US20010001878A1 - System and method for processor dual voltage detection and over stress protection - Google Patents
System and method for processor dual voltage detection and over stress protection Download PDFInfo
- Publication number
- US20010001878A1 US20010001878A1 US09/176,737 US17673798A US2001001878A1 US 20010001878 A1 US20010001878 A1 US 20010001878A1 US 17673798 A US17673798 A US 17673798A US 2001001878 A1 US2001001878 A1 US 2001001878A1
- Authority
- US
- United States
- Prior art keywords
- processor
- voltage
- pin
- signal
- recited
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 35
- 238000000034 method Methods 0.000 title claims abstract description 10
- 230000009977 dual effect Effects 0.000 title claims description 10
- 239000000872 buffer Substances 0.000 claims description 17
- 238000007667 floating Methods 0.000 claims description 12
- 230000004044 response Effects 0.000 claims description 4
- 230000007246 mechanism Effects 0.000 abstract description 7
- 238000010586 diagram Methods 0.000 description 14
- 230000001105 regulatory effect Effects 0.000 description 10
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 238000000802 evaporation-induced self-assembly Methods 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 102100039435 C-X-C motif chemokine 17 Human genes 0.000 description 1
- 101000889048 Homo sapiens C-X-C motif chemokine 17 Proteins 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/26—Power supply means, e.g. regulation thereof
Definitions
- the present invention relates to processor-based computer systems, and more specifically, to a method and a system for automatically sensing processor operating voltage requirements and accordingly adjusting the power supply populated on a printed circuit board to which the processor is coupled.
- a processor-based computer system is generally known to comprise, at a minimum, an execution unit, memory and various input/output ports.
- the execution unit is often referred to as a processor, and the processor is typically linked to the memory via a system bus.
- the system bus sometimes referred to as a local bus, links address and data information sent between the processor and memory.
- the system bus can also link the processor, or memory, to various other subsystems, some of which are arranged on a single printed circuit board.
- the single printed circuit board is often referred to as a motherboard.
- motherboards manufactured today can support multiple configurations.
- modern motherboards come equipped with numerous switches or jumpers, which can alter the operation of one or more subsystems arranged thereon.
- the voltage supplied to a processor can also be changed, for example, by connecting a jumper or actuating a switch. It is therefore necessary when inserting a processor into a motherboard that the operator know which jumper to connect or which switch to activate.
- a motherboard is manufactured so that it can accommodate dissimilar processors, including processors that respond to differing power supply voltages. Coupled with today's dissimilar processor needs, it is easy to be confused while connecting a processor to a motherboard. Because of this confusion, many processors are often damaged due to electrical over stress when subjected to incorrect voltage settings during power-up.
- One solution to the above problems is a system for detecting jumper and switch settings prior to coupling a processor to the motherboard.
- Such a system employs a probe and a display remotely linked to the probe.
- the probe contains a sensor, which responds to signals within the motherboard during times when the probe connects to printed conductors embodying those signals.
- the sensor is designed to detect the system bus frequency and power supply voltage “seen” by a processor to be connected thereto.
- the probe may couple to a localized area (or socket) of the motherboard on which a processor is designed for coupling.
- the motherboard voltage can be changed by identifying the switch of interest and actuating that switch.
- employing such a system requires that the user is familiar with the processor voltage requirements. Further, the user must also be familiar with the motherboard jumpers and switches applicable to voltage supply. Additional disadvantages of such a system include the need to use an additional and external sensing system in order to identify the current settings of the voltage supply on a motherboard in order to be able to adjust the settings to the one appropriate for the processor to be coupled thereto.
- a system for detecting the processor supply voltage requirements operable on the processor itself without the need for an external sensing system is therefore desired. Further, a system including a mechanism that is capable of automatically adjusting the power supply into a processor upon identification of the processor needs is also desirable.
- the problems outlined above are in large part solved by a system that employs a mechanism for detecting the voltage requirements of a processor to be coupled into a motherboard and accordingly adjusts the power supply of the motherboard to the processor voltage requirements.
- the detection mechanism employed by the system includes the sensing of voltage supply indicators built-in to the processor. Processors with built-in voltage power indication capabilities provide voltage supply indications through pins designed to support voltage detection.
- the voltage supply adjustment mechanism employed by the system includes controlling voltage regulating circuitry to adjust the voltage supplied to the processor as to the appropriate power requirements during the powering up of the processor. Since the detection of the proper operating voltage requirements of the processor and the consequent adjustment of the voltage power to be supplied to the processor occur automatically during the powering up of the processor, electrical over stress and potential damage of the processor may be eliminated.
- the processor to be coupled into a motherboard can provide signals indicative of the number of levels of supply voltage and the value of each level of supply voltage needed to correctly operate the processor.
- the indicative signals may be detected from the processor by applying dissimilar sensing signals into at least one pin of the processor pins.
- System logic may be employed to detect the voltage requirements. A plurality of logic signals can be detected in this manner to indicate a plurality of voltage requirements appropriate for the processor.
- the system logic contains circuitry to sense a first pin within a plurality of pins of a processor coupled to an appropriate processor's socket in a motherboard.
- the first pin of the to-be-coupled processor may be designed to indicate a predetermined level of voltage upon sensing by the system logic circuitry.
- a logic signal of low and a logic signal of high may be obtained upon sensing the pin by the system logic.
- the specific level e.g. low indicates the processor's dual voltage requirement (versus a single voltage requirement if the signal is, e.g., high).
- a second sensing of a second pin within the plurality of the processor's pins may indicate the level of voltage that should be supplied to the processor core, which is different from the voltage supplied to the I/O buffers.
- the first and second sensing of the first and second pins may be achieved simultaneously.
- the system logic that senses the first and second pins of a processor coupled to an appropriate socket of a motherboard may be coupled to a power supply circuit to control voltages supplied to the processor upon the identification of the processor voltage supply requirements.
- FIG. 1 is a block diagram of one embodiment of a computer system with an electrical over stress protection system
- FIG. 2 is a block diagram depicting one embodiment of an over stress protection system (OSPS);
- OSPS over stress protection system
- FIG. 3 is a block diagram of an embodiment of the OSPS using a sensed logic signal from a processor
- FIG. 4 is a block diagram of an embodiment of the OSPS using a second sensed logic signal from a processor
- FIG. 5 is a block diagram of an embodiment of the OSPS using three sensed logic signals from a processor
- FIG. 6 is a block diagram of an embodiment of the OSPS using a combination of sensed logic signals from a processor and a signal from a board to which the processor is coupled;
- FIG. 7 is a block diagram of one embodiment of a processor shown in FIG. 1;
- FIG. 8 is a block diagram of a portion of another embodiment of a computer system.
- FIG. 9 is a block diagram of a portion of the OSPS shown in FIG. 8.
- FIG. 1 a block diagram of one embodiment of a computer system with an electrical over stress protection system is shown.
- FIG. 1 shows a computer system 200 including an over stress protection system (OSPS) 20 .
- a processor 10 coupled to a variety of system components in the computer system 200 through a bus bridge 202 is shown.
- a main memory 204 is coupled to bus bridge 202 through a memory bus 206
- a graphics controller 208 is coupled to bus bridge 202 through an AGP bus 210 .
- a plurality of PCI devices 212 A- 212 B are coupled to bus bridge 202 through a PCI bus 214 .
- a secondary bus bridge 216 may further be provided to accommodate an electrical interface to one or more EISA or ISA devices 218 through an EISA/ISA bus 220 .
- Processor 10 is coupled to bus bridge 202 through bus interface 46 .
- the OSPS 20 is coupled to processor 10 and to a power supply 30 .
- Power supply 30 is configured to supply voltage to different components within computer system 200 including processor 10 .
- the OSPS may be coupled to one or more pins of processor 10 or the socket connector pins corresponding to those of the processor pins.
- Bus bridge 202 provides an interface between processor 10 , main memory 204 , graphics controller 208 , and devices attached to PCI bus 214 .
- bus bridge 202 identifies the target of the operation (e.g. a particular device or, in the case of PCI bus 214 , that the target is on PCI bus 214 ).
- Bus bridge 202 routes the operation to the targeted device.
- Bus bridge 202 generally translates an operation from the protocol used by the source device or bus to the protocol used by the target device or bus.
- secondary bus bridge 216 may further incorporate additional functionality, as desired.
- An input/output controller (not shown), either external from or integrated with secondary bus bridge 216 , may also be included within computer system 200 .
- An external cache unit (not shown) may further be coupled to bus interface 46 between processor 10 and bus bridge 202 in other embodiments.
- the external cache may be coupled to bus bridge 202 and cache control logic for the external cache may be integrated into bus bridge 202 .
- processor 10 may include a “backside cache” configuration in which a separate connection from bus interface 46 is used to connect to an L 2 cache.
- Such a configuration may include the L 2 cache and processor 10 incorporated onto a module (e.g. slot 1 or slot A).
- Main memory 204 is a memory in which application programs are stored and from which processor 10 primarily executes.
- a suitable main memory 204 comprises DRAM (Dynamic Random Access Memory).
- DRAM Dynamic Random Access Memory
- SDRAM Serial DRAM
- RDRAM RAMBUS DRAM
- PCI devices 212 A- 212 B are illustrative of a variety of peripheral devices such as, for example, network interface cards, video accelerators, audio cards, hard or floppy disk drives or drive controllers, SCSI (Small Computer Systems Interface) adapters and telephony cards.
- ISA device 218 is illustrative of various types of peripheral devices, such as a modem, a sound card, and a variety of data acquisition cards such as GPIB or field bus interface cards.
- Graphics controller 208 is provided to control the rendering of text and images on a display 226 .
- Graphics controller 208 may embody a typical graphics accelerator generally known in the art to render three-dimensional data structures which can be effectively shifted into and from main memory 204 .
- Graphics controller 208 may therefore be a master of AGP bus 210 in that it can request and receive access to a target interface within bus bridge 202 to thereby obtain access to main memory 204 .
- a dedicated graphics bus accommodates rapid retrieval of data from main memory 204 .
- graphics controller 208 may further be configured to generate PCI protocol transactions on AGP bus 210 .
- the AGP interface of bus bridge 202 may thus include functionality to support both AGP protocol transactions as well as PCI protocol target and initiator transactions.
- Display 226 is any electronic display upon which an image or text can be presented.
- a suitable display 226 includes a cathode ray tube (“CRT”), a liquid crystal display (“LCD”), etc.
- CTR cathode ray tube
- LCD liquid crystal display
- computer system 200 may be a multiprocessing computer system including additional processors.
- the OSPS 20 includes a voltage detection unit 22 and a voltage control unit 24 .
- the voltage detection unit 22 is coupled to a processor 10 and the voltage control unit 24 .
- the voltage control unit 24 is coupled to a voltage regulating circuitry 40 of power supply 30 .
- the voltage control unit 24 is configured to sense a pin of processor 10 wherein processor 10 is equipped with voltage detection capabilities through at least one pin.
- Such a pin may be the VCC2DET pin 32 shown in FIG. 2.
- the VCC2DET pin 32 may be used to convey a logic signal indicative of a dual voltage requirement or single voltage requirement of the processor.
- the voltage detection unit 22 may be additionally configured to sense a second pin of processor 10 .
- the second pin can be used to indicate to the OSPS 20 a level of one of operating voltages of the dual voltages which must be supplied to processor 10 for proper operation upon detection of a dual voltage requirement using the first pin.
- the second pin may be, for example, the VCC2H/L# pin 34 shown in FIG. 2.
- the operation of the OSPS 20 is performed during the powering up phase of the processor to be connected into a printed circuit board prior to the actual supply of the power to the processor.
- the power may be supplied by a power supply unit built into the printed circuit board or by an external power supply unit. This step is implemented to insure detection of the voltage requirement prior to actually powering the core and the I/O buffers of the processor to be coupled thereto. Therefore, the OSPS 20 performs its functions prior to actual powering up of the processor.
- the voltage control unit 24 of the OSPS 20 (FIG. 2) is configured to control (i.e. enable/disable) the voltage supply to the processor core and I/O buffers.
- Voltage detection unit 22 is configured to control the level of voltages supplied to the processor.
- OSPS 20 is described as sensing various pins.
- processor 10 may be internally configured with either a connection of the sensed pins to ground or no connection.
- an external pullup resistor may be provided upon each sensed pin and detect either a logic low (pin connected to ground) or a logic high (floating pin pulled up by the pullup resistor).
- Other configurations are possible as well.
- two pins could be optionally connected together or not connected together, and the connection/lack of connection could be sensed externally.
- a current could be supplied to one of the pins and current sensed at the other pin to detect the connection or lack of connection.
- the sensed pins could be connected/not connected to a particular pin powered by OSPS 20 during power up.
- pins would be either a logic high (pin connected) or floating (pin not connected) and pulldown resistors may be used.
- a variety of alternatives are contemplated.
- a comparator circuit 510 is used to detect two voltage signals from a power supply unit.
- a reference voltage such as 3.3 volts
- VCC2 core supply voltage
- the comparator 510 compares the reference voltage signal with the core voltage signal (VCC2) of the power supply and generates a logic output indicative of the result of the comparison.
- the output signal of comparator 510 is a logical one if VCC2 is less than the reference voltage and a logical zero if the VCC2 is greater than the reference voltage.
- the logic output of the comparator 510 is exclusively ORed (circuit 520 ) with the logic level sensed on the VCC2DET pin 32 from processor 10 .
- the output of the logic circuit 520 is supplied to the power supply regulator circuitry 40 within power supply 30 . If the output is high, voltage regulating circuitry 40 is enabled and processor 10 may be powered up. On the other hand, if the output is low, voltage regulating circuitry 40 is disabled and processor 10 is not powered up.
- processor 10 is powered up if: (i) the selected VCC2 (core) voltage is less than the reference voltage and VCC2DET pin 32 is a logical low, indicating dual power supply requirements for processor 10 ; or (ii) the selected VCC2 voltage is greater than the reference voltage and VCC2DET pin 32 is a logical high, indicating single power supply requirements for processor 10 .
- Situation (i) may be indicative of, for example, an AMD K6 processor while situation (ii) may be indicative of an AMD K5 processor in one illustrative example. It is noted that the selected VCC2 voltage may be selected in accordance with the VCC2DET and VCC2H/L# pins as described in more detail below.
- FIG. 4 a block diagram of an embodiment of the voltage detection unit 22 is shown wherein a second logic signal sensed from a processor is used as to control the supply voltage level to the processor.
- the VCC2H/L# pin 34 is used by voltage detection unit 22 to control voltage regulator 40 .
- the condition of the sensed VCC2H/L# signal is either directly or indirectly used to control the level of a power signal to be supplied to the processor.
- the logic signal on the VCC2H/L# pin is applied into a voltage-divider resistor circuit 26 .
- VCC2H/L# If the VCC2H/L# signal is low (e.g., the pin is internally connected to ground), resistor 630 is bypassed (shorted to ground) and the resulting voltage applied to the processor is reduced to the desired voltage. If the VCC2H/L# signal is not low (for example, the pin is not internally connected to ground), the voltage supplied is developed across the complete resistor circuit ( 610 , 620 , and 630 ) and a higher voltage supply is applied to the processor. The adjustment applied to the voltage supply signal to the processor allows the voltage regulator circuit 40 to apply the correct voltage to the core voltage pins (VCC2 pins) of the processor.
- the processor may be powering up with a different core voltage (e.g., dual-voltage) than the voltage applied to the I/O buffer pins of the processor (whose power may be applied separately from a VCC3 output of the power supply 30 as shown in FIG. 4).
- Voltage detection unit 22 may not need to provide a pullup resistor on VCC2H/L# pin 34 in this example.
- FIG. 5 an embodiment of the OSPS 20 is shown where more than two logic signals are detected from a processor to be coupled into a printed circuit board with a range of supply voltages by a power supply.
- the voltage detection unit 22 is used to sense logic signals from more than two pins of the processor to be coupled to the printed circuit board.
- the logic signals detected from a third or more pins are used to adjust the voltage supplied to the processor through a programmable logic device (PLD) 710 .
- PLD programmable logic device
- the voltage detection unit 22 Since more logic signals are detected by the voltage detection unit 22 , more options are available due to larger combinations of logic and thus more voltage levels may be adjusted or selected for supply into the processor, thus covering a range of operating voltage requirements for many processors and printed circuit boards.
- at least three logic signals may be detected.
- the logic signals may be detected from the VCC2DET, VCC2H/L#, and BFl pins of the processor 10 (reference numerals 32 , 34 , and 36 , respectively).
- the detected logic signals are supplied to the programmable detection unit 710 prior to the powering up of processor 10 .
- the output of the PLD is used to adjust or select the number and level of voltage supply signals to be supplied into the processor.
- At least one signal is detected from a printed circuit board to which a processor 10 is to be coupled.
- These signals from the printed circuit board are sampled by the voltage detection unit 22 as additional signals to the logic signals sensed from the processor pins (VCC2DET, VCC2H/L#, and BFl are shown as reference numerals 32 , 34 , and 36 , respectively).
- signals from jumpers in the printed circuit board can be added to the input of the voltage detection unit 22 as illustrated.
- the additional signals provide additional options that can be supplied into a voltage control unit or the PLD 710 , thus resulting in a wider range of selection as more voltage control options become available due to more selection options generated from the combination of a larger number of signals.
- processor 10 includes a core 64 and one or more I/O buffers 66 . Additionally, processor 10 includes VCC2DET pin 32 and VCC2H/L# pin 34 (as well as other pins used by I/O buffers 66 for communication, not shown).
- the core voltage (VCC2) is illustrated by a pin 62 . However, it is noted that multiple pins may be used to supply the core voltage.
- the I/O voltage (VCC3) is shown as a pin 60 . However, it is noted that multiple pins may be used to supply the I/O voltage.
- core 64 includes the logic circuitry employed to perform the functions of processor 10
- I/O buffers 66 include the circuitry for communicating with other devices (e.g. using bus interface 46 ).
- the core voltage provided on VCC2 pin(s) 62 powers the circuitry in core 64
- the I/O voltage provided on VCC3 pin(s) 60 powers the I/O buffer circuitry in I/O buffers 66 .
- FIG. 8 a block diagram of a portion of another embodiment of a computer system (computer system 200 a ) is shown.
- a processor 10 a is coupled to an OSPS 20 a, a power supply 30 a, a clock unit 74 , bus bridge 202 , and an optional cache 72 .
- processor 10 a is coupled to OSPS 20 a via VCC2DET pin 32 , VCC2H/L# pin 34 , BF 1 pin 36 , and a VCC18 pin 70 .
- processor 10 a receives a core voltage supply VCC2 and an I/O voltage supply VCC3 from power supply 30 a.
- Processor 10 a is configured to receive a clock signal from clock unit 74 and is coupled to communicate via bus interface 46 with bus bridge 202 and cache 72 .
- Processor 10 a is configured to indicate its dual voltage requirements using VCC2DET pin 32 , as described above for processor 10 . Furthermore, processor 10 a is configured to indicate a high or low voltage level requirement for VCC2 via the VCC2H/L# pin 34 similar to the above description. However, processor 10 a may require an even lower VCC2 voltage than processor 10 (e.g. 1.8 volts). Furthermore, processor 10 a requires that VCC3 be lower than that required by processor 10 (e.g. 2.5 volts). Processor 10 a indicates these lower voltage requirements using VCC18 pin 70 .
- VCC18 pin 70 is either internally not connected or internally connected to ground.
- An external pullup resistor may be used to pull up VCC18 pin 70 similar to VCC2DET and VCC2H/L# pins 32 and 34 .
- pullup resistors may be eliminated with an appropriate voltage detection unit.
- Alternative connections for VCC1 8 pin 70 are possible as well, similar to the above description of the VCC2DET and VCC2H/L# pins.
- OSPS 20 a controls power supply 30 a to provide power to processor 10 a and to other devices shown in FIG. 8.
- the VCC2 voltage is generated in response to both the VCC2H/L# and VCC18 pins. For example, in one exemplary embodiment, if VCC2H/L# pin 32 is floating and VCC 18 pin 70 is floating, then VCC2 may be supplied at 2.9 volts. If VCC2H/L# pin 32 is a logic low and VCC18 pin 70 is floating, then VCC2 may be supplied at 2.2 volts.
- VCC18 is a logic low
- VCC2H/L# pin 32 is a don't care and VCC2 may be supplied at 1.8 volts.
- Other voltage levels may be selected in other embodiments, according to the requirements of the particular processor, and the VCC2H/L# pin and VCC18 pin may be used to select between a high, medium, and low voltage level from among the desired voltage levels.
- the generated VCC2 voltage is provided to the VCC2 pin(s) of processor 10 a.
- Power supply 30 a further generates a VIO voltage responsive to VCC18 pin 70 .
- the VIO voltage is supplied to the VCC3 pin(s) of processor 10 a, and is the voltage supplied to the I/O buffers of other devices which communicate with processor 10 a (or at least those I/O buffers coupled to pins of processor 10 a ).
- all devices coupled to processor 10 a may employ voltage levels compatible with processor 10 a.
- the processor I/O sections of clock unit 74 , bus bridge 202 , and cache 72 are powered by the VIO voltage.
- remaining portions of theses devices may be powered with a VSYS voltage (e.g. 3.3 volts) provided by power supply 30 a.
- VSYS voltage e.g. 3.3 volts
- FIG. 9 a block diagram illustrating processor 10 a, power supply 30 a, and portions of OSPS 20 a is shown. Other embodiments are possible and contemplated.
- voltage detection units 22 A and 22 B are shown. Voltage detection units 22 A and 22 B, in addition to a voltage control unit 24 described above, may comprise one embodiment of OSPS 20 a.
- Voltage detection unit 22 A may operate in conjunction with voltage regulating circuitry 40 A to produce the VIO voltage from power supply 30 a.
- voltage detection unit 22 A comprises a voltage divider circuit including resistors 810 , 820 , and 830 connected in series.
- VCC18 pin 70 is coupled to the node between resistors 810 and 820 . Accordingly, if VCC18 is connected to ground, then resistor 810 is bypassed (i.e. shorted). The VIO voltage is therefore lowered to the desired lower voltage level (e.g. 2.5 volts). On the other hand, if VCC18 is floating, the VIO voltage is developed across the entire set of resistors 810 - 830 , and a higher VIO voltage is generated (e.g. 3.3. volts).
- Voltage detection unit 22 B controls voltage regulating circuitry 40 B to generate the VCC2 voltage as one of three possible voltage levels in response to the VCC18 pin 70 and the VCC2H/L# pin 34 .
- Voltage detection unit 22 B comprises a voltage divider circuit including resistors 840 , 850 , 860 , and 870 connected in series.
- VCC18 pin 70 is coupled to the node between resistors 860 and 850
- VCC2H/L# pin 34 is coupled to the node between resistors 840 and 850 .
- VCC2H/L# pin 34 and VCC18 pin 70 are floating, the VCC2 voltage is developed across the entire set of resistors 840 - 870 and the highest voltage deliverable by voltage regulating circuitry 40 B and voltage detection unit 22 B is provided (e.g. 2.9 volts).
- resistor 840 is shorted and the VCC2 voltage is lowered (e.g. to 2.2 volts).
- VCC18 pin 70 is connected to ground, both resistors 840 and 850 are shorted and the VCC2 voltage is lowered even further (e.g. to 1.8 volts).
- voltage regulating circuitry 40 A- 40 B may comprise any suitable voltage regulator (e.g. linear regulators or DC/DC converters).
- voltage regulating circuitry 40 A may comprise a linear regulator and voltage regulator circuitry 40 B may comprise a linear regulator or DC/DC converter.
- any suitable values may be selected for resistors 610 - 630 (shown in FIG. 4) and 810 - 870 (shown in FIG. 9). Generally, the resistance of each of resistors 610 - 630 is selected to supply the desired higher VCC2 voltage when resistor 630 is not shorted and the desired lower VCC2 voltage when resistor 630 is shorted.
- each of resistors 810 - 830 is selected to supply the desired higher VIO voltage when resistor 810 is not shorted and the desired lower VIO voltage when resistor 810 is shorted.
- the resistance of each of resistors 840 - 870 is selected to supply the desired highest VCC2 voltage when resistors 840 and 850 are not shorted, the desired medium VCC2 voltage when resistor 840 is shorted by 850 is not shorted, and the desired lower VCC2 voltage when resistors 840 and 850 are both shorted.
- the ability to indicate and adjust voltage levels in the manner shown may be extended to any desired number of voltage selections by employing additional pins in an encoded or non-encoded format.
- processors 10 and 10 a are described herein as being coupled to other circuits (e.g. OSPS 20 , power supply 30 , etc.).
- the pins may be coupled, for example, either directly or indirectly through wiring on the printed circuit board or other electrical coupling to the receiving devices.
- pin names have been used corresponding to an illustrative embodiment corresponding to an AMD K6 processor, the pin names are not meant to be restrictive. Any pins may be selected in any type of processor for providing automatic voltage detection in accordance with the present disclosure. Furthermore, multiple pins may be used to indicate more than two possible voltage levels for VCC2, or even VCC3, as desired.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Power Sources (AREA)
Abstract
Description
- 1. Field of the Invention
- The present invention relates to processor-based computer systems, and more specifically, to a method and a system for automatically sensing processor operating voltage requirements and accordingly adjusting the power supply populated on a printed circuit board to which the processor is coupled.
- 2. Description of the Related Art
- A processor-based computer system is generally known to comprise, at a minimum, an execution unit, memory and various input/output ports. The execution unit is often referred to as a processor, and the processor is typically linked to the memory via a system bus. The system bus, sometimes referred to as a local bus, links address and data information sent between the processor and memory. The system bus can also link the processor, or memory, to various other subsystems, some of which are arranged on a single printed circuit board. The single printed circuit board is often referred to as a motherboard.
- Recent developments in processor technologies provide for an increasing number of different processor types available in the market. Generally, these processors can be used for similar and dissimilar fields of applications. With the increase in the number and complexity of available processors, it becomes increasingly difficult to know the voltage requirements of a specific processor. Voltage requirements include, for example, the level of voltage and the number of levels needed to operate the processor.
- As finer geometries are becoming achievable through advances in digital integrated circuit manufacturing processes, lower supply voltages are used to insure optimal operation. The lower supply voltage provides advantages for power consumption and reduces cooling requirements of the processors. Furthermore, the lower power supply voltage may be required to prevent damage to internal circuitry of the processor. However, the I/O pins may be required to operate at a higher voltage for electrical compatibility with industry standard interfaces (e.g., socket7). Therefore, a processor may have dual operating voltage requirements vs. a single voltage requirement for proper operation. For example, Advanced Micro Device's (AMD's) enhanced 0.35-μm manufacturing process requires a lower supply voltage for the core, separate from the voltage used to power the I/O pins (for compatibility reasons).
- Further, a substantial percentage of motherboards manufactured today can support multiple configurations. Specifically, modern motherboards come equipped with numerous switches or jumpers, which can alter the operation of one or more subsystems arranged thereon. The voltage supplied to a processor can also be changed, for example, by connecting a jumper or actuating a switch. It is therefore necessary when inserting a processor into a motherboard that the operator know which jumper to connect or which switch to activate.
- The availability of a wide selection of voltage supplies in motherboards specifically designed to accommodate many types of processors which may differ in voltage supply requirements presents a need for identifying the correct voltage supply requirements. This flexibility further presents a need to correctly adjust the voltage to be supplied to a processor coupled thereto upon appropriate selection of the processor's operating voltage requirements. For example, typical motherboards may have numerous switches and jumpers, wherein the particular switch and jumper of interest must be identified in order to be properly configured, e.g., the system bus frequency or the processor supply voltage.
- Generally speaking, a motherboard is manufactured so that it can accommodate dissimilar processors, including processors that respond to differing power supply voltages. Coupled with today's dissimilar processor needs, it is easy to be confused while connecting a processor to a motherboard. Because of this confusion, many processors are often damaged due to electrical over stress when subjected to incorrect voltage settings during power-up.
- One solution to the above problems is a system for detecting jumper and switch settings prior to coupling a processor to the motherboard. Such a system employs a probe and a display remotely linked to the probe. The probe contains a sensor, which responds to signals within the motherboard during times when the probe connects to printed conductors embodying those signals. The sensor is designed to detect the system bus frequency and power supply voltage “seen” by a processor to be connected thereto. Accordingly, the probe may couple to a localized area (or socket) of the motherboard on which a processor is designed for coupling. By knowing the voltage arising from the motherboard, a determination can be made if that voltage is compatible with the to-be-used processor. If the voltage is dissimilar from the processor specification, then the motherboard voltage can be changed by identifying the switch of interest and actuating that switch. However, employing such a system requires that the user is familiar with the processor voltage requirements. Further, the user must also be familiar with the motherboard jumpers and switches applicable to voltage supply. Additional disadvantages of such a system include the need to use an additional and external sensing system in order to identify the current settings of the voltage supply on a motherboard in order to be able to adjust the settings to the one appropriate for the processor to be coupled thereto.
- A system for detecting the processor supply voltage requirements operable on the processor itself without the need for an external sensing system is therefore desired. Further, a system including a mechanism that is capable of automatically adjusting the power supply into a processor upon identification of the processor needs is also desirable.
- The problems outlined above are in large part solved by a system that employs a mechanism for detecting the voltage requirements of a processor to be coupled into a motherboard and accordingly adjusts the power supply of the motherboard to the processor voltage requirements. The detection mechanism employed by the system includes the sensing of voltage supply indicators built-in to the processor. Processors with built-in voltage power indication capabilities provide voltage supply indications through pins designed to support voltage detection. The voltage supply adjustment mechanism employed by the system includes controlling voltage regulating circuitry to adjust the voltage supplied to the processor as to the appropriate power requirements during the powering up of the processor. Since the detection of the proper operating voltage requirements of the processor and the consequent adjustment of the voltage power to be supplied to the processor occur automatically during the powering up of the processor, electrical over stress and potential damage of the processor may be eliminated.
- In one embodiment, the processor to be coupled into a motherboard can provide signals indicative of the number of levels of supply voltage and the value of each level of supply voltage needed to correctly operate the processor. The indicative signals may be detected from the processor by applying dissimilar sensing signals into at least one pin of the processor pins. System logic may be employed to detect the voltage requirements. A plurality of logic signals can be detected in this manner to indicate a plurality of voltage requirements appropriate for the processor.
- In one embodiment, the system logic contains circuitry to sense a first pin within a plurality of pins of a processor coupled to an appropriate processor's socket in a motherboard. The first pin of the to-be-coupled processor may be designed to indicate a predetermined level of voltage upon sensing by the system logic circuitry. A logic signal of low and a logic signal of high may be obtained upon sensing the pin by the system logic. The specific level (e.g. low) indicates the processor's dual voltage requirement (versus a single voltage requirement if the signal is, e.g., high). A second sensing of a second pin within the plurality of the processor's pins may indicate the level of voltage that should be supplied to the processor core, which is different from the voltage supplied to the I/O buffers. The first and second sensing of the first and second pins may be achieved simultaneously. The system logic that senses the first and second pins of a processor coupled to an appropriate socket of a motherboard may be coupled to a power supply circuit to control voltages supplied to the processor upon the identification of the processor voltage supply requirements.
- Other objects of the present invention and many of the attendant advantages of the present invention will be readily appreciated as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, in which like reference numerals designate like parts throughout the figures thereof and wherein:
- FIG. 1 is a block diagram of one embodiment of a computer system with an electrical over stress protection system;
- FIG. 2 is a block diagram depicting one embodiment of an over stress protection system (OSPS);
- FIG. 3 is a block diagram of an embodiment of the OSPS using a sensed logic signal from a processor;
- FIG. 4 is a block diagram of an embodiment of the OSPS using a second sensed logic signal from a processor;
- FIG. 5 is a block diagram of an embodiment of the OSPS using three sensed logic signals from a processor;
- FIG. 6 is a block diagram of an embodiment of the OSPS using a combination of sensed logic signals from a processor and a signal from a board to which the processor is coupled;
- FIG. 7 is a block diagram of one embodiment of a processor shown in FIG. 1;
- FIG. 8 is a block diagram of a portion of another embodiment of a computer system; and
- FIG. 9 is a block diagram of a portion of the OSPS shown in FIG. 8.
- While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and will herein be described in detail. It should be understood, however, that the drawings and detailed description thereto are not intended to limit the invention to the particular form disclosed, but on the contrary, the intention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the present invention as defined by the appended claims.
- Turning now to FIG. 1, a block diagram of one embodiment of a computer system with an electrical over stress protection system is shown. In one embodiment, FIG. 1 shows a
computer system 200 including an over stress protection system (OSPS) 20. Aprocessor 10 coupled to a variety of system components in thecomputer system 200 through a bus bridge 202 is shown. Other embodiments are possible and contemplated. In the depicted system, amain memory 204 is coupled to bus bridge 202 through amemory bus 206, and agraphics controller 208 is coupled to bus bridge 202 through anAGP bus 210. A plurality ofPCI devices 212A-212B are coupled to bus bridge 202 through aPCI bus 214. A secondary bus bridge 216 may further be provided to accommodate an electrical interface to one or more EISA or ISA devices 218 through an EISA/ISA bus 220.Processor 10 is coupled to bus bridge 202 throughbus interface 46. TheOSPS 20 is coupled toprocessor 10 and to apower supply 30.Power supply 30 is configured to supply voltage to different components withincomputer system 200 includingprocessor 10. Generally, the OSPS may be coupled to one or more pins ofprocessor 10 or the socket connector pins corresponding to those of the processor pins. - Bus bridge202 provides an interface between
processor 10,main memory 204,graphics controller 208, and devices attached toPCI bus 214. When an operation is received from one of the devices connected to bus bridge 202, bus bridge 202 identifies the target of the operation (e.g. a particular device or, in the case ofPCI bus 214, that the target is on PCI bus 214). Bus bridge 202 routes the operation to the targeted device. Bus bridge 202 generally translates an operation from the protocol used by the source device or bus to the protocol used by the target device or bus. - In addition to providing an interface to an ISA/EISA bus for
PCI bus 214, secondary bus bridge 216 may further incorporate additional functionality, as desired. An input/output controller (not shown), either external from or integrated with secondary bus bridge 216, may also be included withincomputer system 200. An external cache unit (not shown) may further be coupled tobus interface 46 betweenprocessor 10 and bus bridge 202 in other embodiments. Alternatively, the external cache may be coupled to bus bridge 202 and cache control logic for the external cache may be integrated into bus bridge 202. In yet another alternative,processor 10 may include a “backside cache” configuration in which a separate connection frombus interface 46 is used to connect to an L2 cache. Such a configuration may include the L2 cache andprocessor 10 incorporated onto a module (e.g. slot 1 or slot A).Main memory 204 is a memory in which application programs are stored and from whichprocessor 10 primarily executes. A suitablemain memory 204 comprises DRAM (Dynamic Random Access Memory). For example, one or more banks of SDRAM (Synchronous DRAM) or RDRAM (RAMBUS DRAM) may be suitable. -
PCI devices 212A-212B are illustrative of a variety of peripheral devices such as, for example, network interface cards, video accelerators, audio cards, hard or floppy disk drives or drive controllers, SCSI (Small Computer Systems Interface) adapters and telephony cards. Similarly, ISA device 218 is illustrative of various types of peripheral devices, such as a modem, a sound card, and a variety of data acquisition cards such as GPIB or field bus interface cards. -
Graphics controller 208 is provided to control the rendering of text and images on adisplay 226.Graphics controller 208 may embody a typical graphics accelerator generally known in the art to render three-dimensional data structures which can be effectively shifted into and frommain memory 204.Graphics controller 208 may therefore be a master ofAGP bus 210 in that it can request and receive access to a target interface within bus bridge 202 to thereby obtain access tomain memory 204. A dedicated graphics bus accommodates rapid retrieval of data frommain memory 204. For certain operations,graphics controller 208 may further be configured to generate PCI protocol transactions onAGP bus 210. The AGP interface of bus bridge 202 may thus include functionality to support both AGP protocol transactions as well as PCI protocol target and initiator transactions.Display 226 is any electronic display upon which an image or text can be presented. Asuitable display 226 includes a cathode ray tube (“CRT”), a liquid crystal display (“LCD”), etc. It is noted that, while the AGP, PCI, and ISA or EISA buses have been used as examples in the above description, any bus architectures may be substituted as desired. It is further noted thatcomputer system 200 may be a multiprocessing computer system including additional processors. - Turning now to FIG. 2, an embodiment of the
OSPS 20 is shown. TheOSPS 20 includes avoltage detection unit 22 and avoltage control unit 24. Thevoltage detection unit 22 is coupled to aprocessor 10 and thevoltage control unit 24. Thevoltage control unit 24 is coupled to avoltage regulating circuitry 40 ofpower supply 30. In one embodiment, thevoltage control unit 24 is configured to sense a pin ofprocessor 10 whereinprocessor 10 is equipped with voltage detection capabilities through at least one pin. Such a pin may be theVCC2DET pin 32 shown in FIG. 2. TheVCC2DET pin 32 may be used to convey a logic signal indicative of a dual voltage requirement or single voltage requirement of the processor. Thevoltage detection unit 22 may be additionally configured to sense a second pin ofprocessor 10. The second pin can be used to indicate to the OSPS 20 a level of one of operating voltages of the dual voltages which must be supplied toprocessor 10 for proper operation upon detection of a dual voltage requirement using the first pin. The second pin may be, for example, the VCC2H/L# pin 34 shown in FIG. 2. - The operation of the
OSPS 20 is performed during the powering up phase of the processor to be connected into a printed circuit board prior to the actual supply of the power to the processor. The power may be supplied by a power supply unit built into the printed circuit board or by an external power supply unit. This step is implemented to insure detection of the voltage requirement prior to actually powering the core and the I/O buffers of the processor to be coupled thereto. Therefore, theOSPS 20 performs its functions prior to actual powering up of the processor. Thevoltage control unit 24 of the OSPS 20 (FIG. 2) is configured to control (i.e. enable/disable) the voltage supply to the processor core and I/O buffers.Voltage detection unit 22 is configured to control the level of voltages supplied to the processor. By such configuration, power supplied to the processor is supplied after theOSPS 20 determines the voltage requirements of the processor coupled thereto. Thepower supply 30 is therefore prevented from supplying power unless a control from thevoltage control unit 24 is asserted to thevoltage regulating circuitry 40 indicating that powering the processor is now safe. - In the present disclosure,
OSPS 20 is described as sensing various pins. For example,processor 10 may be internally configured with either a connection of the sensed pins to ground or no connection. Accordingly, an external pullup resistor may be provided upon each sensed pin and detect either a logic low (pin connected to ground) or a logic high (floating pin pulled up by the pullup resistor). Other configurations are possible as well. For example, two pins could be optionally connected together or not connected together, and the connection/lack of connection could be sensed externally. A current could be supplied to one of the pins and current sensed at the other pin to detect the connection or lack of connection. As yet another example, the sensed pins could be connected/not connected to a particular pin powered byOSPS 20 during power up. In such an embodiment, pins would be either a logic high (pin connected) or floating (pin not connected) and pulldown resistors may be used. A variety of alternatives are contemplated. - Turning now to FIG. 3, an embodiment of the
voltage control unit 24 is depicted. As shown, acomparator circuit 510 is used to detect two voltage signals from a power supply unit. A reference voltage (such as 3.3 volts) and the core supply voltage (VCC2) from the power supply are sampled by thevoltage control unit 24 prior to the powering up of the processor. Thecomparator 510 compares the reference voltage signal with the core voltage signal (VCC2) of the power supply and generates a logic output indicative of the result of the comparison. In the present embodiment, the output signal ofcomparator 510 is a logical one if VCC2 is less than the reference voltage and a logical zero if the VCC2 is greater than the reference voltage. The logic output of thecomparator 510 is exclusively ORed (circuit 520) with the logic level sensed on theVCC2DET pin 32 fromprocessor 10. The output of thelogic circuit 520 is supplied to the powersupply regulator circuitry 40 withinpower supply 30. If the output is high,voltage regulating circuitry 40 is enabled andprocessor 10 may be powered up. On the other hand, if the output is low,voltage regulating circuitry 40 is disabled andprocessor 10 is not powered up. - Accordingly,
processor 10 is powered up if: (i) the selected VCC2 (core) voltage is less than the reference voltage andVCC2DET pin 32 is a logical low, indicating dual power supply requirements forprocessor 10; or (ii) the selected VCC2 voltage is greater than the reference voltage andVCC2DET pin 32 is a logical high, indicating single power supply requirements forprocessor 10. Situation (i) may be indicative of, for example, an AMD K6 processor while situation (ii) may be indicative of an AMD K5 processor in one illustrative example. It is noted that the selected VCC2 voltage may be selected in accordance with the VCC2DET and VCC2H/L# pins as described in more detail below. - Turning now to FIG. 4, a block diagram of an embodiment of the
voltage detection unit 22 is shown wherein a second logic signal sensed from a processor is used as to control the supply voltage level to the processor. In this embodiment, the VCC2H/L# pin 34 is used byvoltage detection unit 22 to controlvoltage regulator 40. The condition of the sensed VCC2H/L# signal is either directly or indirectly used to control the level of a power signal to be supplied to the processor. The logic signal on the VCC2H/L# pin is applied into a voltage-divider resistor circuit 26. If the VCC2H/L# signal is low (e.g., the pin is internally connected to ground),resistor 630 is bypassed (shorted to ground) and the resulting voltage applied to the processor is reduced to the desired voltage. If the VCC2H/L# signal is not low (for example, the pin is not internally connected to ground), the voltage supplied is developed across the complete resistor circuit (610, 620, and 630) and a higher voltage supply is applied to the processor. The adjustment applied to the voltage supply signal to the processor allows thevoltage regulator circuit 40 to apply the correct voltage to the core voltage pins (VCC2 pins) of the processor. Thus, the processor may be powering up with a different core voltage (e.g., dual-voltage) than the voltage applied to the I/O buffer pins of the processor (whose power may be applied separately from a VCC3 output of thepower supply 30 as shown in FIG. 4).Voltage detection unit 22 may not need to provide a pullup resistor on VCC2H/L# pin 34 in this example. - Turning now to FIG. 5, an embodiment of the
OSPS 20 is shown where more than two logic signals are detected from a processor to be coupled into a printed circuit board with a range of supply voltages by a power supply. In this embodiment, thevoltage detection unit 22 is used to sense logic signals from more than two pins of the processor to be coupled to the printed circuit board. In addition to the usage of the logic signals detected from a first pin and a second pin, the logic signals detected from a third or more pins are used to adjust the voltage supplied to the processor through a programmable logic device (PLD) 710. Since more logic signals are detected by thevoltage detection unit 22, more options are available due to larger combinations of logic and thus more voltage levels may be adjusted or selected for supply into the processor, thus covering a range of operating voltage requirements for many processors and printed circuit boards. In the embodiment of FIG. 5 at least three logic signals may be detected. For example, the logic signals may be detected from the VCC2DET, VCC2H/L#, and BFl pins of the processor 10 (reference numerals processor 10. The output of the PLD is used to adjust or select the number and level of voltage supply signals to be supplied into the processor. - Turning now to FIG. 6, at least one signal (e.g. a jumper38) is detected from a printed circuit board to which a
processor 10 is to be coupled. These signals from the printed circuit board are sampled by thevoltage detection unit 22 as additional signals to the logic signals sensed from the processor pins (VCC2DET, VCC2H/L#, and BFl are shown asreference numerals voltage detection unit 22 as illustrated. The additional signals provide additional options that can be supplied into a voltage control unit or the PLD 710, thus resulting in a wider range of selection as more voltage control options become available due to more selection options generated from the combination of a larger number of signals. - Turning next to FIG. 7, a block diagram of one embodiment of
processor 10 is shown in more detail. In the embodiment of FIG. 7,processor 10 includes acore 64 and one or more I/O buffers 66. Additionally,processor 10 includesVCC2DET pin 32 and VCC2H/L# pin 34 (as well as other pins used by I/O buffers 66 for communication, not shown). The core voltage (VCC2) is illustrated by apin 62. However, it is noted that multiple pins may be used to supply the core voltage. Similarly, the I/O voltage (VCC3) is shown as apin 60. However, it is noted that multiple pins may be used to supply the I/O voltage. Generally,core 64 includes the logic circuitry employed to perform the functions ofprocessor 10, while I/O buffers 66 include the circuitry for communicating with other devices (e.g. using bus interface 46). The core voltage provided on VCC2 pin(s) 62 powers the circuitry incore 64, while the I/O voltage provided on VCC3 pin(s) 60 powers the I/O buffer circuitry in I/O buffers 66. - Turning now to FIG. 8, a block diagram of a portion of another embodiment of a computer system (
computer system 200 a) is shown. Other embodiments are possible and contemplated. In the embodiment of FIG. 8, aprocessor 10 a is coupled to an OSPS 20 a, apower supply 30 a, aclock unit 74, bus bridge 202, and anoptional cache 72. More particularly,processor 10 a is coupled to OSPS 20 a viaVCC2DET pin 32, VCC2H/L# pin 34,BF1 pin 36, and aVCC18 pin 70. Furthermore,processor 10 a receives a core voltage supply VCC2 and an I/O voltage supply VCC3 frompower supply 30 a.Processor 10 a is configured to receive a clock signal fromclock unit 74 and is coupled to communicate viabus interface 46 with bus bridge 202 andcache 72. -
Processor 10 a is configured to indicate its dual voltage requirements usingVCC2DET pin 32, as described above forprocessor 10. Furthermore,processor 10 a is configured to indicate a high or low voltage level requirement for VCC2 via the VCC2H/L# pin 34 similar to the above description. However,processor 10 a may require an even lower VCC2 voltage than processor 10 (e.g. 1.8 volts). Furthermore,processor 10 a requires that VCC3 be lower than that required by processor 10 (e.g. 2.5 volts).Processor 10 a indicates these lower voltage requirements usingVCC18 pin 70. - In one embodiment,
VCC18 pin 70 is either internally not connected or internally connected to ground. An external pullup resistor may be used to pull upVCC18 pin 70 similar to VCC2DET and VCC2H/L# pins 32 and 34. Alternatively, as illustrated in FIG. 9 below, pullup resistors may be eliminated with an appropriate voltage detection unit. Alternative connections for VCC1 8pin 70 are possible as well, similar to the above description of the VCC2DET and VCC2H/L# pins. - In response to the VCC2H/L# and VCC18 pins, OSPS20 a
controls power supply 30 a to provide power toprocessor 10 a and to other devices shown in FIG. 8. The VCC2 voltage is generated in response to both the VCC2H/L# and VCC18 pins. For example, in one exemplary embodiment, if VCC2H/L# pin 32 is floating and VCC 18pin 70 is floating, then VCC2 may be supplied at 2.9 volts. If VCC2H/L# pin 32 is a logic low andVCC18 pin 70 is floating, then VCC2 may be supplied at 2.2 volts. Finally, if VCC18 is a logic low, then VCC2H/L# pin 32 is a don't care and VCC2 may be supplied at 1.8 volts. Other voltage levels may be selected in other embodiments, according to the requirements of the particular processor, and the VCC2H/L# pin and VCC18 pin may be used to select between a high, medium, and low voltage level from among the desired voltage levels. The generated VCC2 voltage is provided to the VCC2 pin(s) ofprocessor 10 a. -
Power supply 30 a further generates a VIO voltage responsive toVCC18 pin 70. The VIO voltage is supplied to the VCC3 pin(s) ofprocessor 10 a, and is the voltage supplied to the I/O buffers of other devices which communicate withprocessor 10 a (or at least those I/O buffers coupled to pins ofprocessor 10 a). In this manner, all devices coupled toprocessor 10 a may employ voltage levels compatible withprocessor 10 a. As shown in FIG. 8, for example, the processor I/O sections ofclock unit 74, bus bridge 202, andcache 72 are powered by the VIO voltage. On the other hand, remaining portions of theses devices may be powered with a VSYS voltage (e.g. 3.3 volts) provided bypower supply 30 a. - Turning next to FIG. 9, a block
diagram illustrating processor 10 a,power supply 30 a, and portions of OSPS 20 a is shown. Other embodiments are possible and contemplated. In FIG. 9,voltage detection units Voltage detection units voltage control unit 24 described above, may comprise one embodiment of OSPS 20 a. -
Voltage detection unit 22A may operate in conjunction withvoltage regulating circuitry 40A to produce the VIO voltage frompower supply 30 a. In the embodiment shown,voltage detection unit 22A comprises a voltage dividercircuit including resistors VCC18 pin 70 is coupled to the node betweenresistors -
Voltage detection unit 22B controlsvoltage regulating circuitry 40B to generate the VCC2 voltage as one of three possible voltage levels in response to theVCC18 pin 70 and the VCC2H/L# pin 34.Voltage detection unit 22B comprises a voltage dividercircuit including resistors VCC18 pin 70 is coupled to the node betweenresistors L# pin 34 is coupled to the node betweenresistors L# pin 34 andVCC18 pin 70 are floating, the VCC2 voltage is developed across the entire set of resistors 840-870 and the highest voltage deliverable byvoltage regulating circuitry 40B andvoltage detection unit 22B is provided (e.g. 2.9 volts). On the other hand, if VCC2H/L# pin 34 is connected to ground andVCC18 pin 70 is floating,resistor 840 is shorted and the VCC2 voltage is lowered (e.g. to 2.2 volts). Finally, ifVCC18 pin 70 is connected to ground, bothresistors - It is noted that
voltage regulating circuitry 40A-40B may comprise any suitable voltage regulator (e.g. linear regulators or DC/DC converters). Preferably,voltage regulating circuitry 40A may comprise a linear regulator andvoltage regulator circuitry 40B may comprise a linear regulator or DC/DC converter. It is further noted that any suitable values may be selected for resistors 610-630 (shown in FIG. 4) and 810-870 (shown in FIG. 9). Generally, the resistance of each of resistors 610-630 is selected to supply the desired higher VCC2 voltage whenresistor 630 is not shorted and the desired lower VCC2 voltage whenresistor 630 is shorted. Similarly, the resistance of each of resistors 810-830 is selected to supply the desired higher VIO voltage whenresistor 810 is not shorted and the desired lower VIO voltage whenresistor 810 is shorted. Finally, the resistance of each of resistors 840-870 is selected to supply the desired highest VCC2 voltage whenresistors resistor 840 is shorted by 850 is not shorted, and the desired lower VCC2 voltage whenresistors - It is noted that embodiments employing programmable logic devices and OSPS20 a are contemplated as well (similar to the embodiments of FIGS. 5 and 6). It is further noted that pins of
processors e.g. OSPS 20,power supply 30, etc.). The pins may be coupled, for example, either directly or indirectly through wiring on the printed circuit board or other electrical coupling to the receiving devices. - It is noted that, while certain pin names have been used corresponding to an illustrative embodiment corresponding to an AMD K6 processor, the pin names are not meant to be restrictive. Any pins may be selected in any type of processor for providing automatic voltage detection in accordance with the present disclosure. Furthermore, multiple pins may be used to indicate more than two possible voltage levels for VCC2, or even VCC3, as desired.
- Different combinations of signals sensed from the processors and signals obtained from the printed circuit board may be used for the purpose of this embodiment and as in the embodiments of this invention. Accordingly, various modifications and changes may be made without departing from the spirit and scope of the invention as set forth in the claims. It should be noted that numerous variations and modifications will become apparent to those skilled in the art once the above disclosure is fully appreciated. It is intended that the following claims be interpreted to embrace all such modifications and changes. The specification and drawings are to be regarded in an illustrative rather than a restrictive sense.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/176,737 US6327663B2 (en) | 1998-10-21 | 1998-10-21 | System and method for processor dual voltage detection and over stress protection |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/176,737 US6327663B2 (en) | 1998-10-21 | 1998-10-21 | System and method for processor dual voltage detection and over stress protection |
Publications (2)
Publication Number | Publication Date |
---|---|
US20010001878A1 true US20010001878A1 (en) | 2001-05-24 |
US6327663B2 US6327663B2 (en) | 2001-12-04 |
Family
ID=22645636
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/176,737 Expired - Lifetime US6327663B2 (en) | 1998-10-21 | 1998-10-21 | System and method for processor dual voltage detection and over stress protection |
Country Status (1)
Country | Link |
---|---|
US (1) | US6327663B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6384346B1 (en) * | 1999-10-14 | 2002-05-07 | Via Technologies, Inc. | Trace layout of a printed circuit board with AGP and PCI slots |
US20110068174A1 (en) * | 2009-09-18 | 2011-03-24 | Keyence Corporation | Optical Information Reader |
US20130086395A1 (en) * | 2011-09-30 | 2013-04-04 | Qualcomm Incorporated | Multi-Core Microprocessor Reliability Optimization |
US8996902B2 (en) | 2012-10-23 | 2015-03-31 | Qualcomm Incorporated | Modal workload scheduling in a heterogeneous multi-processor system on a chip |
CN107562106A (en) * | 2017-09-05 | 2018-01-09 | 华大半导体有限公司 | A kind of super low-power consumption High-reliability power source management design and implementation method |
CN107589773A (en) * | 2017-09-05 | 2018-01-16 | 华大半导体有限公司 | Super low-power consumption High-reliability power source management design and implementation method |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6615360B1 (en) * | 2000-01-25 | 2003-09-02 | International Business Machines Corporation | Method and system for controlling a power on sequence in response to monitoring respective components of a computer system with multiple CPU sockets to determine proper functionality |
US6651178B1 (en) * | 2000-02-29 | 2003-11-18 | 3Com Corporation | Communication module having power supply requirement identification |
US6985987B2 (en) * | 2000-11-01 | 2006-01-10 | Via Technologies, Inc. | Apparatus and method for supporting multi-processors and motherboard of the same |
US6574577B2 (en) * | 2000-12-13 | 2003-06-03 | Intel Corporation | Circuit to indicate the status of a supply voltage |
US6874083B2 (en) * | 2000-12-22 | 2005-03-29 | Intel Corporation | Method and apparatus to ensure proper voltage and frequency configuration signals are defined before applying power to processor |
US6823465B2 (en) * | 2001-04-30 | 2004-11-23 | Intel Corporation | Establishment of voltage of a terminal at a voltage level in response to validating the indication of the voltage to be supplied to the terminal |
US6978388B1 (en) * | 2002-01-18 | 2005-12-20 | Apple Computer, Inc. | Method and apparatus for managing a power load change in a system |
US7227652B2 (en) * | 2002-10-17 | 2007-06-05 | Lexmark International, Inc. | Switching power supply, method of operation and device-and-power-supply assembly |
US20040117673A1 (en) * | 2002-12-17 | 2004-06-17 | Tawfik Arabi | Method and apparatus to provide platform load lines |
US20040123163A1 (en) * | 2002-12-20 | 2004-06-24 | Ta-Feng Huang | Device for managing electric power source of CPU |
KR100560767B1 (en) * | 2003-09-02 | 2006-03-13 | 삼성전자주식회사 | System including insertable and removable storage and control method thereof |
US7200762B2 (en) * | 2003-09-30 | 2007-04-03 | Intel Corporation | Providing a low-power state processor voltage in accordance with a detected processor type |
KR100524988B1 (en) * | 2003-10-02 | 2005-10-31 | 삼성전자주식회사 | Multimedia card apparatus capable of interfacing USB host and interfacing method of the same |
US7102338B2 (en) * | 2003-10-23 | 2006-09-05 | Intel Corporation | Multi-sense voltage regulator |
WO2005048415A1 (en) | 2003-11-07 | 2005-05-26 | Powersmart Llc | Automatic sensing power systems and methods |
US20060179330A1 (en) * | 2005-01-27 | 2006-08-10 | Ziarnik Gregory P | Apparatus and method for ensuring power compatibility between a system board and a processing device |
US7526674B2 (en) * | 2005-12-22 | 2009-04-28 | International Business Machines Corporation | Methods and apparatuses for supplying power to processors in multiple processor systems |
US7436708B2 (en) * | 2006-03-01 | 2008-10-14 | Micron Technology, Inc. | NAND memory device column charging |
US8296587B2 (en) | 2006-08-30 | 2012-10-23 | Green Plug, Inc. | Powering an electrical device through a legacy adapter capable of digital communication |
US7745954B1 (en) | 2007-01-15 | 2010-06-29 | Polsinelli Shughart PC | Power sampling systems and methods |
US7856562B2 (en) * | 2007-05-02 | 2010-12-21 | Advanced Micro Devices, Inc. | Selective deactivation of processor cores in multiple processor core systems |
US8575899B2 (en) * | 2009-07-16 | 2013-11-05 | Schumacher Electric Corporation | Battery charger with automatic voltage detection |
US8717093B2 (en) * | 2010-01-08 | 2014-05-06 | Mindspeed Technologies, Inc. | System on chip power management through package configuration |
TWI443495B (en) * | 2011-09-08 | 2014-07-01 | Asustek Comp Inc | Computer device and frequency adjusting method for central processing unit |
US9626195B2 (en) * | 2015-05-11 | 2017-04-18 | Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. | Booting system |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5551012A (en) | 1991-04-22 | 1996-08-27 | Acer Incorporated | Single socket upgradeable computer motherboard with automatic detection and socket reconfiguration for inserted CPU chip |
EP0510241A3 (en) | 1991-04-22 | 1993-01-13 | Acer Incorporated | Upgradeable/downgradeable computer |
US5613130A (en) | 1994-11-10 | 1997-03-18 | Vadem Corporation | Card voltage switching and protection |
US6035407A (en) * | 1995-08-14 | 2000-03-07 | Compaq Computer Corporation | Accomodating components |
US5787014A (en) * | 1996-03-29 | 1998-07-28 | Intel Corporation | Method and apparatus for automatically controlling integrated circuit supply voltages |
US5943227A (en) * | 1996-06-26 | 1999-08-24 | Fairchild Semiconductor Corporation | Programmable synchronous step down DC-DC converter controller |
US5862351A (en) * | 1996-11-07 | 1999-01-19 | He; Zhi Qiang | Motherboard with automatic configuration |
US5757171A (en) * | 1996-12-31 | 1998-05-26 | Intel Corporation | On-board voltage regulators with automatic processor type detection |
US5864225A (en) * | 1997-06-04 | 1999-01-26 | Fairchild Semiconductor Corporation | Dual adjustable voltage regulators |
US6058030A (en) * | 1997-11-20 | 2000-05-02 | Intersil Corporation | Multiple output DC-to-DC converter having enhanced noise margin and related methods |
US5951681A (en) * | 1997-12-01 | 1999-09-14 | Micro-Star International Co., Ltd. | Method and device of plugging and immediately playing a CPU |
-
1998
- 1998-10-21 US US09/176,737 patent/US6327663B2/en not_active Expired - Lifetime
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6384346B1 (en) * | 1999-10-14 | 2002-05-07 | Via Technologies, Inc. | Trace layout of a printed circuit board with AGP and PCI slots |
US20110068174A1 (en) * | 2009-09-18 | 2011-03-24 | Keyence Corporation | Optical Information Reader |
US8534558B2 (en) * | 2009-09-18 | 2013-09-17 | Keyence Corporation | Optical information reader |
US20130086395A1 (en) * | 2011-09-30 | 2013-04-04 | Qualcomm Incorporated | Multi-Core Microprocessor Reliability Optimization |
US8996902B2 (en) | 2012-10-23 | 2015-03-31 | Qualcomm Incorporated | Modal workload scheduling in a heterogeneous multi-processor system on a chip |
CN107562106A (en) * | 2017-09-05 | 2018-01-09 | 华大半导体有限公司 | A kind of super low-power consumption High-reliability power source management design and implementation method |
CN107589773A (en) * | 2017-09-05 | 2018-01-16 | 华大半导体有限公司 | Super low-power consumption High-reliability power source management design and implementation method |
Also Published As
Publication number | Publication date |
---|---|
US6327663B2 (en) | 2001-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6327663B2 (en) | System and method for processor dual voltage detection and over stress protection | |
US5757171A (en) | On-board voltage regulators with automatic processor type detection | |
US6546445B1 (en) | Method and system for connecting dual storage interfaces | |
EP1171824B1 (en) | Hot plug control of multiprocessor based computer system | |
US6062480A (en) | Hot docking system and methods for detecting and managing hot docking of bus cards | |
US6339831B1 (en) | Automatic detecting unit for diagnosing a connection and identifying an external device, information processing apparatus, and external device | |
US6327635B1 (en) | Add-on card with automatic bus power line selection circuit | |
US20020172371A1 (en) | Method and system for automatically detecting and powering PC speakers | |
JP2006252570A (en) | Automatic voltage detection in multiple voltage applications | |
JP2000056871A (en) | Ems enhancement circuit for usb system | |
US6094367A (en) | Voltage regulating device for dynamically regulating voltage in a computer system | |
US20120290858A1 (en) | Power Control for PXI Express Controller | |
US6922194B2 (en) | Method and apparatus for maintaining load balance on a graphics bus when an upgrade device is installed | |
US6640273B1 (en) | Apparatus for data bus expansion between two instrument chassis | |
US7093140B2 (en) | Method and apparatus for configuring a voltage regulator based on current information | |
US6598109B1 (en) | Method and apparatus for connecting between standard mini PCI component and non-standard mini PCI component based on selected signal lines and signal pins | |
US11288224B2 (en) | Semiconductor system and semiconductor device | |
US20040210777A1 (en) | Method and apparatus for enhanced power consumption handling of bus-controlled components | |
TW201737236A (en) | Method for reading identification data from display and associated processing circuit | |
EP1141846A1 (en) | Method and apparatus for disabling a graphics device when an upgrade device is installed | |
US6154067A (en) | Methods of and apparatus for monitoring the termination status of a SCSI bus | |
US6642768B1 (en) | Voltage-dependent impedance selector for non-linearity compensation | |
US6055645A (en) | Method and apparatus for providing a clock signal to a processor | |
US20100046110A1 (en) | Information processing apparatus and control method thereof | |
US5986352A (en) | Smart peripheral back-power prevention |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ADVANCED MICRO DEVICES, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ISAAC, GERALD G.;CALDWELL, DERVINN D.;SMITH, LANCE L.;AND OTHERS;REEL/FRAME:009539/0807 Effective date: 19981015 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: GLOBALFOUNDRIES INC., CAYMAN ISLANDS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AMD TECHNOLOGIES HOLDINGS, INC.;REEL/FRAME:022764/0544 Effective date: 20090302 Owner name: AMD TECHNOLOGIES HOLDINGS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ADVANCED MICRO DEVICES, INC.;REEL/FRAME:022764/0488 Effective date: 20090302 |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
AS | Assignment |
Owner name: WILMINGTON TRUST, NATIONAL ASSOCIATION, DELAWARE Free format text: SECURITY AGREEMENT;ASSIGNOR:GLOBALFOUNDRIES INC.;REEL/FRAME:049490/0001 Effective date: 20181127 |
|
AS | Assignment |
Owner name: GLOBALFOUNDRIES INC., CAYMAN ISLANDS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:054636/0001 Effective date: 20201117 |
|
AS | Assignment |
Owner name: GLOBALFOUNDRIES U.S. INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:056987/0001 Effective date: 20201117 |