US10615578B2 - Electrical equipment with additional compartment and wiring to account for temperature limitations of connected conductors - Google Patents
Electrical equipment with additional compartment and wiring to account for temperature limitations of connected conductors Download PDFInfo
- Publication number
- US10615578B2 US10615578B2 US15/576,698 US201715576698A US10615578B2 US 10615578 B2 US10615578 B2 US 10615578B2 US 201715576698 A US201715576698 A US 201715576698A US 10615578 B2 US10615578 B2 US 10615578B2
- Authority
- US
- United States
- Prior art keywords
- conductor
- compartment
- electrical
- electrical equipment
- main housing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004020 conductor Substances 0.000 title claims abstract description 222
- 238000009826 distribution Methods 0.000 claims description 37
- 229910052782 aluminium Inorganic materials 0.000 claims description 14
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 14
- 230000005611 electricity Effects 0.000 claims description 9
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 239000007858 starting material Substances 0.000 claims description 4
- 238000011144 upstream manufacturing Methods 0.000 claims description 3
- 238000000034 method Methods 0.000 abstract description 13
- 238000009417 prefabrication Methods 0.000 abstract description 10
- 238000009434 installation Methods 0.000 description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 7
- 238000009413 insulation Methods 0.000 description 7
- 229910052802 copper Inorganic materials 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 230000007935 neutral effect Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 239000003570 air Substances 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 230000004323 axial length Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009933 burial Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02B—BOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
- H02B1/00—Frameworks, boards, panels, desks, casings; Details of substations or switching arrangements
- H02B1/26—Casings; Parts thereof or accessories therefor
- H02B1/30—Cabinet-type casings; Parts thereof or accessories therefor
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02B—BOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
- H02B1/00—Frameworks, boards, panels, desks, casings; Details of substations or switching arrangements
- H02B1/015—Boards, panels, desks; Parts thereof or accessories therefor
- H02B1/04—Mounting thereon of switches or of other devices in general, the switch or device having, or being without, casing
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02B—BOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
- H02B1/00—Frameworks, boards, panels, desks, casings; Details of substations or switching arrangements
- H02B1/20—Bus-bar or other wiring layouts, e.g. in cubicles, in switchyards
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02B—BOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
- H02B1/00—Frameworks, boards, panels, desks, casings; Details of substations or switching arrangements
- H02B1/20—Bus-bar or other wiring layouts, e.g. in cubicles, in switchyards
- H02B1/202—Cable lay-outs
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02B—BOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
- H02B1/00—Frameworks, boards, panels, desks, casings; Details of substations or switching arrangements
- H02B1/26—Casings; Parts thereof or accessories therefor
- H02B1/30—Cabinet-type casings; Parts thereof or accessories therefor
- H02B1/32—Mounting of devices therein
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02B—BOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
- H02B3/00—Apparatus specially adapted for the manufacture, assembly, or maintenance of boards or switchgear
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02B—BOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
- H02B1/00—Frameworks, boards, panels, desks, casings; Details of substations or switching arrangements
- H02B1/015—Boards, panels, desks; Parts thereof or accessories therefor
- H02B1/06—Boards, panels, desks; Parts thereof or accessories therefor having associated enclosures, e.g. for preventing access to live parts
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02B—BOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
- H02B1/00—Frameworks, boards, panels, desks, casings; Details of substations or switching arrangements
- H02B1/56—Cooling; Ventilation
Definitions
- This document relates to electrical equipment with an additional compartment and wiring to account for temperature limitations of connected electrical equipment conductors, and in some cases this document relates to electrical distribution panels.
- a pre-fabricated electrical apparatus comprising: a main housing configured to enclose electrical equipment in use; a splice compartment mounted, or integrally formed, external to and adjacent the main housing; a conductor passage defined between the main housing and the splice compartment; and in which the main housing and splice compartment are configured to, in use, permit a conductor to extend from a first conductor termination point, defined within the main housing, to a second conductor termination point, defined within the splice compartment, with the second termination point having a temperature rating that is higher than a temperature rating of the electrical equipment.
- a method comprising: prefabricating, at a prefabrication facility, an electrical apparatus by mounting or integrally forming a splice compartment adjacent an external part of a main housing; and installing the electrical apparatus at an end user facility, which is remote from the prefabrication facility.
- a distribution panel is also provided including a first compartment containing a breaker, and a second compartment separated from the first compartment.
- a connector lug electrically connected to the conductor at the second termination point.
- a conductor that extends between and defines both the first termination point and the second termination point.
- An external circuit conductor extends from outside both the splice compartment and main housing, and into electrical contact with the second termination point, the external circuit conductor having a temperature rating that is higher than the temperature rating of the electrical equipment in use.
- a cross-sectional diameter of the external circuit conductor is smaller than a cross-sectional diameter of the conductor.
- the splice compartment comprises a plurality of conductors that define respective first termination points and second termination points.
- the external circuit conductor comprises a plurality of respective external circuit conductors, each electrically connected between a respective conductor, of the plurality of conductors, and each forming part of a respective independent external circuit of a plurality of independent external circuits. Electrical equipment enclosed by the main housing, in which at least some of the plurality of conductors are pre-wired out-of-electrical contact with the electrical equipment.
- the external circuit conductor comprises an aluminum conductor, and in some cases the conductor comprises a non-aluminum conductor.
- the conductor and/or external circuit conductor comprises a copper conductor.
- the conductor has a length of 1.2 meters or greater.
- the conductor has a length of 1.2 to 1.8 meters. Electrical equipment enclosed by the main housing.
- the electrical equipment carries out one or more of the following electrical functions: distribution, switching, voltage modifying, current modifying, energy conversion, energy generation, light generation, or overcurrent protection.
- the electrical equipment comprises a distribution panel.
- the conductor forms part of a branch circuit, which includes a branch circuit breaker located within the main housing.
- a main overcurrent protection device connected one or both of upstream of the distribution panel or within the distribution panel, in which the second termination point has a temperature rating that is higher than a temperature rating of the main overcurrent protection device.
- the splice compartment comprises a plurality of splice compartments each containing respective conductors.
- the plurality of splice compartments comprise a primary splice compartment and a secondary splice compartment.
- the primary splice compartment is configured to supply electricity to the electrical equipment in use, and the secondary compartment is configured to receive electricity from the electrical equipment in use.
- the second termination point of the conductor of the primary splice compartment has a temperature rating that is higher than the temperature rating of the electrical equipment.
- Electrical equipment enclosed by the main housing in which the electrical equipment comprises one or more of switchgear, a transformer, a motor control panel, a motor, a motor starter, a generator, a light fixture, a fused disconnect switch, an unfused disconnect switch, a power monitor, and a motor disconnect switch.
- the electrical equipment is rated to carry a maximum voltage of up to and including 600 V, although higher or lower voltages may be used.
- the splice compartment comprises a power metering device.
- the conductor passage is defined by a raceway that connects the main housing and splice compartment.
- Enclosing electrical equipment within the main housing Extending a conductor between a first termination point, within the main housing, and a second termination point within the splice compartment, with the second termination point having a temperature rating that is higher than a temperature rating of the electrical equipment.
- the enclosing and extending stages are carried out during the prefabricating stage at the prefabrication facility.
- the electrical equipment carries out one or more of the following electrical functions: distribution, switching, voltage modifying, current modifying, energy conversion, energy generation, light generation, or overcurrent protection.
- the prefabrication facility is at least five kilometers away from the end user facility.
- the second compartment contains a terminal connection point having a higher than breaker temperature rating for branch circuit wires.
- the second compartment contains a current transformer configured to meter power.
- the second compartment contains a termination point configured to be part of an aluminum or copper conductor connection.
- the second compartment contains a wire way.
- the second compartment contains a wire splice connection point.
- FIG. 1 is a front elevation schematic view of a distribution panel with primary and secondary splice compartments.
- FIG. 2 is a right side elevation view of the distribution panel of FIG. 1 .
- FIG. 3 is a front elevation schematic view of a breaker connection with primary and secondary lug kits and an example of how such terminate within the secondary compartment.
- FIG. 4 is a partial front elevation schematic view of an embodiment of a distribution panel with primary and secondary splice compartments.
- FIG. 4A is a left side elevation view of the distribution panel of FIG. 4 .
- FIG. 5 is a side elevation schematic view of a fused disconnect switch with primary and secondary splice compartments.
- FIG. 6 is a side elevation schematic view of a transformer with primary and secondary splice compartments connected to the main housing via raceways.
- FIG. 7 is a side elevation schematic view of a motor with a splice compartment connected to the main housing.
- Ampacity is a portmanteau for ampere capacity defined by National Electrical Safety Codes, in some North American countries. Ampacity is defined as the maximum amount of electric current a conductor or device can carry before sustaining immediate or progressive deterioration. Also described as current rating or current-carrying capacity, ampacity is the RMS electric current which a device or conductor can continuously carry while remaining within its temperature rating.
- the ampacity of a conductor depends on:
- the ampacity for a conductor is based on physical and electrical properties of the material and construction of the conductor and of its insulation, ambient temperature, and environmental conditions adjacent to the conductor. Having a large overall surface area can dissipate heat well if the environment can absorb the heat.
- the allowed current in a conductor generally needs to be decreased (derated) when conductors are in a grouping or cable, enclosed in conduit, or an enclosure restricting heat dissipation.
- Table 310.15(B)(16) specifies that up to three 8 AWG copper wires having a common insulating material (THWN) in a raceway, cable, or direct burial has an ampacity of 50 A when the ambient air is 30° C., the conductor surface temperature allowed to be 75° C.
- a single insulated conductor in free air has 70 A rating.
- Ampacity rating normally applies for continuous current, permitting short periods of overcurrent to occur without harm in most cabling systems.
- the acceptable magnitude and duration of overcurrent is a more complex topic than ampacity.
- the temperature rating is determined by the overcurrent protection device within the environment, for example within a distribution panel, as the overcurrent protection device will be engaged to shut off currents that cause local temperatures above the temperature rating of the overcurrent protection device.
- An overcurrent protective device is a device capable of providing protection for service, feeder, and branch circuits and equipment over the full range of overcurrent between its rated current and its interrupting rating, and including a fuse and a circuit breaker.
- the temperature rating associated with a conductor's ampacity must be selected and coordinated so that the lowest temperature rating of any connected termination, conductor, or device is not exceeded.
- Conductor temperature limitations can be compared to the strength of a chain. A chain is only as strong as its weakest link.
- every termination (or connection) point is a potential weak link.
- the fact that a conductor's insulation has a 90 degrees C. temperature rating does not mean that the ampacity is automatically selected from the 90 degrees C. column.
- the lowest temperature rating of the termination points, along the conductor's path, determines the maximum ampacity.
- a terminal is the point at which a conductor from an electrical component, device or network comes to an end and provides a point of connection to external circuits.
- a termination point may simply be the end of a wire or it may be fitted with a connector or fastener.
- the termination point with the lowest temperature rating may be the determining factor for selecting the conductor's ampacity. If the temperature rating of a termination point is unknown, the conductor ampacity must usually be selected from the 60 degrees C. column regardless of the insulation type. Likewise, if any connection point has a temperature rating of 60 degrees C., the conductor's ampacity may need to be selected from the 60 degrees C. column. Generally, where a conductor has a 90 degrees C. temperature rating, and the lowest temperature rating of the termination points is 75 degrees C. (or 60/75 degrees C.), the conductor's ampacity must be selected from the 75 degrees C. column. Different codes, such as the NEC (National Electrical Code-U.S.) and the CEC (Canadian Electrical Code), have different specific rules, however, such rules are generally based on the inherent properties of the conductor and the environment of the conductor.
- a pre-fabricated electrical apparatus 75 comprising a main body/main housing 10 , and one or more splice compartment, such as compartment 15 .
- the main housing 10 may be configured to enclose electrical equipment in use, such as a distribution panel 100 .
- the splice compartment 15 may be mounted, or integrally formed, external to and adjacent the main housing 10 .
- a conductor passage, such as passage 26 C may be defined between the main housing 10 and the splice compartment 15 .
- the apparatus 75 may comprise a conductor, such as conductor 26 , that extends between and defines both a first termination point 26 A within the main housing 10 and a second termination point 26 B within the splice compartment 15 .
- a conductor such as conductor 26
- three conductors 26 , 27 , and 28 are shown defining respective first termination points 26 A, 27 A, and 28 A, and second termination points 26 B, 27 B, and 28 B.
- Conductors may be bare, covered, or insulated. Conductors include wires, cables and other shapes and strips of electrically conductive material intended to carry voltage.
- the splice compartment may comprise a plurality of splice compartments, such as compartments 11 , 12 , 13 , 14 , and 15 .
- more than one compartment contains respective conductors.
- plural conductors, such as conductors 26 , 27 , and 28 may be positioned within a single compartment such as compartment 15 , with each of the plurality of conductors defining respective first termination points and second termination points.
- the plurality of splice compartments may comprise a primary splice compartment, such as compartments 11 , 12 , 13 , and 14 , and a secondary splice compartment 15 .
- the primary splice compartment or compartments may be configured to, in use, supply electricity, for example from a supply or feeder line, to the electrical equipment such as panel 100 , for example via compartment 11 and conductor lugs 7 , 8 , 9 and conductors 19 , 20 , and 21 to bus bars 1 , 2 , and 3 , respectively.
- the secondary compartment may be configured to receive electricity from the electrical equipment in use to supply to an external load, such as an external circuit (not shown).
- the second termination point, for example points 26 B, 27 B, and 28 B, of the conductor, in this case conductors 26 , 27 , and 28 , respectively, of the secondary splice compartment 15 may have a temperature rating that is higher than a temperature rating of the electrical equipment, in this case panel 100 .
- the second termination point, for example points 16 B, 17 B, and 18 B, of the conductor, in this case conductors 16 , 17 , and 18 , respectively, of the primary splice compartment 15 may have a temperature rating that is higher than a temperature rating of the electrical equipment, in this case panel 100 .
- the additional compartments 12 and 15 may house terminals for connecting a higher temperature rated cable to a relatively lower temperature rated piece of electrical equipment, such as panel 100 , than would be possible if an external conductor were connected directly to the electrical equipment.
- a method may comprise prefabricating, at a prefabrication facility 98 , an electrical apparatus 75 by mounting or integrally forming a splice compartment, such as compartments 11 and 15 , adjacent an external part of a main housing 10 .
- An external part is understood to include a part that defines an outer periphery of the main housing. Mounting the splice compartment to or outside the outer periphery of the main housing distances the splice compartment from the heat generation that may occur within the main housing, for example caused by operation of an internal breaker, and that may otherwise contribute to a relatively low temperature rating for all conductors within the main housing 10 .
- the main housing and/or splice compartments may include respective covers, for example to provide respective rainproof enclosures.
- the method may include installing the electrical apparatus 75 at an end user facility 96 , which is remote from the prefabrication facility 98 .
- the prefabrication facility 98 is at least five, ten, fifteen, or more kilometers away from the end user facility 96 .
- the apparatus 75 may be pre-fabricated and transported to a distribution and/or storage facility (not shown), where the apparatus may be sold and/or shipped out to the end user on demand.
- An example of an end user facility 96 includes a building or refinery, and installing includes permanent installation for the purpose of running an electrical system that incorporates the electrical equipment.
- electrical equipment may be enclosed within the main housing, and a conductor may be extended (pre-wired) between the main housing and the splice compartment. At least some of the plurality of conductors may be pre-wired out-of-electrical contact with the electrical equipment, to provide an electrician with the flexibility to decide whether or not to use the conductor if needed during the installing stage.
- the apparatus 75 may be pre-fabricated with one or more of the electrical equipment and a conductor 16 lacking.
- the main housing and splice compartment are configured to, in use, permit a conductor to extend from a first conductor termination point, defined within the main housing, to a second conductor termination point, defined within the splice compartment.
- the main housing may be configured to enclose electrical equipment in use. If the electrical equipment and/or conductor is not assembled with the apparatus 75 in the prefabricating stage, which may occur in sub-stages across one, two, or more facilities, then such may be added during an installation stage.
- Electrical equipment may include any device or appliance that in use runs a current within a housing to perform a function at an end user facility 96 . Appliances may carry out the functions of clothes washing, air-conditioning, food mixing, and deep frying for several examples. In some cases, during use the electrical equipment carries out one or more of the following electrical functions: distribution, switching, voltage modifying, current modifying, energy conversion, energy generation, light generation, or overcurrent protection. The electrical equipment may generate sufficient heat during use such that within the main housing and the electrical equipment, conductors are temperature rated to a maximum of 75 degrees Celsius, in some cases a maximum of 60 degrees Celsius.
- electrical equipment may be provided with an additional compartment which could be internal or external separated from the main housing of the equipment and the equipment termination point. Provisions for wiring may be put in place from the manufacturer or added at the time of installation, and such conductors maybe based on the equipment temperature rating typically 75 degrees Celsius or less, in some cases 60 degrees Celsius.
- the internal conductors may be wired from the termination point of the equipment a minimum of 1.2 meters in length to the additional compartment at the line and or load conductor connection point, typical conductors used are rated at 90 degrees Celsius.
- an external circuit conductor may extend from outside both the splice compartment 15 and main housing 10 , and into electrical contact with the second termination point, in this case points 26 B, 27 B,a and 28 B, respectively.
- the external circuit conductor may have a temperature rating that is higher than the temperature rating of the electrical equipment, in this case panel 100 , in use.
- the external circuit conductor may comprise a plurality of respective external circuit conductors, each electrically connected between a respective conductor, of the plurality of conductors, and each forming part of a respective independent external circuit of a plurality of independent external circuits.
- the conductors 91 , 92 , and 93 may extend to independent respective external circuits.
- An independent circuit would be one where one or more of conductors 91 , 92 , and 93 , are not associated with each other in any way, for example if each conductor 91 , 92 , and 93 ran in different directions to different outlets.
- two or more of conductors 91 , 92 , and 93 may be associated with each other on the same external circuit, for example if one conductor formed a positive lead, another conductor formed a negative lead, and the third a neutral lead or ground.
- a cross-sectional diameter of the external circuit conductor is smaller than a cross-sectional diameter of the conductor, for example conductor 26 .
- the load conductor 91 would be one size smaller.
- the size is more than one size smaller, with sizes referring to wire gauges, see Table 1 for examples of such.
- the use of a relatively thinner diameter conductor 91 as an external circuit conductor reduces the cost of materials required to complete the external circuit, and hence reduces the cost of the electrical work at the end user facility 96 . In some cases, for a ten panel installation a cost savings of $35,000 or more may be realized by dropping one wire gauge from conductors 26 to conductors 91 .
- the conductors may have a predetermined length selected to achieve the desired temperature rating at the second termination point.
- the conductor may have a length of 1.2 meters or greater, for example 3.0 meters.
- the conductor has a length of 1.2 to 1.8 meters.
- the conductor may be oversized in diameter to increase heat dissipation and reduce length.
- the electrical equipment may comprise a distribution panel 100 .
- a distribution board also known as panelboard, breaker panel, or electric panel
- a distribution board is a component of an electricity supply system that divides an electrical power feed into subsidiary circuits, while typically providing a protective fuse or circuit breaker for each circuit in a common enclosure.
- a main switch and in recent boards, one or more residual-current devices (RCD) or residual current breakers with overcurrent protection (RCBO), are also incorporated.
- the circuit breakers are generally positioned in two vertical columns. Circuit breaker panelboards may be dead front, that is, the operator of the circuit breakers is unable to contact live electrical parts.
- a panel 100 includes a panelboard—a single panel or group of panel units designed for assembly in the form of a single panel, including buses and automatic overcurrent devices, and equipped with or without switches for the control of light, heat, or power circuits, designed to be placed in a cabinet or cutout box placed in or against a wall, partition, or other support,
- Panel 100 may include first second and third primary power bus bars, 1 , 2 and 3 in main compartment/housing 10 , which provide connection points for respective first, second and third primary lug kits 23 , 24 and 25 , and breaker 22 .
- a busbar also bus bar, buss bar or bussbar
- Busbars are also used to connect high voltage equipment at electrical switchyards, and low voltage equipment in battery banks. They are generally uninsulated, and have sufficient stiffness to be supported in air by insulated pillars.
- Plural splice compartments may be provided to provide flexibility on the entry and exit point or points for power going into and out of the panel 100 .
- four primary power in/out connection points are provided, located in compartments 11 through 14 (although more or fewer connections points may be present) providing access to panel 100 from all four sides and in some cases the rear or front of panel 100 .
- These primary connection points may be enclosed within the compartments and separated from breaker 22 and/or secondary power supply points in secondary compartments 15 .
- Main housing 10 positioned centrally, may house a branch circuit breaker 22 and primary bus bars 1 , 2 and 3 .
- Compartment 11 may provide primary power in/out via bottom or rear entry.
- Compartment 12 may provide primary power in/out via a side or rear entry.
- Compartment 13 may provide primary power in/out via top or rear entry.
- Compartment 14 may provide primary power in/out via a side (opposite to that of compartment 12 ) or rear entry.
- panel 100 may include first, second and third primary power in/out connections 4 , 5 , 6 positioned in primary compartment 12 on a side of panel 100 and first second and third primary power in/out connections, such as lugs 7 , 8 and 9 in primary compartment 11 positioned proximate to either the top or bottom of panel 100 (shown in FIG. 1 proximate to the bottom of panel 100 ).
- Each primary panel or compartment 11 to 14 may have similar power in/out connections.
- Conductor passages (not shown) between splice compartments and the main housing may have pop-out parts to permit customization on location of the apparatus 75 to the facility.
- Each bus bar 1 , 2 and 3 may have a primary power in/out side or rear attachments 16 , 17 , and 18 , respectively, as shown in compartment 12 , and primary power in/out bottom, top, or rear attachment (conductors) 19 , 20 and 21 , respectively, as shown in compartment 14 to connect to respective power in/out connections.
- the use of secondary compartments allows panel 100 to have a multi-purpose design and cater to typical code requirements. The design adds convenience to installation and modification processes, accomplished through primary compartments 11 through 14 , breaker 22 , and secondary compartments 15 .
- the primary and/or secondary splice compartments on electrical equipment as included for in this document, may contain secondary termination points for connected conductors.
- the connected conductor primary and secondary termination points may be pre-wired by the manufacturer, from the primary connection from the termination point of the electrical equipment to the secondary connection to the termination point in the additional compartment, which houses the connecting conductor's secondary termination point. This may be done with consideration given to temperature limitation of the conductors.
- one or more splice compartments such as compartment 15
- compartment 15 may be used for power metering.
- power may flow through branch circuits and pass meter 99 , where power use may be conveniently monitored on-panel.
- the separated primary and or secondary compartments within panel 100 may thus create an environment that allows for the installation of one or more current transformers for metering purposes.
- a current transformer for power metering may not be permitted to be installed within main housing 10 containing breaker 22 due to safety and temperature concerns.
- one or more splice compartment 15 may incorporate a race way, such as race ways 83 and 85 , containing conductor lugs 29 , 30 , and 31 , and 19 , 20 , and 21 , between splice compartments 15 and 13 , respectively, and main housing 10 .
- the conductor passage may be defined by such a raceway or raceways, which may connect the main housing and splice compartment, in abutting relationship, or in a spaced relationship as shown.
- the raceway may form part of a rigid pre-fabricated connection between the splice compartment and the main housing 10 .
- the term raceway or wire way may mean a suitable structure for installing wires, and may be fully enclosed or may have open access from at least one side.
- compartments 11 and 12 may be open while the other compartments 13 , 14 remain closed. In some embodiments of panel 100 , access to primary compartments 11 to 14 may only be available through secondary compartments 15 .
- a branch circuit overcurrent protection device such as a branch circuit breaker 22
- the circuit breaker 22 may be mounted in the main housing. Because the breaker 22 , which generates heat during use, is spaced from the splice compartment 15 , the compartment 15 is still able to achieve a relatively higher temperature rating for internal conductors.
- FIG. 3 a representative circuit drawing for compartments 11 and 15 is shown.
- Breaker 22 for branch circuit supply may be connectable to primary lugs (or lug kits) 23 , 24 and 25 and secondary lugs (or lug kits) 26 , 27 and 28 , which in turn may be connected to branch circuit terminal connection points (lugs) 29 , 30 and 31 , respectively in compartment 12 .
- the apparatus 75 may permit the ability to splice or tap conductors and typical conductor terminal connections within the additional compartment. Splicing or tapping may be done by using raised insulated terminal lugs, within the compartments. Such may also create the ability to attach additional equipment to the primary and secondary compartments such as motor starters, contactor panels, switches or the like.
- a lug is an electrical connector, for example, a bolt on an enclosure tied to an electric potential within the enclosure, supporting the connection of a cable. Lugs may be provided integrally or in the form of lug kits that may be added or removed to the system as desired
- Secondary lugs of lug kits (conductors) 26 to 28 may create attachment points between the breakers 22 and the branch circuit connection lugs 29 , 30 , 31 .
- the secondary branch circuit connection points may allow for a higher circuit temperature rating at the termination point of the branch circuits which is located in the secondary compartments 15 . Such may be accomplished in various ways such as the length of the secondary lugs, size of the secondary lugs, type of material used for the secondary lugs and/or but no limited to the type of insulation used on the secondary lug kit or conductor.
- the separation of the secondary branch connection points in a separate compartment from breaker 22 may allow for the temperature rating of the circuit to match the rating on a terminal block and/or the conductor depending on which has the lowest rating, which may be for example 90 degrees Celsius.
- panel 100 may have a suitable shape and configuration.
- splice compartment 15 may wrap around the sides and rear of the main housing 10 , to provide a full wrap around with front access point for the main housing and splice compartments.
- Such a configuration also provides access to the secondary splice compartments 15 from almost 360 degrees of angular direction, relative to an axis 87 normal to the main housing 10 .
- FIG. 4 and 4A another embodiment is shown with the main housing 10 positioned to the rear of the panel 100 , and a plurality of secondary splice compartments arranged to the front and about the periphery of the main housing 10 , to provide access to the splice compartments from almost 360 degrees of angular direction.
- the primary splice compartments 13 may be located at the rear of the panel 100 .
- Secondary compartments 15 may be able to serve many purposes, including to provide a wire way, a wire splice connection point for branch circuits, secondary metering, primary metering and/or a termination compartment.
- the separation from breaker 22 relieves concerns created from the heat generated by breaker 22 .
- FIG. 4 is an example of a Power Distribution Panel 100 that contains the main housing 10 which houses the breakers, bus bars, primary and secondary conductors.
- Primary compartment 13 may contain the termination point for connecting conductors.
- Secondary compartment 15 may contain the termination points for connecting conductors.
- a main overcurrent protection device, such as breaker 32 may be connected one or both of upstream of the distribution panel (not shown) or within the distribution panel (shown), in which the second termination point has a temperature rating that is higher than a temperature rating of the main overcurrent protection device.
- the splice compartment may provide a termination point for an aluminum conductor.
- the external circuit conductor 91 may comprise an aluminum conductor
- the connecting conductor 26 may comprise a non-aluminum conductor, such as a copper wire.
- Panel 100 may thus cater to the use of aluminum wires at termination points, which may be aluminum connection points or a termination point configured to be part of an aluminum conductor connection, and may be separated from fluctuating temperatures of the breaker 22 in main housing 10 .
- the fluctuation in temperature at the second termination point is reduced, thus reducing the relatively high expansion and contraction rate of aluminum that otherwise creates problems by loosening lugs and connections when such connections are present in the main housing.
- apparatus 75 may achieve a safety and operations benefit to a distribution panel with the addition of the secondary compartment. If individual compartments were used for each circuit, such creates a condition in which wiring and equipment can be added or removed without having to shut down or de-energize the entire panel. Instead, work can be done on a branch circuit by merely locking out a single breaker pertaining to the circuit being worked on, and such could be done with the use of cover plates over exposed energized terminal lugs and pre-installed breakers along with secondary wiring to the additional compartment. Adjustable trip breakers may be superior for some installations where the addition and or deletion of equipment would be likely, such as welding or fabrication facilities. In such facilities there may be an increased efficiency by having the panel left in operation all well meeting safety requirements of de-energizing equipment to be worked on.
- Electrical equipment may comprise one or more of switchgear, a transformer, a motor control panel, a motor, a motor starter, a generator, a light fixture, a fused disconnect switch, an unfused disconnect switch, a power monitor, and a motor disconnect switch.
- FIG. 5 is an example of a fused disconnect switch 101 .
- the switch 101 may be contained within the main housing 10 , which houses the fuses, fuse holders, disconnect switch with external operating handle and the equipment termination points.
- Primary compartment 13 may contain the termination point for connecting conductors.
- Secondary compartment 15 may contain the termination points for connecting conductors.
- Switchgear may include an assembly completely enclosed on all sides and top with sheet metal and containing primary power circuit switching, interrupting devices, or both, with buses and connections.
- the assembly may include control and auxiliary devices. Access to the interior of the enclosure is provided by doors, removable covers, or both.
- the enclosures/housings may have ventilations openings.
- FIG. 6 is an example of a transformer 102 .
- Transformer 102 may be contained within the main housing 10 , which houses coils, coil mounting brackets, internal wiring and equipment termination points.
- Primary compartment 13 may contain the termination point for connecting conductors.
- Secondary compartment 15 may contain the termination points for connecting conductors.
- FIG. 7 is an example of a motor 10 .
- the motor 10 may be enclosed by the main housing 10 , which houses the coils, shaft, internal wiring.
- Compartment 45 houses the equipment termination points and secondary wiring to compartment 13 which houses the termination point for connecting conductors.
- the current may flow in the reverse direction as shown.
- Industrial plants may commonly incorporate backup power generators, which may provide the reverse energy flow of the motor example, where the rotation of shaft 47 creates electricity that flows out of the system via conductors 19 , 20 , and 21 .
- electrical equipment wiring including but not limited to three phase, single phase, hi voltage, low voltage, with or without neutral conductors, with or without a main breaker, with or without a grounding conductor.
- Such variations all consist with this panel and are to all be taken as part of its variations.
- wire ways may be added and separate compartments may be added to contain, for example, a fuse body, unfused disconnect switches, fused distribution panels and/or breaker panels.
- Panel 100 may be manufactured to adapt to existing distribution panels or the like for Previously presented or retrofit installations.
- Electrical equipment as per this document may come with any variation of compartments and lug kits, such as primary compartment and conductors only, or secondary compartment and conductors only. Or it could include both primary and secondary compartments and conductors. In some cases, the electrical equipment could contain only one compartment containing both primary and secondary conductors with their pertaining termination points, any variation which complies with the code requirements.
- Main housing of the pertaining electrical equipment and the equipment termination point includes but not limited to; breakers, bus bars, fuses, coils, disconnect switches, motors, generators and the like.
- 26 , 27 & 28 Secondary lugs or lug kit for breaker 22 which connect the equipment termination point to the conductor termination point. 29 , 30 & 31 .
- Example of an electrical motor or generator Example of an electrical motor or generator.
- the primary and secondary compartments and conductors could be manufactured to adapt to existing electrical equipment or manufactured complete for Previously presented installations. Compartments disclosed within this document are separated from the main body of the electrical equipment using a barrier or by attaching externally connected compartments to the main body respectively. Connecting the splice compartment and the housing 10 may be achieved by a suitable mechanism such as via a wire way, fastener, weld, adhesive, or other mechanisms. Integral formation may be achieved by the sharing of a common barrier wall, between the housing 10 and splice compartment.
- the diagrams are examples only and could be manufactured in many ways for all applicable voltages, amperages, phases, neutral and or grounding requirements.
- Cross sectional diameters may refer to average cross sectional diameters along an axial length of the conductor.
- the various embodiments described above can be combined to provide further embodiments. Aspects of the present systems, methods and components can be modified, if necessary, to employ systems, methods, components and concepts to provide yet further embodiments as disclosed in this document. For example, the various methods described above may omit some acts, include other acts, and/or execute acts in a different order than set out in the illustrated embodiments. Further, in the methods taught herein, the various acts may be performed in a different order than that illustrated and described. Additionally, the methods can omit some acts, and/or employ additional acts.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Patch Boards (AREA)
- Cable Accessories (AREA)
Abstract
Description
-
- a. its insulation temperature rating;
- b. the electrical resistance of the conductor material;
- c. frequency of the current, in the case of alternating current;
- d. ability to dissipate heat, which depends on conductor geometry and its surroundings; and
- e. ambient temperature.
-
- a. Wires (conductors)
- b. Printed Circuit Board traces, where included
- c. Fuses
- d. Circuit breakers; and
- e. All or nearly all components used
TABLE 1 |
Allowable ampacities for not more than three copper conductors, |
rated not more than 5000 V and unshielded, in raceway or cable |
(based on ambient temperature of 30 degrees Celsius) |
Size, | Allowable ampacity |
AWG or kcmil | 60° C. | 75° C. | 90° C. | 110° C. | 125° C. | 200° C. |
14 | 15 | 20 | 25 | 25 | 30 | 35 |
12 | 20 | 25 | 30 | 30 | 35 | 40 |
10 | 30 | 35 | 40 | 45 | 45 | 60 |
8 | 40 | 50 | 55 | 65 | 65 | 80 |
6 | 55 | 65 | 75 | 80 | 90 | 110 |
4 | 70 | 85 | 95 | 105 | 115 | 140 |
3 | 85 | 100 | 115 | 125 | 135 | 165 |
2 | 95 | 115 | 130 | 145 | 155 | 190 |
1 | 110 | 130 | 145 | 165 | 175 | 215 |
0 | 125 | 150 | 170 | 190 | 200 | 245 |
00 | 145 | 175 | 195 | 220 | 235 | 290 |
000 | 165 | 200 | 225 | 255 | 270 | 330 |
0000 | 195 | 230 | 260 | 290 | 310 | 380 |
250 | 215 | 255 | 290 | 320 | 345 | — |
300 | 240 | 285 | 320 | 360 | 385 | — |
350 | 260 | 310 | 350 | 390 | 420 | — |
400 | 280 | 335 | 380 | 425 | 450 | — |
500 | 320 | 380 | 430 | 480 | 510 | — |
600 | 350 | 420 | 475 | 530 | 565 | — |
700 | 385 | 460 | 520 | 580 | 620 | — |
Col. 1 | Col. 2 | Col. 3 | Col. 4 | Col. 5 | Col. 6 | Col. 7 |
Claims (20)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/576,698 US10615578B2 (en) | 2016-07-29 | 2017-05-19 | Electrical equipment with additional compartment and wiring to account for temperature limitations of connected conductors |
US16/841,555 US20200343699A1 (en) | 2016-07-29 | 2020-04-06 | Electrical equipment with additional compartment and wiring to account for temperature limitations of connected conductors |
US17/380,895 US20220013997A1 (en) | 2016-07-29 | 2021-07-20 | Electrical equipment with additional compartment and wiring to account for temperature limitations of connected conductors |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662368573P | 2016-07-29 | 2016-07-29 | |
US15/576,698 US10615578B2 (en) | 2016-07-29 | 2017-05-19 | Electrical equipment with additional compartment and wiring to account for temperature limitations of connected conductors |
PCT/CA2017/050617 WO2018018131A1 (en) | 2016-07-29 | 2017-05-19 | Electrical equipment with additional compartment and wiring to account for temperature limitations of connected conductors |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CA2017/050617 A-371-Of-International WO2018018131A1 (en) | 2016-07-29 | 2017-05-19 | Electrical equipment with additional compartment and wiring to account for temperature limitations of connected conductors |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/841,555 Continuation US20200343699A1 (en) | 2016-07-29 | 2020-04-06 | Electrical equipment with additional compartment and wiring to account for temperature limitations of connected conductors |
Publications (2)
Publication Number | Publication Date |
---|---|
US20190157849A1 US20190157849A1 (en) | 2019-05-23 |
US10615578B2 true US10615578B2 (en) | 2020-04-07 |
Family
ID=61015490
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/576,698 Active US10615578B2 (en) | 2016-07-29 | 2017-05-19 | Electrical equipment with additional compartment and wiring to account for temperature limitations of connected conductors |
US16/841,555 Abandoned US20200343699A1 (en) | 2016-07-29 | 2020-04-06 | Electrical equipment with additional compartment and wiring to account for temperature limitations of connected conductors |
US17/380,895 Pending US20220013997A1 (en) | 2016-07-29 | 2021-07-20 | Electrical equipment with additional compartment and wiring to account for temperature limitations of connected conductors |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/841,555 Abandoned US20200343699A1 (en) | 2016-07-29 | 2020-04-06 | Electrical equipment with additional compartment and wiring to account for temperature limitations of connected conductors |
US17/380,895 Pending US20220013997A1 (en) | 2016-07-29 | 2021-07-20 | Electrical equipment with additional compartment and wiring to account for temperature limitations of connected conductors |
Country Status (3)
Country | Link |
---|---|
US (3) | US10615578B2 (en) |
CA (1) | CA2986409C (en) |
WO (1) | WO2018018131A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4185879A4 (en) * | 2020-07-24 | 2024-07-17 | Basis Nz Ltd | Improved switchboard and aspects of a power distribution system |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2986409C (en) | 2016-07-29 | 2021-01-26 | Shawn Murray KARLE | Electrical equipment with additional compartment and wiring to account for temperature limitations of connected conductors |
Citations (73)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3025432A (en) | 1959-01-16 | 1962-03-13 | Gen Electric | Factory assembled electrical service package |
US3857044A (en) | 1973-08-02 | 1974-12-24 | Progressive Dynamics | Combination power converter-distribution panel unit for recreational vehicles |
US4369484A (en) | 1981-03-23 | 1983-01-18 | Gte Products Corporation | Multiple meter switchboard |
GB2109163A (en) | 1981-11-04 | 1983-05-25 | Federal Electric Ltd | Circuit breakers |
US4675598A (en) | 1984-04-09 | 1987-06-23 | Merlin Gerin | Current measuring device in an electrical distribution switchboard or enclosure |
CA1253953A (en) | 1985-02-23 | 1989-05-09 | Erwin Reichl | Electrical distribution panel and switching method |
EP0345851A1 (en) | 1988-06-07 | 1989-12-13 | Holec Systemen En Componenten B.V. | Switch box for electrical installations |
US5191502A (en) | 1991-02-15 | 1993-03-02 | Epstein Barry M | Unitary panel for connecting a load to a power source in a manner which controls voltage surges and transients and accommodates the needs of non-linear loads |
US5196982A (en) | 1991-08-23 | 1993-03-23 | The Fleming Group | Electrical power monitoring system |
US5510948A (en) | 1994-12-16 | 1996-04-23 | Q Tran, Inc. | Low voltage power supply and distribution center |
US5544003A (en) | 1995-03-06 | 1996-08-06 | Vaughan; Joe L. | Portable electrical distribution panel |
EP0748016A2 (en) | 1995-06-08 | 1996-12-11 | GEWISS S.p.A. | Electric power supply switch box, particularly for household use |
US5612579A (en) | 1993-08-27 | 1997-03-18 | Sundstrand Corporation | Power distribution center |
US5675194A (en) | 1996-06-07 | 1997-10-07 | Walker Systems, Inc. | Modular power distribution system |
US5789828A (en) | 1996-12-24 | 1998-08-04 | Tremaine; Susan C. | Low voltage power supply and distribution center |
RU2121697C1 (en) | 1997-08-06 | 1998-11-10 | Владимир Романович Мамошин | Universal meter for multichannel power production and distribution centers |
US6035247A (en) | 1996-11-26 | 2000-03-07 | Hitachi, Ltd. | Distribution panel switch gear and monitoring and control system having distribution panel switch gear |
US6055144A (en) | 1993-02-26 | 2000-04-25 | Square D Company | Electrical power distribution system utilizing circuit breakers with internal control and communication circuitry |
US6091316A (en) | 1997-11-04 | 2000-07-18 | Hofsaess; Marcel | Switch having a temperature-dependent switching mechanism |
GB2351852A (en) | 1999-07-07 | 2001-01-10 | Schneider Electric Ltd | Electrical distribution apparatus |
GB2360884A (en) | 2000-03-28 | 2001-10-03 | Wates Construction | Electrical distribution system |
US6421229B1 (en) | 2000-12-21 | 2002-07-16 | Eaton Corporation | Combination meter/breaker panel enclosure with rain gutter and security system |
US20030007369A1 (en) | 1998-04-02 | 2003-01-09 | Gilbreth Mark G. | Power controller |
US6538870B2 (en) | 2001-02-02 | 2003-03-25 | Eaton Corporation | Circuit breaker and electrical distribution panel employing the same |
US20040075343A1 (en) | 2002-09-05 | 2004-04-22 | Paul Wareham | System and method for power load management |
US6731484B2 (en) | 2001-12-26 | 2004-05-04 | Northern Technologies, Inc. | Integrated high voltage transient surge suppression with automatic transfer switch for alternate source of electricity |
US6747368B2 (en) | 2001-08-30 | 2004-06-08 | Harold M. Jarrett, Jr. | Wireless control of power transfer switches for electrical load management |
US6947813B2 (en) | 2002-06-06 | 2005-09-20 | Hitachi, Ltd. | Power distribution panel switch gear and a monitoring and control system having a distribution panel switch gear |
US20060022522A1 (en) | 2004-07-27 | 2006-02-02 | Plummer Lew E | Electrical power unit and power distribution center therefor |
US7256984B2 (en) | 2005-05-10 | 2007-08-14 | Tyco Electronics Power Systems, Inc. | Reconfigurable power distribution panel |
CA2554685A1 (en) | 2006-07-25 | 2008-01-25 | Sumac Fabrication Co. Ltd. | Scaffold mounted electrical power distribution panel |
US20080167755A1 (en) | 2007-01-09 | 2008-07-10 | Power Monitors Inc. | Method and apparatus for smart circuit breaker |
US20080255782A1 (en) | 2007-04-12 | 2008-10-16 | Siemens Energy & Automation, Inc. | Devices, Systems, and Methods for Monitoring Energy Systems |
US20090185335A1 (en) | 2006-07-06 | 2009-07-23 | Yeong Min Kwon | Module type power distribution apparatus |
US20090244817A1 (en) | 2008-04-01 | 2009-10-01 | Moyer Anthony R | Electrical Distribution System |
US20090255727A1 (en) | 2008-04-15 | 2009-10-15 | Gm Global Technology Operations, Inc. | High-Voltage Vehicle Component Connection Method And Apparatus |
US7623043B2 (en) | 2005-12-19 | 2009-11-24 | General Electric Company | Method and system for metering consumption of energy |
US7652871B2 (en) | 2006-01-04 | 2010-01-26 | General Electric Company | Methods and systems for electrical power sub-metering |
US7782596B2 (en) | 2005-12-20 | 2010-08-24 | Bradley Leighton Ross | Power distribution system with individually isolatable functional zones |
US7872379B2 (en) | 2008-12-12 | 2011-01-18 | Honeywell International Inc. | Integrated electric power distribution center fire protection system |
US20110148213A1 (en) * | 2009-12-22 | 2011-06-23 | Direct Power Technologies, Inc. | 380 volt direct current power distribution system for information and communication technology systems and facilities |
US8030799B1 (en) | 2008-05-07 | 2011-10-04 | Reliance Controls Corporation | Combination switch and circuit breaker |
WO2012007831A2 (en) | 2010-07-16 | 2012-01-19 | Levelation | Circuit breaker with integral meter and wireless communications |
US8108321B2 (en) | 2006-01-12 | 2012-01-31 | Urbissimo, Inc. | System and method for shipping and delivering parcels to a virtual address |
WO2012021759A2 (en) | 2010-08-11 | 2012-02-16 | Zonit Structured Solutions Llc | Parallel redundant power distribution |
US8169103B2 (en) | 2009-10-07 | 2012-05-01 | Aboundi, Inc. | Data-ready power mains distribution panel and data coupler |
US8254089B2 (en) | 2010-06-17 | 2012-08-28 | Diversified Control, Inc. | Panelboard enclosure with installable panelboard assembly |
US8324755B2 (en) | 2009-03-06 | 2012-12-04 | Briggs And Stratton Corporation | Power management system and method of operating the same |
US20130006436A1 (en) | 2008-09-25 | 2013-01-03 | Masters Gilbert J | Smart Electrical Drop Wire-Forms and Electrical Power Management System |
US20130050906A1 (en) * | 2011-08-31 | 2013-02-28 | Jim Peplinski | Integrated safety disconnects for power systems |
WO2013046235A2 (en) | 2011-09-29 | 2013-04-04 | Logica Private Limited | Apparatus and system for managing delivery of objects |
US8415830B2 (en) | 2010-06-03 | 2013-04-09 | Briggs & Stratton Corporation | Active load management system |
US8514551B2 (en) | 2010-06-17 | 2013-08-20 | Diversified Control, Inc. | Panelboard enclosure with external power cutoff switch |
CN203166627U (en) | 2013-01-24 | 2013-08-28 | 成都宏天电传工程有限公司 | Intelligent electrical network system |
US8599536B1 (en) | 2010-10-07 | 2013-12-03 | Jnt Technical Services, Inc. | Stackable cube power distribution center |
WO2014080389A2 (en) | 2014-03-25 | 2014-05-30 | Alshdaifat, Wasfi | Autonomous ground station interfacing aerial delivery |
US20140214218A1 (en) | 2013-01-30 | 2014-07-31 | Eaton Corporation | Electric power distribution system including metering function and method of evaluating energy metering |
WO2014146776A1 (en) | 2013-03-22 | 2014-09-25 | Abb Ag | Switchgear assembly, dc power distribution system, dc power distribution board |
US8947254B2 (en) | 2012-06-15 | 2015-02-03 | Fedex Corporate Services, Inc. | Systems and methods for managing information associated with boxes used in the delivery of packages |
EP2835078A1 (en) | 2013-08-09 | 2015-02-11 | Cottner Technologies Limited | Locker for a delivery or collection system. |
US8982539B2 (en) | 2010-04-21 | 2015-03-17 | Christopher Weighell | Electrical distribution panel |
CN104701975A (en) | 2013-12-04 | 2015-06-10 | 国家电网公司 | Integrated monitoring system for low-voltage power distribution |
US20150207301A1 (en) | 2012-07-25 | 2015-07-23 | Edison Global Circuits, Llc | Circuit breaker panel |
US20150288225A1 (en) | 2011-05-08 | 2015-10-08 | Paul Wilkinson Dent | Residential electrical energy installation |
US20150317596A1 (en) | 2014-05-01 | 2015-11-05 | Sammy Hejazi | Mailport for Automated Parcel Carriers |
US9211025B1 (en) | 2014-10-10 | 2015-12-15 | Walid Elhawwashy | Postal cube |
US20160128208A1 (en) * | 2013-06-28 | 2016-05-05 | Wabco Gmbh | Electrical control device |
US9343925B1 (en) | 2011-08-16 | 2016-05-17 | Reliance Controls Corporation | System for distributing power from multiple power sources to individual loads connected to a distribution panel assembly |
US20160163476A1 (en) | 2014-12-05 | 2016-06-09 | Eaton Corporation | Circuit breaker panel including remotely operated circuit breaker |
US20160225562A1 (en) | 2015-01-29 | 2016-08-04 | Unilectric, Llc | Enhanced circuit breakers and circuit breaker panels and systems and methods using the same |
US20160241007A1 (en) * | 2013-10-21 | 2016-08-18 | Qtran, Inc. | Integrated electrical assembly, enclosure, master tub, multi-wire connector, and junction box |
US20170091711A1 (en) | 2015-09-29 | 2017-03-30 | International Business Machines Corporation | Smart drop boxes for autonomous devices |
CA2986409A1 (en) | 2016-07-29 | 2018-01-29 | Shawn Murray KARLE | Electrical equipment with additional compartment and wiring to account for temperature limitations of connected conductors |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110062888A1 (en) * | 2004-12-01 | 2011-03-17 | Bondy Montgomery C | Energy saving extra-low voltage dimmer and security lighting system wherein fixture control is local to the illuminated area |
-
2017
- 2017-05-19 CA CA2986409A patent/CA2986409C/en active Active
- 2017-05-19 WO PCT/CA2017/050617 patent/WO2018018131A1/en active Application Filing
- 2017-05-19 US US15/576,698 patent/US10615578B2/en active Active
-
2020
- 2020-04-06 US US16/841,555 patent/US20200343699A1/en not_active Abandoned
-
2021
- 2021-07-20 US US17/380,895 patent/US20220013997A1/en active Pending
Patent Citations (74)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3025432A (en) | 1959-01-16 | 1962-03-13 | Gen Electric | Factory assembled electrical service package |
US3857044A (en) | 1973-08-02 | 1974-12-24 | Progressive Dynamics | Combination power converter-distribution panel unit for recreational vehicles |
US4369484A (en) | 1981-03-23 | 1983-01-18 | Gte Products Corporation | Multiple meter switchboard |
GB2109163A (en) | 1981-11-04 | 1983-05-25 | Federal Electric Ltd | Circuit breakers |
US4675598A (en) | 1984-04-09 | 1987-06-23 | Merlin Gerin | Current measuring device in an electrical distribution switchboard or enclosure |
CA1253953A (en) | 1985-02-23 | 1989-05-09 | Erwin Reichl | Electrical distribution panel and switching method |
EP0345851A1 (en) | 1988-06-07 | 1989-12-13 | Holec Systemen En Componenten B.V. | Switch box for electrical installations |
US5191502A (en) | 1991-02-15 | 1993-03-02 | Epstein Barry M | Unitary panel for connecting a load to a power source in a manner which controls voltage surges and transients and accommodates the needs of non-linear loads |
US5196982A (en) | 1991-08-23 | 1993-03-23 | The Fleming Group | Electrical power monitoring system |
US6055144A (en) | 1993-02-26 | 2000-04-25 | Square D Company | Electrical power distribution system utilizing circuit breakers with internal control and communication circuitry |
US5612579A (en) | 1993-08-27 | 1997-03-18 | Sundstrand Corporation | Power distribution center |
US5510948A (en) | 1994-12-16 | 1996-04-23 | Q Tran, Inc. | Low voltage power supply and distribution center |
US5544003A (en) | 1995-03-06 | 1996-08-06 | Vaughan; Joe L. | Portable electrical distribution panel |
EP0748016A2 (en) | 1995-06-08 | 1996-12-11 | GEWISS S.p.A. | Electric power supply switch box, particularly for household use |
US5675194A (en) | 1996-06-07 | 1997-10-07 | Walker Systems, Inc. | Modular power distribution system |
US6035247A (en) | 1996-11-26 | 2000-03-07 | Hitachi, Ltd. | Distribution panel switch gear and monitoring and control system having distribution panel switch gear |
US5789828A (en) | 1996-12-24 | 1998-08-04 | Tremaine; Susan C. | Low voltage power supply and distribution center |
RU2121697C1 (en) | 1997-08-06 | 1998-11-10 | Владимир Романович Мамошин | Universal meter for multichannel power production and distribution centers |
US6091316A (en) | 1997-11-04 | 2000-07-18 | Hofsaess; Marcel | Switch having a temperature-dependent switching mechanism |
US20030007369A1 (en) | 1998-04-02 | 2003-01-09 | Gilbreth Mark G. | Power controller |
GB2351852A (en) | 1999-07-07 | 2001-01-10 | Schneider Electric Ltd | Electrical distribution apparatus |
GB2360884A (en) | 2000-03-28 | 2001-10-03 | Wates Construction | Electrical distribution system |
US6421229B1 (en) | 2000-12-21 | 2002-07-16 | Eaton Corporation | Combination meter/breaker panel enclosure with rain gutter and security system |
US6538870B2 (en) | 2001-02-02 | 2003-03-25 | Eaton Corporation | Circuit breaker and electrical distribution panel employing the same |
US6747368B2 (en) | 2001-08-30 | 2004-06-08 | Harold M. Jarrett, Jr. | Wireless control of power transfer switches for electrical load management |
US6731484B2 (en) | 2001-12-26 | 2004-05-04 | Northern Technologies, Inc. | Integrated high voltage transient surge suppression with automatic transfer switch for alternate source of electricity |
US6947813B2 (en) | 2002-06-06 | 2005-09-20 | Hitachi, Ltd. | Power distribution panel switch gear and a monitoring and control system having a distribution panel switch gear |
US20040075343A1 (en) | 2002-09-05 | 2004-04-22 | Paul Wareham | System and method for power load management |
US20060022522A1 (en) | 2004-07-27 | 2006-02-02 | Plummer Lew E | Electrical power unit and power distribution center therefor |
US7256984B2 (en) | 2005-05-10 | 2007-08-14 | Tyco Electronics Power Systems, Inc. | Reconfigurable power distribution panel |
US7623043B2 (en) | 2005-12-19 | 2009-11-24 | General Electric Company | Method and system for metering consumption of energy |
US7782596B2 (en) | 2005-12-20 | 2010-08-24 | Bradley Leighton Ross | Power distribution system with individually isolatable functional zones |
US7652871B2 (en) | 2006-01-04 | 2010-01-26 | General Electric Company | Methods and systems for electrical power sub-metering |
US8108321B2 (en) | 2006-01-12 | 2012-01-31 | Urbissimo, Inc. | System and method for shipping and delivering parcels to a virtual address |
US20090185335A1 (en) | 2006-07-06 | 2009-07-23 | Yeong Min Kwon | Module type power distribution apparatus |
CA2554685A1 (en) | 2006-07-25 | 2008-01-25 | Sumac Fabrication Co. Ltd. | Scaffold mounted electrical power distribution panel |
US20080167755A1 (en) | 2007-01-09 | 2008-07-10 | Power Monitors Inc. | Method and apparatus for smart circuit breaker |
US20080255782A1 (en) | 2007-04-12 | 2008-10-16 | Siemens Energy & Automation, Inc. | Devices, Systems, and Methods for Monitoring Energy Systems |
US20090244817A1 (en) | 2008-04-01 | 2009-10-01 | Moyer Anthony R | Electrical Distribution System |
US20090255727A1 (en) | 2008-04-15 | 2009-10-15 | Gm Global Technology Operations, Inc. | High-Voltage Vehicle Component Connection Method And Apparatus |
US8030799B1 (en) | 2008-05-07 | 2011-10-04 | Reliance Controls Corporation | Combination switch and circuit breaker |
US20130006436A1 (en) | 2008-09-25 | 2013-01-03 | Masters Gilbert J | Smart Electrical Drop Wire-Forms and Electrical Power Management System |
US7872379B2 (en) | 2008-12-12 | 2011-01-18 | Honeywell International Inc. | Integrated electric power distribution center fire protection system |
US8324755B2 (en) | 2009-03-06 | 2012-12-04 | Briggs And Stratton Corporation | Power management system and method of operating the same |
US8169103B2 (en) | 2009-10-07 | 2012-05-01 | Aboundi, Inc. | Data-ready power mains distribution panel and data coupler |
US20110148213A1 (en) * | 2009-12-22 | 2011-06-23 | Direct Power Technologies, Inc. | 380 volt direct current power distribution system for information and communication technology systems and facilities |
US8982539B2 (en) | 2010-04-21 | 2015-03-17 | Christopher Weighell | Electrical distribution panel |
US8415830B2 (en) | 2010-06-03 | 2013-04-09 | Briggs & Stratton Corporation | Active load management system |
US8254089B2 (en) | 2010-06-17 | 2012-08-28 | Diversified Control, Inc. | Panelboard enclosure with installable panelboard assembly |
US8514551B2 (en) | 2010-06-17 | 2013-08-20 | Diversified Control, Inc. | Panelboard enclosure with external power cutoff switch |
WO2012007831A2 (en) | 2010-07-16 | 2012-01-19 | Levelation | Circuit breaker with integral meter and wireless communications |
WO2012021759A2 (en) | 2010-08-11 | 2012-02-16 | Zonit Structured Solutions Llc | Parallel redundant power distribution |
US8599536B1 (en) | 2010-10-07 | 2013-12-03 | Jnt Technical Services, Inc. | Stackable cube power distribution center |
US20150288225A1 (en) | 2011-05-08 | 2015-10-08 | Paul Wilkinson Dent | Residential electrical energy installation |
US9343925B1 (en) | 2011-08-16 | 2016-05-17 | Reliance Controls Corporation | System for distributing power from multiple power sources to individual loads connected to a distribution panel assembly |
US20130050906A1 (en) * | 2011-08-31 | 2013-02-28 | Jim Peplinski | Integrated safety disconnects for power systems |
WO2013046235A2 (en) | 2011-09-29 | 2013-04-04 | Logica Private Limited | Apparatus and system for managing delivery of objects |
US8947254B2 (en) | 2012-06-15 | 2015-02-03 | Fedex Corporate Services, Inc. | Systems and methods for managing information associated with boxes used in the delivery of packages |
US20150207301A1 (en) | 2012-07-25 | 2015-07-23 | Edison Global Circuits, Llc | Circuit breaker panel |
CN203166627U (en) | 2013-01-24 | 2013-08-28 | 成都宏天电传工程有限公司 | Intelligent electrical network system |
US20140214218A1 (en) | 2013-01-30 | 2014-07-31 | Eaton Corporation | Electric power distribution system including metering function and method of evaluating energy metering |
WO2014146776A1 (en) | 2013-03-22 | 2014-09-25 | Abb Ag | Switchgear assembly, dc power distribution system, dc power distribution board |
US20160128208A1 (en) * | 2013-06-28 | 2016-05-05 | Wabco Gmbh | Electrical control device |
EP2835078A1 (en) | 2013-08-09 | 2015-02-11 | Cottner Technologies Limited | Locker for a delivery or collection system. |
US20160241007A1 (en) * | 2013-10-21 | 2016-08-18 | Qtran, Inc. | Integrated electrical assembly, enclosure, master tub, multi-wire connector, and junction box |
CN104701975A (en) | 2013-12-04 | 2015-06-10 | 国家电网公司 | Integrated monitoring system for low-voltage power distribution |
WO2014080389A2 (en) | 2014-03-25 | 2014-05-30 | Alshdaifat, Wasfi | Autonomous ground station interfacing aerial delivery |
US20150317596A1 (en) | 2014-05-01 | 2015-11-05 | Sammy Hejazi | Mailport for Automated Parcel Carriers |
US9211025B1 (en) | 2014-10-10 | 2015-12-15 | Walid Elhawwashy | Postal cube |
US20160163476A1 (en) | 2014-12-05 | 2016-06-09 | Eaton Corporation | Circuit breaker panel including remotely operated circuit breaker |
US20160225562A1 (en) | 2015-01-29 | 2016-08-04 | Unilectric, Llc | Enhanced circuit breakers and circuit breaker panels and systems and methods using the same |
US20170091711A1 (en) | 2015-09-29 | 2017-03-30 | International Business Machines Corporation | Smart drop boxes for autonomous devices |
US20170091707A1 (en) | 2015-09-29 | 2017-03-30 | International Business Machines Corporation | Smart drop boxes for autonomous devices |
CA2986409A1 (en) | 2016-07-29 | 2018-01-29 | Shawn Murray KARLE | Electrical equipment with additional compartment and wiring to account for temperature limitations of connected conductors |
Non-Patent Citations (5)
Title |
---|
Canadian Standards Association, Canadian Electrical Code, Section 4-006: Temperature limitations, 2015, pp. 20-21 (1 page total), 23rd ed., CSA Group, Canada. |
Canadian Standards Association, Canadian Electrical Code, Table 1: Allowable ampacities for single unshielded copper conductors, rated not more than 5000 V, in free air (based on an ambient temperature of 30 C), 2015, pp. 302-303 (1 page total), 23rd ed., CSA Group, Canada. |
Examination report received on corresponding Canadian patent application No. 2,986,409, 5 pages. |
International Search Report, corresponding international application No. PCT/CA2017/050617, dated Sep. 13, 2017, 8 pages. |
Jim Pauley, Wire Temperature Ratings and Terminations, Data Bulletin, Mar. 2002, pp. 1-6, Bulletin No. 0110DB9901R2/02, Square D Company, Lexington, KY, USA. |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4185879A4 (en) * | 2020-07-24 | 2024-07-17 | Basis Nz Ltd | Improved switchboard and aspects of a power distribution system |
Also Published As
Publication number | Publication date |
---|---|
CA2986409C (en) | 2021-01-26 |
US20200343699A1 (en) | 2020-10-29 |
CA2986409A1 (en) | 2018-01-29 |
US20220013997A1 (en) | 2022-01-13 |
WO2018018131A8 (en) | 2018-03-15 |
WO2018018131A1 (en) | 2018-02-01 |
US20190157849A1 (en) | 2019-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5025659B2 (en) | Power distribution system with multiple functional zones that can be individually isolated | |
US8305739B2 (en) | High density power/lighting panelboard | |
US7830648B2 (en) | Tap apparatus for electrically interconnecting an electrical busway and switchgear, and system including the same | |
CA2725925C (en) | Method and apparatus to move an arcing fault to a different location in an electrical enclosure | |
US20100110616A1 (en) | Disconnect switch with overcurrent device and enclosure for reduced hazard | |
US20220013997A1 (en) | Electrical equipment with additional compartment and wiring to account for temperature limitations of connected conductors | |
US12034241B2 (en) | Enclosure and optimizations | |
KR101301963B1 (en) | Connecting mold having high safety grounding | |
US9646738B2 (en) | System for isolating power conductors using folded insulated sheets | |
KR20160052103A (en) | Electric wiring apparatus for dual multi distribution panelboard | |
EP1672767B1 (en) | Isolated generator equipment compartment | |
KR101338254B1 (en) | Distributing panel for very high voltage | |
JP7036775B2 (en) | Centralized substation equipment | |
JP7220270B2 (en) | Transformer equipment | |
KR101837131B1 (en) | Integrated module type electric swiching apparatus and electric supply equipment | |
JP6576508B1 (en) | Centralized substation | |
Hu | Electrical distribution equipment in data center environments | |
JP6714948B2 (en) | Circuit breaker and switchgear | |
JP2005137147A (en) | Switchgear | |
US20240348018A1 (en) | System for electrically isolating a bus bar in a bus bar vault | |
Fox et al. | A new standard for electrical apparatus applications in industry | |
Luodonpää | Guidelines for designing order based engineered circuits in ACS880 multidrive | |
JP6713840B2 (en) | Power system | |
Energy | A New Standard for Electrical Apparatus Applications in Industry | |
AU2013205295B8 (en) | Integrated Electrical Enclosure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
AS | Assignment |
Owner name: KARLE INNOVATION LTD., CANADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KARLE, SHAWN;REEL/FRAME:044282/0262 Effective date: 20170519 |
|
AS | Assignment |
Owner name: KARLE, SHAWN MURRAY, CANADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KARLE INNOVATION LTD.;REEL/FRAME:044282/0270 Effective date: 20170929 |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
CC | Certificate of correction | ||
AS | Assignment |
Owner name: KARLE INNOVATION LTD., CANADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KARLE, SHAWN MURRAY;REEL/FRAME:055982/0461 Effective date: 20210326 |
|
AS | Assignment |
Owner name: KARLE SERVICES INC., CANADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KARLE INNOVATION LTD.;REEL/FRAME:061460/0618 Effective date: 20221013 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 4 |
|
AS | Assignment |
Owner name: KARLE PATENTS INC., CANADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KARLE SERVICES INC.;REEL/FRAME:065480/0285 Effective date: 20231019 |