US10632573B2 - Wind turbine blade and related method of manufacture - Google Patents

Wind turbine blade and related method of manufacture Download PDF

Info

Publication number
US10632573B2
US10632573B2 US14/122,695 US201214122695A US10632573B2 US 10632573 B2 US10632573 B2 US 10632573B2 US 201214122695 A US201214122695 A US 201214122695A US 10632573 B2 US10632573 B2 US 10632573B2
Authority
US
United States
Prior art keywords
heating element
wind turbine
planar surface
rotor blade
turbine rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US14/122,695
Other versions
US20140086748A1 (en
Inventor
Esa Peltola
Pauli Vuomajoki
Tomas Wallenius
Raimo Huuhtanen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WICETEC Oy
Original Assignee
WICETEC Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WICETEC Oy filed Critical WICETEC Oy
Publication of US20140086748A1 publication Critical patent/US20140086748A1/en
Assigned to TEKNOLOGIAN TUTKIMUSKESKUS VTT reassignment TEKNOLOGIAN TUTKIMUSKESKUS VTT ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HUUHTANEN, RAIMO, PELTOLA, ESA, VUOMAJOKI, PAULI, WALLENIUS, TOMAS
Assigned to TEKNOLOGIAN TUTKIMUSKESKUS VTT OY reassignment TEKNOLOGIAN TUTKIMUSKESKUS VTT OY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TEKNOLOGIAN TUTKIMUSKESKUS VTT
Assigned to WICETEC OY reassignment WICETEC OY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TEKNOLOGIAN TUTKIMUSKESKUS VTT OY
Application granted granted Critical
Publication of US10632573B2 publication Critical patent/US10632573B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0675Rotors characterised by their construction elements of the blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/04Making specific metal objects by operations not covered by a single other subclass or a group in this subclass turbine or like blades from several pieces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/40Ice detection; De-icing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2280/00Materials; Properties thereof
    • F05B2280/20Inorganic materials, e.g. non-metallic materials
    • F05B2280/2006Carbon, e.g. graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • Y02E10/721
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • Y02P70/523
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/49336Blade making
    • Y10T29/49337Composite blade

Definitions

  • the present invention pertains to wind turbines.
  • the invention is related to icing prevention and icing reduction of wind turbine blades by heating.
  • Atmospheric icing takes place when water droplets in the atmosphere freeze on a contacted object.
  • the ice may increase the risk of stalling of the airfoil.
  • the ice built-up should be detected as early and reliably as possible.
  • an electromechanical probe with an oscillating (vibrating) sensing element may be provided on the nose of the aircraft, whereupon the ice accreted thereon causes changes in the oscillation frequency depending on the thickness of the ice layer. The oscillation frequency is monitored for estimating the amount of ice.
  • the wind turbines of wind farms may be heavily affected by ice on the rotor blades.
  • the blades may crack and the production efficiency may drastically decrease.
  • the overall wear of the turbine may also increase due to mass and aerodynamic imbalances and resulting friction caused by the ice.
  • Introduction of the aforesaid oscillating probe into the nacelle of a wind turbine has been suggested, so has been the use of various capacitance-, impedance-, and inductance-based detectors requiring the addition of specific sensors on the rotor blades.
  • different optical sensors monitoring the ice accumulated on a sensor surface based on e.g. changes on light reflection from the surface have been set forth.
  • Heating may be implemented via blowing hot air or other gas, funneling heated wires, other elements or e.g. liquid, a liquid circulation system, to the target area(s).
  • the target areas may include ice-repellant coating such as silicon paint, for example.
  • the required heating capacity may be about 10 kW/m 2 in magnitude. If the connection between the target surface to be heated and the applied heating element is inadequate and fails, both the surface and the element may be damaged due to overheating.
  • the objective is to alleviate one or more problems described hereinabove not yet satisfactorily addressed by the current heating arrangements, and to provide a feasible alternative for heating a target surface, such as the surface of a rotor blade, aeroplane wing, or some other vulnerable, ice-sensitive surface potentially still exposed to icing conditions.
  • the objective is achieved by the embodiments of a blade suitable for use with a rotor of a wind turbine and a related method of manufacture in accordance with the present invention.
  • a blade for a rotor of a wind turbine comprises
  • conductor elements and optionally also joint structures Preferably there are at least two aforesaid conductor elements and optionally also joint structures, one of both at each end of the heating element to enable current flow through the element and related heating.
  • conductor and/or joint structures with different configuration may be applied, e.g. at each end, in addition to the preferred conductor element and/or joint structure, respectively.
  • the joint element forming or being at least included in the joint structure may be a multi-portion element defining e.g. two layers, one for each side of the heating element. At least two of the portions may be connected together.
  • the joint element may thus be a unitary element such as a ‘u’-shaped element with two or more integral portions like the ‘u’-halves, or multiple joint elements such as layers separated by intermediate material(s) may be utilized in the joint structure.
  • a joint element or a plurality of them may further define at least four layers, two on each side of the heating element preferably conductor element portions in between.
  • the joint element may be bent so as to extend along the both sides of the conductor element and/or the heating element.
  • the heating element may indeed be substantially planar and bear e.g. substantially rectangular or elliptical shape. It may be a sheet or sheet-like. Additionally or alternatively, it may be a composite, or “aggregate”, element comprising multiple portions located in series along the blade length and/or width. The portions may be electrically coupled together via conductors in between.
  • the heating element may comprise multiple portions such as layers with potentially different characteristics such as materials and/or material ingredient orientation.
  • the layers may have been laminated together.
  • a portion of the conductor element may extend between the layers.
  • the heating element includes electrically conductive material such as suitable carbon fiber or graphite fiber.
  • the heating element may be located closer to the tip than the root portion of the blade.
  • the heating element may be curved along the tip and substantially follow the shape thereof.
  • the bent heating element may extend from the leading edge to the trailing edge and/or from the suction side to the pressure side of the blade.
  • the heating element may have at least one tapered end.
  • the heating element may narrow towards the tip, for example.
  • the conductor element may be elongated or at least comprise an elongated portion. It may include a strip or wire, e.g. cylindrical string, configuration.
  • the conductor element may include a split portion with a node and at least two branches to enable disposing the element on both sides (top/bottom) of the heating element.
  • a branch may be located on one side and at least other branch on the opposite side.
  • the element may include a plurality of separate sub-elements such as conductor wires that may be independently directed to either side of the heating element.
  • the element may also include a cable or other aggregate structure that collectively hosts such as funnels and insulates a number of sub-elements such as stranded conductors outside the junction area with a common jacket, for instance.
  • the conductor element such as a single wire, may be bent so as to extend over the heating element on both sides thereof.
  • a bend may include a substantially semi-circular bend or an acute fold, for example.
  • the conductor element may be both split and bent.
  • the element may comprise a node dividing into two branch portions that are then bent to reciprocate on either or both sides of the heating element.
  • two or more elements of the blade may be constructed, connected, fixed and/or layered by lamination. Adhesive may be optionally applied.
  • the heating element may consist of or at least comprise a number of layers of optionally woven carbon-based material such as carbon fabric further optionally provided with filler material.
  • optionally woven carbon-based material such as carbon fabric further optionally provided with filler material.
  • multi-axial such as bi-axial carbon fabric of multiple layers may be utilized.
  • a method for constructing a blade for a rotor of a wind turbine comprises
  • a further material layer is provided on top of the elements, said further material layer optionally including glass fiber.
  • the further layer may provide insulation and/or protection to the underlying elements in addition to potential aesthetic effect. Also the airfoil of the blade may be optimized and thus the efficiency of the blade elevated therewith.
  • the electrical coupling between the conductor and the heating element may be secured along the whole width of the heating element by the applied configuration of the conductor itself and the aforementioned joint structure, which elevates the heating efficiency, provides uniform heating and minimizes the risks of short cuts or contact breaks. Accordingly, the blade may be prevented from ice deposition thereon or the already-accreted ice may be melted and removed. A desired temperature of the blade may be achieved and maintained. Further, the suggested solution enables keeping the blade thin and light. Yet, manufacturing thereof remains relatively simple and fast.
  • a number of refers herein to any positive integer starting from one (1), e.g. to one, two, or three.
  • a plurality of refers herein to any positive integer starting from two (2), e.g. to two, three, or four.
  • FIG. 1 a illustrates a use scenario of an embodiment of the present invention in a wind turbine context.
  • FIG. 1 b illustrates different embodiments of the blade structure and related elements in accordance with the present invention.
  • FIG. 2 a illustrates an embodiment of the blade structure with particular emphasis on coupling between the electrical conductor element and the heating element at one end of the latter.
  • FIG. 2 b illustrates a cross-section of another embodiment of the blade.
  • FIG. 2 c illustrates a cross-section of a further embodiment of the blade.
  • FIG. 3 is a flow diagram of an embodiment of a method in accordance with the present invention.
  • FIG. 1 a depicts a scenario wherein an embodiment of the present invention may be applied.
  • a wind farm may include a number of wind turbines 101 each comprising a tower 106 , a nacelle 102 and rotor hub with a number of blades 104 a , 104 b , and 104 c .
  • a blade 104 a , 104 b , 104 c may substantially comprise a root portion with e.g. a cylindrically shaped cross section to connect the blade to the hub, and an airfoil portion with aerodynamically shaped cross section.
  • the airfoil portion may comprise a suction side and a pressure side connected at the leading and trailing edges thereof.
  • FIG. 1 b illustrates different embodiments of the blade and associated elements.
  • the blade 108 a merely exemplary cross-sectional sketch of which is shown in the figure, is provided with an elongated heating element 110 that may generally bear a planar, rectangular shape, for instance.
  • the heating element 110 substantially extends at least along the leading edge 108 a of the blade 108 over a distance that is at least 60% of the length of the blade 108 to provide even heating thereto. It is visible in the figure how only the minimal tip portion of the blade lack heating element in the illustrated embodiment. Preferably, the tip is thus heated by the suggested solution as well.
  • the heating element 110 is located closer to the tip end 108 c than the root end as the tip 108 c may be more prone to icing.
  • the tip 108 c may be more prone to icing.
  • symmetrical positioning or other alternatives may be applied depending on the embodiment.
  • the heating element 110 has a tapered end. It may, in particular, narrow towards the tip 108 c . Accordingly, heat dissipation near the tip 108 c may be enhanced, which is preferred as the heat demand can be greater there due to increased convective cooling induced by higher local speeds. Less heating may be required at the root end.
  • the heating element may advantageously cover the area of the blade that is responsible for most power generation. Namely, towards the root the contribution to the power generation may decrease and also the blade may become less prone to icing because of the geometric effect (airfoil is typically thicker) and aerodynamic effect (convective cooling is typically lower). Thus, the root end of the blade 108 may, in many scenarios, left unprotected or protected less effectively from icing.
  • the heating element 110 may be located closer to a desired predetermined side of the blade 108 surface, e.g. ‘suction’ surface or ‘pressure’ surface, in relation to the thickness of the blade 108 .
  • the surfaces may be flat, curved or segmented, for instance.
  • the heating element 110 may be located symmetrically, e.g. into the centre of, relative to the two or more surfaces of the blade 108 .
  • dedicated heating elements may be provided for multiple, such as suction and pressure, surfaces.
  • the heating element 110 is located closer to the leading edge 108 a than the trailing edge 108 b of the blade 108 .
  • the heating element may be located symmetrically, e.g. halfway, relative to the leading and trailing edges.
  • the heating element 110 may comprise fiber such as carbon fiber. It may include fiber-reinforced polymer, for instance, selected such that the desired heat and electrical conductivity figures are achieved.
  • the heating element 110 may be electrically connected to the power supply not shown in the figure via a number of electrical conductor elements 112 a , 112 b provided at least partially within the blade 108 and joints 114 a , 114 b preferably positioned at the ends of the elongated heating element 108 and more preferably also on both sides of the heating element, e.g. the side facing the viewer of the figure and the opposite side.
  • the end of the heating element may generally refer to a portion that preferably covers less than about 20%, more preferably less than about 10%, and most preferably less than about 5% of the overall length thereof.
  • an embodiment of the heating element is shown where the element comprises, in longitudinal direction, at least two different portions joined together. Alternatively or additionally, also in lateral direction (width) the element could comprise multiple joined portions.
  • the portions may comprise different materials, material orientations and/or different dimensions. Accordingly, the properties of the portions, such as thermal and/or electrical conductivity, may mutually differ.
  • an embodiment of the heating element comprises two portions preferably connected together by the electrical conductors. Alternatively, the portions could be connected independently to the power source or some intermediate element, for instance.
  • an embodiment of the heating element comprises a material (central) portion embedded in the surrounding material. The embedded material may have different thermal and/or electrical conductivity than the surrounding material, for instance.
  • an embodiment of the heating element comprises a curved, or generally tapered, end.
  • an embodiment of the heating element comprises a tapered end having a contour shape defined by a piece-wise linear curve.
  • an embodiment of the heating element comprises a substantially planar material layer.
  • an embodiment of the heating element comprises multiple overlapping such as stacked material layers 134 , 136 relative to the element thickness.
  • FIG. 2 a illustrates, not in scale, an embodiment of the blade structure 201 and related electrical coupling to the power source.
  • the heating element 208 is shown. It is located on the blade body element 218 and the dotted lines depict the non-visualized part thereof extending to the direction of the associated longitudinal axis.
  • a number of electrical conductor elements 212 may be situated along the both surfaces of the heating element 208 that is located in a predetermined position of the carrier material forming at least a part of the blade body 218 .
  • two conductors have been bent around the element 208 to substantially form at least one turn to the end thereof in lateral (width) direction. The fold may be sharp, for example.
  • the loop formed by the conductor element 212 may be closed comprising a node point, or it may be open (a hook-like).
  • a joint element 214 such as a strip, has been bent so as to extend along both sides of the conductor element and the heating element.
  • the joint element 214 has a u-shaped form in the figure for illustrating this fact. In real-life scenarios the bend may also be relatively sharp-cornered.
  • one or more joint elements 214 may comprise multiple, potentially at least initially separate, portions such as a top portion and bottom portion that may be independently positioned on each surface of the heating element 208 so as to cover the conductor 212 sandwiched in between. At least two ends of the portions may be configured to contact, optionally overlap, each other after the disposition.
  • a functional layer such as a protective and optionally airfoil-optimizing layer 216 has been provided on top of the constructed sandwich structure.
  • the layer 216 may cover the whole blade 201 or just selected portions, such as the joint portions, thereof. Further functional and/or aesthetic layers may be provided thereon.
  • FIG. 2 b illustrates a cross-section of another embodiment of the blade.
  • the heating element 208 a comprises a plurality of portions such as layers. It may comprise e.g. bi-axial carbon fabric.
  • the shown conductor element 212 a located at one end of the blade, such as tip end or root end, comprises a node splitting it into multiple, essentially three, branches.
  • the middle branch extends between or within two portions, such as layers, of the heating element 208 a .
  • a branch may generally extend on one side and another branch on the opposite side of the heating element 208 a or a portion such as a layer thereof.
  • joint elements 214 extend over the outmost branches of the conductor element 212 a . These might alternatively bear joined ends (not shown in the figure) to form a unitary joint element with e.g. loop or u-shaped cross-section.
  • FIG. 2 c illustrates a cross-section of a further embodiment of the blade.
  • the heating element 208 b may be placed substantially in the middle of the stacked overall structure formed on the blade body element 218 .
  • the conductor element 212 b includes a node dividing it into two branches. Each branch is directed to a dedicated side of the heating element 208 b . Further, each branch is configured, such as bent, so as to extend over the width of the heating element 208 b multiple, in the embodiment of the figure essentially two, times. At least one branch of the conductor element 212 b could be joined back to the node (not shown in the figure) or other portion of the element to form a loop.
  • a plurality of joint element layers 214 essentially two layers on both sides of the heating element 208 b , have been provided. Portion of the conductor element 212 b is configured to reside between the two layers 214 on each side. At least two joint element layers 214 might be mutually connected at the ends (not shown in the figure) to form e.g. a u-shape.
  • FIG. 3 discloses, by way of example only, a method flow diagram in accordance with an embodiment of the present invention.
  • different start-up materials and elements may be manufactured, obtained and prepared. For instance, blade materials, power cables, signal cables, heating element materials, joint element materials etc. may be obtained and configured.
  • the blade body element may include glass fiber, for example, in particular e.g. glass fiber reinforced plastics such as polyester or epoxy. It may contain several pieces such as two halves that are to be joined together. The blade body element may resemble the final blade or e.g. blade half in size and/or shape. Likewise, multiple, such as two, body elements may be joined together to construct the basic shape of the blade. Different additional elements, such as signal cables, sensors and also electrical power cables applied for heating, may be provided and optionally fixed such as glued to the blade body element acting as a carrier thereto. Additional elements may be embedded in the body material.
  • glass fiber for example, in particular e.g. glass fiber reinforced plastics such as polyester or epoxy. It may contain several pieces such as two halves that are to be joined together. The blade body element may resemble the final blade or e.g. blade half in size and/or shape. Likewise, multiple, such as two, body elements may be joined together to construct the basic shape of the blade. Different additional elements, such as signal cables, sensors and also electrical power
  • At 306 at least one heating element is obtained and optionally positioned already at this stage to the blade body element.
  • a strip of suitable material such as carbon fiber sheet may be cut and provided onto the blade body element, for instance.
  • the heating element may be positioned so as to cover predetermined portion of a selected side of the blade body element corresponding to e.g. suction or pressure side of the finished blade.
  • the heating element may at least partially cover at least one edge of the blade body element such as the edge substantially forming or being at least parallel to the leading edge of the blade.
  • the heating element is positioned closer to the leading edge than the trailing edge unless e.g. more centered positioning is applied. Centering may be applied relative to the nose of the airfoil and/or between the leading and trailing edges, for example.
  • the heating element may, in some embodiments, extend longitudinally substantially along at least the leading edge of the blade preferably at least about 60% of the length of the blade, more preferably at least about 70% and most preferably at least about 80% or 90% respectively to advantageously provide tip-biased heating or even heating thereto.
  • the extent of the heating element may be smaller.
  • the body element surface receiving the heating element may be first cleaned using e.g. acetone. Suitable resin may be provided on the body element and the heating element such as carbon fiber-including sheet may be then rolled or otherwise provided on top of it. The locations of the joints preferably at the ends of the heating element may be left loose at this stage to facilitate subsequent joint construction wherein conductor and joint element material are preferably configured to extend also between the body element and the heating element.
  • a number of electrical power supplying conductor elements are located preferably at the ends of the elongated heating element, the conductor element substantially extending over the width of the heating element on at least two sides thereof and electrically coupling thereto.
  • the conductor elements may be fixed by suitable resin.
  • the conductor elements are at least electrically coupled to the power source and may form the internals of power cabling installed at the blades, or be at least connected thereto.
  • An electrically conducting joint structure incorporating a number of joint elements and substantially covering the portions of the electrical conductor element that extend over the width of the elongated heating element on both sides thereof is also provided.
  • a plurality of joint elements may be initially provided and at least some of them be optionally connected together during the formation of the joints depending on the embodiment of the joint structure as contemplated hereinbefore.
  • the ends of the heating element may have been initially left loose relative to the body element during item 306 as mentioned above so that joint and conductor elements may be now positioned between them.
  • the loose end of the heating element or at least the lowermost layer thereof may be fixed to the underlying aggregate structure of body, conductor and joint elements, and the remaining layers of the conductor, joint and optionally also the heating element (the end of which may be optionally bent over) may be provided on top.
  • Suitable resin shall be applied in the procedure.
  • the electrical joints may be formed in the heating element prior to positioning it to the final location upon the body element, i.e. a number of conductor elements and joint elements may be located first to the heating element after which the aggregate entity is located to the body element and fixed thereto.
  • the laminated areas may be hardened applying e.g. a vacuum bag inducing pressure and heating blanket inducing heat thereto.
  • a suitable hardening time and temperature certainly depends on the embodiment and used materials and their amounts, but e.g. several hours and an elevated temperature of about 70 degrees centigrade may be necessary in some scenarios.
  • further layer(s) containing e.g. glass fiber may be provided to at least partially cover the body element/heating element/joint-aggregate.
  • the protective glass fiber or alternative layer is disposed such as laminated on the heating element prior to curing the heating element.
  • sensors such as heat sensors may be connected to the structure with necessary wiring (if any as also wireless sensors may be applied).
  • a blade may include a plurality of heating elements to heat multiple sides (e.g. suction and pressure) and/or edges such as leading and trailing edges thereof.
  • the heating elements of the different sides may even overlap at the leading edge.
  • the target surface to be heated could relate to a windmill, a wind pump, an airplane wing, a missile wing, etc.
  • the target object to be heated with at least one heating element as disclosed herein supplemented by an instance of the suggested electrical conductor element and joint structure substantially at both ends of the heating element.
  • the conductor and/or joint arrangements could also differ between the ends.
  • a conductor/joint arrangement could be even located in the centre part remote from the end of the heating element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Resistance Heating (AREA)
  • Wind Motors (AREA)
  • Surface Heating Bodies (AREA)

Abstract

A blade for a rotor of a wind turbine, said blade comprising a blade body element provided with a carrier surface to accommodate a heating element, an electrically conductive, elongated and substantially planar heating element disposed upon the carrier surface to extend longitudinally substantially along at least the leading edge of the blade preferably at least about 50% of the length of the blade, more preferably at least about 60% and most preferably at least about 70% respectively, an electrical power supplying conductor element located at one end of the heating element, the conductor element substantially extending over the width of the heating element on both sides thereof and electrically coupling thereto, and a joint structure comprising at least one electrically conductive joint element and substantially covering, on both sides of the heating element, the portions of the electrical conductor element that extend over the width of the heating element, wherein said blade preferably contains an instance of said electrical conductor element and joint structure substantially at both ends of the heating element. A corresponding method of manufacture is presented.

Description

FIELD OF THE INVENTION
Generally the present invention pertains to wind turbines. In particular, the invention is related to icing prevention and icing reduction of wind turbine blades by heating.
BACKGROUND
Atmospheric icing takes place when water droplets in the atmosphere freeze on a contacted object. For example, in connection with aircrafts the ice may increase the risk of stalling of the airfoil. Thereby, the ice built-up should be detected as early and reliably as possible. For instance, an electromechanical probe with an oscillating (vibrating) sensing element may be provided on the nose of the aircraft, whereupon the ice accreted thereon causes changes in the oscillation frequency depending on the thickness of the ice layer. The oscillation frequency is monitored for estimating the amount of ice.
As another use scenario, the wind turbines of wind farms may be heavily affected by ice on the rotor blades. The blades may crack and the production efficiency may drastically decrease. The overall wear of the turbine may also increase due to mass and aerodynamic imbalances and resulting friction caused by the ice. Introduction of the aforesaid oscillating probe into the nacelle of a wind turbine has been suggested, so has been the use of various capacitance-, impedance-, and inductance-based detectors requiring the addition of specific sensors on the rotor blades. Further, different optical sensors monitoring the ice accumulated on a sensor surface based on e.g. changes on light reflection from the surface have been set forth.
To prevent or reduce icing, a number of anti-icing or de-icing procedures such as heating or microwave excitation procedures have been set forth to prevent, reduce or slow down ice accretion on predetermined surfaces. Heating may be implemented via blowing hot air or other gas, funneling heated wires, other elements or e.g. liquid, a liquid circulation system, to the target area(s). For anti-icing use the target areas may include ice-repellant coating such as silicon paint, for example.
Many known arrangements to prevent icing still suffer from reliability, efficiency and/or safety problems at least in certain type of operational conditions.
For instance, in the context of aviation and wind farms, the required heating capacity may be about 10 kW/m2 in magnitude. If the connection between the target surface to be heated and the applied heating element is inadequate and fails, both the surface and the element may be damaged due to overheating.
In some scenarios, extremely thin metallic conductors such as wires or e.g. metallized fibers have been laminated in epoxy and provided onto the target surface. However, these arrangements are extremely prone to mechanical breakage due to fatigue caused by various potential factors such as repeated bending or moisture between the laminate layers, which easily leads to heating malfunction such as reduced or completely ceased heating without forgetting, on the other hand, the risk of overheating. In addition, the contemporary solutions may be extremely tricky to dispose on the target surface, such as rotor blade, without sacrificing some design requirements as to the thickness, weight, airfoil, etc. thereof.
SUMMARY OF THE INVENTION
Thereby, the objective is to alleviate one or more problems described hereinabove not yet satisfactorily addressed by the current heating arrangements, and to provide a feasible alternative for heating a target surface, such as the surface of a rotor blade, aeroplane wing, or some other vulnerable, ice-sensitive surface potentially still exposed to icing conditions.
The objective is achieved by the embodiments of a blade suitable for use with a rotor of a wind turbine and a related method of manufacture in accordance with the present invention.
Accordingly, in one aspect of the present invention a blade for a rotor of a wind turbine comprises
    • a blade body element, optionally comprising glass fiber such as glass fiber reinforced composite material, comprising a carrier surface to accommodate a heating element,
    • an electrically conductive, elongated and preferably planar heating element, preferably a carbon fiber-including element, such as a carbon fiber mat or the like, disposed upon the carrier surface to extend longitudinally substantially along at least the leading edge of the blade preferably at least about 50% of the length of the blade, more preferably at least about 60% and most preferably at least about 70% respectively,
    • an electrical power supplying conductor element located at one end of the elongated heating element, conductor element substantially extending over the width of the heating element on both sides thereof and electrically coupling thereto, and
    • a joint structure comprising at least one electrically conductive joint element and substantially covering, on both sides of the heating element, the portions of the electrical conductor element that extend over the width of the heating element.
Preferably there are at least two aforesaid conductor elements and optionally also joint structures, one of both at each end of the heating element to enable current flow through the element and related heating. Alternatively, conductor and/or joint structures with different configuration may be applied, e.g. at each end, in addition to the preferred conductor element and/or joint structure, respectively.
The joint element forming or being at least included in the joint structure may be a multi-portion element defining e.g. two layers, one for each side of the heating element. At least two of the portions may be connected together. The joint element may thus be a unitary element such as a ‘u’-shaped element with two or more integral portions like the ‘u’-halves, or multiple joint elements such as layers separated by intermediate material(s) may be utilized in the joint structure. A joint element or a plurality of them may further define at least four layers, two on each side of the heating element preferably conductor element portions in between. The joint element may be bent so as to extend along the both sides of the conductor element and/or the heating element.
In one embodiment, the heating element may indeed be substantially planar and bear e.g. substantially rectangular or elliptical shape. It may be a sheet or sheet-like. Additionally or alternatively, it may be a composite, or “aggregate”, element comprising multiple portions located in series along the blade length and/or width. The portions may be electrically coupled together via conductors in between.
Yet, in perpendicular direction, the heating element may comprise multiple portions such as layers with potentially different characteristics such as materials and/or material ingredient orientation. The layers may have been laminated together. Preferably, a portion of the conductor element may extend between the layers. The heating element includes electrically conductive material such as suitable carbon fiber or graphite fiber.
In another, either supplementary or alternative, embodiment the heating element may be located closer to the tip than the root portion of the blade. In some embodiments, the heating element may be curved along the tip and substantially follow the shape thereof. For instance, the bent heating element may extend from the leading edge to the trailing edge and/or from the suction side to the pressure side of the blade.
In a further, either supplementary or alternative, embodiment the heating element may have at least one tapered end. The heating element may narrow towards the tip, for example.
In a further, either supplementary or alternative, embodiment the conductor element may be elongated or at least comprise an elongated portion. It may include a strip or wire, e.g. cylindrical string, configuration.
In some embodiments, the conductor element may include a split portion with a node and at least two branches to enable disposing the element on both sides (top/bottom) of the heating element. A branch may be located on one side and at least other branch on the opposite side. Additionally or alternatively, the element may include a plurality of separate sub-elements such as conductor wires that may be independently directed to either side of the heating element. The element may also include a cable or other aggregate structure that collectively hosts such as funnels and insulates a number of sub-elements such as stranded conductors outside the junction area with a common jacket, for instance.
In some other, supplementary or alternative, embodiments the conductor element, such as a single wire, may be bent so as to extend over the heating element on both sides thereof. A bend may include a substantially semi-circular bend or an acute fold, for example.
In a further supplementary or alternative embodiment, the conductor element may be both split and bent. For example, the element may comprise a node dividing into two branch portions that are then bent to reciprocate on either or both sides of the heating element.
Yet in a further supplementary or alternative embodiment, two or more elements of the blade may be constructed, connected, fixed and/or layered by lamination. Adhesive may be optionally applied.
Still in a further supplementary or alternative embodiment, the heating element may consist of or at least comprise a number of layers of optionally woven carbon-based material such as carbon fabric further optionally provided with filler material. Optionally, multi-axial such as bi-axial carbon fabric of multiple layers may be utilized.
In another aspect of the present invention, a method for constructing a blade for a rotor of a wind turbine, comprises
    • obtaining a blade body element comprising a carrier surface to accommodate a heating element, and
    • providing an electrically conductive, elongated and preferably planar heating element upon the carrier surface to extend longitudinally substantially along at least the leading edge of the blade preferably at least about 50% of the length of the blade, more preferably at least about 60% and most preferably at least about 70% respectively,
      wherein electrical power supplying connection to the heating element is provided by a conductor element located at an end of the elongated heating element, the conductor element substantially extending over the width of the heating element on at least two sides thereof and electrically coupling thereto, and an electrically conducting joint structure comprising at least one electrically conductive joint element and substantially covering, on said sides of the heating element, the portions of the electrical conductor element that extend over the width of the heating element.
The various elements listed above may be joined together by lamination, for instance.
In an embodiment of the method, a further material layer is provided on top of the elements, said further material layer optionally including glass fiber. The further layer may provide insulation and/or protection to the underlying elements in addition to potential aesthetic effect. Also the airfoil of the blade may be optimized and thus the efficiency of the blade elevated therewith.
The previously presented considerations concerning the various embodiments of the arrangement may be flexibly applied to the embodiments of the method mutatis mutandis and vice versa, as being appreciated by a skilled person.
The utility of the present invention arises from a plurality of issues depending on each particular embodiment. First of all, the electrical coupling between the conductor and the heating element may be secured along the whole width of the heating element by the applied configuration of the conductor itself and the aforementioned joint structure, which elevates the heating efficiency, provides uniform heating and minimizes the risks of short cuts or contact breaks. Accordingly, the blade may be prevented from ice deposition thereon or the already-accreted ice may be melted and removed. A desired temperature of the blade may be achieved and maintained. Further, the suggested solution enables keeping the blade thin and light. Yet, manufacturing thereof remains relatively simple and fast.
The expression “a number of” refers herein to any positive integer starting from one (1), e.g. to one, two, or three.
The expression “a plurality of” refers herein to any positive integer starting from two (2), e.g. to two, three, or four.
Different embodiments of the present invention are disclosed in the dependent claims.
BRIEF DESCRIPTION OF THE RELATED DRAWINGS
Next the invention is described in more detail with reference to the appended drawings in which
FIG. 1a illustrates a use scenario of an embodiment of the present invention in a wind turbine context.
FIG. 1b illustrates different embodiments of the blade structure and related elements in accordance with the present invention.
FIG. 2a illustrates an embodiment of the blade structure with particular emphasis on coupling between the electrical conductor element and the heating element at one end of the latter.
FIG. 2b illustrates a cross-section of another embodiment of the blade.
FIG. 2c illustrates a cross-section of a further embodiment of the blade.
FIG. 3 is a flow diagram of an embodiment of a method in accordance with the present invention.
DETAILED DESCRIPTION OF THE EMBODIMENTS
FIG. 1a depicts a scenario wherein an embodiment of the present invention may be applied. A wind farm may include a number of wind turbines 101 each comprising a tower 106, a nacelle 102 and rotor hub with a number of blades 104 a, 104 b, and 104 c. A blade 104 a, 104 b, 104 c may substantially comprise a root portion with e.g. a cylindrically shaped cross section to connect the blade to the hub, and an airfoil portion with aerodynamically shaped cross section. The airfoil portion may comprise a suction side and a pressure side connected at the leading and trailing edges thereof.
FIG. 1b illustrates different embodiments of the blade and associated elements. The blade 108, a merely exemplary cross-sectional sketch of which is shown in the figure, is provided with an elongated heating element 110 that may generally bear a planar, rectangular shape, for instance. Preferably the heating element 110 substantially extends at least along the leading edge 108 a of the blade 108 over a distance that is at least 60% of the length of the blade 108 to provide even heating thereto. It is visible in the figure how only the minimal tip portion of the blade lack heating element in the illustrated embodiment. Preferably, the tip is thus heated by the suggested solution as well.
Preferably, the heating element 110 is located closer to the tip end 108 c than the root end as the tip 108 c may be more prone to icing. However, also symmetrical positioning or other alternatives may be applied depending on the embodiment.
In some embodiments such as in the depicted one, the heating element 110 has a tapered end. It may, in particular, narrow towards the tip 108 c. Accordingly, heat dissipation near the tip 108 c may be enhanced, which is preferred as the heat demand can be greater there due to increased convective cooling induced by higher local speeds. Less heating may be required at the root end.
Thereby, the heating element may advantageously cover the area of the blade that is responsible for most power generation. Namely, towards the root the contribution to the power generation may decrease and also the blade may become less prone to icing because of the geometric effect (airfoil is typically thicker) and aerodynamic effect (convective cooling is typically lower). Thus, the root end of the blade 108 may, in many scenarios, left unprotected or protected less effectively from icing.
The heating element 110 may be located closer to a desired predetermined side of the blade 108 surface, e.g. ‘suction’ surface or ‘pressure’ surface, in relation to the thickness of the blade 108. The surfaces may be flat, curved or segmented, for instance. Alternatively, the heating element 110 may be located symmetrically, e.g. into the centre of, relative to the two or more surfaces of the blade 108. As a further alternative, dedicated heating elements may be provided for multiple, such as suction and pressure, surfaces. Preferably, the heating element 110 is located closer to the leading edge 108 a than the trailing edge 108 b of the blade 108. Alternatively, the heating element may be located symmetrically, e.g. halfway, relative to the leading and trailing edges.
The heating element 110 may comprise fiber such as carbon fiber. It may include fiber-reinforced polymer, for instance, selected such that the desired heat and electrical conductivity figures are achieved.
The heating element 110 may be electrically connected to the power supply not shown in the figure via a number of electrical conductor elements 112 a, 112 b provided at least partially within the blade 108 and joints 114 a, 114 b preferably positioned at the ends of the elongated heating element 108 and more preferably also on both sides of the heating element, e.g. the side facing the viewer of the figure and the opposite side.
The end of the heating element may generally refer to a portion that preferably covers less than about 20%, more preferably less than about 10%, and most preferably less than about 5% of the overall length thereof.
At 120, an embodiment of the heating element is shown where the element comprises, in longitudinal direction, at least two different portions joined together. Alternatively or additionally, also in lateral direction (width) the element could comprise multiple joined portions. The portions may comprise different materials, material orientations and/or different dimensions. Accordingly, the properties of the portions, such as thermal and/or electrical conductivity, may mutually differ. At 122, an embodiment of the heating element comprises two portions preferably connected together by the electrical conductors. Alternatively, the portions could be connected independently to the power source or some intermediate element, for instance. At 124, an embodiment of the heating element comprises a material (central) portion embedded in the surrounding material. The embedded material may have different thermal and/or electrical conductivity than the surrounding material, for instance. At 126, an embodiment of the heating element comprises a curved, or generally tapered, end. At 128, an embodiment of the heating element comprises a tapered end having a contour shape defined by a piece-wise linear curve.
At 130, an embodiment of the heating element comprises a substantially planar material layer. At 132, an embodiment of the heating element comprises multiple overlapping such as stacked material layers 134, 136 relative to the element thickness.
FIG. 2a illustrates, not in scale, an embodiment of the blade structure 201 and related electrical coupling to the power source. In the figure, only one end of the heating element 208 is shown. It is located on the blade body element 218 and the dotted lines depict the non-visualized part thereof extending to the direction of the associated longitudinal axis. A number of electrical conductor elements 212 may be situated along the both surfaces of the heating element 208 that is located in a predetermined position of the carrier material forming at least a part of the blade body 218. In the depicted scenario, two conductors have been bent around the element 208 to substantially form at least one turn to the end thereof in lateral (width) direction. The fold may be sharp, for example. The loop formed by the conductor element 212 may be closed comprising a node point, or it may be open (a hook-like). A joint element 214, such as a strip, has been bent so as to extend along both sides of the conductor element and the heating element. The joint element 214 has a u-shaped form in the figure for illustrating this fact. In real-life scenarios the bend may also be relatively sharp-cornered.
Alternatively, one or more joint elements 214 may comprise multiple, potentially at least initially separate, portions such as a top portion and bottom portion that may be independently positioned on each surface of the heating element 208 so as to cover the conductor 212 sandwiched in between. At least two ends of the portions may be configured to contact, optionally overlap, each other after the disposition.
A functional layer such as a protective and optionally airfoil-optimizing layer 216 has been provided on top of the constructed sandwich structure. The layer 216 may cover the whole blade 201 or just selected portions, such as the joint portions, thereof. Further functional and/or aesthetic layers may be provided thereon.
FIG. 2b illustrates a cross-section of another embodiment of the blade. The heating element 208 a comprises a plurality of portions such as layers. It may comprise e.g. bi-axial carbon fabric. The shown conductor element 212 a located at one end of the blade, such as tip end or root end, comprises a node splitting it into multiple, essentially three, branches. The middle branch extends between or within two portions, such as layers, of the heating element 208 a. A branch may generally extend on one side and another branch on the opposite side of the heating element 208 a or a portion such as a layer thereof. In the depicted case, joint elements 214 extend over the outmost branches of the conductor element 212 a. These might alternatively bear joined ends (not shown in the figure) to form a unitary joint element with e.g. loop or u-shaped cross-section.
FIG. 2c illustrates a cross-section of a further embodiment of the blade. The heating element 208 b may be placed substantially in the middle of the stacked overall structure formed on the blade body element 218. The conductor element 212 b includes a node dividing it into two branches. Each branch is directed to a dedicated side of the heating element 208 b. Further, each branch is configured, such as bent, so as to extend over the width of the heating element 208 b multiple, in the embodiment of the figure essentially two, times. At least one branch of the conductor element 212 b could be joined back to the node (not shown in the figure) or other portion of the element to form a loop. A plurality of joint element layers 214, essentially two layers on both sides of the heating element 208 b, have been provided. Portion of the conductor element 212 b is configured to reside between the two layers 214 on each side. At least two joint element layers 214 might be mutually connected at the ends (not shown in the figure) to form e.g. a u-shape.
FIG. 3 discloses, by way of example only, a method flow diagram in accordance with an embodiment of the present invention. At 302, different start-up materials and elements may be manufactured, obtained and prepared. For instance, blade materials, power cables, signal cables, heating element materials, joint element materials etc. may be obtained and configured.
At 304, at least one blade body element is obtained. The blade body element may include glass fiber, for example, in particular e.g. glass fiber reinforced plastics such as polyester or epoxy. It may contain several pieces such as two halves that are to be joined together. The blade body element may resemble the final blade or e.g. blade half in size and/or shape. Likewise, multiple, such as two, body elements may be joined together to construct the basic shape of the blade. Different additional elements, such as signal cables, sensors and also electrical power cables applied for heating, may be provided and optionally fixed such as glued to the blade body element acting as a carrier thereto. Additional elements may be embedded in the body material.
At 306, at least one heating element is obtained and optionally positioned already at this stage to the blade body element. A strip of suitable material such as carbon fiber sheet may be cut and provided onto the blade body element, for instance. The heating element may be positioned so as to cover predetermined portion of a selected side of the blade body element corresponding to e.g. suction or pressure side of the finished blade. Optionally, the heating element may at least partially cover at least one edge of the blade body element such as the edge substantially forming or being at least parallel to the leading edge of the blade. Preferably, the heating element is positioned closer to the leading edge than the trailing edge unless e.g. more centered positioning is applied. Centering may be applied relative to the nose of the airfoil and/or between the leading and trailing edges, for example.
The heating element may, in some embodiments, extend longitudinally substantially along at least the leading edge of the blade preferably at least about 60% of the length of the blade, more preferably at least about 70% and most preferably at least about 80% or 90% respectively to advantageously provide tip-biased heating or even heating thereto. Alternatively, in some other embodiments with different use scenario and/or blade airfoil, for example, the extent of the heating element may be smaller.
The body element surface receiving the heating element may be first cleaned using e.g. acetone. Suitable resin may be provided on the body element and the heating element such as carbon fiber-including sheet may be then rolled or otherwise provided on top of it. The locations of the joints preferably at the ends of the heating element may be left loose at this stage to facilitate subsequent joint construction wherein conductor and joint element material are preferably configured to extend also between the body element and the heating element.
At 308, a number of electrical power supplying conductor elements, such as copper wires, are located preferably at the ends of the elongated heating element, the conductor element substantially extending over the width of the heating element on at least two sides thereof and electrically coupling thereto. The conductor elements may be fixed by suitable resin. The conductor elements are at least electrically coupled to the power source and may form the internals of power cabling installed at the blades, or be at least connected thereto. An electrically conducting joint structure incorporating a number of joint elements and substantially covering the portions of the electrical conductor element that extend over the width of the elongated heating element on both sides thereof is also provided. A plurality of joint elements may be initially provided and at least some of them be optionally connected together during the formation of the joints depending on the embodiment of the joint structure as contemplated hereinbefore.
In one embodiment, the ends of the heating element may have been initially left loose relative to the body element during item 306 as mentioned above so that joint and conductor elements may be now positioned between them. After the necessary layers of joint and conductor elements have been located between the body element and the heating element or at least the bottom layer of a multi-layer heating element, also the loose end of the heating element or at least the lowermost layer thereof may be fixed to the underlying aggregate structure of body, conductor and joint elements, and the remaining layers of the conductor, joint and optionally also the heating element (the end of which may be optionally bent over) may be provided on top. Suitable resin shall be applied in the procedure.
In alternative embodiment, the electrical joints may be formed in the heating element prior to positioning it to the final location upon the body element, i.e. a number of conductor elements and joint elements may be located first to the heating element after which the aggregate entity is located to the body element and fixed thereto.
The laminated areas may be hardened applying e.g. a vacuum bag inducing pressure and heating blanket inducing heat thereto. A suitable hardening time and temperature certainly depends on the embodiment and used materials and their amounts, but e.g. several hours and an elevated temperature of about 70 degrees centigrade may be necessary in some scenarios.
At 310, further layer(s) containing e.g. glass fiber may be provided to at least partially cover the body element/heating element/joint-aggregate. Preferably the protective glass fiber or alternative layer is disposed such as laminated on the heating element prior to curing the heating element. A number of sensors such as heat sensors may be connected to the structure with necessary wiring (if any as also wireless sensors may be applied). These actions may have been at least partially executed earlier in connection with item 306, for example, provided that the heating element has been positioned on the body element prior to finishing off the joints.
At 312, method execution is ended.
The mutual ordering and overall presence of the method items of the method diagrams disclosed above may be altered by a skilled person based on the requirements set by each particular use scenario. For example, a blade may include a plurality of heating elements to heat multiple sides (e.g. suction and pressure) and/or edges such as leading and trailing edges thereof. Optionally the heating elements of the different sides may even overlap at the leading edge.
Consequently, a skilled person may, on the basis of this disclosure and general knowledge, apply the provided teachings in order to implement the scope of the present invention as defined by the appended claims in each particular use case with necessary modifications, deletions, and additions, if any. For example, instead of a rotor blade for a wind turbine, the target surface to be heated could relate to a windmill, a wind pump, an airplane wing, a missile wing, etc. In many applications it is advantageous to provide the target object to be heated with at least one heating element as disclosed herein supplemented by an instance of the suggested electrical conductor element and joint structure substantially at both ends of the heating element. However, the conductor and/or joint arrangements could also differ between the ends. In some embodiments, a conductor/joint arrangement could be even located in the centre part remote from the end of the heating element.

Claims (16)

The invention claimed is:
1. A wind turbine rotor blade comprising:
a wind turbine rotor blade body element constructed from a glass fiber material, the blade body element comprising a carrier surface;
a heating element accommodated by the carrier surface, the heating element being an electrically conductive, elongated and substantially planar heating element, the heating element disposed upon the carrier surface and having a first planar surface and an opposing planar surface extending longitudinally substantially along the length of at least a leading edge of the wind turbine rotor blade and having a width extending from said leading edge towards a trailing edge of the wind turbine rotor blade transversely to said length, said heating element extending between two ends thereof defined along said length, said two ends consisting of a first end mutually closer to a tip of the wind turbine rotor blade and a second end mutually closer to a root of the wind turbine rotor blade;
an electrical power supplying conductor element including at least one conductor wire located on each of said two ends of the heating element, the electrical power supplying conductor element conveying electric current into the heating element and away from the heating element such that the electric current propagates within the heating element between said first and second ends, the at least one conductor wire of the electrical power supplying conductor element having at least a first portion and a second portion, the first portion contacting the heating element so as to cover a portion of said first planar surface extending along the entirety of the width of said first planar surface, and the second portion contacting the heating element so as to cover a portion of said opposing planar surface extending along the entirety of the width of said opposing planar surface, the width of said first planar surface and the width of said opposing planar surface of the heating element extending transversely to said length of the leading edge of the wind turbine rotor blade, and the electrical power supplying conductor element electrically coupling to the heating element via said first planar surface and said opposing planar surface; and
a joint structure comprising at least one electrically conductive joint element that contacts and substantially covers, on both said first planar surface and said opposing planar surface of the heating element, the portions of the at least one conductor wire of the electrical power supplying conductor element that cover the width of the heating element.
2. The wind turbine rotor blade of claim 1, further comprising: at least one protective aerodynamically optimized layer disposed on the heating element and the joint structure, said at least one layer comprising glass fiber.
3. The wind turbine rotor blade of claim 1, wherein the heating element is located closer to the tip than the root of the wind turbine rotor blade.
4. The wind turbine rotor blade of claim 1, wherein the heating element has a tapered end, being the end located closer to the tip of the wind turbine rotor blade.
5. The wind turbine rotor blade of claim 1, wherein the heating element comprises multi-axial carbon fabric.
6. The wind turbine rotor blade of claim 1, wherein the heating element comprises carbon fiber or graphite fiber.
7. The wind turbine rotor blade of claim 1, wherein the heating element comprises a plurality of stacked layers.
8. The wind turbine rotor blade of claim 1, wherein the electrical power supplying conductor element is configured to bend so as to cover both said first planar surface and said opposing planar surface of the heating element.
9. The wind turbine rotor blade of claim 1, wherein the electrical power supplying conductor element comprises a node dividing the electrical power supplying conductor element into at least two branches directed to different sides of the heating element.
10. The wind turbine rotor blade of claim 1, wherein the electrical power supplying conductor element comprises at least two separate sub-elements directed to different sides of the heating element.
11. The wind turbine rotor blade of claim 1, wherein the electrical power supplying conductor element is configured to bend so as to repeatedly extend over a predetermined side of the heating element.
12. The wind turbine rotor blade of claim 1, wherein the heating element comprises two layers between which at least one portion of the electrical power supplying conductor element extends.
13. The wind turbine rotor blade of claim 1, wherein the joint structure includes a joint element bent so as to cover both said first planar surface and said opposing planar surface of the heating element.
14. The wind turbine rotor blade of claim 1, wherein the joint structure defines at least two layers, one on each of said first planar surface and said opposing planar surface of the heating element, and wherein portions of the electrical power supplying conductor element residing between them.
15. The wind turbine rotor blade of claim 1, wherein the joint structure includes a plurality of joint elements defining at least four layers, with two layers on each of said first planar surface and said opposing planar surface of the heating element such that a portion of the electrical power supplying conductor element extends between them.
16. A method for constructing a wind turbine rotor blade, the method comprising:
obtaining a wind turbine rotor blade body element constructed from a glass fiber material and comprising a carrier surface;
disposing a heating element on the carrier surface, the heating element being an electrically conductive heating element having a first planar surface and an opposing planar surface extending longitudinally substantially along the length of at least a leading edge of the wind turbine rotor blade and having a width extending from said leading edge towards a trailing edge of the wind turbine rotor blade transversely to said length, said heating element extending between two ends thereof defined along said length, wherein said two ends consist of a first end mutually closer to a tip of the wind turbine rotor blade and a second end mutually closer to a root of the wind turbine rotor blade;
positioning an electrical power supplying conductor element that includes at least one conductor wire on each of said two ends of the heating element so as to contact the heating element such that a first portion of the at least one conductor wire of the electrical power supplying conductor element covers a portion of said first planar surface extending along the entirety of the width of said first planar surface, and such that a second portion of the at least one conductor wire of the electrical power supplying conductor element covers a portion of said opposing planar surface extending along the entirety of the width of said opposing planar surface, the widths of said first planar surface and said opposing planar surface of the heating element extending transversely to said length of the leading edge of the wind turbine rotor blade, so as to electrically couple the electrical power supplying conductor element to said first planar surface and said opposing planar surface such that electric current is conveyed by the electrical power supplying conductor element into the heating element and away from the heating element to propagate the electric current within the heating element between said first and second ends; and
deploying an electrically conducting joint structure comprising at least one electrically conductive joint element to contact and substantially cover, on said first planar surface and said opposing planar surface of the heating element, the portions of the at least one conductor wire of the electrical power supplying conductor element that cover the width of the heating element.
US14/122,695 2011-05-31 2012-05-30 Wind turbine blade and related method of manufacture Active 2034-03-18 US10632573B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FI20115536A FI20115536L (en) 2011-05-31 2011-05-31 Wind turbine blades and associated manufacturing method
FI20115536 2011-05-31
PCT/FI2012/050531 WO2012164167A1 (en) 2011-05-31 2012-05-30 Wind turbine blade and related method of manufacture

Publications (2)

Publication Number Publication Date
US20140086748A1 US20140086748A1 (en) 2014-03-27
US10632573B2 true US10632573B2 (en) 2020-04-28

Family

ID=44071660

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/122,695 Active 2034-03-18 US10632573B2 (en) 2011-05-31 2012-05-30 Wind turbine blade and related method of manufacture

Country Status (9)

Country Link
US (1) US10632573B2 (en)
EP (1) EP2715128B1 (en)
CN (1) CN103582758B (en)
CA (1) CA2837828C (en)
DK (1) DK2715128T3 (en)
ES (1) ES2632587T3 (en)
FI (1) FI20115536L (en)
RU (1) RU2591369C2 (en)
WO (1) WO2012164167A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11319934B2 (en) * 2016-06-30 2022-05-03 Vestas Wind Systems A/S Busbars in a stacking arrangement

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7439712B2 (en) * 2006-02-21 2008-10-21 Mccowen Clint Energy collection
EP2754891B1 (en) * 2013-01-14 2017-05-17 Siemens Aktiengesellschaft Wind turbine rotor blade de-icing arrangement
CN103963978A (en) * 2013-02-01 2014-08-06 中国航空工业集团公司西安飞机设计研究所 Combined Ultrasonic and graphite deicing method
DE202013007659U1 (en) * 2013-08-29 2014-12-01 Nordex Energy Gmbh Wind turbine rotor blade with an electric heating element
CN105626370B (en) * 2014-10-30 2018-02-16 株洲时代新材料科技股份有限公司 A kind of anti-ice wind electricity blade structure
FI10797U1 (en) 2014-12-04 2015-03-10 Wicetec Oy A conductor joint for connecting a copper conductor
EP3109466B1 (en) 2015-06-26 2018-10-17 Nordex Energy GmbH Wind turbine rotor blade with an electric heating device
DK3109465T3 (en) 2015-06-26 2019-02-25 Nordex Energy Gmbh Wind turbine rotor blade with an electric heater
DK3165761T3 (en) * 2015-11-03 2019-08-26 Nordex Energy Gmbh Wind turbine rotor blade with an electric heater
WO2017190748A1 (en) * 2016-05-04 2017-11-09 Vestas Wind Systems A/S Improved electro-thermal heating
EP3488663B1 (en) 2016-07-22 2020-09-30 DuPont Electronics, Inc. Thin-film heating device
CN106468246A (en) * 2016-11-23 2017-03-01 四川大学 The radial direction heating ice-melt blade of wind-driven generator and ice-melting device and its de-icing method
CN110546378A (en) * 2017-02-06 2019-12-06 谢尔·林斯科格 Method and apparatus relating to heating of fins of a wind power plant or other device
WO2019001657A1 (en) * 2017-06-30 2019-01-03 Vestas Wind Systems A/S Improved electro-thermal heating elements
US20190098703A1 (en) * 2017-09-26 2019-03-28 E I Du Pont De Nemours And Company Heating elements and heating devices
CN110195690B (en) * 2018-02-27 2023-03-24 新疆金风科技股份有限公司 Blade ice melting device, blade and wind generating set
CN110206694A (en) * 2019-06-20 2019-09-06 天津爱思普信息技术有限公司 A kind of conductive strips production method of wind generator set blade anti-icing and deicing system
EP3805551A1 (en) * 2019-10-07 2021-04-14 Siemens Gamesa Renewable Energy Innovation & Technology, S.L. Wt blade with multiple electrical resistors for blade heating purposes
EP3869035B1 (en) 2020-02-21 2022-11-30 Siemens Gamesa Renewable Energy Innovation & Technology, S.L. Blade for a rotor of a wind turbine and manufacturing method thereof
EP3961026A1 (en) * 2020-08-28 2022-03-02 General Electric Renovables España S.L. A rotor blade for a wind turbine

Citations (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2496279A (en) * 1945-02-10 1950-02-07 Safeway Heat Elements Inc Flexible electric heater for deicing airfoils
US2590944A (en) * 1949-01-03 1952-04-01 Napier & Son Ltd Electrical heating apparatus
US2686640A (en) * 1951-04-13 1954-08-17 Jr Carr B Neel Thermal-electric means of airfoil ice prevention
GB724745A (en) 1952-12-12 1955-02-23 Wingfoot Corp An electrically heated propeller de-icer
US2743890A (en) * 1952-07-31 1956-05-01 Goodrich Co B F Electrically heated protective covering for aircraft
US2884509A (en) * 1957-03-05 1959-04-28 Electrofilm Inc Heating element containing a conductive mesh
US3146340A (en) * 1961-08-21 1964-08-25 Baird Atomic Inc Heating devices
US3178560A (en) * 1960-11-18 1965-04-13 Dowty Rotol Ltd Electrical de-icing devices
US3349359A (en) * 1964-12-18 1967-10-24 Templeton Coal Company Electrical heating elment
US3825371A (en) * 1971-10-27 1974-07-23 Licentia Gmbh Fastening of erosion protective strips to aircraft profiles
US3967996A (en) * 1973-05-14 1976-07-06 Nikolai Ilich Kamov Method of manufacture of hollow pieces
FR2528795A1 (en) 1982-06-17 1983-12-23 Westland Plc DEFROST DEVICE FOR AIRCRAFT
GB2121745A (en) 1982-06-17 1984-01-04 Westland Plc Aircraft de-icing apparatus
US4534886A (en) * 1981-01-15 1985-08-13 International Paper Company Non-woven heating element
US4732351A (en) * 1985-03-21 1988-03-22 Larry Bird Anti-icing and deicing device
US4737618A (en) 1984-12-26 1988-04-12 Aerospatiale Societe Nationale Industrielle Heating element for a defrosting device for a wing structure, such a device and a process for obtaining same
US4841124A (en) * 1982-03-25 1989-06-20 Cox & Company, Inc. Strain-resistant heated helicopter rotor blade
US4888472A (en) * 1988-05-12 1989-12-19 David G. Stitz Radiant heating panels
US4942078A (en) * 1988-09-30 1990-07-17 Rockwell International Corporation Electrically heated structural composite and method of its manufacture
US5344696A (en) * 1990-01-24 1994-09-06 Hastings Otis Electrically conductive laminate for temperature control of aircraft surface
US5356096A (en) * 1992-12-30 1994-10-18 The B. F. Goodrich Company Skin for a deicer
US5412181A (en) * 1993-12-27 1995-05-02 The B. F. Goodrich Company Variable power density heating using stranded resistance wire
US5925275A (en) 1993-11-30 1999-07-20 Alliedsignal, Inc. Electrically conductive composite heater and method of manufacture
US5934617A (en) * 1997-09-22 1999-08-10 Northcoast Technologies De-ice and anti-ice system and method for aircraft surfaces
US5947418A (en) * 1996-11-27 1999-09-07 Eurocopter Device for heating an aerofoil
US5971323A (en) 1996-11-27 1999-10-26 Eurocopter Resistive elements for heating an aerofoil, and device for heating an aerofoil incorporating such elements
FR2779314A1 (en) 1998-05-27 1999-12-03 Eurocopter France Resistive heating for aerodynamic profiles, applicable to helicopter blades or aircraft wings which require protection against icing
US6031214A (en) * 1996-02-08 2000-02-29 Eurocopter Device for heating an aerofoil
US6145787A (en) 1997-05-20 2000-11-14 Thermion Systems International Device and method for heating and deicing wind energy turbine blades
US6237874B1 (en) * 1997-09-22 2001-05-29 Northcoast Technologies Zoned aircraft de-icing system and method
US6279856B1 (en) * 1997-09-22 2001-08-28 Northcoast Technologies Aircraft de-icing system
US6483087B2 (en) * 1999-12-10 2002-11-19 Thermion Systems International Thermoplastic laminate fabric heater and methods for making same
WO2006130454A2 (en) 2005-05-27 2006-12-07 Bell Helicopter Textron Inc. Strained capable conductive/resistive composite hybrid heater for thermal anti-ice device
US7157663B1 (en) * 2005-10-12 2007-01-02 The Boeing Company Conducting-fiber deicing systems and methods
US7281318B2 (en) * 2004-05-19 2007-10-16 The Boeing Company Method of manufacturing a composite structural member having an integrated electrical circuit
US7291815B2 (en) * 2006-02-24 2007-11-06 Goodrich Corporation Composite ice protection heater and method of producing same
US20080099617A1 (en) * 2005-02-09 2008-05-01 Qinetiq Limited Ice Protection of Aerodynamic Surfaces
US20080181775A1 (en) 2007-01-29 2008-07-31 General Electric Company Integrated leading edge for wind turbine blade
WO2011018695A1 (en) 2009-08-11 2011-02-17 EcoTemp International, Inc. Deicing film for wind turbine air foil
US20110280723A1 (en) * 2010-05-12 2011-11-17 Peter Libergren De-icing and/or anti-icing of a wind turbine component by vibrating a piezoelectric material
US20120230830A1 (en) * 2011-03-11 2012-09-13 Soeren Oemann Lind Arrangement to improve the surface of a wind turbine blade
US20120298803A1 (en) * 2010-01-29 2012-11-29 Peter English Electrothermal heater
US20130136598A1 (en) * 2011-11-24 2013-05-30 Nordex Energy Gmbh Wind turbine rotor blade having a heating element and a method of making the same
US8952296B2 (en) * 2009-11-11 2015-02-10 Nbhx Trim Gmbh Interior lining

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1746057A1 (en) * 1990-02-09 1992-07-07 Рижский Краснознаменный Институт Инженеров Гражданской Авиации Им.Ленинского Комсомола Windmill electric plant
US6538340B2 (en) * 2001-08-06 2003-03-25 Headwinds Corporation Wind turbine system
DE10200799A1 (en) * 2002-01-11 2003-07-24 Christina Musekamp Rotor blade heating for wind turbines
US7217091B2 (en) * 2004-07-20 2007-05-15 General Electric Company Methods and apparatus for deicing airfoils or rotor blades
FR2924715B1 (en) * 2007-12-06 2012-10-12 Arkema France MATERIAL FORMED ARBORESCENT MOLECULES COMPRISING ASSOCIATIVE GROUPS

Patent Citations (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2496279A (en) * 1945-02-10 1950-02-07 Safeway Heat Elements Inc Flexible electric heater for deicing airfoils
US2590944A (en) * 1949-01-03 1952-04-01 Napier & Son Ltd Electrical heating apparatus
US2686640A (en) * 1951-04-13 1954-08-17 Jr Carr B Neel Thermal-electric means of airfoil ice prevention
US2743890A (en) * 1952-07-31 1956-05-01 Goodrich Co B F Electrically heated protective covering for aircraft
GB724745A (en) 1952-12-12 1955-02-23 Wingfoot Corp An electrically heated propeller de-icer
US2884509A (en) * 1957-03-05 1959-04-28 Electrofilm Inc Heating element containing a conductive mesh
US3178560A (en) * 1960-11-18 1965-04-13 Dowty Rotol Ltd Electrical de-icing devices
US3146340A (en) * 1961-08-21 1964-08-25 Baird Atomic Inc Heating devices
US3349359A (en) * 1964-12-18 1967-10-24 Templeton Coal Company Electrical heating elment
US3825371A (en) * 1971-10-27 1974-07-23 Licentia Gmbh Fastening of erosion protective strips to aircraft profiles
US3967996A (en) * 1973-05-14 1976-07-06 Nikolai Ilich Kamov Method of manufacture of hollow pieces
US4534886A (en) * 1981-01-15 1985-08-13 International Paper Company Non-woven heating element
US4841124A (en) * 1982-03-25 1989-06-20 Cox & Company, Inc. Strain-resistant heated helicopter rotor blade
FR2528795A1 (en) 1982-06-17 1983-12-23 Westland Plc DEFROST DEVICE FOR AIRCRAFT
GB2121745A (en) 1982-06-17 1984-01-04 Westland Plc Aircraft de-icing apparatus
US4737618A (en) 1984-12-26 1988-04-12 Aerospatiale Societe Nationale Industrielle Heating element for a defrosting device for a wing structure, such a device and a process for obtaining same
US4732351A (en) * 1985-03-21 1988-03-22 Larry Bird Anti-icing and deicing device
US4888472A (en) * 1988-05-12 1989-12-19 David G. Stitz Radiant heating panels
US4942078A (en) * 1988-09-30 1990-07-17 Rockwell International Corporation Electrically heated structural composite and method of its manufacture
US5344696A (en) * 1990-01-24 1994-09-06 Hastings Otis Electrically conductive laminate for temperature control of aircraft surface
US5356096A (en) * 1992-12-30 1994-10-18 The B. F. Goodrich Company Skin for a deicer
US5925275A (en) 1993-11-30 1999-07-20 Alliedsignal, Inc. Electrically conductive composite heater and method of manufacture
US5412181A (en) * 1993-12-27 1995-05-02 The B. F. Goodrich Company Variable power density heating using stranded resistance wire
US6031214A (en) * 1996-02-08 2000-02-29 Eurocopter Device for heating an aerofoil
US6137083A (en) * 1996-02-08 2000-10-24 Eurocopter Device for heating an aerofoil
US5971323A (en) 1996-11-27 1999-10-26 Eurocopter Resistive elements for heating an aerofoil, and device for heating an aerofoil incorporating such elements
US5947418A (en) * 1996-11-27 1999-09-07 Eurocopter Device for heating an aerofoil
US6145787A (en) 1997-05-20 2000-11-14 Thermion Systems International Device and method for heating and deicing wind energy turbine blades
US6237874B1 (en) * 1997-09-22 2001-05-29 Northcoast Technologies Zoned aircraft de-icing system and method
US6279856B1 (en) * 1997-09-22 2001-08-28 Northcoast Technologies Aircraft de-icing system
US5934617A (en) * 1997-09-22 1999-08-10 Northcoast Technologies De-ice and anti-ice system and method for aircraft surfaces
FR2779314A1 (en) 1998-05-27 1999-12-03 Eurocopter France Resistive heating for aerodynamic profiles, applicable to helicopter blades or aircraft wings which require protection against icing
US6338455B1 (en) 1998-05-27 2002-01-15 Eurocopter Heating device with resistive elements for an aerodynamic profile
US6483087B2 (en) * 1999-12-10 2002-11-19 Thermion Systems International Thermoplastic laminate fabric heater and methods for making same
US7281318B2 (en) * 2004-05-19 2007-10-16 The Boeing Company Method of manufacturing a composite structural member having an integrated electrical circuit
US20080099617A1 (en) * 2005-02-09 2008-05-01 Qinetiq Limited Ice Protection of Aerodynamic Surfaces
WO2006130454A2 (en) 2005-05-27 2006-12-07 Bell Helicopter Textron Inc. Strained capable conductive/resistive composite hybrid heater for thermal anti-ice device
US7585156B2 (en) * 2005-05-27 2009-09-08 Bell Helicopter Textron Inc. Strained capable conductive/resistive composite hybrid heater for thermal anti-ice device
US7157663B1 (en) * 2005-10-12 2007-01-02 The Boeing Company Conducting-fiber deicing systems and methods
US7291815B2 (en) * 2006-02-24 2007-11-06 Goodrich Corporation Composite ice protection heater and method of producing same
US20080181775A1 (en) 2007-01-29 2008-07-31 General Electric Company Integrated leading edge for wind turbine blade
WO2011018695A1 (en) 2009-08-11 2011-02-17 EcoTemp International, Inc. Deicing film for wind turbine air foil
US8952296B2 (en) * 2009-11-11 2015-02-10 Nbhx Trim Gmbh Interior lining
US20120298803A1 (en) * 2010-01-29 2012-11-29 Peter English Electrothermal heater
US20110280723A1 (en) * 2010-05-12 2011-11-17 Peter Libergren De-icing and/or anti-icing of a wind turbine component by vibrating a piezoelectric material
US20120230830A1 (en) * 2011-03-11 2012-09-13 Soeren Oemann Lind Arrangement to improve the surface of a wind turbine blade
US20130136598A1 (en) * 2011-11-24 2013-05-30 Nordex Energy Gmbh Wind turbine rotor blade having a heating element and a method of making the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11319934B2 (en) * 2016-06-30 2022-05-03 Vestas Wind Systems A/S Busbars in a stacking arrangement

Also Published As

Publication number Publication date
WO2012164167A1 (en) 2012-12-06
EP2715128A1 (en) 2014-04-09
ES2632587T3 (en) 2017-09-14
FI20115536A0 (en) 2011-05-31
RU2591369C2 (en) 2016-07-20
FI20115536L (en) 2013-03-25
EP2715128B1 (en) 2017-04-19
EP2715128A4 (en) 2015-04-08
CN103582758A (en) 2014-02-12
CA2837828A1 (en) 2012-12-06
CA2837828C (en) 2017-04-18
RU2013156929A (en) 2015-07-10
DK2715128T3 (en) 2017-08-21
US20140086748A1 (en) 2014-03-27
CN103582758B (en) 2017-11-10

Similar Documents

Publication Publication Date Title
US10632573B2 (en) Wind turbine blade and related method of manufacture
US9410533B2 (en) Wind turbine rotor blade having a heating element and a method of making the same
JP5675673B2 (en) Fiber reinforced plastic heating element and wind power generator equipped with the heating element
CA2796014C (en) Heating mats arranged in a loop on a blade
US9482208B2 (en) Wind turbine rotor blade having an electrical heating arrangement and method of making the same
US8662452B2 (en) Article with de-icing/anti-icing function
EP2526292B1 (en) Fixation of a heating mat to a blade of a wind turbine
CN107084100B (en) Wind power blade heating and ice melting system based on graphene heating film and manufacturing method of blade
EP3342702B1 (en) Erosion strip integrated with carbon allotrope-based deicing/anti-icing elements
EP2795119B1 (en) De-icing of a wind turbine blade
US20170334577A1 (en) Propeller blade sheath
CN110481795A (en) A kind of graphene composite material ice preventing and removing device for helicopter rotors and production method
RU2567162C2 (en) Rotor blade with heating device for wind power plant
US20200361612A1 (en) Resistive heated aircraft component and method for manufacturing said aircraft component
CN112922792B (en) Blade electrothermal composite film, blade, wind generating set and method for manufacturing blade
US20240254972A1 (en) Wind turbine blade having a de-icing system
CN107605670A (en) A kind of wind generator set blade deicing system
US20210262449A1 (en) Blade for a rotor of a wind turbine and manufacturing method thereof
ES1240999U (en) Wind turbine blade (Machine-translation by Google Translate, not legally binding)
Mohseni et al. Electro-thermal icing mitigation system for polymeric composite airfoil

Legal Events

Date Code Title Description
AS Assignment

Owner name: TEKNOLOGIAN TUTKIMUSKESKUS VTT, FINLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PELTOLA, ESA;VUOMAJOKI, PAULI;WALLENIUS, TOMAS;AND OTHERS;REEL/FRAME:033247/0052

Effective date: 20140120

AS Assignment

Owner name: TEKNOLOGIAN TUTKIMUSKESKUS VTT OY, FINLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TEKNOLOGIAN TUTKIMUSKESKUS VTT;REEL/FRAME:035109/0559

Effective date: 20150303

Owner name: WICETEC OY, FINLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TEKNOLOGIAN TUTKIMUSKESKUS VTT OY;REEL/FRAME:035109/0561

Effective date: 20150303

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 4