US11638638B2 - Filling structure for a graft system and methods of use - Google Patents
Filling structure for a graft system and methods of use Download PDFInfo
- Publication number
- US11638638B2 US11638638B2 US16/382,118 US201916382118A US11638638B2 US 11638638 B2 US11638638 B2 US 11638638B2 US 201916382118 A US201916382118 A US 201916382118A US 11638638 B2 US11638638 B2 US 11638638B2
- Authority
- US
- United States
- Prior art keywords
- wall
- reinforcing sheet
- filling structure
- aneurysm
- filling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
- A61F2/07—Stent-grafts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
- A61F2/07—Stent-grafts
- A61F2002/075—Stent-grafts the stent being loosely attached to the graft material, e.g. by stitching
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
- A61F2/07—Stent-grafts
- A61F2002/077—Stent-grafts having means to fill the space between stent-graft and aneurysm wall, e.g. a sleeve
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0002—Two-dimensional shapes, e.g. cross-sections
- A61F2230/0004—Rounded shapes, e.g. with rounded corners
- A61F2230/0008—Rounded shapes, e.g. with rounded corners elliptical or oval
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0063—Three-dimensional shapes
- A61F2230/0067—Three-dimensional shapes conical
Definitions
- the present invention relates generally to medical systems and methods for treatment. More particularly, the present invention relates to apparatus and methods for treating aneurysms.
- Previous patent applications have described an approach to repairing an aneurysm by introducing a filling structure into the aneurysm, supporting the structure with a support structure, and filling the filling structure with a hardenable material that fills the aneurysm sac. Removing the support structure leaves a lumen for blood flow, and the hardenable material fills the sac and prevents blood pressure from enlarging it further.
- the filling structure experiences pulsatile pressure, and by design shields the aneurysm from most of this pressure.
- the aneurysm itself may change shape by reabsorption of thrombus between the filling structure and the artery wall, and shrinkage or remodeling of the artery wall itself. This may result in reduced pressure on the exterior of the filling structure. In some designs this may cause the inner lumen of the filling structure to grow through time-dependent elastic deformation or creep. It is desirable to prevent this change in the inner lumen as the aneurysm changes shape.
- Aneurysms can occur in a range of shapes and sizes depending on the individual anatomy of the affected artery, the length of time it took to detect the aneurysm, blood pressure, and other factors.
- structures designed to repair aneurysms by filling the aneurism sac must either be designed to be effective across a range of sac shapes and sizes, or they must be supplied in multiple stock sizes, or they must be custom-made for a specific anatomy.
- the structures may have a combination of the aforementioned properties.
- a promising class of intraluminal aneurysm repair devices employs a double walled filling structure to fill the aneurysm sac while maintaining a lumen for continued blood flow in the artery.
- the double walled filling structure may be chosen such that it is capable of expanding to at least the size of the sac in all parts of the aneurysm. This obviates the need to make a custom version of the device for each aneurysm, and instead allows the surgeon to choose among a limited number of stock sized devices.
- the filling structure is selected to be at least as large as the sac to be filled.
- Some embodiments may have an elastic outer wall that expands and conforms to the inner aneurysm wall, while other filling structures use a substantially inelastic outer wall that is thin and flexible so that as the filling structure is filled, the outer wall expands partially to completely fill the sac, and any remaining capacity takes the form of wrinkles or pleats in the outer wall of the filling structure.
- An advantage of the elastic outer wall is the potential absence of wrinkles, but a drawback is that an elastic outer wall will not conform exactly to abrupt changes in curvature of the sac.
- the filling structure and filling medium needs to be stiff enough that its internal lumen does not change shape as this happens. Discontinuities in the filling medium caused by wrinkles and pleats on the walls of the filling structure reduce the strength of the filled structure. It would be advantageous to have a filling structure that can be filled in such a way that no internal wrinkles remain in some of its parts. It would also be advantageous to have a filling structure that is strong enough to resist creep even in the absence of an uninterrupted fill, yet still be thin enough to be percutaneously deliverable through the vasculature, which typically requires a 14 Fr or less device.
- a filling medium with a chemistry that also adheres to walls of the filling structure during or after curing, so that the in-situ formed device can withstand the biomechanical loads and accommodate long-term remodeling of the aneurysm.
- This can be accomplished through additives thereby modifying the chemistry of the filling medium or modifying the chemistry or coating the inner layers of the filling structure so that filling medium adheres to the filling structure as the device forms in-situ.
- the device when filled with hardened filling material, conform as closely as possible to the shape of the aneurysm at its proximal and distal ends. It is also desirable to provide means by which the filling structure may be made to conform closely to the necks of the aneurysm, while being made of a thin, inelastic material. It is also desirable to resist creep deformation and remodeling caused by the pulsatile pressure of blood against the device.
- U.S. Patent Publication No. 2006/0025853 describes a double-walled filling structure for treating aortic and other aneurysms.
- Copending, commonly owned U.S. Patent Publication No. 2006/0212112 describes the use of liners and extenders to anchor and seal such double-walled filling structures within the aorta. The full disclosures of both these publications are incorporated herein by reference.
- PCT Publication No. WO 01/21108 describes expandable implants attached to a central graft for filling aortic aneurysms. See also U.S. Pat. Nos.
- a double-walled filling structure comprises a thin, flexible, non-porous and biocompatible outer material that prevents movement of fluids across its boundary and that is flexible enough to fill and conform to the irregular contours of the aneurysm wall.
- An inner lumen of the filling structure may be made of the same or a different material selected and oriented so as to have high resistance to circumferential creep and elastic deflection.
- the inner lumen may be reinforced by including a reinforcing member including fibers, wires, strips, or a sleeve oriented circumferentially so as to improve resistance to hoop stresses.
- the inner lumen may also be reinforced by the use of multiple layers of material.
- the inner lumen may be inserted into a tubular mesh or membrane of metal, polymer, or fibers in order to provide resistance against creep. If the inner lumen is tapered or contoured to provide a gradual change in diameter from one end to the other, the reinforcing lumen may also be tapered to match the lumen taper.
- the inner lumen of the filling structure is constructed of a material with thickness and/or composition chosen to be capable of withstanding the maximum pulsatile pressure exerted by blood flow, without undergoing creep or significant elastic deformation. It is generally desirable to minimize thickness of the filling structure, so a variation on this aspect is to employ materials with anisotropic stress properties oriented and processed so as to have greatest strength in the circumferential direction.
- a material with anisotropic stress properties oriented and processed so as to have greatest strength in the circumferential direction.
- An example of such a material is expanded polytetrafluoroethylene, or ePTFE, which is typically stretched in one direction and may also be calendared to reduce its thickness and decrease its porosity.
- the ePTFE sheet exhibits anisotropic modulus with greatest value in the pre-stress axis, and also exhibits a strain hardening property in which the modulus increases with deformation along the axis of pre-stress.
- a third aspect of the present invention involves attaching a support structure to the inside of the inner lumen of the filling structure.
- the internal support frame (endoframe) may be made of a biocompatible superelastic material such as Nickel-Titanium alloy (for example Nitinol), and may be used to support the inner lumen of the filling structure while it is being filled with hardenable material.
- the inner lumen of the filling structure may be contoured so that it matches the diameter of the endoframe at every position along its length to avoid wrinkles.
- the frame provides additional creep resistance to the lumen. This may be involve suturing, heat staking, solvent welding, or other methods well known in the art for attaching dissimilar materials to each other.
- the internal reinforcing elements may be made from balloon-expandable materials like stainless steel, cobalt-chromium alloys, etc.
- Ring shaped stiffeners may be sintered to either the outside or the inside of the inner lumen of the filling structure to provide support.
- the frame may comprise a set of such rings.
- the rings may be made of a biocompatible metal or polymer.
- the rings may be shaped such that they are compressible and readily expandable in situ, for example by forming each ring from an undulating or zigzag pattern.
- a reinforcing tube surrounds an inner lumen of a filling structure to provide additional reinforcement.
- This tube may be made of the same material as the inner lumen, or it may differ. Because the reinforcing tube does not contact blood or tissue, its biocompatibility requirements are lessened.
- the reinforcing tube may be of a continuous material, or it may be a mesh attached to the inner lumen by one of several methods well known in the art, including for example suturing, heat staking, solvent welding, ultrasonic welding, or adhesives.
- the tube material is chosen to have strength in the circumferential direction that, in combination with the strength provided by the inner lumen, resists creep caused by the peaks in blood pressure.
- hoop stress pressure*vessel radius/wall thickness.
- mean blood pressure 100 mmHg (healthy 80/120 mm Hg)
- radius R 7 mm (2-14 mm rounds to treat a 26 mm aorta)
- wall thickness of 150 microns the typical stresses are about 600 MPa.
- Maximum stress is about 1100 MPa, and minimum hoop stress is estimated to be about 300 MPa.
- the filling medium may be modified through additives/covalent bonding so that it adheres to the walls of the filling structure and keeps the device intact and accommodates remodeling.
- the inner walls of the filling structure may be modified through additives, coatings and covalent bonding so that the filling medium adheres to the filling structure and maintains the shape of the device.
- the filling structure includes two or more coaxial compartments, the inner of which is a hollow cylinder surrounding the inner lumen, and the outer of which is shaped to fill the aneurysm and conform to the irregular contours of the aneurysm wall.
- the inner compartment may be in fluid communication with the outer compartment.
- the inner and outer compartments may have separate fill ports, or a valve or flap may be provided to direct a flow of filling material first to one region, and then to the other region.
- the filling material is introduced to the inner region, and may flow to the outer region when the inner region fills, thereby providing a continuous layer of hardening medium surrounding the blood lumens of the filling structure.
- the inner compartment is sized such that it may be fully expanded without wrinkles while the outer compartment is sized to fill a wide range of aneurysm geometries that may be encountered and therefore may be of an elastic material, or of a flexible, substantially inelastic material such as PTFE or ePTFE that is large enough to fill a range of aneurysm cavities.
- PTFE substantially inelastic material
- ePTFE substantially inelastic material
- the filling medium delivered to the inner region may be selected to have material properties that enhance its resistance to pulsatile pressure or creep.
- the inner region material may be a Polyethylene Glycol (PEG)-based Hydrogel with a higher bulk modulus than the material delivered to the outer region.
- PEG Polyethylene Glycol
- a harder material in the inner compartment dampens pulsatile forces and a softer material in the outer compartment allows ease of shaping and remodeling.
- the material targeted to the outer region may for example be selected to have lower viscosity before hardening so it fills the sac more evenly, a different hardening time, or the ability to bond with the wall of the filling structure.
- This may be achieved for example through chemical/covalent bonding by adding reactive functional groups to either the hydrogel or the inner wall of the filling structure or both.
- Hydrogen bonding may be preferentially used to create attachment of hydrogel to the inner surface of the filling structure. This may entail imparting donor hydrogen atoms and acceptor entity atoms in either the hydrogel or the wall of the filling structure or both.
- Physical adhesive/cohesive forces may be used to attach hydrogel to the inner surface at various pre-determined locations on the interface.
- the inner surface of the filling structure's outer wall may be modified by surface derivitization or by lamination to allow the filling material to bonds to it to improve overall strength.
- the filling structure's outer surface is coated with substances that promote the growth of epithelium on the outer surface, thus creating an enclosure around the filling structure that serves to maintain containment pressure over time.
- This approach may be combined with other approaches described herein to add strength.
- a method for treating an aneurysm comprises providing a double-walled filling structure having an outer wall and an inner wall, and positioning the double-walled filling structure adjacent the aneurysm.
- the filling structure is filled with a hardenable fluid filling medium so that the outer wall conforms to an inside surface of the aneurysm and the inner wall forms a generally tubular lumen to permit blood flow therethrough.
- the lumen is constrained from creeping or elastically expanding due to the blood flow through the lumen.
- the constraining step may comprise providing a reinforcing layer disposed at least partially around the tubular lumen, or filling a compartment disposed at least partially around the tubular lumen with the hardenable fluid filling medium.
- FIG. 1 illustrates the anatomy of an infrarenal abdominal aortic aneurysm.
- FIG. 2 illustrates a filling structure comprising a multi-layer reinforced inner lumen.
- FIG. 3 illustrates a filling structure comprising an inner lumen with tapered ends.
- FIG. 4 illustrates a filling structure comprising multiple compartments.
- FIGS. 5 A- 5 D illustrate an exemplary method of deploying a filling structure in an aneurysm.
- the anatomy of an infrarenal abdominal aortic aneurysm comprises the thoracic aorta (TA) having renal arteries (RA) at its distal end above the iliac arteries (IA).
- the abdominal aortic aneurysm (AAA) typically forms between the renal arteries (RA) and the iliac arteries (IA) and may have regions of mural thrombus (T) over portions of its inner surface (S).
- FIG. 2 illustrates a filling structure 201 embodying aspects of the invention.
- Filling structure 201 comprises central lumen 204 defined by luminal wall 202 , outer wall 209 , and reinforcing sleeve 203 .
- Fill tube 208 is attached to a cannula during placement of the device, and allows hardenable filling material to enter the interior volume of the filling structure, then seals itself to prevent backflow of filling material when the cannula is removed.
- Fill tube 208 may comprise a tear line 210 created by a partial perforation or notched edges. The tear line allows part or the entire exterior portion of the fill tube to be removed when the fill cannula is removed so that none of the fill tube protrudes beyond the filling structure once the filling structure is placed. This prevents contact between the fill tube and the artery wall, reducing the risk of thrombosis.
- reinforcing sleeve 203 may be laminated, welded, sewn, or adhesively attached to central lumen 204 , or may be a separate sleeve that is placed over central lumen 204 during the assembly process. Both reinforcing sleeve 203 and central lumen 204 may vary in diameter in order to conform more closely to the natural diameter of the target artery, particularly at the ends. This may afford superior sealing by matching the diameter of the filling structure more closely to the diameter of the neck of the aneurysm.
- a filling structure 301 may be constructed such that inner lumen 303 varies in diameter over the length of the filling structure in order to increase filled volume 305 and improve sealing against one or more necks of the aneurysm.
- the filling structure 301 has an exterior wall 302 and a lumen 303 .
- the lumen 303 has a larger diameter 304 at each end than at a point therebetween, and may comprise a cylindrical middle portion 303 a with one or more conical end portions 303 b .
- the slope of the shoulder of conical end portions 303 b may be chosen to control the shape of filling structure 301 after it is filled.
- Choosing a maximum diameter of conical section 303 b that is close to the outside diameter of the filling structure results in a more circular cross-section, while a smaller maximum diameter relative to the outside diameter of filling structure 301 results in an oval or eye-shaped cross-section.
- Other taper profiles for the inner lumen may be selected; for example it is possible to use a parabolic or hyperbolic profile to provide a continuous transition from one inner diameter to another, which may reduce turbulent flow in the lumen. Note that the foregoing description is for exemplary purposes and is not meant to exclude other diameter profiles.
- FIG. 4 illustrates a filling structure 401 comprising at least two filling compartments.
- Endoframe 402 may be used to support the filling structure while it is being filled, maintaining a diameter of interior lumen 403 .
- Inner compartment 404 may be connected directly to a fill valve 407 such that filling material enters compartment 404 forming an inner polymer jacket 405 before flowing to outer compartment 406 .
- the two compartments may be in fluid communication with each other, optionally with a restriction between the two compartments such that the viscosity of the filling medium inflates the inner compartment fully before filling the outer compartment.
- U.S. patent application Ser. No. 12/429,474 discloses various delivery system configurations and methods for delivering and deploying a filling structure that may be used for any of the filling structures disclosed herein, the entire contents of which are incorporated herein by reference.
- inner compartment 404 may be separated from outer compartment 406 and each compartment may have a separate fill valve similar to fill valve 407 .
- valve 407 communicates with the inner compartment and another fill valve (not shown) communicates with the outer compartment.
- the inner compartment-filling medium may be selected for a fast cure time to allow rapid removal of the endoframe 402 , or for a larger bulk modulus to provide enhanced resistance to pulsatile pressure.
- the outer compartment-filling medium may for example be selected for enhanced adhesion to an inner wall of filling structure 401 .
- Separate fill valves also allow the compartments to be filled in a controlled order.
- the inner compartment is filled before the outer compartment to allow the inner compartment to be fully filled, providing a solid structure for resisting pulsatile pressure.
- the outer compartment is then filled sufficiently to fill the aneurysm sac without overloading the artery wall.
- Furled filling structure 501 is introduced to the aneurysm on guidewire 503 and cannula 502 .
- Sheath 504 is withdrawn to release filling structure 501 .
- Cannula 502 contains guidewire 503 as well as one or more optional lumens (not illustrated) for filling the filling structure compartments, and possibly for introducing an endoframe and expansion balloon, as well as lines permitting detachment of the filling structure and other components from the cannula for deployment.
- the unfurled filling structure may be unfurled completely by filling with a solution containing contrast agent, saline, combinations thereof, as well as other fluids. This is advantageous since the walls of the filling structure may stick against adjacent walls, especially after terminal sterilization and storage.
- the volume of solution required to unfurl may be used as an estimate of the volume of hydrogel mix to introduce in order to fill the aneurysm sac completely without overpressure on the wall.
- endoframe 505 may be introduced into the inner lumen of filling structure 501 to support the inner lumen during the hydrogel filling step.
- Endoframe 505 may be self-expanding, or may be expanded by an expandable member such as a balloon (not illustrated) introduced via cannula 502 .
- Endoframe 505 may be withdrawn after the filling step, or may be left in place indefinitely.
- uncured liquid hydrogel is introduced through cannula 502 into inner partition 506 of filling structure 501 .
- inner partition 506 may be in restricted fluid communication with outer partition 507 of filling structure 501 .
- hydrogel flows to outer partition 507 via a passageway.
- the hydrogel's viscosity in combination with the cross-section area of the passageway causes inner partition 506 to stay inflated while outer partition 507 fills with the remaining volume of hydrogel until filling structure 501 completely fills the aneurysm sac.
- inner partition 506 and outer partition 507 may be filled by independent filling tubes (not illustrated) in cannula 502 .
- inner partition 506 is filled until a measured pressure of the hydrogel reaches a threshold pressure, or until a dispensed volume of hydrogel reaches a threshold volume indicating complete filling of inner partition 506 .
- outer partition 507 is filled with the remaining volume of hydrogel as estimated in the pre-fill step described previously.
- the filling structure may comprise more than two compartments, in which case the filling process continues until all compartments are properly and completely filled.
- this process may be conducted on two filling structures simultaneously, with one filling structure inserted through each iliac artery.
- Filling of the filling structure may be performed with the endoframe expanded fully or partially, or the endoframe may be unexpanded. Additionally, the expandable member may be partially or fully expanded, or unexpanded during the filling procedure. Filling may also be visualized using fluoroscopy, ultrasound, or other methods in order to ensure that the filling structure properly expands and fills the aneurismal space.
Landscapes
- Health & Medical Sciences (AREA)
- Gastroenterology & Hepatology (AREA)
- Pulmonology (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Prostheses (AREA)
Abstract
Description
hoop stress=pressure*vessel radius/wall thickness.
Using typical values for mean blood pressure=100 mmHg (healthy 80/120 mm Hg), radius R=7 mm (2-14 mm rounds to treat a 26 mm aorta), and assuming wall thickness of 150 microns, the typical stresses are about 600 MPa. Maximum stress is about 1100 MPa, and minimum hoop stress is estimated to be about 300 MPa.
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/382,118 US11638638B2 (en) | 2009-12-30 | 2019-04-11 | Filling structure for a graft system and methods of use |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US29127909P | 2009-12-30 | 2009-12-30 | |
US12/966,852 US20110276078A1 (en) | 2009-12-30 | 2010-12-13 | Filling structure for a graft system and methods of use |
US16/382,118 US11638638B2 (en) | 2009-12-30 | 2019-04-11 | Filling structure for a graft system and methods of use |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/966,852 Continuation US20110276078A1 (en) | 2009-12-30 | 2010-12-13 | Filling structure for a graft system and methods of use |
Publications (2)
Publication Number | Publication Date |
---|---|
US20190231515A1 US20190231515A1 (en) | 2019-08-01 |
US11638638B2 true US11638638B2 (en) | 2023-05-02 |
Family
ID=44226769
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/966,852 Abandoned US20110276078A1 (en) | 2009-12-30 | 2010-12-13 | Filling structure for a graft system and methods of use |
US16/382,118 Active 2031-12-03 US11638638B2 (en) | 2009-12-30 | 2019-04-11 | Filling structure for a graft system and methods of use |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/966,852 Abandoned US20110276078A1 (en) | 2009-12-30 | 2010-12-13 | Filling structure for a graft system and methods of use |
Country Status (5)
Country | Link |
---|---|
US (2) | US20110276078A1 (en) |
EP (1) | EP2519191B1 (en) |
JP (1) | JP6408198B2 (en) |
CN (1) | CN102946825B (en) |
WO (1) | WO2011082040A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140194973A1 (en) | 2013-01-10 | 2014-07-10 | Trivascular, Inc. | Sac liner for aneurysm repair |
JP7085349B2 (en) * | 2014-12-31 | 2022-06-16 | エンドロジックス エルエルシー | Dual inflatable arterial prosthesis |
US20160287371A1 (en) * | 2015-04-02 | 2016-10-06 | Boston Scientific Scimed, Inc. | Devices and methods for dilating a lumen of a body |
JP7053493B2 (en) * | 2016-05-13 | 2022-04-12 | エンドーロジックス リミテッド ライアビリティ カンパニー | Systems and methods with graft body, inflatable filling channel, and filling structure |
CN107693063B (en) * | 2017-09-07 | 2024-03-12 | 杭州市第一人民医院 | Surgical wound retractor |
EP3595581A4 (en) | 2017-12-21 | 2021-01-13 | The Texas A&M University System | Vascular prosthesis for leak prevention during endovascular aneurysm repair |
US20240067411A1 (en) * | 2022-08-31 | 2024-02-29 | Berry Global, Inc. | Storage bag for agricultural products |
Citations (345)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4130904A (en) * | 1977-06-06 | 1978-12-26 | Thermo Electron Corporation | Prosthetic blood conduit |
US4565733A (en) | 1983-05-02 | 1986-01-21 | Fuji Photo Film Co., Ltd. | Packaging material for photosensitive materials |
US4638803A (en) | 1982-09-30 | 1987-01-27 | Rand Robert W | Medical apparatus for inducing scar tissue formation in a body |
US4641653A (en) | 1978-06-02 | 1987-02-10 | Rockey Arthur G | Medical sleeve |
US4704126A (en) | 1985-04-15 | 1987-11-03 | Richards Medical Company | Chemical polishing process for titanium and titanium alloy surgical implants |
US4710192A (en) | 1985-12-30 | 1987-12-01 | Liotta Domingo S | Diaphragm and method for occlusion of the descending thoracic aorta |
US4728328A (en) | 1984-10-19 | 1988-03-01 | Research Corporation | Cuffed tubular organic prostheses |
US4731073A (en) | 1981-02-13 | 1988-03-15 | Thoratec Laboratories Corporation | Arterial graft prosthesis |
US4733665A (en) | 1985-11-07 | 1988-03-29 | Expandable Grafts Partnership | Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft |
US4743258A (en) | 1984-04-27 | 1988-05-10 | Japan Medical Supply Co., Ltd. | Polymer materials for vascular prostheses |
US4763654A (en) | 1986-09-10 | 1988-08-16 | Jang G David | Tandem independently inflatable/deflatable multiple diameter balloon angioplasty catheter systems and method of use |
US4856516A (en) | 1989-01-09 | 1989-08-15 | Cordis Corporation | Endovascular stent apparatus and method |
US4858264A (en) | 1986-09-02 | 1989-08-22 | The United States Of America As Represented By The Secretary Of The Air Force | Ultrasonic assisted protective coating removal |
US4892544A (en) | 1988-03-07 | 1990-01-09 | Dow Corning Wright Corporation | Methods for forming hollow, porous-surfaced elastomeric bodies |
US4936057A (en) | 1985-06-21 | 1990-06-26 | Extrude Hone Corporation | Method of finish machining the surface of irregularly shaped fluid passages |
US4976692A (en) | 1990-09-13 | 1990-12-11 | Travenol Laboratories (Israel) Ltd. | Catheter particularly useful for inducing labor and/or for the application of a pharmaceutical substance to the cervix of the uterus |
US5002532A (en) | 1987-01-06 | 1991-03-26 | Advanced Cardiovascular Systems, Inc. | Tandem balloon dilatation catheter |
DE4010975A1 (en) | 1990-03-28 | 1991-10-02 | Guenter Dr Siebert | Nasal membrane pressure instrument - has controller between pressure source and inflatable balloon |
US5074845A (en) | 1989-07-18 | 1991-12-24 | Baxter International Inc. | Catheter with heat-fused balloon with waist |
US5104404A (en) | 1989-10-02 | 1992-04-14 | Medtronic, Inc. | Articulated stent |
US5108417A (en) | 1990-09-14 | 1992-04-28 | Interface Biomedical Laboratories Corp. | Anti-turbulent, anti-thrombogenic intravascular stent |
US5122154A (en) | 1990-08-15 | 1992-06-16 | Rhodes Valentine J | Endovascular bypass graft |
US5133732A (en) | 1987-10-19 | 1992-07-28 | Medtronic, Inc. | Intravascular stent |
US5139480A (en) | 1990-08-22 | 1992-08-18 | Biotech Laboratories, Inc. | Necking stents |
US5156620A (en) | 1991-02-04 | 1992-10-20 | Pigott John P | Intraluminal graft/stent and balloon catheter for insertion thereof |
JPH04322665A (en) | 1991-02-05 | 1992-11-12 | Kanji Inoue | Apparatus for introucing medium into human body |
US5195984A (en) | 1988-10-04 | 1993-03-23 | Expandable Grafts Partnership | Expandable intraluminal graft |
US5199226A (en) | 1990-01-26 | 1993-04-06 | E. B. Thomas | Method and apparatus for removing outer coatings from pipe |
US5217484A (en) | 1991-06-07 | 1993-06-08 | Marks Michael P | Retractable-wire catheter device and method |
US5222970A (en) | 1991-09-06 | 1993-06-29 | William A. Cook Australia Pty. Ltd. | Method of and system for mounting a vascular occlusion balloon on a delivery catheter |
US5234437A (en) | 1991-12-12 | 1993-08-10 | Target Therapeutics, Inc. | Detachable pusher-vasoocclusion coil assembly with threaded coupling |
US5236447A (en) * | 1990-06-29 | 1993-08-17 | Nissho Corporation | Artificial tubular organ |
US5242399A (en) | 1990-04-25 | 1993-09-07 | Advanced Cardiovascular Systems, Inc. | Method and system for stent delivery |
US5250071A (en) | 1992-09-22 | 1993-10-05 | Target Therapeutics, Inc. | Detachable embolic coil assembly using interlocking clasps and method of use |
US5261916A (en) | 1991-12-12 | 1993-11-16 | Target Therapeutics | Detachable pusher-vasoocclusive coil assembly with interlocking ball and keyway coupling |
US5263964A (en) | 1992-05-06 | 1993-11-23 | Coil Partners Ltd. | Coaxial traction detachment apparatus and method |
US5292331A (en) | 1989-08-24 | 1994-03-08 | Applied Vascular Engineering, Inc. | Endovascular support device |
US5314444A (en) | 1987-03-13 | 1994-05-24 | Cook Incorporated | Endovascular stent and delivery system |
US5330528A (en) * | 1989-12-01 | 1994-07-19 | British Technology Group Limited | Vascular surgical devices |
US5330520A (en) | 1986-05-15 | 1994-07-19 | Telectronics Pacing Systems, Inc. | Implantable electrode and sensor lead apparatus |
US5334217A (en) | 1992-01-21 | 1994-08-02 | Regents Of The University Of Minnesota | Septal defect closure device |
US5350397A (en) | 1992-11-13 | 1994-09-27 | Target Therapeutics, Inc. | Axially detachable embolic coil assembly |
US5352199A (en) | 1993-05-28 | 1994-10-04 | Numed, Inc. | Balloon catheter |
US5375612A (en) | 1992-04-07 | 1994-12-27 | B. Braun Celsa | Possibly absorbable blood filter |
US5383892A (en) | 1991-11-08 | 1995-01-24 | Meadox France | Stent for transluminal implantation |
US5421955A (en) | 1991-10-28 | 1995-06-06 | Advanced Cardiovascular Systems, Inc. | Expandable stents and method for making same |
US5423849A (en) | 1993-01-15 | 1995-06-13 | Target Therapeutics, Inc. | Vasoocclusion device containing radiopaque fibers |
US5425744A (en) | 1991-11-05 | 1995-06-20 | C. R. Bard, Inc. | Occluder for repair of cardiac and vascular defects |
US5425739A (en) | 1989-03-09 | 1995-06-20 | Avatar Design And Development, Inc. | Anastomosis stent and stent selection system |
US5441510A (en) | 1993-09-01 | 1995-08-15 | Technology Development Center | Bi-axial cutter apparatus for catheter |
US5441515A (en) | 1993-04-23 | 1995-08-15 | Advanced Cardiovascular Systems, Inc. | Ratcheting stent |
US5443496A (en) | 1992-03-19 | 1995-08-22 | Medtronic, Inc. | Intravascular radially expandable stent |
US5443477A (en) | 1994-02-10 | 1995-08-22 | Stentco, Inc. | Apparatus and method for deployment of radially expandable stents by a mechanical linkage |
US5449373A (en) | 1994-03-17 | 1995-09-12 | Medinol Ltd. | Articulated stent |
US5485667A (en) | 1994-03-03 | 1996-01-23 | Kleshinski; Stephen J. | Method for attaching a marker to a medical instrument |
US5496277A (en) | 1990-04-12 | 1996-03-05 | Schneider (Usa) Inc. | Radially expandable body implantable device |
US5507769A (en) | 1994-10-18 | 1996-04-16 | Stentco, Inc. | Method and apparatus for forming an endoluminal bifurcated graft |
US5507767A (en) | 1992-01-15 | 1996-04-16 | Cook Incorporated | Spiral stent |
US5507771A (en) | 1992-06-15 | 1996-04-16 | Cook Incorporated | Stent assembly |
US5514115A (en) | 1993-07-07 | 1996-05-07 | Device For Vascular Intervention, Inc. | Flexible housing for intracorporeal use |
US5522882A (en) | 1994-10-21 | 1996-06-04 | Impra, Inc. | Method and apparatus for balloon expandable stent-graft delivery |
US5530528A (en) | 1992-09-28 | 1996-06-25 | Fujitsu Limited | Image forming apparatus having contact type, one-component developing unit |
US5531741A (en) | 1994-08-18 | 1996-07-02 | Barbacci; Josephine A. | Illuminated stents |
US5534024A (en) | 1994-11-04 | 1996-07-09 | Aeroquip Corporation | Intraluminal stenting graft |
US5545210A (en) | 1994-09-22 | 1996-08-13 | Advanced Coronary Technology, Inc. | Method of implanting a permanent shape memory alloy stent |
US5549662A (en) | 1994-11-07 | 1996-08-27 | Scimed Life Systems, Inc. | Expandable stent using sliding members |
US5549663A (en) | 1994-03-09 | 1996-08-27 | Cordis Corporation | Endoprosthesis having graft member and exposed welded end junctions, method and procedure |
US5554181A (en) | 1994-05-04 | 1996-09-10 | Regents Of The University Of Minnesota | Stent |
US5562728A (en) | 1983-12-09 | 1996-10-08 | Endovascular Tech Inc | Endovascular grafting apparatus, system and method and devices for use therewith |
US5562641A (en) | 1993-05-28 | 1996-10-08 | A Bromberg & Co. Ltd. | Two way shape memory alloy medical stent |
US5562698A (en) | 1994-03-09 | 1996-10-08 | Cook Incorporated | Intravascular treatment system |
US5569295A (en) | 1993-12-28 | 1996-10-29 | Advanced Cardiovascular Systems, Inc. | Expandable stents and method for making same |
US5578149A (en) | 1995-05-31 | 1996-11-26 | Global Therapeutics, Inc. | Radially expandable stent |
US5578074A (en) | 1994-12-22 | 1996-11-26 | Target Therapeutics, Inc. | Implant delivery method and assembly |
US5591228A (en) | 1995-05-09 | 1997-01-07 | Edoga; John K. | Methods for treating abdominal aortic aneurysms |
US5591223A (en) | 1992-11-23 | 1997-01-07 | Children's Medical Center Corporation | Re-expandable endoprosthesis |
US5591230A (en) | 1994-09-07 | 1997-01-07 | Global Therapeutics, Inc. | Radially expandable stent |
US5591195A (en) | 1995-10-30 | 1997-01-07 | Taheri; Syde | Apparatus and method for engrafting a blood vessel |
US5591226A (en) | 1995-01-23 | 1997-01-07 | Schneider (Usa) Inc. | Percutaneous stent-graft and method for delivery thereof |
US5593417A (en) | 1995-11-27 | 1997-01-14 | Rhodes; Valentine J. | Intravascular stent with secure mounting means |
US5601600A (en) | 1995-09-08 | 1997-02-11 | Conceptus, Inc. | Endoluminal coil delivery system having a mechanical release mechanism |
US5605530A (en) | 1995-03-23 | 1997-02-25 | Fischell; Robert E. | System for safe implantation of radioisotope stents |
US5607445A (en) | 1992-06-18 | 1997-03-04 | American Biomed, Inc. | Stent for supporting a blood vessel |
US5607442A (en) | 1995-11-13 | 1997-03-04 | Isostent, Inc. | Stent with improved radiopacity and appearance characteristics |
US5609605A (en) | 1994-08-25 | 1997-03-11 | Ethicon, Inc. | Combination arterial stent |
US5617878A (en) | 1996-05-31 | 1997-04-08 | Taheri; Syde A. | Stent and method for treatment of aortic occlusive disease |
US5624411A (en) | 1993-04-26 | 1997-04-29 | Medtronic, Inc. | Intravascular stent and method |
US5630840A (en) | 1993-01-19 | 1997-05-20 | Schneider (Usa) Inc | Clad composite stent |
WO1997017912A1 (en) | 1995-11-13 | 1997-05-22 | Corvita Corporation | Expandable supportive bifurcated endoluminal grafts |
US5632762A (en) | 1995-11-09 | 1997-05-27 | Hemodynamics, Inc. | Ostial stent balloon |
US5632760A (en) | 1994-10-20 | 1997-05-27 | Cordis Corporation | Balloon catheter for stent implantation |
US5632771A (en) | 1993-07-23 | 1997-05-27 | Cook Incorporated | Flexible stent having a pattern formed from a sheet of material |
US5632763A (en) | 1995-01-19 | 1997-05-27 | Cordis Corporation | Bifurcated stent and method for implanting same |
US5634941A (en) | 1992-08-18 | 1997-06-03 | Ultrasonic Sensing And Monitoring Systems, Inc. | Vascular graft bypass apparatus |
WO1997019653A1 (en) | 1995-11-27 | 1997-06-05 | Rhodes Valentine J | Endovascular prosthesis with improved sealing means for aneurysmal arterial disease and method of use |
US5636641A (en) | 1994-07-25 | 1997-06-10 | Advanced Cardiovascular Systems, Inc. | High strength member for intracorporeal use |
USD380266S (en) | 1994-12-30 | 1997-06-24 | Cook Incorporated | Implantable, actively expandable stent |
USD380831S (en) | 1992-08-06 | 1997-07-08 | William Cook Europe A/S | Implantable self-expanding stent |
US5662614A (en) | 1995-05-09 | 1997-09-02 | Edoga; John K. | Balloon expandable universal access sheath |
US5674241A (en) | 1995-02-22 | 1997-10-07 | Menlo Care, Inc. | Covered expanding mesh stent |
US5676697A (en) | 1996-07-29 | 1997-10-14 | Cardiovascular Dynamics, Inc. | Two-piece, bifurcated intraluminal graft for repair of aneurysm |
US5683449A (en) | 1995-02-24 | 1997-11-04 | Marcade; Jean Paul | Modular bifurcated intraluminal grafts and methods for delivering and assembling same |
US5690643A (en) | 1996-02-20 | 1997-11-25 | Leocor, Incorporated | Stent delivery system |
US5693088A (en) | 1993-11-08 | 1997-12-02 | Lazarus; Harrison M. | Intraluminal vascular graft |
US5693038A (en) | 1993-09-30 | 1997-12-02 | Japan Absorbent Technology Institute | Sanitary article with improved fitness |
US5693067A (en) | 1992-09-02 | 1997-12-02 | Board Of Regents, The University Of Texas System | Intravascular device |
US5697971A (en) | 1996-06-11 | 1997-12-16 | Fischell; Robert E. | Multi-cell stent with cells having differing characteristics |
US5709707A (en) | 1995-10-30 | 1998-01-20 | Children's Medical Center Corporation | Self-centering umbrella-type septal closure device |
US5718713A (en) | 1997-04-10 | 1998-02-17 | Global Therapeutics, Inc. | Surgical stent having a streamlined contour |
CN1174016A (en) | 1996-05-03 | 1998-02-25 | 族利控股有限公司 | Endovascular device for protection of aneurysm |
US5723004A (en) | 1993-10-21 | 1998-03-03 | Corvita Corporation | Expandable supportive endoluminal grafts |
US5725572A (en) | 1994-04-25 | 1998-03-10 | Advanced Cardiovascular Systems, Inc. | Radiopaque stent |
US5725568A (en) | 1995-06-27 | 1998-03-10 | Scimed Life Systems, Inc. | Method and device for recanalizing and grafting arteries |
US5728131A (en) | 1995-06-12 | 1998-03-17 | Endotex Interventional Systems, Inc. | Coupling device and method of use |
US5728068A (en) | 1994-06-14 | 1998-03-17 | Cordis Corporation | Multi-purpose balloon catheter |
US5733303A (en) | 1994-03-17 | 1998-03-31 | Medinol Ltd. | Flexible expandable stent |
US5735892A (en) | 1993-08-18 | 1998-04-07 | W. L. Gore & Associates, Inc. | Intraluminal stent graft |
US5741333A (en) | 1995-04-12 | 1998-04-21 | Corvita Corporation | Self-expanding stent for a medical device to be introduced into a cavity of a body |
US5741327A (en) | 1997-05-06 | 1998-04-21 | Global Therapeutics, Inc. | Surgical stent featuring radiopaque markers |
US5746691A (en) | 1997-06-06 | 1998-05-05 | Global Therapeutics, Inc. | Method for polishing surgical stents |
US5755778A (en) | 1996-10-16 | 1998-05-26 | Nitinol Medical Technologies, Inc. | Anastomosis device |
US5755769A (en) | 1992-03-12 | 1998-05-26 | Laboratoire Perouse Implant | Expansible endoprosthesis for a human or animal tubular organ, and fitting tool for use thereof |
US5755773A (en) | 1996-06-04 | 1998-05-26 | Medtronic, Inc. | Endoluminal prosthetic bifurcation shunt |
US5766151A (en) | 1991-07-16 | 1998-06-16 | Heartport, Inc. | Endovascular system for arresting the heart |
US5769882A (en) | 1995-09-08 | 1998-06-23 | Medtronic, Inc. | Methods and apparatus for conformably sealing prostheses within body lumens |
US5776161A (en) | 1995-10-16 | 1998-07-07 | Instent, Inc. | Medical stents, apparatus and method for making same |
US5782907A (en) | 1995-07-13 | 1998-07-21 | Devices For Vascular Intervention, Inc. | Involuted spring stent and graft assembly and method of use |
US5785679A (en) | 1995-07-19 | 1998-07-28 | Endotex Interventional Systems, Inc. | Methods and apparatus for treating aneurysms and arterio-venous fistulas |
US5788626A (en) | 1995-11-21 | 1998-08-04 | Schneider (Usa) Inc | Method of making a stent-graft covered with expanded polytetrafluoroethylene |
US5797953A (en) | 1994-03-18 | 1998-08-25 | Cook Incorporated | Helical embolization coil |
US5800514A (en) | 1996-05-24 | 1998-09-01 | Meadox Medicals, Inc. | Shaped woven tubular soft-tissue prostheses and methods of manufacturing |
US5800525A (en) | 1997-06-04 | 1998-09-01 | Vascular Science, Inc. | Blood filter |
US5800512A (en) | 1996-01-22 | 1998-09-01 | Meadox Medicals, Inc. | PTFE vascular graft |
US5800393A (en) | 1997-03-07 | 1998-09-01 | Sahota; Harvinder | Wire perfusion catheter |
US5807404A (en) | 1996-09-19 | 1998-09-15 | Medinol Ltd. | Stent with variable features to optimize support and method of making such stent |
US5810872A (en) | 1997-03-14 | 1998-09-22 | Kanesaka; Nozomu | Flexible stent |
US5824056A (en) | 1994-05-16 | 1998-10-20 | Medtronic, Inc. | Implantable medical device formed from a refractory metal having a thin coating disposed thereon |
US5824054A (en) | 1997-03-18 | 1998-10-20 | Endotex Interventional Systems, Inc. | Coiled sheet graft stent and methods of making and use |
US5824049A (en) | 1995-06-07 | 1998-10-20 | Med Institute, Inc. | Coated implantable medical device |
US5824037A (en) | 1995-10-03 | 1998-10-20 | Medtronic, Inc. | Modular intraluminal prostheses construction and methods |
US5824040A (en) | 1995-12-01 | 1998-10-20 | Medtronic, Inc. | Endoluminal prostheses and therapies for highly variable body lumens |
US5827321A (en) | 1997-02-07 | 1998-10-27 | Cornerstone Devices, Inc. | Non-Foreshortening intraluminal prosthesis |
US5836966A (en) | 1997-05-22 | 1998-11-17 | Scimed Life Systems, Inc. | Variable expansion force stent |
US5843175A (en) | 1997-06-13 | 1998-12-01 | Global Therapeutics, Inc. | Enhanced flexibility surgical stent |
US5843160A (en) | 1996-04-01 | 1998-12-01 | Rhodes; Valentine J. | Prostheses for aneurysmal and/or occlusive disease at a bifurcation in a vessel, duct, or lumen |
WO1998053761A1 (en) | 1997-05-26 | 1998-12-03 | William A. Cook Australia Pty. Ltd. | A prosthesis and a method and means of deploying a prosthesis |
US5846246A (en) | 1994-10-21 | 1998-12-08 | Cordis Corporation | Dual-balloon rapid-exchange stent delivery catheter with guidewire channel |
US5846261A (en) | 1994-07-08 | 1998-12-08 | Aga Medical Corp. | Percutaneous catheter directed occlusion devices |
US5849037A (en) | 1995-04-12 | 1998-12-15 | Corvita Corporation | Self-expanding stent for a medical device to be introduced into a cavity of a body, and method for its preparation |
WO1999000073A1 (en) | 1997-06-28 | 1999-01-07 | Anson Medical Limited | Expandable device |
US5860998A (en) | 1996-11-25 | 1999-01-19 | C. R. Bard, Inc. | Deployment device for tubular expandable prosthesis |
US5863627A (en) | 1997-08-26 | 1999-01-26 | Cardiotech International, Inc. | Hydrolytically-and proteolytically-stable polycarbonate polyurethane silicone copolymers |
US5867762A (en) | 1994-05-26 | 1999-02-02 | Rafferty; Kevin | Masking tape |
US5868708A (en) | 1997-05-07 | 1999-02-09 | Applied Medical Resources Corporation | Balloon catheter apparatus and method |
US5868782A (en) | 1996-12-24 | 1999-02-09 | Global Therapeutics, Inc. | Radially expandable axially non-contracting surgical stent |
US5868685A (en) | 1995-11-14 | 1999-02-09 | Devices For Vascular Intervention | Articulated guidewire |
US5871537A (en) | 1996-02-13 | 1999-02-16 | Scimed Life Systems, Inc. | Endovascular apparatus |
US5873907A (en) | 1998-01-27 | 1999-02-23 | Endotex Interventional Systems, Inc. | Electrolytic stent delivery system and methods of use |
US5876448A (en) | 1992-05-08 | 1999-03-02 | Schneider (Usa) Inc. | Esophageal stent |
US5879381A (en) | 1996-03-10 | 1999-03-09 | Terumo Kabushiki Kaisha | Expandable stent for implanting in a body |
US5888660A (en) | 1995-11-16 | 1999-03-30 | Soten S.R.L. | Heat-shrinkable co-extruded multilayer polyolefin film having an improved heat seal resistance |
US5919224A (en) | 1997-02-12 | 1999-07-06 | Schneider (Usa) Inc | Medical device having a constricted region for occluding fluid flow in a body lumen |
US5928279A (en) | 1996-07-03 | 1999-07-27 | Baxter International Inc. | Stented, radially expandable, tubular PTFE grafts |
US5931866A (en) | 1998-02-24 | 1999-08-03 | Frantzen; John J. | Radially expandable stent featuring accordion stops |
US5947991A (en) | 1997-01-07 | 1999-09-07 | Cowan; Robert K. | Single balloon device for cervix |
WO1999044539A2 (en) | 1998-03-05 | 1999-09-10 | Scimed Life Systems, Inc. | Dilatation and stent delivery system for bifurcation lesions |
US5976178A (en) | 1996-11-07 | 1999-11-02 | Vascular Science Inc. | Medical grafting methods |
US5984955A (en) | 1997-09-11 | 1999-11-16 | Wisselink; Willem | System and method for endoluminal grafting of bifurcated or branched vessels |
US5994750A (en) | 1994-11-07 | 1999-11-30 | Canon Kabushiki Kaisha | Microstructure and method of forming the same |
US6007573A (en) | 1996-09-18 | 1999-12-28 | Microtherapeutics, Inc. | Intracranial stent and method of use |
US6015431A (en) | 1996-12-23 | 2000-01-18 | Prograft Medical, Inc. | Endolumenal stent-graft with leak-resistant seal |
US6022359A (en) | 1999-01-13 | 2000-02-08 | Frantzen; John J. | Stent delivery system featuring a flexible balloon |
US6033434A (en) | 1995-06-08 | 2000-03-07 | Ave Galway Limited | Bifurcated endovascular stent and methods for forming and placing |
US6042606A (en) | 1997-09-29 | 2000-03-28 | Cook Incorporated | Radially expandable non-axially contracting surgical stent |
WO2000029060A2 (en) | 1998-11-19 | 2000-05-25 | Percusurge, Inc. | Low volume syringe and method for inflating surgical balloons |
US6083259A (en) | 1998-11-16 | 2000-07-04 | Frantzen; John J. | Axially non-contracting flexible radially expandable stent |
US6093199A (en) | 1998-08-05 | 2000-07-25 | Endovascular Technologies, Inc. | Intra-luminal device for treatment of body cavities and lumens and method of use |
US6099548A (en) | 1998-07-28 | 2000-08-08 | Taheri; Syde A. | Apparatus and method for deploying an aortic arch graft |
US6110198A (en) | 1995-10-03 | 2000-08-29 | Medtronic Inc. | Method for deploying cuff prostheses |
WO2000051522A1 (en) | 1999-03-03 | 2000-09-08 | Clifford Rowan Murch | Inflatable intraluminal graft |
US6124523A (en) | 1995-03-10 | 2000-09-26 | Impra, Inc. | Encapsulated stent |
US6123715A (en) | 1994-07-08 | 2000-09-26 | Amplatz; Curtis | Method of forming medical devices; intravascular occlusion devices |
US6132457A (en) | 1997-10-22 | 2000-10-17 | Triad Vascular Systems, Inc. | Endovascular graft having longitudinally displaceable sections |
US6152943A (en) | 1998-08-14 | 2000-11-28 | Incept Llc | Methods and apparatus for intraluminal deposition of hydrogels |
US6152144A (en) | 1998-11-06 | 2000-11-28 | Appriva Medical, Inc. | Method and device for left atrial appendage occlusion |
US6168592B1 (en) | 1996-07-26 | 2001-01-02 | Target Therapeutics, Inc. | Aneurysm closure device assembly |
US6187034B1 (en) | 1999-01-13 | 2001-02-13 | John J. Frantzen | Segmented stent for flexible stent delivery system |
US6187033B1 (en) | 1997-09-04 | 2001-02-13 | Meadox Medicals, Inc. | Aortic arch prosthetic graft |
US6190406B1 (en) | 1998-01-09 | 2001-02-20 | Nitinal Development Corporation | Intravascular stent having tapered struts |
US6190402B1 (en) | 1996-06-21 | 2001-02-20 | Musc Foundation For Research Development | Insitu formable and self-forming intravascular flow modifier (IFM) and IFM assembly for deployment of same |
US6196230B1 (en) | 1998-09-10 | 2001-03-06 | Percardia, Inc. | Stent delivery system and method of use |
US6203732B1 (en) | 1998-07-02 | 2001-03-20 | Intra Therapeutics, Inc. | Method for manufacturing intraluminal device |
WO2001021108A1 (en) | 1999-09-23 | 2001-03-29 | Edwards Lifesciences Corporation | Implants for the use in the treatment of aneurysms |
US6214022B1 (en) | 1996-02-20 | 2001-04-10 | Cardiothoracic Systems, Inc. | Perfusion device for maintaining blood flow in a vessel while isolating an anastomosis |
US6235050B1 (en) | 1994-05-12 | 2001-05-22 | Endovascular Technologies, Inc. | System and method for intraluminally deploying a bifurcated graft |
US6241761B1 (en) | 2000-01-26 | 2001-06-05 | Cabg Medical, Inc. | Stented grafts for coupling vascular members |
US6254633B1 (en) | 1997-02-12 | 2001-07-03 | Corvita Corporation | Delivery device for a medical device having a constricted region |
US6261305B1 (en) | 1998-02-12 | 2001-07-17 | Eclips Systems Inc. | Endovascular prothesis with expandable leaf portion |
US6280466B1 (en) | 1999-12-03 | 2001-08-28 | Teramed Inc. | Endovascular graft system |
US20010020184A1 (en) | 1998-09-30 | 2001-09-06 | Mark Dehdashtian | Methods and apparatus for intraluminal placement of a bifurcated intraluminal graft |
WO2001066038A2 (en) | 2000-03-03 | 2001-09-13 | Cook Incorporated | Endovascular device having a stent |
US6290731B1 (en) | 1998-03-30 | 2001-09-18 | Cordis Corporation | Aortic graft having a precursor gasket for repairing an abdominal aortic aneurysm |
US6290722B1 (en) | 2000-03-13 | 2001-09-18 | Endovascular Technologies, Inc. | Tacky attachment method of covered materials on stents |
US6293960B1 (en) | 1998-05-22 | 2001-09-25 | Micrus Corporation | Catheter with shape memory polymer distal tip for deployment of therapeutic devices |
US6296603B1 (en) | 1998-05-26 | 2001-10-02 | Isostent, Inc. | Radioactive intraluminal endovascular prosthesis and method for the treatment of aneurysms |
US20010027337A1 (en) | 2000-02-22 | 2001-10-04 | Richard A. Arrest, Esq | Stent delivery system |
US6299604B1 (en) | 1998-08-20 | 2001-10-09 | Cook Incorporated | Coated implantable medical device |
US6299597B1 (en) | 1993-09-16 | 2001-10-09 | Scimed Life Systems, Inc. | Percutaneous repair of cardiovascular anomalies and repair compositions |
US6312463B1 (en) | 2000-02-01 | 2001-11-06 | Endotex Interventional Systems, Inc. | Micro-porous mesh stent with hybrid structure |
US6312462B1 (en) | 1999-09-22 | 2001-11-06 | Impra, Inc. | Prosthesis for abdominal aortic aneurysm repair |
US20010044655A1 (en) | 1996-09-13 | 2001-11-22 | Meadox Medicals, Inc. | ePTFE small caliber vascular grafts with significant patency enhancement via a surface coating which contains covalently bonded heparin |
US6325819B1 (en) | 1996-08-19 | 2001-12-04 | Cook Incorporated | Endovascular prosthetic device, an endovascular graft prothesis with such a device, and a method for repairing an abdominal aortic aneurysm |
US6325816B1 (en) | 1998-08-19 | 2001-12-04 | Artemis Medical, Inc. | Target tissue localization method |
US6331191B1 (en) | 1997-11-25 | 2001-12-18 | Trivascular Inc. | Layered endovascular graft |
US6331184B1 (en) | 1999-12-10 | 2001-12-18 | Scimed Life Systems, Inc. | Detachable covering for an implantable medical device |
US6344056B1 (en) | 1999-12-29 | 2002-02-05 | Edwards Lifesciences Corp. | Vascular grafts for bridging a vessel side branch |
US20020026217A1 (en) | 2000-04-26 | 2002-02-28 | Steven Baker | Apparatus and method for repair of perigraft flow |
US20020045931A1 (en) | 1996-09-26 | 2002-04-18 | David Sogard | Support structure/membrane composite medical device |
US20020045848A1 (en) | 2000-05-10 | 2002-04-18 | Ali Jaafar | Apparatus and method for treatment of cerebral aneurysms, arterial-vascular malformations and arterial fistulas |
US20020052643A1 (en) | 2000-08-02 | 2002-05-02 | Wholey Michael H. | Tapered endovascular stent graft and method of treating abdominal aortic aneurysms and distal iliac aneurysms |
US6395019B2 (en) | 1998-02-09 | 2002-05-28 | Trivascular, Inc. | Endovascular graft |
US20020077594A1 (en) | 2000-12-19 | 2002-06-20 | Scimed Life Systems, Inc. | Drug delivery catheter having a highly compliant balloon with infusion holes |
US6409757B1 (en) | 1999-09-15 | 2002-06-25 | Eva Corporation | Method and apparatus for supporting a graft assembly |
US6432131B1 (en) | 1995-01-31 | 2002-08-13 | Boston Scientific Corporation | Method and apparatus for intraluminally implanting an endovascular aortic graft |
US6451047B2 (en) | 1995-03-10 | 2002-09-17 | Impra, Inc. | Encapsulated intraluminal stent-graft and methods of making same |
US6463317B1 (en) | 1998-05-19 | 2002-10-08 | Regents Of The University Of Minnesota | Device and method for the endovascular treatment of aneurysms |
WO2002078569A2 (en) | 2001-03-28 | 2002-10-10 | Cook Incorporated | Modular stent graft assembly and use thereof |
US20020151958A1 (en) | 2000-03-03 | 2002-10-17 | Chuter Timothy A.M. | Large vessel stents and occluders |
US20020151953A1 (en) | 2001-04-11 | 2002-10-17 | Trivascular, Inc. | Delivery system and method for bifurcated endovascular graft |
US20020151956A1 (en) | 2001-04-11 | 2002-10-17 | Trivascular, Inc. | Delivery system and method for endovascular graft |
US20020156518A1 (en) | 2001-03-23 | 2002-10-24 | Hassan Tehrani | Branched aortic arch stent graft and method of deployment |
US20020165521A1 (en) | 2001-05-04 | 2002-11-07 | Iulian Cioanta | Low thermal resistance elastic sleeves for medical device balloons |
US20020169497A1 (en) | 2001-01-02 | 2002-11-14 | Petra Wholey | Endovascular stent system and method of providing aneurysm embolization |
US20020183629A1 (en) | 2001-05-31 | 2002-12-05 | Fitz Matthew Joseph | Implantable device for monitoring aneurysm sac parameters |
WO2002102282A1 (en) | 2001-06-19 | 2002-12-27 | Vortex Innovation Limited | Devices for repairing aneurysms |
US6506204B2 (en) | 1996-01-24 | 2003-01-14 | Aga Medical Corporation | Method and apparatus for occluding aneurysms |
US20030014075A1 (en) | 2001-07-16 | 2003-01-16 | Microvention, Inc. | Methods, materials and apparatus for deterring or preventing endoleaks following endovascular graft implanation |
US20030028209A1 (en) | 2001-07-31 | 2003-02-06 | Clifford Teoh | Expandable body cavity liner device |
US6527799B2 (en) | 1998-10-29 | 2003-03-04 | Conor Medsystems, Inc. | Expandable medical device with ductile hinges |
US20030051735A1 (en) | 2001-07-26 | 2003-03-20 | Cook Biotech Incorporated | Vessel closure member, delivery apparatus, and method of inserting the member |
US6544276B1 (en) | 1996-05-20 | 2003-04-08 | Medtronic Ave. Inc. | Exchange method for emboli containment |
US6547804B2 (en) | 2000-12-27 | 2003-04-15 | Scimed Life Systems, Inc. | Selectively permeable highly distensible occlusion balloon |
US20030074056A1 (en) | 1998-03-04 | 2003-04-17 | Scimed Life Systems, Inc. | Stent having variable properties and method of its use |
WO2003032869A1 (en) | 2001-10-16 | 2003-04-24 | Scimed Life Systems, Inc. | Aortic artery aneurysm endovascular prosthesis |
US20030078647A1 (en) | 1999-08-05 | 2003-04-24 | Franco Vallana | Angioplasty stent adapted to counter restenosis, respective kit and components |
US6554858B2 (en) | 1996-04-25 | 2003-04-29 | Corvita Europe | Intraluminal endoprosthesis for ramifying the ducts of a human or animal body and method of manufacture thereof |
WO2003037222A2 (en) | 2001-10-26 | 2003-05-08 | Cook Incorporated | Endoluminal graft |
US6579301B1 (en) | 2000-11-17 | 2003-06-17 | Syntheon, Llc | Intragastric balloon device adapted to be repeatedly varied in volume without external assistance |
WO2003053288A1 (en) | 2001-12-20 | 2003-07-03 | Trivascular, Inc. | Advanced endovascular graft |
FR2834199A1 (en) | 2001-12-27 | 2003-07-04 | Doron Carmi | Endoprosthesis for use in endoluminal medium, especially for treatment of aneurysms, comprises tube surrounded by expandable annular pouch |
EP1325717A2 (en) | 2002-01-08 | 2003-07-09 | Cordis Corporation | Stent graft with branch leg |
US20030130725A1 (en) | 2002-01-08 | 2003-07-10 | Depalma Donald F. | Sealing prosthesis |
US20030130720A1 (en) | 2002-01-08 | 2003-07-10 | Depalma Donald F. | Modular aneurysm repair system |
US6592614B2 (en) | 1996-01-05 | 2003-07-15 | Medtronic Ave, Inc. | Cuffed endoluminal prosthesis |
US20030135269A1 (en) | 2002-01-16 | 2003-07-17 | Swanstrom Lee L. | Laparoscopic-assisted endovascular/endoluminal graft placement |
US20030204242A1 (en) | 2002-04-24 | 2003-10-30 | Zarins Christopher K. | Endoluminal prosthetic assembly and extension method |
US20030204249A1 (en) | 2002-04-25 | 2003-10-30 | Michel Letort | Endovascular stent graft and fixation cuff |
US6645242B1 (en) | 2000-12-11 | 2003-11-11 | Stephen F. Quinn | Bifurcated side-access intravascular stent graft |
US20030220649A1 (en) | 1994-05-06 | 2003-11-27 | Qi-Bin Bao | Intervertebral disc prosthesis |
US6656220B1 (en) | 2002-06-17 | 2003-12-02 | Advanced Cardiovascular Systems, Inc. | Intravascular stent |
US20030225446A1 (en) | 2002-05-29 | 2003-12-04 | William A. Cook Australia Pty Ltd. | Multi-piece prosthesis deployment apparatus |
US6663667B2 (en) | 1999-12-29 | 2003-12-16 | Edwards Lifesciences Corporation | Towel graft means for enhancing tissue ingrowth in vascular grafts |
US6663607B2 (en) | 1999-07-12 | 2003-12-16 | Scimed Life Systems, Inc. | Bioactive aneurysm closure device assembly and kit |
WO2003103513A1 (en) | 2002-06-11 | 2003-12-18 | Fit Biotech Oy Plc | Anastomotic device and method for open and endoscopic surgical anatomosis |
WO2004004603A1 (en) | 2002-07-02 | 2004-01-15 | The Foundry Inc. | Methods and devices for treating aneurysms |
US6679300B1 (en) | 2002-01-14 | 2004-01-20 | Thermogenesis Corp. | Biological adhesive loading station and method |
US20040016997A1 (en) | 2002-07-24 | 2004-01-29 | Mitsubishi Denki Kabushiki Kaisha | Socket for semiconductor package |
US6695833B1 (en) | 2000-09-27 | 2004-02-24 | Nellix, Inc. | Vascular stent-graft apparatus and forming method |
WO2004026183A2 (en) | 2002-09-20 | 2004-04-01 | Nellix, Inc. | Stent-graft with positioning anchor |
US20040082989A1 (en) | 2002-08-20 | 2004-04-29 | Cook Incorporated | Stent graft with improved proximal end |
US6730119B1 (en) | 2000-10-06 | 2004-05-04 | Board Of Regents Of The University Of Texas System | Percutaneous implantation of partially covered stents in aneurysmally dilated arterial segments with subsequent embolization and obliteration of the aneurysm cavity |
US6729356B1 (en) | 2000-04-27 | 2004-05-04 | Endovascular Technologies, Inc. | Endovascular graft for providing a seal with vasculature |
WO2004037116A2 (en) | 2002-10-22 | 2004-05-06 | The University Of Miami | Endograft device to inhibit endoleak and migration |
US20040091543A1 (en) | 2002-10-23 | 2004-05-13 | Barbara Bell | Embolic compositions |
WO2004045393A2 (en) | 2002-11-20 | 2004-06-03 | Fogarty, Thomas, J. | Devices and methods for treatment of vascular aneurysms |
US20040147811A1 (en) | 2001-12-14 | 2004-07-29 | Diederich Chris J | Catheter based balloon for therapy modification and positioning of tissue |
US20040153025A1 (en) | 2003-02-03 | 2004-08-05 | Seifert Paul S. | Systems and methods of de-endothelialization |
US6776771B2 (en) | 2000-09-14 | 2004-08-17 | Tuborg Engineering | Adaptive balloon with improved flexibility |
US20040193245A1 (en) | 2003-03-26 | 2004-09-30 | The Foundry, Inc. | Devices and methods for treatment of abdominal aortic aneurysm |
US20040215172A1 (en) | 2003-04-25 | 2004-10-28 | Jack Chu | In situ blood vessel and aneurysm treatment |
US20040220522A1 (en) | 1996-04-01 | 2004-11-04 | Medtronic, Inc. | Catheter with autoinflating, autoregulating balloon |
US20040243057A1 (en) | 2001-10-25 | 2004-12-02 | Jakob Vinten-Johansen | Catheter for modified perfusion |
US6843803B2 (en) | 1995-12-01 | 2005-01-18 | Medtronic Vascular, Inc. | Bifurcated intraluminal prostheses construction and methods |
US20050027238A1 (en) | 2002-05-15 | 2005-02-03 | Mallinckrodt Inc. | Hydraulic remote for a medical fluid injector |
US20050028484A1 (en) | 2003-06-20 | 2005-02-10 | Littlewood Richard W. | Method and apparatus for sleeving compressed bale materials |
US20050065592A1 (en) | 2003-09-23 | 2005-03-24 | Asher Holzer | System and method of aneurism monitoring and treatment |
US6878164B2 (en) | 1997-09-05 | 2005-04-12 | C. R. Bard, Inc. | Short body endoprosthesis |
US6878161B2 (en) | 1996-01-05 | 2005-04-12 | Medtronic Vascular, Inc. | Stent graft loading and deployment device and method |
US20050090804A1 (en) | 2003-10-22 | 2005-04-28 | Trivascular, Inc. | Endoluminal prosthesis endoleak management |
US6887268B2 (en) | 1998-03-30 | 2005-05-03 | Cordis Corporation | Extension prosthesis for an arterial repair |
US20050096731A1 (en) | 2002-07-11 | 2005-05-05 | Kareen Looi | Cell seeded expandable body |
US6918926B2 (en) | 2002-04-25 | 2005-07-19 | Medtronic Vascular, Inc. | System for transrenal/intraostial fixation of endovascular prosthesis |
US6945989B1 (en) | 2000-09-18 | 2005-09-20 | Endotex Interventional Systems, Inc. | Apparatus for delivering endoluminal prostheses and methods of making and using them |
US20050215989A1 (en) | 2004-03-23 | 2005-09-29 | Cryocath Technologies Inc. | Method and apparatus for inflating and deflating balloon catheters |
US6958051B2 (en) | 2001-10-29 | 2005-10-25 | Scimed Life Systems, Inc. | Dual balloon valve control with pressure indicator |
US6960227B2 (en) | 2002-06-24 | 2005-11-01 | Cordis Neurovascular, Inc. | Expandable stent and delivery system |
US20050245891A1 (en) | 2004-04-13 | 2005-11-03 | Mccormick Paul | Method and apparatus for decompressing aneurysms |
US20050251251A1 (en) | 1996-12-31 | 2005-11-10 | Alain Cribier | Valve prosthesis for implantation in body channels |
US6969373B2 (en) | 2001-04-13 | 2005-11-29 | Tricardia, Llc | Syringe system |
US20060015173A1 (en) | 2003-05-06 | 2006-01-19 | Anton Clifford | Endoprosthesis having foot extensions |
WO2006012567A2 (en) | 2004-07-22 | 2006-02-02 | Nellix, Inc. | Methods and systems for endovascular aneurysm treatment |
US7022100B1 (en) | 1999-09-03 | 2006-04-04 | A-Med Systems, Inc. | Guidable intravascular blood pump and related methods |
US20060074481A1 (en) | 2004-10-04 | 2006-04-06 | Gil Vardi | Graft including expandable cuff |
US20060095124A1 (en) | 2003-06-13 | 2006-05-04 | Stefan Benz | Suction stent |
US20060135942A1 (en) | 2004-10-28 | 2006-06-22 | Medtronic Vascular, Inc. | Methods and Devices to Deliver Injected Agents to an Aneurysm Site |
US20060142836A1 (en) | 2004-09-28 | 2006-06-29 | William A. Cook Australia Pty. Ltd. | Device for treating aortic dissection |
US20060155369A1 (en) | 1998-09-30 | 2006-07-13 | Bard Peripheral Vascular, Inc. | Selective adherence of stent-graft coverings |
US20060161244A1 (en) | 2003-05-02 | 2006-07-20 | Jacques Seguin | Vascular graft and deployment system |
US20060184109A1 (en) | 2003-02-10 | 2006-08-17 | Lothar Gobel | Device to be used in healing processes |
US7105012B2 (en) | 2001-06-19 | 2006-09-12 | Eva Corporation | Positioning assembly and method of use |
US20060206197A1 (en) | 2002-12-30 | 2006-09-14 | Hesham Morsi | Endovascular balloon graft |
US20060212112A1 (en) * | 2004-07-22 | 2006-09-21 | Nellix, Inc. | Graft systems having filling structures supported by scaffolds and methods for their use |
US7112217B1 (en) | 1998-03-16 | 2006-09-26 | Cordis Corporation | Biluminal endovascular graft system |
US7122052B2 (en) | 2003-09-29 | 2006-10-17 | Stout Medical Group Lp | Integral support stent graft assembly |
WO2006116725A2 (en) | 2005-04-28 | 2006-11-02 | Nellix, Inc. | Graft systems having filling structures supported by scaffolds and methods for their use |
US20060265043A1 (en) | 2002-09-30 | 2006-11-23 | Evgenia Mandrusov | Method and apparatus for treating vulnerable plaque |
US7147661B2 (en) | 2001-12-20 | 2006-12-12 | Boston Scientific Santa Rosa Corp. | Radially expandable stent |
WO2007008600A2 (en) | 2005-07-07 | 2007-01-18 | Nellix, Inc. | Systems and methods for endovascular aneurysm treatment |
US20070032850A1 (en) | 2004-12-16 | 2007-02-08 | Carlos Ruiz | Separable sheath and method for insertion of a medical device into a bodily vessel using a separable sheath |
US7175651B2 (en) | 2001-07-06 | 2007-02-13 | Andrew Kerr | Stent/graft assembly |
US20070043420A1 (en) | 2005-08-17 | 2007-02-22 | Medtronic Vascular, Inc. | Apparatus and method for stent-graft release using a cap |
US7229472B2 (en) | 2000-11-16 | 2007-06-12 | Cordis Corporation | Thoracic aneurysm repair prosthesis and system |
US20070150041A1 (en) | 2005-12-22 | 2007-06-28 | Nellix, Inc. | Methods and systems for aneurysm treatment using filling structures |
US20070162109A1 (en) | 2006-01-11 | 2007-07-12 | Luis Davila | Intraluminal stent graft |
US20070208416A1 (en) | 2005-04-04 | 2007-09-06 | Janet Burpee | Flexible stent |
US20070276477A1 (en) * | 2006-05-24 | 2007-11-29 | Nellix, Inc. | Material for creating multi-layered films and methods for making the same |
WO2007142916A2 (en) | 2006-05-30 | 2007-12-13 | Incept, Llc | Materials formable in situ within a medical device |
US7326237B2 (en) | 2002-01-08 | 2008-02-05 | Cordis Corporation | Supra-renal anchoring prosthesis |
US20080154368A1 (en) | 2006-12-21 | 2008-06-26 | Warsaw Orthopedic, Inc. | Curable orthopedic implant devices configured to harden after placement in vivo by application of a cure-initiating energy before insertion |
US20080228259A1 (en) | 2007-03-16 | 2008-09-18 | Jack Fa-De Chu | Endovascular devices and methods to protect aneurysmal wall |
US20080294237A1 (en) | 2007-04-04 | 2008-11-27 | Jack Fa-De Chu | Inflatable devices and methods to protect aneurysmal wall |
US20090099649A1 (en) | 2007-10-04 | 2009-04-16 | Chobotov Michael V | Modular vascular graft for low profile percutaneous delivery |
US20090209855A1 (en) | 2008-02-19 | 2009-08-20 | Aga Medical Corporation | Medical devices for treating a target site and associated method |
US20090216125A1 (en) | 1999-01-25 | 2009-08-27 | Lenker Jay A | Reslution optical & ultrasound devices for imaging and treatment of body lumens |
US20090319029A1 (en) | 2008-06-04 | 2009-12-24 | Nellix, Inc. | Docking apparatus and methods of use |
US20090318949A1 (en) | 2008-06-04 | 2009-12-24 | Nellix, Inc. | Sealing apparatus and methods of use |
US20100004728A1 (en) | 2008-02-13 | 2010-01-07 | Nellix, Inc. | Graft endoframe having axially variable characteristics |
US20100036360A1 (en) | 2008-04-25 | 2010-02-11 | Nellix, Inc. | Stent graft delivery system |
US7708773B2 (en) | 2005-01-21 | 2010-05-04 | Gen4 Llc | Modular stent graft employing bifurcated graft and leg locking stent elements |
US20100217383A1 (en) | 1995-10-30 | 2010-08-26 | Medtronic Vascular, Inc. | Apparatus for Engrafting a Blood Vessel |
US7828838B2 (en) | 2001-11-28 | 2010-11-09 | Aptus Endosystems, Inc. | Devices, systems, and methods for prosthesis delivery and implantation, including a prosthesis assembly |
US20120184982A1 (en) | 2011-01-19 | 2012-07-19 | Endologix, Inc. | Methods and Systems for Treating Aneurysms |
US20120259406A1 (en) | 2011-04-06 | 2012-10-11 | Stefan Schreck | Method and system for treating aneurysms |
US8801768B2 (en) | 2011-01-21 | 2014-08-12 | Endologix, Inc. | Graft systems having semi-permeable filling structures and methods for their use |
US20140277385A1 (en) | 2013-03-14 | 2014-09-18 | Endologix, Inc. | Method for forming materials in situ within a medical device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6077273A (en) * | 1996-08-23 | 2000-06-20 | Scimed Life Systems, Inc. | Catheter support for stent delivery |
-
2010
- 2010-12-13 US US12/966,852 patent/US20110276078A1/en not_active Abandoned
- 2010-12-21 JP JP2012547147A patent/JP6408198B2/en active Active
- 2010-12-21 WO PCT/US2010/061621 patent/WO2011082040A1/en active Application Filing
- 2010-12-21 CN CN201080065043.8A patent/CN102946825B/en active Active
- 2010-12-21 EP EP10841580.3A patent/EP2519191B1/en not_active Not-in-force
-
2019
- 2019-04-11 US US16/382,118 patent/US11638638B2/en active Active
Patent Citations (416)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4130904A (en) * | 1977-06-06 | 1978-12-26 | Thermo Electron Corporation | Prosthetic blood conduit |
US4641653A (en) | 1978-06-02 | 1987-02-10 | Rockey Arthur G | Medical sleeve |
US4731073A (en) | 1981-02-13 | 1988-03-15 | Thoratec Laboratories Corporation | Arterial graft prosthesis |
US4638803A (en) | 1982-09-30 | 1987-01-27 | Rand Robert W | Medical apparatus for inducing scar tissue formation in a body |
US4565733A (en) | 1983-05-02 | 1986-01-21 | Fuji Photo Film Co., Ltd. | Packaging material for photosensitive materials |
US5562728A (en) | 1983-12-09 | 1996-10-08 | Endovascular Tech Inc | Endovascular grafting apparatus, system and method and devices for use therewith |
US4743258A (en) | 1984-04-27 | 1988-05-10 | Japan Medical Supply Co., Ltd. | Polymer materials for vascular prostheses |
US4728328A (en) | 1984-10-19 | 1988-03-01 | Research Corporation | Cuffed tubular organic prostheses |
US4704126A (en) | 1985-04-15 | 1987-11-03 | Richards Medical Company | Chemical polishing process for titanium and titanium alloy surgical implants |
US4936057A (en) | 1985-06-21 | 1990-06-26 | Extrude Hone Corporation | Method of finish machining the surface of irregularly shaped fluid passages |
US4733665A (en) | 1985-11-07 | 1988-03-29 | Expandable Grafts Partnership | Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft |
US4733665C2 (en) | 1985-11-07 | 2002-01-29 | Expandable Grafts Partnership | Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft |
US4733665B1 (en) | 1985-11-07 | 1994-01-11 | Expandable Grafts Partnership | Expandable intraluminal graft,and method and apparatus for implanting an expandable intraluminal graft |
US4710192A (en) | 1985-12-30 | 1987-12-01 | Liotta Domingo S | Diaphragm and method for occlusion of the descending thoracic aorta |
US5330520A (en) | 1986-05-15 | 1994-07-19 | Telectronics Pacing Systems, Inc. | Implantable electrode and sensor lead apparatus |
US4858264A (en) | 1986-09-02 | 1989-08-22 | The United States Of America As Represented By The Secretary Of The Air Force | Ultrasonic assisted protective coating removal |
US4763654A (en) | 1986-09-10 | 1988-08-16 | Jang G David | Tandem independently inflatable/deflatable multiple diameter balloon angioplasty catheter systems and method of use |
US5002532A (en) | 1987-01-06 | 1991-03-26 | Advanced Cardiovascular Systems, Inc. | Tandem balloon dilatation catheter |
US5314444A (en) | 1987-03-13 | 1994-05-24 | Cook Incorporated | Endovascular stent and delivery system |
US5133732A (en) | 1987-10-19 | 1992-07-28 | Medtronic, Inc. | Intravascular stent |
US4892544A (en) | 1988-03-07 | 1990-01-09 | Dow Corning Wright Corporation | Methods for forming hollow, porous-surfaced elastomeric bodies |
US5902332A (en) | 1988-10-04 | 1999-05-11 | Expandable Grafts Partnership | Expandable intraluminal graft |
US5195984A (en) | 1988-10-04 | 1993-03-23 | Expandable Grafts Partnership | Expandable intraluminal graft |
US4856516A (en) | 1989-01-09 | 1989-08-15 | Cordis Corporation | Endovascular stent apparatus and method |
US5425739A (en) | 1989-03-09 | 1995-06-20 | Avatar Design And Development, Inc. | Anastomosis stent and stent selection system |
US5074845A (en) | 1989-07-18 | 1991-12-24 | Baxter International Inc. | Catheter with heat-fused balloon with waist |
US5292331A (en) | 1989-08-24 | 1994-03-08 | Applied Vascular Engineering, Inc. | Endovascular support device |
US5104404A (en) | 1989-10-02 | 1992-04-14 | Medtronic, Inc. | Articulated stent |
US5330528A (en) * | 1989-12-01 | 1994-07-19 | British Technology Group Limited | Vascular surgical devices |
US5199226A (en) | 1990-01-26 | 1993-04-06 | E. B. Thomas | Method and apparatus for removing outer coatings from pipe |
DE4010975A1 (en) | 1990-03-28 | 1991-10-02 | Guenter Dr Siebert | Nasal membrane pressure instrument - has controller between pressure source and inflatable balloon |
US5496277A (en) | 1990-04-12 | 1996-03-05 | Schneider (Usa) Inc. | Radially expandable body implantable device |
US5242399A (en) | 1990-04-25 | 1993-09-07 | Advanced Cardiovascular Systems, Inc. | Method and system for stent delivery |
US5236447A (en) * | 1990-06-29 | 1993-08-17 | Nissho Corporation | Artificial tubular organ |
US5122154A (en) | 1990-08-15 | 1992-06-16 | Rhodes Valentine J | Endovascular bypass graft |
US5139480A (en) | 1990-08-22 | 1992-08-18 | Biotech Laboratories, Inc. | Necking stents |
US4976692A (en) | 1990-09-13 | 1990-12-11 | Travenol Laboratories (Israel) Ltd. | Catheter particularly useful for inducing labor and/or for the application of a pharmaceutical substance to the cervix of the uterus |
US5108417A (en) | 1990-09-14 | 1992-04-28 | Interface Biomedical Laboratories Corp. | Anti-turbulent, anti-thrombogenic intravascular stent |
US5156620A (en) | 1991-02-04 | 1992-10-20 | Pigott John P | Intraluminal graft/stent and balloon catheter for insertion thereof |
JPH04322665A (en) | 1991-02-05 | 1992-11-12 | Kanji Inoue | Apparatus for introucing medium into human body |
US5217484A (en) | 1991-06-07 | 1993-06-08 | Marks Michael P | Retractable-wire catheter device and method |
US5766151A (en) | 1991-07-16 | 1998-06-16 | Heartport, Inc. | Endovascular system for arresting the heart |
US5222970A (en) | 1991-09-06 | 1993-06-29 | William A. Cook Australia Pty. Ltd. | Method of and system for mounting a vascular occlusion balloon on a delivery catheter |
US5603721A (en) | 1991-10-28 | 1997-02-18 | Advanced Cardiovascular Systems, Inc. | Expandable stents and method for making same |
US5766238A (en) | 1991-10-28 | 1998-06-16 | Advanced Cardiovascular Systems, Inc. | Expandable stents and method for making same |
US6056776A (en) | 1991-10-28 | 2000-05-02 | Advanced Cardiovascular System, Inc. | Expandable stents and method for making same |
US5421955A (en) | 1991-10-28 | 1995-06-06 | Advanced Cardiovascular Systems, Inc. | Expandable stents and method for making same |
US6066167A (en) | 1991-10-28 | 2000-05-23 | Advanced Cardiovascular Systems, Inc. | Expandable stents |
US6066168A (en) | 1991-10-28 | 2000-05-23 | Advanced Cardiovascular Systems, Inc. | Expandable stents and method for making same |
US5421955B1 (en) | 1991-10-28 | 1998-01-20 | Advanced Cardiovascular System | Expandable stents and method for making same |
US5735893A (en) | 1991-10-28 | 1998-04-07 | Advanced Cardiovascular Systems, Inc. | Expandable stents and method for making same |
US5514154A (en) | 1991-10-28 | 1996-05-07 | Advanced Cardiovascular Systems, Inc. | Expandable stents |
US5728158A (en) | 1991-10-28 | 1998-03-17 | Advanced Cardiovascular Systems, Inc. | Expandable stents |
US5425744A (en) | 1991-11-05 | 1995-06-20 | C. R. Bard, Inc. | Occluder for repair of cardiac and vascular defects |
US5383892A (en) | 1991-11-08 | 1995-01-24 | Meadox France | Stent for transluminal implantation |
US5234437A (en) | 1991-12-12 | 1993-08-10 | Target Therapeutics, Inc. | Detachable pusher-vasoocclusion coil assembly with threaded coupling |
US5261916A (en) | 1991-12-12 | 1993-11-16 | Target Therapeutics | Detachable pusher-vasoocclusive coil assembly with interlocking ball and keyway coupling |
US5507767A (en) | 1992-01-15 | 1996-04-16 | Cook Incorporated | Spiral stent |
US5334217A (en) | 1992-01-21 | 1994-08-02 | Regents Of The University Of Minnesota | Septal defect closure device |
US5755769A (en) | 1992-03-12 | 1998-05-26 | Laboratoire Perouse Implant | Expansible endoprosthesis for a human or animal tubular organ, and fitting tool for use thereof |
US5443496A (en) | 1992-03-19 | 1995-08-22 | Medtronic, Inc. | Intravascular radially expandable stent |
US5375612A (en) | 1992-04-07 | 1994-12-27 | B. Braun Celsa | Possibly absorbable blood filter |
US5263964A (en) | 1992-05-06 | 1993-11-23 | Coil Partners Ltd. | Coaxial traction detachment apparatus and method |
US5876448A (en) | 1992-05-08 | 1999-03-02 | Schneider (Usa) Inc. | Esophageal stent |
US5507771A (en) | 1992-06-15 | 1996-04-16 | Cook Incorporated | Stent assembly |
US5607445A (en) | 1992-06-18 | 1997-03-04 | American Biomed, Inc. | Stent for supporting a blood vessel |
USD380831S (en) | 1992-08-06 | 1997-07-08 | William Cook Europe A/S | Implantable self-expanding stent |
US5634941A (en) | 1992-08-18 | 1997-06-03 | Ultrasonic Sensing And Monitoring Systems, Inc. | Vascular graft bypass apparatus |
US5693067A (en) | 1992-09-02 | 1997-12-02 | Board Of Regents, The University Of Texas System | Intravascular device |
US5250071A (en) | 1992-09-22 | 1993-10-05 | Target Therapeutics, Inc. | Detachable embolic coil assembly using interlocking clasps and method of use |
US5530528A (en) | 1992-09-28 | 1996-06-25 | Fujitsu Limited | Image forming apparatus having contact type, one-component developing unit |
US5350397A (en) | 1992-11-13 | 1994-09-27 | Target Therapeutics, Inc. | Axially detachable embolic coil assembly |
US5591223A (en) | 1992-11-23 | 1997-01-07 | Children's Medical Center Corporation | Re-expandable endoprosthesis |
US5423849A (en) | 1993-01-15 | 1995-06-13 | Target Therapeutics, Inc. | Vasoocclusion device containing radiopaque fibers |
US5630840A (en) | 1993-01-19 | 1997-05-20 | Schneider (Usa) Inc | Clad composite stent |
US5618299A (en) | 1993-04-23 | 1997-04-08 | Advanced Cardiovascular Systems, Inc. | Ratcheting stent |
US5441515A (en) | 1993-04-23 | 1995-08-15 | Advanced Cardiovascular Systems, Inc. | Ratcheting stent |
US5624411A (en) | 1993-04-26 | 1997-04-29 | Medtronic, Inc. | Intravascular stent and method |
US5352199A (en) | 1993-05-28 | 1994-10-04 | Numed, Inc. | Balloon catheter |
US5562641A (en) | 1993-05-28 | 1996-10-08 | A Bromberg & Co. Ltd. | Two way shape memory alloy medical stent |
US5776114A (en) | 1993-07-07 | 1998-07-07 | Devices For Vascular Intervention, Inc. | Flexible housing for intracorporeal use |
US5948184A (en) | 1993-07-07 | 1999-09-07 | Devices For Vascular Intervention, Inc. | Flexible housing for intracorporeal use |
US5514115A (en) | 1993-07-07 | 1996-05-07 | Device For Vascular Intervention, Inc. | Flexible housing for intracorporeal use |
US5632771A (en) | 1993-07-23 | 1997-05-27 | Cook Incorporated | Flexible stent having a pattern formed from a sheet of material |
US5735892A (en) | 1993-08-18 | 1998-04-07 | W. L. Gore & Associates, Inc. | Intraluminal stent graft |
US5441510A (en) | 1993-09-01 | 1995-08-15 | Technology Development Center | Bi-axial cutter apparatus for catheter |
US6299597B1 (en) | 1993-09-16 | 2001-10-09 | Scimed Life Systems, Inc. | Percutaneous repair of cardiovascular anomalies and repair compositions |
US5693038A (en) | 1993-09-30 | 1997-12-02 | Japan Absorbent Technology Institute | Sanitary article with improved fitness |
US5723004A (en) | 1993-10-21 | 1998-03-03 | Corvita Corporation | Expandable supportive endoluminal grafts |
US5693088A (en) | 1993-11-08 | 1997-12-02 | Lazarus; Harrison M. | Intraluminal vascular graft |
US5569295A (en) | 1993-12-28 | 1996-10-29 | Advanced Cardiovascular Systems, Inc. | Expandable stents and method for making same |
US5443477A (en) | 1994-02-10 | 1995-08-22 | Stentco, Inc. | Apparatus and method for deployment of radially expandable stents by a mechanical linkage |
US5485667A (en) | 1994-03-03 | 1996-01-23 | Kleshinski; Stephen J. | Method for attaching a marker to a medical instrument |
US5562698A (en) | 1994-03-09 | 1996-10-08 | Cook Incorporated | Intravascular treatment system |
US5549663A (en) | 1994-03-09 | 1996-08-27 | Cordis Corporation | Endoprosthesis having graft member and exposed welded end junctions, method and procedure |
US5449373A (en) | 1994-03-17 | 1995-09-12 | Medinol Ltd. | Articulated stent |
US5733303A (en) | 1994-03-17 | 1998-03-31 | Medinol Ltd. | Flexible expandable stent |
US5797953A (en) | 1994-03-18 | 1998-08-25 | Cook Incorporated | Helical embolization coil |
US5725572A (en) | 1994-04-25 | 1998-03-10 | Advanced Cardiovascular Systems, Inc. | Radiopaque stent |
US5554181A (en) | 1994-05-04 | 1996-09-10 | Regents Of The University Of Minnesota | Stent |
US20030220649A1 (en) | 1994-05-06 | 2003-11-27 | Qi-Bin Bao | Intervertebral disc prosthesis |
US6235050B1 (en) | 1994-05-12 | 2001-05-22 | Endovascular Technologies, Inc. | System and method for intraluminally deploying a bifurcated graft |
US5824056A (en) | 1994-05-16 | 1998-10-20 | Medtronic, Inc. | Implantable medical device formed from a refractory metal having a thin coating disposed thereon |
US5867762A (en) | 1994-05-26 | 1999-02-02 | Rafferty; Kevin | Masking tape |
US5728068A (en) | 1994-06-14 | 1998-03-17 | Cordis Corporation | Multi-purpose balloon catheter |
US5846261A (en) | 1994-07-08 | 1998-12-08 | Aga Medical Corp. | Percutaneous catheter directed occlusion devices |
US6123715A (en) | 1994-07-08 | 2000-09-26 | Amplatz; Curtis | Method of forming medical devices; intravascular occlusion devices |
US6682546B2 (en) | 1994-07-08 | 2004-01-27 | Aga Medical Corporation | Intravascular occlusion devices |
US5636641A (en) | 1994-07-25 | 1997-06-10 | Advanced Cardiovascular Systems, Inc. | High strength member for intracorporeal use |
US5531741A (en) | 1994-08-18 | 1996-07-02 | Barbacci; Josephine A. | Illuminated stents |
US5609605A (en) | 1994-08-25 | 1997-03-11 | Ethicon, Inc. | Combination arterial stent |
US5591230A (en) | 1994-09-07 | 1997-01-07 | Global Therapeutics, Inc. | Radially expandable stent |
US5545210A (en) | 1994-09-22 | 1996-08-13 | Advanced Coronary Technology, Inc. | Method of implanting a permanent shape memory alloy stent |
US5507769A (en) | 1994-10-18 | 1996-04-16 | Stentco, Inc. | Method and apparatus for forming an endoluminal bifurcated graft |
US5632760A (en) | 1994-10-20 | 1997-05-27 | Cordis Corporation | Balloon catheter for stent implantation |
US5846246A (en) | 1994-10-21 | 1998-12-08 | Cordis Corporation | Dual-balloon rapid-exchange stent delivery catheter with guidewire channel |
US5522882A (en) | 1994-10-21 | 1996-06-04 | Impra, Inc. | Method and apparatus for balloon expandable stent-graft delivery |
US5607468A (en) | 1994-11-04 | 1997-03-04 | Aeroquip Corporation | Method of manufacturing an intraluminal stenting graft |
US5534024A (en) | 1994-11-04 | 1996-07-09 | Aeroquip Corporation | Intraluminal stenting graft |
US5549662A (en) | 1994-11-07 | 1996-08-27 | Scimed Life Systems, Inc. | Expandable stent using sliding members |
US5994750A (en) | 1994-11-07 | 1999-11-30 | Canon Kabushiki Kaisha | Microstructure and method of forming the same |
US5578074A (en) | 1994-12-22 | 1996-11-26 | Target Therapeutics, Inc. | Implant delivery method and assembly |
USD380266S (en) | 1994-12-30 | 1997-06-24 | Cook Incorporated | Implantable, actively expandable stent |
US5632763A (en) | 1995-01-19 | 1997-05-27 | Cordis Corporation | Bifurcated stent and method for implanting same |
US5591226A (en) | 1995-01-23 | 1997-01-07 | Schneider (Usa) Inc. | Percutaneous stent-graft and method for delivery thereof |
US6432131B1 (en) | 1995-01-31 | 2002-08-13 | Boston Scientific Corporation | Method and apparatus for intraluminally implanting an endovascular aortic graft |
US5674241A (en) | 1995-02-22 | 1997-10-07 | Menlo Care, Inc. | Covered expanding mesh stent |
US5683449A (en) | 1995-02-24 | 1997-11-04 | Marcade; Jean Paul | Modular bifurcated intraluminal grafts and methods for delivering and assembling same |
US6124523A (en) | 1995-03-10 | 2000-09-26 | Impra, Inc. | Encapsulated stent |
US6451047B2 (en) | 1995-03-10 | 2002-09-17 | Impra, Inc. | Encapsulated intraluminal stent-graft and methods of making same |
US5605530A (en) | 1995-03-23 | 1997-02-25 | Fischell; Robert E. | System for safe implantation of radioisotope stents |
US5741333A (en) | 1995-04-12 | 1998-04-21 | Corvita Corporation | Self-expanding stent for a medical device to be introduced into a cavity of a body |
US5849037A (en) | 1995-04-12 | 1998-12-15 | Corvita Corporation | Self-expanding stent for a medical device to be introduced into a cavity of a body, and method for its preparation |
US5662614A (en) | 1995-05-09 | 1997-09-02 | Edoga; John K. | Balloon expandable universal access sheath |
US5591228A (en) | 1995-05-09 | 1997-01-07 | Edoga; John K. | Methods for treating abdominal aortic aneurysms |
US5578149A (en) | 1995-05-31 | 1996-11-26 | Global Therapeutics, Inc. | Radially expandable stent |
US5824049A (en) | 1995-06-07 | 1998-10-20 | Med Institute, Inc. | Coated implantable medical device |
US6033434A (en) | 1995-06-08 | 2000-03-07 | Ave Galway Limited | Bifurcated endovascular stent and methods for forming and placing |
US5728131A (en) | 1995-06-12 | 1998-03-17 | Endotex Interventional Systems, Inc. | Coupling device and method of use |
US5725568A (en) | 1995-06-27 | 1998-03-10 | Scimed Life Systems, Inc. | Method and device for recanalizing and grafting arteries |
US5782907A (en) | 1995-07-13 | 1998-07-21 | Devices For Vascular Intervention, Inc. | Involuted spring stent and graft assembly and method of use |
US5785679A (en) | 1995-07-19 | 1998-07-28 | Endotex Interventional Systems, Inc. | Methods and apparatus for treating aneurysms and arterio-venous fistulas |
US6613037B2 (en) | 1995-07-19 | 2003-09-02 | Farhad Khosravi | Methods and apparatus for treating aneurysms and arterio-venous fistulas |
US20040044358A1 (en) | 1995-07-19 | 2004-03-04 | Farhad Khosravi | Methods and apparatus for treating aneurysms and arterio-venous fistulas |
US6231562B1 (en) | 1995-07-19 | 2001-05-15 | Endotex Interventional Systems, Inc. | Methods and apparatus for treating aneurysms and arterio-venous fistulas |
US5601600A (en) | 1995-09-08 | 1997-02-11 | Conceptus, Inc. | Endoluminal coil delivery system having a mechanical release mechanism |
US6656214B1 (en) | 1995-09-08 | 2003-12-02 | Medtronic Ave, Inc. | Methods and apparatus for conformably sealing prostheses within body lumens |
US5769882A (en) | 1995-09-08 | 1998-06-23 | Medtronic, Inc. | Methods and apparatus for conformably sealing prostheses within body lumens |
US6110198A (en) | 1995-10-03 | 2000-08-29 | Medtronic Inc. | Method for deploying cuff prostheses |
US6123722A (en) | 1995-10-03 | 2000-09-26 | Medtronics, Inc. | Stitched stent grafts and methods for their fabrication |
US5824037A (en) | 1995-10-03 | 1998-10-20 | Medtronic, Inc. | Modular intraluminal prostheses construction and methods |
US6193745B1 (en) | 1995-10-03 | 2001-02-27 | Medtronic, Inc. | Modular intraluminal prosteheses construction and methods |
US5776161A (en) | 1995-10-16 | 1998-07-07 | Instent, Inc. | Medical stents, apparatus and method for making same |
US5709707A (en) | 1995-10-30 | 1998-01-20 | Children's Medical Center Corporation | Self-centering umbrella-type septal closure device |
US20100217383A1 (en) | 1995-10-30 | 2010-08-26 | Medtronic Vascular, Inc. | Apparatus for Engrafting a Blood Vessel |
US5591195A (en) | 1995-10-30 | 1997-01-07 | Taheri; Syde | Apparatus and method for engrafting a blood vessel |
US6334869B1 (en) | 1995-10-30 | 2002-01-01 | World Medical Manufacturing Corporation | Endoluminal prosthesis |
US5632762A (en) | 1995-11-09 | 1997-05-27 | Hemodynamics, Inc. | Ostial stent balloon |
US5607442A (en) | 1995-11-13 | 1997-03-04 | Isostent, Inc. | Stent with improved radiopacity and appearance characteristics |
WO1997017912A1 (en) | 1995-11-13 | 1997-05-22 | Corvita Corporation | Expandable supportive bifurcated endoluminal grafts |
US5868685A (en) | 1995-11-14 | 1999-02-09 | Devices For Vascular Intervention | Articulated guidewire |
US5888660A (en) | 1995-11-16 | 1999-03-30 | Soten S.R.L. | Heat-shrinkable co-extruded multilayer polyolefin film having an improved heat seal resistance |
US5788626A (en) | 1995-11-21 | 1998-08-04 | Schneider (Usa) Inc | Method of making a stent-graft covered with expanded polytetrafluoroethylene |
US5593417A (en) | 1995-11-27 | 1997-01-14 | Rhodes; Valentine J. | Intravascular stent with secure mounting means |
WO1997019653A1 (en) | 1995-11-27 | 1997-06-05 | Rhodes Valentine J | Endovascular prosthesis with improved sealing means for aneurysmal arterial disease and method of use |
US5665117A (en) | 1995-11-27 | 1997-09-09 | Rhodes; Valentine J. | Endovascular prosthesis with improved sealing means for aneurysmal arterial disease and method of use |
US6843803B2 (en) | 1995-12-01 | 2005-01-18 | Medtronic Vascular, Inc. | Bifurcated intraluminal prostheses construction and methods |
US6283991B1 (en) | 1995-12-01 | 2001-09-04 | Medtronics Inc. | Endoluminal prostheses and therapies for highly variable body lumens |
US5824040A (en) | 1995-12-01 | 1998-10-20 | Medtronic, Inc. | Endoluminal prostheses and therapies for highly variable body lumens |
US6878161B2 (en) | 1996-01-05 | 2005-04-12 | Medtronic Vascular, Inc. | Stent graft loading and deployment device and method |
US6592614B2 (en) | 1996-01-05 | 2003-07-15 | Medtronic Ave, Inc. | Cuffed endoluminal prosthesis |
US5800512A (en) | 1996-01-22 | 1998-09-01 | Meadox Medicals, Inc. | PTFE vascular graft |
US6506204B2 (en) | 1996-01-24 | 2003-01-14 | Aga Medical Corporation | Method and apparatus for occluding aneurysms |
US5871537A (en) | 1996-02-13 | 1999-02-16 | Scimed Life Systems, Inc. | Endovascular apparatus |
US6214022B1 (en) | 1996-02-20 | 2001-04-10 | Cardiothoracic Systems, Inc. | Perfusion device for maintaining blood flow in a vessel while isolating an anastomosis |
US5690643A (en) | 1996-02-20 | 1997-11-25 | Leocor, Incorporated | Stent delivery system |
US5879381A (en) | 1996-03-10 | 1999-03-09 | Terumo Kabushiki Kaisha | Expandable stent for implanting in a body |
US20040220522A1 (en) | 1996-04-01 | 2004-11-04 | Medtronic, Inc. | Catheter with autoinflating, autoregulating balloon |
US5843160A (en) | 1996-04-01 | 1998-12-01 | Rhodes; Valentine J. | Prostheses for aneurysmal and/or occlusive disease at a bifurcation in a vessel, duct, or lumen |
US6554858B2 (en) | 1996-04-25 | 2003-04-29 | Corvita Europe | Intraluminal endoprosthesis for ramifying the ducts of a human or animal body and method of manufacture thereof |
CN1174016A (en) | 1996-05-03 | 1998-02-25 | 族利控股有限公司 | Endovascular device for protection of aneurysm |
US6544276B1 (en) | 1996-05-20 | 2003-04-08 | Medtronic Ave. Inc. | Exchange method for emboli containment |
US5800514A (en) | 1996-05-24 | 1998-09-01 | Meadox Medicals, Inc. | Shaped woven tubular soft-tissue prostheses and methods of manufacturing |
US5617878A (en) | 1996-05-31 | 1997-04-08 | Taheri; Syde A. | Stent and method for treatment of aortic occlusive disease |
US5755773A (en) | 1996-06-04 | 1998-05-26 | Medtronic, Inc. | Endoluminal prosthetic bifurcation shunt |
US5697971A (en) | 1996-06-11 | 1997-12-16 | Fischell; Robert E. | Multi-cell stent with cells having differing characteristics |
US6190402B1 (en) | 1996-06-21 | 2001-02-20 | Musc Foundation For Research Development | Insitu formable and self-forming intravascular flow modifier (IFM) and IFM assembly for deployment of same |
US5928279A (en) | 1996-07-03 | 1999-07-27 | Baxter International Inc. | Stented, radially expandable, tubular PTFE grafts |
US6168592B1 (en) | 1996-07-26 | 2001-01-02 | Target Therapeutics, Inc. | Aneurysm closure device assembly |
US5676697A (en) | 1996-07-29 | 1997-10-14 | Cardiovascular Dynamics, Inc. | Two-piece, bifurcated intraluminal graft for repair of aneurysm |
US6325819B1 (en) | 1996-08-19 | 2001-12-04 | Cook Incorporated | Endovascular prosthetic device, an endovascular graft prothesis with such a device, and a method for repairing an abdominal aortic aneurysm |
US20010044655A1 (en) | 1996-09-13 | 2001-11-22 | Meadox Medicals, Inc. | ePTFE small caliber vascular grafts with significant patency enhancement via a surface coating which contains covalently bonded heparin |
US6007573A (en) | 1996-09-18 | 1999-12-28 | Microtherapeutics, Inc. | Intracranial stent and method of use |
US5807404A (en) | 1996-09-19 | 1998-09-15 | Medinol Ltd. | Stent with variable features to optimize support and method of making such stent |
US20020045931A1 (en) | 1996-09-26 | 2002-04-18 | David Sogard | Support structure/membrane composite medical device |
US5755778A (en) | 1996-10-16 | 1998-05-26 | Nitinol Medical Technologies, Inc. | Anastomosis device |
US5976178A (en) | 1996-11-07 | 1999-11-02 | Vascular Science Inc. | Medical grafting methods |
US5860998A (en) | 1996-11-25 | 1999-01-19 | C. R. Bard, Inc. | Deployment device for tubular expandable prosthesis |
US6015431A (en) | 1996-12-23 | 2000-01-18 | Prograft Medical, Inc. | Endolumenal stent-graft with leak-resistant seal |
US5868782A (en) | 1996-12-24 | 1999-02-09 | Global Therapeutics, Inc. | Radially expandable axially non-contracting surgical stent |
US20050251251A1 (en) | 1996-12-31 | 2005-11-10 | Alain Cribier | Valve prosthesis for implantation in body channels |
US5947991A (en) | 1997-01-07 | 1999-09-07 | Cowan; Robert K. | Single balloon device for cervix |
US5827321A (en) | 1997-02-07 | 1998-10-27 | Cornerstone Devices, Inc. | Non-Foreshortening intraluminal prosthesis |
US5919224A (en) | 1997-02-12 | 1999-07-06 | Schneider (Usa) Inc | Medical device having a constricted region for occluding fluid flow in a body lumen |
US6254633B1 (en) | 1997-02-12 | 2001-07-03 | Corvita Corporation | Delivery device for a medical device having a constricted region |
US5800393A (en) | 1997-03-07 | 1998-09-01 | Sahota; Harvinder | Wire perfusion catheter |
US5810872A (en) | 1997-03-14 | 1998-09-22 | Kanesaka; Nozomu | Flexible stent |
US5824054A (en) | 1997-03-18 | 1998-10-20 | Endotex Interventional Systems, Inc. | Coiled sheet graft stent and methods of making and use |
US5718713A (en) | 1997-04-10 | 1998-02-17 | Global Therapeutics, Inc. | Surgical stent having a streamlined contour |
US5741327A (en) | 1997-05-06 | 1998-04-21 | Global Therapeutics, Inc. | Surgical stent featuring radiopaque markers |
US5868708A (en) | 1997-05-07 | 1999-02-09 | Applied Medical Resources Corporation | Balloon catheter apparatus and method |
US5836966A (en) | 1997-05-22 | 1998-11-17 | Scimed Life Systems, Inc. | Variable expansion force stent |
US7435253B1 (en) | 1997-05-26 | 2008-10-14 | William A. Cook Australia Pty Ltd | Prosthesis and a method and means of deploying a prosthesis |
WO1998053761A1 (en) | 1997-05-26 | 1998-12-03 | William A. Cook Australia Pty. Ltd. | A prosthesis and a method and means of deploying a prosthesis |
US5800525A (en) | 1997-06-04 | 1998-09-01 | Vascular Science, Inc. | Blood filter |
US5746691A (en) | 1997-06-06 | 1998-05-05 | Global Therapeutics, Inc. | Method for polishing surgical stents |
US5843175A (en) | 1997-06-13 | 1998-12-01 | Global Therapeutics, Inc. | Enhanced flexibility surgical stent |
WO1999000073A1 (en) | 1997-06-28 | 1999-01-07 | Anson Medical Limited | Expandable device |
US5863627A (en) | 1997-08-26 | 1999-01-26 | Cardiotech International, Inc. | Hydrolytically-and proteolytically-stable polycarbonate polyurethane silicone copolymers |
US6187033B1 (en) | 1997-09-04 | 2001-02-13 | Meadox Medicals, Inc. | Aortic arch prosthetic graft |
US6878164B2 (en) | 1997-09-05 | 2005-04-12 | C. R. Bard, Inc. | Short body endoprosthesis |
US5984955A (en) | 1997-09-11 | 1999-11-16 | Wisselink; Willem | System and method for endoluminal grafting of bifurcated or branched vessels |
US6042606A (en) | 1997-09-29 | 2000-03-28 | Cook Incorporated | Radially expandable non-axially contracting surgical stent |
US6132457A (en) | 1997-10-22 | 2000-10-17 | Triad Vascular Systems, Inc. | Endovascular graft having longitudinally displaceable sections |
US6331191B1 (en) | 1997-11-25 | 2001-12-18 | Trivascular Inc. | Layered endovascular graft |
US6190406B1 (en) | 1998-01-09 | 2001-02-20 | Nitinal Development Corporation | Intravascular stent having tapered struts |
US5873907A (en) | 1998-01-27 | 1999-02-23 | Endotex Interventional Systems, Inc. | Electrolytic stent delivery system and methods of use |
US6395019B2 (en) | 1998-02-09 | 2002-05-28 | Trivascular, Inc. | Endovascular graft |
US20030216802A1 (en) | 1998-02-09 | 2003-11-20 | Trivascular, Inc. | Endovascular graft |
US6261305B1 (en) | 1998-02-12 | 2001-07-17 | Eclips Systems Inc. | Endovascular prothesis with expandable leaf portion |
US5931866A (en) | 1998-02-24 | 1999-08-03 | Frantzen; John J. | Radially expandable stent featuring accordion stops |
US20030074056A1 (en) | 1998-03-04 | 2003-04-17 | Scimed Life Systems, Inc. | Stent having variable properties and method of its use |
WO1999044539A2 (en) | 1998-03-05 | 1999-09-10 | Scimed Life Systems, Inc. | Dilatation and stent delivery system for bifurcation lesions |
US7112217B1 (en) | 1998-03-16 | 2006-09-26 | Cordis Corporation | Biluminal endovascular graft system |
US6290731B1 (en) | 1998-03-30 | 2001-09-18 | Cordis Corporation | Aortic graft having a precursor gasket for repairing an abdominal aortic aneurysm |
US6887268B2 (en) | 1998-03-30 | 2005-05-03 | Cordis Corporation | Extension prosthesis for an arterial repair |
US6463317B1 (en) | 1998-05-19 | 2002-10-08 | Regents Of The University Of Minnesota | Device and method for the endovascular treatment of aneurysms |
US6293960B1 (en) | 1998-05-22 | 2001-09-25 | Micrus Corporation | Catheter with shape memory polymer distal tip for deployment of therapeutic devices |
US6296603B1 (en) | 1998-05-26 | 2001-10-02 | Isostent, Inc. | Radioactive intraluminal endovascular prosthesis and method for the treatment of aneurysms |
US6203732B1 (en) | 1998-07-02 | 2001-03-20 | Intra Therapeutics, Inc. | Method for manufacturing intraluminal device |
US6099548A (en) | 1998-07-28 | 2000-08-08 | Taheri; Syde A. | Apparatus and method for deploying an aortic arch graft |
US6093199A (en) | 1998-08-05 | 2000-07-25 | Endovascular Technologies, Inc. | Intra-luminal device for treatment of body cavities and lumens and method of use |
US6152943A (en) | 1998-08-14 | 2000-11-28 | Incept Llc | Methods and apparatus for intraluminal deposition of hydrogels |
US6325816B1 (en) | 1998-08-19 | 2001-12-04 | Artemis Medical, Inc. | Target tissue localization method |
US6299604B1 (en) | 1998-08-20 | 2001-10-09 | Cook Incorporated | Coated implantable medical device |
US6196230B1 (en) | 1998-09-10 | 2001-03-06 | Percardia, Inc. | Stent delivery system and method of use |
US6375675B2 (en) | 1998-09-30 | 2002-04-23 | Edwards Lifesciences Corp. | Methods and apparatus for intraluminal placement of a bifurcated intraluminal graft |
US20010020184A1 (en) | 1998-09-30 | 2001-09-06 | Mark Dehdashtian | Methods and apparatus for intraluminal placement of a bifurcated intraluminal graft |
US20020019665A1 (en) | 1998-09-30 | 2002-02-14 | Mark Dehdashtian | Methods and apparatus for intraluminal placement of a bifurcated intraluminal graft |
US20060155369A1 (en) | 1998-09-30 | 2006-07-13 | Bard Peripheral Vascular, Inc. | Selective adherence of stent-graft coverings |
US6576007B2 (en) | 1998-09-30 | 2003-06-10 | Edwards Lifesciences Corporation | Methods and apparatus for intraluminal placement of a bifurcated intraluminal graft |
US6527799B2 (en) | 1998-10-29 | 2003-03-04 | Conor Medsystems, Inc. | Expandable medical device with ductile hinges |
US6152144A (en) | 1998-11-06 | 2000-11-28 | Appriva Medical, Inc. | Method and device for left atrial appendage occlusion |
US6083259A (en) | 1998-11-16 | 2000-07-04 | Frantzen; John J. | Axially non-contracting flexible radially expandable stent |
WO2000029060A2 (en) | 1998-11-19 | 2000-05-25 | Percusurge, Inc. | Low volume syringe and method for inflating surgical balloons |
US6022359A (en) | 1999-01-13 | 2000-02-08 | Frantzen; John J. | Stent delivery system featuring a flexible balloon |
US6187034B1 (en) | 1999-01-13 | 2001-02-13 | John J. Frantzen | Segmented stent for flexible stent delivery system |
US20090216125A1 (en) | 1999-01-25 | 2009-08-27 | Lenker Jay A | Reslution optical & ultrasound devices for imaging and treatment of body lumens |
WO2000051522A1 (en) | 1999-03-03 | 2000-09-08 | Clifford Rowan Murch | Inflatable intraluminal graft |
US6663607B2 (en) | 1999-07-12 | 2003-12-16 | Scimed Life Systems, Inc. | Bioactive aneurysm closure device assembly and kit |
US20030078647A1 (en) | 1999-08-05 | 2003-04-24 | Franco Vallana | Angioplasty stent adapted to counter restenosis, respective kit and components |
US7022100B1 (en) | 1999-09-03 | 2006-04-04 | A-Med Systems, Inc. | Guidable intravascular blood pump and related methods |
US6409757B1 (en) | 1999-09-15 | 2002-06-25 | Eva Corporation | Method and apparatus for supporting a graft assembly |
US6312462B1 (en) | 1999-09-22 | 2001-11-06 | Impra, Inc. | Prosthesis for abdominal aortic aneurysm repair |
WO2001021108A1 (en) | 1999-09-23 | 2001-03-29 | Edwards Lifesciences Corporation | Implants for the use in the treatment of aneurysms |
US6280466B1 (en) | 1999-12-03 | 2001-08-28 | Teramed Inc. | Endovascular graft system |
US6331184B1 (en) | 1999-12-10 | 2001-12-18 | Scimed Life Systems, Inc. | Detachable covering for an implantable medical device |
US6344056B1 (en) | 1999-12-29 | 2002-02-05 | Edwards Lifesciences Corp. | Vascular grafts for bridging a vessel side branch |
US6663667B2 (en) | 1999-12-29 | 2003-12-16 | Edwards Lifesciences Corporation | Towel graft means for enhancing tissue ingrowth in vascular grafts |
US6241761B1 (en) | 2000-01-26 | 2001-06-05 | Cabg Medical, Inc. | Stented grafts for coupling vascular members |
US6312463B1 (en) | 2000-02-01 | 2001-11-06 | Endotex Interventional Systems, Inc. | Micro-porous mesh stent with hybrid structure |
US20010027337A1 (en) | 2000-02-22 | 2001-10-04 | Richard A. Arrest, Esq | Stent delivery system |
US20010027338A1 (en) | 2000-03-03 | 2001-10-04 | Cook Incorporated | Endovascular device having a stent |
US20020151958A1 (en) | 2000-03-03 | 2002-10-17 | Chuter Timothy A.M. | Large vessel stents and occluders |
JP2003525692A (en) | 2000-03-03 | 2003-09-02 | クック インコーポレイティド | Medical equipment |
WO2001066038A2 (en) | 2000-03-03 | 2001-09-13 | Cook Incorporated | Endovascular device having a stent |
US6827735B2 (en) | 2000-03-03 | 2004-12-07 | Cook Incorporated | Endovascular device having a stent |
US6290722B1 (en) | 2000-03-13 | 2001-09-18 | Endovascular Technologies, Inc. | Tacky attachment method of covered materials on stents |
US20020026217A1 (en) | 2000-04-26 | 2002-02-28 | Steven Baker | Apparatus and method for repair of perigraft flow |
US6729356B1 (en) | 2000-04-27 | 2004-05-04 | Endovascular Technologies, Inc. | Endovascular graft for providing a seal with vasculature |
US20020045848A1 (en) | 2000-05-10 | 2002-04-18 | Ali Jaafar | Apparatus and method for treatment of cerebral aneurysms, arterial-vascular malformations and arterial fistulas |
US6692486B2 (en) | 2000-05-10 | 2004-02-17 | Minnesota Medical Physics, Llc | Apparatus and method for treatment of cerebral aneurysms, arterial-vascular malformations and arterial fistulas |
US20020052643A1 (en) | 2000-08-02 | 2002-05-02 | Wholey Michael H. | Tapered endovascular stent graft and method of treating abdominal aortic aneurysms and distal iliac aneurysms |
US6773454B2 (en) | 2000-08-02 | 2004-08-10 | Michael H. Wholey | Tapered endovascular stent graft and method of treating abdominal aortic aneurysms and distal iliac aneurysms |
US6776771B2 (en) | 2000-09-14 | 2004-08-17 | Tuborg Engineering | Adaptive balloon with improved flexibility |
US6945989B1 (en) | 2000-09-18 | 2005-09-20 | Endotex Interventional Systems, Inc. | Apparatus for delivering endoluminal prostheses and methods of making and using them |
US6695833B1 (en) | 2000-09-27 | 2004-02-24 | Nellix, Inc. | Vascular stent-graft apparatus and forming method |
US20040167607A1 (en) | 2000-09-27 | 2004-08-26 | Frantzen John J. | Vascular stent-graft apparatus |
US6730119B1 (en) | 2000-10-06 | 2004-05-04 | Board Of Regents Of The University Of Texas System | Percutaneous implantation of partially covered stents in aneurysmally dilated arterial segments with subsequent embolization and obliteration of the aneurysm cavity |
US20040215316A1 (en) | 2000-10-06 | 2004-10-28 | The Board Of Regents Of The University Of Texas System | Percutaneous implantation of partially covered stents in aneurysmally dilated arterial segments with subsequent embolization and obliteration of the aneurysm cavity |
US7314483B2 (en) | 2000-11-16 | 2008-01-01 | Cordis Corp. | Stent graft with branch leg |
US7229472B2 (en) | 2000-11-16 | 2007-06-12 | Cordis Corporation | Thoracic aneurysm repair prosthesis and system |
US6579301B1 (en) | 2000-11-17 | 2003-06-17 | Syntheon, Llc | Intragastric balloon device adapted to be repeatedly varied in volume without external assistance |
US6645242B1 (en) | 2000-12-11 | 2003-11-11 | Stephen F. Quinn | Bifurcated side-access intravascular stent graft |
US20020077594A1 (en) | 2000-12-19 | 2002-06-20 | Scimed Life Systems, Inc. | Drug delivery catheter having a highly compliant balloon with infusion holes |
US6547804B2 (en) | 2000-12-27 | 2003-04-15 | Scimed Life Systems, Inc. | Selectively permeable highly distensible occlusion balloon |
US20020169497A1 (en) | 2001-01-02 | 2002-11-14 | Petra Wholey | Endovascular stent system and method of providing aneurysm embolization |
US20020156518A1 (en) | 2001-03-23 | 2002-10-24 | Hassan Tehrani | Branched aortic arch stent graft and method of deployment |
WO2002078569A2 (en) | 2001-03-28 | 2002-10-10 | Cook Incorporated | Modular stent graft assembly and use thereof |
US20020151953A1 (en) | 2001-04-11 | 2002-10-17 | Trivascular, Inc. | Delivery system and method for bifurcated endovascular graft |
US20020151956A1 (en) | 2001-04-11 | 2002-10-17 | Trivascular, Inc. | Delivery system and method for endovascular graft |
US6761733B2 (en) | 2001-04-11 | 2004-07-13 | Trivascular, Inc. | Delivery system and method for bifurcated endovascular graft |
US6733521B2 (en) | 2001-04-11 | 2004-05-11 | Trivascular, Inc. | Delivery system and method for endovascular graft |
US20030004560A1 (en) | 2001-04-11 | 2003-01-02 | Trivascular, Inc. | Delivery system and method for bifurcated graft |
WO2002083038A2 (en) | 2001-04-11 | 2002-10-24 | Trivascular, Inc. | Delivery system and method for bifurcated graft |
US6969373B2 (en) | 2001-04-13 | 2005-11-29 | Tricardia, Llc | Syringe system |
US20020165521A1 (en) | 2001-05-04 | 2002-11-07 | Iulian Cioanta | Low thermal resistance elastic sleeves for medical device balloons |
US20020183629A1 (en) | 2001-05-31 | 2002-12-05 | Fitz Matthew Joseph | Implantable device for monitoring aneurysm sac parameters |
US20040204755A1 (en) | 2001-06-19 | 2004-10-14 | Robin Marie Therese | Devices for repairing aneurysms |
US7682383B2 (en) | 2001-06-19 | 2010-03-23 | Marie Therese Robin | Devices for repairing aneurysms |
US7105012B2 (en) | 2001-06-19 | 2006-09-12 | Eva Corporation | Positioning assembly and method of use |
WO2002102282A1 (en) | 2001-06-19 | 2002-12-27 | Vortex Innovation Limited | Devices for repairing aneurysms |
US7175651B2 (en) | 2001-07-06 | 2007-02-13 | Andrew Kerr | Stent/graft assembly |
JP2004537353A (en) | 2001-07-16 | 2004-12-16 | マイクロ ベンション インコーポレイテッド | Methods, materials and devices for preventing or preventing endoleakage following implantation of an endovascular graft |
US20030014075A1 (en) | 2001-07-16 | 2003-01-16 | Microvention, Inc. | Methods, materials and apparatus for deterring or preventing endoleaks following endovascular graft implanation |
WO2003007785A2 (en) | 2001-07-16 | 2003-01-30 | Microvention, Inc. | Methods, materials and apparatus for deterring or preventing endoleaks following endovascular graft implantation |
US20050004660A1 (en) | 2001-07-16 | 2005-01-06 | Microvention, Inc. | Methods, materials and apparatus for deterring or preventing endoleaks following endovascular graft implantation |
US20030051735A1 (en) | 2001-07-26 | 2003-03-20 | Cook Biotech Incorporated | Vessel closure member, delivery apparatus, and method of inserting the member |
US20030028209A1 (en) | 2001-07-31 | 2003-02-06 | Clifford Teoh | Expandable body cavity liner device |
WO2003032869A1 (en) | 2001-10-16 | 2003-04-24 | Scimed Life Systems, Inc. | Aortic artery aneurysm endovascular prosthesis |
JP2005505380A (en) | 2001-10-16 | 2005-02-24 | ボストン サイエンティフィック リミテッド | Endovascular prosthesis for aortic aneurysms |
US20040243057A1 (en) | 2001-10-25 | 2004-12-02 | Jakob Vinten-Johansen | Catheter for modified perfusion |
US20030093145A1 (en) | 2001-10-26 | 2003-05-15 | Cook Incorporated | Endoluminal graft |
WO2003037222A2 (en) | 2001-10-26 | 2003-05-08 | Cook Incorporated | Endoluminal graft |
US6958051B2 (en) | 2001-10-29 | 2005-10-25 | Scimed Life Systems, Inc. | Dual balloon valve control with pressure indicator |
US20070055355A1 (en) | 2001-11-26 | 2007-03-08 | Thomas J. Fogarty | Devices and methods for treatment of vascular aneurysms |
US20060292206A1 (en) | 2001-11-26 | 2006-12-28 | Kim Steven W | Devices and methods for treatment of vascular aneurysms |
US20070061005A1 (en) | 2001-11-26 | 2007-03-15 | Thomas Fogarty | Devices and methods for treatment of vascular aneurysms |
US20070050008A1 (en) | 2001-11-26 | 2007-03-01 | Thomas Fogarty | Devices and methods for treatment of vascular aneurysms |
US7828838B2 (en) | 2001-11-28 | 2010-11-09 | Aptus Endosystems, Inc. | Devices, systems, and methods for prosthesis delivery and implantation, including a prosthesis assembly |
US20040147811A1 (en) | 2001-12-14 | 2004-07-29 | Diederich Chris J | Catheter based balloon for therapy modification and positioning of tissue |
US7147661B2 (en) | 2001-12-20 | 2006-12-12 | Boston Scientific Santa Rosa Corp. | Radially expandable stent |
WO2003053288A1 (en) | 2001-12-20 | 2003-07-03 | Trivascular, Inc. | Advanced endovascular graft |
FR2834199A1 (en) | 2001-12-27 | 2003-07-04 | Doron Carmi | Endoprosthesis for use in endoluminal medium, especially for treatment of aneurysms, comprises tube surrounded by expandable annular pouch |
US7326237B2 (en) | 2002-01-08 | 2008-02-05 | Cordis Corporation | Supra-renal anchoring prosthesis |
US20030130725A1 (en) | 2002-01-08 | 2003-07-10 | Depalma Donald F. | Sealing prosthesis |
EP1325717A2 (en) | 2002-01-08 | 2003-07-09 | Cordis Corporation | Stent graft with branch leg |
US20030130720A1 (en) | 2002-01-08 | 2003-07-10 | Depalma Donald F. | Modular aneurysm repair system |
US6679300B1 (en) | 2002-01-14 | 2004-01-20 | Thermogenesis Corp. | Biological adhesive loading station and method |
US20030135269A1 (en) | 2002-01-16 | 2003-07-17 | Swanstrom Lee L. | Laparoscopic-assisted endovascular/endoluminal graft placement |
US7131991B2 (en) | 2002-04-24 | 2006-11-07 | Medtronic Vascular, Inc. | Endoluminal prosthetic assembly and extension method |
US20030204242A1 (en) | 2002-04-24 | 2003-10-30 | Zarins Christopher K. | Endoluminal prosthetic assembly and extension method |
US20030204249A1 (en) | 2002-04-25 | 2003-10-30 | Michel Letort | Endovascular stent graft and fixation cuff |
US6918926B2 (en) | 2002-04-25 | 2005-07-19 | Medtronic Vascular, Inc. | System for transrenal/intraostial fixation of endovascular prosthesis |
US20050027238A1 (en) | 2002-05-15 | 2005-02-03 | Mallinckrodt Inc. | Hydraulic remote for a medical fluid injector |
US20030225446A1 (en) | 2002-05-29 | 2003-12-04 | William A. Cook Australia Pty Ltd. | Multi-piece prosthesis deployment apparatus |
WO2003103513A1 (en) | 2002-06-11 | 2003-12-18 | Fit Biotech Oy Plc | Anastomotic device and method for open and endoscopic surgical anatomosis |
US6656220B1 (en) | 2002-06-17 | 2003-12-02 | Advanced Cardiovascular Systems, Inc. | Intravascular stent |
US6960227B2 (en) | 2002-06-24 | 2005-11-01 | Cordis Neurovascular, Inc. | Expandable stent and delivery system |
JP2005532120A (en) | 2002-07-02 | 2005-10-27 | ザ ファウンドリー インコーポレイテッド | Methods and devices for treating aneurysms |
WO2004004603A1 (en) | 2002-07-02 | 2004-01-15 | The Foundry Inc. | Methods and devices for treating aneurysms |
US20050096731A1 (en) | 2002-07-11 | 2005-05-05 | Kareen Looi | Cell seeded expandable body |
US20040016997A1 (en) | 2002-07-24 | 2004-01-29 | Mitsubishi Denki Kabushiki Kaisha | Socket for semiconductor package |
US20040082989A1 (en) | 2002-08-20 | 2004-04-29 | Cook Incorporated | Stent graft with improved proximal end |
WO2004026183A2 (en) | 2002-09-20 | 2004-04-01 | Nellix, Inc. | Stent-graft with positioning anchor |
US20080039923A1 (en) | 2002-09-20 | 2008-02-14 | Nellix, Inc. | Stent-graft with positioning anchor |
US20040116997A1 (en) | 2002-09-20 | 2004-06-17 | Taylor Charles S. | Stent-graft with positioning anchor |
US20060265043A1 (en) | 2002-09-30 | 2006-11-23 | Evgenia Mandrusov | Method and apparatus for treating vulnerable plaque |
US20040098096A1 (en) * | 2002-10-22 | 2004-05-20 | The University Of Miami | Endograft device to inhibit endoleak and migration |
WO2004037116A2 (en) | 2002-10-22 | 2004-05-06 | The University Of Miami | Endograft device to inhibit endoleak and migration |
US20040091543A1 (en) | 2002-10-23 | 2004-05-13 | Barbara Bell | Embolic compositions |
WO2004045393A2 (en) | 2002-11-20 | 2004-06-03 | Fogarty, Thomas, J. | Devices and methods for treatment of vascular aneurysms |
US20060206197A1 (en) | 2002-12-30 | 2006-09-14 | Hesham Morsi | Endovascular balloon graft |
US20040153025A1 (en) | 2003-02-03 | 2004-08-05 | Seifert Paul S. | Systems and methods of de-endothelialization |
US20060184109A1 (en) | 2003-02-10 | 2006-08-17 | Lothar Gobel | Device to be used in healing processes |
US20040193245A1 (en) | 2003-03-26 | 2004-09-30 | The Foundry, Inc. | Devices and methods for treatment of abdominal aortic aneurysm |
US20040215172A1 (en) | 2003-04-25 | 2004-10-28 | Jack Chu | In situ blood vessel and aneurysm treatment |
US20060161244A1 (en) | 2003-05-02 | 2006-07-20 | Jacques Seguin | Vascular graft and deployment system |
US20060015173A1 (en) | 2003-05-06 | 2006-01-19 | Anton Clifford | Endoprosthesis having foot extensions |
US20060095124A1 (en) | 2003-06-13 | 2006-05-04 | Stefan Benz | Suction stent |
US20050028484A1 (en) | 2003-06-20 | 2005-02-10 | Littlewood Richard W. | Method and apparatus for sleeving compressed bale materials |
US20050065592A1 (en) | 2003-09-23 | 2005-03-24 | Asher Holzer | System and method of aneurism monitoring and treatment |
US7122052B2 (en) | 2003-09-29 | 2006-10-17 | Stout Medical Group Lp | Integral support stent graft assembly |
US20050090804A1 (en) | 2003-10-22 | 2005-04-28 | Trivascular, Inc. | Endoluminal prosthesis endoleak management |
US20050215989A1 (en) | 2004-03-23 | 2005-09-29 | Cryocath Technologies Inc. | Method and apparatus for inflating and deflating balloon catheters |
US20050245891A1 (en) | 2004-04-13 | 2005-11-03 | Mccormick Paul | Method and apparatus for decompressing aneurysms |
JP2008510502A (en) | 2004-07-22 | 2008-04-10 | ネリックス・インコーポレーテッド | Methods and systems for endovascular aneurysm treatment |
US20120046684A1 (en) | 2004-07-22 | 2012-02-23 | Endologix, Inc. | Graft Systems Having Filling Structures Supported by Scaffolds and Methods for Their Use |
US20060212112A1 (en) * | 2004-07-22 | 2006-09-21 | Nellix, Inc. | Graft systems having filling structures supported by scaffolds and methods for their use |
WO2006012567A2 (en) | 2004-07-22 | 2006-02-02 | Nellix, Inc. | Methods and systems for endovascular aneurysm treatment |
US20090198267A1 (en) | 2004-07-22 | 2009-08-06 | Nellix, Inc. | Methods and systems for endovascular aneurysm treatment |
US7530988B2 (en) | 2004-07-22 | 2009-05-12 | Nellix, Inc. | Methods and systems for endovascular aneurysm treatment |
US20060025853A1 (en) * | 2004-07-22 | 2006-02-02 | Nellix, Inc. | Methods and systems for endovascular aneurysm treatment |
US20060142836A1 (en) | 2004-09-28 | 2006-06-29 | William A. Cook Australia Pty. Ltd. | Device for treating aortic dissection |
US20060074481A1 (en) | 2004-10-04 | 2006-04-06 | Gil Vardi | Graft including expandable cuff |
US20060135942A1 (en) | 2004-10-28 | 2006-06-22 | Medtronic Vascular, Inc. | Methods and Devices to Deliver Injected Agents to an Aneurysm Site |
US20070032850A1 (en) | 2004-12-16 | 2007-02-08 | Carlos Ruiz | Separable sheath and method for insertion of a medical device into a bodily vessel using a separable sheath |
US7708773B2 (en) | 2005-01-21 | 2010-05-04 | Gen4 Llc | Modular stent graft employing bifurcated graft and leg locking stent elements |
US20070208416A1 (en) | 2005-04-04 | 2007-09-06 | Janet Burpee | Flexible stent |
WO2006116725A2 (en) | 2005-04-28 | 2006-11-02 | Nellix, Inc. | Graft systems having filling structures supported by scaffolds and methods for their use |
WO2007008600A2 (en) | 2005-07-07 | 2007-01-18 | Nellix, Inc. | Systems and methods for endovascular aneurysm treatment |
EP1903985A2 (en) | 2005-07-07 | 2008-04-02 | Nellix, Inc. | Systems and methods for endovascular aneurysm treatment |
US20100106087A1 (en) | 2005-07-07 | 2010-04-29 | Nellix, Inc. | System and methods for endovascular aneurysm treatment |
US7666220B2 (en) | 2005-07-07 | 2010-02-23 | Nellix, Inc. | System and methods for endovascular aneurysm treatment |
US20070043420A1 (en) | 2005-08-17 | 2007-02-22 | Medtronic Vascular, Inc. | Apparatus and method for stent-graft release using a cap |
US20070150041A1 (en) | 2005-12-22 | 2007-06-28 | Nellix, Inc. | Methods and systems for aneurysm treatment using filling structures |
US20070162109A1 (en) | 2006-01-11 | 2007-07-12 | Luis Davila | Intraluminal stent graft |
US20070276477A1 (en) * | 2006-05-24 | 2007-11-29 | Nellix, Inc. | Material for creating multi-layered films and methods for making the same |
US8133559B2 (en) | 2006-05-24 | 2012-03-13 | Endologix, Inc. | Material for creating multi-layered films and methods for making the same |
US7951448B2 (en) | 2006-05-24 | 2011-05-31 | Nellix, Inc. | Material for creating multi-layered films and methods for making the same |
US7790273B2 (en) | 2006-05-24 | 2010-09-07 | Nellix, Inc. | Material for creating multi-layered films and methods for making the same |
WO2007142916A2 (en) | 2006-05-30 | 2007-12-13 | Incept, Llc | Materials formable in situ within a medical device |
US20080154368A1 (en) | 2006-12-21 | 2008-06-26 | Warsaw Orthopedic, Inc. | Curable orthopedic implant devices configured to harden after placement in vivo by application of a cure-initiating energy before insertion |
US20080228259A1 (en) | 2007-03-16 | 2008-09-18 | Jack Fa-De Chu | Endovascular devices and methods to protect aneurysmal wall |
US20080294237A1 (en) | 2007-04-04 | 2008-11-27 | Jack Fa-De Chu | Inflatable devices and methods to protect aneurysmal wall |
US20090099649A1 (en) | 2007-10-04 | 2009-04-16 | Chobotov Michael V | Modular vascular graft for low profile percutaneous delivery |
US20100004728A1 (en) | 2008-02-13 | 2010-01-07 | Nellix, Inc. | Graft endoframe having axially variable characteristics |
US20090209855A1 (en) | 2008-02-19 | 2009-08-20 | Aga Medical Corporation | Medical devices for treating a target site and associated method |
US20100036360A1 (en) | 2008-04-25 | 2010-02-11 | Nellix, Inc. | Stent graft delivery system |
US20120016456A1 (en) | 2008-04-25 | 2012-01-19 | Endologix, Inc. | Stent Graft Delivery System |
US20090318949A1 (en) | 2008-06-04 | 2009-12-24 | Nellix, Inc. | Sealing apparatus and methods of use |
US20090319029A1 (en) | 2008-06-04 | 2009-12-24 | Nellix, Inc. | Docking apparatus and methods of use |
US20120184982A1 (en) | 2011-01-19 | 2012-07-19 | Endologix, Inc. | Methods and Systems for Treating Aneurysms |
US8801768B2 (en) | 2011-01-21 | 2014-08-12 | Endologix, Inc. | Graft systems having semi-permeable filling structures and methods for their use |
US20120259406A1 (en) | 2011-04-06 | 2012-10-11 | Stefan Schreck | Method and system for treating aneurysms |
US20140277385A1 (en) | 2013-03-14 | 2014-09-18 | Endologix, Inc. | Method for forming materials in situ within a medical device |
Non-Patent Citations (59)
Title |
---|
Carmi et al., "Endovascular stent-graft adapted to the endoluminal environment: prototype of a new endoluminal approach," J Endovasc Ther. Jun. 2002;9(3):380-381. |
Chinese Application No. 201080065043.8, Notice of Grant for Invention, dated Apr. 25, 2016, 4 pages. |
Donayre et al., :Fillable Endovascular Aneurysm Repair: An Early Look at a Next Generation EVAR Technology That May Address Some Current Limitations and Improve Clinical Outcomes, Endovascular Today, 64-66 (Jan. 2009). |
EP report, dated Nov. 7, 2013, of corresponding EP Application No. 09733719.0. |
European Office Action dated Aug. 8, 2018, from application No. 10841580.3. |
European Search Report and Search Opinion of EP Patent Application No. 06774540.6, dated Mar. 30, 2010, 6 pages total. |
Examination Report of corresponding Japanese Application No. 2011-512667, dated Jun. 18, 2013. |
Examination report of EP Application No. 06751879.5, dated Mar. 24, 2014, 5 pages. |
Examination Report of European App. 0375880.7, dated Feb. 22, 2013. |
Examination Report of European Application No. 03754880.7, dated Jun. 29, 2012, 4 pages. |
Examination Report of European Patent Application 03754880.7, dated Dec. 16, 2010. |
Examination Report of European Patent Application 03754880.7, dated Dec. 22, 2011. |
Examination Report of Japanese Patent Application No. 2007/522822, dated Feb. 8, 2011. |
Examination Report of Japanese Patent Application No. 2008-5477019, dated Jul. 22, 2013. |
Examination Report of Japanese Patent Application No. 2011-506487, dated Jun. 11, 2013. |
Examination Report of Japanese Patent Application No. 2011-506487, dated May 7, 2014. |
Examiniation report for JP Application No. 2008-547709 dated Dec. 13, 2011. |
Extended European Search Report of Application No. 11180827.5, dated Jan. 30, 2012, 6 pages. |
Extended European search report of corresponding EP Application No. 06751879.5, dated Apr. 16, 2013, 9 pages. |
First Office Action of Chinese Application No. 201080065043.8, dated Aug. 1, 2014 (22 pages). |
Gilling-Smith, "Stent Graft Migration After Endovascular Aneurysm Repair," presented at 25th International Charing Cross Symposium, Apr. 13, 2003 [Power Point Presentation and Transcript], 56 pages total. |
International Preliminary Report on Patentability and Written Opinion of The International Searching Authority, Issued in PCT/US2010/061621 dated Jul. 12, 2012, 7 pages. |
International Preliminary Report on Patentability PCT/US2012/021878 dated Aug. 1, 2013. |
International Search Report and the Written Opinion of the International Searching Authority, Issued in PCT/US2012/032612 dated Jul. 25,2012, 13 pages. |
International Search Report and Written Opinion of PCT Application No. PCT /US2009/046308, dated Nov. 17, 2009, 12 pages total. |
International Search Report and Written Opinion of PCT Application No. PCT/US07/69671, dated Jul. 7, 2008, 9 paces. |
International Search Report and Written Opinion of PCT Application No. PCT/US09/34136, D dated Apr. 8, 2009, 16 pages total. |
International Search Report and Written Opinion of PCT Application No. PCT/US2006/062257, dated Jan. 18, 2008. 7 pages total. |
International Search Report and Written Opinion of PCT Application No. PCT/US2009/046310, dated Jul. 29, 2009, 9 pages total. |
International Search Report and Written Opinion of Pot Application No. PCT/US09/41718, dated Jun. 22, 2009, 23 pages total. |
International Search Report of PCT/US 06/16403, dated Aug. 7, 2007. 2 pages. |
International Search Report of the International Searching Authority for Application No. PCT/US2012/021878, dated May 23, 2012, 4 pges. |
Japanese Office Action dated Dec. 5, 2017, from application No. 2012-547147. |
Journal of Endovascular Therapy; Apr. 2000; pp. 111, 114, 132-140; vol. 7' No. 2; International Society of Endovascular Specialists; Phoenix, AZ. |
Notice of Reason for Refusal of Japanese Application No. 2012-547147, dated Sep. 8, 2015 (5 pages). |
Notice of Reason of Refusal of Japanese Application No. 2012-547147, dated Sep. 16, 2014, 5 pages. |
Official Action for Japanese Patent Application No. 2008-547709, dated Oct. 30, 2012. |
Patrick W. Serruys and Michael JB Kutryk; Handbook of Coronary Stents, Second Edition; 1998; pp. 45, 55, 78, 103, 112, 132, 158, 174, 185, 190, 207, 215, 230, 239; Martin Dunitz; UK. |
PCT International Search Report and Written Opinion dated Feb. 28, 2011 for PCT Application No. PCT/US2010/61621. |
Report of European Patent Application No. 06850439.8 dated May 15, 2013. |
Search report dated Oct. 17, 2013 of corresponding PCT/US2012/032612. |
Search report of corresponding PCT/US2014/021928, dated May 20, 2014, 8 pages. |
Second Office Action of Chinese Application No. 201080065043.8, dated May 5, 2015 (16 pages). |
Shan-e-ali Haider et al. Sac behavior after aneurysm treatment with the Gore Excluder low-permeability aortic endoprosthesis: 12-month comparison to the original Excluder de-vice. Journal of Vascular Surgery. vol. 44, No. 4. 694-700. Oct. 2006. |
Supplementary European Search Report and Search Opinion of EP Patent Application No. 05773726, dated Apr. 23, 2010, 6 pages total. |
Susan M. Trocciola et al. The development of ertdotension is associated with increased transmission of pressure and serous components in porous expanded polytetrafluoroethyiene stent-grads: Characterization using a canine model. Journal of Vascular Surgery Jan. 2006, p. 109-116. |
U.S. Appl. No. 12/371,087, filed Feb. 13, 2009, first named inventor: K.T. Venkateswara Rao. |
U.S. Appl. No. 60/855,889, filed Oct. 31, 2016; first named inventor: Steven L. Herbowy. |
U.S. Appl. No. 61/052,059, filed May 9, 2008; first named inventor: Gwendolym A. Watanabe. |
U.S. Appl. No. 61/052,059, filed May 9, 2008; first named inventor: Gwendolyn A. Watanabe. |
U.S. Final Office Action dated Aug. 19, 2013, from U.S. Appl. No. 12/966,852. |
U.S. Final Office Action dated Dec. 10, 2015, from U.S. Appl. No. 12/966,852. |
U.S. Final Office Action dated Dec. 17, 2014, from U.S. Appl. No. 12/966,852. |
U.S. Non-final Office Action dated Jun. 19, 2015, from U.S. Appl. No. 12/966,852. |
U.S. Non-final Office Action dated Mar. 14, 2014, from U.S. Appl. No. 12/966,852. |
U.S. Non-final Office Action dated Oct. 4, 2012, from U.S. Appl. No. 12/966,852. |
US 5,824,035 A, 10/1998, Lauterjung (withdrawn) |
William Tanski, Mark Fillinger. Outcomes of original and low-permeability Gore Excluder endoprosthesis for endovascular abdominal aortic aneurysm repair. Journal of Vascular Surgery, Feb. 2007. p. 243-249. |
Written Opinion, including the search, of the International Searching Authority for Application No. PCT/US2012/021878, dated May 23, 2012, 9 pages. |
Also Published As
Publication number | Publication date |
---|---|
CN102946825A (en) | 2013-02-27 |
JP6408198B2 (en) | 2018-10-17 |
WO2011082040A1 (en) | 2011-07-07 |
US20190231515A1 (en) | 2019-08-01 |
EP2519191A1 (en) | 2012-11-07 |
JP2013516232A (en) | 2013-05-13 |
EP2519191A4 (en) | 2016-03-02 |
EP2519191B1 (en) | 2019-07-24 |
CN102946825B (en) | 2016-08-10 |
US20110276078A1 (en) | 2011-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11638638B2 (en) | Filling structure for a graft system and methods of use | |
US20210369438A1 (en) | Sealing apparatus and methods of use | |
US11957608B2 (en) | Graft systems having filling structures supported by scaffolds and methods for their use | |
US11497597B2 (en) | Modular stent graft systems and methods with inflatable fill structures | |
JP5070373B2 (en) | Graft system having a filling structure supported by a framework and method of use thereof | |
US7530988B2 (en) | Methods and systems for endovascular aneurysm treatment | |
CN102076282A (en) | Docking apparatus and methods of use | |
US20100004728A1 (en) | Graft endoframe having axially variable characteristics | |
US20040098096A1 (en) | Endograft device to inhibit endoleak and migration | |
JP2024009911A (en) | Systems and methods with stent and filling structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ENDOLOGIX, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RAO, K.T. VENKATESWARA;GANPATH, RAJ P.;LEE, AMY;AND OTHERS;SIGNING DATES FROM 20110627 TO 20120714;REEL/FRAME:048865/0586 Owner name: NELLIX, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RAO, K.T. VENKATESWARA;GANPATH, RAJ P.;LEE, AMY;AND OTHERS;SIGNING DATES FROM 20110627 TO 20120714;REEL/FRAME:048865/0586 Owner name: ENDOLOGIX, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NELLIX, INC.;REEL/FRAME:048865/0602 Effective date: 20120714 |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: DEERFIELD PRIVATE DESIGN FUND IV, L.P., AS AGENT, NEW YORK Free format text: SECURITY INTEREST;ASSIGNORS:ENDOLOGIX, INC.;NELLIX, INC.;TRIVASCULAR, INC.;REEL/FRAME:049297/0155 Effective date: 20190528 Owner name: DEERFIELD PRIVATE DESIGN FUND IV, L.P., AS AGENT, Free format text: SECURITY INTEREST;ASSIGNORS:ENDOLOGIX, INC.;NELLIX, INC.;TRIVASCULAR, INC.;REEL/FRAME:049297/0155 Effective date: 20190528 Owner name: DEERFIELD ELGX REVOLVER, LLC, AS AGENT, NEW YORK Free format text: SECURITY INTEREST;ASSIGNORS:ENDOLOGIX, INC.;NELLIX, INC.;TRIVASCULAR, INC.;REEL/FRAME:049297/0123 Effective date: 20190528 |
|
AS | Assignment |
Owner name: WILMINGTON TRUST, NATIONAL ASSOCIATION, MINNESOTA Free format text: SECURITY INTEREST;ASSIGNOR:ENDOLOGIX, INC.;REEL/FRAME:052918/0530 Effective date: 20200224 |
|
AS | Assignment |
Owner name: DEERFIELD PRIVATE DESIGN FUND IV, L.P., NEW YORK Free format text: SECURITY INTEREST;ASSIGNORS:ENDOLOGIX LLC (F/K/A ENDOLOGIX, INC.);NELLIX, INC.;TRIVASCULAR TECHNOLOGIES, INC.;AND OTHERS;REEL/FRAME:053971/0052 Effective date: 20201001 Owner name: ENDOLOGIX LLC, CALIFORNIA Free format text: CHANGE OF NAME;ASSIGNOR:ENDOLOGIX, INC.;REEL/FRAME:053971/0135 Effective date: 20201001 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
AS | Assignment |
Owner name: SILICON VALLEY BANK, CALIFORNIA Free format text: SECURITY INTEREST;ASSIGNOR:ENDOLOGIX LLC;REEL/FRAME:055794/0911 Effective date: 20210330 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |