of CPU
KR100560767B1 (en) * 2003-09-02 2006-03-13 삼성전자주식회사 System including insertable and removable storage and control method thereof
US7200762B2 (en) * 2003-09-30 2007-04-03 Intel Corporation Providing a low-power state processor voltage in accordance with a detected processor type
KR100524988B1 (en) * 2003-10-02 2005-10-31 삼성전자주식회사 Multimedia card apparatus capable of interfacing USB host and interfacing method of the same
US7102338B2 (en) * 2003-10-23 2006-09-05 Intel Corporation Multi-sense voltage regulator
WO2005048415A1 (en) 2003-11-07 2005-05-26 Powersmart Llc Automatic sensing power systems and methods
US20060179330A1 (en) * 2005-01-27 2006-08-10 Ziarnik Gregory P Apparatus and method for ensuring power compatibility between a system board and a processing device
US7526674B2 (en) * 2005-12-22 2009-04-28 International Business Machines Corporation Methods and apparatuses for supplying power to processors in multiple processor systems
US7436708B2 (en) * 2006-03-01 2008-10-14 Micron Technology, Inc. NAND memory device column charging
US8296587B2 (en) 2006-08-30 2012-10-23 Green Plug, Inc. Powering an electrical device through a legacy adapter capable of digital communication
US7745954B1 (en) 2007-01-15 2010-06-29 Polsinelli Shughart PC Power sampling systems and methods
US7856562B2 (en) * 2007-05-02 2010-12-21 Advanced Micro Devices, Inc. Selective deactivation of processor cores in multiple processor core systems
US8575899B2 (en) * 2009-07-16 2013-11-05 Schumacher Electric Corporation Battery charger with automatic voltage detection
US8717093B2 (en) * 2010-01-08 2014-05-06 Mindspeed Technologies, Inc. System on chip power management through package configuration
TWI443495B (en) * 2011-09-08 2014-07-01 Asustek Comp Inc Computer device and frequency adjusting method for central processing unit
US9626195B2 (en) * 2015-05-11 2017-04-18 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. Booting system

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5551012A (en) 1991-04-22 1996-08-27 Acer Incorporated Single socket upgradeable computer motherboard with automatic detection and socket reconfiguration for inserted CPU chip
EP0510241A3 (en) 1991-04-22 1993-01-13 Acer Incorporated Upgradeable/downgradeable computer
US5613130A (en) 1994-11-10 1997-03-18 Vadem Corporation Card voltage switching and protection
US6035407A (en) * 1995-08-14 2000-03-07 Compaq Computer Corporation Accomodating components
US5787014A (en) * 1996-03-29 1998-07-28 Intel Corporation Method and apparatus for automatically controlling integrated circuit supply voltages
US5943227A (en) * 1996-06-26 1999-08-24 Fairchild Semiconductor Corporation Programmable synchronous step down DC-DC converter controller
US5862351A (en) * 1996-11-07 1999-01-19 He; Zhi Qiang Motherboard with automatic configuration
US5757171A (en) * 1996-12-31 1998-05-26 Intel Corporation On-board voltage regulators with automatic processor type detection
US5864225A (en) * 1997-06-04 1999-01-26 Fairchild Semiconductor Corporation Dual adjustable voltage regulators
US6058030A (en) * 1997-11-20 2000-05-02 Intersil Corporation Multiple output DC-to-DC converter having enhanced noise margin and related methods
US5951681A (en) * 1997-12-01 1999-09-14 Micro-Star International Co., Ltd. Method and device of plugging and immediately playing a CPU

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6384346B1 (en) * 1999-10-14 2002-05-07 Via Technologies, Inc. Trace layout of a printed circuit board with AGP and PCI slots
US20110068174A1 (en) * 2009-09-18 2011-03-24 Keyence Corporation Optical Information Reader
US8534558B2 (en) * 2009-09-18 2013-09-17 Keyence Corporation Optical information reader
US20130086395A1 (en) * 2011-09-30 2013-04-04 Qualcomm Incorporated Multi-Core Microprocessor Reliability Optimization
US8996902B2 (en) 2012-10-23 2015-03-31 Qualcomm Incorporated Modal workload scheduling in a heterogeneous multi-processor system on a chip
CN107562106A (en) * 2017-09-05 2018-01-09 华大半导体有限公司 A kind of super low-power consumption High-reliability power source management design and implementation method
CN107589773A (en) * 2017-09-05 2018-01-16 华大半导体有限公司 Super low-power consumption High-reliability power source management design and implementation method

Also Published As

Publication number Publication date
US6327663B2 (en) 2001-12-04

Similar Documents

Publication Publication Date Title
US6327663B2 (en) System and method for processor dual voltage detection and over stress protection
US5757171A (en) On-board voltage regulators with automatic processor type detection
US6546445B1 (en) Method and system for connecting dual storage interfaces
EP1171824B1 (en) Hot plug control of multiprocessor based computer system
US6062480A (en) Hot docking system and methods for detecting and managing hot docking of bus cards
US6339831B1 (en) Automatic detecting unit for diagnosing a connection and identifying an external device, information processing apparatus, and external device
US6327635B1 (en) Add-on card with automatic bus power line selection circuit
US20020172371A1 (en) Method and system for automatically detecting and powering PC speakers
JP2006252570A (en) Automatic voltage detection in multiple voltage applications
JP2000056871A (en) Ems enhancement circuit for usb system
US6094367A (en) Voltage regulating device for dynamically regulating voltage in a computer system
US20120290858A1 (en) Power Control for PXI Express Controller
US6922194B2 (en) Method and apparatus for maintaining load balance on a graphics bus when an upgrade device is installed
US6640273B1 (en) Apparatus for data bus expansion between two instrument chassis
US7093140B2 (en) Method and apparatus for configuring a voltage regulator based on current information
US6598109B1 (en) Method and apparatus for connecting between standard mini PCI component and non-standard mini PCI component based on selected signal lines and signal pins
US11288224B2 (en) Semiconductor system and semiconductor device
US20040210777A1 (en) Method and apparatus for enhanced power consumption handling of bus-controlled components
TW201737236A (en) Method for reading identification data from display and associated processing circuit
EP1141846A1 (en) Method and apparatus for disabling a graphics device when an upgrade device is installed
US6154067A (en) Methods of and apparatus for monitoring the termination status of a SCSI bus
US6642768B1 (en) Voltage-dependent impedance selector for non-linearity compensation
US6055645A (en) Method and apparatus for providing a clock signal to a processor
US20100046110A1 (en) Information processing apparatus and control method thereof
US5986352A (en) Smart peripheral back-power prevention

Legal Events

Date Code Title Description
AS Assignment

Owner name: ADVANCED MICRO DEVICES, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ISAAC, GERALD G.;CALDWELL, DERVINN D.;SMITH, LANCE L.;AND OTHERS;REEL/FRAME:009539/0807

Effective date: 19981015

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: GLOBALFOUNDRIES INC., CAYMAN ISLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AMD TECHNOLOGIES HOLDINGS, INC.;REEL/FRAME:022764/0544

Effective date: 20090302

Owner name: AMD TECHNOLOGIES HOLDINGS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ADVANCED MICRO DEVICES, INC.;REEL/FRAME:022764/0488

Effective date: 20090302

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: WILMINGTON TRUST, NATIONAL ASSOCIATION, DELAWARE

Free format text: SECURITY AGREEMENT;ASSIGNOR:GLOBALFOUNDRIES INC.;REEL/FRAME:049490/0001

Effective date: 20181127

AS Assignment

Owner name: GLOBALFOUNDRIES INC., CAYMAN ISLANDS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:054636/0001

Effective date: 20201117

AS Assignment

Owner name: GLOBALFOUNDRIES U.S. INC., NEW YORK

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:056987/0001

Effective date: 20201117