US11638638B2 - Filling structure for a graft system and methods of use - Google Patents

Filling structure for a graft system and methods of use Download PDF

Info

Publication number
US11638638B2
US11638638B2 US16/382,118 US201916382118A US11638638B2 US 11638638 B2 US11638638 B2 US 11638638B2 US 201916382118 A US201916382118 A US 201916382118A US 11638638 B2 US11638638 B2 US 11638638B2
Authority
US
United States
Prior art keywords
wall
reinforcing sheet
filling structure
aneurysm
filling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US16/382,118
Other versions
US20190231515A1 (en
Inventor
K. T. Venkateswara Rao
Raj P. Ganpath
Amy Lee
Anupama Karwa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nellix Inc
Endologix LLC
Original Assignee
Endologix LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Assigned to ENDOLOGIX, INC., NELLIX, INC. reassignment ENDOLOGIX, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NELLIX, INC., RAO, K.T. VENKATESWARA, GANPATH, RAJ P., KARWA, ANUPAMA, LEE, AMY
Priority to US16/382,118 priority Critical patent/US11638638B2/en
Application filed by Endologix LLC filed Critical Endologix LLC
Assigned to ENDOLOGIX, INC. reassignment ENDOLOGIX, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NELLIX, INC.
Assigned to DEERFIELD PRIVATE DESIGN FUND IV, L.P., AS AGENT reassignment DEERFIELD PRIVATE DESIGN FUND IV, L.P., AS AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ENDOLOGIX, INC., NELLIX, INC., TRIVASCULAR, INC.
Assigned to DEERFIELD ELGX REVOLVER, LLC, AS AGENT reassignment DEERFIELD ELGX REVOLVER, LLC, AS AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ENDOLOGIX, INC., NELLIX, INC., TRIVASCULAR, INC.
Publication of US20190231515A1 publication Critical patent/US20190231515A1/en
Assigned to WILMINGTON TRUST, NATIONAL ASSOCIATION reassignment WILMINGTON TRUST, NATIONAL ASSOCIATION SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ENDOLOGIX, INC.
Assigned to DEERFIELD PRIVATE DESIGN FUND IV, L.P. reassignment DEERFIELD PRIVATE DESIGN FUND IV, L.P. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ENDOLOGIX LLC (F/K/A ENDOLOGIX, INC.), NELLIX, INC., TRIVASCULAR CANADA, LLC, TRIVASCULAR TECHNOLOGIES, INC., TRIVASCULAR, INC.
Assigned to ENDOLOGIX LLC reassignment ENDOLOGIX LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: ENDOLOGIX, INC.
Assigned to SILICON VALLEY BANK reassignment SILICON VALLEY BANK SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ENDOLOGIX LLC
Publication of US11638638B2 publication Critical patent/US11638638B2/en
Application granted granted Critical
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • A61F2002/075Stent-grafts the stent being loosely attached to the graft material, e.g. by stitching
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • A61F2002/077Stent-grafts having means to fill the space between stent-graft and aneurysm wall, e.g. a sleeve
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0004Rounded shapes, e.g. with rounded corners
    • A61F2230/0008Rounded shapes, e.g. with rounded corners elliptical or oval
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0067Three-dimensional shapes conical

Definitions

  • the present invention relates generally to medical systems and methods for treatment. More particularly, the present invention relates to apparatus and methods for treating aneurysms.
  • Previous patent applications have described an approach to repairing an aneurysm by introducing a filling structure into the aneurysm, supporting the structure with a support structure, and filling the filling structure with a hardenable material that fills the aneurysm sac. Removing the support structure leaves a lumen for blood flow, and the hardenable material fills the sac and prevents blood pressure from enlarging it further.
  • the filling structure experiences pulsatile pressure, and by design shields the aneurysm from most of this pressure.
  • the aneurysm itself may change shape by reabsorption of thrombus between the filling structure and the artery wall, and shrinkage or remodeling of the artery wall itself. This may result in reduced pressure on the exterior of the filling structure. In some designs this may cause the inner lumen of the filling structure to grow through time-dependent elastic deformation or creep. It is desirable to prevent this change in the inner lumen as the aneurysm changes shape.
  • Aneurysms can occur in a range of shapes and sizes depending on the individual anatomy of the affected artery, the length of time it took to detect the aneurysm, blood pressure, and other factors.
  • structures designed to repair aneurysms by filling the aneurism sac must either be designed to be effective across a range of sac shapes and sizes, or they must be supplied in multiple stock sizes, or they must be custom-made for a specific anatomy.
  • the structures may have a combination of the aforementioned properties.
  • a promising class of intraluminal aneurysm repair devices employs a double walled filling structure to fill the aneurysm sac while maintaining a lumen for continued blood flow in the artery.
  • the double walled filling structure may be chosen such that it is capable of expanding to at least the size of the sac in all parts of the aneurysm. This obviates the need to make a custom version of the device for each aneurysm, and instead allows the surgeon to choose among a limited number of stock sized devices.
  • the filling structure is selected to be at least as large as the sac to be filled.
  • Some embodiments may have an elastic outer wall that expands and conforms to the inner aneurysm wall, while other filling structures use a substantially inelastic outer wall that is thin and flexible so that as the filling structure is filled, the outer wall expands partially to completely fill the sac, and any remaining capacity takes the form of wrinkles or pleats in the outer wall of the filling structure.
  • An advantage of the elastic outer wall is the potential absence of wrinkles, but a drawback is that an elastic outer wall will not conform exactly to abrupt changes in curvature of the sac.
  • the filling structure and filling medium needs to be stiff enough that its internal lumen does not change shape as this happens. Discontinuities in the filling medium caused by wrinkles and pleats on the walls of the filling structure reduce the strength of the filled structure. It would be advantageous to have a filling structure that can be filled in such a way that no internal wrinkles remain in some of its parts. It would also be advantageous to have a filling structure that is strong enough to resist creep even in the absence of an uninterrupted fill, yet still be thin enough to be percutaneously deliverable through the vasculature, which typically requires a 14 Fr or less device.
  • a filling medium with a chemistry that also adheres to walls of the filling structure during or after curing, so that the in-situ formed device can withstand the biomechanical loads and accommodate long-term remodeling of the aneurysm.
  • This can be accomplished through additives thereby modifying the chemistry of the filling medium or modifying the chemistry or coating the inner layers of the filling structure so that filling medium adheres to the filling structure as the device forms in-situ.
  • the device when filled with hardened filling material, conform as closely as possible to the shape of the aneurysm at its proximal and distal ends. It is also desirable to provide means by which the filling structure may be made to conform closely to the necks of the aneurysm, while being made of a thin, inelastic material. It is also desirable to resist creep deformation and remodeling caused by the pulsatile pressure of blood against the device.
  • U.S. Patent Publication No. 2006/0025853 describes a double-walled filling structure for treating aortic and other aneurysms.
  • Copending, commonly owned U.S. Patent Publication No. 2006/0212112 describes the use of liners and extenders to anchor and seal such double-walled filling structures within the aorta. The full disclosures of both these publications are incorporated herein by reference.
  • PCT Publication No. WO 01/21108 describes expandable implants attached to a central graft for filling aortic aneurysms. See also U.S. Pat. Nos.
  • a double-walled filling structure comprises a thin, flexible, non-porous and biocompatible outer material that prevents movement of fluids across its boundary and that is flexible enough to fill and conform to the irregular contours of the aneurysm wall.
  • An inner lumen of the filling structure may be made of the same or a different material selected and oriented so as to have high resistance to circumferential creep and elastic deflection.
  • the inner lumen may be reinforced by including a reinforcing member including fibers, wires, strips, or a sleeve oriented circumferentially so as to improve resistance to hoop stresses.
  • the inner lumen may also be reinforced by the use of multiple layers of material.
  • the inner lumen may be inserted into a tubular mesh or membrane of metal, polymer, or fibers in order to provide resistance against creep. If the inner lumen is tapered or contoured to provide a gradual change in diameter from one end to the other, the reinforcing lumen may also be tapered to match the lumen taper.
  • the inner lumen of the filling structure is constructed of a material with thickness and/or composition chosen to be capable of withstanding the maximum pulsatile pressure exerted by blood flow, without undergoing creep or significant elastic deformation. It is generally desirable to minimize thickness of the filling structure, so a variation on this aspect is to employ materials with anisotropic stress properties oriented and processed so as to have greatest strength in the circumferential direction.
  • a material with anisotropic stress properties oriented and processed so as to have greatest strength in the circumferential direction.
  • An example of such a material is expanded polytetrafluoroethylene, or ePTFE, which is typically stretched in one direction and may also be calendared to reduce its thickness and decrease its porosity.
  • the ePTFE sheet exhibits anisotropic modulus with greatest value in the pre-stress axis, and also exhibits a strain hardening property in which the modulus increases with deformation along the axis of pre-stress.
  • a third aspect of the present invention involves attaching a support structure to the inside of the inner lumen of the filling structure.
  • the internal support frame (endoframe) may be made of a biocompatible superelastic material such as Nickel-Titanium alloy (for example Nitinol), and may be used to support the inner lumen of the filling structure while it is being filled with hardenable material.
  • the inner lumen of the filling structure may be contoured so that it matches the diameter of the endoframe at every position along its length to avoid wrinkles.
  • the frame provides additional creep resistance to the lumen. This may be involve suturing, heat staking, solvent welding, or other methods well known in the art for attaching dissimilar materials to each other.
  • the internal reinforcing elements may be made from balloon-expandable materials like stainless steel, cobalt-chromium alloys, etc.
  • Ring shaped stiffeners may be sintered to either the outside or the inside of the inner lumen of the filling structure to provide support.
  • the frame may comprise a set of such rings.
  • the rings may be made of a biocompatible metal or polymer.
  • the rings may be shaped such that they are compressible and readily expandable in situ, for example by forming each ring from an undulating or zigzag pattern.
  • a reinforcing tube surrounds an inner lumen of a filling structure to provide additional reinforcement.
  • This tube may be made of the same material as the inner lumen, or it may differ. Because the reinforcing tube does not contact blood or tissue, its biocompatibility requirements are lessened.
  • the reinforcing tube may be of a continuous material, or it may be a mesh attached to the inner lumen by one of several methods well known in the art, including for example suturing, heat staking, solvent welding, ultrasonic welding, or adhesives.
  • the tube material is chosen to have strength in the circumferential direction that, in combination with the strength provided by the inner lumen, resists creep caused by the peaks in blood pressure.
  • hoop stress pressure*vessel radius/wall thickness.
  • mean blood pressure 100 mmHg (healthy 80/120 mm Hg)
  • radius R 7 mm (2-14 mm rounds to treat a 26 mm aorta)
  • wall thickness of 150 microns the typical stresses are about 600 MPa.
  • Maximum stress is about 1100 MPa, and minimum hoop stress is estimated to be about 300 MPa.
  • the filling medium may be modified through additives/covalent bonding so that it adheres to the walls of the filling structure and keeps the device intact and accommodates remodeling.
  • the inner walls of the filling structure may be modified through additives, coatings and covalent bonding so that the filling medium adheres to the filling structure and maintains the shape of the device.
  • the filling structure includes two or more coaxial compartments, the inner of which is a hollow cylinder surrounding the inner lumen, and the outer of which is shaped to fill the aneurysm and conform to the irregular contours of the aneurysm wall.
  • the inner compartment may be in fluid communication with the outer compartment.
  • the inner and outer compartments may have separate fill ports, or a valve or flap may be provided to direct a flow of filling material first to one region, and then to the other region.
  • the filling material is introduced to the inner region, and may flow to the outer region when the inner region fills, thereby providing a continuous layer of hardening medium surrounding the blood lumens of the filling structure.
  • the inner compartment is sized such that it may be fully expanded without wrinkles while the outer compartment is sized to fill a wide range of aneurysm geometries that may be encountered and therefore may be of an elastic material, or of a flexible, substantially inelastic material such as PTFE or ePTFE that is large enough to fill a range of aneurysm cavities.
  • PTFE substantially inelastic material
  • ePTFE substantially inelastic material
  • the filling medium delivered to the inner region may be selected to have material properties that enhance its resistance to pulsatile pressure or creep.
  • the inner region material may be a Polyethylene Glycol (PEG)-based Hydrogel with a higher bulk modulus than the material delivered to the outer region.
  • PEG Polyethylene Glycol
  • a harder material in the inner compartment dampens pulsatile forces and a softer material in the outer compartment allows ease of shaping and remodeling.
  • the material targeted to the outer region may for example be selected to have lower viscosity before hardening so it fills the sac more evenly, a different hardening time, or the ability to bond with the wall of the filling structure.
  • This may be achieved for example through chemical/covalent bonding by adding reactive functional groups to either the hydrogel or the inner wall of the filling structure or both.
  • Hydrogen bonding may be preferentially used to create attachment of hydrogel to the inner surface of the filling structure. This may entail imparting donor hydrogen atoms and acceptor entity atoms in either the hydrogel or the wall of the filling structure or both.
  • Physical adhesive/cohesive forces may be used to attach hydrogel to the inner surface at various pre-determined locations on the interface.
  • the inner surface of the filling structure's outer wall may be modified by surface derivitization or by lamination to allow the filling material to bonds to it to improve overall strength.
  • the filling structure's outer surface is coated with substances that promote the growth of epithelium on the outer surface, thus creating an enclosure around the filling structure that serves to maintain containment pressure over time.
  • This approach may be combined with other approaches described herein to add strength.
  • a method for treating an aneurysm comprises providing a double-walled filling structure having an outer wall and an inner wall, and positioning the double-walled filling structure adjacent the aneurysm.
  • the filling structure is filled with a hardenable fluid filling medium so that the outer wall conforms to an inside surface of the aneurysm and the inner wall forms a generally tubular lumen to permit blood flow therethrough.
  • the lumen is constrained from creeping or elastically expanding due to the blood flow through the lumen.
  • the constraining step may comprise providing a reinforcing layer disposed at least partially around the tubular lumen, or filling a compartment disposed at least partially around the tubular lumen with the hardenable fluid filling medium.
  • FIG. 1 illustrates the anatomy of an infrarenal abdominal aortic aneurysm.
  • FIG. 2 illustrates a filling structure comprising a multi-layer reinforced inner lumen.
  • FIG. 3 illustrates a filling structure comprising an inner lumen with tapered ends.
  • FIG. 4 illustrates a filling structure comprising multiple compartments.
  • FIGS. 5 A- 5 D illustrate an exemplary method of deploying a filling structure in an aneurysm.
  • the anatomy of an infrarenal abdominal aortic aneurysm comprises the thoracic aorta (TA) having renal arteries (RA) at its distal end above the iliac arteries (IA).
  • the abdominal aortic aneurysm (AAA) typically forms between the renal arteries (RA) and the iliac arteries (IA) and may have regions of mural thrombus (T) over portions of its inner surface (S).
  • FIG. 2 illustrates a filling structure 201 embodying aspects of the invention.
  • Filling structure 201 comprises central lumen 204 defined by luminal wall 202 , outer wall 209 , and reinforcing sleeve 203 .
  • Fill tube 208 is attached to a cannula during placement of the device, and allows hardenable filling material to enter the interior volume of the filling structure, then seals itself to prevent backflow of filling material when the cannula is removed.
  • Fill tube 208 may comprise a tear line 210 created by a partial perforation or notched edges. The tear line allows part or the entire exterior portion of the fill tube to be removed when the fill cannula is removed so that none of the fill tube protrudes beyond the filling structure once the filling structure is placed. This prevents contact between the fill tube and the artery wall, reducing the risk of thrombosis.
  • reinforcing sleeve 203 may be laminated, welded, sewn, or adhesively attached to central lumen 204 , or may be a separate sleeve that is placed over central lumen 204 during the assembly process. Both reinforcing sleeve 203 and central lumen 204 may vary in diameter in order to conform more closely to the natural diameter of the target artery, particularly at the ends. This may afford superior sealing by matching the diameter of the filling structure more closely to the diameter of the neck of the aneurysm.
  • a filling structure 301 may be constructed such that inner lumen 303 varies in diameter over the length of the filling structure in order to increase filled volume 305 and improve sealing against one or more necks of the aneurysm.
  • the filling structure 301 has an exterior wall 302 and a lumen 303 .
  • the lumen 303 has a larger diameter 304 at each end than at a point therebetween, and may comprise a cylindrical middle portion 303 a with one or more conical end portions 303 b .
  • the slope of the shoulder of conical end portions 303 b may be chosen to control the shape of filling structure 301 after it is filled.
  • Choosing a maximum diameter of conical section 303 b that is close to the outside diameter of the filling structure results in a more circular cross-section, while a smaller maximum diameter relative to the outside diameter of filling structure 301 results in an oval or eye-shaped cross-section.
  • Other taper profiles for the inner lumen may be selected; for example it is possible to use a parabolic or hyperbolic profile to provide a continuous transition from one inner diameter to another, which may reduce turbulent flow in the lumen. Note that the foregoing description is for exemplary purposes and is not meant to exclude other diameter profiles.
  • FIG. 4 illustrates a filling structure 401 comprising at least two filling compartments.
  • Endoframe 402 may be used to support the filling structure while it is being filled, maintaining a diameter of interior lumen 403 .
  • Inner compartment 404 may be connected directly to a fill valve 407 such that filling material enters compartment 404 forming an inner polymer jacket 405 before flowing to outer compartment 406 .
  • the two compartments may be in fluid communication with each other, optionally with a restriction between the two compartments such that the viscosity of the filling medium inflates the inner compartment fully before filling the outer compartment.
  • U.S. patent application Ser. No. 12/429,474 discloses various delivery system configurations and methods for delivering and deploying a filling structure that may be used for any of the filling structures disclosed herein, the entire contents of which are incorporated herein by reference.
  • inner compartment 404 may be separated from outer compartment 406 and each compartment may have a separate fill valve similar to fill valve 407 .
  • valve 407 communicates with the inner compartment and another fill valve (not shown) communicates with the outer compartment.
  • the inner compartment-filling medium may be selected for a fast cure time to allow rapid removal of the endoframe 402 , or for a larger bulk modulus to provide enhanced resistance to pulsatile pressure.
  • the outer compartment-filling medium may for example be selected for enhanced adhesion to an inner wall of filling structure 401 .
  • Separate fill valves also allow the compartments to be filled in a controlled order.
  • the inner compartment is filled before the outer compartment to allow the inner compartment to be fully filled, providing a solid structure for resisting pulsatile pressure.
  • the outer compartment is then filled sufficiently to fill the aneurysm sac without overloading the artery wall.
  • Furled filling structure 501 is introduced to the aneurysm on guidewire 503 and cannula 502 .
  • Sheath 504 is withdrawn to release filling structure 501 .
  • Cannula 502 contains guidewire 503 as well as one or more optional lumens (not illustrated) for filling the filling structure compartments, and possibly for introducing an endoframe and expansion balloon, as well as lines permitting detachment of the filling structure and other components from the cannula for deployment.
  • the unfurled filling structure may be unfurled completely by filling with a solution containing contrast agent, saline, combinations thereof, as well as other fluids. This is advantageous since the walls of the filling structure may stick against adjacent walls, especially after terminal sterilization and storage.
  • the volume of solution required to unfurl may be used as an estimate of the volume of hydrogel mix to introduce in order to fill the aneurysm sac completely without overpressure on the wall.
  • endoframe 505 may be introduced into the inner lumen of filling structure 501 to support the inner lumen during the hydrogel filling step.
  • Endoframe 505 may be self-expanding, or may be expanded by an expandable member such as a balloon (not illustrated) introduced via cannula 502 .
  • Endoframe 505 may be withdrawn after the filling step, or may be left in place indefinitely.
  • uncured liquid hydrogel is introduced through cannula 502 into inner partition 506 of filling structure 501 .
  • inner partition 506 may be in restricted fluid communication with outer partition 507 of filling structure 501 .
  • hydrogel flows to outer partition 507 via a passageway.
  • the hydrogel's viscosity in combination with the cross-section area of the passageway causes inner partition 506 to stay inflated while outer partition 507 fills with the remaining volume of hydrogel until filling structure 501 completely fills the aneurysm sac.
  • inner partition 506 and outer partition 507 may be filled by independent filling tubes (not illustrated) in cannula 502 .
  • inner partition 506 is filled until a measured pressure of the hydrogel reaches a threshold pressure, or until a dispensed volume of hydrogel reaches a threshold volume indicating complete filling of inner partition 506 .
  • outer partition 507 is filled with the remaining volume of hydrogel as estimated in the pre-fill step described previously.
  • the filling structure may comprise more than two compartments, in which case the filling process continues until all compartments are properly and completely filled.
  • this process may be conducted on two filling structures simultaneously, with one filling structure inserted through each iliac artery.
  • Filling of the filling structure may be performed with the endoframe expanded fully or partially, or the endoframe may be unexpanded. Additionally, the expandable member may be partially or fully expanded, or unexpanded during the filling procedure. Filling may also be visualized using fluoroscopy, ultrasound, or other methods in order to ensure that the filling structure properly expands and fills the aneurismal space.

Landscapes

  • Health & Medical Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Pulmonology (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)

Abstract

A system for treating an aneurysm includes a first double-walled filling structure having an outer wall and an inner wall. The filling structure is adapted to be filled with a hardenable fluid filling medium so that the outer wall conforms to an inside surface of the aneurysm and the inner wall forms a generally tubular lumen to permit blood flow therethrough. The inner wall comprises a blood contacting layer and a reinforcing layer. The reinforcing layer prevents circumferential creep or elastic expansion of the lumen.

Description

CROSS-REFERENCES TO RELATED APPLICATIONS
The present application is a Continuation of U.S. non-provisional application Ser. No. 12/966,852, filed Dec. 13, 2010, which of, and claims the benefit of U.S. Provisional Patent Application No. 61/291,279 filed Dec. 30, 2009, the entire contents of each of which are incorporated herein by reference.
BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates generally to medical systems and methods for treatment. More particularly, the present invention relates to apparatus and methods for treating aneurysms.
Previous patent applications have described an approach to repairing an aneurysm by introducing a filling structure into the aneurysm, supporting the structure with a support structure, and filling the filling structure with a hardenable material that fills the aneurysm sac. Removing the support structure leaves a lumen for blood flow, and the hardenable material fills the sac and prevents blood pressure from enlarging it further.
Once it is placed into service, the filling structure experiences pulsatile pressure, and by design shields the aneurysm from most of this pressure. As a result, the aneurysm itself may change shape by reabsorption of thrombus between the filling structure and the artery wall, and shrinkage or remodeling of the artery wall itself. This may result in reduced pressure on the exterior of the filling structure. In some designs this may cause the inner lumen of the filling structure to grow through time-dependent elastic deformation or creep. It is desirable to prevent this change in the inner lumen as the aneurysm changes shape.
Aneurysms can occur in a range of shapes and sizes depending on the individual anatomy of the affected artery, the length of time it took to detect the aneurysm, blood pressure, and other factors. As a result, structures designed to repair aneurysms by filling the aneurism sac must either be designed to be effective across a range of sac shapes and sizes, or they must be supplied in multiple stock sizes, or they must be custom-made for a specific anatomy. Sometimes, the structures may have a combination of the aforementioned properties.
A promising class of intraluminal aneurysm repair devices employs a double walled filling structure to fill the aneurysm sac while maintaining a lumen for continued blood flow in the artery. In order to accommodate a range of aneurysm sizes, the double walled filling structure may be chosen such that it is capable of expanding to at least the size of the sac in all parts of the aneurysm. This obviates the need to make a custom version of the device for each aneurysm, and instead allows the surgeon to choose among a limited number of stock sized devices. In this case the filling structure is selected to be at least as large as the sac to be filled. Some embodiments may have an elastic outer wall that expands and conforms to the inner aneurysm wall, while other filling structures use a substantially inelastic outer wall that is thin and flexible so that as the filling structure is filled, the outer wall expands partially to completely fill the sac, and any remaining capacity takes the form of wrinkles or pleats in the outer wall of the filling structure. An advantage of the elastic outer wall is the potential absence of wrinkles, but a drawback is that an elastic outer wall will not conform exactly to abrupt changes in curvature of the sac.
When the device is deployed and filled with hardened filling medium, pressure on the aneurysm wall is relieved. Over time, thrombus in the aneurysm is reabsorbed and the aneurysm wall slackens, relieving counterpressure on the filling structure. Therefore, the filling structure and filling medium needs to be stiff enough that its internal lumen does not change shape as this happens. Discontinuities in the filling medium caused by wrinkles and pleats on the walls of the filling structure reduce the strength of the filled structure. It would be advantageous to have a filling structure that can be filled in such a way that no internal wrinkles remain in some of its parts. It would also be advantageous to have a filling structure that is strong enough to resist creep even in the absence of an uninterrupted fill, yet still be thin enough to be percutaneously deliverable through the vasculature, which typically requires a 14 Fr or less device.
In addition, it would also be desirable to have a filling medium with a chemistry that also adheres to walls of the filling structure during or after curing, so that the in-situ formed device can withstand the biomechanical loads and accommodate long-term remodeling of the aneurysm. This can be accomplished through additives thereby modifying the chemistry of the filling medium or modifying the chemistry or coating the inner layers of the filling structure so that filling medium adheres to the filling structure as the device forms in-situ.
In order to avoid device migration and leakage, it is also desirable that the device, when filled with hardened filling material, conform as closely as possible to the shape of the aneurysm at its proximal and distal ends. It is also desirable to provide means by which the filling structure may be made to conform closely to the necks of the aneurysm, while being made of a thin, inelastic material. It is also desirable to resist creep deformation and remodeling caused by the pulsatile pressure of blood against the device.
2. Description of the Background Art
U.S. Patent Publication No. 2006/0025853 describes a double-walled filling structure for treating aortic and other aneurysms. Copending, commonly owned U.S. Patent Publication No. 2006/0212112, describes the use of liners and extenders to anchor and seal such double-walled filling structures within the aorta. The full disclosures of both these publications are incorporated herein by reference. PCT Publication No. WO 01/21108 describes expandable implants attached to a central graft for filling aortic aneurysms. See also U.S. Pat. Nos. 5,330,528; 5,534,024, 5,843,160; 6,168,592; 6,190,402; 6,312,462; 6,312,463; U.S. Patent Publications 2002/0045848; 2003/0014075; 2004/0204755; 2005/0004660; and PCT Publication No. WO 02/102282.
BRIEF SUMMARY OF THE INVENTION
In a first aspect of the present invention, a double-walled filling structure comprises a thin, flexible, non-porous and biocompatible outer material that prevents movement of fluids across its boundary and that is flexible enough to fill and conform to the irregular contours of the aneurysm wall. An inner lumen of the filling structure may be made of the same or a different material selected and oriented so as to have high resistance to circumferential creep and elastic deflection. The inner lumen may be reinforced by including a reinforcing member including fibers, wires, strips, or a sleeve oriented circumferentially so as to improve resistance to hoop stresses. The inner lumen may also be reinforced by the use of multiple layers of material. The inner lumen may be inserted into a tubular mesh or membrane of metal, polymer, or fibers in order to provide resistance against creep. If the inner lumen is tapered or contoured to provide a gradual change in diameter from one end to the other, the reinforcing lumen may also be tapered to match the lumen taper.
In a second aspect of the present invention, the inner lumen of the filling structure is constructed of a material with thickness and/or composition chosen to be capable of withstanding the maximum pulsatile pressure exerted by blood flow, without undergoing creep or significant elastic deformation. It is generally desirable to minimize thickness of the filling structure, so a variation on this aspect is to employ materials with anisotropic stress properties oriented and processed so as to have greatest strength in the circumferential direction. An example of such a material is expanded polytetrafluoroethylene, or ePTFE, which is typically stretched in one direction and may also be calendared to reduce its thickness and decrease its porosity. The ePTFE sheet exhibits anisotropic modulus with greatest value in the pre-stress axis, and also exhibits a strain hardening property in which the modulus increases with deformation along the axis of pre-stress. Thus by constructing the inner lumen of ePTFE, with a pre-stress axis oriented in the circumferential direction, it is possible to resist creep caused by blood pressure. Other materials may be employed in this capacity as well, provided they have sufficient strength in at least one axis, and are biocompatible and impervious to fluids.
A third aspect of the present invention involves attaching a support structure to the inside of the inner lumen of the filling structure. The internal support frame (endoframe) may be made of a biocompatible superelastic material such as Nickel-Titanium alloy (for example Nitinol), and may be used to support the inner lumen of the filling structure while it is being filled with hardenable material. The inner lumen of the filling structure may be contoured so that it matches the diameter of the endoframe at every position along its length to avoid wrinkles. By attaching the lumen to the frame at several points, the frame provides additional creep resistance to the lumen. This may be involve suturing, heat staking, solvent welding, or other methods well known in the art for attaching dissimilar materials to each other. Alternatively, the internal reinforcing elements may be made from balloon-expandable materials like stainless steel, cobalt-chromium alloys, etc. Ring shaped stiffeners may be sintered to either the outside or the inside of the inner lumen of the filling structure to provide support. In this case, the frame may comprise a set of such rings. The rings may be made of a biocompatible metal or polymer. The rings may be shaped such that they are compressible and readily expandable in situ, for example by forming each ring from an undulating or zigzag pattern.
In a fourth aspect of the present invention a reinforcing tube surrounds an inner lumen of a filling structure to provide additional reinforcement. This tube may be made of the same material as the inner lumen, or it may differ. Because the reinforcing tube does not contact blood or tissue, its biocompatibility requirements are lessened. The reinforcing tube may be of a continuous material, or it may be a mesh attached to the inner lumen by one of several methods well known in the art, including for example suturing, heat staking, solvent welding, ultrasonic welding, or adhesives. The tube material is chosen to have strength in the circumferential direction that, in combination with the strength provided by the inner lumen, resists creep caused by the peaks in blood pressure. Using Laplace's law:
hoop stress=pressure*vessel radius/wall thickness.
Using typical values for mean blood pressure=100 mmHg (healthy 80/120 mm Hg), radius R=7 mm (2-14 mm rounds to treat a 26 mm aorta), and assuming wall thickness of 150 microns, the typical stresses are about 600 MPa. Maximum stress is about 1100 MPa, and minimum hoop stress is estimated to be about 300 MPa.
In another aspect of the present invention, the filling medium may be modified through additives/covalent bonding so that it adheres to the walls of the filling structure and keeps the device intact and accommodates remodeling.
In still another aspect of the present invention, the inner walls of the filling structure may be modified through additives, coatings and covalent bonding so that the filling medium adheres to the filling structure and maintains the shape of the device.
In yet another aspect of the present invention, the filling structure includes two or more coaxial compartments, the inner of which is a hollow cylinder surrounding the inner lumen, and the outer of which is shaped to fill the aneurysm and conform to the irregular contours of the aneurysm wall. The inner compartment may be in fluid communication with the outer compartment. The inner and outer compartments may have separate fill ports, or a valve or flap may be provided to direct a flow of filling material first to one region, and then to the other region. The filling material is introduced to the inner region, and may flow to the outer region when the inner region fills, thereby providing a continuous layer of hardening medium surrounding the blood lumens of the filling structure. This results in the inner region being completely filled with a hollow cylinder of hardened filling medium reinforced by the inner and middle layers of the filling structure itself, preventing radial expansion. In addition, the inner compartment is sized such that it may be fully expanded without wrinkles while the outer compartment is sized to fill a wide range of aneurysm geometries that may be encountered and therefore may be of an elastic material, or of a flexible, substantially inelastic material such as PTFE or ePTFE that is large enough to fill a range of aneurysm cavities. In the latter case there may be wrinkles in the outer section of the filling structure after filling depending on the shape, size and pathophysiology of the aneurysm. These wrinkles may interrupt the structure of the hardened filling medium so that it may be broken into two or more sub-volumes, inhibiting its strength and providing room to depressurize and allow for re-modeling as part of the healing mechanism of the aneurysm.
The filling medium delivered to the inner region may be selected to have material properties that enhance its resistance to pulsatile pressure or creep. For example, the inner region material may be a Polyethylene Glycol (PEG)-based Hydrogel with a higher bulk modulus than the material delivered to the outer region. A harder material in the inner compartment dampens pulsatile forces and a softer material in the outer compartment allows ease of shaping and remodeling.
Similarly, the material targeted to the outer region may for example be selected to have lower viscosity before hardening so it fills the sac more evenly, a different hardening time, or the ability to bond with the wall of the filling structure. This may be achieved for example through chemical/covalent bonding by adding reactive functional groups to either the hydrogel or the inner wall of the filling structure or both. Hydrogen bonding may be preferentially used to create attachment of hydrogel to the inner surface of the filling structure. This may entail imparting donor hydrogen atoms and acceptor entity atoms in either the hydrogel or the wall of the filling structure or both. Physical adhesive/cohesive forces may be used to attach hydrogel to the inner surface at various pre-determined locations on the interface. The inner surface of the filling structure's outer wall may be modified by surface derivitization or by lamination to allow the filling material to bonds to it to improve overall strength.
In still another aspect of the invention, the filling structure's outer surface is coated with substances that promote the growth of epithelium on the outer surface, thus creating an enclosure around the filling structure that serves to maintain containment pressure over time. This approach may be combined with other approaches described herein to add strength.
In another aspect of the present invention, a method for treating an aneurysm comprises providing a double-walled filling structure having an outer wall and an inner wall, and positioning the double-walled filling structure adjacent the aneurysm. The filling structure is filled with a hardenable fluid filling medium so that the outer wall conforms to an inside surface of the aneurysm and the inner wall forms a generally tubular lumen to permit blood flow therethrough. The lumen is constrained from creeping or elastically expanding due to the blood flow through the lumen.
The constraining step may comprise providing a reinforcing layer disposed at least partially around the tubular lumen, or filling a compartment disposed at least partially around the tubular lumen with the hardenable fluid filling medium.
These and other embodiments are described in further detail in the following description related to the appended drawing figures.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates the anatomy of an infrarenal abdominal aortic aneurysm.
FIG. 2 illustrates a filling structure comprising a multi-layer reinforced inner lumen.
FIG. 3 illustrates a filling structure comprising an inner lumen with tapered ends.
FIG. 4 illustrates a filling structure comprising multiple compartments.
FIGS. 5A-5D illustrate an exemplary method of deploying a filling structure in an aneurysm.
DETAILED DESCRIPTION OF THE INVENTION
Referring to FIG. 1 , the anatomy of an infrarenal abdominal aortic aneurysm comprises the thoracic aorta (TA) having renal arteries (RA) at its distal end above the iliac arteries (IA). The abdominal aortic aneurysm (AAA) typically forms between the renal arteries (RA) and the iliac arteries (IA) and may have regions of mural thrombus (T) over portions of its inner surface (S).
FIG. 2 illustrates a filling structure 201 embodying aspects of the invention. Filling structure 201 comprises central lumen 204 defined by luminal wall 202, outer wall 209, and reinforcing sleeve 203. Fill tube 208 is attached to a cannula during placement of the device, and allows hardenable filling material to enter the interior volume of the filling structure, then seals itself to prevent backflow of filling material when the cannula is removed. Fill tube 208 may comprise a tear line 210 created by a partial perforation or notched edges. The tear line allows part or the entire exterior portion of the fill tube to be removed when the fill cannula is removed so that none of the fill tube protrudes beyond the filling structure once the filling structure is placed. This prevents contact between the fill tube and the artery wall, reducing the risk of thrombosis.
Still referring to FIG. 2 , reinforcing sleeve 203 may be laminated, welded, sewn, or adhesively attached to central lumen 204, or may be a separate sleeve that is placed over central lumen 204 during the assembly process. Both reinforcing sleeve 203 and central lumen 204 may vary in diameter in order to conform more closely to the natural diameter of the target artery, particularly at the ends. This may afford superior sealing by matching the diameter of the filling structure more closely to the diameter of the neck of the aneurysm.
As shown in FIG. 3 , a filling structure 301 may be constructed such that inner lumen 303 varies in diameter over the length of the filling structure in order to increase filled volume 305 and improve sealing against one or more necks of the aneurysm. In one aspect, the filling structure 301 has an exterior wall 302 and a lumen 303. The lumen 303 has a larger diameter 304 at each end than at a point therebetween, and may comprise a cylindrical middle portion 303 a with one or more conical end portions 303 b. The slope of the shoulder of conical end portions 303 b may be chosen to control the shape of filling structure 301 after it is filled. Choosing a maximum diameter of conical section 303 b that is close to the outside diameter of the filling structure results in a more circular cross-section, while a smaller maximum diameter relative to the outside diameter of filling structure 301 results in an oval or eye-shaped cross-section. Other taper profiles for the inner lumen may be selected; for example it is possible to use a parabolic or hyperbolic profile to provide a continuous transition from one inner diameter to another, which may reduce turbulent flow in the lumen. Note that the foregoing description is for exemplary purposes and is not meant to exclude other diameter profiles.
FIG. 4 illustrates a filling structure 401 comprising at least two filling compartments. Endoframe 402 may be used to support the filling structure while it is being filled, maintaining a diameter of interior lumen 403. Inner compartment 404 may be connected directly to a fill valve 407 such that filling material enters compartment 404 forming an inner polymer jacket 405 before flowing to outer compartment 406. In this aspect the two compartments may be in fluid communication with each other, optionally with a restriction between the two compartments such that the viscosity of the filling medium inflates the inner compartment fully before filling the outer compartment. U.S. patent application Ser. No. 12/429,474 discloses various delivery system configurations and methods for delivering and deploying a filling structure that may be used for any of the filling structures disclosed herein, the entire contents of which are incorporated herein by reference.
In an alternate aspect, inner compartment 404 may be separated from outer compartment 406 and each compartment may have a separate fill valve similar to fill valve 407. In this case valve 407 communicates with the inner compartment and another fill valve (not shown) communicates with the outer compartment. This permits the use of two different filling media, each with potentially different material properties. For example, the inner compartment-filling medium may be selected for a fast cure time to allow rapid removal of the endoframe 402, or for a larger bulk modulus to provide enhanced resistance to pulsatile pressure. The outer compartment-filling medium may for example be selected for enhanced adhesion to an inner wall of filling structure 401. Separate fill valves also allow the compartments to be filled in a controlled order. In one aspect, the inner compartment is filled before the outer compartment to allow the inner compartment to be fully filled, providing a solid structure for resisting pulsatile pressure. The outer compartment is then filled sufficiently to fill the aneurysm sac without overloading the artery wall.
Referring now to FIG. 5 a , we describe an exemplary method of placing and filling a multi-partition filling structure in an aneurysm 500. Furled filling structure 501 is introduced to the aneurysm on guidewire 503 and cannula 502. Sheath 504 is withdrawn to release filling structure 501. Cannula 502 contains guidewire 503 as well as one or more optional lumens (not illustrated) for filling the filling structure compartments, and possibly for introducing an endoframe and expansion balloon, as well as lines permitting detachment of the filling structure and other components from the cannula for deployment.
Continuing to FIG. 5 b , the unfurled filling structure may be unfurled completely by filling with a solution containing contrast agent, saline, combinations thereof, as well as other fluids. This is advantageous since the walls of the filling structure may stick against adjacent walls, especially after terminal sterilization and storage. Once unfurled, the volume of solution required to unfurl may be used as an estimate of the volume of hydrogel mix to introduce in order to fill the aneurysm sac completely without overpressure on the wall.
Continuing to FIG. 5 c , endoframe 505 may be introduced into the inner lumen of filling structure 501 to support the inner lumen during the hydrogel filling step. Endoframe 505 may be self-expanding, or may be expanded by an expandable member such as a balloon (not illustrated) introduced via cannula 502. Endoframe 505 may be withdrawn after the filling step, or may be left in place indefinitely.
Continuing to FIG. 5 d , uncured liquid hydrogel is introduced through cannula 502 into inner partition 506 of filling structure 501. In one aspect, inner partition 506 may be in restricted fluid communication with outer partition 507 of filling structure 501. In this case, once inner partition 506 is filled, hydrogel flows to outer partition 507 via a passageway. The hydrogel's viscosity in combination with the cross-section area of the passageway causes inner partition 506 to stay inflated while outer partition 507 fills with the remaining volume of hydrogel until filling structure 501 completely fills the aneurysm sac. In another aspect, inner partition 506 and outer partition 507 may be filled by independent filling tubes (not illustrated) in cannula 502. In this aspect, inner partition 506 is filled until a measured pressure of the hydrogel reaches a threshold pressure, or until a dispensed volume of hydrogel reaches a threshold volume indicating complete filling of inner partition 506. Then outer partition 507 is filled with the remaining volume of hydrogel as estimated in the pre-fill step described previously. Note that the filling structure may comprise more than two compartments, in which case the filling process continues until all compartments are properly and completely filled. Once the hydrogel cures—preferably in less than ten minutes, and more preferably in less than five minutes, and even more preferably in less than about 4 minutes, the filling tubes may be detached from the filling structure and the cannula and guidewire may be withdrawn. Note that this process may be conducted on two filling structures simultaneously, with one filling structure inserted through each iliac artery. Filling of the filling structure may be performed with the endoframe expanded fully or partially, or the endoframe may be unexpanded. Additionally, the expandable member may be partially or fully expanded, or unexpanded during the filling procedure. Filling may also be visualized using fluoroscopy, ultrasound, or other methods in order to ensure that the filling structure properly expands and fills the aneurismal space.
While the above is a complete description of the preferred embodiments of the invention, various alternatives, modifications, and equivalents may be used. Therefore, the above description should not be taken as limiting in scope of the invention which is defined by the appended claims.

Claims (14)

What is claimed is:
1. A system for treating an aneurysm in a patient, said system comprising:
a double-walled filling structure having an outer wall and an inner wall, wherein the outer wall and the inner wall define a fillable space, wherein the fillable space is adapted to be filled with a hardenable fluid filling medium such that when said filling structure is positioned across the aneurysm and filled with said hardenable fluid filling medium, said outer wall expands to conform to an inside surface of the aneurysm and said inner wall forms a tubular lumen to permit blood flow therethrough; and
a reinforcing sheet having an interior surface and an exterior surface disposed over said inner wall such that the interior surface is in contact with the inner wall, wherein said reinforcing sheet is separate from said inner wall and is disposed within said fillable space, wherein the tubular lumen formed by said inner wall has an inner wall longitudinal length, and wherein said reinforcing sheet has a reinforcing sheet longitudinal length that is less than said inner wall longitudinal length and is adapted to prevent circumferential creep or elastic expansion of said tubular lumen after deployment.
2. The system of claim 1, wherein said reinforcing sheet comprises a metal, textile, membrane, or polymer mesh that surrounds a blood contacting layer defined by said inner wall so as to avoid contact with blood flowing through the tubular lumen formed by said inner wall.
3. The system of claim 1, wherein said reinforcing sheet comprises fibers or filaments disposed around said tubular lumen formed by said inner wall and oriented circumferentially so as to increase resistance to radial expansion.
4. The system of claim 3, wherein the fibers or filaments comprise a metal, a polymer, a membrane, or a textile.
5. The system of claim 1, wherein said reinforcing sheet comprises fibers or filaments disposed spirally around the tubular lumen formed by said inner wall and adapted to resist radial expansion of the inner wall of the lumen.
6. The system of claim 1, wherein said filling structure is configured so that the tubular lumen formed by said inner wall has proximal and distal ends, and wherein the proximal and distal ends are flared.
7. The system of claim 1, wherein said inner wall is conformable to a shape and diameter of an expanded endoframe as limited by the diameter of the reinforcing sheet during filling; and
wherein said reinforcing sheet is attached to the inner wall.
8. The system of claim 1, wherein said separate reinforcing sheet is attached to the inner wall by one or more sutures.
9. The system of claim 1, wherein said reinforcing sheet is positioned between said inner wall and said outer wall.
10. The system of claim 1, wherein said reinforcing sheet occupies a space between said inner wall and said outer wall.
11. The system of claim 1, wherein said reinforcing sheet is made of a material having anisotropic stress properties oriented such that its greatest tensile strength is circumferential.
12. The system of claim 1, wherein a material of which the reinforcing sheet is formed surrounds the inner layer wall and is contiguous along a length of the reinforcing sheet.
13. The system of claim 1, wherein a material of which the reinforcing sheet is formed surrounds the inner layer wall with an uninterrupted continuous circumferential horizontal cross-section of the filling structure.
14. A system for treating an aneurysm in a patient, said system comprising:
an expandable endoframe positionable across the aneurysm;
a first double-walled filling structure having a differential functional construct including a toroidal outer surface having a tubular inner lumen formed therethrough, wherein
said expandable endoframe and said first double-walled filling structure are separate components, wherein said filling structure defines a fillable space fillable with a hardenable fluid filling medium such that when said filling structure is positioned across the aneurysm around said expanded endoframe and filled with said hardenable fluid filling medium, an outward facing wall surface conforms to an inside surface of the aneurysm and an inward facing wall surface forms said tubular inner lumen therethrough, wherein when expanded said expandable endoframe supports said inward facing wall forming said tubular lumen to permit blood flow therethrough, and
a reinforcing sheet that is separate from said inward facing wall and is disposed within said fillable space and attached to the inward facing wall wherein the tubular inner lumen formed by said inward facing wall has an inward facing wall longitudinal length, and wherein said reinforcing sheet has a reinforcing sheet longitudinal length that is less than said inward facing wall longitudinal length such that said reinforcing sheet inhibits radial expansion of said inward facing wall forming said tubular lumen from expansion of said endoframe and due to creep or elastic expansion of said inward facing wall by outwardly directed mechanical forces from blood flow and long-term aneurysmal remodeling.
US16/382,118 2009-12-30 2019-04-11 Filling structure for a graft system and methods of use Active 2031-12-03 US11638638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/382,118 US11638638B2 (en) 2009-12-30 2019-04-11 Filling structure for a graft system and methods of use

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US29127909P 2009-12-30 2009-12-30
US12/966,852 US20110276078A1 (en) 2009-12-30 2010-12-13 Filling structure for a graft system and methods of use
US16/382,118 US11638638B2 (en) 2009-12-30 2019-04-11 Filling structure for a graft system and methods of use

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/966,852 Continuation US20110276078A1 (en) 2009-12-30 2010-12-13 Filling structure for a graft system and methods of use

Publications (2)

Publication Number Publication Date
US20190231515A1 US20190231515A1 (en) 2019-08-01
US11638638B2 true US11638638B2 (en) 2023-05-02

Family

ID=44226769

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/966,852 Abandoned US20110276078A1 (en) 2009-12-30 2010-12-13 Filling structure for a graft system and methods of use
US16/382,118 Active 2031-12-03 US11638638B2 (en) 2009-12-30 2019-04-11 Filling structure for a graft system and methods of use

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/966,852 Abandoned US20110276078A1 (en) 2009-12-30 2010-12-13 Filling structure for a graft system and methods of use

Country Status (5)

Country Link
US (2) US20110276078A1 (en)
EP (1) EP2519191B1 (en)
JP (1) JP6408198B2 (en)
CN (1) CN102946825B (en)
WO (1) WO2011082040A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140194973A1 (en) 2013-01-10 2014-07-10 Trivascular, Inc. Sac liner for aneurysm repair
JP7085349B2 (en) * 2014-12-31 2022-06-16 エンドロジックス エルエルシー Dual inflatable arterial prosthesis
US20160287371A1 (en) * 2015-04-02 2016-10-06 Boston Scientific Scimed, Inc. Devices and methods for dilating a lumen of a body
JP7053493B2 (en) * 2016-05-13 2022-04-12 エンドーロジックス リミテッド ライアビリティ カンパニー Systems and methods with graft body, inflatable filling channel, and filling structure
CN107693063B (en) * 2017-09-07 2024-03-12 杭州市第一人民医院 Surgical wound retractor
EP3595581A4 (en) 2017-12-21 2021-01-13 The Texas A&M University System Vascular prosthesis for leak prevention during endovascular aneurysm repair
US20240067411A1 (en) * 2022-08-31 2024-02-29 Berry Global, Inc. Storage bag for agricultural products

Citations (345)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4130904A (en) * 1977-06-06 1978-12-26 Thermo Electron Corporation Prosthetic blood conduit
US4565733A (en) 1983-05-02 1986-01-21 Fuji Photo Film Co., Ltd. Packaging material for photosensitive materials
US4638803A (en) 1982-09-30 1987-01-27 Rand Robert W Medical apparatus for inducing scar tissue formation in a body
US4641653A (en) 1978-06-02 1987-02-10 Rockey Arthur G Medical sleeve
US4704126A (en) 1985-04-15 1987-11-03 Richards Medical Company Chemical polishing process for titanium and titanium alloy surgical implants
US4710192A (en) 1985-12-30 1987-12-01 Liotta Domingo S Diaphragm and method for occlusion of the descending thoracic aorta
US4728328A (en) 1984-10-19 1988-03-01 Research Corporation Cuffed tubular organic prostheses
US4731073A (en) 1981-02-13 1988-03-15 Thoratec Laboratories Corporation Arterial graft prosthesis
US4733665A (en) 1985-11-07 1988-03-29 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4743258A (en) 1984-04-27 1988-05-10 Japan Medical Supply Co., Ltd. Polymer materials for vascular prostheses
US4763654A (en) 1986-09-10 1988-08-16 Jang G David Tandem independently inflatable/deflatable multiple diameter balloon angioplasty catheter systems and method of use
US4856516A (en) 1989-01-09 1989-08-15 Cordis Corporation Endovascular stent apparatus and method
US4858264A (en) 1986-09-02 1989-08-22 The United States Of America As Represented By The Secretary Of The Air Force Ultrasonic assisted protective coating removal
US4892544A (en) 1988-03-07 1990-01-09 Dow Corning Wright Corporation Methods for forming hollow, porous-surfaced elastomeric bodies
US4936057A (en) 1985-06-21 1990-06-26 Extrude Hone Corporation Method of finish machining the surface of irregularly shaped fluid passages
US4976692A (en) 1990-09-13 1990-12-11 Travenol Laboratories (Israel) Ltd. Catheter particularly useful for inducing labor and/or for the application of a pharmaceutical substance to the cervix of the uterus
US5002532A (en) 1987-01-06 1991-03-26 Advanced Cardiovascular Systems, Inc. Tandem balloon dilatation catheter
DE4010975A1 (en) 1990-03-28 1991-10-02 Guenter Dr Siebert Nasal membrane pressure instrument - has controller between pressure source and inflatable balloon
US5074845A (en) 1989-07-18 1991-12-24 Baxter International Inc. Catheter with heat-fused balloon with waist
US5104404A (en) 1989-10-02 1992-04-14 Medtronic, Inc. Articulated stent
US5108417A (en) 1990-09-14 1992-04-28 Interface Biomedical Laboratories Corp. Anti-turbulent, anti-thrombogenic intravascular stent
US5122154A (en) 1990-08-15 1992-06-16 Rhodes Valentine J Endovascular bypass graft
US5133732A (en) 1987-10-19 1992-07-28 Medtronic, Inc. Intravascular stent
US5139480A (en) 1990-08-22 1992-08-18 Biotech Laboratories, Inc. Necking stents
US5156620A (en) 1991-02-04 1992-10-20 Pigott John P Intraluminal graft/stent and balloon catheter for insertion thereof
JPH04322665A (en) 1991-02-05 1992-11-12 Kanji Inoue Apparatus for introucing medium into human body
US5195984A (en) 1988-10-04 1993-03-23 Expandable Grafts Partnership Expandable intraluminal graft
US5199226A (en) 1990-01-26 1993-04-06 E. B. Thomas Method and apparatus for removing outer coatings from pipe
US5217484A (en) 1991-06-07 1993-06-08 Marks Michael P Retractable-wire catheter device and method
US5222970A (en) 1991-09-06 1993-06-29 William A. Cook Australia Pty. Ltd. Method of and system for mounting a vascular occlusion balloon on a delivery catheter
US5234437A (en) 1991-12-12 1993-08-10 Target Therapeutics, Inc. Detachable pusher-vasoocclusion coil assembly with threaded coupling
US5236447A (en) * 1990-06-29 1993-08-17 Nissho Corporation Artificial tubular organ
US5242399A (en) 1990-04-25 1993-09-07 Advanced Cardiovascular Systems, Inc. Method and system for stent delivery
US5250071A (en) 1992-09-22 1993-10-05 Target Therapeutics, Inc. Detachable embolic coil assembly using interlocking clasps and method of use
US5261916A (en) 1991-12-12 1993-11-16 Target Therapeutics Detachable pusher-vasoocclusive coil assembly with interlocking ball and keyway coupling
US5263964A (en) 1992-05-06 1993-11-23 Coil Partners Ltd. Coaxial traction detachment apparatus and method
US5292331A (en) 1989-08-24 1994-03-08 Applied Vascular Engineering, Inc. Endovascular support device
US5314444A (en) 1987-03-13 1994-05-24 Cook Incorporated Endovascular stent and delivery system
US5330528A (en) * 1989-12-01 1994-07-19 British Technology Group Limited Vascular surgical devices
US5330520A (en) 1986-05-15 1994-07-19 Telectronics Pacing Systems, Inc. Implantable electrode and sensor lead apparatus
US5334217A (en) 1992-01-21 1994-08-02 Regents Of The University Of Minnesota Septal defect closure device
US5350397A (en) 1992-11-13 1994-09-27 Target Therapeutics, Inc. Axially detachable embolic coil assembly
US5352199A (en) 1993-05-28 1994-10-04 Numed, Inc. Balloon catheter
US5375612A (en) 1992-04-07 1994-12-27 B. Braun Celsa Possibly absorbable blood filter
US5383892A (en) 1991-11-08 1995-01-24 Meadox France Stent for transluminal implantation
US5421955A (en) 1991-10-28 1995-06-06 Advanced Cardiovascular Systems, Inc. Expandable stents and method for making same
US5423849A (en) 1993-01-15 1995-06-13 Target Therapeutics, Inc. Vasoocclusion device containing radiopaque fibers
US5425744A (en) 1991-11-05 1995-06-20 C. R. Bard, Inc. Occluder for repair of cardiac and vascular defects
US5425739A (en) 1989-03-09 1995-06-20 Avatar Design And Development, Inc. Anastomosis stent and stent selection system
US5441510A (en) 1993-09-01 1995-08-15 Technology Development Center Bi-axial cutter apparatus for catheter
US5441515A (en) 1993-04-23 1995-08-15 Advanced Cardiovascular Systems, Inc. Ratcheting stent
US5443496A (en) 1992-03-19 1995-08-22 Medtronic, Inc. Intravascular radially expandable stent
US5443477A (en) 1994-02-10 1995-08-22 Stentco, Inc. Apparatus and method for deployment of radially expandable stents by a mechanical linkage
US5449373A (en) 1994-03-17 1995-09-12 Medinol Ltd. Articulated stent
US5485667A (en) 1994-03-03 1996-01-23 Kleshinski; Stephen J. Method for attaching a marker to a medical instrument
US5496277A (en) 1990-04-12 1996-03-05 Schneider (Usa) Inc. Radially expandable body implantable device
US5507769A (en) 1994-10-18 1996-04-16 Stentco, Inc. Method and apparatus for forming an endoluminal bifurcated graft
US5507767A (en) 1992-01-15 1996-04-16 Cook Incorporated Spiral stent
US5507771A (en) 1992-06-15 1996-04-16 Cook Incorporated Stent assembly
US5514115A (en) 1993-07-07 1996-05-07 Device For Vascular Intervention, Inc. Flexible housing for intracorporeal use
US5522882A (en) 1994-10-21 1996-06-04 Impra, Inc. Method and apparatus for balloon expandable stent-graft delivery
US5530528A (en) 1992-09-28 1996-06-25 Fujitsu Limited Image forming apparatus having contact type, one-component developing unit
US5531741A (en) 1994-08-18 1996-07-02 Barbacci; Josephine A. Illuminated stents
US5534024A (en) 1994-11-04 1996-07-09 Aeroquip Corporation Intraluminal stenting graft
US5545210A (en) 1994-09-22 1996-08-13 Advanced Coronary Technology, Inc. Method of implanting a permanent shape memory alloy stent
US5549662A (en) 1994-11-07 1996-08-27 Scimed Life Systems, Inc. Expandable stent using sliding members
US5549663A (en) 1994-03-09 1996-08-27 Cordis Corporation Endoprosthesis having graft member and exposed welded end junctions, method and procedure
US5554181A (en) 1994-05-04 1996-09-10 Regents Of The University Of Minnesota Stent
US5562728A (en) 1983-12-09 1996-10-08 Endovascular Tech Inc Endovascular grafting apparatus, system and method and devices for use therewith
US5562641A (en) 1993-05-28 1996-10-08 A Bromberg & Co. Ltd. Two way shape memory alloy medical stent
US5562698A (en) 1994-03-09 1996-10-08 Cook Incorporated Intravascular treatment system
US5569295A (en) 1993-12-28 1996-10-29 Advanced Cardiovascular Systems, Inc. Expandable stents and method for making same
US5578149A (en) 1995-05-31 1996-11-26 Global Therapeutics, Inc. Radially expandable stent
US5578074A (en) 1994-12-22 1996-11-26 Target Therapeutics, Inc. Implant delivery method and assembly
US5591228A (en) 1995-05-09 1997-01-07 Edoga; John K. Methods for treating abdominal aortic aneurysms
US5591223A (en) 1992-11-23 1997-01-07 Children's Medical Center Corporation Re-expandable endoprosthesis
US5591230A (en) 1994-09-07 1997-01-07 Global Therapeutics, Inc. Radially expandable stent
US5591195A (en) 1995-10-30 1997-01-07 Taheri; Syde Apparatus and method for engrafting a blood vessel
US5591226A (en) 1995-01-23 1997-01-07 Schneider (Usa) Inc. Percutaneous stent-graft and method for delivery thereof
US5593417A (en) 1995-11-27 1997-01-14 Rhodes; Valentine J. Intravascular stent with secure mounting means
US5601600A (en) 1995-09-08 1997-02-11 Conceptus, Inc. Endoluminal coil delivery system having a mechanical release mechanism
US5605530A (en) 1995-03-23 1997-02-25 Fischell; Robert E. System for safe implantation of radioisotope stents
US5607445A (en) 1992-06-18 1997-03-04 American Biomed, Inc. Stent for supporting a blood vessel
US5607442A (en) 1995-11-13 1997-03-04 Isostent, Inc. Stent with improved radiopacity and appearance characteristics
US5609605A (en) 1994-08-25 1997-03-11 Ethicon, Inc. Combination arterial stent
US5617878A (en) 1996-05-31 1997-04-08 Taheri; Syde A. Stent and method for treatment of aortic occlusive disease
US5624411A (en) 1993-04-26 1997-04-29 Medtronic, Inc. Intravascular stent and method
US5630840A (en) 1993-01-19 1997-05-20 Schneider (Usa) Inc Clad composite stent
WO1997017912A1 (en) 1995-11-13 1997-05-22 Corvita Corporation Expandable supportive bifurcated endoluminal grafts
US5632762A (en) 1995-11-09 1997-05-27 Hemodynamics, Inc. Ostial stent balloon
US5632760A (en) 1994-10-20 1997-05-27 Cordis Corporation Balloon catheter for stent implantation
US5632771A (en) 1993-07-23 1997-05-27 Cook Incorporated Flexible stent having a pattern formed from a sheet of material
US5632763A (en) 1995-01-19 1997-05-27 Cordis Corporation Bifurcated stent and method for implanting same
US5634941A (en) 1992-08-18 1997-06-03 Ultrasonic Sensing And Monitoring Systems, Inc. Vascular graft bypass apparatus
WO1997019653A1 (en) 1995-11-27 1997-06-05 Rhodes Valentine J Endovascular prosthesis with improved sealing means for aneurysmal arterial disease and method of use
US5636641A (en) 1994-07-25 1997-06-10 Advanced Cardiovascular Systems, Inc. High strength member for intracorporeal use
USD380266S (en) 1994-12-30 1997-06-24 Cook Incorporated Implantable, actively expandable stent
USD380831S (en) 1992-08-06 1997-07-08 William Cook Europe A/S Implantable self-expanding stent
US5662614A (en) 1995-05-09 1997-09-02 Edoga; John K. Balloon expandable universal access sheath
US5674241A (en) 1995-02-22 1997-10-07 Menlo Care, Inc. Covered expanding mesh stent
US5676697A (en) 1996-07-29 1997-10-14 Cardiovascular Dynamics, Inc. Two-piece, bifurcated intraluminal graft for repair of aneurysm
US5683449A (en) 1995-02-24 1997-11-04 Marcade; Jean Paul Modular bifurcated intraluminal grafts and methods for delivering and assembling same
US5690643A (en) 1996-02-20 1997-11-25 Leocor, Incorporated Stent delivery system
US5693088A (en) 1993-11-08 1997-12-02 Lazarus; Harrison M. Intraluminal vascular graft
US5693038A (en) 1993-09-30 1997-12-02 Japan Absorbent Technology Institute Sanitary article with improved fitness
US5693067A (en) 1992-09-02 1997-12-02 Board Of Regents, The University Of Texas System Intravascular device
US5697971A (en) 1996-06-11 1997-12-16 Fischell; Robert E. Multi-cell stent with cells having differing characteristics
US5709707A (en) 1995-10-30 1998-01-20 Children's Medical Center Corporation Self-centering umbrella-type septal closure device
US5718713A (en) 1997-04-10 1998-02-17 Global Therapeutics, Inc. Surgical stent having a streamlined contour
CN1174016A (en) 1996-05-03 1998-02-25 族利控股有限公司 Endovascular device for protection of aneurysm
US5723004A (en) 1993-10-21 1998-03-03 Corvita Corporation Expandable supportive endoluminal grafts
US5725572A (en) 1994-04-25 1998-03-10 Advanced Cardiovascular Systems, Inc. Radiopaque stent
US5725568A (en) 1995-06-27 1998-03-10 Scimed Life Systems, Inc. Method and device for recanalizing and grafting arteries
US5728131A (en) 1995-06-12 1998-03-17 Endotex Interventional Systems, Inc. Coupling device and method of use
US5728068A (en) 1994-06-14 1998-03-17 Cordis Corporation Multi-purpose balloon catheter
US5733303A (en) 1994-03-17 1998-03-31 Medinol Ltd. Flexible expandable stent
US5735892A (en) 1993-08-18 1998-04-07 W. L. Gore & Associates, Inc. Intraluminal stent graft
US5741333A (en) 1995-04-12 1998-04-21 Corvita Corporation Self-expanding stent for a medical device to be introduced into a cavity of a body
US5741327A (en) 1997-05-06 1998-04-21 Global Therapeutics, Inc. Surgical stent featuring radiopaque markers
US5746691A (en) 1997-06-06 1998-05-05 Global Therapeutics, Inc. Method for polishing surgical stents
US5755778A (en) 1996-10-16 1998-05-26 Nitinol Medical Technologies, Inc. Anastomosis device
US5755769A (en) 1992-03-12 1998-05-26 Laboratoire Perouse Implant Expansible endoprosthesis for a human or animal tubular organ, and fitting tool for use thereof
US5755773A (en) 1996-06-04 1998-05-26 Medtronic, Inc. Endoluminal prosthetic bifurcation shunt
US5766151A (en) 1991-07-16 1998-06-16 Heartport, Inc. Endovascular system for arresting the heart
US5769882A (en) 1995-09-08 1998-06-23 Medtronic, Inc. Methods and apparatus for conformably sealing prostheses within body lumens
US5776161A (en) 1995-10-16 1998-07-07 Instent, Inc. Medical stents, apparatus and method for making same
US5782907A (en) 1995-07-13 1998-07-21 Devices For Vascular Intervention, Inc. Involuted spring stent and graft assembly and method of use
US5785679A (en) 1995-07-19 1998-07-28 Endotex Interventional Systems, Inc. Methods and apparatus for treating aneurysms and arterio-venous fistulas
US5788626A (en) 1995-11-21 1998-08-04 Schneider (Usa) Inc Method of making a stent-graft covered with expanded polytetrafluoroethylene
US5797953A (en) 1994-03-18 1998-08-25 Cook Incorporated Helical embolization coil
US5800514A (en) 1996-05-24 1998-09-01 Meadox Medicals, Inc. Shaped woven tubular soft-tissue prostheses and methods of manufacturing
US5800525A (en) 1997-06-04 1998-09-01 Vascular Science, Inc. Blood filter
US5800512A (en) 1996-01-22 1998-09-01 Meadox Medicals, Inc. PTFE vascular graft
US5800393A (en) 1997-03-07 1998-09-01 Sahota; Harvinder Wire perfusion catheter
US5807404A (en) 1996-09-19 1998-09-15 Medinol Ltd. Stent with variable features to optimize support and method of making such stent
US5810872A (en) 1997-03-14 1998-09-22 Kanesaka; Nozomu Flexible stent
US5824056A (en) 1994-05-16 1998-10-20 Medtronic, Inc. Implantable medical device formed from a refractory metal having a thin coating disposed thereon
US5824054A (en) 1997-03-18 1998-10-20 Endotex Interventional Systems, Inc. Coiled sheet graft stent and methods of making and use
US5824049A (en) 1995-06-07 1998-10-20 Med Institute, Inc. Coated implantable medical device
US5824037A (en) 1995-10-03 1998-10-20 Medtronic, Inc. Modular intraluminal prostheses construction and methods
US5824040A (en) 1995-12-01 1998-10-20 Medtronic, Inc. Endoluminal prostheses and therapies for highly variable body lumens
US5827321A (en) 1997-02-07 1998-10-27 Cornerstone Devices, Inc. Non-Foreshortening intraluminal prosthesis
US5836966A (en) 1997-05-22 1998-11-17 Scimed Life Systems, Inc. Variable expansion force stent
US5843175A (en) 1997-06-13 1998-12-01 Global Therapeutics, Inc. Enhanced flexibility surgical stent
US5843160A (en) 1996-04-01 1998-12-01 Rhodes; Valentine J. Prostheses for aneurysmal and/or occlusive disease at a bifurcation in a vessel, duct, or lumen
WO1998053761A1 (en) 1997-05-26 1998-12-03 William A. Cook Australia Pty. Ltd. A prosthesis and a method and means of deploying a prosthesis
US5846246A (en) 1994-10-21 1998-12-08 Cordis Corporation Dual-balloon rapid-exchange stent delivery catheter with guidewire channel
US5846261A (en) 1994-07-08 1998-12-08 Aga Medical Corp. Percutaneous catheter directed occlusion devices
US5849037A (en) 1995-04-12 1998-12-15 Corvita Corporation Self-expanding stent for a medical device to be introduced into a cavity of a body, and method for its preparation
WO1999000073A1 (en) 1997-06-28 1999-01-07 Anson Medical Limited Expandable device
US5860998A (en) 1996-11-25 1999-01-19 C. R. Bard, Inc. Deployment device for tubular expandable prosthesis
US5863627A (en) 1997-08-26 1999-01-26 Cardiotech International, Inc. Hydrolytically-and proteolytically-stable polycarbonate polyurethane silicone copolymers
US5867762A (en) 1994-05-26 1999-02-02 Rafferty; Kevin Masking tape
US5868708A (en) 1997-05-07 1999-02-09 Applied Medical Resources Corporation Balloon catheter apparatus and method
US5868782A (en) 1996-12-24 1999-02-09 Global Therapeutics, Inc. Radially expandable axially non-contracting surgical stent
US5868685A (en) 1995-11-14 1999-02-09 Devices For Vascular Intervention Articulated guidewire
US5871537A (en) 1996-02-13 1999-02-16 Scimed Life Systems, Inc. Endovascular apparatus
US5873907A (en) 1998-01-27 1999-02-23 Endotex Interventional Systems, Inc. Electrolytic stent delivery system and methods of use
US5876448A (en) 1992-05-08 1999-03-02 Schneider (Usa) Inc. Esophageal stent
US5879381A (en) 1996-03-10 1999-03-09 Terumo Kabushiki Kaisha Expandable stent for implanting in a body
US5888660A (en) 1995-11-16 1999-03-30 Soten S.R.L. Heat-shrinkable co-extruded multilayer polyolefin film having an improved heat seal resistance
US5919224A (en) 1997-02-12 1999-07-06 Schneider (Usa) Inc Medical device having a constricted region for occluding fluid flow in a body lumen
US5928279A (en) 1996-07-03 1999-07-27 Baxter International Inc. Stented, radially expandable, tubular PTFE grafts
US5931866A (en) 1998-02-24 1999-08-03 Frantzen; John J. Radially expandable stent featuring accordion stops
US5947991A (en) 1997-01-07 1999-09-07 Cowan; Robert K. Single balloon device for cervix
WO1999044539A2 (en) 1998-03-05 1999-09-10 Scimed Life Systems, Inc. Dilatation and stent delivery system for bifurcation lesions
US5976178A (en) 1996-11-07 1999-11-02 Vascular Science Inc. Medical grafting methods
US5984955A (en) 1997-09-11 1999-11-16 Wisselink; Willem System and method for endoluminal grafting of bifurcated or branched vessels
US5994750A (en) 1994-11-07 1999-11-30 Canon Kabushiki Kaisha Microstructure and method of forming the same
US6007573A (en) 1996-09-18 1999-12-28 Microtherapeutics, Inc. Intracranial stent and method of use
US6015431A (en) 1996-12-23 2000-01-18 Prograft Medical, Inc. Endolumenal stent-graft with leak-resistant seal
US6022359A (en) 1999-01-13 2000-02-08 Frantzen; John J. Stent delivery system featuring a flexible balloon
US6033434A (en) 1995-06-08 2000-03-07 Ave Galway Limited Bifurcated endovascular stent and methods for forming and placing
US6042606A (en) 1997-09-29 2000-03-28 Cook Incorporated Radially expandable non-axially contracting surgical stent
WO2000029060A2 (en) 1998-11-19 2000-05-25 Percusurge, Inc. Low volume syringe and method for inflating surgical balloons
US6083259A (en) 1998-11-16 2000-07-04 Frantzen; John J. Axially non-contracting flexible radially expandable stent
US6093199A (en) 1998-08-05 2000-07-25 Endovascular Technologies, Inc. Intra-luminal device for treatment of body cavities and lumens and method of use
US6099548A (en) 1998-07-28 2000-08-08 Taheri; Syde A. Apparatus and method for deploying an aortic arch graft
US6110198A (en) 1995-10-03 2000-08-29 Medtronic Inc. Method for deploying cuff prostheses
WO2000051522A1 (en) 1999-03-03 2000-09-08 Clifford Rowan Murch Inflatable intraluminal graft
US6124523A (en) 1995-03-10 2000-09-26 Impra, Inc. Encapsulated stent
US6123715A (en) 1994-07-08 2000-09-26 Amplatz; Curtis Method of forming medical devices; intravascular occlusion devices
US6132457A (en) 1997-10-22 2000-10-17 Triad Vascular Systems, Inc. Endovascular graft having longitudinally displaceable sections
US6152943A (en) 1998-08-14 2000-11-28 Incept Llc Methods and apparatus for intraluminal deposition of hydrogels
US6152144A (en) 1998-11-06 2000-11-28 Appriva Medical, Inc. Method and device for left atrial appendage occlusion
US6168592B1 (en) 1996-07-26 2001-01-02 Target Therapeutics, Inc. Aneurysm closure device assembly
US6187034B1 (en) 1999-01-13 2001-02-13 John J. Frantzen Segmented stent for flexible stent delivery system
US6187033B1 (en) 1997-09-04 2001-02-13 Meadox Medicals, Inc. Aortic arch prosthetic graft
US6190406B1 (en) 1998-01-09 2001-02-20 Nitinal Development Corporation Intravascular stent having tapered struts
US6190402B1 (en) 1996-06-21 2001-02-20 Musc Foundation For Research Development Insitu formable and self-forming intravascular flow modifier (IFM) and IFM assembly for deployment of same
US6196230B1 (en) 1998-09-10 2001-03-06 Percardia, Inc. Stent delivery system and method of use
US6203732B1 (en) 1998-07-02 2001-03-20 Intra Therapeutics, Inc. Method for manufacturing intraluminal device
WO2001021108A1 (en) 1999-09-23 2001-03-29 Edwards Lifesciences Corporation Implants for the use in the treatment of aneurysms
US6214022B1 (en) 1996-02-20 2001-04-10 Cardiothoracic Systems, Inc. Perfusion device for maintaining blood flow in a vessel while isolating an anastomosis
US6235050B1 (en) 1994-05-12 2001-05-22 Endovascular Technologies, Inc. System and method for intraluminally deploying a bifurcated graft
US6241761B1 (en) 2000-01-26 2001-06-05 Cabg Medical, Inc. Stented grafts for coupling vascular members
US6254633B1 (en) 1997-02-12 2001-07-03 Corvita Corporation Delivery device for a medical device having a constricted region
US6261305B1 (en) 1998-02-12 2001-07-17 Eclips Systems Inc. Endovascular prothesis with expandable leaf portion
US6280466B1 (en) 1999-12-03 2001-08-28 Teramed Inc. Endovascular graft system
US20010020184A1 (en) 1998-09-30 2001-09-06 Mark Dehdashtian Methods and apparatus for intraluminal placement of a bifurcated intraluminal graft
WO2001066038A2 (en) 2000-03-03 2001-09-13 Cook Incorporated Endovascular device having a stent
US6290731B1 (en) 1998-03-30 2001-09-18 Cordis Corporation Aortic graft having a precursor gasket for repairing an abdominal aortic aneurysm
US6290722B1 (en) 2000-03-13 2001-09-18 Endovascular Technologies, Inc. Tacky attachment method of covered materials on stents
US6293960B1 (en) 1998-05-22 2001-09-25 Micrus Corporation Catheter with shape memory polymer distal tip for deployment of therapeutic devices
US6296603B1 (en) 1998-05-26 2001-10-02 Isostent, Inc. Radioactive intraluminal endovascular prosthesis and method for the treatment of aneurysms
US20010027337A1 (en) 2000-02-22 2001-10-04 Richard A. Arrest, Esq Stent delivery system
US6299604B1 (en) 1998-08-20 2001-10-09 Cook Incorporated Coated implantable medical device
US6299597B1 (en) 1993-09-16 2001-10-09 Scimed Life Systems, Inc. Percutaneous repair of cardiovascular anomalies and repair compositions
US6312463B1 (en) 2000-02-01 2001-11-06 Endotex Interventional Systems, Inc. Micro-porous mesh stent with hybrid structure
US6312462B1 (en) 1999-09-22 2001-11-06 Impra, Inc. Prosthesis for abdominal aortic aneurysm repair
US20010044655A1 (en) 1996-09-13 2001-11-22 Meadox Medicals, Inc. ePTFE small caliber vascular grafts with significant patency enhancement via a surface coating which contains covalently bonded heparin
US6325819B1 (en) 1996-08-19 2001-12-04 Cook Incorporated Endovascular prosthetic device, an endovascular graft prothesis with such a device, and a method for repairing an abdominal aortic aneurysm
US6325816B1 (en) 1998-08-19 2001-12-04 Artemis Medical, Inc. Target tissue localization method
US6331191B1 (en) 1997-11-25 2001-12-18 Trivascular Inc. Layered endovascular graft
US6331184B1 (en) 1999-12-10 2001-12-18 Scimed Life Systems, Inc. Detachable covering for an implantable medical device
US6344056B1 (en) 1999-12-29 2002-02-05 Edwards Lifesciences Corp. Vascular grafts for bridging a vessel side branch
US20020026217A1 (en) 2000-04-26 2002-02-28 Steven Baker Apparatus and method for repair of perigraft flow
US20020045931A1 (en) 1996-09-26 2002-04-18 David Sogard Support structure/membrane composite medical device
US20020045848A1 (en) 2000-05-10 2002-04-18 Ali Jaafar Apparatus and method for treatment of cerebral aneurysms, arterial-vascular malformations and arterial fistulas
US20020052643A1 (en) 2000-08-02 2002-05-02 Wholey Michael H. Tapered endovascular stent graft and method of treating abdominal aortic aneurysms and distal iliac aneurysms
US6395019B2 (en) 1998-02-09 2002-05-28 Trivascular, Inc. Endovascular graft
US20020077594A1 (en) 2000-12-19 2002-06-20 Scimed Life Systems, Inc. Drug delivery catheter having a highly compliant balloon with infusion holes
US6409757B1 (en) 1999-09-15 2002-06-25 Eva Corporation Method and apparatus for supporting a graft assembly
US6432131B1 (en) 1995-01-31 2002-08-13 Boston Scientific Corporation Method and apparatus for intraluminally implanting an endovascular aortic graft
US6451047B2 (en) 1995-03-10 2002-09-17 Impra, Inc. Encapsulated intraluminal stent-graft and methods of making same
US6463317B1 (en) 1998-05-19 2002-10-08 Regents Of The University Of Minnesota Device and method for the endovascular treatment of aneurysms
WO2002078569A2 (en) 2001-03-28 2002-10-10 Cook Incorporated Modular stent graft assembly and use thereof
US20020151958A1 (en) 2000-03-03 2002-10-17 Chuter Timothy A.M. Large vessel stents and occluders
US20020151953A1 (en) 2001-04-11 2002-10-17 Trivascular, Inc. Delivery system and method for bifurcated endovascular graft
US20020151956A1 (en) 2001-04-11 2002-10-17 Trivascular, Inc. Delivery system and method for endovascular graft
US20020156518A1 (en) 2001-03-23 2002-10-24 Hassan Tehrani Branched aortic arch stent graft and method of deployment
US20020165521A1 (en) 2001-05-04 2002-11-07 Iulian Cioanta Low thermal resistance elastic sleeves for medical device balloons
US20020169497A1 (en) 2001-01-02 2002-11-14 Petra Wholey Endovascular stent system and method of providing aneurysm embolization
US20020183629A1 (en) 2001-05-31 2002-12-05 Fitz Matthew Joseph Implantable device for monitoring aneurysm sac parameters
WO2002102282A1 (en) 2001-06-19 2002-12-27 Vortex Innovation Limited Devices for repairing aneurysms
US6506204B2 (en) 1996-01-24 2003-01-14 Aga Medical Corporation Method and apparatus for occluding aneurysms
US20030014075A1 (en) 2001-07-16 2003-01-16 Microvention, Inc. Methods, materials and apparatus for deterring or preventing endoleaks following endovascular graft implanation
US20030028209A1 (en) 2001-07-31 2003-02-06 Clifford Teoh Expandable body cavity liner device
US6527799B2 (en) 1998-10-29 2003-03-04 Conor Medsystems, Inc. Expandable medical device with ductile hinges
US20030051735A1 (en) 2001-07-26 2003-03-20 Cook Biotech Incorporated Vessel closure member, delivery apparatus, and method of inserting the member
US6544276B1 (en) 1996-05-20 2003-04-08 Medtronic Ave. Inc. Exchange method for emboli containment
US6547804B2 (en) 2000-12-27 2003-04-15 Scimed Life Systems, Inc. Selectively permeable highly distensible occlusion balloon
US20030074056A1 (en) 1998-03-04 2003-04-17 Scimed Life Systems, Inc. Stent having variable properties and method of its use
WO2003032869A1 (en) 2001-10-16 2003-04-24 Scimed Life Systems, Inc. Aortic artery aneurysm endovascular prosthesis
US20030078647A1 (en) 1999-08-05 2003-04-24 Franco Vallana Angioplasty stent adapted to counter restenosis, respective kit and components
US6554858B2 (en) 1996-04-25 2003-04-29 Corvita Europe Intraluminal endoprosthesis for ramifying the ducts of a human or animal body and method of manufacture thereof
WO2003037222A2 (en) 2001-10-26 2003-05-08 Cook Incorporated Endoluminal graft
US6579301B1 (en) 2000-11-17 2003-06-17 Syntheon, Llc Intragastric balloon device adapted to be repeatedly varied in volume without external assistance
WO2003053288A1 (en) 2001-12-20 2003-07-03 Trivascular, Inc. Advanced endovascular graft
FR2834199A1 (en) 2001-12-27 2003-07-04 Doron Carmi Endoprosthesis for use in endoluminal medium, especially for treatment of aneurysms, comprises tube surrounded by expandable annular pouch
EP1325717A2 (en) 2002-01-08 2003-07-09 Cordis Corporation Stent graft with branch leg
US20030130725A1 (en) 2002-01-08 2003-07-10 Depalma Donald F. Sealing prosthesis
US20030130720A1 (en) 2002-01-08 2003-07-10 Depalma Donald F. Modular aneurysm repair system
US6592614B2 (en) 1996-01-05 2003-07-15 Medtronic Ave, Inc. Cuffed endoluminal prosthesis
US20030135269A1 (en) 2002-01-16 2003-07-17 Swanstrom Lee L. Laparoscopic-assisted endovascular/endoluminal graft placement
US20030204242A1 (en) 2002-04-24 2003-10-30 Zarins Christopher K. Endoluminal prosthetic assembly and extension method
US20030204249A1 (en) 2002-04-25 2003-10-30 Michel Letort Endovascular stent graft and fixation cuff
US6645242B1 (en) 2000-12-11 2003-11-11 Stephen F. Quinn Bifurcated side-access intravascular stent graft
US20030220649A1 (en) 1994-05-06 2003-11-27 Qi-Bin Bao Intervertebral disc prosthesis
US6656220B1 (en) 2002-06-17 2003-12-02 Advanced Cardiovascular Systems, Inc. Intravascular stent
US20030225446A1 (en) 2002-05-29 2003-12-04 William A. Cook Australia Pty Ltd. Multi-piece prosthesis deployment apparatus
US6663667B2 (en) 1999-12-29 2003-12-16 Edwards Lifesciences Corporation Towel graft means for enhancing tissue ingrowth in vascular grafts
US6663607B2 (en) 1999-07-12 2003-12-16 Scimed Life Systems, Inc. Bioactive aneurysm closure device assembly and kit
WO2003103513A1 (en) 2002-06-11 2003-12-18 Fit Biotech Oy Plc Anastomotic device and method for open and endoscopic surgical anatomosis
WO2004004603A1 (en) 2002-07-02 2004-01-15 The Foundry Inc. Methods and devices for treating aneurysms
US6679300B1 (en) 2002-01-14 2004-01-20 Thermogenesis Corp. Biological adhesive loading station and method
US20040016997A1 (en) 2002-07-24 2004-01-29 Mitsubishi Denki Kabushiki Kaisha Socket for semiconductor package
US6695833B1 (en) 2000-09-27 2004-02-24 Nellix, Inc. Vascular stent-graft apparatus and forming method
WO2004026183A2 (en) 2002-09-20 2004-04-01 Nellix, Inc. Stent-graft with positioning anchor
US20040082989A1 (en) 2002-08-20 2004-04-29 Cook Incorporated Stent graft with improved proximal end
US6730119B1 (en) 2000-10-06 2004-05-04 Board Of Regents Of The University Of Texas System Percutaneous implantation of partially covered stents in aneurysmally dilated arterial segments with subsequent embolization and obliteration of the aneurysm cavity
US6729356B1 (en) 2000-04-27 2004-05-04 Endovascular Technologies, Inc. Endovascular graft for providing a seal with vasculature
WO2004037116A2 (en) 2002-10-22 2004-05-06 The University Of Miami Endograft device to inhibit endoleak and migration
US20040091543A1 (en) 2002-10-23 2004-05-13 Barbara Bell Embolic compositions
WO2004045393A2 (en) 2002-11-20 2004-06-03 Fogarty, Thomas, J. Devices and methods for treatment of vascular aneurysms
US20040147811A1 (en) 2001-12-14 2004-07-29 Diederich Chris J Catheter based balloon for therapy modification and positioning of tissue
US20040153025A1 (en) 2003-02-03 2004-08-05 Seifert Paul S. Systems and methods of de-endothelialization
US6776771B2 (en) 2000-09-14 2004-08-17 Tuborg Engineering Adaptive balloon with improved flexibility
US20040193245A1 (en) 2003-03-26 2004-09-30 The Foundry, Inc. Devices and methods for treatment of abdominal aortic aneurysm
US20040215172A1 (en) 2003-04-25 2004-10-28 Jack Chu In situ blood vessel and aneurysm treatment
US20040220522A1 (en) 1996-04-01 2004-11-04 Medtronic, Inc. Catheter with autoinflating, autoregulating balloon
US20040243057A1 (en) 2001-10-25 2004-12-02 Jakob Vinten-Johansen Catheter for modified perfusion
US6843803B2 (en) 1995-12-01 2005-01-18 Medtronic Vascular, Inc. Bifurcated intraluminal prostheses construction and methods
US20050027238A1 (en) 2002-05-15 2005-02-03 Mallinckrodt Inc. Hydraulic remote for a medical fluid injector
US20050028484A1 (en) 2003-06-20 2005-02-10 Littlewood Richard W. Method and apparatus for sleeving compressed bale materials
US20050065592A1 (en) 2003-09-23 2005-03-24 Asher Holzer System and method of aneurism monitoring and treatment
US6878164B2 (en) 1997-09-05 2005-04-12 C. R. Bard, Inc. Short body endoprosthesis
US6878161B2 (en) 1996-01-05 2005-04-12 Medtronic Vascular, Inc. Stent graft loading and deployment device and method
US20050090804A1 (en) 2003-10-22 2005-04-28 Trivascular, Inc. Endoluminal prosthesis endoleak management
US6887268B2 (en) 1998-03-30 2005-05-03 Cordis Corporation Extension prosthesis for an arterial repair
US20050096731A1 (en) 2002-07-11 2005-05-05 Kareen Looi Cell seeded expandable body
US6918926B2 (en) 2002-04-25 2005-07-19 Medtronic Vascular, Inc. System for transrenal/intraostial fixation of endovascular prosthesis
US6945989B1 (en) 2000-09-18 2005-09-20 Endotex Interventional Systems, Inc. Apparatus for delivering endoluminal prostheses and methods of making and using them
US20050215989A1 (en) 2004-03-23 2005-09-29 Cryocath Technologies Inc. Method and apparatus for inflating and deflating balloon catheters
US6958051B2 (en) 2001-10-29 2005-10-25 Scimed Life Systems, Inc. Dual balloon valve control with pressure indicator
US6960227B2 (en) 2002-06-24 2005-11-01 Cordis Neurovascular, Inc. Expandable stent and delivery system
US20050245891A1 (en) 2004-04-13 2005-11-03 Mccormick Paul Method and apparatus for decompressing aneurysms
US20050251251A1 (en) 1996-12-31 2005-11-10 Alain Cribier Valve prosthesis for implantation in body channels
US6969373B2 (en) 2001-04-13 2005-11-29 Tricardia, Llc Syringe system
US20060015173A1 (en) 2003-05-06 2006-01-19 Anton Clifford Endoprosthesis having foot extensions
WO2006012567A2 (en) 2004-07-22 2006-02-02 Nellix, Inc. Methods and systems for endovascular aneurysm treatment
US7022100B1 (en) 1999-09-03 2006-04-04 A-Med Systems, Inc. Guidable intravascular blood pump and related methods
US20060074481A1 (en) 2004-10-04 2006-04-06 Gil Vardi Graft including expandable cuff
US20060095124A1 (en) 2003-06-13 2006-05-04 Stefan Benz Suction stent
US20060135942A1 (en) 2004-10-28 2006-06-22 Medtronic Vascular, Inc. Methods and Devices to Deliver Injected Agents to an Aneurysm Site
US20060142836A1 (en) 2004-09-28 2006-06-29 William A. Cook Australia Pty. Ltd. Device for treating aortic dissection
US20060155369A1 (en) 1998-09-30 2006-07-13 Bard Peripheral Vascular, Inc. Selective adherence of stent-graft coverings
US20060161244A1 (en) 2003-05-02 2006-07-20 Jacques Seguin Vascular graft and deployment system
US20060184109A1 (en) 2003-02-10 2006-08-17 Lothar Gobel Device to be used in healing processes
US7105012B2 (en) 2001-06-19 2006-09-12 Eva Corporation Positioning assembly and method of use
US20060206197A1 (en) 2002-12-30 2006-09-14 Hesham Morsi Endovascular balloon graft
US20060212112A1 (en) * 2004-07-22 2006-09-21 Nellix, Inc. Graft systems having filling structures supported by scaffolds and methods for their use
US7112217B1 (en) 1998-03-16 2006-09-26 Cordis Corporation Biluminal endovascular graft system
US7122052B2 (en) 2003-09-29 2006-10-17 Stout Medical Group Lp Integral support stent graft assembly
WO2006116725A2 (en) 2005-04-28 2006-11-02 Nellix, Inc. Graft systems having filling structures supported by scaffolds and methods for their use
US20060265043A1 (en) 2002-09-30 2006-11-23 Evgenia Mandrusov Method and apparatus for treating vulnerable plaque
US7147661B2 (en) 2001-12-20 2006-12-12 Boston Scientific Santa Rosa Corp. Radially expandable stent
WO2007008600A2 (en) 2005-07-07 2007-01-18 Nellix, Inc. Systems and methods for endovascular aneurysm treatment
US20070032850A1 (en) 2004-12-16 2007-02-08 Carlos Ruiz Separable sheath and method for insertion of a medical device into a bodily vessel using a separable sheath
US7175651B2 (en) 2001-07-06 2007-02-13 Andrew Kerr Stent/graft assembly
US20070043420A1 (en) 2005-08-17 2007-02-22 Medtronic Vascular, Inc. Apparatus and method for stent-graft release using a cap
US7229472B2 (en) 2000-11-16 2007-06-12 Cordis Corporation Thoracic aneurysm repair prosthesis and system
US20070150041A1 (en) 2005-12-22 2007-06-28 Nellix, Inc. Methods and systems for aneurysm treatment using filling structures
US20070162109A1 (en) 2006-01-11 2007-07-12 Luis Davila Intraluminal stent graft
US20070208416A1 (en) 2005-04-04 2007-09-06 Janet Burpee Flexible stent
US20070276477A1 (en) * 2006-05-24 2007-11-29 Nellix, Inc. Material for creating multi-layered films and methods for making the same
WO2007142916A2 (en) 2006-05-30 2007-12-13 Incept, Llc Materials formable in situ within a medical device
US7326237B2 (en) 2002-01-08 2008-02-05 Cordis Corporation Supra-renal anchoring prosthesis
US20080154368A1 (en) 2006-12-21 2008-06-26 Warsaw Orthopedic, Inc. Curable orthopedic implant devices configured to harden after placement in vivo by application of a cure-initiating energy before insertion
US20080228259A1 (en) 2007-03-16 2008-09-18 Jack Fa-De Chu Endovascular devices and methods to protect aneurysmal wall
US20080294237A1 (en) 2007-04-04 2008-11-27 Jack Fa-De Chu Inflatable devices and methods to protect aneurysmal wall
US20090099649A1 (en) 2007-10-04 2009-04-16 Chobotov Michael V Modular vascular graft for low profile percutaneous delivery
US20090209855A1 (en) 2008-02-19 2009-08-20 Aga Medical Corporation Medical devices for treating a target site and associated method
US20090216125A1 (en) 1999-01-25 2009-08-27 Lenker Jay A Reslution optical & ultrasound devices for imaging and treatment of body lumens
US20090319029A1 (en) 2008-06-04 2009-12-24 Nellix, Inc. Docking apparatus and methods of use
US20090318949A1 (en) 2008-06-04 2009-12-24 Nellix, Inc. Sealing apparatus and methods of use
US20100004728A1 (en) 2008-02-13 2010-01-07 Nellix, Inc. Graft endoframe having axially variable characteristics
US20100036360A1 (en) 2008-04-25 2010-02-11 Nellix, Inc. Stent graft delivery system
US7708773B2 (en) 2005-01-21 2010-05-04 Gen4 Llc Modular stent graft employing bifurcated graft and leg locking stent elements
US20100217383A1 (en) 1995-10-30 2010-08-26 Medtronic Vascular, Inc. Apparatus for Engrafting a Blood Vessel
US7828838B2 (en) 2001-11-28 2010-11-09 Aptus Endosystems, Inc. Devices, systems, and methods for prosthesis delivery and implantation, including a prosthesis assembly
US20120184982A1 (en) 2011-01-19 2012-07-19 Endologix, Inc. Methods and Systems for Treating Aneurysms
US20120259406A1 (en) 2011-04-06 2012-10-11 Stefan Schreck Method and system for treating aneurysms
US8801768B2 (en) 2011-01-21 2014-08-12 Endologix, Inc. Graft systems having semi-permeable filling structures and methods for their use
US20140277385A1 (en) 2013-03-14 2014-09-18 Endologix, Inc. Method for forming materials in situ within a medical device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6077273A (en) * 1996-08-23 2000-06-20 Scimed Life Systems, Inc. Catheter support for stent delivery

Patent Citations (416)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4130904A (en) * 1977-06-06 1978-12-26 Thermo Electron Corporation Prosthetic blood conduit
US4641653A (en) 1978-06-02 1987-02-10 Rockey Arthur G Medical sleeve
US4731073A (en) 1981-02-13 1988-03-15 Thoratec Laboratories Corporation Arterial graft prosthesis
US4638803A (en) 1982-09-30 1987-01-27 Rand Robert W Medical apparatus for inducing scar tissue formation in a body
US4565733A (en) 1983-05-02 1986-01-21 Fuji Photo Film Co., Ltd. Packaging material for photosensitive materials
US5562728A (en) 1983-12-09 1996-10-08 Endovascular Tech Inc Endovascular grafting apparatus, system and method and devices for use therewith
US4743258A (en) 1984-04-27 1988-05-10 Japan Medical Supply Co., Ltd. Polymer materials for vascular prostheses
US4728328A (en) 1984-10-19 1988-03-01 Research Corporation Cuffed tubular organic prostheses
US4704126A (en) 1985-04-15 1987-11-03 Richards Medical Company Chemical polishing process for titanium and titanium alloy surgical implants
US4936057A (en) 1985-06-21 1990-06-26 Extrude Hone Corporation Method of finish machining the surface of irregularly shaped fluid passages
US4733665A (en) 1985-11-07 1988-03-29 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4733665C2 (en) 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
US4733665B1 (en) 1985-11-07 1994-01-11 Expandable Grafts Partnership Expandable intraluminal graft,and method and apparatus for implanting an expandable intraluminal graft
US4710192A (en) 1985-12-30 1987-12-01 Liotta Domingo S Diaphragm and method for occlusion of the descending thoracic aorta
US5330520A (en) 1986-05-15 1994-07-19 Telectronics Pacing Systems, Inc. Implantable electrode and sensor lead apparatus
US4858264A (en) 1986-09-02 1989-08-22 The United States Of America As Represented By The Secretary Of The Air Force Ultrasonic assisted protective coating removal
US4763654A (en) 1986-09-10 1988-08-16 Jang G David Tandem independently inflatable/deflatable multiple diameter balloon angioplasty catheter systems and method of use
US5002532A (en) 1987-01-06 1991-03-26 Advanced Cardiovascular Systems, Inc. Tandem balloon dilatation catheter
US5314444A (en) 1987-03-13 1994-05-24 Cook Incorporated Endovascular stent and delivery system
US5133732A (en) 1987-10-19 1992-07-28 Medtronic, Inc. Intravascular stent
US4892544A (en) 1988-03-07 1990-01-09 Dow Corning Wright Corporation Methods for forming hollow, porous-surfaced elastomeric bodies
US5902332A (en) 1988-10-04 1999-05-11 Expandable Grafts Partnership Expandable intraluminal graft
US5195984A (en) 1988-10-04 1993-03-23 Expandable Grafts Partnership Expandable intraluminal graft
US4856516A (en) 1989-01-09 1989-08-15 Cordis Corporation Endovascular stent apparatus and method
US5425739A (en) 1989-03-09 1995-06-20 Avatar Design And Development, Inc. Anastomosis stent and stent selection system
US5074845A (en) 1989-07-18 1991-12-24 Baxter International Inc. Catheter with heat-fused balloon with waist
US5292331A (en) 1989-08-24 1994-03-08 Applied Vascular Engineering, Inc. Endovascular support device
US5104404A (en) 1989-10-02 1992-04-14 Medtronic, Inc. Articulated stent
US5330528A (en) * 1989-12-01 1994-07-19 British Technology Group Limited Vascular surgical devices
US5199226A (en) 1990-01-26 1993-04-06 E. B. Thomas Method and apparatus for removing outer coatings from pipe
DE4010975A1 (en) 1990-03-28 1991-10-02 Guenter Dr Siebert Nasal membrane pressure instrument - has controller between pressure source and inflatable balloon
US5496277A (en) 1990-04-12 1996-03-05 Schneider (Usa) Inc. Radially expandable body implantable device
US5242399A (en) 1990-04-25 1993-09-07 Advanced Cardiovascular Systems, Inc. Method and system for stent delivery
US5236447A (en) * 1990-06-29 1993-08-17 Nissho Corporation Artificial tubular organ
US5122154A (en) 1990-08-15 1992-06-16 Rhodes Valentine J Endovascular bypass graft
US5139480A (en) 1990-08-22 1992-08-18 Biotech Laboratories, Inc. Necking stents
US4976692A (en) 1990-09-13 1990-12-11 Travenol Laboratories (Israel) Ltd. Catheter particularly useful for inducing labor and/or for the application of a pharmaceutical substance to the cervix of the uterus
US5108417A (en) 1990-09-14 1992-04-28 Interface Biomedical Laboratories Corp. Anti-turbulent, anti-thrombogenic intravascular stent
US5156620A (en) 1991-02-04 1992-10-20 Pigott John P Intraluminal graft/stent and balloon catheter for insertion thereof
JPH04322665A (en) 1991-02-05 1992-11-12 Kanji Inoue Apparatus for introucing medium into human body
US5217484A (en) 1991-06-07 1993-06-08 Marks Michael P Retractable-wire catheter device and method
US5766151A (en) 1991-07-16 1998-06-16 Heartport, Inc. Endovascular system for arresting the heart
US5222970A (en) 1991-09-06 1993-06-29 William A. Cook Australia Pty. Ltd. Method of and system for mounting a vascular occlusion balloon on a delivery catheter
US5603721A (en) 1991-10-28 1997-02-18 Advanced Cardiovascular Systems, Inc. Expandable stents and method for making same
US5766238A (en) 1991-10-28 1998-06-16 Advanced Cardiovascular Systems, Inc. Expandable stents and method for making same
US6056776A (en) 1991-10-28 2000-05-02 Advanced Cardiovascular System, Inc. Expandable stents and method for making same
US5421955A (en) 1991-10-28 1995-06-06 Advanced Cardiovascular Systems, Inc. Expandable stents and method for making same
US6066167A (en) 1991-10-28 2000-05-23 Advanced Cardiovascular Systems, Inc. Expandable stents
US6066168A (en) 1991-10-28 2000-05-23 Advanced Cardiovascular Systems, Inc. Expandable stents and method for making same
US5421955B1 (en) 1991-10-28 1998-01-20 Advanced Cardiovascular System Expandable stents and method for making same
US5735893A (en) 1991-10-28 1998-04-07 Advanced Cardiovascular Systems, Inc. Expandable stents and method for making same
US5514154A (en) 1991-10-28 1996-05-07 Advanced Cardiovascular Systems, Inc. Expandable stents
US5728158A (en) 1991-10-28 1998-03-17 Advanced Cardiovascular Systems, Inc. Expandable stents
US5425744A (en) 1991-11-05 1995-06-20 C. R. Bard, Inc. Occluder for repair of cardiac and vascular defects
US5383892A (en) 1991-11-08 1995-01-24 Meadox France Stent for transluminal implantation
US5234437A (en) 1991-12-12 1993-08-10 Target Therapeutics, Inc. Detachable pusher-vasoocclusion coil assembly with threaded coupling
US5261916A (en) 1991-12-12 1993-11-16 Target Therapeutics Detachable pusher-vasoocclusive coil assembly with interlocking ball and keyway coupling
US5507767A (en) 1992-01-15 1996-04-16 Cook Incorporated Spiral stent
US5334217A (en) 1992-01-21 1994-08-02 Regents Of The University Of Minnesota Septal defect closure device
US5755769A (en) 1992-03-12 1998-05-26 Laboratoire Perouse Implant Expansible endoprosthesis for a human or animal tubular organ, and fitting tool for use thereof
US5443496A (en) 1992-03-19 1995-08-22 Medtronic, Inc. Intravascular radially expandable stent
US5375612A (en) 1992-04-07 1994-12-27 B. Braun Celsa Possibly absorbable blood filter
US5263964A (en) 1992-05-06 1993-11-23 Coil Partners Ltd. Coaxial traction detachment apparatus and method
US5876448A (en) 1992-05-08 1999-03-02 Schneider (Usa) Inc. Esophageal stent
US5507771A (en) 1992-06-15 1996-04-16 Cook Incorporated Stent assembly
US5607445A (en) 1992-06-18 1997-03-04 American Biomed, Inc. Stent for supporting a blood vessel
USD380831S (en) 1992-08-06 1997-07-08 William Cook Europe A/S Implantable self-expanding stent
US5634941A (en) 1992-08-18 1997-06-03 Ultrasonic Sensing And Monitoring Systems, Inc. Vascular graft bypass apparatus
US5693067A (en) 1992-09-02 1997-12-02 Board Of Regents, The University Of Texas System Intravascular device
US5250071A (en) 1992-09-22 1993-10-05 Target Therapeutics, Inc. Detachable embolic coil assembly using interlocking clasps and method of use
US5530528A (en) 1992-09-28 1996-06-25 Fujitsu Limited Image forming apparatus having contact type, one-component developing unit
US5350397A (en) 1992-11-13 1994-09-27 Target Therapeutics, Inc. Axially detachable embolic coil assembly
US5591223A (en) 1992-11-23 1997-01-07 Children's Medical Center Corporation Re-expandable endoprosthesis
US5423849A (en) 1993-01-15 1995-06-13 Target Therapeutics, Inc. Vasoocclusion device containing radiopaque fibers
US5630840A (en) 1993-01-19 1997-05-20 Schneider (Usa) Inc Clad composite stent
US5618299A (en) 1993-04-23 1997-04-08 Advanced Cardiovascular Systems, Inc. Ratcheting stent
US5441515A (en) 1993-04-23 1995-08-15 Advanced Cardiovascular Systems, Inc. Ratcheting stent
US5624411A (en) 1993-04-26 1997-04-29 Medtronic, Inc. Intravascular stent and method
US5352199A (en) 1993-05-28 1994-10-04 Numed, Inc. Balloon catheter
US5562641A (en) 1993-05-28 1996-10-08 A Bromberg & Co. Ltd. Two way shape memory alloy medical stent
US5776114A (en) 1993-07-07 1998-07-07 Devices For Vascular Intervention, Inc. Flexible housing for intracorporeal use
US5948184A (en) 1993-07-07 1999-09-07 Devices For Vascular Intervention, Inc. Flexible housing for intracorporeal use
US5514115A (en) 1993-07-07 1996-05-07 Device For Vascular Intervention, Inc. Flexible housing for intracorporeal use
US5632771A (en) 1993-07-23 1997-05-27 Cook Incorporated Flexible stent having a pattern formed from a sheet of material
US5735892A (en) 1993-08-18 1998-04-07 W. L. Gore & Associates, Inc. Intraluminal stent graft
US5441510A (en) 1993-09-01 1995-08-15 Technology Development Center Bi-axial cutter apparatus for catheter
US6299597B1 (en) 1993-09-16 2001-10-09 Scimed Life Systems, Inc. Percutaneous repair of cardiovascular anomalies and repair compositions
US5693038A (en) 1993-09-30 1997-12-02 Japan Absorbent Technology Institute Sanitary article with improved fitness
US5723004A (en) 1993-10-21 1998-03-03 Corvita Corporation Expandable supportive endoluminal grafts
US5693088A (en) 1993-11-08 1997-12-02 Lazarus; Harrison M. Intraluminal vascular graft
US5569295A (en) 1993-12-28 1996-10-29 Advanced Cardiovascular Systems, Inc. Expandable stents and method for making same
US5443477A (en) 1994-02-10 1995-08-22 Stentco, Inc. Apparatus and method for deployment of radially expandable stents by a mechanical linkage
US5485667A (en) 1994-03-03 1996-01-23 Kleshinski; Stephen J. Method for attaching a marker to a medical instrument
US5562698A (en) 1994-03-09 1996-10-08 Cook Incorporated Intravascular treatment system
US5549663A (en) 1994-03-09 1996-08-27 Cordis Corporation Endoprosthesis having graft member and exposed welded end junctions, method and procedure
US5449373A (en) 1994-03-17 1995-09-12 Medinol Ltd. Articulated stent
US5733303A (en) 1994-03-17 1998-03-31 Medinol Ltd. Flexible expandable stent
US5797953A (en) 1994-03-18 1998-08-25 Cook Incorporated Helical embolization coil
US5725572A (en) 1994-04-25 1998-03-10 Advanced Cardiovascular Systems, Inc. Radiopaque stent
US5554181A (en) 1994-05-04 1996-09-10 Regents Of The University Of Minnesota Stent
US20030220649A1 (en) 1994-05-06 2003-11-27 Qi-Bin Bao Intervertebral disc prosthesis
US6235050B1 (en) 1994-05-12 2001-05-22 Endovascular Technologies, Inc. System and method for intraluminally deploying a bifurcated graft
US5824056A (en) 1994-05-16 1998-10-20 Medtronic, Inc. Implantable medical device formed from a refractory metal having a thin coating disposed thereon
US5867762A (en) 1994-05-26 1999-02-02 Rafferty; Kevin Masking tape
US5728068A (en) 1994-06-14 1998-03-17 Cordis Corporation Multi-purpose balloon catheter
US5846261A (en) 1994-07-08 1998-12-08 Aga Medical Corp. Percutaneous catheter directed occlusion devices
US6123715A (en) 1994-07-08 2000-09-26 Amplatz; Curtis Method of forming medical devices; intravascular occlusion devices
US6682546B2 (en) 1994-07-08 2004-01-27 Aga Medical Corporation Intravascular occlusion devices
US5636641A (en) 1994-07-25 1997-06-10 Advanced Cardiovascular Systems, Inc. High strength member for intracorporeal use
US5531741A (en) 1994-08-18 1996-07-02 Barbacci; Josephine A. Illuminated stents
US5609605A (en) 1994-08-25 1997-03-11 Ethicon, Inc. Combination arterial stent
US5591230A (en) 1994-09-07 1997-01-07 Global Therapeutics, Inc. Radially expandable stent
US5545210A (en) 1994-09-22 1996-08-13 Advanced Coronary Technology, Inc. Method of implanting a permanent shape memory alloy stent
US5507769A (en) 1994-10-18 1996-04-16 Stentco, Inc. Method and apparatus for forming an endoluminal bifurcated graft
US5632760A (en) 1994-10-20 1997-05-27 Cordis Corporation Balloon catheter for stent implantation
US5846246A (en) 1994-10-21 1998-12-08 Cordis Corporation Dual-balloon rapid-exchange stent delivery catheter with guidewire channel
US5522882A (en) 1994-10-21 1996-06-04 Impra, Inc. Method and apparatus for balloon expandable stent-graft delivery
US5607468A (en) 1994-11-04 1997-03-04 Aeroquip Corporation Method of manufacturing an intraluminal stenting graft
US5534024A (en) 1994-11-04 1996-07-09 Aeroquip Corporation Intraluminal stenting graft
US5549662A (en) 1994-11-07 1996-08-27 Scimed Life Systems, Inc. Expandable stent using sliding members
US5994750A (en) 1994-11-07 1999-11-30 Canon Kabushiki Kaisha Microstructure and method of forming the same
US5578074A (en) 1994-12-22 1996-11-26 Target Therapeutics, Inc. Implant delivery method and assembly
USD380266S (en) 1994-12-30 1997-06-24 Cook Incorporated Implantable, actively expandable stent
US5632763A (en) 1995-01-19 1997-05-27 Cordis Corporation Bifurcated stent and method for implanting same
US5591226A (en) 1995-01-23 1997-01-07 Schneider (Usa) Inc. Percutaneous stent-graft and method for delivery thereof
US6432131B1 (en) 1995-01-31 2002-08-13 Boston Scientific Corporation Method and apparatus for intraluminally implanting an endovascular aortic graft
US5674241A (en) 1995-02-22 1997-10-07 Menlo Care, Inc. Covered expanding mesh stent
US5683449A (en) 1995-02-24 1997-11-04 Marcade; Jean Paul Modular bifurcated intraluminal grafts and methods for delivering and assembling same
US6124523A (en) 1995-03-10 2000-09-26 Impra, Inc. Encapsulated stent
US6451047B2 (en) 1995-03-10 2002-09-17 Impra, Inc. Encapsulated intraluminal stent-graft and methods of making same
US5605530A (en) 1995-03-23 1997-02-25 Fischell; Robert E. System for safe implantation of radioisotope stents
US5741333A (en) 1995-04-12 1998-04-21 Corvita Corporation Self-expanding stent for a medical device to be introduced into a cavity of a body
US5849037A (en) 1995-04-12 1998-12-15 Corvita Corporation Self-expanding stent for a medical device to be introduced into a cavity of a body, and method for its preparation
US5662614A (en) 1995-05-09 1997-09-02 Edoga; John K. Balloon expandable universal access sheath
US5591228A (en) 1995-05-09 1997-01-07 Edoga; John K. Methods for treating abdominal aortic aneurysms
US5578149A (en) 1995-05-31 1996-11-26 Global Therapeutics, Inc. Radially expandable stent
US5824049A (en) 1995-06-07 1998-10-20 Med Institute, Inc. Coated implantable medical device
US6033434A (en) 1995-06-08 2000-03-07 Ave Galway Limited Bifurcated endovascular stent and methods for forming and placing
US5728131A (en) 1995-06-12 1998-03-17 Endotex Interventional Systems, Inc. Coupling device and method of use
US5725568A (en) 1995-06-27 1998-03-10 Scimed Life Systems, Inc. Method and device for recanalizing and grafting arteries
US5782907A (en) 1995-07-13 1998-07-21 Devices For Vascular Intervention, Inc. Involuted spring stent and graft assembly and method of use
US5785679A (en) 1995-07-19 1998-07-28 Endotex Interventional Systems, Inc. Methods and apparatus for treating aneurysms and arterio-venous fistulas
US6613037B2 (en) 1995-07-19 2003-09-02 Farhad Khosravi Methods and apparatus for treating aneurysms and arterio-venous fistulas
US20040044358A1 (en) 1995-07-19 2004-03-04 Farhad Khosravi Methods and apparatus for treating aneurysms and arterio-venous fistulas
US6231562B1 (en) 1995-07-19 2001-05-15 Endotex Interventional Systems, Inc. Methods and apparatus for treating aneurysms and arterio-venous fistulas
US5601600A (en) 1995-09-08 1997-02-11 Conceptus, Inc. Endoluminal coil delivery system having a mechanical release mechanism
US6656214B1 (en) 1995-09-08 2003-12-02 Medtronic Ave, Inc. Methods and apparatus for conformably sealing prostheses within body lumens
US5769882A (en) 1995-09-08 1998-06-23 Medtronic, Inc. Methods and apparatus for conformably sealing prostheses within body lumens
US6110198A (en) 1995-10-03 2000-08-29 Medtronic Inc. Method for deploying cuff prostheses
US6123722A (en) 1995-10-03 2000-09-26 Medtronics, Inc. Stitched stent grafts and methods for their fabrication
US5824037A (en) 1995-10-03 1998-10-20 Medtronic, Inc. Modular intraluminal prostheses construction and methods
US6193745B1 (en) 1995-10-03 2001-02-27 Medtronic, Inc. Modular intraluminal prosteheses construction and methods
US5776161A (en) 1995-10-16 1998-07-07 Instent, Inc. Medical stents, apparatus and method for making same
US5709707A (en) 1995-10-30 1998-01-20 Children's Medical Center Corporation Self-centering umbrella-type septal closure device
US20100217383A1 (en) 1995-10-30 2010-08-26 Medtronic Vascular, Inc. Apparatus for Engrafting a Blood Vessel
US5591195A (en) 1995-10-30 1997-01-07 Taheri; Syde Apparatus and method for engrafting a blood vessel
US6334869B1 (en) 1995-10-30 2002-01-01 World Medical Manufacturing Corporation Endoluminal prosthesis
US5632762A (en) 1995-11-09 1997-05-27 Hemodynamics, Inc. Ostial stent balloon
US5607442A (en) 1995-11-13 1997-03-04 Isostent, Inc. Stent with improved radiopacity and appearance characteristics
WO1997017912A1 (en) 1995-11-13 1997-05-22 Corvita Corporation Expandable supportive bifurcated endoluminal grafts
US5868685A (en) 1995-11-14 1999-02-09 Devices For Vascular Intervention Articulated guidewire
US5888660A (en) 1995-11-16 1999-03-30 Soten S.R.L. Heat-shrinkable co-extruded multilayer polyolefin film having an improved heat seal resistance
US5788626A (en) 1995-11-21 1998-08-04 Schneider (Usa) Inc Method of making a stent-graft covered with expanded polytetrafluoroethylene
US5593417A (en) 1995-11-27 1997-01-14 Rhodes; Valentine J. Intravascular stent with secure mounting means
WO1997019653A1 (en) 1995-11-27 1997-06-05 Rhodes Valentine J Endovascular prosthesis with improved sealing means for aneurysmal arterial disease and method of use
US5665117A (en) 1995-11-27 1997-09-09 Rhodes; Valentine J. Endovascular prosthesis with improved sealing means for aneurysmal arterial disease and method of use
US6843803B2 (en) 1995-12-01 2005-01-18 Medtronic Vascular, Inc. Bifurcated intraluminal prostheses construction and methods
US6283991B1 (en) 1995-12-01 2001-09-04 Medtronics Inc. Endoluminal prostheses and therapies for highly variable body lumens
US5824040A (en) 1995-12-01 1998-10-20 Medtronic, Inc. Endoluminal prostheses and therapies for highly variable body lumens
US6878161B2 (en) 1996-01-05 2005-04-12 Medtronic Vascular, Inc. Stent graft loading and deployment device and method
US6592614B2 (en) 1996-01-05 2003-07-15 Medtronic Ave, Inc. Cuffed endoluminal prosthesis
US5800512A (en) 1996-01-22 1998-09-01 Meadox Medicals, Inc. PTFE vascular graft
US6506204B2 (en) 1996-01-24 2003-01-14 Aga Medical Corporation Method and apparatus for occluding aneurysms
US5871537A (en) 1996-02-13 1999-02-16 Scimed Life Systems, Inc. Endovascular apparatus
US6214022B1 (en) 1996-02-20 2001-04-10 Cardiothoracic Systems, Inc. Perfusion device for maintaining blood flow in a vessel while isolating an anastomosis
US5690643A (en) 1996-02-20 1997-11-25 Leocor, Incorporated Stent delivery system
US5879381A (en) 1996-03-10 1999-03-09 Terumo Kabushiki Kaisha Expandable stent for implanting in a body
US20040220522A1 (en) 1996-04-01 2004-11-04 Medtronic, Inc. Catheter with autoinflating, autoregulating balloon
US5843160A (en) 1996-04-01 1998-12-01 Rhodes; Valentine J. Prostheses for aneurysmal and/or occlusive disease at a bifurcation in a vessel, duct, or lumen
US6554858B2 (en) 1996-04-25 2003-04-29 Corvita Europe Intraluminal endoprosthesis for ramifying the ducts of a human or animal body and method of manufacture thereof
CN1174016A (en) 1996-05-03 1998-02-25 族利控股有限公司 Endovascular device for protection of aneurysm
US6544276B1 (en) 1996-05-20 2003-04-08 Medtronic Ave. Inc. Exchange method for emboli containment
US5800514A (en) 1996-05-24 1998-09-01 Meadox Medicals, Inc. Shaped woven tubular soft-tissue prostheses and methods of manufacturing
US5617878A (en) 1996-05-31 1997-04-08 Taheri; Syde A. Stent and method for treatment of aortic occlusive disease
US5755773A (en) 1996-06-04 1998-05-26 Medtronic, Inc. Endoluminal prosthetic bifurcation shunt
US5697971A (en) 1996-06-11 1997-12-16 Fischell; Robert E. Multi-cell stent with cells having differing characteristics
US6190402B1 (en) 1996-06-21 2001-02-20 Musc Foundation For Research Development Insitu formable and self-forming intravascular flow modifier (IFM) and IFM assembly for deployment of same
US5928279A (en) 1996-07-03 1999-07-27 Baxter International Inc. Stented, radially expandable, tubular PTFE grafts
US6168592B1 (en) 1996-07-26 2001-01-02 Target Therapeutics, Inc. Aneurysm closure device assembly
US5676697A (en) 1996-07-29 1997-10-14 Cardiovascular Dynamics, Inc. Two-piece, bifurcated intraluminal graft for repair of aneurysm
US6325819B1 (en) 1996-08-19 2001-12-04 Cook Incorporated Endovascular prosthetic device, an endovascular graft prothesis with such a device, and a method for repairing an abdominal aortic aneurysm
US20010044655A1 (en) 1996-09-13 2001-11-22 Meadox Medicals, Inc. ePTFE small caliber vascular grafts with significant patency enhancement via a surface coating which contains covalently bonded heparin
US6007573A (en) 1996-09-18 1999-12-28 Microtherapeutics, Inc. Intracranial stent and method of use
US5807404A (en) 1996-09-19 1998-09-15 Medinol Ltd. Stent with variable features to optimize support and method of making such stent
US20020045931A1 (en) 1996-09-26 2002-04-18 David Sogard Support structure/membrane composite medical device
US5755778A (en) 1996-10-16 1998-05-26 Nitinol Medical Technologies, Inc. Anastomosis device
US5976178A (en) 1996-11-07 1999-11-02 Vascular Science Inc. Medical grafting methods
US5860998A (en) 1996-11-25 1999-01-19 C. R. Bard, Inc. Deployment device for tubular expandable prosthesis
US6015431A (en) 1996-12-23 2000-01-18 Prograft Medical, Inc. Endolumenal stent-graft with leak-resistant seal
US5868782A (en) 1996-12-24 1999-02-09 Global Therapeutics, Inc. Radially expandable axially non-contracting surgical stent
US20050251251A1 (en) 1996-12-31 2005-11-10 Alain Cribier Valve prosthesis for implantation in body channels
US5947991A (en) 1997-01-07 1999-09-07 Cowan; Robert K. Single balloon device for cervix
US5827321A (en) 1997-02-07 1998-10-27 Cornerstone Devices, Inc. Non-Foreshortening intraluminal prosthesis
US5919224A (en) 1997-02-12 1999-07-06 Schneider (Usa) Inc Medical device having a constricted region for occluding fluid flow in a body lumen
US6254633B1 (en) 1997-02-12 2001-07-03 Corvita Corporation Delivery device for a medical device having a constricted region
US5800393A (en) 1997-03-07 1998-09-01 Sahota; Harvinder Wire perfusion catheter
US5810872A (en) 1997-03-14 1998-09-22 Kanesaka; Nozomu Flexible stent
US5824054A (en) 1997-03-18 1998-10-20 Endotex Interventional Systems, Inc. Coiled sheet graft stent and methods of making and use
US5718713A (en) 1997-04-10 1998-02-17 Global Therapeutics, Inc. Surgical stent having a streamlined contour
US5741327A (en) 1997-05-06 1998-04-21 Global Therapeutics, Inc. Surgical stent featuring radiopaque markers
US5868708A (en) 1997-05-07 1999-02-09 Applied Medical Resources Corporation Balloon catheter apparatus and method
US5836966A (en) 1997-05-22 1998-11-17 Scimed Life Systems, Inc. Variable expansion force stent
US7435253B1 (en) 1997-05-26 2008-10-14 William A. Cook Australia Pty Ltd Prosthesis and a method and means of deploying a prosthesis
WO1998053761A1 (en) 1997-05-26 1998-12-03 William A. Cook Australia Pty. Ltd. A prosthesis and a method and means of deploying a prosthesis
US5800525A (en) 1997-06-04 1998-09-01 Vascular Science, Inc. Blood filter
US5746691A (en) 1997-06-06 1998-05-05 Global Therapeutics, Inc. Method for polishing surgical stents
US5843175A (en) 1997-06-13 1998-12-01 Global Therapeutics, Inc. Enhanced flexibility surgical stent
WO1999000073A1 (en) 1997-06-28 1999-01-07 Anson Medical Limited Expandable device
US5863627A (en) 1997-08-26 1999-01-26 Cardiotech International, Inc. Hydrolytically-and proteolytically-stable polycarbonate polyurethane silicone copolymers
US6187033B1 (en) 1997-09-04 2001-02-13 Meadox Medicals, Inc. Aortic arch prosthetic graft
US6878164B2 (en) 1997-09-05 2005-04-12 C. R. Bard, Inc. Short body endoprosthesis
US5984955A (en) 1997-09-11 1999-11-16 Wisselink; Willem System and method for endoluminal grafting of bifurcated or branched vessels
US6042606A (en) 1997-09-29 2000-03-28 Cook Incorporated Radially expandable non-axially contracting surgical stent
US6132457A (en) 1997-10-22 2000-10-17 Triad Vascular Systems, Inc. Endovascular graft having longitudinally displaceable sections
US6331191B1 (en) 1997-11-25 2001-12-18 Trivascular Inc. Layered endovascular graft
US6190406B1 (en) 1998-01-09 2001-02-20 Nitinal Development Corporation Intravascular stent having tapered struts
US5873907A (en) 1998-01-27 1999-02-23 Endotex Interventional Systems, Inc. Electrolytic stent delivery system and methods of use
US6395019B2 (en) 1998-02-09 2002-05-28 Trivascular, Inc. Endovascular graft
US20030216802A1 (en) 1998-02-09 2003-11-20 Trivascular, Inc. Endovascular graft
US6261305B1 (en) 1998-02-12 2001-07-17 Eclips Systems Inc. Endovascular prothesis with expandable leaf portion
US5931866A (en) 1998-02-24 1999-08-03 Frantzen; John J. Radially expandable stent featuring accordion stops
US20030074056A1 (en) 1998-03-04 2003-04-17 Scimed Life Systems, Inc. Stent having variable properties and method of its use
WO1999044539A2 (en) 1998-03-05 1999-09-10 Scimed Life Systems, Inc. Dilatation and stent delivery system for bifurcation lesions
US7112217B1 (en) 1998-03-16 2006-09-26 Cordis Corporation Biluminal endovascular graft system
US6290731B1 (en) 1998-03-30 2001-09-18 Cordis Corporation Aortic graft having a precursor gasket for repairing an abdominal aortic aneurysm
US6887268B2 (en) 1998-03-30 2005-05-03 Cordis Corporation Extension prosthesis for an arterial repair
US6463317B1 (en) 1998-05-19 2002-10-08 Regents Of The University Of Minnesota Device and method for the endovascular treatment of aneurysms
US6293960B1 (en) 1998-05-22 2001-09-25 Micrus Corporation Catheter with shape memory polymer distal tip for deployment of therapeutic devices
US6296603B1 (en) 1998-05-26 2001-10-02 Isostent, Inc. Radioactive intraluminal endovascular prosthesis and method for the treatment of aneurysms
US6203732B1 (en) 1998-07-02 2001-03-20 Intra Therapeutics, Inc. Method for manufacturing intraluminal device
US6099548A (en) 1998-07-28 2000-08-08 Taheri; Syde A. Apparatus and method for deploying an aortic arch graft
US6093199A (en) 1998-08-05 2000-07-25 Endovascular Technologies, Inc. Intra-luminal device for treatment of body cavities and lumens and method of use
US6152943A (en) 1998-08-14 2000-11-28 Incept Llc Methods and apparatus for intraluminal deposition of hydrogels
US6325816B1 (en) 1998-08-19 2001-12-04 Artemis Medical, Inc. Target tissue localization method
US6299604B1 (en) 1998-08-20 2001-10-09 Cook Incorporated Coated implantable medical device
US6196230B1 (en) 1998-09-10 2001-03-06 Percardia, Inc. Stent delivery system and method of use
US6375675B2 (en) 1998-09-30 2002-04-23 Edwards Lifesciences Corp. Methods and apparatus for intraluminal placement of a bifurcated intraluminal graft
US20010020184A1 (en) 1998-09-30 2001-09-06 Mark Dehdashtian Methods and apparatus for intraluminal placement of a bifurcated intraluminal graft
US20020019665A1 (en) 1998-09-30 2002-02-14 Mark Dehdashtian Methods and apparatus for intraluminal placement of a bifurcated intraluminal graft
US20060155369A1 (en) 1998-09-30 2006-07-13 Bard Peripheral Vascular, Inc. Selective adherence of stent-graft coverings
US6576007B2 (en) 1998-09-30 2003-06-10 Edwards Lifesciences Corporation Methods and apparatus for intraluminal placement of a bifurcated intraluminal graft
US6527799B2 (en) 1998-10-29 2003-03-04 Conor Medsystems, Inc. Expandable medical device with ductile hinges
US6152144A (en) 1998-11-06 2000-11-28 Appriva Medical, Inc. Method and device for left atrial appendage occlusion
US6083259A (en) 1998-11-16 2000-07-04 Frantzen; John J. Axially non-contracting flexible radially expandable stent
WO2000029060A2 (en) 1998-11-19 2000-05-25 Percusurge, Inc. Low volume syringe and method for inflating surgical balloons
US6022359A (en) 1999-01-13 2000-02-08 Frantzen; John J. Stent delivery system featuring a flexible balloon
US6187034B1 (en) 1999-01-13 2001-02-13 John J. Frantzen Segmented stent for flexible stent delivery system
US20090216125A1 (en) 1999-01-25 2009-08-27 Lenker Jay A Reslution optical & ultrasound devices for imaging and treatment of body lumens
WO2000051522A1 (en) 1999-03-03 2000-09-08 Clifford Rowan Murch Inflatable intraluminal graft
US6663607B2 (en) 1999-07-12 2003-12-16 Scimed Life Systems, Inc. Bioactive aneurysm closure device assembly and kit
US20030078647A1 (en) 1999-08-05 2003-04-24 Franco Vallana Angioplasty stent adapted to counter restenosis, respective kit and components
US7022100B1 (en) 1999-09-03 2006-04-04 A-Med Systems, Inc. Guidable intravascular blood pump and related methods
US6409757B1 (en) 1999-09-15 2002-06-25 Eva Corporation Method and apparatus for supporting a graft assembly
US6312462B1 (en) 1999-09-22 2001-11-06 Impra, Inc. Prosthesis for abdominal aortic aneurysm repair
WO2001021108A1 (en) 1999-09-23 2001-03-29 Edwards Lifesciences Corporation Implants for the use in the treatment of aneurysms
US6280466B1 (en) 1999-12-03 2001-08-28 Teramed Inc. Endovascular graft system
US6331184B1 (en) 1999-12-10 2001-12-18 Scimed Life Systems, Inc. Detachable covering for an implantable medical device
US6344056B1 (en) 1999-12-29 2002-02-05 Edwards Lifesciences Corp. Vascular grafts for bridging a vessel side branch
US6663667B2 (en) 1999-12-29 2003-12-16 Edwards Lifesciences Corporation Towel graft means for enhancing tissue ingrowth in vascular grafts
US6241761B1 (en) 2000-01-26 2001-06-05 Cabg Medical, Inc. Stented grafts for coupling vascular members
US6312463B1 (en) 2000-02-01 2001-11-06 Endotex Interventional Systems, Inc. Micro-porous mesh stent with hybrid structure
US20010027337A1 (en) 2000-02-22 2001-10-04 Richard A. Arrest, Esq Stent delivery system
US20010027338A1 (en) 2000-03-03 2001-10-04 Cook Incorporated Endovascular device having a stent
US20020151958A1 (en) 2000-03-03 2002-10-17 Chuter Timothy A.M. Large vessel stents and occluders
JP2003525692A (en) 2000-03-03 2003-09-02 クック インコーポレイティド Medical equipment
WO2001066038A2 (en) 2000-03-03 2001-09-13 Cook Incorporated Endovascular device having a stent
US6827735B2 (en) 2000-03-03 2004-12-07 Cook Incorporated Endovascular device having a stent
US6290722B1 (en) 2000-03-13 2001-09-18 Endovascular Technologies, Inc. Tacky attachment method of covered materials on stents
US20020026217A1 (en) 2000-04-26 2002-02-28 Steven Baker Apparatus and method for repair of perigraft flow
US6729356B1 (en) 2000-04-27 2004-05-04 Endovascular Technologies, Inc. Endovascular graft for providing a seal with vasculature
US20020045848A1 (en) 2000-05-10 2002-04-18 Ali Jaafar Apparatus and method for treatment of cerebral aneurysms, arterial-vascular malformations and arterial fistulas
US6692486B2 (en) 2000-05-10 2004-02-17 Minnesota Medical Physics, Llc Apparatus and method for treatment of cerebral aneurysms, arterial-vascular malformations and arterial fistulas
US20020052643A1 (en) 2000-08-02 2002-05-02 Wholey Michael H. Tapered endovascular stent graft and method of treating abdominal aortic aneurysms and distal iliac aneurysms
US6773454B2 (en) 2000-08-02 2004-08-10 Michael H. Wholey Tapered endovascular stent graft and method of treating abdominal aortic aneurysms and distal iliac aneurysms
US6776771B2 (en) 2000-09-14 2004-08-17 Tuborg Engineering Adaptive balloon with improved flexibility
US6945989B1 (en) 2000-09-18 2005-09-20 Endotex Interventional Systems, Inc. Apparatus for delivering endoluminal prostheses and methods of making and using them
US6695833B1 (en) 2000-09-27 2004-02-24 Nellix, Inc. Vascular stent-graft apparatus and forming method
US20040167607A1 (en) 2000-09-27 2004-08-26 Frantzen John J. Vascular stent-graft apparatus
US6730119B1 (en) 2000-10-06 2004-05-04 Board Of Regents Of The University Of Texas System Percutaneous implantation of partially covered stents in aneurysmally dilated arterial segments with subsequent embolization and obliteration of the aneurysm cavity
US20040215316A1 (en) 2000-10-06 2004-10-28 The Board Of Regents Of The University Of Texas System Percutaneous implantation of partially covered stents in aneurysmally dilated arterial segments with subsequent embolization and obliteration of the aneurysm cavity
US7314483B2 (en) 2000-11-16 2008-01-01 Cordis Corp. Stent graft with branch leg
US7229472B2 (en) 2000-11-16 2007-06-12 Cordis Corporation Thoracic aneurysm repair prosthesis and system
US6579301B1 (en) 2000-11-17 2003-06-17 Syntheon, Llc Intragastric balloon device adapted to be repeatedly varied in volume without external assistance
US6645242B1 (en) 2000-12-11 2003-11-11 Stephen F. Quinn Bifurcated side-access intravascular stent graft
US20020077594A1 (en) 2000-12-19 2002-06-20 Scimed Life Systems, Inc. Drug delivery catheter having a highly compliant balloon with infusion holes
US6547804B2 (en) 2000-12-27 2003-04-15 Scimed Life Systems, Inc. Selectively permeable highly distensible occlusion balloon
US20020169497A1 (en) 2001-01-02 2002-11-14 Petra Wholey Endovascular stent system and method of providing aneurysm embolization
US20020156518A1 (en) 2001-03-23 2002-10-24 Hassan Tehrani Branched aortic arch stent graft and method of deployment
WO2002078569A2 (en) 2001-03-28 2002-10-10 Cook Incorporated Modular stent graft assembly and use thereof
US20020151953A1 (en) 2001-04-11 2002-10-17 Trivascular, Inc. Delivery system and method for bifurcated endovascular graft
US20020151956A1 (en) 2001-04-11 2002-10-17 Trivascular, Inc. Delivery system and method for endovascular graft
US6761733B2 (en) 2001-04-11 2004-07-13 Trivascular, Inc. Delivery system and method for bifurcated endovascular graft
US6733521B2 (en) 2001-04-11 2004-05-11 Trivascular, Inc. Delivery system and method for endovascular graft
US20030004560A1 (en) 2001-04-11 2003-01-02 Trivascular, Inc. Delivery system and method for bifurcated graft
WO2002083038A2 (en) 2001-04-11 2002-10-24 Trivascular, Inc. Delivery system and method for bifurcated graft
US6969373B2 (en) 2001-04-13 2005-11-29 Tricardia, Llc Syringe system
US20020165521A1 (en) 2001-05-04 2002-11-07 Iulian Cioanta Low thermal resistance elastic sleeves for medical device balloons
US20020183629A1 (en) 2001-05-31 2002-12-05 Fitz Matthew Joseph Implantable device for monitoring aneurysm sac parameters
US20040204755A1 (en) 2001-06-19 2004-10-14 Robin Marie Therese Devices for repairing aneurysms
US7682383B2 (en) 2001-06-19 2010-03-23 Marie Therese Robin Devices for repairing aneurysms
US7105012B2 (en) 2001-06-19 2006-09-12 Eva Corporation Positioning assembly and method of use
WO2002102282A1 (en) 2001-06-19 2002-12-27 Vortex Innovation Limited Devices for repairing aneurysms
US7175651B2 (en) 2001-07-06 2007-02-13 Andrew Kerr Stent/graft assembly
JP2004537353A (en) 2001-07-16 2004-12-16 マイクロ ベンション インコーポレイテッド Methods, materials and devices for preventing or preventing endoleakage following implantation of an endovascular graft
US20030014075A1 (en) 2001-07-16 2003-01-16 Microvention, Inc. Methods, materials and apparatus for deterring or preventing endoleaks following endovascular graft implanation
WO2003007785A2 (en) 2001-07-16 2003-01-30 Microvention, Inc. Methods, materials and apparatus for deterring or preventing endoleaks following endovascular graft implantation
US20050004660A1 (en) 2001-07-16 2005-01-06 Microvention, Inc. Methods, materials and apparatus for deterring or preventing endoleaks following endovascular graft implantation
US20030051735A1 (en) 2001-07-26 2003-03-20 Cook Biotech Incorporated Vessel closure member, delivery apparatus, and method of inserting the member
US20030028209A1 (en) 2001-07-31 2003-02-06 Clifford Teoh Expandable body cavity liner device
WO2003032869A1 (en) 2001-10-16 2003-04-24 Scimed Life Systems, Inc. Aortic artery aneurysm endovascular prosthesis
JP2005505380A (en) 2001-10-16 2005-02-24 ボストン サイエンティフィック リミテッド Endovascular prosthesis for aortic aneurysms
US20040243057A1 (en) 2001-10-25 2004-12-02 Jakob Vinten-Johansen Catheter for modified perfusion
US20030093145A1 (en) 2001-10-26 2003-05-15 Cook Incorporated Endoluminal graft
WO2003037222A2 (en) 2001-10-26 2003-05-08 Cook Incorporated Endoluminal graft
US6958051B2 (en) 2001-10-29 2005-10-25 Scimed Life Systems, Inc. Dual balloon valve control with pressure indicator
US20070055355A1 (en) 2001-11-26 2007-03-08 Thomas J. Fogarty Devices and methods for treatment of vascular aneurysms
US20060292206A1 (en) 2001-11-26 2006-12-28 Kim Steven W Devices and methods for treatment of vascular aneurysms
US20070061005A1 (en) 2001-11-26 2007-03-15 Thomas Fogarty Devices and methods for treatment of vascular aneurysms
US20070050008A1 (en) 2001-11-26 2007-03-01 Thomas Fogarty Devices and methods for treatment of vascular aneurysms
US7828838B2 (en) 2001-11-28 2010-11-09 Aptus Endosystems, Inc. Devices, systems, and methods for prosthesis delivery and implantation, including a prosthesis assembly
US20040147811A1 (en) 2001-12-14 2004-07-29 Diederich Chris J Catheter based balloon for therapy modification and positioning of tissue
US7147661B2 (en) 2001-12-20 2006-12-12 Boston Scientific Santa Rosa Corp. Radially expandable stent
WO2003053288A1 (en) 2001-12-20 2003-07-03 Trivascular, Inc. Advanced endovascular graft
FR2834199A1 (en) 2001-12-27 2003-07-04 Doron Carmi Endoprosthesis for use in endoluminal medium, especially for treatment of aneurysms, comprises tube surrounded by expandable annular pouch
US7326237B2 (en) 2002-01-08 2008-02-05 Cordis Corporation Supra-renal anchoring prosthesis
US20030130725A1 (en) 2002-01-08 2003-07-10 Depalma Donald F. Sealing prosthesis
EP1325717A2 (en) 2002-01-08 2003-07-09 Cordis Corporation Stent graft with branch leg
US20030130720A1 (en) 2002-01-08 2003-07-10 Depalma Donald F. Modular aneurysm repair system
US6679300B1 (en) 2002-01-14 2004-01-20 Thermogenesis Corp. Biological adhesive loading station and method
US20030135269A1 (en) 2002-01-16 2003-07-17 Swanstrom Lee L. Laparoscopic-assisted endovascular/endoluminal graft placement
US7131991B2 (en) 2002-04-24 2006-11-07 Medtronic Vascular, Inc. Endoluminal prosthetic assembly and extension method
US20030204242A1 (en) 2002-04-24 2003-10-30 Zarins Christopher K. Endoluminal prosthetic assembly and extension method
US20030204249A1 (en) 2002-04-25 2003-10-30 Michel Letort Endovascular stent graft and fixation cuff
US6918926B2 (en) 2002-04-25 2005-07-19 Medtronic Vascular, Inc. System for transrenal/intraostial fixation of endovascular prosthesis
US20050027238A1 (en) 2002-05-15 2005-02-03 Mallinckrodt Inc. Hydraulic remote for a medical fluid injector
US20030225446A1 (en) 2002-05-29 2003-12-04 William A. Cook Australia Pty Ltd. Multi-piece prosthesis deployment apparatus
WO2003103513A1 (en) 2002-06-11 2003-12-18 Fit Biotech Oy Plc Anastomotic device and method for open and endoscopic surgical anatomosis
US6656220B1 (en) 2002-06-17 2003-12-02 Advanced Cardiovascular Systems, Inc. Intravascular stent
US6960227B2 (en) 2002-06-24 2005-11-01 Cordis Neurovascular, Inc. Expandable stent and delivery system
JP2005532120A (en) 2002-07-02 2005-10-27 ザ ファウンドリー インコーポレイテッド Methods and devices for treating aneurysms
WO2004004603A1 (en) 2002-07-02 2004-01-15 The Foundry Inc. Methods and devices for treating aneurysms
US20050096731A1 (en) 2002-07-11 2005-05-05 Kareen Looi Cell seeded expandable body
US20040016997A1 (en) 2002-07-24 2004-01-29 Mitsubishi Denki Kabushiki Kaisha Socket for semiconductor package
US20040082989A1 (en) 2002-08-20 2004-04-29 Cook Incorporated Stent graft with improved proximal end
WO2004026183A2 (en) 2002-09-20 2004-04-01 Nellix, Inc. Stent-graft with positioning anchor
US20080039923A1 (en) 2002-09-20 2008-02-14 Nellix, Inc. Stent-graft with positioning anchor
US20040116997A1 (en) 2002-09-20 2004-06-17 Taylor Charles S. Stent-graft with positioning anchor
US20060265043A1 (en) 2002-09-30 2006-11-23 Evgenia Mandrusov Method and apparatus for treating vulnerable plaque
US20040098096A1 (en) * 2002-10-22 2004-05-20 The University Of Miami Endograft device to inhibit endoleak and migration
WO2004037116A2 (en) 2002-10-22 2004-05-06 The University Of Miami Endograft device to inhibit endoleak and migration
US20040091543A1 (en) 2002-10-23 2004-05-13 Barbara Bell Embolic compositions
WO2004045393A2 (en) 2002-11-20 2004-06-03 Fogarty, Thomas, J. Devices and methods for treatment of vascular aneurysms
US20060206197A1 (en) 2002-12-30 2006-09-14 Hesham Morsi Endovascular balloon graft
US20040153025A1 (en) 2003-02-03 2004-08-05 Seifert Paul S. Systems and methods of de-endothelialization
US20060184109A1 (en) 2003-02-10 2006-08-17 Lothar Gobel Device to be used in healing processes
US20040193245A1 (en) 2003-03-26 2004-09-30 The Foundry, Inc. Devices and methods for treatment of abdominal aortic aneurysm
US20040215172A1 (en) 2003-04-25 2004-10-28 Jack Chu In situ blood vessel and aneurysm treatment
US20060161244A1 (en) 2003-05-02 2006-07-20 Jacques Seguin Vascular graft and deployment system
US20060015173A1 (en) 2003-05-06 2006-01-19 Anton Clifford Endoprosthesis having foot extensions
US20060095124A1 (en) 2003-06-13 2006-05-04 Stefan Benz Suction stent
US20050028484A1 (en) 2003-06-20 2005-02-10 Littlewood Richard W. Method and apparatus for sleeving compressed bale materials
US20050065592A1 (en) 2003-09-23 2005-03-24 Asher Holzer System and method of aneurism monitoring and treatment
US7122052B2 (en) 2003-09-29 2006-10-17 Stout Medical Group Lp Integral support stent graft assembly
US20050090804A1 (en) 2003-10-22 2005-04-28 Trivascular, Inc. Endoluminal prosthesis endoleak management
US20050215989A1 (en) 2004-03-23 2005-09-29 Cryocath Technologies Inc. Method and apparatus for inflating and deflating balloon catheters
US20050245891A1 (en) 2004-04-13 2005-11-03 Mccormick Paul Method and apparatus for decompressing aneurysms
JP2008510502A (en) 2004-07-22 2008-04-10 ネリックス・インコーポレーテッド Methods and systems for endovascular aneurysm treatment
US20120046684A1 (en) 2004-07-22 2012-02-23 Endologix, Inc. Graft Systems Having Filling Structures Supported by Scaffolds and Methods for Their Use
US20060212112A1 (en) * 2004-07-22 2006-09-21 Nellix, Inc. Graft systems having filling structures supported by scaffolds and methods for their use
WO2006012567A2 (en) 2004-07-22 2006-02-02 Nellix, Inc. Methods and systems for endovascular aneurysm treatment
US20090198267A1 (en) 2004-07-22 2009-08-06 Nellix, Inc. Methods and systems for endovascular aneurysm treatment
US7530988B2 (en) 2004-07-22 2009-05-12 Nellix, Inc. Methods and systems for endovascular aneurysm treatment
US20060025853A1 (en) * 2004-07-22 2006-02-02 Nellix, Inc. Methods and systems for endovascular aneurysm treatment
US20060142836A1 (en) 2004-09-28 2006-06-29 William A. Cook Australia Pty. Ltd. Device for treating aortic dissection
US20060074481A1 (en) 2004-10-04 2006-04-06 Gil Vardi Graft including expandable cuff
US20060135942A1 (en) 2004-10-28 2006-06-22 Medtronic Vascular, Inc. Methods and Devices to Deliver Injected Agents to an Aneurysm Site
US20070032850A1 (en) 2004-12-16 2007-02-08 Carlos Ruiz Separable sheath and method for insertion of a medical device into a bodily vessel using a separable sheath
US7708773B2 (en) 2005-01-21 2010-05-04 Gen4 Llc Modular stent graft employing bifurcated graft and leg locking stent elements
US20070208416A1 (en) 2005-04-04 2007-09-06 Janet Burpee Flexible stent
WO2006116725A2 (en) 2005-04-28 2006-11-02 Nellix, Inc. Graft systems having filling structures supported by scaffolds and methods for their use
WO2007008600A2 (en) 2005-07-07 2007-01-18 Nellix, Inc. Systems and methods for endovascular aneurysm treatment
EP1903985A2 (en) 2005-07-07 2008-04-02 Nellix, Inc. Systems and methods for endovascular aneurysm treatment
US20100106087A1 (en) 2005-07-07 2010-04-29 Nellix, Inc. System and methods for endovascular aneurysm treatment
US7666220B2 (en) 2005-07-07 2010-02-23 Nellix, Inc. System and methods for endovascular aneurysm treatment
US20070043420A1 (en) 2005-08-17 2007-02-22 Medtronic Vascular, Inc. Apparatus and method for stent-graft release using a cap
US20070150041A1 (en) 2005-12-22 2007-06-28 Nellix, Inc. Methods and systems for aneurysm treatment using filling structures
US20070162109A1 (en) 2006-01-11 2007-07-12 Luis Davila Intraluminal stent graft
US20070276477A1 (en) * 2006-05-24 2007-11-29 Nellix, Inc. Material for creating multi-layered films and methods for making the same
US8133559B2 (en) 2006-05-24 2012-03-13 Endologix, Inc. Material for creating multi-layered films and methods for making the same
US7951448B2 (en) 2006-05-24 2011-05-31 Nellix, Inc. Material for creating multi-layered films and methods for making the same
US7790273B2 (en) 2006-05-24 2010-09-07 Nellix, Inc. Material for creating multi-layered films and methods for making the same
WO2007142916A2 (en) 2006-05-30 2007-12-13 Incept, Llc Materials formable in situ within a medical device
US20080154368A1 (en) 2006-12-21 2008-06-26 Warsaw Orthopedic, Inc. Curable orthopedic implant devices configured to harden after placement in vivo by application of a cure-initiating energy before insertion
US20080228259A1 (en) 2007-03-16 2008-09-18 Jack Fa-De Chu Endovascular devices and methods to protect aneurysmal wall
US20080294237A1 (en) 2007-04-04 2008-11-27 Jack Fa-De Chu Inflatable devices and methods to protect aneurysmal wall
US20090099649A1 (en) 2007-10-04 2009-04-16 Chobotov Michael V Modular vascular graft for low profile percutaneous delivery
US20100004728A1 (en) 2008-02-13 2010-01-07 Nellix, Inc. Graft endoframe having axially variable characteristics
US20090209855A1 (en) 2008-02-19 2009-08-20 Aga Medical Corporation Medical devices for treating a target site and associated method
US20100036360A1 (en) 2008-04-25 2010-02-11 Nellix, Inc. Stent graft delivery system
US20120016456A1 (en) 2008-04-25 2012-01-19 Endologix, Inc. Stent Graft Delivery System
US20090318949A1 (en) 2008-06-04 2009-12-24 Nellix, Inc. Sealing apparatus and methods of use
US20090319029A1 (en) 2008-06-04 2009-12-24 Nellix, Inc. Docking apparatus and methods of use
US20120184982A1 (en) 2011-01-19 2012-07-19 Endologix, Inc. Methods and Systems for Treating Aneurysms
US8801768B2 (en) 2011-01-21 2014-08-12 Endologix, Inc. Graft systems having semi-permeable filling structures and methods for their use
US20120259406A1 (en) 2011-04-06 2012-10-11 Stefan Schreck Method and system for treating aneurysms
US20140277385A1 (en) 2013-03-14 2014-09-18 Endologix, Inc. Method for forming materials in situ within a medical device

Non-Patent Citations (59)

* Cited by examiner, † Cited by third party
Title
Carmi et al., "Endovascular stent-graft adapted to the endoluminal environment: prototype of a new endoluminal approach," J Endovasc Ther. Jun. 2002;9(3):380-381.
Chinese Application No. 201080065043.8, Notice of Grant for Invention, dated Apr. 25, 2016, 4 pages.
Donayre et al., :Fillable Endovascular Aneurysm Repair: An Early Look at a Next Generation EVAR Technology That May Address Some Current Limitations and Improve Clinical Outcomes, Endovascular Today, 64-66 (Jan. 2009).
EP report, dated Nov. 7, 2013, of corresponding EP Application No. 09733719.0.
European Office Action dated Aug. 8, 2018, from application No. 10841580.3.
European Search Report and Search Opinion of EP Patent Application No. 06774540.6, dated Mar. 30, 2010, 6 pages total.
Examination Report of corresponding Japanese Application No. 2011-512667, dated Jun. 18, 2013.
Examination report of EP Application No. 06751879.5, dated Mar. 24, 2014, 5 pages.
Examination Report of European App. 0375880.7, dated Feb. 22, 2013.
Examination Report of European Application No. 03754880.7, dated Jun. 29, 2012, 4 pages.
Examination Report of European Patent Application 03754880.7, dated Dec. 16, 2010.
Examination Report of European Patent Application 03754880.7, dated Dec. 22, 2011.
Examination Report of Japanese Patent Application No. 2007/522822, dated Feb. 8, 2011.
Examination Report of Japanese Patent Application No. 2008-5477019, dated Jul. 22, 2013.
Examination Report of Japanese Patent Application No. 2011-506487, dated Jun. 11, 2013.
Examination Report of Japanese Patent Application No. 2011-506487, dated May 7, 2014.
Examiniation report for JP Application No. 2008-547709 dated Dec. 13, 2011.
Extended European Search Report of Application No. 11180827.5, dated Jan. 30, 2012, 6 pages.
Extended European search report of corresponding EP Application No. 06751879.5, dated Apr. 16, 2013, 9 pages.
First Office Action of Chinese Application No. 201080065043.8, dated Aug. 1, 2014 (22 pages).
Gilling-Smith, "Stent Graft Migration After Endovascular Aneurysm Repair," presented at 25th International Charing Cross Symposium, Apr. 13, 2003 [Power Point Presentation and Transcript], 56 pages total.
International Preliminary Report on Patentability and Written Opinion of The International Searching Authority, Issued in PCT/US2010/061621 dated Jul. 12, 2012, 7 pages.
International Preliminary Report on Patentability PCT/US2012/021878 dated Aug. 1, 2013.
International Search Report and the Written Opinion of the International Searching Authority, Issued in PCT/US2012/032612 dated Jul. 25,2012, 13 pages.
International Search Report and Written Opinion of PCT Application No. PCT /US2009/046308, dated Nov. 17, 2009, 12 pages total.
International Search Report and Written Opinion of PCT Application No. PCT/US07/69671, dated Jul. 7, 2008, 9 paces.
International Search Report and Written Opinion of PCT Application No. PCT/US09/34136, D dated Apr. 8, 2009, 16 pages total.
International Search Report and Written Opinion of PCT Application No. PCT/US2006/062257, dated Jan. 18, 2008. 7 pages total.
International Search Report and Written Opinion of PCT Application No. PCT/US2009/046310, dated Jul. 29, 2009, 9 pages total.
International Search Report and Written Opinion of Pot Application No. PCT/US09/41718, dated Jun. 22, 2009, 23 pages total.
International Search Report of PCT/US 06/16403, dated Aug. 7, 2007. 2 pages.
International Search Report of the International Searching Authority for Application No. PCT/US2012/021878, dated May 23, 2012, 4 pges.
Japanese Office Action dated Dec. 5, 2017, from application No. 2012-547147.
Journal of Endovascular Therapy; Apr. 2000; pp. 111, 114, 132-140; vol. 7' No. 2; International Society of Endovascular Specialists; Phoenix, AZ.
Notice of Reason for Refusal of Japanese Application No. 2012-547147, dated Sep. 8, 2015 (5 pages).
Notice of Reason of Refusal of Japanese Application No. 2012-547147, dated Sep. 16, 2014, 5 pages.
Official Action for Japanese Patent Application No. 2008-547709, dated Oct. 30, 2012.
Patrick W. Serruys and Michael JB Kutryk; Handbook of Coronary Stents, Second Edition; 1998; pp. 45, 55, 78, 103, 112, 132, 158, 174, 185, 190, 207, 215, 230, 239; Martin Dunitz; UK.
PCT International Search Report and Written Opinion dated Feb. 28, 2011 for PCT Application No. PCT/US2010/61621.
Report of European Patent Application No. 06850439.8 dated May 15, 2013.
Search report dated Oct. 17, 2013 of corresponding PCT/US2012/032612.
Search report of corresponding PCT/US2014/021928, dated May 20, 2014, 8 pages.
Second Office Action of Chinese Application No. 201080065043.8, dated May 5, 2015 (16 pages).
Shan-e-ali Haider et al. Sac behavior after aneurysm treatment with the Gore Excluder low-permeability aortic endoprosthesis: 12-month comparison to the original Excluder de-vice. Journal of Vascular Surgery. vol. 44, No. 4. 694-700. Oct. 2006.
Supplementary European Search Report and Search Opinion of EP Patent Application No. 05773726, dated Apr. 23, 2010, 6 pages total.
Susan M. Trocciola et al. The development of ertdotension is associated with increased transmission of pressure and serous components in porous expanded polytetrafluoroethyiene stent-grads: Characterization using a canine model. Journal of Vascular Surgery Jan. 2006, p. 109-116.
U.S. Appl. No. 12/371,087, filed Feb. 13, 2009, first named inventor: K.T. Venkateswara Rao.
U.S. Appl. No. 60/855,889, filed Oct. 31, 2016; first named inventor: Steven L. Herbowy.
U.S. Appl. No. 61/052,059, filed May 9, 2008; first named inventor: Gwendolym A. Watanabe.
U.S. Appl. No. 61/052,059, filed May 9, 2008; first named inventor: Gwendolyn A. Watanabe.
U.S. Final Office Action dated Aug. 19, 2013, from U.S. Appl. No. 12/966,852.
U.S. Final Office Action dated Dec. 10, 2015, from U.S. Appl. No. 12/966,852.
U.S. Final Office Action dated Dec. 17, 2014, from U.S. Appl. No. 12/966,852.
U.S. Non-final Office Action dated Jun. 19, 2015, from U.S. Appl. No. 12/966,852.
U.S. Non-final Office Action dated Mar. 14, 2014, from U.S. Appl. No. 12/966,852.
U.S. Non-final Office Action dated Oct. 4, 2012, from U.S. Appl. No. 12/966,852.
US 5,824,035 A, 10/1998, Lauterjung (withdrawn)
William Tanski, Mark Fillinger. Outcomes of original and low-permeability Gore Excluder endoprosthesis for endovascular abdominal aortic aneurysm repair. Journal of Vascular Surgery, Feb. 2007. p. 243-249.
Written Opinion, including the search, of the International Searching Authority for Application No. PCT/US2012/021878, dated May 23, 2012, 9 pages.

Also Published As

Publication number Publication date
CN102946825A (en) 2013-02-27
JP6408198B2 (en) 2018-10-17
WO2011082040A1 (en) 2011-07-07
US20190231515A1 (en) 2019-08-01
EP2519191A1 (en) 2012-11-07
JP2013516232A (en) 2013-05-13
EP2519191A4 (en) 2016-03-02
EP2519191B1 (en) 2019-07-24
CN102946825B (en) 2016-08-10
US20110276078A1 (en) 2011-11-10

Similar Documents

Publication Publication Date Title
US11638638B2 (en) Filling structure for a graft system and methods of use
US20210369438A1 (en) Sealing apparatus and methods of use
US11957608B2 (en) Graft systems having filling structures supported by scaffolds and methods for their use
US11497597B2 (en) Modular stent graft systems and methods with inflatable fill structures
JP5070373B2 (en) Graft system having a filling structure supported by a framework and method of use thereof
US7530988B2 (en) Methods and systems for endovascular aneurysm treatment
CN102076282A (en) Docking apparatus and methods of use
US20100004728A1 (en) Graft endoframe having axially variable characteristics
US20040098096A1 (en) Endograft device to inhibit endoleak and migration
JP2024009911A (en) Systems and methods with stent and filling structure

Legal Events

Date Code Title Description
AS Assignment

Owner name: ENDOLOGIX, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RAO, K.T. VENKATESWARA;GANPATH, RAJ P.;LEE, AMY;AND OTHERS;SIGNING DATES FROM 20110627 TO 20120714;REEL/FRAME:048865/0586

Owner name: NELLIX, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RAO, K.T. VENKATESWARA;GANPATH, RAJ P.;LEE, AMY;AND OTHERS;SIGNING DATES FROM 20110627 TO 20120714;REEL/FRAME:048865/0586

Owner name: ENDOLOGIX, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NELLIX, INC.;REEL/FRAME:048865/0602

Effective date: 20120714

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: DEERFIELD PRIVATE DESIGN FUND IV, L.P., AS AGENT, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNORS:ENDOLOGIX, INC.;NELLIX, INC.;TRIVASCULAR, INC.;REEL/FRAME:049297/0155

Effective date: 20190528

Owner name: DEERFIELD PRIVATE DESIGN FUND IV, L.P., AS AGENT,

Free format text: SECURITY INTEREST;ASSIGNORS:ENDOLOGIX, INC.;NELLIX, INC.;TRIVASCULAR, INC.;REEL/FRAME:049297/0155

Effective date: 20190528

Owner name: DEERFIELD ELGX REVOLVER, LLC, AS AGENT, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNORS:ENDOLOGIX, INC.;NELLIX, INC.;TRIVASCULAR, INC.;REEL/FRAME:049297/0123

Effective date: 20190528

AS Assignment

Owner name: WILMINGTON TRUST, NATIONAL ASSOCIATION, MINNESOTA

Free format text: SECURITY INTEREST;ASSIGNOR:ENDOLOGIX, INC.;REEL/FRAME:052918/0530

Effective date: 20200224

AS Assignment

Owner name: DEERFIELD PRIVATE DESIGN FUND IV, L.P., NEW YORK

Free format text: SECURITY INTEREST;ASSIGNORS:ENDOLOGIX LLC (F/K/A ENDOLOGIX, INC.);NELLIX, INC.;TRIVASCULAR TECHNOLOGIES, INC.;AND OTHERS;REEL/FRAME:053971/0052

Effective date: 20201001

Owner name: ENDOLOGIX LLC, CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:ENDOLOGIX, INC.;REEL/FRAME:053971/0135

Effective date: 20201001

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

AS Assignment

Owner name: SILICON VALLEY BANK, CALIFORNIA

Free format text: SECURITY INTEREST;ASSIGNOR:ENDOLOGIX LLC;REEL/FRAME:055794/0911

Effective date: 20210330

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STCF Information on status: patent grant

Free format text: PATENTED CASE