TWI858091B - 導電性積層體及使用其之光學裝置、導電性積層體之製造方法 - Google Patents

導電性積層體及使用其之光學裝置、導電性積層體之製造方法 Download PDF

Info

Publication number
TWI858091B
TWI858091B TW109121838A TW109121838A TWI858091B TW I858091 B TWI858091 B TW I858091B TW 109121838 A TW109121838 A TW 109121838A TW 109121838 A TW109121838 A TW 109121838A TW I858091 B TWI858091 B TW I858091B
Authority
TW
Taiwan
Prior art keywords
transparent material
material layer
silver
film
layer
Prior art date
Application number
TW109121838A
Other languages
English (en)
Other versions
TW202110622A (zh
Inventor
若生仁志
Original Assignee
日商迪睿合股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019124245A external-priority patent/JP7406315B2/ja
Application filed by 日商迪睿合股份有限公司 filed Critical 日商迪睿合股份有限公司
Publication of TW202110622A publication Critical patent/TW202110622A/zh
Application granted granted Critical
Publication of TWI858091B publication Critical patent/TWI858091B/zh

Links

Abstract

本發明之課題在於提供一種能夠兼具高穿透率與低電阻之導電性積層體及具備其之各種光學裝置。 導電性積層體1係由透明基板2、第1透明材料層3、以銀作為主成分之金屬層4及第2透明材料層5積層而成,第1透明材料層3、金屬層4、第2透明材料層5自透明基板2側起依序積層於透明基板2之至少1面上,第1透明材料層3由不含鋅之金屬氧化物構成,第2透明材料層5由含有鋅之金屬氧化物構成,金屬層4之厚度為7 nm以上。

Description

導電性積層體及使用其之光學裝置、導電性積層體之製造方法
本技術係關於一種例如用於觸控面板、調光元件、電泳型光學元件、發光元件等之導電性積層體。
自先前以來,透明且具有導電性之材料被用於各種光學裝置。若舉例則可列舉:積層於圖像元件裝置上,藉由靜電容量之變化等檢測所按壓之位置的觸控面板;利用電致變色現象,電性可變地調整外界光較強之光的調光元件;利用電致發光現象之發光元件;或藉由電場操縱分散於液中之帶有電荷之微粒子的電泳型光學元件等。
作為用於該等光學裝置之電極,要求光學之透明,且自動作上之課題而言需要提高導電率。
因此,需要透明且電阻較低之材料。作為此種材料,一般廣泛地使用作為銦與錫之複合氧化物之ITO,其已佔據較大市場份額。
然而,為了降低電阻值、提高透明性,ITO需要於高溫成膜或於成膜後施加熱處理,當用於不耐熱之基板及元件時則存在問題。
因此,正在開發不用加熱而電阻值較低且透明性較高之材料,研究了使用Zn-O、In-Zn-O(IZO)、Al-Zn-O(AZO)、Sn–Zn-O(ZTO)等鋅系氧化物作為ITO之代替材料。
於鋅系氧化物之中,AZO、ZTO由於不含可能對人體有影響之銦,因而更佳。
另一方面,於電漿電視等裝置之構成方面,自畫面射出電磁波。為了吸收該電磁波,而開發了各種透明材料,發現利用高折射率之透明材料夾著非常薄之銀薄膜的積層體非常有效,從而進行了廣泛的研究、開發。
該積層體係藉由銀而賦予導電性,利用高折射率之材料與銀之間之光干涉效果抑制表面反射而提高穿透率,藉此實現高穿透、低電阻。
並且,亦有將該積層體應用於上述光學裝置等之例。 [先前技術文獻] [專利文獻]
[專利文獻1]日本專利第4820738號公報 [非專利文獻]
[非專利文獻1]Appl.Phys.A(2014)116:1287-1291
[發明所欲解決之課題]
如此,兼具穿透性及導電性之透明導電膜可有各種應用例,但是為了實現上述元件之省電及高速運轉,要求電阻更低、穿透率更高。然而,當採用ITO等金屬氧化物時,為了降低電阻值需要使膜之厚度變厚,若使膜變厚則穿透率降低,難以獲得充分特性。
又,根據材料之組合或膜厚度之設計,於光學模擬中可實現高穿透且低電阻之積層體,於模擬中,銀之膜會吸收光,因此較佳為使銀之厚度變薄。
然而,實際上進行成膜時,即便改變銀之厚度,光之吸收量亦無變化,即與厚度無關的光吸收成為對整體穿透率產生較大影響之主要因素。
因此,難以獲得具有超過90%之穿透率及20 Ω/□以下之表面電阻的透明導電膜。
因此,本技術係鑒於上述問題而完成,其目的在於提供一種能夠兼具高穿透率與低電阻之導電性積層體及具備其之各種光學裝置、導電性積層體之製造方法。 [解決課題之技術手段]
本發明人為了解決上述課題而反覆進行了潛心研究,結果發現:於將第1透明材料層、以銀作為主成分之金屬層、第2透明材料層自基板側依序積層而成的導電性積層體中,第1透明材料層由不含鋅之金屬氧化物構成,第2透明材料層由含有鋅之金屬氧化物構成,藉此能夠抑制積層體之光吸收,從而實現高穿透率、低電阻,完成本發明。
即,本技術之導電性積層體係由透明基板、第1透明材料層、以銀作為主成分之金屬層及第2透明材料層積層而成,第1透明材料層、金屬層、第2透明材料層係自上述透明基板側依序積層於上述透明基板之至少1面上,上述第1透明材料層由不含鋅之金屬氧化物構成,上述第2透明材料層由含有鋅之金屬氧化物構成,上述金屬層之厚度為7 nm以上。
又,本技術之光學裝置之特徵在於其使用了至少1塊上述導電性積層體。
又,本技術之導電性積層體之製造方法具有將第1透明材料層、以銀作為主成分之金屬層及第2透明材料層自上述透明基板側依序積層於透明基板之至少1面上的步驟,上述第1透明材料層由不含鋅之金屬氧化物構成,上述第2透明材料層由含有鋅之金屬氧化物構成,上述金屬層之厚度為7 nm以上。 [發明之效果]
根據本技術,提供一種低電阻且具有高穿透率之導電性積層體,其於基板上形成不含鋅元素之第1透明材料後,使銀或銀合金成膜,進而形成含有鋅元素之第2透明材料,藉此抑制於界面生成光吸收層。
結果,根據本技術,可提供一種低電阻且具有高穿透率之導電性積層體,因此可用作省電且具有高穿透率之高性能之觸控面板、調光元件、電泳元件、發光元件等各種光學裝置的電極。
以下,參照圖式,對應用本技術之導電性積層體及使用其之光學裝置、導電性積層體之製造方法詳細地進行說明。再者,本技術當然並非僅限於以下之實施形態,能夠於不脫離本技術之主旨之範圍內進行各種變更。又,圖式係示意性圖,各尺寸之比率等存在與現實不同之情形。具體尺寸等應該參考以下之說明來進行判斷。又,圖式相互間當然亦包含彼此之尺寸之關係或比率不同之部分。
[導電性積層體] 圖1係示意性地示出應用了技術之導電性積層體1之構成的剖視圖。導電性積層體1如圖1所示,係由透明基板2、第1透明材料層3、以銀作為主成分之金屬層4及第2透明材料層5積層而成,第1透明材料層3、金屬層4、第2透明材料層5係自透明基板2側依序積層於透明基板2之至少1面上,第1透明材料層3由不含鋅之金屬氧化物構成,第2透明材料層5由含有鋅之金屬氧化物構成。
於成膜導電性積層體1之上述3〜5各層時,可使用作為真空成膜技術之一之濺鍍。本發明人於研究利用濺鍍使各種透明材料與銀積層時,發現於透明材料與銀之界面形成會產生光吸收之吸收層(以下稱作「光吸收層」)。進而發現,透明材料與銀之界面存在於兩處,一處為第1透明材料層3與構成金屬層4之銀之間,另一處為構成金屬層4之銀與第2透明材料層5之間,於各界面分別存在光吸收層,且各光吸收層之形成機制不同。
第1透明材料層3與構成金屬層4之銀之間的第1光吸收層係於使第1透明材料層3成膜於透明基板2上後,藉由濺鍍等使銀成膜時產生。即,自靶高速飛出之銀原子一旦到達透明基板2,便失去動能而固定於表面。此時,於與構成第1透明材料層3之金屬之間之相互作用較強之情形時,於第1透明材料層3側合金化,而產生光吸收層(第1光吸收層)。鋅係與銀之間具有較廣之固溶範圍從而與銀之相互作用較強的元素,因此容易形成光吸收層。一般而言,相互作用較強之情形時,能夠抑制銀之表面之島狀化,從而抑制因島狀化之銀而導致之吸收,於形成有層之情形時亦會形成一定量之光吸收層。
因此,可知於使用與銀之相互作用較小之材料、例如Nb、Ti、Zr、Hf、Ta、W、Mo等金屬氧化物作為構成第1透明材料層3的第1透明材料時,於銀之膜很薄之情形時,成為島狀結構而產生較大光吸收,於使銀積層至某膜厚以上時,不會形成由與第1透明材料之合金層而產生之第1光吸收層,從而成為僅由銀導致之較小光吸收。又,該最小膜厚為7 nm以上。
構成金屬層4之銀與第2透明材料層5之間的第2光吸收層能夠於利用濺鍍等使第2透明材料層5成膜於金屬層4上時形成。即,成為第2透明材料層5之金屬元素及氧原子到達處於表面被覆有銀之狀態下的透明基板2之表面,但於銀與金屬元素之相互作用較弱之情形時,第2透明材料層5未充分潤濕擴散,於界面形成多個小空隙,因此產生光吸收。另一方面,若使用含有鋅之金屬之氧化物作為第2透明材料,則被覆有銀之透明基板2之表面之潤濕性提高,形成良好界面。並且,由於鋅與氧之結合較強,故於鋅與銀形成合金之前成為氧化被膜,因此亦不會形成由合金層所形成之光吸收層(第2光吸收層)。
又,目前,作為能夠實用之構成第2透明材料層5之導電性氧化物,較佳為鋅氧化物及鋅合金複合氧化物,其原因在於當使電荷實質性地自外部移動至導電性積層體1之表面時氧化鋅及鋅合金複合氧化物亦具有良好的接觸電阻。
如此,作為構成第1透明材料層3之第1透明材料,使用不含鋅之透明材料,於工業上使用Nb、Ti、Zr、Hf、Ta、W、Mo等之氧化物及其複合氧化物,利用濺鍍等使第1透明材料成膜於透明基板2上之後,利用濺鍍等使銀成膜為7 nm以上作為金屬層4,利用濺鍍等積層含有鋅之氧化物作為構成第2透明材料層5之第2透明材料,如此依序積層,藉此抑制3〜5各層之界面之光吸收,以此實現具有高穿透率之導電性積層體1。
構成第1透明材料層3之第1透明材料理想為不含鋅,於藉由光學干涉抑制表面之反射之情形下,較佳為折射率為1.8以上之高折射率物質。例如,可列舉Nb、Ti、Zr、Hf、Ta、W、Mo之氧化物及其複合氧化物。又,可在相對於該等元素不超過50原子%之範圍內,添加1種或複數種其他元素。
金屬層4係以銀作為主成分之金屬層,可為純銀或於整體不超過10原子%之範圍內加入添加元素。即,於本技術中,所謂以銀作為主成分意指含有90原子%以上之銀或純銀。又,於銀之膜厚薄於7 nm時,容易形成島狀之膜,因此較佳為具有7 nm以上之厚度。關於銀之厚度之上限無特別限制,較佳為未達15 nm。於膜厚為15 nm以上之情形時,相較於在界面之吸收,銀之層內部之光吸收更大,因而本技術之效果減弱。
構成第2透明材料層5之第2透明材料理想為含有鋅,但自光學特性及導電性、科學穩定性之觀點而言,可於不超過50原子%之範圍內,添加1種或複數種其他元素。
如此,根據本技術,於使不含鋅元素之第1透明材料形成於透明基板2上後,使銀或銀合金成膜,進而形成含有鋅元素之第2透明材料,藉此抑制於各界面產生光吸收層,獲得低電阻且具有高穿透率之導電性積層體1。本技術之此種導電性積層體1為低電阻,且具有高穿透率。因此,根據本技術,可提供一種至少使用1塊導電性積層體之省電、高性能之光學裝置,例如為使用導電性積層體作為電極之至少一極之觸控面板、調光元件、電泳型光學元件、發光元件、天線等。
以下,對構成導電性積層體1之各層詳細地進行說明。如上所述,關於應用本技術之導電性積層體1,積層有透明基板2、第1透明材料層3、以銀作為主成分之金屬層4及第2透明材料層5,第1透明材料層3、金屬層4、第2透明材料層5係自透明基板2側依序積層於透明基板2之至少1面上。
<透明基板> 作為本發明之透明基板2,可使用由玻璃基材、樹脂膜中之任一者所構成者。於使用由樹脂膜所構成者作為透明基板2之情形時,可藉由卷對卷法進行製造,因此可提高生產效率。
作為此種樹脂膜之材料,並無特別限定,例如可使用聚對苯二甲酸乙二酯(PET)、聚萘二甲酸乙二酯(PEN)、聚芳醯胺、聚醯亞胺、聚碳酸酯、聚乙烯、聚丙烯、三乙醯纖維素(TAC)、聚環烯烴(COC、COP)等。
透明基板2之厚度無特別限定,但於為樹脂膜之情形時,考慮到製造時之處理之容易性及構件之薄型化,較佳為設為20 μm以上且200 μm以下。
又,於應用本技術之導電性積層體1中,透明基板2之光穿透率較佳為88%以上。
再者,自提高透明基板2之耐摩擦性之觀點而言,亦可例如藉由溶液塗佈,使例如丙烯酸系樹脂之薄膜形成於透明基板2之兩面。
<第1透明材料層> 第1透明材料層3由不含鋅之金屬氧化物構成,例如可較佳地使用Nb、Ti、Zr、Hf、Ta、W、Mo等與銀之相互作用較小之物質的氧化物。又,該等可為單獨或含有複數個元素之複合氧化物,能夠以50原子%以下之濃度含有鋅以外之元素。第1透明材料層3之厚度無特別限定,可根據材料構成而設定為穿透率最高之膜厚。作為第1透明材料層3之具體厚度,例如可設為30〜80 nm之範圍內。
關於第1透明材料層3之形成方法並無特別限定,但自提高生產效率之觀點、又自使膜厚分佈均勻化之觀點而言,較佳為使用濺鍍法。
又,自防濕性等觀點而言,可將第1透明材料層3分為複數層而形成。此時,較佳為至少與金屬層4接觸之透明材料層由不含鋅之金屬氧化物構成,例如由Nb、Ti、Zr、Hf、Ta、W、Mo等與銀之相互作用較小之物質的氧化物構成。
<金屬層> 積層於第1透明材料層3上之金屬層4係以銀作為主成分之金屬層。金屬層4可於整體上不超過10原子%之範圍內,加入添加元素。即,本技術之金屬層4由90原子%以上之銀或純銀構成。
又,金屬層4較佳為具有7 nm以上之厚度。若膜厚薄於7 nm,則容易形成島狀之膜,存在損害光穿透性之虞。關於膜厚之上限並無特別限制,於膜厚為15 nm以上之情形時,相較於在界面之吸收,銀之層內部之光吸收更大,存在減弱本發明之效果之虞。
關於金屬層4之形成方法並無特別限定,自較佳為於形成金屬層4後連續地形成第2透明材料層5之方面、提高生產效率之觀點、或使膜厚分佈均勻化之觀點而言,較佳為使用濺鍍法。
<第2透明材料層> 積層於金屬層4上之第2透明材料層5由含有鋅之氧化物構成。第2透明材料層5自光學特性及導電性、化學穩定性之觀點而言,可於不超過50原子%之範圍內添加鋅以外之1種或複數種元素。第2透明材料層5之厚度並無特別限定,可根據材料構成而設定為穿透率最高之膜厚。作為第2透明材料層5之具體厚度,例如可設為30〜70 nm之範圍內。
關於第2透明材料層5之形成方法並無特別限定,但自較佳為於形成金屬層4後連續地形成之方面、提高生產效率之觀點、或使膜厚分佈均勻化之觀點而言,較佳為使用濺鍍法。
又,自耐擦傷性等觀點而言,可將第2透明材料層5分為複數層而形成。此時,至少與金屬層4接觸之透明材料層中可添加1種或複數種元素作為含有鋅之氧化物,自光學特性及導電性、科學穩定性之觀點而言,上述所添加之元素為不超過50原子%之範圍內。又,為了使其他層亦保持良好之導電性,較佳為具有導電性之透明氧化物。
再者,圖1所示之導電性積層體1中,將第1透明材料層3、金屬層4及第2透明材料層5積層於透明基板2之一側之面,當然,本技術之導電性積層體1亦可將第1透明材料層3、金屬層4及第2透明材料層5積層於透明基板2之另一側之面或透明基板2之兩面。
[導電性積層體之製造步驟] 此種導電性積層體1可藉由將第1透明材料層3、以銀作為主成分之金屬層4、第2透明材料層5自透明基板2側依序積層於透明基板2之至少1面上的步驟進行製造。
第1透明材料層3、金屬層4、第2透明材料層5之成膜例如可使用日本特開2014-34701號公報所記載之薄膜形成裝置而形成。圖2係示出日本特開2014-34701號公報所記載之薄膜形成裝置之內部結構的立體圖。該薄膜形成裝置藉由卷對卷法,於膜基材上利用濺鍍進行成膜,可設置複數個濺鍍靶,並且,能夠一旦設置輥便於維持真空環境下使複數種不同材料成膜。
進而,於該薄膜形成裝置中,於濺鍍時,除作為濺鍍氣體之氬氣以外,亦可將氧氣導入至電漿中,藉此可使靶材料之氧化物形成於膜基材上。
以下,對薄膜形成裝置之結構進行詳述。該薄膜形成裝置能夠形成長邊方向及寬度方向之厚度均勻之薄膜,其具備:測定部,其測定形成於基材膜上之薄膜之寬度方向的光學特性,基材膜係沿長邊方向連續地供給至該測定部;供給部,其於基材膜之寬度方向設有複數個氣體噴嘴,將反應性氣體供給至靶附近;及控制部,其基於測定部之寬度方向之光學特性,控制自各氣體噴嘴噴出之反應性氣體之流量。
又,作為具體結構,較佳為具備成膜部,該成膜部具有:供給部、對靶施加電壓之濺鍍電極、及測定成膜中基材膜之寬度方向之電漿之發光光譜的電漿測定部。藉此,控制部可基於測定部之寬度方向之光學特性及電漿測定部之發光光譜,控制自各氣體噴嘴噴出之反應性氣體之流量及對靶施加之電壓,且能夠形成寬度方向之厚度更均勻之薄膜。
又,作為具體構成,較佳為具備:將基材膜沿長邊方向卷出之卷出部、於基材膜之長邊方向配置有複數個成膜部之成膜單元、及卷取藉由成膜單元形成有薄膜之基材膜的卷取部。藉此,自基材膜之卷出直至卷取,可形成多層薄膜。又,測定部較佳為分別設置於成膜部之後,較佳為至少設於最後之成膜部之後,即設置於成膜單元與卷取部之間。藉此,可測定單層薄膜或多層薄膜兩者之光學特性。
圖2所示之薄膜形成裝置一面將作為基材膜之基膜捲繞於罐輥,一面移行,藉由濺鍍於基膜表面形成薄膜。
該薄膜形成裝置自作為卷出部之卷出輥11供給基膜10(透明基板2),藉由卷取部即卷取輥12卷取形成有薄膜之基膜10。又,於真空腔室內具備作為成膜單元之第1成膜室單元及第2成膜室單元。真空腔室與進行空氣排出之真空泵連接,能夠調整至特定真空度。
第1成膜室單元及第2成膜室單元分別具備第1罐輥21及第2罐輥22,以與罐輥21、22之外周面相對向之方式,固定複數個作為成膜部之濺鍍室SP1〜10。於各濺鍍室SP1〜10,電極上安裝有特定之靶,並且設有於基膜10之寬度方向具有複數個氣體噴嘴的供給部。
又,薄膜形成裝置具備作為測定部之光學監視器31,該光學監視器31係於第1成膜室單元與第2成膜室單元之間,即於利用濺鍍室SP5所進行之成膜後測定光學特性。藉此,能夠控制第1成膜室單元後之中間品之成膜,並且能夠減少單層之調整時之調整時間。又,具備作為測定部之光學監視器32,該光學監視器32係於第2成膜室單元之後,即於利用濺鍍室SP10所進行之成膜後測定光學特性。藉此,可確認第2成膜室單元後之最終品之成膜之品質。
關於光學監視器31、32,如下所述,藉由能夠於寬度方向掃描之光學掃描頭,測定形成於基膜10上之薄膜之寬度方向之光學特性。藉由該光學監視器31、32,例如,可測定反射率之峰波長作為光學特性,換算為光學厚度,藉此獲得寬度方向之光學厚度分佈。
由此種結構所構成之薄膜形成裝置自卷出輥11陸續卷出基膜10,於第1罐輥21及第2罐輥22之搬送時於基膜10上形成薄膜,利用卷取輥12進行卷取,藉此可獲得多層薄膜。此處,利用光學監視器31、32,測定形成於基膜10上之薄膜之寬度方向之光學特性,並基於光學特性,控制來自設於寬度方向之各氣體噴嘴的反應性氣體之流量,藉此可形成長邊方向及寬度方向之厚度均勻之薄膜。 [實施例]
以下,列舉實施例及比較例對本技術具體地進行說明,但本發明並非限定於以下之實施例。
<實施例1> 使用圖2所示之日本特開2014-34701號公報所記載之薄膜形成裝置,於透明基板上依序形成第1透明材料層、金屬層、第2透明材料層。作為透明基板,使用厚度50 μm之COP膜。
薄膜形成裝置可同時地依序積層複數種材料之薄膜,於本實施例中,自接近膜卷出側之側依序配置氧化鈮、銀、鋅-錫之複合氧化物之靶。各靶連接於獨立之電源,能夠通入任意電力而放電。又,各靶收納於分別獨立之容器內,隔開靶之間隔壁於罐輥附近僅具有微小間隙,能夠實質性地實現不同氣體環境。
對該薄膜形成裝置之真空槽內整體進行真空排氣而達到1×10-3 Pa以下後,於設置有氧化鈮之第1陰極部,一面藉由質量流量控制器將氬氣之流量調整為150 sccm,一面將氬氣導入至真空槽之第1陰極部,對氧化鈮靶施加電力而使其放電,利用濺鍍進行成膜。此時,為了抑制由缺氧所導致之氧化鈮之光吸收,添加6 sccm之氧,形成透明氧化物層。此時膜之移行速度為3 m/min。電力係以能夠於測定電力與膜厚之關係後,以3 m/min之移行速度形成厚度為46 nm之氧化鈮之方式預先調整。
於第1陰極部形成氧化鈮後,於第2陰極部形成銀薄膜。具體而言,於第2陰極部,一面藉由質量流量控制器將氬氣之流量調整為450 sccm,一面將氬氣導入至真空槽之第2陰極部,對銀靶施加電力而使其放電,利用濺鍍進行成膜。雖然於本實施例中使用相鄰之2個陰極,但是並非必須使用相鄰之2個陰極。根據裝置結構,亦可不使用1個陰極室,而將陰極室整體作為間隔壁。電力係以能夠於測定電力與膜厚之關係後,以3 m/min之移行速度形成厚度為9 nm之銀薄膜之方式預先調整。
於在第2陰極部形成銀薄膜後,於第3陰極部形成鋅-錫複合氧化物。具體而言,於第3陰極部,一面藉由質量流量控制器將氬氣之流量調整為50 sccm,一面將氬氣導入至真空槽之第3陰極部,對鋅-錫複合氧化物靶施加電力而使其放電,利用濺鍍進行成膜。此時,除氬氣以外,一面藉由質量流量控制器對微量之氧進行調整,一面將其導入,為了不引起由於氧不足、氧過多所導致之導電性不良,而對氧量進行調整,從而獲得良好之透明導電性氧化物。雖然於本實施例中使用相鄰之2個陰極,但是並非必須使用相鄰之2個陰極。根據裝置結構,亦可不使用1個陰極室,而將陰極室整體作為間隔壁。電力係以能夠於測定電力與膜厚之關係後,以3 m/min之移行速度形成厚度為50 nm之鋅-錫複合氧化物之方式預先調整。
膜厚全部預先藉由電腦模擬進行計算,並以穿透率成為最高之方式進行設計。
成膜3層後,連續地卷取膜,當卷取具有圖1之構成之膜後,向裝置整體導入大氣,取出試樣,將其作為樣本。
<實施例2> 除了將氧化鈮之膜厚、銀之膜厚、鋅-錫複合氧化物之膜厚分別調整為49 nm、8 nm、52 nm以外,於與實施例1相同之條件下製成試樣。
<實施例3> 除了將氧化鈮之膜厚、銀之膜厚、鋅-錫複合氧化物之膜厚分別調整為52 nm、7 nm、53 nm以外,於與實施例1相同之條件下製成試樣。
<實施例4> 除了將氧化鈮之膜厚、銀之膜厚、鋅-錫複合氧化物之膜厚分別調整為43 nm、10 nm、49 nm以外,於與實施例1相同之條件下製成試樣。
<實施例5> 除了將氧化鈮之膜厚、銀之膜厚、鋅-錫複合氧化物之膜厚分別調整為40 nm、11 nm、47 nm以外,於與實施例1相同之條件下製成試樣。
<實施例6> 除了將氧化鈮之膜厚、銀之膜厚、鋅-錫複合氧化物之膜厚分別調整為38 nm、12 nm、46 nm以外,於與實施例1相同之條件下製成試樣。
<實施例7> 除了於第1透明材料使用氧化鈦,將第1透明材料之膜厚、銀之膜厚、鋅-錫複合氧化物之膜厚分別調整為39 nm、10 nm、52 nm以外,於與實施例1相同之條件下製成試樣。
<實施例8> 除了於第1透明材料使用氧化鋯,將第1透明材料之膜厚、銀之膜厚、鋅-錫複合氧化物之膜厚分別調整為71 nm、7 nm、42 nm以外,於與實施例1相同之條件下製成試樣。
<實施例9> 除了於第1透明材料使用氧化鉿,將第1透明材料之膜厚、銀之膜厚、鋅-錫複合氧化物之膜厚分別調整為62 nm、7 nm、47 nm以外,於與實施例1相同之條件下製成試樣。
<實施例10> 除了於第1透明材料使用五氧化鉭,將第1透明材料之膜厚、銀之膜厚、鋅-錫複合氧化物之膜厚分別調整為58 nm、7 nm、50 nm以外,於與實施例1相同之條件下製成試樣。
<實施例11> 除了於第1透明材料使用氧化鎢,將第1透明材料之膜厚、銀之膜厚、鋅-錫複合氧化物之膜厚分別調整為63 nm、7 nm、47 nm以外,於與實施例1相同之條件下製成試樣。 <實施例12>
除了於第1透明材料使用氧化鉬,將第1透明材料之膜厚、銀之膜厚、鋅-錫複合氧化物之膜厚分別調整為65 nm、7 nm、48 nm以外,於與實施例1相同之條件下製成試樣。
<實施例13> 除了於第2透明材料使用氧化鋅,將氧化鈮之膜厚、銀之膜厚、第2透明材料之膜厚分別調整為51 nm、7 nm、53 nm以外,於與實施例1相同之條件下製成試樣。
<實施例14> 除了於第2透明材料使用銦-鋅複合氧化物,將氧化鈮之膜厚、銀之膜厚、第2透明材料之膜厚分別調整為53 nm、7 nm、51 nm以外,於與實施例1相同之條件下製成試樣。
<實施例15> 除了於第2透明材料使用鋁-鋅複合氧化物,將氧化鈮之膜厚、銀之膜厚、第2透明材料之膜厚分別調整為47 nm、7 nm、58 nm以外,於與實施例1相同之條件下製成試樣。
<比較例1> 除了於第1透明材料使用氧化鋅,將第1透明材料之膜厚、銀之膜厚、鋅-錫複合氧化物之膜厚分別調整為64 nm、7 nm、46 nm以外,於與實施例1相同之條件下製成試樣。
<比較例2> 除了於第1透明材料使用鋅-錫複合氧化物,於第2透明材料使用氧化鈮,將第1透明材料之膜厚、銀之膜厚、第2透明材料之膜厚分別調整為77 nm、7 nm、35 nm以外,於與實施例1相同之條件下製成試樣。
<比較例3> 除了將氧化鈮之膜厚、銀之膜厚、鋅-錫複合氧化物之膜厚分別調整為55 nm、6 nm、54 nm以外,於與實施例1相同之條件下製成試樣。
<比較例4> 除了於第2透明材料使用氧化鈮,將氧化鈮之膜厚、銀之膜厚、第2透明材料之膜厚分別調整為55 nm、7 nm、42 nm以外,於與實施例1相同之條件下製成試樣。
<比較例5> 除了使用氧化鋅作為第1透明材料,於第2透明材料使用氧化鋅,將第1透明材料之膜厚、銀之膜厚、第2透明材料之膜厚分別調整為64 nm、7 nm、46 nm以外,於與實施例1相同之條件下製成試樣。
<比較例6> 除了使用氧化鋅作為第1透明材料,於第2透明材料使用銦-鋅複合氧化物,將第1透明材料之膜厚、銀之膜厚、第2透明材料之膜厚分別調整為66 nm、7 nm、44 nm以外,於與實施例1相同之條件下製成試樣。
<比較例7> 除了使用氧化鋅作為第1透明材料,於第2透明材料使用鋁-鋅複合氧化物,將第1透明材料之膜厚、銀之膜厚、第2透明材料之膜厚分別調整為58 nm、7 nm、51 nm以外,於與實施例1相同之條件下製成試樣。
<比較例8> 除了使用氧化鋅作為第1透明材料,於第2透明材料使用氧化鈦,將第1透明材料之膜厚、銀之膜厚、第2透明材料之膜厚分別調整為74 nm、8 nm、31 nm以外,於與實施例1相同之條件下製成試樣。
[評價結果] 將各試樣切成為任意尺寸後,進行測定、評價。表面電阻係基於「JIS K-7194」,使用「LorestaGP(註冊商標)(Diainstruments股份有限公司製造)」進行測定。
全光線穿透率係基於「JIS K-7105」,使用「NDH5000(日本電色工業股份有限公司製造)」進行測定。
關於光吸收,使用分光器「U-4100(日立高新技術股份有限公司製造)」,測定入射角度5°之穿透率及反射率,對於波長550 nm之各值,將下述式(1)之式所示之量定義為光吸收量。 光吸收(%)=100(%)-(穿透率(%)+反射率(%))・・・・(1)
即,使未反射亦未穿透者於薄膜及基材內部轉換為熱(吸收)。實際上,存在由於散射等,而使實質性之穿透率及反射率降低,表觀上發現光吸收增加之情形,本發明中所使用之基材由於吸收極少且表面亦平滑,故而利用上式(1)所求得之光吸收可大致視為經積層之膜所致之吸收。
於本發明中,較佳為表面電阻儘量較低,又,全光線穿透率儘量較高。關於一般所使用之ITO(銦錫複合氧化物)膜等,多數情況下表面電阻為100 Ω/□時全光線穿透率為88%,但會根據ITO之膜厚而有所不同。因此,為了顯示本發明之優勢,較佳為電阻值為20 Ω/□以下,全光線穿透率為90%以上。
[表1]
   第1透明材料層 金屬層(Ag) 第2透明材料層 表面電阻(Ω/□) 全光線穿透率(%) 光吸收(%)
材料 厚度 (nm) 材料 厚度 (nm) 材料 厚度 (nm)
實施例1 Nb2 O5 46 Ag 9 Zn-Sn-O 50 9 91.4 4
實施例2 Nb2 O5 49 Ag 8 Zn-Sn-O 52 11 91.1 4
實施例3 Nb2 O5 52 Ag 7 Zn-Sn-O 53 14 90.0 5
實施例4 Nb2 O5 43 Ag 10 Zn-Sn-O 49 8 90.5 5
實施例5 Nb2 O5 40 Ag 11 Zn-Sn-O 47 7 90.4 6
實施例6 Nb2 O5 38 Ag 12 Zn-Sn-O 46 6 90.1 8
實施例7 TiO2 39 Ag 10 Zn-Sn-O 52 8 90.2 5
實施例8 ZrO2 71 Ag 7 Zn-Sn-O 42 14 91.3 4
實施例9 HfO2 62 Ag 7 Zn-Sn-O 47 14 91.5 4
實施例10 Ta2 O5 58 Ag 7 Zn-Sn-O 50 14 91.5 4
實施例11 WO3 63 Ag 7 Zn-Sn-O 47 14 91.4 5
實施例12 MoO3 65 Ag 7 Zn-Sn-O 48 14 91.4 5
實施例13 Nb2 O5 51 Ag 7 ZnO 53 14 91.4 4
實施例14 Nb2 O5 53 Ag 7 In-Zn-O 51 14 91.0 4
實施例15 Nb2 O5 47 Ag 7 Al-Zn-O 58 14 91.6 4
比較例1 ZnO 64 Ag 7 Zn-Sn-O 46 18 86.2 10
比較例2 Zn-Sn-O 77 Ag 7 Nb2 O5 35 38 87.3 8
比較例3 Nb2 O5 55 Ag 6 Zn-Sn-O 54 120 80.3 15
比較例4 Nb2 O5 55 Ag 7 Nb2 O5 42 39 89.3 7
比較例5 ZnO 64 Ag 7 ZnO 46 19 80.5 14
比較例6 ZnO 66 Ag 7 In-Zn-O 44 16 87.0 9
比較例7 ZnO 58 Ag 7 Al-Zn-O 51 17 87.5 9
比較例8 ZnO 74 Ag 8 TiO2 31 15 83.5 12
<實施例1〜6> 如表1所明示,上述表面電阻保持為30 Ω/□以下,全光線穿透率保持為90%以上。又,雖然光吸收亦會隨著銀之膜厚增加而稍微增加,但不會對全光線穿透率產生較大影響,有助於抑制於本發明中所得知之產生光吸收之原因。
<實施例7〜12> 與實施例1〜6進行比較,表現出於改變第1透明材料層之情形下之特性。如表1所明示,上述表面電阻保持30 Ω/□以下,全光線穿透率保持90%以上。即,於本發明中所示之效果並非限定於第1透明材料層為氧化鈮之情形,使用不含鋅之金屬氧化物亦可表現出同樣之效果,上述不含鋅之金屬氧化物具體而言為氧化鈦、氧化鋯、氧化鉿、五氧化鉭、氧化鎢、氧化鉬等。
<實施例13〜15> 於本發明中,實施例1至12中,作為單層之膜,使用表現出較低電阻值之錫複合氧化物作為第2透明材料層,但是本發明並非限定於此。與實施例1〜6相比,實施例13〜15表現出改變第2透明材料層之情形時之特性。如表1所明示,於實施例13〜15中,亦保持上述表面電阻為30 Ω/□以下,全光線穿透率為90%以上之特性。即,可知本發明中所示之效果並非限定於第2透明材料層為鋅-錫複合氧化物之情形,若為含有鋅之透明導電體亦會表現相同之效果。
<比較例1> 於比較例1中,於第1透明材料層使用氧化鋅。如表1所示,比較例1之試樣表現出如下特性:與銀之膜厚相同之實施例3相比,全光線穿透率大幅劣化,又,光吸收亦增大,若於第1透明材料層使用鋅氧化物,則吸收增大。
<比較例2> 於比較例2中,與實施例1〜6所示之結構相反,於第1透明材料層使用鋅-錫複合氧化物,於第2透明材料層使用氧化鈮。如表1所示,與銀之膜厚相同之實施例3相比,比較例2之試樣之全光線穿透率亦降低,且光吸收增大。由此可知,於第1透明材料層與金屬層(銀)之界面、金屬層(銀)與第2透明材料層之界面產生之吸收分別由不同構成而產生。
<比較例3> 於比較例3中,結構與實施例1〜6相同,將金屬層(銀)之膜厚設為6 nm。如表1所示,比較例3之試樣若使金屬層(銀)之膜厚變薄,則無法獲得本發明之效果,無法維持銀薄膜之連續性,於膜中成為島狀之結構,因此表面電阻急劇增大,又,光吸收量亦顯著增大。
<比較例4> 於比較例4中,將第1透明材料與第2透明材料一同設為氧化鈮。如表1所示,比較例4之試樣表現出如下特性:與銀之膜厚相同之實施例3相比,全光線穿透率產生劣化,藉由於第2透明材料使用含有鋅之材料,可抑制光吸收。又,由於氧化鈮之導電性亦較低,故表面電阻亦升高。
<比較例5〜8> 於比較例5〜8中,於第1透明材料層使用氧化鋅。如表1所示,比較例5〜8之試樣表現出如下特性:即便於第2透明材料層使用鋅-錫複合氧化物以外之物質,全光線穿透率亦未改善,為較低之值,於第1透明材料為含有鋅之氧化物之情形時,即便第2透明材料為任意材料,亦無法獲得高穿透之膜。
如以上所述,可根據實施例及比較例之結果證實本發明之效果。再者,本發明並非限定於上述之例。可知,若為具有本發明所屬之技術領域中之通常知識者,則於申請專利範圍中所記載之技術性思想之範疇內,能夠思及各種變更例或修正例,應理解該等當然亦屬於本發明之技術性範圍。
1:導電性積層體 2:透明基板 3:第1透明材料層 4:金屬層 5:第2透明材料層 10:基膜 11:卷出輥 12:卷取輥 21:第1罐輥 22:第2罐輥 31:光學監視器 32:光學監視器 SP:濺鍍室
[圖1]係示意性地示出應用技術之導電性積層體之構成的剖視圖。 [圖2]係示出薄膜形成裝置之內部結構之立體圖。
1:導電性積層體
2:透明基板
3:第1透明材料層
4:金屬層
5:第2透明材料層

Claims (10)

  1. 一種導電性積層體,其係由透明基板、由Nb、Ti、Zr、Hf、Ta、W、Mo之至少任一種之氧化物構成之第1透明材料層、與上述第1透明材料層相接之以銀作為主成分之金屬層、及與上述金屬層相接之第2透明材料層積層而成,上述第1透明材料層、上述金屬層、上述第2透明材料層自上述透明基板側依序積層於上述透明基板之至少1面上,上述第1透明材料層不含鋅,上述第2透明材料層由含有鋅之金屬氧化物構成,上述第1透明材料層之厚度為30nm以上80nm以下,上述第2透明材料層之厚度為大於30nm且70nm以下,上述金屬層之厚度為7nm以上,上述導電性積層體之穿透率為90%以上。
  2. 如請求項1之導電性積層體,其中,上述金屬層之銀之原子比率為90%以上。
  3. 如請求項1或2之導電性積層體,其中,上述透明基板係由玻璃、聚對苯二甲酸乙二酯(PET)、聚萘二甲酸乙二酯(PEN)、聚芳醯胺、聚醯亞胺、聚碳酸酯、聚乙烯、聚丙烯、三乙醯纖維素(TAC)、聚環烯烴中之任一者或其積層體構成。
  4. 一種光學裝置,其至少使用1塊請求項1至3中任一項之導電性積層體。
  5. 一種觸控面板,其使用請求項1至3中任一項之導電性積層體作為電極之至少一極。
  6. 一種調光元件,其使用請求項1至3中任一項之導電性積層體作為電極之至少一極。
  7. 一種電泳型光學元件,其使用請求項1至3中任一項之導電性積層體作為電極之至少一極。
  8. 一種發光元件,其使用請求項1至3中任一項之導電性積層體作為電極之至少一極。
  9. 一種天線,其使用至少1塊請求項1至3中任一項之導電性積層體。
  10. 一種導電性積層體之製造方法,其具有於透明基板之至少1面上自上述透明基板側依序積層由Nb、Ti、Zr、Hf、Ta、W、Mo之至少任一種之氧化物構成之第1透明材料層、與上述第1透明材料層相接之以銀作為主成分之金屬層、及與上述金屬層相接之第2透明材料層的步驟,上述第1透明材料層不含鋅,上述第2透明材料層由含有鋅之金屬氧化物構成,上述第1透明材料層之厚度為30nm以上80nm以下,上述第2透明材料層之厚度為大於30nm且70nm以下,上述金屬層之厚度為7nm以上,上述導電性積層體之穿透率為90%以上。
TW109121838A 2019-07-03 2020-06-29 導電性積層體及使用其之光學裝置、導電性積層體之製造方法 TWI858091B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019124245A JP7406315B2 (ja) 2019-07-03 2019-07-03 導電性積層体及びこれを用いた光学装置、導電性積層体の製造方法
JPJP2019-124245 2019-07-03

Publications (2)

Publication Number Publication Date
TW202110622A TW202110622A (zh) 2021-03-16
TWI858091B true TWI858091B (zh) 2024-10-11

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107533402A (zh) 2015-04-24 2018-01-02 Tdk株式会社 透明导电体及其制造方法以及触摸面板

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107533402A (zh) 2015-04-24 2018-01-02 Tdk株式会社 透明导电体及其制造方法以及触摸面板

Similar Documents

Publication Publication Date Title
TWI381401B (zh) Transparent conductive film and manufacturing method thereof
TWI558571B (zh) Inorganic film and layered body
US20230119906A1 (en) Conductive laminate, optical device using same, and method for producing conductive laminate
CN201156444Y (zh) 柔性高阻多层透明导电膜
JP2011138135A (ja) 透明導電膜及びそれを含むディスプレイフィルタ
TWI858091B (zh) 導電性積層體及使用其之光學裝置、導電性積層體之製造方法
JP4093927B2 (ja) 透明導電性フィルム及びそれを用いた光学フィルター
US11862361B2 (en) Conductive laminate, optical device using same, and production method for conductive laminate
WO2015125512A1 (ja) 透明導電体の製造方法及び透明導電体の製造装置
WO2015125558A1 (ja) 透明導電体の製造方法及び透明導電体
WO2022050045A1 (ja) 導電性積層体及びこれを用いた光学装置、導電性積層体の製造方法
KR20140090876A (ko) 다층 구조의 투명 전극
JP2022043998A (ja) 導電性積層体及びこれを用いた光学装置、導電性積層体の製造方法
WO2015133007A1 (ja) 透明導電体の製造方法
JP7478721B2 (ja) 透明電極付き基板の製造方法
KR20170135781A (ko) 발수 특성을 가지는 반사방지 필름 및 이의 제조방법
WO2015011928A1 (ja) 透明導電体の製造方法
JP2016177940A (ja) 透明導電体の製造方法
KR20170090030A (ko) 발수 특성을 가지는 반사방지 필름 및 이의 제조방법
JP2005003707A (ja) 反射防止体およびこれを用いたディスプレイ装置
JP2016169420A (ja) 透明導電部材の製造装置、及び、透明導電部材の製造方法
KR20240004309A (ko) 광전자 디바이스를 위한 광 투과성 다층 구조물
JP2024070169A (ja) 透明導電性フィルムの製造方法
KR20140039399A (ko) 반사방지 및 저반사 코팅층을 적용하여 투과율을 향상시킨 터치스크린
JP2016108581A (ja) 透明導電体の製造方法